WorldWideScience

Sample records for total energy application

  1. Total-factor energy efficiency in developing countries

    International Nuclear Information System (INIS)

    Zhang Xingping; Cheng Xiaomei; Yuan Jiahai; Gao Xiaojun

    2011-01-01

    This paper uses a total-factor framework to investigate energy efficiency in 23 developing countries during the period of 1980-2005. We explore the total-factor energy efficiency and change trends by applying data envelopment analysis (DEA) window, which is capable of measuring efficiency in cross-sectional and time-varying data. The empirical results indicate that Botswana, Mexico and Panama perform the best in terms of energy efficiency, whereas Kenya, Sri Lanka, Syria and the Philippines perform the worst during the entire research period. Seven countries show little change in energy efficiency over time. Eleven countries experienced continuous decreases in energy efficiency. Among five countries witnessing continuous increase in total-factor energy efficiency, China experienced the most rapid rise. Practice in China indicates that effective energy policies play a crucial role in improving energy efficiency. Tobit regression analysis indicates that a U-shaped relationship exists between total-factor energy efficiency and income per capita. - Research Highlights: → To measure the total-factor energy efficiency using DEA window analysis. → Focus on an application area of developing countries in the period of 1980-2005. → A U-shaped relationship was found between total-factor energy efficiency and income.

  2. Total scattering investigation of materials for clean energy applications: the importance of the local structure.

    Science.gov (United States)

    Malavasi, Lorenzo

    2011-04-21

    In this Perspective article we give an account of the application of total scattering methods and pair distribution function (PDF) analysis to the investigation of materials for clean energy applications such as materials for solid oxide fuel cells and lithium batteries, in order to show the power of this technique in providing new insights into the structure-property correlation in this class of materials.

  3. Commercial applications of solar total energy systems. Third quarterly progress report, November 1, 1976--January 31, 1977

    Energy Technology Data Exchange (ETDEWEB)

    1977-09-01

    The application of Solar Total Energy System (STES) to the commercial sector (e.g., office buildings, shopping centers, retail stores, etc.) in the United States is investigated. Candidate solar-thermal and solar-photovoltaic concepts are considered for providing on-site electrical power generation as well as thermal energy for both heating and cooling applications. The solar-thermal concepts include the use of solar concentrators (distributed or central-receiver) for collection of the thermal energy for conversion to electricity by means of a Rankine-cycle or Brayton-cycle power-conversion system. Recoverable waste heat from the power-generation process is utilized to help meet the building thermal-energy demand. Evaluation methodology is identified to allow ranking and/or selection of the most cost-effective concept for commercial-building applications.

  4. Near-term Forecasting of Solar Total and Direct Irradiance for Solar Energy Applications

    Science.gov (United States)

    Long, C. N.; Riihimaki, L. D.; Berg, L. K.

    2012-12-01

    Integration of solar renewable energy into the power grid, like wind energy, is hindered by the variable nature of the solar resource. One challenge of the integration problem for shorter time periods is the phenomenon of "ramping events" where the electrical output of the solar power system increases or decreases significantly and rapidly over periods of minutes or less. Advance warning, of even just a few minutes, allows power system operators to compensate for the ramping. However, the ability for short-term prediction on such local "point" scales is beyond the abilities of typical model-based weather forecasting. Use of surface-based solar radiation measurements has been recognized as a likely solution for providing input for near-term (5 to 30 minute) forecasts of solar energy availability and variability. However, it must be noted that while fixed-orientation photovoltaic panel systems use the total (global) downwelling solar radiation, tracking photovoltaic and solar concentrator systems use only the direct normal component of the solar radiation. Thus even accurate near-term forecasts of total solar radiation will under many circumstances include inherent inaccuracies with respect to tracking systems due to lack of information of the direct component of the solar radiation. We will present examples and statistical analyses of solar radiation partitioning showing the differences in the behavior of the total/direct radiation with respect to the near-term forecast issue. We will present an overview of the possibility of using a network of unique new commercially available total/diffuse radiometers in conjunction with a near-real-time adaptation of the Shortwave Radiative Flux Analysis methodology (Long and Ackerman, 2000; Long et al., 2006). The results are used, in conjunction with persistence and tendency forecast techniques, to provide more accurate near-term forecasts of cloudiness, and both total and direct normal solar irradiance availability and

  5. Institutional applications of solar total-energy systems. Draft final report. Volume 2. Appendixes

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-07-01

    The appendices present the analytical basis for the analysis of solar total energy (STE) systems. A regional-climate model and a building-load requirements model are developed, along with fuel-price scenarios. Life-cycle costs are compared for conventional-utility, total energy, and STE systems. Thermal STE system design trade-offs are performed and thermal STE system performance is determined. The sensitivity of STE competitiveness to fuel prices is examined. The selection of the photovoltaic array is briefly discussed. The institutional-sector decision processes are analyzed. Hypothetical regional back-up rates and electrical-energy costs are calculated. The algorithms and equations used in operating the market model are given, and a general methodology is developed for projecting the size of the market for STE systems and applied to each of 8 institutional subsectors. (LEW)

  6. The total energy policy in Flanders

    International Nuclear Information System (INIS)

    Bouma, J.W.J.

    1994-01-01

    The policy of the Flemish region (Belgium) with regard to the total energy principle are presented. An overview of the main policy instruments to support energy saving and environmental-friendly investments as well as the development of new technologies is given. The total energy policy of the Flanders Region forms part of the general Flemish (energy) policy. (A.S.)

  7. Poynting Theorem, Relativistic Transformation of Total Energy-Momentum and Electromagnetic Energy-Momentum Tensor

    Science.gov (United States)

    Kholmetskii, Alexander; Missevitch, Oleg; Yarman, Tolga

    2016-02-01

    We address to the Poynting theorem for the bound (velocity-dependent) electromagnetic field, and demonstrate that the standard expressions for the electromagnetic energy flux and related field momentum, in general, come into the contradiction with the relativistic transformation of four-vector of total energy-momentum. We show that this inconsistency stems from the incorrect application of Poynting theorem to a system of discrete point-like charges, when the terms of self-interaction in the product {\\varvec{j}} \\cdot {\\varvec{E}} (where the current density {\\varvec{j}} and bound electric field {\\varvec{E}} are generated by the same source charge) are exogenously omitted. Implementing a transformation of the Poynting theorem to the form, where the terms of self-interaction are eliminated via Maxwell equations and vector calculus in a mathematically rigorous way (Kholmetskii et al., Phys Scr 83:055406, 2011), we obtained a novel expression for field momentum, which is fully compatible with the Lorentz transformation for total energy-momentum. The results obtained are discussed along with the novel expression for the electromagnetic energy-momentum tensor.

  8. Total energy calculations from self-energy models

    International Nuclear Information System (INIS)

    Sanchez-Friera, P.

    2001-06-01

    Density-functional theory is a powerful method to calculate total energies of large systems of interacting electrons. The usefulness of this method, however, is limited by the fact that an approximation is required for the exchange-correlation energy. Currently used approximations (LDA and GGA) are not sufficiently accurate in many physical problems, as for instance the study of chemical reactions. It has been shown that exchange-correlation effects can be accurately described via the self-energy operator in the context of many-body perturbation theory. This is, however, a computationally very demanding approach. In this thesis a new scheme for calculating total energies is proposed, which combines elements from many-body perturbation theory and density-functional theory. The exchange-correlation energy functional is built from a simplified model of the self-energy, that nevertheless retains the main features of the exact operator. The model is built in such way that the computational effort is not significantly increased with respect to that required in a typical density-functional theory calculation. (author)

  9. Total energy system in the future

    International Nuclear Information System (INIS)

    Hijikata, K.

    1994-01-01

    The possibility of improving the thermal efficiency of energy systems from an exergy point of view is discussed. In total energy systems, we should employ multi-pass recycling consisting of thermal and chemical energies. The recycling system is supported by electrical energy, which is provided by a renewable energy source or by excess commercial electric power. This total energy system should be considered not only in one country, but all around the globe. (author). 6 figs., 4 tabs., 8 refs

  10. Machine Learning methods in fitting first-principles total energies for substitutionally disordered solid

    Science.gov (United States)

    Gao, Qin; Yao, Sanxi; Widom, Michael

    2015-03-01

    Density functional theory (DFT) provides an accurate and first-principles description of solid structures and total energies. However, it is highly time-consuming to calculate structures with hundreds of atoms in the unit cell and almost not possible to calculate thousands of atoms. We apply and adapt machine learning algorithms, including compressive sensing, support vector regression and artificial neural networks to fit the DFT total energies of substitutionally disordered boron carbide. The nonparametric kernel method is also included in our models. Our fitted total energy model reproduces the DFT energies with prediction error of around 1 meV/atom. The assumptions of these machine learning models and applications of the fitted total energies will also be discussed. Financial support from McWilliams Fellowship and the ONR-MURI under the Grant No. N00014-11-1-0678 is gratefully acknowledged.

  11. Solar energy: Technology and applications

    Science.gov (United States)

    Williams, J. R.

    1974-01-01

    It is pointed out that in 1970 the total energy consumed in the U.S. was equal to the energy of sunlight received by only 0.15% of the land area of the continental U.S. The utilization of solar energy might, therefore, provide an approach for solving the energy crisis produced by the consumption of irreplaceable fossil fuels at a steadily increasing rate. Questions regarding the availability of solar energy are discussed along with the design of solar energy collectors and various approaches for heating houses and buildings by utilizing solar radiation. Other subjects considered are related to the heating of water partly or entirely with solar energy, the design of air conditioning systems based on the use of solar energy, electric power generation by a solar thermal and a photovoltaic approach, solar total energy systems, industrial and agricultural applications of solar energy, solar stills, the utilization of ocean thermal power, power systems based on the use of wind, and solar-energy power systems making use of geosynchronous power plants.

  12. Geothermal energy applications in China

    International Nuclear Information System (INIS)

    Ren, X.; Tang, N.; Zhang, Z.; Wang, J.

    1990-01-01

    This paper updates geothermal energy applications in China. To total energy consumption for electricity is 20.38 MWe, and for direct use is 41,222 TJ/yr, even though the beneficial heat was estimated to be 7,198 TJ/yr. The attached tables are the basic geothermal information mainly the years 1985-1989. Some of the tables are additions to the report or preceeding years

  13. Total-factor energy efficiency of regions in China

    International Nuclear Information System (INIS)

    Hu, J.-L.; Wang, S.-C.

    2006-01-01

    This paper analyzes energy efficiencies of 29 administrative regions in China for the period 1995-2002 with a newly introduced index. Most existing studies of regional productivity and efficiency neglect energy inputs. We use the data envelopment analysis (DEA) to find the target energy input of each region in China at each particular year. The index of total-factor energy efficiency (TFEE) then divides the target energy input by the actual energy input. In our DEA model, labor, capital stock, energy consumption, and total sown area of farm crops used as a proxy of biomass energy are the four inputs and real GDP is the single output. The conventional energy productivity ratio regarded as a partial-factor energy efficiency index is computed for comparison in contrast to TFEE; our index is found fitting better to the real case. According to the TFEE index rankings, the central area of China has the worst energy efficiency and its total adjustmentof energy consumption amount is over half of China's total. Regional TFEE in China generally improved during the research period except for the western area. A U-shape relation between the area's TFEE and per capita income in the areas of China is found, confirming the scenario that energy efficiency eventually improves with economic growth

  14. Evaluation of total energy-rate feedback for glidescope tracking in wind shear

    Science.gov (United States)

    Belcastro, C. M.; Ostroff, A. J.

    1986-01-01

    Low-altitude wind shear is recognized as an infrequent but significant hazard to all aircraft during take-off and landing. A total energy-rate sensor, which is potentially applicable to this problem, has been developed for measuring specific total energy-rate of an airplane with respect to the air mass. This paper presents control system designs, with and without energy-rate feedback, for the approach to landing of a transport airplane through severe wind shear and gusts to evaluate application of this sensor. A system model is developed which incorporates wind shear dynamics equations with the airplance equations of motion, thus allowing the control systems to be analyzed under various wind shears. The control systems are designed using optimal output feedback and are analyzed using frequency domain control theory techniques. Control system performance is evaluated using a complete nonlinear simulation of the airplane and a severe wind shear and gust data package. The analysis and simulation results indicate very similar stability and performance characteristics for the two designs. An implementation technique for distributing the velocity gains between airspeed and ground speed in the simulation is also presented, and this technique is shown to improve the performance characteristics of both designs.

  15. The total energy-momentum tensor for electromagnetic fields in a dielectric

    Science.gov (United States)

    Crenshaw, Michael E.

    2017-08-01

    Radiation pressure is an observable consequence of optically induced forces on materials. On cosmic scales, radiation pressure is responsible for the bending of the tails of comets as they pass near the sun. At a much smaller scale, optically induced forces are being investigated as part of a toolkit for micromanipulation and nanofabrication technology [1]. A number of practical applications of the mechanical effects of light-matter interaction are discussed by Qiu, et al. [2]. The promise of the nascent nanophotonic technology for manufacturing small, low-power, high-sensitivity sensors and other devices has likely motivated the substantial current interest in optical manipulation of materials at the nanoscale, see, for example, Ref. [2] and the references therein. While substantial progress toward optical micromanipulation has been achieved, e.g. optical tweezers [1], in this report we limit our consideration to the particular issue of optically induced forces on a transparent dielectric material. As a matter of electromagnetic theory, these forces remain indeterminate and controversial. Due to the potential applications in nanotechnology, the century-old debate regarding these forces, and the associated momentums, has ramped up considerably in the physics community. The energy-momentum tensor is the centerpiece of conservation laws for the unimpeded, inviscid, incompressible flow of non-interacting particles in the continuum limit in an otherwise empty volume. The foundations of the energy-momentum tensor and the associated tensor conservation theory come to electrodynamics from classical continuum dynamics by applying the divergence theorem to a Taylor series expansion of a property density field of a continuous flow in an otherwise empty volume. The dust tensor is a particularly simple example of an energy-momentum tensor that deals with particles of matter in the continuum limit in terms of the mass density ρm, energy density ρmc 2 , and momentum density

  16. Optimization of stand-alone photovoltaic systems with hydrogen storage for total energy self-sufficiency

    Energy Technology Data Exchange (ETDEWEB)

    Lund, P D [Helsinki Univ. of Technology, Espoo (Finland). Dept. of Technical Physics

    1991-01-01

    A new method for optimization of stand-alone photovoltaic-hydrogen energy systems is presented. The methodology gives the optimum values for the solar array and hydrogen storage size for any given system configuration and geographical site. Sensitivity analyses have been performed to study the effect of subsystem efficiencies on the total system performance and sizing, and also to identify possibilities for further improvements. Optimum system configurations have also been derived. The results indicate that a solar-hydrogen energy system is a very promising potential alternative for low power applications requiring a total electricity self-sufficiency. (Author).

  17. Total-energy Assisted Tight-binding Method Based on Local Density Approximation of Density Functional Theory

    Science.gov (United States)

    Fujiwara, Takeo; Nishino, Shinya; Yamamoto, Susumu; Suzuki, Takashi; Ikeda, Minoru; Ohtani, Yasuaki

    2018-06-01

    A novel tight-binding method is developed, based on the extended Hückel approximation and charge self-consistency, with referring the band structure and the total energy of the local density approximation of the density functional theory. The parameters are so adjusted by computer that the result reproduces the band structure and the total energy, and the algorithm for determining parameters is established. The set of determined parameters is applicable to a variety of crystalline compounds and change of lattice constants, and, in other words, it is transferable. Examples are demonstrated for Si crystals of several crystalline structures varying lattice constants. Since the set of parameters is transferable, the present tight-binding method may be applicable also to molecular dynamics simulations of large-scale systems and long-time dynamical processes.

  18. Low-dose dual-energy cone-beam CT using a total-variation minimization algorithm

    International Nuclear Information System (INIS)

    Min, Jong Hwan

    2011-02-01

    Dual-energy cone-beam CT is an important imaging modality in diagnostic applications, and may also find its use in other application such as therapeutic image guidance. Despite of its clinical values, relatively high radiation dose of dual-energy scan may pose a challenge to its wide use. In this work, we investigated a low-dose, pre-reconstruction type of dual-energy cone-beam CT (CBCT) using a total-variation minimization algorithm for image reconstruction. An empirical dual-energy calibration method was used to prepare material-specific projection data. Raw data at high and low tube voltages are converted into a set of basis functions which can be linearly combined to produce material-specific data using the coefficients obtained through the calibration process. From much fewer views than are conventionally used, material specific images are reconstructed by use of the total-variation minimization algorithm. An experimental study was performed to demonstrate the feasibility of the proposed method using a micro-CT system. We have reconstructed images of the phantoms from only 90 projections acquired at tube voltages of 40 kVp and 90 kVp each. Aluminum-only and acryl-only images were successfully decomposed. We evaluated the quality of the reconstructed images by use of contrast-to-noise ratio and detectability. A low-dose dual-energy CBCT can be realized via the proposed method by greatly reducing the number of projections

  19. Energy management for cost reduction in the production. TEEM - Total Energy Efficiency Management; Energiemanagement zur Kostensenkung in der Produktion. TEEM - Total Energy Efficiency Management

    Energy Technology Data Exchange (ETDEWEB)

    Westkaemper, Engelbert; Verl, Alexander (eds.)

    2009-07-01

    Within the workshop of the Fraunhofer Institute for Manufacturing Engineering and Automation IPA (Stuttgart, Federal Republic of Germany) at 6th October, 2009, in Stuttgart the following lectures were held: (1) Presentation of Fraunhofer Institute for Manufacturing Engineering and Automation IPA (Engelbert Westkaemper); (2) TEEM - Total Energy Efficiency Management - ''With energy management to an energy efficient production'' (Alexander Schloske); (3) DIN EN 16001 Introduction of an energy management system - utilization and advantages for companies (Sylvia Wahren); (4) Analysis of the energy efficiency with power flow - Support and implementation at factory planning and optimization of production (Klaus Erlach); (5) Total Energy Efficiency Management - Approaches at the company Kaercher in injection moulding for example (Axel Leschtar); (6) Modelling the embodied product energy (Shahin Rahimifard); (7) Acquisition of energy data in the production - Technologies and possibilities (Joachim Neher); (8) Active energy management by means of an ''energy control centre'' - Analysis of the real situation and upgrading measures in the production using coating plants as an example (Wolfgang Klein); (9) Visualisation and simulation of energy values in the digital factory (Carmen Constantinescu, Axel Bruns).

  20. Total energy consumption in Finland increased by one percent

    International Nuclear Information System (INIS)

    Timonen, L.

    2000-01-01

    The total energy consumption in Finland increased by less than a percent in 1999. The total energy consumption in 1999 was 1310 PJ corresponding to about 31 million toe. The electric power consumption increased moderately by 1.6%, which is less than the growth of the gross national product (3.5%). The final consumption of energy grew even less, only by 0.5%. Import of electric power increased by 19% in 1999. The import of electric power was due to the availability of low-priced electric power on the Nordic electricity markets. Nuclear power generation increased by 5% and the consumption of wood-based fuels by 3%. The increment of the nuclear power generation increased because of the increased output capacity and good operability of the power plants. Wind power production doubles, but the share of it in the total energy consumption is only about 0.01%. The peat consumption decreased by 12% and the consumption of hydroelectric power by 15%. The decrease in production of hydroelectric power was compensated by an increase import of electric power. The consumption of fossil fuels, coal, oil and natural gas remained nearly the same as in 1998. The gasoline consumption, however, decreased, but the consumption of diesel oil increased due to the increased road transport. The share of the fossil fuels was nearly half of the total energy consumption. The consumption of renewable energy sources remained nearly the same, in 23% if the share of peat is excluded, and in 30% if the share of peat is included. Wood-based fuels are the most significant type of renewable fuels. The share of them in 1999 was over 80% of the total usage of the renewable energy sources. The carbon dioxide emissions in Finland decreased in 1999 by 1.0 million tons. The total carbon dioxide emissions were 56 million tons. The decrease was mainly due to the decrease of the peat consumption. The final consumption of energy increased by 0.5%, being hence about 1019 PJ. Industry is the main consumer of energy

  1. Optimized design of total energy systems: The RETE project

    Science.gov (United States)

    Alia, P.; Dallavalle, F.; Denard, C.; Sanson, F.; Veneziani, S.; Spagni, G.

    1980-05-01

    The RETE (Reggio Emilia Total Energy) project is discussed. The total energy system (TES) was developed to achieve the maximum quality matching on the thermal energy side between plant and user and perform an open scheme on the electrical energy side by connection with the Italian electrical network. The most significant qualitative considerations at the basis of the plant economic energy optimization and the selection of the operating criterion most fitting the user consumption characteristics and the external system constraints are reported. The design methodology described results in a TES that: in energy terms achieves a total efficiency evaluated on a yearly basis to be equal to about 78 percent and a fuel saving of about 28 percent and in economic terms allows a recovery of the investment required as to conventional solutions, in about seven years.

  2. Atomic resonances above the total ionization energy

    International Nuclear Information System (INIS)

    Doolen, G.

    1975-01-01

    A rigorous result obtained using the theory associated with dilatation analytic potentials is that by performing a complex coordinate rotation, r/subj/ → r/subj/e/subi//sup theta/, on a Hamiltonian whose potential involves only pairwise Coulombic interactions, one can show that when theta = π/2, no complex eigenvalues (resonances) appear whose energies have a real part greater than the total ionization energy of the atomic system. This appears to conflict with experimental results of Walton, Peart, and Dolder, who find resonance behavior above the total ionization energy of the H -- system and also the theoretical stabilization results of Taylor and Thomas for the same system. A possible resolution of this apparent conflict is discussed and a calculation to check its validity is proposed

  3. Role of IAEA in non-electric applications of nuclear energy

    International Nuclear Information System (INIS)

    Kupitz, J.

    1997-01-01

    Worldwide, approximately 30% of total primary energy is used to produce electricity. Most of the remaining 70% is either used for transportation or is converted into hot water, steam and heat. The International Atomic Energy Agency is a specialized agency within the United Nations family whose role includes the development and practical application of atomic energy for peaceful uses throughout the world. The focus of this paper is on those applications associated with district heating and process heat production for industrial use. 14 refs, 3 figs, 1 tab

  4. The Use of Trust Regions in Kohn-Sham Total Energy Minimization

    International Nuclear Information System (INIS)

    Yang, Chao; Meza, Juan C.; Wang, Lin-wang

    2006-01-01

    The Self Consistent Field (SCF) iteration, widely used for computing the ground state energy and the corresponding single particle wave functions associated with a many-electron atomistic system, is viewed in this paper as an optimization procedure that minimizes the Kohn-Sham total energy indirectly by minimizing a sequence of quadratic surrogate functions. We point out the similarity and difference between the total energy and the surrogate, and show how the SCF iteration can fail when the minimizer of the surrogate produces an increase in the KS total energy. A trust region technique is introduced as a way to restrict the update of the wave functions within a small neighborhood of an approximate solution at which the gradient of the total energy agrees with that of the surrogate. The use of trust region in SCF is not new. However, it has been observed that directly applying a trust region based SCF(TRSCF) to the Kohn-Sham total energy often leads to slow convergence. We propose to use TRSCF within a direct constrained minimization(DCM) algorithm we developed in dcm. The key ingredients of the DCM algorithm involve projecting the total energy function into a sequence of subspaces of small dimensions and seeking the minimizer of the total energy function within each subspace. The minimizer of a subspace energy function, which is computed by TRSCF, not only provides a search direction along which the KS total energy function decreases but also gives an optimal 'step-length' that yields a sufficient decrease in total energy. A numerical example is provided to demonstrate that the combination of TRSCF and DCM is more efficient than SCF

  5. Vibration Energy Harvesting Potential for Turbomachinery Applications

    Directory of Open Access Journals (Sweden)

    Adrian STOICESCU

    2018-03-01

    Full Text Available The vibration energy harvesting process represents one of the research directions for increasing power efficiency of electric systems, increasing instrumentation nodes autonomy in hard to reach locations and decreasing total system mass by eliminating cables and higher-power adapters. Research based on the possibility of converting vibration energy into useful electric energy is used to evaluate the potential of its use on turbomachinery applications. Aspects such as the structure and characteristics of piezoelectric generators, harvesting networks, their setup and optimization, are considered. Finally, performance test results are shown using piezoelectric systems on a turbine engine.

  6. Economics of total energy schemes in the liberalised European energy market

    Science.gov (United States)

    Lampret, Peter

    This thesis is concerned with the liberalisation of the European Energy markets and the affects this has had on total energy systems. The work concentrates on a number of case studies all of which are located in the area surrounding Gelsenkirchen - Bottrop - Gladbeck, the centre of the Ruhr region of Germany.The thesis describes briefly how the legislation of the parliament of the extended European Union has been interpreted and enacted into German legislation and its affects on production, transport, sales and customers. Primarily the legislation has been enacted to reduce energy costs by having a competitive market while enabling security of supply. The legislation whose development has accelerated since 1999 can lead to negative effects and these have been highlighted for the case studies chosen.The legislation and technological advances, each of them successful by themselves, do not provide the expected reduction of carbon dioxide emissions when applied to total energy system. The introduction of human behaviour as a missing link makes the problems evident and gives a theoretical basis to overcome these problems. The hypothesis is proven by eight detailed research projects and four concisely described ones.The base of the research is the experience gained on approximately 1,000 operation years of the simplest total energy system, that of centralised heating. This experience is transferred to different solutions for total energy systems and their economics in combination with the changing legislation and observation of human behaviour.The variety of topics of the case studies includes the production of heat by boiler, solar or combined heat and power and the use of fuel cells. Additionally the transfer of heat, at the place of demand is considered, either as an individual boiler in a building or as de-centralised district heating.The various results of these projects come together in a final project which covers four different heating systems in identical

  7. A panel data parametric frontier technique for measuring total-factor energy efficiency: An application to Japanese regions

    International Nuclear Information System (INIS)

    Honma, Satoshi; Hu, Jin-Li

    2014-01-01

    Using the stochastic frontier analysis model, we estimate TFEE (total-factor energy efficiency) scores for 47 regions across Japan during the years 1996–2008. We extend the cross-sectional stochastic frontier model proposed by Zhou et al. (2012) to panel data models and add environmental variables. The results provide not only the TFEE scores, in which statistical noise is taken into account, but also the determinants of inefficiency. The three stochastic TFEE scores are compared with a TFEE score derived using data envelopment analysis. The four TFEE scores are highly correlated with one another. For the inefficiency estimates, higher manufacturing industry shares and wholesale and retail trade shares correspond to lower TFEE scores. - Highlights: • This study estimates total-factor energy efficiency of Japanese regions using the stochastic frontier analysis model. • Determinants of inefficiency are also estimated. • The higher the manufacturing share and wholesale and retail trade share, the lower the energy efficiency

  8. Statistical properties of kinetic and total energy densities in reverberant spaces

    DEFF Research Database (Denmark)

    Jacobsen, Finn; Molares, Alfonso Rodriguez

    2010-01-01

    Many acoustical measurements, e.g., measurement of sound power and transmission loss, rely on determining the total sound energy in a reverberation room. The total energy is usually approximated by measuring the mean-square pressure (i.e., the potential energy density) at a number of discrete....... With the advent of a three-dimensional particle velocity transducer, it has become somewhat easier to measure total rather than only potential energy density in a sound field. This paper examines the ensemble statistics of kinetic and total sound energy densities in reverberant enclosures theoretically...... positions. The idea of measuring the total energy density instead of the potential energy density on the assumption that the former quantity varies less with position than the latter goes back to the 1930s. However, the phenomenon was not analyzed until the late 1970s and then only for the region of high...

  9. The total Hartree-Fock energy-eigenvalue sum relationship in atoms

    International Nuclear Information System (INIS)

    Sen, K.D.

    1979-01-01

    Using the well known relationships for the isoelectronic changes in the total Hartree-Fock energy, nucleus-electron attraction energy and electron-electron repulsion energy in atoms a simple polynomial expansion in Z is obtained for the sum of the eigenvalues which can be used to calculate the total Hartree-Fock energy. Numerical results are presented for 2-10 electron series to show that the present relationship is a better approximation than the other available energy-eigenvalue relationships. (author)

  10. Energy Inputs Uncertainty: Total Amount, Distribution and Correlation Between Different Forms of Energy

    Science.gov (United States)

    Deng, Yue

    2014-01-01

    Describes solar energy inputs contributing to ionospheric and thermospheric weather processes, including total energy amounts, distributions and the correlation between particle precipitation and Poynting flux.

  11. Universal trend for heavy-ion total reaction cross sections at energies above the Coulomb barrier

    International Nuclear Information System (INIS)

    Tavares, O.A.P.; Medeiros, E.L.; Morcelle, V.

    2010-06-01

    Heavy-ion total reaction cross section measurements for more than one thousand one hundred reaction cases covering 61 target nuclei in the range 6 Li- 238 U, and 158 projectile nuclei from 2 H up to 84 Kr (mostly exotic ones) have been analysed in a systematic way by using an empirical, three-parameter formula which is applicable to cases for projectile kinetic energies above the Coulomb barrier. The analysis has shown that the average total nuclear binding energy per nucleon of the interacting nuclei and their radii are the chief quantities which describe the cross section patterns. A great number of cross section data (87%) has been quite satisfactorily reproduced by the proposed formula, therefore total reaction cross section predictions for new, not yet experimentally investigated reaction cases can be obtained within 25 percent (or much less) of uncertainty (author)

  12. Combining total energy and energy industrial center concepts to increase utilization efficiency of geothermal energy

    Science.gov (United States)

    Bayliss, B. P.

    1974-01-01

    Integrating energy production and energy consumption to produce a total energy system within an energy industrial center which would result in more power production from a given energy source and less pollution of the environment is discussed. Strong governmental support would be required for the crash drilling program necessary to implement these concepts. Cooperation among the federal agencies, power producers, and private industry would be essential in avoiding redundant and fruitless projects, and in exploiting most efficiently our geothermal resources.

  13. Medium properties and total energy coupling in underground explosions

    International Nuclear Information System (INIS)

    Kurtz, S.R.

    1975-01-01

    A phenomenological model is presented that allows the direct calculation of the effects of variations in medium properties on the total energy coupling between the medium and an underground explosion. The model presented is based upon the assumption that the shock wave generated in the medium can be described as a spherical blast wave at early times. The total energy coupled to the medium is then simply the sum of the kinetic and internal energies of this blast wave. Results obtained by use of this model indicate that the energy coupling is more strongly affected by the medium's porosity than by its water content. These results agree well with those obtained by summing the energy deposited by the blast wave as a function of range

  14. Universal trend for heavy-ion total reaction cross sections at energies above the Coulomb barrier

    Energy Technology Data Exchange (ETDEWEB)

    Tavares, O.A.P.; Medeiros, E.L., E-mail: emil@cbpf.b [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Morcelle, V. [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica

    2010-06-15

    Heavy-ion total reaction cross section measurements for more than one thousand one hundred reaction cases covering 61 target nuclei in the range {sup 6}Li-{sup 238}U, and 158 projectile nuclei from {sup 2}H up to {sup 84}Kr (mostly exotic ones) have been analysed in a systematic way by using an empirical, three-parameter formula which is applicable to cases for projectile kinetic energies above the Coulomb barrier. The analysis has shown that the average total nuclear binding energy per nucleon of the interacting nuclei and their radii are the chief quantities which describe the cross section patterns. A great number of cross section data (87%) has been quite satisfactorily reproduced by the proposed formula, therefore total reaction cross section predictions for new, not yet experimentally investigated reaction cases can be obtained within 25 percent (or much less) of uncertainty (author)

  15. [Review of wireless energy transmission system for total artificial heart].

    Science.gov (United States)

    Zhang, Chi; Yang, Ming

    2009-11-01

    This paper sums up the fundamental structure of wireless energy transmission system for total artificial heart, and compares the key parameters and performance of some representative systems. After that, it is discussed that the future development trend of wireless energy transmission system for total artificial heart.

  16. Embedded piezoelectrics for sensing and energy harvesting in total knee replacement units

    Science.gov (United States)

    Wilson, Brooke E.; Meneghini, Michael; Anton, Steven R.

    2015-04-01

    The knee replacement is the second most common orthopedic surgical intervention in the United States, but currently only 1 in 5 knee replacement patients are satisfied with their level of pain reduction one year after surgery. It is imperative to make the process of knee replacement surgery more objective by developing a data driven approach to ligamentous balance, which increases implant life. In this work, piezoelectric materials are considered for both sensing and energy harvesting applications in total knee replacement implants. This work aims to embed piezoelectric material in the polyethylene bearing of a knee replacement unit to act as self-powered sensors that will aid in the alignment and balance of the knee replacement by providing intraoperative feedback to the surgeon. Postoperatively, the piezoelectric sensors can monitor the structural health of the implant in order to perceive potential problems before they become bothersome to the patient. Specifically, this work will present on the use of finite element modeling coupled with uniaxial compression testing to prove that piezoelectric stacks can be utilized to harvest sufficient energy to power sensors needed for this application.

  17. Development of Data Acquisition System for Wind Energy Applications

    OpenAIRE

    西本,澄

    1992-01-01

    A Data acquisiton system developed for wind energy applications will be described in this paper. This system is composed of an anemometer with two blades downwind and a computer which processes wind data. Wind energy calculated from an average wind speed is inaccurate, since wind power increases with the cube of wind velocity. To decide the design and the site for a wind turbine system, it is very important to consider wind data on a long term basis, that is the total wind energy and distribu...

  18. In adolescence a higher 'eveningness in energy intake' is associated with higher total daily energy intake.

    Science.gov (United States)

    Diederichs, Tanja; Perrar, Ines; Roßbach, Sarah; Alexy, Ute; Buyken, Anette E

    2018-05-26

    The present manuscript addressed two hypotheses: (i) As children age, energy intake is shifted from morning (energy intake energy intake >6pm) (ii) A higher 'eveningness in energy intake' (i.e. evening minus morning energy intake) is associated with a higher total daily energy intake. Data were analyzed from 262 DONALD cohort study participants, who had completed at least one 3-day weighed dietary record in the age groups 3/4, 5/6, 7/8, 9/10, 11/12, 13/14, 15/16 and 17/18 years (y). 'Eveningness in energy intake' was compared across age groups and related to total daily energy intake for each age group (multiple cross-sectional analyses). 'Eveningness' increased progressively from age group 3/4y to age group 17/18y. A median surplus of evening energy intake (i.e. when evening intake exceeded morning intake) was firstly observed for age group 11/12y. From age group 11/12y onwards, a higher 'eveningness' was associated with a higher total daily energy intake (all p energy intake between the highest and the lowest tertile of 'eveningness' was largest for age group 17/18y, amounting to an 11% higher intake among adolescents in the highest as compared to those in the lowest tertile. In conclusion, energy intake progressively shifts from morning to evening hours as children age. Once evening energy intake exceeds morning energy intake, a higher 'eveningness in energy intake' is associated with higher total daily energy intake. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Total Cross Sections at High Energies An update

    CERN Document Server

    Fazal-e-Aleem, M; Alam, Saeed; Qadee-Afzal, M

    2002-01-01

    Current and Future measurements for the total cross sections at E-811, PP2PP, CSM, FELIX and TOTEM have been analyzed using various models. In the light of this study an attempt has been made to focus on the behavior of total cross section at very high energies.

  20. Minimizing Total Busy Time with Application to Energy-efficient Scheduling of Virtual Machines in IaaS clouds

    OpenAIRE

    Quang-Hung, Nguyen; Thoai, Nam

    2016-01-01

    Infrastructure-as-a-Service (IaaS) clouds have become more popular enabling users to run applications under virtual machines. Energy efficiency for IaaS clouds is still challenge. This paper investigates the energy-efficient scheduling problems of virtual machines (VMs) onto physical machines (PMs) in IaaS clouds along characteristics: multiple resources, fixed intervals and non-preemption of virtual machines. The scheduling problems are NP-hard. Most of existing works on VM placement reduce ...

  1. Institutional total energy case studies

    Energy Technology Data Exchange (ETDEWEB)

    Wulfinghoff, D.

    1979-07-01

    Profiles of three total energy systems in institutional settings are provided in this report. The plants are those of Franciscan Hospital, a 384-bed facility in Rock Island, Illinois; Franklin Foundation Hospital, a 100-bed hospital in Franklin, Louisiana; and the North American Air Defense Command Cheyenne Mountain Complex, a military installation near Colorado Springs, Colorado. The case studies include descriptions of plant components and configurations, operation and maintenance procedures, reliability, relationships to public utilities, staffing, economic efficiency, and factors contributing to success.

  2. Comparative risk assessment of total energy systems

    International Nuclear Information System (INIS)

    Soerensen, B.

    1982-01-01

    The paper discusses a methodology for total impact assessment of energy systems, ideally evaluating all the impacts that a given energy system has on the society in which it is imbedded or into which its introduction is being considered. Impacts from the entire energy conversion chain ('fuel cycle' if the system is fuel-based), including energy storage, transport and transmission, as well as the institutions formed in order to manage the system, should be compared on the basis of the energy service provided. A number of impacts are considered, broadly classified as impacts on satisfaction of biological needs, on health, on environment, on social relations and on the structure of society. Further considerations include impacts related to cost and resilience, and, last but not least, impacts on global relations. The paper discusses a number of published energy studies in the light of the comparative impact assessment methodology outlined above. (author)

  3. A constrained optimization algorithm for total energy minimization in electronic structure calculations

    International Nuclear Information System (INIS)

    Yang Chao; Meza, Juan C.; Wang Linwang

    2006-01-01

    A new direct constrained optimization algorithm for minimizing the Kohn-Sham (KS) total energy functional is presented in this paper. The key ingredients of this algorithm involve projecting the total energy functional into a sequence of subspaces of small dimensions and seeking the minimizer of total energy functional within each subspace. The minimizer of a subspace energy functional not only provides a search direction along which the KS total energy functional decreases but also gives an optimal 'step-length' to move along this search direction. Numerical examples are provided to demonstrate that this new direct constrained optimization algorithm can be more efficient than the self-consistent field (SCF) iteration

  4. Total energy supply for remote human habitations (Or 'Nuclear North of 60')

    International Nuclear Information System (INIS)

    Harris, J.

    2012-01-01

    This presentation will examine the direct application of nuclear energy solutions in the north, and remote areas of Canada. Further it will challenge the existing energy network based on the shipment of fossil fuels to remote areas, and examine the use of small, modular, and/or deployable nuclear plants in these communities. The use of these small reactors and some newly emerging technologies will likely provide a near total energy supply for these communities. In particular low grade heat processes, district heating, the 'local' production of motive fuels, and local food production will be examined. Additionally the economic and social impact of moving the value added side of many of these processes to the local communities will also be briefly discussed.

  5. Total energy expenditure in burned children using the doubly labeled water technique

    International Nuclear Information System (INIS)

    Goran, M.I.; Peters, E.J.; Herndon, D.N.; Wolfe, R.R.

    1990-01-01

    Total energy expenditure (TEE) was measured in 15 burned children with the doubly labeled water technique. Application of the technique in burned children required evaluation of potential errors resulting from nutritional intake altering background enrichments during studies and from the high rate of water turnover relative to CO2 production. Five studies were discarded because of these potential problems. TEE was 1.33 +/- 0.27 times predicted basal energy expenditure (BEE), and in studies where resting energy expenditure (REE) was simultaneously measured, TEE was 1.18 +/- 0.17 times REE, which in turn was 1.16 +/- 0.10 times predicted BEE. TEE was significantly correlated with measured REE (r2 = 0.92) but not with predicted BEE. These studies substantiate the advantage of measuring REE to predict TEE in severely burned patients as opposed to relying on standardized equations. Therefore we recommend that optimal nutritional support will be achieved in convalescent burned children by multiplying REE by an activity factor of 1.2

  6. Influence of fossil energy applications on environmental pollution

    Energy Technology Data Exchange (ETDEWEB)

    Balat, M.; Ayar, G.; Oguzhan, C.; Uluduz, H.; Faiz, U. [University of Mahallesi, Trabzon (Turkey)

    2007-07-01

    The aim of this work is to investigate influence of fossil energy applications on the environmental pollution. Turkey's high rate of economic growth experienced during much of the 1990s, besides resulting in booming industrial production, also led to higher levels of energy consumption, imports, air and water pollution, and greater risks to the country's environment. Air pollution is a major problem in Turkey, with key pollutants including sulfur dioxide, suspended particulates, nitrogen oxides, and carbon dioxide. In Turkey, carbon dioxide emissions from fossil fuels totaled about 50.07 million tons in 2001. However, fuel share of carbon emissions in 2001 was oil 44.2%, coal 38.8%, and natural gas 16.9%. Total carbon dioxide emissions from fossil fuels are expected to be 104 million tons in 2025.

  7. The Total Energy Efficiency Index for machine tools

    International Nuclear Information System (INIS)

    Schudeleit, Timo; Züst, Simon; Weiss, Lukas; Wegener, Konrad

    2016-01-01

    Energy efficiency in industries is one of the dominating challenges of the 21st century. Since the release of the eco-design directive 2005/32/EC in 2005, great research effort has been spent on the energy efficiency assessment for energy using products. The ISO (International Organization for Standardization) standardization body (ISO/TC 39 WG 12) currently works on the ISO 14955 series in order to enable the assessment of energy efficient design of machine tools. A missing piece for completion of the ISO 14955 series is a metric to quantify the design of machine tools regarding energy efficiency based on the respective assembly of components. The metric needs to take into account each machine tool components' efficiency and the need-oriented utilization in combination with the other components while referring to efficiency limits. However, a state of the art review reveals that none of the existing metrics is feasible to adequately match this goal. This paper presents a metric that matches all these criteria to promote the development of the ISO 14955 series. The applicability of the metric is proven in a practical case study on a turning machine. - Highlights: • Study for pushing forward the standardization work on the ISO 14955 series. • Review of existing energy efficiency indicators regarding three basic strategies to foster sustainability. • Development of a metric comprising the three basic strategies to foster sustainability. • Metric application for quantifying the energy efficiency of a turning machine.

  8. Sustainable Energy Systems and Applications

    CERN Document Server

    Dinçer, İbrahim

    2012-01-01

    Sustainable Energy Systems and Applications presents analyses of sustainable energy systems and their applications, providing new understandings, methodologies, models and applications along with descriptions of several illustrative examples and case studies. This textbook aims to address key pillars in the field, such as: better efficiency, cost effectiveness, use of energy resources, environment, energy security, and sustainable development. It also includes some cutting-edge topics, such as hydrogen and fuel cells, renewable, clean combustion technologies, CO2 abatement technologies, and some potential tools for design, analysis and performance improvement. The book also: Discusses producing energy by increasing systems efficiency in generation, conversion, transportation and consumption Analyzes the conversion of fossil fuels to clean fuels for limiting  pollution and creating a better environment Sustainable Energy Systems and Applications is a research-based textbook which can be used by senior u...

  9. Total energy calculations and bonding at interfaces

    International Nuclear Information System (INIS)

    Louie, S.G.

    1984-08-01

    Some of the concepts and theoretical techniques employed in recent ab initio studies of the electronic and structural properties of surfaces and interfaces are discussed. Results of total energy calculations for the 2 x 1 reconstructed diamond (111) surface and for stacking faults in Si are reviewed. 30 refs., 8 figs

  10. Energy-analysis of the total nuclear energy cycle based on light water reactors

    International Nuclear Information System (INIS)

    Kistemaker, J.

    1975-01-01

    The energy economy of the total nuclear energy cycle is investigated. Attention is paid to the importance of fossil fuel saving by using nuclear energy. The energy analysis is based on the construction and operation of power plants with an electric output of 1000MWe. Light water moderated reactors with a 2.7 - 3.2% enriched uranium core are considered. Additionally, the whole fuel cycle including ore winning and refining, enrichment and fuel element manufacturing and reprocessing has been taken into account. Neither radioactive waste storage problems nor safety problems related to the nuclear energy cycle and safeguarding have been dealt with, as exhaustive treatments can be found elswhere

  11. Northeast Clean Energy Application Center

    Energy Technology Data Exchange (ETDEWEB)

    Bourgeois, Tom [Pace Univ., New York, NY (United States)

    2013-09-30

    From October 1, 2009 through September 30, 2013 (“contract period”), the Northeast Clean Energy Application Center (“NE-CEAC”) worked in New York and New England (Connecticut, Rhode Island, Vermont, Massachusetts, New Hampshire, and Maine) to create a more robust market for the deployment of clean energy technologies (CETs) including combined heat and power (CHP), district energy systems (DES), and waste heat recovery (WHR) systems through the provision of technical assistance, education and outreach, and strategic market analysis and support for decision-makers. CHP, DES, and WHR can help reduce greenhouse gas emissions, reduce electrical and thermal energy costs, and provide more reliable energy for users throughout the United States. The NE-CEAC’s efforts in the provision of technical assistance, education and outreach, and strategic market analysis and support for decision-makers helped advance the market for CETs in the Northeast thereby helping the region move towards the following outcomes: Reduction of greenhouse gas emissions and criteria pollutants; Improvements in energy efficiency resulting in lower costs of doing business; Productivity gains in industry and efficiency gains in buildings; Lower regional energy costs; Strengthened energy security; Enhanced consumer choice; Reduced price risks for end-users; and Economic development effects keeping more jobs and more income in our regional economy Over the contract period, NE-CEAC provided technical assistance to approximately 56 different potential end-users that were interested in CHP and other CETs for their facility or facilities. Of these 56 potential end-users, five new CHP projects totaling over 60 MW of install capacity became operational during the contract period. The NE-CEAC helped host numerous target market workshops, trainings, and webinars; and NE-CEAC staff delivered presentations at many other workshops and conferences. In total, over 60 different workshops, conferences

  12. Biomass energy in Jordan, and its potential contribution towards the total energy mix of the Kingdom

    International Nuclear Information System (INIS)

    Al-Dabbas, Moh'd A. F.

    1994-04-01

    An evaluation of Jordan's bio-energy status was carried out. Available sources and the viability of exploitation were studied in order to identify the size of contribution that bio-energy could provide to the total energy mix of the Kingdom. The advantages of biogas technology were discussed, and a general description of Jordan's experience in this field was presented. Data on Jordan' animal, municipal, and agricultural wastes that are available as a potential source of bio-energy was tabulated. The report ascertained the economic feasibility of biogas utilization in Jordan, and concluded that the annual energy production potential from biogas, with only animal wastes being utilized, would amount to 80,000 ton oil equivalent. This amount of energy is equivalent to 2% of Jordan's total energy consumption in 1992. The utilization of biogas from municipal wastes would produce an additional 2.5% of the total energy consumption of Jordan. The annual value of utilizing animal and municipal wastes would reach 23 million Jordanian Dinars (JD). This value would increase to 61.5 million JD with the utilization of human wastes. The investment required for the utilization of bio-energy sources in Amman and its suburbs on the scale of family unit fermenters was estimated to be in the order of a million JD. The size of investment for industrial scale utilization for power generation with an electricity feed to the national grid, would range from 3 to 4 million JD. (A.M.H.). 8 refs., 4 tabs

  13. Direct application of geothermal energy

    Energy Technology Data Exchange (ETDEWEB)

    Reistad, G.M.

    1980-01-01

    An overall treatment of direct geothermal applications is presented with an emphasis on the above-ground engineering. The types of geothermal resources and their general extent in the US are described. The potential market that may be served with geothermal energy is considered briefly. The evaluation considerations, special design aspects, and application approaches for geothermal energy use in each of the applications are considered. The present applications in the US are summarized and a bibliography of recent studies and applications is provided. (MHR)

  14. 78 FR 64207 - Application To Export Electric Energy; TEC Energy Inc.

    Science.gov (United States)

    2013-10-28

    ... DEPARTMENT OF ENERGY [OE Docket No. EA-388] Application To Export Electric Energy; TEC Energy Inc.... SUMMARY: TEC Energy Inc. (TEC) has applied for authority to transmit electric energy from the United... received an application from TEC for authority to transmit electric energy from the United States to Canada...

  15. Cellulose-Based Nanomaterials for Energy Applications.

    Science.gov (United States)

    Wang, Xudong; Yao, Chunhua; Wang, Fei; Li, Zhaodong

    2017-11-01

    Cellulose is the most abundant natural polymer on earth, providing a sustainable green resource that is renewable, degradable, biocompatible, and cost effective. Recently, nanocellulose-based mesoporous structures, flexible thin films, fibers, and networks are increasingly developed and used in photovoltaic devices, energy storage systems, mechanical energy harvesters, and catalysts components, showing tremendous materials science value and application potential in many energy-related fields. In this Review, the most recent advancements of processing, integration, and application of cellulose nanomaterials in the areas of solar energy harvesting, energy storage, and mechanical energy harvesting are reviewed. For solar energy harvesting, promising applications of cellulose-based nanostructures for both solar cells and photoelectrochemical electrodes development are reviewed, and their morphology-related merits are discussed. For energy storage, the discussion is primarily focused on the applications of cellulose-based nanomaterials in lithium-ion batteries, including electrodes (e.g., active materials, binders, and structural support), electrolytes, and separators. Applications of cellulose nanomaterials in supercapacitors are also reviewed briefly. For mechanical energy harvesting, the most recent technology evolution in cellulose-based triboelectric nanogenerators is reviewed, from fundamental property tuning to practical implementations. At last, the future research potential and opportunities of cellulose nanomaterials as a new energy material are discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Techniques and tools for measuring energy efficiency of scientific software applications

    CERN Document Server

    Abdurachmanov, David; Eulisse, Giulio; Knight, Robert; Niemi, Tapio; Nurminen, Jukka K.; Nyback, Filip; Pestana, Goncalo; Ou, Zhonghong; Khan, Kashif

    2014-01-01

    The scale of scientific High Performance Computing (HPC) and High Throughput Computing (HTC) has increased significantly in recent years, and is becoming sensitive to total energy use and cost. Energy-efficiency has thus become an important concern in scientific fields such as High Energy Physics (HEP). There has been a growing interest in utilizing alternate architectures, such as low power ARM processors, to replace traditional Intel x86 architectures. Nevertheless, even though such solutions have been successfully used in mobile applications with low I/O and memory demands, it is unclear if they are suitable and more energy-efficient in the scientific computing environment. Furthermore, there is a lack of tools and experience to derive and compare power consumption between the architectures for various workloads, and eventually to support software optimizations for energy efficiency. To that end, we have performed several physical and software-based measurements of workloads from HEP applications running o...

  17. 76 FR 3882 - Application To Export Electric Energy; Intercom Energy, Inc.

    Science.gov (United States)

    2011-01-21

    ... DEPARTMENT OF ENERGY [OE Docket No. EA-289-B] Application To Export Electric Energy; Intercom... application. SUMMARY: Intercom Energy, Inc. (Intercom) has applied to renew its authority to transmit electric... of Energy (DOE) issued Order No. EA-289, which authorized Intercom to transmit electric energy from...

  18. How fast is the growth of Total Cross Section at High Energies?

    CERN Document Server

    Fazal-e-Aleem, M; Sohail-Afzal, Tahir; Ayub-Faridi, M; Qadee-Afzal, M

    2003-01-01

    Relativistic Heavy Ion Collider and Large Hadron Colliders have special agenda for the measurements of the total cross sections at high energies giving us an opportunity to touch cosmic ray energies. Recent analyses of the cosmic ray data together with earlier experimental measurements at ISR and SPS gives us an insight about the behaviour of this important parameter at asymptotic energies. We will study the growth of total cross section at high energies in the light of various theoretical approaches with special reference to measurements at RHIC and LHC.

  19. Ecological total-factor energy efficiency of regions in China

    International Nuclear Information System (INIS)

    Li Lanbing; Hu Jinli

    2012-01-01

    Most existing energy efficiency indices are computed without taking into account undesirable outputs such as CO 2 and SO 2 emissions. This paper computes the ecological total-factor energy efficiency (ETFEE) of 30 regions in China for the period 2005–2009 through the slack-based model (SBM) with undesirable outputs. We calculate the ETFEE index by comparing the target energy input obtained from SBM with undesirable outputs to the actual energy input. Findings show that China's regional ETFEE still remains a low level of around 0.600 and regional energy efficiency is overestimated by more than 0.100 when not looking at environmental impacts. China's regional energy efficiency is extremely unbalanced: the east area ranks first with the highest ETFEE of above 0.700, the northeast and central areas follow, and the west area has the lowest ETFEE of less than 0.500. A monotone increasing relation exists between the area's ETFEE and China's per capita GDP. The truncated regression model shows that the ratio of R and D expenditure to GDP and the degree of foreign dependence have positive impacts, whereas the ratio of the secondary industry to GDP and the ratio of government subsidies for industrial pollution treatment to GDP have negative effects, on the ETFEE. - Highlights: ► Most energy efficiency indices ignore undesirable outputs such as CO 2 and SO 2 emissions. ► The ecological total-factor energy efficiency (ETFEE) is computed by slack-based model (SBM). ► The datasets contains 30 regions in China for the period 2005–2009. ► China's regional energy efficiency is extremely unbalanced. ► A monotone increasing relation exists between ETFEE and per capita GDP.

  20. Economic analysis model for total energy and economic systems

    International Nuclear Information System (INIS)

    Shoji, Katsuhiko; Yasukawa, Shigeru; Sato, Osamu

    1980-09-01

    This report describes framing an economic analysis model developed as a tool of total energy systems. To prospect and analyze future energy systems, it is important to analyze the relation between energy system and economic structure. We prepared an economic analysis model which was suited for this purpose. Our model marks that we can analyze in more detail energy related matters than other economic ones, and can forecast long-term economic progress rather than short-term economic fluctuation. From view point of economics, our model is longterm multi-sectoral economic analysis model of open Leontief type. Our model gave us appropriate results for fitting test and forecasting estimation. (author)

  1. Fast calculation of molecular total energy with ABEEMσπ/MM method – For some series of organic molecules and peptides

    International Nuclear Information System (INIS)

    Yang, Zhong-Zhi; Lin, Xiao-Ting; Zhao, Dong-Xia

    2016-01-01

    Highlights: • ABEEMσπ/MM method can be used to fast and accurately calculate the molecular total energy. • The energy obtained by ABEEMσπ/MM is in fair agreement with those from MP2/6-311++G(d, p). • ABEEMσπ charge can represent the anisotropy of the partial atomic charge. - Abstract: A new ABEEMσπ/MM method for fast calculation of molecular total energy is established by combining ABEEMσπ model with force field representation, where ABEEMσπ is the atom-bond electronegativity equalization model at the σπ level. The calibrated parameters are suitable and transferable. This paper demonstrates that the total molecular energies for series of alcohols, aldehydes, carboxylic acids and peptides calculated by ABEEMσπ/MM method are in fair agreement with those obtained from calculations of ab initio MP2/6-311++G(d, p) method with mean absolute deviation (MAD) being 1.45 kcal/mol and their linear correlation coefficients being 1.0000. Thus it opens good prospects for wide applications to chemical and biological systems.

  2. Holistic virtual machine scheduling in cloud datacenters towards minimizing total energy

    OpenAIRE

    Li, Xiang; Garraghan, Peter; Jiang, Xiaohong; Wu, Zhaohui; Xu, Jie

    2018-01-01

    Energy consumed by Cloud datacenters has dramatically increased, driven by rapid uptake of applications and services globally provisioned through virtualization. By applying energy-aware virtual machine scheduling, Cloud providers are able to achieve enhanced energy efficiency and reduced operation cost. Energy consumption of datacenters consists of computing energy and cooling energy. However, due to the complexity of energy and thermal modeling of realistic Cloud datacenter operation, tradi...

  3. An application of a double bootstrap to investigate the effects of technological progress on total-factor energy consumption performance in China

    International Nuclear Information System (INIS)

    Li, Ke; Lin, Boqiang

    2017-01-01

    This paper proposes a total-factor energy consumption performance index (TEPI) for measuring China's energy efficiency across 30 provinces during the period 1997 to 2012. The TEPI is derived by solving an improved non-radial data envelopment analysis (DEA) model, which is based on an energy distance function. The production possibility set is constructed by combining the super-efficiency and sequential DEA models to avoid “discriminating power problem” and “technical regress”. In order to explore the impacts of technological progress on TEPI and perform statistical inferences on the results, a two-stage double bootstrap approach is adopted. The important findings are that China's energy technology innovation produces a negative effect on TEPI, while technology import and imitative innovation produce positive effects on TEPI. Thus, the main contribution of TEPI improvement is technology import. These conclusions imply that technology import especially foreign direct investment (FDI) is important for imitative innovation and can improve China's energy efficiency. In the long run, as the technical level of China approaches to the frontier, energy technology innovation and its wide adoption become a sustained way to improve energy efficiency. Therefore, it is urgent for China to introduce measures such as technology translation and spillover policies as well as energy pricing reforms to support energy technology innovation. - Highlights: • A total-factor energy consumption performance index (TEPI) is introduced. • Three types of technological progress have various effects on TEPI. • FDI is the main contributor of TEPI improvement. • An improved DEA calculation method is introduced. • A two-stage double-bootstrap non-radial DEA model is used.

  4. The development and application practice of neglected tidal energy in China

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Li-qun; Liu, Chun-xia; Sun, Zhi-yi; Han, Ru-cheng [Department of Electronic and Information, Taiyuan University of Science and Technology, 030024 Taiyuan, Shanxi Province (China)

    2011-02-15

    Along the eastcoasts of China are large bodies of water, China has abundant ocean energy resource, such as the theory reserves of tidal resource is about 0.2 billion kW, as early as 1958, Jizhou tidal power station is the first tidal power station in China, which built in Shunde, Guangdong province, and more than 40 small tidal power stations are built in east coastal region in 1960s, and the total installed capacity is about 0.5 MW. But it is a pity, the application and development of tidal energy has not been regarded by the government and ordinary people due to the investment of power plant is big and the technology is not mature, so there are only several small tidal power stations in China, and Jiangxia tidal power station with an installed capacity of 3.2 MW is the most famous. Fortunately, with the rapid development of Chinese economic and society, the renewable and sustainable energy have been regarded by Chinese government, and the application and development of wind energy and solar energy is increasing in an incredible speed, and more and more specialists began to regard the application of tidal energy, and they thought that tidal energy can relieve the energy stress of east coastal region, and many layout of tidal energy exploitation is unfold in recently. This paper discusses the distribution zone and current developmental situation of tidal energy in China. Then, some application practice is described, such as tidal power station and tidal stream turbine. The policies and law of China central government and local governments are described in the following paragraph. At the end, the developmental prospect of tidal energy in future China and the development barriers and recommendations are introduced, respectively. (author)

  5. Solar energy scenarios in Brazil. Part two: Photovoltaics applications

    International Nuclear Information System (INIS)

    Martins, F.R.; Ruether, R.; Pereira, E.B.; Abreu, S.L.

    2008-01-01

    This paper discusses some energy scenarios for photovoltaic applications in Brazil engendered by using SWERA database in order to demonstrate its potential for feasibility analysis and application in the energy planning for electricity generation. It discusses two major different markets: hybrid PV-Diesel installations in mini-grids of the off-grid Brazilian electricity system in the Amazon region, and grid-connected PV in urban areas of the interconnected Brazilian electricity system. The potential for using PV is huge, and can be estimated in tens to hundreds of MWp in the Amazon region alone, even if only a fraction of the existing Diesel-fired plants with a total installed capacity of over 620 MVA would fit to run in an optimum Diesel/PV mix. Most of the major cities in Brazil present greater electricity demand in summertime with the demand peak happening in the daytime period. This energy profile match the actual solar resource assessment provided by SWERA Data Archive, enabling grid-connected PV systems to provide an important contribution to the utility's capacity

  6. Thermodynamics of the living organisms. Allometric relationship between the total metabolic energy, chemical energy and body temperature in mammals

    Science.gov (United States)

    Atanasov, Atanas Todorov

    2017-11-01

    The study present relationship between the total metabolic energy (ETME(c), J) derived as a function of body chemical energy (Gchem, J) and absolute temperature (Tb, K) in mammals: ETME(c) =Gchem (Tb/Tn). In formula the temperature Tn =2.73K appears normalization temperature. The calculated total metabolic energy ETME(c) differs negligible from the total metabolic energy ETME(J), received as a product between the basal metabolic rate (Pm, J/s) and the lifespan (Tls, s) of mammals: ETME = Pm×Tls. The physical nature and biological mean of the normalization temperature (Tn, K) is unclear. It is made the hypothesis that the kTn energy (where k= 1.3806×10-23 J/K -Boltzmann constant) presents energy of excitation states (modes) in biomolecules and body structures that could be in equilibrium with chemical energy accumulated in body. This means that the accumulated chemical energy allows trough all body molecules and structures to propagate excitations states with kTn energy with wavelength in the rage of width of biological membranes. The accumulated in biomolecules chemical energy maintains spread of the excited states through biomolecules without loss of energy.

  7. Application and development of solar energy in building industry and its prospects in China

    International Nuclear Information System (INIS)

    Li Zhisheng; Zhang Guoqiang; Li Dongmei; Zhou Jin; Li Lijuan; Li Lixin

    2007-01-01

    China is the second largest country in energy consumption. More and more energy demand pressures cause the Chinese government to review its economy and energy policies in order to support the sustainable development. In China, the building sector amounts to 27.8% total energy consumption, which is only behind the industry sector. China has abundant solar energy resource, which is extensively applied to buildings. Therefore, solar energy utilization in buildings has become one of the most important issues to help China optimize the energy proportion, increasing energy efficiency and protecting the environment. Solar energy resource and its district distribution in China are introduced in detail in this paper, and the representative solar energy application to the building sector is highlighted as well. The solar energy utilization obstacles, especially policy disadvantages in building sector in China, are reviewed. Moreover, the application prospects of solar energy in building sector are presented in combination with the China economic and household industry growth

  8. Assessing the Energy Consumption of Smartphone Applications

    Science.gov (United States)

    Abousaleh, Mustafa M.

    Mobile devices are increasingly becoming essential in people's lives. The advancement in technology and mobility factor are allowing users to utilize mobile devices for communication, entertainment, financial planning, fitness tracking, etc. As a result, mobile applications are also becoming important factors contributing to user utility. However, battery capacity is the limiting factor impacting the quality of user experience. Hence, it is imperative to understand how much energy impact do mobile apps have on the system relative to other device activities. This thesis presents a systematic studying of the energy impact of mobile apps features. Time-series electrical current measurements are collected from 4 different modern smartphones. Statistical analysis methodologies are used to calculate the energy impact of each app feature by identifying and extracting mobile app-feature events from the overall current signal. In addition, the app overhead energy costs are also computed. Total energy consumption equations for each component is developed and an overall total energy consumption equation is presented. Minutes Lost (ML) of normal phone operations due to the energy consumption of the mobile app functionality is computed for cases where the mobile app is simulated to run on the various devices for 30 minutes. Tutela Technologies Inc. mobile app, NAT, is used for this study. NAT has two main features: QoS and Throughput. The impact of the QoS feature is indistinguishable, i.e. ML is zero, relative to other phone activities. The ML with only the TP feature enabled is on average 2.1 minutes. Enabling the GPS increases the ML on average to 11.5 minutes. Displaying the app GUI interface in addition to running the app features and enabling the GPS results in an average ML of 12.4 minutes. Amongst the various mobile app features and components studied, the GPS consumes the highest amount of energy. It is estimated that the GPS increases the ML by about 448%.

  9. Energy deposition by a 106Ru/106Rh eye applicator simulated using LEPTS, a low-energy particle track simulation

    International Nuclear Information System (INIS)

    Fuss, M.C.; Munoz, A.; Oller, J.C.; Blanco, F.; Williart, A.; Limao-Vieira, P.; Borge, M.J.G.; Tengblad, O.; Huerga, C.; Tellez, M.; Garcia, G.

    2011-01-01

    The present study introduces LEPTS, an event-by-event Monte Carlo programme, for simulating an ophthalmic 106 Ru/ 106 Rh applicator relevant in brachytherapy of ocular tumours. The distinctive characteristics of this code are the underlying radiation-matter interaction models that distinguish elastic and several kinds of inelastic collisions, as well as the use of mostly experimental input data. Special emphasis is placed on the treatment of low-energy electrons for generally being responsible for the deposition of a large portion of the total energy imparted to matter. - Highlights: → We present the Monte Carlo code LEPTS, a low-energy particle track simulation. → Carefully selected input data from 10 keV to 1 eV. → Application to an electron emitting Ru-106/Rh-106 plaque used in brachytherapy.

  10. Application of solar concentrators for combined production of hydrogen and electrical energy

    International Nuclear Information System (INIS)

    Kotevski, Darko

    2008-01-01

    New specific concept is application of solar dish concentrators in a process which allows solar energy to be used for splitting water in hydrogen and oxygen, with electrical energy as a byproduct. This is performed in two stages: The first stage uses highly concentrated solar energy to split CO 2 Into CO and O 2 . The second stage uses water-gas shifts reaction to cause the CO to react with water and produced hydrogen and CO 2 , Carbon dioxide is then recycled back into the system, and the waste heat is used to produce electricity in a steam turbine, Efficiency of the process is 45% , totaling 20% in chemical energy (H 2 ), and 25% electricity. This solar system is 80% more efficient than other solar technologies which make energy much cheaper. The environmentally friendly and low cost hydrogen can become a prime mover of fuel cell development especially in automotive application. (Author)

  11. Environment-adjusted total-factor energy efficiency of Taiwan's service sectors

    International Nuclear Information System (INIS)

    Fang, Chin-Yi; Hu, Jin-Li; Lou, Tze-Kai

    2013-01-01

    This study computes the pure technical efficiency (PTE) and energy-saving target of Taiwan's service sectors during 2001–2008 by using the input-oriented data envelopment analysis (DEA) approach with the assumption of a variable returns-to-scale (VRS) situation. This paper further investigates the effects of industry characteristics on the energy-saving target by applying the four-stage DEA proposed by Fried et al. (1999). We also calculate the pre-adjusted and environment-adjusted total-factor energy efficiency (TFEE) scores in these service sectors. There are three inputs (labor, capital stock, and energy consumption) and a single output (real GDP) in the DEA model. The most energy efficient service sector is finance, insurance and real estate, which has an average TFEE of 0.994 and an environment-adjusted TFEE (EATFEE) of 0.807. The study utilizes the panel-data, random-effects Tobit regression model with the energy-saving target (EST) as the dependent variable. Those service industries with a larger GDP output have greater excess use of energy. The capital–labor ratio has a significantly positive effect while the time trend variable has a significantly negative impact on the EST, suggesting that future new capital investment should also be accompanied with energy-saving technology in the service sectors. - Highlights: • The technical efficiency and energy-saving target of service sectors are assessed. • The pre-adjusted and environment-adjusted total-factor energy efficiency scores in services are assessed. • The industrial characteristic differences are examined by the panel-data, random-effects Tobit regression model. • Labor, capital, and energy and an output (GDP) are included in the DEA model. • Future new capital investment should also be accompanied with energy-saving technology in the service sectors

  12. Total Corporate social responsibility report 2004. Sharing our energy; TOTAL rapport societal and environnemental 2004. Notre energie en partage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-05-15

    This document presents the social and environmental activities of the group Total for the year 2004. It provides information on the ethical aspects of the governance, the industrial security, the environmental policy, the public health and the occupational safety, the social liability and the economical and social impact of the group activities in the local development, the contribution to the climatic change fight and the development of other energy sources. (A.L.B.)

  13. Parameterization of α-nucleus total reaction cross section at intermediate energies

    International Nuclear Information System (INIS)

    Alvi, M A; Abdulmomen, M A

    2008-01-01

    Applying a Coulomb correction factor to the Glauber model we have derived a closed expression for α-nucleus total reaction cross section, σ R . Under the approximation of rigid projectile model, the elastic S-matrix element S el (b) is evaluated from the phenomenological N-α amplitude and a Gaussian fit to the Helm's model form factor. Excellent agreements with the experimental data have been achieved by performing two-parameter fits to the α-nucleus σ R data in the energy range about 75 to 193 MeV. One of the parameters was found to be energy independent while the other, as expected, shows the energy dependence similar to that of N-α total cross section.

  14. 75 FR 75994 - Application To Export Electric Energy; Sempra Energy Trading LLC

    Science.gov (United States)

    2010-12-07

    ... DEPARTMENT OF ENERGY [OE Docket No. EA-191-D] Application To Export Electric Energy; Sempra Energy... application. SUMMARY: Sempra Energy Trading LLC (SET) has applied to renew its authority to transmit electric... transmit electric energy from the United States to Canada for a two- year term as a power marketer using...

  15. Enabling Energy-Efficient Advertising for Mobile Applications

    OpenAIRE

    Prochkova, Irena

    2013-01-01

    Advertisements are the main source of revenue for many free mobile applications, however, they increase the energy consumption of the mobile device. In particu- lar, the radio communication used for the advertisement data transfer is energy hungry, so advertisement sponsored applications (free) consume more energy than paid applications.In this thesis, we analyse the effect that advertisements have on the mobile device performance, especially, the energy consumption of transferring and displa...

  16. Energy applications of superconductivity

    International Nuclear Information System (INIS)

    Schneider, T.R.; Dale, S.J.; Wolf, S.M.

    1991-01-01

    Recent progress in developing high-temperature superconductors has enhanced the economic viability of energy applications such as power systems, motors, material processing and handling, refrigeration, transportation, and power electronics. This paper discusses the technical and economic issues associated with these applications

  17. Industrial application of geothermal energy in Southeast Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Batdorf, J.A.; McClain, D.W.; Gross, M.; Simmons, G.M.

    1980-02-01

    Those phosphate related and food processing industries in Southeastern Idaho are identified which require large energy inputs and the potential for direct application of geothermal energy is assessed. The total energy demand is given along with that fractional demand that can be satisfied by a geothermal source of known temperature. The potential for geothermal resource development is analyzed by examining the location of known thermal springs and wells, the location of state and federal geothermal exploration leases, and the location of federal and state oil and gas leasing activity in Southeast Idaho. Information is also presented regarding the location of geothermal, oil, and gas exploration wells in Southeast Idaho. The location of state and federal phosphate mining leases is also presented. This information is presented in table and map formats to show the proximity of exploration and development activities to current food and phosphate processing facilities and phosphate mining activities. (MHR)

  18. A study of the nucleus-nucleus total reaction cross section of stable systems at intermediate energies: An application to 12C

    Science.gov (United States)

    Hu, Liyuan; Song, Yushou; Hou, Yingwei; Liu, Huilan; Li, Hui

    2018-07-01

    A semi-microscopic analytical expression of the nucleus-nucleus total reaction cross section (σR) was proposed based on the strong absorption model. It is suitable for stable nuclei at intermediate energies. The matter density distributions of nuclei and the nucleon-nucleon total cross section were both considered. Particularly, the Fermi motion effect of the nucleons in a nucleus was also taken into account. The parametrization of σR was applied to the colliding systems including 12C. The experimental data at energies from 30 to 1000 MeV/nucleon were well reproduced, according to which an approach of deriving σR without adjustable parameters was developed. The necessity of considering the Fermi motion effect in the parametrization was discussed.

  19. Economical scale of nuclear energy application

    International Nuclear Information System (INIS)

    2001-01-01

    The nuclear energy industry is supported by two wheels of radiation and energy applications. When comparing both, they have some different sides, such as numbers of employees and researchers, numbers and scales of works, effect on society, affecting effects and regions of industrial actions, problems on safety, viewpoint on nuclear proliferation protection and safety guarantee, energy security, relationship to environmental problem, efforts on wastes disposal, and so on. Here described on economical scale of radiation application in fields of industry, agriculture, and medicine and medical treatment, and on economical scale of energy application in nuclear power generation and its instruments and apparatus. (G.K.)

  20. Energy conservation applications of microprocessors

    Energy Technology Data Exchange (ETDEWEB)

    Shih, James Y.

    1979-07-01

    A survey of the application of microprocessors for industrial and commercial energy conservation has been made. Microprocessor applications for HVAC, chiller control, and automotive equipment are discussed. A case study of successful replacement of a conventional cooling plant control is recounted. The rapid advancement of microelectronic technology will affect efficient energy control, more sophisticated control methodology, and more investment in controls.

  1. 77 FR 31342 - Application To Export Electric Energy; Emera Energy Services Subsidiaries

    Science.gov (United States)

    2012-05-25

    ...] Application To Export Electric Energy; Emera Energy Services Subsidiaries AGENCY: Office of Electricity... EA-325, authorizing the Emera Subsidiaries to transmit electric energy from the United States to... date listed above. Comments on the Emera applications to export electric energy to Canada should be...

  2. Research on the decomposition model for China’s National Renewable Energy total target

    International Nuclear Information System (INIS)

    Liu, Zhen; Shi, Yuren; Yan, Jianming; Ou, Xunmin; Lieu, Jenny

    2012-01-01

    It is crucial that China’s renewable energy national target in 2020 is effectively decomposed into respective period targets at the provincial level. In order to resolve problems arising from combining the national and local renewable energy development plan, a total target and period target decomposition model of renewable energy is proposed which considers the resource distribution and energy consumption of different provinces as well as the development characteristics of various renewable energy industries. In the model, the total proposed target is comprised of three shares: basic share, fixed share and floating share target. The target distributed for each province is then determined by the preference relation. That is, when total renewable energy target is distributed, the central government is more concerned about resources potential or energy consumption. Additionally, the growth models for various renewable energy industries are presented, and the period targets of renewable energy in various provinces are proposed in line with regional economic development targets. In order to verify whether the energy target can be achieved, only wind power, solar power, and hydropower are considered in this study. To convenient to assess the performance of local government, the two year period is chosen as an evaluation cycle in the paper. The renewable energy targets per two-year period for each province are calculated based on the overall national renewable energy target, energy requirements and resources distribution. Setting provincial period targets will help policy makers to better implement and supervise the overall renewable energy plan. - Highlights: It is very importance that the national target of renewable energy in 2020 can be effectively decomposed into the stages target of various province. In order to resolve the relation the plan between the national and local renewable energy development planning, a total target and phase target decomposition model

  3. Design considerations of a total energy power system for a rural health centre in Nigeria

    Energy Technology Data Exchange (ETDEWEB)

    Chendo, M A.C. [Lagos Univ. (NG). Dept. of Physics; Salawu, R I [Lagos Univ. (NG). Dept. of Electrical Engineering

    1989-01-01

    A conceptual total energy (hybrid) system design considerations are presented for a Rural Health Centre in a remote village in Nigeria. The design uses a spectrally selective beam splitting technique. The system provides both electrical and thermal energy with electrical needs of the centre being provided by the photoquantum convertor while the hot water and sterilization requirements are met by the spectrally selective heat transfer liquid in the thermally decoupled loop. A critical analysis of the electrical and thermal energy requirements of the health centre including its laboratories, water supply, refrigeration, lighting, etc. and its technoeconomic aspects is also discussed. With appropriate sizing of panels, storage, choice of the spectrally selective heat transfer liquid and other accessories, the PV/PT system using moderately concentrated sunlight is attractive for such application in areas with no national grid lines and normally considered uneconomical for electrification by the extension of the national grid or by the provision of generators which require constant supply of fuel and servicing. (author).

  4. Impact of dietary fiber energy on the calculation of food total energy value in the Brazilian Food Composition Database.

    Science.gov (United States)

    Menezes, Elizabete Wenzel de; Grande, Fernanda; Giuntini, Eliana Bistriche; Lopes, Tássia do Vale Cardoso; Dan, Milana Cara Tanasov; Prado, Samira Bernardino Ramos do; Franco, Bernadette Dora Gombossy de Melo; Charrondière, U Ruth; Lajolo, Franco Maria

    2016-02-15

    Dietary fiber (DF) contributes to the energy value of foods and including it in the calculation of total food energy has been recommended for food composition databases. The present study aimed to investigate the impact of including energy provided by the DF fermentation in the calculation of food energy. Total energy values of 1753 foods from the Brazilian Food Composition Database were calculated with or without the inclusion of DF energy. The energy values were compared, through the use of percentage difference (D%), in individual foods and in daily menus. Appreciable energy D% (⩾10) was observed in 321 foods, mainly in the group of vegetables, legumes and fruits. However, in the Brazilian typical menus containing foods from all groups, only D%foods, when individually considered. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Energy management through building automation. Fundamentals - Technologies - Applications

    International Nuclear Information System (INIS)

    Aschendorf, Bernd

    2014-01-01

    The books available in the market consider only the use of individual buildings bus systems, but not to compare with each other with respect to cost-benefit and applicability. In this book, a total of 40 different systems, such as radio bus systems, PEHA-PHC, EIB, LCN, LON, PLC systems, investigated for their possible use in the various categories of buildings. The comparison refers to all levels of the automation pyramid from fieldbus, to automation to the control level and considers in particular the usability for SmartMetering-based energy management. [de

  6. Energy Savings Through Thermally Efficient Crucible Technology: Fundamentals, Process Modeling, and Applications

    Science.gov (United States)

    Shi, Wenwu; Pinto, Brian

    2017-12-01

    Melting and holding molten metals within crucibles accounts for a large portion of total energy demand in the resource-intensive nonferrous foundry industry. Multivariate mathematical modeling aided by detailed material characterization and advancements in crucible technologies can make a significant impact in the areas of cost-efficiency and carbon footprint reduction. Key thermal properties such as conductivity and specific heat capacity were studied to understand their influence on crucible furnace energy consumption during melting and holding processes. The effects of conductivity on thermal stresses and longevity of crucibles were also evaluated. With this information, accurate theoretical models using finite element analysis were developed to study total energy consumption and melting time. By applying these findings to recent crucible developments, considerable improvements in field performance were reported and documented as case studies in applications such as aluminum melting and holding.

  7. Developing Information on Energy Savings and Associated Costs and Benefits of Energy Efficient Emerging Technologies Applicable in California

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tengfang; Slaa, Jan Willem; Sathaye, Jayant

    2010-12-15

    California Energy Commission (CEC) and managed by California Institute for Energy and Environment (CIEE). The project purpose is to characterize energy savings, technology costs, market potential, and economic viability of newly selected technologies applicable to California. In this report, LBNL first performed technology reviews to identify new or under-utilized technologies that could offer potential in improving energy efficiency and additional benefits to California industries as well as in the U.S. industries, followed by detailed technology assessment on each targeted technology, with a focus on California applications. A total of eleven emerging or underutilized technologies applicable to California were selected and characterized with detailed information in this report. The outcomes essentially include a multi-page summary profile for each of the 11 emerging or underutilized technologies applicable to California industries, based on the formats used in the technology characterization reports (Xu et al. 2010; Martin et al. 2000).

  8. Energy efficiency improvement: A strong driver for Total operations and R and D

    Energy Technology Data Exchange (ETDEWEB)

    Garnaud, Frederic; Rocher, Anne

    2010-09-15

    Total has implemented an energy efficiency action plan for both producing fields and new projects linked to a dedicated R and D program. The Energy efficiency assessment methodology is described, with an example: base line of the current situation, energy efficiency plan, contribution to best practices at corporate level. A methodology to assess the energy efficiency of a new development has been defined and implemented within Total. This methodology as well as related indicators is presented. Examples of R and D results dedicated to improve energy efficiency in two major areas of future developments are given: sour gas production and deep offshore field architecture.

  9. Practical application of the KMS: 1) total system performance assessment - 16349

    International Nuclear Information System (INIS)

    Makino, Hitoshi; Hioki, Kazumasa; Umeki, Hiroyuki; Yang, Hongzhi; Takase, Hiroyasu; McKinley, Ian

    2009-01-01

    Comprehensive total system performance assessment (PA) is a key component of the safety case. Within this PA there are a number of tasks that reuse specific models and datasets, together with associated knowledge base for the disposal system considered. These are tasks where recent developments in the Knowledge Management System by Japan Atomic Energy Agency (JAEA KMS) can lead to optimisation of procedures. This paper will outline the reformulation of PA as a Knowledge Management (KM) task, discuss application of KM technologies to PA tasks, and illustrate how these can be handled electronically in a 'Performance assessment All-In-one Report System (PAIRS)' utilising hyper-links and embedded tools to minimise duplication of material, ease Quality Assurance (QA) and facilitate the regular updating required in the Japanese programme. (authors)

  10. Solar total energy-large scale experiment, Shenandoah, Georgia site. Annual report, June 1977--June 1978. [For Bleyle Knitwear Plant

    Energy Technology Data Exchange (ETDEWEB)

    None,

    1978-06-01

    The site was described in terms of location, suitably, accessibility, and other factors. Detailed descriptions of the Solar Total Energy-Large Scale Experiment Application (STE-LSE) (Bleyle of America, Inc., Knitwear Plant), the DOE owned Meteorology Station operating at the site, and the instrumentation provided by the Georgia Power Company to measure energy usage within the knitwear plant are included. A detailed report of progress is given at the Shenandoah Site, introduced by the STE-LSE schedule and the Cooperative Agreement work tasks. Progress is described in terms of the following major task areas: site/application; instrumentation/data acquisition; meteorology station; site to STES interface; information dissemination. A brief overview of milestones to be accomplished is given, followed by these appendices: solar easement agreement, interface drawing set, and additional site background data. (MHR)

  11. 6,7Li + 28Si total reaction cross sections at near barrier energies

    International Nuclear Information System (INIS)

    Pakou, A.; Musumarra, A.; Pierroutsakou, D.; Alamanos, N.; Assimakopoulos, P.A.; Divis, N.; Doukelis, G.; Gillibert, A.; Harissopulos, S.; Kalyva, G.; Kokkoris, M.; Lagoyannis, A.; Mertzimekis, T.J.; Nicolis, N.G.; Papachristodoulou, C.; Perdikakis, G.; Roubos, D.; Rusek, K.; Spyrou, S.; Zarkadas, Ch.

    2007-01-01

    Total reaction cross section measurements for the 6,7 Li + 28 Si systems have been performed at near-barrier energies. The results indicate that, with respect to the potential anomaly at barrier, 6 Li and 7 Li on light targets exhibit similar energy dependence on the imaginary potential. Comparisons are made with 6,7 Li cross sections on light and heavy targets, extracted via previous elastic scattering measurements and also with CDCC calculations. Energy dependent parametrisations are also obtained for total reaction cross sections of 6,7 Li on Si, as well as on any target, at near barrier energies

  12. Application of Total Quality Management in Education

    Science.gov (United States)

    Farooq, M. S.; Akhtar, M. S.; Ullah, S. Zia; Memon, R. A.

    2007-01-01

    The purpose of the paper is to analyzing thoughts of the modern management paradigm "Total Quality Management" (TQM), and its application in the field of education. The basic theme of TQM is participatory approach to address the question(s) of quality in business aswell as in the field of education. Reviewing fresh literature from the internet …

  13. Bioprocessing research for energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Scott, C.D.; Gaden, E.L. Jr.; Humphrey, A.E.; Carta, G.; Kirwan, D.J.

    1989-04-01

    The new biotechnology that is emerging could have a major impact on many of the industries important to our country, especially those associated with energy production and conservation. Advances in bioprocessing systems will provide important alternatives for the future utilization of various energy resources and for the control of environmental hazards that can result from energy generation. Although research in the fundamental biological sciences has helped set the scene for a ''new biotechnology,'' the major impediment to rapid commercialization for energy applications is the lack of a firm understanding of the necessary engineering concepts. Engineering research is now the essential ''bridge'' that will allow the development of a wide range of energy-related bioprocessing systems. A workshop entitled ''Bioprocessing Research for Energy Applications'' was held to address this technological area, to define the engineering research needs, and to identify those opportunities which would encourage rapid implementation of advanced bioprocessing concepts.

  14. Energy consumption and total factor productivity growth in Iranian agriculture

    Directory of Open Access Journals (Sweden)

    Reza Moghaddasi

    2016-11-01

    Full Text Available In this study we investigated the relation between energy consumption and growth of total factor productivity (TFP of agriculture in Iran from 1974 to 2012 using Solow residual method. The results from estimated aggregate Cobb–Douglas production function showed that one percent change in the value of labor, capital and energy will lead to 4.07, 0.09 and 0.49 percent change in agriculture value added, respectively. Also in a long term, based on the Johansen cointegration test, there is a negative relation between TFP growth and energy consumption in Iranian agriculture which might be due to cheap and inefficient energy use in this sector. Gradual liberalization of energy price and use of so called green box support policies is recommended.

  15. 76 FR 50476 - Application To Export Electric Energy; Glacial Energy of Texas, Inc.

    Science.gov (United States)

    2011-08-15

    ... DEPARTMENT OF ENERGY [OE Docket No. EA-382] Application To Export Electric Energy; Glacial Energy... Application. SUMMARY: Glacial Energy of Texas, Inc. (Glacial) has applied for authority to transmit electric... for authority to transmit electric energy from the United States to Mexico for five years as a power...

  16. Influence of application method on surface free-energy and bond strength of universal adhesive systems to enamel.

    Science.gov (United States)

    Imai, Arisa; Takamizawa, Toshiki; Sai, Keiichi; Tsujimoto, Akimasa; Nojiri, Kie; Endo, Hajime; Barkmeier, Wayne W; Latta, Mark A; Miyazaki, Masashi

    2017-10-01

    The aim of the present study was to determine the influence of different adhesive application methods and etching modes on enamel bond effectiveness of universal adhesives using shear bond strength (SBS) testing and surface free-energy (SFE) measurements. The adhesives Scotchbond Universal, All-Bond Universal, Adhese Universal, and G-Premio Bond were used. Prepared bovine enamel specimens were divided into four groups, based on type of adhesive, and subjected to the following surface treatments: (i) total-etch mode with active application; (ii) total-etch mode with inactive application; (iii) self-etch mode with active application; and (iv) self-etch mode with inactive application. Bonded specimens were subjected to SBS testing. The SFE of the enamel surfaces with adhesive was measured after rinsing with acetone and water. The SBS values in total-etch mode were significantly higher than those in self-etch mode. In total-etch mode, significantly lower SBS values were observed with active application compared with inactive application; in contrast, in self-etch mode there were no significant differences in SBS between active and inactive applications. A reduction in total SFE was observed for active application compared with inactive application. The interaction between etching mode and application method was statistically significant, and the application method significantly affected enamel bond strength in total-etch mode. © 2017 Eur J Oral Sci.

  17. 76 FR 11437 - Application To Export Electric Energy; Societe Generale Energy Corp.

    Science.gov (United States)

    2011-03-02

    ... reliability of the U.S. electric power supply system. Copies of this application will be made available, upon... surplus energy purchased from electric utilities, Federal power marketing agencies and other entities... DEPARTMENT OF ENERGY [OE Docket No. EA-376] Application To Export Electric Energy; Societe...

  18. Achievement report for fiscal 1981 on Sunshine Program-entrusted research and development. Research on hydrogen energy total system; 1981 nendo suiso energy total system no kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-03-01

    In this research, studies are conducted relative to the time point, form, and magnitude of the introduction of hydrogen into Japan's total energy system. The research aims to construct a hydrogen energy total system consisting of hydrogen energy subsystems to be available in the future and to clearly define the stage at which transfer to the target system will be carried out. In the research for fiscal 1981, studies continue about the feasibility of hydrogen as automobile and aviation fuels and as a material for use in chemical engineering, about conversion into each other of hydrogen and various synthetic fuels and electric power with which hydrogen will have to compete in the domain into which it will be supplied, and about technologies of their utilization for comparison between such energies in the search for their interchangeability. Surveys are conducted on technical data about local energies. The Yakushima island is chosen, for instance, and a conceptual hydrogen energy base is constructed there and the cost for the construction is estimated. At the last part, the feasibility of the introduction of hydrogen into Japan's energy system in the future is discussed for assessment. (NEDO)

  19. Relativistic total energy and chemical potential of heavy atoms and positive ions

    International Nuclear Information System (INIS)

    Hill, S.H.; Grout, P.J.; March, N.H.

    1984-01-01

    The relativistic Thomas-Fermi theory, with a finite nucleus, is used to study the variation of the chemical potential μ with atomic number Z and number of electrons N (N <= Z). The difference between the total energy of positive ions and that of the corresponding neutral atom has been obtained. The scaling predictions are confirmed by numerical calculations. The first principles calculation of the relativistic Thomas-Fermi total energy of neutral atoms is also studied. (author)

  20. 77 FR 31341 - Application To Export Electric Energy; DC Energy, LLC

    Science.gov (United States)

    2012-05-25

    ... DEPARTMENT OF ENERGY [OE Docket No. EA-327-A] Application To Export Electric Energy; DC Energy.... SUMMARY: DC Energy, LLC (DC Energy) has applied to renew its authority to transmit electric energy from..., the Department of Energy (DOE) issued Order No. EA-327 authorizing DC Energy to transmit electric...

  1. Electrospinning for advanced energy and environmental applications

    CERN Document Server

    Cavaliere, Sara

    2015-01-01

    Electrospinning for Advanced Energy and Environmental Applications delivers a state-of-the-art overview of the use of electrospun fibers in energy conversion and storage, as well as in environmental sensing and remediation. Featuring contributions from leading experts in electrospinning and its specific applications, this book: Introduces the electrospinning technique and its origins, outlining achievable one-dimensional (1D) nanoscaled materials and their various applications Discusses the use of electrospun materials in energy devices, including low- and high-temperature fuel cells, hydrogen storage, dye-sensitized solar cells, lithium-ion batteries, and supercapacitors Explores environmental applications of electrospun fibers, such as the use of electrospinning-issued materials in membranes for water and air purification, as well as in sensors and biosensors for pollution control Beneficial to both academic and industrial audiences, Electrospinning for Advanced Energy and Environmental Applications present...

  2. Energy deposition by a {sup 106}Ru/{sup 106}Rh eye applicator simulated using LEPTS, a low-energy particle track simulation

    Energy Technology Data Exchange (ETDEWEB)

    Fuss, M.C. [Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas (CSIC), Serrano 113-bis, 28006 Madrid (Spain); Munoz, A.; Oller, J.C. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Avenida Complutense 22, 28040 Madrid (Spain); Blanco, F. [Departamento de Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid, Avenida Complutense, 28040 Madrid (Spain); Williart, A. [Departamento de Fisica de los Materiales, Universidad Nacional de Educacion a Distancia, Senda del Rey 9, 28040 Madrid (Spain); Limao-Vieira, P. [Laboratorio de Colisoes Atomicas e Moleculares, Departamento de Fisica, CEFITEC, FCT-Universidade Nova de Lisboa, Quinta da Torre, 2829-516 Caparica (Portugal); Borge, M.J.G.; Tengblad, O. [Instituto de Estructura de la Materia, Consejo Superior de Investigaciones Cientificas (CSIC), Serrano 113-bis, 28006 Madrid (Spain); Huerga, C.; Tellez, M. [Hospital Universitario La Paz, Paseo de la Castellana 261, 28046 Madrid (Spain); Garcia, G., E-mail: g.garcia@iff.csic.es [Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas (CSIC), Serrano 113-bis, 28006 Madrid (Spain); Departamento de Fisica de los Materiales, Universidad Nacional de Educacion a Distancia, Senda del Rey 9, 28040 Madrid (Spain)

    2011-09-15

    The present study introduces LEPTS, an event-by-event Monte Carlo programme, for simulating an ophthalmic {sup 106}Ru/{sup 106}Rh applicator relevant in brachytherapy of ocular tumours. The distinctive characteristics of this code are the underlying radiation-matter interaction models that distinguish elastic and several kinds of inelastic collisions, as well as the use of mostly experimental input data. Special emphasis is placed on the treatment of low-energy electrons for generally being responsible for the deposition of a large portion of the total energy imparted to matter. - Highlights: > We present the Monte Carlo code LEPTS, a low-energy particle track simulation. > Carefully selected input data from 10 keV to 1 eV. > Application to an electron emitting Ru-106/Rh-106 plaque used in brachytherapy.

  3. Elastic scattering and total cross section at very high energies

    International Nuclear Information System (INIS)

    Castaldi, R.; Sanguinetti, G.

    1985-01-01

    The aim of this review is to summarize the recent progress in the field of elastic scattering and total cross section in this new energy domain. In Section 2 a survey of the experimental situation is outlined. The most significant data are presented, with emphasis on the interpretation, not the specific details or technicalities. This section is therefore intended to give a self-contained look at the field, especially for the nonspecialist. In Section 3, hadron scattering at high energy is described in an impact parameter picture, which provides a model-independent intuitive geometrical representation. The diffractive character of elastic scattering, seen as the shadow of inelastic absorption, is presented as a consequence of unitarity in the s-channel. Spins are neglected throughout this review, inasmuch as the asymptotic behavior in the very high-energy limit is the main concern here. In Section 4 some relevant theorems are recalled on the limiting behavior of hadron-scattering amplitudes at infinite energy. There is also a brief discussion on how asymptotically rising total cross sections imply scaling properties in the elastic differential cross sections. A quick survey of eikonal models is presented and their predictions are compared with ISR and SPS Collider data

  4. Total reflection X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Michaelis, W.; Prange, A.

    1987-01-01

    In the past few years, total reflection X-ray flourescence analysis (TXRF) has found an increasing number of assignments and applications. Experience of trace element analysis using TXRF and examples of applications are already widespread. Therefore, users of TXRF had the opportunity of an intensive exchange of their experience at the 1st workshop on total reflection X-ray fluorescence analysis which took place on May 27th and 28th 1986 at the GKSS Research Centre at Geesthacht. In a series of lectures and discussions dealing with the analytical principle itself, sample preparation techniques and applications as well as comuter programs for spectrum evaluation, the present state of development and the range of applications were outlined. 3 studies out of a total of 14 were included separately in the INIS and ENERGY databases. With 61 figs., 12 tabs [de

  5. Managing total corporate electricity/energy market risks

    International Nuclear Information System (INIS)

    Henney, A.; Keers, G.

    1998-01-01

    The banking industry has developed a tool kit of very useful value at risk techniques for hedging risk, but these techniques must be adapted to the special complexities of the electricity market. This paper starts with a short history of the use of value-at-risk (VAR) techniques in banking risk management and then examines the specific and, in many instances, complex risk management challenges faced by electric companies from the behavior of prices in electricity markets and from the character of generation and electric retailing risks. The third section describes the main methods for making VAR calculations along with an analysis of their suitability for analyzing the risks of electricity portfolios and the case for using profit at risk and downside risk as measures of risk. The final section draws the threads together and explains how to look at managing total corporate electricity market risk, which is a big step toward managing total corporate energy market risk

  6. Measurements of effective total macroscopic cross sections and effective energy of continuum beam

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Hisao [Rikkyo Univ., Yokosuka, Kanagawa (Japan). Inst. for Atomic Energy

    1998-03-01

    Two practically useful quantities are introduced in this study to characterize a continuum neutron beam and to describe transmission phenomena of the beam in field of quantitative neutron radiography: an effective energy instead of a peak energy or a mean energy of the spectrum and an effective total macroscopic (ETM) cross section instead of a total macroscopic (TM) cross section defined at the monochromatic energy. The effective energy was evaluated by means of energy dependence of ETM cross section. To realize the method a beam quality indicator (BQI) has been proposed recently. Several effective energies were measured for non-filtered, filtered neutron beams, and outputs of neutron guide tubes in world by the BQI. A thermal neutron beam and three beams modulated by Pb filters with different thicknesses are studied to measure ETM cross sections for various materials and summarized in a table. Validity of the effective energy determined by the BQI is discussed relating with ETM cross sections of materials. (author)

  7. Outlook and application analysis of energy storage in power system with high renewable energy penetration

    Science.gov (United States)

    Feng, Junshu; Zhang, Fuqiang

    2018-02-01

    To realize low-emission and low-carbon energy production and consumption, large-scale development and utilization of renewable energy has been put into practice in China. And it has been recognized that power system of future high renewable energy shares can operate more reliably with the participation of energy storage. Considering the significant role of storage playing in the future power system, this paper focuses on the application of energy storage with high renewable energy penetration. Firstly, two application modes are given, including demand side application mode and centralized renewable energy farm application mode. Afterwards, a high renewable energy penetration scenario of northwest region in China is designed, and its production simulation with application of energy storage in 2050 has been calculated and analysed. Finally, a development path and outlook of energy storage is given.

  8. 76 FR 69712 - Application To Export Electric Energy; BP Energy Company

    Science.gov (United States)

    2011-11-09

    ... DEPARTMENT OF ENERGY [OE Docket No. EA-315-A] Application To Export Electric Energy; BP Energy.... SUMMARY: BP Energy Company (BP Energy) has applied to renew its authority to transmit electric energy from... BP Energy to transmit electric energy from the United States to Canada as a power marketer for a five...

  9. Preliminary results of total kinetic energy modelling for neutron-induced fission

    International Nuclear Information System (INIS)

    Visan, I.; Giubega, G.; Tudora, A.

    2015-01-01

    The total kinetic energy as a function of fission fragments mass TKE(A) is an important quantity entering in prompt emission calculations. The experimentally distributions of TKE(A) are referring to a limited number of fission systems and incident energies. In the present paper, a preliminary model for TKE calculation in neutron induced fission system is presented. The range of fission fragments is chosen as in the Point by Point treatment. The model needs as input only mass excesses and deformation parameters taken from available nuclear databases being based on the following approximations: total excitation energy of fully accelerated fission fragments TXE is calculated from energy balance of neutron-induced fission systems as sum of the total excitation energy at scission E*sciss and deformation energy Edef. The deformation energy at scission is given by minimizing the potential energy at the scission configuration. At the scission point, the fission system is described by two spheroidal fragments nearly touching by a pre-scission distance or neck caused by the nuclear forces between fragments. Therefore, the Columbian repulsion depending on neck and, consequently, on the fragments deformation at scission, is essentially in TKE determination. An approximation is made based on the fission modes. For the very symmetric fission, the dominant super long channel is characterized by long distance between fragments leading to low TKE values. Due to magic and double-magic shells closure, the dominant S1 fission mode for pairs with heavy fragment mass AH around 130-134 is characterized by spherical heavy fragment shape and easily deformed light fragment. The nearly spherical shape of the complementary fragments are characterized by minimum distance, and consequently to maximum TKE values. The results obtained for TKE(A) are in good agreement with existing experimental data for many neutron induced fission systems, e.g. ''2''3''3&apos

  10. Nuclear energy I, Non-energetic applications

    International Nuclear Information System (INIS)

    Lartigue G, J.; Navarrete T, M.; Cabrera M, L.; Arandia, P.A.; Arriola S, H.

    1986-01-01

    The nuclear energy is defined as the energy produced or absorbed in the nuclear reactions, therefore, these are divided in endothermic and exothermic. The exothermic nuclear reactions present more interest from the point of view of its applications and they can show in four main forms: radioactivity (from 0 to 4 MeV/reaction; light nucleus fusion ( ∼ 20 MeV/reaction), heavy nucleus fusion (∼ 200 MeV/reaction) and nucleons annihilation ( ∼ 2000 MeV/reaction). Nowadays only the fission has reached the stage of profitable energetic application, finding the other three forms in research and development. The non-energetic applications of the nuclear energy are characterized by they do not require of prior conversion to another form of energy and they are made through the use of radioisotopes as well as through the use of endothermic reaction caused in particle accelerators. In this work are presented some of the non-energetic applications with its theoretical and experimental basis as well as its benefits of each one. (Author)

  11. Wireless energy transmission to supplement energy harvesters in sensor network applications

    Energy Technology Data Exchange (ETDEWEB)

    Farinholt, Kevin M [Los Alamos National Laboratory; Taylor, Stuart G [Los Alamos National Laboratory; Park, Gyuhae [Los Alamos National Laboratory; Farrar, Charles R [Los Alamos National Laboratory

    2010-01-01

    In this paper we present a method for coupling wireless energy transmission with traditional energy harvesting techniques in order to power sensor nodes for structural health monitoring applications. The goal of this study is to develop a system that can be permanently embedded within civil structures without the need for on-board power sources. Wireless energy transmission is included to supplement energy harvesting techniques that rely on ambient or environmental, energy sources. This approach combines several transducer types that harvest ambient energy with wireless transmission sources, providing a robust solution that does not rely on a single energy source. Experimental results from laboratory and field experiments are presented to address duty cycle limitations of conventional energy harvesting techniques, and the advantages gained by incorporating a wireless energy transmission subsystem. Methods of increasing the efficiency, energy storage medium, target applications and the integrated use of energy harvesting sources with wireless energy transmission will be discussed.

  12. Assessment and Decomposition of Total Factor Energy Efficiency: An Evidence Based on Energy Shadow Price in China

    Directory of Open Access Journals (Sweden)

    Peihao Lai

    2016-04-01

    Full Text Available By adopting an energy-input based directional distance function, we calculated the shadow price of four types of energy (i.e., coal, oil, gas and electricity among 30 areas in China from 1998 to 2012. Moreover, a macro-energy efficiency index in China was estimated and divided into intra-provincial technical efficiency, allocation efficiency of energy input structure and inter-provincial energy allocation efficiency. It shows that total energy efficiency has decreased in recent years, where intra-provincial energy technical efficiency drops markedly and extensive mode of energy consumption rises. However, energy structure and allocation improves slowly. Meanwhile, lacking an integrated energy market leads to the loss of energy efficiency. Further improvement of market allocation and structure adjustment play a pivotal role in the increase of energy efficiency.

  13. 76 FR 69713 - Application To Export Electric Energy; BP Energy Company

    Science.gov (United States)

    2011-11-09

    ... DEPARTMENT OF ENERGY [OE Docket No. EA-314-A] Application To Export Electric Energy; BP Energy.... SUMMARY: BP Energy Company (BP Energy) has applied to renew its authority to transmit electric energy from... electric energy from the United States to Mexico as a power marketer for a five-year term using existing...

  14. Application of energy dispersive x-ray techniques for water analysis

    International Nuclear Information System (INIS)

    Funtua, I. I.

    2000-07-01

    Energy dispersive x-ray fluorescence (EDXRF) is a class of emission spectroscopic techniques that depends upon the emission of characteristic x-rays following excitation of the atomic electron energy levels by tube or isotopic source x-rays. The technique has found wide range of applications that include determination of chemical elements of water and water pollutants. Three EDXRF systems, the isotopic source, secondary target and total reflection (TXRF) are available at the Centre for Energy research and Training. These systems have been applied for the analysis of sediments, suspensions, ground water, river and rainwater. The isotopic source is based on 55 Fe, 109 Cd and 241 Am excitations while the secondary target and the total reflection are utilizing a Mo x-ray tube. Sample preparation requirements for water analysis range from physical and chemical pre-concentration steps to direct analysis and elements from Al to U can be determined with these systems. The EDXRF techniques, TXRF in particular with its multielement capability, low detection limit and possibility of direct analysis for water have competitive edge over the traditional methods of atomic absorption and flame photometry

  15. Characterizing Energy per Job in Cloud Applications

    Directory of Open Access Journals (Sweden)

    Thi Thao Nguyen Ho

    2016-12-01

    Full Text Available Energy efficiency is a major research focus in sustainable development and is becoming even more critical in information technology (IT with the introduction of new technologies, such as cloud computing and big data, that attract more business users and generate more data to be processed. While many proposals have been presented to optimize power consumption at a system level, the increasing heterogeneity of current workloads requires a finer analysis in the application level to enable adaptive behaviors and in order to reduce the global energy usage. In this work, we focus on batch applications running on virtual machines in the context of data centers. We analyze the application characteristics, model their energy consumption and quantify the energy per job. The analysis focuses on evaluating the efficiency of applications in terms of performance and energy consumed per job, in particular when shared resources are used and the hosts on which the virtual machines are running are heterogeneous in terms of energy profiles, with the aim of identifying the best combinations in the use of resources.

  16. The Relationship between Cost Leadership Strategy, Total Quality Management Applications and Financial Performance

    Directory of Open Access Journals (Sweden)

    Ali KURT

    2016-03-01

    Full Text Available Firms need to implement some competition strategies and total quality management applications to overcome the fierce competition among others. The purpose of this study is to show the relationship between cost leadership strategy, total quality management applications and firms’ financial performance with literature review and empirical analysis. 449 questionnaires were conducted to the managers of 142 big firms. The data gathered was assessed with AMOS. As a result, the relationship between cost leadership strategy, total quality management applications and firms’ financial performance has been gathered. In addition, the relationship between TQM applications and financial performance has also been gathered.

  17. Techniques and tools for measuring energy efficiency of scientific software applications

    International Nuclear Information System (INIS)

    Abdurachmanov, David; Elmer, Peter; Eulisse, Giulio; Knight, Robert; Niemi, Tapio; Pestana, Gonçalo; Khan, Kashif; Nurminen, Jukka K; Nyback, Filip; Ou, Zhonghong

    2015-01-01

    The scale of scientific High Performance Computing (HPC) and High Throughput Computing (HTC) has increased significantly in recent years, and is becoming sensitive to total energy use and cost. Energy-efficiency has thus become an important concern in scientific fields such as High Energy Physics (HEP). There has been a growing interest in utilizing alternate architectures, such as low power ARM processors, to replace traditional Intel x86 architectures. Nevertheless, even though such solutions have been successfully used in mobile applications with low I/O and memory demands, it is unclear if they are suitable and more energy-efficient in the scientific computing environment. Furthermore, there is a lack of tools and experience to derive and compare power consumption between the architectures for various workloads, and eventually to support software optimizations for energy efficiency. To that end, we have performed several physical and software-based measurements of workloads from HEP applications running on ARM and Intel architectures, and compare their power consumption and performance. We leverage several profiling tools (both in hardware and software) to extract different characteristics of the power use. We report the results of these measurements and the experience gained in developing a set of measurement techniques and profiling tools to accurately assess the power consumption for scientific workloads. (paper)

  18. Aplicación de Gestión Total Eficiente de Energía en el Centro Internacional de Salud “La Pradera” ; Application of Total Management Techniques of Energy Efficiency at the International Health Centre "La Pradera”

    Directory of Open Access Journals (Sweden)

    Leyat Fernández Velázquez

    2014-06-01

    Full Text Available En este artículo se presentan los primeros resultados obtenidos de la aplicación de la Metodología de las Técnicas de Gestión Total Eficiente de la Energía en el Centro Internacional de Salud “La Pradera”. Se realizó una caracterización energética del Centro, determinándose la estructura de consumo de los portadores energéticos. Se efectuó una investigación estadística de los datos del Centro durante los años 2010 y 2011, obteniéndose que el portador energético más influyente en el consumo de la instalación es la energía eléctrica. Se analizó la relación entre el índice de consumo kilowatt hora vs habitación-día-ocupada (kWh/HDO para evaluar correctamente la eficiencia energética del centro, determinándose que la temperatura ambiente es un factor significativo en los consumos de electricidad, lo cual conllevó a la obtención de un nuevo índice de consumo que refleja acertadamente el comportamiento del consumo de energía eléctrica en función de los servicios prestados por esta entidad. This article presents the first results of the application of the Methodology for Total Management Techniques of Energy Efficiency at the International Health Centre "La Pradera". It was realized an energetic characterization of the Centre, determining the structure of energy carriers consumption. It was conducted a statistical investigation of the data Centre during the years 2010 and 2011, giving the electricity as the more influential energy consumption of the facility. It was analyzed the relationship between kilowatt hour consumption rate vs day-occupied-room (kWh / HDO to assess correctly the energy efficiency of the Centre concluding that the room temperature is a significant factor in the consumption of electricity, which led to the award of a new index that accurately reflects the consumption behaviour of electric energy consumption based on the services provided by this entity.

  19. Neutron applications in materials for energy

    CERN Document Server

    Kearley, Gordon J

    2015-01-01

    Neutron Applications in Materials for Energy collects results and conclusions of recent neutron-based investigations of materials that are important in the development of sustainable energy. Chapters are authored by leading scientists with hands-on experience in the field, providing overviews, recent highlights, and case-studies to illustrate the applicability of one or more neutron-based techniques of analysis. The theme follows energy production, storage, and use, but each chapter, or section, can also be read independently, with basic theory and instrumentation for neutron scattering being

  20. DWBA differential and total pair production cross sections for intermediate energy photons

    International Nuclear Information System (INIS)

    Selvaraju, C.; Bhullar, A.S.; Sud, K.K.

    2001-01-01

    We present in this communication the theoretical differential and total cross section for electron-positron pair creation by intermediate energy photons (5.0-10.0 MeV) on different targets (Z=1, 30, 50, 68, 82 and 92). The computed cross sections are in distorted wave Born approximation (DWBA) in point Coulomb potential. The database of the differential and total pair production cross sections is presented in tabulated as well as in graphical form and the interpolation of differential cross sections for different atomic numbers, positron and photon energies is discussed

  1. Tangible and fungible energy: Hybrid energy market and currency system for total energy management. A Masdar City case study

    International Nuclear Information System (INIS)

    Sgouridis, Sgouris; Kennedy, Scott

    2010-01-01

    We propose the introduction of an energy-based parallel currency as a means to ease the transition to energy-conscious living. Abundant fossil energy resources mask the internal and external energy costs for casual energy consumers. This situation is challenging communities that draw a significant fraction of their primary energy consumption from renewable energy sources. The Masdar Energy Credit (MEC) system is a way of translating the fundamental aspects behind energy generation and usage into a tangible reality for all users with built-in fungibility to incentivize collectively sustainable behavior. The energy credit currency (ergo) corresponds with a chosen unit of energy so that the total amount of ergos issued equals the energy supply of the community. Ergos are distributed to users (residents, commercial entities, employees, and visitors) on a subscription basis and can be surrendered in exchange for the energy content of a service. A spot market pricing mechanism is introduced to relate ergos to 'fiat' currency using a continuously variable exchange rate to prevent depletion of the sustainable energy resource. The MEC system is intended to: (i) meet the sustainable energy balance targets of a community (ii) support peak shaving or load shifting goals, and (iii) raise energy awareness.

  2. Fission Fragment Mass Distributions and Total Kinetic Energy Release of 235-Uranium and 238-Uranium in Neutron-Induced Fission at Intermediate and Fast Neutron Energies

    Energy Technology Data Exchange (ETDEWEB)

    Duke, Dana Lynn [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-12

    This Ph.D. dissertation describes a measurement of the change in mass distributions and average total kinetic energy (TKE) release with increasing incident neutron energy for fission of 235U and 238U. Although fission was discovered over seventy-five years ago, open questions remain about the physics of the fission process. The energy of the incident neutron, En, changes the division of energy release in the resulting fission fragments, however, the details of energy partitioning remain ambiguous because the nucleus is a many-body quantum system. Creating a full theoretical model is difficult and experimental data to validate existing models are lacking. Additional fission measurements will lead to higher-quality models of the fission process, therefore improving applications such as the development of next-generation nuclear reactors and defense. This work also paves the way for precision experiments such as the Time Projection Chamber (TPC) for fission cross section measurements and the Spectrometer for Ion Determination in Fission (SPIDER) for precision mass yields.

  3. Midwest Clean Energy Application Center

    Energy Technology Data Exchange (ETDEWEB)

    Cuttica, John; Haefke, Cliff

    2013-12-31

    The Midwest Clean Energy Application Center (CEAC) was one of eight regional centers that promoted and assisted in transforming the market for combined heat and power (CHP), waste heat to power (WHP), and district energy (DE) technologies and concepts throughout the United States between October 1, 2009 and December 31, 2013. The key services the CEACs provided included: Market Opportunity Analyses – Supporting analyses of CHP market opportunities in diverse markets including industrial, federal, institutional, and commercial sectors. Education and Outreach – Providing information on the energy and non-energy benefits and applications of CHP to state and local policy makers, regulators, energy end-users, trade associations and others. Information was shared on the Midwest CEAC website: www.midwestcleanergy.org. Technical Assistance – Providing technical assistance to end-users and stakeholders to help them consider CHP, waste heat to power, and/or district energy with CHP in their facility and to help them through the project development process from initial CHP screening to installation. The Midwest CEAC provided services to the Midwest Region that included the states of Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska, North Dakota, Ohio, South Dakota, and Wisconsin.

  4. Extending nuclear energy to non-electrical applications

    Energy Technology Data Exchange (ETDEWEB)

    Ingersoll, D.; Houghton, Z. [NuScale Power, LLC, Corvallis, Oregon (United States); Bromm, R. [Fluor Corp., Greenville, SC (United States); Desportes, C. [Aquatech International, Canonsburg, PA (United States); McKellar, M.; Boardman, R. [Idaho National Laboratory, Idaho Falls, ID (United States)

    2014-07-01

    Electricity represents less than half of all energy consumed in the United States and globally. Although a few commercial nuclear power plants world-wide provide energy to non-electrical applications such as district heating and water desalination, nuclear energy has been largely relegated to base-load electricity production. A new generation of smaller-sized nuclear power plants offers significant promise for extending nuclear energy to many non-electrical applications. The NuScale small modular reactor design is especially well suited for these nontraditional customers due to its small unit size, very robust reactor protection features and a highly flexible and scalable plant design. A series of technical and economic evaluation studies have been conducted to assess the practicality of using a NuScale plant to provide electricity and heat to a variety of non-electrical applications, including water desalination, oil refining, and hydrogen production. The studies serve to highlight the unique design features of the NuScale plant for these applications and provide encouraging conclusions regarding the technical and economic viability of extending clean nuclear energy to a broad range of non-electrical energy consumers. (author)

  5. EXTENDING NUCLEAR ENERGY TO NON-ELECTRICAL APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    R. Boardman; M. McKellar; D. Ingersoll; Z. Houghton; , R. Bromm; C. Desportes

    2014-09-01

    Electricity represents less than half of all energy consumed in the United States and globally. Although a few commercial nuclear power plants world-wide provide energy to non-electrical applications such as district heating and water desalination, nuclear energy has been largely relegated to base-load electricity production. A new generation of smaller-sized nuclear power plants offers significant promise for extending nuclear energy to many non-electrical applications. The NuScale small modular reactor design is especially well suited for these non-traditional customers due to its small unit size, very robust reactor protection features and a highly flexible and scalable plant design. A series of technical and economic evaluation studies have been conducted to assess the practicality of using a NuScale plant to provide electricity and heat to a variety of non-electrical applications, including water desalination, oil refining, and hydrogen production. The studies serve to highlight the unique design features of the NuScale plant for these applications and provide encouraging conclusions regarding the technical and economic viability of extending clean nuclear energy to a broad range of non-electrical energy consumers.

  6. Renewable-energy applications in Egypt

    International Nuclear Information System (INIS)

    Hammad, M.A.

    2005-01-01

    The paper illustrates the main activities carried out concerning development and application of renewable-energy technologies in Egypt. Main attention is devoted to biogas technology, solar and wind energy technologies. The main constraints for implementation of renewable-energy technologies in Egypt and the activities carried out for its release are highlighted. The coordination between the Islamic and other developing countries is highly needed, to achieve marked progress in implementation of renewable energy and sustainable development. Establishment of a network for renewable energy among the Islamic countries can play an active role in these aspects. (author)

  7. Total-factor energy efficiency of regions in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Honma, Satoshi [Faculty of Economics, Kyushu Sangyo University, 2-3-1 Matsukadai, Higashi-ku, Fukuoka 813-8503 (Japan); Hu, Jin-Li [Institute of Business and Management, National Chiao Tung University (China)

    2008-02-15

    This study computes the regional total-factor energy efficiency (TFEE) in Japan by employing the data envelopment analysis (DEA). A dataset of 47 prefectures in Japan for the period 1993-2003 is constructed. There are 14 inputs, including three production factors (labor employment, private, and public capital stocks) and 11 energy sources (electric power for commercial and industrial use, electric power for residential use, gasoline, kerosene, heavy oil, light oil, city gas, butane gas, propane gas, coal, and coke). GDP is the sole output. Following Fukao and Yue [2000. Regional factor inputs and convergence in Japan - how much can we apply closed economy neoclassical growth models? Economic Review 51, 136-151 (in Japanese)], data on private and public capital stocks are extended. All the nominal variables are transformed into real variables, taking into consideration the 1995 price level. For kerosene, gas oil, heavy oil, butane gas, coal, and coke, there are a few prefectures with TFEEs less than 0.7. The five most inefficient prefectures are Niigata, Wakayama, Hyogo, Chiba, and Yamaguchi. Inland regions and most regions along the Sea of Japan are efficient in energy use. Most of the inefficient prefectures that are developing mainly upon energy-intensive industries are located along the Pacific Belt Zone. A U-shaped relation similar to the environmental Kuznets curve (EKC) is discovered between energy efficiency and per capita income for the regions in Japan. (author)

  8. Total-factor energy efficiency of regions in Japan

    International Nuclear Information System (INIS)

    Honma, Satoshi; Hu, Jin-Li

    2008-01-01

    This study computes the regional total-factor energy efficiency (TFEE) in Japan by employing the data envelopment analysis (DEA). A dataset of 47 prefectures in Japan for the period 1993-2003 is constructed. There are 14 inputs, including three production factors (labor employment, private, and public capital stocks) and 11 energy sources (electric power for commercial and industrial use, electric power for residential use, gasoline, kerosene, heavy oil, light oil, city gas, butane gas, propane gas, coal, and coke). GDP is the sole output. Following Fukao and Yue [2000. Regional factor inputs and convergence in Japan-how much can we apply closed economy neoclassical growth models? Economic Review 51, 136-151 (in Japanese)], data on private and public capital stocks are extended. All the nominal variables are transformed into real variables, taking into consideration the 1995 price level. For kerosene, gas oil, heavy oil, butane gas, coal, and coke, there are a few prefectures with TFEEs less than 0.7. The five most inefficient prefectures are Niigata, Wakayama, Hyogo, Chiba, and Yamaguchi. Inland regions and most regions along the Sea of Japan are efficient in energy use. Most of the inefficient prefectures that are developing mainly upon energy-intensive industries are located along the Pacific Belt Zone. A U-shaped relation similar to the environmental Kuznets curve (EKC) is discovered between energy efficiency and per capita income for the regions in Japan

  9. Positron interactions with water–total elastic, total inelastic, and elastic differential cross section measurements

    International Nuclear Information System (INIS)

    Tattersall, Wade; Chiari, Luca; Machacek, J. R.; Anderson, Emma; Sullivan, James P.; White, Ron D.; Brunger, M. J.; Buckman, Stephen J.; Garcia, Gustavo; Blanco, Francisco

    2014-01-01

    Utilising a high-resolution, trap-based positron beam, we have measured both elastic and inelastic scattering of positrons from water vapour. The measurements comprise differential elastic, total elastic, and total inelastic (not including positronium formation) absolute cross sections. The energy range investigated is from 1 eV to 60 eV. Comparison with theory is made with both R-Matrix and distorted wave calculations, and with our own application of the Independent Atom Model for positron interactions

  10. Application of Total Innovation Management to Chinese Small and ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Application of Total Innovation Management to Chinese Small and Medium Enterprises. Innovation is ... Country(s). China, Far East Asia, Central Asia, South Asia ... Call for new OWSD Fellowships for Early Career Women Scientists now open.

  11. Efficient Energy use in Different Applications

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Lars

    2007-05-15

    There is a steadily growing awareness for environmental issues caused by the increased energy use, mainly in the industrial world. The use of fossil fuels has reached the point where it can not be looked at as an endless source. The resources are decreasing at a pace where alternative energy sources will be a necessity for this and future generations. Global warming, due to increased concentration of greenhouse gases in the atmosphere, has become one of the most important issues on the political agenda at all levels. A widespread opinion is that energy conservation technologies are needed and a shift towards renewable energy sources is required to attain a sustainable development of our society and a progress in the developing countries. This thesis is focusing on two different energy conservation technologies in different applications. The open absorption system, a modification of an absorption heat pump is a promising technique in moist air processes, recovering the latent heat in the air and decreasing the total heat demand. The technology has been tested in two full scale pilot plants at a sawmill operating four timber dryers and another unit installed at an indoor swimming pool. The technique has had positive outcomes in both operational and energy conservation respects. It has been shown that the energy demand was decreased considerably in both applications. The investment cost has proved to be relatively high, but optimization of operational parameters shows a potential to decrease the initial investment and make the technology more competitive. Pressurized entrained-flow high temperature black liquor gasification (PEHT-BLG), developed by Chemrec AB, is another novel technique presented in this thesis. Black liquor is an important by-product in the papermaking process. Chemicals and energy is recovered in the conventional recovery boiler where superheated steam is produced to generate electricity and process heat. The cooking chemicals are recovered from the

  12. Clean Energy Application Center

    Energy Technology Data Exchange (ETDEWEB)

    Freihaut, Jim [Pennsylvania State Univ., University Park, PA (United States)

    2013-09-30

    The Mid Atlantic Clean Energy Application Center (MACEAC), managed by The Penn State College of Engineering, serves the six states in the Mid-Atlantic region (Pennsylvania, New Jersey, Delaware, Maryland, Virginia and West Virginia) plus the District of Columbia. The goals of the Mid-Atlantic CEAC are to promote the adoption of Combined Heat and Power (CHP), Waste Heat Recovery (WHR) and District Energy Systems (DES) in the Mid Atlantic area through education and technical support to more than 1,200 regional industry and government representatives in the region. The successful promotion of these technologies by the MACEAC was accomplished through the following efforts; (1)The MACEAC developed a series of technology transfer networks with State energy and environmental offices, Association of Energy Engineers local chapters, local community development organizations, utilities and, Penn State Department of Architectural Engineering alumni and their firms to effectively educate local practitioners about the energy utilization, environmental and economic advantages of CHP, WHR and DES; (2) Completed assessments of the regional technical and market potential for CHP, WHR and DE technologies application in the context of state specific energy prices, state energy and efficiency portfolio development. The studies were completed for Pennsylvania, New Jersey and Maryland and included a set of incentive adoption probability models used as a to guide during implementation discussions with State energy policy makers; (3) Using the technical and market assessments and adoption incentive models, the Mid Atlantic CEAC developed regional strategic action plans for the promotion of CHP Application technology for Pennsylvania, New Jersey and Maryland; (4) The CHP market assessment and incentive adoption model information was discussed, on a continuing basis, with relevant state agencies, policy makers and Public Utility Commission organizations resulting in CHP favorable incentive

  13. Total, accessible and reserve wind energy resources in Bulgaria

    International Nuclear Information System (INIS)

    Ivanov, P.; Trifonova, L.

    1996-01-01

    The article is a part of the international project 'Bulgaria Country Study to Address Climate Change Inventory of the Greenhouse Gases Emission and Sinks Alternative Energy Balance and Technology Programs' sponsored by the Department of Energy, US. The 'total' average annual wind resources in Bulgaria determined on the basis wind velocity density for more than 100 meteorological stations are estimated on 125 000 TWh. For the whole territory the theoretical wind power potential is about 14200 GW. The 'accessible' wind resources are estimated on about 62000 TWh. The 'reserve' (or usable) wind resources are determined using 8 velocity intervals for WECS (Wind Energy Conversion Systems) operation, number and disposition of turbines, and the usable (3%) part of the territory. The annual reserve resources are estimated at about 21 - 33 TWh. The 'economically beneficial' wind resources (EBWR) are those part of the reserve resources which could be included in the country energy balance using specific technologies in specific time period. It is foreseen that at year 2010 the EBWR could reach 0.028 TWh. 7 refs., 2 tabs., 1 fig

  14. Industrial Applications of Nuclear Energy

    International Nuclear Information System (INIS)

    2017-01-01

    This publication provides a detailed overview of the potential use of nuclear energy for industrial systems and/or processes which have a strong demand for process heat/steam and power, and on the mapping of nuclear power reactors proposed for various industrial applications. It describes the technical concepts for combined nuclear-industrial complexes that are being pursued in various Member States, and presents the concepts that were developed in the past to be applied in connection with some major industries. It also provides an analysis of the energy demand in various industries and outlines the potential that nuclear energy may have in major industrial applications such as process steam for oil recovery and refineries, hydrogen generation, and steel and aluminium production. The audience for this publication includes academia, industry, and government agencies.

  15. 75 FR 12737 - Applications To Export Electric Energy; Noble Energy Marketing and Trade Corp.

    Science.gov (United States)

    2010-03-17

    ... impact on the reliability of the U.S. electric power supply system. Copies of this application will be... DEPARTMENT OF ENERGY [OE Docket Nos. EA-363 and EA-364] Applications To Export Electric Energy; Noble Energy Marketing and Trade Corp. AGENCY: Office of Electricity Delivery and Energy Reliability...

  16. Financing renewable energy for Village Power application

    Energy Technology Data Exchange (ETDEWEB)

    Santibanez-Yeneza, G.

    1997-12-01

    When one talks of rural development, no doubt, the issue of rural energy is not far behind. As a significant component of any development strategy, rural energy is seen as the engine for growth that can bring about economic upliftment in the countryside. Many approaches to rural energy development have been tried. These approaches differ from country to country. But regardless of structure and approach, the goal remain essentially the same: to provide rural communities access to reliable energy services at affordable prices. In recent years, as global concern for the environment has increased, many governments have turned to renewable energy as a more environment friendly alternative to rural electrification. Technological advances in renewable energy application has helped to encourage this use. System reliability has improved, development costs have, to some extent been brought down and varied application approaches have been tried and tested in many areas. Indeed, there is huge potential for the development of renewable energy in the rural areas of most developing countries. At the rural level, renewable energy resources are almost always abundantly available: woodwaste, agricultural residues, animal waste, small-scale hydro, wind, solar and even sometimes geothermal resources. Since smaller scale systems are usually expected in these areas, renewable energy technologies can very well serve as decentralized energy systems for rural application. And not only for rural applications, new expansion planning paradigms have likewise led to the emergence of decentralized energy systems not only as supply options but also as corrective measures for maintaining end of line voltage levels. On the other hand, where renewable energy resource can provide significant blocks of power, they can be relied upon to provide indigenous power to the grids.

  17. Achievement report on research and development in the Sunshine Project in fiscal 1978. Studies on a hydrogen energy total system; 1978 nendo suiso energy total system no kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1979-03-01

    Analysis was made on timing, patterns and scales of introducing hydrogen energy into the Japan's total energy system, and case studies were made on transfer of the comprehensive systems that can be realized in the years of 1985, 2000 and 2025. The basic conception for the analytic method employed a method to analyze and present theoretically the conditions in which prerequisites or results of the estimation can be established, rather than intending elucidation of the estimation itself. An energy model was used for the theoretical means thereof. The objective function to be optimized was assumed to maximize (estimate over the planned period of time) the total effectiveness of the hydrogen energy system converted into the present value being given appropriate discount. The economic performance measures for different secondary energies working as the comparison measures are the limiting production cost of each energy. A consideration was given to the point that the electrolytic hydrogen cannot compete with that made by using the thermo-chemical method (if developed successfully) using heat from high-temperature gas reactor if the fossil fuel price rises sharply. Considerations are also required in replaceability of hydrogen energy with other energies, and hydrogen utilization in petroleum refining. (NEDO)

  18. Total Energy of Charged Black Holes in Einstein-Maxwell-Dilaton-Axion Theory

    Directory of Open Access Journals (Sweden)

    Murat Korunur

    2012-01-01

    Full Text Available We focus on the energy content (including matter and fields of the Møller energy-momentum complex in the framework of Einstein-Maxwell-Dilaton-Axion (EMDA theory using teleparallel gravity. We perform the required calculations for some specific charged black hole models, and we find that total energy distributions associated with asymptotically flat black holes are proportional to the gravitational mass. On the other hand, we see that the energy of the asymptotically nonflat black holes diverge in a limiting case.

  19. Relation between total shock energy and mortality in patients with implantable cardioverter-defibrillator.

    Science.gov (United States)

    Tenma, Taro; Yokoshiki, Hisashi; Mitsuyama, Hirofumi; Watanabe, Masaya; Mizukami, Kazuya; Kamada, Rui; Takahashi, Masayuki; Sasaki, Ryo; Maeno, Motoki; Okamoto, Kaori; Chiba, Yuki; Anzai, Toshihisa

    2018-05-15

    Implantable Cardioverter-Defibrillator (ICD) shocks have been associated with mortality. However, no study has examined the relation between total shock energy and mortality. The aim of this study is to assess the association of total shock energy with mortality, and to determine the patients who are at risk of this association. Data from 316 consecutive patients who underwent initial ICD implantation in our hospital between 2000 and 2011 were retrospectively studied. We collected shock energy for 3 years from the ICD implantation, and determined the relation of shock energy on mortality after adjusting confounding factors. Eighty-seven ICD recipients experienced shock(s) within 3 years from ICD implantation and 43 patients had died during the follow-up. The amount of shock energy was significantly associated with all-cause death [adjusted hazard ratio (HR) 1.26 (per 100 joule increase), p energy accumulation (≥182 joule) was lower (p energy accumulation (energy accumulation and all-cause death was remarkable in the patients with low left ventricular ejection fraction (LVEF ≤40%) or atrial fibrillation (AF). Increase of shock energy was related to mortality in ICD recipients. This relation was evident in patients with low LVEF or AF. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. A multisite interaction expansion of the total energy in metals

    International Nuclear Information System (INIS)

    Sowa, E.C.; Gonis, A.

    1994-01-01

    The local-density approximation provides a proper setting for the decomposition of total energy into many-body (many-atom) contributions. Multiple scattering theory in turn provides a convenient framework for carrying out this process. We illustrate this concept with calculations on a linear chain of atoms in bulk copper

  1. Perspective: Dynamic Shadowing Growth and its Energy Applications

    Directory of Open Access Journals (Sweden)

    Yiping eZhao

    2014-09-01

    Full Text Available The unique features of dynamic shadowing growth (DSG in structural and compositional design of nanomaterials are discussed. Their recent applications in energy storage, fuel cell, and solar energy conversion have been reviewed briefly. Future directions for applying DSG nanostructures in renewable energy applications are presented.

  2. The total flow concept for geothermal energy conversion

    Science.gov (United States)

    Austin, A. L.

    1974-01-01

    A geothermal development project has been initiated at the Lawrence Livermore Laboratory (LLL) to emphasize development of methods for recovery and conversion of the energy in geothermal deposits of hot brines. Temperatures of these waters vary from 150 C to more than 300 C with dissolved solids content ranging from less than 0.1% to over 25% by weight. Of particular interest are the deposits of high-temperature/high-salinity brines, as well as less saline brines, known to occur in the Salton Trough of California. Development of this resource will depend on resolution of the technical problems of brine handling, scale and precipitation control, and corrosion/erosion resistant systems for efficient conversion of thermal to electrical energy. Research experience to date has shown these problems to be severe. Hence, the LLL program emphasizes development of an entirely different approach called the Total Flow concept.

  3. Research on the Orientation and Application of Distributed Energy Storage in Energy Internet

    Science.gov (United States)

    Zeng, Ming; Zhou, Pengcheng; Li, Ran; Zhou, Jingjing; Chen, Tao; Li, Zhe

    2018-01-01

    Energy storage is indispensable resources to achieve a high proportion of new energy power consumption in electric power system. As an important support to energy Internet, energy storage system can achieve a variety of energy integration operation to ensure maximum energy efficiency. In this paper, firstly, the SWOT analysis method is used to express the internal and external advantages and disadvantages of distributed energy storage participating in the energy Internet. Secondly, the function orientation of distributed energy storage in energy Internet is studied, based on which the application modes of distributed energy storage in virtual power plant, community energy storage and auxiliary services are deeply studied. Finally, this paper puts forward the development strategy of distributed energy storage which is suitable for the development of China’s energy Internet, and summarizes and prospects the application of distributed energy storage system.

  4. Industry-level total-factor energy efficiency in developed countries: A Japan-centered analysis

    International Nuclear Information System (INIS)

    Honma, Satoshi; Hu, Jin-Li

    2014-01-01

    Highlights: • This study compares Japan with other developed countries for energy efficiency at the industry level. • We compute the total-factor energy efficiency (TFEE) for industries in 14 developed countries in 1995–2005. • Energy conservation can be further optimized in Japan’s industry sector. • Japan experienced a slight decrease in the weighted TFEE from 0.986 in 1995 to 0.927 in 2005. • Japan should adapt energy conservation technologies from the primary benchmark countries: Germany, UK, and USA. - Abstract: Japan’s energy security is more vulnerable today than it was before the Fukushima Daiichi nuclear power plant accident in March 2011. To alleviate its energy vulnerability, Japan has no choice but to improve energy efficiency. To aid in this improvement, this study compares Japan’s energy efficiency at the industry level with that of other developed countries. We compute the total-factor energy efficiency (TFEE) of industries in 14 developed countries for 1995–2005 using data envelopment analysis. We use four inputs: labor, capital stock, energy, and non-energy intermediate inputs. Value added is the only relevant output. Results indicate that Japan can further optimize energy conservation because it experienced only a marginal decrease in the weighted TFEE, from 0.986 in 1995 to 0.927 in 2005. To improve inefficient industries, Japan should adapt energy conservation technologies from benchmark countries such as Germany, the United Kingdom, and the United States

  5. Single-Walled Carbon Nanohorns for Energy Applications

    Science.gov (United States)

    Zhang, Zhichao; Han, Shuang; Wang, Chao; Li, Jianping; Xu, Guobao

    2015-01-01

    With the growth of the global economy and population, the demand for energy is increasing sharply. The development of environmentally a benign and reliable energy supply is very important and urgent. Single-walled carbon nanohorns (SWCNHs), which have a horn-shaped tip at the top of single-walled nanotube, have emerged as exceptionally promising nanomaterials due to their unique physical and chemical properties since 1999. The high purity and thermal stability, combined with microporosity and mesoporosity, high surface area, internal pore accessibility, and multiform functionalization make SWCNHs promising candidates in many applications, such as environment restoration, gas storage, catalyst support or catalyst, electrochemical biosensors, drug carrier systems, magnetic resonance analysis and so on. The aim of this review is to provide a comprehensive overview of SWCNHs in energy applications, including energy conversion and storage. The commonly adopted method to access SWCNHs, their structural modifications, and their basic properties are included, and the emphasis is on their application in different devices such as fuel cells, dye-sensitized solar cells, supercapacitors, Li-ion batteries, Li-S batteries, hydrogen storage, biofuel cells and so forth. Finally, a perspective on SWCNHs’ application in energy is presented. PMID:28347092

  6. Single-Walled Carbon Nanohorns for Energy Applications

    Directory of Open Access Journals (Sweden)

    Zhichao Zhang

    2015-10-01

    Full Text Available With the growth of the global economy and population, the demand for energy is increasing sharply. The development of environmentally a benign and reliable energy supply is very important and urgent. Single-walled carbon nanohorns (SWCNHs, which have a horn-shaped tip at the top of single-walled nanotube, have emerged as exceptionally promising nanomaterials due to their unique physical and chemical properties since 1999. The high purity and thermal stability, combined with microporosity and mesoporosity, high surface area, internal pore accessibility, and multiform functionalization make SWCNHs promising candidates in many applications, such as environment restoration, gas storage, catalyst support or catalyst, electrochemical biosensors, drug carrier systems, magnetic resonance analysis and so on. The aim of this review is to provide a comprehensive overview of SWCNHs in energy applications, including energy conversion and storage. The commonly adopted method to access SWCNHs, their structural modifications, and their basic properties are included, and the emphasis is on their application in different devices such as fuel cells, dye-sensitized solar cells, supercapacitors, Li-ion batteries, Li-S batteries, hydrogen storage, biofuel cells and so forth. Finally, a perspective on SWCNHs’ application in energy is presented.

  7. New ideas for the design of optical devices with applications in solar energy collection

    Energy Technology Data Exchange (ETDEWEB)

    Chaves, Julio; Pereira, Manuel Collares

    2001-07-01

    New ideas for the design of optical devices and some applications to solar energy collection are presented. These are mainly solar concentrators resulting from the combination of known anidoloc (nonimaging) optics devices and known curves such as parabolic, elliptical, hyperbolic, circular arcs or flat mirrors. Other tailored curves are also used in some cases. Two possible applications are in compact high concentration devices for solar energy and ideal concentrators having a gap between the optics and the receiver. Only two dimensional solutions are explored in these cases. Due to the high number of internal reflections, the use of high reflectivity mirrors is mandatory or, alternatively, the use of total internal reflection. Combinations of 3D CPCs and torus are also presented. The obtained devices allow tracking of the sun without the need to move the receiver. An application to solar cooking is presented.

  8. The cost - effective solar energy applications in Canada

    International Nuclear Information System (INIS)

    Pape, A.

    1999-01-01

    This paper outlines several cost-effective solar energy application in Canada, and estimates the GHG emission reduction potential for each. The applications include: (1) passive solar building design; (2) solar water heating applications; (3) solar photovoltaics for remote power; and (4) solar assisted space heating and cooling in industrial buildings. Each technology is briefly profiled in terms of functionality, cost characteristics, energy production characteristics and potential emission reduction benefits. Real-life examples of each application are also included. Finally, the paper concludes on the potential role of solar energy in the reduction of Canadian GHG emissions. (author)

  9. Resonance capture reactions with a total energy detector

    International Nuclear Information System (INIS)

    Macklin, R.L.

    1978-01-01

    The determination of nuclear reaction rates is considered; the Moxon--Rae detector and pulse height weighting are reviewed. This method has been especially useful in measuring (n,γ) cross sections. Strength functions and level spacing can be derived from (n,γ) yields. The relevance of neutron capture data to astrophysical nucleosynthesis is pointed out. The total gamma energy detection method has been applied successfully to radiative neutron capture cross section measurements. A bibliography of most of the published papers reporting neutron capture cross sections measured by the pulse height weighting technique is included. 55 references

  10. 75 FR 76962 - Application To Export Electric Energy; MAG Energy Solutions, Inc.

    Science.gov (United States)

    2010-12-10

    ... DEPARTMENT OF ENERGY [OE Docket No. EA-306-A] Application To Export Electric Energy; MAG Energy... electric energy from the United States to Canada pursuant to section 202(e) of the Federal Power Act (FPA... of Energy (DOE) issued Order No. EA-306, which authorized MAG E.S. to transmit electric energy from...

  11. Low Energy Reaction cell for advanced space power applications

    International Nuclear Information System (INIS)

    Miley, George H.; Rice, Eric

    2001-01-01

    Power units using Low Energy Reactions (LENRs) are under study as a radical new approach to power units that could potentially replace nuclear and chemical power sources for a number of space applications. These cells employ thin metallic films (order of 500 deg., using variously Ni, Pd and Ti) as cathodes with various electrolytes such as 0.5-1 molar lithium sulfate in light water. Power densities exceeding 10 W/cm3 in the thin-films have been achieved. An ultimate goal is to incorporate this thin-film technology into a 'tightly packed' cell design where the film material occupies ∼20% of the total cell volume. If this is achieved, overall power densities of ∼20 W/cm3 appear feasible, opening the way to a number of potential applications ranging from distributed power units in spacecraft to advanced propulsion

  12. An analysis of the demonstration projects for renewable energy application buildings in China

    International Nuclear Information System (INIS)

    Liu, Xingmin; Ren, Hong; Wu, Yong; Kong, Deping

    2013-01-01

    During the 2006–2008 period, there were 386 demonstration projects for renewable energy application buildings (REAB) organised by Chinese government, with a total area of approximately 40,420,000 m 2 . By the end of 2011, the vast majority of these projects had been completed and had passed the final acceptance. This paper analyses the measures taken by the Chinese government, including economic incentive mechanisms, organising agencies, application and evaluation systems, online monitoring platforms, acceptance inspections, assessment systems, standard criteria and so forth. This paper then evaluates the policy effects. The paper shows that there has been a satisfactory effect in the development of the REAB market, mobilising the enthusiasm of the government, equipment manufacturers and scientific research institutions, and promoting energy conservation. In addition, this paper analyses the suitability of different technological types in different climatic zones, which provides further guidance for the development of the REAB. Finally, based on the analyses of the problems met in the implementation of the demonstration projects, this paper proposes some policy suggestions concerning standard criteria, technological development, project management, incentive mechanisms and so on, to promote the development of the REAB more effectively in the future in China. - Highlights: • The policy measures to promote the development of renewable energy application buildings in China. • Evaluation of the demonstration policy effects in the market development and other aspects. • Analyses of the regional applicability for renewable energy application buildings in China. • Analyses of problems met in the implementation of the demonstration projects. • Put forward some policy suggestions on standard, technology, management, etc

  13. Distributed Flexibility Management Targeting Energy Cost and Total Power Limitations in Electricity Distribution Grids

    DEFF Research Database (Denmark)

    Bessler, Sanford; Kemal, Mohammed Seifu; Silva, Nuno

    2018-01-01

    Demand Management uses the interaction and information exchange between multiple control functions in order to achieve goals that can vary in different application contexts. Since there are several stakeholders involved, these may have diverse objectives and even use different architectures...... to actively manage power demand. This paper utilizes an existing distributed demand management architecture in order to provide the following contributions: (1) It develops and evaluates a set of algorithms that combine the optimization of energy costs in scenarios of variable day-ahead prices with the goal...... to improve distribution grid operation reliability, here implemented by a total Power limit. (2) It evaluates the proposed scheme as a distributed system where flexibility information is exchanged with the existing industry standard OpenADR. A Hardware-in-the-Loop testbed realization demonstrates...

  14. 77 FR 50486 - Application To Export Electric Energy; TexMex Energy, LLC

    Science.gov (United States)

    2012-08-21

    ... DEPARTMENT OF ENERGY [OE Docket No. EA-294-B] Application To Export Electric Energy; TexMex Energy.... SUMMARY: TexMex Energy, LLC (TexMex) has applied to renew its authority to transmit electric energy from...Mex to transmit electric energy from the United States to Mexico as a power marketer for a five-year...

  15. Phase change thermal storage for a solar total energy system

    Science.gov (United States)

    Rice, R. E.; Cohen, B. M.

    1978-01-01

    An analytical and experimental program is being conducted on a one-tenth scale model of a high-temperature (584 K) phase-change thermal energy storage system for installation in a solar total energy test facility at Albuquerque, New Mexico, U.S.A. The thermal storage medium is anhydrous sodium hydroxide with 8% sodium nitrate. The program will produce data on the dynamic response of the system to repeated cycles of charging and discharging simulating those of the test facility. Data will be correlated with a mathematical model which will then be used in the design of the full-scale system.

  16. 75 FR 38514 - Application to Export Electric Energy; Brookfield Energy Marketing LP

    Science.gov (United States)

    2010-07-02

    ... Energy Marketing LP AGENCY: Office of Electricity Delivery and Energy Reliability, DOE. ACTION: Notice of application. SUMMARY: Brookfield Energy Marketing LP (BEM LP) has applied for authority to transmit electric... surplus energy purchased from electric utilities, Federal power marketing agencies and other entities...

  17. Forward elastic scattering and total cross-section at very high energies

    International Nuclear Information System (INIS)

    Castaldi, R.

    1985-01-01

    The successful cooling technique of antiproton beams at CERN has recently allowed the acceleration of proton and antiproton bunches simultaneously circulating in opposite directions in the SPS. Hadron-hadron collisions could so be produced at a centre-of-mass energy one order of magnitude higher than previously available, thus opening a new wide range of energies to experimentation. This technique also made it possible to replace one of the two proton beams in the ISR by a beam of antiprotons, allowing a direct precise comparison, by the same detectors, of pp and anti pp processes at the same energies. The recent results are summarized of the forward elastic scattering and total cross-section in this new energy domain. (Mori, K.)

  18. 75 FR 57912 - Application To Export Electric Energy; Rainbow Energy Marketing Corporation

    Science.gov (United States)

    2010-09-23

    ... DEPARTMENT OF ENERGY [OE Docket No. EA-375] Application To Export Electric Energy; Rainbow Energy... electric energy from the United States to Mexico pursuant to section 202(e) of the Federal Power Act. DATES... franchised service area. The electric energy that Rainbow proposes to export to Mexico would be surplus...

  19. Net energy benefits of carbon nanotube applications

    International Nuclear Information System (INIS)

    Zhai, Pei; Isaacs, Jacqueline A.; Eckelman, Matthew J.

    2016-01-01

    Highlights: • Life cycle net energy benefits are examined. • CNT-enabled and the conventional technologies are compared. • Flash memory with CNT switches show significant positive net energy benefit. • Lithium-ion batteries with MWCNT cathodes show positive net energy benefit. • Lithium-ion batteries with SWCNT anodes tend to exhibit negative net energy benefit. - Abstract: Implementation of carbon nanotubes (CNTs) in various applications can reduce material and energy requirements of products, resulting in energy savings. However, processes for the production of carbon nanotubes (CNTs) are energy-intensive and can require extensive purification. In this study, we investigate the net energy benefits of three CNT-enabled technologies: multi-walled CNT (MWCNT) reinforced cement used as highway construction material, single-walled CNT (SWCNT) flash memory switches used in cell phones and CNT anodes and cathodes used in lithium-ion batteries used in electric vehicles. We explore the avoided or additional energy requirement in the manufacturing and use phases and estimate the life cycle net energy benefits for each application. Additional scenario analysis and Monte Carlo simulation of parameter uncertainties resulted in probability distributions of net energy benefits, indicating that net energy benefits are dependent on the application with confidence intervals straddling the breakeven line in some cases. Analysis of simulation results reveals that SWCNT switch flash memory and MWCNT Li-ion battery cathodes have statistically significant positive net energy benefits (α = 0.05) and SWCNT Li-ion battery anodes tend to have negative net energy benefits, while positive results for MWCNT-reinforced cement were significant only under an efficient CNT production scenario and a lower confidence level (α = 0.1).

  20. Solar applications analysis for energy storage

    Science.gov (United States)

    Blanchard, T.

    1980-01-01

    The role of energy storage as it relates to solar energy systems is considered. Storage technologies to support solar energy applications, the status of storage technologies, requirements and specifications for storage technologies, and the adequacy of the current storage research and development program to meet these requirements are among the factors discussed. Emphasis is placed on identification of where the greatest potential exists for energy storage in support of those solar energy systems which could have a significant impact on the U.S. energy mix.

  1. Activities Contributing to Total Energy Expenditure in the United States: Results from the NHAPS Study

    Directory of Open Access Journals (Sweden)

    Block Gladys

    2004-02-01

    Full Text Available Abstract Background Physical activity is increasingly recognized as an important factor influencing health and disease status. Total energy expenditure, both low-intensity and high-intensity, contributes to maintenance of healthy body weight. This paper presents the results of a quantitative approach to determining the activities that contribute to total energy expenditure in the United States. Methods Data from the National Human Activity Pattern Survey (NHAPS were used. In 1992–1994 the NHAPS sampled 4,185 females and 3,330 males, aged 18 years and over, weighted to be representative of the 48 contiguous United States. A detailed report of each activity performed in the previous 24 hours was obtained. A score was created for each activity, by multiplying duration and intensity for each individual and summing across individuals. This score was then used to rank each activity according to its contribution to total population energy expenditure, for the total sample and separately for each gender, race, age, region, and season. Results This analysis reveals our society to be primarily sedentary; leisure time physical activity contributed only approximately 5% of the population's total energy expenditure. Not counting sleeping, the largest contributor to energy expenditure was "Driving a car", followed by "Office work" and "Watching TV". Household activities accounted for 20.1% and 33.3% of energy expenditure for males and females respectively. Conclusion The information presented in this paper may be useful in identifying common activities that could be appropriate targets for behavioral interventions to increase physical activity.

  2. 78 FR 65978 - Application to Export Electric Energy; Brookfield Energy Marketing Inc.

    Science.gov (United States)

    2013-11-04

    ... Energy Marketing Inc. AGENCY: Office of Electricity Delivery and Energy Reliability, DOE. ACTION: Notice of application. SUMMARY: Brookfield Energy Marketing Inc. (BEMI) has applied to renew its authority... President of Legal Services and General Counsel, Brookfield Energy Marketing Inc., 480 de la Cite Blvd...

  3. Applications of nuclear energy in future

    International Nuclear Information System (INIS)

    Sitek, J.; Necas, V.

    2012-01-01

    Concepts and international frames of generation IV nuclear reactors. A review of use of nuclear energy for non electric applications especially in areas such as seawater desalination, hydrogen production, district heating and other industrial applications. (Author)

  4. Application of TACT registered to the evaluation of total joint arthroplasty

    International Nuclear Information System (INIS)

    Fahey, Frederic H.; Webber, Richard L.; Chew, Felix S.-K.; Dickerson, Bryon A.

    2003-01-01

    Three-dimensional imaging may be valuable in the evaluation of total joint arthroplasty. The partial-volume effect and streak artifacts from the metallic components of these devices limit the applicability of computed tomography (CT) to this application. Tuned-aperture computed tomography registered (TACT registered ) is a tomographic approach that has been successfully used in other medical applications. In TACT, the acquisition geometry is inferred from the localization of fiducial markers in a series of projection images. The flexibility and robustness of TACT, as well as the fact that through an appropriate choice of reconstruction algorithms it can suppress streak artifacts, potentially makes it an appropriate approach for evaluating total joint arthroplasty. A simple computer-simulated model of a total knee replacement (TKR) was generated and used to evaluate the accuracy and artifacts associated with three-dimensional (3-D) renderings produced using TACT. A knee specimen from a cadaver that had received a TKR was used to investigate further the potential of TACT for this application. In both tests, TACT provided high-quality 3-D representations of the object. Both simple back-projection and minimum pixel back-projection were used to reconstruct the data. Minimum pixel back-projection provided high-contrast images that appeared to be relatively free of tomosynthetic artifacts. In summary, the potential of TACT in the evaluation of total joint arthroplasty was demonstrated. Future investigations will study TACT's ability to quantify the spatial relationship between the metallic components of these devices as well as TACT's ability to identify bony changes of diagnostic consequence

  5. Total Corporate social responsibility report 2004. Sharing our energy

    International Nuclear Information System (INIS)

    2005-05-01

    This document presents the social and environmental activities of the group Total for the year 2004. It provides information on the ethical aspects of the governance, the industrial security, the environmental policy, the public health and the occupational safety, the social liability and the economical and social impact of the group activities in the local development, the contribution to the climatic change fight and the development of other energy sources. (A.L.B.)

  6. 77 FR 15091 - Application To Export Electric Energy; DTE Energy Trading, Inc.

    Science.gov (United States)

    2012-03-14

    ... DEPARTMENT OF ENERGY [OE Docket No. EA-211-C] Application To Export Electric Energy; DTE Energy... transmit electric energy from the United States to Canada pursuant to section 202(e) of the Federal Power... transmit electric energy from the United States to Canada as a power marketer for a two-year term using...

  7. Mechanical properties of carbynes investigated by ab initio total-energy calculations

    DEFF Research Database (Denmark)

    Castelli, Ivano E.; Salvestrini, Paolo; Manini, Nicola

    2012-01-01

    As sp carbon chains (carbynes) are relatively rigid molecular objects, can we exploit them as construction elements in nanomechanics? To answer this question, we investigate their remarkable mechanical properties by ab initio total-energy simulations. In particular, we evaluate their linear...

  8. Complex Hollow Nanostructures: Synthesis and Energy-Related Applications.

    Science.gov (United States)

    Yu, Le; Hu, Han; Wu, Hao Bin; Lou, Xiong Wen David

    2017-04-01

    Hollow nanostructures offer promising potential for advanced energy storage and conversion applications. In the past decade, considerable research efforts have been devoted to the design and synthesis of hollow nanostructures with high complexity by manipulating their geometric morphology, chemical composition, and building block and interior architecture to boost their electrochemical performance, fulfilling the increasing global demand for renewable and sustainable energy sources. In this Review, we present a comprehensive overview of the synthesis and energy-related applications of complex hollow nanostructures. After a brief classification, the design and synthesis of complex hollow nanostructures are described in detail, which include hierarchical hollow spheres, hierarchical tubular structures, hollow polyhedra, and multi-shelled hollow structures, as well as their hybrids with nanocarbon materials. Thereafter, we discuss their niche applications as electrode materials for lithium-ion batteries and hybrid supercapacitors, sulfur hosts for lithium-sulfur batteries, and electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. The potential superiorities of complex hollow nanostructures for these applications are particularly highlighted. Finally, we conclude this Review with urgent challenges and further research directions of complex hollow nanostructures for energy-related applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Changes in Energy Cost and Total External Work of Muscles in Elite Race Walkers Walking at Different Speeds

    Directory of Open Access Journals (Sweden)

    Chwała Wiesław

    2014-12-01

    Full Text Available The aim of the study was to assess energy cost and total external work (total energy depending on the speed of race walking. Another objective was to determine the contribution of external work to total energy cost of walking at technical, threshold and racing speed in elite competitive race walkers.

  10. Wood energy-commercial applications

    Science.gov (United States)

    Kennel, R. P.

    1978-01-01

    Wood energy is being widely investigated in many areas of the country because of the many obvious benefits of wood fuel such as the low price per million Btus relative to coal, oil, and gas; the wide availability of noncommercial wood and the proven ability to harvest it; established technology which is reliable and free of pollution; renewable resources; better conservation for harvested land; and the potential for jobs creation. The Southeastern United States has a specific leadership role in wood energy based on its established forest products industry experience and the potential application of wood energy to other industries and institutions. Significant questions about the widespread usage of wood energy are being answered in demonstrations around the country as well as the Southeast in areas of wood storage and bulk handling; high capitalization costs for harvesting and combustion equipment; long term supply and demand contracts; and the economic feasibility of wood energy outside the forest products industry.

  11. NASA energy technology applications program

    Energy Technology Data Exchange (ETDEWEB)

    1980-07-05

    The NASA Energy Technology Applications Program is reviewed. This program covers the following points: 1. wind generation of electricity; 2. photovoltaic solar cells; 3. satellite power systems; 4. direct solar heating and cooling; 5. solar thermal power plants; 6. energy storage; 7. advanced ground propulsion; 8. stationary on-site power supply; 9. advanced coal extraction; 10. magnetic heat pump; 11. aeronautics.

  12. 77 FR 20805 - Application to Export Electric Energy; PPL EnergyPlus, LLC

    Science.gov (United States)

    2012-04-06

    ... DEPARTMENT OF ENERGY [OE Docket No. EA-210-C] Application to Export Electric Energy; PPL Energy... electric energy from the United States to Canada pursuant to section 202(e) of the Federal Power Act (FPA... to transmit electric energy from the United States to Canada as a power marketer for a two-year term...

  13. 77 FR 50487 - Application To Export Electric Energy; RBC Energy Services LP

    Science.gov (United States)

    2012-08-21

    ... DEPARTMENT OF ENERGY [OE Docket No. EA-328-A] Application To Export Electric Energy; RBC Energy... electric energy from the United States to Canada pursuant to section 202(e) of the Federal Power Act (FPA... to transmit electric energy from the United States to Canada as a power marketer for a five-year term...

  14. Achievement report for fiscal 1982 on Sunshine Program-entrusted research and development. Research on hydrogen energy total system; 1982 nendo suiso energy total system no kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1983-03-01

    In this research on a hydrogen energy total system, studies are conducted on the plan of a hydrogen energy proving pilot base and on hydrogen as fuel for automobiles. It is estimated that the construction of a hydrogen energy proving pilot base will cost 7.125-billion yen in total. The sum includes 6.410-billion yen for the construction of a system on an island named Island A, 500-million yen for structures on an island named Island B, and 215-million yen for the construction of a marine transportation system between the two islands. Large shares will go to a hydroelectric power plant and a hydrogen liquefaction system, the two occupying approximately half of the total sum. In the study of hydrogen as fuel for automobiles, it is concluded that hydrogen is advantageously employed as fuel for automobiles. When comparison is made in terms of heat value, it is found that even a hydrogen engine which is a mere modification of a currently used engine is comparable to the currently used engine in terms of performance. As for abnormal combustion, a hydrogen/air 2-system injection method is contrived, and this solves the problem almost completely. Cryogenic hydrogen is advantageous in both NOx emission and heat efficiency though within certain limitations. From the viewpoint of safety, the recommended automobile fuel structural formula is GH{sub 2}(MH). (NEDO)

  15. From a single encapsulated detector to the spectrometer for INTEGRAL satellite: predicting the peak-to-total ratio at high γ-energies

    International Nuclear Information System (INIS)

    Kshetri, R

    2012-01-01

    In two recent papers (R. Kshetri, JINST 2012 7 P04008; ibid., P07006), a probabilistic formalism was introduced to predict the response of encapsulated type composite germanium detectors like the SPI (spectrometer for INTEGRAL satellite). Predictions for the peak-to-total and peak-to-background ratios are given at 1.3 MeV for the addback mode of operation. The application of the formalism to clover germanium detector is discussed in two separate papers (R. Kshetri, JINST 2012 7 P07008; ibid., P08015). Using the basic approach developed in those papers, for the first time we present a procedure for calculating the peak-to-total ratio of the cluster detector for γ-energies up to 8 MeV. Results are shown for both bare and suppressed detectors as well as for the single crystal and addback modes of operation. We have considered the experimental data of (i) peak-to-total ratio at 1.3 MeV, and (ii) single detector efficiency and addback factor for other energies up to 8 MeV. Using this data, an approximate method of calculating the peak-to-total ratio of other composite detectors, is shown. Experimental validation of our approach (for energies up to 8 MeV) has been confirmed considering the data of the SPI spectrometer. We have discussed about comparisons between various modes of operation and suppression cases. The present paper is the fifth in the series of papers on composite germanium detectors and for the first time discusses about the change in fold distribution and peak-to-total ratio for sophisticated detectors consisting of several modules of miniball, cluster and SPI detectors. Our work could provide a guidance in designing new composite detectors and in performing experimental studies with the existing detectors for high energy gamma-rays.

  16. From a single encapsulated detector to the spectrometer for INTEGRAL satellite: predicting the peak-to-total ratio at high γ-energies

    Science.gov (United States)

    Kshetri, R.

    2012-12-01

    In two recent papers (R. Kshetri, JINST 2012 7 P04008; ibid., P07006), a probabilistic formalism was introduced to predict the response of encapsulated type composite germanium detectors like the SPI (spectrometer for INTEGRAL satellite). Predictions for the peak-to-total and peak-to-background ratios are given at 1.3 MeV for the addback mode of operation. The application of the formalism to clover germanium detector is discussed in two separate papers (R. Kshetri, JINST 2012 7 P07008; ibid., P08015). Using the basic approach developed in those papers, for the first time we present a procedure for calculating the peak-to-total ratio of the cluster detector for γ-energies up to 8 MeV. Results are shown for both bare and suppressed detectors as well as for the single crystal and addback modes of operation. We have considered the experimental data of (i) peak-to-total ratio at 1.3 MeV, and (ii) single detector efficiency and addback factor for other energies up to 8 MeV. Using this data, an approximate method of calculating the peak-to-total ratio of other composite detectors, is shown. Experimental validation of our approach (for energies up to 8 MeV) has been confirmed considering the data of the SPI spectrometer. We have discussed about comparisons between various modes of operation and suppression cases. The present paper is the fifth in the series of papers on composite germanium detectors and for the first time discusses about the change in fold distribution and peak-to-total ratio for sophisticated detectors consisting of several modules of miniball, cluster and SPI detectors. Our work could provide a guidance in designing new composite detectors and in performing experimental studies with the existing detectors for high energy gamma-rays.

  17. A comment on the calculation of the total-factor energy efficiency (TFEE) index

    International Nuclear Information System (INIS)

    Chang, Ming-Chung

    2013-01-01

    This study provides a no-output growth model to conveniently calculate the total-factor energy efficiency (TFEE) index originally proposed by Hu and Wang (2006). The TFEE index serves as a very well-known and popular means of estimating overall energy efficiency. While many previous studies have used the indicator of energy inefficiency, including the indicator of energy intensity (i.e., Energy input/Gross Domestic Product (GDP)) to measure energy efficiency, Hu and Kao (2007) point out that the indicator of energy intensity is not only a partial-factor energy efficiency indicator, but that this partial-factor ratio is also quite inappropriate for analyzing the impact of changing energy use over time. The TFEE index overcomes the disadvantage of the indicator of energy intensity as mentioned above, but five steps are needed to calculate the TFEE score. In this study, we provide a no-output growth model to conveniently calculate the TFEE score. Furthermore, we extend this no-output growth model to an output growth model. This study concludes that the output growth model not only makes it easier to calculate the TFEE index than the model proposed by Hu and Wang (2006) and Hu and Kao (2007), but that it can also obtain better TFEE scores. - Highlights: ► The comment is on the total-factor energy efficiency (TFEE) index. ► Two extension models are no-output growth model and output growth model. ► The model in this study makes it easier to calculate the TFEE index.

  18. Applications of energy harvesting for ultralow power technology

    Science.gov (United States)

    Pop-Vadean, A.; Pop, P. P.; Barz, C.; Chiver, O.

    2015-06-01

    Ultra-low-power (ULP) technology is enabling a wide range of new applications that harvest ambient energy in very small amounts and need little or no maintenance - self-sustaining devices that are capable of perpetual or nearly perpetual operation. These new systems, which are now appearing in industrial and consumer electronics, also promise great changes in medicine and health. Until recently, the idea of micro-scale energy harvesting, and collecting miniscule amounts of ambient energy to power electronic systems, was still limited to research proposals and laboratory experiments.Today an increasing number of systems are appearing that take advantage of light, vibrations and other forms of previously wasted environmental energy for applications where providing line power or maintaining batteries is inconvenient. In the industrial world, where sensors gather information from remote equipment and hazardous processes; in consumer electronics, where mobility and convenience are served; and in medical systems, with unique requirements for prosthetics and non-invasive monitoring, energy harvesting is rapidly expanding into new applications.This paper serves as a survey for applications of energy harvesting for ultra low power technology based on various technical papers available in the public domain.

  19. Improving the Energy Performance in Existing Non-residential Buildings in Denmark Using the Total Concept Method

    DEFF Research Database (Denmark)

    Krawczyk, Pawel; Afshari, Alireza; Simonsen, Graves K.

    2016-01-01

    This project is a part of a joint European research project, “Total Concept”, which is a method for improving the energy performance in existing non-Residential buildings. The method focuses on achieving maximum energy savings in a Building within the profitability frames set by a building owner...... was to form a package of measures for an energy performance improvement in the building based on the Total Concept method. This paper presents results from recently analyzed data on two renovated Danish buildings according to the rules of “Total Concept” method. According to the estimation done based...

  20. Resonance Energy Transfer Molecular Imaging Application in Biomedicine

    Directory of Open Access Journals (Sweden)

    NIE Da-hong1,2;TANG Gang-hua1,3

    2016-11-01

    Full Text Available Resonance energy transfer molecular imaging (RETI can markedly improve signal intensity and tissue penetrating capacity of optical imaging, and have huge potential application in the deep-tissue optical imaging in vivo. Resonance energy transfer (RET is an energy transition from the donor to an acceptor that is in close proximity, including non-radiative resonance energy transfer and radiative resonance energy transfer. RETI is an optical imaging technology that is based on RET. RETI mainly contains fluorescence resonance energy transfer imaging (FRETI, bioluminescence resonance energy transfer imaging (BRETI, chemiluminescence resonance energy transfer imaging (CRETI, and radiative resonance energy transfer imaging (RRETI. RETI is the hot field of molecular imaging research and has been widely used in the fields of biology and medicine. This review mainly focuses on RETI principle and application in biomedicine.

  1. Application of total reflection X-ray fluorescence spectrometry for ...

    Indian Academy of Sciences (India)

    Applicability of total reflection X-ray fluorescence (TXRF) spectrometry for trace elemental analysis of rainwater samples was studied. The study was used to develop these samples as rainwater standards by the National University of Singapore (NUS). Our laboratory was one of the participants to use TXRF for this study.

  2. The total kinetic energy release in the fast neutron-induced fission of {sup 232}Th

    Energy Technology Data Exchange (ETDEWEB)

    King, Jonathan; Yanez, Ricardo; Loveland, Walter; Barrett, J. Spencer; Oscar, Breland [Oregon State University, Dept. of Chemistry, Corvallis, OR (United States); Fotiades, Nikolaos; Tovesson, Fredrik; Young Lee, Hye [Los Alamos National Laboratory, Physics Division, Los Alamos, NM (United States)

    2017-12-15

    The post-emission total kinetic energy release (TKE) in the neutron-induced fission of {sup 232}Th was measured (using white spectrum neutrons from LANSCE) for neutron energies from E{sub n} = 3 to 91 MeV. In this energy range the average post-neutron total kinetic energy release decreases from 162.3 ± 0.3 at E{sub n} = 3 MeV to 154.9 ± 0.3 MeV at E{sub n} = 91 MeV. Analysis of the fission mass distributions indicates that the decrease in TKE with increasing neutron energy is a combination of increasing yields of symmetric fission (which has a lower associated TKE) and a decrease in the TKE release in asymmetric fission. (orig.)

  3. Changes in Intakes of Total and Added Sugar and their Contribution to Energy Intake in the U.S.

    Directory of Open Access Journals (Sweden)

    Won O. Song

    2010-08-01

    Full Text Available This study was designed to document changes in total sugar intake and intake of added sugars, in the context of total energy intake and intake of nutrient categories, between the 1970s and the 1990s, and to identify major food sources contributing to those changes in intake. Data from the NHANES I and III were analyzed to obtain nationally representative information on food consumption for the civilian, non-institutionalized population of the U.S. from 1971 to 1994. In the past three decades, in addition to the increase in mean intakes of total energy, total sugar, added sugars, significant increases in the total intake of carbohydrates and the proportion of carbohydrates to the total energy intake were observed. The contribution of sugars to total carbohydrate intake decreased in both 1–18 y and 19+ y age subgroups, and the contribution of added sugars to the total energy intake did not change. Soft drinks/fluid milk/sugars and cakes, pastries, and pies remained the major food sources for intake of total sugar, total carbohydrates, and total energy during the past three decades. Carbonated soft drinks were the most significant sugar source across the entire three decades. Changes in sugar consumption over the past three decades may be a useful specific area of investigation in examining the effect of dietary patterns on chronic diseases.

  4. 75 FR 51025 - Application to Export Electric Energy; Vitol Inc.

    Science.gov (United States)

    2010-08-18

    ... adversely impact on the reliability of the U.S. electric power supply system. Copies of this application... DEPARTMENT OF ENERGY [OE Docket No. EA-370] Application to Export Electric Energy; Vitol Inc. AGENCY: Office of Electricity Delivery and Energy Reliability, DOE. ACTION: Notice of application...

  5. 77 FR 23238 - Application To Export Electric Energy; Citigroup Energy Canada ULC

    Science.gov (United States)

    2012-04-18

    ... DEPARTMENT OF ENERGY [OE Docket No. EA-326-A] Application To Export Electric Energy; Citigroup... electric energy from the United States to Canada pursuant to section 202(e) of the Federal Power Act (FPA... electric energy from the United States to Canada as a power marketer for a five-year term. The current...

  6. 75 FR 12737 - Application To Export Electric Energy; Integrys Energy Services, Inc.

    Science.gov (United States)

    2010-03-17

    ... DEPARTMENT OF ENERGY [OE Docket No. EA-301-A] Application To Export Electric Energy; Integrys... authority to transmit electric energy from the United States to Canada pursuant to section 202(e) of the.... 824a(e)). On May 24, 2005, DOE issued Order No. EA-301 authorizing Integrys Energy to transmit electric...

  7. Multifunctional Carbon Nanostructures for Advanced Energy Storage Applications

    Directory of Open Access Journals (Sweden)

    Yiran Wang

    2015-05-01

    Full Text Available Carbon nanostructures—including graphene, fullerenes, etc.—have found applications in a number of areas synergistically with a number of other materials. These multifunctional carbon nanostructures have recently attracted tremendous interest for energy storage applications due to their large aspect ratios, specific surface areas, and electrical conductivity. This succinct review aims to report on the recent advances in energy storage applications involving these multifunctional carbon nanostructures. The advanced design and testing of multifunctional carbon nanostructures for energy storage applications—specifically, electrochemical capacitors, lithium ion batteries, and fuel cells—are emphasized with comprehensive examples.

  8. Total reflection coefficients of low-energy photons presented as universal functions

    Directory of Open Access Journals (Sweden)

    Ljubenov Vladan

    2010-01-01

    Full Text Available The possibility of expressing the total particle and energy reflection coefficients of low-energy photons in the form of universal functions valid for different shielding materials is investigated in this paper. The analysis is based on the results of Monte Carlo simulations of photon reflection by using MCNP, FOTELP, and PENELOPE codes. The normal incidence of the narrow monoenergetic photon beam of the unit intensity and of initial energies from 20 keV up to 100 keV is considered, and particle and energy reflection coefficients from the plane homogenous targets of water, aluminum, and iron are determined and compared. The representations of albedo coefficients on the initial photon energy, on the probability of large-angle photon scattering, and on the mean number of photon scatterings are examined. It is found out that only the rescaled albedo coefficients dependent on the mean number of photon scatterings have the form of universal functions and these functions are determined by applying the least square method.

  9. Flywheel Energy Storage for Automotive Applications

    Directory of Open Access Journals (Sweden)

    Magnus Hedlund

    2015-09-01

    Full Text Available A review of flywheel energy storage technology was made, with a special focus on the progress in automotive applications. We found that there are at least 26 university research groups and 27 companies contributing to flywheel technology development. Flywheels are seen to excel in high-power applications, placing them closer in functionality to supercapacitors than to batteries. Examples of flywheels optimized for vehicular applications were found with a specific power of 5.5 kW/kg and a specific energy of 3.5 Wh/kg. Another flywheel system had 3.15 kW/kg and 6.4 Wh/kg, which can be compared to a state-of-the-art supercapacitor vehicular system with 1.7 kW/kg and 2.3 Wh/kg, respectively. Flywheel energy storage is reaching maturity, with 500 flywheel power buffer systems being deployed for London buses (resulting in fuel savings of over 20%, 400 flywheels in operation for grid frequency regulation and many hundreds more installed for uninterruptible power supply (UPS applications. The industry estimates the mass-production cost of a specific consumer-car flywheel system to be 2000 USD. For regular cars, this system has been shown to save 35% fuel in the U.S. Federal Test Procedure (FTP drive cycle.

  10. Solar total energy: large scale experiment, Shenandoah, Georgia Site. Annual report, June 1978-June 1979

    Energy Technology Data Exchange (ETDEWEB)

    Ney, E.J.

    1979-07-01

    A background summary and a complete description of the progress and current status of activities relative to the Cooperative Agreement for the Solar Total Energy - Large Scale Experiment at the Bleyle Knitwear Plant at Shenandoah, Georgia are presented. A statement of objectives and an abstract of progress to date are included. This is followed by a short introduction containing a project overview, a summary of the participants and their respective roles, a brief description of the Solar Total Energy System (STES) design concept, and a chronological summary of progress to date. A general description of the site is given, a detailed report of progress is reported, and drawings and equipment lists are included. The closed-loop solar energy system planned for Shenandoah begins with circulation of Syltherm 800, a heat transfer fluid of the Dow-Corning Corporation, through the receiver tubes of a parabolic dish solar collector field. As solar energy is focused on the receivers, the heat transfer fluid is heated to approximately 399/sup 0/C (750/sup 0/F) and is pumped to a heat exchanger for immediate use, or to a thermal storage system for later use. Once in the heat exchanger, the fluid heats a working fluid that produces the steam required for operating the turbine. After performing this task, the heat transfer fluid returns to the collectors to repeat the cycle, while the steam turbine-generator system supplies the electrical demands for the knitwear plant and the STES. During STES operation, maximum thermal and electrical requirements of the application are expected to be at 1.08 MWth and 161 kWe, respectively. During the power generation phase, some of the steam is extracted for use as process steam in the knitwear manufacturing process, while exhaust steam from the turbine is passed through a condenser to produce hot water for heating, domestic use, and absorption air conditioning. (WHK)

  11. Fission fragment mass and total kinetic energy distributions of spontaneously fissioning plutonium isotopes

    Science.gov (United States)

    Pomorski, K.; Nerlo-Pomorska, B.; Bartel, J.; Schmitt, C.

    2018-03-01

    The fission-fragment mass and total kinetic energy (TKE) distributions are evaluated in a quantum mechanical framework using elongation, mass asymmetry, neck degree of freedom as the relevant collective parameters in the Fourier shape parametrization recently developed by us. The potential energy surfaces (PES) are calculated within the macroscopic-microscopic model based on the Lublin-Strasbourg Drop (LSD), the Yukawa-folded (YF) single-particle potential and a monopole pairing force. The PES are presented and analysed in detail for even-even Plutonium isotopes with A = 236-246. They reveal deep asymmetric valleys. The fission-fragment mass and TKE distributions are obtained from the ground state of a collective Hamiltonian computed within the Born-Oppenheimer approximation, in the WKB approach by introducing a neck-dependent fission probability. The calculated mass and total kinetic energy distributions are found in good agreement with the data.

  12. Comparison of stress and total energy methods for calculation of elastic properties of semiconductors.

    Science.gov (United States)

    Caro, M A; Schulz, S; O'Reilly, E P

    2013-01-16

    We explore the calculation of the elastic properties of zinc-blende and wurtzite semiconductors using two different approaches: one based on stress and the other on total energy as a function of strain. The calculations are carried out within the framework of density functional theory in the local density approximation, with the plane wave-based package VASP. We use AlN as a test system, with some results also shown for selected other materials (C, Si, GaAs and GaN). Differences are found in convergence rate between the two methods, especially in low symmetry cases, where there is a much slower convergence for total energy calculations with respect to the number of plane waves and k points used. The stress method is observed to be more robust than the total energy method with respect to the residual error in the elastic constants calculated for different strain branches in the systems studied.

  13. Application of advanced methods for the prognosis of production energy consumption

    International Nuclear Information System (INIS)

    Stetter, R; Witczak, P; Spindler, C; Hertel, J; Staiger, B

    2014-01-01

    This paper, based on a current research project, describes the application of advanced methods that are frequently used in fault-tolerance control and addresses the issue of the prognosis of energy efficiency. Today, the energy a product requires during its operation is the subject of many activities in research and development. However, the energy necessary for the production of goods is very often not analysed in comparable depth. In the field of electronics, studies come to the conclusion that about 80% of the total energy used by a product is from its production [1]. The energy consumption in production is determined very early in the product development process by designers and engineers, for example through selection of raw materials, explicit and implicit requirements concerning the manufacturing and assembly processes, or through decisions concerning the product architecture. Today, developers and engineers have at their disposal manifold design and simulation tools which can help to predict the energy consumption during operation relatively accurately. In contrast, tools with the objective to predict the energy consumption in production and disposal are not available. This paper aims to present an explorative study of the use of methods such as Fuzzy Logic to predict the production energy consumption early in the product development process

  14. Projection potentials and angular momentum convergence of total energies in the full-potential Korringa–Kohn–Rostoker method

    International Nuclear Information System (INIS)

    Zeller, Rudolf

    2013-01-01

    Although the full-potential Korringa–Kohn–Rostoker Green function method yields accurate results for many physical properties, the convergence of calculated total energies with respect to the angular momentum cutoff is usually considered to be less satisfactory. This is surprising because accurate single-particle energies are expected if they are calculated by Lloyd’s formula and because accurate densities and hence accurate double-counting energies should result from the total energy variational principle. It is shown how the concept of projection potentials can be used as a tool to analyse the convergence behaviour. The key factor blocking fast convergence is identified and it is illustrated how total energies can be improved with only a modest increase of computing time. (paper)

  15. Regional total factor energy efficiency: An empirical analysis of industrial sector in China

    International Nuclear Information System (INIS)

    Wang, Zhao-Hua; Zeng, Hua-Lin; Wei, Yi-Ming; Zhang, Yi-Xiang

    2012-01-01

    Highlights: ► We evaluate energy efficiency under framework of total factor energy efficiency. ► We focus on industry sector of China. ► We use statistical data of industrial enterprises above designated size. ► Energy efficiencies among regions in China are obvious because of technological differences. ► Large scale of investment should be stopped especially in central and western regions. -- Abstract: The rapid growth of the Chinese economy has resulted in great pressure on energy consumption, especially the energy intensive sector – the industrial sector. To achieve sustainable development, China has to consider how to promote energy efficiency to meet the demand of Chinese rapid economic growth, as the energy efficiency of China is relatively low. Meanwhile, the appeal of energy saving and emission reduction has been made by the Chinese central government. Therefore, it is important to evaluate the energy efficiency of industrial sector in China and to assess efficiency development probabilities. The framework of total factor energy efficiency index is adopted to determine the discrepancy of energy efficiency in Chinese industrial sector based on the provincial statistical data of industrial enterprises above designated size in 30 provinces from 2005 to 2009, with gross industrial output as the output value and energy consumption, average remaining balance of capital assets and average amount of working force as the input values. Besides, in considerate of the regional divide of China, namely eastern, central, and western, and economic development differences in each region, energy efficiency of each region is also analysed in this paper. The results show that there is room for China to improve its energy efficiency, especially western provinces which have large amount of energy input excess. Generally speaking, insufficient technological investment and fail of reaching best scale of manufacture are two factors preventing China from energy

  16. Twelve Principles for Green Energy Storage in Grid Applications.

    Science.gov (United States)

    Arbabzadeh, Maryam; Johnson, Jeremiah X; Keoleian, Gregory A; Rasmussen, Paul G; Thompson, Levi T

    2016-01-19

    The introduction of energy storage technologies to the grid could enable greater integration of renewables, improve system resilience and reliability, and offer cost effective alternatives to transmission and distribution upgrades. The integration of energy storage systems into the electrical grid can lead to different environmental outcomes based on the grid application, the existing generation mix, and the demand. Given this complexity, a framework is needed to systematically inform design and technology selection about the environmental impacts that emerge when considering energy storage options to improve sustainability performance of the grid. To achieve this, 12 fundamental principles specific to the design and grid application of energy storage systems are developed to inform policy makers, designers, and operators. The principles are grouped into three categories: (1) system integration for grid applications, (2) the maintenance and operation of energy storage, and (3) the design of energy storage systems. We illustrate the application of each principle through examples published in the academic literature, illustrative calculations, and a case study with an off-grid application of vanadium redox flow batteries (VRFBs). In addition, trade-offs that can emerge between principles are highlighted.

  17. Recent Niobium Developments for High Strength Steel Energy Applications

    Science.gov (United States)

    Jansto, Steven G.

    Niobium-containing high strength steel materials have been developed for oil and gas pipelines, offshore platforms, nuclear plants, boilers and alternative energy applications. Recent research and the commercialization of alternative energy applications such as windtower structural supports and power transmission gear components provide enhanced performance. Through the application of these Nb-bearing steels in demanding energy-related applications, the designer and end user experience improved toughness at low temperature, excellent fatigue resistance and fracture toughness and excellent weldability. These enhancements provide structural engineers the opportunity to further improve the structural design and performance. For example, through the adoption of these Nb-containing structural materials, several design-manufacturing companies are initiating new windtower designs operating at higher energy efficiency, lower cost, and improved overall material design performance.

  18. 76 FR 30325 - Application to Export Electric Energy; E-T Global Energy, LLC

    Science.gov (United States)

    2011-05-25

    ... Export Electric Energy; E-T Global Energy, LLC AGENCY: Office of Electricity Delivery and Energy... authority to transmit electric energy from the United States to Mexico pursuant to section 202(e) of the... an application from E-T Global for authority to transmit electric energy from the United States to...

  19. The Relationship between Cost Leadership Strategy, Total Quality Management Applications and Financial Performance

    OpenAIRE

    Ali KURT; Cemal ZEHİR

    2016-01-01

    Firms need to implement some competition strategies and total quality management applications to overcome the fierce competition among others. The purpose of this study is to show the relationship between cost leadership strategy, total quality management applications and firms’ financial performance with literature review and empirical analysis. 449 questionnaires were conducted to the managers of 142 big firms. The data gathered was assessed with AMOS. As a result, the relationship between ...

  20. Framework for Evaluating the Total Value Proposition of Clean Energy Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Pater, J. E.

    2006-02-01

    Conventional valuation techniques fail to include many of the financial advantages of clean energy technologies. By omitting benefits associated with risk management, emissions reductions, policy incentives, resource use, corporate social responsibility, and societal economic benefits, investors and firms sacrifice opportunities for new revenue streams and avoided costs. In an effort to identify some of these externalities, this analysis develops a total value proposition for clean energy technologies. It incorporates a series of values under each of the above categories, describing the opportunities for recapturing investments throughout the value chain. The framework may be used to create comparable value propositions for clean energy technologies supporting investment decisions, project siting, and marketing strategies. It can also be useful in policy-making decisions.

  1. Solar energy sciences and engineering applications

    CERN Document Server

    Enteria, Napoleon

    2013-01-01

    Solar energy is available all over the world in different intensities. Theoretically, the solar energy available on the surface of the earth is enough to support the energy requirements of the entire planet. However, in reality, progress and development of solar science and technology depends to a large extent on human desires and needs. This is due to the various barriers to overcome and to deal with the economics of practical utilization of solar energy.This book will introduce the rapid development and progress in the field of solar energy applications for science and technology: the advanc

  2. 75 FR 45607 - Application To Export Electric Energy; Manitoba Hydro

    Science.gov (United States)

    2010-08-03

    ... DEPARTMENT OF ENERGY [OE Docket No. EA-281-B] Application To Export Electric Energy; Manitoba Hydro AGENCY: Office of Electricity Delivery and Energy Reliability, DOE. ACTION: Notice of application. SUMMARY: Manitoba Hydro (Manitoba) has applied to renew its authority to transmit electric energy from the...

  3. On the coherence between high-energy total cross-section data when compared with general principles

    International Nuclear Information System (INIS)

    Gauron, P.; Nicolescu, B.; Paris-6 Univ., 75

    1993-12-01

    An essential model is performed - an independent study of the internal coherence between high-energy total cross-section data by using classes of functions satisfying general principles. The study is practically independent of the ρ-parameter values. This general analysis, made without any fit, reveals certain inconsistencies in the existing set of high-energy data. Some of these inconsistencies are eliminated by giving up arbitrary assumptions sometimes made in 'fitology'. It is shown that the ln 2 s increase of total cross-sections at high energies is clearly favoured when compared with other possible behaviours. (authors). 16 refs., 3 figs

  4. Applications of neural networks in environmental and energy sciences and engineering. Proceedings of the 1995 workshop on environmental and energy applications of neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Hashem, S.; Keller, P.E.; Kouzes, R.T.; Kangas, L.J.

    1995-12-31

    These proceedings contain edited versions of the technical presentations of the Workshop on Environmental and Energy Applications of Neural Networks, held on March 30--31, 1995, in Richland, Washington. The purpose of the workshop was to provide a forum for discussing environmental, energy, and biomedical applications of neural networks. Panels were held to discuss various research and development issues relating to real-world applications in each of the three areas. The applications covered in the workshop were: Environmental applications -- modeling and predicting soil, air and water pollution, environmental sensing, spectroscopy, hazardous waste handling and cleanup; Energy applications -- process monitoring and optimization of power systems, modeling and control of power plants, environmental monitoring for power systems, power load forecasting, fault location and diagnosis of power systems; and Biomedical applications -- medical image and signal analysis, medical diagnosis, analysis of environmental health effects, and modeling biological systems. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  5. A prospective study of spine fractures diagnosed by total spine computed tomography in high energy trauma patients

    International Nuclear Information System (INIS)

    Takami, Masanari; Nohda, Kazuhiro; Sakanaka, Junya; Nakamura, Masamichi; Yoshida, Munehito

    2011-01-01

    Since it is known to be impossible to identify spinal fractures in high-energy trauma patients the primary trauma evaluation, we have been performing total spine computed tomography (CT) in high-energy trauma cases. We investigated the spinal fractures that it was possible to detect by total spine CT in 179 cases and evaluated the usefulness of total spine CT prospectively. There were 54 (30.2%) spinal fractures among the 179 cases. Six (37.5%) of the 16 cervical spine fractures that were not detected on plain X-ray films were identified by total spine CT. Six (14.0%) of 43 thoracolumbar spine fractures were considered difficult to diagnose based on the clinical findings if total spine CT had not been performed. We therefore concluded that total spine CT is very useful and should be performed during the primary trauma evaluation in high-energy trauma cases. (author)

  6. [Applications of GIS in biomass energy source research].

    Science.gov (United States)

    Su, Xian-Ming; Wang, Wu-Kui; Li, Yi-Wei; Sun, Wen-Xiang; Shi, Hai; Zhang, Da-Hong

    2010-03-01

    Biomass resources have the characteristics of widespread and dispersed distribution, which have close relations to the environment, climate, soil, and land use, etc. Geographic information system (GIS) has the functions of spatial analysis and the flexibility of integrating with other application models and algorithms, being of predominance to the biomass energy source research. This paper summarized the researches on the GIS applications in biomass energy source research, with the focus in the feasibility study of bioenergy development, assessment of biomass resources amount and distribution, layout of biomass exploitation and utilization, evaluation of gaseous emission from biomass burning, and biomass energy information system. Three perspectives of GIS applications in biomass energy source research were proposed, i. e., to enrich the data source, to improve the capacity on data processing and decision-support, and to generate the online proposal.

  7. Total electron scattering cross sections for methanol and ethanol at intermediate energies

    International Nuclear Information System (INIS)

    Silva, D G M; Tejo, T; Lopes, M C A; Muse, J; Romero, D; Khakoo, M A

    2010-01-01

    Absolute total cross section (TCS) measurements of electron scattering from gaseous methanol and ethanol molecules are reported for impact energies from 60 to 500 eV, using the linear transmission method. The attenuation of intensity of a collimated electron beam through the target volume is used to determine the absolute TCS for a given impact energy, using the Beer-Lambert law to first approximation. Besides these experimental measurements, we have also determined TCS using the additivity rule.

  8. Identifying The Most Applicable Renewable Energy Systems Of Iran

    Directory of Open Access Journals (Sweden)

    Nasibeh Mousavi

    2017-03-01

    Full Text Available These years because of energy crisis all of country try to find a new way to reduce energy consumptions and obtain maximum use of renewable energy. Iran also is not an exception of this progress. Renewable energy is energy that is provided by renewable sources such as the sun or wind. In general renewable energies are not adaptable to every single community. Because of location and special climate conditions of Iran most applicable renewable energy systems in Iran are solar and wind energy. Main purpose of this paper is to review and identify most applicable renewable energy systems of Iran and also review on traditional and current methods that utilized to obtain maximum use of these renewable energies.

  9. Solar Energy: Its Technologies and Applications

    Science.gov (United States)

    Auh, P. C.

    1978-06-01

    Solar heat, as a potential source of clean energy, is available to all of us. Extensive R and D efforts are being made to effectively utilize this renewable energy source. A variety of different technologies for utilizing solar energy have been proven to be technically feasible. Here, some of the most promising technologies and their applications are briefly described. These are: Solar Heating and Cooling of Buildings (SHACOB), Solar Thermal Energy Conversion (STC), Wind Energy Conversion (WECS), Bioconversion to Fuels (BCF), Ocean Thermal Energy Conversion (OTEC), and Photovoltaic Electric Power Systems (PEPS). Special emphasis is placed on the discussion of the SHACOB technologies, since the technologies are being expeditiously developed for the near commercialization.

  10. Advanced nanomaterials and their applications in renewable energy

    CERN Document Server

    Liu, Jingbo Louise

    2015-01-01

    Advanced Nanomaterials and Their Applications in Renewable Energy presents timely topics related to nanomaterials' feasible synthesis and characterization, and their application in the energy fields. In addition, the book provides insights and scientific discoveries in toxicity study, with information that is easily understood by a wide audience. Advanced energy materials are important in designing materials that have greater physical, electronic, and optical properties. This book emphasizes the fundamental physics and chemistry underlying the techniques used to develop solar and fuel cell

  11. Hydrogen energy applications

    International Nuclear Information System (INIS)

    Okken, P.A.

    1992-10-01

    For the Energy and Material consumption Scenarios (EMS), by which emission reduction of CO 2 and other greenhouse gases can be calculated, calculations are executed by means of the MARKAL model (MARket ALlocation, a process-oriented dynamic linear programming model to minimize the costs of the energy system) for the Netherlands energy economy in the period 2000-2040, using a variable CO 2 emission limit. The results of these calculations are published in a separate report (ECN-C--92-066). The use of hydrogen can play an important part in the above-mentioned period. An overview of several options to produce or use hydrogen is given and added to the MARKAL model. In this report techno-economical data and estimates were compiled for several H 2 -application options, which subsequently also are added to the MARKAL model. After a brief chapter on hydrogen and the impact on the reduction of CO 2 emission attention is paid to stationary and mobile applications. The stationary options concern the mixing of natural gas with 10% hydrogen, a 100% substitution of natural gas by hydrogen, the use of a direct steam generator (combustion of hydrogen by means of pure oxygen, followed by steam injection to produce steam), and the use of fuel cells. The mobile options concern the use of hydrogen in the transportation sector. In brief, attention is paid to a hydrogen passenger car with an Otto engine, and a hydrogen passenger car with a fuel cell, a hybrid (metal)-hydride car, a hydrogen truck, a truck with a methanol fuel cell, a hydrogen bus, an inland canal boat with a hydrogen fuel cell, and finally a hydrogen airplane. 2 figs., 15 tabs., 1 app., 26 refs

  12. Targeting for energy efficiency and improved energy collaboration between different companies using total site analysis (TSA)

    International Nuclear Information System (INIS)

    Hackl, Roman; Andersson, Eva; Harvey, Simon

    2011-01-01

    Rising fuel prices, increasing costs associated with emissions of green house gases and the threat of global warming make efficient use of energy more and more important. Industrial clusters have the potential to significantly increase energy efficiency by energy collaboration. In this paper Sweden's largest chemical cluster is analysed using the total site analysis (TSA) method. TSA delivers targets for the amount of utility consumed and generated through excess energy recovery by the different processes. The method enables investigation of opportunities to deliver waste heat from one process to another using a common utility system. The cluster consists of 5 chemical companies producing a variety of products, including polyethylene (PE), polyvinyl chloride (PVC), amines, ethylene, oxygen/nitrogen and plasticisers. The companies already work together by exchanging material streams. In this study the potential for energy collaboration is analysed in order to reach an industrial symbiosis. The overall heating and cooling demands of the site are around 442 MW and 953 MW, respectively. 122 MW of heat is produced in boilers and delivered to the processes. TSA is used to stepwise design a site-wide utility system which improves energy efficiency. It is shown that heat recovery in the cluster can be increased by 129 MW, i.e. the current utility demand could be completely eliminated and further 7 MW excess steam can be made available. The proposed retrofitted utility system involves the introduction of a site-wide hot water circuit, increased recovery of low pressure steam and shifting of heating steam pressure to lower levels in a number heat exchangers when possible. Qualitative evaluation of the suggested measures shows that 60 MW of the savings potential could to be achieved with moderate changes to the process utility system corresponding to 50% of the heat produced from purchased fuel in the boilers of the cluster. Further analysis showed that after implementation

  13. High-Energy Electron Beam Application to Air Pollutants Removal

    International Nuclear Information System (INIS)

    Ighigeanu, D.; Martin, D.; Manaila, E.; Craciun, G.; Calinescu, I.

    2009-01-01

    The advantage of electron beam (EB) process in pollutants removal is connected to its high efficiency to transfer high amount of energy directly into the matter under treatment. Disadvantage which is mostly related to high investment cost of accelerator may be effectively overcome in future as the result of use accelerator new developments. The potential use of medium to high-energy high power EB accelerators for air pollutants removal is demonstrated in [1]. The lower electrical efficiencies of accelerators with higher energies are partially compensated by the lower electron energy losses in the beam windows. In addition, accelerators with higher electron energies can provide higher beam powers with lower beam currents [1]. The total EB energy losses (backscattering, windows and in the intervening air space) are substantially lower with higher EB incident energy. The useful EB energy is under 50% for 0.5 MeV and about 95% above 3 MeV. In view of these arguments we decided to study the application of high energy EB for air pollutants removal. Two electron beam accelerators are available for our studies: electron linear accelerators ALIN-10 and ALID-7, built in the Electron Accelerator Laboratory, INFLPR, Bucharest, Romania. Both accelerators are of traveling-wave type, operating at a wavelength of 10 cm. They utilize tunable S-band magnetrons, EEV M 5125 type, delivering 2 MW of power in 4 μ pulses. The accelerating structure is a disk-loaded tube operating in the 2 mode. The optimum values of the EB peak current IEB and EB energy EEB to produce maximum output power PEB for a fixed pulse duration EB and repetition frequency fEB are as follows: for ALIN-10: EEB = 6.23 MeV; IEB =75 mA; PEB 164 W (fEB = 100 Hz, EB = 3.5 s) and for ALID-7: EEB 5.5 MeV; IEB = 130 mA; PEB = 670 W (fEB = 250 Hz, EB = 3.75 s). This paper presents a special designed installation, named SDI-1, and several representative results obtained by high energy EB application to SO 2 , NOx and VOCs

  14. The conditions for total reflection of low-energy atoms from crystal surfaces

    International Nuclear Information System (INIS)

    Hou, M.; Robinson, M.T.

    1978-01-01

    The critical angles for the total reflection of low-energy particles from Cu rows and (001) planes have been investigated, using the binary collision approximation computer simulation code MARLOWE Breakthrough angles were evaluated for H, N, Ne, Ar, Cu, Xe, and Au in the energy range from 0.1 to 7.5 keV. In both the axial and the planar cases, recoiling of the target atoms lowers the energy barrier which the target surface presents to the heavy projectiles. Consequently, the breakthrough angles are reduced for heavy projectiles below the values expected either from observations on light projectiles or from analytical channeling theory. (orig.) [de

  15. Power electronics for renewable energy systems, transportation and industrial applications

    CERN Document Server

    Malinowski, Mariusz; Al-Haddad, Kamal

    2014-01-01

    Power Electronics for Renewable Energy, Transportation, and Industrial Applications combines state-of-the-art global expertise to present the latest research on power electronics and its application in transportation, renewable energy, and different industrial applications. This timely book aims to facilitate the implementation of cutting-edge techniques to design problems offering innovative solutions to the growing power demands in small- and large-size industries. Application areas in the book range from smart homes and electric and plug-in hybrid electrical vehicles (PHEVs), to smart distribution and intelligence operation centers where significant energy efficiency improvements can be achieved through the appropriate use and design of power electronics and energy storage devices.

  16. Advanced DC/AC inverters applications in renewable energy

    CERN Document Server

    Luo, Fang Lin

    2013-01-01

    DC/AC inversion technology is of vital importance for industrial applications, including electrical vehicles and renewable energy systems, which require a large number of inverters. In recent years, inversion technology has developed rapidly, with new topologies improving the power factor and increasing power efficiency. Proposing many novel approaches, Advanced DC/AC Inverters: Applications in Renewable Energy describes advanced DC/AC inverters that can be used for renewable energy systems. The book introduces more than 100 topologies of advanced inverters originally developed by the authors,

  17. Manual to application of wind energy

    International Nuclear Information System (INIS)

    Pinilla, S. A.

    1995-01-01

    The National Government of Colombia assigned to INEA (Institute of Nuclear Sciences and Alternative Energies), the paper of promotion, diffusion and utilization of sources of energy not - conventional, the one which includes the wind energy. These studies were accomplished mainly in winding zones as the Department La Guajira, area of the Eastern Plains and some sites of mountain chains of the Andes. Internationally, renewable energies utilization is widely used and is included as an important factor in the energetic strategic planning in some countries, where this renewable energy becomes more than 20% to total energy supply. An introduction to the wind energy in some aspects as: the wind resource, global traffic standards of the wind, calculation of the potential of the wind and methods for the calculation of speed measure of the wind are presented. The methodologies for the evaluation of the wind as an energy source, the wind energy technologies, the equipment to wind energy utilization and the implementation of small systems of energy conversion of wind are described

  18. Projected energy and water consumption of Pacific Northwest irrigation systems

    Energy Technology Data Exchange (ETDEWEB)

    King, L. D.; Hellickson, M. L.; Schmisseur, W. E.; Shearer, M. N.

    1978-10-01

    A computer model has been developed to predict present and future regional water, energy, labor, and capital requirements of irrigated agricultural production in Idaho, Oregon, and Washington. The energy requirements calculated were on-farm pumping, and total energies. Total energies are the combined energies of on-farm pumping, manufacture, and installation. Irrigation system selections and modifications were based on an economic analysis utilizing the following input parameters: water, energy, labor, and capital costs and requirements; groundwater and surface water pumping lifts; improved application efficiencies; and pumping plant efficiencies. Major conclusions and implications of this analysis indicate that: as water application efficiencies increases additional quantities of water will not become available to other users; an overall increase in water application efficiencies resulted in decreases in gross water applications and increases in overall on-farm pumping and total energy consumptions; more energy will be consumed as pumping and total energies than will be conserved through decreased diversion pumping energy requirements; pump-back and similar technologies have the potential of both increasing application efficiencies and energy conservation; and the interrelationships understood between applying water in quantities greater than required for crop consumptive use and leaching, and late season in-steam flow augmentation and/or aquifer recharge are not well understood, and sound policy decisions concerning agricultural use of water and energy cannot be made until these interrelationships are better understood.

  19. Application of low enthalpy geothermal energy

    International Nuclear Information System (INIS)

    Stancher, B.; Giannone, G.

    2007-01-01

    Geothermal energy comes from the superficial layers of the Earth's crust; it can be exploited in several ways, depending on its temperature. Many systems have been developed to use this clean and renewable energy resource. This paper deals with a particular application of low enthalpy geothermal energy in Latisana (district of Udine NE, Italy). The Latisana's indoor stadium is equipped with geothermal plant that uses low temperature water (29-30 0 ) to provide heating. Economic analysis shows that the cost of its plant is comparable to the cost powered by other kinds of renewable energy resources

  20. Measurement of the total solar energy transmittance (g-value) for conventional glazings

    DEFF Research Database (Denmark)

    Duer, Karsten

    1998-01-01

    Three different glazings have been investigated in the Danish experimental setup METSET. (A device for calorimetric measurement of total solar energy transmittance - g-value).The purpose of the measurements is to increase the confidence in the calorimetric measurements. This is done by comparison...

  1. Fiscal 1976 Sunshine Project result report. Research on solar energy utilization systems (total system); 1976 nendo taiyo energy riyo system chosa kenkyu seika hokokusho. Total system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-03-01

    For every solar energy utilization field, its background, feasibility, impact in practical use, and R and D policy in Japan were studied. Heating and hot water supply by solar energy are already practical because of less technical problems and reasonable profitability, and cooling is also practical as far as a technical viewpoint. At present, the technical level of solar heat power generation is in the stage of basic technology, however, in the future, development of economically reasonable systems will be demanded as well as establishment of its technology. The most difficult problem for realizing practical solar cell power generation systems is cost reduction. It is also another problem that a big demand of Si for solar cells further exceeds the current yield of Si in a semiconductor industry. A small-scale hybrid solar cell power generation system applicable to the roof of general residences is already feasible. Although a solar furnace is still poor in application to industrial fields, it is expected as the leading part for a future solar heat chemical industry. (NEDO)

  2. Hadronic multiplicity and total cross-section: a new scaling in wide energy range

    International Nuclear Information System (INIS)

    Kobylinsky, N.A.; Martynov, E.S.; Shelest, V.P.

    1983-01-01

    The ratio of mean multiplicity to total cross-section is shown to be the same for all the Regge models and to rise with energy as lns which is confirmed by experimental data. Hence, a power of multiplicity growth is unambiguously connected with that of total cross-section. As regards the observed growth, approximately ln 2 s, it tells about a dipole character of pomeron singularity

  3. Geothermal energy and its application opportunities in Serbia

    Directory of Open Access Journals (Sweden)

    Andrić Nenad M.

    2015-01-01

    Full Text Available Geothermal energy is accumulated heat in the fluid and rock masses in the Earth 's crust. The natural decay of radioactive elements (uranium, thorium and potassium in rocks produces heat energy. The simplest use of geothermal energy for heating is by heat pump. Geothermal energy can be used for production of electricity. It uses hot water and steam from the earth to run the generator. Serbia has significant potential for geothermal energy. The total amount of accumulated heat in geothermal resources in a depth of 3 km is two times higher than the equivalent thermal energy that could be obtained by burning all types of coal from all their sites in Serbia! The total abundance of geothermal resources in Serbia is 4000 l/s. Abundance of wells in Vojvodina is 10-20 l/s, and the temperature is from 40 to 60°C. Exploitation of thermal waters in Mačva could cause heating of following cities: Bogatić, Šabac, Sremska Mitrovica and Loznica, with a total population of 150.000 people. The richest hydrogeothermal resources are in Mačva, Vranje and Jošanička Banja. Using heat pumps, geothermal water can be exploited on the entire territory of Serbia! Although large producer, Serbia is importing food, ie., fruits and vegetables. With the construction of greenhouses, which will be heated with geothermal energy, Serbia can become an exporting country.

  4. Total cross section for hadron production by e+e- annihilation at PETRA energies

    International Nuclear Information System (INIS)

    Bartel, W.; Canzler, T.; Cords, D.; Dittmann, P.; Eichler, R.; Felst, R.; Godermann, E.; Haidt, D.; Kawabata, S.; Krehbiel, H.

    1979-10-01

    The cross section for the process e + e - → multihadrons has been measured at the highest PETRA energies. We measure R (the total cross-section in units of the point-like e + e - → μ + μ - cross-section) to be 2.9 +- 0.7, 4.0 +- 0.5, 4.6 +- 0.4 and 4.2 +- 0.6 at √s of 22, 27.7, 30 and 31.6 GeV respectively. The observed average multiplicity, together with existing low energy data, indicate a rapid increase in multiplicity with increasing energy. (orig.)

  5. Energy Storage Applications in Power Systems with Renewable Energy Generation

    Science.gov (United States)

    Ghofrani, Mahmoud

    In this dissertation, we propose new operational and planning methodologies for power systems with renewable energy sources. A probabilistic optimal power flow (POPF) is developed to model wind power variations and evaluate the power system operation with intermittent renewable energy generation. The methodology is used to calculate the operating and ramping reserves that are required to compensate for power system uncertainties. Distributed wind generation is introduced as an operational scheme to take advantage of the spatial diversity of renewable energy resources and reduce wind power fluctuations using low or uncorrelated wind farms. The POPF is demonstrated using the IEEE 24-bus system where the proposed operational scheme reduces the operating and ramping reserve requirements and operation and congestion cost of the system as compared to operational practices available in the literature. A stochastic operational-planning framework is also proposed to adequately size, optimally place and schedule storage units within power systems with high wind penetrations. The method is used for different applications of energy storage systems for renewable energy integration. These applications include market-based opportunities such as renewable energy time-shift, renewable capacity firming, and transmission and distribution upgrade deferral in the form of revenue or reduced cost and storage-related societal benefits such as integration of more renewables, reduced emissions and improved utilization of grid assets. A power-pool model which incorporates the one-sided auction market into POPF is developed. The model considers storage units as market participants submitting hourly price bids in the form of marginal costs. This provides an accurate market-clearing process as compared to the 'price-taker' analysis available in the literature where the effects of large-scale storage units on the market-clearing prices are neglected. Different case studies are provided to

  6. Total cross sections for electron scattering by CO2 molecules in the energy range 400 endash 5000 eV

    International Nuclear Information System (INIS)

    Garcia, G.; Manero, F.

    1996-01-01

    Total cross sections for electron scattering by CO 2 molecules in the energy range 400 endash 5000 eV have been measured with experimental errors of ∼3%. The present results have been compared with available experimental and theoretical data. The dependence of the total cross sections on electron energy shows an asymptotic behavior with increasing energies, in agreement with the Born-Bethe approximation. In addition, an analytical formula is provided to extrapolate total cross sections to higher energies. copyright 1996 The American Physical Society

  7. Rare-earth magnet applications in energy conversion

    International Nuclear Information System (INIS)

    Tripathi, K.C.

    1998-01-01

    In recent years there has been considerable progress in the field of development and variety of new applications of rare-earth and rare-earth transition metal magnets. High energy content Nd-Fe-B magnet system which competes with superconducting magnets is very promising for the use in energy conversion machines, levitation systems, magnetic resonance investigation and other magnetic applications. Energy conversion machines such as motors and generators are of interest in this context. Motor converts electrical energy into mechanical energy using permanent magnets and ferromagnetic materials as its components. Electric generator converts mechanical energy into electricity using permanent magnets and ferromagnetic material. In both cases symmetry and symmetry breaking play an important role. Symmetry exists above curie temperature, as temperature is lowered symmetry is broken due to spontaneous magnetisation. Author and coworkers developed some new and highest efficiency, permanent magnet based, electronically controlled, dynamically synchronised pulsed dc linear and rotational motors which are briefly described here. Based on such experience and considering field interactions inside material under dynamical conditions and special geometrical situations, order-disorder processes, symmetry breaking and energy transfer on the basis of manifold aspects as a cooperative many body interaction, thermal fluctuations, zero-point energy, dissipation of energy, entropy exchange are discussed in context of conversion of environmental heat into electricity as suggested by Tripathi earlier. (orig.)

  8. 75 FR 78980 - Application to Export Electric Energy; Direct Energy Marketing, Inc.

    Science.gov (United States)

    2010-12-17

    ... Marketing, Inc. AGENCY: Office of Electricity Delivery and Energy Reliability, DOE. ACTION: Notice of Application. SUMMARY: Direct Energy Marketing, Inc. (DEMI) has applied to renew its authority to transmit..., Federal power marketing agencies, and other entities within the United States. The existing international...

  9. SOLAR ENERGY APPLICATION IN WASTE TREATMENT- A REVIEW

    African Journals Online (AJOL)

    This review is an exposure on the various ways that solar energy can be harnessed for numerous waste treatment processes. Almost all forms of waste treatment require energy which is scarcely available considering the global energy crisis. The objective of this study is to enumerate the solar energy applications in waste ...

  10. Applications of total reflection X-ray fluorescence in multi-element analysis

    International Nuclear Information System (INIS)

    Michaelis, W.; Prange, A.; Knoth, J.

    1985-01-01

    Although Total Reflection X-Ray Fluorescence Analysis (TXRF) became available for practical applications and routine measurements only few years ago, the number of programmes that make use of this method is increasing rapidly. The scope of work is widespread over environmental research and monitoring, mineralogy, mineral exploration, oceanography, biology, medicine and biochemistry. The present paper gives a brief survey of these applications and summarizes some of them which are typical for quite different matrices. (orig.)

  11. Photovoltaic Solar Energy : From Fundamentals to Applications

    NARCIS (Netherlands)

    Reinders, Angelina H.M.E.; Verlinden, P.J.; van Sark, W.G.J.H.M.; Freundlich, A.

    2016-01-01

    Solar PV is now the third most important renewable energy source, after hydro and wind power, in terms of global installed capacity. Bringing together the expertise of international PV specialists Photovoltaic Solar Energy: From Fundamentals to Applications provides a comprehensive and up-to-date

  12. From partial to total economic analysis. Five applications to environmental and energy economics

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, T.

    2006-05-04

    The studies presented in this thesis address the consequences of market distortions of governmental policies - predominantly in the area of environmental and energy policy. The studies cover different economic aggregation levels: The first study aims at investigating firm-level effects. Thus, the results refer only to a small number of well-defined economic entities, e.g. electricity supply companies in Germany. Subsequently, issues - such as the evaluation of efficiency effects of the European Emissions Trading system - are addressed on a multi-sectoral and multi-regional level, but still only one market is considered. Thereupon, the scope of investigation is broadened by interactions of different markets - e.g. as in the case of the economic evaluation of renewable energy promotion strategies. Finally, a general equilibrium analysis of a European nuclear phase-out scenario covers all economic feed-backs on the national and international level. (orig.) 5.

  13. Electrospinning of Nanofibers for Energy Applications

    Science.gov (United States)

    Sun, Guiru; Sun, Liqun; Xie, Haiming; Liu, Jia

    2016-01-01

    With global concerns about the shortage of fossil fuels and environmental issues, the development of efficient and clean energy storage devices has been drastically accelerated. Nanofibers are used widely for energy storage devices due to their high surface areas and porosities. Electrospinning is a versatile and efficient fabrication method for nanofibers. In this review, we mainly focus on the application of electrospun nanofibers on energy storage, such as lithium batteries, fuel cells, dye-sensitized solar cells and supercapacitors. The structure and properties of nanofibers are also summarized systematically. The special morphology of nanofibers prepared by electrospinning is significant to the functional materials for energy storage. PMID:28335256

  14. Electrospinning of Nanofibers for Energy Applications

    Directory of Open Access Journals (Sweden)

    Guiru Sun

    2016-07-01

    Full Text Available With global concerns about the shortage of fossil fuels and environmental issues, the development of efficient and clean energy storage devices has been drastically accelerated. Nanofibers are used widely for energy storage devices due to their high surface areas and porosities. Electrospinning is a versatile and efficient fabrication method for nanofibers. In this review, we mainly focus on the application of electrospun nanofibers on energy storage, such as lithium batteries, fuel cells, dye-sensitized solar cells and supercapacitors. The structure and properties of nanofibers are also summarized systematically. The special morphology of nanofibers prepared by electrospinning is significant to the functional materials for energy storage.

  15. Fuel cell based integrated and distributed energy applications (FC-IDEA)

    International Nuclear Information System (INIS)

    Kotak, D.B.; Wu, S.; Fleetwood, M.S.; Tamoto, H.

    2004-01-01

    'Full text:' The commercial success of fuel cells will depend upon their adaptation to mobile (e.g., cars, wheelchairs, mopeds, bicycles), stationary (e.g., remote or distributed power), and portable energy applications. Typically such applications are capital intensive and involve a lot of unknowns given that they use new and emergent technology. Also many applications (e.g., hydrogen fuelling station) can be achieved using different technologies and 'pathways'. Thus it is important that a full assessment of possible alternatives be carried out taking into consideration factors such as: capital, operating and maintenance costs; equipment performance, utilization, reliability and scalability; effectiveness to meet the energy demand. NRC is developing a generic software tool which industry experts can use to facilitate assessment of alternative solutions to fulfill the energy requirements for their specific application. We call this tool FC-IDEA (Fuel Cell-based Integrated and Distributed Energy Applications). The system has the following key components: - A Web-based Human-Machine Interface designed for the industry expert to configure and assess alternative designs and operational approaches to satisfy their energy needs (e.g., hydrogen demand profile for a fuelling station, electricity demand profile for a stationary power application); - A Comprehensive Database containing the performance characteristics of energy devices (e.g., electrolysers, hydrogen storage tanks, compressors, dispensers, fuel cells, reformers) that may be used to configure the required application; - A Simulation Model capable of representing the physical system in full 3D to enable ' what-if' analysis of design and operational alternatives and measuring such parameters as performance, utilization, failure and maintenance, shift schedules, and costs. Using this system the expert would be able to configure alternative energy nodes (e.g., remote power) consisting of energy devices. Similarly

  16. 75 FR 22578 - Application To Export Electric Energy; Centre Lane Trading Limited

    Science.gov (United States)

    2010-04-29

    ... DEPARTMENT OF ENERGY [OE Docket No. EA-365] Application To Export Electric Energy; Centre Lane... application. SUMMARY: Centre Lane Trading Limited (CLT) has applied for authority to transmit electric energy...)). On April 20, 2010, DOE received an application from CLT for authority to transmit electric energy...

  17. Energy conversion and management principles and applications

    CERN Document Server

    Petrecca, Giovanni

    2014-01-01

    This book provides an overall view of energy conversion and management in industry and in buildings by following the streams of energy from the site boundaries to the end users. Written for an audience of both practitioners and faculty/students, Energy Conversion and Management: Principles and Applications presents general principles of energy conversion and energy sources, both traditional and renewable, in a broad range of facilities such as electrical substations, boiler plants, heat and power plants, electrical networks, thermal fluid distributions lines and insulations, pumps and fans, ai

  18. 76 FR 37797 - Application to Export Electric Energy; Freepoint Commodities, LLC

    Science.gov (United States)

    2011-06-28

    ... DEPARTMENT OF ENERGY [OE Docket No. EA-380] Application to Export Electric Energy; Freepoint... application. SUMMARY: Freepoint Commodities, LLC has requested authority to transmit electric energy from the... Commodities requesting authority to transmit electric energy from the United States to Canada for ten years as...

  19. Sorting through the many total-energy-cycle pathways possible with early plug-in hybrids

    International Nuclear Information System (INIS)

    Gaines, L.; Burnham, A.; Rousseau, A.; Santini, D.

    2008-01-01

    Using the 'total energy cycle' methodology, we compare U.S. near term (to ∼2015) alternative pathways for converting energy to light-duty vehicle kilometers of travel (VKT) in plug-in hybrids (PHEVs), hybrids (HEVs), and conventional vehicles (CVs). For PHEVs, we present total energy-per-unit-of-VKT information two ways (1) energy from the grid during charge depletion (CD); (2) energy from stored on-board fossil fuel when charge sustaining (CS). We examine 'incremental sources of supply of liquid fuel such as (a) oil sands from Canada, (b) Fischer-Tropsch diesel via natural gas imported by LNG tanker, and (c) ethanol from cellulosic biomass. We compare such fuel pathways to various possible power converters producing electricity, including (i) new coal boilers, (ii) new integrated, gasified coal combined cycle (IGCC), (iii) existing natural gas fueled combined cycle (NGCC), (iv) existing natural gas combustion turbines, (v) wood-to-electricity, and (vi) wind/solar. We simulate a fuel cell HEV and also consider the possibility of a plug-in hybrid fuel cell vehicle (FCV). For the simulated FCV our results address the merits of converting some fuels to hydrogen to power the fuel cell vs. conversion of those same fuels to electricity to charge the PHEV battery. The investigation is confined to a U.S. compact sized car (i.e. a world passenger car). Where most other studies have focused on emissions (greenhouse gases and conventional air pollutants), this study focuses on identification of the pathway providing the most vehicle kilometers from each of five feedstocks examined. The GREET 1.7 fuel cycle model and the new GREET 2.7 vehicle cycle model were used as the foundation for this study. Total energy, energy by fuel type, total greenhouse gases (GHGs), volatile organic compounds (VOC), carbon monoxide (CO), nitrogen oxides (NO x ), fine particulate (PM2.5) and sulfur oxides (SO x ) values are presented. We also isolate the PHEV emissions contribution from varying k

  20. 77 FR 39689 - Application To Export Electric Energy; Dynasty Power, Inc.

    Science.gov (United States)

    2012-07-05

    ... DEPARTMENT OF ENERGY [OE Docket No. EA-385] Application To Export Electric Energy; Dynasty Power.... SUMMARY: Dynasty Power, Inc. (Dynasty Power) has applied for authority to transmit electric energy from... an application from Dynasty Power for authority to transmit electric energy from the United States to...

  1. 75 FR 6369 - Application To Export Electric Energy; Aquilon Power Ltd.

    Science.gov (United States)

    2010-02-09

    ... DEPARTMENT OF ENERGY [OE Docket No. EA-361] Application To Export Electric Energy; Aquilon Power.... SUMMARY: Aquilon Power Ltd. (Aquilon Power) has applied for authority to transmit electric energy from the... received an application from Aquilon Power for authority to transmit electric energy from the United States...

  2. Application of nanomaterials in solar thermal energy storage

    Science.gov (United States)

    Shamshirgaran, Seyed Reza; Khalaji Assadi, Morteza; Viswanatha Sharma, Korada

    2018-06-01

    Solar thermal conversion technology harvests the sun's energy, rather than fossil fuels, to generate low-cost, low/zero-emission energy in the form of heating, cooling or electrical form for residential, commercial, and industrial sectors. The advent of nanofluids and nanocomposites or phase change materials, is a new field of study which is adapted to enhance the efficiency of solar collectors. The concepts of thermal energy storage technologies are investigated and the role of nanomaterials in energy conversion is discussed. This review revealed that although the exploitation of nanomaterials will boost the performance of solar collectors almost in all cases, this would be accompanied by certain challenges such as production cost, instability, agglomeration and erosion. Earlier studies have dealt with the enhancement of thermal conductivity and heat capacity; however, less attention has been given to the facing challenges. Moreover, no exact criteria can be found for the selection of appropriate nanomaterials and their properties for a specific application. In most research studies, the nanoparticles' material and properties have not been selected based on estimated values so that all the aspects of desired application could be considered simultaneously. The wide spread use of nanomaterials can lead to cost effective solutions as well. Therefore, it seems there should be a sense of techno-economic optimization in exploiting nanomaterials for solar thermal energy storage applications. The optimization should cover the key parameters, particularly nanoparticle type, size, loading and shape which depends on the sort of application and also dispersion technology.

  3. Application of nanomaterials in solar thermal energy storage

    Science.gov (United States)

    Shamshirgaran, Seyed Reza; Khalaji Assadi, Morteza; Viswanatha Sharma, Korada

    2017-12-01

    Solar thermal conversion technology harvests the sun's energy, rather than fossil fuels, to generate low-cost, low/zero-emission energy in the form of heating, cooling or electrical form for residential, commercial, and industrial sectors. The advent of nanofluids and nanocomposites or phase change materials, is a new field of study which is adapted to enhance the efficiency of solar collectors. The concepts of thermal energy storage technologies are investigated and the role of nanomaterials in energy conversion is discussed. This review revealed that although the exploitation of nanomaterials will boost the performance of solar collectors almost in all cases, this would be accompanied by certain challenges such as production cost, instability, agglomeration and erosion. Earlier studies have dealt with the enhancement of thermal conductivity and heat capacity; however, less attention has been given to the facing challenges. Moreover, no exact criteria can be found for the selection of appropriate nanomaterials and their properties for a specific application. In most research studies, the nanoparticles' material and properties have not been selected based on estimated values so that all the aspects of desired application could be considered simultaneously. The wide spread use of nanomaterials can lead to cost effective solutions as well. Therefore, it seems there should be a sense of techno-economic optimization in exploiting nanomaterials for solar thermal energy storage applications. The optimization should cover the key parameters, particularly nanoparticle type, size, loading and shape which depends on the sort of application and also dispersion technology.

  4. Prediction equation for estimating total daily energy requirements of special operations personnel.

    Science.gov (United States)

    Barringer, N D; Pasiakos, S M; McClung, H L; Crombie, A P; Margolis, L M

    2018-01-01

    Special Operations Forces (SOF) engage in a variety of military tasks with many producing high energy expenditures, leading to undesired energy deficits and loss of body mass. Therefore, the ability to accurately estimate daily energy requirements would be useful for accurate logistical planning. Generate a predictive equation estimating energy requirements of SOF. Retrospective analysis of data collected from SOF personnel engaged in 12 different SOF training scenarios. Energy expenditure and total body water were determined using the doubly-labeled water technique. Physical activity level was determined as daily energy expenditure divided by resting metabolic rate. Physical activity level was broken into quartiles (0 = mission prep, 1 = common warrior tasks, 2 = battle drills, 3 = specialized intense activity) to generate a physical activity factor (PAF). Regression analysis was used to construct two predictive equations (Model A; body mass and PAF, Model B; fat-free mass and PAF) estimating daily energy expenditures. Average measured energy expenditure during SOF training was 4468 (range: 3700 to 6300) Kcal·d- 1 . Regression analysis revealed that physical activity level ( r  = 0.91; P  plan appropriate feeding regimens to meet SOF nutritional requirements across their mission profile.

  5. IDEA Clean Energy Application Center

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, Robert P. [International District Energy Association, Westborough, MA (United States)

    2013-12-20

    The DOE Clean Energy Application Centers were launched with a goal of focusing on important aspects of our nation’s energy supply including Efficiency, Reliability and Resiliency. Clean Energy solutions based on Combined Heat & Power (CHP), District Energy and Waste Heat Recovery are at the core of ensuring a reliable and efficient energy infrastructure for campuses, communities, and industry and public enterprises across the country. IDEA members which include colleges and universities, hospitals, airports, downtown utilities as well as manufacturers, suppliers and service providers have long-standing expertise in the planning, design, construction and operations of Clean Energy systems. They represent an established base of successful projects and systems at scale and serve important and critical energy loads. They also offer experience, lessons learned and best practices which are of immense value to the sustained growth of the Clean Energy sector. IDEA has been able to leverage the funds from the project award to raise the visibility, improve the understanding and increase deployment CHP, District Energy and Waste Heat Recovery solutions across the regions of our nation, in collaboration with the regional CEAC’s. On August 30, 2012, President Obama signed an Executive Order to accelerate investments in industrial energy efficiency (EE), including CHP and set a national goal of 40 GW of new CHP installation over the next decade IDEA is pleased to have been able to support this Executive Order in a variety of ways including raising awareness of the goal through educational workshops and Conferences and recognizing the installation of large scale CHP and district energy systems. A supporting key area of collaboration has involved IDEA providing technical assistance on District Energy/CHP project screenings and feasibility to the CEAC’s for multi building, multi-use projects. The award was instrumental in the development of a first-order screening

  6. Nanoscale Advances in Catalysis and Energy Applications

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yimin; Somorjai, Gabor A.

    2010-05-12

    In this perspective, we present an overview of nanoscience applications in catalysis, energy conversion, and energy conservation technologies. We discuss how novel physical and chemical properties of nanomaterials can be applied and engineered to meet the advanced material requirements in the new generation of chemical and energy conversion devices. We highlight some of the latest advances in these nanotechnologies and provide an outlook at the major challenges for further developments.

  7. Analysis and evaluation of the applicability of green energy technology

    Science.gov (United States)

    Xu, Z. J.; Song, Y. K.

    2017-11-01

    With the seriousness of environmental issues and the shortage of resources, the applicability of green energy technology has been paid more and more attention by scholars in different fields. However, the current researches are often single in perspective and simple in method. According to the Theory of Applicable Technology, this paper analyzes and defines the green energy technology and its applicability from the all-around perspectives of symbiosis of economy, society, environment and science & technology etc., and correspondingly constructs the evaluation index system. The paper further applies the Fuzzy Comprehensive Evaluation to the evaluation of its applicability, discusses in depth the evaluation models and methods, and explains in detail with an example. The author holds that the applicability of green energy technology involves many aspects of economy, society, environment and science & technology and can be evaluated comprehensively by an index system composed of a number of independent indexes. The evaluation is multi-object, multi-factor, multi-level and fuzzy comprehensive, which is undoubtedly correct, effective and feasible by the Fuzzy Comprehensive Evaluation. It is of vital theoretical and practical significance to understand and evaluate comprehensively the applicability of green energy technology for the rational development and utilization of green energy technology and for the better promotion of sustainable development of human and nature.

  8. World-wide termination of nuclear energy application

    International Nuclear Information System (INIS)

    Quirin, W.

    1991-01-01

    It is easy to require the widely discussed termination of nuclear energy application, but it is hardly possible to realise it, unless one is prepared to accept enormous economic and ecological problems. The article investigates, whether the other energy carriers or energy saving methods, respectively, would be in a position to replace the nuclear energy. Thereby the aspects of securing the supply and its economy are of considerable importance. The author describes furthermore the effects of terminating nuclear energy on the growing world population and the economy of trading countries. Ecological problems that may also be aggravated are dealt with, too. (orig.) [de

  9. Priority listing of industrial processes by total energy consumption and potential for savings. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Streb, A.J.

    1977-01-01

    A survey of eight of the most energy-intensive segments of the U.S. industry is made to quantify the energy consumed in the principal process units, to identify areas in which significant improvement appear possible, and to rank the process units in terms of total energy consumption and the potential for improvement. Data on the steel, paper, aluminum, textile, cement, and glass industries, petroleum refineries, and olefins and derivative products industries were compiled to help plan the development of new energy sources and to provide targets for energy conservation activities. (MCW)

  10. Current Status of Non-Electric Applications of Nuclear Energy

    International Nuclear Information System (INIS)

    Shin, Young Joon; Lee, Jun; Lee, Tae Hoon

    2009-05-01

    IAEA Technical Meeting(I3-TM-37394) on 'Non-Electric Applications of Nuclear Energy' has been successfully held from March 3 to 6 in 2009 at KAERI/INTEC. The 24 experts from 12 countries participated in this meeting and provided 17 presentations and their opinions and comments in desalination, hydrogen production, and heat application sessions. All of the participants from 12 countries agreed that nuclear power should be the potential carbon-free energy source to replace crude oil and reduce greenhouse gas emissions in the fields of non-electric applications such as desalination, hydrogen production, district heating, and industrial processes applications

  11. ICT applications enhancing energy efficiency

    Directory of Open Access Journals (Sweden)

    A. G. Matani

    2016-06-01

    Full Text Available Computers, laptops and mobile devices – information technology (IT accounts for 2% of human greenhouse gas emissions worldwide, as evidenced in a study by Global Action Plan, a UK based environmental organization. This figure can be reduced if the green segment, or Green IT, continues to grow. Energy can also be saved through cloud computing, namely the principle of outsourcing the programs and functions of one’s own computer to service providers over the internet. This also means sharing storage capacity with others. This paper highlights the impact of information technology applications towards enhancing energy efficiency of the systems.

  12. Hybrid fuel cell/diesel generation total energy system, part 2

    Science.gov (United States)

    Blazek, C. F.

    1982-11-01

    Meeting the Goldstone Deep Space Communications Complex (DGSCC) electrical and thermal requirements with the existing system was compared with using fuel cells. Fuel cell technology selection was based on a 1985 time frame for installation. The most cost-effective fuel feedstock for fuel cell application was identified. Fuels considered included diesel oil, natural gas, methanol and coal. These fuel feedstocks were considered not only on the cost and efficiency of the fuel conversion process, but also on complexity and integration of the fuel processor on system operation and thermal energy availability. After a review of fuel processor technology, catalytic steam reformer technology was selected based on the ease of integration and the economics of hydrogen production. The phosphoric acid fuel cell was selected for application at the GDSCC due to its commercial readiness for near term application. Fuel cell systems were analyzed for both natural gas and methanol feedstock. The subsequent economic analysis indicated that a natural gas fueled system was the most cost effective of the cases analyzed.

  13. Electrospun nanofibers for energy and environmental applications

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Bin; Yu, Jianyong (eds.) [Donghua Univ., Shanghai (China). State Key Lab. for Modification of Chemical Fibers and Polymer Materials; Donghua Univ., Shanghai (China). Nanomaterials Research Center

    2014-10-01

    This book offers a comprehensive review of the latest advances in developing functional electrospun nanofibers for energy and environmental applications, which include fuel cells, lithium-ion batteries, solar cells, supercapacitors, energy storage materials, sensors, filtration materials, protective clothing, catalysis, structurally-colored fibers, oil spill cleanup, self-cleaning materials, adsorbents, and electromagnetic shielding.

  14. Long-term program on research, development and application of atomic energy

    International Nuclear Information System (INIS)

    2000-01-01

    As the Committee of Atomic Energy in Japan has established eight times of the 'long-term basic program on development and application of atomic energy at every five years since 1956, these have consistently done every important roles as a leader of programmable promotion of policies on research, development and application of atomic energy in Japan. And, they also have showed some basic concepts on its research, development and application such as safety security, keeping of peaceful application, and so on, and also done a role as a strength with universality for promotion of their sure practices. Then, the Committee requested some surveys and discussions on establishment decided as a new long-term program on May, 1999, to a meeting on establishment of the long-term program, so as to clearly show a basic plan and its promoting measures on research, development and application of atomic energy to be adopted by Japan through the 21st Century under understanding of changes of various affairs after establishment of the previous program, to Japanese peoples, international society and nuclear relatives. The finished program is composed of two parts which are the first part of describing some messages toward Japanese peoples and society and international society and the second part of expressing concrete indications and promoting measures for practicing research, development and application of atomic energy. Here was shown on all sentences of the establishment containing the two parts of present condition and future way on research, development and application of atomic energy' and 'future evolution of research, development and application of atomic energy'. (G.K.)

  15. Application of hydrogen isotopes and metal hydrides in future energy source

    Energy Technology Data Exchange (ETDEWEB)

    Guoqiang, Jiang [Sichuan Inst. of Materials and Technology, Chengdu, SC (China)

    1994-12-01

    The probable application of hydrogen isotopes and metal hydrides to future energy source is reviewed. Starting from existing state of China`s energy source, the importance for developing hydrogen energy and fusion energy is explained. It is suggested that the application investigation of hydrogen energy and hydrogen storage materials should be spurred and encouraged; keeping track of the development on tritium technology for fusion reactor is stressed.

  16. Application of hydrogen isotopes and metal hydrides in future energy source

    International Nuclear Information System (INIS)

    Jiang Guoqiang

    1994-12-01

    The probable application of hydrogen isotopes and metal hydrides to future energy source is reviewed. Starting from existing state of China's energy source, the importance for developing hydrogen energy and fusion energy is explained. It is suggested that the application investigation of hydrogen energy and hydrogen storage materials should be spurred and encouraged; keeping track of the development on tritium technology for fusion reactor is stressed

  17. Application of long range energy alternative planning (LEAP) model for Thailand energy outlook 2030 : reference case

    International Nuclear Information System (INIS)

    Charusiri, W.; Eua-arporn, B.; Ubonwat, J.

    2008-01-01

    In 2004, the total energy consumption in Thailand increased 8.8 per cent, from 47,806 to 60,260 ktoe. Long-range Energy Alternatives Planning (LEAP) is an accounting tool that simulates future energy scenarios. According to a Business As Usual (BAU) case, the overall energy demand in Thailand is estimated to increase from 61,262 to 254,200 ktoe between 2004 and 2030. Commercial energy consumption, which comprises petroleum products, natural gas, coal and its products, and electricity, increased by 9.0 per cent in Thailand in 2004, and new and renewable energy increased by 7.8 per cent. Nearly 60 per cent of the total commercial energy supply in Thailand was imported and increased for a fifth year in a row. The changes in energy consumption can be attributed to population growth and increase in economic activity and development. 10 refs., 5 tabs., 14 figs

  18. An overview of solar energy applications in buildings in Greece

    Science.gov (United States)

    Papamanolis, Nikos

    2016-09-01

    This work classifies and describes the main fields of solar energy exploitation in buildings in Greece, a country with high solar energy capacities. The study focuses on systems and technologies that apply to residential and commercial buildings following the prevailing design and construction practices (conventional buildings) and investigates the effects of the architectural and constructional characteristics of these buildings on the respective applications. In addition, it examines relevant applications in other building categories and in buildings with increased ecological sensitivity in their design and construction (green buildings). Through its findings, the study seeks to improve the efficiency and broaden the scope of solar energy applications in buildings in Greece to the benefit of their energy and environmental performance.

  19. 78 FR 14779 - Application to Export Electric Energy; Shell Energy North America (US), L.P.

    Science.gov (United States)

    2013-03-07

    ... DEPARTMENT OF ENERGY [OE Docket No. EA-339-A] Application to Export Electric Energy; Shell Energy... its authority to transmit electric energy from the United States to Canada pursuant to section 202(e... transmit electric energy from the United States to Canada as a power marketer for a five-year term using...

  20. 78 FR 14778 - Application to Export Electric Energy; Shell Energy North America (US), L.P.

    Science.gov (United States)

    2013-03-07

    ... DEPARTMENT OF ENERGY [OE Docket No. EA-338-A] Application to Export Electric Energy; Shell Energy... its authority to transmit electric energy from the United States to Mexico pursuant to section 202(e... transmit electric energy from the United States to Mexico as a power marketer for a five-year term using...

  1. 75 FR 33610 - Application To Export Electric Energy; H.Q. Energy Services (U.S.) Inc.

    Science.gov (United States)

    2010-06-14

    ... DEPARTMENT OF ENERGY [OE Docket No. EA-182-C] Application To Export Electric Energy; H.Q. Energy... electric energy from the United States to Canada pursuant to section 202(e) of the Federal Power Act (FPA... transmit electric energy from the United States to Canada as a power marketer using existing international...

  2. Potential for the Use of Energy Savings Performance Contracts to Reduce Energy Consumption and Provide Energy and Cost Savings in Non-Building Applications

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Charles; Green, Andrew S.; Dahle, Douglas; Barnett, John; Butler, Pat; Kerner, David

    2013-08-01

    The findings of this study indicate that potential exists in non-building applications to save energy and costs. This potential could save billions of federal dollars, reduce reliance on fossil fuels, increase energy independence and security, and reduce greenhouse gas emissions. The Federal Government has nearly twenty years of experience with achieving similar energy cost reductions, and letting the energy costs savings pay for themselves, by applying energy savings performance contracts (ESPC) inits buildings. Currently, the application of ESPCs is limited by statute to federal buildings. This study indicates that ESPCs can be a compatible and effective contracting tool for achieving savings in non-building applications.

  3. Dependence of the quasipotential on the total energy of a two-particle system

    International Nuclear Information System (INIS)

    Kapshai, V.N.; Savrin, V.I.; Skachkov, N.B.

    1987-01-01

    For a system of two relativistic particles described in the Logunov-Tavkhelidze one-time approach the dependence of the quasipotential of one-boson exchange on the total energy of the system is calculated. It is shown that despite the nonlocal form of the obtained quasipotential the three-dimensional equations for the waves function can be reduced by a partial expansion to one-dimensional equations. The influence of the energy dependence of the quasipotential on its behavior in the coordinate representation is discussed

  4. Advanced Energy Saving and its Applications in Industry

    CERN Document Server

    Matsuda, Kazuo; Fushimi, Chihiro; Tsutsumi, Atsushi; Kishimoto, Akira

    2013-01-01

    The conventional approach for energy saving in a process system is to maximize heat recovery without changing any process conditions by using pinch technology. “Self-heat recuperation technology” was developed to achieve further energy saving in the process system by eliminating the necessity for any external heat input, such as firing or imported steam. Advanced Energy Saving and its Applications in Industry introduces the concept of self-heat recuperation and the application of such technology to a wide range of processes from heavy chemical complexes to other processes such as drying and gas separation processes, which require heating and cooling during operation.   Conventional energy saving items in a utility system are applied and implemented based on a single site approach, however, when looking at heavy chemical complexes, it was apparent that the low-grade heat discharged as waste from a refinery could also be used in an adjacent petrochemical plant. There could therefore be a large energy savin...

  5. Innovative thermal energy harvesting for future autonomous applications

    Science.gov (United States)

    Monfray, Stephane

    2013-12-01

    As communicating autonomous systems market is booming, the role of energy harvesting will be a key enabler. As example, heat is one of the most abundant energy sources that can be converted into electricity in order to power circuits. Harvesting systems that use wasted heat open new ways to power autonomous sensors when the energy consumption is low, or to create systems of power generators when the conversion efficiency is high. The combination of different technologies (low power μ-processors, μ-batteries, radio, sensors...) with new energy harvesters compatible with large varieties of use-cases with allow to address this booming market. Thanks to the conjunction of ultra-low power electronic development, 3D technologies & Systems in Package approaches, the integration of autonomous sensors and electronics with ambient energy harvesting will be achievable. The applications are very wide, from environment and industrial sensors to medical portable applications, and the Internet of things may also represent in the future a several billions units market.

  6. Innovative thermal energy harvesting for future autonomous applications

    International Nuclear Information System (INIS)

    Monfray, Stephane

    2013-01-01

    As communicating autonomous systems market is booming, the role of energy harvesting will be a key enabler. As example, heat is one of the most abundant energy sources that can be converted into electricity in order to power circuits. Harvesting systems that use wasted heat open new ways to power autonomous sensors when the energy consumption is low, or to create systems of power generators when the conversion efficiency is high. The combination of different technologies (low power μ-processors, μ-batteries, radio, sensors...) with new energy harvesters compatible with large varieties of use-cases with allow to address this booming market. Thanks to the conjunction of ultra-low power electronic development, 3D technologies and Systems in Package approaches, the integration of autonomous sensors and electronics with ambient energy harvesting will be achievable. The applications are very wide, from environment and industrial sensors to medical portable applications, and the Internet of things may also represent in the future a several billions units market

  7. GEM applications outside high energy physics

    CERN Document Server

    Duarte Pinto, Serge

    2013-01-01

    From its invention in 1997, the Gas Electron Multiplier has been applied in nuclear and high energy physics experiments. Over time however, other applications have also exploited the favorable properties of GEMs. The use of GEMs in these applications will be explained in principle and practice. This paper reviews applications in research, beam instrumentation and homeland security. The detectors described measure neutral radiations such as photons, x-rays, gamma rays and neutrons, as well as all kinds of charged radiation. This paper provides an overview of the still expanding range of possibilities of this versatile detector concept.

  8. Total System Performance Assessment-License Application Methods and Approach

    Energy Technology Data Exchange (ETDEWEB)

    J. McNeish

    2002-09-13

    ''Total System Performance Assessment-License Application (TSPA-LA) Methods and Approach'' provides the top-level method and approach for conducting the TSPA-LA model development and analyses. The method and approach is responsive to the criteria set forth in Total System Performance Assessment Integration (TSPAI) Key Technical Issue (KTI) agreements, the ''Yucca Mountain Review Plan'' (CNWRA 2002 [158449]), and 10 CFR Part 63. This introductory section provides an overview of the TSPA-LA, the projected TSPA-LA documentation structure, and the goals of the document. It also provides a brief discussion of the regulatory framework, the approach to risk management of the development and analysis of the model, and the overall organization of the document. The section closes with some important conventions that are utilized in this document.

  9. Combined application versus topical and intravenous application of tranexamic acid following primary total hip arthroplasty: a meta-analysis.

    Science.gov (United States)

    Zhang, Pei; Liang, Yuan; Chen, Pengtao; Fang, Yongchao; He, Jinshan; Wang, Jingcheng

    2017-02-21

    The use of intravenous (IV) or topical tranexamic acid (TXA) in total hip arthroplasty has been proven to be effective and safe in total hip arthroplasty. However, which of these two administration routes is better has not been determined. The combined administration of TXA has been used in total knee arthroplasty with satisfactory results. We hypothesized that combined application of TXA may be the most effective way without increased rate of thrombotic events such as deep vein thrombosis (DVT) and pulmonary embolisms (PE) in patients subjected to primary total hip replacement (THA). A meta-analysis was conducted to compare the efficacy and safety of the combined use of tranexamic acid (TXA) relative to topical or intravenous (IV) use alone for treatment of primary THA. The outcomes included total blood loss, postoperative hemoglobin decline, transfusion rates, and the incidence rates of deep vein thrombosis (DVT) and pulmonary embolisms (PE). We searched electronic databases including PubMed, EMBASE, the Cochrane Library, Web of Science, the Chinese Biomedical Literature database, the CNKI database, and Wanfang Data until September 2016. The references of the included articles were also checked for additional potentially relevant studies. There were no language restrictions for the search. The data of the included studies were analyzed using RevMan 5.3 software. Seven studies met the inclusion criteria, encompassing a total of 1762 patients. Our meta-analysis demonstrated that total blood loss, postoperative hemoglobin decline, and transfusion rates were significantly lower for patients that received the combined treatment compared to patients that received either topical or intravenous administration of TXA. No statistical differences were found in the incidence of deep venous thrombosis (DVT) or pulmonary embolism (PE). The group that received the combined treatment had lower total blood loss, postoperative hemoglobin decline, and transfusion rates without an

  10. Z-Pinch Fusion for Energy Applications

    Energy Technology Data Exchange (ETDEWEB)

    SPIELMAN,RICK B.

    2000-01-01

    Z pinches, the oldest fusion concept, have recently been revisited in light of significant advances in the fields of plasma physics and pulsed power engineering. The possibility exists for z-pinch fusion to play a role in commercial energy applications. We report on work to develop z-pinch fusion concepts, the result of an extensive literature search, and the output for a congressionally-mandated workshop on fusion energy held in Snowmass, Co July 11-23,1999.

  11. Z-Pinch Fusion for Energy Applications

    International Nuclear Information System (INIS)

    SPIELMAN, RICK B.

    2000-01-01

    Z pinches, the oldest fusion concept, have recently been revisited in light of significant advances in the fields of plasma physics and pulsed power engineering. The possibility exists for z-pinch fusion to play a role in commercial energy applications. We report on work to develop z-pinch fusion concepts, the result of an extensive literature search, and the output for a congressionally-mandated workshop on fusion energy held in Snowmass, Co July 11-23,1999

  12. Supercritical fluid technology for energy and environmental applications

    CERN Document Server

    Anikeev, Vladimir

    2014-01-01

    Supercritical Fluid Technology for Energy and Environmental Applications covers the fundamental principles involved in the preparation and characterization of supercritical fluids (SCFs) used in the energy production and other environmental applications. Energy production from diversified resources - including renewable materials - using clean processes can be accomplished using technologies like SCFs. This book is focused on critical issues scientists and engineers face in applying SCFs to energy production and environmental protection, the innovative solutions they have found, and the challenges they need to overcome. The book also covers the basics of sub- and supercritical fluids, like the thermodynamics of phase and chemical equilibria, mathematical modeling, and process calculations. A supercritical fluid is any substance at a temperature and pressure above its critical point where distinct liquid and gas phases do not exist. At this state the compound demonstrates unique properties, which can be "fine...

  13. An analysis of cross-sectional variations in total household energy requirements in India using micro survey data

    International Nuclear Information System (INIS)

    Pachauri, Shonali

    2004-01-01

    Using micro level household survey data from India, we analyse the variation in the pattern and quantum of household energy requirements, both direct and indirect, and the factors causing such variation. An econometric analysis using household survey data from India for the year 1993-1994 reveals that household socio-economic, demographic, geographic, family and dwelling attributes influence the total household energy requirements. There are also large variations in the pattern of energy requirements across households belonging to different expenditure classes. Results from the econometric estimation show that total household expenditure or income level is the most important explanatory variable causing variation in energy requirements across households. In addition, the size of the household dwelling and the age of the head of the household are related to higher household energy requirements. In contrast, the number of members in the household and literacy of the head are associated with lower household energy requirements

  14. An analysis of cross-sectional variations in total household energy requirements in India using micro survey data

    Energy Technology Data Exchange (ETDEWEB)

    Pachauri, Shonali E-mail: shonali.pachauri@cepe.mavt.ethz.ch

    2004-10-01

    Using micro level household survey data from India, we analyse the variation in the pattern and quantum of household energy requirements, both direct and indirect, and the factors causing such variation. An econometric analysis using household survey data from India for the year 1993-1994 reveals that household socio-economic, demographic, geographic, family and dwelling attributes influence the total household energy requirements. There are also large variations in the pattern of energy requirements across households belonging to different expenditure classes. Results from the econometric estimation show that total household expenditure or income level is the most important explanatory variable causing variation in energy requirements across households. In addition, the size of the household dwelling and the age of the head of the household are related to higher household energy requirements. In contrast, the number of members in the household and literacy of the head are associated with lower household energy requirements.

  15. Total Energy. Sustainable cooling and heating in supermarkets; Total Energy. Duurzame koeling en verwarming supermarkten

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-03-15

    In 8 articles attention is paid to different aspects of cooling and heating in supermarkets: new coolants in the food retail sector, the climate plan of the Dutch Food Retail Association (CBL), he Round Table discussion with between CBL and supermarket chains about research results, approach and targets, the use of CO2 refrigeration in supermarkets, leakage of coolants from refrigerators and freezers in Dutch supermarkets, the energy efficient and environment-friendly refrigerator and freezer equipment of the distribution centre of supermarket chain C1000 in Raalte, Netherlands, changes for cooling techniques in the EIA energy list (Energy investment deduction scheme) and finally education options for the refrigeration industry in the Netherlands. [Dutch] In 8 artikelen wordt aandacht geschonken aan verschillende aspecten m.b.t. koeling en verwarming in supermarkten: nieuwe koelmiddelen in de 'food retail sector, het klimaatplan van de brancheorganisatie Centraal Bureau Levensmiddelenhandel (CBL), het Rondetafel overleg met de CBL en supermarktketens over onderzoeksresultaten, aanpak en doelen, de toepassing van CO2 koeling in supermarkten, lekkage van koelmiddelen uit koel- en vriesinstallaties in Nederlandse supermarkten, de energiezuinige en milieuvriendelijke koel-vriesinstallatie van het distributiecentrum van de supermarktketen C1000 in Raalte, wijzigingen voor koeltechniek in de EIA energielijst (Energie Investeringsaftrek subsidieregeling), en tenslotte opleidingsmogelijkheden voor de koeltechnische sector in Nederland.

  16. A directory of computer software applications: energy. Report for 1974--1976

    International Nuclear Information System (INIS)

    Grooms, D.W.

    1977-04-01

    The computer programs or the computer program documentation cited in this directory have been developed for a variety of applications in the field of energy. The cited computer software includes applications in solar energy, petroleum resources, batteries, electrohydrodynamic generators, magnetohydrodynamic generators, natural gas, nuclear fission, nuclear fusion, hydroelectric power production, and geothermal energy. The computer software cited has been used for simulation and modeling, calculations of future energy requirements, calculations of energy conservation measures, and computations of economic considerations of energy systems

  17. Automatic Energy Schemes for High Performance Applications

    Energy Technology Data Exchange (ETDEWEB)

    Sundriyal, Vaibhav [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    Although high-performance computing traditionally focuses on the efficient execution of large-scale applications, both energy and power have become critical concerns when approaching exascale. Drastic increases in the power consumption of supercomputers affect significantly their operating costs and failure rates. In modern microprocessor architectures, equipped with dynamic voltage and frequency scaling (DVFS) and CPU clock modulation (throttling), the power consumption may be controlled in software. Additionally, network interconnect, such as Infiniband, may be exploited to maximize energy savings while the application performance loss and frequency switching overheads must be carefully balanced. This work first studies two important collective communication operations, all-to-all and allgather and proposes energy saving strategies on the per-call basis. Next, it targets point-to-point communications to group them into phases and apply frequency scaling to them to save energy by exploiting the architectural and communication stalls. Finally, it proposes an automatic runtime system which combines both collective and point-to-point communications into phases, and applies throttling to them apart from DVFS to maximize energy savings. The experimental results are presented for NAS parallel benchmark problems as well as for the realistic parallel electronic structure calculations performed by the widely used quantum chemistry package GAMESS. Close to the maximum energy savings were obtained with a substantially low performance loss on the given platform.

  18. Graphite for fusion energy applications

    International Nuclear Information System (INIS)

    Eatherly, W.P.; Clausing, R.E.; Strehlow, R.A.; Kennedy, C.R.; Mioduszewski, P.K.

    1987-03-01

    Graphite is in widespread and beneficial use in present fusion energy devices. This report reflects the view of graphite materials scientists on using graphite in fusion devices. Graphite properties are discussed with emphasis on application to fusion reactors. This report is intended to be introductory and descriptive and is not intended to serve as a definitive information source

  19. Research report of fiscal 1997. Study on total energy and material control (feasibility study on circulating society); 1997 nendo chosa hokokusho. Total energy and material control ni kansuru chosa (junkangata shakai kochiku kanosei chosa) chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    In order to construct real sustainable global environment and human society in the 21st century called the century of environment, not only the innovation of manufacturing processes technically supporting such the construction but also the conception including the innovation of the whole society from a wide viewpoint are essential. As a total energy and material control system (TEMCOS) concept, the view of an energy-saving circulating society is attempted which minimizes a total energy and material flow in Japan, and the role and issue of manufacturing industry, in particular, material industry are extracted. As one of the targets of such a concept, the conception of an eco-town is also described. Paying attention on some important material industries including a mass material flow and consuming a large amount of energy such as metal, plastics and automobile industries, the study result on a material flow for every industry is arranged, and some effective issues contributing to minimize a material flow and control energy consumption and CO2 emission are extracted. 80 refs., 67 figs., 30 tabs.

  20. Total cross sections for electron scattering by He

    International Nuclear Information System (INIS)

    De Heer, F.J.; Jansen, R.H.J.

    1977-01-01

    A set of total cross sections for scattering of electrons by He has been evaluated over the energy range of zero to 3000 eV by means of the analysis of experiments and theories on total cross sections for elastic scattering, ionisation and excitation, and on differential cross sections for elastic and inelastic scattering. Between 0 and 19.8 eV, where no inelastic processes occur, the total cross sections for scattering are equal to those for elastic scattering. Above 19.8 eV total cross sections for scattering of electrons have been evaluated by adding those for ionisation, excitation and elastic scattering. The total cross sections thus obtained are probably accurate to about 5% over a large part of the energy range. They appear to be in very good agreement with the recent experimental results of Blaauw et al. (J. Phys. B.; 10:L299 (1977)). The present results have already proved useful for application in the dispersion relation for forward scattering in electron-helium collisions. (author)

  1. Total cross sections of hadron interactions at high energies in low constituents number model

    International Nuclear Information System (INIS)

    Abramovskij, V.A.; Radchenko, N.V.

    2009-01-01

    We consider QCD hadrons interaction model in which gluons density is low in initial state wave function in rapidity space and real hadrons are produced from color strings decay. In this model behavior of total cross sections of pp, pp bar, π ± p, K ± p, γp, and γγ interactions is well described. The value of proton-proton total cross section at LHC energy is predicted

  2. Development and application of a statistical methodology to evaluate the predictive accuracy of building energy baseline models

    Energy Technology Data Exchange (ETDEWEB)

    Granderson, Jessica [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Energy Technologies Area Div.; Price, Phillip N. [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Energy Technologies Area Div.

    2014-03-01

    This paper documents the development and application of a general statistical methodology to assess the accuracy of baseline energy models, focusing on its application to Measurement and Verification (M&V) of whole-­building energy savings. The methodology complements the principles addressed in resources such as ASHRAE Guideline 14 and the International Performance Measurement and Verification Protocol. It requires fitting a baseline model to data from a ``training period’’ and using the model to predict total electricity consumption during a subsequent ``prediction period.’’ We illustrate the methodology by evaluating five baseline models using data from 29 buildings. The training period and prediction period were varied, and model predictions of daily, weekly, and monthly energy consumption were compared to meter data to determine model accuracy. Several metrics were used to characterize the accuracy of the predictions, and in some cases the best-­performing model as judged by one metric was not the best performer when judged by another metric.

  3. Total integrated energy system (TIES) feasibility analysis for the downtown redevelopment project, Pasadena, California

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-04-01

    The purpose of this study is to determine the most desirable method of serving the energy needs of a commercial development to be constructed in Pasadena, California. The factors that determine maximum desirability consist of the following: (1) maximum economic benefit to the energy user and to the surrounding community; (2) minimum usage of energy by both the energy user and the surrounding community; and (3) minimum introduction of pollutants into the community. The methods studied were the Total Integrated Energy System (TIES) concept in several configurations. The TIES concept differs from the ''total energy concept'' in the respect that the electric power output of the local power generation plant goes into the utility company distribution grid, rather than to the user. The user is served power from the grid, as with a conventional system, but also receives heating and cooling media produced from power generation by-product heat from the TIES plant. The effect of this concept is that a very large source-sink for electric energy is provided by the utility company grid. This, in turn, permits the plant to operate in response to instantaneous thermal demand, rather than instantaneous power demand. No auxiliary firing is ever required. No waste of unneeded by-product energy to atmosphere ever occurs. Balance is achieved by either delivering excess power into the grid or by withdrawing power production deficiency from the grid. Near-optimum efficiency is achieved during all operating conditions. There is no need whatsoever for the power-generating plant to be sized to meet the power demand, since it seldom, if ever, tracks the power demand. Sizing of the electric generation is solely a function of economics and the demand for waste heat.

  4. Structure determination of disordered organic molecules on surfaces from the Bragg spots of low-energy electron diffraction and total energy calculations

    International Nuclear Information System (INIS)

    Poon, H.C.; Weinert, M.; Saldin, D.K.; Stacchiola, D.; Zheng, T.; Tysoe, W.T.

    2004-01-01

    We show that an analysis of the intensity versus energy variation of Bragg spots due to low-energy electron diffraction from a disordered overlayer of molecules on a crystal surface allows a much more convenient method of determining the local adsorption geometries of such molecules than previously analyzed weak diffuse diffraction patterns. For the case of methanol on Pd(111), we show that the geometry determined by this means from experimental diffraction data is in excellent agreement with the predictions of density functional total energy calculations

  5. Scenarios for solar thermal energy applications in Brazil

    International Nuclear Information System (INIS)

    Martins, F.R.; Abreu, S.L.; Pereira, E.B.

    2012-01-01

    The Solar and Wind Energy Resource Assessment (SWERA) database is used to prepare and discuss scenarios for solar thermal applications in Brazil. The paper discusses low temperature applications (small and large scale water heating) and solar power plants for electricity production (concentrated solar power plants and solar chimney plants) in Brazil. The results demonstrate the feasibility of large-scale application of solar energy for water heating and electricity generation in Brazil. Payback periods for water heating systems are typically below 4 years if they were used to replace residential electric showerheads in low-income families. Large-scale water heating systems also present high feasibility and many commercial companies are adopting this technology to reduce operational costs. The best sites to set up CSP plants are in the Brazilian semi-arid region where the annual energy achieves 2.2 MW h/m 2 and averages of daily solar irradiation are larger than 5.0 kW h/m 2 /day. The western area of Brazilian Northeastern region meets all technical requirements to exploit solar thermal energy for electricity generation based on solar chimney technology. Highlights: ► Scenarios for solar thermal applications are presented. ► Payback is typically below 4 years for small scale water heating systems. ► Large-scale water heating systems also present high feasibility. ► The Brazilian semi-arid region is the best sites for CSP and chimney tower plants.

  6. Commercial applications of solar total energy systems. Volume 3. Conceptual designs and market analyses. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Boobar, M.G.; McFarland, B.L.; Nalbandian, S.J.; Willcox, W.W.; French, E.P.; Smith, K.E.

    1978-07-01

    The overall objective of this program was to assess the feasibility of using solar energy to provide a significant fraction of the energy needs of commercial buildings that have energy demands greater than 200 kWe. The STES concept trade studies, sensitivity parameters, performance characteristics, and selected concepts are discussed. Market penetration rate estimates are provided, and technology advancements and utilization plans are discussed. Photovoltaic STES configurations and Rankine cycle thermal STES systems are considered. (WHK)

  7. Emerging Energy Applications of Two-Dimensional Layered Transition Metal Dichalcogenides

    KAUST Repository

    Li, Henan

    2015-10-31

    Transition metal dichalcogenides (TMDCs) have attracted significant attention for their great potential in nano energy. TMDC layered materials represent a diverse and largely untapped source of 2D systems. High-quality TMDC layers with an appropriate size, variable thickness, superior electronic and optical properties can be produced by the exfoliation or vapour phase deposition method. Semiconducting TMDC monolayers have been demonstrated feasible for various energy related applications, where their electronic properties and uniquely high surface areas offer opportunities for various applications such as nano generators, green electronics, electrocatalytic hydrogen generation and energy storage. In this review, we start from the structure, properties and preparation, followed by detailed discussions on the development of TMDC-based nano energy applications. Graphical abstract The structure characterizations and preparative methods of 2D TMDCs have obtained significant progresses. Their recent advances for nano energy generation, solar harvesting, conversion and storage, and green electronics are reviewed.

  8. Applications of neural networks in high energy physics

    International Nuclear Information System (INIS)

    Cutts, D.; Hoftun, J.S.; Nesic, D.; Sornborger, A.; Johnson, C.R.; Zeller, R.T.

    1990-01-01

    Neural network techniques provide promising solutions to pattern recognition problems in high energy physics. We discuss several applications of back propagation networks, and in particular describe the operation of an electron algorithm based on calorimeter energies. 5 refs., 5 figs., 1 tab

  9. Renewable energy systems advanced conversion technologies and applications

    CERN Document Server

    Luo, Fang Lin

    2012-01-01

    Energy conversion techniques are key in power electronics and even more so in renewable energy source systems, which require a large number of converters. Renewable Energy Systems: Advanced Conversion Technologies and Applications describes advanced conversion technologies and provides design examples of converters and inverters for renewable energy systems-including wind turbine and solar panel energy systems. Learn Cutting-Edge Techniques for Converters and Inverters Setting the scene, the book begins with a review of the basics of astronomy and Earth physics. It then systematically introduc

  10. Applications of plasma core reactors to terrestrial energy systems

    International Nuclear Information System (INIS)

    Lantham, T.S.; Biancardi, F.R.; Rodgers, R.J.

    1974-01-01

    Plasma core reactors offer several new options for future energy needs in addition to space power and propulsion applications. Power extraction from plasma core reactors with gaseous nuclear fuel allows operation at temperatures higher than conventional reactors. Highly efficient thermodynamic cycles and applications employing direct coupling of radiant energy are possible. Conceptual configurations of plasma core reactors for terrestrail applications are described. Closed-cycle gas turbines, MHD systems, photo- and thermo-chemical hydrogen production processes, and laser systems using plasma core reactors as prime energy sources are considered. Cycle efficiencies in the range of 50 to 65 percent are calculated for closed-cycle gas turbine and MHD electrical generators. Reactor advantages include continuous fuel reprocessing which limits inventory of radioactive by-products and thorium-U-233 breeder configurations with about 5-year doubling times

  11. Total System Performance Assessment - License Application Methods and Approach

    International Nuclear Information System (INIS)

    McNeish, J.

    2003-01-01

    ''Total System Performance Assessment-License Application (TSPA-LA) Methods and Approach'' provides the top-level method and approach for conducting the TSPA-LA model development and analyses. The method and approach is responsive to the criteria set forth in Total System Performance Assessment Integration (TSPAI) Key Technical Issues (KTIs) identified in agreements with the U.S. Nuclear Regulatory Commission, the ''Yucca Mountain Review Plan'' (YMRP), ''Final Report'' (NRC 2003 [163274]), and the NRC final rule 10 CFR Part 63 (NRC 2002 [156605]). This introductory section provides an overview of the TSPA-LA, the projected TSPA-LA documentation structure, and the goals of the document. It also provides a brief discussion of the regulatory framework, the approach to risk management of the development and analysis of the model, and the overall organization of the document. The section closes with some important conventions that are used in this document

  12. Energy storage in ceramic dielectrics

    International Nuclear Information System (INIS)

    Love, G.R.

    1990-01-01

    Historically, multilayer ceramic capacitors (MLC's) have not been considered for energy storage applications for two primary reasons. First, physically large ceramic capacitors were very expensive and, second, total energy density obtainable was not nearly so high as in electrolytic capacitor types. More recently, the fabrication technology for MLC's has improved significantly, permitting both significantly higher energy density and significantly lower costs. Simultaneously, in many applications, total energy storage has become smaller, and the secondary requirements of very low effective series resistance and effective series inductance (which, together, determine how efficiently the energy may be stored and recovered) have become more important. It is therefore desirable to reexamine energy storage in ceramics for contemporary commercial and near-commercial dielectrics. Stored energy is proportional to voltage squared only in the case of paraelectric insulators, because only they have capacitance that is independent of bias voltage. High dielectric constant materials, however, are ferroics (that is ferroelectric and/or antiferroelectric) and display significant variation of effective dielectric constant with bias voltage

  13. Advanced directions of peaceful applications of nuclear energy in the Republic of Azerbaijan

    International Nuclear Information System (INIS)

    Garibov, A.A.

    2006-01-01

    Full text: Application of nuclear energy is actual during last years due to depletion of organic sources of row materials. Therefore, each country develops the programs on peaceful application of nuclear energy and using alternative as well as other energy sources on the basis of the analysis of fuel-energy balance and energy demand state. The Republic of Azerbaijan has huge hydrocarbon resources and alternative energy sources. However, taking into account the fact that hydrocarbon resources can cover increasing energy demand at maximum 50-60 years and renewable energy sources can not meet large energy demand during near future then the discovering of advanced ways on peaceful application of nuclear energy is of great importance. Since the seventies of the twentieth century, wide spectrum of scientific researches on the discovering advanced ways on peaceful application of nuclear energy are carried out in the Republic of Azerbaijan. Among them it is necessary to mark the following directions: radiation modification of the properties of polymers, absorbents, catalysts, metals and alloys, semiconductors, dielectrics, ferroelectrics and various devices; radiation oil-chemistry processes; radiation polymerization; radiation-heterogeneous processes; atomic-hydrogen energy; scientific problems of radiation safety and nuclear security; discovering possibilities for using radiation technologies in the solution of environmental problems; radiation sciences of materials and radiation physics; radiation biology and medicine; application of isotope sources in medicine; application of isotope in oil-gas industry; application of isotope sources in radiography and different fields of technique

  14. About total kinetic energy distribution between fragments of binary fission

    International Nuclear Information System (INIS)

    Khugaev, A.V.; Koblik, Yu.N.; Pikul, V.P.; Ioannou, P.; Dimovasili, E.

    2002-01-01

    At the investigation of binary fission reactions one of the main characteristic of process is total kinetic energy (TKE) of fission fragments and it distribution between them. From the values of these characteristics it is possible to extract the information about structure of fission fragments in the break up point of initial fissionable nuclear system. In our work TKE dependence from the deformation parameters of shape and density distribution of charge in the fission fragments are investigated. In the end of paper some generalizations of obtaining results are carried out and presented in the form of tables and figures

  15. Market potential for non-electric applications of nuclear energy

    International Nuclear Information System (INIS)

    2002-01-01

    The objective of this report is to assess the market potential for the non-electric applications of nuclear energy in the near (before 2020) and long (2020-2050) terms. The main non-electric applications are defined here as district heating, desalination (of sea, brackish and waste water), industrial heat supply, ship propulsion and the energy supply for spacecraft. This report is principally devoted to these applications, although a less detailed assessment of some innovative applications (e.g. hydrogen production and coal gasification) is also provided. While the technical details of these applications are covered briefly, emphasis is placed on the economic and other factors that may promote or hinder the penetration of the nuclear option into the market for non-electric energy services. The report is intentionally targeted towards expected demands. It is for this reason that its sections are structured by demand categories and not according to possible reactor types. At the same time, the orientation on the demand side can result in overlaps at the supply side, because the same nuclear reactor can often serve more than one type of demand. Such cases are noted as appropriate. Each section characterizes a specific non-electric application in terms of its market size, its prospects for nuclear technologies and the economic competitiveness of the technologies

  16. Total photoabsorption cross section on nuclei measured in energy range 0.5-2.6 GeV

    International Nuclear Information System (INIS)

    Mirazita, M.

    1998-03-01

    The total photoabsorption cross section on several nuclei has been measured in the energy range 0.5 - 2.6 GeV. Nuclear data show a significant reduction of the absorption strength with respect to the free nucleon case suggesting a shadowing effect at low energies

  17. Single component, reversible ionic liquids for energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Vittoria Blasucci; Ryan Hart; Veronica Llopis Mestre; Dominique Julia Hahne; Melissa Burlager; Hillary Huttenhower; Beng Joo Reginald Thio; Pamela Pollet; Charles L. Liotta; Charles A. Eckert [Georgia Institute of Technology, Atlanta, GA (United States). Chemical & Biomolecular Engineering

    2010-06-15

    Single component, reversible ionic liquids have excellent potential as novel solvents for a variety of energy applications. Our energy industry is faced with many new challenges including increased energy consumption, depleting oil reserves, and increased environmental awareness. We report the use of reversible ionic liquids to solve two energy challenges: extraction of hydrocarbons from contaminated crude oil and carbon capture from power plant flue gas streams. Our reversible solvents are derived from silylated amine molecular liquids which react with carbon dioxide reversibly to form ionic liquids. Here we compare the properties of various silylated amine precursors and their corresponding ionic liquids. We show how the property changes are advantageous in the two aforementioned energy applications. In the case of hydrocarbon purification, we take advantage of the polarity switch between precursor and ionic liquid to enable separations. In carbon capture, our solvents act as dual physical and chemical capture agents for carbon dioxide. Finally, we show the potential economics of scale-up for both processes. 20 refs., 1 fig., 3 tabs.

  18. Nanoscale applications for information and energy systems

    CERN Document Server

    Korkin, Anatoli

    2012-01-01

    This book presents nanotechnology fundamentals and applications in the key research areas of information technology and solar energy: plasmonics, photovoltaics, transparent conducting electrodes, silicon electroplating, and resistive switching.

  19. Postprandial appetite ratings are reproducible and moderately related to total day energy intakes, but not ad libitum lunch energy intakes, in healthy young women.

    Science.gov (United States)

    Tucker, Amy J; Heap, Sarah; Ingram, Jessica; Law, Marron; Wright, Amanda J

    2016-04-01

    Reproducibility and validity testing of appetite ratings and energy intakes are needed in experimental and natural settings. Eighteen healthy young women ate a standardized breakfast for 8 days. Days 1 and 8, they rated their appetite (Hunger, Fullness, Desire to Eat, Prospective Food Consumption (PFC)) over a 3.5 h period using visual analogue scales, consumed an ad libitum lunch, left the research center and recorded food intake for the remainder of the day. Days 2-7, participants rated their at-home Hunger at 0 and 30 min post-breakfast and recorded food intake for the day. Total area under the curve (AUC) over the 180 min period before lunch, and energy intakes were calculated. Reproducibility of satiety measures between days was evaluated using coefficients of repeatability (CR), coefficients of variation (CV) and intra-class coefficients (ri). Correlation analysis was used to examine validity between satiety measures. AUCs for Hunger, Desire to Eat and PFC (ri = 0.73-0.78), ad libitum energy intakes (ri = 0.81) and total day energy intakes (ri​ = 0.48) were reproducible; fasted ratings were not. Average AUCs for Hunger, Desire to Eat and PFC, Desire to Eat at nadir and PFC at fasting, nadir and 180 min were correlated to total day energy intakes (r = 0.50-0.77, P < 0.05), but no ratings were correlated to lunch consumption. At-home Hunger ratings were weakly reproducible but not correlated to reported total energy intakes. Satiety ratings did not concur with next meal intake but PFC ratings may be useful predictors of intake. Overall, this study adds to the limited satiety research on women and challenges the accepted measures of satiety in an experimental setting. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Magnetic energy storage devices for small scale applications

    International Nuclear Information System (INIS)

    Kumar, B.

    1992-01-01

    This paper covers basic principles of magnetic energy storage, structure requirements and limitations, configurations of inductors, attributes of high-T c superconducting materials including thermal instabilities, a relative comparison with the state-of-the-art high energy density power sources, and refrigeration requirements. Based on these fundamental considerations, the design parameters of a micro superconducting magnetic energy unit for Air Force applications is presented and discussed

  1. Energy Resource Planning. Optimal utilization of energy resources

    International Nuclear Information System (INIS)

    Miclescu, T.; Domschke, W.; Bazacliu, G.; Dumbrava, V.

    1996-01-01

    For a thermal power plants system, the primary energy resources cost constitutes a significant percentage of the total system operational cost. Therefore a small percentage saving in primary energy resource allocation cost for a long term, often turns out to be a significant monetary value. In recent years, with a rapidly changing fuel supply situation, including the impact of energy policies changing, this area has become extremely sensitive. Natural gas availability has been restricted in many areas, coal production and transportation cost have risen while productivity has decreased, oil imports have increased and refinery capacity failed to meet demand. The paper presents a mathematical model and a practical procedure to solve the primary energy resource allocation. The objectives is to minimise the total energy cost over the planning period subject to constraints with regards to primary energy resource, transportation and energy consumption. Various aspects of the proposed approach are discussed, and its application to a power system is illustrated.(author) 2 figs., 1 tab., 3 refs

  2. Investigation of the heavy nuclei fission with anomalously high values of the fission fragments total kinetic energy

    Science.gov (United States)

    Khryachkov, Vitaly; Goverdovskii, Andrei; Ketlerov, Vladimir; Mitrofanov, Vecheslav; Sergachev, Alexei

    2018-03-01

    Binary fission of 232Th and 238U induced by fast neutrons were under intent investigation in the IPPE during recent years. These measurements were performed with a twin ionization chamber with Frisch grids. Signals from the detector were digitized for further processing with a specially developed software. It results in information of kinetic energies, masses, directions and Bragg curves of registered fission fragments. Total statistics of a few million fission events were collected during each experiment. It was discovered that for several combinations of fission fragment masses their total kinetic energy was very close to total free energy of the fissioning system. The probability of such fission events for the fast neutron induced fission was found to be much higher than for spontaneous fission of 252Cf and thermal neutron induced fission of 235U. For experiments with 238U target the energy of incident neutrons were 5 MeV and 6.5 MeV. Close analysis of dependence of fission fragment distribution on compound nucleus excitation energy gave us some explanation of the phenomenon. It could be a process in highly excited compound nucleus which leads the fissioning system from the scission point into the fusion valley with high probability.

  3. Prospects and applicability of wave energy for South Africa

    Science.gov (United States)

    Lavidas, George; Venugopal, Vengatesan

    2018-03-01

    Renewable energy offers significant opportunities for electricity diversification. South Africa belongs to the group of developing nations and encompasses a lot of potential for renewable energy developments. Currently, the majority of its electricity production originates from fossil fuels; however, incorporation of clean coal technologies will aid in reaching the assigned targets. This study offers a long-term wave power quantification analysis with a numerical wave model. The investigation includes long-term resource assessment in the region, variability, seasonal and monthly wave energy content. Locations with high-energy content but low variability pose an opportunity that can contribute in the alleviation of energy poverty. Application of wave converters depends on the combination of complex terms. The study presents resource levels and the joint distributions, which indicate suitability for converter selection. Depending on the region of interest, these characteristics change. Thus, this resource assessment adds knowledge on wave power and optimal consideration for wave energy applicability.

  4. Nano crystals-Related Synthesis, Assembly, and Energy Applications

    International Nuclear Information System (INIS)

    Dai, Q.; Hu, M.Z.; Yu, B.Z.; William, W.; Seo, J.

    2011-01-01

    Fundamental material properties have been dramatically altered in the nano scale regime because of quantum confinement effect. The unique size-tunable functionalities of nano materials make them involved in an extensive variety of energy applications, such as light-emitting diodes and solar cells. These applications have been demonstrated to cut energy consumption. In response to the ever-growing energy demands as well as the concerns of global warming, researchers are actively placing their enormous emphasis on the exploration of energy savings. During this exploration, the primary stage requires the design of appropriate strategies for the synthesis of high-quality nano crystals in terms of size uniformity and superior optical/electronic properties. Especially, there is a need to seek green-chemistry approaches for the synthesis of environmentally benign and user-friendly nano crystals. Another recent area of focus is the use of individual nano crystals as building blocks for self-assembly, providing new opportunities to improve the nano crystal performance

  5. 76 FR 3881 - Application To Export Electric Energy; TransAlta Energy Marketing (U.S.) Inc.

    Science.gov (United States)

    2011-01-21

    ... Energy Marketing (U.S.) Inc. AGENCY: Office of Electricity Delivery and Energy Reliability, DOE. ACTION: Notice of application. SUMMARY: TransAlta Energy Marketing (U.S.) Inc. (TEMUS) has applied to renew its..., Federal power marketing agencies, and other entities within the United States. The existing international...

  6. Total β-decay energies of neutron-rich zinc isotopes, A=75-80

    International Nuclear Information System (INIS)

    Lund, E.; Aleklett, K.; Fogelberg, B.; Sangariyavanish, A.

    1984-01-01

    The present investigation involves improved measurements of the Qsub(β)-values of 75-78 Zn and determinations of the total decay energies of sup(79,80)Zn which are not reported in the literature before. Also 81 Zn was detected but at the time for the experiment the ion-source was not efficient enough to yield sufficient activity for an accurate Qsub(β)-determination. (orig./HSI)

  7. Energy harvesting from low frequency applications using piezoelectric materials

    International Nuclear Information System (INIS)

    Li, Huidong; Tian, Chuan; Deng, Z. Daniel

    2014-01-01

    In an effort to eliminate the replacement of the batteries of electronic devices that are difficult or impractical to service once deployed, harvesting energy from mechanical vibrations or impacts using piezoelectric materials has been researched over the last several decades. However, a majority of these applications have very low input frequencies. This presents a challenge for the researchers to optimize the energy output of piezoelectric energy harvesters, due to the relatively high elastic moduli of piezoelectric materials used to date. This paper reviews the current state of research on piezoelectric energy harvesting devices for low frequency (0–100 Hz) applications and the methods that have been developed to improve the power outputs of the piezoelectric energy harvesters. Various key aspects that contribute to the overall performance of a piezoelectric energy harvester are discussed, including geometries of the piezoelectric element, types of piezoelectric material used, techniques employed to match the resonance frequency of the piezoelectric element to input frequency of the host structure, and electronic circuits specifically designed for energy harvesters

  8. Total System Performance Assessment - License Application Methods and Approach

    Energy Technology Data Exchange (ETDEWEB)

    J. McNeish

    2003-12-08

    ''Total System Performance Assessment-License Application (TSPA-LA) Methods and Approach'' provides the top-level method and approach for conducting the TSPA-LA model development and analyses. The method and approach is responsive to the criteria set forth in Total System Performance Assessment Integration (TSPAI) Key Technical Issues (KTIs) identified in agreements with the U.S. Nuclear Regulatory Commission, the ''Yucca Mountain Review Plan'' (YMRP), ''Final Report'' (NRC 2003 [163274]), and the NRC final rule 10 CFR Part 63 (NRC 2002 [156605]). This introductory section provides an overview of the TSPA-LA, the projected TSPA-LA documentation structure, and the goals of the document. It also provides a brief discussion of the regulatory framework, the approach to risk management of the development and analysis of the model, and the overall organization of the document. The section closes with some important conventions that are used in this document.

  9. Advantages of Real-Time Spectrum Analyzers in High-Energy Physics Applications

    International Nuclear Information System (INIS)

    Parker, Louis

    2004-01-01

    Typically, particles are injected into the ring at low energy levels and then 'ramped up' to higher levels. During ramping, it is important that the horizontal and vertical tune frequencies do not shift, lest they hit upon a resonant combination that causes beam instability or sudden total loss of ring beam current (beam blow up). Beam instabilities can be caused by a number of factors. Non-linearities and/or different response times of independent controls such as beam position monitor (BPM) cables and circuits, magnets for guidance and focusing of the beam, Klystrons or Tetrodes (which provide power to RF cavities that transmit energy to the beam), and vacuum pumps and monitors can all cause beam instabilities. Vibrations and lack of proper shielding are other factors. The challenge for operators and researchers is to correctly identify the factors causing beam instabilities and blow up so that costly accelerator time is not interrupted and experimental results are not compromised. The instrument often used to identify problems in particle accelerator applications is the spectrum analyzer. This paper will discuss the advantages of real time spectrum analyzers (RSA) versus swept frequency spectrum analyzers in HEP applications. The main focus will be on monitoring beam position and stability, especially during ramp-up. Also covered will be use of RSA for chromaticity measurements, Phase Locked Loop (PLL) diagnostics, and vibration analysis

  10. Physics and applications of high energy density plasmas. Extreme state driven by pulsed electromagnetic energy

    International Nuclear Information System (INIS)

    Horioka, Kazuhiko

    2002-06-01

    The papers presented at the symposium on ''Physics and application of high energy density plasmas, held December 20-21, 2001 at NIFS'' are collected in this proceedings. The topics covered in the meeting include dense z-pinches, plasma focus, intense charged particle beams, intense radiation sources, discharge pumped X-ray lasers, their diagnostics, and applications of them. The papers reflect the present status and trends in the research field of high energy density plasmas. (author)

  11. Applications of SSNTD's in high energy physics

    International Nuclear Information System (INIS)

    Otterlund, I.

    1976-09-01

    Different applications of the emulsion technique in high energy physics are given. Investigations of heavy ion and proton-nucleus reactions with the conventional emulsion technique are presented together with a short interpretation of recent results. Methods of using nuclear emulsion with embedded targets will be discussed. Emulsion stacks in hybrid systems with electronic tagging suggest a new and interesting application of the emulsion technique. (Auth.)

  12. Total Water Intake from Beverages and Foods Is Associated with Energy Intake and Eating Behaviors in Korean Adults

    Science.gov (United States)

    Lee, Kyung Won; Shin, Dayeon; Song, Won O.

    2016-01-01

    Water is essential for the proper functioning of the body. Even though a recommendation exists for adequate water intake for Koreans, studies identifying actual water intake from all beverages and foods consumed daily in the Korean population are limited. Thus, we estimated total water intake from both beverages and foods and its association with energy intake and eating behaviors in Korean adults. We used a nationally representative sample of 25,122 Korean adults aged ≥19 years, from the Korean National Health and Nutrition Examination Survey 2008–2012. We performed multiple regression analyses, adjusting for sociodemographic and health-related variables to investigate the contribution of overall energy and dietary intakes and eating behaviors to total water intake. The mean total water intake excluding plain water was 1071 g (398 g from beverages and 673 g from foods) and the estimated plain water intake was 1.3 L. Among Korean adults, 82% consumed beverages (excluding plain water) and these beverages contributed to 10% of daily energy intake and 32% of total water intake from beverages and foods. For every 100 kcal/day in energy intake, water intake consumed through beverages and foods increased by 18 g and 31 g, respectively. Water intake from beverages and foods was positively associated with energy from fat and dietary calcium, but inversely associated with energy density and energy from carbohydrates. When there was a 5% increase in energy intake from snacks and eating outside the home, there was an increase in water intake from beverages of 13 g and 2 g, respectively. Increased daily energy intake, the number of eating episodes, and energy intake from snacks and eating outside the home predicted higher water intake from beverages and foods. Our results provide evidence suggesting that various factors, including sociodemographic status, dietary intakes, and eating behaviors, could be important contributors to the water intake of Korean adults. Findings

  13. Total Water Intake from Beverages and Foods Is Associated with Energy Intake and Eating Behaviors in Korean Adults

    Directory of Open Access Journals (Sweden)

    Kyung Won Lee

    2016-10-01

    Full Text Available Water is essential for the proper functioning of the body. Even though a recommendation exists for adequate water intake for Koreans, studies identifying actual water intake from all beverages and foods consumed daily in the Korean population are limited. Thus, we estimated total water intake from both beverages and foods and its association with energy intake and eating behaviors in Korean adults. We used a nationally representative sample of 25,122 Korean adults aged ≥19 years, from the Korean National Health and Nutrition Examination Survey 2008–2012. We performed multiple regression analyses, adjusting for sociodemographic and health-related variables to investigate the contribution of overall energy and dietary intakes and eating behaviors to total water intake. The mean total water intake excluding plain water was 1071 g (398 g from beverages and 673 g from foods and the estimated plain water intake was 1.3 L. Among Korean adults, 82% consumed beverages (excluding plain water and these beverages contributed to 10% of daily energy intake and 32% of total water intake from beverages and foods. For every 100 kcal/day in energy intake, water intake consumed through beverages and foods increased by 18 g and 31 g, respectively. Water intake from beverages and foods was positively associated with energy from fat and dietary calcium, but inversely associated with energy density and energy from carbohydrates. When there was a 5% increase in energy intake from snacks and eating outside the home, there was an increase in water intake from beverages of 13 g and 2 g, respectively. Increased daily energy intake, the number of eating episodes, and energy intake from snacks and eating outside the home predicted higher water intake from beverages and foods. Our results provide evidence suggesting that various factors, including sociodemographic status, dietary intakes, and eating behaviors, could be important contributors to the water intake of Korean

  14. Total Water Intake from Beverages and Foods Is Associated with Energy Intake and Eating Behaviors in Korean Adults.

    Science.gov (United States)

    Lee, Kyung Won; Shin, Dayeon; Song, Won O

    2016-10-04

    Water is essential for the proper functioning of the body. Even though a recommendation exists for adequate water intake for Koreans, studies identifying actual water intake from all beverages and foods consumed daily in the Korean population are limited. Thus, we estimated total water intake from both beverages and foods and its association with energy intake and eating behaviors in Korean adults. We used a nationally representative sample of 25,122 Korean adults aged ≥19 years, from the Korean National Health and Nutrition Examination Survey 2008-2012. We performed multiple regression analyses, adjusting for sociodemographic and health-related variables to investigate the contribution of overall energy and dietary intakes and eating behaviors to total water intake. The mean total water intake excluding plain water was 1071 g (398 g from beverages and 673 g from foods) and the estimated plain water intake was 1.3 L. Among Korean adults, 82% consumed beverages (excluding plain water) and these beverages contributed to 10% of daily energy intake and 32% of total water intake from beverages and foods. For every 100 kcal/day in energy intake, water intake consumed through beverages and foods increased by 18 g and 31 g, respectively. Water intake from beverages and foods was positively associated with energy from fat and dietary calcium, but inversely associated with energy density and energy from carbohydrates. When there was a 5% increase in energy intake from snacks and eating outside the home, there was an increase in water intake from beverages of 13 g and 2 g, respectively. Increased daily energy intake, the number of eating episodes, and energy intake from snacks and eating outside the home predicted higher water intake from beverages and foods. Our results provide evidence suggesting that various factors, including sociodemographic status, dietary intakes, and eating behaviors, could be important contributors to the water intake of Korean adults. Findings

  15. Solar total energy-large scale experiment, Shenandoah, Georgia

    Science.gov (United States)

    Hensley, W. R.

    1980-01-01

    The design and development of a 7 meter diameter parabolic dish solar collector are discussed. Each of the four main subsystems of the collector: (1) reflector, (2) mount and drives, (3) receiver and (4) the controls, is discussed briefly with the major emphasis on the receiver design. To minimize development risks and production costs, a dish design based on use of stamped aluminum petals (sectors) was chosen. This design is similar to the design of a communication antenna already commercially produced. The reflective surface of the petals has a total reflectance of .86 and a specularity (dispersion) of 8 mrd. This performance is obtained by mechanical polishing and chemical brightening of the petal surface, followed by application of a clear RTV silicone protective coating. Selection of the material and weather proofing coated are discussed. Results from performance tests on an engineering development dish collector are presented and compared with pretest predictions.

  16. Accelerator applications in energy and security

    CERN Document Server

    Chou, Weiren

    2015-01-01

    As accelerator science and technology progressed over the past several decades, the accelerators themselves have undergone major improvements in multiple performance factors: beam energy, beam power, and beam brightness. As a consequence, accelerators have found applications in a wide range of fields in our life and in our society. The current volume is dedicated to applications in energy and security, two of the most important and urgent topics in today's world. This volume makes an effort to provide a review as complete and up to date as possible of this broad and challenging subject. It contains overviews on each of the two topics and a series of articles for in-depth discussions including heavy ion accelerator driven inertial fusion, linear accelerator-based ADS systems, circular accelerator-based ADS systems, accelerator-reactor interface, accelerators for fusion material testing, cargo inspection, proton radiography, compact neutron generators and detectors. It also has a review article on accelerator ...

  17. Northwest Region Clean Energy Application Center

    Energy Technology Data Exchange (ETDEWEB)

    Sjoding, David [Washington State Univ., Pullman, WA (United States)

    2013-09-30

    The main objective of the Northwest Clean Energy Application Center (NW CEAC) is to promote and support implementation of clean energy technologies. These technologies include combined heat and power (CHP), district energy, waste heat recovery with a primary focus on waste heat to power, and other related clean energy systems such as stationary fuel cell CHP systems. The northwest states include AK, ID, MT, OR, and WA. The key aim/outcome of the Center is to promote and support implementation of clean energy projects. Implemented projects result in a number of benefits including increased energy efficiency, renewable energy development (when using opportunity fuels), reduced carbon emissions, improved facility economics helping to preserve jobs, and reduced criteria pollutants calculated on an output-based emissions basis. Specific objectives performed by the NW CEAC fall within the following five broad promotion and support categories: 1) Center management and planning including database support; 2) Education and Outreach including plan development, website, target market workshops, and education/outreach materials development 3) Identification and provision of screening assessments & feasibility studies as funded by the facility or occasionally further support of Potential High Impact Projects; 4) Project implementation assistance/trouble shooting; and 5) Development of a supportive clean energy policy and initiative/financing framework.

  18. U.S. Department of Energy Pacific Region Clean Energy Application Center (PCEAC)

    Energy Technology Data Exchange (ETDEWEB)

    Lipman, Tim [Univ. of California, Berkeley, CA (United States); Kammen, Dan [Univ. of California, Berkeley, CA (United States); McDonell, Vince [Univ. of California, Irvine, CA (United States); Samuelsen, Scott [Univ. of California, Irvine, CA (United States); Beyene, Asfaw [San Diego State Univ., CA (United States); Ganji, Ahmad [San Francisco State Univ., CA (United States)

    2013-09-30

    The U.S. Department of Energy Pacific Region Clean Energy Application Center (PCEAC) was formed in 2009 by the U.S. Department of Energy (DOE) and the California Energy Commission to provide education, outreach, and technical support to promote clean energy -- combined heat and power (CHP), district energy, and waste energy recovery (WHP) -- development in the Pacific Region. The region includes California, Nevada, Hawaii, and the Pacific territories. The PCEAC was operated as one of nine regional clean energy application centers, originally established in 2003/2004 as Regional Application Centers for combined heat and power (CHP). Under the Energy Independence and Security Act of 2007, these centers received an expanded charter to also promote district energy and waste energy recovery, where economically and environmentally advantageous. The centers are working in a coordinated fashion to provide objective information on clean energy system technical and economic performance, direct technical assistance for clean energy projects and additional outreach activities to end users, policy, utility, and industry stakeholders. A key goal of the CEACs is to assist the U.S. in achieving the DOE goal to ramp up the implementation of CHP to account for 20% of U.S. generating capacity by 2030, which is estimated at a requirement for an additional 241 GW of installed clean technologies. Additional goals include meeting the Obama Administration goal of 40 GW of new CHP by 2020, key statewide goals such as renewable portfolio standards (RPS) in each state, California’s greenhouse gas emission reduction goals under AB32, and Governor Brown’s “Clean Energy Jobs Plan” goal of 6.5 GW of additional CHP over the next twenty years. The primary partners in the PCEAC are the Department of Civil and Environmental Engineering and the Energy and Resources Group (ERG) at UC Berkeley, the Advanced Power and Energy Program (APEP) at UC Irvine, and the Industrial Assessment Centers (IAC

  19. Total number albedo and average cosine of the polar angle of low-energy photons reflected from water

    Directory of Open Access Journals (Sweden)

    Marković Srpko

    2007-01-01

    Full Text Available The total number albedo and average cosine of the polar angle for water and initial photon energy range from 20 keV to 100 keV are presented in this pa per. A water shield in the form of a thick, homogenous plate and per pendicular incidence of the monoenergetic photon beam are assumed. The results were obtained through Monte Carlo simulations of photon reflection by means of the MCNP computer code. Calculated values for the total number albedo were compared with data previously published and good agreement was confirmed. The dependence of the average cosine of the polar angle on energy is studied in detail. It has been found that the total average cosine of the polar angle has values in the narrow interval of 0.66-0.67, approximately corresponding to the reflection angle of 48°, and that it does not depend on the initial photon energy.

  20. Application of the geothermal energy in the industrial processes

    International Nuclear Information System (INIS)

    Popovska-Vasilevska, Sanja

    2001-01-01

    In the worldwide practice, the geothermal energy application, as an alternative energy resource, can be of great importance. This is especially case in the countries where exceptional natural geothermal potential exists. Despite using geothermal energy for both greenhouses heating and balneology, the one can be successfully implemented in the heat requiring industrial processes. This kind of use always provides greater annual heat loading factor, since the industrial processes are not seasonal (or not the greater part of them). The quality of the geothermal resources that are available in Europe, dictates the use within the low-temperature range technological processes. However, these processes are significantly engaged in different groups of processing industries. But, beside this fact the industrial application of geothermal energy is at the beginning in the Europe. (Original)

  1. Progress in 3D Printing of Carbon Materials for Energy-Related Applications.

    Science.gov (United States)

    Fu, Kun; Yao, Yonggang; Dai, Jiaqi; Hu, Liangbing

    2017-03-01

    The additive-manufacturing (AM) technique, known as three-dimensional (3D) printing, has attracted much attention in industry and academia in recent years. 3D printing has been developed for a variety of applications. Printable inks are the most important component for 3D printing, and are related to the materials, the printing method, and the structures of the final 3D-printed products. Carbon materials, due to their good chemical stability and versatile nanostructure, have been widely used in 3D printing for different applications. Good inks are mainly based on volatile solutions having carbon materials as fillers such as graphene oxide (GO), carbon nanotubes (CNT), carbon blacks, and solvent, as well as polymers and other additives. Studies of carbon materials in 3D printing, especially GO-based materials, have been extensively reported for energy-related applications. In these circumstances, understanding the very recent developments of 3D-printed carbon materials and their extended applications to address energy-related challenges and bring new concepts for material designs are becoming urgent and important. Here, recent developments in 3D printing of emerging devices for energy-related applications are reviewed, including energy-storage applications, electronic circuits, and thermal-energy applications at high temperature. To close, a conclusion and outlook are provided, pointing out future designs and developments of 3D-printing technology based on carbon materials for energy-related applications and beyond. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. 75 FR 57911 - Application to Export Electric Energy; EDF Trading North America, LLC

    Science.gov (United States)

    2010-09-23

    ... DEPARTMENT OF ENERGY [OE Docket No. EA-373] Application to Export Electric Energy; EDF Trading...)). On August 30, 2010, DOE received an application from EDF for authority to transmit electric energy... service area. The electric energy that EDF proposes to export to Mexico would be surplus energy purchased...

  3. 75 FR 26202 - Application To Export Electric Energy; EDF Trading North America, LLC

    Science.gov (United States)

    2010-05-11

    ... DEPARTMENT OF ENERGY [OE Docket No. EA-367] Application To Export Electric Energy; EDF Trading...)). On April 27, 2010, DOE received an application from EDF for authority to transmit electric energy... franchised service area. The electric energy that EDF proposes to export to Canada would be surplus energy...

  4. Microscopic theory of the total reaction cross section and application to stable and exotic nuclei

    International Nuclear Information System (INIS)

    Hussein, M.S.; Rego, R.A.; Bertulani, C.A.

    1990-09-01

    The multiple scattering theory is used to develop a theoretical framework for the calculation of the heavy-ion total reaction order double scattering contribution to the ion-ion t sub(ρ1 ρ2) interaction is calculated and found to contribute at most 10% effect on σ sub(R). It is found that whereas at intermediate energies the t sub(ρ1ρ2) accounts reasonably well for the total reaction cross section, indicating the predominance, at these energies, of single nucleon knockout, it underestimates σ sub(R) at lower energies by a large amount. This is mainly due to the absence in t sub(ρ1ρ2) of fusion and inelastic surface excitation. The case of exotic (neutron-and proton-rich) nuclei is also discussed. (author) the absence

  5. 77 FR 39689 - Application To Export Electric Energy; IPR-GDF SUEZ Energy Marketing North America, Inc.

    Science.gov (United States)

    2012-07-05

    ... DEPARTMENT OF ENERGY [OE Docket No. EA-386] Application To Export Electric Energy; IPR-GDF SUEZ... applied for authority to transmit electric energy from the United States to Mexico pursuant to section 202... authority to transmit electric energy from the United States to Mexico for five years as a power marketer...

  6. Theory of energy level and its application in water-loop heat pump system

    International Nuclear Information System (INIS)

    Yu, Qi Dong

    2017-01-01

    Highlights: • Novel theory of saving energy and its application in water loop heat pump. • Reverse energy caused by units to water loop and its solution. • New method for determining the energy-saving range of water loop heat pump. • Capacity model of auxiliary heat source and its size for all building types. • Advice for reducing total energy consumption of water loop heat pump. - Abstract: It is a difficult problem to how to determine the reverse energy caused by units to water loop when a water-loop heat pump (WLHP) is in cooling and heating simultaneous mode, which not only has a great impact on energy-saving rate but also decides the use of auxiliary heat source in winter. This paper presents a theory of energy level to improve the research on WLHP system by using the relationship among building, circulating water and units. In this theory, the circulating water replaces building load as a new method to convert the reverse energy into energy change of circulating water and the equation of energy level also is built to determine the energy-saving range of WLHP system and report the capacity model of auxiliary heat source for all building types. An office building with different auxiliary powers is tested to analyze system operation characteristic and the effect of auxiliary heat source on unit and system and the results validate previous conclusions and suggest that an energy balance should be considered between units and auxiliary power to improve overall operation.

  7. Physics and applications of high energy density plasmas. Extreme state driven by pulsed electromagnetic energy

    Energy Technology Data Exchange (ETDEWEB)

    Horioka, Kazuhiko (ed.)

    2002-06-01

    The papers presented at the symposium on ''Physics and application of high energy density plasmas, held December 20-21, 2001 at NIFS'' are collected in this proceedings. The topics covered in the meeting include dense z-pinches, plasma focus, intense charged particle beams, intense radiation sources, discharge pumped X-ray lasers, their diagnostics, and applications of them. The papers reflect the present status and trends in the research field of high energy density plasmas. (author)

  8. Analysis of Photovoltaic Applications in Zero Energy Building Cases of IEA SHC/EBC Task 40/Annex 52

    Directory of Open Access Journals (Sweden)

    Jin-Hee Kim

    2015-07-01

    Full Text Available A Net Zero Energy Building (NZEB considerably reduces the building energy load through high efficiency equipment and passive elements such as building orientation, high insulation, natural daylighting, and ventilation in order to achieve zero energy balance with on-site energy production from renewable energy systems applied to the building. For a Zero Energy Building (ZEB, the heating energy demand can be significantly reduced with high insulation and air tightness, while the cooling energy demand can be curtailed by applying shading device, cross ventilation, etc. As such, the electrical energy demand for a ZEB is relatively higher than its heat energy demand. Therefore, the application of a Renewable Energy System (RES to produce electricity is necessary for a ZEB. In particular, Building Integrated Photovoltaic (BIPV systems that generate electricity can play an important role for achieving zero energy balance in buildings; BIPVs are multi-functional and there are many ways to apply them into buildings. This study comprehensively analyzes photovoltaic (PV applications in ZEB cases through the International Energy Agency Solar Heating and Cooling Programme (IEA SHC/Energy in Buildings and Communities Programme (EBC Task 40/Annex 52 activities, which include PV installation methods, PV cell type, and electricity generation. The most widely applied RES is the PV system, corresponding to 29 out of a total of 30 cases. Among the roof type PV systems, 71% were non-integrated. In addition, 14 of the 27 cases in which PV systems were applied, satisfied over 100% of the electricity energy demand from the PV system and were found to generate surplus electrical power.

  9. Total Factor Productivity and Energy Intensity in Indian Manufacturing: A Cross-Sectional Study

    Directory of Open Access Journals (Sweden)

    Santosh Kumar Sahu

    2011-01-01

    Full Text Available The objective of the paper is to estimate the transcendental logarithmic production function and further study the determinants of total factor productivity (TFP of Indian manufacturing industries. The estimation of TFP is based on four inputs model, where apart from labour and capital, material and energy are the other two inputs. The findings of the paper suggest that labour and material inputs play major role as compared to the capital and energy input. Age of the firm, ownership, energy intensity, embodied and disembodied technology imports, research and development and exports were considered as the possible determinants of the TFP in the second stage regression. The finding of the estimates suggest that age of the firm, export intensity and disembodied technology import are positively related to the TFP, where ownership, energy intensity, embodied technology import and R&D intensity are negatively related to the TFP of the firms for Indian manufacturing.

  10. The Impact of Environmental Regulation on Total Factor Energy Efficiency: A Cross-Region Analysis in China

    Directory of Open Access Journals (Sweden)

    Jianting Lin

    2017-10-01

    Full Text Available Environmental regulations are the key measure by which governments achieve sustainable environmental and economic development. This study aimed to determine the direct and indirect impacts of environmental regulations on total factor energy efficiency of regions in China. Since regions have different levels of economic development and resource endowment, we used the slacks-based measure (SBM-undesirable model to calculate total factor energy efficiency considering regional technology heterogeneity and examined the regional impacts of environmental regulation on this efficiency using the Tobit regression model. A positive direct impact was generated in the eastern region of China by the forced mechanism, which forced enterprises to reduce fossil fuel energy demand and increase clean energy consumption; whereas a negative direct impact was generated in the middle and western regions owing to the green paradox, which is the observation that expected stringent environmental regulation prompts energy owners to accelerate resource extraction. Moreover, indirect impacts through technological progress and foreign direct investment were taken into account in the model, and the results show that the indirect impacts vary across regions. A logical response to these findings would be to develop different policies for different regions.

  11. Hubbard-U corrected Hamiltonians for non-self-consistent random-phase approximation total-energy calculations

    DEFF Research Database (Denmark)

    Patrick, Christopher; Thygesen, Kristian Sommer

    2016-01-01

    In non-self-consistent calculations of the total energy within the random-phase approximation (RPA) for electronic correlation, it is necessary to choose a single-particle Hamiltonian whose solutions are used to construct the electronic density and noninteracting response function. Here we...... investigate the effect of including a Hubbard-U term in this single-particle Hamiltonian, to better describe the on-site correlation of 3d electrons in the transitionmetal compounds ZnS, TiO2, and NiO.We find that the RPA lattice constants are essentially independent of U, despite large changes...... in the underlying electronic structure. We further demonstrate that the non-selfconsistent RPA total energies of these materials have minima at nonzero U. Our RPA calculations find the rutile phase of TiO2 to be more stable than anatase independent of U, a result which is consistent with experiments...

  12. Technical and economical aspects of wind energy applications in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Durstewitz, M; Hoppe-Kilpper, M; Kleinkauf, W [Inst. fuer Solare Energieversorgungstechnik e.V., Kassel (Germany)

    1996-12-31

    The use of renewable energy for the continuously growing global population is becoming increasingly important. These forms of energy not only broaden the urgently needed resource base, but are also free from emission of CO{sub 2}, SO{sub 2}, NO{sub x} etc. The Federal German Government early recognized this and has provided more than DEM 4000 million for this purpose since 1973. Together with Japan and the USA, Germany belongs to the three leading nations in the world in R and D on the application of renewable energy. It has by far the largest and most broadly based programme in Europe. The technical and economical progress of wind power is very promising in Germany. It has scale demonstration programme `250 MW Wind`. Since 1991 another important impetus has been the sources (wind power presently 0.1728 DEM/kWh). In 1994, the rated wind power capacity was doubled to 643 MW. Electricity production in 1994 was around 1000 million kWh or 0.2 % of total German electricity production. The often discussed goal of producing one or more per cent of the German electricity by wind power seems to be attainable on a medium time scale by modern medium scale wind turbines or even large scale turbines. This is based on the promise that various nontechnical barriers will be overcome. (author)

  13. Energy scavenging strain absorber: application to kinetic dielectric elastomer generator

    Science.gov (United States)

    Jean-Mistral, C.; Beaune, M.; Vu-Cong, T.; Sylvestre, A.

    2014-03-01

    Dielectric elastomer generators (DEGs) are light, compliant, silent energy scavengers. They can easily be incorporated into clothing where they could scavenge energy from the human kinetic movements for biomedical applications. Nevertheless, scavengers based on dielectric elastomers are soft electrostatic generators requiring a high voltage source to polarize them and high external strain, which constitutes the two major disadvantages of these transducers. We propose here a complete structure made up of a strain absorber, a DEG and a simple electronic power circuit. This new structure looks like a patch, can be attached on human's wear and located on the chest, knee, elbow… Our original strain absorber, inspired from a sailing boat winch, is able to heighten the external available strain with a minimal factor of 2. The DEG is made of silicone Danfoss Polypower and it has a total area of 6cm per 2.5cm sustaining a maximal strain of 50% at 1Hz. A complete electromechanical analytical model was developed for the DEG associated to this strain absorber. With a poling voltage of 800V, a scavenged energy of 0.57mJ per cycle is achieved with our complete structure. The performance of the DEG can further be improved by enhancing the imposed strain, by designing a stack structure, by using a dielectric elastomer with high dielectric permittivity.

  14. Technical and economical aspects of wind energy applications in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Durstewitz, M.; Hoppe-Kilpper, M.; Kleinkauf, W. [Inst. fuer Solare Energieversorgungstechnik e.V., Kassel (Germany)

    1995-12-31

    The use of renewable energy for the continuously growing global population is becoming increasingly important. These forms of energy not only broaden the urgently needed resource base, but are also free from emission of CO{sub 2}, SO{sub 2}, NO{sub x} etc. The Federal German Government early recognized this and has provided more than DEM 4000 million for this purpose since 1973. Together with Japan and the USA, Germany belongs to the three leading nations in the world in R and D on the application of renewable energy. It has by far the largest and most broadly based programme in Europe. The technical and economical progress of wind power is very promising in Germany. It has scale demonstration programme `250 MW Wind`. Since 1991 another important impetus has been the sources (wind power presently 0.1728 DEM/kWh). In 1994, the rated wind power capacity was doubled to 643 MW. Electricity production in 1994 was around 1000 million kWh or 0.2 % of total German electricity production. The often discussed goal of producing one or more per cent of the German electricity by wind power seems to be attainable on a medium time scale by modern medium scale wind turbines or even large scale turbines. This is based on the promise that various nontechnical barriers will be overcome. (author)

  15. Technical and economical aspects of wind energy applications in Germany

    International Nuclear Information System (INIS)

    Durstewitz, M.; Hoppe-Kilpper, M.; Kleinkauf, W.

    1995-01-01

    The use of renewable energy for the continuously growing global population is becoming increasingly important. These forms of energy not only broaden the urgently needed resource base, but are also free from emission of CO 2 , SO 2 , NO x etc. The Federal German Government early recognized this and has provided more than DEM 4000 million for this purpose since 1973. Together with Japan and the USA, Germany belongs to the three leading nations in the world in R and D on the application of renewable energy. It has by far the largest and most broadly based programme in Europe. The technical and economical progress of wind power is very promising in Germany. It has scale demonstration programme '250 MW Wind'. Since 1991 another important impetus has been the sources (wind power presently 0.1728 DEM/kWh). In 1994, the rated wind power capacity was doubled to 643 MW. Electricity production in 1994 was around 1000 million kWh or 0.2 % of total German electricity production. The often discussed goal of producing one or more per cent of the German electricity by wind power seems to be attainable on a medium time scale by modern medium scale wind turbines or even large scale turbines. This is based on the promise that various nontechnical barriers will be overcome. (author)

  16. 77 FR 20374 - Application To Export Electric Energy; WSPP Inc.

    Science.gov (United States)

    2012-04-04

    ... DEPARTMENT OF ENERGY [OE Docket No. EA-98-M] Application To Export Electric Energy; WSPP Inc... members to transmit electric energy from the United States to Canada, pursuant to section 202(e) of the... transmit electric energy from the United States to Canada. DATES: Comments, protests, or motions to...

  17. Energy Efficient FPGA based Hardware Accelerators for Financial Applications

    DEFF Research Database (Denmark)

    Kenn Toft, Jakob; Nannarelli, Alberto

    2014-01-01

    Field Programmable Gate Arrays (FPGAs) based accelerators are very suitable to implement application-specific processors using uncommon operations or number systems. In this work, we design FPGA-based accelerators for two financial computations with different characteristics and we compare...... the accelerator performance and energy consumption to a software execution of the application. The experimental results show that significant speed-up and energy savings, can be obtained for large data sets by using the accelerator at expenses of a longer development time....

  18. European Workshop on Renewable Rural Energy Applications in North-East Europe

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This workshop is a part of the E.C. Thermie B project `Dissemination of Promising Renewable Rural Energy Applications in North-Eastern Europe`. The presentations held in the workshop are collected in this publication. The subjects are: TEKES (Technology Development Centre) Boost Technology; Renewable Energy in Latvia; Rural Renewable energy (Prospects) in Estonia; Renewable energy from Rural Electrification; Techno-Economic Analysis published as a summary; Practical Experiences of Small-Scale Heat Generation from Fuelwood in Finland; Solar systems for Domestic Hot Water and Space Heating; Biomass for Energy: Small-Scale Technologies; Photovoltaic Applications for Rural Areas in the North-East Europe

  19. European Workshop on Renewable Rural Energy Applications in North-East Europe

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    This workshop is a part of the E.C. Thermie B project `Dissemination of Promising Renewable Rural Energy Applications in North-Eastern Europe`. The presentations held in the workshop are collected in this publication. The subjects are: TEKES (Technology Development Centre) Boost Technology; Renewable Energy in Latvia; Rural Renewable energy (Prospects) in Estonia; Renewable energy from Rural Electrification; Techno-Economic Analysis published as a summary; Practical Experiences of Small-Scale Heat Generation from Fuelwood in Finland; Solar systems for Domestic Hot Water and Space Heating; Biomass for Energy: Small-Scale Technologies; Photovoltaic Applications for Rural Areas in the North-East Europe

  20. 40 CFR 73.83 - Secretary of Energy's action on net income neutrality applications.

    Science.gov (United States)

    2010-07-01

    ... Renewable Energy Reserve § 73.83 Secretary of Energy's action on net income neutrality applications. (a) First come, first served. The Secretary of Energy will process and certify net income neutrality... of Energy determines that the net income neutrality certification application does not meet the...

  1. Energy Device Applications of Synthesized 1D Polymer Nanomaterials.

    Science.gov (United States)

    Huang, Long-Biao; Xu, Wei; Hao, Jianhua

    2017-11-01

    1D polymer nanomaterials as emerging materials, such as nanowires, nanotubes, and nanopillars, have attracted extensive attention in academia and industry. The distinctive, various, and tunable structures in the nanoscale of 1D polymer nanomaterials present nanointerfaces, high surface-to-volume ratio, and large surface area, which can improve the performance of energy devices. In this review, representative fabrication techniques of 1D polymer nanomaterials are summarized, including electrospinning, template-assisted, template-free, and inductively coupled plasma methods. The recent advancements of 1D polymer nanomaterials in energy device applications are demonstrated. Lastly, existing challenges and prospects of 1D polymer nanomaterials for energy device applications are presented. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Market Potential for Non-electric Applications of Nuclear Energy

    International Nuclear Information System (INIS)

    Konishi, T.; Kononov, S.; Kupitz, J.; McDonald, A.; Rogner, H.H.; Nisan, S.

    2002-01-01

    The paper presents results of a recent IAEA study to assess the market potential for non-electric applications of nuclear energy in the near (before 2020) and long term (2020-2050). The applications covered are district heating, desalination, industrial heat supply, ship propulsion, energy supply for spacecraft, and, to a lesser extent, 'innovative' applications such as hydrogen production, coal gasification, etc. While technical details are covered only briefly, emphasis is placed on economics and other factors that may promote or hinder the penetration of nuclear options in the markets for non-electric energy services. The study makes a distinction between the market size (demand for a given service) and the market potential for nuclear penetration (which may be smaller because of technical or non-technical constraints). Near-term nuclear prospects are assessed on the basis of on-going projects in the final stages of design or under construction. For the long term, use has been made of a qualitative scale ranging from 0 to 2 for five critical areas: market structure, demand pressure, technical basis, economic competitiveness, and public acceptance. The paper presents the resulting evaluation of long-term prospects for nuclear energy entering into non-electric markets. (authors)

  3. 77 FR 11515 - Application To Export Electric Energy; Pilot Power Group, Inc.

    Science.gov (United States)

    2012-02-27

    ... reliability of the U.S. electric power supply system. Copies of this application will be made available, upon... DEPARTMENT OF ENERGY [OE Docket No. EA-383] Application To Export Electric Energy; Pilot Power... application. SUMMARY: Pilot Power Group, Inc. (Pilot Power) has applied for authority to transmit electric...

  4. Electromagnetic energy applications in lunar resource mining and construction

    International Nuclear Information System (INIS)

    Lindroth, D.P.; Podnieks, E.R.

    1988-01-01

    Past work during the Apollo Program and current efforts to determine extraterrestrial mining technology requirements have led to the exploration of various methods applicable to lunar or planetary resource mining and processing. The use of electromagnetic energy sources is explored and demonstrated using laboratory methods to establish a proof of concept for application to lunar mining, construction, and resource extraction. Experimental results of using laser, microwave, and solar energy to fragment or melt terrestrial basal under atmospheric and vacuum conditions are presented. Successful thermal stress fragmentation of dense igneous rock was demonstrated by all three electromagnetic energy sources. The results show that a vacuum environment has no adverse effects on fragmentation by induced thermal stresses. The vacuum environment has a positive effect for rock disintegration by melting, cutting, or penetration applications due to release of volatiles that assist in melt ejection. Consolidation and melting of basaltic fines are also demonstrated by these methods

  5. Utilization of superconductivity in energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, J.T.; Mikkonen, R.; Lahtinen, M.; Paasi, J. [Tampere Univ. of Technology (Finland). Laboratory of Electricity and Magnetism

    1998-12-31

    The technical potential of high temperature superconductors has been demonstrated in energy power applications. The magnetisation coils of the constructed 1.5 kW synchronous motor are made of bismuth-based material, the efficiency of the motor being 82 %. The same material is utilised in a 5 kJ magnetic energy storage in order to compensate for a short-term loss of power. Fast activation time and high efficiency are the benefits compared to traditional UPS systems. The operation temperature of 20-30 K enables the usage of mechanical cooling which is one major advantage compared to conventional liquid helium cooled systems. (orig.)

  6. Centrifugal Spinning and Its Energy Storage Applications

    Science.gov (United States)

    Yao, Lu

    Lithium-ion batteries (LIBs) and supercapacitors are important electrochemical energy storage systems. LIBs have high specific energy density, long cycle life, good thermal stability, low self-discharge, and no memory effect. However, the low abundance of Li in the Earth's crust and the rising cost of LIBs urge the attempts to develop alternative energy storage systems. Recently, sodium-ion batteries (SIBs) have become an attractive alternative to LIBs due to the high abundance and low cost of Na. Although the specific capacity and energy density of SIBs are not as high as LIBs, SIBs can still be promising power sources for certain applications such as large-scale, stationary grids. Supercapacitors are another important class of energy storage devices. Electric double-layer capacitors (EDLCs) are one important type of supercapacitors and they exhibit high power density, long cycle life, excellent rate capability and environmental friendliness. The potential applications of supercapacitors include memory protection in electronic circuitry, consumer portable electronic devices, and electrical hybrid vehicles. The electrochemical performance of SIBs and EDLCs is largely dependent on the electrode materials. Therefore, development of superior electrodes is the key to achieve highperformance alternative energy storage systems. Recently, one-dimensional nano-/micro-fiber based electrodes have become promising candidates in energy storage because they possess a variety of desirable properties including large specific surface area, well-guided ionic/electronic transport, and good electrode-electrolyte contact, which contribute to enhanced electrochemical performance. Currently, most nano-/micro-fiber based electrodes are prepared via electrospinning method. However, the low production rate of this approach hinders its practical application in the production of fibrous electrodes. Thus, it is significantly important to employ a rapid, low-cost and scalable nano

  7. Integrated Autopilot/Autothrottle Based on a Total Energy Control Concept: Design and Evaluation of Additional Autopilot Modes

    Science.gov (United States)

    Bruce, Kevin R.

    1988-01-01

    An integrated autopilot/autothrottle system was designed using a total energy control design philosophy. This design ensures that the system can differentiate between maneuvers requiring a change in thrust to accomplish a net energy change, and those maneuvers which only require elevator control to redistribute energy. The system design, the development of the system, and a summary of simulation results are defined.

  8. On the dependence of quasipotential on the total energy of a two-particle system

    International Nuclear Information System (INIS)

    Kapshaj, V.N.; Savrin, V.I.

    1986-01-01

    For a system of two relativistic particles described in the framework of the Logunov-Tavkhelidze one-time approach the dependence is calculated of the one-boson exchange potential on the total energy of the system. It is shown that in spite of a nonlocal form of the quasipotential obtained, three-dimensional equations for the wave function are reduced to one-dimensional ones by means of partial expansion. Influence of the energy dependence of the quasipotential on its behaviour in the coordinate representation is discussed

  9. The trends in total energy, macronutrients and sodium intake among Japanese: findings from the 1995-2016 National Health and Nutrition Survey.

    Science.gov (United States)

    Saito, Aki; Imai, Shino; Htun, Nay Chi; Okada, Emiko; Yoshita, Katsushi; Yoshiike, Nobuo; Takimoto, Hidemi

    2018-06-04

    Monitoring nutritional status of the population is essential in the development and evaluation of national or local health policies. In this study, we aimed to demonstrate analysis on the trends in dietary intake of energy and macronutrients, as well as Na, in Japanese population using the data of series of cross-sectional national surveys - the National Nutrition Survey (NNS) and the National Health Nutrition Survey (NHNS) - during the period from 1995 to 2016. The NNS and NHNS participants aged 20-79 years were included in the analysis. Dietary intake was estimated using 1-d household-based dietary record. The trend in total energy intake, energy intake from macronutrients (fat and protein), Na intake and energy-adjusted Na intake were analysed using regression models adjusted to 2010 age distribution and anthropometry status. A total of 94 270 men and 107 890 women were included the analysis. Total energy intake showed a decreasing trend in both men and women. Similarly, energy intake from protein decreased, but energy intake (%) from fat increased in both sexes. Energy-adjusted Na intake showed a decreasing trend in both men and women. This study identified the decrease in total energy intake and energy intake from protein, whereas there were inverse trends in energy intake from fat among Japanese adults. Continued monitoring of trends in dietary intake will be needed, and there should be efforts to increase the accuracy of current survey procedures.

  10. Analytics for smart energy management tools and applications for sustainable manufacturing

    CERN Document Server

    Oh, Seog-Chan

    2016-01-01

    This book introduces the issues and problems that arise when implementing smart energy management for sustainable manufacturing in the automotive manufacturing industry and the analytical tools and applications to deal with them. It uses a number of illustrative examples to explain energy management in automotive manufacturing, which involves most types of manufacturing technology and various levels of energy consumption. It demonstrates how analytical tools can help improve energy management processes, including forecasting, consumption, and performance analysis, emerging new technology identification as well as investment decisions for establishing smart energy consumption practices. It also details practical energy management systems, making it a valuable resource for professionals involved in real energy management processes, and allowing readers to implement the procedures and applications presented.

  11. Energy and economic analysis of total energy systems for residential and commercial buildings. [utilizing waste heat recovery techniques

    Science.gov (United States)

    Maag, W. L.; Bollenbacher, G.

    1974-01-01

    Energy and economic analyses were performed for an on-site power-plant with waste heat recovery. The results show that for any specific application there is a characteristic power conversion efficiency that minimizes fuel consumption, and that efficiencies greater than this do not significantly improve fuel consumption. This type of powerplant appears to be a reasonably attractive investment if higher fuel costs continue.

  12. Seismic Applications of Energy Dampers

    OpenAIRE

    Shambhu Sinha

    2004-01-01

    Damping devices based on the operating principle of high velocity fluid flow through orifices have found numerous applications in the shock and vibration isolation of aerospace and defence systems. The study aims to investigate the feasibility of using energy dissipating fluid viscous dampers in structures to protect against seismic loads and to prove analytically and  experimentally that fluid viscous dampers can improve the seismic capacity of a structure by reducing damage and displacement...

  13. U.S. DOE Southeast Clean Energy Application Center

    Energy Technology Data Exchange (ETDEWEB)

    Panzarella, Isaac [North Carolina State Univ., Raleigh, NC (United States); Mago, Pedro [North Carolina State Univ., Raleigh, NC (United States); Kalland, Stephen [North Carolina State Univ., Raleigh, NC (United States)

    2013-12-31

    Between 2010 and 2013, the U.S. Department of Energy (DOE) funded the Southeast Clean Energy Application Center (SE-CEAC), co-located at the North Carolina Solar Center at NC State University (NCSU) and at Mississippi State University. The SE-CEAC was one of eight regional CEACs established to promote and assist in transforming the market for combined heat and power (CHP), district energy (DE) and waste heat to power (WHP) throughout the U.S. CHP locates power generation at the point of demand and makes productive use of the residual thermal energy for process and space heating in factories and businesses, thus lowering the cost of meeting electricity and heat requirements and increasing energy efficiency. The overall goal of the SE-CEAC was to support end-user implementation and overall market transformation for CHP and related clean energy technologies. Five objectives were targeted to achieve the goal: 1. Market Analysis and Information Dissemination 2. Outreach and Education for Potential CHP End-users 3. Policy Support for State and Regional Stakeholders 4. Technical Assistance to Support CHP Deployment 5. Collaboration with DOE and other CEACs Throughout the project, the CEACs provided key services of education and outreach, technical assistance and market analysis in support of project objectives. These services were very effective at achieving key objectives of assisting prospective CHP end-users and informing policy makers, utilities and others about the benefits of CHP. There is a marked increase in the awareness of CHP technologies and applications as an energy resource among end-users, policymakers, utility regulators, electric utilities and natural gas utilities in the Southeast region as a result. At the end of 2013, a number of best-practice policies for CHP were applied or under consideration in various Southeast states. The SE-CEAC met its targets for providing technical assistance with over 50 analyses delivered for 412 MW of potential end

  14. U.S. DOE Intermountain Clean Energy Application Center

    Energy Technology Data Exchange (ETDEWEB)

    Case, Patti [Etc Group, LLC, Salt Lake City, UT (United States)

    2013-09-30

    The Intermountain Clean Energy Application Center helped promote, assist, and transform the market for combined heat and power (CHP), including waste heat to power and district energy with CHP, in the intermountain states of Arizona, Colorado, New Mexico, Utah, and Wyoming. We accomplished these objectives through a combination of the following methods, which proved in concert to be a technically and economically effective strategy: o Identifying and facilitating high-impact CHP projects o Helping industrial, commercial, institutional, federal, and other large energy users in evaluating the economic and technical viability of potential CHP systems o Disseminating essential information about CHP including benefits, technologies, applications, project development, project financing, electric and gas utility incentives, and state policies o Coordinating and collaborating on CHP advancement with regional stakeholders including electric utilities, gas utilities, state energy offices, municipal development and planning personnel, trade associations, industry groups, non-profits, energy users, and others Outcomes of the project included increased understanding of and deployment of efficient and well-designed CHP systems in the states of Arizona, Colorado, New Mexico, Utah, and Wyoming. Increased CHP deployment helps the United States to enhance energy efficiency, strengthen the competitiveness of American industries, promote economic growth, foster a robust and resilient energy infrastructure, reduce emissions of air pollutants and greenhouse gases, and increase the use of market-ready advanced technologies. Specific outcomes included direct assistance to energy-intensive industrial facilities and other businesses, workshops and CHP tours, communication materials, and state policy education, all contributing to implementation of CHP systems in the intermountain region.

  15. Metal chalcogenide nanostructures for renewable energy applications

    CERN Document Server

    Qurashi, Ahsanulhaq

    2014-01-01

    This first ever reference book that focuses on metal chalcogenide semiconductor nanostructures for renewable energy applications encapsulates the state-of-the-art in multidisciplinary research on the metal chalcogenide semiconductor nanostructures (nanocrystals, nanoparticles, nanorods, nanowires,  nanobelts, nanoflowers, nanoribbons and more).  The properties and synthesis of a class of nanomaterials is essential to renewable energy manufacturing and this book focuses on the synthesis of metal chalcogendie nanostructures, their growth mechanism, optical, electrical, and other important prop

  16. Electrocatalytic Metal-Organic Frameworks for Energy Applications.

    Science.gov (United States)

    Downes, Courtney A; Marinescu, Smaranda C

    2017-11-23

    With the global energy demand expected to increase drastically over the next several decades, the development of a sustainable energy system to meet this increase is paramount. Renewable energy sources can be coupled with electrochemical conversion processes to store energy in chemical bonds. To promote these difficult transformations, electrocatalysts that operate at high conversion rates and efficiency are required. Metal-organic frameworks (MOFs) have emerged as a promising class of materials; however, the insulating nature of MOFs has limited their application as electrocatalysts. The recent development of conductive MOFs has led to several electrocatalytic MOFs that display activity comparable to that of the best-performing heterogeneous catalysts. Although many electrocatalytic MOFs exhibit low activity and stability, the few successful examples highlight the possibility of MOF electrocatalysts as replacements for noble-metal-based catalysts in commercial energy-converting devices. We review herein the use of pristine MOFs as electrocatalysts to facilitate important energy-related reactions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Thermodynamic performance assessment of wind energy systems: An application

    International Nuclear Information System (INIS)

    Redha, Adel Mohammed; Dincer, Ibrahim; Gadalla, Mohamed

    2011-01-01

    In this paper, the performance of wind energy system is assessed thermodynamically, from resource and technology perspectives. The thermodynamic characteristics of wind through energy and exergy analyses are considered and both energetic and exergetic efficiencies are studied. Wind speed is affected by air temperature and pressure and has a subsequent effect on wind turbine performance based on wind reference temperature and Bernoulli's equation. VESTAS V52 wind turbine is selected for (Sharjah/UAE). Energy and exergy efficiency equations for wind energy systems are further developed for practical applications. The results show that there are noticeable differences between energy and exergy efficiencies and that exergetic efficiency reflects the right/actual performance. Finally, exergy analysis has been proven to be the right tool used in design, simulation, and performance evaluation of all renewable energy systems. -- Highlights: → In this research the performance of wind energy system is assessed thermodynamically, from resource and technology perspectives. → Energy and exergy equations for wind energy systems are further developed for practical applications. → Thermodynamic characteristics of wind turbine systems through energetic and exergetic efficiencies are evaluated from January till March 2010. → Exergy efficiency describes the system irreversibility and the minimum irreversibility exists when the wind speed reaches 11 m/s. → The power production during March was about 17% higher than the month of February and 66% higher than January.

  18. Relativistic analysis of the dielectric Einstein box: Abraham, Minkowski and total energy-momentum tensors

    International Nuclear Information System (INIS)

    Ramos, Tomas; Rubilar, Guillermo F.; Obukhov, Yuri N.

    2011-01-01

    Highlights: → The definition of the momentum of light inside matter is studied. → Fully relativistic analysis of the dielectric 'Einstein box' thought experiment. → Minkowski, Abraham and the total energy-momentum tensors are derived in detail. → Some assumptions hidden in the usual Einstein box argument are identified. → The Abraham momentum is not uniquely selected as the momentum of light in this case. - Abstract: We analyse the 'Einstein box' thought experiment and the definition of the momentum of light inside matter. We stress the importance of the total energy-momentum tensor of the closed system (electromagnetic field plus material medium) and derive in detail the relativistic expressions for the Abraham and Minkowski momenta, together with the corresponding balance equations for an isotropic and homogeneous medium. We identify some assumptions hidden in the Einstein box argument, which make it weaker than it is usually recognized. In particular, we show that the Abraham momentum is not uniquely selected as the momentum of light in this case.

  19. 75 FR 78979 - Application to Export Electric Energy; Twin Rivers Paper Company Inc.

    Science.gov (United States)

    2010-12-17

    ... DEPARTMENT OF ENERGY [OE Docket No. EA-366] Application to Export Electric Energy; Twin Rivers... electric energy from the United States to Canada pursuant to section 202(e) of the Federal Power Act. DATES... received an application from Twin Rivers for authority to transmit electric energy from the United States...

  20. Measurements of Daily Energy Intake and Total Energy Expenditure in People with Dementia in Care Homes: The Use of Wearable Technology.

    Science.gov (United States)

    Murphy, J; Holmes, J; Brooks, C

    2017-01-01

    To estimate daily total energy expenditure (TEE) using a physical activity monitor, combined with dietary assessment of energy intake to assess the relationship between daily energy expenditure and patterns of activity with energy intake in people with dementia living in care homes. A cross-sectional study in care homes in the UK. Twenty residents with confirmed dementia diagnosis were recruited from two care homes that specialised in dementia care. A physical activity monitor (SensewearTM Armband, Body Media, Pittsburgh, PA) was employed to objectively determine total energy expenditure, sleep duration and physical activity. The armband was placed around the left upper triceps for up to 7 days. Energy intake was determined by weighing all food and drink items over 4 days (3 weekdays and 1 weekend day) including measurements of food wastage. The mean age was 78.7 (SD ± 11.8) years, Body Mass Index (BMI) 23.0 (SD ± 4.2) kg/m2; 50% were women. Energy intake (mean 7.4; SD ± 2.6) MJ/d) was correlated with TEE (mean 7.6; SD ± 1.8 MJ/d; r=0.49, p<0.05). Duration of sleeping ranged from 0.4-12.5 (mean 6.1) hrs/d and time spent lying down was 1.3-16.0 (8.3) hrs/d. On average residents spent 17.9 (6.3-23.4) hrs/d undertaking sedentary activity. TEE was correlated with BMI (r=0.52, p<0.05) and body weight (r=0.81, p<0.001) but inversely related to sleep duration (r=-0.59, p<0.01) and time lying down (r=-0.62, p<0.01). Multiple linear regression analysis revealed that after taking BMI, sleep duration and time spent lying down into account, TEE was no longer correlated with energy intake. The results show the extent to which body mass, variable activity and sleep patterns may be contributing to TEE and together with reduced energy intake, energy requirements were not satisfied. Thus wearable technology has the potential to offer real-time monitoring to provide appropriate nutrition management that is more person-centred to prevent weight loss in dementia.

  1. Solar energy applications in transportation facilities : a literature review.

    Science.gov (United States)

    1978-01-01

    This report presents the results of a survey of the literature and other sources to determine the types of application that have been made of solar energy in the transportation field. The use of solar energy for powering automatic traffic counters, v...

  2. TX 2000: total reflection and 45o energy dispersive x-ray fluorescence spectrometer

    International Nuclear Information System (INIS)

    Pasti, F.; Torboli, A.; Valdes, M.

    2000-01-01

    This equipment, developed by Ital Structures, combines two kinds of energy dispersive X-ray fluorescence techniques, the first using total reflection geometry and the second conventional 45 o geometry. The equipment is completely controlled by a PC and to reach the condition of total reflection is very easy because it is enough to load the file with the right position for the corresponding energy. In this apparatus we used an x-ray tube with an alloy anode of Mo/W with a long fine focus at 2200 W. To monochromatize the x-ray beam while choosing, for example, the Mo K alpha or W L alpha or a piece of white spectrum of 33 keV, we use a highly reflective multilayer made of Si/W with 2d = 45.5 A o . The detector used in the equipment is a lithium drifted silicon detector (Si(Li)) with an excellent energy resolution of 135 eV at 5.9 keV and 1000 cps. We developed two programs written in Windows 95, 98 and NT for a 32 bit microprocessor. The first one is called TYACQ32 and has the following functions: first, complete control of the hardware, second automatic alignment of the TX 2000 spectrometer and third acquisition of spectra. The second program is EDXRF32. This is a program to accomplish spectrum and quantitative analysis for TXRF and EDXRF 45 o degrees analysis. (author)

  3. Potency of Solar Energy Applications in Indonesia

    Directory of Open Access Journals (Sweden)

    Noer Abyor Handayani

    2012-07-01

    Full Text Available Currently, 80% of conventional energy is used to fulfill general public's needs andindustries. The depletion of oil and gas reserves and rapid growth in conventional energyconsumption have continuously forced us to discover renewable energy sources, like solar, wind,biomass, and hydropower, to support economic development in the future. Solar energy travels at aspeed of 186,000 miles per second. Only a small part of the radiant energy that the sun emits intospace ever reaches the Earth, but that is more than enough to supply all our energy demand.Indonesia is a tropical country and located in the equator line, so it has an abundant potential ofsolar energy. Most of Indonesian area get enough intensity of solar radiation with the average dailyradiation around 4 kWh/m2. Basically, the solar systems use solar collectors and concentrators forcollecting, storing, and using solar radiation to be applied for the benefit of domestics, commercials,and industrials. Common applications for solar thermal energy used in industry are the SWHs, solardryers, space heating, cooling systems and water desalination.

  4. Achievement report on surveys and researches in the Sunshine Project in fiscal 1980. Surveys and researches on total energy systems; 1980 nendo total energy system ni kansuru chosa kenkyu seika hokokusho yoyaku

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-06-01

    Identifying the energy demand system as a total system covering from energy generation to the ultimate utilization, a quantitative and theoretical analysis method was developed in achieving selection and development of long-term strategy of Japan for 50 years from about 1975 to about 2025. Development was made on a supply estimation model by using the system dynamics method, that includes international fluctuation factors in primary energy supply structure and time-based relevant elements. Improvements were made in several occasions on the demand estimation model that includes movements of Japan's industrial structures and nation's needs for living, and fluctuation factors of population configuration. Development and improvement were made on the energy flow model to link the supply side with the demand side and analyze the energy flow. In addition, efforts were made on arranging data for inputting these models (data collection, putting them in order, and processing). These models are now in the phase of practical use, and three models have also been nearly completed. Quantitative analysis will be possible if arranging the input database is continued. (NEDO)

  5. High Energy Density Dielectrics for Pulsed Power Applications

    National Research Council Canada - National Science Library

    Wu, Richard L; Bray, Kevin R

    2008-01-01

    This report was developed under a SBIR contract. Aluminum oxynitride (AlON) capacitors exhibit several promising characteristics for high energy density capacitor applications in extreme environments...

  6. Institutional origins of the Department of Energy: the Office of Military Application. Energy History Series Volume 1, No. 1

    International Nuclear Information System (INIS)

    Anders, R.M.

    1980-08-01

    The Department of Energy Organization Act of 1977 brought together for the first time in one department most of the government's energy programs. With these programs came a score of organizational entities, each with its own history and traditions, from a dozen departments and independent agencies. This report traces the history of the Office of Military Application, from its inception as the Division of Military Application in the Atomic Energy Commission, through the Energy Research and Development Administration to its present status as an office in the Department of Energy

  7. Variability in the reported energy, total fat and saturated fat contents in fast-food products across ten countries.

    Science.gov (United States)

    Ziauddeen, Nida; Fitt, Emily; Edney, Louise; Dunford, Elizabeth; Neal, Bruce; Jebb, Susan A

    2015-11-01

    Fast foods are often energy dense and offered in large serving sizes. Observational data have linked the consumption of fast foods to an increased risk of obesity and related diseases. We surveyed the reported energy, total fat and saturated fat contents, and serving sizes, of fast-food items from five major chains across ten countries, comparing product categories as well as specific food items available in most countries. MRC Human Nutrition Research, Cambridge, UK. Data for 2961 food and drink products were collected, with most from Canada (n 550) and fewest from the United Arab Emirates (n 106). There was considerable variability in energy and fat contents of fast foods across countries, reflecting both the portfolio of products and serving size variability. Differences in total energy between countries were particularly noted for chicken dishes (649-1197 kJ/100 g) and sandwiches (552-1050 kJ/100g). When comparing the same product between countries variations were consistently observed in total energy and fat contents (g/100 g); for example, extreme variation in McDonald's Chicken McNuggets with 12 g total fat/100 g in Germany compared with 21·1 g/100 g in New Zealand. These cross-country variations highlight the possibility for further product reformulation in many countries to reduce nutrients of concern and improve the nutritional profiles of fast-food products around the world. Standardisation of serving sizes towards the lower end of the range would also help to reduce the risk of overconsumption.

  8. Variability in the reported energy, total fat and saturated fat content in fast food products across ten countries

    Science.gov (United States)

    Ziauddeen, Nida; Fitt, Emily; Edney, Louise; Dunford, Elizabeth; Neal, Bruce; Jebb, Susan A.

    2016-01-01

    Objective Fast foods are often energy dense and offered in large serving sizes. Observational data has linked the consumption of fast food to an increased risk of obesity and related diseases. Design We surveyed the reported energy, total fat and saturated fat contents, and serving sizes, of fast food items from five major chains across 10 countries, comparing product categories as well as specific food items available in most countries. Setting MRC Human Nutrition Research (HNR), Cambridge Subjects Data for 2961 food and drink products were collected, with most from Canada (n=550) and fewest from United Arab Emirates (n=106). Results There was considerable variability in energy and fat content of fast food across countries, reflecting both the portfolio of products, and serving size variability. Differences in total energy between countries were particularly noted for chicken dishes (649-1197kJ/100g) and sandwiches (552-1050kJ/100g). When comparing the same product between countries variations were consistently observed in total energy and fat content (g/100g) with extreme variation in McDonald’s Chicken McNuggets with 12g total fat (g/100g) in Germany compared to 21.1g in New Zealand. Conclusions These cross-country variations highlight the possibility for further product reformulation in many countries to reduce nutrients of concern and improve the nutritional profiles of fast food products around the world. Standardisation of serving sizes towards the lower end of the range would also help to reduce the risk of overconsumption. PMID:25702788

  9. The CUNY Energy Institute Electrical Energy Storage Development for Grid Applications

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Sanjoy

    2013-03-31

    1. Project Objectives The objectives of the project are to elucidate science issues intrinsic to high energy density electricity storage (battery) systems for smart-grid applications, research improvements in such systems to enable scale-up to grid-scale and demonstrate a large 200 kWh battery to facilitate transfer of the technology to industry. 2. Background Complex and difficult to control interfacial phenomena are intrinsic to high energy density electrical energy storage systems, since they are typically operated far from equilibrium. One example of such phenomena is the formation of dendrites. Such dendrites occur on battery electrodes as they cycle, and can lead to internal short circuits, reducing cycle life. An improved understanding of the formation of dendrites and their control can improve the cycle life and safety of many energy storage systems, including rechargeable lithium and zinc batteries. Another area where improved understanding is desirable is the application of ionic liquids as electrolytes in energy storage systems. An ionic liquid is typically thought of as a material that is fully ionized (consisting only of anions and cations) and is fluid at or near room temperature. Some features of ionic liquids include a generally high thermal stability (up to 450 °C), a high electrochemical window (up to 6 V) and relatively high intrinsic conductivities. Such features make them attractive as battery or capacitor electrolytes, and may enable batteries which are safer (due to the good thermal stability) and of much higher energy density (due to the higher voltage electrode materials which may be employed) than state of the art secondary (rechargeable) batteries. Of particular interest is the use of such liquids as electrolytes in metal air batteries, where energy densities on the order of 1-2,000 Wh / kg are possible; this is 5-10 times that of existing state of the art lithium battery technology. The Energy Institute has been engaged in the

  10. Turkey's energy efficiency assessment: White Certificates Systems and their applicability in Turkey

    International Nuclear Information System (INIS)

    Duzgun, B.; Komurgoz, G.

    2014-01-01

    The last decade has seen an increase in the importance of energy efficiency and the sustainable use of energy resources due to their significant benefits for reducing a country's dependence on foreign energy resources and increasing awareness on environmental problems. Turkey aims to reduce its energy intensity by 20% up to 2023, and in order to accomplish this target, the country plans to use energy more effectively in various industries and develop financial mechanisms for energy efficiency. Although much effort has been made to improve energy efficiency, additional policies such as marked-based incentives are still necessary. This article deals with one of the many market-based energy efficiency policies, called Tradable White Certificates (WhC) or Energy Efficiency Obligations. The current situation of the energy field in Turkey and energy consumption by industries is presented first in this paper, followed by potentials for energy efficiency in each industry and energy efficiency policies. Furthermore, the theory and applicability of a WhC System is introduced and discussed in terms of market conditions, choice of obligated participants and market mechanisms and barriers for the Turkish electricity and natural gas market to benefit from the residential and industrial energy savings potential. - Highlights: • Energy efficiency is the most effective way to reduce foreign energy dependency. • Turkey aims reducing at least 20% of energy intensity in the year 2023. • Energy consumption of industry is 35% of total energy consumption in Turkey. • Marked based policy elements create new opportunities in environmental markets. • WhC System can be implemented in PMUM under the control of regulatory authority

  11. Review on energy harvesting for structural health monitoring in aeronautical applications

    Science.gov (United States)

    Le, Minh Quyen; Capsal, Jean-Fabien; Lallart, Mickaël; Hebrard, Yoann; Van Der Ham, Andre; Reffe, Nicolas; Geynet, Lionel; Cottinet, Pierre-Jean

    2015-11-01

    This paper reviews recent developments in energy harvesting technologies for structural health monitoring (SHM) in aeronautical applications. Aeronautical industries show a great deal of interest in obtaining technologies that can be used to monitor the health of machinery and structures. In particular, the need for self-sufficient monitoring of structures has been ever-increasing in recent years. Autonomous SHM systems typically include embedded sensors, and elements for data acquisition, wireless communication, and energy harvesting. Among all of these components, this paper focuses on energy harvesting technologies. Actually, low-power sensors and wireless communication components are used in newer SHM systems, and a number of researchers have recently investigated such techniques to extract energy from the local environment to power these stand-alone systems. The first part of the paper is dedicated to the different energy sources available in aeronautical applications, i.e., for airplanes and helicopters. The second part gives a presentation of the various devices developed for converting ambient energy into electric power. The last part is dedicated to a comparison of the different technologies and the future development of energy harvesting for aeronautical applications.

  12. Measurement of total body radioactivity in man

    International Nuclear Information System (INIS)

    Naversten, Y.

    1982-01-01

    Techniques for the determination of whole-body radioactivity in man using uncollimated NaI(Tl) detectors have been studied. Geometrical effects and photon attenuation effects due to the different shapes of humans as well as due to varying in-vivo radioactivity distributions have been evaluated particularly for scanning-bed geometries and the chair geometry. Theoretically it is shown that the attenuation effects are generally dominating, for full-energy-peak pulse-range methods. For the application in radiation protection a cheap and simple chair-geometry unit has been constructed and used at various places distantly from the home-laboratory, for studies of body activity of Cs-137 in northern Sweden. High body activities were found particularly in reindeer-breeding Lapps. The elimination rate of Cs-137 in man was studied in the stationary whole-body counter in Lund as well as with the field-system. For the study of the performances at low and high photon energies clinical applications of methods for gastro-intestinal absorption of vitamin B12 (Co-57; 122 keV) and total body potassium determination (K-40; 1.46 MeV, K-42; 1.52 MeV) have been evaluated. Theoretical and experimental results as well as experiences of applications in radiation protection and medicine show that the scanning-bed geometry effectively evens out redistributional effects. For optimum results, however, scatter-energy pulse-ranges rather than full-energy-peak ranges should be used. (Auth.)

  13. Dynamic integration of residential building design and green energies : the Bireth approach : building integrated renewable energy total harvest approach

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, K.P. [Hong Kong Univ., Hong Kong (China). Dept. of Architecture; Luk, C.L.P. [Chu Hai College of Higher Education, Hong Kong (China). Dept. of Architecture; Wong, S.T. [Hong Kong Univ., Hong Kong (China). Div. of Arts and Humanities, SPACE; Chung, S.L.; Fung, K.S.; Leung, M.F. [Hong Kong Inst. of Vocational Education, Hong Kong (China)

    2006-07-01

    Renewable energy sources that are commonly used in buildings include solar energy, wind energy and rainwater collection. High quality environmentally responsive residential buildings are designed to provide good insulation in winter and solar shading in summer. However, this study demonstrated that the green energy design in residential buildings is not usually well integrated. For example, windows with clear double or triple glazed glass, allow good penetration of sunlight during the day in winter, but are not further dynamically insulated for when the sun goes down to avoid heat loss from the building. Additionally, good solar static shading devices often block much needed daylight on cloudy winter days. These examples emphasize the lack of an integrated approach to gain the best advantage of green energies and to minimize energy costs in residential buildings. This study addressed issues facing the integrated approach with particular reference to the design of a small residential building in rural Beijing. The design included a new approach for interpreting a traditional Beijing court yard house in the modern Beijing rural context, while integrating multi-responding innovative green energy applications derived from first principles. This paper also presented a proposal for a village house in Hong Kong to harvest as much renewable energies as possible, primarily wind energy and solar energy, that come into contact with the building. The purpose was to work towards a renewable energy approach for buildings, namely the Bireth approach, which will benefit practically all houses by making them zero energy houses. The paper described the feasibility of integrating renewable energies in buildings to fulfill performance requirements such improving ventilation, providing warm interiors, drying clothes, or storing solar and wind energies into power batteries. The challenges facing the development of a proposed micro solar hot air turbine were also presented. 15 refs., 6

  14. Computational materials design for energy applications

    Science.gov (United States)

    Ozolins, Vidvuds

    2013-03-01

    General adoption of sustainable energy technologies depends on the discovery and development of new high-performance materials. For instance, waste heat recovery and electricity generation via the solar thermal route require bulk thermoelectrics with a high figure of merit (ZT) and thermal stability at high-temperatures. Energy recovery applications (e.g., regenerative braking) call for the development of rapidly chargeable systems for electrical energy storage, such as electrochemical supercapacitors. Similarly, use of hydrogen as vehicular fuel depends on the ability to store hydrogen at high volumetric and gravimetric densities, as well as on the ability to extract it at ambient temperatures at sufficiently rapid rates. We will discuss how first-principles computational methods based on quantum mechanics and statistical physics can drive the understanding, improvement and prediction of new energy materials. We will cover prediction and experimental verification of new earth-abundant thermoelectrics, transition metal oxides for electrochemical supercapacitors, and kinetics of mass transport in complex metal hydrides. Research has been supported by the US Department of Energy under grant Nos. DE-SC0001342, DE-SC0001054, DE-FG02-07ER46433, and DE-FC36-08GO18136.

  15. Gulf Coast Clean Energy Application Center

    Energy Technology Data Exchange (ETDEWEB)

    Dillingham, Gavin [Houston Advanced Research Center, TX (United States)

    2013-09-30

    The Gulf Coast Clean Energy Application Center was initiated to significantly improve market and regulatory conditions for the implementation of combined heat and power technologies. The GC CEAC was responsible for the development of CHP in Texas, Louisiana and Oklahoma. Through this program we employed a variety of outreach and education techniques, developed and deployed assessment tools and conducted market assessments. These efforts resulted in the growth of the combined heat and power market in the Gulf Coast region with a realization of more efficient energy generation, reduced emissions and a more resilient infrastructure. Specific t research, we did not formally investigate any techniques with any formal research design or methodology.

  16. Plasma Synthesis of Nanoparticles for Nanocomposite Energy Applications

    Energy Technology Data Exchange (ETDEWEB)

    Peter C. Kong; Alex W. Kawczak

    2008-09-01

    The nanocomposite energy applications for plasma reactor produced nanoparticles are reviewed. Nanoparticles are commonly defined as particles less than 100 nm in diameter. Due to this small size, nanoparticles have a high surface-to-volume ratio. This increases the surface energy compared to the bulk material. The high surface-to-volume ratio and size effects (quantum effects) give nanoparticles distinctive chemical, electronic, optical, magnetic and mechanical properties from those of the bulk material. Nanoparticles synthesis can be grouped into 3 broad approaches. The first one is wet phase synthesis (sol-gel processing), the second is mechanical attrition, and the third is gas-phase synthesis (aerosol). The properties of the final product may differ significantly depending on the fabrication route. Currently, there are no economical large-scale production processes for nanoparticles. This hinders the widespread applications of nanomaterials in products. The Idaho National Laboratory (INL) is engaging in research and development of advanced modular hybrid plasma reactors for low cost production of nanoparticles that is predicted to accelerate application research and enable the formation of technology innovation alliances that will result in the commercial production of nanocomposites for alternative energy production devices such as fuel cells, photovoltaics and electrochemical double layer capacitors.

  17. Wind energy, status and opportunities

    International Nuclear Information System (INIS)

    Van Wijk, A.

    1994-01-01

    Wind energy is diffuse but was widely used before the industrial revolution. The first oil crisis triggered renewed interest in wind energy technology in remote areas. Winds develop when solar radiation reaches the earth's highly varied surface unevenly, creating temperature density and pressure differences. The earth's atmosphere has to circulate to transport heat from the tropics towards the poles. On a global scale, these atmospheric currents work as an immense energy transfer medium. Three main applications can be distinguished: wind pumps, off-grid applications and grid-connected applications. The total generating costs for wind turbine systems are determined by total investments costs, the life time, the operating and maintenance costs, the wind regime (the wind energy potential is proportional to v 3 where v is the wind speed), the efficiency and availability of the wind turbine. The main gains are achieved as a result of improved reliability. The optimum size of a wind turbine depends on the wind speed, the wind turbine costs, the construction costs, the environmental impact and the social costs. The value of wind energy depends on the application that is made of the energy generated and on the costs of alternatives, it can be calculated by the avoided costs of damage to flora, fauna and mankind due to acid rain deposition, enhancement of the greenhouse effect. The environmental aspects are bird hindrance, noise, telecommunication interference and safety. 2 tabs., 1 fig

  18. Modularized multilevel and z-source power converter as renewable energy interface for vehicle and grid-connected applications

    Science.gov (United States)

    Cao, Dong

    Due the energy crisis and increased oil price, renewable energy sources such as photovoltaic panel, wind turbine, or thermoelectric generation module, are used more and more widely for vehicle and grid-connected applications. However, the output of these renewable energy sources varies according to different solar radiation, wind speed, or temperature difference, a power converter interface is required for the vehicle or grid-connected applications. Thermoelectric generation (TEG) module as a renewable energy source for automotive industry is becoming very popular recently. Because of the inherent characteristics of TEG modules, a low input voltage, high input current and high voltage gain dc-dc converters are needed for the automotive load. Traditional high voltage gain dc-dc converters are not suitable for automotive application in terms of size and high temperature operation. Switched-capacitor dc-dc converters have to be used for this application. However, high voltage spike and EMI problems exist in traditional switched-capacitor dc-dc converters. Huge capacitor banks have to be utilized to reduce the voltage ripple and achieve high efficiency. A series of zero current switching (ZCS) or zero voltage switching switched-capacitor dc-dc converters have been proposed to overcome the aforementioned problems of the traditional switched-capacitor dc-dc converters. By using the proposed soft-switching strategy, high voltage spike is reduced, high EMI noise is restricted, and the huge capacitor bank is eliminated. High efficiency, high power density and high temperature switched-capacitor dc-dc converters could be made for the TEG interface in vehicle applications. Several prototypes have been made to validate the proposed circuit and confirm the circuit operation. In order to apply PV panel for grid-connected application, a low cost dc-ac inverter interface is required. From the use of transformer and safety concern, two different solutions can be implemented, non

  19. Climate information for the application of solar energy

    International Nuclear Information System (INIS)

    Robles-Gil, S.

    1997-01-01

    In view of population growth, industrialization and urbanization which provoked increasing energy demand there has been an increasing interest in developing new technologies that use various renewable energy sources and have less environmental impact, such as solar, wind, tidal and biomass. Solar energy is one of the energy resources with a wide geographical distribution. Nowadays, its contribution to the world's energy supply is very small, but it is considered an important long term option which will satisfy, together with conventional energy sources, the future energy needs of the world. The main objective of this work is to report the actual uses of the principal types of solar energy systems, based on their climatic, technological and economical context. This is to improve the dissemination of information on the application of climate knowledge and data, especially by national meteorological services, with the purpose to improve the planning, design and operation of solar energy systems, as well as facilitate their more widespread use

  20. A review on phase change energy storage: materials and applications

    International Nuclear Information System (INIS)

    Farid, Mohammed M.; Khudhair, Amar M.; Razack, Siddique Ali K.; Al-Hallaj, Said

    2004-01-01

    Latent heat storage is one of the most efficient ways of storing thermal energy. Unlike the sensible heat storage method, the latent heat storage method provides much higher storage density, with a smaller temperature difference between storing and releasing heat. This paper reviews previous work on latent heat storage and provides an insight to recent efforts to develop new classes of phase change materials (PCMs) for use in energy storage. Three aspects have been the focus of this review: PCM materials, encapsulation and applications. There are large numbers of phase change materials that melt and solidify at a wide range of temperatures, making them attractive in a number of applications. Paraffin waxes are cheap and have moderate thermal energy storage density but low thermal conductivity and, hence, require large surface area. Hydrated salts have larger energy storage density and higher thermal conductivity but experience supercooling and phase segregation, and hence, their application requires the use of some nucleating and thickening agents. The main advantages of PCM encapsulation are providing large heat transfer area, reduction of the PCMs reactivity towards the outside environment and controlling the changes in volume of the storage materials as phase change occurs. The different applications in which the phase change method of heat storage can be applied are also reviewed in this paper. The problems associated with the application of PCMs with regards to the material and the methods used to contain them are also discussed

  1. Fission-fragment angular distributions and total kinetic energies for 235U(n,f) from .18 to 8.83 MeV

    International Nuclear Information System (INIS)

    Meadows, J.W.; Budtz-Joergensen, C.

    1982-01-01

    A gridded ion chamber was used to measure the fission fragment angular distribution and total kinetic energy for the 235 U(n,f) reaction from 0.18 to 8.81 MeV neutron energy. The anisotropies are in generally good agreement with earlier measurements. The average total kinetic energy is approx. 0.2 MeV greater than the thermal value at neutron energies < 2 MeV and shows a sudden decrease of approx. 0.8 MeV between 4 and 5 MeV neutron energy, well below the (n, n'f) threshold. Possible causes of this decrease are a change in the mass distribution or decreased shell effects in the heavy fragment

  2. Possible Lead Free Nanocomposite Dielectrics for High Energy Storage Applications

    Directory of Open Access Journals (Sweden)

    Srinivas Kurpati

    2017-03-01

    Full Text Available There is an increasing demand to improve the energy density of dielectric capacitors for satisfying the next generation material systems. One effective approach is to embed high dielectric constant inclusions such as lead zirconia titanate in polymer matrix. However, with the increasing concerns on environmental safety and biocompatibility, the need to expel lead (Pb from modern electronics has been receiving more attention. Using high aspect ratio dielectric inclusions such as nanowires could lead to further enhancement of energy density. Therefore, the present brief review work focuses on the feasibility of development of a lead-free nanowire reinforced polymer matrix capacitor for energy storage application. It is expected that Lead-free sodium Niobate nanowires (NaNbO3 and Boron nitride will be a future candidate to be synthesized using simple hydrothermal method, followed by mixing them with polyvinylidene fluoride (PVDF/ divinyl tetramethyl disiloxanebis (benzocyclobutene matrix using a solution-casting method for Nanocomposites fabrication. The energy density of NaNbO3 and BN based composites are also be compared with that of lead-containing (PbTiO3/PVDF Nano composites to show the feasibility of replacing lead-containing materials from high-energy density dielectric capacitors. Further, this paper explores the feasibility of these materials for space applications because of high energy storage capacity, more flexibility and high operating temperatures. This paper is very much useful researchers who would like to work on polymer nanocomposites for high energy storage applications.

  3. Energy consumption optimization of the total-FETI solver by changing the CPU frequency

    Science.gov (United States)

    Horak, David; Riha, Lubomir; Sojka, Radim; Kruzik, Jakub; Beseda, Martin; Cermak, Martin; Schuchart, Joseph

    2017-07-01

    The energy consumption of supercomputers is one of the critical problems for the upcoming Exascale supercomputing era. The awareness of power and energy consumption is required on both software and hardware side. This paper deals with the energy consumption evaluation of the Finite Element Tearing and Interconnect (FETI) based solvers of linear systems, which is an established method for solving real-world engineering problems. We have evaluated the effect of the CPU frequency on the energy consumption of the FETI solver using a linear elasticity 3D cube synthetic benchmark. In this problem, we have evaluated the effect of frequency tuning on the energy consumption of the essential processing kernels of the FETI method. The paper provides results for two types of frequency tuning: (1) static tuning and (2) dynamic tuning. For static tuning experiments, the frequency is set before execution and kept constant during the runtime. For dynamic tuning, the frequency is changed during the program execution to adapt the system to the actual needs of the application. The paper shows that static tuning brings up 12% energy savings when compared to default CPU settings (the highest clock rate). The dynamic tuning improves this further by up to 3%.

  4. Energy potential of the wind and possibility for construction of big energy systems

    International Nuclear Information System (INIS)

    Gruevski, Trpe

    2004-01-01

    In this paper a brief theoretical survey is given on the wind as a clean and renewable energy source.The wind energy potential is analyzed as well as the power limits that could be obtained as a result of the wind kinetic energy.The total generating costs for wind turbine systems are determined by total investments costs, the life time, the operating and maintenance costs, the wind regime, the efficiency and availability of the wind turbine. The optimum size of a wind turbine depends on the wind speed, the wind turbine costs, the construction costs, the environmental impact and the social costs. The value of wind energy depends on the application that is made of the energy generated and on the costs of alternatives

  5. An application of energy and exergy analysis in residential sector of Malaysia

    International Nuclear Information System (INIS)

    Saidur, R.; Masjuki, H.H.; Jamaluddin, M.Y.

    2007-01-01

    In this paper, the useful concept of energy and exergy utilization is defined, analyzed and applied to the residential sector of Malaysia by taking into account the energy and exergy flows for a period of 8 years from the year 1997 to 2004. The energy and exergy efficiencies are determined for the devices used in this sector and found to be 70% and 28%, respectively. Energy and exergy flow diagrams for the overall efficiencies of Malaysian residential sector are also illustrated in this paper. It is found that the current methodology applied in Saudi Arabia is suitable to analyze energy and exergy use in Malaysian residential sector. It has been found that the exergy efficiency of the Malaysian residential sector appears to be much lower than its corresponding energy efficiency. It has been observed that about 21% of total exergy losses are caused by refrigerator-freezer and 12% of total loss is caused by air conditioner. Washing machine, fan and rice cooker contribute about 11%, 10% and 8% of total exergy losses, respectively

  6. Energy Technology Programmes 1993-1998. Intermediate report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    The Tekes energy technology research programmes were launched in 1993. The aim is to produce innovative solutions that are efficient, environmentally sound and widely - even globally - applicable. Now Tekes manages a total of 12 energy technology research programmed. Research programmed form a network linking academia and industry. Total funding for the energy technology programmed during the years 1993-1998 is estimated at some FIM 1.5 billion, about half of which will be put up by the Tekes and the rest by the industry. Funding by the Ministry of Trade and Industry covers the first full-scale applications (demonstrations) resulting from the research and development activities. Finnish technology is front-ranking in the efficient use of energy, combustion technology, renewable energy sources and environmental technology. In this report the results and the research activities of the separate programmes is presented and discussed

  7. Energy Savings Forecast of Solid-State Lighting in General Illumination Applications

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-08-29

    With declining production costs and increasing technical capabilities, LED adoption has recently gained momentum in general illumination applications. This is a positive development for our energy infrastructure, as LEDs use significantly less electricity per lumen produced than many traditional lighting technologies. The U.S. Department of Energy’s Energy Savings Forecast of Solid-State Lighting in General Illumination Applications examines the expected market penetration and resulting energy savings of light-emitting diode, or LED, lamps and luminaires from today through 2030.

  8. The influence of x-ray energy on lung dose uniformity in total-body irradiation

    International Nuclear Information System (INIS)

    Ekstrand, Kenneth; Greven, Kathryn; Wu Qingrong

    1997-01-01

    Purpose: In this study we examine the influence of x-ray energy on the uniformity of the dose within the lung in total-body irradiation treatments in which partial transmission blocks are used to control the lung dose. Methods and Materials: A solid water phantom with a cork insert to simulate a lung was irradiated by x-rays with energies of either 6, 10, or 18 MV. The source to phantom distance was 3.9 meters. The cork insert was either 10 cm wide or 6 cm wide. Partial transmission blocks with transmission factors of 50% were placed anterior to the cork insert. The blocks were either 8 or 4 cm in width. Kodak XV-2 film was placed in the midline of the phantom to record the dose. Midplane dose profiles were measured with a densitometer. Results: For the 10 cm wide cork insert the uniformity of the dose over 80% of the block width varied from 6.6% for the 6 MV x-rays to 12.2% for the 18 MV x-rays. For the 6 cm wide cork insert the uniformity was comparable for all three x-ray energies, but for 18 MV the central dose increased by 9.4% compared to the 10 cm wide insert. Conclusion: Many factors must be considered in optimizing the dose for total-body irradiation. This study suggests that for AP/PA techniques lung dose uniformity is superior with 6 MV irradiation. The blanket recommendation that the highest x-ray energy be used in TBI is not valid for all situations

  9. Harris functional and related methods for calculating total energies in density-functional theory

    International Nuclear Information System (INIS)

    Averill, F.W.; Painter, G.S.

    1990-01-01

    The simplified energy functional of Harris has given results of useful accuracy for systems well outside the limits of weakly interacting fragments for which the method was originally proposed. In the present study, we discuss the source of the frequent good agreement of the Harris energy with full Kohn-Sham self-consistent results. A procedure is described for extending the applicability of the scheme to more strongly interacting systems by going beyond the frozen-atom fragment approximation. A gradient-force expression is derived, based on the Harris functional, which accounts for errors in the fragment charge representation. Results are presented for some diatomic molecules, illustrating the points of this study

  10. 77 FR 74472 - Application to Export Electric Energy; Energia Renovable S.C., LLC

    Science.gov (United States)

    2012-12-14

    ... DEPARTMENT OF ENERGY [OE Docket No. EA-387] Application to Export Electric Energy; Energia... application. SUMMARY: Energia Renovable S.C., LLC (Energia Renovable) has applied for authority to transmit...)). On September 11, 2012, DOE received an application from Energia Renovable for authority to transmit...

  11. Precise Measurement of the $\\bar{p}p$ Total Cross-Section in the ISR Energy Range

    CERN Multimedia

    2002-01-01

    The major aim of this experiment is the precise measurement of the antiproton-proton total cross-section in the ISR energy range, using the total-rate method. The proton-proton total cross-section is remeasured with the same method and the same apparatus, and a precision of 0.5\\% is expected for both cross-sections. The total-rate method consists in the simultaneous measurement of the total interaction rate and the ISR luminosity. This is done with a set of scintillation-counter hodoscopes covering over 99.99\\% of the solid angle, which are sensitive to over 95\\% of all interactions. In addition to these detectors, small-angle drift-tube hodoscopes are used to measure the differential elastic cross-section as a function of the momentum transfert t. The total cross-section can be measured independently by extrapolating this differential cross-section to the forward direction and invoking the optical theorem. A study of the general features of charged-particle production is performed using finely divided scinti...

  12. Misreporting of energy intake in the elderly using doubly labeled water to measure total energy expenditure and weight change.

    Science.gov (United States)

    Shahar, Danit R; Yu, Binbing; Houston, Denise K; Kritchevsky, Stephen B; Newman, Anne B; Sellmeyer, Deborah E; Tylavsky, Frances A; Lee, Jung Sun; Harris, Tamara B

    2010-02-01

    One of the major problems in dietary assessment is inaccuracy in reporting diet. To examine the association between self-reported energy intake (EI) by food frequency questionnaire (FFQ) and energy expenditure (EE), measured by doubly labeled water (DLW), among older persons. EE was assessed in 298 high-functioning, community-dwelling older adults (70-79 years of age) over a 2-week period using DLW. Dietary intake was assessed using a Block FFQ. The ratio between reported EI and total energy expenditure (TEE) was calculated. Misreporting was defined as follows: participants with an EI/TEE ratio of reporters, while participants with an EI/TEE ratio >1.28 were categorized as high energy reporters. Participants with an EI/TEE ratio of 0.77-1.28 were categorized as "true" energy reporters. One-year percent weight change prior to EE visit was used as another validation indicator. Participants who were low energy reporters but lost >2% of their body weight were categorized as undereaters. Two hundred ninety-six participants provided both FFQ and DLW measurements. Forty-three percent of participants were low energy reporters; among them, almost 30% lost weight and, therefore, were categorized as undereaters. The undereaters consumed significantly fewer calories. No difference in the frequency of low energy reporting was detected between genders or racial groups. Underreporters had significantly higher body weight than "true" or high reporters. Undereaters tended to have higher body mass index than the underreporters. Undereating is prevalent in the elderly and may be falsely perceived as underreporting. It should be further addressed and characterized in future studies.

  13. RF energy harvesting and transport for wireless autonomous sensor network applications

    NARCIS (Netherlands)

    Keyrouz, S.; Visser, H.J.

    2013-01-01

    "RF Energy Harvesting and Transport for Wireless Autonomous Sensor Network Applications: Principles and Requirements" - For wireless energy transfer over longer distances, the far-field transfer of RF energy may be used. We make a distinction between harvesting RF energy from signals present in the

  14. The rise of the proton-(anti)proton total cross section at tevatron energies and beyond

    International Nuclear Information System (INIS)

    Kluit, P.M.; Timmermans, J.

    1987-12-01

    A dispersion relation analysis of the UA4 result on the real part of the panti p elastic scattering amplitude is presented. The interpretation is twofold. Assuming that the pp and panti p cross sections are asymptotically identical, a steep rise is deduced of the total cross section in the 1-4 TeV domain. In case the pp and panti p cross sections are asymptotically different, it is deduced that there is a crossing of the total cross section of pp and panti p between ISR and Spanti pS energies followed by a steep rise of the difference of the pp and panti p total cross sections. It is shown that in both cases this rise can be accounted for if we add an additional term with an energy cut-off to the usual Amaldi parametrisation of the total cross section: ln 2 (s/s cut ) in the first case, or ln(s/s cuto ) in the second case, where √s cut lies around 500 GeV and √s cuto around 63 GeV. Both quantities can be interpreted as a threshold of a new process. For the first case, a continuous parametrisation without a threshold is also proposed with an extra term of the form ln 2 (1+ s/s 1 ), where √s 1 equals 700 GeV. 12 refs.; 5 figs.; 3 tabs

  15. 76 FR 11436 - Application to Export Electric Energy; Ontario Power Generation

    Science.gov (United States)

    2011-03-02

    ... DEPARTMENT OF ENERGY [OE Docket No. EA-290-B] Application to Export Electric Energy; Ontario Power... of Energy (DOE) issued Order No. EA-290, which authorized OPG to transmit electric energy from the... of the export authority contained in Order No. EA-290-A for a five-year term. The electric energy...

  16. Effect of Foliar Application of Micro Nutrients on Physiological Growth Indices and Total Dry Matter Yield of Forage Corn

    Directory of Open Access Journals (Sweden)

    A. Soleymani

    2012-04-01

    Full Text Available In order to evaluate the effect of foliar application of micro nutrients on physiological growth indices and total dry matter yield of forage corn. Field experiment was conducted in 2006 at Bersian village Isfahan. A randomized complete block design with four replications was used. Plant treated with 8 foliar application treatments (Fe, Zn, Cu, Mn, Fe + Mn, Cu + Zn, Fe + Mn + Cu + Zn and control. The responses to foliar application in total dry weight, LAI and CGR appeared to differ between the treatments, but there is no significant difference in NAR between the treatments. Maximum leaf area index gained in foliar application of Fe but there is significant difference between this treatment and other treatments except foliar application of Zn and Fe + Mn. Foliar application of Fe and Fe + Mn result to maximum total dry weight, but there is no significant difference between these treatments and foliar application of Zn, Mn, Mn + Cu and Fe + Zn + Cu +Mn. Maximum and minimum NAR gained in foliar application of Mn and control treatments respectively. Maximum CGR gained in foliar application of Zn, there is significant difference between this treatment and others. Control treatment in comparison with others shows minimum value in all measured factors. The results indicate that foliar application of micro nutrients particularly Fe and Fe+Mn may be suitable to product maximum total dry matter yield under similar condition.

  17. Direct application of geothermal energy in the Republic of Macedonia

    International Nuclear Information System (INIS)

    Dimitrov, Konstantin

    1995-01-01

    The use of geothermal energy for balneology purposes has a history of many centuries. There is also a more than 30 years tradition for heating greenhouses. So called energy crisis of 70-ties and 80-ties provoked geology investigations in order to find possible energy sources, and development of systems for application of low-temperature geothermal water. Tere are a list of projects with direct application of geothermal energy for heating greenhouses, drying agricultural products. heating of public buildings and industrial projects, swimming pools , sanitary warm water preparation, industrial uses, etc. The essential energetic characteristics of different projects are presented in the paper. For the main projects a technical description of characteristics of the heating systems is given, and good technical solutions are underlined. Also the mistakes presented in some projects are listed. (Original)

  18. ICT applications for energy efficiency in buildings. Report from the KTH Centre for Sustainable Communication

    Energy Technology Data Exchange (ETDEWEB)

    Kramers, Anna H.; Svane, Oerjan

    2011-07-01

    The project 'ICT as a Motor of Transition' aims to examine how the innovative application of ICT can contribute to more energy-efficient transport habits and facilitate more sustainable ways of managing and using buildings, without the need for drastic changes in the city's physical structure. The project is an extended in-depth study and forms part of current research into urban sustainable development in the SitCit project at KTH Environmental Strategies Research (fms). The full title of the SitCit project is 'Situations of Opportunity in the Growth and Change of Three Stockholm City Districts - Everyday Life, Built Environment and Transport Explored as Energy Usage Systems and Governance Networks' (SitCit, 2010). It is an ongoing, cross-disciplinary, five-year project in collaboration with the Department of Energy Technology at KTH. An important part of the SitCit project is a methodological approach that integrates actors and measures in describing a process of change, in other words to look at 'What' can be transformed in parallel with transformation 'By Whom'? The 'ICT as a Motor of Transition' project focused on ICT solutions for energy-efficient and sustainable ways of managing and using buildings in the existing built environment. ICT could play a role as a key enabler for decreasing energy usage in buildings and at the same time create new business opportunities driven by the need for energy efficiency. Throughout the life cycle of a building, most energy ({approx}80%) is used during the operational stage (REEB, 2009a). The decisions made in the early design stages or in renovation stages for existing buildings thus influence about 80% of the total life cycle energy usage, while the impact of user behaviour and real-time control is in the range of 20% (REEB, 2009a). Therefore there is an urgent need to find new possibilities to decrease the energy usage in buildings. The overarching aim of this study

  19. Power electronic converter systems for direct drive renewable energy applications

    DEFF Research Database (Denmark)

    Chen, Zhe

    2013-01-01

    This chapter presents power electronic conversion systems for wind and marine energy generation applications, in particular, direct drive generator energy conversion systems. Various topologies are presented and system design optimization and reliability are briefly discussed....

  20. Total and elastic electron scattering cross sections from Xe at intermediate and high energies

    International Nuclear Information System (INIS)

    Garcia, G; Pablos, J L de; Blanco, F; Williart, A

    2002-01-01

    Experimental total electron scattering cross sections from Xe in the energy range 300-5000 eV have been obtained with experimental errors of about 3%. The method was based on the measurement of the attenuation of a linear electron beam through a Xe gas cell in combination with an electron spectroscopy technique to analyse the energy of the transmitted electrons. Differential and integral elastic cross sections have been calculated using a scattering potential method which includes relativistic effects. The consistency of our theoretical and experimental results is also discussed in the paper. Finally, analytical formulae depending on two parameters, namely the number of target electrons and the atomic polarizability, are given to reproduce the experimental data for Ne, Ar, Kr and Xe in the energy range 500-10 000 eV

  1. The Application of Quantum Energy Saver on Engine

    Directory of Open Access Journals (Sweden)

    Fang Xiong

    2016-01-01

    Full Text Available In order to reduce diesel fuel consumption, this paper conducts the research in view of a new type of quantum energy saving device, and then produce the sample and applied on automobile engine, Detect fuel use of an automobile by automobile fuel saving technology as-sessment methods from the department of transportation. Compare the changes of fuel use be-fore and after installation of quantum energy saving device on the same car, and give the feed-back of energy saving capability. The result shows, after installed quantum energy saver, both fuel consumption and the smoke of tail gas has decreased. The analysis and application of this paper carry out the conclusion that the quantum energy saver can play an important role in en-ergy saving and emission reduction, and provide a reference for other related research.

  2. Anomaly transform methods based on total energy and ocean heat content norms for generating ocean dynamic disturbances for ensemble climate forecasts

    Science.gov (United States)

    Romanova, Vanya; Hense, Andreas

    2017-08-01

    In our study we use the anomaly transform, a special case of ensemble transform method, in which a selected set of initial oceanic anomalies in space, time and variables are defined and orthogonalized. The resulting orthogonal perturbation patterns are designed such that they pick up typical balanced anomaly structures in space and time and between variables. The metric used to set up the eigen problem is taken either as the weighted total energy with its zonal, meridional kinetic and available potential energy terms having equal contributions, or the weighted ocean heat content in which a disturbance is applied only to the initial temperature fields. The choices of a reference state for defining the initial anomalies are such that either perturbations on seasonal timescales and or on interannual timescales are constructed. These project a-priori only the slow modes of the ocean physical processes, such that the disturbances grow mainly in the Western Boundary Currents, in the Antarctic Circumpolar Current and the El Nino Southern Oscillation regions. An additional set of initial conditions is designed to fit in a least square sense data from global ocean reanalysis. Applying the AT produced sets of disturbances to oceanic initial conditions initialized by observations of the MPIOM-ESM coupled model on T63L47/GR15 resolution, four ensemble and one hind-cast experiments were performed. The weighted total energy norm is used to monitor the amplitudes and rates of the fastest growing error modes. The results showed minor dependence of the instabilities or error growth on the selected metric but considerable change due to the magnitude of the scaling amplitudes of the perturbation patterns. In contrast to similar atmospheric applications, we find an energy conversion from kinetic to available potential energy, which suggests a different source of uncertainty generation in the ocean than in the atmosphere mainly associated with changes in the density field.

  3. Applications of lithium in nuclear energy

    International Nuclear Information System (INIS)

    Oliviera, Glaucia A.C. de; Bustillos, José O.V.; Ferreira, João C.; Bergamaschi, Vanderlei S.; Moraes, Rafaeli M. de; Gimenez, Maíse P.; Miyamoto, Flavia K.; Seneda, José A.

    2017-01-01

    Lithium is a material of great interest in the world, it is found in different minerals on Earth's crust (spodumene, lepidolite, amblygonite and petalite) also in salt pans. This element belongs to alkaline group and has two natural isotopes: Li-6 and Li-7. In the nuclear field, lithium isotopes are used for different purposes. The Li-6 is applied in the production of energy, because its section of shock is larger than the other isotope. The Li-7 regulates the pH in refrigerant material in the primary circuits of the Pressurized Water Nuclear Reactor (PWR). In nuclear reactor, lithium is used as a heat transfer due its boiling temperature (1342°C), making it an excellent thermal conductor. However, to reach all these applications, lithium must have high purity (> 99%). The main processes to reach a high purity level of lithium employee a combination of solvent extraction and ion exchange process, to obtain its salts or ending with chemical electrolysis of its chlorides to obtain its pure metal. This work presents a review of new applications of Lithium in Nuclear Energy and its purification and enrichment processes. (author)

  4. Applications of lithium in nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Oliviera, Glaucia A.C. de; Bustillos, José O.V.; Ferreira, João C.; Bergamaschi, Vanderlei S.; Moraes, Rafaeli M. de; Gimenez, Maíse P.; Miyamoto, Flavia K.; Seneda, José A., E-mail: glaucia.oliveira@ipen.br, E-mail: ovega@ipen.br, E-mail: jcferrei@ipen.br, E-mail: vsberga@ipen.br, E-mail: rafaeli.medeiros.moraes@gmail.com, E-mail: maisepastore@hotmail.com, E-mail: fla.kimiyamoto@gmail.com, E-mail: jaseneda@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN/SP), Paulo, SP (Brazil)

    2017-07-01

    Lithium is a material of great interest in the world, it is found in different minerals on Earth's crust (spodumene, lepidolite, amblygonite and petalite) also in salt pans. This element belongs to alkaline group and has two natural isotopes: Li-6 and Li-7. In the nuclear field, lithium isotopes are used for different purposes. The Li-6 is applied in the production of energy, because its section of shock is larger than the other isotope. The Li-7 regulates the pH in refrigerant material in the primary circuits of the Pressurized Water Nuclear Reactor (PWR). In nuclear reactor, lithium is used as a heat transfer due its boiling temperature (1342°C), making it an excellent thermal conductor. However, to reach all these applications, lithium must have high purity (> 99%). The main processes to reach a high purity level of lithium employee a combination of solvent extraction and ion exchange process, to obtain its salts or ending with chemical electrolysis of its chlorides to obtain its pure metal. This work presents a review of new applications of Lithium in Nuclear Energy and its purification and enrichment processes. (author)

  5. Nano crystals-Related Synthesis, Assembly, and Energy Applications 2012

    International Nuclear Information System (INIS)

    Zou, B.; Yu, W.W.; Seo, J.; Zhu, T.; Hu, M.Z.

    2012-01-01

    During the past decades, nano crystals have attracted broad attention due to their unique shape- and size-dependent physical and chemical properties that differ drastically from their bulk counterparts. Hitherto, much effort has been dedicated to achieving rational controlling over the morphology, assembly, and related energy applications of the nano materials. Therefore, the ability to manipulate the morphology, size, and size distribution of inorganic nano materials is still an important goal in modern materials physics and chemistry. Especially, the world's demand for energy supply is causing a dramatic escalation of social and political unrest. Likewise, the environmental impact of the global climate change due to the combustion of fossil fuel is becoming increasingly alarming. These problems compel us to search for effective routes to build devices that can supply sustainable energy, with not only high efficiency but also environmental friendship. One of ways to relieve the energy crisis is to exploit devices based on renewable energy sources, such as solar energy and water power. Aiming at this exploration, the primary stage requires the design of appropriate strategies for the synthesis of high-quality nano crystals with respect to size uniformity and superior electrochemical performances. As a consequence, we organize the current special issue for Journal of Nano materials to provide the authors with a platform and readers with the latest achievements of nano crystals-related synthesis, assembly, and energy applications.

  6. Partons and their applications at high energies

    International Nuclear Information System (INIS)

    Drell, Sidney D.; Yan, Tung-Mow

    2000-01-01

    We discuss Feynman's parton model for deep inelastic weak or electromagnetic processes as an application of the impulse approximation to elementary particle interactions. The special features and conditions permitting this application are elaborated upon in some detail including the dependence of the parton model and the impulse treatment on an appropriate choice of coordinate frames and the role of the very soft or wee partons. Application of the parton model is made to the calculation of the cross section for massive lepton pair production in very high energy hadron-hadron collisions and compared with experiment. The conjectured role of light cone singularities in describing this and the other deep inelastic amplitudes is also discussed. (c) 2000 Academic Press, Inc

  7. The French energy policy... in Brussels

    International Nuclear Information System (INIS)

    Laponche, Bernard

    2011-11-01

    This document outlines that some official statements of the French Government within the European Commission about the application of directives related to energy are different from what is said or written in France. This double talk concerns the reduction of energy intensity, the prospective of total final energy demand, and the electricity consumption

  8. Nano devices and circuit techniques for low-energy applications and energy harvesting

    CERN Document Server

    2016-01-01

    This book describes the development of core technologies to address two of the most challenging issues in research for future IT platform development, namely innovative device design and reduction of energy consumption. Three key devices, the FinFET, the TunnelFET, and the electromechanical nanoswitch are described with extensive details of use for practical applications. Energy issues are also covered in a tutorial fashion from material physics, through device technology, to innovative circuit design. The strength of this book lies in its holistic approach dealing with material trends, state-of-the-art of key devices, new examples of circuits and systems applications.    This is the first of three books based on the Integrated Smart Sensors research project, which describe the development of innovative devices, circuits, and system-level enabling technologies.  The aim of the project was to develop common platforms on which various devices and sensors can be loaded, and to create systems offering signific...

  9. Social attitude towards wind energy applications in Greece

    International Nuclear Information System (INIS)

    Kaldellis, J.K.

    2005-01-01

    During the last 3 yr (1999-2002) a significant increase in the utilization of the existing wind power has taken place in Greece, after a long period (1993-1998) of inactivity. Unfortunately, the largest part of new scheduled installations is concentrated in a few geographical regions, in an attempt to take advantage of the existing electrical network capabilities and the acceptable infrastructure situation. This significant concentration of very large size wind turbines, rapidly installed in a few geographical areas, led to serious reactions from the local population, which in some cases even led to the complete cancellation of the wind power projects. In this context, an extensive study is conducted, concerning the public attitude towards wind energy applications, in several island and mainland Greek territories possessing high wind potential and investment interest. The results obtained significantly reveal acceptance of the existing wind parks, being, however, rather against new installations. More specifically, in the Greek islands the public attitude is clearly supportive, while in the Greek mainland the public attitude is either divided or definitely against wind power applications. The most troublesome outcome of this survey is the existence of a specific minority that is strongly against wind energy applications, disregarding any financial benefits. Among the primary conclusions drawn, one may underline the necessity of additional public information regarding the wind energy sector

  10. Renewable energy technology applications in the Asian region

    International Nuclear Information System (INIS)

    Charters, W.W.S.

    1996-01-01

    The interest shown by Asia in renewable energy technologies is currently extremely high as the region is expected to account for up to 50 percent of the total world power generation equipment orders over the next ten years. Mature developed technologies for power production from renewable energy resources are now available in the form of micro and mini hydro plants, biomass pyrolysis and gasification units, wind aerogenerators and photovoltaic arrays. If Australia is to move towards a sustainable energy society, renewable energy resources must be utilized on a widespread scale as soon as possible. There are large niche markets for renewable energy resource based equipment in Australia, as well as immense market opportunities in the neighbouring fast growing economies in Asia. Key issues to be addressed in terms of implementing major renewable energy programs in the region on a large scale include identification and encouragement of reliable markets, and mass production of high quality reliable products. (author). 10 refs

  11. A new era in nuclear energy science. When will radiation application receive citizenship ranking along with energy utilization

    International Nuclear Information System (INIS)

    Tabata, Yoneho; Tagawa, Seiichi; Saito, Naoki; Fujii, Yasuhiko

    2005-01-01

    Japan has been obtaining definite results in these decades in both fields of nuclear power generation (energy utilization) and radiation application thus contributing to a sustainable development of the world. The present special issue of 'Atom Eye' introduces (1) Japanese achievements in cooperative relationships with developing countries in the field of radiation applications, (2) history of research and development of radiation-utilization techniques in Japan, (3) present status of quantum-beam applications in life-science, medial application, and nano-technology, etc, (4) applications of high-intensity neutron source, (5) cancer therapy using high-energy heavy-ion beams, (6) radiation sterilizations, (7) radiation mutations, (8) three interviewer's reports visiting several research institutes of radiation applications in Japan, and introduction of (9) a bencher enterprise and also (10) an accelerator business. (S. Ohno)

  12. An examination of the abandonment of applications for energy efficiency retrofit grants in Ireland

    International Nuclear Information System (INIS)

    Collins, Matthew; Curtis, John

    2017-01-01

    The Sustainable Energy Authority of Ireland (SEAI) operates the Better Energy Homes (BEH) grant scheme to incentivise residential energy efficiency retrofits, an ongoing scheme which was implemented in 2009. This scheme provides a financial incentive for home owners to engage in energy efficiency retrofits, provided the upgrades meet appropriate energy efficiency standards. This study analyses the BEH data, which is comprised of all applications from March 2009 to October 2015, in order to examine the extent to which applications are abandoned and the determinants thereof. We find that more complicated retrofits are more likely to be abandoned, with variation across certain combinations of retrofit measure. We find lower probabilities of abandonment among certain obligated parties, who are energy retailers obliged by the State to reduce energy consumption in Ireland, while others possess greater likelihoods of abandonment, relative to private retrofits. We find that newer homes are less likely to abandon an application than older homes, as are applications made for apartments, relative to houses. Regional variations exist in abandonment, with rural households more likely to abandon than urban households. A seasonal trend in abandonment is also present, with higher likelihoods of abandonment among applications made during winter. - Highlights: • We use a stated preference approach to model the abandonment of grant applications. • Deeper retrofits are more likely to be abandoned, with variation across measures. • Abandonment is less likely in applications made via obligated energy suppliers. • Regional and Seasonal variations exist in abandonment.

  13. Absolute total and one and two electron transfer cross sections for Ar8+ on Ar as a function of energy

    International Nuclear Information System (INIS)

    Vancura, J.; Kostroun, V.O.

    1992-01-01

    The absolute total and one and two electron transfer cross sections for Ar 8+ on Ar were measured as a function of projectile laboratory energy from 0.090 to 0.550 keV/amu. The effective one electron transfer cross section dominates above 0.32 keV/amu, while below this energy, the effective two electron transfer starts to become appreciable. The total cross section varies by a factor over the energy range explored. The overall error in the cross section measurement is estimated to be ± 15%

  14. Thin film separators with ion transport properties for energy applications

    Science.gov (United States)

    Li, Zhongyuan

    2017-09-01

    Recent years, along with the increasing need of energy, energy storage also becomes a challenging problem which we need to deal with. The batterieshave a good developing prospect among energy storage system in storing energy such as wind, solar and geothermal energy. One hurdle between the lab-scale experiment and industry-scale application of the advanced batteries is the urgent need for limiting charging capacity degradation and improving cycling stability, known as the shuttle effect in lithium-sulfur batteries or electroosmotic drag coefficient in fuel-cell batteries. The microporous separator between the cathode and anode could be molecular engineered to possessesion selective permeation properties, which can greatly improves the energy efficiency and extends application range of the battery. The present review offers the fundamental fabrication methods of separator film with different material. The review also contains the chemical or physical structure of different materials which are used in making separator film. A table offers the reader a summary of properties such as ionic conductivity, ionic exchange capacity and current density etc.

  15. AECL programs for new applications for nuclear energy

    International Nuclear Information System (INIS)

    Robertson, J.A.L.

    1982-05-01

    This document reports the activities of the New Applications Steering Committee (NASC) of Atomic Energy of Canada Ltd. The NASC is intended to develop future RβD programs, and more specifically to promote certain existing ideas that have not yet become part of established programs, stimulate new idaas, identify needs and opportunities for RβD, evaluate proposals for RβD programs, initiate action on new ideas, and provide feedback to a staff who may be expected to generate ideas. Major areas and technologies that have been studied by the NASC and are covered in this report include oil substitution by nuclear heat and by electricity, energy storage and the role of hydrogen, nuclear energy in liquid fuel production, assessment of Canadian energy resources, and computer modelling of energy systems

  16. New apparatus with high radiation energy between 320 to 460 nm: physical description and dermatological applications

    International Nuclear Information System (INIS)

    Mutzhas, M.F.; Holzle, E.; Hofmann, C.; Plewig, G.

    1981-01-01

    A new apparatus (UVASUN 5000) is presented with high radiation energy between 320 to 460 nm. The radiator is a specially developed source for high uv-A intensity, housing a quartz bulb with a mixture of argon, mercury and metal-halides. The uv-A energy in the range of 320 to 400 nm is about 84% of the total radiation energy. Effects of very high doses of uv-A on human skin were studied. Following single uv-A applications the minimal tanning dose uv-A (MTD) and the immediate pigment darkening (IPD) dose of uv-A were established. Repeated exposure to this uv-A delivering system yields long lasting dark brown skin pigmentation without any clinical or histological signs of sunburn (uv-B) damage, epidermal hyperplasia or thickening of the stratum corneum. Minimal therapeutic results were seen in the phototherapy of vitiligo and inflammatory acne

  17. The application of the Luus-Jaakola direct search method to the optimization of a hybrid renewable energy system

    Science.gov (United States)

    Jatzeck, Bernhard Michael

    2000-10-01

    The application of the Luus-Jaakola direct search method to the optimization of stand-alone hybrid energy systems consisting of wind turbine generators (WTG's), photovoltaic (PV) modules, batteries, and an auxiliary generator was examined. The loads for these systems were for agricultural applications, with the optimization conducted on the basis of minimum capital, operating, and maintenance costs. Five systems were considered: two near Edmonton, Alberta, and one each near Lethbridge, Alberta, Victoria, British Columbia, and Delta, British Columbia. The optimization algorithm used hourly data for the load demand, WTG output power/area, and PV module output power. These hourly data were in two sets: seasonal (summer and winter values separated) and total (summer and winter values combined). The costs for the WTG's, PV modules, batteries, and auxiliary generator fuel were full market values. To examine the effects of price discounts or tax incentives, these values were lowered to 25% of the full costs for the energy sources and two-thirds of the full cost for agricultural fuel. Annual costs for a renewable energy system depended upon the load, location, component costs, and which data set (seasonal or total) was used. For one Edmonton load, the cost for a renewable energy system consisting of 27.01 m2 of WTG area, 14 PV modules, and 18 batteries (full price, total data set) was 6873/year. For Lethbridge, a system with 22.85 m2 of WTG area, 47 PV modules, and 5 batteries (reduced prices, seasonal data set) cost 2913/year. The performance of renewable energy systems based on the obtained results was tested in a simulation using load and weather data for selected days. Test results for one Edmonton load showed that the simulations for most of the systems examined ran for at least 17 hours per day before failing due to either an excessive load on the auxiliary generator or a battery constraint being violated. Additional testing indicated that increasing the generator

  18. A MEMS electret generator with electrostatic levitation for vibration-driven energy-harvesting applications

    International Nuclear Information System (INIS)

    Suzuki, Yuji; Miki, Daigo; Edamoto, Masato; Honzumi, Makoto

    2010-01-01

    In this paper, we propose a passive gap-spacing control method in order to avoid stiction between top and bottom structures in in-plane sensor/actuator/generator applications. A patterned electret using a high-performance perfluoro polymer material is employed to induce a repulsive electrostatic force. An out-of-plane repulsive force is successfully demonstrated with our early prototype, in both air and liquid. By using the present electret-based levitation method to keep the air gap, a MEMS electret generator has been developed for energy-harvesting applications. A dual-phase electrode arrangement is adopted in order to reduce the horizontal electrostatic damping force. With the present prototype, about 0.5 µW is obtained for both phases of the generator, resulting in a total power output of 1.0 µW at an acceleration of 2 g with 63 Hz. With our electromechanical model of the generator, we have confirmed that the model can mimic the response of the generator prototype

  19. Defect Chemistry of Oxides for Energy Applications.

    Science.gov (United States)

    Schweke, Danielle; Mordehovitz, Yuval; Halabi, Mahdi; Shelly, Lee; Hayun, Shmuel

    2018-05-31

    Oxides are widely used for energy applications, as solid electrolytes in various solid oxide fuel cell devices or as catalysts (often associated with noble metal particles) for numerous reactions involving oxidation or reduction. Defects are the major factors governing the efficiency of a given oxide for the above applications. In this paper, the common defects in oxide systems and external factors influencing the defect concentration and distribution are presented, with special emphasis on ceria (CeO 2 ) based materials. It is shown that the behavior of a variety of oxide systems with respect to properties relevant for energy applications (conductivity and catalytic activity) can be rationalized by general considerations about the type and concentration of defects in the specific system. A new method based on transmission electron microscopy (TEM), recently reported by the authors for mapping space charge defects and measuring space charge potentials, is shown to be of potential importance for understanding conductivity mechanisms in oxides. The influence of defects on gas-surface reactions is exemplified on the interaction of CO 2 and H 2 O with ceria, by correlating between the defect distribution in the material and its adsorption capacity or splitting efficiency. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Cost analysis of energy storage systems for electric utility applications

    Energy Technology Data Exchange (ETDEWEB)

    Akhil, A. [Sandia National Lab., Albuquerque, NM (United States); Swaminathan, S.; Sen, R.K. [R.K. Sen & Associates, Inc., Bethesda, MD (United States)

    1997-02-01

    Under the sponsorship of the Department of Energy, Office of Utility Technologies, the Energy Storage System Analysis and Development Department at Sandia National Laboratories (SNL) conducted a cost analysis of energy storage systems for electric utility applications. The scope of the study included the analysis of costs for existing and planned battery, SMES, and flywheel energy storage systems. The analysis also identified the potential for cost reduction of key components.

  1. Application of monitoring and targeting to energy management

    Energy Technology Data Exchange (ETDEWEB)

    Gotel, D G; Hale, D K

    1989-01-01

    This general guide has been prepared to show how monitoring and targeting can control energy use and improve the efficiency with which energy is used in different sectors of the national economy. It is based on the results of work carried out, under the Energy Efficiency Office Monitoring and Targeting Programme, on the development of practical energy management systems for use in manufacturing industry, commerce and the public sector. The principles of monitoring and targeting are described together with the steps which have to be taken to set up monitoring and targeting as an integral part of an existing management organization. Procedures are given for monitoring energy use, defining standards and targets, reporting results and reviewing progress. These procedures which have been developed and tested in working environments are illustrated with examples of their practical application. Finally, an account is given of the improvements of performance in the use of energy and the other benefits which can be gained through energy monitoring and targeting.

  2. Summarized achievement report on research and development in the Sunshine Project in fiscal 1979. Research on hydrogen energy total systems; 1979 nendo suiso energy total system no kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-03-01

    This paper describes discussions on future possibility of introducing hydrogen, by adding the latest data acquired in fiscal 1979 into a hydrogen energy total system calculation model. The critical cost of hydrogen is higher always than other secondary energies up to about 2030. Since it is a presupposition that hydrogen manufacturing is technologically feasible only by using the electrolytic manufacturing process, the hydrogen cost changes with the critical cost of electric power. Thereafter, if a hydrogen manufacturing process of mixed type utilizing heat from a high temperature gas reactor (HTGR) is introduced, the cost will be reduced. However, introduction of HTGR is governed by the nuclear power plan such as HTGR technology development, rather than simply by the economic performance. Value factors showing qualitative advantage of hydrogen have been assigned to different demand sectors, whereas acceptable economic performance may emerge from this effect from about 2010 in sectors having large value factors (such as 2.8 in aircraft fuels). Hydrogen contribution would be about 2.1% in 2020 and 5.5% in 2030 of the whole energy demand. (NEDO)

  3. A Smartphone Application for Personalized and Multi-Method Interventions toward Energy Saving in Buildings

    Directory of Open Access Journals (Sweden)

    Peeraya Inyim

    2018-05-01

    Full Text Available Occupant behavior is a significant contributor to energy waste in buildings. This research introduces an advanced smartphone application, developed based on the theoretical underpinnings of situational awareness theory, to effectively implement multi-method and personalized intervention to encourage energy conservation behaviors of building occupants. The new smart application provides several innovative features, such as energy saving points, customized feedback, and visualized user interface, which are implemented in the application to support multi-method interventions. The application was created using the Java language for Android devices. With the use of the Android platform, the app takes advantage of hardware technology from the user’s mobile device. Measurement of occupancy behavior is accomplished by making use of the device’s positional sensors. Orientation and geomagnetic field sensors serve to provide an accurate location of an occupant inside the building. The application can determine energy waste in a zone by using occupancy behavior. Moreover, the application offers real-time and projected future energy consumption based on occupants’ behaviors. This novel feature can significantly improve communication that can lead to prompt action for building energy reduction. Results show how the app can compile raw data on energy behavior and make it easy to understand for the user through the use of visuals and statistical algorithms.

  4. Survey of EPA facilities for solar thermal energy applications

    Science.gov (United States)

    Nelson, E. V.; Overly, P. T.; Bell, D. M.

    1980-01-01

    A study was done to assess the feasibility of applying solar thermal energy systems to EPA facilities. A survey was conducted to determine those EPA facilities where solar energy could best be used. These systems were optimized for each specific application and the system/facility combinations were ranked on the basis of greatest cost effectiveness.

  5. Tutorial on neural network applications in high energy physics: A 1992 perspective

    International Nuclear Information System (INIS)

    Denby, B.

    1992-04-01

    Feed forward and recurrent neural networks are introduced and related to standard data analysis tools. Tips are given on applications of neural nets to various areas of high energy physics. A review of applications within high energy physics and a summary of neural net hardware status are given

  6. Analysis of Energy Efficiency in WSN by Considering SHM Application

    Science.gov (United States)

    Kumar, Pawan; Naresh Babu, Merugu; Raju, Kota Solomon, Dr; Sharma, Sudhir Kumar, Dr; Jain, Vaibhav

    2017-08-01

    The Wireless Sensor Network is composed of a significant number of autonomous nodes deployed in an extensive or remote area. In WSN, the sensor nodes have a limited transmission range, processing speed and storage capabilities as well as their energy resources are also limited. In WSN all nodes are not directly connected. The primary objective for all kind of WSN is to enhance and optimize the network lifetime i.e. to minimize the energy consumption in the WSN. There are lots of applications of WSN out of which this research paper focuses upon the Structural Health Monitoring application in which 50 Meter bridge has been taken as a test application for the simulation purpose.

  7. A portable high-efficiency electromagnetic energy harvesting system using supercapacitors for renewable energy applications in railroads

    International Nuclear Information System (INIS)

    Zhang, Xingtian; Zhang, Zutao; Pan, Hongye; Salman, Waleed; Yuan, Yanping; Liu, Yujie

    2016-01-01

    Graphical abstract: In this study, we develop a portable high-efficiency electromagnetic energy harvesting system with supercapacitors that converts the energy of track vibrations into electricity. The generated electricity is stored in the supercapacitors and used in remote areas for safety facilities or in standby power supplies for rail-side equipment. The proposed system consists of a mechanical transmission and a rectifier. Acting as the energy input and transmission, Gears and a rack amplify the small vibrations of the track, and one-way bearings enhance efficiency by transforming bidirectional motion to unidirectional rotation. Supercapacitors are used in the energy harvesting system for the first time. The supercapacitors permit the storage of energy from rapidly changing transient currents and a steady power supply for external loads. The proposed system is demonstrated through dynamic simulations, which show the rapid response of the system. An efficiency of 55.5% is demonstrated in bench tests, verifying that the proposed electromagnetic energy harvesting system is effective and practical in renewable energy applications for railroads. - Highlights: • A frequently ignored source of energy, railroad track vibrations, is harvested. • A novel conversion mechanism is designed to maximize efficiency. • Supercapacitors are included in the electromagnetic energy harvesting system. • A portable design is proposed for wider application. - Abstract: As the demand for alternative sources of energy has increased, harvesting abundant environmental energy such as vibration energy including track vibrations in railway systems has attracted greater attention. In this study, we develop a portable high-efficiency electromagnetic energy harvesting system with supercapacitors that converts the energy of track vibrations into electricity. The generated electricity is stored in the supercapacitors and used in remote areas for safety facilities or in standby power

  8. Empirical Study on Total Factor Productive Energy Efficiency in Beijing-Tianjin-Hebei Region-Analysis based on Malmquist Index and Window Model

    Science.gov (United States)

    Xu, Qiang; Ding, Shuai; An, Jingwen

    2017-12-01

    This paper studies the energy efficiency of Beijing-Tianjin-Hebei region and to finds out the trend of energy efficiency in order to improve the economic development quality of Beijing-Tianjin-Hebei region. Based on Malmquist index and window analysis model, this paper estimates the total factor energy efficiency in Beijing-Tianjin-Hebei region empirically by using panel data in this region from 1991 to 2014, and provides the corresponding political recommendations. The empirical result shows that, the total factor energy efficiency in Beijing-Tianjin-Hebei region increased from 1991 to 2014, mainly relies on advances in energy technology or innovation, and obvious regional differences in energy efficiency to exist. Throughout the window period of 24 years, the regional differences of energy efficiency in Beijing-Tianjin-Hebei region shrank. There has been significant convergent trend in energy efficiency after 2000, mainly depends on the diffusion and spillover of energy technologies.

  9. Review for the military application of nuclear energy

    International Nuclear Information System (INIS)

    Park, M. J.

    1998-01-01

    In order to understand the broad technology of nuclear energy, we have explored how our present knowledge of nuclear energy has been developed, and how some of this knowledge is applied. Techniques learned from nuclear physics are used the build fearsome weapons of mass destruction, whose proliferation is a constant threat to our future. To develop military applications of nuclear technology systematically, high level human resources and creative brains should be sufficiently trained and secured

  10. Symbiotic Sensing for Energy-Intensive Tasks in Large-Scale Mobile Sensing Applications.

    Science.gov (United States)

    Le, Duc V; Nguyen, Thuong; Scholten, Hans; Havinga, Paul J M

    2017-11-29

    Energy consumption is a critical performance and user experience metric when developing mobile sensing applications, especially with the significantly growing number of sensing applications in recent years. As proposed a decade ago when mobile applications were still not popular and most mobile operating systems were single-tasking, conventional sensing paradigms such as opportunistic sensing and participatory sensing do not explore the relationship among concurrent applications for energy-intensive tasks. In this paper, inspired by social relationships among living creatures in nature, we propose a symbiotic sensing paradigm that can conserve energy, while maintaining equivalent performance to existing paradigms. The key idea is that sensing applications should cooperatively perform common tasks to avoid acquiring the same resources multiple times. By doing so, this sensing paradigm executes sensing tasks with very little extra resource consumption and, consequently, extends battery life. To evaluate and compare the symbiotic sensing paradigm with the existing ones, we develop mathematical models in terms of the completion probability and estimated energy consumption. The quantitative evaluation results using various parameters obtained from real datasets indicate that symbiotic sensing performs better than opportunistic sensing and participatory sensing in large-scale sensing applications, such as road condition monitoring, air pollution monitoring, and city noise monitoring.

  11. Symbiotic Sensing for Energy-Intensive Tasks in Large-Scale Mobile Sensing Applications

    Science.gov (United States)

    Scholten, Hans; Havinga, Paul J. M.

    2017-01-01

    Energy consumption is a critical performance and user experience metric when developing mobile sensing applications, especially with the significantly growing number of sensing applications in recent years. As proposed a decade ago when mobile applications were still not popular and most mobile operating systems were single-tasking, conventional sensing paradigms such as opportunistic sensing and participatory sensing do not explore the relationship among concurrent applications for energy-intensive tasks. In this paper, inspired by social relationships among living creatures in nature, we propose a symbiotic sensing paradigm that can conserve energy, while maintaining equivalent performance to existing paradigms. The key idea is that sensing applications should cooperatively perform common tasks to avoid acquiring the same resources multiple times. By doing so, this sensing paradigm executes sensing tasks with very little extra resource consumption and, consequently, extends battery life. To evaluate and compare the symbiotic sensing paradigm with the existing ones, we develop mathematical models in terms of the completion probability and estimated energy consumption. The quantitative evaluation results using various parameters obtained from real datasets indicate that symbiotic sensing performs better than opportunistic sensing and participatory sensing in large-scale sensing applications, such as road condition monitoring, air pollution monitoring, and city noise monitoring. PMID:29186037

  12. Symbiotic Sensing for Energy-Intensive Tasks in Large-Scale Mobile Sensing Applications

    Directory of Open Access Journals (Sweden)

    Duc V. Le

    2017-11-01

    Full Text Available Energy consumption is a critical performance and user experience metric when developing mobile sensing applications, especially with the significantly growing number of sensing applications in recent years. As proposed a decade ago when mobile applications were still not popular and most mobile operating systems were single-tasking, conventional sensing paradigms such as opportunistic sensing and participatory sensing do not explore the relationship among concurrent applications for energy-intensive tasks. In this paper, inspired by social relationships among living creatures in nature, we propose a symbiotic sensing paradigm that can conserve energy, while maintaining equivalent performance to existing paradigms. The key idea is that sensing applications should cooperatively perform common tasks to avoid acquiring the same resources multiple times. By doing so, this sensing paradigm executes sensing tasks with very little extra resource consumption and, consequently, extends battery life. To evaluate and compare the symbiotic sensing paradigm with the existing ones, we develop mathematical models in terms of the completion probability and estimated energy consumption. The quantitative evaluation results using various parameters obtained from real datasets indicate that symbiotic sensing performs better than opportunistic sensing and participatory sensing in large-scale sensing applications, such as road condition monitoring, air pollution monitoring, and city noise monitoring.

  13. 78 FR 11633 - Application To Export Electric Energy; ConocoPhillips Company

    Science.gov (United States)

    2013-02-19

    ... DEPARTMENT OF ENERGY [OE Docket No. EA-336-A] Application To Export Electric Energy; Conoco..., DOE issued Order No. EA-336, which authorized CoP to transmit electric energy from the United States... facilities to the transmission grid. CoP states that all of the electric energy that CoP proposes to export...

  14. Total photon absorption

    International Nuclear Information System (INIS)

    Carlos, P.

    1985-06-01

    The present discussion is limited to a presentation of the most recent total photonuclear absorption experiments performed with real photons at intermediate energy, and more precisely in the region of nucleon resonances. The main sources of real photons are briefly reviewed and the experimental procedures used for total photonuclear absorption cross section measurements. The main results obtained below 140 MeV photon energy as well as above 2 GeV are recalled. The experimental study of total photonuclear absorption in the nuclear resonance region (140 MeV< E<2 GeV) is still at its beginning and some results are presented

  15. Measurement of the energy dependence of the total photon-proton cross section at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Abramowicz, H. [Tel Aviv Univ. (Israel). Raymond and Beverly Sackler Faculty of Exact Sciences; Univ. Coll. London (United Kingdom); Krakow Univ. of Technology (Poland). Faculty of Physics, Mathematics and Applied Computer Science; Abt, I. [Max-Planck-Institut fuer Physik, Muenchen (Germany); Adamczyk, L. [AGH-Univ. of Science and Technology, Cracow (PL). Faculty of Physics and Applied Computer Science] (and others)

    2010-10-15

    The energy dependence of the photon-proton total cross section, {sigma}{sub tot}{sup {gamma}}{sup p}, was determined from e{sup +}p scattering data collected with the ZEUS detector at HERA at three values of the center-of-mass energy, W, of the {gamma}p system in the range 194

  16. Total body irradiation with a reconditioned cobalt teletherapy unit.

    Science.gov (United States)

    Evans, Michael D C; Larouche, Renée-Xavière; Olivares, Marina; Léger, Pierre; Larkin, Joe; Freeman, Carolyn R; Podgorsak, Ervin B

    2006-01-01

    While the current trend in radiotherapy is to replace cobalt teletherapy units with more versatile and technologically advanced linear accelerators, there remain some useful applications for older cobalt units. The expansion of our radiotherapy department involved the decommissioning of an isocentric cobalt teletherapy unit and the replacement of a column-mounted 4-MV LINAC that has been used for total body irradiation (TBI). To continue offering TBI treatments, we converted the decommissioned cobalt unit into a dedicated fixed-field total body irradiator and installed it in an existing medium-energy LINAC bunker. This article describes the logistical and dosimetric aspects of bringing a reconditioned cobalt teletherapy unit into clinical service as a total body irradiator.

  17. Silicon carbide as platform for energy applications

    DEFF Research Database (Denmark)

    Syväjärvi, Mikael; Jokubavicius, Valdas; Sun, Jianwu

    and solar cells, and further pursue concepts in materials for thermoelectrics, biofuel cells and supercapacitor research proposals. In fact, there are a number of energy applications which can be based on the SiC materials.- Fluorescent SiC for white LED in general lighting - Cubic SiC for a highly...

  18. Design of a bolometer for total-energy measurement of the linear coherent light source pulsed X-ray laser

    International Nuclear Information System (INIS)

    Friedrich, S.; Li, L.; Ott, L.L.; Kolgani, Rajeswari M.; Yong, G.J.; Ali, Z.A.; Drury, O.B.; Ables, E.; Bionta, R.M.

    2006-01-01

    We are developing a cryogenic bolometer to measure the total energy of the linear coherent light source (LCLS) free electron X-ray laser to be built at the Stanford Linear Accelerator Center. The laser will produce ultrabright X-ray pulses in the energy range between 0.8 and 8 keV with ∼10 12 photons per ∼200 fs pulse at a repeat interval of 8 ms, and will be accompanied by a halo of spontaneous undulator radiation. The bolometer is designed to determine the total energy of each laser pulse to within (1- x ) Sr x MnO 3 sensor array at the metal-insulator transition, where the composition x is adjusted to produce the desired transition temperature. We discuss design considerations and material choices, and present numerical simulations of the thermal response

  19. 10 CFR 455.110 - Grant application submittals for technical assistance and energy conservation measures.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Grant application submittals for technical assistance and... Grant application submittals for technical assistance and energy conservation measures. (a) Each... assistance for energy conservation measures, including renewable resource measures, shall include the...

  20. Freeze-casting: Fabrication of highly porous and hierarchical ceramic supports for energy applications

    Directory of Open Access Journals (Sweden)

    Cyril Gaudillere

    2016-03-01

    The aim of this paper is to give an overview of the freeze-casting ceramic shaping method and to show how its implementation could be useful for several energy applications where key components comprise a porous scaffold. A detailed presentation of the freeze-casting process and of the characteristics of the resulting porous parts is firstly given. The characteristic of freeze-cast parts and the drawbacks of conventional porous scaffolds existing in energy applications are drawn in order to highlight the expected beneficial effect of this new shaping technique as possible substitute to the conventional ones. Finally, a review of the state of the art freeze-cast based energy applications developed up to now and expected to be promising is given to illustrate the large perspectives opened by the implementation of the freeze-casting of ceramics for energy fields. Here we suggest discussing about the feasibility of incorporate freeze-cast porous support in high temperature ceramic-based energy applications.

  1. Total kinetic energy in four global eddying ocean circulation models and over 5000 current meter records

    KAUST Repository

    Scott, Robert B.; Arbic, Brian K.; Chassignet, Eric P.; Coward, Andrew C.; Maltrud, Mathew; Merryfield, William J.; Srinivasan, Ashwanth; Varghese, Anson

    2010-01-01

    We compare the total kinetic energy (TKE) in four global eddying ocean circulation simulations with a global dataset of over 5000, quality controlled, moored current meter records. At individual mooring sites, there was considerable scatter between

  2. Application of diffusion research to solar energy policy issues

    Energy Technology Data Exchange (ETDEWEB)

    Roessner, J. D.; Posner, D.; Shoemaker, F.; Shama, A.

    1979-03-01

    This paper examines two types of information requirements that appear to be basic to DOE solar-energy-policy decisions: (1) how can the future market success of solar energy technologies be estimated, and (2) what factors influence the adoption of solar energy technologies, and what specific programs could promote solar energy adoption most effectively. This paper assesses the ability of a body of research, referred to here as diffusion research, to supply information that could partially satisfy these requirements. This assessment proceeds, first, by defining in greater detail a series of policy issues that face DOE. These are divided into cost reduction and performance improvement issues which include issues confronting the technology development component of the solar energy program, and barriers and incentives issues which are most relevant to problems of solar energy application. Second, these issues are translated into a series of questions that the diffusion approach can help resolve. Third, various elements within diffusion research are assessed in terms of their abilities to answer policy questions. Finally, the strengths and limitations of current knowledge about the diffusion of innovations are summarized, the applicability of both existing knowledge and the diffusion approach to the identified solar-energy-policy issues are discussed, and ways are suggested in which diffusion approaches can be modified and existing knowledge employed to meet short- and long-term goals of DOE. The inquiry covers the field of classical diffusion research, market research and consumer behavior, communication research, and solar-energy market-penetration modeling.

  3. Renewable energy applications in Greece—What is the public attitude?

    International Nuclear Information System (INIS)

    Kaldellis, J.K.; Kapsali, M.; Katsanou, Ev.

    2012-01-01

    Large-scale integration of Renewable Energy Sources (RES) applications is thought to be imperative for Greece in view of meeting the targets of 2020, which dictate that 20% of the national gross energy consumption and 40% of the national gross electricity consumption should be covered by RES. However, availability of suitable sites for the installation of such applications is questioned, since apart from the fact that many locations of high RES potential and adequate infrastructure have already been allocated, the society opposition often sets additional barriers. The present study focuses on the assessment of the levels of social acceptability for selected RES technologies (wind, small hydro and photovoltaics) in a representative region of Southern Greece. The specific area is of major interest since, apart from the operating and scheduled installations of RES applications in the next years, the local population is also familiar with the long-term operation of a lignite-based power station (850 MW). One three-part questionnaire has been deployed for conducting the survey based on a representative sample of local inhabitants. According to the results obtained, high levels of acceptability of renewable energy applications have been encountered although the need for additional public information regarding RES exploitation has also been designated. - Highlights: ► This study assesses the levels of social acceptability for several Renewable Energy Sources (RES) technologies. ► The survey was conducted in the wide region of central Peloponnesus (S. Greece). ► The area has already remarkable RES-based installations. ► Respondents are familiar with long-term operation of a lignite-based power station. ► Based on results, high levels of acceptability of RES applications have been recorded.

  4. Swimming bath pumps. Ranges of application, selection, installation, energy efficiency; Schwimmbadpumpen. Einsatzbereiche, Auswahl, Aufbau, Energieeffizienz

    Energy Technology Data Exchange (ETDEWEB)

    Korupp, Sascha

    2012-07-01

    The booklet under consideration reports on pumps being used in swimming baths. The range of application of the individual sorts of pump is described. The knowledge on the selection of suitable pumps is given. Subsequently, the design of a pump with the main components, the installation of a pump as well as the most important issues and difficulties of the pump material are illustrated. The total costs of a pump within its life cycle are determined. These life cycle costs can be reduced by propulsion components increasing the energy efficiency such as frequency converter, motors with permanent magnets or heat exchanger motors.

  5. Some Environmental and Economic Aspects of Energy Saving Measures in Houses. An estimation model for total energy consumption and emissions to air from the Norwegian dwelling stock, and a life cycle assessment method for energy saving measures in houses

    Energy Technology Data Exchange (ETDEWEB)

    Myhre, L

    1995-12-01

    Motivated by the need to reduce the total energy consumption and the environmental load from society, this doctoral thesis discusses energy conservation measures on existing houses. Alternative additional thermal insulation measures are assessed using an interdisciplinary life cycle approach. The first task is to develop an interdisciplinary assessment method for building improvement measures, taking account of energy consumption, resource consumption, emissions to air of environmentally harmful gases, and economic costs during the entire life cycle of the building. The second task is to develop an estimation model for the total energy consumption and emissions to air of environmentally harmful gases from the dwelling stock of Norway. Finally, the third task is to assess the total energy saving potential and the total environmental benefits of energy saving measures in houses on a national level, including only life cycle analyses of additional thermal insulation measures on single houses. Chap 2 describes the dwelling stock in Norway. Chaps 3 and 4 present an estimation model for total energy consumption and emissions to air from the dwelling stock, and calculations using the model. Chaps 5 and 6 propose and use a calculation method for the assessment of additional thermal insulation measures, using a ``cradle-to-grave`` approach. Since hydroelectric power is the main energy source in this sector in Norway, estimated payback periods for emissions to air are long. But hydroelectric power saved in this sector may be used to obtain reduction in fossil fuel use in other sectors as discussed in Chap 7. Some of the topics discussed are further elaborated on in appendices. 107 refs., 39 figs, 88 tabs.

  6. Potential energy savings by using direct current for residential applications

    DEFF Research Database (Denmark)

    Diaz, Enrique Rodriguez; Quintero, Juan Carlos Vasquez; Guerrero, Josep M.

    2017-01-01

    improvement in the power converter units. However, for residential applications, the efficiency is not always improved. A grid connected residential microgrid, with renewable energy sources (RES), energy storage systems (ESS) and local loads, is presented in this work. The microgrid has been modelled...

  7. Applications of pulsed energy sources and hydrodynamic response to materials science

    International Nuclear Information System (INIS)

    Perry, F.; Nelson, W.

    1993-01-01

    The dynamic response of materials to pulsed, relativistic electron beams was studied for materials science applications over two decades ago. Presently, intense light ion beams are being explored for materials science applications. These include the Ion Beam Surface Treatment (IBEST) of materials for producing stronger and more corrosion-resistant materials and the evaporative deposition of polycrystalline thin films. Laser sources are also being extensively utilized as pulsed energy sources in medical science and in clinical applications. In particular, laser-tissue interactions are being investigated for laser angioplasty and surgery as well as cancer therapy. The understanding of the energy deposition and hydrodynamic response of a wide range of materials is essential to the success of these applications. In order to address these materials science applications, the authors are utilizing and developing high quality, energy deposition-hydrodynamic code techniques which can aid in the design and interpretation of experiments. Consequently, the authors strongly encourage the development of 3-dimensional, species-selective diagnostic techniques, e.g. Resonant Holographic Interferometry Spectroscopy (RHIS), to be used in analyzing the ablation plume in the thin film deposition experiments. In this presentation they show the results and discuss the limitations of calculations for these materials applications. They also discuss the status of the RHIS diagnostic

  8. Measurement of the photon-proton total cross section at a center-of-mass energy of 209 GeV at HERA

    International Nuclear Information System (INIS)

    Chekanov, S.; Derrick, M.; Krakauer, D.; Magill, S.; Musgrave, B.; Pellegrino, A.; Repond, J.; Yoshida, R.; Mattingly, M.C.K.; Antonioli, P.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Cara Romeo, G.; Cifarelli, L.; Cindolo, F.; Contin, A.; Corradi, M.; De Pasquale, S.; Giusti, P.; Iacobucci, G.; Levi, G.; Margotti, A.; Massam, T.; Nania, R.; Palmonari, F.; Pesci, A.; Sartorelli, G.; Zichichi, A.; Aghuzumtsyan, G.; Bartsch, D.; Brock, I.; Crittenden, J.; Goers, S.; Hartmann, H.; Hilger, E.; Irrgang, P.; Jakob, H.-P.; Kappes, A.; Katz, U.F.; Kerger, R.; Kind, O.; Paul, E.; Rautenberg, J.; Renner, R.; Schnurbusch, H.; Stifutkin, A.; Tandler, J.; Voss, K.C.; Weber, A.; Wessoleck, H.; Bailey, D.S.; Brook, N.H.; Cole, J.E.; Foster, B.; Heath, G.P.; Heath, H.F.; Robins, S.; Rodrigues, E.; Scott, J.; Tapper, R.J.; Wing, M.; Capua, M.; Mastroberardino, A.; Schioppa, M.; Susinno, G.; Jeoung, H.Y.; Kim, J.Y.; Lee, J.H.; Lim, I.T.; Ma, K.J.; Pac, M.Y.; Caldwell, A.; Helbich, M.; Liu, X.; Mellado, B.; Paganis, S.; Schmidke, W.B.; Sciulli, F.; Chwastowski, J.; Eskreys, A.; Figiel, J.; Olkiewicz, K.; Przybycien, M.B.; Stopa, P.; Zawiejski, L.; Bednarek, B.; Grabowska-Bold, I.; Jelen, K.; Kisielewska, D.; Kowal, A.M.; Kowal, M.; Kowalski, T.; Mindur, B.; Przybycien, M.; Rulikowska-Zarebska, E.; Suszycki, L.; Szuba, D.; Szuba, J.; Kotanski, A.; Slominski, W.; Bauerdick, L.A.T.; Behrens, U.; Borras, K.; Chiochia, V.; Dannheim, D.; Desler, K.; Drews, G.; Fourletova, J.; Fox-Murphy, A.; Fricke, U.; Geiser, A.; Goebel, F.; Goettlicher, P.; Graciani, R.; Haas, T.; Hain, W.; Hartner, G.F.; Hillert, S.; Koetz, U.; Kowalski, H.; Labes, H.; Lelas, D.; Loehr, B.; Mankel, R.; Martens, J.; Martinez, M.; Moritz, M.; Notz, D.; Petrucci, M.C.; Polini, A.; Schneekloth, U.; Selonke, F.; Stonjek, S.; Surrow, B.; Whitmore, J.J.; Wichmann, R.; Wolf, G.; Youngman, C.; Zeuner, W.; Coldewey, C.; Lopez-Duran Viani, A.; Meyer, A.; Schlenstedt, S.; Barbagli, G.; Gallo, E.; Genta, C.; Pelfer, P.G.; Bamberger, A.; Benen, A.; Coppola, N.; Markun, P.; Raach, H.; Woelfle, S.; Bell, M.; Bussey, P.J.; Doyle, A.T.; Glasman, C.; Hanlon, S.; Lee, S.W.; Lupi, A.; McCance, G.J.; Saxon, D.H.; Skillicorn, I.O.; Bodmann, B.; Holm, U.; Salehi, H.; Wick, K.; Ziegler, A.; Ziegler, Ar.; Carli, T.; Gialas, I.; Klimek, K.; Lohrmann, E.; Milite, M.; Collins-Tooth, C.; Foudas, C.; Goncalo, R.; Long, K.R.; Metlica, F.; Miller, D.B.; Tapper, A.D.; Walker, R.; Cloth, P.; Filges, D.; Kuze, M.; Nagano, K.; Tokushuku, K.; Yamada, S.; Yamazaki, Y.; Barakbaev, A.N.; Boos, E.G.; Pokrovskiy, N.S.; Zhautykov, B.O.; Ahn, S.H.; Lee, S.B.; Park, S.K.; Lim, H.; Son, D.; Barreiro, F.; Garcia, G.; Gonzalez, O.; Labarga, L.; del Peso, J.; Redondo, I.; Terron, J.; Vazquez, M.; Barbi, M.; Bertolin, A.; Corriveau, F.; Ochs, A.; Padhi, S.; Stairs, D.G.; St-Laurent, M.; Tsurugai, T.; Antonov, A.; Bashkirov, V.; Danilov, P.; Dolgoshein, B.A.; Gladkov, D.; Sosnovtsev, V.; Suchkov, S.; Dementiev, R.K.; Ermolov, P.F.; Golubkov, Yu.A.; Katkov, I.I.; Khein, L.A.; Korotkova, N.A.; Korzhavina, I.A.; Kuzmin, V.A.; Levchenko, B.B.; Lukina, O.Yu.; Proskuryakov, A.S.; Shcheglova, L.M.; Solomin, A.N.; Vlasov, N.N.; Zotkin, S.A.; Bokel, C.; Engelen, J.; Grijpink, S.; Koffeman, E.; Kooijman, P.; Maddox, E.; Schagen, S.; Tassi, E.; Tiecke, H.; Tuning, N.; Velthuis, J.J.; Wiggers, L.; de Wolf, E.; Bruemmer, N.; Bylsma, B.; Durkin, L.S.; Gilmore, J.; Ginsburg, C.M.; Kim, C.L.; Ling, T.Y.; Boogert, S.; Cooper-Sarkar, A.M.; Devenish, R.C.E.; Ferrando, J.; Matsushita, T.; Rigby, M.; Ruske, O.; Sutton, M.R.; Walczak, R.; Brugnera, R.; Carlin, R.; Dal Corso, F.; Dusini, S.; Garfagnini, A.; Limentani, S.; Longhin, A.; Parenti, A.; Posocco, M.; Stanco, L.; Turcato, M.; Adamczyk, L.; Oh, B.Y.; Saull, P.R.B.; Iga, Y.; D'Agostini, G.; Marini, G.; Nigro, A.; Cormack, C.; Hart, J.C.; McCubbin, N.A.; Heusch, C.; Park, I.H.; Pavel, N.; Abramowicz, H.; Dagan, S.; Gabareen, A.; Kananov, S.; Kreisel, A.; Levy, A.; Abe, T.; Fusayasu, T.; Kohno, T.; Umemori, K.; Yamashita, T.; Hamatsu, R.; Hirose, T.; Inuzuka, M.; Kitamura, S.; Matsuzawa, K.; Nishimura, T.; Arneodo, M.; Cartiglia, N.; Cirio, R.; Costa, M.; Ferrero, M.I.; Maselli, S.; Monaco, V.; Peroni, C.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Galea, R.; Koop, T.; Levman, G.M.; Martin, J.F.; Mirea, A.; Sabetfakhri, A.; Butterworth, J.M.; Gwenlan, C.; Hall-Wilton, R.; Hayes, M.E.; Heaphy, E.A.; Jones, T.W.; Lane, J.B.; Lightwood, M.S.; West, B.J.; Ciborowski, J.; Ciesielski, R.; Grzelak, G.; Nowak, R.J.; Pawlak, J.M.; Smalska, B.; Sztuk, J.; Tymieniecka, T.; Ukleja, A.; Ukleja, J.; Zakrzewski, J.A.; Zarnecki, A.F.; Adamus, M.; Plucinski, P.; Eisenberg, Y.; Gladilin, L.K.; Hochman, D.; Karshon, U.; Breitweg, J.; Chapin, D.; Cross, R.; Kcira, D.; Lammers, S.; Reeder, D.D.; Savin, A.A.; Smith, W.H.; Deshpande, A.; Dhawan, S.; Hughes, V.W.; Straub, P.B.; Bhadra, S.; Catterall, C.D.; Fourletov, S.; Menary, S.; Soares, M.; Standage, J.

    2002-01-01

    The photon-proton total cross section has been measured in the process e + p→e + γp→e + X with the ZEUS detector at HERA. Events were collected with photon virtuality Q 2 2 and average γp center-of-mass energy W γp =209 GeV in a dedicated run, designed to control systematic effects, with an integrated luminosity of 49 nb -1 . The measured total cross section is σ tot γp =174±1 (stat.)±13 (syst.) μb. The energy dependence of the cross section is compatible with parameterizations of high-energy pp and pp-bar data

  9. JAERI FEL applications in nuclear energy industries

    International Nuclear Information System (INIS)

    Minehara, Eisuke J.

    2005-01-01

    The JAERI FEL has first discovered the new FEL lasing of 255fs ultra fast pulse, 6-9% high efficiency, 1GW high peak power, a few kilowatts average power, and wide tunability of medium and far infrared wavelength regions at the same time. Using the new lasing and energy-recovery linac technology, we could extend a more powerful and more efficient free-electron laser (FEL) than 10kW and 25%, respectively, for nuclear energy industries, and others. In order to realize such a tunable, highly-efficient, high average power, high peak power and ultra-short pulse FEL, we need the efficient and powerful FEL driven by the JAERI compact, stand alone and zero boil-off super-conducting RF linac with an energy-recovery geometry. Our discussions on the FEL will cover the application of non-thermal peeling, cutting, and drilling to prevent cold-worked stress-corrosion cracking failures in nuclear energy and other heavy industries. (author)

  10. Beverage Consumption Habits in Italian Population: Association with Total Water Intake and Energy Intake

    Directory of Open Access Journals (Sweden)

    Lorenza Mistura

    2016-10-01

    Full Text Available Background: The aim of this study was to investigate total water intake (TWI from water, beverages and foods among Italian adults and the elderly. Methods: Data of 2607 adults and the elderly, aged 18–75 years from the last national food consumption survey, INRAN-SCAI 2005-06, were used to evaluate the TWI. The INRAN-SCAI 2005-06 survey was conducted on a representative sample of 3323 individuals aged 0.1 to 97.7 years. A 3-day semi-structured diary was used for participants to record the consumption of all foods, beverages and nutritional supplements. Results: On average, TWI was 1.8 L for men and 1.7 L for women. More than 75% of women and 90% of men did not comply with the European Food Safety Authority (EFSA Adequate Intake. The contribution of beverages to the total energy intake (EI was 6% for the total sample. Water was the most consumed beverage, followed by alcoholic beverages for men and hot beverages for women. Conclusion: According to the present results, adults and elderly Italians do not reach the adequate intake for water as suggested by the EFSA and by the national reference level of nutrient and energy intake. Data on water consumption should also be analyzed in single socio-demographic groups in order to identify sub-groups of the population that need more attention and to plan more targeted interventions.

  11. Totally implantable total artificial heart and ventricular assist device with multipurpose miniature electromechanical energy system.

    Science.gov (United States)

    Takatani, S; Orime, Y; Tasai, K; Ohara, Y; Naito, K; Mizuguchi, K; Makinouchi, K; Damm, G; Glueck, J; Ling, J

    1994-01-01

    A multipurpose miniature electromechanical energy system has been developed to yield a compact, efficient, durable, and biocompatible total artificial heart (TAH) and ventricular assist device (VAD). Associated controller-driver electronics were recently miniaturized and converted into hybrid circuits. The hybrid controller consists of a microprocessor and controller, motor driver, Hall sensor, and commutation circuit hybrids. The sizing study demonstrated that all these components can be incorporated in the pumping unit of the TAH and VAD, particularly in the centerpiece of the TAH and the motor housing of the VAD. Both TAH and VAD pumping units will start when their power line is connected to either the internal power pack or the external battery unit. As a redundant driving and diagnostic port, an emergency port was newly added and will be placed in subcutaneous location. In case of system failure, the skin will be cut down, and an external motor drive or a pneumatic driver will be connected to this port to run the TAH. This will minimize the circulatory arrest time. Overall efficiency of the TAH without the transcutaneous energy transmission system was 14-18% to deliver pump outputs of 4-9 L/min against the right and left afterload pressures of 25 and 100 mm Hg. The internal power requirement ranged from 6 to 13 W. The rechargeable batteries such as NiCd or NiMH with 1 AH capacity can run the TAH for 30-45 min. The external power requirement, when TETS efficiency of 75% was assumed, ranged from 8 to 18 W. The accelerated endurance test in the 42 degrees C saline bath demonstrated stable performance over 4 months. Long-term endurance and chronic animal studies will continue toward a system with 5 years durability by the year 2000.

  12. Large-Scale Fabrication of Silicon Nanowires for Solar Energy Applications.

    Science.gov (United States)

    Zhang, Bingchang; Jie, Jiansheng; Zhang, Xiujuan; Ou, Xuemei; Zhang, Xiaohong

    2017-10-11

    The development of silicon (Si) materials during past decades has boosted up the prosperity of the modern semiconductor industry. In comparison with the bulk-Si materials, Si nanowires (SiNWs) possess superior structural, optical, and electrical properties and have attracted increasing attention in solar energy applications. To achieve the practical applications of SiNWs, both large-scale synthesis of SiNWs at low cost and rational design of energy conversion devices with high efficiency are the prerequisite. This review focuses on the recent progresses in large-scale production of SiNWs, as well as the construction of high-efficiency SiNW-based solar energy conversion devices, including photovoltaic devices and photo-electrochemical cells. Finally, the outlook and challenges in this emerging field are presented.

  13. Expectations for prospective applications of new beam technology to atomic energy research

    International Nuclear Information System (INIS)

    Tomimasu, Takio; Yamazaki, Tetsuo; Tanaka, Ryuichi; Tanigawa, Shoichiro; Konashi, Kenji; Mizumoti, Motoharu.

    1991-01-01

    Recently, the new beam technology based on high energy electron beam, for example free electron laser, low speed positrons and so on, has developed remarkably. Moreover, also in the field of ion beams, toward the utilization of further high level, the plans of using micro-beams, heightening energy, increasing electric current and so on are in progress. In near future, it is expected that the advanced application of such new beam technology expands more and more in the fields of materials, physical properties, isotope separation, biology, medical science, medical treatment and so on. In this report, placing emphasis on the examples of application, the development and application of new beam technology are described. Takasaki ion accelerators for advanced radiation application in Japan Atomic Energy Research Institute, the generation of low speed positrons and the utilization for physical property studies, the annihilation treatment of long life radioactive nuclides, and the generation of free electron laser and its application are reported. (K.I.)

  14. Industrial application of PV/T solar energy systems

    International Nuclear Information System (INIS)

    Kalogirou, S.A.; Tripanagnostopoulos, Y.

    2007-01-01

    Hybrid photovoltaic/thermal (PV/T) systems consist of PV modules and heat extraction units mounted together. These systems can simultaneously provide electrical and thermal energy, thus achieving a higher energy conversion rate of the absorbed solar radiation than plain photovoltaics. Industries show high demand of energy for both heat and electricity and the hybrid PV/T systems could be used in order to meet this requirement. In this paper the application aspects in the industry of PV/T systems with water heat extraction is presented. The systems are analyzed with TRNSYS program for three locations Nicosia, Athens and Madison that are located at different latitudes. The system comprises 300 m 2 of hybrid PV/T collectors producing both electricity and thermal energy and a 10 m 3 water storage tank. The work includes the study of an industrial process heat system operated at two load supply temperatures of 60 deg. C and 80 deg. C. The results show that the electrical production of the system, employing polycrystalline solar cells, is more than the amorphous ones but the solar thermal contribution is slightly lower. A non-hybrid PV system produces about 25% more electrical energy but the present system covers also, depending on the location, a large percentage of the thermal energy requirement of the industry considered. The economic viability of the systems is proven, as positive life cycle savings are obtained in the case of hybrid systems and the savings are increased for higher load temperature applications. Additionally, although amorphous silicon panels are much less efficient than the polycrystalline ones, better economic figures are obtained due to their lower initial cost, i.e., they have better cost/benefit ratio

  15. Virtual non-contrast of liver from dual energy CT: a clinical application

    International Nuclear Information System (INIS)

    Qian Yu'e; Hu Hongjie; Zhang Qiaowei; Hu Peng; Shen Guohui

    2011-01-01

    Objective: To assess the virtual non-contrast liver CT from dual-energy CT for the clinical application. Methods: In total, 51 patients were included in the study, and all patients underwent multi-phase liver CT on a dual-source CT. The True non-contrast liver CT (TNCT) was performed in a single-energy acquisition mode, but the arterial and portovenous liver CT (VNCT) were performed in a dual- energy mode of 110 kV and 140 kV respectively. The virtual non-contrast CT images were derived from the arterial data using liver virtual non-contrast software. Between the true non-contrast CT and the virtual non- contrast CT, the image quality, mean CT HU values in the liver and muscle, signal to noise (SNR), the radiation dose of volume CT dose index (CTDIvol) and dose length product (DLP) in a single phase and total examination were compared with t test. Results: There was no significant difference in the detection of' liver lesions between TNCT and VNCT. The CT Hu values of muscle on both TNCT and VNCT images were almost equal. The CT HU values of liver on VNCT images were higher than that on TNCT images and the difference was significant [61.32±6.04 vs. (56.85±4.80) HU, t=-3.927, P<0.01]. There was also significant difference of SNR between TNCT (11.28±2.78) and VNCT (8.65±1.56) images (t=-5.590, P<0.01). The CTDIvol and DLP of single phase were (7.07±0.85) mGy and (155.11± 22.52) mGy · cm respectively in TNCT, and (7.05±0.87) mGy and (154.48±23.12) mGy · cm in VNCT. The total CTDIvol and DLP in VNCT were (14.35±1.66) mGy and (313.91±45.08) mGy · cm respectively, but in TNCT the total CTDIvol and DLP reached (21.43±2.46) mGy and (469.02± 66.22) mGy · cm. The difference of CTDIvol and DLP in single phase between TNCT and VNCT showed no significance, but the total CTDIvol and DLP were significantly different (t=16.168 and 13.132, P< 0.01). Conclusion: With the consequent reduction in radiation dose, the VNCT can replace TNCT as an imaging protocol in multi

  16. Quinones as dienophiles in the Diels-Alder reaction: history and applications in total synthesis.

    Science.gov (United States)

    Nawrat, Christopher C; Moody, Christopher J

    2014-02-17

    In the canon of reactions available to the organic chemist engaged in total synthesis, the Diels-Alder reaction is among the most powerful and well understood. Its ability to rapidly generate molecular complexity through the simultaneous formation of two carbon-carbon bonds is almost unrivalled, and this is reflected in the great number of reported applications of this reaction. Historically, the use of quinones as dienophiles is highly significant, being the very first example investigated by Diels and Alder. Herein, we review the application of the Diels-Alder reaction of quinones in the total synthesis of natural products. The highlighted examples span some 60 years from the landmark syntheses of morphine (1952) and reserpine (1956) by Gates and Woodward, respectively, through to the present day examples, such as the tetracyclines. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Biosolids management strategies: an evaluation of energy production as an alternative to land application.

    Science.gov (United States)

    Egan, Maureen

    2013-07-01

    Currently, more than half of the biosolids produced within the USA are land applied. Land application of biosolids introduces organic contaminants into the environment. There are potential ecological and human health risks associated with land application of biosolids. Biosolids may be used as a renewable energy source. Nutrients may be recovered from biosolids used for energy generation for use as fertilizer. The by-products of biosolids energy generation may be used beneficially in construction materials. It is recommended that energy generation replace land application as the leading biosolids management strategy.

  18. The Feasibility of Wind and Solar Energy Application for Oil and Gas Offshore Platform

    International Nuclear Information System (INIS)

    Tiong, Y K; Zahari, M A; Wong, S F; Dol, S S

    2015-01-01

    Renewable energy is an energy which is freely available in nature such as winds and solar energy. It plays a critical role in greening the energy sector as these sources of energy produce little or no pollution to environment. This paper will focus on capability of renewable energy (wind and solar) in generating power for offshore application. Data of wind speeds and solar irradiation that are available around SHELL Sabah Water Platform for every 10 minutes, 24 hours a day, for a period of one year are provided by SHELL Sarawak Sdn. Bhd. The suitable wind turbine and photovoltaic panel that are able to give a high output and higher reliability during operation period are selected by using the tabulated data. The highest power output generated using single wind energy application is equal to 492 kW while for solar energy application is equal to 20 kW. Using the calculated data, the feasibility of renewable energy is then determined based on the platform energy demand. (paper)

  19. Low energy positron interactions with uracil—Total scattering, positronium formation, and differential elastic scattering cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, E. K.; Boadle, R. A.; Machacek, J. R.; Makochekanwa, C.; Sullivan, J. P. [ARC Centre for Antimatter-Matter Studies, Research School of Physics and Engineering, The Australian National University, Canberra 0200 (Australia); Chiari, L. [ARC Centre for Antimatter-Matter Studies, Flinders University, GPO Box 2100, Adelaide, 5001 SA (Australia); Buckman, S. J., E-mail: Stephen.buckman@anu.edu.au [ARC Centre for Antimatter-Matter Studies, Research School of Physics and Engineering, The Australian National University, Canberra 0200 (Australia); Institute of Mathematical Sciences, University of Malaya, Kuala Lumpur (Malaysia); Brunger, M. J. [ARC Centre for Antimatter-Matter Studies, Flinders University, GPO Box 2100, Adelaide, 5001 SA (Australia); Institute of Mathematical Sciences, University of Malaya, Kuala Lumpur (Malaysia); Garcia, G. [Instituto de Fısica Fundamental, Consejo Superior de Investigationes Cientıficas (CSIC), Serrano 113-bis, E-28006 Madrid (Spain); Blanco, F. [Departamento de Fısica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid, E-28040 Madrid (Spain); Ingolfsson, O. [Department of Chemistry, Science Institute, University of Iceland, Reykjavík 107 (Iceland)

    2014-07-21

    Measurements of the grand total and total positronium formation cross sections for positron scattering from uracil have been performed for energies between 1 and 180 eV, using a trap-based beam apparatus. Angular, quasi-elastic differential cross section measurements at 1, 3, 5, 10, and 20 eV are also presented and discussed. These measurements are compared to existing experimental results and theoretical calculations, including our own calculations using a variant of the independent atom approach.

  20. Nuclear energy I, Non-energetic applications; Energia Nuclear I, Aplicaciones no energeticas

    Energy Technology Data Exchange (ETDEWEB)

    Lartigue G, J; Navarrete T, M; Cabrera M, L; Arandia, P A; Arriola S, H [Facultad de Quimica, 04510 Mexico D.F. (Mexico)

    1986-07-01

    The nuclear energy is defined as the energy produced or absorbed in the nuclear reactions, therefore, these are divided in endothermic and exothermic. The exothermic nuclear reactions present more interest from the point of view of its applications and they can show in four main forms: radioactivity (from 0 to 4 MeV/reaction; light nucleus fusion ( {approx} 20 MeV/reaction), heavy nucleus fusion ({approx} 200 MeV/reaction) and nucleons annihilation ( {approx} 2000 MeV/reaction). Nowadays only the fission has reached the stage of profitable energetic application, finding the other three forms in research and development. The non-energetic applications of the nuclear energy are characterized by they do not require of prior conversion to another form of energy and they are made through the use of radioisotopes as well as through the use of endothermic reaction caused in particle accelerators. In this work are presented some of the non-energetic applications with its theoretical and experimental basis as well as its benefits of each one. (Author)

  1. Test of the universal rise of hadronic total cross sections at super-high energies

    International Nuclear Information System (INIS)

    Ishida, Muneyuki; Igi, Keiji

    2007-01-01

    The increase of the total cross sections at very high energies described by log 2 (s/s 0 ) appears to be confirmed. In the analysis of the COMPETE collaboration in the Particle Data Group (2006), the Blog 2 (s/s 0 ) was assumed to extend the universal rise of all the total hadronic cross sections to reduce the number of adjustable parameters. We test if the assumption on the universality of B is justified, through investigation of the values of B for π ± p(K ± p) and pp,pp scatterings. We search for the simultaneous best fit to the σ tot and ρ ratios, using a constraint from the FESR of the P' type for π -+ p scatterings and constraints that are free from the unphysical regions for the pp, pp and K ± p scatterings. By including rich information of the low-energy scattering data owing to the use of FESR, the errors of the B parameters decrease especially for πp. The resulting value of B pp is consistent with B πp within two standard deviations, which appears to support the universality hypothesis. (orig.)

  2. Review—Two-Dimensional Layered Materials for Energy Storage Applications

    KAUST Repository

    Kumar, Pushpendra

    2016-07-02

    Rechargeable batteries are most important energy storage devices in modern society with the rapid development and increasing demand for handy electronic devices and electric vehicles. The higher surface-to-volume ratio two-dimensional (2D) materials, especially transition metal dichalcogenides (TMDCs) and transition metal carbide/nitrite generally referred as MXene, have attracted intensive research activities due to their fascinating physical/chemical properties with extensive applications. One of the growing applications is to use these 2D materials as potential electrodes for rechargeable batteries and electrochemical capacitors. This review is an attempt to summarize the research and development of TMDCs, MXenes and their hybrid structures in energy storage systems. (C) The Author(s) 2016. Published by ECS. All rights reserved.

  3. Review—Two-Dimensional Layered Materials for Energy Storage Applications

    KAUST Repository

    Kumar, Pushpendra; Abuhimd, Hatem; Wahyudi, Wandi; Li, Mengliu; Ming, Jun; Li, Lain-Jong

    2016-01-01

    Rechargeable batteries are most important energy storage devices in modern society with the rapid development and increasing demand for handy electronic devices and electric vehicles. The higher surface-to-volume ratio two-dimensional (2D) materials, especially transition metal dichalcogenides (TMDCs) and transition metal carbide/nitrite generally referred as MXene, have attracted intensive research activities due to their fascinating physical/chemical properties with extensive applications. One of the growing applications is to use these 2D materials as potential electrodes for rechargeable batteries and electrochemical capacitors. This review is an attempt to summarize the research and development of TMDCs, MXenes and their hybrid structures in energy storage systems. (C) The Author(s) 2016. Published by ECS. All rights reserved.

  4. The urban wind energy potential for integrated roof wind energy systems based on local building height distributions

    NARCIS (Netherlands)

    Blok, R.; Coers, M.D.

    2017-01-01

    An Integrated Roof Wind Energy System (IRWES) is a roof mounted structure with an internal wind turbine that uses smart aerodynamics to catch and accelerate wind flow. It has been designed for application on (existing) buildings in the urban environment. To estimate the maximum total wind energy

  5. Applications for Energy Recovering Free Electron Lasers

    Energy Technology Data Exchange (ETDEWEB)

    George Neil

    2007-08-01

    The availability of high-power, high-brilliance sources of tunable photons from energy-recovered Free Electron Lasers is opening up whole new fields of application of accelerators in industry. This talk will review some of the ideas that are already being put into production, and some of the newer ideas that are still under development.

  6. Electromagnetic Compatibility of Transcutaneous Energy Transmission Systemfor Totally Implantable Artificial Heart

    Science.gov (United States)

    Shiba, Kenji; Koshiji, Kohji

    Transcutaneous Energy Transmission (TET) is one way of providing the energy needed to power a totally implantable artificial heart (TIAH). In the present study, an externally coupled TET system was implanted in a prototype human phantom to evaluate emission and immunity. In the emission evaluation, measurements were conducted based on CISPR Pub.11 and VDE 0871 standards, while immunity tests were based on the standards of the IEC 61000-4 series. The magnetic field of the radiated emission was measured using a loop antenna. At 0.1[MHz], we found the greatest magnetic field of 47.8 [dBμA/m], somewhat less than CISPR’s upper limit of 54 [dBμA/m]. For the conducted emission, by installing a noise filter and ferrite beads in the input section of the DC-power supply, conducted emission could be kept within the allowable limits of CISPR Pub.11 and VDE 0871. Finally, the immunity tests against radiated and conducted emission, electrostatic discharge and voltage fluctuation proved that the prototype could withstand the maximum level of disturbance. These results confirmed that the TET system implanted in a human phantom could, through modification, meet the emission and immunity standards.

  7. 77 FR 11515 - Application to Export Electric Energy; NRG Power Marketing LLC

    Science.gov (United States)

    2012-02-27

    ... DEPARTMENT OF ENERGY [OE Docket No. EA-384] Application to Export Electric Energy; NRG Power... electric energy from the United States to Mexico pursuant to section 202(e) of the Federal Power Act (FPA... requested. The electric energy that NRGPML proposes to export to Mexico would be surplus energy purchased...

  8. Research on high energy density plasmas and applications

    International Nuclear Information System (INIS)

    1999-01-01

    Recently, technologies on lasers, accelerators, and pulse power machines have been significantly advanced and input power density covers the intensity range from 10 10 W/cm 2 to higher than 10 20 W/cm 2 . As the results, high pressure gas and solid targets can be heated up to very high temperature to create hot dense plasmas which have never appeared on the earth. The high energy density plasmas opened up new research fields such as inertial confinement fusion, high brightness X-ray radiation sources, interiors of galactic nucleus,supernova, stars and planets, ultra high pressure condensed matter physics, plasma particle accelerator, X-ray laser, and so on. Furthermore, since these fields are intimately connected with various industrial sciences and technologies, the high energy density plasma is now studied in industries, government institutions, and so on. This special issue of the Journal of Plasma Physics and Nuclear Fusion Research reviews the high energy density plasma science for the comprehensive understanding of such new fields. In May, 1998, the review committee for investigating the present status and the future prospects of high energy density plasma science was established in the Japan Society of Plasma Science and Nuclear Fusion Research. We held three committee meetings to discuss present status and critical issues of research items related to high energy density plasmas. This special issue summarizes the understandings of the committee. This special issue consists of four chapters: They are Chapter 1: Physics important in the high energy density plasmas, Chapter 2: Technologies related to the plasma generation; drivers such as lasers, pulse power machines, particle beams and fabrication of various targets, Chapter 3: Plasma diagnostics important in high energy density plasma experiments, Chapter 4: A variety of applications of high energy density plasmas; X-ray radiation, particle acceleration, inertial confinement fusion, laboratory astrophysics

  9. Applications of energy loss contrast STIM

    International Nuclear Information System (INIS)

    Bench, G.; Saint, A.; Legge, G.J.F.; Cholewa, M.

    1992-01-01

    Scanning Transmission Ion Microscopy (STIM) with energy loss contrast is a quantitative imaging technique. A focussed MeV ion microbeam is scanned over the sample and measured energy losses of residual ions at each beam location are used to provide the contrast in the image. The technique is highly efficient as almost every ion carries useful information from which quantitative data can be obtained. The high efficiency of data collection at present necessitates the use of small beam currents. Therefore small apertures can be used and fine spatial resolution can be achieved. High efficiency also makes it possible to collect large data sets for high definition imaging with a small radiation dose. Owing to the simple relationship between energy loss and areal density, STIM with energy loss contrast can provide a quantitative image that can be used to obtain areal density information on the sample. These areal density maps can be used not only to provide a high resolution image of the sample but also to normalise Particle Induced Xray Emission (PIXE) data. The small radiation dose required to form these areal density maps also allows one to use STIM with energy loss contrast to quantitatively monitor ion beam induced specimen changes caused by higher doses and dose rates used in other microanalytical techniques. STIM with energy loss contrast also provides the possibility of stereo imaging and ion microtomography. STIM has also been used in conjunction with channeling to explore transmission channeling in thin crystals. This paper will discuss these applications of STIM with energy loss contrast and look at further developments from them

  10. The role of nuclear energy for Korean long-term energy supply strategy : application of energy demand-supply model

    International Nuclear Information System (INIS)

    Chae, Kyu Nam

    1995-02-01

    An energy demand and supply analysis is carried out to establish the future nuclear energy system of Korea in the situation of environmental restriction and resource depletion. Based on the useful energy intensity concept, a long-term energy demand forecasting model FIN2USE is developed to integrate with a supply model. The energy supply optimization model MESSAGE is improved to evaluate the role of nuclear energy system in Korean long-term energy supply strategy. Long-term demand for useful energy used as an exogeneous input of the energy supply model is derived from the trend of useful energy intensity by sectors and energy carriers. Supply-side optimization is performed for the overall energy system linked with the reactor and nuclear fuel cycle strategy. The limitation of fossil fuel resources and the CO 2 emission constraints are reflected as determinants of the future energy system. As a result of optimization of energy system using linear programming with the objective of total discounted system cost, the optimal energy system is obtained with detailed results on the nuclear sector for various scenarios. It is shown that the relative importance of nuclear energy would increase especially in the cases of CO 2 emission constraint. It is concluded that nuclear reactor strategy and fuel cycle strategy should be incorporated with national energy strategy and be changed according to environmental restriction and energy demand scenarios. It is shown that this modelling approach is suitable for a decision support system of nuclear energy policy

  11. Bioinspired Graphene-Based Nanocomposites and Their Application in Flexible Energy Devices.

    Science.gov (United States)

    Wan, Sijie; Peng, Jingsong; Jiang, Lei; Cheng, Qunfeng

    2016-09-01

    Graphene is the strongest and stiffest material ever identified and the best electrical conductor known to date, making it an ideal candidate for constructing nanocomposites used in flexible energy devices. However, it remains a great challenge to assemble graphene nanosheets into macro-sized high-performance nanocomposites in practical applications of flexible energy devices using traditional approaches. Nacre, the gold standard for biomimicry, provides an excellent example and guideline for assembling two-dimensional nanosheets into high-performance nanocomposites. This review summarizes recent research on the bioinspired graphene-based nanocomposites (BGBNs), and discusses different bioinspired assembly strategies for constructing integrated high-strength and -toughness graphene-based nanocomposites through various synergistic effects. Fundamental properties of graphene-based nanocomposites, such as strength, toughness, and electrical conductivities, are highlighted. Applications of the BGBNs in flexible energy devices, as well as potential challenges, are addressed. Inspired from the past work done by the community a roadmap for the future of the BGBNs in flexible energy device applications is depicted. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Measurement of antiproton-proton elastic scattering and total cross section at a centre-of-mass energy of 546 GeV

    International Nuclear Information System (INIS)

    Swol, R.W. van.

    1985-01-01

    The transformation of the CERN Super Proton Synchrotron (SPS) from a fixed target machine into a colliding beam facility allowed the study of antiproton-proton scattering at a centre-of-mass (CM) energy of 546 GeV. This thesis describes the measurement of antiproton-proton elastic scattering and the antiproton-proton total cross section, sigmasub(tot)(anti pp), at the CERN anti pp Collider. The aim of the experiment is to establish the considerable rise with energy of the total cross section, which was predicted after the discovery of rising proton-proton total cross sections at the CERN Intersecting Storage Rings (ISR), covering an energy range of 20-60 GeV. The experimental method used for measuring sigmasub(tot)(anti pp) with an accuracy of 1-2% consists of the simultaneous measurement of both the elastic scattering event rate at small scattering angles and the inelastic interaction rate. Using the optical theorem, the total and the elastic cross sections can then be obtained without a determination of the machine luminosity. (Auth.)

  13. The balance of kinetic and total energy simulated by the OSU two-level atmospheric general circulation model for January and July

    Science.gov (United States)

    Wang, J.-T.; Gates, W. L.; Kim, J.-W.

    1984-01-01

    A three-year simulation which prescribes seasonally varying solar radiation and sea surface temperature is the basis of the present study of the horizontal structure of the balances of kinetic and total energy simulated by Oregon State University's two-level atmospheric general circulation model. Mechanisms responsible for the local energy changes are identified, and the energy balance requirement's fulfilment is examined. In January, the vertical integral of the total energy shows large amounts of external heating over the North Pacific and Atlantic, together with cooling over most of the land area of the Northern Hemisphere. In July, an overall seasonal reversal is found. Both seasons are also characterized by strong energy flux divergence in the tropics, in association with the poleward transport of heat and momentum.

  14. Total, partial and differential ionization cross sections in proton-hydrogen collisions at low energy

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Shiyang [Graduate University for Advanced Studies, School of Mathematical and Physical Science, Toki, Gifu (Japan); Pichl, Lukas [University of Aizu, Foundation of Computer Science Laboratory, Aizuwakamatsu, Fukushima (Japan); Kimura, Mineo [Yamaguchi Univ., Graduate School of Science and Engineering, Ube, Yamaguchi (Japan); Kato, Takako [National Inst. for Fusion Science, Toki, Gifu (Japan)

    2003-01-01

    Single-differential, partial and total ionization cross sections for the proton-hydrogen collision system at low energy range (0.1-10 keV/amu) are determined by using the electron translation factor corrected molecular-orbital close-coupling method. Full convergence of ionization cross sections as a function of H{sub 2}{sup +} molecular basis size is achieved by including up to 10 bound states, and 11 continuum partial waves. The present cross sections are in an excellent agreement with the recent experiments of Shah et al., but decrease more rapidly than the cross sections measured by Pieksma et al. with decreasing energy. The calculated cross section data are included in this report. (author)

  15. Valorization of jatropha fruit biomass for energy applications

    NARCIS (Netherlands)

    Marasabessy, A.

    2015-01-01

    Valorization of Jatropha fruit biomass for

    energy applications

    Ahmad Marasabessy

    Thesis Abstract

    Our research objectives were to develop sustainable technologies of Jatropha oil extraction and Jatropha

  16. Nano materials for Energy and Environmental Applications

    International Nuclear Information System (INIS)

    Srinivasan, S.; Kannan, A.M.; Kothurkar, N.; Khalil, Y.; Kuravi, S.

    2015-01-01

    Nano materials enabled technologies have been seamlessly integrated into applications such as aviation and space, chemical industry, optics, solar hydrogen, fuel cell, batteries, sensors, power generation, aeronautic industry, building/construction industry, automotive engineering, consumer electronics, thermoelectric devices, pharmaceuticals, and cosmetic industry. Clean energy and environmental applications often demand the development of novel nano materials that can provide shortest reaction pathways for the enhancement of reaction kinetics. Understanding the physicochemical, structural, microstructural, surface, and interface properties of nano materials is vital for achieving the required efficiency, cycle life, and sustain ability in various technological applications. Nano materials with specific size and shape such as nano tubes, nano fibers/nano wires, nano cones, nano composites, nano rods, nano islands, nanoparticles, nanospheres, and nano shells to provide unique properties can be synthesized by tuning the process conditions.

  17. Proposed applications with implementation techniques of the upcoming renewable energy resource, The Tesla Turbine

    International Nuclear Information System (INIS)

    Khan, M Usman Saeed; Maqsood, M Irfan; Ali, Ehsan; Jamal, Shah; Javed, M

    2013-01-01

    Recent research has shown that tesla turbine can be one of the future efficient sources of renewable energy. Modern techniques used for designing of tesla turbine have given optimum results regarding efficiency and applications. In this paper we have suggested fully coordinated applications of tesla turbine in different fields particularly in power generation at both low level and high level generation. In Energy deficient countries the tesla turbine has wide range of applications and it can play an important role in energy management system. Our proposed applications includes, - the use of tesla turbine as renewable energy resource; - using tesla turbine in distributed generation system; - use of tesla turbine at home for power generation; - use of tesla turbine in irrigation channels; - using tesla turbine in hybrid electric vehicles; All applications are explained with the help of flow charts and block diagrams and their implementation techniques are also explained in details. The results of physical experiments and simulations are also included for some applications.

  18. Impurities in semiconductors: total energy and infrared absorption calculations

    International Nuclear Information System (INIS)

    Yndurain, F.

    1987-01-01

    A new method to calculate the electronic structure of infinite nonperiodic system is discussed. The calculations are performed using atomic pseudopotentials and a basis of atomic Gaussiam wave functions. The Hartree-Fock self consistent equations are solved in the cluster-Bethe lattice system. Electron correlation is partially included in second order pertubation approximation. The formalism is applied to hydrogenated amorphous silicon. Total energy calculations of finite clusters of silicon atom in the presence of impurities, are also presented. The results show how atomic oxygen breaks the covalent silicon silicon bond forming a local configuration similar to that of SiO 2 . Calculations of the infrared absorption due to the presence of atomic oxygen in cristalline silicon are presented. The Born Hamiltonian to calculate the vibrational modes of the system and a simplied model to describe the infrared absorption mechanism are used. The interstitial and the the substitutional cases are considered and analysed. The position of the main infrared absorption peak, their intensities and their isotope shifts are calculated. The results are satisfactory agreement with the available data. (author) [pt

  19. Characterization of U. S. energy resources and reserves

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-01

    This report provides a comprehensive overview of the best available estimates of the total domestic energy potential within the United States. The array of energy sources include those appropriate for power generation, liquid fuels, and direct heat applications. The energy sources examined are: geothermal energy, solar energy, biomass energy, wind energy, shale oil, coal, petroleum, natural gas, peat, uranium, and hydropower. 37 refs., 7 figs., 59 tabs.

  20. Triplet-triplet annihilation photon-upconversion: towards solar energy applications.

    Science.gov (United States)

    Gray, Victor; Dzebo, Damir; Abrahamsson, Maria; Albinsson, Bo; Moth-Poulsen, Kasper

    2014-06-14

    Solar power production and solar energy storage are important research areas for development of technologies that can facilitate a transition to a future society independent of fossil fuel based energy sources. Devices for direct conversion of solar photons suffer from poor efficiencies due to spectrum losses, which are caused by energy mismatch between the optical absorption of the devices and the broadband irradiation provided by the sun. In this context, photon-upconversion technologies are becoming increasingly interesting since they might offer an efficient way of converting low energy solar energy photons into higher energy photons, ideal for solar power production and solar energy storage. This perspective discusses recent progress in triplet-triplet annihilation (TTA) photon-upconversion systems and devices for solar energy applications. Furthermore, challenges with evaluation of the efficiency of TTA-photon-upconversion systems are discussed and a general approach for evaluation and comparison of existing systems is suggested.

  1. Total quality management applications for Hanford's five-year plan and public outreach

    International Nuclear Information System (INIS)

    Peterson, J.M.

    1993-01-01

    The US Department of Energy has encountered problems and experienced successes and failures in the cleanup of the Hanford Site in Washington State. This paper focuses on (1) internal problems involved in managing this large and complex cleanup; (2) attempts at overcoming these problems; (3) problems and attempts at solutions in describing cleanup activities to the public and other government entities. It describes the Total Quality Management (TQM) approaches used in trying to solve these problems

  2. Total reaction cross section of silicon induced by 4He in the energy range 3-10 MeV/u

    International Nuclear Information System (INIS)

    Ugryumov, V.Yu.; Kuznetsov, I.V.; Kalpakchieva, R.

    2003-01-01

    The energy dependence of total reaction cross section for α-particles on nat Si has been directly and accurately measured by the transmission method. These data show that σ R has different energy dependence from theoretical predictions at low energies. The σ R corrections due to inelastic scattering to the first excited state were made by integrating corresponding angular distributions

  3. Total Reaction Cross Section of Silicon Induced by ^{4}He in the Energy Range 3-10 MeV/u

    CERN Document Server

    Ugryumov, V Yu; Basybekov, K B; Bialkowski, E; Budzanowski, A; Duysebaev, A D; Duysebaev, B A; Zholdybaev, T K; Ismailov, K M; Kadyrzhanov, K K; Kalpakchieva, R; Kugler, A; Kukhtina, I N; Kushniruk, V F; Kuterbekov, K A; Mukhambetzhan, A; Penionzhkevich, Yu E; Sadykov, B M; Skwirczynska, I; Sobolev, Yu G

    2003-01-01

    The energy dependence of total reaction cross section for alpha-particles on ^{nat}Si has been directly and accurately measured by the transmission method. These data show that sigma_R has different energy dependence from theoretical predictions at low energies. The sigma_R corrections due to inelastic scattering to the first excited state were made by integrating corresponding angular distributions.

  4. Soft energy vs nuclear energy

    International Nuclear Information System (INIS)

    Ando, Yoshio

    1981-01-01

    During the early 1960s, a plentiful, inexpensive supply of petroleum enabled Japanese industry to progress rapidly; however, almost all of this petroleum was imported. Even after the first oil crisis of 1973, the recent annual energy consumption of Japan is calculated to be about 360 million tons in terms of petroleum, and actual petroleum forms 73% of total energy. It is necessary for Japan to reduce reliance on petroleum and to diversify energy resources. The use of other fossil fuels, such as coal, LNG and LPG, and hydraulic energy, is considered as an established alternative. In this presentation, the author deals with new energy, namely soft energy and nuclear energy, and discusses their characteristics and problems. The following kinds of energy are dealt with: a) Solar energy, b) Geothermal energy, c) Ocean energy (tidal, thermal, wave), d) Wind energy, e) Biomass energy, f) Hydrogen, g) Nuclear (thermal, fast, fusion). To solve the energy problem in future, assiduous efforts should be made to develop new energy systems. Among them, the most promising alternative energy is nuclear energy, and various kinds of thermal reactor systems have been developed for practical application. As a solution to the long-term future energy problem, research on and development of fast breeder reactors and fusion reactors are going on. (author)

  5. The application of total quality management principles to spacecraft mission operations

    Science.gov (United States)

    Sweetin, Maury

    1993-03-01

    By now, the philosophies of Total Quality Management have had an impact on every aspect of American industrial life. The trail-blazing work of Deming, Juran, and Crosby, first implemented in Japan, has 're-migrated' across the Pacific and now plays a growing role in America's management culture. While initially considered suited only for a manufacturing environment, TQM has moved rapidly into the 'service' areas of offices, sales forces, and even fast-food restaurants. The next logical step has also been taken - TQM has found its way into virtually all departments of the Federal Government, including NASA. Because of this widespread success, it seems fair to ask whether this new discipline is directly applicable to the profession of spacecraft operations. The results of quality emphasis on OAO Corporation's contract at JPL provide strong support for Total Quality Management as a useful tool in spacecraft operations.

  6. The application of total quality management principles to spacecraft mission operations

    Science.gov (United States)

    Sweetin, Maury

    1993-01-01

    By now, the philosophies of Total Quality Management have had an impact on every aspect of American industrial life. The trail-blazing work of Deming, Juran, and Crosby, first implemented in Japan, has 're-migrated' across the Pacific and now plays a growing role in America's management culture. While initially considered suited only for a manufacturing environment, TQM has moved rapidly into the 'service' areas of offices, sales forces, and even fast-food restaurants. The next logical step has also been taken - TQM has found its way into virtually all departments of the Federal Government, including NASA. Because of this widespread success, it seems fair to ask whether this new discipline is directly applicable to the profession of spacecraft operations. The results of quality emphasis on OAO Corporation's contract at JPL provide strong support for Total Quality Management as a useful tool in spacecraft operations.

  7. Utilisation of total solar radiation energy in the photosynthetic production of radish, red beet and bean

    Directory of Open Access Journals (Sweden)

    Wiesław Nowakowski

    2014-01-01

    Full Text Available Utilisation of total solar radiation energy in the photosynthetic production of radish, red beet and bean is expressed as per cent of solar radiation accumulated in the carbon of -the dry mass per 1 cm2 of the assimilation surface area. Utilisation of this energy ranges from 2.6 to 8.4 per cent in radish, from 1.7 to 7.5 per cent in beet and from 1.9 to 4.9 per cent in bean.

  8. Manifestation of jet quenching in differential distributions of the total transverse energy in nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Savina, M.V.; Shmatov, S.V.; Slavin, N.V.; Zarubin, P.I.

    1998-01-01

    In the framework of the HIJING model, global characteristics of nucleus-nucleus collisions are studied for a Large Hadron Collider (LHC) energy scale. An interesting model prediction is the presence of a central bump over a pseudorapidity plateau of a total transverse energy distribution. The bump is induced by a jet quenching effect in a dense nuclear matter. It is shown that a wide acceptance calorimeter with a pseudorapidity coverage -5<η<5 allows one to obtain experimental confirmation of such an effect

  9. Energy materials. Advances in characterization, modelling and application

    International Nuclear Information System (INIS)

    Andersen, N.H.; Eldrup, M.; Hansen, N.; Juul Jensen, D.; Nielsen, E.M.; Nielsen, S.F.; Soerensen, B.F.; Pedersen, A.S.; Vegge, T.; West, S.S.

    2008-01-01

    Energy-related topics in the modern world and energy research programmes cover the range from basic research to applications and structural length scales from micro to macro. Materials research and development is a central part of the energy area as break-throughs in many technologies depend on a successful development and validation of new or advanced materials. The Symposium is organized by the Materials Research Department at Risoe DTU - National Laboratory for Sustainable Energy. The Department concentrates on energy problems combining basic and applied materials research with special focus on the key topics: wind, fusion, superconductors and hydrogen. The symposium is based on these key topics and focus on characterization of materials for energy applying neutron, X-ray and electron diffraction. Of special interest is research carried out at large facilities such as reactors and synchrotrons, supplemented by other experimental techniques and modelling on different length scales that underpins experiments. The Proceedings contain 15 key note presentations and 30 contributed presentations, covering the abovementioned key topics relevant for the energy materials. The contributions clearly show the importance of materials research when developing sustainable energy technologies and also that many challenges remain to be approached. (BA)

  10. Mid-South solar total energy: institutional analysis. Final report, May 1, 1978-December 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Powe, R.E.; Carley, C.T.; Forbes, R.E.; Johnson, L.R.; Stiffler, A.K.; Hodge, B.K.; Bouchillon, C.W.

    1979-01-01

    A comprehensive survey was undertaken to determine the current usage of energy by the Mississippi State University, considering electricity and fuel separately. A variety of individual components likely to be employed in total energy systems are then considered in detail, including: solar assisted space heating system, space cooling system design, solar electric system, flat plate solar collector system, central solar receiver, and geothermal heat pump system. Also, algorithms have been developed for the approximate prediction of building heating and cooling loads based on gross parameters such as floor area, type of wall construction, etc. System considerations and evaluation are then presented. (LEW)

  11. Design of a bolometer for total-energy measurement of the linear coherent light source pulsed X-ray laser

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, S. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore CA 94550 (United States)]. E-mail: Friedrich1@llnl.gov; Li, L. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore CA 94550 (United States); Ott, L.L. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore CA 94550 (United States); Kolgani, Rajeswari M. [Department of Physics, Geosciences and Astronomy, Towson University, 8000 York Avenue, Towson MD 21252 (United States); Yong, G.J. [Department of Physics, Geosciences and Astronomy, Towson University, 8000 York Avenue, Towson MD 21252 (United States); Ali, Z.A. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore CA 94550 (United States); Drury, O.B. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore CA 94550 (United States); Ables, E. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore CA 94550 (United States); Bionta, R.M. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore CA 94550 (United States)

    2006-04-15

    We are developing a cryogenic bolometer to measure the total energy of the linear coherent light source (LCLS) free electron X-ray laser to be built at the Stanford Linear Accelerator Center. The laser will produce ultrabright X-ray pulses in the energy range between 0.8 and 8 keV with {approx}10{sup 12} photons per {approx}200 fs pulse at a repeat interval of 8 ms, and will be accompanied by a halo of spontaneous undulator radiation. The bolometer is designed to determine the total energy of each laser pulse to within <0.1%, taking into account thermal and mechanical stress to prevent melting in the LCLS beam due to its high energy density. We propose to use a magnetoresistive Nd{sub (1-} {sub x} {sub )}Sr {sub x} MnO{sub 3} sensor array at the metal-insulator transition, where the composition x is adjusted to produce the desired transition temperature. We discuss design considerations and material choices, and present numerical simulations of the thermal response.

  12. Electromagnetic Lead Screw for Potential Wave Energy Application

    DEFF Research Database (Denmark)

    Lu, Kaiyuan; Wu, Weimin

    2014-01-01

    This paper presents a new type electromagnetic lead screw (EMLS) intended for wave energy application. Similar to the mechanical lead screw, this electromagnetic version can transfer slow linear motion to high-rotational motion, offering gearing effects. Compared with the existing pure magnetic...

  13. Application of Bacterial Laccases for Sustainable Energy Production

    DEFF Research Database (Denmark)

    Lörcher, Samuel; Koschorreck, Katja; Shipovskov, Stepan

    for a number of special applications, such as disposable implantable power suppliers for medical sensor-transmitters and drug delivery/activator systems and self-powered enzyme-based biosensors; and they do offer practical advantages of using abundant organic raw materials for clean and sustainable energy...... in vivo glucose monitoring in diabetes patients). However, the most attractive are oxygen-reducing enzymes such as blue-copper-containing laccases coupled to electrodes, which provide the 4e- bioelectroreduction of O2 to H2O (1.23 V vs. NHE) at potentials approaching the thermodynamic ones. Exploitation...... of laccase-based biocathodes in the biofuel cells and in the hybrid biobattery-type or photovoltaic power sources could essentially broaden their application, enabling extraction of energy from the sea water/water dissolved oxygen. Here we demonstrate up to 0.8 mW cm-2 extracted power densities and 1.5 month...

  14. Forensic application of total reflection X-ray fluorescence spectrometry for elemental characterization of ink samples

    International Nuclear Information System (INIS)

    Dhara, Sangita; Misra, N.L.; Maind, S.D.; Kumar, Sanjukta A.; Chattopadhyay, N.; Aggarwal, S.K.

    2010-01-01

    The possibility of applying Total Reflection X-ray Fluorescence for qualitative and quantitative differentiation of documents printed with rare earth tagged and untagged inks has been explored in this paper. For qualitative differentiation, a very small amount of ink was loosened from the printed documents by smoothly rubbing with a new clean blade without destroying the manuscript. 50 μL of Milli-Q water was put on this loose powder, on the manuscript, and was agitated by sucking and releasing the suspension two to three times with the help of a micropipette. The resultant dispersion was deposited on quartz sample support for Total Reflection X-ray Fluorescence measurements. The Total Reflection X-ray Fluorescence spectrum of tagged and untagged inks could be clearly differentiated. In order to see the applicability of Total Reflection X-ray Fluorescence for quantitative determinations of rare earths and also to countercheck such determinations in ink samples, the amounts of rare earth in painted papers with single rare earth tagged inks were determined by digesting the painted paper in HNO 3 /HClO 4 , mixing this solution with the internal standard and recording their Total Reflection X-ray Fluorescence spectra after calibration of the instrument. The results thus obtained were compared with those obtained by Inductively Coupled Plasma Mass Spectrometry and were found in good agreement. The average precision of the Total Reflection X-ray Fluorescence determinations was 5.5% (1σ) and the average deviation of Total Reflection X-ray Fluorescence determined values with that of Inductively Coupled Plasma Mass Spectrometry was 7.3%. These studies have shown that Total Reflection X-ray Fluorescence offers a promising and potential application in forensic work of this nature.

  15. Forensic application of total reflection X-ray fluorescence spectrometry for elemental characterization of ink samples

    Energy Technology Data Exchange (ETDEWEB)

    Dhara, Sangita [Fuel Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Misra, N.L., E-mail: nlmisra@barc.gov.i [Fuel Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Maind, S.D. [NAA Unit of Central Forensic Science Laboratory Hyderabad at Analytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Kumar, Sanjukta A. [Analytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Chattopadhyay, N. [NAA Unit of Central Forensic Science Laboratory Hyderabad at Analytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Aggarwal, S.K. [Fuel Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2010-02-15

    The possibility of applying Total Reflection X-ray Fluorescence for qualitative and quantitative differentiation of documents printed with rare earth tagged and untagged inks has been explored in this paper. For qualitative differentiation, a very small amount of ink was loosened from the printed documents by smoothly rubbing with a new clean blade without destroying the manuscript. 50 muL of Milli-Q water was put on this loose powder, on the manuscript, and was agitated by sucking and releasing the suspension two to three times with the help of a micropipette. The resultant dispersion was deposited on quartz sample support for Total Reflection X-ray Fluorescence measurements. The Total Reflection X-ray Fluorescence spectrum of tagged and untagged inks could be clearly differentiated. In order to see the applicability of Total Reflection X-ray Fluorescence for quantitative determinations of rare earths and also to countercheck such determinations in ink samples, the amounts of rare earth in painted papers with single rare earth tagged inks were determined by digesting the painted paper in HNO{sub 3}/HClO{sub 4}, mixing this solution with the internal standard and recording their Total Reflection X-ray Fluorescence spectra after calibration of the instrument. The results thus obtained were compared with those obtained by Inductively Coupled Plasma Mass Spectrometry and were found in good agreement. The average precision of the Total Reflection X-ray Fluorescence determinations was 5.5% (1sigma) and the average deviation of Total Reflection X-ray Fluorescence determined values with that of Inductively Coupled Plasma Mass Spectrometry was 7.3%. These studies have shown that Total Reflection X-ray Fluorescence offers a promising and potential application in forensic work of this nature.

  16. Development and application of high energy imaging technology

    International Nuclear Information System (INIS)

    Chen Shengzu

    1999-01-01

    High Energy Positron Imaging (HEPI) is a new technology. The idea of positron imaging can be traced back to early 1950's. HEPI imaging is formed by positron emitter radionuclide produced by cyclotron, such as 15 O, 13 N, 11 C and 18 F, which are most abundant elements in human body. Clinical applications of HEPI have been witnessed rapidly in recent years. HEPI imaging can be obtained by both PET and SPECT, namely high energy collimation imaging, Mdecular Coincidence Detection (MCD) and positron emission tomography

  17. Photon upconversion towards applications in energy conversion and bioimaging

    Science.gov (United States)

    Sun, Qi-C.; Ding, Yuchen C.; Sagar, Dodderi M.; Nagpal, Prashant

    2017-12-01

    The field of plasmonics can play an important role in developing novel devices for application in energy and healthcare. In this review article, we consider the progress made in design and fabrication of upconverting nanoparticles and metal nanostructures for precisely manipulating light photons, with a wavelength of several hundred nanometers, at nanometer length scales, and describe how to tailor their interactions with molecules and surfaces so that two or more lower energy photons can be used to generate a single higher energy photon in a process called photon upconversion. This review begins by introducing the current state-of-the-art in upconverting nanoparticle synthesis and achievements in color tuning and upconversion enhancement. Through understanding and tailoring physical processes, color tuning and strong upconversion enhancement have been demonstrated by coupling with surface plasmon polariton waves, especially for low intensity or diffuse infrared radiation. Since more than 30% of incident sunlight is not utilized in most photovoltaic cells, this photon upconversion is one of the promising approaches to break the so-called Shockley-Queisser thermodynamic limit for a single junction solar cell. Furthermore, since the low energy photons typically cover the biological window of optical transparency, this approach can also be particularly beneficial for novel biosensing and bioimaging techniques. Taken together, the recent research boosts the applications of photon upconversion using designed metal nanostructures and nanoparticles for green energy, bioimaging, and therapy.

  18. Graphene hybridization for energy storage applications.

    Science.gov (United States)

    Li, Xianglong; Zhi, Linjie

    2018-05-08

    Graphene has attracted considerable attention due to its unique two-dimensional structure, high electronic mobility, exceptional thermal conductivity, excellent optical transmittance, good mechanical strength, and ultrahigh surface area. To meet the ever increasing demand for portable electronic products, electric vehicles, smart grids, and renewable energy integrations, hybridizing graphene with various functions and components has been demonstrated to be a versatile and powerful strategy to significantly enhance the performance of various energy storage systems such as lithium-ion batteries, supercapacitors and beyond, because such hybridization can result in synergistic effects that combine the best merits of involved components and confer new functions and properties, thereby improving the charge/discharge efficiencies and capabilities, energy/power densities, and cycle life of these energy storage systems. This review will focus on diverse graphene hybridization principles and strategies for energy storage applications, and the proposed outline is as follows. First, graphene and its fundamental properties, followed by graphene hybrids and related hybridization motivation, are introduced. Second, the developed hybridization formulas of using graphene for lithium-ion batteries are systematically categorized from the viewpoint of material structure design, bulk electrode construction, and material/electrode collaborative engineering; the latest representative progress on anodes and cathodes of lithium-ion batteries will be reviewed following such classifications. Third, similar hybridization formulas for graphene-based supercapacitor electrodes will be summarized and discussed as well. Fourth, the recently emerging hybridization formulas for other graphene-based energy storage devices will be briefed in combination with typical examples. Finally, future prospects and directions on the exploration of graphene hybridization toward the design and construction of

  19. Guest Editorial Electric Machines in Renewable Energy Applications

    Energy Technology Data Exchange (ETDEWEB)

    Aliprantis, Dionysios; El-Sharkawi, Mohamed; Muljadi, Eduard; Brown, Ian; Chiba, Akira; Dorrell, David; Erlich, Istvan; Kerszenbaum, Isidor Izzy; Levi, Emil; Mayor, Kevin; Mohammed, Osama; Papathanassiou, Stavros; Popescu, Mircea; Qiao, Wei; Wu, Dezheng

    2015-12-01

    The main objective of this special issue is to collect and disseminate publications that highlight recent advances and breakthroughs in the area of renewable energy resources. The use of these resources for production of electricity is increasing rapidly worldwide. As of 2015, a majority of countries have set renewable electricity targets in the 10%-40% range to be achieved by 2020-2030, with a few notable exceptions aiming for 100% generation by renewables. We are experiencing a truly unprecedented transition away from fossil fuels, driven by environmental, energy security, and socio-economic factors.Electric machines can be found in a wide range of renewable energy applications, such as wind turbines, hydropower and hydrokinetic systems, flywheel energy storage devices, and low-power energy harvesting systems. Hence, the design of reliable, efficient, cost-effective, and controllable electric machines is crucial in enabling even higher penetrations of renewable energy systems in the smart grid of the future. In addition, power electronic converter design and control is critical, as they provide essential controllability, flexibility, grid interface, and integration functions.

  20. Mixing alcohol with energy drink (AMED) and total alcohol consumption : a systematic review and meta-analysis

    NARCIS (Netherlands)

    Verster, Joris C|info:eu-repo/dai/nl/241442702; Benson, Sarah; Johnson, Sean J; Scholey, Andrew; Alford, Chris

    It has been suggested that consuming alcohol mixed with energy drink (AMED) may increase total alcohol consumption. Aims of this systematic review and meta-analysis were (i) to compare alcohol consumption of AMED consumers with alcohol only (AO) consumers (between-group comparisons), and (ii) to