WorldWideScience

Sample records for total doses ranged

  1. TLD personnel monitoring dose estimation- extending the upper limit of the dose range

    International Nuclear Information System (INIS)

    Popli, K.L.; Sathian, Deepa; Divakaran, T.; Massand, O.P.

    2001-01-01

    TLD personnel monitoring was introduced in the year 1975 in India and at present nearly 41,000 radiation workers are being monitored by 13 monitoring laboratories all over India. The BARC- TLD being used for personnel monitoring is based on CaSO 4 :Dy embedded in PTFE and semi-automatic TL reader using hot N 2 Gas for heating the dosimeters. This reader has the range to measure γ dose from ten μSv to 3 μSv and x-ray dose form 1 μ Sv to 0.3 Sv due to the higher sensitivity of CaSO 4 : Dy to lower energy photons (20keV-50 keV) generated by diagnostic x-ray units. The x-ray radiation workers are at present nearly 35% of the total radiation workers monitored and this number is expected to grow as more and more number of x-ray workers are covered under this service. The upper limit of the x-ray dose range of the instrument is 0.3 Sv, whereas in the past one year it has been observed that at least 25% of the total overexposures reported in case of x-ray workers have recorded the dose more than 0.3 Sv. This paper presents the technique developed to extend the upper limit of the range from 0.3 Sv to 1 Sv for x-rays and 10 Sv for γ rays

  2. Low-dose-rate total lymphoid irradiation: a new method of rapid immunosuppression

    International Nuclear Information System (INIS)

    Blum, J.E.; de Silva, S.M.; Rachman, D.B.; Order, S.E.

    1988-01-01

    Total Lymphoid Irradiation (TLI) has been successful in inducing immunosuppression in experimental and clinical applications. However, both the experimental and clinical utility of TLI are hampered by the prolonged treatment courses required (23 days in rats and 30-60 days in humans). Low-dose-rate TLI has the potential of reducing overall treatment time while achieving comparable immunosuppression. This study examines the immunosuppressive activity and treatment toxicity of conventional-dose-rate (23 days) vs low-dose-rate (2-7 days) TLI. Seven groups of Lewis rats were given TLI with 60Co. One group was treated at conventional-dose-rates (80-110 cGy/min) and received 3400 cGy in 17 fractions over 23 days. Six groups were treated at low-dose-rate (7 cGy/min) and received total doses of 800, 1200, 1800, 2400, 3000, and 3400 cGy over 2-7 days. Rats treated at conventional-dose-rates over 23 days and at low-dose-rate over 2-7 days tolerated radiation with minimal toxicity. The level of immunosuppression was tested using allogeneic (Brown-Norway) skin graft survival. Control animals retained allogeneic skin grafts for a mean of 14 days (range 8-21 days). Conventional-dose-rate treated animals (3400 cGy in 23 days) kept their grafts 60 days (range 50-66 days) (p less than .001). Low-dose-rate treated rats (800 to 3400 cGy total dose over 2-7 days) also had prolongation of allogeneic graft survival times following TLI with a dose-response curve established. The graft survival time for the 3400 cGy low-dose-rate group (66 days, range 52-78 days) was not significantly different from the 3400 cGy conventional-dose-rate group (p less than 0.10). When the total dose given was equivalent, low-dose-rate TLI demonstrated an advantage of reduced overall treatment time compared to conventional-dose-rate TLI (7 days vs. 23 days) with no increase in toxicity

  3. Total dose effects on the matching properties of deep submicron MOS transistors

    International Nuclear Information System (INIS)

    Wang Yuxin; Hu Rongbin; Li Ruzhang; Chen Guangbing; Fu Dongbing; Lu Wu

    2014-01-01

    Based on 0.18 μm MOS transistors, for the first time, the total dose effects on the matching properties of deep submicron MOS transistors are studied. The experimental results show that the total dose radiation magnifies the mismatch among identically designed MOS transistors. In our experiments, as the radiation total dose rises to 200 krad, the threshold voltage and drain current mismatch percentages of NMOS transistors increase from 0.55% and 1.4% before radiation to 17.4% and 13.5% after radiation, respectively. PMOS transistors seem to be resistant to radiation damage. For all the range of radiation total dose, the threshold voltage and drain current mismatch percentages of PMOS transistors keep under 0.5% and 2.72%, respectively. (semiconductor devices)

  4. Effect of γ-dose rate and total dose interrelation on the polymeric hydrogel: A novel injectable male contraceptive

    International Nuclear Information System (INIS)

    Jha, Pradeep K.; Jha, Rakhi; Gupta, B.L.; Guha, Sujoy K.

    2010-01-01

    Functional necessity to use a particular range of dose rate and total dose of γ-initiated polymerization to manufacture a novel polymeric hydrogel RISUG (reversible inhibition of sperm under guidance) made of styrene maleic anhydride (SMA) dissolved in dimethyl sulphoxide (DMSO), for its broad biomedical application explores new dimension of research. The present work involves 16 irradiated samples. They were tested by fourier transform infrared spectroscopy, matrix assisted laser desorption/ionization-TOF, field emission scanning electron microscopy, high resolution transmission electron microscopy, etc. to see the interrelation effect of gamma dose rates (8.25, 17.29, 20.01 and 25.00 Gy/min) and four sets of doses (1.8, 2.0, 2.2 and 2.4 kGy) on the molecular weight, molecular weight distribution and porosity analysis of the biopolymeric drug RISUG. The results of randomized experiment indicated that a range of 18-24 Gy/min γ-dose rate and 2.0-2.4 kGy γ-total doses is suitable for the desirable in vivo performance of the contraceptive copolymer.

  5. Wide-range neutron dose determination with CR-39

    International Nuclear Information System (INIS)

    Arneja, A.R.; Waker, A.J.

    1995-01-01

    Optical density measurements of CR-30 irradiated with 252 Cf neutrons and chemically etched with 6.5 N KOH solution have been used to determine neutron absorbed doses between 0.1 and 10 Gy. Optimum etching conditions will depend upon the absorbed dose. Since it is not always possible to know the range of absorbed dose on a CR-39 dosemeter collected from personnel and area monitor stations in a criticality accident situation, a three-step two-hour chemical etch at 60 o C has been found to be appropriate. If after a total of six hours of chemical etching the optical density is found to be below 0.04 for 500 nm light (transmission > 90%) then further treatment in the form of electrochemical etching can be carried out to determine the lower absorbed dose. In this manner, absorbed doses below 0.1 Gy can be determined by counting tracks over a unit area. (author)

  6. Application of combined TLD and CR-39 PNTD method for measurement of total dose and dose equivalent on ISS

    International Nuclear Information System (INIS)

    Benton, E.R.; Deme, S.; Apathy, I.

    2006-01-01

    To date, no single passive detector has been found that measures dose equivalent from ionizing radiation exposure in low-Earth orbit. We have developed the I.S.S. Passive Dosimetry System (P.D.S.), utilizing a combination of TLD in the form of the self-contained Pille TLD system and stacks of CR-39 plastic nuclear track detector (P.N.T.D.) oriented in three mutually orthogonal directions, to measure total dose and dose equivalent aboard the International Space Station (I.S.S.). The Pille TLD system, consisting on an on board reader and a large number of Ca 2 SO 4 :Dy TLD cells, is used to measure absorbed dose. The Pille TLD cells are read out and annealed by the I.S.S. crew on orbit, such that dose information for any time period or condition, e.g. for E.V.A. or following a solar particle event, is immediately available. Near-tissue equivalent CR-39 P.N.T.D. provides Let spectrum, dose, and dose equivalent from charged particles of LET ∞ H 2 O ≥ 10 keV/μm, including the secondaries produced in interactions with high-energy neutrons. Dose information from CR-39 P.N.T.D. is used to correct the absorbed dose component ≥ 10 keV/μm measured in TLD to obtain total dose. Dose equivalent from CR-39 P.N.T.D. is combined with the dose component <10 keV/μm measured in TLD to obtain total dose equivalent. Dose rates ranging from 165 to 250 μGy/day and dose equivalent rates ranging from 340 to 450 μSv/day were measured aboard I.S.S. during the Expedition 2 mission in 2001. Results from the P.D.S. are consistent with those from other passive detectors tested as part of the ground-based I.C.C.H.I.B.A.N. intercomparison of space radiation dosimeters. (authors)

  7. The Sandia total-dose estimator: SANDOSE description and user guide

    International Nuclear Information System (INIS)

    Turner, C.D.

    1995-02-01

    The SANdia total-DOSe Estimator (SANDOSE) is used to estimate total radiation dose to a (BRL-CAT) solid model, SANDOSE uses the mass-sectoring technique to sample the model using ray-tracing techniques. The code is integrated directly into the BRL-CAD solid model editor and is operated using a simple graphical user interface. Several diagnostic tools are available to allow the user to analyze the results. Based on limited validation using several benchmark problems, results can be expected to fall between a 10% underestimate and a factor of 2 overestimate of the actual dose predicted by rigorous radiation transport techniques. However, other situations may be encountered where the results might fall outside of this range. The code is written in C and uses X-windows graphics. It presently runs on SUN SPARCstations, but in theory could be ported to any workstation with a C compiler and X-windows. SANDOSE is available via license by contacting either the Sandia National Laboratories Technology Transfer Center or the author

  8. Dependence of total dose response of bipolar linear microcircuits on applied dose rate

    International Nuclear Information System (INIS)

    McClure, S.; Will, W.; Perry, G.; Pease, R.L.

    1994-01-01

    The effect of dose rate on the total dose radiation hardness of three commercial bipolar linear microcircuits is investigated. Total dose tests of linear bipolar microcircuits show larger degradation at 0.167 rad/s than at 90 rad/s even after the high dose rate test is followed by a room temperature plus a 100 C anneal. No systematic correlation could be found for degradation at low dose rate versus high dose rate and anneal. Comparison of the low dose rate with the high dose rate anneal data indicates that MIL-STD-883, method 1019.4 is not a worst-case test method when applied to bipolar microcircuits for low dose rate space applications

  9. Calculation of midplane dose for total body irradiation from entrance and exit dose MOSFET measurements.

    Science.gov (United States)

    Satory, P R

    2012-03-01

    This work is the development of a MOSFET based surface in vivo dosimetry system for total body irradiation patients treated with bilateral extended SSD beams using PMMA missing tissue compensators adjacent to the patient. An empirical formula to calculate midplane dose from MOSFET measured entrance and exit doses has been derived. The dependency of surface dose on the air-gap between the spoiler and the surface was investigated by suspending a spoiler above a water phantom, and taking percentage depth dose measurements (PDD). Exit and entrances doses were measured with MOSFETs in conjunction with midplane doses measured with an ion chamber. The entrance and exit doses were combined using an exponential attenuation formula to give an estimate of midplane dose and were compared to the midplane ion chamber measurement for a range of phantom thicknesses. Having a maximum PDD at the surface simplifies the prediction of midplane dose, which is achieved by ensuring that the air gap between the compensator and the surface is less than 10 cm. The comparison of estimated midplane dose and measured midplane dose showed no dependence on phantom thickness and an average correction factor of 0.88 was found. If the missing tissue compensators are kept within 10 cm of the patient then MOSFET measurements of entrance and exit dose can predict the midplane dose for the patient.

  10. Correct statistical evaluation for total dose in rural settlement

    International Nuclear Information System (INIS)

    Vlasova, N.G.; Skryabin, A.M.

    2001-01-01

    Statistical evaluation of dose reduced to the determination of an average value and its error. If an average value of a total dose in general can be determined by simple summarizing of the averages of its external and internal components, the evaluation of an error can be received only from its distribution. Herewith, considering that both components of the dose are interdependent, to summarize their distributions, as a last ones of a random independent variables, is incorrect. It follows that an evaluation of the parameters of the total dose distribution, including an error, in general, cannot be received empirically, particularly, at the lack or absence of the data on one of the components of the last one, that constantly is happens in practice. If the evaluation of an average for total dose was defined somehow, as the best, as an average of a distribution of the values of individual total doses, as summarizing the individual external and internal doses by the random type, that an error of evaluation had not been produced. The methodical approach to evaluation of the total dose distribution at the lack of dosimetric information was designed. The essence of it is original way of an interpolation of an external dose distribution, using data on an internal dose

  11. Theoretic simulation for CMOS device on total dose radiation response

    International Nuclear Information System (INIS)

    He Baoping; Zhou Heqin; Guo Hongxia; He Chaohui; Zhou Hui; Luo Yinhong; Zhang Fengqi

    2006-01-01

    Total dose effect is simulated for C4007B, CC4007RH and CC4011 devices at different absorbed dose rate by using linear system theory. When irradiation response and dose are linear, total dose radiation and post-irradiation annealing at room temperature are determined for one random by choosing absorbed dose rate, and total dose effect at other absorbed dose rate can be predicted by using linear system theory. The simulating results agree with the experimental results at different absorbed dose rate. (authors)

  12. Estimation of the total effective dose from low-dose CT scans and radiopharmaceutical administrations delivered to patients undergoing SPECT/CT explorations

    International Nuclear Information System (INIS)

    Montes, C.; Hernandez, J.; Gomez-Caminero, F.; Garcia, S.; Martin, C.; Rosero, A.; Tamayo, P.

    2013-01-01

    Hybrid imaging, such as single photon emission computed tomography (SPECT)/CT, is used in routine clinical practice, allowing coregistered images of the functional and structural information provided by the two imaging modalities. However, this multimodality imaging may mean that patients are exposed to a higher radiation dose than those receiving SPECT alone. The study aimed to determine the radiation exposure of patients who had undergone SPECT/CT examinations and to relate this to the Background Equivalent Radiation Time (BERT). 145 SPECT/CT studies were used to estimate the total effective dose to patients due to both radiopharmaceutical administrations and low-dose CT scans. The CT contribution was estimated by the Dose-Length Product method. Specific conversion coefficients were calculated for SPECT explorations. The radiation dose from low-dose CTs ranged between 0.6 mSv for head and neck CT and 2.6 mSv for whole body CT scan, representing a maximum of 1 year of background radiation exposure. These values represent a decrease of 80-85% with respect to the radiation dose from diagnostic CT. The radiation exposure from radiopharmaceutical administration varied from 2.1 mSv for stress myocardial perfusion SPECT to 26 mSv for gallium SPECT in patients with lymphoma. The BERT ranged from 1 to 11 years. The contribution of low-dose CT scans to the total radiation dose to patients undergoing SPECT/CT examinations is relatively low compared with the effective dose from radiopharmaceutical administration. When a CT scan is only acquired for anatomical localization and attenuation correction, low-dose CT scan is justified on the basis of its lower dose. (author)

  13. Relationship of dose rate and total dose to responses of continuously irradiated beagles

    International Nuclear Information System (INIS)

    Fritz, T.E.; Norris, W.P.; Tolle, D.V.; Seed, T.M.; Poole, C.M.; Lombard, L.S.; Doyle, D.E.

    1978-01-01

    Young-adult beagles were exposed continuously (22 hours/day) to 60 Co γ rays in a specially constructed facility. The exposure rates were either 5, 10, 17, or 35 R/day, and the exposures were terminated at either 600, 1400, 2000, or 4000 R. A total of 354 dogs were irradiated; 221 are still alive as long-term survivors, some after more than 2000 days. The data on survival of these dogs, coupled with data from similar preliminary experiments, allow an estimate of the LD 50 for γ-ray exposures given at a number of exposure rates. They also allow comparison of the relative importance of dose rate and total dose, and the interaction of these two variables, in the early and late effects after protracted irradiation. The LD 50 for the beagle increases from 258 rad delivered at 15 R/minute to approximately 3000 rad at 10 R/day. Over this entire range, the LD 50 is dependent upon hematopoietic damage. At 5 R/day and less, no meaningful LD 50 can be determined; there is nearly normal continued hematopoietic function, survival is prolonged, and the dogs manifest varied individual responses in other organ systems. Although the experiment is not complete, interim data allow several important conclusions. Terminated exposures, while not as effective as radiation continued until death, can produce myelogenous leukemia at the same exposure rate, 10 R/day. More importantly, at the same total accumulated dose, lower exposure rates are more damaging than higher rates on the basis of the rate and degree of hematological recovery that occurs after termination of irradiation. Thus, the rate of hematologic depression, the nadir of the depression, and the rate of recovery are dependent upon exposure rate; the latter is inversely related and the former two are directly related to exposure rate

  14. Relationship of dose rate and total dose to responses of continuously irradiated beagles

    International Nuclear Information System (INIS)

    Fritz, T.E.; Norris, W.P.; Tolle, D.V.; Seed, T.M.; Poole, C.M.; Lombard, L.S.; Doyle, D.E.

    1978-01-01

    Young-adult beagles were exposed continuously (22 hours/day) to 60 Co gamma rays in a specially constructed facility. The exposure rates were 5, 19, 17 or 35 R/day, and the exposures were terminated at 600, 1400, 2000 or 4000 R. A total of 354 dogs were irradiated; 221 are still alive as long-term survivors, some after more than 2000 days. The data on survival of these dogs, coupled with data from similar preliminary experiments, allow an estimate of the LD 50 for gamma-ray exposures given at a number of exposure rates. They also allow comparison of the relativeimportance of dose rate and total dose, and the interaction of these two variables, in the early and late effects after protracted irradiation. The LD 50 for the beagle increases from 344 R (258 rads) delivered at 15 R/minute to approximately 4000 R (approximately 3000 rads) at 10 R/day. Over this entire range, the LD 50 is dependent upon haematopoietic damage. At 5 R/day and less, no definitive LD 50 can be determined; there is nearly normal continued haematopoietic function, survival is prolonged, and the dogs manifest varied individual responses in the organ systems. Although the experiment is not complete, interim data allow serveral important conclusions. Terminated exposures, while not as effective as irradiation continued until death, can produce myelogenous leukaemia at the same exposure rate, 10 R/day. More importantly, at the same total accumulated dose, lower exposure rates appear more damaging than higher rates on the basis of the rate and degree of haematological recovery that occurs after termination of irradiation. Thus, the rate of haematologic depression, the nadir of the depression and the rate of recovery are dependent upon exposure rate; the latter is inversely related and the first two are directly related to exposure rate. ( author)

  15. Dose rate and dose fractionation studies in total body irradiation of dogs

    International Nuclear Information System (INIS)

    Kolb, H.J.; Netzel, B.; Schaffer, E.; Kolb, H.

    1979-01-01

    Total body irradiation (TBI) with 800-900 rads and allogeneic bone marrow transplantation according to the regimen designated by the Seattle group has induced remissions in patients with otherwise refractory acute leukemias. Relapse of leukemia after bone marrow transplantation remains the major problem, when the Seattle set up of two opposing 60 Co-sources and a low dose rate is used in TBI. Studies in dogs with TBI at various dose rates confirmed observations in mice that gastrointestinal toxicity is unlike toxicity against hemopoietic stem cells and possibly also leukemic stem cells depending on the dose rate. However, following very high single doses (2400 R) and marrow infusion acute gastrointestinal toxicity was not prevented by the lowest dose rate studied (0.5 R/min). Fractionated TBI with fractions of 600 R in addition to 1200 R (1000 rads) permitted the application of total doses up to 300 R followed by marrow infusion without irreversible toxicity. 26 dogs given 2400-3000 R have been observed for presently up to 2 years with regard to delayed radiation toxicity. This toxicity was mild in dogs given single doses at a low dose rate or fractionated TBI. Fractionated TBI is presently evaluated with allogeneic transplants in the dog before being applied to leukemic patients

  16. A prospective, open-label study of low-dose total skin electron beam therapy in mycosis fungoides

    DEFF Research Database (Denmark)

    Kamstrup, Maria R; Specht, Lena; Skovgaard, Gunhild L

    2008-01-01

    causes and did not complete treatment. Acute side effects included desquamation, xerosis, and erythema of the skin. No severe side effects were observed. CONCLUSION: Low-dose total skin electron beam therapy can induce complete and partial responses in Stage IB-II mycosis fungoides; however, the duration......PURPOSE: To determine the effect of low-dose (4 Gy) total skin electron beam therapy as a second-line treatment of Stage IB-II mycosis fungoides in a prospective, open-label study. METHODS AND MATERIALS: Ten patients (6 men, 4 women, average age 68.7 years [range, 55-82 years......]) with histopathologically confirmed mycosis fungoides T2-T4 N0-N1 M0 who did not achieve complete remission or relapsed within 4 months after treatment with psoralen plus ultraviolet-A were included. Treatment consisted of low-dose total skin electron beam therapy administered at a total skin dose of 4 Gy given in 4...

  17. Emesis as a Screening Diagnostic for Low Dose Rate (LDR) Total Body Radiation Exposure.

    Science.gov (United States)

    Camarata, Andrew S; Switchenko, Jeffrey M; Demidenko, Eugene; Flood, Ann B; Swartz, Harold M; Ali, Arif N

    2016-04-01

    Current radiation disaster manuals list the time-to-emesis (TE) as the key triage indicator of radiation dose. The data used to support TE recommendations were derived primarily from nearly instantaneous, high dose-rate exposures as part of variable condition accident databases. To date, there has not been a systematic differentiation between triage dose estimates associated with high and low dose rate (LDR) exposures, even though it is likely that after a nuclear detonation or radiologic disaster, many surviving casualties would have received a significant portion of their total exposure from fallout (LDR exposure) rather than from the initial nuclear detonation or criticality event (high dose rate exposure). This commentary discusses the issues surrounding the use of emesis as a screening diagnostic for radiation dose after LDR exposure. As part of this discussion, previously published clinical data on emesis after LDR total body irradiation (TBI) is statistically re-analyzed as an illustration of the complexity of the issue and confounding factors. This previously published data includes 107 patients who underwent TBI up to 10.5 Gy in a single fraction delivered over several hours at 0.02 to 0.04 Gy min. Estimates based on these data for the sensitivity of emesis as a screening diagnostic for the low dose rate radiation exposure range from 57.1% to 76.6%, and the estimates for specificity range from 87.5% to 99.4%. Though the original data contain multiple confounding factors, the evidence regarding sensitivity suggests that emesis appears to be quite poor as a medical screening diagnostic for LDR exposures.

  18. Analytical probabilistic proton dose calculation and range uncertainties

    Science.gov (United States)

    Bangert, M.; Hennig, P.; Oelfke, U.

    2014-03-01

    We introduce the concept of analytical probabilistic modeling (APM) to calculate the mean and the standard deviation of intensity-modulated proton dose distributions under the influence of range uncertainties in closed form. For APM, range uncertainties are modeled with a multivariate Normal distribution p(z) over the radiological depths z. A pencil beam algorithm that parameterizes the proton depth dose d(z) with a weighted superposition of ten Gaussians is used. Hence, the integrals ∫ dz p(z) d(z) and ∫ dz p(z) d(z)2 required for the calculation of the expected value and standard deviation of the dose remain analytically tractable and can be efficiently evaluated. The means μk, widths δk, and weights ωk of the Gaussian components parameterizing the depth dose curves are found with least squares fits for all available proton ranges. We observe less than 0.3% average deviation of the Gaussian parameterizations from the original proton depth dose curves. Consequently, APM yields high accuracy estimates for the expected value and standard deviation of intensity-modulated proton dose distributions for two dimensional test cases. APM can accommodate arbitrary correlation models and account for the different nature of random and systematic errors in fractionated radiation therapy. Beneficial applications of APM in robust planning are feasible.

  19. Airborne and total gamma absorbed dose rates at Patiala - India

    International Nuclear Information System (INIS)

    Tesfaye, Tilahun; Sahota, H.S.; Singh, K.

    1999-01-01

    The external gamma absorbed dose rate due to gamma rays originating from gamma emitting aerosols in air, is compared with the total external gamma absorbed dose rate at the Physics Department of Punjabi University, Patiala. It has been found out that the contribution, to the total external gamma absorbed dose rate, of radionuclides on particulate matter suspended in air is about 20% of the overall gamma absorbed dose rate. (author)

  20. Methods of assessing total doses integrated across pathways

    International Nuclear Information System (INIS)

    Grzechnik, M.; Camplin, W.; Clyne, F.; Allott, R.; Webbe-Wood, D.

    2006-01-01

    Calculated doses for comparison with limits resulting from discharges into the environment should be summed across all relevant pathways and food groups to ensure adequate protection. Current methodology for assessments used in the radioactivity in Food and the Environment (R.I.F.E.) reports separate doses from pathways related to liquid discharges of radioactivity to the environment from those due to gaseous releases. Surveys of local inhabitant food consumption and occupancy rates are conducted in the vicinity of nuclear sites. Information has been recorded in an integrated way, such that the data for each individual is recorded for all pathways of interest. These can include consumption of foods, such as fish, crustaceans, molluscs, fruit and vegetables, milk and meats. Occupancy times over beach sediments and time spent in close proximity to the site is also recorded for inclusion of external and inhalation radiation dose pathways. The integrated habits survey data may be combined with monitored environmental radionuclide concentrations to calculate total dose. The criteria for successful adoption of a method for this calculation were: Reproducibility can others easily use the approach and reassess doses? Rigour and realism how good is the match with reality?Transparency a measure of the ease with which others can understand how the calculations are performed and what they mean. Homogeneity is the group receiving the dose relatively homogeneous with respect to age, diet and those aspects that affect the dose received? Five methods of total dose calculation were compared and ranked according to their suitability. Each method was labelled (A to E) and given a short, relevant name for identification. The methods are described below; A) Individual doses to individuals are calculated and critical group selection is dependent on dose received. B) Individual Plus As in A, but consumption and occupancy rates for high dose is used to derive rates for application in

  1. Revisiting Low-Dose Total Skin Electron Beam Therapy in Mycosis Fungoides

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Cameron, E-mail: cameronh@stanford.edu [Department of Dermatology, Stanford Cancer Center, Stanford, California (United States); Young, James; Navi, Daniel [Department of Dermatology, Stanford Cancer Center, Stanford, California (United States); Riaz, Nadeem [Department of Radiation Oncology, Stanford Cancer Center, Stanford, California (United States); Lingala, Bharathi; Kim, Youn [Department of Dermatology, Stanford Cancer Center, Stanford, California (United States); Hoppe, Richard [Department of Radiation Oncology, Stanford Cancer Center, Stanford, California (United States)

    2011-11-15

    Purpose: Total skin electron beam therapy (TSEBT) is a highly effective treatment for mycosis fungoides (MF). The standard course consists of 30 to 36 Gy delivered over an 8- to 10-week period. This regimen is time intensive and associated with significant treatment-related toxicities including erythema, desquamation, anhydrosis, alopecia, and xerosis. The aim of this study was to identify a lower dose alternative while retaining a favorable efficacy profile. Methods and Materials: One hundred two MF patients were identified who had been treated with an initial course of low-dose TSEBT (5-<30 Gy) between 1958 and 1995. Patients had a T stage classification of T2 (generalized patch/plaque, n = 51), T3 (tumor, n = 29), and T4 (erythrodermic, n = 22). Those with extracutaneous disease were excluded. Results: Overall response (OR) rates (>50% improvement) were 90% among patients with T2 to T4 disease receiving 5 to <10 Gy (n = 19). In comparison, OR rates between the 10 to <20 Gy and 20 to <30 Gy subgroups were 98% and 97%, respectively. There was no significant difference in median progression free survival (PFS) in T2 and T3 patients when stratified by dose group, and PFS in each was comparable to that of the standard dose. Conclusions: OR rates associated with low-dose TSEBT in the ranges of 10 to <20 Gy and 20 to <30 Gy are comparable to that of the standard dose ({>=} 30 Gy). Efficacy measures including OS, PFS, and RFS are also favorable. Given that the efficacy profile is similar between 10 and <20 Gy and 20 and <30 Gy, the utility of TSEBT within the lower dose range of 10 to <20 Gy merits further investigation, especially in the context of combined modality treatment.

  2. Total dose and dose rate models for bipolar transistors in circuit simulation.

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Phillip Montgomery; Wix, Steven D.

    2013-05-01

    The objective of this work is to develop a model for total dose effects in bipolar junction transistors for use in circuit simulation. The components of the model are an electrical model of device performance that includes the effects of trapped charge on device behavior, and a model that calculates the trapped charge densities in a specific device structure as a function of radiation dose and dose rate. Simulations based on this model are found to agree well with measurements on a number of devices for which data are available.

  3. Total dose and dose rate radiation characterization of EPI-CMOS radiation hardened memory and microprocessor devices

    International Nuclear Information System (INIS)

    Gingerich, B.L.; Hermsen, J.M.; Lee, J.C.; Schroeder, J.E.

    1984-01-01

    The process, circuit discription, and total dose radiation characteristics are presented for two second generation hardened 4K EPI-CMOS RAMs and a first generation 80C85 microprocessor. Total dose radiation performance is presented to 10M rad-Si and effects of biasing and operating conditions are discussed. The dose rate sensitivity of the 4K RAMs is also presented along with single event upset (SEU) test data

  4. Application of a Pelletron accelerator to study total dose radiation effects on 50 GHz SiGe HBTs

    Energy Technology Data Exchange (ETDEWEB)

    Praveen, K.C.; Pushpa, N.; Naik, P.S. [Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore 570 006 (India); Cressler, John D. [School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA (United States); Tripathi, Ambuj [Inter University Accelerator Centre (IUAC), New Delhi 110 067 (India); Gnana Prakash, A.P., E-mail: gnanaprakash@physics.uni-mysore.ac.in [Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore 570 006 (India)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Total dose effects of 50 MeV Li3+ ion on 50 GHz SiGe HBTs is investigated. Black-Right-Pointing-Pointer Ion irradiated results were compared with Co-60 gamma results. Black-Right-Pointing-Pointer 50 MeV Li ions create more damage in E-B spacer oxide when compared to Co-60 gamma radiation. Black-Right-Pointing-Pointer Co-60 gamma radiation create more damage in STI oxide when compared to 50 MeV Li ions. Black-Right-Pointing-Pointer Worst case total dose radiation effects can be studied using Pelletron accelerator facilities. - Abstract: We have investigated the effects of 50 MeV lithium ion irradiation on the DC electrical characteristics of first-generation silicon-germanium heterojunction bipolar transistors (50 GHz SiGe HBTs) in the dose range of 600 krad to 100 Mrad. The results of 50 MeV Li{sup 3+} ion irradiation on the SiGe HBTs are compared with 63 MeV proton and Co-60 gamma irradiation results in the same dose range in order to understand the damage induced by different LET species. The radiation response of emitter-base (EB) spacer oxide and shallow trench isolation (STI) oxide to different irradiation types are discussed in this paper. We have also focused on the efficacy in the application of a Pelletron accelerator to study total dose irradiation studies in SiGe HBTs.

  5. p-MOSFET total dose dosimeter

    Science.gov (United States)

    Buehler, Martin G. (Inventor); Blaes, Brent R. (Inventor)

    1994-01-01

    A p-MOSFET total dose dosimeter where the gate voltage is proportional to the incident radiation dose. It is configured in an n-WELL of a p-BODY substrate. It is operated in the saturation region which is ensured by connecting the gate to the drain. The n-well is connected to zero bias. Current flow from source to drain, rather than from peripheral leakage, is ensured by configuring the device as an edgeless MOSFET where the source completely surrounds the drain. The drain junction is the only junction not connected to zero bias. The MOSFET is connected as part of the feedback loop of an operational amplifier. The operational amplifier holds the drain current fixed at a level which minimizes temperature dependence and also fixes the drain voltage. The sensitivity to radiation is made maximum by operating the MOSFET in the OFF state during radiation soak.

  6. High-temperature absorbed dose measurements in the megagray range

    International Nuclear Information System (INIS)

    Balian, P.; Ardonceau, J.; Zuppiroli, L.

    1988-01-01

    Organic conductors of the tetraselenotetracene family have been tested as ''high-temperature'' absorbed dose dosimeters. They were heated up to 120 0 C and irradiated at this temperature with 1-MeV electrons in order to simulate, in a short time, a much longer γ-ray irradiation. The electric resistance increase of the crystal can be considered a good measurement of the absorbed dose in the range 10 6 Gy to a few 10 8 Gy and presumably one order of magnitude more. This dosimeter also permits on-line (in-situ) measurements of the absorbed dose without removing the sensor from the irradiation site. The respective advantages of organic and inorganic dosimeters at these temperature and dose ranges are also discussed. In this connection, we outline new, but negative, results concerning the possible use of silica as a high-temperature, high-dose dosimeter. (author)

  7. Determination of the total indicative dose in drinking and mineral waters

    International Nuclear Information System (INIS)

    Flesch, K.; Schulz, H.; Knappik, R.; Koehler, M.

    2006-01-01

    In Europe and Germany administrative regulations exist for the surveillance of the total indicative dose of water supplied for human consumption. This parameter, which cannot be analyzed directly, has to be calculated using nuclide specific activity concentration and age specific dose conversion factors and consumption rates. Available calculation methods differ regarding the used radionuclides, consumption rates and whether they use age specific dose conversion factors or not. In Germany administrative guidelines for the determination of the total indicative dose are still not available. As they have analyzed a large number of waters in the past, the authors derive a praxis orientated concept for the determination of the total indicative dose which respects radiological, analytical and hydrochemical aspects as well. Finally it is suggested to handle sparkling waters in the same manner as drinking waters. (orig.)

  8. Pulsed total dose damage effect experimental study on EPROM

    International Nuclear Information System (INIS)

    Luo Yinhong; Yao Zhibin; Zhang Fengqi; Guo Hongxia; Zhang Keying; Wang Yuanming; He Baoping

    2011-01-01

    Nowadays, memory radiation effect study mainly focus on functionality measurement. Measurable parameters is few in china. According to the present situation, threshold voltage testing method was presented on floating gate EPROM memory. Experimental study of pulsed total dose effect on EPROM threshold voltage was carried out. Damage mechanism was analysed The experiment results showed that memory cell threshold voltage negative shift was caused by pulsed total dose, memory cell threshold voltage shift is basically coincident under steady bias supply and no bias supply. (authors)

  9. Effective dose range for dental cone beam computed tomography scanners

    International Nuclear Information System (INIS)

    Pauwels, Ruben; Beinsberger, Jilke; Collaert, Bruno; Theodorakou, Chrysoula; Rogers, Jessica; Walker, Anne; Cockmartin, Lesley; Bosmans, Hilde; Jacobs, Reinhilde; Bogaerts, Ria; Horner, Keith

    2012-01-01

    Objective: To estimate the absorbed organ dose and effective dose for a wide range of cone beam computed tomography scanners, using different exposure protocols and geometries. Materials and methods: Two Alderson Radiation Therapy anthropomorphic phantoms were loaded with LiF detectors (TLD-100 and TLD-100H) which were evenly distributed throughout the head and neck, covering all radiosensitive organs. Measurements were performed on 14 CBCT devices: 3D Accuitomo 170, Galileos Comfort, i-CAT Next Generation, Iluma Elite, Kodak 9000 3D, Kodak 9500, NewTom VG, NewTom VGi, Pax-Uni3D, Picasso Trio, ProMax 3D, Scanora 3D, SkyView, Veraviewepocs 3D. Effective dose was calculated using the ICRP 103 (2007) tissue weighting factors. Results: Effective dose ranged between 19 and 368 μSv. The largest contributions to the effective dose were from the remainder tissues (37%), salivary glands (24%), and thyroid gland (21%). For all organs, there was a wide range of measured values apparent, due to differences in exposure factors, diameter and height of the primary beam, and positioning of the beam relative to the radiosensitive organs. Conclusions: The effective dose for different CBCT devices showed a 20-fold range. The results show that a distinction is needed between small-, medium-, and large-field CBCT scanners and protocols, as they are applied to different indication groups, the dose received being strongly related to field size. Furthermore, the dose should always be considered relative to technical and diagnostic image quality, seeing that image quality requirements also differ for patient groups. The results from the current study indicate that the optimisation of dose should be performed by an appropriate selection of exposure parameters and field size, depending on the diagnostic requirements.

  10. Evaluation of accelerated test parameters for CMOS IC total dose hardness prediction

    International Nuclear Information System (INIS)

    Sogoyan, A.V.; Nikiforov, A.Y.; Chumakov, A.I.

    1999-01-01

    The approach to accelerated test parameters evaluation is presented in order to predict CMOS IC total dose behavior in variable dose-rate environment. The technique is based on the analytical model of MOSFET parameters total dose degradation. The simple way to estimate model parameter is proposed using IC's input-output MOSFET radiation test results. (authors)

  11. Dose equivalent distributions in the AAEC total body nitrogen facility

    International Nuclear Information System (INIS)

    Allen, B.J.; Bailey, G.M.; McGregor, B.J.

    1985-01-01

    The incident neutron dose equivalent in the AAEC total body nitrogen facility is measured by a calibrated remmeter. Dose equivalent rates and distributions are calculated by Monte Carlo techniques which take account of the secondary neutron flux from the collimator. Experiment and calculation are found to be in satisfactory agreement. The effective dose equivalent per exposure is determined by weighting organ doses, and the potential detriment per exposure is calculated from ICRP risk factors

  12. New Insights into Fully-Depleted SOI Transistor Response During Total Dose Irradiation

    International Nuclear Information System (INIS)

    Burns, J.A.; Dodd, P.E.; Keast, C.L.; Schwank, J.R.; Shaneyfelt, M.R.; Wyatt, P.W.

    1999-01-01

    Worst-case bias configuration for total-dose testing fully-depleted SOI transistors was found to be process dependent. No evidence was found for total-dose induced snap back. These results have implications for hardness assurance testing

  13. Simulation experiment on total ionization dose effects of linear CCD

    International Nuclear Information System (INIS)

    Tang Benqi; Zhang Yong; Xiao Zhigang; Wang Zujun; Huang Shaoyan

    2004-01-01

    We carry out the ionization radiation experiment of linear CCDs operated in unbiased, biased, biased and driven mode respectively by Co-60 γ source with our self-designed test system, and offline test the Dark signal and Saturation voltage and SNR varied with total dose for TCD132D, and get some valuable results. On the basis of above work, we set forth a primary experiment approaches to simulate the total dose radiation effects of charge coupled devices. (authors)

  14. Total dose effects on ATLAS-SCT front-end electronics

    CERN Document Server

    Ullán, M; Dubbs, T; Grillo, A A; Spencer, E; Seiden, A; Spieler, H; Gilchriese, M G D; Lozano, M

    2002-01-01

    Low dose rate effects (LDRE) in bipolar technologies complicate the hardness assurance testing for high energy physics applications. The damage produced in the ICs in the real experiment can be underestimated if fast irradiations are carried out, while experiments done at the real dose rate are usually unpractical due to the still high total doses involved. In this work the sensitivity to LDRE of two bipolar technologies proposed for the ATLAS-SCT experiment at CERN is evaluated, finding one of them free of those effects. (12 refs).

  15. Dose-ranging pharmacokinetics of colistin methanesulphonate (CMS) and colistin in rats following single intravenous CMS doses.

    Science.gov (United States)

    Marchand, Sandrine; Lamarche, Isabelle; Gobin, Patrice; Couet, William

    2010-08-01

    The aim of this study was to evaluate the effect of colistin methanesulphonate (CMS) dose on CMS and colistin pharmacokinetics in rats. Three rats per group received an intravenous bolus of CMS at a dose of 5, 15, 30, 60 or 120 mg/kg. Arterial blood samples were drawn at 0, 5, 15, 30, 60, 90, 120, 150 and 180 min. CMS and colistin plasma concentrations were determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The pharmacokinetic parameters of CMS and colistin were calculated by non-compartmental analysis. Linear relationships were observed between CMS and colistin AUCs to infinity and CMS doses, as well as between CMS and colistin C(max) and CMS doses. CMS and colistin pharmacokinetics were linear for a range of colistin concentrations covering the range of values encountered and recommended in patients even during treatment with higher doses.

  16. Total dose meter development

    International Nuclear Information System (INIS)

    Brackenbush, L.W.

    1986-09-01

    This report describes an alarming ''pocket'' monitor/dosimeter, based on a tissue-equivalent proportional counter, that measure both neutron and gamma dose and determines dose equivalent for the mixed radiation field. This report details the operation of the device and provides information on: the necessity for a device to measure dose equivalent in mixed radiation fields; the mathematical theory required to determine dose equivalent from tissue equivalent proportional; the detailed electronic circuits required; the algorithms required in the microprocessor used to calculate dose equivalent; the features of the instrument; program accomplishments and future plans

  17. Single event effects and total ionizing dose effects of typical VDMOSFET devices

    International Nuclear Information System (INIS)

    Lou Jianshe; Cai Nan; Liu Jiaxin; Wu Qinzhi; Wang Jia

    2012-01-01

    In this work, single event effects and total ionizing dose effects of typical VDMOSFET irradiated by 60 Co γ-rays and 252 Cf source were studied. The single event burnout and single event gate rupture (SEB/SEGR) effects were investigated, and the relationship between drain-source breakdown voltage and ionizing dose was obtained. The results showed that the VDMOSFET devices were sensitive to SEB and SEGR, and measures to improve their resistance to SEB and SEGR should be considered seriously for their space applications. The drain-source breakdown voltage was sensitive to total ionizing dose effects as the threshold voltage. In assessing the devices' resistance to the total ionizing dose effects, both the threshold voltage and the drain-source breakdown voltage should be taken into account. (authors)

  18. Pocket total dose meter

    International Nuclear Information System (INIS)

    Brackenbush, L.W.; Endres, G.W.R.

    1984-10-01

    Laboratory measurements have demonstrated that it is possible to simultaneously measure absorbed dose and dose equivalent using a single tissue equivalent proportional counter. Small, pocket sized instruments are being developed to determine dose equivalent as the worker is exposed to mixed field radiation. This paper describes the electronic circuitry and computer algorithms used to determine dose equivalent in these devices

  19. Use of normalized total dose to represent the biological effect of fractionated radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Flickinger, J C; Kalend, A [Pittsburgh University School of Medicine (USA). Department of Radiation Oncology Pittsburg Cancer Institute (USA)

    1990-03-01

    There are currently a number of radiobiological models to account for the effects of dose fractionation and time. Normalized total dose (NTD) is not another new model but is a previously reported, clinically useful form in which to represent the biological effect, determined by any specific radiobiological dose-fractionation model, of a course of radiation using a single set of standardized, easily understood terminology. The generalized form of NTD reviewed in this paper describes the effect of a course of radiotherapy administered with nonstandard fractionation as the total dose of radiation in Gy that could be administered with a given reference fractionation such as 2 Gy per fraction, 5 fractions per week that would produce an equivalent biological effect (probability of complications or tumor control) as predicted by a given dose-fractionation formula. The use of normalized total dose with several different exponential and linear-quadratic dose-fraction formulas is presented. (author). 51 refs.; 1 fig.; 1 tab.

  20. Use of normalized total dose to represent the biological effect of fractionated radiotherapy

    International Nuclear Information System (INIS)

    Flickinger, J.C.; Kalend, A.

    1990-01-01

    There are currently a number of radiobiological models to account for the effects of dose fractionation and time. Normalized total dose (NTD) is not another new model but is a previously reported, clinically useful form in which to represent the biological effect, determined by any specific radiobiological dose-fractionation model, of a course of radiation using a single set of standardized, easily understood terminology. The generalized form of NTD reviewed in this paper describes the effect of a course of radiotherapy administered with nonstandard fractionation as the total dose of radiation in Gy that could be administered with a given reference fractionation such as 2 Gy per fraction, 5 fractions per week that would produce an equivalent biological effect (probability of complications or tumor control) as predicted by a given dose-fractionation formula. The use of normalized total dose with several different exponential and linear-quadratic dose-fraction formulas is presented. (author). 51 refs.; 1 fig.; 1 tab

  1. Dose calculation method with 60-cobalt gamma rays in total body irradiation

    International Nuclear Information System (INIS)

    Scaff, Luiz Alberto Malaguti

    2001-01-01

    Physical factors associated to total body irradiation using 60 Co gamma rays beams, were studied in order to develop a calculation method of the dose distribution that could be reproduced in any radiotherapy center with good precision. The method is based on considering total body irradiation as a large and irregular field with heterogeneities. To calculate doses, or doses rates, of each area of interest (head, thorax, thigh, etc.), scattered radiation is determined. It was observed that if dismagnified fields were considered to calculate the scattered radiation, the resulting values could be applied on a projection to the real size to obtain the values for dose rate calculations. In a parallel work it was determined the variation of the dose rate in the air, for the distance of treatment, and for points out of the central axis. This confirm that the use of the inverse square law is not valid. An attenuation curve for a broad beam was also determined in order to allow the use of absorbers. In this work all the adapted formulas for dose rate calculations in several areas of the body are described, as well time/dose templates sheets for total body irradiation. The in vivo dosimetry, proved that either experimental or calculated dose rate values (achieved by the proposed method), did not have significant discrepancies. (author)

  2. Measurement with total scatter calibrate factor at different depths in the calculation of prescription dose

    International Nuclear Information System (INIS)

    Li Lijun; Zhu Haijun; Zhang Xinzhong; Li Feizhou; Song Hongyu

    2004-01-01

    Objective: To evaluate the method of measurement of total scatter calibrate factor (Sc, p). Methods: To measure the Sc, p at different depths on central axis of 6MV, 15MV photon beams through different ways. Results: It was found that the measured data of Sc, p changed with the different depths to a range of 1% - 7%. Using the direct method, the Sc, p measured depth should be the same as the depth in dose normalization point of the prescription dose. If the Sc, p (fsz, d) was measured at the other depths, it could be obtained indirectly by the calculation formula. Conclusions: The Sc, p in the prescription dose can be obtained either by the direct measure method or the indirect calculation formula. But emphasis should be laid on the proper measure depth. (authors)

  3. An experimental study on total dose effects in SRAM-based FPGAs

    International Nuclear Information System (INIS)

    Yao Zhibin; He Baoping; Zhang Fengqi; Guo Hongxia; Luo Yinhong; Wang Yuanming; Zhang Keying

    2009-01-01

    In order to study testing methods and find sensitive parameters in total dose effects on SRAM-based FPGA, XC2S100 chips were irradiated by 60 Co γ-rays and tested with two test circuit designs. By analyzing the experimental results, the test flow of configuration RAM and bock RAM was given, and the most sensitive parameter was obtained. The results will be a solid foundation for establishing test specification and evaluation methods of total dose effects on SRAM-based FPGAs. (authors)

  4. Design of spray dried insulin microparticles to bypass deposition in the extrathoracic region and maximize total lung dose.

    Science.gov (United States)

    Ung, Keith T; Rao, Nagaraja; Weers, Jeffry G; Huang, Daniel; Chan, Hak-Kim

    2016-09-25

    Inhaled drugs all too often deliver only a fraction of the emitted dose to the target lung site due to deposition in the extrathoracic region (i.e., mouth and throat), which can lead to increased variation in lung exposure, and in some instances increases in local and systemic side effects. For aerosol medications, improved targeting to the lungs may be achieved by tailoring the micromeritic properties of the particles (e.g., size, density, rugosity) to minimize deposition in the mouth-throat and maximize the total lung dose. This study evaluated a co-solvent spray drying approach to modulate particle morphology and dose delivery characteristics of engineered powder formulations of insulin microparticles. The binary co-solvent system studied included water as the primary solvent mixed with an organic co-solvent, e.g., ethanol. Factors such as the relative rate of evaporation of each component of a binary co-solvent mixture, and insulin solubility in each component were considered in selecting feedstock compositions. A water-ethanol co-solvent mixture with a composition range considered suitable for modulating particle shell formation during drying was selected for experimental investigation. An Alberta Idealized Throat model was used to evaluate the in vitro total lung dose of a series of spray dried insulin formulations engineered with different bulk powder properties and delivered with two prototype inhalers that fluidize and disperse powder using different principles. The in vitro total lung dose of insulin microparticles was improved and favored for powders with low bulk density and small primary particle size, with reduction of deposition in the extrathoracic region. The results demonstrated that a total lung dose >95% of the delivered dose can be achieved with engineered particles, indicating a high degree of lung targeting, almost completely bypassing deposition in the mouth-throat. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Real-life effectiveness of omalizumab in severe allergic asthma above the recommended dosing range criteria.

    Science.gov (United States)

    Hew, M; Gillman, A; Sutherland, M; Wark, P; Bowden, J; Guo, M; Reddel, H K; Jenkins, C; Marks, G B; Thien, F; Rimmer, J; Katsoulotos, G P; Cook, M; Yang, I; Katelaris, C; Bowler, S; Langton, D; Wright, C; Bint, M; Yozghatlian, V; Burgess, S; Sivakumaran, P; Yan, K Y; Kritikos, V; Peters, M; Baraket, M; Aminazad, A; Robinson, P; Jaffe, A; Powell, H; Upham, J W; McDonald, V M; Gibson, P G

    2016-11-01

    Omalizumab (Xolair) dosing in severe allergic asthma is based on serum IgE and bodyweight. In Australia, patients eligible for omalizumab but exceeding recommended ranges for IgE (30-1500 IU/mL) and bodyweight (30-150 kg) may still receive a ceiling dose of 750 mg/4 weeks. About 62% of patients receiving government-subsidized omalizumab are enrolled in the Australian Xolair Registry (AXR). To determine whether AXR participants above the recommended dosing ranges benefit from omalizumab and to compare their response to within-range participants. Data were stratified according to dose range status (above-range or within-range). Further sub-analyses were conducted according to the reason for being above the dosing range (IgE only vs. IgE and weight). Data for 179 participants were analysed. About 55 (31%) were above recommended dosing criteria; other characteristics were similar to within-range participants. Above-range participants had higher baseline IgE [812 (IQR 632, 1747) IU/mL vs. 209 (IQR 134, 306) IU/mL] and received higher doses of omalizumab [750 (IQR 650, 750) mg] compared to within-range participants [450 (IQR, 300, 600) mg]. At 6 months, improvements in Juniper 5-item Asthma Control Questionnaire (ACQ-5, 3.61 down to 2.01 for above-range, 3.47 down to 1.93 for within-range, P omalizumab have significantly improved symptom control, quality of life and lung function to a similar degree to within-range participants, achieved without dose escalation above 750 mg. © 2016 John Wiley & Sons Ltd.

  6. Prediction of midline dose from entrance ad exit dose using OSLD measurements for total irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Chang Heon; Park, Jong Min; Park, So Yeon; Chun, Min Soo; Han, Ji Hye; Cho, Jin Dong; Kim, Jung In [Dept. of Radiation Oncology, Seoul National University Hospital, Seoul (Korea, Republic of)

    2017-06-15

    This study aims to predict the midline dose based on the entrance and exit doses from optically stimulated luminescence detector (OSLD) measurements for total body irradiation (TBI). For TBI treatment, beam data sets were measured for 6 MV and 15 MV beams. To evaluate the tissue lateral effect of various thicknesses, the midline dose and peak dose were measured using a solid water phantom (SWP) and ion chamber. The entrance and exit doses were measured using OSLDs. OSLDs were attached onto the central beam axis at the entrance and exit surfaces of the phantom. The predicted midline dose was evaluated as the sum of the entrance and exit doses by OSLD measurement. The ratio of the entrance dose to the exit dose was evaluated at various thicknesses. The ratio of the peak dose to the midline dose was 1.12 for a 30 cm thick SWP at both energies. When the patient thickness is greater than 30 cm, the 15 MV should be used to ensure dose homogeneity. The ratio of the entrance dose to the exit dose was less than 1.0 for thicknesses of less than 30 cm and 40 cm at 6 MV and 15 MV, respectively. Therefore, the predicted midline dose can be underestimated for thinner body. At 15 MV, the ratios were approximately 1.06 for a thickness of 50 cm. In cases where adult patients are treated with the 15 MV photon beam, it is possible for the predicted midline dose to be overestimated for parts of the body with a thickness of 50 cm or greater. The predicted midline dose and OSLD-measured midline dose depend on the phantom thickness. For in-vivo dosimetry of TBI, the measurement dose should be corrected in order to accurately predict the midline dose.

  7. Marrow toxicity of fractionated vs. single dose total body irradiation is identical in a canine model

    International Nuclear Information System (INIS)

    Storb, R.; Raff, R.F.; Graham, T.; Appelbaum, F.R.; Deeg, H.J.; Schuening, F.G.; Shulman, H.; Pepe, M.

    1993-01-01

    The authors explored in dogs the marrow toxicity of single dose total body irradiation delivered from two opposing 60 Co sources at a rate of 10 cGy/min and compared results to those seen with total body irradiation administered in 100 cGy fractions with minimum interfraction intervals of 6 hr. Dogs were not given marrow transplants. They found that 200 cGy single dose total body irradiation was sublethal, with 12 of 13 dogs showing hematopoietic recovery and survival. Seven of 21 dogs given 300 cGy single dose total body irradiation survived compared to 6 of 10 dogs given 300 cGy fractionated total body irradiation. One of 28 dogs given 400 cGy single dose total body irradiation survived compared to none of six given fractionated radiation. With granulocyte colony stimulating factor (GCSF) administered from day 0-21 after 400 cGy total body irradiation, most dogs survived with hematological recovery. Because of the almost uniform success with GCSF after 400 cGy single dose total body irradiation, a study of GCSF after 400 cGy fractionated total body irradiation was deemed not to be informative and, thus, not carried out. Additional comparisons between single dose and fractionated total body irradiation were carried out with GCSF administered after 500 and 600 cGy of total body irradiation. As with lower doses of total body irradiation, no significant survival differences were seen between the two modes of total body irradiation, and only 3 of 26 dogs studied survived with complete hematological recovery. Overall, therefore, survival among dogs given single dose total body irradiation was not different from that of dogs given fractionated total body irradiation (p = .67). Similarly, the slopes of the postirradiation declines of granulocyte and platelet counts and the rates of their recovery in surviving dogs given equal total doses of single versus fractionated total body irradiation were indistinguishable. 24 refs., 3 figs., 2 tabs

  8. Applichation of the sulphate ceric dosimetric in the high doses range

    International Nuclear Information System (INIS)

    Prieto Miranda, F.

    1991-01-01

    The ceric-cerous dosimetric system is one of the system more employed in the high dose dosimetry. The spectrophotometric procedure to measure the ceric-concentration is an usual analityc method to determine the absorbed dose. On the other hand, due at increase employ of the irradiation process control. In this paper is realized the ceric-cerous dosimetric calibration in the dose range of 0,6 - 5 kGy and the application in the irradiation process control to differents absorbed dose values

  9. Single-dose radiation therapy for prevention of heterotopic ossification after total hip arthroplasty

    International Nuclear Information System (INIS)

    Healy, W.L.; Lo, T.C.; Covall, D.J.; Pfeifer, B.A.; Wasilewski, S.A.

    1990-01-01

    Single-dose radiation therapy was prospectively evaluated for its efficacy in prevention of heterotopic ossification in patients at high risk after total hip arthroplasty. Thirty-one patients (34 hips) were treated between 1981 and 1988. Risk factors for inclusion in the protocol included prior evidence of heterotopic ossification, ankylosing spondylitis, and diffuse idiopathic skeletal hyperostosis. Patients with hypertrophic osteoarthritis or traumatic arthritis with osteophytes were not included. Operations on 34 hips included 19 primary total and 11 revision total hip arthroplasties and 4 excisions of heterotopic ossification. All patients received radiotherapy to the hip after operation with a single dose of 700 centigray. Radiotherapy is recommended on the first postoperative day. After this single-dose radiation treatment, no patient had clinically significant heterotopic ossification. Recurrent disease developed in two hips (6%), as seen on radiography (grades 2 and 3). This series documents a 100% clinical success rate and a 94% radiographic success rate in preventing heterotopic ossification in patients at high risk after total hip arthroplasty. Single-dose radiotherapy is as effective as other radiation protocols in preventing heterotopic ossification after total hip arthroplasty. It is less expensive and easier to administer than multidose radiotherapy

  10. Impact of total ionizing dose on the electromagnetic susceptibility of a single bipolar transistor

    International Nuclear Information System (INIS)

    Doridant, A.; Jarrix, S.; Raoult, J.; Blain, A.; Dusseau, L.; Chatry, N.; Calvel, P.; Hoffmann, P.

    2012-01-01

    Space or military electronic components are subject to both electromagnetic fields and total ionizing dose. This paper deals with the electromagnetic susceptibility of a discrete low frequency transistor subject to total ionizing dose deposition. The electromagnetic susceptibility is investigated on both non-irradiated and irradiated transistors mounted in common emitter configuration. The change in susceptibility to 100 MHz-1.5 GHz interferences lights up a synergy effect between near field electromagnetic waves and total ionizing dose. Physical mechanisms leading to changes in signal output are detailed. (authors)

  11. Low-dose (10-Gy) total skin electron beam therapy for cutaneous T-cell lymphoma

    DEFF Research Database (Denmark)

    Kamstrup, Maria R; Gniadecki, Robert; Iversen, Lars

    2015-01-01

    a total dose of 10 Gy in 10 fractions. Data from 10 of these patients were published previously but were included in the current pooled data analysis. Outcome measures were response rate, duration of response, and toxicity. RESULTS: The overall response rate was 95% with a complete cutaneous response......PURPOSE: Cutaneous T-cell lymphomas (CTCLs) are dominated by mycosis fungoides (MF) and Sézary syndrome (SS), and durable disease control is a therapeutic challenge. Standard total skin electron beam therapy (TSEBT) is an effective skin-directed therapy, but the possibility of retreatments...... or a very good partial response rate (response was 174 days (5.8 months; range: 60-675 days). TSEBT-related acute adverse events (grade 1 or 2) were observed in 60% of patients. CONCLUSIONS...

  12. Properties of Wide-dose-range GafChromic Films for Synchrotron Radiation Facility

    International Nuclear Information System (INIS)

    Nariyama, Nobuteru

    2007-01-01

    GafChromic films have been used at SPring-8 to detect the intensively irradiated parts and protect them from damage by being covered with shield or moved. To extend the usable dose range more widely, a new type of sensitive film EBT was investigated for the introduction. Calibration curves were obtained irradiated with 60Co γ rays and compared with those of other GafChromic films. For the application, these films were set in the white x-ray hutch and the dose distribution was measured. Ratio of doses given by EBT and XT-R indicated the degree of the photon spectrum hardness, which depended on the positions. As a result, dose range from 50 mGy to 300 kGy became available for dose distribution measurements, and a set of films having different energy responses was found to give information of photon spectra

  13. A wide range survey meter for estimating γ- and β-dose rates

    International Nuclear Information System (INIS)

    Jones, A.R.

    1980-09-01

    A survey meter has been developed to measure β-dose rates in the range 0.1 - 100 rad/h (1 mGy/h - 1 Gy/h) and γ-dose rates in the range 1 mrad/h - 100 rad/h (10 μGy/h-1 Gy/h). It also provides an audible warning of high γ-dose rates and an audible and visible warning when a predetermined γ-dose is exceeded. The report describes the design of the survey meter and presents data measured on the performance of an engineering prototype. Factors which affect performance and have been investigated are temperature, battery voltage (and type of battery), GM counter counting loss, direction of incident radiation, and energy of γ-rays. Finally, the application and calibration of the survey meter are discussed. (auth)

  14. Estimation of the total absorbed dose by quartz in retrospective conditions

    International Nuclear Information System (INIS)

    Correcher, V.; Delgado, A.

    2003-01-01

    The estimation of the total absorbed dose is of great interest in areas affected by a radiological accident when no conventional dosimetric systems are available. This paper reports about the usual methodology employed in dose reconstruction from the thermoluminescence (TL) properties of natural quartz, extracted from selected ceramic materials (12 bricks) picked up in the Chernobyl area. It has been possible to evaluate doses under 50mGy after more than 11 years later since the radiological accident happened. The main advance of this fact is the reduction of the commonly accepted limit dose estimation more than 20 times employing luminescence methods. (Author) 11 refs

  15. Total Risk Management for Low Dose Radiation Exposures

    International Nuclear Information System (INIS)

    Simic, Z.; Mikulicic, V.; Sterc, D.

    2012-01-01

    health. This view is supported with numerous evidences, and explained with beneficial effects from the increased activity of immune system activated with small radiation exposures. Finally, theory in between is that small doses are less than linearly proportionally harmful and that they are presenting a much smaller risks than according to the LNT. This view is derived from the use of different evidences. Difficulties to find one single theory about effects of small radiation doses are related to existence of huge variability and uncertainty in the evidence data. This is very hard experimental and theoretical problem. It will require lots of additional research to reduce these uncertainties and find final theory. This might be too late for the number of people affected in different ways with current single most conservative LNT approach. The problem with the conservative LNT regulatory approach is resulting in enormous additional costs of nuclear energy and medical applications. Which is reasonable and acceptable during the regular operation when source is high and concentrated. But, this becomes unreasonable huge economic burden after accidents and for cleanups with nuclear facilities. Similar problem arises with restriction of medical examinations and treatments based on over conservative risk estimate. Special circumstances are with evacuated people from contaminated areas where they are on the one side saved from small radiation exposures, and on the other side exposed to years of life away from their home and with numerous direct and indirect additional risks (i.e., stress, social problems, etc.). It seems reasonable that some alternative (total) risk management approach might be much more suitable for this situation. Evacuation of people from contaminated area with small doses sources should not be done when that induces larger risks from even what is expected from radiation based on LNT. Similar total risk management could be also applied for with medical

  16. Theoretical considerations for SRAM total-dose hardening

    International Nuclear Information System (INIS)

    Francis, P.; Flandre, D.; Colinge, J.P.

    1995-01-01

    The theoretical hardness against total dose of the six-transistor SRAM cell is investigated in detail. An explicit analytical expression of the maximum tolerable threshold voltage shift is derived for two cross-coupled inverters. A numerical method is used to explore the hardness of the read and write operations. Both N- and P-channel access transistors designs are considered and their respective advantages are compared. The study points out that the radiation hardness mainly relies on the technology. Results obtained with the very robust Gate-All-Around process are finally presented

  17. Origins of Total-Dose Response Variability in Linear Bipolar Microcircuits

    International Nuclear Information System (INIS)

    Barnaby, H.J.; Cirba, C.R.; Schrimpf, R.D.; Fleetwood, D.M.; Pease, R.L.; Shaneyfelt, Marty R.; Turflinger, T.; Krieg, J.F.; Maher, M.C.

    2000-01-01

    LM1ll voltage comparators exhibit a wide range of total-dose-induced degradation. Simulations show this variability may be a natural consequence of the low base doping of the substrate PNP (SPNP) input transistors. Low base doping increases the SPNP's collector to base breakdown voltage, current gain, and sensitivity to small fluctuations in the radiation-induced oxide defect densities. The build-up of oxide trapped charge (N ot ) and interface traps (N it ) is shown to be a function of pre-irradiation bakes. Experimental data indicate that, despite its structural similarities to the LM111, irradiated input transistors of the LM124 operational amplifier do not exhibit the same sensitivity to variations in pre-irradiation thermal cycles. Further disparities in LM111 and LM124 responses may result from a difference in the oxide defect build-up in the two part types. Variations in processing, packaging, and circuit effects are suggested as potential explanations

  18. TU-CD-304-04: Scanning Field Total Body Irradiation Using Dynamic Arc with Variable Dose Rate and Gantry Speed

    Energy Technology Data Exchange (ETDEWEB)

    Yi, B; Xu, H; Mutaf, Y; Prado, K [Univ. of Maryland School Of Medicine, Baltimore, MD (United States)

    2015-06-15

    Purpose: Enable a scanning field total body irradiation (TBI) technique, using dynamic arcs, which is biologically equivalent to a moving couch TBI. Methods: Patient is treated slightly above the floor and the treatment field scans across the patient by a moving gantry. MLC positions change during gantry motion to keep same field opening at the level of the treatment plane (170 cm). This is done to mimic the same geometry as the moving couch TBI technique which has been used in our institution for over 10 years. The dose rate and the gantry speed are determined considering a constant speed of the moving field, variations in SSD and slanted depths resulting from oblique gantry angles. An Eclipse (Varian) planning system is commissioned to accommodate the extended SSD. The dosimetric foundations of the technique have been thoroughly investigated using phantom measurements. Results: Dose uniformity better than 2% across 180 cm length at 10cm depth is achieved by moving the gantry from −55 to +55 deg. Treatment range can be extended by increasing gantry range. No device such as a gravity-oriented compensator is needed to achieve a uniform dose. It is feasible to modify the dose distribution by adjusting the dose rate at each gantry angle to compensate for body thickness differences. Total treatment time for 2 Gy AP/PA fields is 40–50 minutes excluding patient set up time, at the machine dose rate of 100 MU/min. Conclusion: This novel yet transportable moving field technique enables TBI treatment in a small treatment room with less program development preparation than other techniques. Treatment length can be extended per need, and. MLC-based thickness compensation and partial lung blocking are also possible.

  19. Study of total ionization dose effects in electronic devices

    International Nuclear Information System (INIS)

    Nidhin, T.S.; Bhattacharyya, Anindya; Gour, Aditya; Behera, R.P.; Jayanthi, T.

    2018-01-01

    Radiation effects in electronic devices are a major challenge in the dependable application developments of nuclear power plant instrumentation and control systems. The main radiation effects are total ionization dose (TID) effects, displacement damage dose (DDD) effects and single event effects (SEE). In this study, we are concentrating on TID effects in electronic devices. The focus of the study is mainly on SRAM based field programmable gate arrays (FPGA) along with that the devices of our interest are voltage regulators, flash memory and optocoupler. The experiments are conducted by exposing the devices to gamma radiation in power off condition and the degradation in the performances are analysed

  20. Characterization of Radiation Hardened Bipolar Linear Devices for High Total Dose Missions

    Science.gov (United States)

    McClure, Steven S.; Harris, Richard D.; Rax, Bernard G.; Thorbourn, Dennis O.

    2012-01-01

    Radiation hardened linear devices are characterized for performance in combined total dose and displacement damage environments for a mission scenario with a high radiation level. Performance at low and high dose rate for both biased and unbiased conditions is compared and the impact to hardness assurance methodology is discussed.

  1. Clonidine as an adjunct to intravenous regional anesthesia: A randomized, double-blind, placebo-controlled dose ranging study

    Directory of Open Access Journals (Sweden)

    Clarence S Ivie

    2011-01-01

    Full Text Available Background : The addition of clonidine to lidocaine intravenous regional anesthesia (IVRA has been previously reported to improve postoperative analgesia in patients undergoing upper extremity surgery. Our objective was to perform a dose ranging study in order to determine the optimal dose of clonidine used with lidocaine in IVRA. Design & Setting : We performed a double-blinded randomized placebo-controlled study with 60 patients scheduled for elective endoscopic carpal tunnel release under IVRA with 50 ml lidocaine 0.5%. University-affiliated outpatient surgery center. Data collected in operating rooms, recovery room, and by telephone after discharge from surgery center. Materials & Methods : Sixty adult ASA I or II patients undergoing outpatient endoscopic carpal tunnel release under intravenous regional anesthesia.Patients were randomized into five study groups receiving different doses of clonidine in addition to 50 ml 0.5% lidocaine in their IVRA. Group A received 0 mcg/kg, group B 0.25 mcg/kg, group C 0.5 mcg/kg, group D 1.0 mcg/kg and group E 1.5 mcg/kg of clonidine.Intraoperative fentanyl, recovery room pain scores, time to first postsurgical analgesic, total number of acetaminophen/codeine tablets consumed postsurgery, incidence of sedation, hypotension and bradycardia. Results & Conclusions : There was no benefit from any dose of clonidine compared to placebo. There were no clonidine-related side effects seen within the dose range studied. In short duration minor hand surgery, the addition of clonidine to lidocaine-based intravenous regional anesthesia provides no measurable benefit.

  2. Dose-escalated total body irradiation and autologous stem cell transplantation for refractory hematologic malignancy

    International Nuclear Information System (INIS)

    McAfee, Steven L.; Powell, Simon N.; Colby, Christine; Spitzer, Thomas R.

    2002-01-01

    Purpose: To evaluate the feasibility of dose escalation of total body irradiation (TBI) above the previously reported maximally tolerated dose, we have undertaken a Phase I-II trial of dose-escalated TBI with autologous peripheral blood stem cell transplantation (PBSCT) for chemotherapy-refractory lymphoma. Methods and Materials: Nine lymphoma patients with primary refractory disease (PRD) or in resistant relapse (RR) received dose-escalated TBI and PBSCT. The three dose levels of fractionated TBI (200 cGy twice daily) were 1,600 cGy, 1,800 cGy, and 2,000 cGy. Lung blocks were used to reduce the TBI transmission dose by 50%, and the chest wall dose was supplemented to the prescribed dose using electrons. Shielding of the kidneys was performed to keep the maximal renal dose at 1,600 cGy. Three patients, two with non-Hodgkin's lymphoma (NHL) in RR and one with PRD Hodgkin's disease, received 1,600 cGy + PBSCT, three patients (two NHL in RR, one PRD) received 1,800 cGy + PBSCT, and three patients with NHL (two in RR, one PRD) received 2,000 cGy + PBSCT. Results: Toxicities associated with this high-dose TBI regimen included reversible hepatic veno-occlusive disease in 1 patient, Grade 2 mucositis requiring narcotic analgesics in 8 patients, and neurologic toxicities consisting of a symmetrical sensory neuropathy (n=4) and Lhermitte's syndrome (n=1). Interstitial pneumonitis developed in 1 patient who received 1,800 cGy after receiving recombinant α-interferon (with exacerbation after rechallenge with interferon). Six (66%) patients achieved a response. Four (44%) patients achieved complete responses, three of which were of a duration greater than 1 year, and 2 (22%) patients achieved a partial response. One patient remains disease-free more than 5 years posttransplant. Corticosteroid-induced gastritis and postoperative infection resulted in the death of 1 patient in complete response, 429 days posttransplant. Conclusion: TBI in a dose range 1,600-2,000 cGy as

  3. The total dose effects on the 1/f noise of deep submicron CMOS transistors

    International Nuclear Information System (INIS)

    Hu Rongbin; Wang Yuxin; Lu Wu

    2014-01-01

    Using 0.18 μm CMOS transistors, the total dose effects on the 1/f noise of deep-submicron CMOS transistors are studied for the first time in mainland China. From the experimental results and the theoretic analysis, we realize that total dose radiation causes a lot of trapped positive charges in STI (shallow trench isolation) SiO 2 layers, which induces a current leakage passage, increasing the 1/f noise power of CMOS transistors. In addition, we design some radiation-hardness structures on the CMOS transistors and the experimental results show that, until the total dose achieves 750 krad, the 1/f noise power of the radiation-hardness CMOS transistors remains unchanged, which proves our conclusion. (semiconductor devices)

  4. Anti-tumor effect of total body irradiation of low doses on WHT/Ht mice

    International Nuclear Information System (INIS)

    Miyamoto, Miyako; Sakamoto, Kiyohiko

    1987-01-01

    The effect of low dose (0.05 - 1.0 Gy) of total body irradiation (TBI) on non-tumor bearing and tumor bearing mice were investigated. Mice received TBI of 0.1 Gy during 6 - 12 hours before tumor cell inoculation demonstrated to need larger number of tumor cells (approximately 2.5 times) for 50 per cent tumor incidence, compared to recipient mice not to receive TBI. On the other hand, in tumor bearing mice given 0.1 Gy of TBI only tumor cell killing effect was not detected, however enhancement of tumor cell killing effect and prolonged growth delay were observed when tumor bearing mice were treated with 0.1 Gy of TBI in combined with local irradiation on tumors, especially cell killing effect was remarkable in dose range over 6 Gy of local exposure. The mechanism of the effect of 0.1 Gy TBI is considered to be host mediated reactions from the other our experimental results. (author)

  5. The continual reassessment method: comparison of Bayesian stopping rules for dose-ranging studies.

    Science.gov (United States)

    Zohar, S; Chevret, S

    2001-10-15

    The continual reassessment method (CRM) provides a Bayesian estimation of the maximum tolerated dose (MTD) in phase I clinical trials and is also used to estimate the minimal efficacy dose (MED) in phase II clinical trials. In this paper we propose Bayesian stopping rules for the CRM, based on either posterior or predictive probability distributions that can be applied sequentially during the trial. These rules aim at early detection of either the mis-choice of dose range or a prefixed gain in the point estimate or accuracy of estimated probability of response associated with the MTD (or MED). They were compared through a simulation study under six situations that could represent the underlying unknown dose-response (either toxicity or failure) relationship, in terms of sample size, probability of correct selection and bias of the response probability associated to the MTD (or MED). Our results show that the stopping rules act correctly, with early stopping by using the two first rules based on the posterior distribution when the actual underlying dose-response relationship is far from that initially supposed, while the rules based on predictive gain functions provide a discontinuation of inclusions whatever the actual dose-response curve after 20 patients on average, that is, depending mostly on the accumulated data. The stopping rules were then applied to a data set from a dose-ranging phase II clinical trial aiming at estimating the MED dose of midazolam in the sedation of infants during cardiac catheterization. All these findings suggest the early use of the two first rules to detect a mis-choice of dose range, while they confirm the requirement of including at least 20 patients at the same dose to reach an accurate estimate of MTD (MED). A two-stage design is under study. Copyright 2001 John Wiley & Sons, Ltd.

  6. Serum protein concentration in low-dose total body irradiation of normal and malnourished rats

    International Nuclear Information System (INIS)

    Viana, W.C.M.; Lambertz, D.; Borges, E.S.; Neto, A.M.O.; Lambertz, K.M.F.T.; Amaral, A.

    2016-01-01

    Among the radiotherapeutics' modalities, total body irradiation (TBI) is used as treatment for certain hematological, oncological and immunological diseases. The aim of this study was to evaluate the long-term effects of low-dose TBI on plasma concentration of total protein and albumin using prematurely and undernourished rats as animal model. For this, four groups with 9 animals each were formed: Normal nourished (N); Malnourished (M); Irradiated Normal nourished (IN); Irradiated Malnourished (IM). At the age of 28 days, rats of the IN and IM groups underwent total body gamma irradiation with a source of cobalt-60. Total protein and Albumin in the blood serum was quantified by colorimetry. This research indicates that procedures involving low-dose total body irradiation in children have repercussions in the reduction in body-mass as well as in the plasma levels of total protein and albumin. Our findings reinforce the periodic monitoring of total serum protein and albumin levels as an important tool in long-term follow-up of pediatric patients in treatments associated to total body irradiation. - Highlights: • Low-dose total body irradiation (TBI) in children have repercussions in their body-mass. • Long-term total protein and albumin levels are affected by TBI. • The monitoring of total protein and albumin levels are useful in the follow-up of TBI pediatric patients.

  7. Worst-Case Bias During Total Dose Irradiation of SOI Transistors

    International Nuclear Information System (INIS)

    Ferlet-Cavrois, V.; Colladant, T.; Paillet, P.; Leray, J.-L; Musseau, O.; Schwank, James R.; Shaneyfelt, Marty R.; Pelloie, J.L.; Du Port de Poncharra, J.

    2000-01-01

    The worst case bias during total dose irradiation of partially depleted SOI transistors (from SNL and from CEA/LETI) is correlated to the device architecture. Experiments and simulations are used to analyze SOI back transistor threshold voltage shift and charge trapping in the buried oxide

  8. Simplified method for creating a density-absorbed dose calibration curve for the low dose range from Gafchromic EBT3 film

    Directory of Open Access Journals (Sweden)

    Tatsuhiro Gotanda

    2016-01-01

    Full Text Available Radiochromic film dosimeters have a disadvantage in comparison with an ionization chamber in that the dosimetry process is time-consuming for creating a density-absorbed dose calibration curve. The purpose of this study was the development of a simplified method of creating a density-absorbed dose calibration curve from radiochromic film within a short time. This simplified method was performed using Gafchromic EBT3 film with a low energy dependence and step-shaped Al filter. The simplified method was compared with the standard method. The density-absorbed dose calibration curves created using the simplified and standard methods exhibited approximately similar straight lines, and the gradients of the density-absorbed dose calibration curves were −32.336 and −33.746, respectively. The simplified method can obtain calibration curves within a much shorter time compared to the standard method. It is considered that the simplified method for EBT3 film offers a more time-efficient means of determining the density-absorbed dose calibration curve within a low absorbed dose range such as the diagnostic range.

  9. Development of dose monitoring system applicable to various radiations with wide energy ranges

    International Nuclear Information System (INIS)

    Sato, Tatsuhiko; Satoh, Daiki; Endo, Akira; Yamaguchi, Yasuhiro

    2005-01-01

    A new inventive radiation dose monitor, designated as DARWIN (Dose monitoring system Applicable to various Radiations with WIde energy raNges), has been developed for monitoring doses in workspaces and surrounding environments of high energy accelerator facilities. DARWIN is composed of a phoswitch-type scintillation detector, which consists of liquid organic scintillator BC501A coupled with ZnS(Ag) scintillation sheets doped with 6 Li, and a data acquisition system based on a Digital-Storage-Oscilloscope. Scintillations from the detector induced by thermal and fast neutrons, photons and muons were discriminated by analyzing their waveforms, and their light outputs were directly converted into the corresponding doses by applying the G-function method. Characteristics of DARWIN were studied by both calculation and experiment. The calculated results indicate that DARWIN gives reasonable estimations of doses in most radiation fields. It was found from the experiment that DARWIN has an excellent property of measuring doses from all particles that significantly contribute to the doses in surrounding environments of accelerator facilities - neutron, photon and muon with wide energy ranges. The experimental results also suggested that DARWIN enables us to monitor small fluctuation of neutron dose rates near the background-level owing to its high sensitivity. (author)

  10. Rescue dose orders as an alternative to range orders: an evidence-based practice project.

    Science.gov (United States)

    Yi, Cassia

    2015-06-01

    Relief of pain is a fundamental aspect of optimal patient care. However, pain management in the inpatient setting is often constrained by concerns related to regulatory oversight, particularly with regard to the use of opioid dose range orders. These concerns can inadvertently result in the development of policies and practices that can negatively impact the health care team's ability to deliver optimal and individualized pain management. An evidence-based practice project was undertaken to address concerns about regulatory oversight of pain management processes by changing the way pain was managed in a large academic hospital setting. A novel pain management approach using rescue dose medications was established as an alternative to opioid dose range orders. The use of the rescue dose protocol was successfully implemented. Outcomes included an overall reduction in the administration of inappropriate intravenous opioids and opioid-acetaminophen combination medications, with a subsequent increase in single-entity first-line opioid analgesics. Rescue dose protocols may offer an alternative to opioid dose range orders as a means of effectively managing pain. Copyright © 2015 American Society of PeriAnesthesia Nurses. Published by Elsevier Inc. All rights reserved.

  11. Estimation of the dose distribution within, and total dose to, the body of an acutely overexposed person

    International Nuclear Information System (INIS)

    Beer, G.P. de; Feather, J.I.; Oude, A. de; Language, A.E.

    1981-01-01

    In a case of accidental overexposure of a person, it is important to obtain a reliable value of the whole body dose as well as of the dose distribution within the body. Any follow-up treatment based only on the clinical effects as and when they appear, may result in insufficient or even erroneous therapy. In this respect knowledge of total dose and its distribution within the body may be a valuable aid in deciding on the follow-up treatment, taking into account the latent nature of the clinical effects. The calculated whole body dose and its distribution within the body of a person overexposed to a 192 Ir radiography source, are compared to experimentally determined values. In both cases the calculated values prove to be of sufficient accuracy to serve as an aid in decisions on the follow-up treatment. (author)

  12. Feasibility of RACT for 3D dose measurement and range verification in a water phantom

    Energy Technology Data Exchange (ETDEWEB)

    Alsanea, Fahed [School of Health Sciences, Purdue University, 550 Stadium Mall Drive, West Lafayette, Indiana 47907-2051 (United States); Moskvin, Vadim [Radiation Oncology, Indiana University School of Medicine, 535 Barnhill Drive, RT 041, Indianapolis, Indiana 46202-5289 (United States); Stantz, Keith M., E-mail: kstantz@purdue.edu [School of Health Sciences, Purdue University, 550 Stadium Mall Drive, West Lafayette, Indiana 47907-2051 and Radiology and Imaging Sciences, Indiana University School of Medicine, 950 West Walnut Street, Indianapolis, Indiana 46202-5289 (United States)

    2015-02-15

    Purpose: The objective of this study is to establish the feasibility of using radiation-induced acoustics to measure the range and Bragg peak dose from a pulsed proton beam. Simulation studies implementing a prototype scanner design based on computed tomographic methods were performed to investigate the sensitivity to proton range and integral dose. Methods: Derived from thermodynamic wave equation, the pressure signals generated from the dose deposited from a pulsed proton beam with a 1 cm lateral beam width and a range of 16, 20, and 27 cm in water using Monte Carlo methods were simulated. The resulting dosimetric images were reconstructed implementing a 3D filtered backprojection algorithm and the pressure signals acquired from a 71-transducer array with a cylindrical geometry (30 × 40 cm) rotated over 2π about its central axis. Dependencies on the detector bandwidth and proton beam pulse width were performed, after which, different noise levels were added to the detector signals (using 1 μs pulse width and a 0.5 MHz cutoff frequency/hydrophone) to investigate the statistical and systematic errors in the proton range (at 20 cm) and Bragg peak dose (of 1 cGy). Results: The reconstructed radioacoustic computed tomographic image intensity was shown to be linearly correlated to the dose within the Bragg peak. And, based on noise dependent studies, a detector sensitivity of 38 mPa was necessary to determine the proton range to within 1.0 mm (full-width at half-maximum) (systematic error < 150 μm) for a 1 cGy Bragg peak dose, where the integral dose within the Bragg peak was measured to within 2%. For existing hydrophone detector sensitivities, a Bragg peak dose of 1.6 cGy is possible. Conclusions: This study demonstrates that computed tomographic scanner based on ionizing radiation-induced acoustics can be used to verify dose distribution and proton range with centi-Gray sensitivity. Realizing this technology into the clinic has the potential to significantly

  13. Darwin: Dose monitoring system applicable to various radiations with wide energy ranges

    International Nuclear Information System (INIS)

    Sato, T.; Satoh, D.; Endo, A.; Yamaguchi, Y.

    2007-01-01

    A new radiation dose monitor, designated as DARWIN (Dose monitoring system Applicable to various Radiations with Wide energy ranges), has been developed for real-time monitoring of doses in workspaces and surrounding environments of high-energy accelerator facilities. DARWIN is composed of a Phoswitch-type scintillation detector, which consists of liquid organic scintillator BC501A coupled with ZnS(Ag) scintillation sheets doped with 6 Li, and a data acquisition system based on a Digital-Storage-Oscilloscope. DARWIN has the following features: (1) capable of monitoring doses from neutrons, photons and muons with energies from thermal energy to 1 GeV, 150 keV to 100 MeV and 1 MeV to 100 GeV, respectively, (2) highly sensitive with precision and (3) easy to operate with a simple graphical user-interface. The performance of DARWIN was examined experimentally in several radiation fields. The results of the experiments indicated the accuracy and wide response range of DARWIN for measuring dose rates from neutrons, photons and muons with wide energies. It was also found from the experiments that DARWIN enables us to monitor small fluctuations of neutron dose rates near the background level because of its high sensitivity. With these properties, DARWIN will be able to play a very important role for improving radiation safety in high-energy accelerator facilities. (authors)

  14. High-dose total-body irradiation and autologous marrow reconstitution in dogs: dose-rate-related acute toxicity and fractionation-dependent long-term survival

    International Nuclear Information System (INIS)

    Deeg, H.J.; Storb, R.; Weiden, P.L.; Schumacher, D.; Shulman, H.; Graham, T.; Thomas, E.D.

    1981-01-01

    Beagle dogs treated by total-body irradiation (TBI) were given autologous marrow grafts in order to avoid death from marrow toxicity. Acute and delayed non-marrow toxicities of high single-dose (27 dogs) and fractionated TBI (20 dogs) delivered at 0.05 or 0.1 Gy/min were compared. Fractionated TBI was given in increments of 2 Gy every 6 hr for three increments per day. Acute toxicity and early mortality (<1 month) at identical total irradiation doses were comparable for dogs given fractionated or single-dose TBI. With single-dose TBI, 14, 16, and 18 Gy, respectively, given at 0.05 Gy/min, 0/5, 5/5, and 2/2 dogs died from acute toxicity; with 10, 12, and 14 Gy, respectively, given at 0.1 Gy/min, 1/5, 4/5, and 5/5 dogs died acutely. With fractionated TBI, 14 and 16 Gy, respectively, given at 0.1 Gy/min, 1/5, 4/5, and 2/2 dogs died auctely. Early deaths were due to radiation enteritis with or without associated septicemia (29 dogs; less than or equal to Day 10). Three dogs given 10 Gy of TBI at 0.1 Gy/min died from bacterial pneumonia; one (Day 18) had been given fractionated and two (Days 14, 22) single-dose TBI. Fifteen dogs survived beyond 1 month; eight of these had single-dose TBI (10-14 Gy) and all died within 7 months of irradiation from a syndrome consisting of hepatic damage, pancreatic fibrosis, malnutrition, wasting, and anemia. Seven of the 15 had fractionated TBI, and only one (14 Gy) died on Day 33 from hepatic failure, whereas 6 (10-14 Gy) are alive and well 250 to 500 days after irradiation. In conclusion, fractionated TBI did not offer advantages over single-dose TBI with regard to acute toxicity and early mortality; rather, these were dependent upon the total dose of TBI. The total acutely tolerated dose was dependent upon the exposure rate; however, only dogs given fractionated TBI became healthy long-term survivors

  15. Impact of radiation technique, radiation fraction dose, and total cisplatin dose on hearing. Retrospective analysis of 29 medulloblastoma patients

    International Nuclear Information System (INIS)

    Scobioala, Sergiu; Kittel, Christopher; Ebrahimi, Fatemeh; Wolters, Heidi; Eich, Hans Theodor; Parfitt, Ross; Matulat, Peter; Am Zehnhoff-Dinnesen, Antoinette

    2017-01-01

    To analyze the incidence and degree of sensorineural hearing loss (SNHL) resulting from different radiation techniques, fractionation dose, mean cochlear radiation dose (D mean ), and total cisplatin dose. In all, 29 children with medulloblastoma (58 ears) with subclinical pretreatment hearing thresholds participated. Radiotherapy (RT) and cisplatin had been applied sequentially according to the HIT MED Guidance. Audiological outcomes up to the latest follow-up (median 2.6 years) were compared. Bilateral high-frequency SNHL was observed in 26 patients (90%). No significant differences were found in mean hearing threshold between left and right ears at any frequency. A significantly better audiological outcome (p < 0.05) was found after tomotherapy at the 6 kHz bone-conduction threshold (BCT) and left-sided 8 kHz air-conduction threshold (ACT) than after a combined radiotherapy technique (CT). Fraction dose was not found to have any impact on the incidence, degree, and time-to-onset of SNHL. Patients treated with CT had a greater risk of SNHL at high frequencies than tomotherapy patients even though D mean was similar. Increase in severity of SNHL was seen when the total cisplatin dose reached above 210 mg/m 2 , with the highest abnormal level found 8-12 months after RT regardless of radiation technique or fraction dose. The cochlear radiation dose should be kept as low as possible in patients who receive simultaneous cisplatin-based chemotherapy. The risk of clinically relevant HL was shown when D mean exceeds 45 Gy independent of radiation technique or radiation regime. Cisplatin ototoxicity was shown to have a dose-dependent effect on bilateral SNHL, which was more pronounced in higher frequencies. (orig.) [de

  16. Dose rate and total dose dependence of the 1/f noise performance of a GaAs operational amplifier during irradiation

    International Nuclear Information System (INIS)

    Hiemstra, D.M.

    1995-01-01

    A pictorial of a sectioned view of the torus of the International Thermonuclear Experimental Reactor (ITER) is shown. Maintenance and inspection of the reactor are required to be performed remotely. This is due to the high gamma radiation environment in vessel during inspection and maintenance activities. The custom GaAs operational amplifier is to be used to readout sensors on the in-vessel manipulator and inspection equipment. The gamma dose rate during maintenance and inspection is anticipated to be 3 Mrad(GaAs)/hour. Here, dose rate and total dose dependence of the 1/f noise performance of a custom GaAs MESFET operational amplifier during irradiation are presented. Dose rate dependent 1/f noise degradation during irradiation is believed to be due to electron trapping in deep levels, enhanced by backgating and shallow traps excited during irradiation. The reduction of this affect with accumulated total dose is believed to be due a reduction of deep level site concentration associated with substitutional oxygen. Post irradiation 1/f noise degradation is also presented.The generation-recombination noise observed post irradiation can be attributed to the production of shallow traps due to ionizing radiation

  17. Total skin high-dose-rate electron therapy dosimetry using TG-51

    International Nuclear Information System (INIS)

    Gossman, Michael S.; Sharma, Subhash C.

    2004-01-01

    An approach to dosimetry for total skin electron therapy (TSET) is discussed using the currently accepted TG-51 high-energy calibration protocol. The methodology incorporates water phantom data for absolute calibration and plastic phantom data for efficient reference dosimetry. The scheme is simplified to include the high-dose-rate mode conversion and provides support for its use, as it becomes more available on newer linear accelerators. Using a 6-field, modified Stanford technique, one may follow the process for accurate determination of absorbed dose

  18. The influence of patient positioning uncertainties in proton radiotherapy on proton range and dose distributions

    Energy Technology Data Exchange (ETDEWEB)

    Liebl, Jakob, E-mail: jakob.liebl@medaustron.at [EBG MedAustron GmbH, 2700 Wiener Neustadt (Austria); Francis H. Burr Proton Therapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114 (United States); Department of Therapeutic Radiology and Oncology, Medical University of Graz, 8036 Graz (Austria); Paganetti, Harald; Zhu, Mingyao; Winey, Brian A. [Francis H. Burr Proton Therapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114 (United States)

    2014-09-15

    Purpose: Proton radiotherapy allows radiation treatment delivery with high dose gradients. The nature of such dose distributions increases the influence of patient positioning uncertainties on their fidelity when compared to photon radiotherapy. The present work quantitatively analyzes the influence of setup uncertainties on proton range and dose distributions. Methods: Thirty-eight clinical passive scattering treatment fields for small lesions in the head were studied. Dose distributions for shifted and rotated patient positions were Monte Carlo-simulated. Proton range uncertainties at the 50%- and 90%-dose falloff position were calculated considering 18 arbitrary combinations of maximal patient position shifts and rotations for two patient positioning methods. Normal tissue complication probabilities (NTCPs), equivalent uniform doses (EUDs), and tumor control probabilities (TCPs) were studied for organs at risk (OARs) and target volumes of eight patients. Results: The authors identified a median 1σ proton range uncertainty at the 50%-dose falloff of 2.8 mm for anatomy-based patient positioning and 1.6 mm for fiducial-based patient positioning as well as 7.2 and 5.8 mm for the 90%-dose falloff position, respectively. These range uncertainties were correlated to heterogeneity indices (HIs) calculated for each treatment field (38% < R{sup 2} < 50%). A NTCP increase of more than 10% (absolute) was observed for less than 2.9% (anatomy-based positioning) and 1.2% (fiducial-based positioning) of the studied OARs and patient shifts. For target volumes TCP decreases by more than 10% (absolute) occurred in less than 2.2% of the considered treatment scenarios for anatomy-based patient positioning and were nonexistent for fiducial-based patient positioning. EUD changes for target volumes were up to 35% (anatomy-based positioning) and 16% (fiducial-based positioning). Conclusions: The influence of patient positioning uncertainties on proton range in therapy of small lesions

  19. Optimization of total arc degree for stereotactic radiotherapy by using integral biologically effective dose and irradiated volume

    International Nuclear Information System (INIS)

    Lim, Do Hoon; Kim, Dae Yong; Lee, Myung Za; Chun, Ha Chung

    2001-01-01

    To find the optimal values of total arc degree to protect the normal brain tissue from high dose radiation in stereotactic radiotherapy planning. With Xknife-3 planning system and 4 MV linear accelerator, the authors planned under various values of parameters. One isocenter, 12, 20, 30, 40, 50, and 60 mm of collimator diameters, 100 deg, 200 deg, 300 deg, 400 deg, 500 deg, 600 deg, of total arc degrees, and 30 deg or 45 deg of arc intervals were used. After the completion of planning, the plans were compared each other using V 50 (the volume of normal brain that is delivered high dose radiation) and integral biologically effective dose. At 30 deg of arc interval, the values of V 50 had the decreased pattern with the increase of total arc degree in any collimator diameter. At 45 deg arc interval, up to 400 deg of total arc degree, the values of V 50 decreased with the increase of total arc degree, but at 500 deg and 600 deg of total arc degrees, the values increased. At 30 deg of arc interval, integral biologically effective dose showed the decreased pattern with the increase of total arc degree in any collimator diameter. At 45 deg arc interval with less than 40 mm collimator diameter, the integral biologically effective dose decreased with the increase of total arc degree, but with 50 and 60 mm of collimator diameters, up to 400 deg of total arc degree, integral biologically effective dose decreased with the increase of total arc degree, but at 500 deg and 600 deg of total arc degrees, the values increased. In the stereotactic radiotherapy planning for brain lesions, planning with 400 deg of total arc degree is optimal. Especially, when the larger collimator more than 50 mm diameter should be used, the uses of 500 deg and 600 deg of total arc degrees make the increase of V 50 and integral biologically effective dose, Therefore stereotactic radiotherapy planning using 400 deg of total arc degree can increase the therapeutic ratio and produce the effective outcome

  20. Safety aspects of preoperative high-dose glucocorticoid in primary total knee replacement

    DEFF Research Database (Denmark)

    Jørgensen, C C; Pitter, F T; Kehlet, H

    2017-01-01

    Background: Preoperative single high-dose glucocorticoid may have early outcome benefits in total hip arthroplasty (THA) and knee arthroplasty (TKA), but long-term safety aspects have not been evaluated. Methods: From October 2013, the departments reporting to the prospective Lundbeck Foundation....... Conclusions: In this detailed prospective cohort study, preoperative high-dose glucocorticoid administration was not associated with LOS >4 days, readmissions or infectious complications in TKA patients without contraindications....

  1. Enhancement of Transistor-to-Transistor Variability Due to Total Dose Effects in 65-nm MOSFETs

    CERN Document Server

    Gerardin, S; Cornale, D; Ding, L; Mattiazzo, S; Paccagnella, A; Faccio, F; Michelis, S

    2015-01-01

    We studied device-to-device variations as a function of total dose in MOSFETs, using specially designed test structures and procedures aimed at maximizing matching between transistors. Degradation in nMOSFETs is less severe than in pMOSFETs and does not show any clear increase in sample-to-sample variability due to the exposure. At doses smaller than 1 Mrad( SiO2) variability in pMOSFETs is also practically unaffected, whereas at very high doses-in excess of tens of Mrad( SiO2)-variability in the on-current is enhanced in a way not correlated to pre-rad variability. The phenomenon is likely due to the impact of random dopant fluctuations on total ionizing dose effects.

  2. Development of new chemical dosimeter for low dose range

    International Nuclear Information System (INIS)

    Mhatre, Sachin G.V.; Adhikari, S.

    2012-01-01

    Accurate measurement of low dose radiation in complex systems is of utmost importance in radiation biology and related areas. Ferrous Benzoic acid Xylenol orange (FBX) system is being widely used for measurement of low dose gamma radiation because of its reproducibility and precision. However, an additional step, i.e., dissolution of benzoic acid in water at higher temperature followed by cooling at room temperature is involved for the preparation of this dosimeter. This makes it inconvenient as a ready to use dosimeter. In the present work, the organic molecule, sorbitol has been used for measurement of low doses of radiation. The advantages of using sorbitol are its ready availability and instantaneous water solubility. Owing to its dissolution at room temperature, possible errors those are involved in calculation of dose due to thermal oxidation of ferrous ions during preparation of the FBX dosimetric solution could be made insignificant in the proposed dosimeter. In the present system, sorbitol acts as radiolytic sensitizer for the oxidation of ferrous ion, and xylenol orange forms a 1:1 complex specifically with ferric ions. Thus, the analytical detection limit of ferric ions is enhanced compared to other systems. Final composition of the dosimetric solution is; 0.5 mol/m 3 xylenol orange, 10 mol/m 3 sorbitol and 0.2 mol/m 3 ferrous ion in 50 mol/m 3 sulfuric acid. Radiolytic sensitization in combination with analytical enhancement of the ferrous based system, allows us to measure radiation dose in the range of 0.05 Gy–12 Gy with ease and high reproducibility.

  3. Laboratory Bioaccumulation, Depuration And Total Dose Rate Of Waterborne Th-232 In Freshwater Fish Of Anabas Testudineus

    International Nuclear Information System (INIS)

    Zal U'yun Wan Mahmood; Norfaizal Mohamed; Nita Salina Abu Bakar

    2014-01-01

    Preliminary results on the study of bioaccumulation, depuration and total dose rate of Th-232 in the whole body of Anabas testudineus are presented. The objective of this study was to evaluate the effect of Th-232 concentration activity on the laboratory bioaccumulation, depuration and total dose rate in Anabas testudineus. Anabas testudineus adults were exposed to different waterborne Th-232 levels: 0 BqL -1 (control), 50 BqL -1 and 100 BqL -1 for 30 day (uptake phase), followed by exposure to radionuclide-free water for 30 days (loss phase). Radionuclide concentration ratios between the whole body levels and water levels, percentage of Th-232 remaining in fish were calculated and total dose rates using ERICA Assessment Tool were also estimated. The results showed the increase of waterborne Th-232 concentration corresponded to a progressive increase of Th accumulation and total dose rate (internal and external) in the whole body of Anabas testudineus. Considering the ERICA dose rate screening value of 10 μGyh -1 , the findings can be concluded the estimated of total dose rate (< 5 μGyh -1 ) in Anabas testudineus is in order of small magnitude. Nevertheless, these preliminary results showed that the Anabas testudineus has a potential to accumulate thorium. (author)

  4. Total dose induced latch in short channel NMOS/SOI transistors

    International Nuclear Information System (INIS)

    Ferlet-Cavrois, V.; Quoizola, S.; Musseau, O.; Flament, O.; Leray, J.L.; Pelloie, J.L.; Raynaud, C.; Faynot, O.

    1998-01-01

    A latch effect induced by total dose irradiation is observed in short channel SOI transistors. This effect appears on NMOS transistors with either a fully or a partially depleted structure. It is characterized by a hysteresis behavior of the Id-Vg characteristics at high drain bias for a given critical dose. Above this dose, the authors still observe a limited leakage current at low drain bias (0.1 V), but a high conduction current at high drain bias (2 V) as the transistor should be in the off-state. The critical dose above which the latch appears strongly depends on gate length, transistor structure (fully or partially depleted), buried oxide thickness and supply voltage. Two-dimensional (2D) numerical simulations indicate that the parasitic condition is due to the latch of the back gate transistor triggered by charge trapping in the buried oxide. To avoid the latch induced by the floating body effect, different techniques can be used: doping engineering, body contacts, etc. The study of the main parameters influencing the latch (gate length, supply voltage) shows that the scaling of technologies does not necessarily imply an increased latch sensitivity. Some technological parameters like the buried oxide hardness and thickness can be used to avoid latch, even at high cumulated dose, on highly integrated SOI technologies

  5. Evaluation of dose according to the volume and respiratory range during SBRT in lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Deuk Hee [Dept. of Radiation Oncology, Busan Paik Hospital, Inje University, Busan (Korea, Republic of); Park, Eun Tae; Kim, Jung Hoon; Kang, Se Seik [Dept. of Radiological Science, College of Health Sciences, Catholic University of Pusan, Busan (Korea, Republic of)

    2016-09-15

    Stereotactic body radiotherapy is effective technic in radiotherapy for low stage lung cancer. But lung cancer is affected by respiratory so accurately concentrate high dose to the target is very difficult. In this study, evaluated the target volume according to how to take the image. And evaluated the dose by photoluminescence glass dosimeter according to how to contour the volume and respiratory range. As a result, evaluated the 4D CT volume was 10.4 cm{sup 3} which was closest value of real size target. And in dose case is internal target volume dose was 10.82, 16.88, 21.90 Gy when prescribed dose was 10, 15, 20 Gy and it was the highest dose. Respiratory gated radiotherapy dose was more higher than internal target volume. But it made little difference by respiratory range. Therefore, when moving cancer treatment, acquiring image by 4D CT, contouring internal target volume and respiratory gated radiotherapy technic would be the best way.

  6. Evaluation of dose according to the volume and respiratory range during SBRT in lung cancer

    International Nuclear Information System (INIS)

    Lee, Deuk Hee; Park, Eun Tae; Kim, Jung Hoon; Kang, Se Seik

    2016-01-01

    Stereotactic body radiotherapy is effective technic in radiotherapy for low stage lung cancer. But lung cancer is affected by respiratory so accurately concentrate high dose to the target is very difficult. In this study, evaluated the target volume according to how to take the image. And evaluated the dose by photoluminescence glass dosimeter according to how to contour the volume and respiratory range. As a result, evaluated the 4D CT volume was 10.4 cm 3 which was closest value of real size target. And in dose case is internal target volume dose was 10.82, 16.88, 21.90 Gy when prescribed dose was 10, 15, 20 Gy and it was the highest dose. Respiratory gated radiotherapy dose was more higher than internal target volume. But it made little difference by respiratory range. Therefore, when moving cancer treatment, acquiring image by 4D CT, contouring internal target volume and respiratory gated radiotherapy technic would be the best way

  7. A rapid infusion protocol is safe for total dose iron polymaltose: time for change.

    Science.gov (United States)

    Garg, M; Morrison, G; Friedman, A; Lau, A; Lau, D; Gibson, P R

    2011-07-01

    Intravenous correction of iron deficiency by total dose iron polymaltose is inexpensive and safe, but current protocols entail prolonged administration over more than 4 h. This results in reduced patient acceptance, and hospital resource strain. We aimed to assess prospectively the safety of a rapid intravenous protocol and compare this with historical controls. Consecutive patients in whom intravenous iron replacement was indicated were invited to have up to 1.5 g iron polymaltose by a 58-min infusion protocol after an initial 15-min test dose without pre-medication. Infusion-related adverse events (AE) and delayed AE over the ensuing 5 days were also prospectively documented and graded as mild, moderate or severe. One hundred patients, 63 female, mean age 54 (range 18-85) years were studied. Thirty-four infusion-related AE to iron polymaltose occurred in a total of 24 patients--25 mild, 8 moderate and 1 severe; higher than previously reported for a slow protocol iron infusion. Thirty-one delayed AE occurred in 26 patients--26 mild, 3 moderate and 2 severe; similar to previously reported. All but five patients reported they would prefer iron replacement through the rapid protocol again. The presence of inflammatory bowel disease (IBD) predicted infusion-related reactions (54% vs 14% without IBD, P cost, resource utilization and time benefits for the patient and hospital system. © 2011 The Authors. Internal Medicine Journal © 2011 Royal Australasian College of Physicians.

  8. SU-E-T-357: Electronic Compensation Technique to Deliver Total Body Dose

    Energy Technology Data Exchange (ETDEWEB)

    Lakeman, T [State University of New York at Buffalo, Buffalo, NY (United States); Wang, I; Podgorsak, M [State University of New York at Buffalo, Buffalo, NY (United States); Roswell Park Cancer Institute, Buffalo, NY (United States)

    2015-06-15

    Purpose: Total body irradiation (TBI) uses large parallel-opposed radiation fields to suppress the patient’s immune system and eradicate the residual cancer cells in preparation of recipient for bone marrow transplant. The manual placement of lead compensators has conventionally been used to compensate for the varying thickness through the entire body in large-field TBI. The goal of this study is to pursue utilizing the modern electronic compensation technique to more accurately and efficiently deliver dose to patients in need of TBI. Methods: Treatment plans utilizing electronic compensation to deliver a total body dose were created retrospectively for patients for whom CT data had been previously acquired. Each treatment plan includes two, specifically weighted, pair of opposed fields. One pair of open, large fields (collimator=45°), to encompass the patient’s entire anatomy, and one pair of smaller fields (collimator=0°) focused only on the thicker midsection of the patient. The optimal fluence for each one of the smaller fields was calculated at a patient specific penetration depth. Irregular surface compensators provide a more uniform dose distribution within the smaller opposed fields. Results: Dose-volume histograms (DVH) were calculated for the evaluating the electronic compensation technique. In one case, the maximum body doses calculated from the DVH were reduced from the non-compensated 195.8% to 165.3% in the electronically compensated plans, indicating a more uniform dose with the region of electronic compensation. The mean body doses calculated from the DVH were also reduced from the non-compensated 120.6% to 112.7% in the electronically compensated plans, indicating a more accurate delivery of the prescription dose. All calculated monitor units were well within clinically acceptable limits. Conclusion: Electronic compensation technique for TBI will not substantially increase the beam on time while it can significantly reduce the compensator

  9. Upgrading NASA/DOSE laser ranging system control computers

    Science.gov (United States)

    Ricklefs, Randall L.; Cheek, Jack; Seery, Paul J.; Emenheiser, Kenneth S.; Hanrahan, William P., III; Mcgarry, Jan F.

    1993-01-01

    Laser ranging systems now managed by the NASA Dynamics of the Solid Earth (DOSE) and operated by the Bendix Field Engineering Corporation, the University of Hawaii, and the University of Texas have produced a wealth on interdisciplinary scientific data over the last three decades. Despite upgrades to the most of the ranging station subsystems, the control computers remain a mix of 1970's vintage minicomputers. These encompass a wide range of vendors, operating systems, and languages, making hardware and software support increasingly difficult. Current technology allows replacement of controller computers at a relatively low cost while maintaining excellent processing power and a friendly operating environment. The new controller systems are now being designed using IBM-PC-compatible 80486-based microcomputers, a real-time Unix operating system (LynxOS), and X-windows/Motif IB, and serial interfaces have been chosen. This design supports minimizing short and long term costs by relying on proven standards for both hardware and software components. Currently, the project is in the design and prototyping stage with the first systems targeted for production in mid-1993.

  10. Feasibility of RACT for 3D dose measurement and range verification in a water phantom.

    Science.gov (United States)

    Alsanea, Fahed; Moskvin, Vadim; Stantz, Keith M

    2015-02-01

    The objective of this study is to establish the feasibility of using radiation-induced acoustics to measure the range and Bragg peak dose from a pulsed proton beam. Simulation studies implementing a prototype scanner design based on computed tomographic methods were performed to investigate the sensitivity to proton range and integral dose. Derived from thermodynamic wave equation, the pressure signals generated from the dose deposited from a pulsed proton beam with a 1 cm lateral beam width and a range of 16, 20, and 27 cm in water using Monte Carlo methods were simulated. The resulting dosimetric images were reconstructed implementing a 3D filtered backprojection algorithm and the pressure signals acquired from a 71-transducer array with a cylindrical geometry (30 × 40 cm) rotated over 2π about its central axis. Dependencies on the detector bandwidth and proton beam pulse width were performed, after which, different noise levels were added to the detector signals (using 1 μs pulse width and a 0.5 MHz cutoff frequency/hydrophone) to investigate the statistical and systematic errors in the proton range (at 20 cm) and Bragg peak dose (of 1 cGy). The reconstructed radioacoustic computed tomographic image intensity was shown to be linearly correlated to the dose within the Bragg peak. And, based on noise dependent studies, a detector sensitivity of 38 mPa was necessary to determine the proton range to within 1.0 mm (full-width at half-maximum) (systematic error ionizing radiation-induced acoustics can be used to verify dose distribution and proton range with centi-Gray sensitivity. Realizing this technology into the clinic has the potential to significantly impact beam commissioning, treatment verification during particle beam therapy and image guided techniques.

  11. Radiation dose reduction in digital plain radiography of the knee after total knee arthroplasty; Dosisreduktion in der digitalen Radiografie des Kniegelenkes nach endoprothetischem Gelenkersatz

    Energy Technology Data Exchange (ETDEWEB)

    Kloth, J.K.; Kauczor, H.U.; Weber, M.A. [University Hospital Heidelberg (Germany). Clinic for Diagnostic and Interventional Radiology; Tanner, M.; Ewerbeck, V. [University Hospital Heidelberg (Germany). Center of Orthopedics, Trauma and Spinal Cord Injury; Stiller, W. [German Cancer Research Center (DKFZ), Radiology (E010), Heidelberg (Germany); Burkholder, I. [Univ. of Applied Sciences of the Saarland, Dept. of Nursing and Health, Saarbruecken (Germany)

    2015-08-15

    To reduce radiation exposure of frequently performed radiographs of the knee in follow-up of total-knee arthroplasty ensuring accurate assessment by using objective quality control criteria. In this prospective randomized study 278 radiographs of the knee in follow-up of total-knee arthroplasty were performed with standard and 37 % reduced radiation dose. The evaluation of the plain-radiographs was conducted using the following criteria: bone-implant interface, implant-surface character, implant-implant discrimination and periarticular heterotopic ossification. Two radiologists evaluated these criteria using a score ranging from 1 (definitely assessable) to 4 (not assessable). If a single criterion had been evaluated with a score ≥ 3 or more than 2 criteria with ≥ 2 points, the radiograph was score das ''not assessable''. The study was designed as non-inferiority-trial. 100 % of examined radiographs were scored as assessable, hence no statistical inferiority between the examinations with standard and reduced dose could be observed. Singular assessment of the defined criteria was likewise dose-independent. Plain-radiography of the knee following total-knee arthroplasty can be performed with 63 % of standard dose without loss of diagnostic validity.

  12. Low-dose total skin electron beam therapy for cutaneous lymphoma : Minimal risk of acute toxicities.

    Science.gov (United States)

    Kroeger, Kai; Elsayad, Khaled; Moustakis, Christos; Haverkamp, Uwe; Eich, Hans Theodor

    2017-12-01

    Low-dose total skin electron beam therapy (TSEBT) is attracting increased interest for the effective palliative treatment of primary cutaneous T‑cell lymphoma (pCTCL). In this study, we compared toxicity profiles following various radiation doses. We reviewed the records of 60 patients who underwent TSEBT for pCTCL between 2000 and 2016 at the University Hospital of Munster. The treatment characteristics of the radiotherapy (RT) regimens and adverse events (AEs) were then analyzed and compared. In total, 67 courses of TSEBT were administered to 60 patients. Of these patients, 34 (51%) received a standard dose with a median surface dose of 30 Gy and 33 patients (49%) received a low dose with the median surface dose of 12 Gy (7 salvage low-dose TSEBT courses were administered to 5 patients). After a median follow-up of 15 months, the overall AE rate was 100%, including 38 patients (57%) with grade 2 and 7 (10%) with grade 3 AEs. Patients treated with low-dose TSEBT had significantly fewer grade 2 AEs than those with conventional dose regimens (33 vs. 79%, P dose regimen compared to those with the conventional dose regimens (6 vs. 15%, P = 0.78). Multiple/salvage low-dose TSEBT courses were not associated with an increased risk of acute AEs. Low-dose TSEBT regimens are associated with significantly fewer grade 2 acute toxicities compared with conventional doses of TSEBT. Repeated/Salvage low-dose TSEBT, however, appears to be tolerable and can even be applied safely in patients with cutaneous relapses.

  13. Clinical study on the adriamycin induced cardiomyopathy using the cardiac magnetic resonance imaging. Total dose and cardiac dysfunction

    International Nuclear Information System (INIS)

    Yamaguchi, Kyoko; Teraoka, Kunihiko; Hirano, Masaharu

    2001-01-01

    We studied cardiac functional disorders caused by Adoriamycin using gadolinium (Gd) contrast cine MRI. Forty-eight patients were given ACT (31 men and 17 women; mean age, 52±15 years). First, the relationship between dose and the left ventricular volume, cardiac function, left ventricular cardiac mass and localized wall motion were examined in all patients. Patients given a total dose of 300 mg/m 2 or higher were assigned to the high dose group and those given doses under 300 mg/m 2 to the low dose group. The same parameters were studied in both groups and compared. A 1.5-Tesla superconductive MRI was used for all studies. Cine images of the long and short axes at the papillary muscle level were obtained by ECG R-wave synchronized Gd contrast cine MRI. Left ventricular volume and cardiac function were analyzed using the long-axis cine images and the wall thickness in diastole and systole was measured at each site using the short-axis cine images. The percentage of wall thickness was calculated at each site. The mean ACT dose was 273.3±218.2 mg/m 2 . In all patients the total dose directly correlated with ESVI and inversely correlated with the ejection fraction (EF). In the high dose group, the total dose and EF were inversely correlated, but no significant differences were observed in the low dose group. In the high dose group, the ESVI was significantly greater and the SVI and EF were more significantly reduced than in the low dose group. In the high dose group, the thickness of the anterior, lateral and posterior walls, excluding the septum, was significantly lower than in the low dose group. However, changes in wall thickness were not significantly different between the groups. Gd contrast cine MRI was useful in examining cardiac functional disorders caused by anthracyclines. The total dose of anthracycline correlated directly with the ESVI, and inversely with the EF. A total dose of 300 mg/m 2 appeared to be the borderline dose beyond which there were

  14. Clinical study on the adriamycin induced cardiomyopathy using the cardiac magnetic resonance imaging. Total dose and cardiac dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Kyoko; Teraoka, Kunihiko; Hirano, Masaharu [Tokyo Medical Coll. (Japan)

    2001-05-01

    We studied cardiac functional disorders caused by Adoriamycin using gadolinium (Gd) contrast cine MRI. Forty-eight patients were given ACT (31 men and 17 women; mean age, 52{+-}15 years). First, the relationship between dose and the left ventricular volume, cardiac function, left ventricular cardiac mass and localized wall motion were examined in all patients. Patients given a total dose of 300 mg/m{sup 2} or higher were assigned to the high dose group and those given doses under 300 mg/m{sup 2} to the low dose group. The same parameters were studied in both groups and compared. A 1.5-Tesla superconductive MRI was used for all studies. Cine images of the long and short axes at the papillary muscle level were obtained by ECG R-wave synchronized Gd contrast cine MRI. Left ventricular volume and cardiac function were analyzed using the long-axis cine images and the wall thickness in diastole and systole was measured at each site using the short-axis cine images. The percentage of wall thickness was calculated at each site. The mean ACT dose was 273.3{+-}218.2 mg/m{sup 2}. In all patients the total dose directly correlated with ESVI and inversely correlated with the ejection fraction (EF). In the high dose group, the total dose and EF were inversely correlated, but no significant differences were observed in the low dose group. In the high dose group, the ESVI was significantly greater and the SVI and EF were more significantly reduced than in the low dose group. In the high dose group, the thickness of the anterior, lateral and posterior walls, excluding the septum, was significantly lower than in the low dose group. However, changes in wall thickness were not significantly different between the groups. Gd contrast cine MRI was useful in examining cardiac functional disorders caused by anthracyclines. The total dose of anthracycline correlated directly with the ESVI, and inversely with the EF. A total dose of 300 mg/m{sup 2} appeared to be the borderline dose beyond

  15. The Role of Electron Transport and Trapping in MOS Total-Dose Modeling

    International Nuclear Information System (INIS)

    Flament, O.; Fleetwood, D.M.; Leray, J.L.; Paillet, P.; Riewe, L.C.; Winokur, P.S.

    1999-01-01

    Deep and shallow electron traps form in irradiated thermal SiO 2 as a natural response to hole transport and trapping. The density and stability of these defects are discussed, as are their implications for total-dose modeling

  16. The Role of Electron Transport and Trapping in MOS Total-Dose Modeling

    International Nuclear Information System (INIS)

    Fleetwood, D.M.; Winokur, P.S.; Riewe, L.C.; Flament, O.; Paillet, P.; Leray, J.L.

    1999-01-01

    Radiation-induced hole and electron transport and trapping are fundamental to MOS total-dose models. Here we separate the effects of electron-hole annihilation and electron trapping on the neutralization of radiation-induced charge during switched-bias irradiation for hard and soft oxides, via combined thermally stimulated current (TSC) and capacitance-voltage measurements. We also show that present total-dose models cannot account for the thermal stability of deeply trapped electrons near the Si/SiO 2 interface, or the inability of electrons in deep or shallow traps to contribute to TSC at positive bias following (1) room-temperature, (2) high-temperature, or (3) switched-bias irradiation. These results require revisions of modeling parameters and boundary conditions for hole and electron transport in SiO 2 . The nature of deep and shallow electron traps in the near-interfacial SiO 2 is discussed

  17. The influence of x-ray energy on lung dose uniformity in total-body irradiation

    International Nuclear Information System (INIS)

    Ekstrand, Kenneth; Greven, Kathryn; Wu Qingrong

    1997-01-01

    Purpose: In this study we examine the influence of x-ray energy on the uniformity of the dose within the lung in total-body irradiation treatments in which partial transmission blocks are used to control the lung dose. Methods and Materials: A solid water phantom with a cork insert to simulate a lung was irradiated by x-rays with energies of either 6, 10, or 18 MV. The source to phantom distance was 3.9 meters. The cork insert was either 10 cm wide or 6 cm wide. Partial transmission blocks with transmission factors of 50% were placed anterior to the cork insert. The blocks were either 8 or 4 cm in width. Kodak XV-2 film was placed in the midline of the phantom to record the dose. Midplane dose profiles were measured with a densitometer. Results: For the 10 cm wide cork insert the uniformity of the dose over 80% of the block width varied from 6.6% for the 6 MV x-rays to 12.2% for the 18 MV x-rays. For the 6 cm wide cork insert the uniformity was comparable for all three x-ray energies, but for 18 MV the central dose increased by 9.4% compared to the 10 cm wide insert. Conclusion: Many factors must be considered in optimizing the dose for total-body irradiation. This study suggests that for AP/PA techniques lung dose uniformity is superior with 6 MV irradiation. The blanket recommendation that the highest x-ray energy be used in TBI is not valid for all situations

  18. A first-principles approach to total-dose hardness assurance

    International Nuclear Information System (INIS)

    Fleetwood, D.M.

    1995-01-01

    A first-principles approach to radiation hardness assurance was described that provides the technical background to the present US and European total-dose radiation hardness assurance test methods for MOS technologies, TM 1019.4 and BS 22900. These test methods could not have been developed otherwise, as their existence depends not on a wealth of empirical comparisons of IC data from ground and space testing, but on a fundamental understanding of MOS defect growth and annealing processes. Rebound testing should become less of a problem for advanced MOS small-signal electronics technologies for systems with total dose requirements below 50--100 krad(SiO 2 ) because of trends toward much thinner gate oxides. For older technologies with thicker gate oxides and for power devices, rebound testing is unavoidable without detailed characterization studies to assess the impact of interface traps on devices response in space. The QML approach is promising for future hardened technologies. A sufficient understanding of process effects on radiation hardness has been developed that should be able to reduce testing costs in the future for hardened parts. Finally, it is hoped that the above discussions have demonstrated that the foundation for cost-effective hardness assurance tests is laid with studies of the basic mechanisms of radiation effects. Without a diligent assessment of new radiation effects mechanisms in future technologies, one cannot be assured that the present generation of radiation test standards will continue to apply

  19. Total dose hardness of a commercial SiGe BiCMOS technology

    International Nuclear Information System (INIS)

    Van Vonno, N.; Lucas, R.; Thornberry, D.

    1999-01-01

    Over the past decade SiGe HBT technology has progress from the laboratory to actual commercial applications. When integrated into a BiMOS process, this technology has applications in low-cost space systems. In this paper, we report results of total dose testing of a SiGe/CMOS process accessible through a commercial foundry. (authors)

  20. Simulation of Shielding Effects on the Total Dose Observed in TDE of KISAT-1

    Directory of Open Access Journals (Sweden)

    Sung-Joon Kim

    2001-06-01

    Full Text Available The threshold voltage shift observed in TDE (Total Dose Experiment on board the KITSAT-1 is converted into dose (rad(SiO2 usinsg the result of laboratory calibration with Co-60 gamma ray source in KAERI (Korea Atomic Energy Research Institute. Simulation using the NASA radiation model of geomagnetosphere verifies that the dose difference between RADFET1 and RADFET3 observed on KITSAT-1 comes from the difference in shielding thickness at the position of these RADFETs.

  1. Determination of dose ranges of gamma rays to induce specific changes in three ornamental species

    International Nuclear Information System (INIS)

    Gonzalez J, J.

    2011-11-01

    In order to confirming the possibility of to settle a dose range that takes place directly and not at random, a specific effect independently of the species that is were produced several similar organisms to three ornamental species took place via meristems cultivation: Petunia hybrid, Impatiens walleriana and Sprekelia formosissima, same that were irradiated in an irradiator Gamma cell 220, to different dose: 0, 3.5, 5.0, 7.5, 10, 12.5, 15, 17.5 and 20 Gy. Later on, of the plants treated via in vitro the subsequent generations were obtained until the M 4 . To determine the DL 50 and the possible good doses, the survival parameters, development, morphogenesis and height were evaluated during 8 weeks, interpreting based on them, the possible physiologic and genetic alterations induced by the radiation. The established DL 50 were: 7.5 Gy (Petunia), 19.0 Gy (Impatiens) and 12.0 Gy (Sprekelia). Based on the DL 50 of each species, a range of coincident dose settled down that produces a similar effect in the three species: a range of DL 23 to the DL 50 induces and alteration in the cytokinins production affecting directly in the leaves number, buds and plants taken place by meristem, also a range of DL 32 - DL 50 impacts in the auxins production altering to the radicule system. However, when being superimposed the dose is considered that the investigation should continue. (Author)

  2. Inclusion of Radiation Environment Variability in Total Dose Hardness Assurance Methodology

    Science.gov (United States)

    Xapsos, M. A.; Stauffer, C.; Phan, A.; McClure, S. S.; Ladbury, R. L.; Pellish, J. A.; Campola, M. J.; LaBel, K. A.

    2016-01-01

    Variability of the space radiation environment is investigated with regard to parts categorization for total dose hardness assurance methods. It is shown that it can have a significant impact. A modified approach is developed that uses current environment models more consistently and replaces the radiation design margin concept with one of failure probability during a mission.

  3. Investigation of Kodak extended dose range (EDR) film for megavoltage photon beam dosimetry

    International Nuclear Information System (INIS)

    Chetty, Indrin J.; Charland, Paule M.

    2002-01-01

    We have investigated the dependence of the measured optical density on the incident beam energy, field size and depth for a new type of film, Kodak extended dose range (Kodak EDR). Film measurements have been conducted over a range of field sizes (3x3 cm 2 to 25x25 cm 2 ) and depths (d max to 15 cm), for 6 MV and 15 MV photons within a solid water phantom, and the variation in sensitometric response (net optical density versus dose) has been reported. Kodak EDR film is found to have a linear response with dose, from 0 to 350 cGy, which is much higher than that typically seen for Kodak XV film (0-50 cGy). The variation in sensitometric response for Kodak EDR film as a function of field size and depth is observed to be similar to that of Kodak XV film; the optical density varied in the order of 2-3% for field sizes of 3x3 cm 2 and 10x10 cm 2 at depths of d max , 5 cm and 15 cm in the phantom. Measurements for a 25x25 cm 2 field size showed consistently higher optical densities at depths of d max , 5 cm and 15 cm, relative to a 10x10 cm 2 field size at 5 cm depth, with 4-5% differences noted at a depth of 15 cm. Fractional depth dose and profiles conducted with Kodak EDR film showed good agreement (2%/2 mm) with ion chamber measurements for all field sizes except for the 25x25 cm 2 at depths greater than 15 cm, where differences in the order of 3-5% were observed. In addition, Kodak EDR film measurements were found to be consistent with those of Kodak XV film for all fractional depth doses and profiles. The results of this study indicate that Kodak EDR film may be a useful tool for relative dosimetry at higher dose ranges. (author)

  4. Investigation of Kodak extended dose range (EDR) film for megavoltage photon beam dosimetry.

    Science.gov (United States)

    Chetty, Indrin J; Charland, Paule M

    2002-10-21

    We have investigated the dependence of the measured optical density on the incident beam energy, field size and depth for a new type of film, Kodak extended dose range (Kodak EDR). Film measurements have been conducted over a range of field sizes (3 x 3 cm2 to 25 x 25 cm2) and depths (d(max) to 15 cm), for 6 MV and 15 MV photons within a solid water phantom, and the variation in sensitometric response (net optical density versus dose) has been reported. Kodak EDR film is found to have a linear response with dose, from 0 to 350 cGy, which is much higher than that typically seen for Kodak XV film (0-50 cGy). The variation in sensitometric response for Kodak EDR film as a function of field size and depth is observed to be similar to that of Kodak XV film; the optical density varied in the order of 2-3% for field sizes of 3 x 3 cm2 and 10 x 10 cm2 at depths of d(max), 5 cm and 15 cm in the phantom. Measurements for a 25 x 25 cm2 field size showed consistently higher optical densities at depths of d(max), 5 cm and 15 cm, relative to a 10 x 10 cm2 field size at 5 cm depth, with 4-5% differences noted at a depth of 15 cm. Fractional depth dose and profiles conducted with Kodak EDR film showed good agreement (2%/2 mm) with ion chamber measurements for all field sizes except for the 25 x 25 cm2 at depths greater than 15 cm, where differences in the order of 3-5% were observed. In addition, Kodak EDR film measurements were found to be consistent with those of Kodak XV film for all fractional depth doses and profiles. The results of this study indicate that Kodak EDR film may be a useful tool for relative dosimetry at higher dose ranges.

  5. Analysis of Surface Dose Refer to Distance between Beam Spoiler and Patient in Total Body Irradiation

    International Nuclear Information System (INIS)

    Choi, Jong Hwan; Kim, Jong Sik; Choi, Ji Min; Shin, Eun Hyuk; Song, Ki Won; Park, Young Hwan

    2007-01-01

    Total body irradiation is used to kill the total malignant cell and for immunosuppression component of preparatory regimens for bone-marrow restitution of patients. Beam spoiler is used to increase the dose to the superficial tissues. This paper finds the property of the distance between beam spoiler and patient. Set-up conditions are 6 MV-Xray, 300 MU, SAD = 400 cm, field size = 40 x 40 cm 2 . The parallel plate chamber located in surface, midpoint and exit of solid water phantom. The surface dose is measured while the distance between beam spoiler and patient is altered. Because it should be found proper distance. The solid water phantom is fixer and beam spoiler is moving. Central dose of phantom is 10.7 cGy and exit dose is 6.7 cGy. In case of distance of 50 cm to 60 cm between beam spoiler and solid water phantom, incidence dose is 14.58-14.92 cGy. Therefore, The surface dose was measured 99.4-101% with got near most to the prescription dose. In clinical case, distance between beam spoiler and patient affect surface dose. If once 50-60 cm of distance between beam spoiler and patient, surface dose of patient got near prescription dose. It would be taken distance between beam spoiler and patient into account in clinical therapy.

  6. An analysis of ingestion doses from a range of postulated Magnox reactor releases

    International Nuclear Information System (INIS)

    Nair, S.

    1985-06-01

    An analysis has been carried out of ingestion doses from a range of postulated Magnox reactor releases to atmosphere. Calculations were made of the dose to the adult, ten year old child and one year old child, which showed the one year old child to receive the highest dose. Detailed studies were made of the significance of the ingestion dose to the one year old child in relation to other exposure routes. The ingestion dose was also analysed in terms of the contributing critical organs, foods and nuclides. Approximate calculations were also made of the dependence of the ingestion dose on the time of year when the release occurs. The results of the analysis were used to derive a set of release-specific Emergency Action Guidance Levels (EAGLs) of critical nuclide concentrations in the critical foods, which comply with NRPB's ingestion ERL recommendations. The EAGLs were supplemented with a corresponding set of EAGLs for grass, for use in situations where crop samples were not readily available. (author)

  7. Predicting thyroxine requirements following total thyroidectomy.

    Science.gov (United States)

    Mistry, Dipan; Atkin, Stephen; Atkinson, Helen; Gunasekaran, Sinnappa; Sylvester, Deborah; Rigby, Alan S; England, R James

    2011-03-01

    Optimal thyroxine replacement following total thyroidectomy is critical to avoid symptoms of hypothyroidism. The aim of this study was to determine the best formula to determine the initiated replacement dose of levothyroxine immediately following total thyroidectomy. Prospective study. All patients were initiated on 100 μg levothyroxine and titrated to within the reference range for TSH and free T4. Correlations to height, weight, age, lean body mass (LBM), body surface area (BSA) and body mass index (BMI) were calculated. One hundred consecutive adult patients underwent total thyroidectomy for non-malignant disease. Comparison between three methods of levothyroxine dose prediction, aiming for a levothyroxine dose correct to within 25 μg of actual dose required. Correlations were seen between levothyroxine dose and patient age (r=-0.346, Pregression equation was calculated (predicted levothyroxine dose=[0·943 × bodyweight] + [-1.165 × age] + 125.8), simplified to (levothyroxine dose= bodyweight - age + 125) pragmatically. Initiating patients empirically on 100 μg post-operatively showed that 40% of patients achieved target within 25 μg of their required dose; this increased to 59% when using a weight-only dose calculation (1.6 μg/kg) and to 72% using the simplified regression equation. A simple calculated regression equation gives a more accurate prediction of initiated levothyroxine dose following total thyroidectomy, reducing the need for outpatient attendance for dose titration. © 2011 Blackwell Publishing Ltd.

  8. Influence of burn-in on total-ionizing-dose effect of SRAM device

    International Nuclear Information System (INIS)

    Liu Minbo; Yao Zhibin; Huang Shaoyan; He Baoping; Sheng Jiangkun

    2014-01-01

    The influence of Burn-in on the total-ionizing-dose (TID) effect of SRAM device was investigated. SRAM devices of three different feature sizes were selected and irradiated by "6"0Co source with or without pre-irradiation Burn-in. Some parameters for radiation effect of SRAM device such as upset data, were measured, and the influence on the TID effect of different feature size SRAM devices with or without pre-irradiation Burn-in was obtained. The influence of different temperature Burn-in on radiation resistant capability of SRAM device was studied for 0.25 μm SRAM device. The results show that the smaller the device feature size is, the better the radiation-resistant capability of SRAM device is and the weaker the influence of Burn-in is. And the higher Burn-in temperature is, the more serious the influence of Burn-in on the total-dose radiation effect is. (authors)

  9. Total dose hardening of buried insulator in implanted silicon-on-insulator structures

    International Nuclear Information System (INIS)

    Mao, B.Y.; Chen, C.E.; Pollack, G.; Hughes, H.L.; Davis, G.E.

    1987-01-01

    Total dose characteristics of the buried insulator in implanted silicon-on-insulator (SOI) substrates have been studied using MOS transistors. The threshold voltage shift of the parasitic back channel transistor, which is controlled by charge trapping in the buried insulator, is reduced by lowering the oxygen dose as well as by an additional nitrogen implant, without degrading the front channel transistor characteristics. The improvements in the radiation characteristics of the buried insulator are attributed to the decrease in the buried oxide thickness or to the presence of the interfacial oxynitride layer formed by the oxygen and nitrogen implants

  10. Characterization of total ionizing dose damage in COTS pinned photodiode CMOS image sensors

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zujun, E-mail: wangzujun@nint.ac.cn; Ma, Wuying; Huang, Shaoyan; Yao, Zhibin; Liu, Minbo; He, Baoping; Sheng, Jiangkun; Xue, Yuan [State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology, P.O.Box 69-10, Xi’an, Shaanxi 710024 (China); Liu, Jing [School of Materials Science and Engineering, Xiangtan University, Hunan (China)

    2016-03-15

    The characterization of total ionizing dose (TID) damage in COTS pinned photodiode (PPD) CMOS image sensors (CISs) is investigated. The radiation experiments are carried out at a {sup 60}Co γ-ray source. The CISs are produced by 0.18-μm CMOS technology and the pixel architecture is 8T global shutter pixel with correlated double sampling (CDS) based on a 4T PPD front end. The parameters of CISs such as temporal domain, spatial domain, and spectral domain are measured at the CIS test system as the EMVA 1288 standard before and after irradiation. The dark current, random noise, dark signal non-uniformity (DSNU), photo response non-uniformity (PRNU), overall system gain, saturation output, dynamic range (DR), signal to noise ratio (SNR), quantum efficiency (QE), and responsivity versus the TID are reported. The behaviors of the tested CISs show remarkable degradations after radiation. The degradation mechanisms of CISs induced by TID damage are also analyzed.

  11. Ionizing acceleration of color center transformation in the low radiation dose range

    International Nuclear Information System (INIS)

    Mamontov, A.P.; Starodubtsev, V.A.; Chernov, I.P.

    1985-01-01

    The purpose of the study is investigation of annealing and colour centers transformation of known nature in lithium fluoride crystals at the γ-irradiation low doses. The controlled colour centers have been introduced by LiF monocrystal samples irradiation by protons with 6 MeV energy. The γ-radiation dose rate constitutes 25 Grxssup(-1). The variation of absorption spectra caused by proton and γ-irradiation in initial crystals and in the sample being twice exposed has been studied. It is shown that for LiF monocrystals in the γ-radiation low dose range (below 5 kGr) anomalous dependences of concentration of F-aggregate colour centers on the irradiation dose are observed. High efficiency in defects transformation can be caused by the chain of self-sustaining reactions. The observed N-type dependences caused defects decay and competition of the processes of capture of anionic vacancies by F- and F-aggregate centers

  12. Enchanced total dose damage in junction field effect transistors and related linear integrated circuits

    International Nuclear Information System (INIS)

    Flament, O.; Autran, J.L.; Roche, P.; Leray, J.L.; Musseau, O.

    1996-01-01

    Enhanced total dose damage of Junction Field-effect Transistors (JFETs) due to low dose rate and/or elevated temperature has been investigated for elementary p-channel structures fabricated on bulk and SOI substrates as well as for related linear integrated circuits. All these devices were fabricated with conventional junction isolation (field oxide). Large increases in damage have been revealed by performing high temperature and/or low dose rate irradiations. These results are consistent with previous studies concerning bipolar field oxides under low-field conditions. They suggest that the transport of radiation-induced holes through the oxide is the underlying mechanism. Such an enhanced degradation must be taken into account for low dose rate effects on linear integrated circuits

  13. An improved standard total dose test for CMOS space electronics

    International Nuclear Information System (INIS)

    Fleetwood, D.M.; Winokur, P.S.; Riewe, L.C.; Pease, R.L.

    1989-01-01

    The postirradiation response of hardened and commercial CMOS devices is investigated as a function of total dose, dose rate, and annealing time and temperature. Cobalt-60 irradiation at ≅ 200 rad(SiO 2 )/s followed by a 1-week 100 degrees C biased anneal and testing is shown to be an effective screen of hardened devices for space use. However, a similar screen and single-point test performed after Co-60 irradiation and elevated temperature anneal cannot be generally defined for commercial devices. In the absence of detailed knowledge about device and circuit radiation response, a two-point standard test is proposed to ensure space surviability of CMOS circuits: a Co-60 irradiation and test to screen against oxide-trapped charge related failures, and an additional rebound test to screen against interface-trap related failures. Testing implications for bipolar technologies are also discussed

  14. An analysis of ingestion doses from a range of postulated Magnox reactor releases

    International Nuclear Information System (INIS)

    Nair, S.

    1986-01-01

    An analysis was carried out of ingestion doses from a range of postulated Magnox reactor releases to the atmosphere. Doses to the adult, ten year old child and one year old child were calculated, which showed the one year old child to receive the highest dose. Detailed studies were made of the significance of the ingestion dose to the one year old child in relation to other exposure routes. The ingestion dose was analysed for its contributing critical organs, foods and nuclides. Approximate calculations were also made of the dependence of the ingestion dose on the time of year when the release occurs. The ingestion pathway was found to dominate if the release occurs towards the end of the growing season but to be less significant relative to other exposure pathways at all other times. The calculations enabled a set of release-specific emergency action guidance levels of critical nuclide concentrations in the critical foods to be produced, which comply with NRPB's ingestion Emergency Reference Level guidelines. (author)

  15. Compendium of Total Ionizing Dose and Displacement Damage for Candidate Spacecraft Electronics for NASA

    Science.gov (United States)

    Cochran, Donna J.; Boutte, Alvin J.; Chen, Dakai; Pellish, Jonathan A.; Ladbury, Raymond L.; Casey, Megan C.; Campola, Michael J.; Wilcox, Edward P.; Obryan, Martha V.; LaBel, Kenneth A.; hide

    2012-01-01

    Vulnerability of a variety of candidate spacecraft electronics to total ionizing dose and displacement damage is studied. Devices tested include optoelectronics, digital, analog, linear, and hybrid devices.

  16. Two factors influencing dose reconstruction in low dose range: the variability of BKG intensity on one individual and water content

    International Nuclear Information System (INIS)

    Zhang, Tengda; Zhang, Wenyi; Zhao, Zhixin; Zhang, Haiying; Ruan, Shuzhou; Jiao, Ling

    2016-01-01

    A fast and accurate retrospective dosimetry method for the triage is very important in radiation accidents. Electron paramagnetic resonance (EPR) fingernail dosimetry is a promising way to estimate radiation dose. This article presents two factors influencing dose reconstruction in low dose range: the variability of background signal (BKG) intensity on one individual and water content. Comparing the EPR spectrum of dried and humidified fingernail samples, it is necessary to add a procedure of dehydration before EPR measurements, so as to eliminate the deviation caused by water content. Besides, the BKGs of different fingers' nails are not the same as researchers thought previously, and the difference between maximum and minimum BKG intensities of one individual can reach 55.89 %. Meanwhile, the variability of the BKG intensity among individuals is large enough to impact precise dose reconstruction. Water within fingernails and instability of BKG are two reasons that cause the inaccuracy of radiation dose reconstruction in low-dosage level. (authors)

  17. Total effective dose equivalent associated with fixed uranium surface contamination

    International Nuclear Information System (INIS)

    Bogard, J.S.; Hamm, R.N.; Ashley, J.C.; Turner, J.E.; England, C.A.; Swenson, D.E.; Brown, K.S.

    1997-04-01

    This report provides the technical basis for establishing a uranium fixed-contamination action level, a fixed uranium surface contamination level exceeding the total radioactivity values of Appendix D of Title 10, Code of Federal Regulations, part 835 (10CFR835), but below which the monitoring, posting, and control requirements for Radiological Areas are not required for the area of the contamination. An area of fixed uranium contamination between 1,000 dpm/100 cm 2 and that level corresponding to an annual total effective dose equivalent (TEDE) of 100 mrem requires only routine monitoring, posting to alert personnel of the contamination, and administrative control. The more extensive requirements for monitoring, posting, and control designated by 10CFR835 for Radiological Areas do not have to be applied for these intermediate fixed-contamination levels

  18. Time- and dose-dependent effects of total-body ionizing radiation on muscle stem cells

    Science.gov (United States)

    Masuda, Shinya; Hisamatsu, Tsubasa; Seko, Daiki; Urata, Yoshishige; Goto, Shinji; Li, Tao-Sheng; Ono, Yusuke

    2015-01-01

    Exposure to high levels of genotoxic stress, such as high-dose ionizing radiation, increases both cancer and noncancer risks. However, it remains debatable whether low-dose ionizing radiation reduces cellular function, or rather induces hormetic health benefits. Here, we investigated the effects of total-body γ-ray radiation on muscle stem cells, called satellite cells. Adult C57BL/6 mice were exposed to γ-radiation at low- to high-dose rates (low, 2 or 10 mGy/day; moderate, 50 mGy/day; high, 250 mGy/day) for 30 days. No hormetic responses in proliferation, differentiation, or self-renewal of satellite cells were observed in low-dose radiation-exposed mice at the acute phase. However, at the chronic phase, population expansion of satellite cell-derived progeny was slightly decreased in mice exposed to low-dose radiation. Taken together, low-dose ionizing irradiation may suppress satellite cell function, rather than induce hormetic health benefits, in skeletal muscle in adult mice. PMID:25869487

  19. Low-Dose (10-Gy) Total Skin Electron Beam Therapy for Cutaneous T-Cell Lymphoma: An Open Clinical Study and Pooled Data Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kamstrup, Maria R., E-mail: mkam0004@bbh.regionh.dk [Department of Dermatology, Bispebjerg Hospital, University of Copenhagen, Copenhagen (Denmark); Gniadecki, Robert [Department of Dermatology, Bispebjerg Hospital, University of Copenhagen, Copenhagen (Denmark); Iversen, Lars [Department of Dermatology, Aarhus University Hospital, Aarhus (Denmark); Skov, Lone [Department of Dermatology, Gentofte Hospital, University of Copenhagen, Copenhagen (Denmark); Petersen, Peter Meidahl [Department of Oncology and Hematology, Rigshospitalet, University of Copenhagen, Copenhagen (Denmark); Loft, Annika [Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen (Denmark); Specht, Lena [Department of Oncology and Hematology, Rigshospitalet, University of Copenhagen, Copenhagen (Denmark)

    2015-05-01

    Purpose: Cutaneous T-cell lymphomas (CTCLs) are dominated by mycosis fungoides (MF) and Sézary syndrome (SS), and durable disease control is a therapeutic challenge. Standard total skin electron beam therapy (TSEBT) is an effective skin-directed therapy, but the possibility of retreatments is limited to 2 to 3 courses in a lifetime due to skin toxicity. This study aimed to determine the clinical effect of low-dose TSEBT in patients with MF and SS. Methods and Materials: In an open clinical study, 21 patients with MF/SS stages IB to IV were treated with low-dose TSEBT over <2.5 weeks, receiving a total dose of 10 Gy in 10 fractions. Data from 10 of these patients were published previously but were included in the current pooled data analysis. Outcome measures were response rate, duration of response, and toxicity. Results: The overall response rate was 95% with a complete cutaneous response or a very good partial response rate (<1% skin involvement with patches or plaques) documented in 57% of the patients. Median duration of overall cutaneous response was 174 days (5.8 months; range: 60-675 days). TSEBT-related acute adverse events (grade 1 or 2) were observed in 60% of patients. Conclusions: Low-dose (10-Gy) TSEBT offers a high overall response rate and is relatively safe. With this approach, reirradiation at times of relapse or progression is likely to be less toxic than standard dose TSEBT. It remains to be established whether adjuvant and combination treatments can prolong the beneficial effects of low-dose TSEBT.

  20. Analytical models for total dose ionization effects in MOS devices.

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Phillip Montgomery; Bogdan, Carolyn W.

    2008-08-01

    MOS devices are susceptible to damage by ionizing radiation due to charge buildup in gate, field and SOI buried oxides. Under positive bias holes created in the gate oxide will transport to the Si / SiO{sub 2} interface creating oxide-trapped charge. As a result of hole transport and trapping, hydrogen is liberated in the oxide which can create interface-trapped charge. The trapped charge will affect the threshold voltage and degrade the channel mobility. Neutralization of oxidetrapped charge by electron tunneling from the silicon and by thermal emission can take place over long periods of time. Neutralization of interface-trapped charge is not observed at room temperature. Analytical models are developed that account for the principal effects of total dose in MOS devices under different gate bias. The intent is to obtain closed-form solutions that can be used in circuit simulation. Expressions are derived for the aging effects of very low dose rate radiation over long time periods.

  1. Fast method for in-flight estimation of total dose from protons and electrons using RADE Minstrument on JUICE

    Science.gov (United States)

    Hajdas, Wojtek; Mrigakshi, Alankrita; Xiao, Hualin

    2017-04-01

    The primary concern of the ESA JUICE mission to Jupiter is the harsh particle radiation environment. Ionizing particles introduce radiation damage by total dose effects, displacement damages or single events effects. Therefore, both the total ionizing dose and the displacement damage equivalent fluence must be assessed to alert spacecraft and its payload as well as to quantify radiation levels for the entire mission lifetime. We present a concept and implementations steps for simplified method used to compute in flight a dose rate and total dose caused by protons. We also provide refinement of the method previously developed for electrons. The dose rates values are given for predefined active volumes located behind layers of materials with known thickness. Both methods are based on the electron and proton flux measurements provided by the Electron and Proton Detectors inside the Radiation Hard Electron Monitor (RADEM) located on-board of JUICE. The trade-off between method accuracy and programming limitations for in-flight computations are discussed. More comprehensive and precise dose rate computations based on detailed analysis of all stack detectors will be made during off-line data processing. It will utilize full spectral unfolding from all RADEM detector subsystems.

  2. Correlation of patient maximum skin doses in cardiac procedures with various dose indicators

    International Nuclear Information System (INIS)

    Domienik, J.; Papierz, S.; Jankowski, J.; Peruga, J.Z.; Werduch, A.; Religa, W.

    2008-01-01

    In most countries of European Union, legislation requires the determination of the total skin dose received by patients during interventional procedures in order to prevent deterministic damages. Various dose indicators like dose-area product (DAP), cumulative dose (CD) and entrance dose at the patient plane (EFD) are used for patient dosimetry purposes in clinical practice. This study aimed at relating those dose indicators with doses ascribed to the most irradiated areas of the patient skin usually expressed in terms of local maximal skin dose (MSD). The study was performed in two different facilities for two most common cardiac procedures coronary angiography (CA) and percutaneous coronary interventions (PCI). For CA procedures, the registered values of fluoroscopy time, total DAP and MSD were in the range (0.7-27.3) min, (16-317) Gy cm 2 and (43-1507) mGy, respectively, and for interventions, accordingly (2.1-43.6) min, (17-425) Gy cm 2 , (71-1555) mGy. Moreover, for CA procedures, CD and EFD were in the ranges (295-4689) mGy and (121-1768) mGy and for PCI (267-6524) mGy and (68-2279) mGy, respectively. No general and satisfactory correlation was found for safe estimation of MSD. However, results show that the best dose indicator which might serve for rough, preliminary estimation is DAP value. In the study, the appropriate trigger levels were proposed for both facilities. (authors)

  3. Secondary radiation dose during high-energy total body irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Janiszewska, M.; Raczkowski, M. [Lower Silesian Oncology Center, Medical Physics Department, Wroclaw (Poland); Polaczek-Grelik, K. [University of Silesia, Medical Physics Department, Katowice (Poland); Szafron, B.; Konefal, A.; Zipper, W. [University of Silesia, Department of Nuclear Physics and Its Applications, Katowice (Poland)

    2014-05-15

    The goal of this work was to assess the additional dose from secondary neutrons and γ-rays generated during total body irradiation (TBI) using a medical linac X-ray beam. Nuclear reactions that occur in the accelerator construction during emission of high-energy beams in teleradiotherapy are the source of secondary radiation. Induced activity is dependent on the half-lives of the generated radionuclides, whereas neutron flux accompanies the treatment process only. The TBI procedure using a 18 MV beam (Clinac 2100) was considered. Lateral and anterior-posterior/posterior-anterior fractions were investigated during delivery of 2 Gy of therapeutic dose. Neutron and photon flux densities were measured using neutron activation analysis (NAA) and semiconductor spectrometry. The secondary dose was estimated applying the fluence-to-dose conversion coefficients. The main contribution to the secondary dose is associated with fast neutrons. The main sources of γ-radiation are the following: {sup 56}Mn in the stainless steel and {sup 187}W of the collimation system as well as positron emitters, activated via (n,γ) and (γ,n) processes, respectively. In addition to 12 Gy of therapeutic dose, the patient could receive 57.43 mSv in the studied conditions, including 4.63 μSv from activated radionuclides. Neutron dose is mainly influenced by the time of beam emission. However, it is moderated by long source-surface distances (SSD) and application of plexiglass plates covering the patient body during treatment. Secondary radiation gives the whole body a dose, which should be taken into consideration especially when one fraction of irradiation does not cover the whole body at once. (orig.) [German] Die zusaetzliche Dosis durch sekundaere Neutronen- und γ-Strahlung waehrend der Ganzkoerperbestrahlung mit Roentgenstrahlung aus medizinischen Linearbeschleunigern wurde abgeschaetzt. Bei der Emission hochenergetischer Strahlen zur Teletherapie finden hauptsaechlich im Beschleuniger

  4. Fractionated total body irradiation and autologous bone marrow transplantation in dogs: Hemopoietic recovery after various marrow cell doses

    International Nuclear Information System (INIS)

    Bodenburger, U.; Kolb, H.J.; Thierfelder, S.; Netzel, B.; Schaeffer, E.; Kolb, H.

    1980-01-01

    Hemopoietic recovery was studied in dogs given 2400 R fractionated total body irradiation within one week and graded doses of cryopreserved autologous bone marrow. Complete hemopoietic recovery including histology was observed after this dose and sufficient doses of marrow cells. Doses of more than 5.5 x 10 7 mononuclear marrow cells/kg body weight were sufficient for complete recovery in all dogs, 1.5 to 5.5 x 10 7 cells/kg were effective in some of the dogs and less than 1.5 x 10 7 cells/kg were insufficient for complete recovery. Similarly, more than 30000 CFUsub(c)/kg body weight were required for hemopoietic recovery. The optimal marrow cell dose which has been defined as the minimal dose required for the earliest possible recovery of leukocyte and platelet counts was 7-8 x 10 7 mononuclear marrow cells/kg body weight. It has been concluded that fractionated total body irradiation with 2400 R dose not require greater doses of marrow cells for hemopoietic reconstitution than lower single doses and that the hemopoietic microenvironment is not persistently disturbed after this dose. (author)

  5. Modelling normal tissue isoeffect distribution in conformal radiotherapy of glioblastoma provides an alternative dose escalation pattern through hypofractionation without reducing the total dose

    International Nuclear Information System (INIS)

    Mangel, L.; Skriba, Z.; Major, T.; Polgar, C.; Fodor, J.; Somogyi, A.; Nemeth, G.

    2002-01-01

    The purpose of this study was to prove that by using conformal external beam radiotherapy (RT) normal brain structures can be protected even when applying an alternative approach of biological dose escalation: hypofractionation (HOF) without total dose reduction (TDR). Traditional 2-dimensional (2D) and conformal 3-dimensional (3D) treatment plans were prepared for 10 gliomas representing the subanatomical sites of the supratentorial brain. Isoeffect distributions were generated by the biologically effective dose (BED) formula to analyse the effect of conventionally fractionated (CF) and HOF schedules on both the spatial biological dose distribution and biological dose-volume histograms. A comparison was made between 2D-CF (2.0 Gy/day) and 3D-HOF (2.5 Gy/day) regimens, applying the same 60 Gy total doses. Integral biologically effective dose (IBED) and volumes received biologically equivalent to a dose of 54 Gy or more (V-BED54) were calculated for the lower and upper brain stem as organs of risk. The IBED values were lower with the 3D-HOF than with the 2D-CF schedule in each tumour location, means 22.7±17.1 and 40.4±16.9 in Gy, respectively (p<0.0001). The V-BED54 values were also smaller or equal in 90% of the cases favouring the 3D-HOF scheme. The means were 2.7±4.8 ccm for 3D-HOF and 10.7±12.7 ccm for 2D-CF (p=0.0006). Our results suggest that with conformal RT, fraction size can gradually be increased. HOF radiotherapy regimens without TDR shorten the treatment time and seem to be an alternative way of dose escalation in the treatment of glioblastoma

  6. Modelling normal tissue isoeffect distribution in conformal radiotherapy of glioblastoma provides an alternative dose escalation pattern through hypofractionation without reducing the total dose

    Energy Technology Data Exchange (ETDEWEB)

    Mangel, L.; Skriba, Z.; Major, T.; Polgar, C.; Fodor, J.; Somogyi, A.; Nemeth, G. [National Research Inst. for Radiobiology and Radiohygiene, Budapest (Hungary)

    2002-04-01

    The purpose of this study was to prove that by using conformal external beam radiotherapy (RT) normal brain structures can be protected even when applying an alternative approach of biological dose escalation: hypofractionation (HOF) without total dose reduction (TDR). Traditional 2-dimensional (2D) and conformal 3-dimensional (3D) treatment plans were prepared for 10 gliomas representing the subanatomical sites of the supratentorial brain. Isoeffect distributions were generated by the biologically effective dose (BED) formula to analyse the effect of conventionally fractionated (CF) and HOF schedules on both the spatial biological dose distribution and biological dose-volume histograms. A comparison was made between 2D-CF (2.0 Gy/day) and 3D-HOF (2.5 Gy/day) regimens, applying the same 60 Gy total doses. Integral biologically effective dose (IBED) and volumes received biologically equivalent to a dose of 54 Gy or more (V-BED54) were calculated for the lower and upper brain stem as organs of risk. The IBED values were lower with the 3D-HOF than with the 2D-CF schedule in each tumour location, means 22.7{+-}17.1 and 40.4{+-}16.9 in Gy, respectively (p<0.0001). The V-BED54 values were also smaller or equal in 90% of the cases favouring the 3D-HOF scheme. The means were 2.7{+-}4.8 ccm for 3D-HOF and 10.7{+-}12.7 ccm for 2D-CF (p=0.0006). Our results suggest that with conformal RT, fraction size can gradually be increased. HOF radiotherapy regimens without TDR shorten the treatment time and seem to be an alternative way of dose escalation in the treatment of glioblastoma.

  7. Relative effect of radiation dose rate on hemopoietic and nonhemopoietic lethality of total-body irradiation

    International Nuclear Information System (INIS)

    Peters, L.J.; McNeill, J.; Karolis, C.; Thames, H.D. Jr.; Travis, E.L.

    1986-01-01

    Experiments were undertaken to determine the influence of dose rate on the toxicity of total-body irrdiation (TBI) with and without syngeneic bone-marrow rescue in mice. The results showed a much greater dose-rate dependence for death from nonhemopoietic toxicity than from bone-marrow ablation, with the ratio of LD 50 's increasing from 1.73 at 25 cGy/min to 2.80 at 1 cGy/min. At the higher dose rates, dose-limiting nonhemopoietic toxicity resulted from late organ injury, affecting the lungs, kidneys, and liver. At 1 cGy/min the major dose-limiting nonhemopoietic toxicity was acute gastrointestinal injury. The implications of these results in the context of TBI in preparation for bone-marrow transplantation are discussed. 15 refs., 4 figs

  8. Dose characteristics of total-skin electron-beam irradiation with six-dual electron fields

    International Nuclear Information System (INIS)

    Choi, Tae Jin; Kim, Jin Hee; Kim, Ok Bae

    1998-01-01

    To obtain the uniform dose at limited depth to entire surface of the body, the dose characteristics of degraded electron beam of the large target-skin distance and the dose distribution of the six-dual electron fields were investigated. The experimental dose distributions included the depth dose curve, spatial dose and attenuated electron beam were determined with 300 cm of Target-Skin Distance (TSD) and full collimator size (35x35 cm 2 on TSD 100 cm) in 4 MeV electron beam energy. Actual collimated field size of 105 cmx105 cm at the distance of 300 cm could include entire hemibody. A patient was standing on step board with hands up and holding the pole to stabilize his/her positions for the six-dual fields technique. As a scatter-degrader, 0.5 cm of acrylic plate was inserted at 20 cm from the body surface on the electron beam path to induce ray scattering and to increase the skin dose. The Full Width at Half Maximum(FWHM) of dose profile was 130 cm in large field of 105x105 cm 2 . The width of 100±10% of the resultant dose from two adjacent fields which were separated at 25 cm from field edge for obtaining the dose uniformity was extended to 186 cm. The depth of maximum dose lies at 5 mm and the 80% depth dose lies between 7 and 8 mm for the degraded electron beam by using the 0.5 cm thickness of acrylic absorber. Total skin electron beam irradiation (TSEBI) was carried out using the six dual fields has been developed at Stanford University. The dose distribution in TSEBI showed relatively uniform around the flat region of skin except the protruding and deeply curvatured portion of the body, which showed excess of dose at the former and less dose at the latter. The percent depth dose, profile curves and superimposed dose distribution were investigated using the degraded using the degraded electron beam through the beam absorber. The dose distribution obtained by experiments of TSEBI showed within±10% difference excepts the protruding area of skin which needs a

  9. Composite depth dose measurement for total skin electron (TSE) treatments using radiochromic film

    International Nuclear Information System (INIS)

    Gamble, Lisa M; Farrell, Thomas J; Jones, Glenn W; Hayward, Joseph E

    2003-01-01

    Total skin electron (TSE) radiotherapy is routinely used to treat cutaneous T-cell lymphomas and can be implemented using a modified Stanford technique. In our centre, the composite depth dose for this technique is achieved by a combination of two patient positions per day over a three-day cycle, and two gantry angles per patient position. Due to patient morphology, underdosed regions typically occur and have historically been measured using multiple thermoluminescent dosimeters (TLDs). We show that radiochromic film can be used as a two-dimensional relative dosimeter to measure the percent depth dose in TSE radiotherapy. Composite depth dose curves were measured in a cylindrical, polystyrene phantom and compared with TLD data. Both multiple films (1 film per day) and a single film were used in order to reproduce a realistic clinical scenario. First, three individual films were used to measure the depth dose, one per treatment day, and then compared with TLD data; this comparison showed a reasonable agreement. Secondly, a single film was used to measure the dose delivered over three daily treatments and then compared with TLD data; this comparison showed good agreement throughout the depth dose, which includes doses well below 1 Gy. It will be shown that one piece of radiochromic film is sufficient to measure the composite percent depth dose for a TSE beam, hence making radiochromic film a suitable candidate for monitoring underdosed patient regions

  10. Three-dimensional Finite Elements Method simulation of Total Ionizing Dose in 22 nm bulk nFinFETs

    Energy Technology Data Exchange (ETDEWEB)

    Chatzikyriakou, Eleni, E-mail: ec3g12@soton.ac.uk; Potter, Kenneth; Redman-White, William; De Groot, C.H.

    2017-02-15

    Highlights: • Simulation of Total Ionizing Dose using the Finite Elements Method. • Carrier generation, transport and trapping in the oxide. • Application in three-dimensional bulk FinFET model of 22 nm node. • Examination of trapped charge in the Shallow Trench Isolation. • Trapped charge dependency of parasitic transistor current. - Abstract: Finite Elements Method simulation of Total Ionizing Dose effects on 22 nm bulk Fin Field Effect Transistor (FinFET) devices using the commercial software Synopsys Sentaurus TCAD is presented. The simulation parameters are extracted by calibrating the charge trapping model to experimental results on 400 nm SiO{sub 2} capacitors irradiated under zero bias. The FinFET device characteristics are calibrated to the Intel 22 nm bulk technology. Irradiation simulations of the transistor performed with all terminals unbiased reveal increased hardness up to a total dose of 1 MRad(SiO{sub 2}).

  11. Dose compensation of the total body irradiation therapy

    International Nuclear Information System (INIS)

    Lin, J.-P.; Chu, T.-C.; Liu, M.-T.

    2001-01-01

    The aim of the study is to improve dose uniformity in the body by the compensator-rice and to decrease the dose to the lung by the partial lung block. Rando phantom supine was set up to treat bilateral fields with a 15 MV linear accelerator at 415 cm treatment distance. The experimental procedure included three parts. The first part was the bilateral irradiation without rice compensator, and the second part was with rice compensator. In the third part, rice compensator and partial lung block were both used. The results of thermoluminescent dosimeters measurements indicated that without rice compensator the dose was non-uniform. Contrarily, the average dose homogeneity with rice compensator was measured within ±5%, except for the thorax region. Partial lung block can reduce the dose which the lung received. This is a simple method to improve the dose homogeneity and to reduce the lung dose received. The compensator-rice is cheap, and acrylic boxes are easy to obtain. Therefore, this technique is suitable for more studies

  12. Total Skin Electron Beam Therapy in the Treatment of Mycosis Fungoides: A Review of Conventional and Low-Dose Regimens.

    Science.gov (United States)

    Chowdhary, Mudit; Chhabra, Arpit M; Kharod, Shivam; Marwaha, Gaurav

    2016-12-01

    Mycosis fungoides (MF) is the most prevalent subtype of cutaneous T-cell lymphoma, which is characterized by the proliferation of CD4 + T cells. While often an indolent disease, most patients eventually develop progression from isolated patches to tumors and finally nodal or visceral involvement. Treatment choice is largely based on disease burden, though prognostic factors such as disease stage, patient age, and extracutaneous involvement must be taken into consideration. Radiotherapy represents one of the most effective therapeutic modalities in the treatment of MF. Lymphocytes are exquisitely radiosensitive, and excellent responses are observed even with low doses of radiation. Total skin electron beam therapy (TSEBT) is a special technique that allows for the homogenous irradiation of the entire skin. There are well-documented radiation dose-response relationships for achieving a complete response. As such, TSEBT doses ≥ 30 Gy comprise the current standard of care. Although highly effective, most patients experience recurrent disease even after conventional-dose (≥ 30 Gy) TSEBT. In addition, toxicity is cumulatively dose dependent, and there is reluctance to administer multiple courses of conventional-dose TSEBT. Consequently, there has been renewed interest in determining the utility of TSEBT at lower total (≤ 30 Gy) doses. Advantages of low-total-dose (with standard dose per fraction) TSEBT include a shortened treatment course, the potential to minimize the risk of adverse events, and the opportunity to allow for retreatment in cases of disease recurrence. This comprehensive review compares the impact of different TSEBT dosing schemes on clinical outcomes of MF. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Efficacy and safety of total dose infusion of low molecular weight iron dextran in the treatment of iron deficiency anemia during pregnancy

    International Nuclear Information System (INIS)

    Ayub, R.; Tariq, N.; Iqbal, M.; Jafery, T.

    2008-01-01

    To determine the efficacy and safety of Total Dose Infusion (TDI) of low molecular weight iron dextran for the treatment of iron deficiency anemia compared to oral iron replacement during pregnancy through improvement in hemoglobin (Hb) after intervention. Non-randomized control trial. A group of 100 pregnant women with gestational age greater than 12 weeks with confirmed diagnosis of iron deficiency anemia attending the antenatal clinics were enrolled in this study. Total dose iron infusion of low molecular iron dextran was given to these patients after calculating iron deficit, in a monitored in-patient setting. Control comprised of a second group of 50 pregnant females matched for age, parity and baseline hemoglobin, tolerant to oral iron supplementation (ferrous sulphate 200 mg three times a day) attending the antenatal clinics during the same period. Post-treatment hemoglobin levels of study group as well as the oral control group were determined between 3 to 4 weeks. In the intervention group, mean pre-infusion hemoglobin level was 8.57 +- 0.9 gm/dl (range 5-10.5 gm/dl) and mean post-infusion Hb was 11.0 +- 1.1 (range 8.4-14.3 gm/dl). In control group, mean pre-oral intake Hb level was 9.5 +- 0.9 gm/dl (range 7-10.5 gm/dl) and mean post-oral intake Hb was 10.2 +- 1.2 gm/dl (range 6.4-12.8 gm/dl). Mean increase of Hb in intervention group was 2.43 gm/dl (95% CI 2.4 - 3.8) and for controls it was 0.7 gm/dl (95% CI 0.6-2.3). Flushing and palpitations were observed in 4% of interventional group patients and none in the control group. No significant adverse reactions were observed in either group. We conclude that the total parenteral iron replacement with low molecular weight iron dextran is an effective and safe method for the treatment of iron deficiency anemia in a selected group of pregnant women. (author)

  14. Intralesional Versus Oral Chloroquine in Cutaneous Leishmaniasis: Comparison of Outcome, Duration of Treatment and Total Dose of Drug

    International Nuclear Information System (INIS)

    Hanif, M. M.; Akram, K.; Mustafa, G.

    2016-01-01

    Objective: To compare intralesional versus oral chloroquine in cutaneous leishmaniasis and determine the cure rate, duration of treatment, and total dose of drug. Study Design: Randomized controlled study. Place and Duration of Study: Department of Dermatology, Sheikh Zayed Medical College/Hospital, Rahim Yar Khan, from November 2013 to June 2014. Methodology: Consecutive 86 patients of cutaneous leishmaniasis, with single to multiple lesions of various sizes were enrolled and divided randomly into group A and B for the purpose of intralesional and oral chloroquine administration, respectively to compare the effect of the two routes on duration of treatment and total dose of the drug. SPSS version 16 was used for data analysis after data entry into it. Quantitative variables like, duration, cost and total dose of treatment were calculated as mean and standard deviation and compared by using T-test. P-value of less than 0.05 was taken as significant. Results: Cure rate was 100% in both groups towards the end of treatment. Mean duration of treatment was 9.17 ± 3 weeks in intralesional (A) group as against 11.37 ± 3 weeks in oral (B) group (p = 0.0028). Mean total dose of the drug given to each patient in group A was 5.8 ± 0.5 gm and in group B, it was 19.2 ± 1.5 gm, which is significantly higher (p=0.001). The total cost of treatment in group A was Rs. 90 ± 8 and in group B it was Rs. 91 ± 1 (p=0.446). Conclusion: Duration of treatment is significantly shorter and total dose is lesser with intralesional compared to oral chloroquine in treatment of cutaneous leishmaniasis. (author)

  15. Patient doses in interventional cardiology procedures

    International Nuclear Information System (INIS)

    Domienik, J.; Papierz, S.; Jankowski, J.; Peruga, J.Z.

    2008-01-01

    In most countries of European Union legislation requires the determination of the total skin dose to patient resulting from interventional procedures to assess the risk of deterministic effect. To this end, various dose indicators like dose area product (DAP), cumulative dose (CD) and entrance dose at the patient plane (EFD) are used in clinical practice. The study aims at relating those dose indicators with doses ascribe to the most irradiated areas of the patient skin usually expressed in terms of local maximal skin dose (MSD). For the study the local MSD and related to their areas are investigated and compared for coronary angiography CA and intervention (PCI). Two methods implying radiographic films Kodak EDR2 and matrixes of thermoluminescent dosimeters (TLDs) are applied for direct measurements of dose distribution for selected procedures. Both methods are compared. Additionally, for patient dosimetry the following data: MSD, CD, EFD, fluoroscopy time (FT), number of acquired images, total DAP, fluoro-DAP and record-DAP were collected for randomly selected procedure. The statistical quantities like: median, 3 rd quartile, mean and standard deviation for all dosimetric parameters are determined. Preliminary study showed that the values of data collected for coronary procedures are in the ranges 0,7 - 27,3 min for fluoroscopy time, 50 - 350 Gy cm 2 for total DAP, 300 - 2000 mGy for CD, 140 - 2000 mGy for EFD and 100 - 1500 mGy for local maximal skin dose. For interventions the ranges are, accordingly 3,0 - 43,6 min , 25 - 450 Gy cm 2 , 270 - 6600 mGy, 80 - 2600 mGy and 80 - 1500 mGy. As a result of the study the correlations between dose indicators and local MSD are analyzed. The concentration of dose on irradiated films are going to be investigated in some detail as well. (author)

  16. Serum level modifications of female sex hormones after radiocastration with different total doses

    International Nuclear Information System (INIS)

    Naujokat, B.; Rohloff, R.; Willich, N.; Eiermann, W.

    1988-01-01

    We determined serum level of estradiol, FSH and LH over a period of six to eight weeks after ovarian irradiation for castration with different doses (2x2.5 Gy/3x2.5 Gy/4x2.5 Gy) in 15 patients with metastatic breast cancer as compared to changes after ovarectomy in five patients. The time course of the changing estradiol-, FSH and LH-serum levels sigificantly depends on the ovarian dose. After radiological castration with a dose of 4x2.5 Gy = 10 Gy in four days the estrogen levels decrease within two to three weeks, and the FSH- and LH-levels increase after three to four weeks into the postmenopausal range. Therefore, the time course is not very different from changes after ovarectomy. (orig.) [de

  17. Reversible anaesthesia of free-ranging lions (Panthera leo in Zimbabwe

    Directory of Open Access Journals (Sweden)

    A. Fahlman

    2005-06-01

    Full Text Available The combination of medetomidine-zolazepam-tiletamine with subsequent antagonism by atipamezole was evaluated for reversible anaesthesia of free-ranging lions (Panthera leo. Twenty-one anaesthetic events of 17 free-ranging lions (5 males and 12 females, body weight 105-211 kg were studied in Zimbabwe. Medetomidine at 0.027-0.055 mg / kg (total dose 4-11 mg and zolazepam-tiletamine at 0.38-1.32 mg / kg (total dose 50-275 mg were administered i.m. by dart injection. The doses were gradually decreased to improve recovery. Respiratory and heart rates, rectal temperature and relative haemoglobin oxygen saturation (SpO2 were recorded every 15 min. Arterial blood samples were collected from 5 lions for analysis of blood gases and acid-base status. For anaesthetic reversal, atipamezole was administered i.m. at 2.5 or 5 times the medetomidine dose. Induction was smooth and all lions were anaesthetised with good muscle relaxation within 3.4-9.5 min after darting. The predictable working time was a minimum of 1 h and no additional drug doses were needed. Respiratory and heart rates and SpO2 were stable throughout anaesthesia, whereas rectal temperature changed significantly over time. Atipamezole at 2.5 times the medetomidine dose was sufficient for reversal and recoveries were smooth and calm in all lions independent of the atipamezole dose. First sign of recovery was observed 3-27 min after reversal. The animals were up walking 8-26 min after reversal when zolazepamtiletamine doses <1 mg / kg were used. In practice, a total dose of 6 mg medetomidine and 80 mg zolazepam-tiletamine and reversal with 15 mg atipamezole can be used for either sex of an adult or subadult lion. The drugs and doses used in this study provided a reliable, safe and reversible anaesthesia protocol for free-ranging lions.

  18. Development of dose monitoring system applicable to various radiations with wide energy ranges

    International Nuclear Information System (INIS)

    Sato, Tatsuhiko; Satoh, Daiki; Endo, Akira

    2006-01-01

    A new radiation dose monitor, designated as DARWIN (Dose monitoring system Applicable to various Radiations with WIde energy raNges), has been developed for real-time monitoring of doses in workspaces and surrounding environments of high energy accelerator facilities. DARWIN is composed of a phoswitch-type scintillation detector, which consists of liquid organic scintillator BC501A coupled with ZnS(Ag) scintillation sheets doped with 6 Li, and a data acquisition system based on a Digital-Storage-Oscilloscope. DARWIN has the following features: (1) capable of monitoring doses from neutrons, photons and muons with energies from thermal energy to 1 GeV, 150 keV to 100 MeV, and 1 MeV to 100 GeV, respectively, (2) highly sensitive with precision, and (3) easy to operate with a simple graphical user-interface. The performance of DARWIN was examined experimentally in several radiation fields. The results of the experiments indicated the accuracy and rapid response of DARWIN for measuring dose rates from neutrons, photons and muons with wide energies. With these properties, we conclude that DARWIN will be able to play a very important role for improving radiation safety in high energy accelerator facilities. (author)

  19. Radiation therapy in the management of symptomatic bone metastases: the effect of total dose and histology on pain relief and response duration

    International Nuclear Information System (INIS)

    Arcangeli, Giorgio; Giovinazzo, Giuseppe; Saracino, Biancamaria; D'Angelo, Luciano; Giannarelli, Diana; Arcangeli, Giancarlo; Micheli, Adriana

    1998-01-01

    the several ranges of total dose delivered to the painful metastases, with 81%, 65%, and 46% complete relief rates in the 40-46 Gy, 30-36 Gy (p 0.03), and 8-28 Gy (p = 0.0001) dose ranges respectively. A straight correlation between total dose and complete pain relief was confirmed by the curve calculated by the logistic model which shows that doses of 30 Gy or more are necessary to achieve complete pain relief in 70% or more of bone metastases. This correlation holds also for the duration of pain control, as shown by the actuarial analysis of time to pain progression. Multivariate analyses, with complete pain relief and time to pain progression as endpoints show a highly significant effect of radiation dose (p = 0.0007) and performance status (p = 0.003), with lower rates of complete pain relief and shorter time to pain progression observed after smaller radiation total doses or higher Eastern Cooperative Oncology Group (ECOG) scores. Conclusion: Although single-dose or short course irradiation is an attractive treatment in reducing the number of multiple visits to radiotherapy departments for patients with painful bone metastases, it is nevertheless clear that aggressive protracted treatments seem to offer significant advantages especially for patients in whom the expected life span is not short

  20. Recent Total Ionizing Dose and Displacement Damage Compendium of Candidate Electronics for NASA Space Systems

    Science.gov (United States)

    Cochran, Donna J.; Boutte, Alvin J.; Campola, Michael J.; Carts, Martin A.; Casey, Megan C.; Chen, Dakai; LaBel, Kenneth A.; Ladbury, Raymond L.; Lauenstein, Jean-Marie; Marshall, Cheryl J.; hide

    2011-01-01

    Vulnerability of a variety of candidate spacecraft electronics to total ionizing dose and displacement damage is studied. Devices tested include optoelectronics, digital, analog, linear bipolar devices, and hybrid devices.

  1. TRADOS - an air trajectory dose model for long range transport of radioactive release to the atmosphere

    International Nuclear Information System (INIS)

    Rossi, J.; Valkama, I.

    1985-01-01

    A model for estimating radiation doses resulting from long range atmospheric transport of released radionuclides in accidents is precented. The model (TRADOS) is able to treat changing diffusion conditions. For example the plume can be exposed to temporary rain, changes in turbulence and mixing depth. This can result in considerable changes in individual doses. The method is applied to an example trajectory and the doses caused by a serious reactor accident are calculated

  2. Effect of high-dose preoperative methylprednisolone on pain and recovery after total knee arthroplasty: a randomized, placebo-controlled trial

    DEFF Research Database (Denmark)

    Lunn, Troels; Kristensen, Billy Bjarne; Andersen, Lasse

    2011-01-01

    Total knee arthroplasty (TKA) is associated with severe pain and inflammation despite an extensive multimodal analgesic approach, but the effect of high-dose glucocorticoid administration has not been studied.......Total knee arthroplasty (TKA) is associated with severe pain and inflammation despite an extensive multimodal analgesic approach, but the effect of high-dose glucocorticoid administration has not been studied....

  3. SU-E-T-324: The Influence of Patient Positioning Uncertainties in Proton Radiotherapy On Proton Range and Dose Distributions

    Energy Technology Data Exchange (ETDEWEB)

    Liebl, J [EBG MedAustron GmbH, Wiener Neustadt (Austria); Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); Medical University of Graz, Graz (Austria); Paganetti, H; Winey, B [Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States)

    2014-06-01

    Purpose: Proton radiotherapy allows radiation treatment delivery with high dose gradients. The nature of such dose distributions increases the influence of patient positioning uncertainties on their fidelity when compared to photon radiotherapy. The present work quantitatively analyzes the influence of setup uncertainties on proton range and dose distributions. Methods: 38 clinical passive scattering treatment fields for small lesions in the head were studied. Dose distributions for shifted and rotated patient positions were Monte Carlo-simulated. Proton range uncertainties at the 50% and 90%-dose falloff position were calculated considering 18 arbitrary combinations of maximal patient position shifts and rotations for two patient positioning methods. Normal tissue complication probabilities (NTCPs), equivalent uniform doses (EUDs) and tumor control probabilities (TCPs) were studied for organs at risk (OARs) and target volumes of eight patients. Results: We identified a median 1σ proton range uncertainty at the 50%-dose falloff of 2.8 mm for anatomy-based patient positioning and 1.6 mm for fiducial-based patient positioning as well as 7.2 mm and 5.8 mm for the 90%-dose falloff position respectively. These range uncertainties were correlated to heterogeneity indices (HIs) calculated for each treatment field (38% < R{sup 2} < 50%). A NTCP increase of more than 10% (absolute) was observed for less than 2.9% (anatomy-based positioning) and 1.2% (fiducial-based positioning) of the studied OARs and patient shifts. TCP decreases larger than 10% (absolute) were seen for less than 2.2% of the target volumes or non-existent. EUD changes were up to 178% for OARs and 35% for target volumes. Conclusion: The influence of patient positioning uncertainties on proton range in therapy of small lesions in the human brain and target and OAR dosimetry were studied. Observed range uncertainties were correlated with HIs. The clinical practice of using multiple compensator

  4. The effect of low-dose total body irradiation on tumor control

    International Nuclear Information System (INIS)

    Sakamoto, Kiyohiko; Miyamoto, Miyako; Watabe, Nobuyuki.

    1987-01-01

    Total body irradiation (TBI) is considered to bring about an immunosuppressive effect on an organism, on the basis of data obtained from sublethal doses of TBI. However, there are no data on how low-dose TBI affects an organism. Over the last five years, we have been studying the effects of low-dose TBI on normal or tumor-bearing mice and the immunological background of these effects. In experimental studies, an increase in the TD50 value (the number of cells required for a tumor incidence of 50 %) in mice exposed to 10 rad was recognized and showed a remarkable increase at 6 hours to 15 hours after irradiation. TBI of 10 rad also showed an enhancement effect on tumor cell killing when given 12 hours before local tumor irradiation. In order to clarify the mechanism of this kind of effect, some immunological studies were performed using several immunological procedures, and the results suggested that 10 rad of TBI caused increasing tumor immunity in irradiated mice. Clinical trials in some patients with advanced tumors are now being undertaken on the basis of these experimental data, and the effect of TBI on tumor control appears promising, although it is too early to draw conclusions. (author)

  5. Radiobiological aspects of continuous low dose-rate irradiation and fractionated high dose-rate irradiation

    International Nuclear Information System (INIS)

    Turesson, I.

    1990-01-01

    The biological effects of continuous low dose-rate irradiation and fractionated high dose-rate irradiation in interstitial and intracavitary radiotherapy and total body irradiation are discussed in terms of dose-rate fractionation sensitivity for various tissues. A scaling between dose-rate and fraction size was established for acute and late normal-tissue effects which can serve as a guideline for local treatment in the range of dose rates between 0.02 and 0.005 Gy/min and fraction sizes between 8.5 and 2.5 Gy. This is valid provided cell-cycle progression and proliferation can be ignored. Assuming that the acute and late tissue responses are characterized by α/β values of about 10 and 3 Gy and a mono-exponential repair half-time of about 3 h, the same total doses given with either of the two methods are approximately equivalent. The equivalence for acute and late non-hemopoietic normal tissue damage is 0.02 Gy/min and 8.5 Gy per fraction; 0.01 Gy/min and 5.5 Gy per fraction; and 0.005 Gy/min and 2.5Gy per fraction. A very low dose rate, below 0.005 Gy/min, is thus necessary to simulate high dose-rate radiotherapy with fraction sizes of about 2Gy. The scaling factor is, however, dependent on the repair half-time of the tissue. A review of published data on dose-rate effects for normal tissue response showed a significantly stronger dose-rate dependence for late than for acute effects below 0.02 Gy/min. There was no significant difference in dose-rate dependence between various acute non-hemopoietic effects or between various late effects. The consistent dose-rate dependence, which justifies the use of a general scaling factor between fraction size and dose rate, contrasts with the wide range of values for repair half-time calculated for various normal-tissue effects. This indicates that the model currently used for repair kinetics is not satisfactory. There are also few experimental data in the clinical dose-rate range, below 0.02 Gy/min. It is therefore

  6. Dose comparison according to Smooth Thickness application of Range compensator during proton therapy for brain tumor patient

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tase Woan; Kim, Dae Woong; Kim, Jae Weon; Jeong, Kyeong Sik [Proton Therapy Center, National Cancer Center, Goyang (Korea, Republic of)

    2016-12-15

    Range Compensator used for proton therapy compensates the proton beam dose which delivers to the normal tissues according to the Target's Distal Margin dose. We are going to check the improvement of dose on the target part by comparing the dose of PTV and OAR according to applying in different method of Smooth Thickness of Range Compensator which is used in brain tumor therapy. For 10 brain tumor patients taking proton therapy in National Cancer Center, Apply Smooth Thickness applied in Range Compensator in order from one to five by using Compensator Editor of Eclipse Proton Planning System(Version 10.0, Varian, USA). The therapy plan algorithm used Proton Convolution Superposition(version 8.1.20 or 10.0.28), and we compared Dmax, Dmin, Homogeneity Index, Conformity Index and OAR dose around tumor by applying Smooth Thickness in phase. When Smooth Thickness was applied from one to five, the Dmax of PTV was decreased max 4.3%, minimum at 0.8 and average of 1.81%. Dmin increased max 1.8%, min 1.8% and average. Difference between max dose and minimum dose decreased at max 5.9% min 1.4% and average 2.6%. Homogeneity Index decreased average of 0.018 and Conformity Index didn't had a meaningful change. OAR dose decreased in Brain Stem at max 1.6%, min 0.1% and average 0.6% and in Optic Chiasm max 1.3%, min 0.3%, and average 0.5%. However, patient C and patient E had an increase each 0.3% and 0.6%. Additionally, in Rt. Optic Nerve, there was a decrease at max 1.5%, min 0.3%, and average 0.8%, however, patient B had 0.1% increase. In Lt. Optic Nerve, there was a decrease at max 1.8%, min 0.3%, and average 0.7%, however, patient H had 0.4 increase. As Smooth Thickness of Range Compensator which is used as the proton treatment for brain tumor patients is applied in stages, the resolution of Compensator increased and as a result the most optimized amount of proton beam dose can be delivered. This is considered to be able to irradiate the equal amount at PTV and

  7. Synergistic effects of total ionizing dose on single event upset sensitivity in static random access memory under proton irradiation

    International Nuclear Information System (INIS)

    Xiao Yao; Guo Hong-Xia; Zhang Feng-Qi; Zhao Wen; Wang Yan-Ping; Zhang Ke-Ying; Ding Li-Li; Luo Yin-Hong; Wang Yuan-Ming; Fan Xue

    2014-01-01

    Synergistic effects of the total ionizing dose (TID) on the single event upset (SEU) sensitivity in static random access memories (SRAMs) were studied by using protons. The total dose was cumulated with high flux protons during the TID exposure, and the SEU cross section was tested with low flux protons at several cumulated dose steps. Because of the radiation-induced off-state leakage current increase of the CMOS transistors, the noise margin became asymmetric and the memory imprint effect was observed. (interdisciplinary physics and related areas of science and technology)

  8. Total-dose hardness assurance for low earth orbit

    International Nuclear Information System (INIS)

    Maurer, R.H.; Suter, J.J.

    1987-01-01

    The Low Earth Orbit radiation environment has two significant characteristics that make laboratory simulation exposures difficult: (1) a low dose rate and (2) many cycles of low dose accumulation followed by dose-free annealing. Hardness assurance considerations for this environment are discussed and related to data from the testing of Advanced Low Power Schottky and High-speed CMOS devices

  9. The Relative Effects of Manual Versus Automatic Exposure Control on Radiation Dose to Vital Organs in Total Hip Arthroplasty.

    Science.gov (United States)

    Harper, Katharine D; Li, Shidong; Jennings, Rachel; Amer, Kamil M; Haydel, Christopher; Ali, Sayed

    2018-01-01

    Technologic advances have reduced medical radiation exposure while maintaining image quality. The purpose of this study was to determine the effects of the presence of total hip arthroplasty implants, compared with native hips, on radiation exposure of the most radiosensitive organs when manual and automatic exposure control settings are used. Detection probes were placed at six locations (stomach, sigmoid colon, right pelvic wall, left pelvic wall, pubic symphysis, and anterior pubic skin) in a cadaver. Radiographs were obtained with the use of manual and automatic exposure control protocols, with exposures recorded. A total hip arthroplasty implant was placed in the cadaver, probe positioning was confirmed, and the radiographs were repeated, with exposure values recorded. The control probe placed at the stomach had values ranging from 0.00 mSv to 0.01 mSv in protocols with and without implants. With the manual protocol, exposures in the pelvis ranged from 0.36 mSv to 2.74 mSv in the native hip and from 0.33 mSv to 2.24 mSv after implant placement. The increases in exposure after implant placement, represented as relative risk, were as follows: stomach, 1.000; pubic symphysis, 0.818; left pelvic wall, 1.381; sigmoid colon, 1.550; right pelvic wall, 0.917; and anterior pubic skin, 1.015. With automatic exposure control, exposures in the pelvis ranged from 0.07 mSv to 0.89 mSv in the native hip and from 0.21 mSv to 1.15 mSv after implant placement. With automatic exposure control, the increases in exposure after implant placement, represented as relative risk, were as follows: stomach, 1.000; pubic symphysis, 1.292; left pelvic wall, 1.476; sigmoid colon, 2.182; right pelvic wall, 3.000; and anterior pubic skin, 1.378. The amount of radiation to which patients are exposed as a result of medical procedures or imaging, and whether exposure is associated with an increased risk of malignant transformation, are the subject of ongoing debate. We found that after insertion

  10. Radiation doses due to long-range transport of airborne radionuclides

    International Nuclear Information System (INIS)

    Nordlund, G.; Valkama, I.; Rossi, J.; Savolainen, I.

    1985-12-01

    Within the framework of this study a model for estimating the long range transport of radioactive material and for calculating the resultant doses is developed. In the model initially the dispersion paths, i.e. trajectories, of the radioactive matter are calculated from the assumed source areas as well as the dispersion conditions along the trajectories. The trajectories are calculated at three-hour intervals in a two-dimensional grid using numerically analysed winds at a constant pressure level of 850 mb. The dispersion condition parameters applied are: the stability of the atmospheric boundary layer, the so-called mixing height, occurrence of precipitation and the character of the terrain. For each trajectory a type-index value is computed, describing the severity of the possible effects of radioactivity transported by the particular trajectory. The dispersion model uses the information on dispersion conditions provided by the trajectory model to compute the remaining radioactivity in the cloud, the deposition, as well as the doses due to different dose pathways. The pathways used are the external radiation from the cloud and from the activity deposited on the ground, inhalation of radioactive material and ingestion of contaminated food products (milk, meat, green vegetables, grain and roots). In addition to the effects of individual transport incidents, the cumulative probability distributions of the effects of accidental releases of radioactive matter can also be calculated using trajectory statistics and the trajectory type index

  11. Radiolysis of aqueous solutions of ammonium bicarbonate over a large dose range

    International Nuclear Information System (INIS)

    Draganic, Z.D.; Negron-Mendoza, A.; Vujosevic, S.I.; Navarro-Gonzales, R.; Albarran-Sanchez, M.G.

    1991-01-01

    Oxygen-free aqueous solutions of 0.05 mol dm -3 ammonium and sodium bicarbonate were studied after receiving various doses of 60 Co gammas (0.01-400 kGy) or 0.5-20 Gy pulses of 10 Mev electrons. Formate and oxalate were found to be the main radiolytic products, in addition to trace amounts of formaldehyde and an unidentified polymer. A large initial yield of formate in the γ-radiolysis, G(HCOO - ) = 2.2, is due to the reaction COO - + HCO 3 - ↔ HCOO - +CO 3 - . The efficiency of organic synthesis within the large dose range studied is low and is explained by efficient pathways leading to the reformation of bicarbonate, where the reaction COO - + CO 3 - is particularly significant. (author)

  12. A comparative study of the Si diodes of N type applied to high-dose range dosimetry

    International Nuclear Information System (INIS)

    Pascoalino, Kelly Cristina da Silva; Goncalves, Josemary Angelica Correa; Tobias, Carmen Cecilia Bueno

    2011-01-01

    This work presents the results of the comparative studies of floating-zone (Fz) and magnetic Czochralski (MCz) n-type silicon diodes as gamma dosimeters. The devices were irradiated with gamma rays from 60 Co source, Gammacell 220, at Radiation Technology Center (CTR-IPEN/CNEN-SP) with the dose rate of 2 kGy/h. The results with total absorbed doses of approximately 1 MGy showed that the devices studied are tolerant to radiation damages and then can be used as an online dosimeter in high doses radiation processing. (author)

  13. SU-F-T-406: Verification of Total Body Irradiation Commissioned MU Lookup Table Accuracy Using Treatment Planning System for Wide Range of Patient Sizes

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, D; Chi, P; Tailor, R; Aristophanous, M; Tung, S [UT MD Anderson Cancer Center, Houston, TX (United States)

    2016-06-15

    Purpose: To verify the accuracy of total body irradiation (TBI) measurement commissioning data using the treatment planning system (TPS) for a wide range of patient separations. Methods: Our institution conducts TBI treatments with an 18MV photon beam at 380cm extended SSD using an AP/PA technique. Currently, the monitor units (MU) per field for patient treatments are determined using a lookup table generated from TMR measurements in a water phantom (75 × 41 × 30.5 cm3). The dose prescribed to an umbilicus midline point at spine level is determined based on patient separation, dose/ field and dose rate/MU. One-dimensional heterogeneous dose calculations from Pinnacle TPS were validated with thermoluminescent dosimeters (TLD) placed in an average adult anthropomorphic phantom and also in-vivo on four patients with large separations. Subsequently, twelve patients with various separations (17–47cm) were retrospectively analyzed. Computed tomography (CT) scans were acquired in the left and right decubitus positions from vertex to knee. A treatment plan for each patient was generated. The ratio of the lookup table MU to the heterogeneous TPS MU was compared. Results: TLD Measurements in the anthropomorphic phantom and large TBI patients agreed with Pinnacle calculated dose within 2.8% and 2%, respectively. The heterogeneous calculation compared to the lookup table agreed within 8.1% (ratio range: 1.014–1.081). A trend of reduced accuracy was observed when patient separation increases. Conclusion: The TPS dose calculation accuracy was confirmed by TLD measurements, showing that Pinnacle can model the extended SSD dose without commissioning a special beam model for the extended SSD geometry. The difference between the lookup table and TPS calculation potentially comes from lack of scatter during commissioning when compared to extreme patient sizes. The observed trend suggests the need for development of a correction factor between the lookup table and TPS dose

  14. Clinical responses after total body irradiation by over permissible dose of γ-rays in one time

    International Nuclear Information System (INIS)

    Jiang Benrong; Wang Guilin; Liu Huilan; Tang Xingsheng; Ai Huisheng

    1990-01-01

    The clinical responses of patients after total body over permissilbe dose γ-ray irradiation were observed and analysed. The results showed: when the dose was above 5 cGy, there was some immunological depression, but no significant change in hematopoietic functions. 5 cases showed some transient changes of ECG, perhaps due to vagotonia caused by psychological imbalance, One case vomitted 3-4 times after 28 cGy irradiation, this suggested that a few times of vomitting had no significance in the estimation of the irradiated dose and the whole clinical manifestations must be concretely analysed

  15. Assessment of radiation doses from residential smoke detectors that contain americium-241

    International Nuclear Information System (INIS)

    O'Donnell, F.R.; Etnier, E.L.; Holton, G.A.; Travis, C.C.

    1981-10-01

    External dose equivalents and internal dose commitments were estimated for individuals and populations from annual distribution, use, and disposal of 10 million ionization chamber smoke detectors that contain 110 kBq (3 μCi) americium-241 each. Under exposure scenarios developed for normal distribution, use, and disposal using the best available information, annual external dose equivalents to average individuals were estimated to range from 4 fSv (0.4 prem) to 20 nSv (2 μrem) for total body and from 7 fSv to 40 nSv for bone. Internal dose commitments to individuals under post disposal scenarios were estimated to range from 0.006 to 80 μSv (0.0006 to 8 mrem) to total body and from 0.06 to 800 μSv to bone. The total collective dose (the sum of external dose equivalents and 50-year internal dose commitments) for all individuals involved with distribution, use, or disposal of 10 million smoke detectors was estimated

  16. Clinical implementation of total skin electron irradiation treatment with a 6 MeV electron beam in high-dose total skin electron mode

    International Nuclear Information System (INIS)

    Lucero, J. F.; Rojas, J. I.

    2016-01-01

    Total skin electron irradiation (TSEI) is a special treatment technique offered by modern radiation oncology facilities, given for the treatment of mycosis fungoides, a rare skin disease, which is type of cutaneous T-cell lymphoma [1]. During treatment the patient’s entire skin is irradiated with a uniform dose. The aim of this work is to present implementation of total skin electron irradiation treatment using IAEA TRS-398 code of practice for absolute dosimetry and taking advantage of the use of radiochromic films.

  17. Clinical implementation of total skin electron irradiation treatment with a 6 MeV electron beam in high-dose total skin electron mode

    Energy Technology Data Exchange (ETDEWEB)

    Lucero, J. F., E-mail: fernando.lucero@hoperadiotherapy.com.gt [Universidad Nacional de Costa Rica, Heredia (Costa Rica); Hope International, Guatemala (Guatemala); Rojas, J. I., E-mail: isaac.rojas@siglo21.cr [Centro Médico Radioterapia Siglo XXI, San José (Costa Rica)

    2016-07-07

    Total skin electron irradiation (TSEI) is a special treatment technique offered by modern radiation oncology facilities, given for the treatment of mycosis fungoides, a rare skin disease, which is type of cutaneous T-cell lymphoma [1]. During treatment the patient’s entire skin is irradiated with a uniform dose. The aim of this work is to present implementation of total skin electron irradiation treatment using IAEA TRS-398 code of practice for absolute dosimetry and taking advantage of the use of radiochromic films.

  18. Low-dose dual-energy cone-beam CT using a total-variation minimization algorithm

    International Nuclear Information System (INIS)

    Min, Jong Hwan

    2011-02-01

    Dual-energy cone-beam CT is an important imaging modality in diagnostic applications, and may also find its use in other application such as therapeutic image guidance. Despite of its clinical values, relatively high radiation dose of dual-energy scan may pose a challenge to its wide use. In this work, we investigated a low-dose, pre-reconstruction type of dual-energy cone-beam CT (CBCT) using a total-variation minimization algorithm for image reconstruction. An empirical dual-energy calibration method was used to prepare material-specific projection data. Raw data at high and low tube voltages are converted into a set of basis functions which can be linearly combined to produce material-specific data using the coefficients obtained through the calibration process. From much fewer views than are conventionally used, material specific images are reconstructed by use of the total-variation minimization algorithm. An experimental study was performed to demonstrate the feasibility of the proposed method using a micro-CT system. We have reconstructed images of the phantoms from only 90 projections acquired at tube voltages of 40 kVp and 90 kVp each. Aluminum-only and acryl-only images were successfully decomposed. We evaluated the quality of the reconstructed images by use of contrast-to-noise ratio and detectability. A low-dose dual-energy CBCT can be realized via the proposed method by greatly reducing the number of projections

  19. High total dose proton irradiation effects on silicon NPN rf power transistors

    International Nuclear Information System (INIS)

    Bharathi, M. N.; Praveen, K. C.; Prakash, A. P. Gnana; Pushpa, N.

    2014-01-01

    The effects of 3 MeV proton irradiation on the I-V characteristics of NPN rf power transistors were studied in the dose range of 100 Krad to 100 Mrad. The different electrical characteristics like Gummel, current gain and output characteristics were systematically studied before and after irradiation. The recovery in the I-V characteristics of irradiated NPN BJTs were studied by isochronal and isothermal annealing methods

  20. High total dose proton irradiation effects on silicon NPN rf power transistors

    Energy Technology Data Exchange (ETDEWEB)

    Bharathi, M. N.; Praveen, K. C.; Prakash, A. P. Gnana, E-mail: gnanaprakash@physics.uni-mysore.ac.in [Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore-570006, Karnataka (India); Pushpa, N. [Department of PG Studies in Physics, JSS College, Ooty Road, Mysore-570025, Karnataka (India)

    2014-04-24

    The effects of 3 MeV proton irradiation on the I-V characteristics of NPN rf power transistors were studied in the dose range of 100 Krad to 100 Mrad. The different electrical characteristics like Gummel, current gain and output characteristics were systematically studied before and after irradiation. The recovery in the I-V characteristics of irradiated NPN BJTs were studied by isochronal and isothermal annealing methods.

  1. The dependence of radiation response on the dose per fraction

    International Nuclear Information System (INIS)

    Joiner, M.C.

    1989-01-01

    The linear-quadratic (LQ) model explains the dependence of total dose in a fractionated course on the dose per fraction, in a very wide range of tumour and normal tissue studies, providing the dose per fraction remains above 2 Gy. In the range 2-1 Gy per fraction, some experimental studies show less increase in total dose than predicted by LQ; a probable explanation is incomplete repair between fractions given 2 seen between 1 and 0.1 Gy per fraction. This cannot be explained by incomplete repair; a modified LQ model where α decreases sharply with increasing dose per fraction in the range 0-1 Gy fits these data. The basic LQ model describes data from neutron fractionation studies, so the relationship between relative biological effectiveness (RBE) and X-ray dose per fraction can be expressed in terms of LQ parameters and fitted directly to RBE data. Results from different experiments, different assays and both top-up and full-course fractionation techniques, can all be included in one analysis. (author)

  2. Compendium of Current Total Ionizing Dose and Displacement Damage Results from NASA GSFC and NEPP

    Science.gov (United States)

    Topper, Alyson D.; Campola, Michael J.; Chen, Dakai; Casey, Megan C.; Yau, Ka-Yen; Label, Kenneth A.; Cochran, Donna J.; O'Bryan, Martha V.

    2017-01-01

    Total ionizing dose and displacement damage testing was performed to characterize and determine the suitability of candidate electronics for NASA space utilization. Devices tested include opto-electronics, digital, analog, linear bipolar devices, and hybrid devices.

  3. Test methods of total dose effects in very large scale integrated circuits

    International Nuclear Information System (INIS)

    He Chaohui; Geng Bin; He Baoping; Yao Yujuan; Li Yonghong; Peng Honglun; Lin Dongsheng; Zhou Hui; Chen Yusheng

    2004-01-01

    A kind of test method of total dose effects (TDE) is presented for very large scale integrated circuits (VLSI). The consumption current of devices is measured while function parameters of devices (or circuits) are measured. Then the relation between data errors and consumption current can be analyzed and mechanism of TDE in VLSI can be proposed. Experimental results of 60 Co γ TDEs are given for SRAMs, EEPROMs, FLASH ROMs and a kind of CPU

  4. Dosimetric performance of an enhanced dose range radiographic film for intensity-modulated radiation therapy quality assurance

    International Nuclear Information System (INIS)

    Olch, Arthur J.

    2002-01-01

    Film-based quality assurance (QA) is an important element of any intensity modulated radiation therapy (IMRT) program. XV2 film is often used for IMRT QA, however, it has saturation and energy response limitations which hinder accurate film dosimetry. A new commercially released ready-pack film has been introduced that has an extended dose range (EDR2), reportedly allowing measured doses above 600 cGy without saturation. Also, this film may have less energy dependence due to its composition. The purpose of this paper is to study and compare the two types of film with respect to absolute dose accuracy for IMRT plans, percent depth dose accuracy for square fields between 2 and 20 cm, ability to measure composite plan isodoses and single beam fluence maps for IMRT cases, and sensitivity to processor variations over time. In 19 IMRT patient QA tests, the EDR2 film was able to achieve an absolute dose accuracy of better than 2% vs over 4% for XV2 film. The EDR2 film was able to reproduce ionization chamber and diode-measured percent depth doses to 20 cm depth generally to within 1% over the range of field sizes tested compared to about 10% for the XV2 film. When compared to calculations, EDR2 film agreed better than XV2 film for both composite plan isodoses and single beam fluence intensity maps. The EDR2 film was somewhat more resistant to processor changes over time than the XV2 film, with a standard deviation of dose reproducibility of less than 2% compared to 6%, respectively

  5. Concentration of total proteins in blood plasma of chickens hatched from irradiated eggs with low dose gamma radiation

    International Nuclear Information System (INIS)

    Vilic, M.; Kraljevic, P.; Miljanic, S.; Simpraga, M.

    2005-01-01

    It is known that low-dose ionising radiation may have stimulating effects on chickens. Low doses may also cause changes in the concentration of blood plasma total proteins, glucose and cholesterol in chickens. This study investigates the effects of low dose gamma-radiation on the concentration of total proteins in the blood plasma of chickens hatched from eggs irradiated with a dose of 0.15 Gy on incubation days 7 and 19. Results were compared with the control group (chickens hatched from non-irradiated eggs). After hatching, all other conditions were the same for both groups. Blood samples were drawn from the heart, and later from the wing vein on days 1, 3, 5, 7,10, 20, 30 and 42. The concentration of total proteins was determined spectrophotometrically using Boehringer Mannheim GmbH optimised kits. The concentration of total proteins in blood plasma in chickens hatched from eggs irradiated with 0.15 Gy on incubation day 7 showed a statistically significant decrease on the sampling day 3 (P less than 0.05) and 7 (P less than 0.01). The concentration of total proteins in blood plasma in chickens hatched from eggs irradiated with 0.15 Gy on incubation day 19 showed a statistically significant increase only on sampling day 1 (P less than 0.05). These results suggest that exposure of eggs to 0.15 Gy of gamma-radiation on the 7th and 19th day of incubation could produce different effects on the protein metabolism in chickens.(author)

  6. Low-dose total skin electron beam therapy for cutaneous lymphoma. Minimal risk of acute toxicities

    Energy Technology Data Exchange (ETDEWEB)

    Kroeger, Kai; Elsayad, Khaled; Moustakis, Christos; Haverkamp, Uwe; Eich, Hans Theodor [University Hospital of Muenster, Department of Radiation Oncology, Muenster (Germany)

    2017-12-15

    Low-dose total skin electron beam therapy (TSEBT) is attracting increased interest for the effective palliative treatment of primary cutaneous T-cell lymphoma (pCTCL). In this study, we compared toxicity profiles following various radiation doses. We reviewed the records of 60 patients who underwent TSEBT for pCTCL between 2000 and 2016 at the University Hospital of Munster. The treatment characteristics of the radiotherapy (RT) regimens and adverse events (AEs) were then analyzed and compared. In total, 67 courses of TSEBT were administered to 60 patients. Of these patients, 34 (51%) received a standard dose with a median surface dose of 30 Gy and 33 patients (49%) received a low dose with the median surface dose of 12 Gy (7 salvage low-dose TSEBT courses were administered to 5 patients). After a median follow-up of 15 months, the overall AE rate was 100%, including 38 patients (57%) with grade 2 and 7 (10%) with grade 3 AEs. Patients treated with low-dose TSEBT had significantly fewer grade 2 AEs than those with conventional dose regimens (33 vs. 79%, P < 0.001). A lower grade 3 AE rate was also observed in patients who had received the low-dose regimen compared to those with the conventional dose regimens (6 vs. 15%, P = 0.78). Multiple/salvage low-dose TSEBT courses were not associated with an increased risk of acute AEs. Low-dose TSEBT regimens are associated with significantly fewer grade 2 acute toxicities compared with conventional doses of TSEBT. Repeated/Salvage low-dose TSEBT, however, appears to be tolerable and can even be applied safely in patients with cutaneous relapses. (orig.) [German] Eine niedrigdosierte Ganzhautelektronenbestrahlung (TSEBT) wird vermehrt zur effektiven palliativen Behandlung von Patienten mit primaer kutanen T-Zell-Lymphomen (pCTCL) eingesetzt. In dieser Studie vergleichen wir die Toxizitaetsprofile verschiedener Dosiskonzepte. Untersucht wurden 60 zwischen 2000 und 2016 am Universitaetsklinikum Muenster mittels TSEBT

  7. Total skin electron irradiation: evaluation of dose uniformity throughout the skin surface

    International Nuclear Information System (INIS)

    Anacak, Yavuz; Arican, Zumre; Bar-Deroma, Raquel; Tamir, Ada; Kuten, Abraham

    2003-01-01

    In this study, in vivo dosimetic data of 67 total skin electron irradiation (TSEI) treatments were analyzed. Thermoluminescent dosimetry (TLD) measurements were made at 10 different body points for every patient. The results demonstrated that the dose inhomogeneity throughout the skin surface is around 15%. The homogeneity was better at the trunk than at the extratrunk points, and was worse when a degrader was used. There was minimal improvement of homogeneity in subsequent days of treatment

  8. Collagen synthesis in CBA mouse heart after total thoracic irradiation

    International Nuclear Information System (INIS)

    Murray, J.C.; Parkins, C.S.; Institute of Cancer Research, Sutton

    1988-01-01

    CBA mice were irradiated to the whole thorax with single doses of 240 kVp X-rays in the dose range 8-16 Gy. Collagen and total protein synthesis rates in the heart were measured at 2-monthly intervals using a radio-isotope incorporation techniques. Doses of 10 Gy or greater caused a slight increase in collagen synthesis, followed by significantly reduced collagen synthesis by 16 weeks or longer after treatment. The depression in synthesis appeared correspondingly earlier with increasing dose. Total protein synthesis in heart followed similar patterns although changes were not statistically significant, indicating that the changes reflected alterations to collagen synthesis specifally, and not protein synthesis in geneal. Total hydroxyproline measurements showed no significant changes in heart collagen at any time as a result of X-irradiation. 18 refs.; 7 figs

  9. Use of an electron reflector to improve dose uniformity at the vertex during total skin electron therapy

    International Nuclear Information System (INIS)

    Peters, V.G.

    2000-01-01

    Purpose: The vertex of the scalp is always tangentially irradiated during total skin electron therapy (TSET). This study was conducted to determine the dose distribution at the vertex for a commonly used irradiation technique and to evaluate the use of an electron reflector, positioned above the head, as a means of improving the dose uniformity. Methods and Materials: Phantoms, simulating the head of a patient, were irradiated using our standard procedure for TSET. The technique is a six-field irradiation using dual angled electron beams at a treatment distance of 3.6 meters. Vertex dosimetry was performed using ionization methods and film. Measurements were made for an unmodified 6 MeV electron beam and for a 4 MeV beam obtained by placing an acrylic scattering plate in the beam line. Studies were performed to examine the effect of electron scattering on vertex dose when a lead reflector, 50 x 50 cm in area, was positioned above the phantom. Results: The surface dose at the vertex, in the absence of the reflector, was found to be less than 40% of the prescribed skin dose. Use of the lead reflector increased this value to 73% for the 6 MeV beam and 99% for the degraded 4 MeV beam. Significant improvements in depth dose were also observed. The dose enhancement is not strongly dependent on reflector distance or angulation since the reflector acts as a large source of broadly scattered electrons. Conclusion: The vertex may be significantly underdosed using standard techniques for total skin electron therapy. Use of an electron reflector improves the dose uniformity at the vertex and may reduce or eliminate the need for supplemental irradiation

  10. Bremsstrahlung doses from natural uranium ingots

    International Nuclear Information System (INIS)

    Anderson, J. L.; Hertel, N. E.

    2005-01-01

    In the past, some privately owned commercial facilities in the United States were involved in producing or processing radioactive materials used in the production of atomic weapons. Seven different geometrical objects, representative of the configurations of natural uranium metal potentially encountered by workers at these facilities, are modelled to determine gamma ray and Bremsstrahlung dose rates. The dose rates are calculated using the MCNP5 code and also by using the MICROSHIELD point-kernel code. Both gamma ray and Bremsstrahlung dose rates are calculated and combined to obtain a total dose rate. The two methods were found to be in good agreement despite differences in modelling assumptions and method differences. Computed total dose rates on the surface of these objects ranged from ∼51-84 μSv h -1 and 17-95 μSv h -1 using the MCNP5 and the MICROSHIELD modeling, respectively. The partitioning of the computed dose rates between gamma rays and Bremsstrahlung were the same order of magnitude for each object. (authors)

  11. Bremsstrahlung doses from natural uranium ingots.

    Science.gov (United States)

    Anderson, Jeri L; Hertel, Nolan E

    2005-01-01

    In the past, some privately owned commercial facilities in the United States were involved in producing or processing radioactive materials used in the production of atomic weapons. Seven different geometrical objects, representative of the configurations of natural uranium metal potentially encountered by workers at these facilities, are modelled to determine gamma ray and bremsstrahlung dose rates. The dose rates are calculated using the MCNP5 code and also by using the MICROSHIELD point-kernel code. Both gamma ray and bremsstrahlung dose rates are calculated and combined to obtain a total dose rate. The two methods were found to be in good agreement despite differences in modelling assumptions and method differences. Computed total dose rates on the surface of these objects ranged from approximately 51-84 microSv h(-1) and 17-95 microSv h(-1) using the MCNP5 and the MICROSHIELD modeling, respectively. The partitioning of the computed dose rates between gamma rays and bremsstrahlung were the same order of magnitude for each object.

  12. The review of radiation effects of γ total dose in CMOS circuits

    International Nuclear Information System (INIS)

    Chen Panxun; Gao Wenming; Xie Zeyuan; Mi Bang

    1992-01-01

    Radiation performances of commercial and rad-hard CMOS circuits are reviewed. Threshold voltage, static power current, V in -V out characteristic and propagation delay time related with total dose are presented for CMOS circuits from several manufacturing processes. The performance of radiation-annealing of experimental circuits had been observed for two years. The comparison has been made between the CMOS circuits made in China and the commercial RCA products. 60 Co γ source can serve as γ simulator of the nuclear explosion

  13. Effective dose to patients from thoracic spine examinations with tomosynthesis

    International Nuclear Information System (INIS)

    Svalkvist, Angelica; Baath, Magnus; Soederman, Christina

    2016-01-01

    The purposes of the present work were to calculate the average effective dose to patients from lateral tomosynthesis examinations of the thoracic spine, compare the results with the corresponding conventional examination and to determine a conversion factor between dose-area product (DAP) and effective dose for the tomosynthesis examination. Thoracic spine examinations from 17 patients were included in the study. The registered DAP and information about the field size for each projection radiograph were, together with patient height and mass, used to calculate the effective dose for each projection radiograph. The total effective doses for the tomosynthesis examinations were obtained by adding the effective doses from the 60 projection radiographs included in the examination. The mean effective dose was 0.47 mSv (range 0.24-0.81 mSv) for the tomosynthesis examinations and 0.20 mSv (range 0.07-0.29 mSv) for the corresponding conventional examinations (anteroposterior + left lateral projection). For the tomosynthesis examinations, a conversion factor between total DAP and effective dose of 0.092 mSv Gycm -2 was obtained. (authors)

  14. Reduced-intensity conditioning regimen using low-dose total body irradiation before allogeneic transplant for hematologic malignancies: Experience from the European Group for Blood and Marrow Transplantation

    International Nuclear Information System (INIS)

    Belkacemi, Yazid; Labopin, Myriam; Hennequin, Christophe; Hoffstetter, Sylvette; Mungai, Raffaello; Wygoda, Marc; Lundell, Marie; Finke, Jurgen; Aktinson, Chris; Lorchel, Frederic; Durdux, Catherine; Basara, Nadezda

    2007-01-01

    Purpose: The high rate of toxicity is the limitation of myelobalative regimens before allogeneic transplantation. A reduced intensity regimen can allow engraftment of stem cells and subsequent transfer of immune cells for the induction of a graft-vs.-tumor reaction. Methods and Materials: The data from 130 patients (80 males and 50 females) treated between 1998 and 2003 for various hematologic malignancies were analyzed. The median patient age was 50 years (range, 3-72 years). Allogeneic transplantation using peripheral blood or bone marrow, or both, was performed in 104 (82%), 22 (17%), and 4 (3%) patients, respectively, from HLA identical sibling donors (n = 93, 72%), matched unrelated donors (n = 23, 18%), mismatched related donors (4%), or mismatched unrelated donors (6%). Total body irradiation (TBI) at a dose of 2 Gy delivered in one fraction was given to 101 patients (78%), and a total dose of 4-6 Gy was given in 29 (22%) patients. The median dose rate was 14.3 cGy/min (range, 6-16.4). Results: After a median follow-up period of 20 months (range, 1-62 months), engraftment was obtained in 122 patients (94%). Acute graft-vs.-host disease of Grade 2 or worse was observed in 37% of patients. Multivariate analysis showed three favorable independent factors for event-free survival: HLA identical sibling donor (p < 0.0001; relative risk [RR], 0.15), complete remission (p < 0.0001; RR, 3.08), and female donor to male patient (p = 0.006; RR 2.43). For relapse, the two favorable prognostic factors were complete remission (p < 0.0001, RR 0.11) and HLA identical sibling donor (p = 0.0007; RR 3.59). Conclusions: In this multicenter study, we confirmed high rates of engraftment and chimerism after the reduced intensity regimen. Our results are comparable to those previously reported. Radiation parameters seem to have no impact on outcome. However, the lack of a statistically significant difference in terms of dose rate may have been due, in part, to the small population

  15. The biological effects of high dose total body irradiation in beagle dogs

    International Nuclear Information System (INIS)

    Luo Qingliang; Liu Xiaolan; Hao Jing; Xiong Guolin; Dong Bo; Zhao Zhenhu; Xia Zhengbiao; Qiu Liling; Mao Bingzhi

    2002-01-01

    Objective: To evaluate the biological effects of Beagle dogs irradiated by γ-rays at different doses. Methods: All Beagle dogs were divided into six groups and were subjected respectively to total-body irradiation (TBI) with a single dose of 6.5, 5.5, 5.0, 4.5, 3, 5 and 2.5 Gy γ-rays delivered by 60 Co sources at 7.224 x 10 -2 C/kg per minute. The general condition, blood cell counts and bone marrow cell CFC assays were observed. Results: Vomiting occurred at 0.5 to 2 hours after TBI in all groups. In 6.5 Gy group 3/5 dogs had blood-watery stool and 1/5 in 5.5 Gy group had watery stool. Diarrhea occurred in all other animals. Only one dog in 2.5 Gy group survived, all of others died. in order of decreasing irradiation dosage, the average survival time was 5.0, 8.0, 9.3, 9.5, 10.5 and 14.1 days, respectively. Conclusions: According to the clinical symptoms, leukocyte count and survival time of the dogs, the irradiation dose which will induce very severe hematopoietic radiation syndrome in Beagle dogs is 4.5 to 5.0 Gy

  16. Phase I (or phase II) dose-ranging clinical trials: proposal of a two-stage Bayesian design.

    Science.gov (United States)

    Zohar, Sarah; Chevret, Sylvie

    2003-02-01

    We propose a new design for phase I (or phase II) dose-ranging clinical trials aiming at determining a dose of an experimental treatment to satisfy safety (respectively efficacy) requirements, at treating a sufficiently large number of patients to estimate the toxicity (respectively failure) probability of the dose level with a given reliability, and at stopping the trial early if it is likely that no dose is safe (respectively efficacious). A two-stage design was derived from the Continual Reassessment Method (CRM), with implementation of Bayesian criteria to generate stopping rules. A simulation study was conducted to compare the operating characteristics of the proposed two-stage design to those reached by the traditional CRM. Finally, two applications to real data sets are provided.

  17. X-γ dose rate continuous monitor with wide range based on single-chip microcomputer

    International Nuclear Information System (INIS)

    Wu Debo; Ling Qiu; Guo Lanying; Yang Binhua

    2007-01-01

    This paper describes a concept about circuit designing of X-γ dose rate continuous monitor with wide range based on single-chip microcomputer, and also presents the design procedure of hardware and software, and gives several methods for solving the design procedure of hardware and software with emphasis. (authors)

  18. Statistical analysis of dose heterogeneity in circulating blood: Implications for sequential methods of total body irradiation

    International Nuclear Information System (INIS)

    Molloy, Janelle A.

    2010-01-01

    Purpose: Improvements in delivery techniques for total body irradiation (TBI) using Tomotherapy and intensity modulated radiation therapy have been proven feasible. Despite the promise of improved dose conformality, the application of these ''sequential'' techniques has been hampered by concerns over dose heterogeneity to circulating blood. The present study was conducted to provide quantitative evidence regarding the potential clinical impact of this heterogeneity. Methods: Blood perfusion was modeled analytically as possessing linear, sinusoidal motion in the craniocaudal dimension. The average perfusion period for human circulation was estimated to be approximately 78 s. Sequential treatment delivery was modeled as a Gaussian-shaped dose cloud with a 10 cm length that traversed a 183 cm patient length at a uniform speed. Total dose to circulating blood voxels was calculated via numerical integration and normalized to 2 Gy per fraction. Dose statistics and equivalent uniform dose (EUD) were calculated for relevant treatment times, radiobiological parameters, blood perfusion rates, and fractionation schemes. The model was then refined to account for random dispersion superimposed onto the underlying periodic blood flow. Finally, a fully stochastic model was developed using binomial and trinomial probability distributions. These models allowed for the analysis of nonlinear sequential treatment modalities and treatment designs that incorporate deliberate organ sparing. Results: The dose received by individual blood voxels exhibited asymmetric behavior that depended on the coherence among the blood velocity, circulation phase, and the spatiotemporal characteristics of the irradiation beam. Heterogeneity increased with the perfusion period and decreased with the treatment time. Notwithstanding, heterogeneity was less than ±10% for perfusion periods less than 150 s. The EUD was compromised for radiosensitive cells, long perfusion periods, and short treatment times

  19. Statistical analysis of dose heterogeneity in circulating blood: implications for sequential methods of total body irradiation.

    Science.gov (United States)

    Molloy, Janelle A

    2010-11-01

    Improvements in delivery techniques for total body irradiation (TBI) using Tomotherapy and intensity modulated radiation therapy have been proven feasible. Despite the promise of improved dose conformality, the application of these "sequential" techniques has been hampered by concerns over dose heterogeneity to circulating blood. The present study was conducted to provide quantitative evidence regarding the potential clinical impact of this heterogeneity. Blood perfusion was modeled analytically as possessing linear, sinusoidal motion in the craniocaudal dimension. The average perfusion period for human circulation was estimated to be approximately 78 s. Sequential treatment delivery was modeled as a Gaussian-shaped dose cloud with a 10 cm length that traversed a 183 cm patient length at a uniform speed. Total dose to circulating blood voxels was calculated via numerical integration and normalized to 2 Gy per fraction. Dose statistics and equivalent uniform dose (EUD) were calculated for relevant treatment times, radiobiological parameters, blood perfusion rates, and fractionation schemes. The model was then refined to account for random dispersion superimposed onto the underlying periodic blood flow. Finally, a fully stochastic model was developed using binomial and trinomial probability distributions. These models allowed for the analysis of nonlinear sequential treatment modalities and treatment designs that incorporate deliberate organ sparing. The dose received by individual blood voxels exhibited asymmetric behavior that depended on the coherence among the blood velocity, circulation phase, and the spatiotemporal characteristics of the irradiation beam. Heterogeneity increased with the perfusion period and decreased with the treatment time. Notwithstanding, heterogeneity was less than +/- 10% for perfusion periods less than 150 s. The EUD was compromised for radiosensitive cells, long perfusion periods, and short treatment times. However, the EUD was

  20. Recent Total Ionizing Dose Results and Displacement Damage Results for Candidate Spacecraft Electronics for NASA

    Science.gov (United States)

    Cochran, Donna J.; Buchner, Stephen P.; Irwin, Tim L.; LaBel, Kenneth A.; Marshall, Cheryl J.; Reed, Robert A.; Sanders, Anthony B.; Hawkins, Donald K.; Flanigan, Ryan J.; Cox, Stephen R.

    2005-01-01

    We present data on the vulnerability of a variety of candidate spacecraft electronics to total ionizing dose and displacement damage. Devices tested include optoelectronics, digital, analog, linear bipolar devices, hybrid devices, Analog-to- Digital Converters (ADCs), and Digital-to-Analog Converters (DACs), among others. T

  1. Impact of radiation technique, radiation fraction dose, and total cisplatin dose on hearing. Retrospective analysis of 29 medulloblastoma patients

    Energy Technology Data Exchange (ETDEWEB)

    Scobioala, Sergiu; Kittel, Christopher; Ebrahimi, Fatemeh; Wolters, Heidi; Eich, Hans Theodor [University Hospital of Muenster, Department of Radiotherapy and Radiooncology, Muenster (Germany); Parfitt, Ross; Matulat, Peter; Am Zehnhoff-Dinnesen, Antoinette [University Hospital of Muenster, Department of Phoniatrics and Pediatric Audiology, Muenster (Germany)

    2017-11-15

    To analyze the incidence and degree of sensorineural hearing loss (SNHL) resulting from different radiation techniques, fractionation dose, mean cochlear radiation dose (D{sub mean}), and total cisplatin dose. In all, 29 children with medulloblastoma (58 ears) with subclinical pretreatment hearing thresholds participated. Radiotherapy (RT) and cisplatin had been applied sequentially according to the HIT MED Guidance. Audiological outcomes up to the latest follow-up (median 2.6 years) were compared. Bilateral high-frequency SNHL was observed in 26 patients (90%). No significant differences were found in mean hearing threshold between left and right ears at any frequency. A significantly better audiological outcome (p < 0.05) was found after tomotherapy at the 6 kHz bone-conduction threshold (BCT) and left-sided 8 kHz air-conduction threshold (ACT) than after a combined radiotherapy technique (CT). Fraction dose was not found to have any impact on the incidence, degree, and time-to-onset of SNHL. Patients treated with CT had a greater risk of SNHL at high frequencies than tomotherapy patients even though D{sub mean} was similar. Increase in severity of SNHL was seen when the total cisplatin dose reached above 210 mg/m{sup 2}, with the highest abnormal level found 8-12 months after RT regardless of radiation technique or fraction dose. The cochlear radiation dose should be kept as low as possible in patients who receive simultaneous cisplatin-based chemotherapy. The risk of clinically relevant HL was shown when D{sub mean} exceeds 45 Gy independent of radiation technique or radiation regime. Cisplatin ototoxicity was shown to have a dose-dependent effect on bilateral SNHL, which was more pronounced in higher frequencies. (orig.) [German] Analyse von Inzidenz und Schweregrad einer sensorineuralen Schwerhoerigkeit (''sensorineural hearing loss'', SNHL) infolge der Wirkung unterschiedlicher Bestrahlungstechniken, Fraktionierungen, mittlerer

  2. Dose assessment of an accidental exposure at IPNS

    International Nuclear Information System (INIS)

    Torres, M.M.C.

    1996-01-01

    Seven different methods were used to estimate the dose rate to a female worker who was accidentally exposed in the neutron PHOENIX beamline at the IPNS. Theoretical and measured entrance dose rates ranged from 550 mrem/min to 2,850 mrem/min. Theoretical estimates were based on a Monte Carlo simulation of a spectrum provided by IPNS (Crawford Spectrum). Dose measurements were made with TLDs on phantoms and with ionization chambers in a water phantom. Estimates of the whole body total effective dose equivalent (TEDE) rate ranged from 5.2 mrem/min to 840 mrem/min. Assumed and measured quality factors ranged from 2.6 to 11.8. Cytogenic analyses of blood samples detected no positive exposure. The recommended TEDE rate was 158 mrem/min. The TEDE was 750 mrem

  3. AVE5026, a new hemisynthetic ultra-low-molecular-weight heparin for the prevention of venous thromboembolism in patients after total knee replacement surgery--TREK: a dose-ranging study

    DEFF Research Database (Denmark)

    Lassen, M R; Dahl, O E; Mismetti, P

    2009-01-01

    BACKGROUND: AVE5026 is a new hemisynthetic ultra-low-molecular-weight heparin, with a novel anti-thrombotic profile resulting from high anti-factor (F)Xa activity and residual anti-FIIa activity. AVE5026 is in clinical development for venous thromboembolism (VTE) prevention, a frequent complication....... The primary safety outcome was the incidence of major bleeding. RESULTS: The primary efficacy outcome was assessed in 464 patients. There was a significant dose-response across the five AVE5026 groups for VTE prevention (Pincidence of VTE ranging from 5.3% to 44.1% compared with 35...

  4. A thermoluminescence study of mineral silicates extracted from herbs in the dose range 0.5–5 Gy

    International Nuclear Information System (INIS)

    Della Monaca, Sara; Fattibene, Paola; Bortolin, Emanuela

    2013-01-01

    The presence of silicates in many personal objects suggests their potential use at low dose as fortuitous dosimeter in an accidental radiological exposure, when conventional dosimetry is not available. The goal of the present work is the dosimetric characterization of mineral silicates extracted from the plant Hibiscus Sabdariffa L, known as Jamaica flower, in the dose range 0.5–5 Gy. By studying the radiation-induced signal in time, the temperature integration region between 210 °C and 250 °C was found to be the most stable and also reduced the effects of thermal fading in the dose reconstruction process; the dose response curve was linear between 0.5 Gy and 5 Gy. By checking the change in sensitivity after repeated exposures to ionizing radiations and to high temperature heating, no variation in the glow curve shape or peak intensities were detected. To eliminate a pre-existing background signal, all the characterization measurements were performed with aliquots “annealed” by a preliminary readout of the TL. - Highlights: • Glow curves change in shape and intensity just in the first 3 days after irradiation. • The dose response is linear in the dose range 0.5–5 Gy. • The curve shape or intensity don't change after repeated exposures and heatings. • Encouraging results were obtained in the dose recovery test

  5. Influence of radioprotectors on total body weight evolution and on oxygen consumption in lethal dose irradiated animals. (Preliminary study)

    International Nuclear Information System (INIS)

    Fatome, M.; Martine, G.; Bargy, E.; Andrieu, L.

    Comparison of total body weight evolution and oxygen consumption in lethal dose irradiated animals, protected by various well known radioprotective substances, isolated or in mixture, with evolution and consumption of non protected animals irradiated at the same dose and with these of check animals [fr

  6. Northern Marshall Islands radiological survey: terrestrial food chain and total doses

    International Nuclear Information System (INIS)

    Robison, W.L.; Mount, M.E.; Phillips, W.A.; Conrado, C.A.; Stuart, M.L.; Stoker, C.E.

    1982-01-01

    A radiological survey was conducted from September through November of 1978 to assess the concentrations of persistent manmade radionuclides in the terrestrial and marine environments of 11 atolls and 2 islands in the Northern Marshall Islands. The survey consisted mainly of an aerial radiological reconnaissance to map the external gamma-ray exposure rates over the islands of each atoll. The logistical support for the entire survey was designed to accommodate this operation. As a secondary phase of the survey, shore parties collected appropriate terrestrial and marine samples to assess the radiological dose from pertinent food chains to those individuals residing on the atolls, who may in the future reside on some of the presently uninhabited atolls, or who collect food from these atolls. Over 5000 terrestrial and marine samples were collected for radionuclide analysis from 76 different islands. Soils, vegetation, indigenous animals, and cistern water and groundwater were collected from the islands. Reef and pelagic fish, clams, lagoon water, and sediments were obtained from the lagoons. The concentration data for 90 Sr, 137 Cs, 238 Pu, 239 240 Pu, and 241 Am in terrestrial food crops, fowl, and animals collected at the atolls or islands are summarized. An assessment of the total dose from the major exposure pathways including external gamma, terrestrial food chain including food products and drinking water, marine food chain, and inhalation is provided. Radiological doses at each atoll or island are calculated from the average radionuclide concentrations in the terrestrial foods, marine foods, etc. assuming the average daily intake for each food item

  7. Total body irradiation: current indications; L`irradiation corporelle totale: les indications actuelles

    Energy Technology Data Exchange (ETDEWEB)

    Giraud, P.; Danhier, S.; Dubray, B.; Cosset, J.M. [Institut Curie, 75 - Paris (France)

    1998-05-01

    The choice of dose and fractionation for total body irradiation is made difficult by the large number of considerations to be taken into account. The outcome of bone marrow transplantation after total body irradiation can be understood in terms of tumor cell killing, engraftment, and normal tissue damage, each of these endpoints being influenced by irradiation-, disease-, transplant-, and patient- related factors. Interpretation of clinical data is further hampered by the overwhelming influence of logistic constraints, the small numbers of randomized studies, and the concomitant variations in total dose and fraction size or dose rate. So far, three cautious conclusions can be drawn in order to tentatively adapt the total body irradiation schedule to clinically-relevant situations. Firstly, the organs at risk for normal tissue damage (lung, liver, lens, kidney) are protected by delivering small doses per fraction at low dose rate. This suggests that, when toxicity is at stake (e.g. in children), fractionated irradiation should be preferred, provided that inter-fraction intervals are long enough. Secondly, fractionated irradiation should be avoided in case of T-cell depleted transplant, given the high risk of graft rejection in this setting. An alternative would be to increase total (or fractional) dose of fractionated total body irradiation, but this approach is likely to induce more normal tissue toxicity. Thirdly, clinical data have shown higher relapse rates in chronic myeloid leukemia after fractionated or low dose rate total body irradiation, suggesting that fractionated irradiation should not be recommended, unless total (or fractional) dose is increased. Total body irradiation-containing regimens, primarily cyclophosphamide / total body irradiation, are either equivalent to or better than the chemotherapy-only regimens, primarily busulfan / cyclophosphamide. Busulfan / cyclophosphamide certainly represents a reasonable alternative, especially in patients who

  8. Total Ionizing Dose Effects on Threshold Switching in 1T-Tantalum Disulfide Charge-Density-Wave Devices

    OpenAIRE

    Liu, G.; Zhang, E. X.; Liang, C. D.; Bloodgood, M. A.; Salguero, T. T.; Fleetwood, D. M.; Balandin, A. A.

    2017-01-01

    The 1T polytype of TaS2 exhibits voltage-triggered threshold switching as a result of a phase transition from nearly commensurate to incommensurate charge density wave states. Threshold switching, persistent above room temperature, can be utilized in a variety of electronic devices, e.g., voltage controlled oscillators. We evaluated the total-ionizing-dose response of thin film 1T-TaS2 at doses up to 1 Mrad(SiO2). The threshold voltage changed by less than 2% after irradiation, with persisten...

  9. EFFECTIVE DOSE TO PATIENTS FROM THORACIC SPINE EXAMINATIONS WITH TOMOSYNTHESIS.

    Science.gov (United States)

    Svalkvist, Angelica; Söderman, Christina; Båth, Magnus

    2016-06-01

    The purposes of the present work were to calculate the average effective dose to patients from lateral tomosynthesis examinations of the thoracic spine, compare the results with the corresponding conventional examination and to determine a conversion factor between dose-area product (DAP) and effective dose for the tomosynthesis examination. Thoracic spine examinations from 17 patients were included in the study. The registered DAP and information about the field size for each projection radiograph were, together with patient height and mass, used to calculate the effective dose for each projection radiograph. The total effective doses for the tomosynthesis examinations were obtained by adding the effective doses from the 60 projection radiographs included in the examination. The mean effective dose was 0.47 mSv (range 0.24-0.81 mSv) for the tomosynthesis examinations and 0.20 mSv (range 0.07-0.29 mSv) for the corresponding conventional examinations (anteroposterior + left lateral projection). For the tomosynthesis examinations, a conversion factor between total DAP and effective dose of 0.092 mSv Gycm(-2) was obtained. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Total-dose radiation effects data for semiconductor devices. 1985 supplement. Volume 2, part A

    International Nuclear Information System (INIS)

    Martin, K.E.; Gauthier, M.K.; Coss, J.R.; Dantas, A.R.V.; Price, W.E.

    1986-05-01

    Steady-state, total-dose radiation test data, are provided in graphic format for use by electronic designers and other personnel using semiconductor devices in a radiation environment. The data were generated by JPL for various NASA space programs. This volume provides data on integrated circuits. The data are presented in graphic, tabular, and/or narrative format, depending on the complexity of the integrated circuit. Most tests were done using the JPL or Boeing electron accelerator (Dynamitron) which provides a steady-state 2.5 MeV electron beam. However, some radiation exposures were made with a cobalt-60 gamma ray source, the results of which should be regarded as only an approximate measure of the radiation damage that would be incurred by an equivalent electron dose

  11. Total-ionizing-dose effects on isolation oxides in modern CMOS technologies

    International Nuclear Information System (INIS)

    Barnaby, Hugh J.; Mclain, Michael; Esqueda, Ivan Sanchez

    2007-01-01

    This paper presents experimental data on the total dose response of deep sub-micron bulk CMOS devices and integrated circuits. Ionizing radiation experiments on shallow trench isolation (STI) field oxide MOS capacitors (FOXCAP) indicate a characteristic build-up of radiation-induced defects in the dielectric. In this paper, capacitors fabricated with STI, thermal, SIMOX and bipolar base oxides of similar thickness are compared and show the STI oxide to be most susceptible to radiation effects. Experimental data on irradiated shift registers and n-channel MOSFETs are also presented. These data indicate that radiation damage to the STI can increase the off-state current of n-channel devices and the standby current of CMOS integrated circuits

  12. Is It Better to Enter a Volume CT Dose Index Value before or after Scan Range Adjustment for Radiation Dose Optimization of Pediatric Cardiothoracic CT with Tube Current Modulation?

    Science.gov (United States)

    2018-01-01

    Objective To determine whether the body size-adapted volume computed tomography (CT) dose index (CTDvol) in pediatric cardiothoracic CT with tube current modulation is better to be entered before or after scan range adjustment for radiation dose optimization. Materials and Methods In 83 patients, cardiothoracic CT with tube current modulation was performed with the body size-adapted CTDIvol entered after (group 1, n = 42) or before (group 2, n = 41) scan range adjustment. Patient-related, radiation dose, and image quality parameters were compared and correlated between the two groups. Results The CTDIvol after the CT scan in group 1 was significantly higher than that in group 2 (1.7 ± 0.1 mGy vs. 1.4 ± 0.3 mGy; p Hounsfield units [HU] vs. 4.5 ± 0.7 HU) and image quality (1.5 ± 0.6 vs. 1.5 ± 0.6) showed no significant differences between the two (p > 0.05). In both groups, all patient-related parameters, except body density, showed positive correlations (r = 0.49–0.94; p 0.05) in group 2. Conclusion In pediatric cardiothoracic CT with tube current modulation, the CTDIvol entered before scan range adjustment provides a significant dose reduction (18%) with comparable image quality compared with that entered after scan range adjustment.

  13. Dose assessment of an accidental exposure at the IPNS

    International Nuclear Information System (INIS)

    Campos Torres, M.M.

    1995-02-01

    Seven different methods were used to estimate the dose rate to a female worker who was accidentally exposed in the neutron PHOENIX beamline at the IPNS. Theoretical and measured entrance dose ranged from 550 mrem/min to 2850 mrem/min. Theoretical estimates were based on a Monte Carlo simulation of a spectrum provided by IPNS (Crawford Spectrum). Dose measurements were made with TLDs on phantoms and with ionization chambers in a water phantom. Estimates of the whole body total effective dose equivalent (TEDE) rate ranged from 5.2 mrem/min to 840 mrem/min. Assumed and measured quality factors ranged from 2.6 to 11.8. Cytogenetic analyses of blood samples detected no positive exposure. The recommended TEDE rate was 158 mrem/min. The TEDE was 750 mrem

  14. Compendium of Current Total Ionizing Dose and Displacement Damage Results from NASA Goddard Space Flight Center and NASA Electronic Parts and Packaging Program

    Science.gov (United States)

    Topper, Alyson D.; Campola, Michael J.; Chen, Dakai; Casey, Megan C.; Yau, Ka-Yen; Cochran, Donna J.; Label, Kenneth A.; Ladbury, Raymond L.; Mondy, Timothy K.; O'Bryan, Martha V.; hide

    2017-01-01

    Total ionizing dose and displacement damage testing was performed to characterize and determine the suitability of candidate electronics for NASA space utilization. Devices tested include optoelectronics, digital, analog, linear bipolar devices, and hybrid devices. Displacement Damage, Optoelectronics, Proton Damage, Single Event Effects, and Total Ionizing Dose.

  15. Total Dose Effects on Bipolar Integrated Circuits at Low Temperature

    Science.gov (United States)

    Johnston, A. H.; Swimm, R. T.; Thorbourn, D. O.

    2012-01-01

    Total dose damage in bipolar integrated circuits is investigated at low temperature, along with the temperature dependence of the electrical parameters of internal transistors. Bandgap narrowing causes the gain of npn transistors to decrease far more at low temperature compared to pnp transistors, due to the large difference in emitter doping concentration. When irradiations are done at temperatures of -140 deg C, no damage occurs until devices are warmed to temperatures above -50 deg C. After warm-up, subsequent cooling shows that damage is then present at low temperature. This can be explained by the very strong temperature dependence of dispersive transport in the continuous-time-random-walk model for hole transport. For linear integrated circuits, low temperature operation is affected by the strong temperature dependence of npn transistors along with the higher sensitivity of lateral and substrate pnp transistors to radiation damage.

  16. Total Ambient Dose Equivalent Buildup Factor Determination for Nbs04 Concrete.

    Science.gov (United States)

    Duckic, Paulina; Hayes, Robert B

    2018-06-01

    Buildup factors are dimensionless multiplicative factors required by the point kernel method to account for scattered radiation through a shielding material. The accuracy of the point kernel method is strongly affected by the correspondence of analyzed parameters to experimental configurations, which is attempted to be simplified here. The point kernel method has not been found to have widespread practical use for neutron shielding calculations due to the complex neutron transport behavior through shielding materials (i.e. the variety of interaction mechanisms that neutrons may undergo while traversing the shield) as well as non-linear neutron total cross section energy dependence. In this work, total ambient dose buildup factors for NBS04 concrete are calculated in terms of neutron and secondary gamma ray transmission factors. The neutron and secondary gamma ray transmission factors are calculated using MCNP6™ code with updated cross sections. Both transmission factors and buildup factors are given in a tabulated form. Practical use of neutron transmission and buildup factors warrants rigorously calculated results with all associated uncertainties. In this work, sensitivity analysis of neutron transmission factors and total buildup factors with varying water content has been conducted. The analysis showed significant impact of varying water content in concrete on both neutron transmission factors and total buildup factors. Finally, support vector regression, a machine learning technique, has been engaged to make a model based on the calculated data for calculation of the buildup factors. The developed model can predict most of the data with 20% relative error.

  17. Biologically effective dose in total-body irradiation and hematopoietic stem cell transplantation

    International Nuclear Information System (INIS)

    Kal, H.B.; Kempen-Harteveld, M.L. van; Heijenbrok-Kal, M.H.; Struikmans, H.

    2006-01-01

    Background and Purpose: Total-body irradiation (TBI) is an important part of the conditioning regimen for hematopoietic stem cell transplantation (HSCT) in patients with hematologic malignancies. The results after treatment with various TBI regimes were compared, and dose-effect relationships for the endpoints relapse incidence, disease-free survival, treatment-related mortality, and overall survival were derived. The aim was to define requirements for an optimal treatment schedule with respect to leukemic cell kill and late normal-tissue morbidity. Material and Methods: A literature search was performed. Three randomized studies, four studies comparing results of two or three TBI regimens, and nine reports with results of one specific TBI regimen were identified. Biologically effective doses (BEDs) were calculated. The results of the randomized studies and the studies comparing results of two or three TBI regimens were pooled, and the pooled relative risk (RR) was calculated for the treatments with high BED values versus treatments with a low BED. BED-effect relationships were obtained. Results: RRs for the high BED treatments were significantly lower for relapse incidence, not significantly different for disease-free survival and treatment-related mortality, and significantly higher for overall survival. BED-effect relationships indicate a decrease in relapse incidence and treatment-related mortality and an increase in disease-free and overall survival with higher BED values. Conclusion: 'More dose is better', provided that a TBI setting is used limiting the BEDs of lungs, kidneys, and eye lenses. (orig.)

  18. Radiation dose reduction: comparative assessment of publication volume between interventional and diagnostic radiology.

    Science.gov (United States)

    Hansmann, Jan; Henzler, Thomas; Gaba, Ron C; Morelli, John N

    2017-01-01

    We aimed to quantify and compare awareness regarding radiation dose reduction within the interventional radiology and diagnostic radiology communities. Abstracts accepted to the annual meetings of the Society of Interventional Radiology (SIR), the Cardiovascular and Interventional Radiological Society of Europe (CIRSE), the Radiological Society of North America (RSNA), and the European Congress of Radiology (ECR) between 2005 and 2015 were analyzed using the search terms "interventional/computed tomography" and "radiation dose/radiation dose reduction." A PubMed query using the above-mentioned search terms for the years of 2005-2015 was performed. Between 2005 and 2015, a total of 14 520 abstracts (mean, 660±297 abstracts) and 80 614 abstracts (mean, 3664±1025 abstracts) were presented at interventional and diagnostic radiology meetings, respectively. Significantly fewer abstracts related to radiation dose were presented at the interventional radiology meetings compared with the diagnostic radiology meetings (162 abstracts [1% of total] vs. 2706 [3% of total]; P radiology abstracts (range, 6-27) and 246±105 diagnostic radiology abstracts (range, 112-389) pertaining to radiation dose were presented at each meeting. The PubMed query revealed an average of 124±39 publications (range, 79-187) and 1205±307 publications (range, 829-1672) related to interventional and diagnostic radiology dose reduction per year, respectively (P radiology community over the past 10 years has not mirrored the increased volume seen within diagnostic radiology, suggesting that increased education and discussion about this topic may be warranted.

  19. A randomized, double-blind, placebo-controlled, dose-ranging study using Genz-644470 and sevelamer carbonate in hyperphosphatemic chronic kidney disease patients on hemodialysis

    Directory of Open Access Journals (Sweden)

    Moustafa M

    2014-04-01

    Full Text Available Moustafa Moustafa,1 Lawrence Lehrner,2 Fahd Al-Saghir,3 Mark Smith,4 Sunita Goyal,5 Maureen Dillon,5 John Hunter,5 Randy Holmes-Farley5 1South Carolina Nephrology and Hypertension Center Inc., Orangeburg, SC, USA; 2Kidney Specialists of Southern Nevada, Las Vegas, NV, USA; 3Michigan Kidney Consultants, Pontiac, MI, USA; 4Kidney Care Associates, LLC, Augusta, GA, USA; 5Genzyme, a Sanofi company, Cambridge, MA, USA Background: Genz-644470 is a new, nonabsorbed phosphate binding polymer. In an in vitro competitive phosphate binding assay, Genz-644470 bound significantly more phosphate per gram than sevelamer. As a consequence, this clinical study evaluated the ability of Genz-644470 to lower serum phosphorus in patients on hemodialysis and compared serum phosphorus lowering of Genz-644470 with sevelamer carbonate and placebo. Because three different fixed doses of Genz-644470 and sevelamer carbonate were used, phosphate-lowering dose-responses of each agent were also analyzed. Methods: A randomized, double-blind, dose-ranging study was conducted. After a 2-week phosphate binder washout, 349 hyperphosphatemic (serum phosphorus >5.5 mg/dL hemodialysis patients were randomized to one of seven fixed-dose groups: placebo, Genz-644470 2.4 g/day, Genz-644470 4.8 g/day, Genz-644470 7.2 g/day, sevelamer carbonate 2.4 g/day, sevelamer carbonate 4.8 g/day, or sevelamer carbonate 7.2 g/day. Indicated total daily doses were administered in fixed divided doses three times a day with meals for 3 weeks. The change in serum phosphorus during the treatment period and its dose-response patterns were assessed. Results: Dose-dependent reductions in serum phosphorus were observed with both Genz-644470 and sevelamer carbonate. Serum phosphorus-lowering responses to fixed doses of sevelamer carbonate and Genz-644470 were enhanced in a roughly linear fashion with increasing doses over a threefold range after 3 weeks of treatment. Genz-644470 did not show any advantage in

  20. In vivo dosimetry with semiconducting diodes for dose verification in total-body irradiation. A 10-year experience

    International Nuclear Information System (INIS)

    Ramm, U.; Licher, J.; Moog, J.; Scherf, C.; Kara, E.; Boettcher, H.D.; Roedel, C.; Mose, S.

    2008-01-01

    Background and purpose: for total-body irradiation (TBI) using the translation method, dose distribution cannot be computed with computer-assisted three-dimensional planning systems. Therefore, dose distribution has to be primarily estimated based on CT scans (beam-zone method) which is followed by in vivo measurements to ascertain a homogeneous dose delivery. The aim of this study was to clinically establish semiconductor probes as a simple and fast method to obtain an online verification of the dose at relevant points. Patients and methods: in 110 consecutively irradiated TBI patients (12.6 Gy, 2 x 1.8 Gy/day), six semiconductor probes were attached to the body surface at dose-relevant points (eye/head, neck, lung, navel). The mid-body point of the abdomen was defined as dose reference point. The speed of translation was optimized to definitively reach the prescribed dose in this point. Based on the entrance and exit doses, the mid-body doses at the other points were computed. The dose homogeneity in the entire target volume was determined comparing all measured data with the dose at the reference point. Results: after calibration of the semiconductor probes under treatment conditions the dose in selected points and the dose homogeneity in the target volume could be quantitatively specified. In the TBI patients, conformity of calculated and measured doses in the given points was achieved with small deviations of adequate accuracy. The data of 80% of the patients are within an uncertainty of ± 5%. Conclusion: during TBI using the translation method, dose distribution and dose homogeneity can be easily controlled in selected points by means of semiconductor probes. Semiconductor probes are recommended for further use in the physical evaluation of TBI. (orig.)

  1. Radiation optic neuropathy after megavoltage external-beam irradiation: Analysis of time-dose factors

    International Nuclear Information System (INIS)

    Parsons, J.T.; Bova, F.J.; Million, R.R.

    1994-01-01

    To investigate the risk of radiation-induced optic neuropathy according to total radiotherapy dose and fraction size, based on both retrospective and prospectively collected data. Between October 1964 and May 1989, 215 optic nerves in 131 patients received fractionated external-beam irradiation during the treatment of primary extracranial head and neck tumors. All patients had a minimum of 3 years of ophthalmologic follow-up (range, 3 to 21 years). The clinical end point was visual acuity of 20/100 or worse as a result of optic nerve injury. Anterior ischemic optic neuropathy developed in five nerves (at mean and median times of 32 and 30 months, respectively, and a range of 2-4 years). Retrobulbar optic neuropathy developed in 12 nerves (at mean and median times of 47 and 28 months, respectively, and a range of 1-14 years). No injuries were observed in 106 optic nerves that received a total dose of <59 Gy. Among nerves that received doses of ≥ 60 Gy, the dose per fraction was more important than the total dose in producing optic neuropathy. The 15-year actuarial risk of optic compared with 47% when given in fraction sizes ≥1.9 Gy. The data also suggest an increased risk of optic nerve injury with increasing age. As there is no effective treatment of radiation-induced optic neuropathy, efforts should be directed at its prevention by minimizing the total dose, paying attention to the dose per fraction to the nerve, and using reduced field techniques where appropriate to limit the volume of tissues that receive high-dose irradiation. 32 refs., 5 figs., 5 tabs

  2. Dose-ranging pilot randomized trial of amino acid mixture combined with physical activity promotion for reducing abdominal fat in overweight adults

    Directory of Open Access Journals (Sweden)

    Sasai H

    2017-07-01

    Full Text Available Hiroyuki Sasai,1–3,* Keisuke Ueda,4,5,* Takehiko Tsujimoto,6,7 Hiroyuki Kobayashi,1 Chiaki Sanbongi,4 Shuji Ikegami,4 Yoshio Nakata1 1Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 2Japan Society for the Promotion of Science, Chiyoda, Tokyo, 3Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo, 4Food Science Research Laboratories, Meiji Co., Ltd., Odawara, Kanagawa, 5Graduate School of Comprehensive Human Sciences, 6Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, 7Faculty of Human Sciences, Shimane University, Matsue, Shimane, Japan *These authors contributed equally to this work Objective: The objective of this study was to determine the effective dose of an amino acid mixture comprising arginine, alanine, and phenylalanine combined with physical activity promotion in reducing abdominal fat among overweight adults.Methods: A 12-week randomized, double-blind, placebo-controlled, dose-ranging, pilot trial was conducted in Mito, Japan, from January through April 2016, and the data were analyzed from May through November 2016. The study participants were 35 overweight adults, aged 20–64 years, with no regular exercise habit. Participants were randomly assigned to high-dose (3,000 mg/d, n=9, medium-dose (1,500 mg/d, n=9, low-dose (750 mg/d, n=8, or placebo (0 mg/d, n=9 groups, and the test beverage containing the amino acid mixture or placebo was administered for 12 weeks. All participants maintained a physically active lifestyle during the study period through monthly physical activity promotion sessions and smartphone-based self-monitoring with wearable trackers. Primary outcomes were changes in abdominal total, subcutaneous, and visceral fat areas, assessed by computed tomography.Results: Of the 35 enrolled participants, 32 completed the 12-week follow-up visit. The intention-to-treat analysis revealed that the changes in abdominal total fat

  3. Effect of time, dose and fractionation on local control of nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Lee, Anne W.M.; Chan, David K.K.; Poon, Y.F.; Foo, William; Law, Stephen C.K.; O, S.K.; Tung, Stewart Y.; Fowler, Jack F.; Chappell, Rick

    1995-01-01

    To study the effect of radiation factors on local control of nasopharyngeal carcinoma, 1008 patients with similarly staged T1N0-3M0 disease (Ho's classification) were retrospectively analyzed. All patients were treated by megavoltage irradiation alone using the same technique. Four different fractionation schedules had been used sequentially during 1976-1985: with total dose ranging from 45.6 to 60 Gy and fractional dose from 2.5 to 4.2 Gy. The median overall time was 39 days (range = 38-75 days). Both for the whole series and 763 patients with nodal control, total dose was the most important radiation factor. The hazard of local failure decreased by 9% per additional Gy (p < 0.01). Biological equivalents expressed in terms of Biologically Effective Dose or Nominal Standard Dose also showed strong correlation. Fractional dose had no significant impact. The effect of overall treatment time was insignificant for the whole series, but almost reached statistical significance for those with nodal control (p = 0.06). Further study is required for elucidation, as 85% of patients completed treatment within a very narrow range (38-42 days), and the possible hazard is clinically too significant to be ignored

  4. Homeostatic balance as an indicator of prolonged technogenic exposure in low dose range

    International Nuclear Information System (INIS)

    Karpov, A.B.; Voronova, I.A.; Takhauov, R.M.; Semyonova, Yu.V.; Sherstoboev, E.Yu.; Udut, V.V.

    2008-01-01

    Full text: Indication of changes induced by ionizing radiation starting up a wide range of pathologic reactions in the disease developments still poses a significant problem in radiation medicine. It mainly concerns exposure to low dose-rate ionizing radiation, since its effects are still open to question, and today any researcher acknowledges that radiation induced pathological changes can accumulate at both subclinical and prenosological stages and develop not only in exposed persons, but also in their offspring. The subject of this study was workers of reactor and radiochemical productions of Siberian Group of Chemical Enterprises (SGCE) exposed to external and combined (external and internal) radiation respectively. Two comparative groups were formed: reactor and radiochemical production workers. In the reactor production group of workers the cumulative dose of external γ-radiation was up to 300 mSv, in the radiochemical production group - up to 150 mSv. Age ranged from 40 to 50 years. The two groups were compared between each other. Above all, there were formed 'insider control' groups (workers of the same productions with zero doses) to assess the impact of radiation factor on central homeostatic mechanisms. These groups were created using pair technique in order to level somatic disorders influence on the parameters under study. Numbers of full and biochemical blood examinations, energy metabolism between cells, hormones of homeostasis by the adaptive hormone level - insulin and cortisol, lipid peroxidation and antioxidant protection systems, immune and vegetative systems were all analyzed. Analyses of the systems performed, it was found out that in persons having been exposed to long term occupational radiation there were significant changes indicating lipid peroxidation system activation, antioxidant protection system depression, as well as lowered energy metabolism. The higher external γ-doses the bigger these changes are. Results from the two groups of

  5. In pediatric leukemia, dose evaluation according to the type of compensators in total body irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Yeon [Dongnam Inst. of Radiological and Medical science, Busan (Korea, Republic of); Kim, Chang Soo; Kim, Jung Hoon [Dept. of Radiological Science, College of Health Science, Catholic University of Busan, Busan (Korea, Republic of)

    2015-04-15

    Total body irradiation (TBI) and chemotherapy are the pre-treatment method of a stem cell transplantations of the childhood leukemia. in this study, we evaluate the Quantitative human body dose prior to the treatment. The MCNPX simulation program evaluated by changing the material of the tissue compensators with imitation material of pediatric exposure in a virtual space. As a result, first, the average skin dose with the material of the tissue compensators of Plexiglass tissue compensators is 74.60 mGy/min, Al is 73.96 mGy/min, Cu is 72.26 mGy/min and Pb 67.90 mGy/min respectively. Second, regardless of the tissue compensators material that organ dose were thyroid, gentile, digestive system, brain, lungs, kidneys higher in order. Finally, the ideal distance between body compensator and the patient were 50 cm aparting each other. In conclusion, tissue compensators Al, Cu, Pb are able to replace of the currently used in Plexiglass materials.

  6. High Total Ionizing Dose and Temperature Effects on Micro- and Nano-electronic Devices

    International Nuclear Information System (INIS)

    Gaillardin, M.; Martinez, M.; Paillet, P.; Leray, J.L.; Marcandella, C.; Duhamel, O.; Raine, M.; Richard, N.; Girard, S.; Ouerdane, Y.; Boukenter, A.; Goiffon, V.; Magnan, P.; Andrieu, F.; Barraud, S.; Faynot, O.

    2013-06-01

    This paper investigates the vulnerability of several micro- and nano-electronic technologies to a mixed harsh environment including high total ionizing dose at MGy levels and high temperature. Such operating conditions have been revealed recently for several applications like new security systems in existing or future nuclear power plants, fusion experiments, or deep space missions. In this work, the competing effects already reported in literature of ionizing radiations and temperature are characterized in elementary devices made of MOS transistors from several technologies. First, devices are irradiated using a radiation laboratory X-ray source up to MGy dose levels at room temperature. Devices are grounded during irradiation to simulate a circuit which waits for a wake up signal, representing most of the lifetime of an integrated circuit operating in a harsh environment. Devices are then annealed at several temperatures to discuss the post-irradiation behavior and to determine whether an elevated temperature is an issue or not for circuit function in mixed harsh environments. (authors)

  7. Dose-effect relationship for cataract induction after single-dose total body irradiation and bone marrow transplantation for acute leukemia

    International Nuclear Information System (INIS)

    Kempen-Harteveld, M. Loes van; Belkacemi, Yazid; Kal, Henk B.; Labopin, Myriam; Frassoni, Francesco

    2002-01-01

    Purpose: To determine a dose-effect relationship for cataract induction, the tissue-specific parameter, α/β, and the rate of repair of sublethal damage, μ value, in the linear-quadratic formula have to be known. To obtain these parameters for the human eye lens, a large series of patients treated with different doses and dose rates is required. The data of patients with acute leukemia treated with single-dose total body irradiation (STBI) and bone marrow transplantation (BMT) collected by the European Group for Blood and Marrow Transplantation were analyzed. Methods and Materials: The data of 495 patients who underwent BMT for acute leukemia, who had STBI as part of their conditioning regimen, were analyzed using the linear-quadratic concept. The end point was the incidence of cataract formation after BMT. Of the analyzed patients, 175 were registered as having cataracts. Biologic effective doses (BEDs) for different sets of values for α/β and μ were calculated for each patient. With Cox regression analysis, using the overall chi-square test as the parameter evaluating the goodness of fit, α/β and μ values were found. Risk factors for cataract induction were the BED of the applied TBI regimen, allogeneic BMT, steroid therapy for >14 weeks, and heparin administration. To avoid the influence of steroid therapy and heparin on cataract induction, patients who received steroid or heparin treatment were excluded, leaving only the BED as a risk factor. Next, the most likely set of α/β and μ values was obtained. With this set, the cataract-free survival rates were calculated for specific BED intervals, according to the Kaplan-Meier method. From these calculations, cataract incidences were obtained as function of the BED at 120 months after STBI. Results: The use of BED instead of the TBI dose enabled the incidence of cataract formation to be predicted in a reasonably consistent way. With Cox regression analysis for all STBI data, a maximal chi-square value was

  8. Compendium of Single Event Effects, Total Ionizing Dose, and Displacement Damage for Candidate Spacecraft Electronics for NASA

    Science.gov (United States)

    LaBel, Kenneth A.; OBryan, Martha V.; Chen, Dakai; Campola, Michael J.; Casey, Megan C.; Pellish, Jonathan A.; Lauenstein, Jean-Marie; Wilcox, Edward P.; Topper, Alyson D.; Ladbury, Raymond L.; hide

    2014-01-01

    We present results and analysis investigating the effects of radiation on a variety of candidate spacecraft electronics to proton and heavy ion induced single event effects (SEE), proton-induced displacement damage (DD), and total ionizing dose (TID). Introduction: This paper is a summary of test results.NASA spacecraft are subjected to a harsh space environment that includes exposure to various types of ionizing radiation. The performance of electronic devices in a space radiation environment is often limited by its susceptibility to single event effects (SEE), total ionizing dose (TID), and displacement damage (DD). Ground-based testing is used to evaluate candidate spacecraft electronics to determine risk to spaceflight applications. Interpreting the results of radiation testing of complex devices is quite difficult. Given the rapidly changing nature of technology, radiation test data are most often application-specific and adequate understanding of the test conditions is critical. Studies discussed herein were undertaken to establish the application-specific sensitivities of candidate spacecraft and emerging electronic devices to single-event upset (SEU), single-event latchup (SEL), single-event gate rupture (SEGR), single-event burnout (SEB), single-event transient (SET), TID, enhanced low dose rate sensitivity (ELDRS), and DD effects.

  9. Central axis dose verification in patients treated with total body irradiation of photons using a Computed Radiography system

    International Nuclear Information System (INIS)

    Rubio Rivero, A.; Caballero Pinelo, R.; Gonzalez Perez, Y.

    2015-01-01

    To propose and evaluate a method for the central axis dose verification in patients treated with total body irradiation (TBI) of photons using images obtained through a Computed Radiography (CR) system. It was used the Computed Radiography (Fuji) portal imaging cassette readings and correlate with measured of absorbed dose in water using 10 x 10 irradiation fields with ionization chamber in the 60 Co equipment. The analytical and graphic expression is obtained through software 'Origin8', the TBI patient portal verification images were processed using software ImageJ, to obtain the patient dose. To validate the results, the absorbed dose in RW3 models was measured with ionization chamber with different thickness, simulating TBI real conditions. Finally it was performed a retrospective study over the last 4 years obtaining the patients absorbed dose based on the reading in the image and comparing with the planned dose. The analytical equation obtained permits estimate the absorbed dose using image pixel value and the dose measured with ionization chamber and correlated with patient clinical records. Those results are compared with reported evidence obtaining a difference less than 02%, the 3 methods were compared and the results are within 10%. (Author)

  10. The feasibility of 10 keV X-ray as radiation source in total dose response radiation test

    International Nuclear Information System (INIS)

    Li Ruoyu; Li Bin; Luo Hongwei; Shi Qian

    2005-01-01

    The standard radiation source utilized in traditional total dose response radiation test is 60 Co, which is environment-threatening. X-rays, as a new radiation source, has the advantages such as safety, precise control of dose rate, strong intensity, possibility of wafer-level test or even on-line test, which greatly reduce cost for package, test and transportation. This paper discussed the feasibility of X-rays replacing 60 Co as the radiation source, based on the radiation mechanism and the effects of radiation on gate oxide. (authors)

  11. Accuracy and Radiation Dose Reduction of Limited-Range CT in the Evaluation of Acute Appendicitis in Pediatric Patients.

    Science.gov (United States)

    Jin, Michael; Sanchez, Thomas R; Lamba, Ramit; Fananapazir, Ghaneh; Corwin, Michael T

    2017-09-01

    The purpose of this article is to determine the accuracy and radiation dose reduction of limited-range CT prescribed from the top of L2 to the top of the pubic symphysis in children with suspected acute appendicitis. We performed a retrospective study of 210 consecutive pediatric patients from December 11, 2012, through December 11, 2014, who underwent abdominopelvic CT for suspected acute appendicitis. Two radiologists independently reviewed the theoretic limited scans from the superior L2 vertebral body to the top of the pubic symphysis, to assess for visualization of the appendix, acute appendicitis, alternative diagnoses, and incidental findings. Separately, the same parameters were assessed on the full scan by the same two reviewers. Whole-body effective doses were determined for the full- and limited-range scans and were compared using the paired t test. The appendix or entire cecum was visualized on the limited scan in all cases, and no cases of acute appendicitis were missed on the simulated limited scan compared with the full scan. Two alternative diagnoses were missed with the limited scan: one case of hydronephrosis and one of acute acalculous cholecystitis. The mean effective dose for the original scan was 5.6 mSv and that for the simulated limited scan was 3.0 mSv, resulting in a dose reduction of 46.4% (p appendicitis and reduces the dose by approximately 46%.

  12. Effects of gamma radiation in a wide range of doses on the morphological characteristics of Lemna minor L

    International Nuclear Information System (INIS)

    Rasskazova, M.M.; Berestina, A.V.

    2011-01-01

    The effects of gamma radiation on the morphological parameters of Lemna minor L. were studied. As the sensitive parameters were invited to use chlorosis and necrosis. Significant differences between samples begin to show after 14 days of observation. The presence of effect, irrespective of the dose in the range 0,1-30 Gy, shows the efficiency of a sufficiently small dose (0,1 Gy) was revealed.

  13. Feasibility study of helical tomotherapy for total body or total marrow irradiation

    International Nuclear Information System (INIS)

    Hui, Susanta K.; Kapatoes, Jeff; Fowler, Jack; Henderson, Douglas; Olivera, Gustavo; Manon, Rafael R.; Gerbi, Bruce; Mackie, T. R.; Welsh, James S.

    2005-01-01

    Total body radiation (TBI) has been used for many years as a preconditioning agent before bone marrow transplantation. Many side effects still plague its use. We investigated the planning and delivery of total body irradiation (TBI) and selective total marrow irradiation (TMI) and a reduced radiation dose to sensitive structures using image-guided helical tomotherapy. To assess the feasibility of using helical tomotherapy (A) we studied variations in pitch, field width, and modulation factor on total body and total marrow helical tomotherapy treatments. We varied these parameters to provide a uniform dose along with a treatment times similar to conventional TBI (15-30 min). (B) We also investigated limited (head, chest, and pelvis) megavoltage CT (MVCT) scanning for the dimensional pretreatment setup verification rather than total body MVCT scanning to shorten the overall treatment time per treatment fraction. (C) We placed thermoluminescent detectors (TLDs) inside a Rando phantom to measure the dose at seven anatomical sites, including the lungs. A simulated TBI treatment showed homogeneous dose coverage (±10%) to the whole body. Doses to the sensitive organs were reduced by 35%-70% of the target dose. TLD measurements on Rando showed an accurate dose delivery (±7%) to the target and critical organs. In the TMI study, the dose was delivered conformally to the bone marrow only. The TBI and TMI treatment delivery time was reduced (by 50%) by increasing the field width from 2.5 to 5.0 cm in the inferior-superior direction. A limited MVCT reduced the target localization time 60% compared to whole body MVCT. MVCT image-guided helical tomotherapy offers a novel method to deliver a precise, homogeneous radiation dose to the whole body target while reducing the dose significantly to all critical organs. A judicious selection of pitch, modulation factor, and field size is required to produce a homogeneous dose distribution along with an acceptable treatment time. In

  14. Preliminary evaluation of second harmonic direct detection scheme for low-dose range in alanine/EPR dosimetry

    International Nuclear Information System (INIS)

    Chen, Felipe; Graeff, Carlos F.O.; Baffa, Oswaldo

    2002-01-01

    The usefulness of a direct detection scheme of the second harmonic (2h) overmodulated signal from irradiated alanine in EPR dosimetry was studied. For this purpose, a group of DL-alanine/paraffin cylindrical pellets was produced. The dosimeters were irradiated with a 60 Co radiotherapy gamma source with doses of 0.05, 0.1, 0.5, 1 and 5 Gy. The EPR measurements were carried out in a VARIAN-E4 spectrometer operating in X-band with optimized parameters to obtain highest amplitude signals of both harmonics. The 2h signal was detected directly at twice the modulation frequency. In preliminary results, the 2h showed some advantages over the 1h such as better resolution for doses below 1 Gy, better repeatability results and better linear behaviour in the dose range indicated. (author)

  15. High doses of bone morphogenetic protein 2 induce structurally abnormal bone and inflammation in vivo.

    Science.gov (United States)

    Zara, Janette N; Siu, Ronald K; Zhang, Xinli; Shen, Jia; Ngo, Richard; Lee, Min; Li, Weiming; Chiang, Michael; Chung, Jonguk; Kwak, Jinny; Wu, Benjamin M; Ting, Kang; Soo, Chia

    2011-05-01

    The major Food and Drug Association-approved osteoinductive factors in wide clinical use are bone morphogenetic proteins (BMPs). Although BMPs can promote robust bone formation, they also induce adverse clinical effects, including cyst-like bone formation and significant soft tissue swelling. In this study, we evaluated multiple BMP2 doses in a rat femoral segmental defect model and in a minimally traumatic rat femoral onlay model to determine its dose-dependent effects. Results of our femoral segmental defect model established a low BMP2 concentration range (5 and 10 μg/mL, total dose 0.375 and 0.75 μg in 75 μg total volume) unable to induce defect fusion, a mid-range BMP2 concentration range able to fuse the defect without adverse effects (30 μg/mL, total dose 2.25 μg in 75 μg total volume), and a high BMP2 concentration range (150, 300, and 600 μg/mL, total dose 11.25, 22.5, and 45 μg in 75 μg total volume) able to fuse the defect, but with formation of cyst-like bony shells filled with histologically confirmed adipose tissue. In addition, compared to control, 4 mg/mL BMP2 also induced significant tissue inflammatory infiltrates and exudates in the femoral onlay model that was accompanied by increased numbers of osteoclast-like cells at 3, 7, and 14 days. Overall, we consistently reproduced BMP2 side effects of cyst-like bone and soft tissue swelling using high BMP2 concentration approaching the typical human 1500 μg/mL.

  16. Size-specific dose estimate (SSDE) provides a simple method to calculate organ dose for pediatric CT examinations

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Bria M.; Brady, Samuel L., E-mail: samuel.brady@stjude.org; Kaufman, Robert A. [Department of Radiological Sciences, St Jude Children' s Research Hospital, Memphis, Tennessee 38105 (United States); Mirro, Amy E. [Department of Biomedical Engineering, Washington University, St Louis, Missouri 63130 (United States)

    2014-07-15

    Purpose: To investigate the correlation of size-specific dose estimate (SSDE) with absorbed organ dose, and to develop a simple methodology for estimating patient organ dose in a pediatric population (5–55 kg). Methods: Four physical anthropomorphic phantoms representing a range of pediatric body habitus were scanned with metal oxide semiconductor field effect transistor (MOSFET) dosimeters placed at 23 organ locations to determine absolute organ dose. Phantom absolute organ dose was divided by phantom SSDE to determine correlation between organ dose and SSDE. Organ dose correlation factors (CF{sub SSDE}{sup organ}) were then multiplied by patient-specific SSDE to estimate patient organ dose. The CF{sub SSDE}{sup organ} were used to retrospectively estimate individual organ doses from 352 chest and 241 abdominopelvic pediatric CT examinations, where mean patient weight was 22 kg ± 15 (range 5–55 kg), and mean patient age was 6 yrs ± 5 (range 4 months to 23 yrs). Patient organ dose estimates were compared to published pediatric Monte Carlo study results. Results: Phantom effective diameters were matched with patient population effective diameters to within 4 cm; thus, showing appropriate scalability of the phantoms across the entire pediatric population in this study. IndividualCF{sub SSDE}{sup organ} were determined for a total of 23 organs in the chest and abdominopelvic region across nine weight subcategories. For organs fully covered by the scan volume, correlation in the chest (average 1.1; range 0.7–1.4) and abdominopelvic region (average 0.9; range 0.7–1.3) was near unity. For organ/tissue that extended beyond the scan volume (i.e., skin, bone marrow, and bone surface), correlation was determined to be poor (average 0.3; range: 0.1–0.4) for both the chest and abdominopelvic regions, respectively. A means to estimate patient organ dose was demonstrated. Calculated patient organ dose, using patient SSDE and CF{sub SSDE}{sup organ}, was compared to

  17. Radiation-induced polymerization of water-saturated styrene in a wide range of dose rate

    International Nuclear Information System (INIS)

    Takezaki, J.; Okada, T.; Sakurada, I.

    1978-01-01

    Radiation-induced polymerization of water-saturated styrene (water content 3.5 x 10 -2 mole/liter) was carried out in a wide range of dose rate between 1.2 x 10 3 and 1.8 x 10 7 rad/sec, and compared with the polymerization of the moderately dried styrene (water content 3.2 x 10 -3 mole/liter). Molecular weight distribution curves of the polymerization products showed that they were generally consisted of four parts, namely, oligomers, radical, cationic, and super polymers. Contributions of the four constituents to the polymerization and the number average degrees of polymerization (DP) of the four kinds of polymers were calculated by the graphical analysis of the curves. The rate of radical polymerization and DP of radical polymers are independent of the water content; the dose rate dependences of the polymerization rate and DP agree with the well known square root and inverse square root laws, respectively, of the radical polymerization of styrene. The rate of ionic polymerization is directly proportional to the dose rate, but it decreases, at a given dose rate, inversely proportional to the water content of styrene. DP of ionic polymer is independent of the dose rate but decreases with increasing water content. The super polymer of DP about 10 4 is not formed in the case of the moderately dried styrene. G values for the initiating radical and ion formation are calculated to be independently of the dose rate and water content, 0.66 and 0.027, respectively. It was suggested that oligomer was formed in the early stage by the interaction of cation with anion and only those cations which had survived underwent polymerization. 10 figures, 4 tables

  18. Changes in Rectal Dose Due to Alterations in Beam Angles for Setup Uncertainty and Range Uncertainty in Carbon-Ion Radiotherapy for Prostate Cancer.

    Directory of Open Access Journals (Sweden)

    Yoshiki Kubota

    Full Text Available Carbon-ion radiotherapy of prostate cancer is challenging in patients with metal implants in one or both hips. Problems can be circumvented by using fields at oblique angles. To evaluate the influence of setup and range uncertainties accompanying oblique field angles, we calculated rectal dose changes with oblique orthogonal field angles, using a device with fixed fields at 0° and 90° and a rotating patient couch.Dose distributions were calculated at the standard angles of 0° and 90°, and then at 30° and 60°. Setup uncertainty was simulated with changes from -2 mm to +2 mm for fields in the anterior-posterior, left-right, and cranial-caudal directions, and dose changes from range uncertainty were calculated with a 1 mm water-equivalent path length added to the target isocenter in each angle. The dose distributions regarding the passive irradiation method were calculated using the K2 dose algorithm.The rectal volumes with 0°, 30°, 60°, and 90° field angles at 95% of the prescription dose were 3.4±0.9 cm3, 2.8±1.1 cm3, 2.2±0.8 cm3, and 3.8±1.1 cm3, respectively. As compared with 90° fields, 30° and 60° fields had significant advantages regarding setup uncertainty and significant disadvantages regarding range uncertainty, but were not significantly different from the 90° field setup and range uncertainties.The setup and range uncertainties calculated at 30° and 60° field angles were not associated with a significant change in rectal dose relative to those at 90°.

  19. Low Radiation Dose and Low Cell Dose Increase the Risk of Graft Rejection in a Canine Hematopoietic Stem Cell Transplantation Model.

    Science.gov (United States)

    Lange, Sandra; Steder, Anne; Glass, Änne; Killian, Doreen; Wittmann, Susanne; Machka, Christoph; Werner, Juliane; Schäfer, Stephanie; Roolf, Catrin; Junghanss, Christian

    2016-04-01

    The canine hematopoietic stem cell transplantation (HSCT) model has become accepted in recent decades as a good preclinical model for the development of new transplantation strategies. Information on factors associated with outcome after allogeneic HSCT are a prerequisite for designing new risk-adapted transplantation protocols. Here we report a retrospective analysis aimed at identifying risk factors for allograft rejection in the canine HSCT model. A total of 75 dog leukocyte antigen-identical sibling HSCTs were performed since 2003 on 10 different protocols. Conditioning consisted of total body irradiation at 1.0 Gy (n = 20), 2.0 Gy (n = 40), or 4.5 Gy (n = 15). Bone marrow was infused either intravenously (n = 54) or intraosseously (n = 21). Cyclosporin A alone or different combinations of cyclosporine A, mycophenolate mofetil, and everolimus were used for immunosuppression. A median cell dose of 3.5 (range, 1.0 to 11.8) total nucleated cells (TNCs)/kg was infused. Cox analyses were used to assess the influence of age, weight, radiation dose, donor/recipient sex, type of immunosuppression, and cell dose (TNCs, CD34(+) cells) on allograft rejection. Initial engraftment occurred in all dogs. Forty-two dogs (56%) experienced graft rejection at median of 11 weeks (range, 6 to 56 weeks) after HSCT. Univariate analyses revealed radiation dose, type of immunosuppression, TNC dose, recipient weight, and recipient age as factors influencing long-term engraftment. In multivariate analysis, low radiation dose (P rejection. Peripheral blood mononuclear cell chimerism ≥30% (P = .008) and granulocyte chimerism ≥70% (P = .023) at 4 weeks after HSCT were independent predictors of stable engraftment. In summary, these data indicate that even in low-dose total body irradiation-based regimens, the irradiation dose is important for engraftment. The level of blood chimerism at 4 weeks post-HSCT was predictive of long-term engraftment in the canine HSCT

  20. Image-guided total marrow and total lymphatic irradiation using helical tomotherapy

    International Nuclear Information System (INIS)

    Schultheiss, Timothy E.; Wong, Jeffrey; Liu, An; Olivera, Gustavo; Somlo, George

    2007-01-01

    Purpose: To develop a treatment technique to spare normal tissue and allow dose escalation in total body irradiation (TBI). We have developed intensity-modulated radiotherapy techniques for the total marrow irradiation (TMI), total lymphatic irradiation, or total bone marrow plus lymphatic irradiation using helical tomotherapy. Methods and Materials: For TBI, we typically use 12 Gy in 10 fractions delivered at an extended source-to-surface distance (SSD). Using helical tomotherapy, it is possible to deliver equally effective doses to the bone marrow and lymphatics while sparing normal organs to a significant degree. In the TMI patients, whole body skeletal bone, including the ribs and sternum, comprise the treatment target. In the total lymphatic irradiation, the target is expanded to include the spleen and major lymph node areas. Sanctuary sites for disease (brain and testes) are included when clinically indicated. Spared organs include the lungs, esophagus, parotid glands, eyes, oral cavity, liver, kidneys, stomach, small and large intestine, bladder, and ovaries. Results: With TBI, all normal organs received the TBI dose; with TMI, total lymphatic irradiation, and total bone marrow plus lymphatic irradiation, the visceral organs are spared. For the first 6 patients treated with TMI, the median dose to organs at risk averaged 51% lower than would be achieved with TBI. By putting greater weight on the avoidance of specific organs, greater sparing was possible. Conclusion: Sparing of normal tissues and dose escalation is possible using helical tomotherapy. Late effects such as radiation pneumonitis, veno-occlusive disease, cataracts, neurocognitive effects, and the development of second tumors should be diminished in severity and frequency according to the dose reduction realized for the organs at risk

  1. Evaluation of Total Daily Dose and Glycemic Control for Patients on U-500 Insulin Admitted to the Hospital

    Science.gov (United States)

    2016-05-20

    regular insulin has significantly increased in recent years. These patients are severely insulin resistant requiring high doses of insulin to achieve...on U-500 Insulin Admitted to the Hospital presented at SURF Conference, San Antonio, TX 20 May 201 6 with MDWI 41-108, and has been assigned local...59th CSPG/SGVU) C.201 4 . I 52d PROTOCOL TITLE Evaluation of Total Dai ly Dose and Glycemic Control for Patients on U-500 Insulin Admitted to the

  2. Current Practices of Measuring and Reference Range Reporting of Free and Total Testosterone in the United States.

    Science.gov (United States)

    Le, Margaret; Flores, David; May, Danica; Gourley, Eric; Nangia, Ajay K

    2016-05-01

    The evaluation and management of male hypogonadism should be based on symptoms and on serum testosterone levels. Diagnostically this relies on accurate testing and reference values. Our objective was to define the distribution of reference values and assays for free and total testosterone by clinical laboratories in the United States. Upper and lower reference values, assay methodology and source of published reference ranges were obtained from laboratories across the country. A standardized survey was reviewed with laboratory staff via telephone. Descriptive statistics were used to tabulate results. We surveyed a total of 120 laboratories in 47 states. Total testosterone was measured in house at 73% of laboratories. At the remaining laboratories studies were sent to larger centralized reference facilities. The mean ± SD lower reference value of total testosterone was 231 ± 46 ng/dl (range 160 to 300) and the mean upper limit was 850 ± 141 ng/dl (range 726 to 1,130). Only 9% of laboratories where in-house total testosterone testing was performed created a reference range unique to their region. Others validated the instrument recommended reference values in a small number of internal test samples. For free testosterone 82% of laboratories sent testing to larger centralized reference laboratories where equilibrium dialysis and/or liquid chromatography with mass spectrometry was done. The remaining laboratories used published algorithms to calculate serum free testosterone. Reference ranges for testosterone assays vary significantly among laboratories. The ranges are predominantly defined by limited population studies of men with unknown medical and reproductive histories. These poorly defined and variable reference values, especially the lower limit, affect how clinicians determine treatment. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  3. Pulsed dose rate and fractionated high dose rate brachytherapy: choice of brachytherapy schedules to replace low dose rate treatments

    International Nuclear Information System (INIS)

    Visser, Andries G.; Aardweg, Gerard J.M.J. van den; Levendag, Peter C.

    1996-01-01

    Purpose: Pulsed dose rate (PDR) brachytherapy is a new type of afterloading brachytherapy (BT) in which a continuous low dose rate (LDR) treatment is simulated by a series of 'pulses,' i.e., fractions of short duration (less than 0.5 h) with intervals between fractions of 1 to a few hours. At the Dr. Daniel den Hoed Cancer Center, the term 'PDR brachytherapy' is used for treatment schedules with a large number of fractions (at least four per day), while the term 'fractionated high dose rate (HDR) brachytherapy' is used for treatment schedules with just one or two brachytherapy fractions per day. Both treatments can be applied as alternatives for LDR BT. This article deals with the choice between PDR and fractionated HDR schedules and proposes possible fractionation schedules. Methods and Materials: To calculate HDR and PDR fractionation schedules with the intention of being equivalent to LDR BT, the linear-quadratic (LQ) model has been used in an incomplete repair formulation as given by Brenner and Hall, and by Thames. In contrast to earlier applications of this model, both the total physical dose and the overall time were not kept identical for LDR and HDR/PDR schedules. A range of possible PDR treatment schedules is presented, both for booster applications (in combination with external radiotherapy (ERT) and for BT applications as a single treatment. Because the knowledge of both α/β values and the half time for repair of sublethal damage (T (1(2)) ), which are required for these calculations, is quite limited, calculations regarding the equivalence of LDR and PDR treatments have been performed for a wide range of values of α/β and T (1(2)) . The results are presented graphically as PDR/LDR dose ratios and as ratios of the PDR/LDR tumor control probabilities. Results: If the condition that total physical dose and overall time of a PDR treatment must be exactly identical to the values for the corresponding LDR treatment regimen is not applied, there appears

  4. Effect of dose-rate on the frequency of X-linked lethal mutation in the nematode Panagrellus redivivus

    International Nuclear Information System (INIS)

    Ager, D.

    1984-01-01

    A total X-ray dose of 50 Gy was applied to the nematode Panagrellus redivivus using dose-rates ranging from 0.23 Gy/min to 10.49 Gy/min, and the frequency of lethal X-chromosomes was determined. This frequency ranged from approximately 1.6% at the lower dose-rate to 4.3% at the highest dose-rate, indicating a dose-rate dependency of mutation frequency in the spermatogonia and oogonia of this organism. (orig.)

  5. Low Dose Gamma Irradiation Does Not Affect the Quality or Total Ascorbic Acid Concentration of "Sweetheart" Passionfruit (Passiflora edulis).

    Science.gov (United States)

    Golding, John B; Blades, Barbara L; Satyan, Shashirekha; Spohr, Lorraine J; Harris, Anne; Jessup, Andrew J; Archer, John R; Davies, Justin B; Banos, Connie

    2015-08-26

    Passionfruit ( Passiflora edulis , Sims, cultivar "Sweetheart") were subject to gamma irradiation at levels suitable for phytosanitary purposes (0, 150, 400 and 1000 Gy) then stored at 8 °C and assessed for fruit quality and total ascorbic acid concentration after one and fourteen days. Irradiation at any dose (≤1000 Gy) did not affect passionfruit quality (overall fruit quality, colour, firmness, fruit shrivel, stem condition, weight loss, total soluble solids level (TSS), titratable acidity (TA) level, TSS/TA ratio, juice pH and rot development), nor the total ascorbic acid concentration. The length of time in storage affected some fruit quality parameters and total ascorbic acid concentration, with longer storage periods resulting in lower quality fruit and lower total ascorbic acid concentration, irrespective of irradiation. There was no interaction between irradiation treatment and storage time, indicating that irradiation did not influence the effect of storage on passionfruit quality. The results showed that the application of 150, 400 and 1000 Gy gamma irradiation to "Sweetheart" purple passionfruit did not produce any deleterious effects on fruit quality or total ascorbic acid concentration during cold storage, thus supporting the use of low dose irradiation as a phytosanitary treatment against quarantine pests in purple passionfruit.

  6. Total body irradiation

    International Nuclear Information System (INIS)

    Novack, D.H.; Kiley, J.P.

    1987-01-01

    The multitude of papers and conferences in recent years on the use of very large megavoltage radiation fields indicates an increased interest in total body, hemibody, and total nodal radiotherapy for various clinical situations. These include high dose total body irradiation (TBI) to destroy the bone marrow and leukemic cells and provide immunosuppression prior to a bone marrow transplant, high dose total lymphoid irradiation (TLI) prior to bone marrow transplantation in severe aplastic anemia, low dose TBI in the treatment of lymphocytic leukemias or lymphomas, and hemibody irradiation (HBI) in the treatment of advanced multiple myeloma. Although accurate provision of a specific dose and the desired degree of dose homogeneity are two of the physicist's major considerations for all radiotherapy techniques, these tasks are even more demanding for large field radiotherapy. Because most large field radiotherapy is done at an extended distance for complex patient geometries, basic dosimetry data measured at the standard distance (isocenter) must be verified or supplemented. This paper discusses some of the special dosimetric problems of large field radiotherapy, with specific examples given of the dosimetry of the TBI program for bone marrow transplant at the authors' hospital

  7. Comparison of Range of Motion After Total Knee Prosthesis According to Different Type of Prosthesis

    Directory of Open Access Journals (Sweden)

    Firat Seyfettinoglu

    2016-07-01

    Full Text Available Aim: The aim of this study is to determine the effectiveness and range of motion of different type of knee prosthesis. Material and Method: This study includes 180 of 225 patients (139 F, 41 M, average age: 65, range of age: 51-82 between April 2005 and September 2007 with the diagnosis of gonarthrosis. All patients underwent to primary total knee arthroplasty. Primary osteoartrhritis is the reason of gonarthrosis. The patients with secondary osteoartrhritis were excluded from the study. All the patients were operated by the same surgical team and rehabilitated after surgery. Patella didnt change any patient. PCL was protected in some of the patients and cut some of patients. Totally seven type prosthesis in 16 subgroup were applied to the patients. All measurement were done by the same surgeon. Average follow up period was 31 months (24-49 months. Results: Patients without subgrouping were tested according to the range of motion before and after surgery to the type of the prosthesis trademark. Range of motion was decreased with the usage of Rotaglide and LCS® type of prosthesis. Range of motion didnt change with the usage of Maxim and Kinemax type. The range of motion increased in the other trademark of prosthesis. Flexion angle was increased statistically significant with nexgen® and scorpio® prosthesis (p

  8. Radiation doses to neonates requiring intensive care

    International Nuclear Information System (INIS)

    Robinson, A.; Dellagrammaticas, H.D.

    1983-01-01

    Radiological investigations have become accepted as an important part of the range of facilities required to support severely ill newborn babies. Since the infants are so small, many of the examinations are virtually ''whole-body'' irradiations and it was thought that the total doses received might be appreciable. A group of such babies admitted to the Neonatal Intensive Care Unit in Sheffield over a six-month period have been studied. X-ray exposure factors used for each examination have been noted and total skin, gonad and bone marrow doses calculated, supplemented by measurements on phantoms. It is concluded that in most cases doses received are of the same order as those received over the same period from natural background radiation and probably less than those received from prenatal obstetric radiography, so that the additional risks from the diagnostic exposure are small. The highest doses are received in CT scans and barium examinations and it is recommended that the need for these should be carefully considered. (author)

  9. Effect of radiation dose rate and cyclophosphamide on pulmonary toxicity after total body irradiation in a mouse model

    International Nuclear Information System (INIS)

    Safwat, Akmal; Nielsen, Ole S.; El-Badawy, Samy; Overgaard, Jens

    1996-01-01

    Purpose: Interstitial pneumonitis (IP) is still a major complication after total body irradiation (TBI) and bone marrow transplantation (BMT). It is difficult to determine the exact role of radiation in this multifactorial complication, especially because most of the experimental work on lung damage was done using localized lung irradiation and not TBI. We have thus tested the effect of radiation dose rate and combining cyclophosphamide (CTX) with single fraction TBI on lung damage in a mouse model for BMT. Methods and Materials: TBI was given as a single fraction at a high dose rate (HDR, 0.71 Gy/min) or a low dose rate (LDR, 0.08 Gy/min). CTX (250 mg/kg) was given 24 h before TBI. Bone marrow transplantation (BMT) was performed 4-6 h after the last treatment. Lung damage was assessed using ventilation rate (VR) and lethality between 28 and 180 days (LD (50(28))-180 ). Results: The LD 50 for lung damage, ± standard error (SE), increased from 12.0 (± 0.2) Gy using single fraction HDR to 15.8 (± 0.6) Gy using LDR. Adding CTX shifted the dose-response curves towards lower doses. The LD 50 values for the combined treatment were 5.3 (± 0.2) and 3.5 (± 0.2) Gy for HDR and LDR, respectively. This indicates that the combined effect of CTX and LDR was more toxic than that of combined CTX and HDR. Lung damage evaluated by VR demonstrated two waves of VR increase. The first wave of VR increase occurred after 6 weeks using TBI only and after 3 weeks in the combined CTX-TBI treatment, irrespective of total dose or dose rate. The second wave of VR elevation resembled the IP that follows localized thoracic irradiation in its time of occurrence. Conclusions: Lung damage following TBI could be spared using LDR. However, CTX markedly enhances TBI-induced lung damage. The combination of CTX and LDR is more toxic to the lungs than combining CTX and HDR

  10. A Dose-Volume Analysis of Magnetic Resonance Imaging-Aided High-Dose-Rate Image-Based Interstitial Brachytherapy for Uterine Cervical Cancer

    International Nuclear Information System (INIS)

    Yoshida, Ken; Yamazaki, Hideya; Takenaka, Tadashi; Kotsuma, Tadayuki; Yoshida, Mineo; Furuya, Seiichi; Tanaka, Eiichi; Uegaki, Tadaaki; Kuriyama, Keiko; Matsumoto, Hisanobu; Yamada, Shigetoshi; Ban, Chiaki

    2010-01-01

    Purpose: To investigate the feasibility of our novel image-based high-dose-rate interstitial brachytherapy (HDR-ISBT) for uterine cervical cancer, we evaluated the dose-volume histogram (DVH) according to the recommendations of the Gynecological GEC-ESTRO Working Group for image-based intracavitary brachytherapy (ICBT). Methods and Materials: Between June 2005 and June 2007, 18 previously untreated cervical cancer patients were enrolled. We implanted magnetic resonance imaging (MRI)-available plastic applicators by our unique ambulatory technique. Total treatment doses were 30-36 Gy (6 Gy per fraction) combined with external beam radiotherapy (EBRT). Treatment plans were created based on planning computed tomography with MRI as a reference. DVHs of the high-risk clinical target volume (HR CTV), intermediate-risk CTV (IR CTV), and the bladder and rectum were calculated. Dose values were biologically normalized to equivalent doses in 2-Gy fractions (EQD 2 ). Results: The median D90 (HR CTV) and D90 (IR CTV) per fraction were 6.8 Gy (range, 5.5-7.5) and 5.4 Gy (range, 4.2-6.3), respectively. The median V100 (HR CTV) and V100 (IR CTV) were 98.4% (range, 83-100) and 81.8% (range, 64-93.8), respectively. When the dose of EBRT was added, the median D90 and D100 of HR CTV were 80.6 Gy (range, 65.5-96.6) and 62.4 Gy (range, 49-83.2). The D 2cc of the bladder was 62 Gy (range, 51.4-89) and of the rectum was 65.9 Gy (range, 48.9-76). Conclusions: Although the targets were advanced and difficult to treat effectively by ICBT, MRI-aided image-based ISBT showed favorable results for CTV and organs at risk compared with previously reported image-based ICBT results.

  11. A dose-volume analysis of magnetic resonance imaging-aided high-dose-rate image-based interstitial brachytherapy for uterine cervical cancer.

    Science.gov (United States)

    Yoshida, Ken; Yamazaki, Hideya; Takenaka, Tadashi; Kotsuma, Tadayuki; Yoshida, Mineo; Furuya, Seiichi; Tanaka, Eiichi; Uegaki, Tadaaki; Kuriyama, Keiko; Matsumoto, Hisanobu; Yamada, Shigetoshi; Ban, Chiaki

    2010-07-01

    To investigate the feasibility of our novel image-based high-dose-rate interstitial brachytherapy (HDR-ISBT) for uterine cervical cancer, we evaluated the dose-volume histogram (DVH) according to the recommendations of the Gynecological GEC-ESTRO Working Group for image-based intracavitary brachytherapy (ICBT). Between June 2005 and June 2007, 18 previously untreated cervical cancer patients were enrolled. We implanted magnetic resonance imaging (MRI)-available plastic applicators by our unique ambulatory technique. Total treatment doses were 30-36 Gy (6 Gy per fraction) combined with external beam radiotherapy (EBRT). Treatment plans were created based on planning computed tomography with MRI as a reference. DVHs of the high-risk clinical target volume (HR CTV), intermediate-risk CTV (IR CTV), and the bladder and rectum were calculated. Dose values were biologically normalized to equivalent doses in 2-Gy fractions (EQD(2)). The median D90 (HR CTV) and D90 (IR CTV) per fraction were 6.8 Gy (range, 5.5-7.5) and 5.4 Gy (range, 4.2-6.3), respectively. The median V100 (HR CTV) and V100 (IR CTV) were 98.4% (range, 83-100) and 81.8% (range, 64-93.8), respectively. When the dose of EBRT was added, the median D90 and D100 of HR CTV were 80.6 Gy (range, 65.5-96.6) and 62.4 Gy (range, 49-83.2). The D(2cc) of the bladder was 62 Gy (range, 51.4-89) and of the rectum was 65.9 Gy (range, 48.9-76). Although the targets were advanced and difficult to treat effectively by ICBT, MRI-aided image-based ISBT showed favorable results for CTV and organs at risk compared with previously reported image-based ICBT results. (c) 2010 Elsevier Inc. All rights reserved.

  12. Dose Escalation of Total Marrow Irradiation With Concurrent Chemotherapy in Patients With Advanced Acute Leukemia Undergoing Allogeneic Hematopoietic Cell Transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Jeffrey Y.C., E-mail: jwong@coh.org [Department of Radiation Oncology, City of Hope National Medical Center, Duarte, California (United States); Forman, Stephen; Somlo, George [Department of Hematology/Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, California (United States); Rosenthal, Joseph [Department of Hematology/Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, California (United States); Department of Pediatrics, City of Hope National Medical Center, Duarte, California (United States); Liu An; Schultheiss, Timothy; Radany, Eric [Department of Radiation Oncology, City of Hope National Medical Center, Duarte, California (United States); Palmer, Joycelynne [Department of Biostatistics, City of Hope National Medical Center, Duarte, California (United States); Stein, Anthony [Department of Hematology/Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, California (United States)

    2013-01-01

    Purpose: We have demonstrated that toxicities are acceptable with total marrow irradiation (TMI) at 16 Gy without chemotherapy or TMI at 12 Gy and the reduced intensity regimen of fludarabine/melphalan in patients undergoing hematopoietic cell transplantation (HCT). This article reports results of a study of TMI combined with higher intensity chemotherapy regimens in 2 phase I trials in patients with advanced acute myelogenous leukemia or acute lymphoblastic leukemia (AML/ALL) who would do poorly on standard intent-to-cure HCT regimens. Methods and Materials: Trial 1 consisted of TMI on Days -10 to -6, etoposide (VP16) on Day -5 (60 mg/kg), and cyclophosphamide (CY) on Day -3 (100 mg/kg). TMI dose was 12 (n=3 patients), 13.5 (n=3 patients), and 15 (n=6 patients) Gy at 1.5 Gy twice daily. Trial 2 consisted of busulfan (BU) on Days -12 to -8 (800 {mu}M min), TMI on Days -8 to -4, and VP16 on Day -3 (30 mg/kg). TMI dose was 12 (n=18) and 13.5 (n=2) Gy at 1.5 Gy twice daily. Results: Trial 1 had 12 patients with a median age of 33 years. Six patients had induction failures (IF), and 6 had first relapses (1RL), 9 with leukemia blast involvement of bone marrow ranging from 10%-98%, 5 with circulating blasts (24%-85%), and 2 with chloromas. No dose-limiting toxicities were observed. Eleven patients achieved complete remission at Day 30. With a median follow-up of 14.75 months, 5 patients remained in complete remission from 13.5-37.7 months. Trial 2 had 20 patients with a median age of 41 years. Thirteen patients had IF, and 5 had 1RL, 2 in second relapse, 19 with marrow blasts (3%-100%) and 13 with peripheral blasts (6%-63%). Grade 4 dose-limiting toxicities were seen at 13.5 Gy (stomatitis and hepatotoxicity). Stomatitis was the most frequent toxicity in both trials. Conclusions: TMI dose escalation to 15 Gy is possible when combined with CY/VP16 and is associated with acceptable toxicities and encouraging outcomes. TMI dose escalation is not possible with BU/VP16 due to

  13. Dosimetric properties of the 'Pille' portable, wide dose range TLD reader

    International Nuclear Information System (INIS)

    Szabo, P.P.; Feher, I.; Deme, S.; Szabo, B.; Vagvoelgyi, J.

    1986-01-01

    The dosimetric properties of a portable TLD reader are described. The TLD system named 'Pille' or 'moth' consists of a lightweight battery-operated portable TLD reader and its CaSO 4 :Dy bulb dosemeters. The reproducibility of the TLD system at constant temperature was found to be better than + -2%, and the mean time between failures exceeded 5 years. The dose range of the system is wide, covering more than 6 orders of magnitude, from 5 μGy to 10 Gy. The energy dependence of the CaSO 4 :Dy bulb dosemeters is less than + - 20% above 100 keV in the energy compensation capsules. Without additional annealing, the bulb dosemeters can be re-used at least 100 times, which is an important aspect during in situ measurements. (author)

  14. Enrichment increases hippocampal neurogenesis independent of blood monocyte-derived microglia presence following high-dose total body irradiation.

    Science.gov (United States)

    Ruitenberg, Marc J; Wells, Julia; Bartlett, Perry F; Harvey, Alan R; Vukovic, Jana

    2017-06-01

    Birth of new neurons in the hippocampus persists in the brain of adult mammals and critically underpins optimal learning and memory. The process of adult neurogenesis is significantly reduced following brain irradiation and this correlates with impaired cognitive function. In this study, we aimed to compare the long-term effects of two environmental paradigms (i.e. enriched environment and exercise) on adult neurogenesis following high-dose (10Gy) total body irradiation. When housed in standard (sedentary) conditions, irradiated mice revealed a long-lasting (up to 4 months) deficit in neurogenesis in the granule cell layer of the dentate gyrus, the region that harbors the neurogenic niche. This depressive effect of total body irradiation on adult neurogenesis was partially alleviated by exposure to enriched environment but not voluntary exercise, where mice were single-housed with unlimited access to a running wheel. Exposure to voluntary exercise, but not enriched environment, did lead to significant increases in microglia density in the granule cell layer of the hippocampus; our study shows that these changes result from local microglia proliferation rather than recruitment and infiltration of circulating Cx 3 cr1 +/gfp blood monocytes that subsequently differentiate into microglia-like cells. In summary, latent neural precursor cells remain present in the neurogenic niche of the adult hippocampus up to 8 weeks following high-dose total body irradiation. Environmental enrichment can partially restore the adult neurogenic process in this part of the brain following high-dose irradiation, and this was found to be independent of blood monocyte-derived microglia presence. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  15. Effect of different doses of aerobic exercise on total white blood cell (WBC and WBC subfraction number in postmenopausal women: results from DREW.

    Directory of Open Access Journals (Sweden)

    Neil M Johannsen

    Full Text Available BACKGROUND: Elevated total white blood cell (WBC count is associated with an increased risk of coronary heart disease and death. Aerobic exercise is associated with lower total WBC, neutrophil, and monocyte counts. However, no studies have evaluated the effect of the amount of aerobic exercise (dose on total WBC and WBC subfraction counts. PURPOSE: To examine the effects of 3 different doses of aerobic exercise on changes in total WBC and WBC subfraction counts and independent effects of changes in fitness, adiposity, markers of inflammation (IL-6, TNF-α, C-reactive protein, fasting glucose metabolism, and adiponectin. METHODS: Data from 390 sedentary, overweight/obese postmenopausal women from the DREW study were used in these analyses. Women were randomized to a non-exercise control group or one of 3 exercise groups: energy expenditure of 4, 8, or 12 kcal kg(-1⋅week(-1 (KKW for 6 months at an intensity of 50% VO2peak. RESULTS: A dose-dependent decrease in total WBC counts (trend P = 0.002 was observed with a significant decrease in the 12KKW group (-163.1±140.0 cells/µL; mean±95%CI compared with the control (138.6±144.7 cells/µL. A similar response was seen in the neutrophil subfraction (trend P = 0.001 with a significant decrease in the 12KKW group (-152.6±115.1 cells/µL compared with both the control and 4KKW groups (96.4±119.0 and 21.9±95.3 cells/µL, respectively and in the 8KKW group (-102.4±125.0 cells/µL compared with the control. When divided into high/low baseline WBC categories (median split, a dose-dependent decrease in both total WBCs (P = 0.003 and neutrophils (P<0.001 was observed in women with high baseline WBC counts. The effects of exercise dose on total WBC and neutrophil counts persisted after accounting for significant independent effects of change in waist circumference and IL-6. CONCLUSION: Aerobic exercise training reduces total WBC and neutrophil counts, in a dose-dependent manner, in

  16. The carcinogenic risk of high dose total body irradiation in non-human primates

    International Nuclear Information System (INIS)

    Broerse, J.J.; Bartstra, R.W.; Bekkum, D.W. van; Hage, M.H. van der; Zurcher, C.; Zwieten, M.J. van; Hollander, C.F.

    2000-01-01

    High dose total body irradiation (TBI) in combination with chemotherapy, followed by rescue with bone marrow transplantation (BMT), is increasingly used for the treatment of haematological malignancies. With the increasing success of this treatment and its current introduction for treating refractory autoimmune diseases the risk of radiation carcinogenesis is of growing concern. Studies on turnout induction in non-human primates are of relevance in this context since the response of this species to radiation does not differ much from that in man. Since the early sixties, studies have been performed on acute effects in Rhesus monkeys and the protective action of bone marrow transplantation after irradiation with X-rays (average total body dose 6.8 Gy) and fission neutrons (average dose 3.4 Gy). Of those monkeys, which were irradiated and reconstituted with autologous bone marrow, 20 animals in the X-irradiated group and nine animals in the neutron group survived more than 3 years. A group of 21 non-irradiated Rhesus monkeys of a comparable age distribution served as controls. All animals were regularly screened for the occurrence of neoplasms. Complete necropsies were performed after natural death or euthanasia. At post-irradiation intervals of 4-21 years an appreciable number of tumours was observed. In the neutron irradiated group eight out of nine animals died with one or more malignant tumours. In the X-irradiated group this fraction was 10 out of 20. The tumours in the control group, in seven out of the 21 animals, appeared at much older a-e compared with those in the irradiated cohorts. The histogenesis of the tumours was diverse with a preponderance of renal carcinoma, sarcomas among which osteosarcormas, and malignant glomus tumours in the irradiated groups. When corrected for competing risks, the carcinogenic risk of TBI in the Rhesus monkeys is similar to that derived from the studies of the Japanese atomic bomb survivors. The increase of the risk by a

  17. Analysis of dose to crystalline in Interventional radiology: a purpose of one case

    International Nuclear Information System (INIS)

    Carrera M, F.; Moreno R, F.; Velazquez M, F.; Manzano M, F.J.; Moreno S, T.

    1998-01-01

    The present work shows the dose values to crystalline for the personnel which works in interventional radiology procedures. It was took data of 436 studies with a total of 2,133.4 minutes in fluoroscopy and 19,563 images. It was showed dose values to crystalline in three situations: without blinding, with blinding of 0.25 and 0.50 mm Pb and by type of study: fluoroscopy, graphie and total. The dose means and ranges to patient for each of these studies also are detailed. (Author)

  18. The role of low-dose total body irradiation in treatment of non-Hodgkin's lymphoma: a new look at an old method

    International Nuclear Information System (INIS)

    Safwat, A.

    2000-01-01

    The use of low-dose total body irradiation (LTBI) in treatment of lymphomatous malignancies dates back to the 1920s. The usual practice was to give very low individual TBI fraction sizes (0. 1-0.25 Gy) several times a week to a total dose of 1.5-2 Gy. Despite this very low total dose, LTBI could induce long term remissions and was always as effective as the chemotherapy to which it was compared. In modem radiotherapy, LTBI is still a valid option in treatment of chronic lymphocytic leukaemia (CLL) and the advanced stages of indolent low-grade non-Hodgkin's lymphoma (NHL). Its use in the early stages of low-grade NHL is under investigation in a large multi-institutional trial. The efficacy of LTBI is believed to stem from three mechanisms, namely; immune-enhancement, induction of apoptosis, and the intrinsic hypersensitivity to low-radiation doses demonstrated in many cell lines and tumour systems. Thus, LTBI seems to provide 'alternative' mechanisms of action against cancer cells. This should encourage researchers to explore strategies that integrate LTBI in new and innovative experimental treatment protocols that explore the possible synergism between LTBI and chemotherapy, biological response modifiers and/or immunotherapy. The increased incidence of secondary leukaemia that occurs when LTBI is combined with alkylating agents and/or total lymphoid irradiation should be kept in mind when designing such protocols as it may limit the use of LTBI in highly curable diseases and young patients in whom long survival is expected. (author)

  19. Total lymphoid irradiation in the Wistar rat: technique and dosimetry

    International Nuclear Information System (INIS)

    Hoogenhout, J.; Kazem, I.; de Jong, J.

    1983-01-01

    The technical and dosimetric aspects of total lymphoid irradiation (TLI) in the Wistar rat were evaluated as part of a set-up to develop a new model for tumor xenotransplantation. Information obtained from anatomical dissections, radionuclide imaging of the spleen, lymphography and chromolymphography was used to standardize the localization portals cut out in a lead plate. The two portals encompassed the lymphoid tissue above and below the diaphragm. A specially designed masonite phantom was used to measure the dose distribution in the simulated target volumes. Ionization chamber dosimetery, thermoluminescence dosimetry and film densitometry were used for measuring exposure and absorbed dose. Irradiation was performed with 250 kV X rays (HVL 3.1 mm Cu). The dose rate was regulated by adjusting the treatment distance. The dose inhomogeneity measured in the target volumes varied between 80-100%. The side scatter dose to non target tissues under the shielded area between the two portals ranged between 20-30%. The technique and dosimetry of total lymphoid irradiation in Wistar rats are now standardized and validated and pave the way for tumor xenotransplantation experiments

  20. Pattern imprinting in deep sub-micron static random access memories induced by total dose irradiation

    Science.gov (United States)

    Zheng, Qi-Wen; Yu, Xue-Feng; Cui, Jiang-Wei; Guo, Qi; Ren, Di-Yuan; Cong, Zhong-Chao; Zhou, Hang

    2014-10-01

    Pattern imprinting in deep sub-micron static random access memories (SRAMs) during total dose irradiation is investigated in detail. As the dose accumulates, the data pattern of memory cells loading during irradiation is gradually imprinted on their background data pattern. We build a relationship between the memory cell's static noise margin (SNM) and the background data, and study the influence of irradiation on the probability density function of ΔSNM, which is the difference between two data sides' SNMs, to discuss the reason for pattern imprinting. Finally, we demonstrate that, for micron and deep sub-micron devices, the mechanism of pattern imprinting is the bias-dependent threshold shift of the transistor, but for a deep sub-micron device the shift results from charge trapping in the shallow trench isolation (STI) oxide rather than from the gate oxide of the micron-device.

  1. Results of Hematopoietic Stem Cell Transplantation After Treatment With Different High-Dose Total-Body Irradiation Regimens in Five Dutch Centers

    International Nuclear Information System (INIS)

    Loes van Kempen-Harteveld, M.; Brand, Ronald; Kal, Henk B.; Verdonck, Leo F.; Hofman, Pieter; Schattenberg, Anton V.; Maazen, Richard W. van der; Cornelissen, Jan J.; Eijkenboom, Wil M.H.; Lelie, Johannes P. van der; Oldenburger, Foppe; Barge, Renee M.; Biezen, Anja van; Vossen, Jaak M.J.J.; Noordijk, Evert M.; Struikmans, Henk

    2008-01-01

    Purpose: To evaluate results of high-dose total-body irradiation (TBI) regimens for hematopoietic stem cell transplantation. Methods and Materials: A total of 1,032 patients underwent TBI in one or two fractions before autologous or allogeneic hematologic stem cell transplantation for acute leukemia and non-Hodgkin's lymphoma. The TBI regimens were normalized by using the biological effective dose (BED) concept. The BED values were divided into three dose groups. Study end points were relapse incidence (RI), non-relapse mortality (NRM), relapse-free survival (RFS), and overall survival (OS). Multivariate analysis was performed, stratified by disease. Results: In the highest TBI dose group, RI was significantly lower and NRM was higher vs. the lower dose groups. However, a significant influence on RFS and OS was not found. Relapses in the eye region were found only after shielding to very low doses. Age was of significant influence on OS, RFS, and NRM in favor of younger patients. The NRM of patients older than 40 years significantly increased, and OS decreased. There was no influence of age on RI. Men had better OS and RFS and lower NRM. Type of transplantation significantly influenced RI and NRM for patients with acute leukemia and non-Hodgkin's lymphoma. There was no influence on RFS and OS. Conclusions: Both RI and NRM were significantly influenced by the size of the BED of single-dose or two-fraction TBI regimens; OS and RFS were not. Age was of highly significant influence on NRM, but there was no influence of age on RI. Hyperfractionated TBI with a high BED might be useful, assuming NRM can be reduced

  2. Population dose commitments due to radioactive releases from nuclear-power-plant sites in 1978

    International Nuclear Information System (INIS)

    Peloquin, R.A.; Schwab, J.D.; Baker, D.A.

    1982-06-01

    Population radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1978. Fifty-year dose commitments from a one-year exposure were calculated from both liquid and atmospheric releases for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each site. This report tabulates the results of these calculations, showing the dose commitments for both liquid and airborne pathways for each age group and organ. Also included for each site is a histogram showing the fraction of the total population within 2 to 80 km around each site receiving various average dose commitments from the airborne pathways. The total dose commitment from both liquid and airborne pathways ranged from a high of 200 person-rem to a low of 0.0004 person-rem with an arithmetic mean of 14 person-rem. The total population dose for allsites was estimated at 660 person-rem for the 93 million people considered at risk. The average individual dose commitment from all pathways on a site basis ranged from a low of 3 x 10 -6 mrem to a high of 0.08 mrem. No attempt was made in this study to determine the maximum dose commitment received by any one individual from the radionuclides released at any of the sites

  3. Population dose commitments due to radioactive releases from Nuclear-Power-Plant Sites in 1979

    International Nuclear Information System (INIS)

    Baker, D.A.; Peloquin, R.A.

    1982-12-01

    Population radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1979. Fifty-year dose commitments from a one-year exposure were calculated from both liquid and atmospheric releases for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each site. This report tabulates the results of these calculations, showing the dose commitments for both liquid and airborne pathways for each age group and organ. Also included for each site is a histogram showing the fraction of the total population within 2 to 80 km around each site receiving various average dose commitments from the airborne pathways. The total dose commitment from both liquid and airborne pathways ranged from a high of 1300 person-rem to a low of 0.0002 person-rem with an arithmetic mean of 38 person-rem. The total population dose for all sites was estimated at 1800 person-rem for the 94 million people considered at risk. The average individual dose commitment from all pathways on a site basis ranged from a low of 2 x 10 - 6 mrem to a high of 0.7 mrem. No attempt was made in this study to determine the maximum dose commitment received by any one individual from the radionuclides released at any of the sites

  4. Radiolysis of aqueous solutions of ammonium bicarbonate over a large dose range

    International Nuclear Information System (INIS)

    Draganic, Z.D.; Draganic, I.G.; Negron-Mendoza, A.; Navarro-Gonzales, R.; Albarran-Sanchez, M.G.; Sehested, K.

    1986-12-01

    0 2 -free aqueous solutions of 0.05 mol dm -3 ammonium bicarbonate were studied after receiving various doses of 60 Co gammas (0.001-170 Mrd) or krd pulses of 10 MeV electrons. Formate, oxalate, formaldehyde and an unidentified polymer (M w 14000-16000 daltons) were found to be the main radiolytic products. A large initial yield of formate in the γ-radiolysis, G(HCOO - ) = 2.2, is due to the reaction CO 2 - + HCO 3 - ↔ HC00 - + CO 3 - . The efficiency of organic synthesis within the large dose range studied is low and is explained by efficient pathways to the reformation of bicarbonate, where the reaction CO 2 - + CO 3 - is particurlarly significant. Computer fitting of the data obtained in the γ-radiolysis and by pulsed electron beam experiments gives k(CO 2 - + HCO 3 - ) = (2 ± 0.4)x10 3 dm 3 mol -1 s -1 , k(CO 2 - + CO 3 - ) = (5 ± 1)x10 7 dm 3 mol -1 s -1 , k(NH 2 + = HCO 3 - ) 4 dm 3 mol -1 s -1 and k(NH 2 + CO 3 - ) = (1.5 ± 0.5)x10 9 dm 3 mol -1 s -1 . (author)

  5. The influence of non-radiation induced ESR background signal from paraffin-alanine probes for dosimetry in the radiotherapy dose range

    International Nuclear Information System (INIS)

    Wieser, A.; Lettau, C.; Fill, U.; Regulla, D.F.

    1993-01-01

    The yield of radicals induced by ionizing radiation in the amino acid alanine and its quantification by ESR spectroscopy has proven excellent reproducibility. Those radicals trapped in the crystal lattice are prevented from recombination providing a thermally very stable system. This allows alanine to be applied as a transfer dosemeter. With paraffin-alanine probes ESR dosimetry can be performed with a standard deviation of ± 0.5% in the dose range from 20 Gy up to 100 kGy. At 1 Gy dose level the error increases to ± 6%. This dose level is three orders of magnitude higher than the calculated detection threshold for alanine with modern X-band ESR spectrometers. It was found that the poor standard deviation at the 1 Gy dose level, is not mainly produced by a bad signal-to-noise ratio but by a variable non-radiation induced ESR background signal from the alanine probes within a batch. In the present study the main sources of error for ESR dosimetry in the dose range below 20 Gy were analyzed. The influences of the production process, UV light and humidity upon the ESR background signal from paraffin-alanine probes were investigated. Measurements are shown indicating a second stable structure of the alanine radical at room temperature. (author)

  6. Simulating threshold voltage shift of MOS devices due to radiation in the low-dose range

    CERN Document Server

    Wan Xin Heng; Gao Wen Yu; Huang Ru; Wang Yang Yuan

    2002-01-01

    An analytical MOSFET threshold voltage shift model due to radiation in the low-dose range has been developed for circuit simulations. Experimental data in the literature shows that the model predictions are in good agreement. It is simple in functional form and hence computationally efficient. It can be used as a basic circuit simulation tool for analysing MOSFET exposed to a nuclear environment up to about 1 Mrad(Si). In accordance with common believe, radiation induced absolute change of threshold voltage was found to be larger in irradiated PMOS devices. However, if the radiation sensitivity is defined in the way authors did it, the results indicated NMOS rather than PMOS devices are more sensitive, specially at low doses. This is important from the standpoint of their possible application in dosimetry

  7. Effect of treatment with single total-dose intravenous iron versus daily oral iron(III-hydroxide polymaltose on moderate puerperal iron-deficiency anemia

    Directory of Open Access Journals (Sweden)

    Iyoke CA

    2017-05-01

    Full Text Available Chukwuemeka Anthony Iyoke,1 Fausta Chioma Emegoakor,1 Euzebus Chinonye Ezugwu,1 Lucky Osaheni Lawani,2 Leonard Ogbonna Ajah,1 Jude Anazoeze Madu,3 Hyginus Uzo Ezegwui,1 Frank Okechukwu Ezugwu4 1Department of Obstetrics and Gynaecology, University of Nigeria, Enugu Campus, 2Department of Obstetrics and Gynaecology, Federal Teaching Hospital, Abakaliki, 3Department of Haematology, University of Nigeria, Nsukka, 4Department of Obstetrics and Gynaecology, College of Medicine, Enugu State University, Enugu, Nigeria Background: Iron-deficiency anemia is the most common nutritional cause of anemia in pregnancy and is often responsible for puerperal anemia. Puerperal anemia can impair postpartum maternal and neonatal well-being. Objective: To determine the effect of treatment of moderate puerperal iron-deficiency anemia using a single intravenous total-dose iron dextran versus daily single dose oral iron(III-hydroxide polymaltose. Methodology: A randomized controlled study in which postpartum women with moderate iron-deficiency anemia were randomized into treatment with either a single total-dose intravenous iron dextran or with daily single doses of oral iron(III-hydroxide polymaltose tablets for 6 weeks. Effects on hemoglobin concentration using either method were compared at 6 weeks postpartum. Analysis was per protocol using SPSS version 17 for windows. P-values ≤0.05 were considered significant. Results: Two hundred eighty-four women were recruited for the study: 142 women received single total dose intravenous infusion of iron dextran while 142 received daily oral iron(III-hydroxide polymaltose tablets. Approximately 84.0% (237/282 completed the study and were analyzed including 81% (115/142 of those randomized to injectable iron therapy compared to 85.9% (122/142 of those randomized to oral treatment. The proportions of women who had attained hemoglobin concentration of at least 10 g/dL by the 6 weeks postpartum visit did not differ

  8. Probabilistic approach to external cloud dose calculations using onsite meteorological data

    International Nuclear Information System (INIS)

    Strenge, D.L.; Watson, E.C.; Bander, T.J.; Kennedy, W.E.

    1976-01-01

    A method is described for calculation of external total body and skin doses from accidental atmospheric releases of radionuclides based on hourly onsite meteorological data. The method involves calculation of dose values from a finite size cloud for each hourly observation for a given radionuclide inventory. These values are then used to determine the probability of occurrence of dose levels for specified release times ranging from one hour to 30 days

  9. Retrospective Reconstructions of Active Bone Marrow Dose-Volume Histograms

    International Nuclear Information System (INIS)

    Veres, Cristina; Allodji, Rodrigue S.; Llanas, Damien; Vu Bezin, Jérémi; Chavaudra, Jean; Mège, Jean Pierre; Lefkopoulos, Dimitri; Quiniou, Eric; Deutsh, Eric; Vathaire, Florent de; Diallo, Ibrahima

    2014-01-01

    Purpose: To present a method for calculating dose-volume histograms (DVH's) to the active bone marrow (ABM) of patients who had undergone radiation therapy (RT) and subsequently developed leukemia. Methods and Materials: The study focuses on 15 patients treated between 1961 and 1996. Whole-body RT planning computed tomographic (CT) data were not available. We therefore generated representative whole-body CTs similar to patient anatomy. In addition, we developed a method enabling us to obtain information on the density distribution of ABM all over the skeleton. Dose could then be calculated in a series of points distributed all over the skeleton in such a way that their local density reflected age-specific data for ABM distribution. Dose to particular regions and dose-volume histograms of the entire ABM were estimated for all patients. Results: Depending on patient age, the total number of dose calculation points generated ranged from 1,190,970 to 4,108,524. The average dose to ABM ranged from 0.3 to 16.4 Gy. Dose-volume histograms analysis showed that the median doses (D 50% ) ranged from 0.06 to 12.8 Gy. We also evaluated the inhomogeneity of individual patient ABM dose distribution according to clinical situation. It was evident that the coefficient of variation of the dose for the whole ABM ranged from 1.0 to 5.7, which means that the standard deviation could be more than 5 times higher than the mean. Conclusions: For patients with available long-term follow-up data, our method provides reconstruction of dose-volume data comparable to detailed dose calculations, which have become standard in modern CT-based 3-dimensional RT planning. Our strategy of using dose-volume histograms offers new perspectives to retrospective epidemiological studies

  10. Dosimetric evaluation of total marrow irradiation using 2 different planning systems

    International Nuclear Information System (INIS)

    Nalichowski, Adrian; Eagle, Don G.; Burmeister, Jay

    2016-01-01

    This study compared 2 different treatment planning systems (TPSs) for quality and efficiency of total marrow irradiation (TMI) plans. The TPSs used in this study were VOxel-Less Optimization (VoLO) (Accuray Inc, Sunnyvale, CA) using helical dose delivery on a Tomotherapy Hi-Art treatment unit and Eclipse (Varian Medical Systems Inc, Palo Alto, CA) using volumetric modulated arc therapy (VMAT) dose delivery on a Varian iX treatment unit. A total dose of 1200 cGy was prescribed to cover 95% of the planning target volume (PTV). The plans were optimized and calculated based on a single CT data and structure set using the Alderson Rando phantom (The Phantom Laboratory, Salem, NY) and physician contoured target and organ at risk (OAR) volumes. The OARs were lungs, heart, liver, kidneys, brain, and small bowel. The plans were evaluated based on plan quality, time to optimize the plan and calculate the dose, and beam on time. The resulting mean and maximum doses to the PTV were 1268 and 1465 cGy for VoLO and 1284 and 1541 cGy for Eclipse, respectively. For 5 of 6 OAR structures the VoLO system achieved lower mean and D10 doses ranging from 22% to 52% and 3% to 44%, respectively. Total computational time including only optimization and dose calculation were 0.9 hours for VoLO and 3.8 hours for Eclipse. These times do not include user-dependent target delineation and field setup. Both planning systems are capable of creating high-quality plans for total marrow irradiation. The VoLO planning system was able to achieve more uniform dose distribution throughout the target volume and steeper dose fall off, resulting in superior OAR sparing. VoLO's graphics processing unit (GPU)–based optimization and dose calculation algorithm also allowed much faster creation of TMI plans.

  11. Dosimetric evaluation of total marrow irradiation using 2 different planning systems

    Energy Technology Data Exchange (ETDEWEB)

    Nalichowski, Adrian, E-mail: nalichoa@karmanos.org [Karmanos Cancer Center, Detroit, MI (United States); Eagle, Don G. [Wayne State University School of Medicine, Detroit, MI (United States); Burmeister, Jay [Karmanos Cancer Center, Detroit, MI (United States); Wayne State University School of Medicine, Detroit, MI (United States)

    2016-10-01

    This study compared 2 different treatment planning systems (TPSs) for quality and efficiency of total marrow irradiation (TMI) plans. The TPSs used in this study were VOxel-Less Optimization (VoLO) (Accuray Inc, Sunnyvale, CA) using helical dose delivery on a Tomotherapy Hi-Art treatment unit and Eclipse (Varian Medical Systems Inc, Palo Alto, CA) using volumetric modulated arc therapy (VMAT) dose delivery on a Varian iX treatment unit. A total dose of 1200 cGy was prescribed to cover 95% of the planning target volume (PTV). The plans were optimized and calculated based on a single CT data and structure set using the Alderson Rando phantom (The Phantom Laboratory, Salem, NY) and physician contoured target and organ at risk (OAR) volumes. The OARs were lungs, heart, liver, kidneys, brain, and small bowel. The plans were evaluated based on plan quality, time to optimize the plan and calculate the dose, and beam on time. The resulting mean and maximum doses to the PTV were 1268 and 1465 cGy for VoLO and 1284 and 1541 cGy for Eclipse, respectively. For 5 of 6 OAR structures the VoLO system achieved lower mean and D10 doses ranging from 22% to 52% and 3% to 44%, respectively. Total computational time including only optimization and dose calculation were 0.9 hours for VoLO and 3.8 hours for Eclipse. These times do not include user-dependent target delineation and field setup. Both planning systems are capable of creating high-quality plans for total marrow irradiation. The VoLO planning system was able to achieve more uniform dose distribution throughout the target volume and steeper dose fall off, resulting in superior OAR sparing. VoLO's graphics processing unit (GPU)–based optimization and dose calculation algorithm also allowed much faster creation of TMI plans.

  12. TH-A-19A-06: Site-Specific Comparison of Analytical and Monte Carlo Based Dose Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Schuemann, J; Grassberger, C; Paganetti, H [Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); Dowdell, S [Illawarra Shoalhaven Local Health District, Wollongong (Australia)

    2014-06-15

    Purpose: To investigate the impact of complex patient geometries on the capability of analytical dose calculation algorithms to accurately predict dose distributions and to verify currently used uncertainty margins in proton therapy. Methods: Dose distributions predicted by an analytical pencilbeam algorithm were compared with Monte Carlo simulations (MCS) using TOPAS. 79 complete patient treatment plans were investigated for 7 disease sites (liver, prostate, breast, medulloblastoma spine and whole brain, lung and head and neck). A total of 508 individual passively scattered treatment fields were analyzed for field specific properties. Comparisons based on target coverage indices (EUD, D95, D90 and D50) were performed. Range differences were estimated for the distal position of the 90% dose level (R90) and the 50% dose level (R50). Two-dimensional distal dose surfaces were calculated and the root mean square differences (RMSD), average range difference (ARD) and average distal dose degradation (ADD), the distance between the distal position of the 80% and 20% dose levels (R80- R20), were analyzed. Results: We found target coverage indices calculated by TOPAS to generally be around 1–2% lower than predicted by the analytical algorithm. Differences in R90 predicted by TOPAS and the planning system can be larger than currently applied range margins in proton therapy for small regions distal to the target volume. We estimate new site-specific range margins (R90) for analytical dose calculations considering total range uncertainties and uncertainties from dose calculation alone based on the RMSD. Our results demonstrate that a reduction of currently used uncertainty margins is feasible for liver, prostate and whole brain fields even without introducing MC dose calculations. Conclusion: Analytical dose calculation algorithms predict dose distributions within clinical limits for more homogeneous patients sites (liver, prostate, whole brain). However, we recommend

  13. TH-A-19A-06: Site-Specific Comparison of Analytical and Monte Carlo Based Dose Calculations

    International Nuclear Information System (INIS)

    Schuemann, J; Grassberger, C; Paganetti, H; Dowdell, S

    2014-01-01

    Purpose: To investigate the impact of complex patient geometries on the capability of analytical dose calculation algorithms to accurately predict dose distributions and to verify currently used uncertainty margins in proton therapy. Methods: Dose distributions predicted by an analytical pencilbeam algorithm were compared with Monte Carlo simulations (MCS) using TOPAS. 79 complete patient treatment plans were investigated for 7 disease sites (liver, prostate, breast, medulloblastoma spine and whole brain, lung and head and neck). A total of 508 individual passively scattered treatment fields were analyzed for field specific properties. Comparisons based on target coverage indices (EUD, D95, D90 and D50) were performed. Range differences were estimated for the distal position of the 90% dose level (R90) and the 50% dose level (R50). Two-dimensional distal dose surfaces were calculated and the root mean square differences (RMSD), average range difference (ARD) and average distal dose degradation (ADD), the distance between the distal position of the 80% and 20% dose levels (R80- R20), were analyzed. Results: We found target coverage indices calculated by TOPAS to generally be around 1–2% lower than predicted by the analytical algorithm. Differences in R90 predicted by TOPAS and the planning system can be larger than currently applied range margins in proton therapy for small regions distal to the target volume. We estimate new site-specific range margins (R90) for analytical dose calculations considering total range uncertainties and uncertainties from dose calculation alone based on the RMSD. Our results demonstrate that a reduction of currently used uncertainty margins is feasible for liver, prostate and whole brain fields even without introducing MC dose calculations. Conclusion: Analytical dose calculation algorithms predict dose distributions within clinical limits for more homogeneous patients sites (liver, prostate, whole brain). However, we recommend

  14. Time- and radiation-dose dependent changes in the plasma proteome after total body irradiation of non-human primates: Implications for biomarker selection.

    Directory of Open Access Journals (Sweden)

    Stephanie D Byrum

    Full Text Available Acute radiation syndrome (ARS is a complex multi-organ disease resulting from total body exposure to high doses of radiation. Individuals can be exposed to total body irradiation (TBI in a number of ways, including terrorist radiological weapons or nuclear accidents. In order to determine whether an individual has been exposed to high doses of radiation and needs countermeasure treatment, robust biomarkers are needed to estimate radiation exposure from biospecimens such as blood or urine. In order to identity such candidate biomarkers of radiation exposure, high-resolution proteomics was used to analyze plasma from non-human primates following whole body irradiation (Co-60 at 6.7 Gy and 7.4 Gy with a twelve day observation period. A total of 663 proteins were evaluated from the plasma proteome analysis. A panel of plasma proteins with characteristic time- and dose-dependent changes was identified. In addition to the plasma proteomics study reported here, we recently identified candidate biomarkers using urine from these same non-human primates. From the proteomic analysis of both plasma and urine, we identified ten overlapping proteins that significantly differentiate both time and dose variables. These shared plasma and urine proteins represent optimal candidate biomarkers of radiation exposure.

  15. Evaluation of GAFCHROMIC EBT2 dosimetry for the low dose range using a flat-bed scanner with the reflection mode

    International Nuclear Information System (INIS)

    Gotanda, Tatsuhiro; Katsuda, Toshizo; Akagawa, Takuya; Gotanda, Rumi; Tabuchi, Akihiko; Yamamoto, Kenyu; Kuwano, Tadao; Takedo, Yoshihiro; Yatake, Hidetoshi; Yabunaka, Koichi

    2013-01-01

    Recently developed radiochromic films can easily be used to measure absorbed doses because they do not need development processing and indicate a density change that depends on the absorbed dose. However, in GAFCHROMIC EBT2 dosimetry (GAF-EBT2) as a radiochromic film, the precision of the measurement was compromised, because of non-uniformity problems caused by image acquisition using a flat-bed scanner with a transmission mode. The purpose of this study was to improve the precision of the measurement using a flat-bed scanner with a reflection mode at the low absorbed dose dynamic range of GAF-EBT2. The calibration curves of the absorbed dose versus the film density for GAF-EBT2 were provided. X-rays were exposed in the range between ~0 and 120 mGy in increments of about 12 mGy. The results of the method using a flat-bed scanner with the transmission mode were compared with those of the method using the same scanner with the reflection mode. The results should that the determination coefficients (r 2 ) for the straight-line approximation of the calibration curve using the reflection mode were higher than 0.99, and the gradient using the reflection mode was about twice that of the one using the transmission mode. The non-uniformity error that is produced by a flat-bed scanner with the transmission mode setting could be almost eliminated by converting from the transmission mode to the reflection mode. In light of these findings, the method using a flat-bed scanner with the reflection mode (only using uniform white paper) improved the precision of the measurement for the low absorbed dose range.

  16. Efficacy and Safety of OnabotulinumtoxinA Treatment of Forehead Lines: A Multicenter, Randomized, Dose-Ranging Controlled Trial.

    Science.gov (United States)

    Solish, Nowell; Rivers, Jason K; Humphrey, Shannon; Muhn, Channy; Somogyi, Chris; Lei, Xiaofang; Bhogal, Meetu; Caulkins, Carrie

    2016-03-01

    Various onabotulinumtoxinA doses are effective in treating forehead lines (FHL), with a trend toward lower doses. To evaluate efficacy and safety of onabotulinumtoxinA dose-ranging treatment of FHL when the frontalis area and glabellar complex are treated together. Adults with moderate-to-severe FHL received onabotulinumtoxinA 40 U (FHL, 20 U; glabellar lines [GL], 20 U), 30 U (FHL, 10 U; GL, 20 U), or placebo. Response was assessed at weeks 1, 2, day 30, and monthly to day 180. Coprimary efficacy end points were investigator- and subject-assessed Facial Wrinkle Scale scores of none or mild (day 30). Patient-reported outcomes, onset/duration of effect, and adverse events (AEs) were evaluated. Responder rates (investigator/subject, respectively) were 40-U group, 91.2%/89.5%; 30-U group, 86.4%/81.4%; placebo, 1.7%/5.1%. OnabotulinumtoxinA resulted in significantly greater responder rates than placebo (p < .001). Adverse events were mild to moderate and similar between groups (most common AEs: nasopharyngitis [4.6%] and headache [4.0%]). Treatment of FHL with onabotulinumtoxinA 40 and 30 U (in frontalis and glabellar complex muscles) was tolerable, effective, and sustained. Both doses significantly reduced FHL severity; however, the 40-U dose demonstrated a trend toward greater sustained benefit and longer duration of effect versus the 30-U dose, with similar AE rates.

  17. An examination of the distribution of patient doses from diagnostic x-ray procedures

    International Nuclear Information System (INIS)

    Morris, N.D.

    1983-02-01

    An examination was made of the distribution of patient doses from diagnostic radiology. The data were derived from an Australia wide survey carried out during the 1970's. There was a large range of doses to which patients were exposed. If establishments can reduce doses to below the most common value, the total dose to the population will be reduced to less than 60% of the present value

  18. Mathematical model for evaluation of dose-rate effect on biological responses to low dose γ-radiation

    International Nuclear Information System (INIS)

    Ogata, H.; Kawakami, Y.; Magae, J.

    2003-01-01

    Full text: To evaluate quantitative dose-response relationship on the biological response to radiation, it is necessary to consider a model including cumulative dose, dose-rate and irradiation time. In this study, we measured micronucleus formation and [ 3 H] thymidine uptake in human cells as indices of biological response to gamma radiation, and analyzed mathematically and statistically the data for quantitative evaluation of radiation risk at low dose/low dose-rate. Effective dose (ED x ) was mathematically estimated by fitting a general function of logistic model to the dose-response relationship. Assuming that biological response depends on not only cumulative dose but also dose-rate and irradiation time, a multiple logistic function was applied to express the relationship of the three variables. Moreover, to estimate the effect of radiation at very low dose, we proposed a modified exponential model. From the results of fitting curves to the inhibition of [ 3 H] thymidine uptake and micronucleus formation, it was obvious that ED 50 in proportion of inhibition of [ 3 H] thymidine uptake increased with longer irradiation time. As for the micronuclei, ED 30 also increased with longer irradiation times. These results suggest that the biological response depends on not only total dose but also irradiation time. The estimated response surface using the three variables showed that the biological response declined sharply when the dose-rate was less than 0.01 Gy/h. These results suggest that the response does not depend on total cumulative dose at very low dose-rates. Further, to investigate the effect of dose-rate within a wider range, we analyzed the relationship between ED x and dose-rate. Fitted curves indicated that ED x increased sharply when dose-rate was less than 10 -2 Gy/h. The increase of ED x signifies the decline of the response or the risk and suggests that the risk approaches to 0 at infinitely low dose-rate

  19. Analysis of dose delivery patterns to Kozloduy NPP personnel

    Energy Technology Data Exchange (ETDEWEB)

    Khristova, M; Karadzhov, A; Shopov, N [National Centre of Radiobiology and Radiation Protection, Sofia (Bulgaria); Aleksiev, A; Vylchev, G; Todorov, N [Kombinat Atomna Energetika, Kozloduj (Bulgaria)

    1996-12-31

    Basic characteristics of occupational exposures of Kozloduy NPP workers in the period 1974-1993 are presented. The total collective dose accumulated since the beginning of the Kozloduy NPP operation is 165 man-Sv for the six reactors (73 reactor years in total). The average collective dose per GWh is 1.2 man-Sv/GWh in the 70`s and then decreases. The average collective dose per reactor in the initial years has been between 2 and 3.5 man-Sv and after 1987 it is in general lower than 2 man-Sv. These values are compared to data from other European countries and USA. Summarized data on personal annual doses for 1987-1992 are presented. The average dose per person is in the range 4-8 mSv/a. For 1993 the average personal annual doses are 1.3 mSv/a for the Kozloduy-5 and the Kozloduy-6 and 5.5 mSv/a for the Kozloduy units 1 to 4. 1 ref., 2 figs., 3 tabs.

  20. Pattern imprinting in deep sub-micron static random access memories induced by total dose irradiation

    International Nuclear Information System (INIS)

    Zheng Qi-Wen; Yu Xue-Feng; Cui Jiang-Wei; Guo Qi; Ren Di-Yuan; Cong Zhong-Chao; Zhou Hang

    2014-01-01

    Pattern imprinting in deep sub-micron static random access memories (SRAMs) during total dose irradiation is investigated in detail. As the dose accumulates, the data pattern of memory cells loading during irradiation is gradually imprinted on their background data pattern. We build a relationship between the memory cell's static noise margin (SNM) and the background data, and study the influence of irradiation on the probability density function of ΔSNM, which is the difference between two data sides' SNMs, to discuss the reason for pattern imprinting. Finally, we demonstrate that, for micron and deep sub-micron devices, the mechanism of pattern imprinting is the bias-dependent threshold shift of the transistor, but for a deep sub-micron device the shift results from charge trapping in the shallow trench isolation (STI) oxide rather than from the gate oxide of the micron-device. (condensed matter: structural, mechanical, and thermal properties)

  1. Effect of gamma radiation on total antioxidant capacity, total lipid concentration and shelf life of finger millet flour

    International Nuclear Information System (INIS)

    Lathika; Manupriya, B.R.; Shenoy, K.B.; Patil, S.L.; Somashekarappa, H.M.

    2016-01-01

    The present study is an attempt to study the impact of gamma radiation on the shelf life, total antioxidant capacity and total lipid concentration of finger millet (Eleusine coracana L.) flour. Finger millet flour was procured from market. Flour samples of 50 g were taken in triplicates in a polyethylene pouch, air sealed and subjected to gamma irradiation doses ranging from 0.25 to 10 kGy and stored in polyethylene bags and plastic containers for a period of 1 year. Within 24 hours of irradiation, the samples were tested for moisture (2 ± 0.2%), total antioxidant capacity (0.12 ± 0.010 mg) and lipid concentration (15 ± 0.4 mg)

  2. Use of BEIR V and UNSCEAR 1988 in radiation risk assessment: Lifetime total cancer mortality risk estimates at low doses and low dose rates for low-LET radiation

    International Nuclear Information System (INIS)

    1992-12-01

    In November 1986, the Department of Defense (DoD) asked the Committee on Interagency Radiation Research and Policy Coordination (CIRRPC) to develop a coordinated Federal position on risk assessment for low levels of ionizing radiation. Since Federal risk assessment activities are based primarily on the scientific data and analyses in authoritative review documents prepared by groups like the National Academy of Sciences' Committee on the Biological Effects of Ionizing Radiation (BEIR), the National Council on Radiation Protection and Measurements (NCRP) and the United Nations' Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), DoD proposed that the CIRRPC Science Panel undertake the task of providing coordinated interagency positions on the use of information in the reports of such groups. The practice has been for individual Federal agencies to interpret and decide independently how to use the information provided in such reports. As a result of its deliberations, the Subpanel recommends two nominal risk estimates for lifetime total cancer mortality following whole-body exposure to low levels of low-LET ionizing radiation, one for the general population and one for the working-age population (see Section II). The recommended risk estimates reflect the general agreement of information in BEIR V and UNSCEAR 1988 for total cancer mortality. The Subpanel's risk estimates and associated statements are intended to meet the needs of the Federal agencies for: (a) values that are current; (b) values that are relevant to the low-dose and low dose-rate ionizing radiation exposures principally encountered in carrying out Federal responsibilities; (c) a statement of the change in the estimates of lifetime total cancer mortality relative to estimates in previous authoritative review documents; and (d) a practical statement on the scientific uncertainty associated with applying the lifetime total cancer mortality values at very low doses

  3. Extending the dose range: Probing deep traps in quartz with 3.06 eV photons

    DEFF Research Database (Denmark)

    Jain, Mayank

    2009-01-01

    stimulation. Although, the fast OSL component is measured with similar efficiency by blue and violet lights, the slower OSL components (especially S3) are measured relatively more efficiently with the latter. New insight into the origins of quartz luminescence is presented through a comparison of violet......This article demonstrates that violet (405 nm) stimulated luminescence (VSL) signal from quartz contains contribution from deep traps that are otherwise not accessible with blue light (470 nm). Additionally, it also contains the typical fast and slow components observed with the blue light...... and blue lights stimulation, and thermal stimulations. Finally, it is shown that the deep traps probed through violet light stimulation have potential for increasing the dose measurement/dating range using quartz. The post-blue VSL signal allows easy, precise measurement of dose up to at least 1 kGy in our...

  4. Precise Measurement of the $\\bar{p}p$ Total Cross-Section in the ISR Energy Range

    CERN Multimedia

    2002-01-01

    The major aim of this experiment is the precise measurement of the antiproton-proton total cross-section in the ISR energy range, using the total-rate method. The proton-proton total cross-section is remeasured with the same method and the same apparatus, and a precision of 0.5\\% is expected for both cross-sections. The total-rate method consists in the simultaneous measurement of the total interaction rate and the ISR luminosity. This is done with a set of scintillation-counter hodoscopes covering over 99.99\\% of the solid angle, which are sensitive to over 95\\% of all interactions. In addition to these detectors, small-angle drift-tube hodoscopes are used to measure the differential elastic cross-section as a function of the momentum transfert t. The total cross-section can be measured independently by extrapolating this differential cross-section to the forward direction and invoking the optical theorem. A study of the general features of charged-particle production is performed using finely divided scinti...

  5. Radiation retinopathy after external-beam irradiation: Analysis of time-dose factors

    International Nuclear Information System (INIS)

    Parsons, J.T.; Bova, F.J.; Mendenhall, W.M.

    1994-01-01

    To investigate the risk of radiation-induced retinopathy according to total radiation dose and fraction size, based on both retorspective and prospectively collected data. Between October 1964 and May 1989, 68 retinae in 64 patients received fractionated external-beam irradiation during the treatment of primary extracranial head and neck tumors. All patients had a minimum of 3 years of ophthalmologic follow-up (range, 3 to 26 years; mean, 9 years; median, 8 years). Twenty-seven eyes in 26 patients developed radiation retinopathy resulting in visual acuity of 20/200 or worse. The mean and median times to the onset of symptoms attributable to retinal ischemia were 2.8 and 2.5 years, respectively. Fourteen of the injured eyes developed rubeosis iridis and/or neovascular glaucoma. Radiation retinopathy was not observed at doses below 45 Gy, but increased steadily in incidence at doses ≥45Gy. In the range of doses between 45 and 55 Gy, there was an increased risk of injury among patients who received doses per fraction of ≥1.9Gy (p - .09). There was also a trend toward increased risk of injury among patients who received chemotherapy (two of two vs. four of ten in the 45-51 Gy range; p - .23). The lowest dose associated with retinopathy was 45 Gy delivered to a diabetic patient by twice-a-day fractionation. The data did not suggest an increased risk of radiation retinopathy with increasing age. The current study suggests the importance of total dose as well as dose per fraction, and adds support to a small body of literature suggesting that patients with diabetes mellitus or who receive chemotherapy are at increased risk of injury. A sigmoid dose-response curve is constructed from our current data and data from the literature. 36 refs., 5 figs., 4 tabs

  6. /sup 210/Po in marine organisms: a wide range of natural radiation dose domains

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, F P

    1988-01-01

    Marine biota is able to concentrate /sup 210/Po to high levels, as 10/sup 3/-10/sup 5/ relative to sea water concentration. /sup 210/Po concentrations in mixed zooplankton reaches 34-51 Bq.kg/sup -1/ (fresh wt), special groups such as copepods reaching even higher concentrations /similar to/ 90 Bq.kg/sup -1/, whereas gelatinous zooplankton display /similar to/ 1 Bq.kg/sup -1/. Epipelagic teleosts feeding on plankton displayed the highest concentrations found in fish muscle, 2-21 Bq.kg/sup -1/. Contrasting with this, demersal teleosts and elasmobranchs display lower /sup 210/Po concentrations, in the ranges 0.5-7 Bq.kg/sup -1/ and 0.2-1.7 Bq.kg/sup -1/, respectively. Much higher concentrations can, however, be measured in fish liver, gonad, bone and piloric caecca, and small mesopelagic fish can reach /similar to/ 800 Bq.kg/sup -1/ on a whole-body basis. Due to these /sup 210/Po activity concentrations, dose equivalent rates delivered to biological tissues in marine organisms can vary widely, from 0.4 mSv.y/sup -1/ in gelatinous plankton up to 5.6 x 10/sup 3/ mSv.y/sup -1/ in the gut wall of sardines. It is concluded that in organisms living in the same ocean layer a wide range of internal radiation doses exists and it is essentially sustained by /sup 210/Po food-chain transfer. (author).

  7. Alanine-EPR dosimetry for measurements of ionizing radiation absorbed doses in the range 0.5-10 kGy

    CERN Document Server

    Peimel-Stuglik, Z

    2001-01-01

    The usefulness of two, easy accessible alanine dosimeters (ALANPOL from IChTJ and foil dosimeter from Gamma Service, Radeberg, Germany) to radiation dose measurement in the range of 0.5-10 kGy, were investigated. In both cases, the result of the test was positive. The foil dosemeter from Gamma Service is recommended for dose distribution measurements in fantoms or products, ALANPOL - for routine measurements. The EPR-alanine method based on the described dosimeters can be successfully used, among others, in the technology of radiation protection of food.

  8. Radiobiological basis of total body irradiation with different dose rate and fractionation: repair capacity of hemopoietic cells

    International Nuclear Information System (INIS)

    Song, C.W.; Kim, T.H.; Khan, F.M.; Kersey, J.H.; Levitt, S.H.

    1981-01-01

    Total body irradiation (TBI) followed by bone marrow transplantation is being used in the treatment of malignant or non-malignant hemopoietic disorders. It has been believed that the ability of hemopoietic cells to repair sublethal radiation damage is negligible. Therefore, several schools of investigators suggested that TBI in a single exposure at extremely low dose rate (5 rad/min) over several hours, or in several fractions in 2-3 days, should yield a higher therapeutic gain, as compared with a single exposure at a high dose rate (26 rad/min). We reviewed the existing data in the literature, in particular, the response of hemopoietic cells to fractionated doses of irradiation and found that the repair capacity of both malignant and non-malignant hemopoietic cells might be greater than has been thought. It is concluded that we should not underestimate the ability of hemopoietic cells to repair sublethal radiation damage in using TBI

  9. Raman micro-spectroscopy analysis of human lens epithelial cells exposed to a low-dose-range of ionizing radiation

    Science.gov (United States)

    Allen, Christian Harry; Kumar, Achint; Qutob, Sami; Nyiri, Balazs; Chauhan, Vinita; Murugkar, Sangeeta

    2018-01-01

    Recent findings in populations exposed to ionizing radiation (IR) indicate dose-related lens opacification occurs at much lower doses (micro-spectroscopy was used to investigate the effects of varying doses of radiation, ranging from 0.01 Gy to 5 Gy, on human lens epithelial (HLE) cells which were chemically fixed 24 h post-irradiation. Raman spectra were acquired from the nucleus and cytoplasm of the HLE cells. Spectra were collected from points in a 3  ×  3 grid pattern and then averaged. The raw spectra were preprocessed and principal component analysis followed by linear discriminant analysis was used to discriminate between dose and control for 0.25, 0.5, 2, and 5 Gy. Using leave-one-out cross-validation accuracies of greater than 74% were attained for each dose/control combination. The ultra-low doses 0.01 and 0.05 Gy were included in an analysis of band intensities for Raman bands found to be significant in the linear discrimination, and an induced repair model survival curve was fit to a band-difference-ratio plot of this data, suggesting HLE cells undergo a nonlinear response to low-doses of IR. A survival curve was also fit to clonogenic assay data done on the irradiated HLE cells, showing a similar nonlinear response.

  10. Reduction of the unnecessary dose from the over-range area with a spiral dynamic z-collimator: comparison of beam pitch and detector coverage with 128-detector row CT.

    Science.gov (United States)

    Shirasaka, Takashi; Funama, Yoshinori; Hayashi, Mutsukazu; Awamoto, Shinichi; Kondo, Masatoshi; Nakamura, Yasuhiko; Hatakenaka, Masamitsu; Honda, Hiroshi

    2012-01-01

    Our purpose in this study was to assess the radiation dose reduction and the actual exposed scan length of over-range areas using a spiral dynamic z-collimator at different beam pitches and detector coverage. Using glass rod dosimeters, we measured the unilateral over-range scan dose between the beginning of the planned scan range and the beginning of the actual exposed scan range. Scanning was performed at detector coverage of 80.0 and 40.0 mm, with and without the spiral dynamic z-collimator. The dose-saving ratio was calculated as the ratio of the unnecessary over-range dose, with and without the spiral dynamic z-collimator. In 80.0 mm detector coverage without the spiral dynamic z-collimator, the actual exposed scan length for the over-range area was 108, 120, and 126 mm, corresponding to a beam pitch of 0.60, 0.80, and 0.99, respectively. With the spiral dynamic z-collimator, the actual exposed scan length for the over-range area was 48, 66, and 84 mm with a beam pitch of 0.60, 0.80, and 0.99, respectively. The dose-saving ratios with and without the spiral dynamic z-collimator for a beam pitch of 0.60, 0.80, and 0.99 were 35.07, 24.76, and 13.51%, respectively. With 40.0 mm detector coverage, the dose-saving ratios with and without the spiral dynamic z-collimator had the highest value of 27.23% with a low beam pitch of 0.60. The spiral dynamic z-collimator is important for a reduction in the unnecessary over-range dose and makes it possible to reduce the unnecessary dose by means of a lower beam pitch.

  11. Cosmic radiation dose in the aircraft

    International Nuclear Information System (INIS)

    Vukovic, B.; Radolic, V.; Varga, M.; Planinic, J.; Vekic, B.

    2006-01-01

    When primary particles from space, mainly protons, enter the atmosphere, they produce interactions with air nuclei, and cosmic-ray showers are induced. The radiation field at aircraft altitude is complex, with different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. The non-neutron component of cosmic radiation dose aboard A 320 and ATR 42 aircraft was measured with TLD-100 (LiF:Mg,Ti) detectors and the Mini 6100 semiconductor dosimeter; the neutron dose was measured with the neutron dosimeter consisted of LR-115 track detector and boron foil BN-1 or 10B converter. The estimated occupational effective dose for the aircraft crew (A320) working 500 h per year was 1.64 mSv. Another experiment was performed at the flights Zagreb - Paris - Buenos Aires and reversely, when one measured cosmic radiation dose; for 26.7 h of flight, the MINI 6100 dosimeter gave an average dose rate of 2.3 μSv/h and the TLD dosimeter registered the total dose of 75 μSv or the average dose rate of 2.7 μSv/h; the neutron dosimeter gave the dose rate of 2.4 μSv/h. In the same month, February 2005, a traveling to the Japan (24 hours-flight: Zagreb - Frankfurt - Tokyo and reversely) and the TLD-100 measurement showed the average dose rate of 2.4 μSv/h; the neutron dosimeter gave the dose rate of 2.5 μSv/h. Comparing dose rates of the non-neutron component (low LET) and the neutron one (high LET) of the radiation field at the aircraft flight level, we could conclude the neutron component curried about 50% of the total dose, that was near other known data. (author)

  12. Population dose commitments due to radioactive releases from nuclear power plant sites in 1986

    International Nuclear Information System (INIS)

    Baker, D.A.

    1989-10-01

    Population radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1986. Fifty-year dose commitments for a one-year exposure from both liquid and atmospheric releases were calculated for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each of 66 reactor sites. This report tabulates the results of these calculations, showing the dose commitments for both water and airborne pathways for each age group and organ. Also included for each of the sites is a histogram showing the fraction of the total population within 2 to 80 km around each site receiving various average dose commitments from the airborne pathways. The total dose commitments (from both liquid and airborne pathways) for each site ranged from a high of 31 person-rem to a low of 0.0007 person-rem for the sites with plants operating throughout the year with an arithmetic mean of 1.7 person-rem. The total population dose for all sites was estimated at 110 person-rem for the 140 million people considered at risk. The site average individual dose commitment from all pathways ranged from a low of 2 x 10 -6 mrem to a high of 0.02 mrem. No attempt was made in this study to determine the maximum dose commitment received by any one individual from the radionuclides released at any of the sites. 12 refs

  13. Population dose commitments due to radioactive releases from nuclear power plant sites in 1984

    International Nuclear Information System (INIS)

    Baker, D.A.

    1988-01-01

    Population radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1984. Fifty-year dose commitments from a one-year exposure were calculated from both liquid and atmospheric releases for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each of 56 sites. This report tabulates the results of these calculations, showing the dose commitments for both liquid and airborne pathways for each age group and organ. Also included for each of the sites is a histogram showing the fraction of the total population within 2 to 80 km around each site receiving various average dose commitments from the airborne pathways. The total dose commitments (from both liquid and airborne pathways) for each site ranged from a high of 110 person-rem to a low of 0.002 person-rem for the sites with plants operating throughout the year with an arithmetic mean of 5 person-rem. The total population dose for all sites was estimated at 280 person-rem for the 100 million people considered at risk. The site average individual dose commitment from all pathways ranged from a low of 6 x 10 -6 mrem to a high of 0.04 mrem. No attempt was made in this study to determine the maximum dose commitment received by any one individual from the radionuclides released at any of the sites

  14. Population dose commitments due to radioactive releases from nuclear power plant sites in 1985

    International Nuclear Information System (INIS)

    Baker, D.A.

    1988-08-01

    Population radiation dose commitments have been estimated from reported radionuclide releases from commericial power reactors operating during 1985. Fifty-year dose commitments from a one-year exposure were calculated from both liquid and atmospheric releases for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each of 61 sites. This report tabulates the results of these calculations, showing the dose commitments for both liquid and airborne pathways for each age group and organ. Also included for each of the sites is a histogram showing the fraction of the total population within 2 to 80 km around each site receiving various average dose commitments from the airborne pathways. The total dose commitments (from both liquid and airborne pathways) for each site ranged from a high of 73 person-rem to a low of 0.011 person-rem for the sites with plants operating throughout the year with an arithmetic mean of 3 person-rem. The total population dose for all sites was estimated at 200 person-rem for the 110 million people considered at risk. The site average individual dose commitment from all pathways ranged from a low of 5 /times/ 10/sup /minus/6/ mrem to a high of 0.02 mrem. No attempt was made in this study to determine the maximum dose commitment received by any one individual from the radionuclides released at any of the sites

  15. Recent advances in understanding total-dose effects in bipolar transistors

    International Nuclear Information System (INIS)

    Schrimpf, R.D.

    1996-01-01

    Gain degradation in irradiated bipolar transistors can be a significant problem, particularly in linear integrated circuits. In many bipolar technologies, the degradation is greater for irradiation at low dose rates than it is for typical laboratory dose rates. Ionizing radiation causes the base current in bipolar transistors to increase, due to the presence of net positive charge in the oxides covering sensitive device areas and increases in surface recombination velocity. Understanding the mechanisms responsible for radiation-induced gain degradation in bipolar transistors is important in developing appropriate hardness assurance methods. This paper reviews recent modeling and experimental work, with the emphasis on low-dose-rate effects. A promising hardness assurance method based on irradiation at elevated temperatures is described

  16. Total nuclear photoabsorption cross section in the range 0.2-1.0 GeV for nuclei throughout the periodic table

    International Nuclear Information System (INIS)

    Terranova, M.L.; Tavares, O.A.P.

    1994-01-01

    An analysis of the total photoabsorption cross section for nuclei ranging from 4 He up to 238 U has been performed in the energy range 0.2-1.0 GeV. Mean total photoabsorption cross sections have been obtained by summing up the contributions from partial photoreactions, and found to follow an A 1 -dependence in the 0.2-1.0 GeV range. A review of the available total photoabsorption cross section data is also presented. Comparisons have been made with cross section values calculated by considering both the quasi-deuteron and π-meson photoproduction mechanism of primary nuclear photointeraction. (orig.)

  17. Low-Dose Total Skin Electron Beam Therapy as a Debulking Agent for Cutaneous T-Cell Lymphoma: An open-label prospective phase II study

    DEFF Research Database (Denmark)

    Kamstrup, M R; Lindahl, Lise Maria; Gniadecki, R

    2012-01-01

    Background: Total skin electron beam therapy (TSEBT) is a powerful treatment for cutaneous T-cell lymphomas (CTCL). Based on the occurrence of relapses with low radiation doses, doses of 30-36 Gy are commonly used but most patients still eventually relapse and repeat treatment courses are limited...... due to the cumulative toxicity. Complete response rates are about 60-90% for T2-4 stages with a 5-year relapse-free survival of 10-25% for stages IB-III. Objectives: To evaluate prospectively the efficacy of low-dose TSEBT (10 Gy) in terms of complete cutaneous response rate, overall response rate...... and response duration in CTCL. Methods: Ten patients with stage IB-IV mycosis fungoides (MF) were treated in an open-label manner with 4 fractions of 1 Gy/week TSEB to a total skin dose of 10 Gy. Treatment responses were assessed at 1 and 3 months after treatment and subsequently at least every 6 months...

  18. Range uncertainties in proton therapy and the role of Monte Carlo simulations

    International Nuclear Information System (INIS)

    Paganetti, Harald

    2012-01-01

    The main advantages of proton therapy are the reduced total energy deposited in the patient as compared to photon techniques and the finite range of the proton beam. The latter adds an additional degree of freedom to treatment planning. The range in tissue is associated with considerable uncertainties caused by imaging, patient setup, beam delivery and dose calculation. Reducing the uncertainties would allow a reduction of the treatment volume and thus allow a better utilization of the advantages of protons. This paper summarizes the role of Monte Carlo simulations when aiming at a reduction of range uncertainties in proton therapy. Differences in dose calculation when comparing Monte Carlo with analytical algorithms are analyzed as well as range uncertainties due to material constants and CT conversion. Range uncertainties due to biological effects and the role of Monte Carlo for in vivo range verification are discussed. Furthermore, the current range uncertainty recipes used at several proton therapy facilities are revisited. We conclude that a significant impact of Monte Carlo dose calculation can be expected in complex geometries where local range uncertainties due to multiple Coulomb scattering will reduce the accuracy of analytical algorithms. In these cases Monte Carlo techniques might reduce the range uncertainty by several mm. (topical review)

  19. Gustatory tissue injury in man: radiation dose response relationships and mechanisms of taste loss

    International Nuclear Information System (INIS)

    Mossman, K.L.

    1986-01-01

    In this report dose response data for gustatory tissue damage in patients given total radiation doses ranging from 3000 to 6000 cGy are presented. In order to evaluate direct radiation injury to gustatory tissues as a mechanism of taste loss, measurements of damage to specific taste structures in bovine and murine systems following radiation exposure in the clinical range are correlated to taste impairment observed in radiotherapy patients. (author)

  20. The response of mouse skin to multiple small doses of radiation

    International Nuclear Information System (INIS)

    Denekamp, J.; Harris, S.R.

    1975-01-01

    The response of mouse skin has been tested by irradiating the foot of albino mice and scoring erythema and desquamation during the following month. Multiple small doses of 150, 250 and 350 rad have been given 'daily', and the test dose necessary to achieve a given reaction has been determined one day after the last small fraction. This test dose has been compared with the single dose necessary to produce the same reaction level in previously untreated mice, in order to determine the ratio of the slopes of the dose-response curve at low and high doses: Slope ratio = (single dose - test dose)/total fractionated priming dose. In three separate experiments the slope ratio decreased as the dose per fraction was reduced from 350 to 150 rad. This conflicts with the data of Dutreix et al, who found a constant slope ratio over this dose range. The present data are compared with those obtained by Denekamp using 4, 9 and 14 fractions of 300 rad and by Douglas et al, using the same experimental technique, over the dose range 45 to 200 rad/fraction. In addition, the results from multifraction experiments in which equal dose increments were administered until the requisite skin reaction was achieved are also analysed in terms of their slope ratio (Fowler et al. Douglas et al). When all these results are plotted it is impossible to be sure whether the slope ratio is decreasing over the range 300 to 45 rad per fraction, although it seems likely. Most of the values at low doses lie in the range 0.15 to 0.25, indicating that at low doses the radiation is only 15 to 25% as effective per rad in causing cell death as at higher doses. (author)

  1. Radiation dose reduction in fluoroscopic procedures: left varicocele embolization as a model

    Energy Technology Data Exchange (ETDEWEB)

    Verstandig, Anthony G.; Shraibman, Vladimir [Shaare Zedek Medical Center, Department of Radiology, Interventional Radiology Unit, POB 3235, Jerusalem (Israel); Shamieh, Bashar [St. Joseph Hospital, Department of Radiology, Jerusalem (Israel); Raveh, David [Shaare Zedek Medical Center, Infectious Diseases Unit, POB 3235, Jerusalem (Israel)

    2015-06-01

    To investigate the effect of a radiation reduction program on total dose, fluoroscopy dose per second corrected for body habitus and degree of collimation in left varicocele embolizations (LVE). A radiation reduction program for LVE was implemented, consisting of a technique minimizing fluoroscopy time, using low-dose presets, virtual collimation, and virtual patient positioning. Height, weight, fluoroscopy time, kerma area product (KAP) and reference air kerma (Ka,r) were recorded for 100 consecutive cases satisfying the inclusion criteria. For each patient, a device specific dose correction factor, determined using a phantom, was used to standardize the KAP to that of the cylindrical diameter of the standard man and a collimation index was derived from the KAP and Ka,r. Median fluoroscopy time was 3 minutes (mean 4.5, range 1-23.8). Median KAP was 0.54 Gy/cm{sup 2} (mean 0.82, range 0.12-6.52). There was a significant decrease in KAP/second corrected for cylindrical diameter (p < 0.001) and the collimation index (p < 0.001) over time. This study shows that a dedicated dose reduction program can achieve very low total radiation dose rates for LVE. The significant decrease in collimation index and standardized KAP per second during this study suggest a learning curve for collimation. (orig.)

  2. Quantifying the spatial and temporal variation in dose from external exposure to radiation: a new tool for use on free-ranging wildlife

    International Nuclear Information System (INIS)

    Hinton, Thomas G.; Byrne, Michael E.; Webster, Sarah; Beasley, James C.

    2015-01-01

    Inadequate dosimetry is often the fundamental problem in much of the controversial research dealing with radiation effects on free-ranging wildlife. Such research is difficult because of the need to measure dose from several potential pathways of exposure (i.e., internal contamination, external irradiation, and inhalation). Difficulties in quantifying external exposures can contribute significantly to the uncertainties of dose-effect relationships. Quantifying an animal's external exposure due to spatial–temporal use of habitats that can vary by orders of magnitude in radiation levels is particularly challenging. Historically, wildlife dosimetry studies have largely ignored or been unable to accurately quantify variability in external dose because of technological limitations. The difficulties of quantifying the temporal–spatial aspects of external irradiation prompted us to develop a new dosimetry instrument for field research. We merged two existing technologies [Global Positioning Systems (GPS) and electronic dosimeters] to accommodate the restrictive conditions of having a combined unit small enough to be unobtrusively worn on the neck of a free-ranging animal, and sufficiently robust to withstand harsh environmental conditions. The GPS–dosimeter quantifies the spatial and temporal variation in external dose as wildlife traverse radioactively contaminated habitats and sends, via satellites, an animal's location and short term integrated dose to the researcher at a user-defined interval. Herein we describe: (1) the GPS–dosimeters; (2) tests to compare their uniformity of response to external irradiation under laboratory conditions; (3) field tests of their durability when worn on wildlife under natural conditions; and (4) a field application of the new technology at a radioactively contaminated site. Use of coupled GPS–dosimetry will allow, for the first time, researchers to better understand the relationship of animals to their contaminated

  3. Radiation doses from some common paediatric X-ray examinations in Sudan

    International Nuclear Information System (INIS)

    Suliman, I.I.; Elshiekh, E.H.A.

    2008-01-01

    Radiation doses to patients from some common paediatric X-ray examinations were studied in three hospitals in Khartoum state (Sudan)). Entrance surface dose (ESD) was determined from exposure settings using DosCal software. Totally, 459 patients were included in this study. Mean ESDs obtained from anteroposterior projection for chest, skull, abdomen and pelvis for neonates falls in the range of 52-100, 115-169, 145-183, 204-242 μGy, respectively. For a 1-y-old infant, mean ESD range was 80-114, 153-202, 204-209, 181-264 μGy, respectively. Some doses for neonates and infants were exceeding the reference doses by >20%. The results highlighted that a good technique has to adhere to guidelines necessarily. As demonstrated elsewhere, patients' doses were high in departments using single-phase generators compared with those using constant potential. The results presented will serve as a baseline data needed for deriving reference doses for paediatric X-ray examinations in Sudan. (authors)

  4. Dose/dose-rate responses of shrimp larvae to UV-B radiation

    International Nuclear Information System (INIS)

    Damkaer, D.M.

    1981-01-01

    Previous work indicated dose-rate thresholds in the effects of UV-B on the near-surface larvae of three shrimp species. Additional observations suggest that the total dose response varies with dose-rate. Below 0.002 Wm -2 sub([DNA]) irradiance no significant effect is noted in activity, development, or survival. Beyond that dose-rate threshold, shrimp larvae are significantly affected if the total dose exceeds about 85 Jm -2 sub([DNA]). Predictions cannot be made without both the dose-rate and the dose. These dose/dose-rate thresholds are compared to four-year mean dose/dose-rate solar UV-B irradiances at the experimental site, measured at the surface and calculated for 1 m depth. The probability that the shrimp larvae would receive lethal irradiance is low for the first half of the season of surface occurrence, even with a 44% increase in damaging UV radiation. (orig.)

  5. Dose/dose-rate responses of shrimp larvae to UV-B radiation

    Energy Technology Data Exchange (ETDEWEB)

    Damkaer, D.M.; Dey, D.B.; Heron, G.A.

    1981-01-01

    Previous work indicated dose-rate thresholds in the effects of UV-B on the near-surface larvae of three shrimp species. Additional observations suggest that the total dose response varies with dose-rate. Below 0.002 Wm/sup -2/sub((DNA)) irradiance no significant effect is noted in activity, development, or survival. Beyond that dose-rate threshold, shrimp larvae are significantly affected if the total dose exceeds about 85 Jm/sup -2/sub((DNA)). Predictions cannot be made without both the dose-rate and the dose. These dose/dose-rate thresholds are compared to four-year mean dose/dose-rate solar UV-B irradiances at the experimental site, measured at the surface and calculated for 1 m depth. The probability that the shrimp larvae would receive lethal irradiance is low for the first half of the season of surface occurrence, even with a 44% increase in damaging UV radiation.

  6. Total nuclear photoabsorption cross section in the range 0.2 - 1.0 GeV for nuclei throughout the periodic table

    International Nuclear Information System (INIS)

    Terranova, M.L.; Tavares, O.A.P.

    1993-01-01

    An analysis of the total photoabsorption cross section for nuclei ranging from 4 He up to 238 U has been performed in the energy range 0.2-1.0 GeV. Mean total photoabsorption cross sections have been obtained by summing up the contributions from partial photo reactions, and found to follow an A l -dependence in the 0.2-1.0 GeV range. A review of the available total photoabsorption cross section data is also presented. Comparisons have been made with cross section values calculated by considering both the quasi-deuteron and π-meson photoproduction mechanism of primary nuclear photo interaction. (author)

  7. Single dose total lymphoid irradiation combined with cyclophosphamide as immunosuppression for human marrow transplantation in aplastic anemia

    International Nuclear Information System (INIS)

    Kim, T.H.; Kersey, J.H.; Khan, F.M.; Sewchand, W.; Ramsey, N.; Krivit, W.; Coccia, P.; Nesbit, M.E.; Levitt, S.H.

    1979-01-01

    Six patients with aplastic anemia underwent bone marrow transplantation following conditioning with high dose cyclophosphamide and single dose total lymphoid irradiation with 750 rad, 26 rad/min at the midplane of the patient. They all received bone marrow from human leukocyte antigens/mixed lymphocyte culture (HLA/MLC) matched siblings. Five of 6 patients were alive without complications at 12, 11, 7, 4 and 4 months respectively. The remaining patient died from sepis which he had prior to transplantation. There were no graft rejection, graft-vs-Host Disease (GVHD) or interstitial pneumonitis among these patients. The procedure was well tolerated with minimal side effects. The results will be compared with those of groups whose bone marrow was previously transplanted with different immunosuppressive methods

  8. TLD-300 detectors for separate measurement of total and gamma absorbed dose distributions of single, multiple, and moving-field neutron treatments

    International Nuclear Information System (INIS)

    Rassow, J.

    1984-01-01

    Fast neutron therapy requirements, because of the poor depth dose characteristic of present therapeutical sources, are at least as complex in treatment plans as photon therapy. The physical part of the treatment planning is very important; however, it is much more complicated than for photons or electrons owing to the need for: Separation of total and gamma absorbed dose distributions (Dsub(T) and Dsub(G)); and more stringent tissue-equivalence conditions of phantoms than in photon therapy. Therefore, methods of clinical dosimetry for the separate determination of total and gamma absorbed dose distributions in irregularly shaped (inhomogeneous) phantoms are needed. A method using TLD-300 (CaF 2 :Tm) detectors is described, which is able to give an approximate solution of the above-mentioned dosimetric requirements. The two independent doses, Dsub(T) and Dsub(G), can be calculated by an on-line computer analysis of the digitalized glow curve of TLD-300 detectors, irradiated with d(14)+Be neutrons of the cyclotron isocentric neutron therapy facility CIRCE in Essen. Results are presented for depth and lateral absorbed dose distributions (Dsub(T) and Dsub(G)) for fixed neutron beams of different field sizes compared with measurements by standard procedures (TE-TE ionization chamber, GM counter) in an A-150 phantom. The TLD-300 results for multiple and moving-field treatments (with and without wedge filters) in a patient simulating irregularly shaped (inhomogeneous) phantoms, are shown together with computer calculations of these dose distributions. The probable causes for some systematic deviations are discussed, which lead to open problems for further investigations owing to features of the detector material and the evaluation method, but mainly to differences in the composition of phantom materials used for the calculations (standard dose distributions) and TLD-300 measurements. (author)

  9. Population dose commitments due to radioactive releases from nuclear power plant sites in 1980

    International Nuclear Information System (INIS)

    Baker, D.A.; Peloquin, R.A.

    1983-08-01

    Population radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1980. In addition doses derived from the shutdown reactors at the Three Mile Island site were included. Fifty-year dose commitments from a one-year exposure were calculated from both liquid and atmospheric releases for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each site. This report tabulates the results of these calculations, showing the dose commitments for both liquid and airborne pathways for each age group and organ. Also included for each site is a histogram showing the fraction of the total population within 2 to 80 km around each site receiving various average dose commitments from the airborne pathways. The total dose commitment from both liquid and airborne pathways ranged from a high of 40 person-rem to a low of 0.02 person-rem with an arithmetic mean of 4 person-rem. The total population dose for all sites was estimated at 180 person-rem for the 96 million people considered at risk

  10. New insights into fully-depleted SOI transistor response during total-dose irradiation

    International Nuclear Information System (INIS)

    Schwank, J.R.; Shaneyfelt, M.R.; Dodd, P.E.; Burns, J.A.; Keast, C.L.; Wyatt, P.W.

    1999-01-01

    In this paper, we present irradiation results on 2-fully depleted processes (HYSOI6, RKSOI) that show SOI (silicon on insulator) device response can be more complicated than originally suggested by others. The major difference between the 2 process versions is that the RKSOI process incorporates special techniques to minimize pre-irradiation parasitic leakage current from trench sidewalls. Transistors were irradiated at room temperature using 10 keV X-ray source. Worst-case bias configuration for total-dose testing fully-depleted SOI transistors was found to be process dependent. It appears that the worst-case bias for HYPOI6 process is the bias that causes the largest increase in sidewall leakage. The RKSOI process shows a different response during irradiation, the transition response appears to be dominated by charge trapping in the buried oxide. These results have implications for hardness assurance testing. (A.C.)

  11. A reviewed technique for total body electron therapy using a Varian Clinac 2100C/D high dose rate treatment beam facility

    International Nuclear Information System (INIS)

    Oliver, L.D.; Xuereb, E.M.A.; Last, V.; Hunt, P.B.; Wilfert, A.

    1996-01-01

    Our (Royal North Shore Hospital) most recent linear accelerator acquisition is a Varian Clinac 2100C/D which has a high dose rate (approximately 25Gy per minute at 1 metre) total body electron option. We investigated the physical characteristics of the electron beam to develop a suitable method of treatment for total body electron therapy. The useful electron beam width is defined as 80cm above and below the reference height. Measurements of the electron dose received from the two angled electron beams showed a critical dependence on the gantry angles. The treatment protocol uses ten different patient angles, fractionated into directly opposing fields and treated seuqentially each day. A full cycle of treatment is completed in five days. (author)

  12. Influence of dose, dose rate, and radiation quality on radiation carcinogenesis and life shortening in RFM and BALB/C mice

    International Nuclear Information System (INIS)

    Ullrich, R.L.; Storer, J.B.

    1978-01-01

    The effects produced by 137 Cs gamma rays delivered at a high (45 rads/min) or intermediate (8.2 rads/day) dose rate and the effect of fission neutrons at a high (25 rads/min) and low (1 rad/day) rate in a population of nearly 30,000 RFM and 11,000 BALB/c mice have been studied. Gamma ray doses ranged from 10 to 400 rads with the RFM's and from 50-400 rads with the BALB/c's, while neutron doses ranged from 5 to 200 rads with both strains. The present paper will present an overview of these data and the general findings while subsequent publications will present detailed analyses of each aspect. A variety of neoplasms were sensitive to induction after radiation exposure, including tumors of both reticular tissue origin (leukemia, lymphoma, etc.) and solid tumors. For the RFM, thymic lymphomas were the dominant reticular tissue neoplasm while the majority of solid tumors were either lung adenomas or fit into the broad category of endocrine related tumors, including ovarian, pituitary, harderian, and uterine tumors. The BALB/c was much less sensitive to induction of reticular tissue neoplasms. The tumors that were most sensitive to induction included malignant lung carcinomas, mammary adenocarcinomas and ovarian tumors. In general for both life shortening and tumor induction after gamma ray exposures, when the low to intermediate dose range was sufficiently defined, linearity could be rejected and a dose squared or linear-dose squared relationship adequately fit the data. For neutron exposures, on the other hand, linear relationships were the general finding. The RBE for neutrons varied with tumor type and total dose level. For gamma ray irradiation, the intermediate dose rate resulted in a decreased effectiveness in all cases, while for neutron exposures the dose rate relationships were more complex

  13. Evaluation and distribution of doses received by Cuban population due to environmental sources of radioactivity

    International Nuclear Information System (INIS)

    Zerquera, Juan T.; Prendes Alonso, Miguel; Fernandez Gomez, Isis M.; Lopez Bejerano, Gladys

    2008-01-01

    Full text: In the frame of a national research project supported by the Nuclear Energy Agency of the Ministry of Science, Technology and Environment of the Republic of Cuba doses received by Cuban population due to the exposure to existing in the environment sources of radiation were assessed. Direct measurements of sources representing 90% of average total doses to world population according to UNSCEAR data were made and estimations of doses were obtained for the different components of the total dose: doses due to the exposure to cosmic radiation, external terrestrial radiation, potassium contained in human body and inhalation and ingestion of radionuclides present in the environment. Using the obtained results it was made an estimation of total doses to Cuban population due to environmental radiation sources and the contributions of different dose components were assessed. This was carried out through a Monte Carlo simulation of the total doses using the parameter of dose distributions obtained for the different contributors (components) to total dose. On the basis of the estimations the average total effective dose to Cuban population due to the exposure to environmental sources was estimated as 1.1 ± 0.3 mSv per year. This low dose value is in the range of doses estimated by UNSCEAR for world population due to natural background and can be explained by the specific of Cuban environment: a majority of the population living at the sea level or at low altitudes, relative low content of primordial radionuclides in soils and high ventilation rates in dwellings. All the instructions specified in the Call for Abstracts should be taken into account. e/ 41 and 457. (author)

  14. Effects of gamma irradiation on chickpea seeds vis-a-vis total seed storage proteins, antioxidant activity and protein profiling.

    Science.gov (United States)

    Bhagyawant, S S; Gupta, N; Shrivastava, N

    2015-10-23

    The present work describes radiation—induced effects on seed composition vis—à—vis total seed proteins, antioxidant levels and protein profiling employing two dimensional gel electrophoresis (2D—GE) in kabuli and desi chickpea varities. Seeds were exposed to the radiation doses of 1,2,3,4 and 5 kGy. The total protein concentrations decreased and antioxidant levels were increased with increasing dose compared to control seed samples. Radiation induced effects were dose dependent to these seed parameters while it showed tolerance to 1 kGy dose. Increase in the dose was complimented with increase in antioxidant levels, like 5 kGy enhanced % scavenging activities in all the seed extracts. Precisely, the investigations reflected that the dose range from 2 to 5 kGy was effective for total seed storage proteins, as depicted quantitatively and qualitative 2D—GE means enhance antioxidant activities in vitro.

  15. A combination of high dose rate (10X FFF/2400 MU/min/10 MV X-rays) and total low dose (0.5 Gy) induces a higher rate of apoptosis in melanoma cells in vitro and superior preservation of normal melanocytes.

    Science.gov (United States)

    Sarojini, Sreeja; Pecora, Andrew; Milinovikj, Natasha; Barbiere, Joseph; Gupta, Saakshi; Hussain, Zeenathual M; Tuna, Mehmet; Jiang, Jennifer; Adrianzen, Laura; Jun, Jaewook; Catello, Laurice; Sanchez, Diana; Agarwal, Neha; Jeong, Stephanie; Jin, Youngjin; Remache, Yvonne; Goy, Andre; Ndlovu, Alois; Ingenito, Anthony; Suh, K Stephen

    2015-10-01

    The aim of this study was to determine the apoptotic effects, toxicity, and radiosensitization of total low dose irradiation delivered at a high dose rate in vitro to melanoma cells, normal human epidermal melanocytes (HEM), or normal human dermal fibroblasts (HDF) and to study the effect of mitochondrial inhibition in combination with radiation to enhance apoptosis in melanoma cells. Cells irradiated using 10X flattening filter-free (FFF) 10 MV X-rays at a dose rate of 400 or 2400 MU/min and a total dose of 0.25-8 Gy were analyzed by cell/colony counting, MitoTracker, MTT, and DNA-damage assays, as well as by quantitative real-time reverse transcriptase PCR in the presence or absence of mitochondrial respiration inhibitors. A dose rate of 2400 MU/min killed on average five-fold more melanoma cells than a dose rate 400 MU/min at a total dose of 0.5 Gy and preserved 80% survival of HEM and 90% survival of HDF. Increased apoptosis at the 2400 MU/min dose rate is mediated by greater DNA damage, reduced cell proliferation, upregulation of apoptotic genes, and downregulation of cell cycle genes. HEM and HDF were relatively unharmed at 2400 MU/min. Radiation induced upregulation of mitochondrial respiration in both normal and cancer cells, and blocking the respiration with inhibitors enhanced apoptosis only in melanoma cells. A high dose rate with a low total dose (2400 MU/min, 0.5 Gy/10X FFF 10 MV X-rays) enhances radiosensitivity of melanoma cells while reducing radiotoxicity toward HEM and HDF. Selective cytotoxicity of melanoma cells is increased by blocking mitochondrial respiration.

  16. Low-dose neutron dose response of zebrafish embryos obtained from the Neutron exposure Accelerator System for Biological Effect Experiments (NASBEE) facility

    International Nuclear Information System (INIS)

    Ng, C.Y.P.; Kong, E.Y.; Konishi, T.; Kobayashi, A.; Suya, N.; Cheng, S.H.; Yu, K.N.

    2015-01-01

    The dose response of embryos of the zebrafish, Danio rerio, irradiated at 5 h post fertilization (hpf) by 2-MeV neutrons with ≤100 mGy was determined. The neutron irradiations were made at the Neutron exposure Accelerator System for Biological Effect Experiments (NASBEE) facility in the National Institute of Radiological Sciences (NIRS), Chiba, Japan. A total of 10 neutron doses ranging from 0.6 to 100 mGy were employed (with a gamma-ray contribution of 14% to the total dose), and the biological effects were studied through quantification of apoptosis at 25 hpf. The responses for neutron doses of 10, 20, 25, and 50 mGy approximately fitted on a straight line, while those for neutron doses of 0.6, 1 and 2.5 mGy exhibited neutron hormetic effects. As such, hormetic responses were generically developed by different kinds of ionizing radiations with different linear energy transfer (LET) values. The responses for neutron doses of 70 and 100 mGy were significantly below the lower 95% confidence band of the best-fit line, which strongly suggested the presence of gamma-ray hormesis. - Highlights: • Neutron dose response was determined for embryos of the zebrafish, Danio rerio. • Neutron doses of 0.6, 1 and 2.5 mGy led to neutron hormetic effects. • Neutron doses of 70 and 100 mGy accompanied by gamma rays led to gamma-ray hormesis

  17. Dosing algorithm to target a predefined AUC in patients with primary central nervous system lymphoma receiving high dose methotrexate.

    Science.gov (United States)

    Joerger, Markus; Ferreri, Andrés J M; Krähenbühl, Stephan; Schellens, Jan H M; Cerny, Thomas; Zucca, Emanuele; Huitema, Alwin D R

    2012-02-01

    There is no consensus regarding optimal dosing of high dose methotrexate (HDMTX) in patients with primary CNS lymphoma. Our aim was to develop a convenient dosing algorithm to target AUC(MTX) in the range between 1000 and 1100 µmol l(-1) h. A population covariate model from a pooled dataset of 131 patients receiving HDMTX was used to simulate concentration-time curves of 10,000 patients and test the efficacy of a dosing algorithm based on 24 h MTX plasma concentrations to target the prespecified AUC(MTX) . These data simulations included interindividual, interoccasion and residual unidentified variability. Patients received a total of four simulated cycles of HDMTX and adjusted MTX dosages were given for cycles two to four. The dosing algorithm proposes MTX dose adaptations ranging from +75% in patients with MTX C(24) 12 µmol l(-1). The proposed dosing algorithm resulted in a marked improvement of the proportion of patients within the AUC(MTX) target between 1000 and 1100 µmol l(-1) h (11% with standard MTX dose, 35% with the adjusted dose) and a marked reduction of the interindividual variability of MTX exposure. A simple and practical dosing algorithm for HDMTX has been developed based on MTX 24 h plasma concentrations, and its potential efficacy in improving the proportion of patients within a prespecified target AUC(MTX) and reducing the interindividual variability of MTX exposure has been shown by data simulations. The clinical benefit of this dosing algorithm should be assessed in patients with primary central nervous system lymphoma (PCNSL). © 2011 The Authors. British Journal of Clinical Pharmacology © 2011 The British Pharmacological Society.

  18. Four-Dimensional Patient Dose Reconstruction for Scanned Ion Beam Therapy of Moving Liver Tumors

    International Nuclear Information System (INIS)

    Richter, Daniel; Saito, Nami; Chaudhri, Naved; Härtig, Martin; Ellerbrock, Malte; Jäkel, Oliver; Combs, Stephanie E.; Habermehl, Daniel; Herfarth, Klaus; Durante, Marco; Bert, Christoph

    2014-01-01

    Purpose: Estimation of the actual delivered 4-dimensional (4D) dose in treatments of patients with mobile hepatocellular cancer with scanned carbon ion beam therapy. Methods and Materials: Six patients were treated with 4 fractions to a total relative biological effectiveness (RBE)–weighted dose of 40 Gy (RBE) using a single field. Respiratory motion was addressed by dedicated margins and abdominal compression (5 patients) or gating (1 patient). 4D treatment dose reconstructions based on the treatment records and the measured motion monitoring data were performed for the single-fraction dose and a total of 17 fractions. To assess the impact of uncertainties in the temporal correlation between motion trajectory and beam delivery sequence, 3 dose distributions for varying temporal correlation were calculated per fraction. For 3 patients, the total treatment dose was formed from the fractional distributions using all possible combinations. Clinical target volume (CTV) coverage was analyzed using the volumes receiving at least 95% (V 95 ) and 107% (V 107 ) of the planned doses. Results: 4D dose reconstruction based on daily measured data is possible in a clinical setting. V 95 and V 107 values for the single fractions ranged between 72% and 100%, and 0% and 32%, respectively. The estimated total treatment dose to the CTV exhibited improved and more robust dose coverage (mean V 95 > 87%, SD < 3%) and overdose (mean V 107 < 4%, SD < 3%) with respect to the single-fraction dose for all analyzed patients. Conclusions: A considerable impact of interplay effects on the single-fraction CTV dose was found for most of the analyzed patients. However, due to the fractionated treatment, dose heterogeneities were substantially reduced for the total treatment dose. 4D treatment dose reconstruction for scanned ion beam therapy is technically feasible and may evolve into a valuable tool for dose assessment

  19. Radiological dose reconstruction for birds reconciles outcomes of Fukushima with knowledge of dose-effect relationships

    International Nuclear Information System (INIS)

    Garnier-Laplace, Jacqueline; Beaugelin-Seiller, Karine; Della-Vedova, Claire; Metivier, Jean-Michel; Ritz, Christian; Mousseau, Timothy A.; Pape Moeller, Anders

    2015-01-01

    We reconstructed the radiological dose for birds observed at 300 census sites in the 50-km northwest area affected by the accident at the Fukushima Daiichi nuclear power plant over 2011-2014. Substituting the ambient dose rate measured at the census points (from 0.16 to 31 μGy h -1 ) with the dose rate reconstructed for adult birds of each species (from 0.3 to 97 μGy h -1 ), we confirmed that the overall bird abundance at Fukushima decreased with increasing total doses. This relationship was directly consistent with exposure levels found in the literature to induce physiological disturbances in birds. Among the 57 species constituting the observed bird community, we found that 90% were likely chronically exposed at a dose rate that could potentially affect their reproductive success. We quantified a loss of 22.6% of the total number of individuals per increment of one unit log10-transformed total dose (in Gy), over the four-year post-accident period in the explored area. We estimated that a total dose of 0.55 Gy reduced by 50% the total number of birds in the study area over 2011-2014. The data also suggest a significant positive relationship between total dose and species diversity. (authors)

  20. Population dose commitments due to radioactive releases from nuclear power plant sites in 1988

    International Nuclear Information System (INIS)

    Baker, D.A.

    1992-01-01

    Population radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1988. Fifty-year commitments for a one-year exposure from both liquid and atmospheric releases were calculated for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each of 71 reactor sites. This report tabulates the results of these calculations, showing the dose commitments for both water and airborne pathways for each age group and organ. Also included for each of the sites is a histogram showing the fraction of the total population within 2 to 80 km around each site receiving various average dose commitments from the airborne pathways. The total collective dose commitments (from both liquid and airborne pathways) for each site ranged from a high of 16 person-rem to a low of 0.0011 person-rem for the sites with plants operating throughout the year with an arithmetic mean of 1.1 person-rem. The total population dose for all sites was estimated at 75 person-rem for the 150 million people considered at risk. The site average individual dose commitment from all pathways ranged from a low of 3 x 10 -7 mrem to a high of 0.02 mrem. No attempt was made in this study to determine the maximum dose commitment received by any one individual from the radionuclides released at any of the sites. However, licensee calculation of doses to the maximally exposed individual at some sites indicated values of up to approximately 100 times average individual doses (on the order of a few millirem per year)

  1. Low-dose 4D cone-beam CT via joint spatiotemporal regularization of tensor framelet and nonlocal total variation

    Science.gov (United States)

    Han, Hao; Gao, Hao; Xing, Lei

    2017-08-01

    Excessive radiation exposure is still a major concern in 4D cone-beam computed tomography (4D-CBCT) due to its prolonged scanning duration. Radiation dose can be effectively reduced by either under-sampling the x-ray projections or reducing the x-ray flux. However, 4D-CBCT reconstruction under such low-dose protocols is prone to image artifacts and noise. In this work, we propose a novel joint regularization-based iterative reconstruction method for low-dose 4D-CBCT. To tackle the under-sampling problem, we employ spatiotemporal tensor framelet (STF) regularization to take advantage of the spatiotemporal coherence of the patient anatomy in 4D images. To simultaneously suppress the image noise caused by photon starvation, we also incorporate spatiotemporal nonlocal total variation (SNTV) regularization to make use of the nonlocal self-recursiveness of anatomical structures in the spatial and temporal domains. Under the joint STF-SNTV regularization, the proposed iterative reconstruction approach is evaluated first using two digital phantoms and then using physical experiment data in the low-dose context of both under-sampled and noisy projections. Compared with existing approaches via either STF or SNTV regularization alone, the presented hybrid approach achieves improved image quality, and is particularly effective for the reconstruction of low-dose 4D-CBCT data that are not only sparse but noisy.

  2. Variations in absorbed doses from 59Fe in different diseases

    International Nuclear Information System (INIS)

    Roth, P.; Werner, E.; Henrichs, K.; Elsasser, U.; Kaul, A.

    1986-01-01

    The biokinetics of radiopharmaceuticals administered in vivo may vary considerably with changes in organ functions. They studied the variations in absorbed doses from 59 Fe in 207 patients with different diseases, in whom ferrokinetic investigations were performed for diagnostic purposes. Radiation doses to the bone marrow were highest in patients with deserythropoietic anemias (mean 38 nSv/Bq, range 19 - 57 nSv/Bq) and in hemolytic anemias (mean 21 nSv/Bq, range 7 - 35 nSv/Bq), whereas lower and rather constant values were found in other diseases (mean values between 9 and 13 nSv/Bq). The highest organ doses, the greatest differences with respect to diagnosis and also the largest variations within each group of patients were found for liver and spleen (e. g. in aplastic anemia; liver: 66 nSv/Bq, range 29 - 104 nSv/Bq; spleen: 57 nSv/Bq, range 34 - 98 nSv/Bq. In iron deficiency; liver: 13 nSv/Bq range 12 - 14 nSv/q; spleen: 19 nSv/Bq, range 18 - 20 nSv/Bq). Lower organ doses and smaller variations within and between the groups of patients were found for the gonads (means 3 - 7 nSv/Bq), the kidneys (means 10 - 13 nSv/Bq), the bone (means 4 - 7 nSv/Bq), the lung (means 8 - 12 nSv/Bq), and the total body (means 6 - 8 nSv/Bq). In patients with chronic bleeding absorbed doses decrease concomitantly to the extent of blood loss. The D/sub E/ is not markedly affected by the variations in organ doses but is fairly constant for different diseases. 16 references, 1 figure, 3 tables

  3. Cumulative total effective whole-body radiation dose in critically ill patients.

    Science.gov (United States)

    Rohner, Deborah J; Bennett, Suzanne; Samaratunga, Chandrasiri; Jewell, Elizabeth S; Smith, Jeffrey P; Gaskill-Shipley, Mary; Lisco, Steven J

    2013-11-01

    Uncertainty exists about a safe dose limit to minimize radiation-induced cancer. Maximum occupational exposure is 20 mSv/y averaged over 5 years with no more than 50 mSv in any single year. Radiation exposure to the general population is less, but the average dose in the United States has doubled in the past 30 years, largely from medical radiation exposure. We hypothesized that patients in a mixed-use surgical ICU (SICU) approach or exceed this limit and that trauma patients were more likely to exceed 50 mSv because of frequent diagnostic imaging. Patients admitted into 15 predesignated SICU beds in a level I trauma center during a 30-day consecutive period were prospectively observed. Effective dose was determined using Huda's method for all radiography, CT imaging, and fluoroscopic examinations. Univariate and multivariable linear regressions were used to analyze the relationships between observed values and outcomes. Five of 74 patients (6.8%) exceeded exposures of 50 mSv. Univariate analysis showed trauma designation, length of stay, number of CT scans, fluoroscopy minutes, and number of general radiographs were all associated with increased doses, leading to exceeding occupational exposure limits. In a multivariable analysis, only the number of CT scans and fluoroscopy minutes remained significantly associated with increased whole-body radiation dose. Radiation levels frequently exceeded occupational exposure standards. CT imaging contributed the most exposure. Health-care providers must practice efficient stewardship of radiologic imaging in all critically ill and injured patients. Diagnostic benefit must always be weighed against the risk of cumulative radiation dose.

  4. Total dose radiation effects of pressure sensors fabricated on uni-bond-SOI materials

    International Nuclear Information System (INIS)

    Zhu Shiyang; Huang Yiping; Wang Jin; Li Anzhen; Shen Shaoqun; Bao Minhang

    2001-01-01

    Piezoresistive pressure sensors with a twin-island structure were successfully fabricated using high quality Uni-bond-SOI (On Insulator) materials. Since the piezoresistors were structured by the single crystalline silicon overlayer of the SOI wafer and were totally isolated by the buried SiO 2 , the sensors are radiation-hard. The sensitivity and the linearity of the pressure sensors keep their original values after being irradiated by 60 Co γ-rays up to 2.3 x 10 4 Gy(H 2 O). However, the offset voltage of the sensor has a slight drift, increasing with the radiation dose. The absolute value of the offset voltage deviation depends on the pressure sensor itself. For comparison, corresponding polysilicon pressure sensors were fabricated using the similar process and irradiated at the same condition

  5. Order of current variance and diffusivity in the rate one totally asymmetric zero range process

    NARCIS (Netherlands)

    Balázs, M.; Komjáthy, J.

    2008-01-01

    We prove that the variance of the current across a characteristic is of order t 2/3 in a stationary constant rate totally asymmetric zero range process, and that the diffusivity has order t 1/3. This is a step towards proving universality of this scaling behavior in the class of one-dimensional

  6. Population dose commitments due to radioactive releases from nuclear power plant sites in 1982. Volume 4

    International Nuclear Information System (INIS)

    Baker, D.A.; Peloquin, R.A.

    1986-06-01

    Population radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1982. Fifty-year dose commitments from a one-year exposure were calculated from both liquid and atmospheric releases for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each of 51 sites. This report tabulates the results of these calculations, showing the dose commitments for both liquid and airborne pathways for each age group and organ. Also included for each site is a histogram showing the fraction of the total population within 2 to 80 km around each site receiving various average dose commitments from the airborne pathways. The total dose commitments from both liquid and airborne pathways ranged from a high of 30 person-rem to a low of 0.007 person-rem for the sites with plants operating throughout the year with an arithmetic mean of 3 person-rem. The total population dose for all sites was estimated at 130 person-rem for the 100 million people considered at risk. The average individual dose commitment from all pathways on a site basis ranged from a low of 6 x 10 -7 mrem to a high of 0.06 mrem. No attempt was made in this study to determine the maximum dose commitment received by any one individual from the radionuclides released at any of the sites

  7. Effects of total dose of ionizing radiation on integrated circuits

    Energy Technology Data Exchange (ETDEWEB)

    Silveira, Marcilei A.G.; Cirne, K.H.; Gimenez, S.; Santos, R.B.B. [Centro Universitario da FEI, Sao Bernardo do Campo, SP (Brazil); Added, N.; Barbosa, M.D.L.; Medina, N.H.; Tabacniks, M.H. [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica; Lima, J.A. de; Seixas Junior, L.E.; Melo, W. [Centro de Tecnologia da Informacao Paulo Archer, Sao Paulo, SP (Brazil)

    2011-07-01

    Full text: The study of ionizing radiation effects on materials used in electronic devices is of great relevance for the progress of global technological development and, particularly, it is a necessity in some strategic areas in Brazil. Electronic circuits are strongly influenced by radiation and the need for IC's featuring radiation hardness is largely growing to meet the stringent environment in space electronics. On the other hand, aerospace agencies are encouraging both scientific community and semiconductors industry to develop hardened-by-design components using standard manufacturing processes to achieve maximum performance, while significantly reducing costs. To understand the physical phenomena responsible for changes in devices exposed to ionizing radiation several kinds of radiation should then be considered, among them alpha particles, protons, gamma and X-rays. Radiation effects on the integrated circuits are usually divided into two categories: total ionizing dose (TID), a cumulative dose that shifts the threshold voltage and increases transistor's off-state current; single events effects (SEE), a transient effect which can deposit charge directly into the device and disturb the properties of electronic circuits. TID is one of the most common effects and may generate degradation in some parameters of the CMOS electronic devices, such as the threshold voltage oscillation, increase of the sub-threshold slope and increase of the off-state current. The effects of ionizing radiation are the creation of electron-hole pairs in the oxide layer changing operation mode parameters of the electronic device. Indirectly, there will be also changes in the device due to the formation of secondary electrons from the interaction of electromagnetic radiation with the material, since the charge carriers can be trapped both in the oxide layer and in the interface with the oxide. In this work we have investigated the behavior of MOSFET devices fabricated with

  8. Effects on Ferroelectric Thin-Film Stacks and Devices for Piezoelectric MEMS Applications at Varied Total Ionizing Dose (TID)

    Science.gov (United States)

    2017-03-01

    non -linearly mobile internal interfaces, e.g. domain walls and eventual phase boundaries. Radiation exposure is expected...zirconate titanate; PZT; actuator; radiation ; gamma; total ionization dose; TID; top electrode; Pt; IrO2; polarization; PE; hysteresis; permittivity...Hayashigawa, et. al., “A 2 Mbit Radiation Hardened Stackable Ferroelectric Memory” Non - Volatile Memory Technology Symposium, NVMTS 07, Nov 10-13, 2007 Albuquerque, NM, USA

  9. PTTL Dose Re-estimation Applied to Quality Control in TLD-100 Based Personal Dosimetry

    International Nuclear Information System (INIS)

    Muniz, J.L.; Correcher, V.; Delgado, A.

    1999-01-01

    A new method for quality control of dose performance in Personal Dosimetry using TLD-100 is presented. This method consists of the application of dose reassessment techniques based on phototransferred thermoluminescence (PTTL). Reassessment is achieved through a second TL readout of the dosemeters worn by the controlled workers, after a reproducible UV exposure. Recent refinements in the PTTL technique developed in our laboratory allow reassessing doses as low as 0.2 mSv, thus extending the reassessment capability to the entire dose range that must be monitored in personal dosimetry. After a one month exposure, even purely environmental doses can be reassessed. This method can be applied for either re-estimation of single doses or of the total dose accumulated after a number of exposures and dose measurements. Several tests to reconfirm low doses in normal working conditions for personal dosimetry have been performed. Each test consisted of several cycles of exposure and TL evaluations and a final PTTL re-estimation of the total accumulated dose in those cycles. The results obtained always showed very good agreement between the sum of the partial doses and the total reassessed dose. The simplicity of the method and the possibility of re-evaluating the doses assessed to the workers employing their own dosemeters are advantageous features to be considered in designing systems for the determination of real performance in personal dosimetry. (author)

  10. Relation between dose of bendrofluazide, antihypertensive effect, and adverse biochemical effects

    DEFF Research Database (Denmark)

    Carlsen, J E; Køber, L; Torp-Pedersen, C

    1990-01-01

    OBJECTIVE--To determine the relevant dose of bendrofluazide for treating mild to moderate hypertension. DESIGN--Double blind parallel group trial of patients who were given placebo for six weeks and then randomly allocated to various doses of bendrofluazide (1.25, 2.5, 5, or 10 mg daily) or place...... of bendrofluazide to treat mild to moderate hypertension is 1.25-2.5 mg a day. Higher doses caused more pronounced adverse biochemical effects including adverse lipid effects. Previous trials with bendrofluazide have used too high doses....... relations between dose and effect were shown for potassium, urate, glucose, total cholesterol, and apolipoprotein B concentrations. The 1.25 mg dose increased only urate concentrations, whereas the 10 mg dose affected all the above biochemical variables. CONCLUSION--The relevant range of doses...

  11. Effect of high-dose preoperative methylprednisolone on recovery after total hip arthroplasty

    DEFF Research Database (Denmark)

    Lunn, T H; Andersen, Lasse Østergaard; Kristensen, B B

    2013-01-01

    (IQR) (95% CI), MP vs placebo]: 23.5 (23.3-23.7) (17.8-43.8) vs 23.5 (23.0-23.8) (20.0-46.8) h, the mean difference (95% CI) being -1.3 (-4.7 to 2.2) h, P=0.65. Overall pain for the first 24 h after surgery was significantly reduced in the MP vs the placebo group (PMP 125 mg i.v. before surgery added......BACKGROUND: /st>High-dose glucocorticoid may reduce postsurgical pain and improve recovery. We hypothesized that 125 mg methylprednisolone (MP) would reduce time to meet functional discharge criteria after total hip arthroplasty (THA). METHODS: /st>Forty-eight patients undergoing unilateral THA...... under spinal anaesthesia were consecutively included in this randomized, double-blind, placebo-controlled trial receiving preoperative i.v. MP or saline. All patients received a standardized, multimodal analgesic regime with paracetamol, celecoxib, and gabapentin. The primary outcome was time to meet...

  12. Quantitative analysis of biological responses to low dose-rate γ-radiation, including dose, irradiation time, and dose-rate

    International Nuclear Information System (INIS)

    Magae, J.; Furukawa, C.; Kawakami, Y.; Hoshi, Y.; Ogata, H.

    2003-01-01

    Full text: Because biological responses to radiation are complex processes dependent on irradiation time as well as total dose, it is necessary to include dose, dose-rate and irradiation time simultaneously to predict the risk of low dose-rate irradiation. In this study, we analyzed quantitative relationship among dose, irradiation time and dose-rate, using chromosomal breakage and proliferation inhibition of human cells. For evaluation of chromosome breakage we assessed micronuclei induced by radiation. U2OS cells, a human osteosarcoma cell line, were exposed to gamma-ray in irradiation room bearing 50,000 Ci 60 Co. After the irradiation, they were cultured for 24 h in the presence of cytochalasin B to block cytokinesis, cytoplasm and nucleus were stained with DAPI and propidium iodide, and the number of binuclear cells bearing micronuclei was determined by fluorescent microscopy. For proliferation inhibition, cells were cultured for 48 h after the irradiation and [3H] thymidine was pulsed for 4 h before harvesting. Dose-rate in the irradiation room was measured with photoluminescence dosimeter. While irradiation time less than 24 h did not affect dose-response curves for both biological responses, they were remarkably attenuated as exposure time increased to more than 7 days. These biological responses were dependent on dose-rate rather than dose when cells were irradiated for 30 days. Moreover, percentage of micronucleus-forming cells cultured continuously for more than 60 days at the constant dose-rate, was gradually decreased in spite of the total dose accumulation. These results suggest that biological responses at low dose-rate, are remarkably affected by exposure time, that they are dependent on dose-rate rather than total dose in the case of long-term irradiation, and that cells are getting resistant to radiation after the continuous irradiation for 2 months. It is necessary to include effect of irradiation time and dose-rate sufficiently to evaluate risk

  13. Population dose commitments due to radioactive releases from nuclear power plant sites in 1983

    International Nuclear Information System (INIS)

    Baker, D.A.; Peloquin, R.A.

    1987-04-01

    Population radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1983. Fifty-year dose commitments from a one-year exposure were calculated from both liquid and atmospheric releases for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each of 52 sites. This report tabulates the results of these calculations, showing the dose commitments for both liquid and airborne pathways for each age group and organ. Also included for each of the sites is a histogram showing the fraction of the total population within 2 to 80 km around each site receiving various average dose commitments from the airborne pathways. The total dose commitments (from both liquid and airborne pathways) for each site ranged from a high of 45 person-rem to a low of 0.002 person-rem for the sites with plants operating throughout the year with an arithmetic mean of 3 person-rem. The total population dose for all sites was estimated at 170 person-rem for the 100 million people considered at risk

  14. The effects of dose rate in total body irradiation of dogs

    International Nuclear Information System (INIS)

    Kolb, H.J.; Bodenberger, U.; Holler, E.; Thierfelder, S.; Eckstein, R.

    1986-01-01

    In summary the studies in dogs show that the dose rate or exposure time has a great impact on survival of acute radiation syndromes. In contrast the inactivation of colony forming hemopoietic precursors is less influenced by the dose rate. The potential of hemopoietic recovery is determined by the survival of hemopoietic precursor cells. Therefore in patients with a suspected whole body exposure of more than 1.50 Gy, bacterial and fungal decontamination and reverse isolation in a sterile environment has to be started immediately. Human patients treated with about 10 Gy of TBI frequently developed nausea, elevated temperatures and swelling of the parotic glands at the first and second day. The extent of these changes varies from patient to patient. The temperature is rarely elevated above 38.5 0 C. The swelling of parotics and the nausea subside within 48 hours. The presence of such systemic symptoms may suggest the exposure to a lethal dose of radiation. The disappearance of immature red cells, i.e. reticulocytes, and bandforms of granulocytes within the first 5 days supports this suggestion. HLA typing of the victim and his family should be performed as soon as possible after the accident. An HLA-identical sibling would be a suitable bone marrow donor. Unlike therapeutic TBI accidental exposures bring about uncertainties in the calculation of dose, dose distribution and dose rate. Early after irradiation biological changes are extremely variable. Both biological and physical data have to be considered, when microbiological decontamination, reverse isolation and transplantation of bone marrow are to be decided upon. Obviously these intensive therapeutic efforts are limited to a small number of victims. (orig.)

  15. Whole-body dose meters. Measurements of total activity

    International Nuclear Information System (INIS)

    Koeppe, P.; Klinikum Steglitz, Berlin

    1990-01-01

    By means of measurements using a whole-body dose meter, the course of the incorporation of radionuclides was established between April 1986 and May 1989 for unchanged conditions of alimentation, activity-conscious alimentation, and uniquely increased incorporation. Monitoring covered persons from the most different spheres of life. The incorporation is compared with the one resulting from nuclear weapons explosions in the atmosphere. (DG) [de

  16. Radiation dose measurements in intravenous pyelography

    International Nuclear Information System (INIS)

    Egeblad, M.; Gottlieb, E.

    1975-01-01

    Intravenous pyelography (IVP) and micturition cystourethrography (MCU) are the standard procedures in the radiological examination of children with urinary tract infections and in the control of these children. Gonad protection against radiation is not possible in MCU, but concerning the girls partly possible in IVP. It is of major importance to know the radiation dose in these procedures, especially since the examination is often repeated in the same patients. All IVP were done by means of the usual technique including possible gonad protection. The thermoluminescence dosimeter was placed rectally in the girls and fixed on the scrota in the boys. A total of 50 children was studied. Gonad dose ranged from 140 to 200mR in the girls and from 20 to 70mR in the boys (mean values). The radiation dose in IVP is very low compared to that of MCU, and from this point of view IVP is a dose saving examination in the control of children with urinary tract infections [fr

  17. Population dose due to natural radiation in Hong Kong

    International Nuclear Information System (INIS)

    Tso, M.Y.W.; Leung, J.K.C.

    2000-01-01

    In densely populated cities such as Hong Kong where people live and work in high-rise buildings that are all built with concrete, the indoor gamma dose rate and indoor radon concentration are not wide ranging. Indoor gamma dose rates (including cosmic rays) follow a normal distribution with an arithmetic mean of 0.22 ± 0.04 (micro)Gy h -1 , whereas indoor radon concentrations follow a log-normal distribution with geometric means of 48 ± 1 Bq m -3 and 90 ± 2 Bq m -3 for the two main categories of buildings: residential and non-residential. Since different occupations result in different occupancy in different categories of buildings, the annual total dose [indoor and outdoor radon effective dose + indoor and outdoor gamma absorbed dose (including cosmic ray)] to the population in Hong Kong was estimated based on the number of people for each occupation; the occupancy of each occupation; indoor radon concentration distribution and indoor gamma dose rate distribution for each category of buildings; outdoor radon concentration and gamma dose rate; and indoor and outdoor cosmic ray dose rates. The result shows that the annual doses for every occupation follow a log-normal distribution. This is expected since the total dose is dominated by radon effective dose, which has a log-normal distribution. The annual dose to the population of Hong Kong is characterized by a log-normal distribution with a geometric mean of 2.4 mSv and a geometric standard deviation of 1.3 mSv

  18. SU-E-T-515: Field-In-Field Compensation Technique Using Multi-Leaf Collimator to Deliver Total Body Irradiation (TBI) Dose

    Energy Technology Data Exchange (ETDEWEB)

    Lakeman, T [The State University of New York at Buffalo (United States); Wang, IZ [The State University of New York at Buffalo (United States); Roswell Park Cancer Institute, Buffalo, NY (United States)

    2014-06-01

    Purpose: Total body irradiation (TBI) uses large parallel-opposed radiation fields to suppress the patient's immune system and eradicate the residual cancer cells in preparation of recipient for bone marrow transplant. The manual placement of lead compensators has been used conventionally to compensate for the varying thickness through the entire body in large-field TBI. The goal of this study is to pursue utilizing the modern field-in-field (FIF) technique with the multi-leaf collimator (MLC) to more accurately and efficiently deliver dose to patients in need of TBI. Method: Treatment plans utilizing the FIF technique to deliver a total body dose were created retrospectively for patients for whom CT data had been previously acquired. Treatment fields include one pair of opposed open large fields (collimator=45°) with a specific weighting and a succession of smaller fields (collimator=90°) each with their own weighting. The smaller fields are shaped by moving MLC to block the sections of the patient which have already received close to 100% of the prescribed dose. The weighting factors for each of these fields were calculated using the attenuation coefficient of the initial lead compensators and the separation of the patient in different positions in the axial plane. Results: Dose-volume histograms (DVH) were calculated for evaluating the FIF compensation technique. The maximum body doses calculated from the DVH were reduced from the non-compensated 179.3% to 148.2% in the FIF plans, indicating a more uniform dose with the FIF compensation. All calculated monitor units were well within clinically acceptable limits and exceeded those of the original lead compensation plan by less than 50 MU (only ~1.1% increase). Conclusion: MLC FIF technique for TBI will not significantly increase the beam on time while it can substantially reduce the compensator setup time and the potential risk of errors in manually placing lead compensators.

  19. Randomised clinical trial: a dose-ranging study of vonoprazan, a novel potassium-competitive acid blocker, vs. lansoprazole for the treatment of erosive oesophagitis.

    Science.gov (United States)

    Ashida, K; Sakurai, Y; Nishimura, A; Kudou, K; Hiramatsu, N; Umegaki, E; Iwakiri, K; Chiba, T

    2015-09-01

    The potassium-competitive acid blocker vonoprazan (VPZ) has potent acid-inhibitory effects and may offer clinical advantages over conventional therapy for acid-related disorders. To investigate the efficacy and safety of VPZ in patients with erosive oesophagitis (EO). In this multicentre, randomised, double-blind, parallel-group, dose-ranging study, patients ≥20 years with endoscopically confirmed EO [Los Angeles (LA) grades A-D] received VPZ 5, 10, 20 or 40 mg, or lansoprazole (LPZ) 30 mg once daily for 8 weeks. The primary endpoint was the proportion of healed EO subjects as shown by endoscopy at week 4. A total of 732 subjects received VPZ or LPZ. The proportion of healed EO subjects at week 4 was 92.3%, 92.5%, 94.4%, 97.0% and 93.2%, respectively, with VPZ 5, 10, 20 and 40 mg and LPZ 30 mg. All VPZ doses were non-inferior to LPZ when adjusted for baseline LA grades A/B and C/D. Among those with LA grades C/D, the proportions of healed EO subjects were 87.3%, 86.4%, 100%, 96.0% and 87.0%, respectively, with VPZ 5, 10, 20 and 40 mg and LPZ 30 mg. The incidence of adverse events was similar across the groups. Vonoprazan was effective and non-inferior to LPZ in healing EO. VPZ 20 mg or higher was highly efficacious for severe EO (LA grades C/D). VPZ was associated with no safety concern during this 8-week study, while there was a dose-dependent increase in serum gastrin. Once-daily VPZ 20 mg is the recommended clinical dose for treating EO. © 2015 The Authors. Alimentary Pharmacology & Therapeutics published by John Wiley & Sons Ltd.

  20. Investigations on the influence of aminopropyl-aminoethyl-phosphorothioic acid on the radio-iron utilization after a whole-body irradiation of mice in the sublethal dose range

    International Nuclear Information System (INIS)

    Moenig, H.; Seiter, I.; Kofler, E.

    1975-01-01

    The effectiveness of the thiophosphate compound WR 2721 was investigated with regard to the radiosensitivity of X-irradiated female mice in the sublethal dose range of 50 to 150 R using the radioiron test ( 59 Fe). An increase of the radioresistance with regard to the radioiron uptake in young erythrocyte populations was obtained only beyond radiation doses of 75 R. In lower dose ranges the animals treated with thiophoshate became even more radiosensitive. At dose values of 100 R and 150 R dose reduction factors (DRF) of 1.3 and 1.5 respectively were obtained. These factors are considerably smaller than the DRF-values found for the survival rate at LDsub(50/30). A possible mechanism for this result may be due to the different dephosphorylation rate of the thiophosphate in various tissues, as described in literature. (orig.) [de

  1. Gamma irradiation affects the total phenol, anthocyanin and antioxidant properties in three different persian pistachio nuts.

    Science.gov (United States)

    Akbari, Mohammad; Farajpour, Mostafa; Aalifar, Mostafa; Sadat Hosseini, Mohammad

    2018-02-01

    The effects of gamma irradiation (GR) on total phenol, anthocyanin and antioxidant activity were investigated in three different Persian pistachio nuts at doses of 0, 1, 2 and 4 kGy. The antioxidant activity, as determined by FRAP and DPPH methods, revealed a significant increase in the 1-2 kGy dose range. Total phenol content (TPC) revealed a similar pattern or increase in this range. However, when radiation was increased to 4 kGy, TPC in all genotypes decreased. A radiation dose of 1 kGy had no significant effect on anthocyanin content of Kale-Ghouchi (K) and Akbari (A) genotypes, while it significantly increased the anthocyanin content in the Ghazvini (G) genotype. In addition, increasing the radiation to 4 kGy significantly increased the anthocyanin content of K and G genotypes. To conclude, irradiation could increase the phenolic content, anthocyanin and antioxidant activity of pistachio nuts.

  2. Population dose commitments due to radioactive releases from nuclear power plant sites in 1981. Volume 3

    International Nuclear Information System (INIS)

    Baker, D.A.; Peloquin, R.A.

    1985-01-01

    Population radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1981. Fifty-year dose commitments from a one-year exposure were calculated from both liquid and atmospheric releases for four population groups (infant, child, teenager and adult) residing between 2 and 80 km from each site. This report tabulates the results of these calculations, showing the dose commitments for both liquid and airborne pathways for each age group and organ. Also included for each site is a histogram showing the fraction of the total population within 2 to 80 km around each site receiving various average dose commitments from the airborne pathways. The total dose commitment from both liquid and airborne pathways from 48 sites ranged from a high of 20 person-rem to a low of 0.008 person-rem with an arithmetic mean of 3 person-rem. The total population dose for all sites was estimated at 160 person-rem for the 98 million people considered at risk

  3. Assessment of individual dose utilization vs. physician prescribing recommendations for recombinant activated factor VII (rFVIIa) in paediatric and adult patients with congenital haemophilia and alloantibody inhibitors (CHwI): the Dosing Observational Study in Hemophilia (DOSE).

    Science.gov (United States)

    Gruppo, R A; Kessler, C M; Neufeld, E J; Cooper, D L

    2013-07-01

    Recent data from the Dosing Observational Study in Hemophilia diary study has described home treatment with recombinant activated factor VII (rFVIIa) in congenital haemophilia with inhibitors (CHwI). The current analysis compares prescribed and patient/caregiver-reported rFVIIa administration in paediatric and adult CHwI patients in this study. Patients with ≥ 4 bleeding episodes within a 3-month period prescribed rFVIIa as first-line therapy for bleeding episodes were eligible. Patients/caregivers completed a diary for ≥ 90 days or until the patient experienced four bleeds. Initial, total and mean rFVIIa doses reported for each bleeding episode were calculated and compared with the physician-prescribed doses. Of 52 enrolled patients (25 children; 27 adults), 39 (75%) completed the study. Children and adults had similar mean durations of bleeding episodes. Both patient groups were administered higher initial rFVIIa doses for joint bleeds than prescribed: median (range) 215.2 (74.1-400.0) mcg kg(-1) vs. 200.0 (61.0-270.0) mcg kg(-1) for children, and 231.3 (59.3-379.7) mcg kg(-1) vs. 123.0 (81.0-289.0) mcg kg(-1) for adults. The median infused dose for joint bleeds was higher in adults than children (175.2 vs. 148.0 mcg kg(-1) ), but children received significantly more doses per joint bleed than adults (median 6.5 vs. 3.0). The median total dose per joint bleed was higher in children than adults (1248.7 vs. 441.6). For children and adults, both initial and additional doses administered for bleeds were higher than prescribed. Children received higher total doses per bleed due to an increased number of infusions per bleed. © 2013 John Wiley & Sons Ltd.

  4. Cavities at the Si projected range by high dose and energy Si ion implantation in Si

    International Nuclear Information System (INIS)

    Canino, M.; Regula, G.; Lancin, M.; Xu, M.; Pichaud, B.; Ntzoenzok, E.; Barthe, M.F.

    2009-01-01

    Two series of n-type Si samples α and β are implanted with Si ions at high dose (1 x 10 16 ) and high energies, 0.3 and 1.0 MeV, respectively. Both sort of samples are then implanted with 5 x 10 16 He cm -2 (at 10 or 50 keV) and eventually with B atoms. Some of the samples are annealed at temperatures ranging from 800 to 1000 deg. C to allow the thermal growth of He-cavities, located between sample surface and the projected range (R p ) of Si. After the triple ion implantation, which corresponds to defect engineering, samples were characterized by cross-section transmission electron microscopy (XTEM). Voids (or bubbles) are observed not only at the R p (He) on all annealed samples, but also at the R p (Si) on β samples implanted with He at 50 keV. The samples are also studied by positron annihilation spectroscopy (PAS) and the spectra confirm that as-implanted samples contain di-vacancies and that the annealed ones, even at high temperature have bigger open volumes, which are assumed to be the same voids observed by XTEM. It is demonstrated that a sole Si implantation at high energy and dose is efficient to create cavities which are thermally stable up to 1000 deg. C only in the presence of He.

  5. Dynamically accumulated dose and 4D accumulated dose for moving tumors

    International Nuclear Information System (INIS)

    Li Heng; Li Yupeng; Zhang Xiaodong; Li Xiaoqiang; Liu Wei; Gillin, Michael T.; Zhu, X. Ronald

    2012-01-01

    Purpose: The purpose of this work was to investigate the relationship between dynamically accumulated dose (dynamic dose) and 4D accumulated dose (4D dose) for irradiation of moving tumors, and to quantify the dose uncertainty induced by tumor motion. Methods: The authors established that regardless of treatment modality and delivery properties, the dynamic dose will converge to the 4D dose, instead of the 3D static dose, after multiple deliveries. The bounds of dynamic dose, or the maximum estimation error using 4D or static dose, were established for the 4D and static doses, respectively. Numerical simulations were performed (1) to prove the principle that for each phase, after multiple deliveries, the average number of deliveries for any given time converges to the total number of fractions (K) over the number of phases (N); (2) to investigate the dose difference between the 4D and dynamic doses as a function of the number of deliveries for deliveries of a “pulsed beam”; and (3) to investigate the dose difference between 4D dose and dynamic doses as a function of delivery time for deliveries of a “continuous beam.” A Poisson model was developed to estimate the mean dose error as a function of number of deliveries or delivered time for both pulsed beam and continuous beam. Results: The numerical simulations confirmed that the number of deliveries for each phase converges to K/N, assuming a random starting phase. Simulations for the pulsed beam and continuous beam also suggested that the dose error is a strong function of the number of deliveries and/or total deliver time and could be a function of the breathing cycle, depending on the mode of delivery. The Poisson model agrees well with the simulation. Conclusions: Dynamically accumulated dose will converge to the 4D accumulated dose after multiple deliveries, regardless of treatment modality. Bounds of the dynamic dose could be determined using quantities derived from 4D doses, and the mean dose

  6. Absorbed dose thresholds and absorbed dose rate limitations for studies of electron radiation effects on polyetherimides

    Science.gov (United States)

    Long, Edward R., Jr.; Long, Sheila Ann T.; Gray, Stephanie L.; Collins, William D.

    1989-01-01

    The threshold values of total absorbed dose for causing changes in tensile properties of a polyetherimide film and the limitations of the absorbed dose rate for accelerated-exposure evaluation of the effects of electron radiation in geosynchronous orbit were studied. Total absorbed doses from 1 kGy to 100 MGy and absorbed dose rates from 0.01 MGy/hr to 100 MGy/hr were investigated, where 1 Gy equals 100 rads. Total doses less than 2.5 MGy did not significantly change the tensile properties of the film whereas doses higher than 2.5 MGy significantly reduced elongation-to-failure. There was no measurable effect of the dose rate on the tensile properties for accelerated electron exposures.

  7. Total photoabsorption cross section on nuclei measured in energy range 0.5-2.6 GeV

    International Nuclear Information System (INIS)

    Mirazita, M.

    1998-03-01

    The total photoabsorption cross section on several nuclei has been measured in the energy range 0.5 - 2.6 GeV. Nuclear data show a significant reduction of the absorption strength with respect to the free nucleon case suggesting a shadowing effect at low energies

  8. Phase 2 Randomized, Dose-Ranging Study of Oxymetazoline Cream for Treatment of Persistent Facial Erythema Associated With Rosacea.

    Science.gov (United States)

    DuBois, Janet; Dover, Jeffrey S; Jones, Terry M; Weiss, Robert A; Berk, David R; Ahluwalia, Gurpreet

    2018-03-01

    Rosacea is a chronic dermatologic condition with limited treatment options. This phase 2 study evaluated the optimal oxymetazoline dosing regimen in patients with moderate to severe persistent facial erythema of rosacea. Patients were randomly assigned to oxymetazoline cream, 0.5%, 1.0%, or 1.5%, or vehicle, administered once daily (QD) or twice daily (BID) for 28 consecutive days. The primary efficacy endpoint was the proportion of patients with ≥2-grade improvement from baseline on the Clinician Erythema Assessment (CEA) and the Subject Self-Assessment of erythema (SSA-1) on day 28. Safety assessments included treatment-emergent adverse events and dermal tolerability. A total of 356 patients were treated (mean age, 50.0 years; 80.1% female). The proportions of patients achieving the primary endpoint were significantly higher with oxymetazoline 0.5% QD (P=0.049), 1.0% QD (P=0.006), 1.5% QD (P=0.012), 1.0% BID (P=0.021), and 1.5% BID (P=0.006) versus their respective vehicles. For both QD and BID dosing, the efficacy of oxymetazoline 1.0% was greater than the 0.5% dose and comparable to the 1.5% dose. Safety and application-site tolerability were similar across groups. Short-term treatment period. Oxymetazoline 1.0% QD provided the optimal dosing regimen and was selected for evaluation in phase 3 clinical studies. J Drugs Dermatol. 2018;17(3):308-316.

  9. Total ionizing dose radiation hardness of the ATLAS MDT-ASD and the HP-Agilent 0.5 um CMOS process

    CERN Document Server

    Posch, C

    2002-01-01

    A total ionizing dose (TID) test of the MDT-ASD, the ATLAS MDT front-end chip has been performed at the Harvard Cyclotron Lab. The MDT-ASD is an 8-channel drift tube read-out ASIC fabricated in a commercial 0.5 um CMOS process (AMOS14TB). The accumulated TID at the end of the test was 300 krad, delivered by 160 MeV protons at a rate of approximately 70 rad/sec. All 10 irradiated chips retained their full functionality and performance and showed only irrelevantly small changes in device parameters. As the total accumulated dose is substantially higher than the relevant ATLAS Radiation Tolerance Criteria (RTCtid), the results of this test indicate that MDT-ASD meets the ATLAS TID radiation hardness requirements. In addition, the results of this test correspond well with results of a 30 keV gamma TID irradiation test performed by us on an earlier prototype at the CERN x-ray facility as well as with results of other irradiation test on this process found in literature.

  10. Ultra-low Dose CT for Attenuation Correction of 82Rb Cardiac PET

    DEFF Research Database (Denmark)

    Sørensen, Maria Balshøj; Bouchelouche, Kirsten; Tolbod, Lars Poulsen

    Aim: Myocardial perfusion imaging (MPI) using cardiac PET with tracers like 82Rb and 15O-water is substantially lower in radiation dose than classic MIBI-based SPECT. However, for cardiac PET, the dose contribution of CT for attenuation correction (CTAC) is typically 20-30% of the total dose....... To reduce the total radiation dose of cardiac PET further, we set out to examine if the use of ultra-low dose CTAC (UL-CTAC) would affect the accuracy of the quantitative parameters related to MPI. Furthermore, we examined whether the low quality of the UL-CTAC would affect the technologist’s ability...... to perform manual adjustment for misalignment between PET and CTAC. The CT reconstruction algorithm Q.AC was used to improve quality and consistency of the CTAC. Method: 23 consecutive clinical patients (BMI: 26.9 [range: 15.4-38.8]) referred for 82Rb PET rest and stress imaging were included in the study...

  11. Possible changes in the dose of biologically active ultraviolet radiation received by the biosphere in the summertime Arctic due to total ozone interannual variability

    Energy Technology Data Exchange (ETDEWEB)

    Gruzdev, Aleksandr N. (Institute of Atmospheric Physics, Russian Academy of Sciences, Moscow (Russian Federation))

    1994-12-01

    Data for total ozone measurements since 1972 from the world ozone measuring network have been analyzed to study ozone interannual variability and estimate its possible effect on the UV-B dose received by the arctic biosphere. Possible interannual changes in the UV-B dose received by DNA associated with overall interannual ozone variability, as well as with the quasi-biennial oscillation (QBO) in total ozone were computed for different summer months. In general, the largest interannual variations in UV-B dose may occur in the Russian Arctic, whereas the possible variations in the Canadian Arctic are the smallest. Overall variations in the UV-B dose received by DNA can exceed 25% (2[sigma] criterion) in the Taimyr and Severnaya Zemlya for June and July, and 30% in the Laptev Sea for August. In the European sector of the Arctic, the possible variations are greater than 10%, and can exceed 15% in the north Norwegian Sea for July and 20% in Spitsbergen for August. Possible overall variations in the Canadian Arctic and Alaska are [<=]10%, reaching 15% in Alaska for August, however. The total ozone QBO can also cause essential and (statistically) predicted changes in UV-B radiation. In general, the UV-B dose received by DNA is found to be greater in the Arctic during the westerly phase of the QBO of the equatorial stratospheric wind at 50 mb level than during the easterly phase. The difference can reach or exceed 15% (relative to the mean value) in Taimyr for June and in Severnaya Zemlya for July and August. In northern Europe and Iceland, the difference can reach 10% for August. In the Canadian Arctic, the QBO-related effect is small. In Alaska, the appropriate difference in UV-B dose has an opposite sign for August, exceeding 5% in magnitude

  12. Allogeneic marrow transplantation following cyclophosphamide and escalating doses of hyperfractionated total body irradiation in patients with advanced lymphoid malignancies: a phase I/II trial

    International Nuclear Information System (INIS)

    Demirer, Taner; Petersen, Finn B.; Appelbaum, Frederick R.; Barnett, Todd A.; Sanders, Jean; Deeg, H. Joachim; Storb, Rainer; Doney, Kristine; Bensinger, William I.; Shannon-Dorcy, Kathleen; Buckner, C. Dean

    1995-01-01

    Purpose: To define the maximum tolerated dose (MTD) of unshielded total body irradiation (TBI) delivered from dual 60 C sources at an exposure rate of 0.08 Gy/min and given in thrice daily fractions of 1.2 Gy in patients with advanced lymphoid malignancies. Methods and Materials: Forty-four patients with a median age of 28 (range 6-48) years were entered into a Phase I/II study. All patients received cyclophosphamide (CY), 120 mg/kg administered over 2 days before TBI. Marrow from human leukocyte antigen (HLA) identical siblings was infused following the last dose of TBI. An escalation-deescalation schema designed to not exceed an incidence of 25% of Grade 3-4 regimen-related toxicities (RRTs) was used. The first dose level tested was 13.2 Gy followed by 14.4 Gy. Results: None of the four patients at the dose level of 13.2 Gy developed Grade 3-4 RRT. Two of the first eight patients receiving 14.4 Gy developed Grade 3-4 RRT, establishing this as the MTD. An additional 32 patients were evaluated at the 14.4 Gy level to confirm these initial observations. Of 40 patients receiving 14.4 Gy, 13 (32.5%) developed Grade 3-4 RRTs; 46% in adults and 12% in children. The primary dose limiting toxicity was Grade 3-4 hepatic toxicity, which occurred in 12.5% of patients. Noninfectious Grade 3-4 interstitial pneumonia syndrome occurred in 5% of patients. The actuarial probabilities of event-free survival, relapse, and nonrelapse mortality at 2 years were 0.10, 0.81, and 0.47, respectively, for patients who received 14.4 Gy of TBI. Conclusions: The outcome for patients receiving 14.4 Gy of TBI was not different from previous studies of other CY and TBI regimens in patients with advanced lymphoid malignancies. These data showed that the incidence of Grade 3-4 RRTs in adults was greater than the 25% maximum set as the goal of this study, suggesting that 13.2 Gy is a more appropriate dose of TBI for adults, while 14.4 Gy is an appropriate dose for children

  13. Unscheduled DNA synthesis in spleen cells of mice exposed to low doses of total body irradiation

    International Nuclear Information System (INIS)

    Tuschl, H.; Kovac, R.; Hruby, E.

    1983-07-01

    Unscheduled DNA synthesis was induced by UV irradiation of spleen cells obtained from C 57 Bl mice after repeated total body irradiation of 0.05 Gy 60 Co (0.00125 Gy/mice) and determined autoradiographically. An enhancement in the ability for repair of UV induced DNA lesions was observed in cells of gamma irradiated animals. While the amount of 3 H-thymidine incorporated per cell was increased, the percentage of labeled cells remained unchanged. The present results are compared with previous data on low dose radiation exposure in men. (Author) [de

  14. Development of direct reading dosimeters for the dose 0-3 mSv and 0-5 mSv ranges for personnel monitoring

    International Nuclear Information System (INIS)

    Gaikwad, P.V.; Shirkar, Y.B.; Patil, A.S.; Madgaonkar, P.P.; Kale, K.L.; Guhagarkar, H.V.; Gandhi, D.P.; Gupta, S.K.; Kothiyal, G.P.; Sahni, V.C.

    1998-01-01

    Direct reading dosimeters (DRDs) are widely used to measure cumulative dose received by personnel working at nuclear reactor sites or in other environment having x- and gamma rays. A DRD operates on the principle of gold leaf electroscope, and is a small, rugged, hermetically sealed, self reading type device easily carried by an individual in his pocket. The development of dosimeters suitable for the dose ranges 0-3 mSv and 0-5 mSv is reported

  15. The mechanical behavior and reliability prediction of the HTR graphite component at various temperature and neutron dose ranges

    International Nuclear Information System (INIS)

    Fang, Xiang; Yu, Suyuan; Wang, Haitao; Li, Chenfeng

    2014-01-01

    Highlights: • The mechanical behavior of graphite component in HTRs under high temperature and neutron irradiation conditions is simulated. • The computational process of mechanical analysis is introduced. • Deformation, stresses and failure probability of the graphite component are obtained and discussed. • Various temperature and neutron dose ranges are selected in order to investigate the effect of in-core conditions on the results. - Abstract: In a pebble-bed high temperature gas-cooled reactor (HTR), nuclear graphite serves as the main structural material of the side reflectors. The reactor core is made up of a large number of graphite bricks. In the normal operation case of the reactor, the maximum temperature of the helium coolant commonly reaches about 750 °C. After around 30 years’ full power operation, the peak value of in-core fast neutron cumulative dose reaches to 1 × 10 22 n cm −2 (EDN). Such high temperature and neutron irradiation strongly impact the behavior of graphite component, causing obvious deformation. The temperature and neutron dose are unevenly distributed inside a graphite brick, resulting in stress concentrations. The deformation and stress concentration can both greatly affect safety and reliability of the graphite component. In addition, most of the graphite properties (such as Young's modulus and coefficient of thermal expansion) change remarkably under high temperature and neutron irradiations. The irradiation-induced creep also plays a very important role during the whole process, and provides a significant impact on the stress accumulation. In order to simulate the behavior of graphite component under various in-core conditions, all of the above factors must be considered carefully. In this paper, the deformation, stress distribution and failure probability of a side graphite component are studied at various temperature points and neutron dose levels. 400 °C, 500 °C, 600 °C and 750 °C are selected as the

  16. A reference dosimetric system for dose interval of radiotherapy based on alanine/RPE; Um sistema dosimetrico de referencia para o intervalo de doses da radioterapia baseado na alanina/RPE

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues Junior, Orlando; Galante, Ocimar L.; Campos, Leticia L. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)]. E-mail: rodrijr@net.ipen.br

    2001-07-01

    This work describes the development of a reference dosimetric system based on alanine/EPR for radiotherapy dose levels. Currently the IPEN is concluding a similar system for the dose range used for irradiation of products, 10-10{sup 5} Gy. The objective of this work is to present the efforts towards to improve the measure accuracy for doses in the range between 1-10 Gy. This system could be used as reference by radiotherapy services, as much in the quality control of the equipment, as for routine accompaniment of more complex handling where the total doses can reach some grays. The system uses alanine as detector and electronic paramagnetic resonance - EPR as measure technique. To reach accuracy better than 5% mathematical studies on the best optimization of the EPR spectrometer parameters and methods for the handling of the EPR sign are discussed. (author)

  17. Evaluation of radiation dose to neonate on special care baby unit

    International Nuclear Information System (INIS)

    Adam, A. Y. I.

    2012-08-01

    A total of 132 patients in One-armed Maternity Hospital in Khartoum State. ESDs from patient exposure parameters using DosCal software. Effective doses (E) were calculated using published conversion factor and methods recommended by the national Radiological Protection Board (NRPB). The mean patient dose was 80 μGy per procedures. The mean organ doses per procedures were ranged between 0.04 to 0.0002 mGy per procedure. The mean effective dose was 0.02 mSv. Patients' doses showed wide variations. This variation in patient dose could be attributed to the variation in patient weight, tube voltage and tube current time product.The radiation risk per procedures was very low. However, due to their sensitive tissues, additional dose reduction is justifiable. A dedicated x-ray machine with additional filtration is recommended for patient dose reductions. (Author)

  18. Population dose commitments due to radioactive releases from nuclear power plant sites in 1975

    International Nuclear Information System (INIS)

    Baker, D.A.; Soldat, J.K.; Watson, E.C.

    1977-10-01

    Population radiation dose commitments were estimated from reported radionuclide releases from commercial power reactors operating during 1975. Fifty-year dose commitments from one year exposure were calculated from both liquid and atmospheric releases for four population groups (infant, child, teenager and adult) residing between 2 and 80 km from each site. Results are given in the form of tables giving the dose commitments for both liquid and airborne pathways for each age group and organ. Also included for each site is a histogram showing the fraction of the total population within the 2 to 80-km region around each site receiving various average dose commitments from the airborne pathways. The total dose commitment from both liquid and airborne pathways ranged from a high of 750 person-rem to a low of 0.008 person-rem with an arithmetic mean of 34 person-rem

  19. Effects of differents gamma radiation doses absorbed for postharvest tomato fruits

    International Nuclear Information System (INIS)

    Silva Abreu, Toneypson da; Jesus, Edgar F.O. de; Soares, Antonio G.

    1997-01-01

    Postharvest tomato fuits Santa Cruz were submitted to prestorage gamma irradiation treatment with different doses range zero (unirradiated fruits) to 1000 Gy. The aim of this study is to evaluate the postharvest quality parameters: Hunter colour values for light transmittance analysis, pH, total titratable acidity, total soluble solids, maximum firmness and maturity stage. The fruits were stored under (25±1) 0 C with (93±3) relative humidity. The results obtained from the different irradiated treatments showed 600 Gy as the best dose to increase the shelf-life of tomato fruits and to decay its ripening. (author). 5 refs., 12 figs., 1 tab

  20. Total and inorganic arsenic in dietary supplements based on herbs, other botanicals and algae—a possible contributor to inorganic arsenic exposure

    DEFF Research Database (Denmark)

    Hedegaard, Rikke Susanne Vingborg; Rokkjær, Inge; Sloth, Jens Jørgen

    2013-01-01

    The content of total and inorganic arsenic was determined in 16 dietary supplements based on herbs, other botanicals and algae purchased on the Danish market. The dietary supplements originated from various regions, including Asia, Europe and USA. The contents of total and inorganic arsenic...... was determined by inductively coupled plasma mass spectrometry (ICP-MS) and anion exchange HPLC-ICP-MS, respectively, were in the range of 0.58 to 5.0 mgkg−1 and 0.03 to 3.2 mg kg−1, respectively, with a ratio between inorganic arsenic and total arsenic ranging between 5 and 100 %. Consumption of the recommended...... dose of the individual dietary supplement would lead to an exposure to inorganic arsenic within the range of 0.07 to 13 μg day−1. Such exposure from dietary supplements would in worst case constitute 62.4 % of the range of benchmark dose lower confidence limit values (BMDL01 at 0.3 to 8 μg kg bw−1 kg−1...

  1. TH-AB-207A-05: A Fully-Automated Pipeline for Generating CT Images Across a Range of Doses and Reconstruction Methods

    International Nuclear Information System (INIS)

    Young, S; Lo, P; Hoffman, J; Wahi-Anwar, M; Brown, M; McNitt-Gray, M; Noo, F

    2016-01-01

    Purpose: To evaluate the robustness of CAD or Quantitative Imaging methods, they should be tested on a variety of cases and under a variety of image acquisition and reconstruction conditions that represent the heterogeneity encountered in clinical practice. The purpose of this work was to develop a fully-automated pipeline for generating CT images that represent a wide range of dose and reconstruction conditions. Methods: The pipeline consists of three main modules: reduced-dose simulation, image reconstruction, and quantitative analysis. The first two modules of the pipeline can be operated in a completely automated fashion, using configuration files and running the modules in a batch queue. The input to the pipeline is raw projection CT data; this data is used to simulate different levels of dose reduction using a previously-published algorithm. Filtered-backprojection reconstructions are then performed using FreeCT_wFBP, a freely-available reconstruction software for helical CT. We also added support for an in-house, model-based iterative reconstruction algorithm using iterative coordinate-descent optimization, which may be run in tandem with the more conventional recon methods. The reduced-dose simulations and image reconstructions are controlled automatically by a single script, and they can be run in parallel on our research cluster. The pipeline was tested on phantom and lung screening datasets from a clinical scanner (Definition AS, Siemens Healthcare). Results: The images generated from our test datasets appeared to represent a realistic range of acquisition and reconstruction conditions that we would expect to find clinically. The time to generate images was approximately 30 minutes per dose/reconstruction combination on a hybrid CPU/GPU architecture. Conclusion: The automated research pipeline promises to be a useful tool for either training or evaluating performance of quantitative imaging software such as classifiers and CAD algorithms across the range

  2. TH-AB-207A-05: A Fully-Automated Pipeline for Generating CT Images Across a Range of Doses and Reconstruction Methods

    Energy Technology Data Exchange (ETDEWEB)

    Young, S; Lo, P; Hoffman, J; Wahi-Anwar, M; Brown, M; McNitt-Gray, M [UCLA School of Medicine, Los Angeles, CA (United States); Noo, F [University of Utah, Salt Lake City, UT (United States)

    2016-06-15

    Purpose: To evaluate the robustness of CAD or Quantitative Imaging methods, they should be tested on a variety of cases and under a variety of image acquisition and reconstruction conditions that represent the heterogeneity encountered in clinical practice. The purpose of this work was to develop a fully-automated pipeline for generating CT images that represent a wide range of dose and reconstruction conditions. Methods: The pipeline consists of three main modules: reduced-dose simulation, image reconstruction, and quantitative analysis. The first two modules of the pipeline can be operated in a completely automated fashion, using configuration files and running the modules in a batch queue. The input to the pipeline is raw projection CT data; this data is used to simulate different levels of dose reduction using a previously-published algorithm. Filtered-backprojection reconstructions are then performed using FreeCT-wFBP, a freely-available reconstruction software for helical CT. We also added support for an in-house, model-based iterative reconstruction algorithm using iterative coordinate-descent optimization, which may be run in tandem with the more conventional recon methods. The reduced-dose simulations and image reconstructions are controlled automatically by a single script, and they can be run in parallel on our research cluster. The pipeline was tested on phantom and lung screening datasets from a clinical scanner (Definition AS, Siemens Healthcare). Results: The images generated from our test datasets appeared to represent a realistic range of acquisition and reconstruction conditions that we would expect to find clinically. The time to generate images was approximately 30 minutes per dose/reconstruction combination on a hybrid CPU/GPU architecture. Conclusion: The automated research pipeline promises to be a useful tool for either training or evaluating performance of quantitative imaging software such as classifiers and CAD algorithms across the range

  3. Absorbed bone marrow dose in certain dental radiographic techniques

    International Nuclear Information System (INIS)

    White, S.C.; Rose, T.C.

    1979-01-01

    The absorbed dose of radiation in the bone marrow of the region of the head and neck was measured during intraoral, panoramic, and cephalometric radiography. Panoramic radiography results in a dose a fifth or less than that from an intraoral survey. The use of rectangular collimation reduces the bone marrow absorbed dose from an intraoral survey by about 60%. Comparison of the doses from dental radiography with natural environmental radiation shows that an intraoral set of films results in the same total dose to the bone marrow as 65 days of background exposure. The use of rectangular collimation reduces this value to 25 days. Panoramic radiography results in significantly less irradiation, as it reduces the value to 14 days or fewer. Dental radiography thus involves exposures in the range of variation of natural environmental background values

  4. Dose-response relationship for life-shortening and carcinogenesis in mice irradiated at day 7 postnatal age with dose range below 1 Gy of gamma rays

    International Nuclear Information System (INIS)

    Sasaki, Shunsaku; Fukuda, Nobuo

    2006-01-01

    This study was designed to elucidate the dose-response relationships for life-shortening and tumorigenic effect in the dose range below 1 Gy of gamma rays delivered during the infant period. Female B6C3F 1 mice were irradiated with 0.10, 0.48 or 0.95 Gy at 7 days of age. All irradiated mice were allowed to live out their entire life span together with a simultaneously ongoing control group under a specific pathogen-free condition. Shortening of the mean life span was 1.58% in mice irradiated with 0.10 Gy, which was statistically significant. The coefficient of the linear dose-response relationship for life-shortening was 11.21% Gy -1 . The attributable death fraction for all causes of death in 0.10 Gy group reached 0.092. The excess relative risk for death rate from all causes was 0.102 in the group irradiated with 0.10 Gy. The coefficient of the linear dose-response relationship of the excess relative risk for death rate from all causes was 1.30 Gy -1 . The mean number of types of solid tumors at the time of death in mice irradiated with 0.10 Gy was distinctly larger than that in the control group. The excess relative risk for death rate from solid tumors was 0.45 in mice irradiated with 0.10 Gy. The coefficient of the linear dose-response relationship of excess relative risk for death rate from solid tumors was 4.52 Gy -1 . Increase in incidences of the pituitary, ovarian and adrenal tumors was observed in mice irradiated with 0.10 Gy. The results of the present study showed that infant mice are susceptible to solid tumor induction, especially of the endocrine organs. (author)

  5. 85Kr management trade-offs: a perspective to total radiation dose commitment

    International Nuclear Information System (INIS)

    Mellinger, P.J.; Hoenes, G.R.; Brackenbush, L.W.; Greenborg, J.

    1980-01-01

    Radiological consequences arising from the trade-offs for 85 Kr waste management from possible nuclear fuel resource recovery activities have been investigated. The reference management technique is to release all the waste gas to the atmosphere where it is diluted and dispersed. A potential alternative is to collect, concentrate, package and submit the gas to long-term storage. This study compares the radiation dose commitment to the public and to the occupationally exposed work force from these alternatives. The results indicate that it makes little difference to the magnitude of the world population dose whether 85 Kr is captured and stored or chronically released to the environment. Further, comparisons of radiation exposures (for the purpose of estimating health effects) at very low dose rates to very large populations with exposures to a small number of occupationally exposed workers who each receive much higher dose rates may be misleading. Finally, cost studies (EPA 1976 and DOE 1979a) show that inordinate amounts of money will be required to lower this already extremely small 80-year cumulative world population dose of 0.05 mrem/person

  6. A single institution study of radiation dose received from CT imaging: A comparison to Malaysian NDRL

    Science.gov (United States)

    Osman, N. D.; Shamsuri, S. B. M.; Tan, Y. W.; Razali, M. A. S. M.; Isa, S. M.

    2017-05-01

    Advancement of CT technology has led to an increase in CT scanning as it improves the diagnosis. However, it is important to assess health risk of patients associated with ionising radiation received from CT. This study evaluated current dose distributions at Advanced Medical and Dental Institute (AMDI), Malaysia and was used to establish Local Diagnostic Reference Level (LDRL). Dose indicators such as CT Dose Index (CTDIvol and CTDIw) and Dose-Length Product (DLP) were gathered for all routine CT examinations performed at the Imaging Unit, AMDI from January 2015 to June 2016. The first and third quartile values for each dose indicator were determined. A total of 364 CT studies were performed during that period with the highest number of cases being Thorax-Abdomen-Pelvis (TAP) study (57% of total study). The CTDIw ranged between 2.0 mGy to 23.4 mGy per procedure. DLP values were ranged between 94 mGy.cm to 1687 mGy.cm. The local dose data was compared with the national DRL to monitor the current CT practice at AMDI and LDRL will be established from the calculated third quartile values of dose distribution. From the results, some of the local dose values exceeded the Malaysian and further evaluation is important to ensure the dose optimisation for patients.

  7. A single institution study of radiation dose received from CT imaging: A comparison to Malaysian NDRL

    International Nuclear Information System (INIS)

    Osman, N D; Shamsuri, S B M; Razali, M A S M; Isa, S M; Tan, Y W

    2017-01-01

    Advancement of CT technology has led to an increase in CT scanning as it improves the diagnosis. However, it is important to assess health risk of patients associated with ionising radiation received from CT. This study evaluated current dose distributions at Advanced Medical and Dental Institute (AMDI), Malaysia and was used to establish Local Diagnostic Reference Level (LDRL). Dose indicators such as CT Dose Index (CTDI vol and CTDI w ) and Dose-Length Product (DLP) were gathered for all routine CT examinations performed at the Imaging Unit, AMDI from January 2015 to June 2016. The first and third quartile values for each dose indicator were determined. A total of 364 CT studies were performed during that period with the highest number of cases being Thorax-Abdomen-Pelvis (TAP) study (57% of total study). The CTDI w ranged between 2.0 mGy to 23.4 mGy per procedure. DLP values were ranged between 94 mGy.cm to 1687 mGy.cm. The local dose data was compared with the national DRL to monitor the current CT practice at AMDI and LDRL will be established from the calculated third quartile values of dose distribution. From the results, some of the local dose values exceeded the Malaysian and further evaluation is important to ensure the dose optimisation for patients. (paper)

  8. SU-F-T-327: Total Body Irradiation In-Vivo Dose Measurements Using Optically Stimulated Luminescence (OSL) NanoDots and Farmer Type Ion Chamber

    International Nuclear Information System (INIS)

    Kaur, H; Kumar, S; Sarkar, B; Ganesh, T; Giri, U; Jassal, K; Rathinamuthu, S; Gulia, G; Gopal, V; Mohanti, B; Munshi, A

    2016-01-01

    Purpose: This study was performed to analyze the agreement between optically stimulated luminescence (OSL) nanoDots measured doses and 0.6 cc Farmer type ionization chamber measured doses during total body irradiation (TBI). Methods: In-vivo dose measurements using OSL nanoDots and Farmer chamber were done in a total of twelve patients who received TBI at our center by bilateral parallel-opposed beams technique. In this technique, the patient is kept inside the TBI box which is filled with rice bags and irradiated using two bilateral parallel opposed beams of 40×40 cm"2 size with 45° collimator rotation at an SSD of 333.5 cm in an Elekta Synergy linear accelerator. All patients received a dose of 2 Gy in single fraction as conditioning regimen. The beams were equally weighted at the midplane of the box. The nanoDots were placed over forehead, right and left neck, right and left lung, umbilicus, right and left abdomen, medial part of thigh, knee and toe. A 0.6 cc Farmer chamber was placed in between the thighs of the patient. Measured doses are reported along with the statistical comparisons using paired sample t-test. Results: For the above sites the mean doses were 212.2±21.1, 218.2±7.6, 218.7±9.3, 215.6±9.5, 217.5±11.5, 214.5±7.7, 218.3±6.8, 221.5±15, 229.1±11.0, 220.5±7.7 and 223.3±5.1 cGy respectively. For all OSL measurements the mean dose was 218.6±11.8 cGy. Farmer chamber measurements yielded a mean dose of 208.8±15.6 cGy. Statistical analysis revealed that there was no significant difference between OSL measured doses in forehead, right and left neck, right and left lung, umbilicus, right and left abdomen and toe and Farmer chamber measured doses (0.72≤p≤0.06). However the mean OSL doses at thigh and knee were statistically different (p<0.05) from the Farmer chamber measurements. Conclusion: OSL measurements were found to be in agreement with Farmer type ionization chamber measurements in in-vivo dosimetry of TBI.

  9. Intracranial germinomas: a case for low dose radiation therapy alone

    International Nuclear Information System (INIS)

    Harrigan, Patricia M.; Loeffler, Jay S.; Shrieve, Dennis; Tarbell, Nancy J.

    1995-01-01

    Purpose: To determine the optimal dose and treatment outcome of patients treated with radiation for intracranial germinoma. Materials and Methods: Between 1975 and 1995, 39 patients with a diagnosis of intracranial germinoma were treated with radiation (RT) to the central nervous system. All but one pt received whole brain (WB) RT, (median dose: 3240 cGy range: 1500-4437 cGy) and a boost to the tumor volume (median total tumor volume dose: 5200 cGy, range: 3960-5950 cGy). Thirty-one pts received RT to the spine (median dose: 2500, range: 1875-3750). Eleven pts were treated with low dose RT and a tumor volume boost, (WB dose ≤ 2550 cGy, and spine dose ≤ 2160 cGy). Five pts were treated with cisplatin-based chemotherapy and low dose WB RT. Fifteen pts were biopsy-proven and 18 presented with multiple midline germinomas (MMG). Among all pts, 33% had serum or CSF positive for low levels of HCG and none of 19 (9 biopsy-proven) germinomas measured positive for AFP tumor marker. Six of 22 (27%) pts who had spine imaging or CSF cytology had evidence of tumor seeding. The male-to female-ratio was 1.4. Median age at diagnosis was 14 yrs for male pts and 9.5 yrs for females (p=.02, overall age range: 1-31 yrs). Median follow-up for survivors is 64 months (range: 1-226 months). Toxicity of treatment relative to dose was assessed. Results: The 5-yr. actuarial rate of disease-free survival (DFS) and overall survival for presumed germinomas was 97%. No pts died of germinoma. One pt died of a shunt infection who had received concurrent chemotherapy and low dose whole brain RT. Among the low dose RT alone group 6 pts received whole brain RT of ≤ 2550 cGy and 9 pts were treated with spinal RT of ≤ 2160 cGy without chemotherapy. Two of these pts had CSF cytology positive for tumor seeding. Additionally, 8 pts received a total dose to the tumor volume of ≤ 4800 cGy without chemotherapy. The 5-yr DFS was 100%. Five pts were treated with cisplatin-based chemotherapy followed

  10. Intracranial germinomas: a case for low dose radiation therapy alone

    Energy Technology Data Exchange (ETDEWEB)

    Harrigan, Patricia M; Loeffler, Jay S; Shrieve, Dennis; Tarbell, Nancy J

    1995-07-01

    Purpose: To determine the optimal dose and treatment outcome of patients treated with radiation for intracranial germinoma. Materials and Methods: Between 1975 and 1995, 39 patients with a diagnosis of intracranial germinoma were treated with radiation (RT) to the central nervous system. All but one pt received whole brain (WB) RT, (median dose: 3240 cGy range: 1500-4437 cGy) and a boost to the tumor volume (median total tumor volume dose: 5200 cGy, range: 3960-5950 cGy). Thirty-one pts received RT to the spine (median dose: 2500, range: 1875-3750). Eleven pts were treated with low dose RT and a tumor volume boost, (WB dose {<=} 2550 cGy, and spine dose {<=} 2160 cGy). Five pts were treated with cisplatin-based chemotherapy and low dose WB RT. Fifteen pts were biopsy-proven and 18 presented with multiple midline germinomas (MMG). Among all pts, 33% had serum or CSF positive for low levels of HCG and none of 19 (9 biopsy-proven) germinomas measured positive for AFP tumor marker. Six of 22 (27%) pts who had spine imaging or CSF cytology had evidence of tumor seeding. The male-to female-ratio was 1.4. Median age at diagnosis was 14 yrs for male pts and 9.5 yrs for females (p=.02, overall age range: 1-31 yrs). Median follow-up for survivors is 64 months (range: 1-226 months). Toxicity of treatment relative to dose was assessed. Results: The 5-yr. actuarial rate of disease-free survival (DFS) and overall survival for presumed germinomas was 97%. No pts died of germinoma. One pt died of a shunt infection who had received concurrent chemotherapy and low dose whole brain RT. Among the low dose RT alone group 6 pts received whole brain RT of {<=} 2550 cGy and 9 pts were treated with spinal RT of {<=} 2160 cGy without chemotherapy. Two of these pts had CSF cytology positive for tumor seeding. Additionally, 8 pts received a total dose to the tumor volume of {<=} 4800 cGy without chemotherapy. The 5-yr DFS was 100%. Five pts were treated with cisplatin-based chemotherapy

  11. A trial of radiation dose prescription based on dose-cell survival formula

    International Nuclear Information System (INIS)

    Allen, E.P.

    1984-01-01

    Radiation treatment has been prescribed for 379 basal cell carcinomata on the basis of a selected equivalent single dose derived from the standard multi-target dose-cell survival formula using values of m = 2 and Do = 130 rads for orthovoltage x-rays. The results suggest that the approach provides a flexible and acceptable alternative to prescription by total dose or by Nominal Standard Dose. It is submitted that Total Dose is an inadequate expression of radiobiological effects: that the NSD and related systems are valuable measures of the ability of normal tissues to recover from radiation damage: and that a parallel measure of the degree of tumour depopulation has become necessary to allow further progress in alternative fractionation schedules

  12. Total dose behavior of partially depleted SOI dynamic threshold voltage MOS (DTMOS) for very low supply voltage applications (0.6 - 1 V)

    International Nuclear Information System (INIS)

    Ferlet-Cavrois, V.; Musseau, O.; Leray, J.L.; Faynot, O.; Raynaud, C.; Pelloie, J.L.

    1999-01-01

    In this paper, we presented two DTMOS architectures processed with a partially depleted SOI technology. The first architecture, DTMOS without limiting transistor, is dedicated to ultra-low voltage applications, at 0.6 V. For 1V applications, the second architecture, DTMOS with limiting transistor, needs an additional transistor to limit the body-source diode current. The total dose irradiation of both DTMOS architectures induces no change of the drain current, but an increase of the body-source diode current. Total dose induced trapped charge in the buried oxide increases the body potential of the DTMOS transistor. It induces an increase of the current flow at the back interface of the silicon film. Irradiation of complex circuits using DTMOS transistors would lead to a degradation of the stand-by consumption. (authors)

  13. Dose and energy dependence of response of Gafchromic XR-QA film for kilovoltage x-ray beams.

    Science.gov (United States)

    Rampado, O; Garelli, E; Deagostini, S; Ropolo, R

    2006-06-07

    There is a growing interest in Gafchromic films for patient dosimetry in radiotherapy and in radiology. A new model (XR-QA) with high sensitivity to low dose was tested in this study. The response of the film to different x-ray beam energies (range 28-145 kVp with various filtrations, dose range 0-100 mGy) and to visible light was investigated, together with the after exposure darkening properties. Exposed films were digitized with a commercially available, optical flatbed scanner. A single functional form for dose versus net pixel value variation has been determined for all the obtained calibration curves, with a unique fit parameter different for each of the used x-ray beams. The film response was dependent on beam energy, with higher colour variations for the beams in the range 80-140 kVp. Different sources of uncertainties in dose measurements, governed by the digitalization process, the film response uniformity and the calibration curve fit procedure, have been considered. The overall one-sigma dose measurement uncertainty depended on the beam energy and decreased with increasing absorbed dose. For doses above 10 mGy and beam energies in the range 80-140 kVp the total uncertainty was less than 5%, whereas for the 28 kVp beam the total uncertainty at 10 mGy was about 10%. The post-exposure colour variation was not negligible in the first 24 h after the exposure, with a consequent increase in the calculated dose of about 10%. Results of the analysis of the sensitivity to visible light indicated that a short exposure of this film to ambient and scanner light during the measurements will not have a significant impact on the radiation dosimetry.

  14. Comparison of patient specific dose metrics between chest radiography, tomosynthesis, and CT for adult patients of wide ranging body habitus

    International Nuclear Information System (INIS)

    Zhang, Yakun; Li, Xiang; Segars, W. Paul; Samei, Ehsan

    2014-01-01

    Purpose: Given the radiation concerns inherent to the x-ray modalities, accurately estimating the radiation doses that patients receive during different imaging modalities is crucial. This study estimated organ doses, effective doses, and risk indices for the three clinical chest x-ray imaging techniques (chest radiography, tomosynthesis, and CT) using 59 anatomically variable voxelized phantoms and Monte Carlo simulation methods. Methods: A total of 59 computational anthropomorphic male and female extended cardiac-torso (XCAT) adult phantoms were used in this study. Organ doses and effective doses were estimated for a clinical radiography system with the capability of conducting chest radiography and tomosynthesis (Definium 8000, VolumeRAD, GE Healthcare) and a clinical CT system (LightSpeed VCT, GE Healthcare). A Monte Carlo dose simulation program (PENELOPE, version 2006, Universitat de Barcelona, Spain) was used to mimic these two clinical systems. The Duke University (Durham, NC) technique charts were used to determine the clinical techniques for the radiographic modalities. An exponential relationship between CTDI vol and patient diameter was used to determine the absolute dose values for CT. The simulations of the two clinical systems compute organ and tissue doses, which were then used to calculate effective dose and risk index. The calculation of the two dose metrics used the tissue weighting factors from ICRP Publication 103 and BEIR VII report. Results: The average effective dose of the chest posteroanterior examination was found to be 0.04 mSv, which was 1.3% that of the chest CT examination. The average effective dose of the chest tomosynthesis examination was found to be about ten times that of the chest posteroanterior examination and about 12% that of the chest CT examination. With increasing patient average chest diameter, both the effective dose and risk index for CT increased considerably in an exponential fashion, while these two dose metrics

  15. Comparison of patient specific dose metrics between chest radiography, tomosynthesis, and CT for adult patients of wide ranging body habitus

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yakun [Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Li, Xiang [Medical Physics Graduate Program, Department of Physics, Cleveland State University, Cleveland, Ohio 44115 (United States); Segars, W. Paul [Medical Physics Graduate Program, Carl E. Ravin Advanced Imaging Laboratories, and Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Samei, Ehsan, E-mail: samei@duke.edu [Medical Physics Graduate Program, Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Departments of Physics, Biomedical Engineering, and Electrical and Computer Engineering, Duke University Medical Center, Durham, North Carolina 27705 (United States)

    2014-02-15

    Purpose: Given the radiation concerns inherent to the x-ray modalities, accurately estimating the radiation doses that patients receive during different imaging modalities is crucial. This study estimated organ doses, effective doses, and risk indices for the three clinical chest x-ray imaging techniques (chest radiography, tomosynthesis, and CT) using 59 anatomically variable voxelized phantoms and Monte Carlo simulation methods. Methods: A total of 59 computational anthropomorphic male and female extended cardiac-torso (XCAT) adult phantoms were used in this study. Organ doses and effective doses were estimated for a clinical radiography system with the capability of conducting chest radiography and tomosynthesis (Definium 8000, VolumeRAD, GE Healthcare) and a clinical CT system (LightSpeed VCT, GE Healthcare). A Monte Carlo dose simulation program (PENELOPE, version 2006, Universitat de Barcelona, Spain) was used to mimic these two clinical systems. The Duke University (Durham, NC) technique charts were used to determine the clinical techniques for the radiographic modalities. An exponential relationship between CTDI{sub vol} and patient diameter was used to determine the absolute dose values for CT. The simulations of the two clinical systems compute organ and tissue doses, which were then used to calculate effective dose and risk index. The calculation of the two dose metrics used the tissue weighting factors from ICRP Publication 103 and BEIR VII report. Results: The average effective dose of the chest posteroanterior examination was found to be 0.04 mSv, which was 1.3% that of the chest CT examination. The average effective dose of the chest tomosynthesis examination was found to be about ten times that of the chest posteroanterior examination and about 12% that of the chest CT examination. With increasing patient average chest diameter, both the effective dose and risk index for CT increased considerably in an exponential fashion, while these two dose

  16. Increased mortality by septicemia, interstitial pneumonitis and pulmonary fibrosis among bone marrow transplant recipients receiving an increased mean dose rate of total irradiation

    International Nuclear Information System (INIS)

    Ringden, O.; Baaryd, I.; Johansson, B.

    1983-01-01

    Seven bone marrow transplant recipients with acute lymphoblastic leukemia receiving a mean dose rate of 0.07 Gy/min of total body irradiation towards the pelvic midpoint and the lungs had an increased (p<0.01) overall death rate of 86 per cent compared with 33 per cent among 27 patients with acute non-lymphoblastic leukemia or acute lymphoblastic leukemia treated with a mean dose rate of 0.04 Gy/min. Among the patients receiving the higher dose rate there was an increased mortality in causes related to radiation toxicity like early septicemia, interstitial pneumonitis and pulmonary fibrosis, compared with all patients receiving the lower dose rate (p<0.01) and also with 10 patients from this group with acute lymphoblastic leukemia (p<0.02). (Auth.)

  17. Dose assessment in pediatric computerized tomography; Avaliacao de doses em tomografia computadorizada pediatrica

    Energy Technology Data Exchange (ETDEWEB)

    Vilarinho, Luisa Maria Auredine Lima

    2004-07-01

    The objective of this work was the evaluation of radiation doses in paediatric computed tomography scans, considering the high doses usually involved and the absence of any previous evaluation in Brazil. Dose values were determined for skull and abdomen examinations, for different age ranges, by using the radiographic techniques routinely used in the clinical centers investigated. Measurements were done using pencil shape ionization chambers inserted in polymethylmethacrylate (PMMA) phantoms. These were compact phantoms of different diameters were specially designed and constructed for this work, which simulate different age ranges. Comparison of results with published values showed that doses were lower than the diagnostic reference levels established to adults exams by the European Commission. Nevertheless, doses in paediatric phantoms were higher than those obtained in adult phantoms. The paediatric dose values obtained in Hospitals A and B were lower than the reference level (DRL) adopted by SHIMPTON for different age ranges. In the range 0 - 0.5 year (neonatal), the values of DLP in Hospital B were 94 por cent superior to the DRL For the 10 years old children the values of CTDI{sub w} obtained were inferior in 89 por cent for skull and 83 por cent for abdomen examinations, compared to the values published by SHRIMPTON and WALL. Our measured CTDI{sub w} values were inferior to the values presented for SHRIMPTON and HUDA, for all the age ranges and types of examinations. It was observed that the normalized dose descriptors values in children in the neonatal range were always superior to the values of doses for the adult patient. In abdomen examinations, the difference was approximately 90% for the effective dose (E) and of 57%.for CTDI{sub w} . (author)

  18. Total dose and dose-rate effects on start-up current in anti-fuse FPGA

    International Nuclear Information System (INIS)

    Wang, J.; Wong, W.; McCollum, J.; Cronquist, B.; Katz, R.; Kleyner, I.; Kleyner, F.

    1999-01-01

    Radiation enhanced start-up current (RESC) in an anti-fuse FPGA, A1280A, is thoroughly investigated and a comprehensive transistor-level mechanism is proposed. Low dose-rate testing, appropriate for civilian space applications, and annealing at room temperature shows RESC to be negligible for the lot of parts tested with a fixed power supply slew rate. (authors)

  19. 85Kr management trade-offs: a perspective to total radiation dose commitment

    Energy Technology Data Exchange (ETDEWEB)

    Mellinger, P.J.; Hoenes, G.R.; Brackenbush, L.W.; Greenborg, J.

    1980-01-01

    Radiological consequences arising from the trade-offs for /sup 85/Kr waste management from possible nuclear fuel resource recovery activities have been investigated. The reference management technique is to release all the waste gas to the atmosphere where it is diluted and dispersed. A potential alternative is to collect, concentrate, package and submit the gas to long-term storage. This study compares the radiation dose commitment to the public and to the occupationally exposed work force from these alternatives. The results indicate that it makes little difference to the magnitude of the world population dose whether /sup 85/Kr is captured and stored or chronically released to the environment. Further, comparisons of radiation exposures (for the purpose of estimating health effects) at very low dose rates to very large populations with exposures to a small number of occupationally exposed workers who each receive much higher dose rates may be misleading. Finally, cost studies (EPA 1976 and DOE 1979a) show that inordinate amounts of money will be required to lower this already extremely small 80-year cumulative world population dose of 0.05 mrem/person (<0.001% of natural background radiation for the same time period).

  20. Low-dose CT imaging of a total hip arthroplasty phantom using model-based iterative reconstruction and orthopedic metal artifact reduction

    Energy Technology Data Exchange (ETDEWEB)

    Wellenberg, R.H.H.; Streekstra, G.J.; Maas, M. [Academic Medical Center, Department of Radiology, Amsterdam (Netherlands); Boomsma, M.F.; Osch, J.A.C. van [Department of Radiology, Zwolle (Netherlands); Vlassenbroek, A. [Philips Medical Systems, Brussels (Belgium); Milles, J. [Philips Medical Systems, Eindhoven (Netherlands); Edens, M.A. [Department of Innovation and Science, Zwolle (Netherlands); Slump, C.H. [University of Twente, MIRA Institute for Biomedical Technology and Technical Medicine, Enschede (Netherlands)

    2017-05-15

    To compare quantitative measures of image quality, in terms of CT number accuracy, noise, signal-to-noise-ratios (SNRs), and contrast-to-noise ratios (CNRs), at different dose levels with filtered-back-projection (FBP), iterative reconstruction (IR), and model-based iterative reconstruction (MBIR) alone and in combination with orthopedic metal artifact reduction (O-MAR) in a total hip arthroplasty (THA) phantom. Scans were acquired from high- to low-dose (CTDI{sub vol}: 40.0, 32.0, 24.0, 16.0, 8.0, and 4.0 mGy) at 120- and 140- kVp. Images were reconstructed using FBP, IR (iDose{sup 4} level 2, 4, and 6) and MBIR (IMR, level 1, 2, and 3) with and without O-MAR. CT number accuracy in Hounsfield Units (HU), noise or standard deviation, SNRs, and CNRs were analyzed. The IMR technique showed lower noise levels (p < 0.01), higher SNRs (p < 0.001) and CNRs (p < 0.001) compared with FBP and iDose{sup 4} in all acquisitions from high- to low-dose with constant CT numbers. O-MAR reduced noise (p < 0.01) and improved SNRs (p < 0.01) and CNRs (p < 0.001) while improving CT number accuracy only at a low dose. At the low dose of 4.0 mGy, IMR level 1, 2, and 3 showed 83%, 89%, and 95% lower noise values, a factor 6.0, 9.2, and 17.9 higher SNRs, and 5.7, 8.8, and 18.2 higher CNRs compared with FBP respectively. Based on quantitative analysis of CT number accuracy, noise values, SNRs, and CNRs, we conclude that the combined use of IMR and O-MAR enables a reduction in radiation dose of 83% compared with FBP and iDose{sup 4} in the CT imaging of a THA phantom. (orig.)

  1. [Determination of total phthalates in perfume and their exposure assessment].

    Science.gov (United States)

    Zhao, Sihan; Wang, Zhengmeng; Deng, Hongxia; Duan, Jiahui; Wang, Jinyi; Liu, Shuhui

    2017-12-08

    A novel method for rapid screening of phthalates (PAEs) in perfumes was developed. The PAEs were hydrolyzed to phthalic acid (PA), and the PA in the acidified solution was extracted with tributyl phosphate (TBP) which was detected by high performance liquid chromatography-diode array detection (HPLC-DAD). Meanwhile exposure dose to PAEs was estimated by the percentage of a topically applied dose that permeates the skin. The parameters such as the concentration and volume of KOH, the volume of ethanol, hydrolysis time and temperature were employed to evaluate the hydrolysis efficiency of PAEs. The optimized hydrolysis conditions were 10 mL of 4 mol/L KOH, and 1 mL of ethanol at 80℃ for 20 min. The linear range of phthalic acid was 3-240 μmol/L with a good correlation coefficient ( R 2 =0.9991). The limits of detection (LOD) and quantification (LOQ) were 4.6 μmol/kg and 5.9 μmol/kg, respectively. The recoveries varied from 83.4% to 92.7% with relative standard deviations equal to or lower than 6.8%( n =5). A total of 35 perfume samples were determined, and the contents of total PAEs were found in the range of perfumes. The method is simple and reliable, and has a wide range of applicability. It can be used as a new choice for the detection of PAEs in perfume.

  2. The role of total dose in conservative surgery and radiation therapy for early stage breast cancer: is there a critical level?

    Energy Technology Data Exchange (ETDEWEB)

    White, Julia; Brown, Douglas; Gustafson, Greg; Chen, Peter; Matter, Richard; Cook, Carla; Martinez, Alvaro; Vicini, Frank A

    1995-07-01

    Purpose: Over the past several years, it has been our standard policy after breast conserving surgery to treat the entire breast to 45-50 Gy followed by a supplemental boost dose to the tumor bed to a minimum of 60 Gy with standard fractionation. We reviewed patients who received < 60 Gy to the tumor bed to identify any differences in recurrence rates in the breast. Materials and Methods: From 1/1/75 through 12/31/87, 443 consecutive patients diagnosed with stage I and II breast cancer (unilateral) were treated with conservative surgery and radiation therapy (CSRT) at William Beaumont Hospital. All patients underwent at least an excisional biopsy and 268 (60%) patients were re-excised. An ipsilateral axillary lymph node dissection was performed on 420 patients (95%). All patients received whole breast irradiation to 45-50 Gy. A supplemental boost dose was delivered to the tumor bed with either an implant, electrons, or photons in 404 (91%) patients. Median follow-up of surviving patients is 88 months. Results: Thirty-three patients of the 443 have suffered a failure in the treated breast for a 5 and 10 yr actuarial rate of local recurrence of 5 and 10%, respectively. Evaluation by total dose to the tumor bed is as follows: The distribution of patient's respective histology, tumor size, hormonal status, age, re-excision status, and adjuvant systemic therapy was similar among the dose groups. On multivariate analysis (Cox), in addition to total dose to tumor bed (p=0.002), the only other factor which was significantly associated with local recurrence was patient age {<=} 35 (p=0.002). Conclusions: Patients who receive {<=} 50 Gy to the tumor bed without careful attention to excisional status are at a significantly higher risk of local failure. This underlies the importance of supplementing the tumor bed dose after whole breast radiation therapy in those patients whose status of excision is not definitely known.

  3. The investigation of fetal doses in mantle field irradiation

    International Nuclear Information System (INIS)

    Karacam, S. C; Gueralp, O. S; Oeksuez, D. C; Koca, A.; Cepni, I.; Cepni, K.; Bese, N.

    2009-01-01

    To determine clinically the fetal dose from irradiation of Hodgkin's disease during pregnancy and to quantify the components of fetal dose using phantom measurements. The fetal dose was measured with phantom measurements using thermoluminescent dosemeters (TLDs). Phantom measurements were performed by simulating the treatment conditions on an anthropomorphic phantom. TLDs were placed on the phantom 41, 44, 46.5 and 49.5 cm from the centre of the treatment field. Two TLDs were placed on the surface of the phantom. The estimated total dose to all the TLDs ranged from 8.8 to 13.2 cGy for treatment with 60 Co and from 8.2 to 11.8 cGy for 4 MV photons. It was concluded that the doses in different sections were evaluated to investigate dose changes in different points and depths of fetal tissues in phantom. Precise planning and the use of supplemental fetal shielding may help reduce fetal exposure. (authors)

  4. Dose and dose rate monitor

    International Nuclear Information System (INIS)

    Novakova, O.; Ryba, J.; Slezak, V.; Svobodova, B.; Viererbl, L.

    1984-10-01

    The methods are discussea of measuring dose rate or dose using a scintillation counte. A plastic scintillator based on polystyrene with PBD and POPOP activators and coated with ZnS(Ag) was chosen for the projected monitor. The scintillators were cylindrical and spherical in shape and of different sizes; black polypropylene tubes were chosen as the best case for the probs. For the counter with different plastic scintillators, the statistical error 2σ for natural background was determined. For determining the suitable thickness of the ZnS(Ag) layer the energy dependence of the counter was measured. Radioisotopes 137 Cs, 241 Am and 109 Cd were chosen as radiation sources. The best suited ZnS(Ag) thickness was found to be 0.5 μm. Experiments were carried out to determine the directional dependence of the detector response and the signal to noise ratio. The temperature dependence of the detector response and its compensation were studied, as were the time stability and fatigue manifestations of the photomultiplier. The design of a laboratory prototype of a dose rate and dose monitor is described. Block diagrams are given of the various functional parts of the instrument. The designed instrument is easiiy portable, battery powered, measures dose rates from natural background in the range of five orders, i.e., 10 -2 to 10 3 nGy/s, and allows to determine a dose of up to 10 mGy. Accouracy of measurement in the energy range of 50 keV to 1 MeV is better than +-20%. (E.S.)

  5. Failure-probability driven dose painting

    International Nuclear Information System (INIS)

    Vogelius, Ivan R.; Håkansson, Katrin; Due, Anne K.; Aznar, Marianne C.; Kristensen, Claus A.; Rasmussen, Jacob; Specht, Lena; Berthelsen, Anne K.; Bentzen, Søren M.

    2013-01-01

    Purpose: To demonstrate a data-driven dose-painting strategy based on the spatial distribution of recurrences in previously treated patients. The result is a quantitative way to define a dose prescription function, optimizing the predicted local control at constant treatment intensity. A dose planning study using the optimized dose prescription in 20 patients is performed.Methods: Patients treated at our center have five tumor subvolumes from the center of the tumor (PET positive volume) and out delineated. The spatial distribution of 48 failures in patients with complete clinical response after (chemo)radiation is used to derive a model for tumor control probability (TCP). The total TCP is fixed to the clinically observed 70% actuarial TCP at five years. Additionally, the authors match the distribution of failures between the five subvolumes to the observed distribution. The steepness of the dose–response is extracted from the literature and the authors assume 30% and 20% risk of subclinical involvement in the elective volumes. The result is a five-compartment dose response model matching the observed distribution of failures. The model is used to optimize the distribution of dose in individual patients, while keeping the treatment intensity constant and the maximum prescribed dose below 85 Gy.Results: The vast majority of failures occur centrally despite the small volumes of the central regions. Thus, optimizing the dose prescription yields higher doses to the central target volumes and lower doses to the elective volumes. The dose planning study shows that the modified prescription is clinically feasible. The optimized TCP is 89% (range: 82%–91%) as compared to the observed TCP of 70%.Conclusions: The observed distribution of locoregional failures was used to derive an objective, data-driven dose prescription function. The optimized dose is predicted to result in a substantial increase in local control without increasing the predicted risk of toxicity

  6. A reference dosimetric system for dose interval of radiotherapy based on alanine/RPE

    International Nuclear Information System (INIS)

    Rodrigues Junior, Orlando; Galante, Ocimar L.; Campos, Leticia L.

    2001-01-01

    This work describes the development of a reference dosimetric system based on alanine/EPR for radiotherapy dose levels. Currently the IPEN is concluding a similar system for the dose range used for irradiation of products, 10-10 5 Gy. The objective of this work is to present the efforts towards to improve the measure accuracy for doses in the range between 1-10 Gy. This system could be used as reference by radiotherapy services, as much in the quality control of the equipment, as for routine accompaniment of more complex handling where the total doses can reach some grays. The system uses alanine as detector and electronic paramagnetic resonance - EPR as measure technique. To reach accuracy better than 5% mathematical studies on the best optimization of the EPR spectrometer parameters and methods for the handling of the EPR sign are discussed. (author)

  7. Whole-heart 320-row computed tomography. Reduction of radiation dose via prior coronary calcium scanning

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, E.; Dewey, M. [Charite - Universitaetsmedizin Berlin (Germany). Inst. fuer Radiologie

    2011-01-15

    Purpose: The whole heart can be scanned in one rotation using 320-row coronary computed tomography angiography (CCTA), which covers up to 16 cm. Since most hearts are smaller, the total radiation dose may be reduced by adjusting the CCTA range to the individual heart size defined on a low-dose calcium scan (CACS). Materials and Methods: Forty-five patients with suspected coronary artery disease (13 women, 32 men; mean 61 {+-} 10 years) underwent CCTA preceded by low-dose CACS on a 320-row scanner (Aquilion ONE, Toshiba; 0.35 s gantry rotation, 120 kV, 350 - 450 mA) with 16-cm z-axis coverage (120 kV, 150 mA). The subsequent CCTA was performed over an adjusted scan range calculated as the individual heart size on CACS ({+-} 1 cm above and below). The total radiation dose of 16-cm CACS and the individually adjusted CCTA was compared with that of a calculated single CCTA using full 16-cm z-axis coverage. Results: CCTA could be performed with a reduced scan length in the z-axis in all patients. None of the scans had to be performed over the whole range of 16 cm. The adjusted scan length was 14 cm in 2 patients, 12.8 cm in 3 patients, and 12 cm in 40 patients. The effective CCTA scan range was 12.1 {+-} 0.5 cm based on mean individual heart sizes of 9.6 {+-} 1.1 cm. The mean total effective radiation dose of the entire cardiac CT examination (individually adapted CCTA and CACS) was significantly smaller than the exposure calculated for 16-cm CCTA without CACS (8.5 {+-} 4.7 vs. 9.1 {+-} 6.0 mSv, p = 0.006). The dose reduction was most relevant in patients with heart rates above 65 beats/min (n = 10) in whom 2 or 3 heartbeats were necessary for CCTA (17.7 {+-} 6.5 vs. 21.1 {+-} 8.4 mSv, p = 0.001). Conclusion: 320-row CCTA with an individually adjusted scan range based on prior CACS significantly reduces the radiation exposure compared with full 16-cm CCTA. (orig.)

  8. Studies on γ-ray induced structural changes in Nd{sup 3+} doped lead alumino silicate glasses by means of thermoluminescence for dosimetric applications in high dose ranges

    Energy Technology Data Exchange (ETDEWEB)

    Sundara Rao, M. [Department of Physics, Acharya Nagarjuna University, Nagarjuna Nagar 522 510, Guntur, A.P. (India); Gandhi, Y. [Department of Physics, Kakani Venkata Ratnam College, Nandigama 521 185, A.P. (India); Sanyal, Bhaskar [Food Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Bhargavi, K. [Department of Physics, Acharya Nagarjuna University, Nagarjuna Nagar 522 510, Guntur, A.P. (India); Piasecki, M. [Institute of Physics, J. Dlugosz University, Ul. Armii Krajowej 13/15, 42-201 Czestochowa (Poland); Veeraiah, N., E-mail: nvr8@rediffmail.com [Department of Physics, Acharya Nagarjuna University, Nagarjuna Nagar 522 510, Guntur, A.P. (India)

    2014-12-15

    Graphical abstract: TL glow curves of PbO–SiO{sub 2}:Nd{sup 3+} glasses mixed with different concentrations of Al{sub 2}O{sub 3} exposed to γ-rays of dose 5.0 kGy. - Highlights: • TL studies of Nd{sup 3+} ions doped lead alumino silicate glasses were carried out. • Highest TL output was observed in the glasses mixed with 10 mol% of Al{sub 2}O{sub 3}. • Different mechanisms responsible for TL emission were discussed. • Near linearity of the dose response was observed in the dose range of 1.0–3.0 kGy. • These glasses may be useful as dosimeters in processing perishable food commodities. - Abstract: Thermoluminescence (TL) studies on PbO–Al{sub 2}O{sub 3}–SiO{sub 2}:Nd{sup 3+} glasses mixed with varying concentrations of Al{sub 2}O{sub 3} exposed to γ-rays of dose in the range 0–5.0 kGy were carried out. The TL emission exhibited a dosimetric peak at about 185 °C. The TL output under the glow peak increased with increasing Al{sub 2}O{sub 3} and also with the γ-ray dose. The mechanisms responsible for TL emission and enhancement of TL output with increase in the concentration of Al{sub 2}O{sub 3} were quantitatively discussed in terms of induced structural defects in the vicinity of Nd{sup 3+} ions due to interaction of γ-rays with the glass network in the scenario of varying concentration of Al{sub 2}O{sub 3}. The dose response of these glass samples exhibited linear behavior in the medium dose range viz., 1.0–3.0 kGy. Finally, it is concluded that the glass containing the highest concentration of Al{sub 2}O{sub 3} exhibits high TL output and such glasses are useful for dosimetry in the range 1.0–3.0 kGy and hence these glasses may be useful for dosimetry in such high range of doses required for commercial radiation processing of perishable food commodities to extend their shelf-lives.

  9. Absorbed doses to patients from angioradiology

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Romero, R; Hernandez-Armas, J [Servicio de Fisica Medica, Hospital Universitario de Canarias, La Laguna, Tenerife (Spain); Diaz-Romero, F [Servicio de Radiodiagnostico, Hospital Universitario de Canarias, La Laguna, Tenerife (Spain)

    2001-03-01

    The aim of study was to know patients doses exposes when three different procedures of angioradiology were carried out. The explorations considered were drainage biliary, varicocele embolization and dacriocistography made in the Radiodiagnostic Service at the University Hospital of Canary Islands, Tenerife (Spain). In total 14 patients were studied. The measurements were made using large area transmission ionisation chamber which gives the values of Dose Area Product (DAP). In addition, thermoluminescent dosimeters type TLD-100 were used in anthropomorphic phantom in order to obtain values of organ doses when the phantom was submitted to the same procedures rather than the actual patients. Furthermore, the Effdose program was used to estimate the effective doses in the procedures conditions. The values for DAP were in the range of 70-300 for drainage biliary, 43-180 for varicocele embolization and 1.4-9 for dacriocistography. The organ doses measured with TLD-100 were higher than the corresponding values estimated by Effdose program. The results for varicocele embolization were higher than other published data. In the case of drainage biliary procedure, the values were closed to other published results. It was not possible to find data for dacriocistography from other authors. (author)

  10. Absorbed doses to patients from angioradiology

    International Nuclear Information System (INIS)

    Rodriguez-Romero, R.; Hernandez-Armas, J.; Diaz-Romero, F.

    2001-01-01

    The aim of study was to know patients doses exposes when three different procedures of angioradiology were carried out. The explorations considered were drainage biliary, varicocele embolization and dacriocistography made in the Radiodiagnostic Service at the University Hospital of Canary Islands, Tenerife (Spain). In total 14 patients were studied. The measurements were made using large area transmission ionisation chamber which gives the values of Dose Area Product (DAP). In addition, thermoluminescent dosimeters type TLD-100 were used in anthropomorphic phantom in order to obtain values of organ doses when the phantom was submitted to the same procedures rather than the actual patients. Furthermore, the Effdose program was used to estimate the effective doses in the procedures conditions. The values for DAP were in the range of 70-300 for drainage biliary, 43-180 for varicocele embolization and 1.4-9 for dacriocistography. The organ doses measured with TLD-100 were higher than the corresponding values estimated by Effdose program. The results for varicocele embolization were higher than other published data. In the case of drainage biliary procedure, the values were closed to other published results. It was not possible to find data for dacriocistography from other authors. (author)

  11. Dose-rate effects for mammary tumor development in female Sprague-Dawley rats exposed to X and γ radiation

    International Nuclear Information System (INIS)

    Johnson, J.R.; Gragtmans, N.J.; Myers, D.K.; Jones, A.R.

    1989-01-01

    Mammary tumour development was followed in two experiments involving a total of 2229 female Sprague-Dawley rats exposed to various doses of X or γ rays at different dose rates. The data for another 462 rats exposed to tritiated water in one of these experiments were also analyzed. The incidence of adenocarcinomas and fibroadenomas at a given time after exposure increased linearly in proportion to total radiation dose for most groups. However, no significant increase in adenocarcinomas was observed with chronic γ exposures up to 1.1 Gy, and the increase in fibroadenomas observed with chronic gamma exposures at a dose rate of 0.0076 Gy h -1 up to an accumulated dose of 3.3 Gy was small compared to that observed after acute exposures. The incidence of all mammary tumors increased almost linearly with the log of dose rate in the range 0.0076 to 26.3 Gy h -1 for 3 Gy total dose of gamma rays. The effects of X rays appeared to be less influenced by dose rate than were the effects of γ rays. (author)

  12. Intraoperative low-dose ketamine infusion reduces acute postoperative pain following total knee replacement surgery: a prospective, randomized double-blind placebo-controlled trial.

    Science.gov (United States)

    Cengiz, Pelin; Gokcinar, Derya; Karabeyoglu, Isil; Topcu, Hulya; Cicek, Gizem Selen; Gogus, Nermin

    2014-05-01

    To evaluate the effect of intraoperative low-dose ketamine with general anesthesia on postoperative pain after total knee replacement surgery. A randomized, double-blind comparative study. Ankara Numune Training and Research Hospital, Turkey, from January and June 2011. Sixty adults undergoing total knee arthroplasty were enrolled in this study. The patients were randomly allocated into two groups of equal size to receive either racemic ketamine infusion (6 μg/kg/minute) or the same volume of saline. A visual analogue scale (VAS) was used to measure each patient's level of pain at 1, 3, 6, 12, and 24 hours after surgery. Time to first analgesic request, postoperative morphine consumption and the incidence of side effects were also recorded. Low-dose ketamine infusion prolonged the time to first analgesic request. It also reduced postoperative cumulative morphine consumption at 1, 3, 6, 12, and 24 hours postsurgery (p < 0.001). Postoperative VAS scores were also significantly lower in the ketamine group than placebo, at all observation times. Incidences of side effects were similar in both study groups. Intraoperative continuous low-dose ketamine infusion reduced pain and postoperative analgesic consumption without affecting the incidence of side effects.

  13. Terrestrial Gamma Radiation Dose Rate of West Sarawak

    Science.gov (United States)

    Izham, A.; Ramli, A. T.; Saridan Wan Hassan, W. M.; Idris, H. N.; Basri, N. A.

    2017-10-01

    A study of terrestrial gamma radiation (TGR) dose rate was conducted in west of Sarawak, covering Kuching, Samarahan, Serian, Sri Aman, and Betong divisions to construct a baseline TGR dose rate level data of the areas. The total area covered was 20,259.2 km2, where in-situ measurements of TGR dose rate were taken using NaI(Tl) scintillation detector Ludlum 19 micro R meter NaI(Tl) approximately 1 meter above ground level. Twenty-nine soil samples were taken across the 5 divisions covering 26 pairings of 9 geological formations and 7 soil types. A hyperpure Germanium detector was then used to find the samples' 238U, 232Th, and 40K radionuclides concentrations producing a correction factor Cf = 0.544. A total of239 measured data were corrected with Cf resulting in a mean Dm of 47 ± 1 nGy h-1, with a range between 5 nGy h-1 - 103 nGy h-1. A multiple regression analysis was conducted between geological means and soil types means against the corrected TGR dose rate Dm, generating Dg,s= 0.847Dg+ 0.637Ds- 22.313 prediction model with a normalized Beta equation of Dg,s= 0.605Dg+ 0.395Ds. The model has an 84.6% acceptance of Whitney- Mann test null hypothesis when tested against the corrected TGR dose rates.

  14. 3D inpatient dose reconstruction from the PET-CT imaging of 90Y microspheres for metastatic cancer to the liver: feasibility study.

    Science.gov (United States)

    Fourkal, E; Veltchev, I; Lin, M; Koren, S; Meyer, J; Doss, M; Yu, J Q

    2013-08-01

    The introduction of radioembolization with microspheres represents a significant step forward in the treatment of patients with metastatic disease to the liver. This technique uses semiempirical formulae based on body surface area or liver and target volumes to calculate the required total activity for a given patient. However, this treatment modality lacks extremely important information, which is the three-dimensional (3D) dose delivered by microspheres to different organs after their administration. The absence of this information dramatically limits the clinical efficacy of this modality, specifically the predictive power of the treatment. Therefore, the aim of this study is to develop a 3D dose calculation technique that is based on the PET imaging of the infused microspheres. The Fluka Monte Carlo code was used to calculate the voxel dose kernel for 90Y source with voxel size equal to that of the PET scan. The measured PET activity distribution was converted to total activity distribution for the subsequent convolution with the voxel dose kernel to obtain the 3D dose distribution. In addition, dose-volume histograms were generated to analyze the dose to the tumor and critical structures. The 3D inpatient dose distribution can be reconstructed from the PET data of a patient scanned after the infusion of microspheres. A total of seven patients have been analyzed so far using the proposed reconstruction method. Four patients underwent treatment with SIR-Spheres for liver metastases from colorectal cancer and three patients were treated with Therasphere for hepatocellular cancer. A total of 14 target tumors were contoured on post-treatment PET-CT scans for dosimetric evaluation. Mean prescription activity was 1.7 GBq (range: 0.58-3.8 GBq). The resulting mean maximum measured dose to targets was 167 Gy (range: 71-311 Gy). Mean minimum dose to 70% of target (D70) was 68 Gy (range: 25-155 Gy). Mean minimum dose to 90% of target (D90) was 53 Gy (range: 13-125 Gy). A

  15. 110. PTB seminar: Dose rate measurements of ionizing radiation in the range of natural ambient radiation. Proceedings

    International Nuclear Information System (INIS)

    Lauterbach, U.; Pessara, W.; Woehler-Figgen, S.

    1997-12-01

    Measuring instruments for radiation dose measurement in the range of natural ambient radiation are not subject to legal obligations for calibration and the PTB received numerous requests in the past, asking for measures to be taken in order to ensure reliability of measuring results in this range of radiation. This has induced PTB to organise the seminar, intended to present the current status of measuring technology in this field, reveal problems encountered in practical applications, and discuss suitable ction for quality assurance. The papers of the seminar report the measuring performance and capabilities of the available instruments, results of comparative analyses of measurements, and resulting proposed action for quality assurance. Discussions concluding the sessions are also presented in the processdings volume. (orig./CB) [de

  16. Cosolvent-free polymer gel dosimeters with improved dose sensitivity and resolution for x-ray CT dose response

    Energy Technology Data Exchange (ETDEWEB)

    Chain, J N M; McAuley, K B [Department of Chemical Engineering, Queen' s University, Kingston, K7L 3N6 (Canada); Jirasek, A [Department of Physics and Astronomy, University of Victoria, Victoria, V8W 3P6 (Canada); Schreiner, L J, E-mail: kim.mcauley@chee.queensu.ca [Cancer Centre of Southeastern Ontario, Kingston, K7L 5P9 (Canada)

    2011-04-07

    This study reports new N-isopropylacrylamide (NIPAM) polymer gel recipes with increased dose sensitivity and improved dose resolution for x-ray CT readout. NIPAM can be used to increase the solubility of N, N'-methylenebisacrylamide (Bis) in aqueous solutions from approximately 3% to 5.5% by weight, enabling the manufacture of dosimeters containing up to 19.5%T, which is the total concentration of NIPAM and Bis by weight. Gelatin is shown to have a mild influence on dose sensitivity when gels are imaged using x-ray CT, and a stronger influence when gels are imaged optically. Phantoms that contain only 3% gelatin and 5 mM tetrakis hydroxymethyl phosphonium chloride are sufficiently stiff for dosimetry applications. The best cosolvent-free gel formulation has a dose sensitivity in the linear range ({approx}0.88 H Gy{sup -1}) that is a small improvement compared to the best NIPAM-based gels that incorporate isopropanol as a cosolvent ({approx}0.80 H Gy{sup -1}). This new gel formulation results in enhanced dose resolution ({approx}0.052 Gy) for x-ray CT readout, making clinical applications of this imaging modality more feasible.

  17. Cosolvent-free polymer gel dosimeters with improved dose sensitivity and resolution for x-ray CT dose response

    International Nuclear Information System (INIS)

    Chain, J N M; McAuley, K B; Jirasek, A; Schreiner, L J

    2011-01-01

    This study reports new N-isopropylacrylamide (NIPAM) polymer gel recipes with increased dose sensitivity and improved dose resolution for x-ray CT readout. NIPAM can be used to increase the solubility of N, N'-methylenebisacrylamide (Bis) in aqueous solutions from approximately 3% to 5.5% by weight, enabling the manufacture of dosimeters containing up to 19.5%T, which is the total concentration of NIPAM and Bis by weight. Gelatin is shown to have a mild influence on dose sensitivity when gels are imaged using x-ray CT, and a stronger influence when gels are imaged optically. Phantoms that contain only 3% gelatin and 5 mM tetrakis hydroxymethyl phosphonium chloride are sufficiently stiff for dosimetry applications. The best cosolvent-free gel formulation has a dose sensitivity in the linear range (∼0.88 H Gy -1 ) that is a small improvement compared to the best NIPAM-based gels that incorporate isopropanol as a cosolvent (∼0.80 H Gy -1 ). This new gel formulation results in enhanced dose resolution (∼0.052 Gy) for x-ray CT readout, making clinical applications of this imaging modality more feasible.

  18. Ionizing Radiation Effects on the Noise of 65 nm CMOS Transistors for Pixel Sensor Readout at Extreme Total Dose Levels

    CERN Document Server

    Re, V.; Manghisoni, M.; Riceputi, E.; Traversi, G.; Ratti, L.

    2018-01-01

    This paper is focused on the study of the noise performance of 65 nm CMOS transistors at extremely high total ionizing dose (TID) levels of the order of several hundreds of Mrad(SiO2). Noise measurements are reported and discussed, analyzing radiation effects on 1/ f noise and channel thermal noise. In nMOSFETs, up to 10 Mrad(SiO2), the experimental behavior is consistent with a damage mechanism mainly associ- ated with lateral isolation oxides, and can be modeled by parasitic transistors turning on after irradiation and contributing to the total noise of the device. At very high dose, these parasitic transistors tend to be turned off by negative charge accumulating in interface states and compensating radiation-induced positive charge building up inside thick isolation oxides. Effects associated with ionization and hydrogen transport in spacer oxides may become dominant at 600 Mrad(SiO2) and may explain the observed noise behavior at extremely high TID. The results of this analysis provide an understanding o...

  19. Total Ionizing Dose effects in 130-nm commercial CMOS technologies for HEP experiments

    CERN Document Server

    Gonella, L; Silvestri, M; Gerardin, S; Pantano, D; Re, V; Manghisoni, M; Ratti, L; Ranieri, A

    2007-01-01

    The impact of foundry-to-foundry variability and bias conditions during irradiation on the Total Ionizing Dose (TID) response of commercial 130-nm CMOS technologies have been investigated for applications in High Energy Physics (HEP) experiments. n- and p-channel MOSFETs from three different manufacturers have been irradiated with X-rays up to more than 100 Mrad (SiO2). Even though the effects of TID are qualitatively similar, the amount of degradation is shown to vary considerably from foundry to foundry, probably depending on the processing of the STI oxide and/or doping profile in the substrate. The bias during irradiation showed to have a strong impact as well on the TID response, proving that exposure at worst case bias conditions largely overestimates the degradation a device may experience during its lifetime. Overall, our results increase the confidence that 130-nm CMOS technologies can be used in future HEP experiments even without Hardness-By-Design solutions, provided that constant monitoring of th...

  20. Dose and energy dependence of response of Gafchromic (registered) XR-QA film for kilovoltage x-ray beams

    Energy Technology Data Exchange (ETDEWEB)

    Rampado, O; Garelli, E; Deagostini, S; Ropolo, R [Struttura Complessa fisica Sanitaria, Azienda Ospedaliera San Giovanni Battista, Corso Bramante 88, 10126 Turin (Italy)

    2006-06-07

    There is a growing interest in Gafchromic (registered) films for patient dosimetry in radiotherapy and in radiology. A new model (XR-QA) with high sensitivity to low dose was tested in this study. The response of the film to different x-ray beam energies (range 28-145 kVp with various filtrations, dose range 0-100 mGy) and to visible light was investigated, together with the after exposure darkening properties. Exposed films were digitized with a commercially available, optical flatbed scanner. A single functional form for dose versus net pixel value variation has been determined for all the obtained calibration curves, with a unique fit parameter different for each of the used x-ray beams. The film response was dependent on beam energy, with higher colour variations for the beams in the range 80-140 kVp. Different sources of uncertainties in dose measurements, governed by the digitalization process, the film response uniformity and the calibration curve fit procedure, have been considered. The overall one-sigma dose measurement uncertainty depended on the beam energy and decreased with increasing absorbed dose. For doses above 10 mGy and beam energies in the range 80-140 kVp the total uncertainty was less than 5%, whereas for the 28 kVp beam the total uncertainty at 10 mGy was about 10%. The post-exposure colour variation was not negligible in the first 24 h after the exposure, with a consequent increase in the calculated dose of about 10%. Results of the analysis of the sensitivity to visible light indicated that a short exposure of this film to ambient and scanner light during the measurements will not have a significant impact on the radiation dosimetry.

  1. Impact of Drug Therapy, Radiation Dose, and Dose Rate on Renal Toxicity Following Bone Marrow Transplantation

    International Nuclear Information System (INIS)

    Cheng, Jonathan C.; Schultheiss, Timothy E.; Wong, Jeffrey Y.C.

    2008-01-01

    Purpose: To demonstrate a radiation dose response and to determine the dosimetric and chemotherapeutic factors that influence the incidence of late renal toxicity following total body irradiation (TBI). Methods and Materials: A comprehensive retrospective review was performed of articles reporting late renal toxicity, along with renal dose, fractionation, dose rate, chemotherapy regimens, and potential nephrotoxic agents. In the final analysis, 12 articles (n = 1,108 patients), consisting of 24 distinct TBI/chemotherapy conditioning regimens were included. Regimens were divided into three subgroups: adults (age ≥18 years), children (age <18 years), and mixed population (both adults and children). Multivariate logistic regression was performed to identify dosimetric and chemotherapeutic factors significantly associated with late renal complications. Results: Individual analysis was performed on each population subgroup. For the purely adult population, the only significant variable was total dose. For the mixed population, the significant variables included total dose, dose rate, and the use of fludarabine. For the pediatric population, only the use of cyclosporin or teniposide was significant; no dose response was noted. A logistic model was generated with the exclusion of the pediatric population because of its lack of dose response. This model yielded the following significant variables: total dose, dose rate, and number of fractions. Conclusion: A dose response for renal damage after TBI was identified. Fractionation and low dose rates are factors to consider when delivering TBI to patients undergoing bone marrow transplantation. Drug therapy also has a major impact on kidney function and can modify the dose-response function

  2. Neutron dose to patients treated with high-energy medical accelerators

    International Nuclear Information System (INIS)

    McGinley, P.H.

    2001-01-01

    The neutron dose equivalent received by patients treated with high energy x-ray beams was measured in this research. A total of 13 different medical accelerators were evaluated in terms of the neutron dose equivalent in the patient plane and at the beam center. The neutron dose equivalent at the beam center was found to ranged from 0.02 to 9.4 mSv per Sv of x-ray dose and values from 0.029 to 2.58 mSv per Sv of x-ray were measured in the patient plane. It was concluded that the neutron levels meet the International Electrotechnical Commission standard for the patient plane. It was also concluded that when intensity modulated radiation treatment is conducted the neutron dose equivalent received by the patient will increase by a factor of 2 to 10. (author)

  3. Behaviour of polymers in radioactive environments: Effects of dose speed

    International Nuclear Information System (INIS)

    Docters, A.S.; Gonzalez, M.E.

    1993-01-01

    The scope of this research is to determine the degradation of mechanical properties of cable insulating PVC after irradiation in air at a Cobalt-60 (γ-ray) facility. Amongst the mechanical properties elongation at break and tensile strength were chosen as they are the most sensible to radiation. The samples were exposed to combined radiation-thermal environments with constant airflow in order to obtain accelerated aging data a doses up to 50-300 kGy, with dose rates ranging between 1.3 and 5.6 kGy/h at temperatures from 60 degrees C to 100 degrees C. At lower dose rates the degradation of mechanical properties increased after the same total dose: elongation at break decreases sharply while tensile strength decreases to a less extent, showing dose rate effects. A strong synergy between irradiation and thermal processes was also observed. (author)

  4. SU-F-T-327: Total Body Irradiation In-Vivo Dose Measurements Using Optically Stimulated Luminescence (OSL) NanoDots and Farmer Type Ion Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, H; Kumar, S; Sarkar, B; Ganesh, T; Giri, U; Jassal, K; Rathinamuthu, S; Gulia, G; Gopal, V; Mohanti, B; Munshi, A [Fortis Memorial Research Institute, Gurgaon, Haryana (India)

    2016-06-15

    Purpose: This study was performed to analyze the agreement between optically stimulated luminescence (OSL) nanoDots measured doses and 0.6 cc Farmer type ionization chamber measured doses during total body irradiation (TBI). Methods: In-vivo dose measurements using OSL nanoDots and Farmer chamber were done in a total of twelve patients who received TBI at our center by bilateral parallel-opposed beams technique. In this technique, the patient is kept inside the TBI box which is filled with rice bags and irradiated using two bilateral parallel opposed beams of 40×40 cm{sup 2} size with 45° collimator rotation at an SSD of 333.5 cm in an Elekta Synergy linear accelerator. All patients received a dose of 2 Gy in single fraction as conditioning regimen. The beams were equally weighted at the midplane of the box. The nanoDots were placed over forehead, right and left neck, right and left lung, umbilicus, right and left abdomen, medial part of thigh, knee and toe. A 0.6 cc Farmer chamber was placed in between the thighs of the patient. Measured doses are reported along with the statistical comparisons using paired sample t-test. Results: For the above sites the mean doses were 212.2±21.1, 218.2±7.6, 218.7±9.3, 215.6±9.5, 217.5±11.5, 214.5±7.7, 218.3±6.8, 221.5±15, 229.1±11.0, 220.5±7.7 and 223.3±5.1 cGy respectively. For all OSL measurements the mean dose was 218.6±11.8 cGy. Farmer chamber measurements yielded a mean dose of 208.8±15.6 cGy. Statistical analysis revealed that there was no significant difference between OSL measured doses in forehead, right and left neck, right and left lung, umbilicus, right and left abdomen and toe and Farmer chamber measured doses (0.72≤p≤0.06). However the mean OSL doses at thigh and knee were statistically different (p<0.05) from the Farmer chamber measurements. Conclusion: OSL measurements were found to be in agreement with Farmer type ionization chamber measurements in in-vivo dosimetry of TBI.

  5. Noise reduction technology reduces radiation dose in chronic total occlusions percutaneous coronary intervention: a propensity score-matched analysis.

    Science.gov (United States)

    Maccagni, Davide; Benincasa, Susanna; Bellini, Barbara; Candilio, Luciano; Poletti, Enrico; Carlino, Mauro; Colombo, Antonio; Azzalini, Lorenzo

    2018-03-23

    Chronic total occlusions (CTO) percutaneous coronary intervention (PCI) is associated with high radiation dose. Our study aim was to evaluate the impact of the implementation of a noise reduction technology (NRT) on patient radiation dose during CTO PCI. A total of 187 CTO PCIs performed between February 2016 and May 2017 were analyzed according to the angiographic systems utilized: Standard (n = 60) versus NRT (n = 127). Propensity score matching (PSM) was performed to control for differences in baseline characteristics. Primary endpoints were Cumulative Air Kerma at Interventional Reference Point (AK at IRP), which correlates with patient's tissue reactions; and Kerma Area Product (KAP), a surrogate measure of patient's risk of stochastic radiation effects. An Efficiency Index (defined as fluoroscopy time/AK at IRP) was calculated for each procedure. Image quality was evaluated using a 5-grade Likert-like scale. After PSM, n = 55 pairs were identified. Baseline and angiographic characteristics were well matched between groups. Compared to the Standard system, NRT was associated with lower AK at IRP [2.38 (1.80-3.66) vs. 3.24 (2.04-5.09) Gy, p = 0.035], a trend towards reduction for KAP [161 (93-244) vs. 203 (136-363) Gycm 2 , p = 0.069], and a better Efficiency Index [16.75 (12.73-26.27) vs. 13.58 (9.92-17.63) min/Gy, p = 0.003]. Image quality was similar between the two groups (4.39 ± 0.53 Standard vs. 4.34 ± 0.47 NRT, p = 0.571). In conclusion, compared with a Standard system, the use of NRT in CTO PCI is associated with lower patient radiation dose and similar image quality.

  6. Radiation dose associated with CT-guided drain placement for pediatric patients

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Cody J.; Isaacson, Ari J.; Fordham, Lynn Ansley; Ivanovic, Marija; Dixon, Robert G. [University of North Carolina at Chapel Hill, Department of Radiology, UNC Health Care, Chapel Hill, NC (United States); Taylor, J.B. [University of North Carolina at Chapel Hill, Environment, Health and Safety, Chapel Hill, NC (United States)

    2017-05-15

    To date, there are limited radiation dose data on CT-guided procedures in pediatric patients. Our goal was to quantify the radiation dose associated with pediatric CT-guided drain placement and follow-up drain evaluations in order to estimate effective dose. We searched the electronic medical record and picture archiving and communication system (PACS) to identify all pediatric (<18 years old) CT-guided drain placements performed between January 2008 and December 2013 at our institution. We compiled patient data and radiation dose information from CT-guided drain placements as well as pre-procedural diagnostic CTs and post-procedural follow-up fluoroscopic abscess catheter injections (sinograms). Then we converted dose-length product, fluoroscopy time and number of acquisitions to effective doses using Monte Carlo simulations and age-appropriate conversion factors based on annual quality-control testing. Fifty-two drainages were identified with mean patient age of 11.0 years (5 weeks to 17 years). Most children had diagnoses of appendicitis (n=23) or inflammatory bowel disease (n=11). Forty-seven patients had diagnostic CTs, with a mean effective dose of 7.3 mSv (range 1.1-25.5 mSv). Drains remained in place for an average of 16.9 days (range 0-75 days), with an average of 0.9 (0-5) sinograms per patient in follow-up. The mean effective dose for all drainages and follow-up exams was 5.3 mSv (0.7-17.1) and 62% (32/52) of the children had effective doses less than 5 mSv. The majority of pediatric patients who have undergone CT-guided drain placements at our institution have received total radiation doses on par with diagnostic ranges. This information could be useful when describing the dose of radiation to parents and providers when CT-guided drain placement is necessary. (orig.)

  7. Radiation dose associated with CT-guided drain placement for pediatric patients

    International Nuclear Information System (INIS)

    Schwartz, Cody J.; Isaacson, Ari J.; Fordham, Lynn Ansley; Ivanovic, Marija; Dixon, Robert G.; Taylor, J.B.

    2017-01-01

    To date, there are limited radiation dose data on CT-guided procedures in pediatric patients. Our goal was to quantify the radiation dose associated with pediatric CT-guided drain placement and follow-up drain evaluations in order to estimate effective dose. We searched the electronic medical record and picture archiving and communication system (PACS) to identify all pediatric (<18 years old) CT-guided drain placements performed between January 2008 and December 2013 at our institution. We compiled patient data and radiation dose information from CT-guided drain placements as well as pre-procedural diagnostic CTs and post-procedural follow-up fluoroscopic abscess catheter injections (sinograms). Then we converted dose-length product, fluoroscopy time and number of acquisitions to effective doses using Monte Carlo simulations and age-appropriate conversion factors based on annual quality-control testing. Fifty-two drainages were identified with mean patient age of 11.0 years (5 weeks to 17 years). Most children had diagnoses of appendicitis (n=23) or inflammatory bowel disease (n=11). Forty-seven patients had diagnostic CTs, with a mean effective dose of 7.3 mSv (range 1.1-25.5 mSv). Drains remained in place for an average of 16.9 days (range 0-75 days), with an average of 0.9 (0-5) sinograms per patient in follow-up. The mean effective dose for all drainages and follow-up exams was 5.3 mSv (0.7-17.1) and 62% (32/52) of the children had effective doses less than 5 mSv. The majority of pediatric patients who have undergone CT-guided drain placements at our institution have received total radiation doses on par with diagnostic ranges. This information could be useful when describing the dose of radiation to parents and providers when CT-guided drain placement is necessary. (orig.)

  8. Hyperfractionated total body irradiation for T-depleted HLA identical bone marrow transplants

    International Nuclear Information System (INIS)

    Latini, P.; Checcaglini, F.; Maranzano, E.; Aristei, C.; Panizza, B.M.; Gobbi, G.; Raymondi, C.; Aversa, F.; Martelli, M.F.

    1988-01-01

    Twenty patients suffering from malignant hemopathies (mean age 31.7 years) were given hyperfractionated total body irradiation (TBI) as conditioning for T-depleted HLA identical allogeneic bone marrow transplantation. At an average of 12 months (range of 4.5-22 months) follow-up there were two cases of early death and two cases (11%) of rejection. There were no cases of acute or chronic graft versus host disease nor cases of interstitial pneumonitis. The average time for durable engraftment was 22 days. Disease-free survival at 12 months was 65%. To improve the results and further reduce the percent of rejection, the authors propose intensifying the immunosuppressive conditioning by increasing the cyclophosphamide dose and that of TBI so that a total dose of 1560 cGy is reached. 35 refs.; 1 figure

  9. Effects of gamma radiation on total phenolics, trypsin and tannin inhibitors in soybean grains

    Energy Technology Data Exchange (ETDEWEB)

    de Toledo, T.C.F [Department of Agroindustry, Food and Nutrition Escola Superior de Agricultura ' Luiz de Queiroz' , Universidade de Sao Paulo (ESALQ/USP), Piracicaba, SP (Brazil)]. E-mail: tcftoled@esalq.usp.br; Canniatti-Brazaca, S.G. [Department of Agroindustry, Food and Nutrition, Escola Superior de Agricultura ' Luiz de Queiroz' , Universidade de Sao Paulo (ESALQ/USP), Av. Padua Dias, 11 Box 9, CEP 13418-900, Piracicaba, SP (Brazil)]. E-mail: sgcbraza@esalq.usp.br; Arthur, V. [Food Irradiation and Entomology Laboratory, Center for Nuclear Agriculture-CENA/USP, Av. Centenario 303, Caixa Postal 96, 13400-970, Piracicaba, SP (Brazil)]. E-mail: arthur@cena.usp.br; Piedade, S.M.S. [Department of Mathematic Sciences, Escola Superior de Agricultura ' Luiz de Queiroz' , Universidade de Sao Paulo (ESALQ/USP), Piracicaba, SP (Brazil)]. E-mail: soniamsp@esalq.usp.br

    2007-10-15

    The objective was determining possible radiation-induced alterations (with doses of 2, 4 and 8 kGy) in raw or cooked grains from five soybean cultivars through the analysis of some antinutrient. Total phenolic ranged from 2.46 to 10.83 mg/g, the trypsin inhibited from 18.19 to 71.64 UTI/g and tannins from 0.01 to 0.39 mg/g. All the antinutrient studied underwent reduction with increases in the doses and cooking process was effective too.

  10. Effects of gamma radiation on total phenolics, trypsin and tannin inhibitors in soybean grains

    Science.gov (United States)

    de Toledo, T. C. F.; Canniatti-Brazaca, S. G.; Arthur, V.; Piedade, S. M. S.

    2007-10-01

    The objective was determining possible radiation-induced alterations (with doses of 2, 4 and 8 kGy) in raw or cooked grains from five soybean cultivars through the analysis of some antinutrient. Total phenolic ranged from 2.46 to 10.83 mg/g, the trypsin inhibited from 18.19 to 71.64 UTI/g and tannins from 0.01 to 0.39 mg/g. All the antinutrient studied underwent reduction with increases in the doses and cooking process was effective too.

  11. Effects of gamma radiation on total phenolics, trypsin and tannin inhibitors in soybean grains

    International Nuclear Information System (INIS)

    de Toledo, T.C.F; Canniatti-Brazaca, S.G.; Arthur, V.; Piedade, S.M.S.

    2007-01-01

    The objective was determining possible radiation-induced alterations (with doses of 2, 4 and 8 kGy) in raw or cooked grains from five soybean cultivars through the analysis of some antinutrient. Total phenolic ranged from 2.46 to 10.83 mg/g, the trypsin inhibited from 18.19 to 71.64 UTI/g and tannins from 0.01 to 0.39 mg/g. All the antinutrient studied underwent reduction with increases in the doses and cooking process was effective too

  12. Post-treatment visual acuity in patients treated with episcleral plaque therapy for choroidal melanoma: Dose and dose rate effects

    International Nuclear Information System (INIS)

    Jones, Robert; Gore, Elizabeth; Mieler, William; Gillin, Michael; Albano, Katherine; Erickson, Beth

    1996-01-01

    Purpose: To determine the relationship between the long-term visual function and the dose and dose rates delivered to critical ocular structures in patients with choroidal melanoma treated with 125 I episcleral plaque radiotherapy. Methods and Materials: From 1987 to 1993, 63 patients underwent 125 I episcleral plaque application for the treatment of choroidal melanoma. Mean tumor height was 4.6 mm (range 1.7-8.3 mm). Plaques utilized were of COMS design. Doses and dose rates at the tumor apex, macula, and optic disc were obtained. Visual acuity data prior to and after plaque application was available for 52 patients. 9 patients were excluded from analysis secondary to co-morbidities or disease progression. 43 records were scored to assess if a decrease in visual acuity of ≥ 2 lines on a standard Snellen eye chart had occurred. Statistical analysis was performed using chi-square tests of significance. Results: Of the 63 total patients, 59 (93.7%) were alive at a median follow-up of 36 months. Local progression occurred in (7(63)) (11.1%). Median dose and dose rate to the tumor apex were 90 Gy and 97.2 cGy/hr, respectively. Of the 43 patients with post-treatment visual acuity analysis, 28 (65.1%) experienced visual loss of ≥ 2 lines on a standard eye chart. Median time to altered visual acuity was 20 months. Median dose and dose rates to the macula in patients with a significant visual loss were 123.3 Gy and 122.5 cGy/hr, respectively, compared with 38 Gy and 51.9 cGy/hr in those without notable visual change. These differences reached statistical significance at a dose and dose rate to the macula of 82.0 Gy (p 125 I plaque brachytherapy for choroidal melanoma experienced favorable tumor control, but with a measurable incidence of decreased visual acuity. Both total dose and dose rates to the macula and optic disc correlated strongly with post-treatment visual outcome. This information may be valuable in decisions about the dose and dose rates used to treat

  13. Post-treatment visual acuity in patients treated with episcleral plaque therapy for choroidal melanoma: dose and dose rate effects

    International Nuclear Information System (INIS)

    Jones, Robert; Gore, Elizabeth; Mieler, William; Murray, Kevin; Gillin, Michael; Albano, Katherine; Erickson, Beth

    1996-01-01

    Purpose: To determine the relationship between the long-term visual function and the dose and dose rates delivered to critical ocular structures in patients with choroidal melanoma treated with 125 I episcleral plaque radiotherapy. Methods and Materials: From 1987 to 1994, 63 patients underwent 125 I episcleral plaque application for the treatment of choroidal melanoma. Mean tumor height was 4.6 mm (range 1.7-8.3 mm). Plaques utilized were of COMS design. Doses and dose rates at the tumor apex, macula, and optic disc were obtained. Visual acuity data prior to and after plaque application was available for 52 patients. Nine patients were excluded from analysis secondary to co-morbidities or disease progression. Forty-three records were scored to assess if a decrease in visual acuity of ≥ 2 lines on a standard Snellen eye chart had occurred. Statistical analysis was performed using chi-square tests of significance. Results: Of the 63 total patients, 59 (93.7%) were alive at a median follow-up of 36 months. Local progression occurred in 7/63 (11.1%). Median dose and dose rate to the tumor apex were 90 Gy and 97.2 cGy/hr, respectively. Of the 43 patients with post-treatment visual acuity analysis, 28 (65.1%) experienced visual loss of ≥ 2 lines on a standard eye chart. Median time to altered visual acuity was 20 months. Median dose and dose rates to the macula in patients with a significant visual loss were 123.3 Gy and 122.5 cGy/hr, respectively, compared with 38 Gy and 51.9 cGy/hr in those without notable visual change. These differences reached statistical significance at a dose and dose rate to the macula of 82.0 Gy (p 125 I plaque brachytherapy for choroidal melanoma experienced favorable tumor control, but with a measurable incidence of decreased visual acuity. Both total dose and dose rates to the macula and optic disc correlated strongly with post-treatment visual outcome. This information may be valuable in decisions about the dose and dose rates used to

  14. Electron dose map inversion based on several algorithms

    International Nuclear Information System (INIS)

    Li Gui; Zheng Huaqing; Wu Yican; Fds Team

    2010-01-01

    The reconstruction to the electron dose map in radiation therapy was investigated by constructing the inversion model of electron dose map with different algorithms. The inversion model of electron dose map based on nonlinear programming was used, and this model was applied the penetration dose map to invert the total space one. The realization of this inversion model was by several inversion algorithms. The test results with seven samples show that except the NMinimize algorithm, which worked for just one sample, with great error,though,all the inversion algorithms could be realized to our inversion model rapidly and accurately. The Levenberg-Marquardt algorithm, having the greatest accuracy and speed, could be considered as the first choice in electron dose map inversion.Further tests show that more error would be created when the data close to the electron range was used (tail error). The tail error might be caused by the approximation of mean energy spectra, and this should be considered to improve the method. The time-saving and accurate algorithms could be used to achieve real-time dose map inversion. By selecting the best inversion algorithm, the clinical need in real-time dose verification can be satisfied. (authors)

  15. SU-E-T-92: Achieving Desirable Lung Doses in Total Body Irradiation Based On in Vivo Dosimetry and Custom Tissue Compensation

    International Nuclear Information System (INIS)

    Cui, G; Shiu, A; Zhou, S; Cui, J; Ballas, L

    2015-01-01

    Purpose: To achieve desirable lung doses in total body irradiation (TBI) based on in vivo dosimetry and custom tissue compensation. Methods: The 15 MV photon beam of a Varian TrueBeam STx linac was used for TBI. Patients were positioned in the lateral decubitus position for AP/PA treatment delivery. Dose was calculated using the midpoint of the separation distance across the patient’s umbilicus. Patients received 200 cGy twice daily for 3 days. The dose rate at the patient’s midplane was approximately 10 cGy/min. Cerrobend blocks with a 5-HVL thickness were used for the primary lung shielding. A custom styrofoam holder for rice-flour filled bags was created based on the lung block cutouts. This was used to provide further lung shielding based on in vivo dose measurements. Lucite plates and rice-flour bags were placed in the head, neck, chest, and lower extremity regions during the treatment to compensate for the beam off-axis output variations. Two patients were included in the study. Patients 1 and 2 received a craniospinal treatment (1080 cGy) and a mediastinum treatment (2520 cGy), respectively, before the TBI. During the TBI nanoDot dosimeters were placed on the patient skin in the forehead, neck, umbilicus, and lung regions for dose monitoring. The doses were readout immediately after the treatment. Based on the readings, fine tuning of the thickness of the rice-flour filled bags was exploited to achieve the desirable lung doses. Results: For both patients the mean lung doses, which took into consideration all treatments, were controlled within 900 +/−10% cGy, as desired. Doses to the forehead, neck, and umbilicus were achieved within +/−10% of the prescribed dose (1200 cGy). Conclusion: A reliable and robust method was developed to achieve desirable lung doses and uniform body dose in TBI based on in vivo dosimetry and custom tissue compensator

  16. SU-E-T-92: Achieving Desirable Lung Doses in Total Body Irradiation Based On in Vivo Dosimetry and Custom Tissue Compensation

    Energy Technology Data Exchange (ETDEWEB)

    Cui, G; Shiu, A; Zhou, S; Cui, J; Ballas, L [Univ Southern California, Los Angeles, CA (United States)

    2015-06-15

    Purpose: To achieve desirable lung doses in total body irradiation (TBI) based on in vivo dosimetry and custom tissue compensation. Methods: The 15 MV photon beam of a Varian TrueBeam STx linac was used for TBI. Patients were positioned in the lateral decubitus position for AP/PA treatment delivery. Dose was calculated using the midpoint of the separation distance across the patient’s umbilicus. Patients received 200 cGy twice daily for 3 days. The dose rate at the patient’s midplane was approximately 10 cGy/min. Cerrobend blocks with a 5-HVL thickness were used for the primary lung shielding. A custom styrofoam holder for rice-flour filled bags was created based on the lung block cutouts. This was used to provide further lung shielding based on in vivo dose measurements. Lucite plates and rice-flour bags were placed in the head, neck, chest, and lower extremity regions during the treatment to compensate for the beam off-axis output variations. Two patients were included in the study. Patients 1 and 2 received a craniospinal treatment (1080 cGy) and a mediastinum treatment (2520 cGy), respectively, before the TBI. During the TBI nanoDot dosimeters were placed on the patient skin in the forehead, neck, umbilicus, and lung regions for dose monitoring. The doses were readout immediately after the treatment. Based on the readings, fine tuning of the thickness of the rice-flour filled bags was exploited to achieve the desirable lung doses. Results: For both patients the mean lung doses, which took into consideration all treatments, were controlled within 900 +/−10% cGy, as desired. Doses to the forehead, neck, and umbilicus were achieved within +/−10% of the prescribed dose (1200 cGy). Conclusion: A reliable and robust method was developed to achieve desirable lung doses and uniform body dose in TBI based on in vivo dosimetry and custom tissue compensator.

  17. Late occurring lesions in the skin of rats after repeated doses of X-rays

    International Nuclear Information System (INIS)

    Hopewell, J.W.

    1985-01-01

    Late radiation damage, characterized by atrophy and necrosis in the skin and subcutaneous tissues, has been demonstrated in both the tail and feet of rats. The incidence of necrosis increased with total dose. These total doses, in the range 72-144 Gy, were given as 4-8 treatment of 18 Gy, each dose separated from the next by an interval of 28 days. This treatment protocol minimized acute epithelial skin reactions. The same regime applied to the skin on the back of rats resulted in a very severe acute reaction occurring after the second to fifth dose of 18 Gy. This was surprising since back skin, like tail skin, is less sensitive to large single doses of radiation than that of the foot. The late radiation reaction in the foot and tail of rats are compared and contrasted with other attempts to assess late effects in rodent skin and with late changes seen in pig skin. (author)

  18. Dose commitments due to radioactive releases from nuclear power plant sites in 1989

    International Nuclear Information System (INIS)

    Baker, D.A.

    1993-02-01

    Population and individual radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1989. Fifty-year dose commitments for a one-year exposure from both liquid and atmospheric releases were calculated for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each of 72 reactor sites. This report tabulates the results of these calculations, showing the dose commitments for both water and airborne pathways for each age group and organ. Also included for each of the sites is an estimate of individual doses which are compared with 10 CFR Part 50, Appendix I design objectives. The total collective dose commitments (from both liquid and airborne pathways) for each site ranged from a high of 14 person-rem to a low of 0.005 person-rem for the sites with plants in operation and producing power during the year. The arithmetic mean was 1.2 person-rem. The total population dose for all sites was estimated at 84 person-rem for the 140 million people considered at risk. The individual dose commitments estimated for all sites were below the Appendix I design objectives

  19. Dose commitments due to radioactive releases from nuclear power plant sites in 1989

    Energy Technology Data Exchange (ETDEWEB)

    Baker, D.A. (Pacific Northwest Lab., Richland, WA (United States))

    1993-02-01

    Population and individual radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1989. Fifty-year dose commitments for a one-year exposure from both liquid and atmospheric releases were calculated for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each of 72 reactor sites. This report tabulates the results of these calculations, showing the dose commitments for both water and airborne pathways for each age group and organ. Also included for each of the sites is an estimate of individual doses which are compared with 10 CFR Part 50, Appendix I design objectives. The total collective dose commitments (from both liquid and airborne pathways) for each site ranged from a high of 14 person-rem to a low of 0.005 person-rem for the sites with plants in operation and producing power during the year. The arithmetic mean was 1.2 person-rem. The total population dose for all sites was estimated at 84 person-rem for the 140 million people considered at risk. The individual dose commitments estimated for all sites were below the Appendix I design objectives.

  20. Late biological effects of ionizing radiation as influenced by dose, dose rate, age at exposure, and genetic sensitivity to neoplastic transformation

    International Nuclear Information System (INIS)

    Spalding, J.F.; Prine, J.R.; Tietjen, G.L.

    1978-01-01

    A most comprehensive investigation is in progress at the Los Alamos Scientific Laboratory to study the late biological effects of whole-body exposure to gamma irradiation as they may be influenced by total dose, dose rate, age at exposure, and genetic background. Strain C57B1/6J mice of four age groups (newborn, 2, 6, and 15 months) were given five doses (20, 60, 180, 540, and 1620 rad) of gamma rays, with each dose being delivered at six dose rates (0.7, 2.1, 6.3, 18.9, 56.7 rad/day and 25 rad/min). Forty to sixty mice were used in each of the approximately 110 dose/dose-rate and age combinations. The study was done in two replications with an equal number of mice per replication. Strain RF/J mice were used in a companion study to investigate the influence of genetic background on the type and magnitude of effect. Results of the first and second replications of the 15-month-old age group and data on the influence of genetic background on biological response have been completed, and the results show no significant life shortening within the dose and dose-rate range used

  1. Radiation dose to family members of hyperthyroidism and thyroid cancer patients treated with 131I

    International Nuclear Information System (INIS)

    Pant, G. S.; Sharma, S. K.; Bal, C. S.; Kumar, R.; Rath, G. K.

    2006-01-01

    The thermoluminescence dosemeter (TLD) was used for measuring radiation dose to family members of thyrotoxicosis and thyroid cancer patients treated with 131 I using CaSO 4 :Dy discs. There were 45 family members of thyrotoxicosis patients, who were divided into two groups with 22 in the first and 23 in the second group. Radiation safety instructions were the same for both the groups except in the second group where the patients were advised to use a separate bed at home for the first 3 d of dose administration. An activity ranging from 185 to 500 MBq was administered to these patients. The whole-body dose to family members ranged from 0.4 to 2.4 mSv (mean 1.1 mSv) in the first group and 0-1.9 mSv (mean 0.6 mSv) in the second group. A total of 297 family members of thyroid cancer patients were studied for whole-body dose estimation. An activity ranging from 0.925 to 7.4 GBq was administered to the thyroid cancer patients. The family members were divided into three groups depending upon the mode of transport and facilities available at home to avoid close proximity with the patient. Group A with 25 family members received a dose ranging from 0 to 0.9 mSv (mean 0.4 mSv), group B with 96 family members received a dose ranging from 0 to 8.5 mSv (mean 0.8 mSv) and group C with 176 family members received a dose ranging from 0 to 5.0 mSv (mean 0.8 mSv). The thyroid monitoring was also done in 103 family members who attended the patients in isolation wards for >2 d. Thyroid dose in them ranged from 0 to 2.5 mGy (mean 0.1 mGy). (authors)

  2. On the genetic risk after high dose radioiodine therapy with regard to the gonadal dose

    International Nuclear Information System (INIS)

    Ehrenheim, C.; Hauswirth, C.; Fitschen, J.; Martin, E.; Oetting, G.; Hundeshagen, H.

    1997-01-01

    Aim: The genetic risk for the offspring of patients treated with high doses of radioiodine was to be assessed with special regard to the gonadal dose caused by diagnostic and therapeutic procedures. Methods: 41 young females (aged between 19 and 39 years) and four young males (aged 26 to 36 years) treated with radioiodine because of a thyroid carcinoma were interviewed by use of a questionnaire. The course of pregnancy and birth history could be documented as well as the congenital and developmental conditions of 56 children. Results: The amount of radioactivity applied for therapy and whole body scans ranged over 4,144 and 35,15 GBq I-131; the individual gonadal dose was calculated based on the MIRD model and ranged over 0,2 and 2,2 Sv (0,51 Sv at a mean). The period of time between the last radioiodine application and confinement was at least 9 months, not exceeding 14 years. As to the course of pregnancy and birth two early abortions, one extrauterine gravidity and one premature birth due to an insufficiency of the placenta were stated. In one case a chromosomal translocation 7/14 occured as a genetic defect which lead to an interruption. The children's development was unconspicuous except of two cases of neurodermatitis as well as multiple allergies and an early closure of the anterior fontanelle in one child each. Conclusion: Although the genetic risk is supposed to increase with the gonadal dose achieved (doubling dose 1 Sv) and the increased risk of any congenital anomaly was calculated as about 13% at a mean in our patients, the rate of genetic determined diseases was not elevated (1,8% or 1/57). Thus, no increase of genetic defects or congenital malformations was reported in a total of 408 children described in the literature and in our group. (orig.) [de

  3. Low dose iodine-131 therapy in solitary toxic thyroid nodules

    International Nuclear Information System (INIS)

    Prakash, Rajeev

    1999-01-01

    Forty patients with solitary hyperfunctioning thyroid nodules were treated with relatively low dose radioiodine therapy, 131 I doses were calculated taking into account thyroid mass and radioiodine kinetics to deliver 100 μCi/g of estimated nodule weight corrected for uptake. Patients remaining persistently hyperthyroid at four months after the initial therapy were retreated with a similarly calculated dose. Cure of the hyperthyroid state was achieved in all patients, total administered dose in individual cases ranging from 3-17 mCi. 28 of the 40 patients required a single therapy dose. 36 patients were euthyroid after a 4.5 year mean follow-up period. Four cases developed post therapy hypothyroidism requiring replacement therapy. Nodules regressed completely in nine cases following 131 I treatment, with partial regression in size in 19 patients. Control of hyperthyroid state in cases of solitary toxic thyroid nodules can be satisfactorily achieved using relatively low dose radioiodine therapy with low incidence of post therapy hypothyroidism. (author)

  4. A review of radiology staff doses and dose monitoring requirements

    International Nuclear Information System (INIS)

    Martin, C. J.

    2009-01-01

    Studies of radiation doses received during X-ray procedures by radiology, cardiology and other clinical staff have been reviewed. Data for effective dose (E), and doses to the eyes, thyroid, hands and legs have been analysed. These data have been supplemented with local measurements to determine the most exposed part of the hand for monitoring purposes. There are ranges of 60-100 in doses to individual tissues reported in the literature for similar procedures at different centres. While ranges in the doses per unit dose-area product (DAP) are between 10 and 25, large variations in dose result from differences in the sensitivity of the X-ray equipment, the type of procedure and the operator technique, but protection factors are important in maintaining dose levels as low as possible. The influence of shielding devices is significant for determining the dose to the eyes and thyroid, and the position of the operator, which depends on the procedure, is the most significant factor determining doses to the hands. A second body dosemeter worn at the level of the collar is recommended for operators with high workloads for use in assessment of effective dose and the dose to the eye. It is proposed that the third quartile values from the distributions of dose per unit DAP identified in the review might be employed in predicting the orders of magnitude of doses to the eye, thyroid and hands, based on interventional operator workloads. Such dose estimates could be employed in risk assessments when reviewing protection and monitoring requirements. A dosemeter worn on the little finger of the hand nearest to the X-ray tube is recommended for monitoring the hand. (authors)

  5. Radon Exposure and the Definition of Low Doses-The Problem of Spatial Dose Distribution.

    Science.gov (United States)

    Madas, Balázs G

    2016-07-01

    Investigating the health effects of low doses of ionizing radiation is considered to be one of the most important fields in radiological protection research. Although the definition of low dose given by a dose range seems to be clear, it leaves some open questions. For example, the time frame and the target volume in which absorbed dose is measured have to be defined. While dose rate is considered in the current system of radiological protection, the same cancer risk is associated with all exposures, resulting in a given amount of energy absorbed by a single target cell or distributed among all the target cells of a given organ. However, the biological effects and so the health consequences of these extreme exposure scenarios are unlikely to be the same. Due to the heterogeneous deposition of radon progeny within the lungs, heterogeneous radiation exposure becomes a practical issue in radiological protection. While the macroscopic dose is still within the low dose range, local tissue doses on the order of Grays can be reached in the most exposed parts of the bronchial airways. It can be concluded that progress in low dose research needs not only low dose but also high dose experiments where small parts of a biological sample receive doses on the order of Grays, while the average dose over the whole sample remains low. A narrow interpretation of low dose research might exclude investigations with high relevance to radiological protection. Therefore, studies important to radiological protection should be performed in the frame of low dose research even if the applied doses do not fit in the dose range used for the definition of low doses.

  6. Total cross sections for electron scattering by CO2 molecules in the energy range 400 endash 5000 eV

    International Nuclear Information System (INIS)

    Garcia, G.; Manero, F.

    1996-01-01

    Total cross sections for electron scattering by CO 2 molecules in the energy range 400 endash 5000 eV have been measured with experimental errors of ∼3%. The present results have been compared with available experimental and theoretical data. The dependence of the total cross sections on electron energy shows an asymptotic behavior with increasing energies, in agreement with the Born-Bethe approximation. In addition, an analytical formula is provided to extrapolate total cross sections to higher energies. copyright 1996 The American Physical Society

  7. Intraoperative Low-Dose Ketamine Infusion Reduces Acute Postoperative Pain Following Total Knee Replacement Surgery: A Prospective, Randomized Double-Blind Placebo-Controlled Trial

    International Nuclear Information System (INIS)

    Pelin Cengiz, P.; Gokcinar, D.; Karabeyoglu, I.; Topcu, H.; Cicek, G. S.; Gogus, N.

    2014-01-01

    Objective: To evaluate the effect of intraoperative low-dose ketamine with general anesthesia on postoperative pain after total knee replacement surgery. Study Design: A randomized, double-blind comparative study. Place and Duration of Study: Ankara Numune Training and Research Hospital, Turkey, from January and June 2011. Methodology: Sixty adults undergoing total knee arthroplasty were enrolled in this study. The patients were randomly allocated into two groups of equal size to receive either racemic ketamine infusion (6.25 g/kg/minute) or the same volume of saline. A visual analogue scale (VAS) was used to measure each patient's level of pain at 1, 3, 6, 12, and 24 hours after surgery. Time to first analgesic request, postoperative morphine consumption and the incidence of side effects were also recorded. Results: Low-dose ketamine infusion prolonged the time to first analgesic request. It also reduced postoperative cumulative morphine consumption at 1, 3, 6, 12, and 24 hours postsurgery (p < 0.001). Postoperative VAS scores were also significantly lower in the ketamine group than placebo, at all observation times. Incidences of side effects were similar in both study groups. Conclusion: Intraoperative continuous low-dose ketamine infusion reduced pain and postoperative analgesic consumption without affecting the incidence of side effects. (author)

  8. Low-dose (10-Gy) total skin electron beam therapy for cutaneous T-cell lymphoma: an open clinical study and pooled data analysis.

    Science.gov (United States)

    Kamstrup, Maria R; Gniadecki, Robert; Iversen, Lars; Skov, Lone; Petersen, Peter Meidahl; Loft, Annika; Specht, Lena

    2015-05-01

    Cutaneous T-cell lymphomas (CTCLs) are dominated by mycosis fungoides (MF) and Sézary syndrome (SS), and durable disease control is a therapeutic challenge. Standard total skin electron beam therapy (TSEBT) is an effective skin-directed therapy, but the possibility of retreatments is limited to 2 to 3 courses in a lifetime due to skin toxicity. This study aimed to determine the clinical effect of low-dose TSEBT in patients with MF and SS. In an open clinical study, 21 patients with MF/SS stages IB to IV were treated with low-dose TSEBT over dose of 10 Gy in 10 fractions. Data from 10 of these patients were published previously but were included in the current pooled data analysis. Outcome measures were response rate, duration of response, and toxicity. The overall response rate was 95% with a complete cutaneous response or a very good partial response rate (dose (10-Gy) TSEBT offers a high overall response rate and is relatively safe. With this approach, reirradiation at times of relapse or progression is likely to be less toxic than standard dose TSEBT. It remains to be established whether adjuvant and combination treatments can prolong the beneficial effects of low-dose TSEBT. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Effect of fractionated versus unfractionated total body irradiation on the growth of the BN acute myelocytic leukemia

    International Nuclear Information System (INIS)

    Hagenbeek, A.; Martens, A.C.M.

    1981-01-01

    The efficacy of various total body irradiation (TBI) regimens prior to bone marrow transplantation was evaluated in a rat model for acute myelocytic leukemia (Dq = 85.1 cGy gamma ; N = 3.7). Using high dose rate gamma-irradiation (115 cGy/min), fractionated TBI with large total daily doses (400 to 600 cGy), either given as acute doses or as split doses at 8 hr intervals, was most effective. Split doses (2 fractions per day) offered no additional advantage. At the most, a 4 log leukemic cell kill was induced. No lethal toxicity was observed. Nine-hundred cGy flash TBI had a similar anti-tumor effect, but with this regimen almost half of the rats died from radiation-induced toxicity (lungs and gastro-intestinal tract). The results are explained in terms of differences between normal and leukemic cells as regards (a) repair of sublethal damage; and (b) repopulation. Low dose rate continuous gamma-irradiation (0.26 cGy/min) with total doses ranging from 900 to 2000 cGy was also quite effective. Maximally a 4 log cell kill was obtained. With 2000 cGy, 50% of the rats died from the gastro-intestinal tract-syndrome. In addition to the major role played by chemotherapy, TBI is mainly of importance in sterilizing the various sanctuaries in the body which contain leukemic cells anatomically resistant to most cytostatic agents

  10. Contribution of radon in natural gas to the dose from aiborne radon-daughters in homes

    International Nuclear Information System (INIS)

    Barton, C.J.; Moore, R.E.; Rohwer, P.S.

    1973-01-01

    Data have been obtained on the radon concentration in natural gas supplied to several metropolitan areas in the United States. The average value of 20 pCi/l was selected to estimate the contribution of this source of natural radioactivity to doses from radon-daughters received by individuals in homes. Radon-daughter concentrations in the home atmosphere were calculated by use of computer programs for an 8000 ft 3 house in which 27 ft 3 of gas per day was used for cooking in an unvented kitchen range. The total estimated dose to the bronchial epithelium included contributions from radon plus daughters in the outside ventilation air, each of which was assumed to be present at a concentration of 0.13 pCi/l, and from the radon plus daughters in the natural gas. The latter contribution averaged approximately 3 percent of the total dose. There was a 3.5 percent decrease in the estimated total dose when the air change rate increased from 0.25 to 2.0 per hour. We conclude that radon and radon-daughters entering the home with natural gas produce a negligible fraction of the total dose to the respiratory system of home occupants from airborne radon-daughters

  11. Quantifying the importance of pMHC valency, total pMHC dose and frequency on nanoparticle therapeutic efficacy.

    Science.gov (United States)

    Sugarman, Jordan; Tsai, Sue; Santamaria, Pere; Khadra, Anmar

    2013-05-01

    Nanoparticles (NPs) coated with β-cell-specific peptide major histocompatibility complex (pMHC) class I molecules can effectively restore normoglycemia in spontaneously diabetic nonobese diabetic mice. They do so by expanding pools of cognate memory autoreactive regulatory CD8+ T cells that arise from naive low-avidity T-cell precursors to therapeutic levels. Here we develop our previously constructed mathematical model to explore the effects of compound design parameters (NP dose and pMHC valency) on therapeutic efficacy with the underlying hypothesis that the functional correlates of the therapeutic response (expansion of autoregulatory T cells and deletion of autoantigen-loaded antigen-presenting cells by these T cells) are biphasic. We show, using bifurcation analysis, that the model exhibits a 'resonance'-like behavior for a given range of NP dose in which bistability between the healthy state (possessing zero level of effector T-cell population) and autoimmune state (possessing elevated level of the same population) disappears. A heterogeneous population of model mice subjected to several treatment protocols under these new conditions is conducted to quantify both the average percentage of autoregulatory T cells in responsive and nonresponsive model mice, and the average valency-dependent minimal optimal dose needed for effective therapy. Our results reveal that a moderate increase (≥1.6-fold) in the NP-dependent expansion rate of autoregulatory T-cell population leads to a significant increase in the efficacy and the area corresponding to the effective treatment regimen, provided that NP dose ≥8 μg. We expect the model developed here to generalize to other autoimmune diseases and serve as a computational tool to understand and optimize pMHC-NP-based therapies.

  12. Radiation dose from food to man after Chernobyl

    International Nuclear Information System (INIS)

    1988-01-01

    The geographical distribution in Norway of radioactive fallout from the Chernobyl accident varied considerably. In order to estimate radioactivity dose levels, two main categories of people were selected for study. The first category covered people who were assumed to have been exposed to much higher doses of radioactivity than the average, i.e. people consuming large amounts of food containing high levels of radioactivity. The other category covered people who were assumed to have received doses of radioactivity close to average. Two procedures were utilized for exposure measurements: Body levels of radioactivity were measured directly, and dietary studies were carried out to estimate the total intake of radioactivity through food as well as the proportion of the total intake which derived from the various foodstuffs. Furthermore, dietary changes and other precautions taken in consequence of the Chernobyl fallout were registered, and assessments were made of the degree to which radioactive cesium intake had been reduced as a result of these changes. The average effective dose equivalent due to the consumption of contaminated food during the first year after the Chernobyl accident was estimated to be in the range 0.12 to 0.25 mSv. A quarter of this dose was due to the consumption of milk. Apart from the Sami reindeer herdsmen in central and southern Norway, the dose which the especially exposed groups had received during the first year was estimated to 0.5 to 1.0 mSv. Almost 90% of the dose derived from the consumption of ''wild'' freshwater fish, reindeer meat and milk. Most of the Sami people received doses varying from 1 to 3 mSv in the first year. By far the greatest contribution (90%) arised from the consumption of reindeer meat

  13. Urinary excretion of total isothiocyanates from cruciferous vegetables shows high dose-response relationship and may be a useful biomarker for isothiocyanate exposure

    DEFF Research Database (Denmark)

    Kristensen, Mette; Krogholm, Kirstine Suszkiewicz; Frederiksen, Hanne

    2007-01-01

    in urine was quanti- fied as the cyclocondensation product of 1,2-bezenedithiol by high performance liquid chromatography. Results The total urinary excretion of ITCs correlated significantly with the two doses of ITC from diets with high or low cruciferous content (r(s) = 0.90, P

  14. 3D inpatient dose reconstruction from the PET-CT imaging of 90Y microspheres for metastatic cancer to the liver: Feasibility study

    International Nuclear Information System (INIS)

    Fourkal, E.; Veltchev, I.; Lin, M.; Meyer, J.; Koren, S.; Doss, M.; Yu, J. Q.

    2013-01-01

    Purpose: The introduction of radioembolization with microspheres represents a significant step forward in the treatment of patients with metastatic disease to the liver. This technique uses semiempirical formulae based on body surface area or liver and target volumes to calculate the required total activity for a given patient. However, this treatment modality lacks extremely important information, which is the three-dimensional (3D) dose delivered by microspheres to different organs after their administration. The absence of this information dramatically limits the clinical efficacy of this modality, specifically the predictive power of the treatment. Therefore, the aim of this study is to develop a 3D dose calculation technique that is based on the PET imaging of the infused microspheres.Methods: The Fluka Monte Carlo code was used to calculate the voxel dose kernel for 90 Y source with voxel size equal to that of the PET scan. The measured PET activity distribution was converted to total activity distribution for the subsequent convolution with the voxel dose kernel to obtain the 3D dose distribution. In addition, dose-volume histograms were generated to analyze the dose to the tumor and critical structures.Results: The 3D inpatient dose distribution can be reconstructed from the PET data of a patient scanned after the infusion of microspheres. A total of seven patients have been analyzed so far using the proposed reconstruction method. Four patients underwent treatment with SIR-Spheres for liver metastases from colorectal cancer and three patients were treated with Therasphere for hepatocellular cancer. A total of 14 target tumors were contoured on post-treatment PET-CT scans for dosimetric evaluation. Mean prescription activity was 1.7 GBq (range: 0.58–3.8 GBq). The resulting mean maximum measured dose to targets was 167 Gy (range: 71–311 Gy). Mean minimum dose to 70% of target (D70) was 68 Gy (range: 25–155 Gy). Mean minimum dose to 90% of target (D90

  15. The Hematopoietic Syndrome of the Acute Radiation Syndrome in Rhesus Macaques: A Systematic Review of the Lethal Dose Response Relationship.

    Science.gov (United States)

    MacVittie, Thomas J; Farese, Ann M; Jackson, William

    2015-11-01

    body irradiation (TBI) with 250 kVp or 2 MeV x radiation, Co gamma radiation and reactor- and nuclear weapon-derived mixed gamma: neutron-radiation, delivered at various dose rates from a total body, bilateral, rotational, or unilateral exposure aspect. The DRRs established by a probit analysis vs. linear dose relationship were characterized by two main parameters or dependent variables: a slope and LD50/30. Respective LD50/30 values for studies that used 250 kVp x radiation (five primary studies combined, n = 338), 2 MeV x radiation, Co gamma radiation, and steady-state reactor-derived mixed gamma:neutron radiation for total body uniform exposures were 521 rad [498, 542], 671 rad [632, 715], 644 rad [613, 678], and 385 rad [357, 413]. The respective slopes were steep and ranged from 0.738 to 1.316. The DRR, LD50/30 values and slopes were also determined for total body, non-uniform, unilateral, pulse-rate exposures of mixed gamma:neutron radiation derived at reactor and nuclear weapon detonations. The LD50/30 values were, respectively, 395 rad [337, 432] and 412 rad [359, 460]. Secondary data sets of limited studies that did not describe a DRR were used to support the mid-to-high lethal dose range for the H-ARS and the threshold dose range for the concurrent acute GI ARS. The available evidence provided a reliable and extensive database that characterized the DRR for the H-ARS in young rhesus macaques exposed to 250 kVp uniform total body x radiation without the benefit of medical management. A less substantial but consistent database demonstrated the DRR for total body exposure of differing radiation quality, dose rate and non-uniform exposure. The DRR for the H-ARS is characterized by steep slopes and relative LD50/30 values that reflect the radiation quality, exposure aspect, and dose rate over a range in time from 1954-2012.

  16. The Impact of Combining a Low-Tube Voltage Acquisition with Iterative Reconstruction on Total Iodine Dose in Coronary CT Angiography

    Directory of Open Access Journals (Sweden)

    Toon Van Cauteren

    2017-01-01

    Full Text Available Objectives. To assess the impact of combining low-tube voltage acquisition with iterative reconstruction (IR techniques on the iodine dose in coronary CTA. Methods. Three minipigs underwent CCTA to compare a standard of care protocol with two alternative study protocols combining low-tube voltage and low iodine dose with IR. Image quality was evaluated objectively by the CT value, signal-to-noise ratio (SNR, and contrast-to-noise ratio (CNR in the main coronary arteries and aorta and subjectively by expert reading. Statistics were performed by Mann–Whitney U test and Chi-square analysis. Results. Despite reduced iodine dose, both study protocols maintained CT values, SNR, and CNR compared to the standard of care protocol. Expert readings confirmed these findings; all scans were perceived to be of at least diagnostically acceptable quality on all evaluated parameters allowing image interpretation. No statistical differences were observed (all p values > 0.11, except for streak artifacts (p=0.02 which were considered to be more severe, although acceptable, with the 80 kVp protocol. Conclusions. Reduced tube voltage in combination with IR allows a total iodine dose reduction between 37 and 50%, by using contrast media with low iodine concentrations of 200 and 160 mg I/mL, while maintaining image quality.

  17. Measurement of radiation dose in paediatric micturating cystourethrography

    International Nuclear Information System (INIS)

    Hassan, N. E. A.

    2013-06-01

    Paediatrics and children have been recognized that they have a higher risk of developing cancer from the radiation than adults. Therefor, increased attention has been directed towards the dose to the patients. Micturating Cystourethrography (MCU) is a commonly use ed fluoroscopic procedure in children and commonly used to detect the vesicoureteric reflux (VUR) and show urethral and bladder and abnormalities. This study aims to measure the pediatric patients undergoing MCU. The study was carried out in two hospitals in Khartoum. The entrance surface dose (ESD) was determined determined by indirect method for 45 children. Furthermore, the mean ESD, sd and range resulting from MCU procedures has been estimated to be 0.7±.5 (0.2-2.5) mGy for the total patient population. The radiation dose to the patients is well within established safety limits, in the light of the current practice. The radiation dose results of this study are appropriate for adoption as the local initial dose reference level (DRL) value for this technique. The data presented in this study showed our doses to be approximately 50% lower than the lower mean values presented in the literature.(Author)

  18. Doses to radiation sensitive organs and structures located outside the radiotherapeutic target volume for four treatment situations

    International Nuclear Information System (INIS)

    Foo, M.L.; McCullough, E.C.; Foote, R.L.; Pisansky, T.M.; Shaw, E.G.

    1993-01-01

    This study documents dosage to radiation sensitive organs/structures located outside the radiotherapeutic target volume for four treatment situations: (a) head and neck, (b) brain (pituitary and temporal lobe), (c) breast and (d) pelvis. Clinically relevant treatment fields were simulated on a tissue-equivalent anthropomorphic phantom and subsequently irradiated with Cobalt-60 gamma rays, 6- and 18-MV x-ray beams. Thermoluminescent dosimeters and diodes were used to measure absorbed dose. The head and neck treatment resulted in significant doses of radiation to the lens and thyroid gland. The total treatment lens dose (300-400 cGy) could be cataractogenic while measured thyroid doses (1000-8000 cGy) have the potential of causing chemical hypothyroidism, thyroid neoplasms, Graves' disease and hyperparathyroidism. Total treatment retinal (400-700 cGy) and pituitary (460-1000 cGy) doses are below that considered capable of producing chronic disease. The pituitary treatment studied consisted of various size parallel opposed lateral and vertex fields (4 x 4 through 8 x 8 cm). The lens dose (40-200 cGy) with all field sizes is below those of clinical concern. Parotid doses (130-1200 cGy) and thyroid doses (350-600 cGy) are in a range where temporary xerostomia (parotid) and thyroid neoplasia development are a reasonable possibility. The retinal dose (4000 cGy) from the largest field size (8 x 8 cm 2 ) is in the range where retinopathy has been reported. The left temporal lobe treatment also used parallel opposed lateral and vertex fields (7 x 7 and 10 x 10 cm). Doses to the pituitary gland (5200-6200 cGy), both parotids (200-6900 cGy), left lens (200-300 cGy), and left retina (1700-4500 cGy) are capable of causing significant future clinical problems. Right-sided structures received insignificant doses. Secondary malignancies could result from the measured total treatment thyroid doses (670-980 cGy). 82 refs., 7 figs., 5 tabs

  19. A dose-effect correlation for radioiodine ablation in differentiated thyroid cancer

    Energy Technology Data Exchange (ETDEWEB)

    Flux, Glenn D; Chittenden, Sarah J; Buckley, Susan; Hindorf, Cecilia [Royal Marsden NHS Foundation Trust, Department of Physics, Sutton, Surrey (United Kingdom); Haq, Masud; Newbold, Kate; Harmer, Clive L [Royal Marsden NHS Foundation Trust, Thyroid Unit, Sutton, Surrey (United Kingdom)

    2010-02-15

    The aim of this study was to determine the range of absorbed doses delivered to thyroid remnants, blood, and red marrow from fixed administrations of radioiodine and to ascertain whether the success of ablation is more dependent on these absorbed doses than on the administered activity. Twenty-three patients received 3,000 MBq radioiodine following near-total thyroidectomy. The maximum absorbed dose to remnants was calculated from subsequent single photon emission tomography scans. Absorbed doses delivered to blood and red marrow were calculated from blood samples and from whole-body retention measurements. The protein bound iodine (PBI) was also calculated. Maximum absorbed doses to thyroid remnants ranged from 7 to 570 Gy. Eighteen of the 23 patients had a successful ablation. A significant difference was seen between the absorbed doses delivered to thyroid remnants, blood, and red marrow for those patients that had a successful ablation compared to those with a failed ablation (p = 0.030, p = 0.043 and p = 0.048, respectively). The difference between the PBI values acquired at day 1 and day 6 were also indicative of response (p = 0.074). A successful ablation is strongly dependent on the absorbed dose to the thyroid remnant. Dosimetry-based personalized treatment can prevent both sub-optimal administrations, which entails further radioiodine therapy, and excessive administration of radioactivity, which increases the potential for radiation toxicity. (orig.)

  20. Optimization of Patient Doses in Interventional Radiology and Cardiology

    International Nuclear Information System (INIS)

    Nikodemova, D.; Boehm, K.

    2011-01-01

    Interventional radiology and cardiology belongs to the imaging modalities connected with significantly higher radiation exposure of patients and medical staff, compared to the exposure during other diagnostic procedures. The objective of this presentation is to promote typical technical parameters and parameters related to the radiation policy, used during the most frequent endovascular and cardiology procedures, as well as the monitoring of the exposure of patients. The presented study reports the results of collecting the data of monitoring doses received by 318 patients undergoing interventional examinations in 3 various departments of the Slovak National Institute of Cardiology and Vascular Diseases. There were 9 different endovascular and cardiology procedures reviewed. The reported patient's radiation exposures were established by using the KAP values, directly shown on the display of the X-ray equipment. From the measured KAP values the entrance surface doses were calculated. Equivalent doses have been measured on hands, legs and other parts of medical staff body, by using electronic dosimeters or thermoluminescent dosimeters. The presented results have covered a wide range of the measured fluoroscopy time values, different number of acquisitions used in various interventional procedures, various cumulated KAP values and also a wide range of the cumulated entrance surface doses. The occupational doses of the operators, followed during dose measurements on their left hands, covered the range from 0.1 μSv to 1513 μSv for one examination performed. The important contribution of the presented results to the radiation protection policy in the Slovak Republic is the mapping of the current situation of the radiation exposure of patients undergoing the chosen interventional examinations and the professional radiation exposure level of interventional operators, providing the most significant interventional procedures in the Slovak interventional hospitals. The

  1. Organ or tissue doses, effective dose and collective effective dose from X-ray diagnosis, in Japan

    International Nuclear Information System (INIS)

    Murayama, Takashi; Nishizawa, Kanae; Noda, Yutaka; Kumamoto, Yoshikazu; Iwai, Kazuo.

    1996-01-01

    Effective doses and collective effective doses from X-ray diagnostic examinations were calculated on the basis of the frequency of examinations estimated by a nationwide survey and the organ or tissue doses experimentally determined. The average organ or tissue doses were determined with thermoluminescence dosimeters put at various sites of organs or tissues in an adult and a child phantom. Effective doses (effective dose equivalents) were calculated as the sum of the weighted equivalent doses in all the organs or tissues of the body. As the examples of results, the effective doses per radiographic examination were approximately 7 mGy for male, and 9 mGy for female angiocardiography, and about 3 mGy for barium meal. Annual collective effective dose from X-ray diagnostic examinations in 1986 were about 104 x 10 3 person Sv from radiography and 118 x 10 3 person Sv from fluoroscopy, with the total of 222 x 10 3 person Sv. (author)

  2. Biological dose estimation for accidental supra-high dose gamma-ray exposure

    International Nuclear Information System (INIS)

    Chen, Y.; Yan, X.K.; Du, J.; Wang, Z.D.; Zhang, X.Q.; Zeng, F.G.; Zhou, P.K.

    2011-01-01

    To correctly estimate the biological dose of victims accidentally exposed to a very high dose of 60 Co gamma-ray, a new dose-effect curve of chromosomal dicentrics/multicentrics and rings in the supra-high dose range was established. Peripheral blood from two healthy men was irradiated in vitro with doses of 60 Co gamma-rays ranging from 6 to 22 Gy at a dose rate of 2.0 Gy/min. Lymphocytes were concentrated, cultured and harvested at 52 h, 68 h and 72 h. The numbers of dic + r were counted. The dose-effect curves were established and validated using comparisons with doses from the Tokai-mura accident and were then applied to two victims of supra-high dose exposure accident. The results indicated that there were no significant differences in chromosome aberration frequency among the different culture times from 52 h to 72 h. The 6-22 Gy dose-effect curve was fitted to a linear quadratic model Y = -2.269 + 0.776D - 7.868 x l0 -3 D 2 . Using this mathematic model, the dose estimates were similar to data from Tokai-mura which were estimated by PCC ring. Whole body average doses of 9.7 Gy and 18.1 Gy for two victims in the Jining accident were satisfactorily given. We established and successfully applied a new dose-effect curve of chromosomal dicentrics plus ring (dic + r) after 6-22 Gy γ-irradiation from a supra-high dose 60 Co gamma-ray accident.

  3. Uncertainties associated to the using of alanine/EPR for the dose interval in the radiotherapy; Incertezas associadas na utilizacao da alanina/RPE para o intervalo de dose da radioterapia

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues Junior, O.; Campos, L. L. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2004-07-01

    The High Doses Laboratory of IPEN is developing a dosimetric system for high doses based on Electron Paramagnetic Resonance (EPR) of free radical radiation induced on alanine. The objective of this work is to present the efforts towards to improve the measure accuracy for doses in the range between 1-10 Gy. This system could be used as reference by radiotherapy services, as much in the quality control of the equipment, as for routine accompaniment of more complex handling where the total doses can reach some grays. The main problem for routine implantation is the calibration and the traceability of the system and many errors sources affects the accuracy of the measurements. In this work are discussed same aspects related on the uncertainty evaluation associated with high dose measurement using alanine and EPR. (author)

  4. Compendium of Current Total Ionizing Dose and Displacement Damage Results from NASA Goddard Space Flight Center and Selected NASA Electronic Parts and Packaging Program

    Science.gov (United States)

    Topper, Alyson D.; Campola, Michael J.; Chen, Dakai; Casey, Megan C.; Yau, Ka-Yen; Cochran, Donna J.; LaBel, Kenneth A.; Ladbury, Raymond L.; Lauenstein, Jean-Marie; Mondy, Timothy K.; hide

    2017-01-01

    Total ionizing dose and displacement damage testing was performed to characterize and determine the suitability of candidate electronics for NASA space utilization. Devices tested include optoelectronics, digital, analog, linear bipolar devices, and hybrid devices.

  5. Total skin electron beam therapy for cutaneous T-cell lymphoma: a nationwide cohort study from Denmark

    DEFF Research Database (Denmark)

    Lindahl, Lise M; Kamstrup, Maria Rørbæk; Petersen, Peter M

    2011-01-01

    Background. Total skin electron beam therapy (TSEBT) is an effective palliative treatment for cutaneous T-cell lymphoma (CTCL). In the present study we reviewed the clinical response to TSEBT in Danish patients with CTCL. Material and methods. This retrospective study included 35 patients with CTCL...... to treatment compared to patients treated with high-dose. Consequently the study with low-dose was discontinued and published. In patients treated with high-dose the overall response rate was 100%. Complete response (CR) rate was 68% and CR occurred after a median time of 2.1 months (range 1.8 months-2.0 years...

  6. Pharmacokinetics, Dose Proportionality, and Bioavailability of Bazedoxifene in Healthy Postmenopausal Women.

    Science.gov (United States)

    McKeand, William

    2017-09-01

    Bazedoxifene is a selective estrogen receptor modulator that has estrogen agonist effects on bone and lipid metabolism while having neutral or estrogen antagonist effects on the breast and endometrium. The present report describes findings from 3 Phase I clinical studies that evaluated the single-dose pharmacokinetics (study 1; n = 84), multiple-dose pharmacokinetics (study 2; n = 23), and absolute bioavailability (study 3; n = 18) of bazedoxifene. All 3 studies enrolled healthy postmenopausal women who were either naturally postmenopausal or had undergone bilateral oophorectomy at least 6 months before the start of the study. Study 1 showed that unconjugated and total (unconjugated and conjugated) bazedoxifene levels increased proportionally with ascending oral doses of bazedoxifene (through the dose range of 5-120 mg). Evaluation with or without food intake was conducted at the 10-mg dose, with no clinically relevant effect on pharmacokinetic parameters. Study 2 showed that bazedoxifene achieved steady state in 1 week and exhibited linear pharmacokinetics in doses of 5 to 40 mg with no unexpected accumulation over the dose range. In accordance with a linear pharmacokinetic profile, mean maximum plasma concentration values increased with increasing dose, with values of 1.6, 6.2, and 12.5 ng/mL for the 5-, 20-, and 40-mg doses, respectively. In study 3, tablet and capsule formulations of bazedoxifene formulations had an estimated oral bioavailability of ~6%. The clearance of bazedoxifene was 0.4 (0.1) L/h/kg based on intravenous administration. The oral formulations had comparable exposure profiles with respect to AUC and AUC0-t, and the 90% CIs for these values were within the bioequivalence limits of 80% to 125%. Bazedoxifene was safe and well tolerated in all 3 studies. These pharmacokinetic evaluations in healthy postmenopausal women found that bazedoxifene displayed linear pharmacokinetics with doses ranging from 5 to 40 mg, with no unexpected accumulation

  7. Georgia fishery study: implications for dose calculations

    International Nuclear Information System (INIS)

    Turcotte, M.D.S.

    1983-01-01

    Fish consumption will contribute a major portion of the estimated individual and population doses from L-Reactor liquid releases and Cs-137 remobilization in Steel Creek. It is therefore important that the values for fish consumption used in dose calculations be as realistic as possible. Since publication of the L-Reactor Environmental Information Document (EID), data have become available on sport fishing in the Savannah River. These data provide SRP with site-specific sport fish harvest and consumption values for use in dose calculations. The Georgia fishery data support the total population fish consumption and calculated dose reported in the EID. The data indicate, however, that both the EID average and maximum individual fish consumption have been underestimated, although each to a different degree. The average fish consumption value used in the EID is approximately 3% below the lower limit of the fish consumption range calculated using the Georgia data. A fish consumption value of 11.3 kg/yr should be used to recalculate dose to the average individual from L-Reactor restart. Maximum fish consumption in the EID has been underestimated by approximately 60%, and doses to the maximum individual should also be recalculated. Future dose calculations should utilize an average fish consumption value of 11.3 kg/yr, and a maximum fish consumption value of 34 kg/yr

  8. Double ionization chamber survey meter for the separate measurement of penetrating and non-penetrating dose

    International Nuclear Information System (INIS)

    Lucas, A.C.

    1987-01-01

    The full capabilities of an advanced 8-bit microprocessor have been utilized in construction of a wide range, multiplexing survey meter based on dual electrometers and ionization chambers. The ionization chambers are constructed of modular conducting and non-conducting parts in such a way that the angular dependence for measurement of beta radiation is controlled by design. Display functions for the high range instrument include logarithmic or linear analog display, digital display of rate or dose, SI or English units, optionally for either total, penetrating, or non-penetrating dose. The instrument is presently configured to operate in the range 0.1 R/hr to 50,000 R/hr in support of the requirements of Regulatory Guide 19.7

  9. Anti-tumor effect of low dose radiation in mice

    International Nuclear Information System (INIS)

    Fan Zhengping; Lu Jiaben; Zhu Bingchai

    1997-01-01

    The author reports the effects of the total body irradiation of low dose radiation (LDR) and/or the local irradiation of large dose on average tumor weights and tumor inhibitory rates in 170 mice inoculated S 180 sarcoma cell, and the influence of LDR on average longevity in 40 tumor-bearing animals. Results show (1) LDR in the range of 75∼250 mGy can inhibit tumor growth to some extent; (2) fractionated irradiation of 75 mGy and local irradiation of 10 Gy may produce a synergism in tumor growth inhibition; and (3)LDR may enhance average longevity in ascitic tumor-bearing mice

  10. Verification of Pharmacogenetics-Based Warfarin Dosing Algorithms in Han-Chinese Patients Undertaking Mechanic Heart Valve Replacement

    Science.gov (United States)

    Zhao, Li; Chen, Chunxia; Li, Bei; Dong, Li; Guo, Yingqiang; Xiao, Xijun; Zhang, Eryong; Qin, Li

    2014-01-01

    Objective To study the performance of pharmacogenetics-based warfarin dosing algorithms in the initial and the stable warfarin treatment phases in a cohort of Han-Chinese patients undertaking mechanic heart valve replacement. Methods We searched PubMed, Chinese National Knowledge Infrastructure and Wanfang databases for selecting pharmacogenetics-based warfarin dosing models. Patients with mechanic heart valve replacement were consecutively recruited between March 2012 and July 2012. The predicted warfarin dose of each patient was calculated and compared with the observed initial and stable warfarin doses. The percentage of patients whose predicted dose fell within 20% of their actual therapeutic dose (percentage within 20%), and the mean absolute error (MAE) were utilized to evaluate the predictive accuracy of all the selected algorithms. Results A total of 8 algorithms including Du, Huang, Miao, Wei, Zhang, Lou, Gage, and International Warfarin Pharmacogenetics Consortium (IWPC) model, were tested in 181 patients. The MAE of the Gage, IWPC and 6 Han-Chinese pharmacogenetics-based warfarin dosing algorithms was less than 0.6 mg/day in accuracy and the percentage within 20% exceeded 45% in all of the selected models in both the initial and the stable treatment stages. When patients were stratified according to the warfarin dose range, all of the equations demonstrated better performance in the ideal-dose range (1.88–4.38 mg/day) than the low-dose range (warfarin dose prediction and in the low-dose and the ideal-dose ranges. Conclusions All of the selected pharmacogenetics-based warfarin dosing regimens performed similarly in our cohort. However, the algorithms of Wei, Huang, and Miao showed a better potential for warfarin prediction in the initial and the stable treatment phases in Han-Chinese patients undertaking mechanic heart valve replacement. PMID:24728385

  11. Organ doses, effective doses, and risk indices in adult CT: Comparison of four types of reference phantoms across different examination protocols

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yakun; Li Xiang; Paul Segars, W.; Samei, Ehsan [Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 and Carl E. Ravin Advanced Imaging Laboratories, Duke University, Durham, North Carolina 27705 (United States); Carl E. Ravin Advanced Imaging Laboratories, Duke University, Durham, North Carolina 27705 and Department of Radiology, Duke University, Durham, North Carolina 27705 (United States); Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States); Carl E. Ravin Advanced Imaging Laboratories, Duke University, Durham, North Carolina 27705 (United States) and Department of Radiology, Duke University, Durham, North Carolina 27705 (United States); Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States); Carl E. Ravin Advanced Imaging Laboratories, Duke University, Durham, North Carolina 27705 (United States); Department of Radiology, Duke University, Durham, North Carolina 27705 (United States) and Departments of Physics, Biomedical Engineering, and Electrical and Computer Engineering, Duke University, Durham, North Carolina 27705 (United States)

    2012-06-15

    male and female stylized phantoms. Results: For fully irradiated organs, average coefficients of variation (COV) ranged from 0.07 to 0.22 across the four male phantoms and from 0.06 to 0.18 across the four female phantoms; for partially irradiated organs, average COV ranged from 0.13 to 0.30 across the four male phantoms and from 0.15 to 0.30 across the four female phantoms. Doses to the testes, breasts, and esophagus showed large variations between phantoms. COV for gender-averaged effective dose and k factor ranged from 0.03 to 0.23 and from 0.06 to 0.30, respectively. COV for male risk index and q factor ranged from 0.06 to 0.30 and from 0.05 to 0.36, respectively; COV for female risk index and q factor ranged from 0.06 to 0.49 and from 0.07 to 0.54, respectively. Conclusions: Despite closely matched organ mass, total body weight, and height, large differences in organ dose exist due to variation in organ location, spatial distribution, and dose approximation method. Dose differences for fully irradiated radiosensitive organs were much smaller than those for partially irradiated organs. Weighted dosimetry quantities including effective dose, male risk indices, k factors, and male q factors agreed well across phantoms. The female risk indices and q factors varied considerably across phantoms.

  12. Organ doses, effective doses, and risk indices in adult CT: Comparison of four types of reference phantoms across different examination protocols

    International Nuclear Information System (INIS)

    Zhang Yakun; Li Xiang; Paul Segars, W.; Samei, Ehsan

    2012-01-01

    male and female stylized phantoms. Results: For fully irradiated organs, average coefficients of variation (COV) ranged from 0.07 to 0.22 across the four male phantoms and from 0.06 to 0.18 across the four female phantoms; for partially irradiated organs, average COV ranged from 0.13 to 0.30 across the four male phantoms and from 0.15 to 0.30 across the four female phantoms. Doses to the testes, breasts, and esophagus showed large variations between phantoms. COV for gender-averaged effective dose and k factor ranged from 0.03 to 0.23 and from 0.06 to 0.30, respectively. COV for male risk index and q factor ranged from 0.06 to 0.30 and from 0.05 to 0.36, respectively; COV for female risk index and q factor ranged from 0.06 to 0.49 and from 0.07 to 0.54, respectively. Conclusions: Despite closely matched organ mass, total body weight, and height, large differences in organ dose exist due to variation in organ location, spatial distribution, and dose approximation method. Dose differences for fully irradiated radiosensitive organs were much smaller than those for partially irradiated organs. Weighted dosimetry quantities including effective dose, male risk indices, k factors, and male q factors agreed well across phantoms. The female risk indices and q factors varied considerably across phantoms.

  13. Population dose commitment associated with various radionuclides in foods

    International Nuclear Information System (INIS)

    Simpson, Robert E.; Baratta, Edmond J.; Tanner, James T.

    1978-01-01

    The radionuclides in foods monitoring program initiated by the Food and Drug Administration in 1973 was expanded in 1975 to include the analysis for hydrogen-3 in selected foods originating from the vicinity of nuclear power stations. Also, in 1975 the analysis for radium-226 was initiated in food samples from areas adjacent to the phosphate mines in Florida. In October 1976 a special survey of milk was performed to determine the levels of fission product contamination from the fallout produced by the detonation of a nuclear device by the People's Republic of China. Results from the analysis of strontium-90 and cesium-137 in the general foods survey for the years 1973 through 1977 indicated intake levels well within range I of the Radiation Protection Guides (RPG) [FRC 1: Range I at 0.1xRPG dose, periodic surveillance; Range II at the RPG dose, quantitative surveillance and routine control; Range III 10xRPG dose, evaluation and additional controls]. The levels of hydrogen-3 in foods from nuclear power station areas were slightly above the tritium background. The radium-226 levels in foods from Florida phosphate mining areas were about double that of the controls. In both cases, however, the radium-226 intake from the total diet was in range II of the RPGs. The iodine-131 levels in the special milk survey in HEW regions I and III were in range III of the RPGs. The levels of barium-lanthanum-140, cesium-137 and strontium-89-90 were all within range I. The clearance half-time from milk for these radionuclides was about 5, 7 and 9 days respectively. (author)

  14. 3D inpatient dose reconstruction from the PET-CT imaging of {sup 90}Y microspheres for metastatic cancer to the liver: Feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Fourkal, E.; Veltchev, I.; Lin, M.; Meyer, J. [Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111 (United States); Koren, S. [Department of Radiation Oncology, Beth Israel Comprehensive Cancer Center, New York, New York 10011 (United States); Doss, M.; Yu, J. Q. [Department of Diagnostic Imaging, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111 (United States)

    2013-08-15

    Purpose: The introduction of radioembolization with microspheres represents a significant step forward in the treatment of patients with metastatic disease to the liver. This technique uses semiempirical formulae based on body surface area or liver and target volumes to calculate the required total activity for a given patient. However, this treatment modality lacks extremely important information, which is the three-dimensional (3D) dose delivered by microspheres to different organs after their administration. The absence of this information dramatically limits the clinical efficacy of this modality, specifically the predictive power of the treatment. Therefore, the aim of this study is to develop a 3D dose calculation technique that is based on the PET imaging of the infused microspheres.Methods: The Fluka Monte Carlo code was used to calculate the voxel dose kernel for {sup 90}Y source with voxel size equal to that of the PET scan. The measured PET activity distribution was converted to total activity distribution for the subsequent convolution with the voxel dose kernel to obtain the 3D dose distribution. In addition, dose-volume histograms were generated to analyze the dose to the tumor and critical structures.Results: The 3D inpatient dose distribution can be reconstructed from the PET data of a patient scanned after the infusion of microspheres. A total of seven patients have been analyzed so far using the proposed reconstruction method. Four patients underwent treatment with SIR-Spheres for liver metastases from colorectal cancer and three patients were treated with Therasphere for hepatocellular cancer. A total of 14 target tumors were contoured on post-treatment PET-CT scans for dosimetric evaluation. Mean prescription activity was 1.7 GBq (range: 0.58–3.8 GBq). The resulting mean maximum measured dose to targets was 167 Gy (range: 71–311 Gy). Mean minimum dose to 70% of target (D70) was 68 Gy (range: 25–155 Gy). Mean minimum dose to 90% of target

  15. Long-term brain structural magnetic resonance imaging and cognitive functioning in children treated for acute lymphoblastic leukemia with high-dose methotrexate chemotherapy alone or combined with CNS radiotherapy at reduced total dose to 12 Gy

    Energy Technology Data Exchange (ETDEWEB)

    Zajac-Spychala, Olga; Pilarczyk, Jakub; Derwich, Katarzyna; Wachowiak, Jacek [Poznan University of Medical Sciences, Department of Pediatric Oncology, Hematology and Transplantology, Poznan (Poland); Pawlak, Mikolaj A. [Poznan University of Medical Sciences, Department of Neurology and Cerebrovascular Disorders, Poznan (Poland); Karmelita-Katulska, Katarzyna [Poznan University of Medical Sciences, Department of Neuroradiology, Poznan (Poland)

    2017-02-15

    The aim of this study was to assess the long-term side effects of central nervous system prophylaxis (high-dose chemotherapy alone vs chemotherapy and CNS radiotherapy) according to the ALL IC-BFM 2002. Thirty-tree children aged 6.7-19.9 years have been studied. The control group consisted of 12 children newly diagnosed with acute lymphoblastic leukemia. We assessed subcortical gray matter volume using automatic MRI segmentation and cognitive performance to identify differences between two therapeutic schemes and patients prior to treatment. Patients treated with chemotherapy and CNS radiotherapy had smaller hippocampi than two other subgroups and lower IQ score than patients treated with chemotherapy alone. Both treated groups, whether with chemotherapy only or in combination with CNS radiotherapy, had significantly lower volumes of caudate nucleus and performed significantly worse on measures of verbal fluency in comparison with patients prior to treatment. There were no differences in the mean volumes of total white matter, total gray matter, thalamus, putamen, and amygdala between the studied groups. In all children treated according to the ALL IC-BFM 2002 with high-dose chemotherapy, both decreased volume of selected subcortical structures and cognitive impairment was observed, especially in children who received chemotherapy in combination with reduced dose CNS radiotherapy. In all children treated according to the ALL IC-BFM 2002 with high-dose chemotherapy, both decreased volume of selected subcortical structures and cognitive impairment were observed, especially in children who received chemotherapy in combination with CNS radiotherapy. (orig.)

  16. Long-term brain structural magnetic resonance imaging and cognitive functioning in children treated for acute lymphoblastic leukemia with high-dose methotrexate chemotherapy alone or combined with CNS radiotherapy at reduced total dose to 12 Gy

    International Nuclear Information System (INIS)

    Zajac-Spychala, Olga; Pilarczyk, Jakub; Derwich, Katarzyna; Wachowiak, Jacek; Pawlak, Mikolaj A.; Karmelita-Katulska, Katarzyna

    2017-01-01

    The aim of this study was to assess the long-term side effects of central nervous system prophylaxis (high-dose chemotherapy alone vs chemotherapy and CNS radiotherapy) according to the ALL IC-BFM 2002. Thirty-tree children aged 6.7-19.9 years have been studied. The control group consisted of 12 children newly diagnosed with acute lymphoblastic leukemia. We assessed subcortical gray matter volume using automatic MRI segmentation and cognitive performance to identify differences between two therapeutic schemes and patients prior to treatment. Patients treated with chemotherapy and CNS radiotherapy had smaller hippocampi than two other subgroups and lower IQ score than patients treated with chemotherapy alone. Both treated groups, whether with chemotherapy only or in combination with CNS radiotherapy, had significantly lower volumes of caudate nucleus and performed significantly worse on measures of verbal fluency in comparison with patients prior to treatment. There were no differences in the mean volumes of total white matter, total gray matter, thalamus, putamen, and amygdala between the studied groups. In all children treated according to the ALL IC-BFM 2002 with high-dose chemotherapy, both decreased volume of selected subcortical structures and cognitive impairment was observed, especially in children who received chemotherapy in combination with reduced dose CNS radiotherapy. In all children treated according to the ALL IC-BFM 2002 with high-dose chemotherapy, both decreased volume of selected subcortical structures and cognitive impairment were observed, especially in children who received chemotherapy in combination with CNS radiotherapy. (orig.)

  17. Assessment of Patients Radiation Dose During Interventional Radiological Procedure in PPUKM

    International Nuclear Information System (INIS)

    Mohd Khalid Matori; Husaini Salleh; Muhammad Jamal Muhammad Isa

    2014-01-01

    Interventional Radiology (IR) is a relatively new subspecialty of radiology. It is subspecialty where minimally invasive procedures are performed under radiological guidance using X-ray. This procedure can deliver high radiation doses compared with other radiological method due to long screening time. Because of these it is important to determine radiation doses received by patients undergoing IR procedures. It is to ensure that the dose is within the range deemed to be saved. A total of 128 patients undergoing IR procedures in PPUKM between 2012 and 2013 were study retrospectively. Dose area product (DAP) meter were used to measure the integral dose for the whole procedures. Mean kerma-area products for abdomen, head, pelvis, and thorax were 243.1, 107.3, 39.05 and 45.7 Gycm 2 , respectively. This study may provide the useful information which can be use to establish baseline patient dose data for dose optimizing study and carried out a recommendation on effective method of patient dose reduction during IR procedures. A more detail results of this study are presented in this paper. (author)

  18. Tofacitinib in patients with ankylosing spondylitis: a phase II, 16-week, randomised, placebo-controlled, dose-ranging study.

    Science.gov (United States)

    van der Heijde, Désirée; Deodhar, Atul; Wei, James C; Drescher, Edit; Fleishaker, Dona; Hendrikx, Thijs; Li, David; Menon, Sujatha; Kanik, Keith S

    2017-08-01

    To compare efficacy and safety of various doses of tofacitinib, an oral Janus kinase inhibitor, with placebo in patients with active ankylosing spondylitis (AS, radiographic axial spondyloarthritis). In this 16-week (12-week treatment, 4-week washout), phase II, multicentre, dose-ranging trial, adult patients with active AS were randomised (N=51, 52, 52, 52, respectively) to placebo or tofacitinib 2, 5 or 10 mg twice daily. The primary efficacy endpoint was Assessment of SpondyloArthritis International Society 20% improvement (ASAS20) response rate at week 12. Secondary endpoints included objective measures of disease activity, patient-reported outcomes and MRI of sacroiliac joints and spine. Safety was monitored. Emax model analysis of the primary endpoint predicted a tofacitinib 10 mg twice daily ASAS20 response rate of 67.4%, 27.3% higher than placebo. Supportive normal approximation analysis demonstrated tofacitinib 5 mg twice daily ASAS20 response rate significantly higher than placebo (80.8% vs 41.2%; ptofacitinib 2 and 10 mg twice daily demonstrated greater response rate than placebo (51.9% and 55.8%, respectively; not significant). Secondary endpoints generally demonstrated greater improvements with tofacitinib 5 and 10 mg twice daily than placebo. Objective (including MRI) endpoints demonstrated clear dose response. Adverse events were similar across treatment groups with no unexpected safety findings. Dose-dependent laboratory outcome changes returned close to baseline by week 16. Tofacitinib 5 and 10 mg twice daily demonstrated greater clinical efficacy versus placebo in reducing signs, symptoms and objective endpoints of active AS in adult patients with a similar 12-week safety profile as reported in other indications. NCT01786668. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  19. Staff and patient absorbed doses due to diagnostic nuclear medicine procedures

    International Nuclear Information System (INIS)

    Tabei, F.; Neshandar Asli, I.; Aghamiri, S.M.; Arbabi, K.

    2004-01-01

    Background: annual patient effective dose equivalent can be considered as a quantitative physical parameter describing the activities performed in each nuclear medicine department. annual staff dose equivalent could be also considered as a parameter describing the amount of radiation risk for performing the activities. We calculated the staff to patient dose equivalent ratio to be used as a physical parameter for quantification of ALARA law in nuclear medicine department. Materials and methods: as a part of nationwide study, this paper reports the staff and patient absorbed dose equivalents from diagnostic nuclear medicine examinations performed in four nuclear medicine department during 1999-2002. The type and frequency of examinations in each department were determined directly from hospital medical reports. Staff absorbed doses equivalents were calculated from regular personal dosimeter reports. Results: the total number of examinations increased by 16.7 % during these years. Annual patient collective dose equivalent increased about 13.0 % and the mean effective dose equivalent per exam was 3.61 ± 0.07 mSv. Annual total staff absorbed dose equivalent (total of 24 radiation workers) in four departments increased from 40.45 mSv to 47.81 mSv during four years that indicates an increase of about 20.6 %. The average of annual ratios of staff to patient effective dose equivalents in four departments were 1.83 x 10 -3 , 1.04 x 10 -3 , 3.28 x 10 -3 and 3.24 x 10 -3 , respectively, within a range of 0.9 x 10 -3 - 4.17 x 10 -3 . The mean value of ratios in four years was about 2.24 x 10 -3 ± 1.09 x 10 -3 that indicates the staff dose of about two 1000 th of patient dose. Conclusion: The mean value of ratios in four years was about 1.89 x 10 -3 ± 0.95 x 10 -3 indicating the staff dose of about one 1000 th of the patient dose. The staff to patient absorbed dose equivalent ratio could be used as a quantitative parameter for describing ALARA law in radiation protection and

  20. Dosimetric systems of high dose, dose rate and dose uniformity in food and medical products

    International Nuclear Information System (INIS)

    Vargas, J.; Vivanco, M.; Castro, E.

    2014-08-01

    In the Instituto Peruano de Energia Nuclear (IPEN) we use the chemical dosimetry Astm-E-1026 Fricke as a standard dosimetric system of reference and different routine dosimetric systems of high doses, according to the applied doses to obtain the desired effects in the treated products and the doses range determined for each type of dosimeter. Fricke dosimetry is a chemical dosimeter in aqueous solution indicating the absorbed dose by means an increase in absorbance at a specific wavelength. A calibrated spectrophotometer with controlled temperature is used to measure absorbance. The adsorbed dose range should cover from 20 to 400 Gy, the Fricke solution is extremely sensitive to organic impurities, to traces of metal ions, in preparing chemical products of reactive grade must be used and the water purity is very important. Using the referential standard dosimetric system Fricke, was determined to March 5, 2013, using the referential standard dosimetric system Astm-1026 Fricke, were irradiated in triplicate Fricke dosimeters, to 5 irradiation times (20; 30; 40; 50 and 60 seconds) and by linear regression, the dose rate of 5.400648 kGy /h was determined in the central point of the irradiation chamber (irradiator Gamma cell 220 Excel), applying the decay formula, was compared with the obtained results by manufacturers by means the same dosimetric system in the year of its manufacture, being this to the date 5.44691 kGy /h, with an error rate of 0.85. After considering that the dosimetric solution responds to the results, we proceeded to the irradiation of a sample of 200 g of cereal instant food, 2 dosimeters were placed at the lateral ends of the central position to maximum dose and 2 dosimeters in upper and lower ends as minimum dose, they were applied same irradiation times; for statistical analysis, the maximum dose rate was 6.1006 kGy /h and the minimum dose rate of 5.2185 kGy /h; with a dose uniformity of 1.16. In medical material of micro pulverized bone for

  1. A Longitudinal Supra-Inguinal Fascia Iliaca Compartment Block Reduces Morphine Consumption After Total Hip Arthroplasty.

    Science.gov (United States)

    Desmet, Matthias; Vermeylen, Kris; Van Herreweghe, Imré; Carlier, Laurence; Soetens, Filiep; Lambrecht, Stijn; Croes, Kathleen; Pottel, Hans; Van de Velde, Marc

    The role of a fascia iliaca compartment block (FICB) for postoperative analgesia after total hip arthroplasty (THA) remains questionable. High-dose local anesthetics and a proximal injection site may be essential for successful analgesia. High-dose local anesthetics may pose a risk for local anesthetic systemic toxicity. We hypothesized that a high-dose longitudinal supra-inguinal FICB is safe and decreases postoperative morphine consumption after anterior approach THA. We conducted a prospective, double blind, randomized controlled trial. Patients scheduled for THA were randomized to group FICB (longitudinal supra-inguinal FICB with 40-mL ropivacaine 0.5%) or group C (control, no block). Standard hypothesis tests (t test or Mann-Whitney U test, χ test) were performed to analyze baseline characteristics and outcome parameters. The primary end point of the study was total morphine (mg) consumption at 24 hours postoperatively. Serial total and free ropivacaine serum levels were determined in 10 patients. After obtaining ethical committee approval and written informed consent, 88 patients were included. Mean (SD) morphine consumption at 24 hours postoperatively was reduced in group FICB compared to group C: 10.25 (1.64) mg versus 19.0 (2.4) mg (P = 0.004). Using a mean dose of 2.6-mg/kg ropivacaine (range, 2-3.4 mg/kg), none of the patients had total or free ropivacaine levels above the maximum tolerated serum concentration. We conclude that a high-dose longitudinal supra-inguinal FICB reduces postoperative morphine requirements after anterior approach THA.Clinical Trials Registry: EU Clinical Trials Register. www.clinicaltrialsregister.eu #2014-002122-12.

  2. Intravenous paracetamol with a lower dose is also effective for the treatment of patent ductus arteriosus in pre-term infants.

    Science.gov (United States)

    Tekgündüz, Kadir Şerafettin; Ceviz, Naci; Caner, İbrahim; Olgun, Haşim; Demirelli, Yaşar; Yolcu, Canan; Şahin, İrfan Oğuz; Kara, Mustafa

    2015-08-01

    Haemodynamically significant patent ductus arteriosus is a significant cause of morbidity and mortality in pre-term infants. This retrospective study was conducted to investigate the usefulness of lower-dose paracetamol for the treatment of patent ductus arteriosus in pre-term infants. A total of 13 pre-term infants who received intravenous paracetamol because of contrindications or side effects to oral ibuprofen were retrospectively enrolled. In the first patient, the dose regimen was 15 mg/kg/dose, every 6 hours. As the patient developed significant elevation in transaminase levels, the dose was decreased to 10 mg/kg/dose, every 8 hours in the following 12 patients. Echocardiographic examination was conducted daily. In case of closure, it was repeated after 2 days and when needed thereafter in terms of reopening. A total of 13 patients received intravenous paracetamol. Median gestational age was 29 weeks ranging from 24 to 31 weeks and birth weight was 950 g ranging from 470 to 1390 g. The median postnatal age at the first intravenous paracetamol dose was 3 days ranging from 2 to 9 days. In 10 of the 13 patients (76.9%), patent ductus arteriosus was closed at the median 2nd day of intravenous paracetamol ranging from 1 to 4 days. When the patient who developed hepatotoxicity was eliminated, the closure rate was found to be 83.3% (10/12). Intravenous paracetamol may be a useful treatment option for the treatment of patent ductus arteriosus in pre-term infants with contrindication to ibuprofen. In our experience, lower-dose paracetamol is effective in closing the patent ductus arteriosus in 83.3% of the cases.

  3. Gonad dose in cineurethrocystography

    International Nuclear Information System (INIS)

    Ardran, G.M.; Dixon-Brown, A.; Fursdon, P.S.

    1978-01-01

    The technical factors used for cineurethrocystography for the true lateral projection in females are given. The mid-line radiation dose has been measured with LiF TLD inserted into the vagina in 19 examinations. The average dose recorded was 148 mrad, the range being 50 to 306 mrad, the average number of cine frames exposed was 96. Data obtained using a Rando phantom indicated that the average ovary dose would be 30% greater than the mid-line dose since the near ovary receives a higher dose than the more distant one. The technique used for men is also given, the average gonad dose in six men being 123 mrad, range 56 to 243 mrad when simple lead foil gonad protection was used; the average number of cine frames was 107. The dose in one man without gonad protection was 1575 mrad for 112 cine frames. The results for both sexes compare favourably with those of others reported in the literature and with gonad doses recorded in typical IVP examinations. (author)

  4. Natural radiation dose to Gammarus from Hudson river

    International Nuclear Information System (INIS)

    Paschoa, A.S.; Wrenn, M.E.; Eisenbud, M.

    1979-01-01

    The purpose of this investigation is to evaluate the natural radiation dose rate to whole body and components of the Gammarus species, a zooplankton which occurs in the Hudson River among other places, and to compare the results with the upper limits of dose rates from man-made sources. The alpha dose rates to the exoskeleton and soft tissues are about 10 times the average alpha dose rate to the whole body, assuming uniform distribution of 226 Ra. The natural alpha radiation dose rate to Gammarus represents only about 5% of the total natural dose to the organism, i.e., 492 mrad/yr. The external dose rate due to 40 K, 238 U plus daughters and 232 Th plus daughters accumulated in the sediments comprise 91% of that total natural dose rate, the remaining percentage being due to natural internal beta emitters and cosmic radiation. Man-made sources can cause an external dose rate up to 224 mrad/yr, which comprises roughly 1/3 of the total dose rate (up to 716 mrad/yr; natural plus man-made) to the Gammarus of Hudson River in front of Indian Point Nuclear Power Station. However, in terms of dose-equivalent the natural sources of radiation would contribute more than 75% of the total dose to Gammarus

  5. Treatment of Recurrent Bronchial Carcinoma: The Role of High-Dose-Rate Endoluminal Brachytherapy

    International Nuclear Information System (INIS)

    Hauswald, Henrik; Stoiber, Eva; Rochet, Nathalie; Lindel, Katja; Grehn, Christian; Becker, Heinrich D.; Debus, Juergen; Harms, Wolfgang

    2010-01-01

    Purpose: This study's aim was to assess outcome and toxicity of high-dose-rate endoluminal brachytherapy (HDREB) for recurrent bronchial carcinoma. Methods and Materials: From 1987 to 2005, 41 patients were treated with HDREB for symptomatic recurrent bronchial carcinoma. All patients had previously undergone external beam radiotherapy (EBRT) with a median dose of 56 Gy (range, 30-70 Gy). The median HDREB dose applied was 15 Gy (range, 5-29 Gy). The median time interval between primary EBRT and reirradiation was 9 months (range, 2-54 months). Results: After a median follow-up of 6.7 months, the 6-, 12-, and 24-month overall survival rates were 58%, 18%, and 7%, respectively. The median overall survival time was 6.7 months. Local remission was achieved in 73% of patients (n = 30). A total of 24% of patients (n = 10) showed no response or progressive disease within 8 weeks after treatment. In 1 patient, treatment response was not documented. The 6-, 12-, and 24-month local control rates were 38%, 17%, and 3%, respectively. The median local progression-free survival time was 4 months (range, 1-23 months). Prognostic factors were a total dose of ≥15 Gy of HDREB (p = 0.029) and a Karnofsky performance score of ≥80% (p = 0.0012). The cause of death was locoregional progression in 27% of patients (n = 11), distant metastases in 24% of patients (n = 10), fatal hemorrhage in 15% of patients (n = 6), and other causes in 29% of patients (n = 12). None of the patients with locally controlled disease showed grade 3 or 4 late effects. Conclusions: Palliative treatment of symptomatic, locally recurrent bronchial carcinoma with HDREB can effectively relieve symptoms in the majority of patients while causing only few complications. Still, time to progression is short.

  6. Low-dose-rate interstitial brachytherapy preserves good quality of life in buccal mucosa cancer patients

    International Nuclear Information System (INIS)

    Tayier, A.; Hayashi, Keiji; Yoshimura, Ryoichi

    2011-01-01

    The purpose of this study was to determine the results and long-term changes in radiation toxicity of stage I-II buccal mucosa cancer patients treated by low-dose-rate (LDR) brachytherapy with 198 Au grains. A total of 133 stage I-II buccal mucosa carcinomas patients received 198 Au grain implantation brachytherapy between January 1982 and July 2005: 75 of them were treated by 198 Au grain implantation alone and 58 were treated by 198 Au implantation in combination with external irradiation. The average 198 Au-grain dose was 70 Gy in 7 days. Gross tumor areas ranged from 2.4 cm 2 to 9 cm 2 , and the clinical target areas ranged from 6 cm 2 to 15 cm 2 . The follow-up periods ranged from 3 months to 20 years (mean: 5 years 11 months and median: 5 years 1 months). Failure at the site of the primary lesion occurred in 17 patients. Post-treatment mucosal ulceration developed in 15 patients, and all were cured within 25 months by conservative treatment. Osteoradionecrosis was diagnosed in 8 patients, but only one patient required surgical treatment. No severe complications or aggravation of complications developed more than 10 years after treatment. The results of low-dose-rate (LDR)-brachytherapy (BT) alone and LDR-BT in combination with external irradiation at a total dose of 25 Gy were acceptable from the standpoint of cure rate and quality of life (QOL). (author)

  7. Pharmacokinetics and dose requirements of factor VIII over the age range 3-74 years

    DEFF Research Database (Denmark)

    Björkman, Sven; Folkesson, Anna; Jönsson, Siv

    2009-01-01

    in the sparse clinical data. Model-predicted doses (based on age and body weight) to maintain a recommended 0.01 U/mL trough level of FVIII with administration on alternate days started at around 60 U/kg in the small children, decreasing to 10 U/kg or less in middle age. However, "true" dose requirements......, as estimated from individual PK parameter data, showed a much greater variation. CONCLUSION: Appropriate dosing of FVIII for prophylactic treatment cannot be calculated only from body weight and/or age. However, plausible starting doses for most patients would be 1,000 U every other day. FVIII levels should...... can be calculated according to patient characteristics, and (3) to present dosing recommendations for initiating prophylactic treatment. METHODS: A population PK model was developed using data from four PK studies on patients aged 7-74 years. The model was tested on sparse FVIII data from 42...

  8. RETRACTED: Treatment of postoperative emetic symptoms with granisetron in women undergoing abdominal hysterectomy: a randomized, double-blind, placebo-controlled, dose-ranging study

    Directory of Open Access Journals (Sweden)

    MD Yoshitaka Fujii

    2004-07-01

    Fujii Y, Tanaka H, Somekawa Y. Treatment of postoperative emetic symptoms with granisetron in women undergoing abdominal hysterectomy: a randomised, double-blind, placebo-controlled, dose-ranging study. Current Therapeutic Research 2004;65:321–9. https://www.sciencedirect.com/science/article/pii/S0011393X04800018

  9. Accelerating an Ordered-Subset Low-Dose X-Ray Cone Beam Computed Tomography Image Reconstruction with a Power Factor and Total Variation Minimization.

    Science.gov (United States)

    Huang, Hsuan-Ming; Hsiao, Ing-Tsung

    2016-01-01

    In recent years, there has been increased interest in low-dose X-ray cone beam computed tomography (CBCT) in many fields, including dentistry, guided radiotherapy and small animal imaging. Despite reducing the radiation dose, low-dose CBCT has not gained widespread acceptance in routine clinical practice. In addition to performing more evaluation studies, developing a fast and high-quality reconstruction algorithm is required. In this work, we propose an iterative reconstruction method that accelerates ordered-subsets (OS) reconstruction using a power factor. Furthermore, we combine it with the total-variation (TV) minimization method. Both simulation and phantom studies were conducted to evaluate the performance of the proposed method. Results show that the proposed method can accelerate conventional OS methods, greatly increase the convergence speed in early iterations. Moreover, applying the TV minimization to the power acceleration scheme can further improve the image quality while preserving the fast convergence rate.

  10. Dose commitments due to radioactive releases from nuclear power plant sites in 1992. Volume 14

    International Nuclear Information System (INIS)

    Aaberg, R.L.; Baker, D.A.

    1996-03-01

    Population and individual radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1992. Fifty-year dose commitments for a 1-year exposure from both liquid and atmospheric releases were calculated for four population groups (infant, child, teenager, and adult) residing between 2 and 80 km from each of 72 reactor sites. This report tabulates the results of these calculations, showing the dose commitments for both water and airborne pathways for each age group and organ. Also included for each of the sites is an estimate of individual doses, which are compared with 10 CFR Part 50, Appendix I, design objectives. The total collective dose commitments (from both liquid and airborne pathways) for each site ranged from a high of 3.7 person-rem to a low of 0.0015 person-rem for the sites with plants in operation and producing power during the year. The arithmetic mean was 0.66 person-rem. The total population dose for all sites was estimated at 47 person-rem for the 130-million people considered at risk. The individual dose commitments estimated for all sites were below the 10 CFR 50, Appendix I, design objectives

  11. Dose commitments due to radioactive releases from nuclear power plant sites in 1991. Volume 13

    Energy Technology Data Exchange (ETDEWEB)

    Baker, D.A. [Pacific Northwest Lab., Richland, WA (United States)

    1995-04-01

    Population and individual radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1991. Fifty-year dose commitments for a one-year exposure from both liquid and atmospheric releases were calculated for four population groups (infant, child, teenager and adult) residing between 2 and 80 km from each of 72 reactor sites. This report tabulates the results of these calculations, showing the dose commitments for both water and airborne pathways for each age group and organ. Also included for each of the sites is an estimate of individual doses which are compared with 10 CFR Part 50, Appendix 1 design objectives. The total collective dose commitments (from both liquid and airborne pathways) for each site ranged from a high of 22 person-rem to a low of 0.002 person-rem for the sites with plants in operation and producing power during the year. The arithmetic mean was 1.2 person-rem. The total population dose for all sites was estimated at 88 person-rem for the 130 million people considered at risk. The individual dose commitments estimated for all sites were below the Appendix 1 design objectives.

  12. Dose commitments due to radioactive releases from nuclear power plant sites in 1992. Volume 14

    Energy Technology Data Exchange (ETDEWEB)

    Aaberg, R.L.; Baker, D.A.

    1996-03-01

    Population and individual radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1992. Fifty-year dose commitments for a 1-year exposure from both liquid and atmospheric releases were calculated for four population groups (infant, child, teenager, and adult) residing between 2 and 80 km from each of 72 reactor sites. This report tabulates the results of these calculations, showing the dose commitments for both water and airborne pathways for each age group and organ. Also included for each of the sites is an estimate of individual doses, which are compared with 10 CFR Part 50, Appendix I, design objectives. The total collective dose commitments (from both liquid and airborne pathways) for each site ranged from a high of 3.7 person-rem to a low of 0.0015 person-rem for the sites with plants in operation and producing power during the year. The arithmetic mean was 0.66 person-rem. The total population dose for all sites was estimated at 47 person-rem for the 130-million people considered at risk. The individual dose commitments estimated for all sites were below the 10 CFR 50, Appendix I, design objectives.

  13. Dose commitments due to radioactive releases from nuclear power plant sites in 1991. Volume 13

    International Nuclear Information System (INIS)

    Baker, D.A.

    1995-04-01

    Population and individual radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1991. Fifty-year dose commitments for a one-year exposure from both liquid and atmospheric releases were calculated for four population groups (infant, child, teenager and adult) residing between 2 and 80 km from each of 72 reactor sites. This report tabulates the results of these calculations, showing the dose commitments for both water and airborne pathways for each age group and organ. Also included for each of the sites is an estimate of individual doses which are compared with 10 CFR Part 50, Appendix 1 design objectives. The total collective dose commitments (from both liquid and airborne pathways) for each site ranged from a high of 22 person-rem to a low of 0.002 person-rem for the sites with plants in operation and producing power during the year. The arithmetic mean was 1.2 person-rem. The total population dose for all sites was estimated at 88 person-rem for the 130 million people considered at risk. The individual dose commitments estimated for all sites were below the Appendix 1 design objectives

  14. Dose commitments due to radioactive releases from nuclear power plant sites in 1990: Volume 12

    International Nuclear Information System (INIS)

    Baker, D.A.

    1994-11-01

    Population and individual radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1990. Fifty-year dose commitments for a one-year exposure from both liquid and atmospheric releases were calculated for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each of 72 reactor sites. This report tabulates the results of these calculations, showing the dose commitments for both water and airborne pathways for each age group and organ. Also included for each of the sites is an estimate of individual doses which are compared with 10 CFR Part 50, Appendix 1 design objectives. The total collective dose commitments (from both liquid and airborne pathways) for each site ranged from a high of 15 person-rem to a low of 0.002 person-rem for the sites with plants in operation and producing power during the year. The arithmetic mean was 1.1 person-rem. The total population dose for all sites was estimated at 78 person-rem for the 130 million people considered at risk. The individual dose commitments estimated for all sites were below the Appendix 1 design objectives

  15. Radiation doses from computed tomography practice in Johor Bahru, Malaysia

    Science.gov (United States)

    Karim, M. K. A.; Hashim, S.; Bradley, D. A.; Bakar, K. A.; Haron, M. R.; Kayun, Z.

    2016-04-01

    Radiation doses for Computed Tomography (CT) procedures have been reported, encompassing a total of 376 CT examinations conducted in one oncology centre (Hospital Sultan Ismail) and three diagnostic imaging departments (Hospital Sultanah Aminah, Hospital Permai and Hospital Sultan Ismail) at Johor hospital's. In each case, dose evaluations were supported by data from patient questionnaires. Each CT examination and radiation doses were verified using the CT EXPO (Ver. 2.3.1, Germany) simulation software. Results are presented in terms of the weighted computed tomography dose index (CTDIw), dose length product (DLP) and effective dose (E). The mean values of CTDIw, DLP and E were ranged between 7.6±0.1 to 64.8±16.5 mGy, 170.2±79.2 to 943.3±202.3 mGy cm and 1.6±0.7 to 11.2±6.5 mSv, respectively. Optimization techniques in CT are suggested to remain necessary, with well-trained radiology personnel remaining at the forefront of such efforts.

  16. A comparison of the effects of 2 doses of soy protein or casein on serum lipids, serum lipoproteins, and plasma total homocysteine in hypercholesterolemic subjects.

    Science.gov (United States)

    Tonstad, Serena; Smerud, Knut; Høie, Lars

    2002-07-01

    Studies have shown that soy protein reduces some atherogenic lipid and lipoprotein concentrations, although lipoprotein(a) concentrations may be increased. The dose response of soy protein has not been established; neither has its effect on plasma total homocysteine. Our objective was to evaluate the effect of 2 doses of soy protein on lipid, lipoprotein, and homocysteine concentrations. Four to 24 wk after being instructed to consume a lipid-lowering diet, 130 men and women with LDL-cholesterol concentrations > or = 4 mmol/L were studied during a parallel group trial in which 4 interventions were assigned randomly. Thirty grams isolated soy protein (ISP) and 10 g cotyledon fiber or 50 g ISP and 16.6 g cotyledon fiber or equivalent doses of casein and cellulose were consumed daily as a beverage for 16 wk. When the 2 groups who consumed ISP were compared with the 2 groups who consumed casein, the differences in the net changes from baseline to week 16 in the concentrations of LDL cholesterol and plasma total homocysteine were -0.26 mmol/L (95% CI: -0.43, -0.09 mmol/L; P = 0.01) and -0.8 micromol/L (-1.4, -0.2 micromol/L; P = 0.005), respectively. The effect of the ISP dose was not significant. There were no significant differences between the 2 ISP and the 2 casein groups in changes in lipoprotein(a), HDL-cholesterol, or triacylglycerol concentrations. Adding 30-50 g soy protein/d to a lipid-lowering diet significantly reduced LDL-cholesterol concentrations without increasing lipoprotein(a) concentrations. Plasma total homocysteine concentrations also decreased, suggesting a novel, possibly antiatherosclerotic effect.

  17. Automated extraction of radiation dose information from CT dose report images.

    Science.gov (United States)

    Li, Xinhua; Zhang, Da; Liu, Bob

    2011-06-01

    The purpose of this article is to describe the development of an automated tool for retrieving texts from CT dose report images. Optical character recognition was adopted to perform text recognitions of CT dose report images. The developed tool is able to automate the process of analyzing multiple CT examinations, including text recognition, parsing, error correction, and exporting data to spreadsheets. The results were precise for total dose-length product (DLP) and were about 95% accurate for CT dose index and DLP of scanned series.

  18. Vancomycin Dosing in Obese Patients: Special Considerations and Novel Dosing Strategies.

    Science.gov (United States)

    Durand, Cheryl; Bylo, Mary; Howard, Brian; Belliveau, Paul

    2018-06-01

    To review the literature regarding vancomycin pharmacokinetics in obese patients and strategies used to improve dosing in this population. PubMed, EMBASE (1974 to November 2017), and Google Scholar searches were conducted using the search terms vancomycin, obese, obesity, pharmacokinetics, strategy, and dosing. Additional articles were selected from reference lists of selected studies. Included articles were those published in English with a primary focus on vancomycin pharmacokinetic parameters in obese patients and practical vancomycin dosing strategies, clinical experiences, or challenges of dosing vancomycin in this population. Volume of distribution and clearance are the pharmacokinetic parameters that most often affect vancomycin dosing in obese patients; both are increased in this population. Challenges with dosing in obese patients include inconsistent and inadequate dosing, observations that the obese population may not be homogeneous, and reports of an increased likelihood of supratherapeutic trough concentrations. Investigators have revised and developed dosing and monitoring protocols to address these challenges. These approaches improved target trough attainment to varying degrees. Some of the vancomycin dosing approaches provided promising results in obese patients, but there were notable differences in methods used to develop these approaches, and sample sizes were small. Although some approaches can be considered for validation in individual institutions, further research is warranted. This may include validating approaches in larger populations with narrower obesity severity ranges, investigating target attainment in indication-specific target ranges, and evaluating the impact of different dosing weights and methods of creatinine clearance calculation.

  19. Determination of 210Po in leafy vegetables and annual effective dose assessment to the inhabitants of Mumbai city, India

    International Nuclear Information System (INIS)

    Dubey, J.S.; Sahoo, S.K.; Mohapatra, S.; Patra, A.C.; Lenka, P.; Ravi, P.M.; Tripathi, R.M.; Nair, A.

    2014-01-01

    Present study deals with the measurement of activity concentration of 210 Po in leafy vegetable of Mumbai city and corresponding ingestion dose assessment to the population. 210 Po activity levels ranged from 44.5-183.3 with an average value of 81.8 mBq/kg. Minimum activity of 210 Po was found in shepu and maximum in methi. The concentration reported here is slightly more than the UNSCEAR value. The estimated total effective dose was found to vary from 0.3 - 1.4 with an average value of 0.6 μSv/y, which is about 1% of global average total ingestion dose due to 210 Po. (author)

  20. Radiation dose in cardiac SPECT/CT: An estimation of SSDE and effective dose

    International Nuclear Information System (INIS)

    Abdollahi, Hamid; Shiri, Isaac; Salimi, Yazdan; Sarebani, Maghsoud; Mehdinia, Reza; Deevband, Mohammad Reza; Mahdavi, Seied Rabi; Sohrabi, Ahmad; Bitarafan-Rajabi, Ahmad

    2016-01-01

    Aims: The dose levels for Computed Tomography (CT) localization and attenuation correction of Single Photon Emission Computed Tomography (SPECT) are limited and reported as Volume Computed Tomography Dose Index (CTDIvol) and Dose-Length Product (DLP). This work presents CT dose estimation from Cardiac SPECT/CT based on new American Association of Physicists in Medicine (AAPM) Size Specific Dose Estimation (SSDE) parameter, effective dose, organ doses and also emission dose from nuclear issue. Material and methods: Myocardial perfusion SPECT/CT for 509 patients was included in the study. SSDE, effective dose and organ dose were calculated using AAPM guideline and Impact-Dose software. Data were analyzed using R and SPSS statistical software. Spearman-Pearson correlation test and linear regression models were used for finding correlations and relationships among parameters. Results: The mean CTDIvol was 1.34 mGy ± 0.19 and the mean SSDE was 1.7 mGy ± 0.16. The mean ± SD of effective dose from emission, CT and total dose were 11.5 ± 1.4, 0.49 ± 0.11 and 12.67 ± 1.73 (mSv) respectively. The mean ± SD of effective dose from emission, CT and total dose were 11.5 ± 1.4, 0.49 ± 0.11 and 12.67 ± 1.73 (mSv) respectively. The spearman test showed that correlation between body size and organ doses is significant except thyroid and red bone marrow. CTDIvol was strongly dependent on patient size, but SSDE was not. Emission dose was strongly dependent on patient weight, but its dependency was lower to effective diameter. Conclusion: The dose parameters including CTDIvol, DLP, SSDE, effective dose values reported here are very low and below the reference level. This data suggest that appropriate CT acquisition parameters in SPECT/CT localization and attenuation correction are very beneficial for patients and lowering cancer risks.

  1. Radiation dose in cardiac SPECT/CT: An estimation of SSDE and effective dose

    Energy Technology Data Exchange (ETDEWEB)

    Abdollahi, Hamid, E-mail: Hamid_rbp@yahoo.com [Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Shiri, Isaac [Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Salimi, Yazdan [Biomedical Engineering and Medical Physics Department, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of); Sarebani, Maghsoud; Mehdinia, Reza [Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Deevband, Mohammad Reza [Biomedical Engineering and Medical Physics Department, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of); Mahdavi, Seied Rabi [Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Radiation Biology Research Center, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Sohrabi, Ahmad [Department of Biostatistics, School of Public Health, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Bitarafan-Rajabi, Ahmad, E-mail: bitarafan@hotmail.com [Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Department of Nuclear Medicine, Rajaei Cardiovascular, Medical and Research Center, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2016-12-15

    Aims: The dose levels for Computed Tomography (CT) localization and attenuation correction of Single Photon Emission Computed Tomography (SPECT) are limited and reported as Volume Computed Tomography Dose Index (CTDIvol) and Dose-Length Product (DLP). This work presents CT dose estimation from Cardiac SPECT/CT based on new American Association of Physicists in Medicine (AAPM) Size Specific Dose Estimation (SSDE) parameter, effective dose, organ doses and also emission dose from nuclear issue. Material and methods: Myocardial perfusion SPECT/CT for 509 patients was included in the study. SSDE, effective dose and organ dose were calculated using AAPM guideline and Impact-Dose software. Data were analyzed using R and SPSS statistical software. Spearman-Pearson correlation test and linear regression models were used for finding correlations and relationships among parameters. Results: The mean CTDIvol was 1.34 mGy ± 0.19 and the mean SSDE was 1.7 mGy ± 0.16. The mean ± SD of effective dose from emission, CT and total dose were 11.5 ± 1.4, 0.49 ± 0.11 and 12.67 ± 1.73 (mSv) respectively. The mean ± SD of effective dose from emission, CT and total dose were 11.5 ± 1.4, 0.49 ± 0.11 and 12.67 ± 1.73 (mSv) respectively. The spearman test showed that correlation between body size and organ doses is significant except thyroid and red bone marrow. CTDIvol was strongly dependent on patient size, but SSDE was not. Emission dose was strongly dependent on patient weight, but its dependency was lower to effective diameter. Conclusion: The dose parameters including CTDIvol, DLP, SSDE, effective dose values reported here are very low and below the reference level. This data suggest that appropriate CT acquisition parameters in SPECT/CT localization and attenuation correction are very beneficial for patients and lowering cancer risks.

  2. Effects of proton radiation dose, dose rate and dose fractionation on hematopoietic cells in mice

    International Nuclear Information System (INIS)

    Ware, J.H.; Rusek, A.; Sanzari, J.; Avery, S.; Sayers, C.; Krigsfeld, G.; Nuth, M.; Wan, X.S.; Kennedy, A.R.

    2010-01-01

    The present study evaluated the acute effects of radiation dose, dose rate and fractionation as well as the energy of protons in hematopoietic cells of irradiated mice. The mice were irradiated with a single dose of 51.24 MeV protons at a dose of 2 Gy and a dose rate of 0.05-0.07 Gy/min or 1 GeV protons at doses of 0.1, 0.2, 0.5, 1, 1.5 and 2 Gy delivered in a single dose at dose rates of 0.05 or 0.5 Gy/min or in five daily dose fractions at a dose rate of 0.05 Gy/min. Sham-irradiated animals were used as controls. The results demonstrate a dose-dependent loss of white blood cells (WBCs) and lymphocytes by up to 61% and 72%, respectively, in mice irradiated with protons at doses up to 2 Gy. The results also demonstrate that the dose rate, fractionation pattern and energy of the proton radiation did not have significant effects on WBC and lymphocyte counts in the irradiated animals. These results suggest that the acute effects of proton radiation on WBC and lymphocyte counts are determined mainly by the radiation dose, with very little contribution from the dose rate (over the range of dose rates evaluated), fractionation and energy of the protons.

  3. Effects of proton radiation dose, dose rate and dose fractionation on hematopoietic cells in mice.

    Science.gov (United States)

    Ware, J H; Sanzari, J; Avery, S; Sayers, C; Krigsfeld, G; Nuth, M; Wan, X S; Rusek, A; Kennedy, A R

    2010-09-01

    The present study evaluated the acute effects of radiation dose, dose rate and fractionation as well as the energy of protons in hematopoietic cells of irradiated mice. The mice were irradiated with a single dose of 51.24 MeV protons at a dose of 2 Gy and a dose rate of 0.05-0.07 Gy/min or 1 GeV protons at doses of 0.1, 0.2, 0.5, 1, 1.5 and 2 Gy delivered in a single dose at dose rates of 0.05 or 0.5 Gy/min or in five daily dose fractions at a dose rate of 0.05 Gy/min. Sham-irradiated animals were used as controls. The results demonstrate a dose-dependent loss of white blood cells (WBCs) and lymphocytes by up to 61% and 72%, respectively, in mice irradiated with protons at doses up to 2 Gy. The results also demonstrate that the dose rate, fractionation pattern and energy of the proton radiation did not have significant effects on WBC and lymphocyte counts in the irradiated animals. These results suggest that the acute effects of proton radiation on WBC and lymphocyte counts are determined mainly by the radiation dose, with very little contribution from the dose rate (over the range of dose rates evaluated), fractionation and energy of the protons.

  4. Thyroid nodule prevalence and radiation dose from fallout near the Semipalatinsk test site in Kazakhstan

    International Nuclear Information System (INIS)

    Land, C.E.; Luckyanov, N.K.; Simon, S.L.; Zhumadilov, Z.; Gusev, B.I.; Hartshorne, M.N.; Carr, Z.A.

    2003-01-01

    Thyroid nodule prevalence was use as a biomarker for radiation-related thyroid cancer risk associated with dose from internal and external radiation sources in fallout from the Semipalatinsk Test Site (STS) in Kazakhstan. Ultrasound scans were done on the thyroid glands of 1990 current residents of 7 villages near the STS, all members of a defined study cohort established in the 1960s, and all juveniles at some time during 1949-1962. Questionnaire-guided interviews focused on residential history and childhood consumption of milk and milk products. A refined dose reconstruction algorithm, developed jointly by experts from Russia and the US, was applied to the resulting data to calculate individual estimates of thyroid dose from external and internal sources of fallout-related radiation. Individual radiation dose estimates ranged from zero to 20 Gy for total dose (0-1.7 Gy and 0-20 Gy for dose from external and internal sources, respectively). The ratio of internal to external dose generally increased with increasing distance, reflecting a shift towards smaller particle sizes at greater distances and more effective transfer of small particles through the foodchain. Dose-response analysis was focused on variation of nodule prevalence by sex, age at screening, measured thyroid volume, and reconstructed thyroid dose from external (mainly gamma-ray) and internal (mainly 131 I) radiation sources. Nodule prevalence was markedly higher among women and increased significantly with increasing age at screening and with thyroid volume. Highly significant dose responses were observed for nodule prevalence as a function of total thyroid dose and, in a separate analysis, of doses from internal and external sources as distinct independent variables; dose response was linear for total dose 131 I cf. x ray with respect to thyroid cancer as an endpoint, based on theoretical, experimental, and epidemiological data

  5. Dose assessment in pediatric computerized tomography

    International Nuclear Information System (INIS)

    Vilarinho, Luisa Maria Auredine Lima

    2004-01-01

    The objective of this work was the evaluation of radiation doses in paediatric computed tomography scans, considering the high doses usually involved and the absence of any previous evaluation in Brazil. Dose values were determined for skull and abdomen examinations, for different age ranges, by using the radiographic techniques routinely used in the clinical centers investigated. Measurements were done using pencil shape ionization chambers inserted in polymethylmethacrylate (PMMA) phantoms. These were compact phantoms of different diameters were specially designed and constructed for this work, which simulate different age ranges. Comparison of results with published values showed that doses were lower than the diagnostic reference levels established to adults exams by the European Commission. Nevertheless, doses in paediatric phantoms were higher than those obtained in adult phantoms. The paediatric dose values obtained in Hospitals A and B were lower than the reference level (DRL) adopted by SHIMPTON for different age ranges. In the range 0 - 0.5 year (neonatal), the values of DLP in Hospital B were 94 por cent superior to the DRL For the 10 years old children the values of CTDI w obtained were inferior in 89 por cent for skull and 83 por cent for abdomen examinations, compared to the values published by SHRIMPTON and WALL. Our measured CTDI w values were inferior to the values presented for SHRIMPTON and HUDA, for all the age ranges and types of examinations. It was observed that the normalized dose descriptors values in children in the neonatal range were always superior to the values of doses for the adult patient. In abdomen examinations, the difference was approximately 90% for the effective dose (E) and of 57%.for CTDI w . (author)

  6. Xerostomia after radiotherapy. What matters - mean total dose or dose to each parotid gland?

    International Nuclear Information System (INIS)

    Tribius, S.; Sommer, J.; Prosch, C.; Bajrovic, A.; Kruell, A.; Petersen, C.; Muenscher, A.; Blessmann, M.; Todorovic, M.; Tennstedt, P.

    2013-01-01

    Purpose: Xerostomia is a debilitating side effect of radiotherapy in patients with head and neck cancer. We undertook a prospective study of the effect on xerostomia and outcomes of sparing one or both parotid glands during radiotherapy for patients with squamous cell carcinoma of the head and neck. Methods and materials: Patients with locally advanced squamous cell carcinoma of the head and neck received definitive (70 Gy in 2 Gy fractions) or adjuvant (60-66 Gy in 2 Gy fractions) curative-intent radiotherapy using helical tomotherapy with concurrent chemotherapy if appropriate. Group A received < 26 Gy to the left and right parotids and group B received < 26 Gy to either parotid. Results: The study included 126 patients; 114 (55 in group A and 59 in group B) had follow-up data. There were no statistically significant differences between groups in disease stage. Xerostomia was significantly reduced in group A vs. group B (p = 0.0381). Patients in group A also had significantly less dysphagia. Relapse-free and overall survival were not compromised in group A: 2-year relapse-free survival was 86% vs. 72% in group B (p = 0.361); 2-year overall survival was 88% and 76%, respectively (p = 0.251). Conclusion: This analysis suggests that reducing radiotherapy doses to both parotid glands to < 26 Gy can reduce xerostomia and dysphagia significantly without compromising survival. Sparing both parotids while maintaining target volume coverage and clinical outcome should be the treatment goal and reporting radiotherapy doses delivered to the individual parotids should be standard practice. (orig.)

  7. Xerostomia after radiotherapy. What matters - mean total dose or dose to each parotid gland?

    Energy Technology Data Exchange (ETDEWEB)

    Tribius, S.; Sommer, J.; Prosch, C.; Bajrovic, A.; Kruell, A.; Petersen, C. [University Medical Center Hamburg-Eppendorf, Hamburg (Germany). Dept. of Radiation Oncology; Muenscher, A. [University Medical Center Hamburg-Eppendorf, Hamburg (Germany). Dept. of Otorhinolaryngology and Head and Neck Surgery; Blessmann, M. [University Medical Center Hamburg-Eppendorf, Hamburg (Germany). Dept. of Oral and Maxillofacial Surgery; Todorovic, M. [University Medical Center Hamburg-Eppendorf, Hamburg (Germany). Dept. of Medical Physics; Tennstedt, P. [University Medical Center Hamburg-Eppendorf, Hamburg (Germany). Martini-Clinic, Prostate Cancer Center

    2013-03-15

    Purpose: Xerostomia is a debilitating side effect of radiotherapy in patients with head and neck cancer. We undertook a prospective study of the effect on xerostomia and outcomes of sparing one or both parotid glands during radiotherapy for patients with squamous cell carcinoma of the head and neck. Methods and materials: Patients with locally advanced squamous cell carcinoma of the head and neck received definitive (70 Gy in 2 Gy fractions) or adjuvant (60-66 Gy in 2 Gy fractions) curative-intent radiotherapy using helical tomotherapy with concurrent chemotherapy if appropriate. Group A received < 26 Gy to the left and right parotids and group B received < 26 Gy to either parotid. Results: The study included 126 patients; 114 (55 in group A and 59 in group B) had follow-up data. There were no statistically significant differences between groups in disease stage. Xerostomia was significantly reduced in group A vs. group B (p = 0.0381). Patients in group A also had significantly less dysphagia. Relapse-free and overall survival were not compromised in group A: 2-year relapse-free survival was 86% vs. 72% in group B (p = 0.361); 2-year overall survival was 88% and 76%, respectively (p = 0.251). Conclusion: This analysis suggests that reducing radiotherapy doses to both parotid glands to < 26 Gy can reduce xerostomia and dysphagia significantly without compromising survival. Sparing both parotids while maintaining target volume coverage and clinical outcome should be the treatment goal and reporting radiotherapy doses delivered to the individual parotids should be standard practice. (orig.)

  8. Construction of radioelement and dose rate baseline maps by combining ground and airborne radiometric data

    International Nuclear Information System (INIS)

    Rybach, L.; Medici, F.; Schwarz, G.F.

    1997-01-01

    For emergency situations like nuclear accidents, lost isotopic sources, debris of reactor-powered satellites etc. well-documented baseline information is indispensable. Maps of cosmic, terrestrial natural and artificial radiation can be constructed by assembling different datasets such as ground and airborne gamma spectrometry, direct dose rate measurements, and soil/rock samples. The in situ measurements were calibrated using the soil samples taken at/around the field measurement sites, the airborne measurements by a combination of in situ, and soil/rock sample data. The radioelement concentrations (Bq/kg) were in turn converted to dose-rate (nSv/h). First, the cosmic radiation map was constructed from a digital terrain model, averaging topographic heights within cells of 2 km X 2 km size. For the terrestrial radiation a total of 1615 ground data points were available, in addition to the airborne data. The artificial radiation map (Chernobyl and earlier fallout) has the smallest data base (184 data points from airborne and ground measurements). The dose rate map was constructed by summing up the above-mentioned contributions. It relies on a data base which corresponds to a density of about 1 point per 25 km 2 . The cosmic radiation map shows elevated dose rates in the high parts of the Swiss Alps. The cosmic dose rate ranges from 40 to 190 nSv/h, depending on altitude. The terrestrial dose rate maps show general agreement with lithology: elevated dose rates (100 to 200 nSv/h) characterize the Central Massifs of the Alps where crystalline rocks give a maximum of 370 nSv/h, whereas the sedimentary northern Alpine Foreland (Jura, Molasse basin) shows consistently lower dose rates (40-100 nSv/h). The artificial radiation map has its maximum value in the southern part of Switzerland (90 nSv/h). The map of total dose rate exhibits values from 55 to 570 nSv/h. These values are considerably higher than reported in the Radiation Atlas (''Natural Sources of Ionising

  9. The Northern Marshall Islands Radiological Survey: data and dose assessments.

    Science.gov (United States)

    Robison, W L; Noshkin, V E; Conrado, C L; Eagle, R J; Brunk, J L; Jokela, T A; Mount, M E; Phillips, W A; Stoker, A C; Stuart, M L; Wong, K M

    1997-07-01

    Fallout from atmospheric nuclear tests, especially from those conducted at the Pacific Proving Grounds between 1946 and 1958, contaminated areas of the Northern Marshall Islands. A radiological survey at some Northern Marshall Islands was conducted from September through November 1978 to evaluate the extent of residual radioactive contamination. The atolls included in the Northern Marshall Islands Radiological Survey (NMIRS) were Likiep, Ailuk, Utirik, Wotho, Ujelang, Taka, Rongelap, Rongerik, Bikar, Ailinginae, and Mejit and Jemo Islands. The original test sites, Bikini and Enewetak Atolls, were also visited on the survey. An aerial survey was conducted to determine the external gamma exposure rate. Terrestrial (soil, food crops, animals, and native vegetation), cistern and well water samples, and marine (sediment, seawater, fish and clams) samples were collected to evaluate radionuclide concentrations in the atoll environment. Samples were processed and analyzed for 137Cs, 90Sr, 239+240Pu and 241Am. The dose from the ingestion pathway was calculated using the radionuclide concentration data and a diet model for local food, marine, and water consumption. The ingestion pathway contributes 70% to 90% of the estimated dose. Approximately 95% of the dose is from 137Cs. 90Sr is the second most significant radionuclide via ingestion. External gamma exposure from 137Cs accounts for about 10% to 30% of the dose. 239+240Pu and 241Am are the major contributors to dose via the inhalation pathway; however, inhalation accounts for only about 1% of the total estimated dose, based on surface soil levels and resuspension studies. All doses are computed for concentrations decay corrected to 1996. The maximum annual effective dose from manmade radionuclides at these atolls ranges from .02 mSv y(-1) to 2.1 mSv y(-1). The background dose in the Marshall Islands is estimated to be 2.4 mSv y(-1). The combined dose from both background and bomb related radionuclides ranges from slightly

  10. Estimation of Electron Dose Delivered by a 0.4 MeV Accelerator from Bremsstrahlung Dose Measurements

    DEFF Research Database (Denmark)

    Karadjov, A. G.; Hansen, Jørgen-Walther

    1980-01-01

    Determination of a 0.4 MeV electron dose from a bremsstrahlung dose measurement using a converter-detector system is considered. The detector used is a Frickle dosimeter, and the converters are aluminum, copper and lead foils. Optimal converter thickness is ascertained experimentally for each mat...... materials within a Z-range of 13–82. A linear relation is found between bremsstrahlung dose and electron dose ranging from 2 to 20 Mrad. Finally the effect of converter area on detector response is studied....

  11. The Northern Marshall Islands radiological survey: Data and dose assessments

    International Nuclear Information System (INIS)

    Robison, W.L.; Noshkin, V.E.; Conrado, C.L.

    1997-01-01

    Fallout from atmospheric nuclear tests, especially from those conducted at the Pacific Proving Grounds between 1946 and 1958, contaminated areas of the Northern Marshall Islands. A radiological survey at some Northern Marshall Islands was conducted from September through November 1978 to evaluate the extent of residual radioactive contamination. The atolls included in the Northern Marshall Islands Radiological Survey (NMIRS) were Likiep, Ailuk, Utirik, Wotho, Ujelang, Taka, Rongelap, Rongerik, Bikar, Ailinginae, and Mejit and Jemo Islands. The original test sites, Bikini and Enewetak Atolls, were also visited on the survey. An aerial survey was conducted to determine the external gamma exposure rate. Terrestrial (soil, food crops, animals, and native vegetation), cistern and well water samples, and marine (sediment, seawater, fish and clams) samples were collected to evaluate radionuclide concentrations in the atoll environment. Samples were processed and analyzed for 137 Cs, 90 Sr, 239+240 Pu and 241 Am. The dose from the ingestion pathway was calculated using the radionuclide concentration data and a diet model for local food, marine, and water consumption. The ingestion pathway contributes 70% to 90% of the estimated dose. Approximately 95% of the dose is from 137 Cs accounts for about 10% to 30% of the dose. 239+240 Pu and 241 Am are the major contributors to dose via the inhalation pathway; however, inhalation accounts for only about 1% of the total estimated dose, based on surface soil levels and resuspension studies. All doses are computed for concentrations decay corrected to 1996. The maximum annual effective dose from manmade radionuclides at these atolls ranges from .02 mSv y -1 . The background dose in the Marshall Islands is estimated to be 2.4 mSv y -1 to 4.5 mSv y -1 . The 50-y integral dose ranges from 0.5 to 65 mSv. 35 refs., 2 figs., 9 tabs

  12. Survey of dental radiographic equipment and radiation doses in Finland

    International Nuclear Information System (INIS)

    Havukainen, R.

    1988-01-01

    The radiation dose exposure, and the faults in about 1 700 dental units inspected at dental surgeries by the Finnish Centre for Radiation and Nuclear Safety in 1981-1985, were analysed. The mean value of skin doses in the bite-wing projection was about 6.2 mGy, the range 0.5 to 151 mGy. The mean energy imparted per bite-wing examination was estimated as 0.68 mJ and that per panoramic examination as 1.2 mJ. That gives a total imparted energy of about 600 J per year for conventional dental examinations and about 420 J per year for panoramic examinations. This gives a total of 0.13 mJ from conventional and 0.089 mJ from panoramic examinations per inhabitant per year. The collective effective dose equivalent was calculated as about 9 manSv for conventional dental examinations and about 6 manSv for panoramic examinations. Twenty per cent of units had some fault which was capable of decreasing radiation safety. Forty per cent of units were served reparation orders or other remarks were made in inspection documents. Large doses were usually accounted for by incorrect film processing and malfunction of the exposure timer. (orig.)

  13. Improvement of quality of radiation indicators used for food irradiation in dose range of 3-10 kGy

    International Nuclear Information System (INIS)

    Hoang Hoa Mai; Pham Duy Duong; Nguyen Dinh Duong

    2007-01-01

    A sensitive indicators based on the polyvinyl butyral dyed with leuco-malachite green and methyl orange were made for use as devices for discriminating and monitoring radiation treatment in food irradiation. The sensitivity and stability of the indicator have been improved by using several additives such as CCl 4 in combination with di(nonylphenyl) isophthalate [dinonyl phthalate -C 6 H 4 (COOC 9 H 19 ) 2 ]. The dosimeters change their color from orange to greenish when irradiated with gamma rays or electrons to dose just about 2 kGy. The greenish continue to develop to deep-green upon the increase of dose to 7 kGy. This makes the indicators useful for the dose range of food irradiation application, especially in treatment of frozen meat and sea products for elimination of micro-organism. The quality of indicators are also improved by adjusting of factors and procedures during preparation of film and dosimeters. The indicators were produced in a stick-on label type showing attractive characteristics in use. The orange color before irradiation keep well stable for as long as 20 months under normal conditions in laboratory. The green after irradiation was maintained up to 12 months in piratical conditions of products. The indicator can be produced in big amount to supply to the irradiation facilities in Vietnam instead of imported devices. (author)

  14. The effect of total body irradiation dose and chronic graft-versus-host disease on leukaemic relapse after allogeneic bone marrow transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Frassoni, F; Bacigalupo, A [Ospedale San Martino (Italy). Centro Trapianti Midollo Osseo; Scarpati, D [Univ. di Genova (Italy). Ist. di Radiologia; and others

    1989-10-01

    One-hundred and five patients undergoing allo-geneic bone marrow transplantation (BMT) for acute myeloid leukaemia (AML) (n=61) and chronic myeloid leukaemia (n=44) were analysed for risk factors associated with relapse. All patients received marrow from an HLA identical sibling after preparation with cyclophosphamide 120 mg/kg and total body irradiation (TBI) 330 cGy on each of the three days prior to transplantation. A multivariate Cox analysis indicated that a lower TBI dose (less than 990 cGy) was the most significant factor associated with relapse and the second most important factor associated with recurrence of leukaemia was the absence of chronic graft-versus-host-disease (cGvHD). Actuarial relapse incidence was 62%, 28% and 18% for patients with no, limited or extensive chronic GvHD respectively. However, chronic GvHD had no significant impact on survival. Combined stratification for TBI dose and cGvHD showed that the dose effect of TBI on relapse was evident both in patients with and without cGvHD. Chronic GvHD influenced the risk of relapse only in patients receiving less than 990 cGy. These results suggest that a higher dose of TBI, within this schedule, produced long-term disease-free survival in the majority of AMLs and CMLs. Minor radiobiological side effects were experienced, but a small reduction of the dose may significantly increase the risk of relapse. (author).

  15. The effect of total body irradiation dose and chronic graft-versus-host disease on leukaemic relapse after allogeneic bone marrow transplantation

    International Nuclear Information System (INIS)

    Frassoni, F.; Bacigalupo, A.; Scarpati, D.

    1989-01-01

    One-hundred and five patients undergoing allo-geneic bone marrow transplantation (BMT) for acute myeloid leukaemia (AML) (n=61) and chronic myeloid leukaemia (n=44) were analysed for risk factors associated with relapse. All patients received marrow from an HLA identical sibling after preparation with cyclophosphamide 120 mg/kg and total body irradiation (TBI) 330 cGy on each of the three days prior to transplantation. A multivariate Cox analysis indicated that a lower TBI dose (less than 990 cGy) was the most significant factor associated with relapse and the second most important factor associated with recurrence of leukaemia was the absence of chronic graft-versus-host-disease (cGvHD). Actuarial relapse incidence was 62%, 28% and 18% for patients with no, limited or extensive chronic GvHD respectively. However, chronic GvHD had no significant impact on survival. Combined stratification for TBI dose and cGvHD showed that the dose effect of TBI on relapse was evident both in patients with and without cGvHD. Chronic GvHD influenced the risk of relapse only in patients receiving less than 990 cGy. These results suggest that a higher dose of TBI, within this schedule, produced long-term disease-free survival in the majority of AMLs and CMLs. Minor radiobiological side effects were experienced, but a small reduction of the dose may significantly increase the risk of relapse. (author)

  16. The relationship between total cholinesterase activity and mortality in four butterfly species

    Science.gov (United States)

    Bargar, Timothy A.

    2012-01-01

    The relationship between total cholinesterase activity (TChE) and mortality in four butterfly species (great southern white [Ascia monuste], common buckeye [Junonia coenia], painted lady [Vanessa cardui], and julia butterflies [Dryas julia]) was investigated. Acute contact toxicity studies were conducted to evaluate the response (median lethal dose [LD50] and TChE) of the four species following exposure to the organophosphate insecticide naled. The LD50 for these butterflies ranged from 2.3 to 7.6 μg/g. The average level of TChE inhibition associated with significant mortality ranged from 26 to 67%, depending on the species. The lower bounds of normal TChE activity (2 standard deviations less than the average TChE for reference butterflies) ranged from 8.4 to 12.3 μM/min/g. As a percentage of the average reference TChE activity for the respective species, the lower bounds were similar to the inhibition levels associated with significant mortality, indicating there was little difference between the dose resulting in significant TChE inhibition and that resulting in mortality.

  17. Analgesic and sedative effects of perioperative gabapentin in total knee arthroplasty A randomized, double-blind, placebo-controlled, dose-finding study

    DEFF Research Database (Denmark)

    Lunn, Troels Haxholdt; Husted, Henrik; Laursen, Mogens Berg

    2015-01-01

    (1:1:1) to either gabapentin 1300 mg/d (group A), gabapentin 900 mg/d (group B), or placebo (group C) daily from 2 hours preoperatively to postoperative day 6 in addition to a standardized multimodal analgesic regime. The primary outcome was pain upon ambulation 24 hours after surgery......Gabapentin has shown acute postoperative analgesic effects, but the optimal dose and procedure-specific benefits vs harm have not been clarified. In this randomized, double-blind, placebo-controlled dose-finding study, 300 opioid-naive patients scheduled for total knee arthroplasty were randomized......, and the secondary outcome was sedation 6 hours after surgery. Other outcomes were overall pain during well-defined mobilizations and at rest and sedation during the first 48 hours and from days 2-6, morphine use, anxiety, depression, sleep quality, and nausea, vomiting, dizziness, concentration difficulty, headache...

  18. Development of Real-Time Measurement of Effective Dose for High Dose Rate Neutron Fields

    CERN Document Server

    Braby, L A; Reece, W D

    2003-01-01

    Studies of the effects of low doses of ionizing radiation require sources of radiation which are well characterized in terms of the dose and the quality of the radiation. One of the best measures of the quality of neutron irradiation is the dose mean lineal energy. At very low dose rates this can be determined by measuring individual energy deposition events, and calculating the dose mean of the event size. However, at the dose rates that are normally required for biology experiments, the individual events can not be separated by radiation detectors. However, the total energy deposited in a specified time interval can be measured. This total energy has a random variation which depends on the size of the individual events, so the dose mean lineal energy can be calculated from the variance of repeated measurements of the energy deposited in a fixed time. We have developed a specialized charge integration circuit for the measurement of the charge produced in a small ion chamber in typical neutron irradiation exp...

  19. Carbohydrate-to-insulin ratio is estimated from 300-400 divided by total daily insulin dose in type 1 diabetes patients who use the insulin pump.

    Science.gov (United States)

    Kuroda, Akio; Yasuda, Tetsuyuki; Takahara, Mitsuyoshi; Sakamoto, Fumie; Kasami, Ryuichi; Miyashita, Kazuyuki; Yoshida, Sumiko; Kondo, Eri; Aihara, Ken-ichi; Endo, Itsuro; Matsuoka, Taka-aki; Kaneto, Hideaki; Matsumoto, Toshio; Shimomura, Iichiro; Matsuhisa, Munehide

    2012-11-01

    To optimize insulin dose using insulin pump, basal and bolus insulin doses are widely calculated from total daily insulin dose (TDD). It is recommended that total daily basal insulin dose (TBD) is 50% of TDD and that the carbohydrate-to-insulin ratio (CIR) equals 500 divided by TDD. We recently reported that basal insulin requirement is approximately 30% of TDD. We therefore investigated CIR after adjustment of the proper basal insulin rate. Forty-five Japanese patients with type 1 diabetes were investigated during several weeks of hospitalization. The patients were served standard diabetes meals (25-30 kcal/kg of ideal body weight). Each meal omission was done to confirm basal insulin rate. Target blood glucose level was set at 100 and 150 mg/dL before and 2 h after each meal, respectively. After the basal insulin rate was fixed and target blood glucose levels were achieved, TBD, CIR, TDD, and their products were determined. Mean (±SD) blood glucose levels before and 2 h after meals were 121±47 and 150±61 mg/dL, respectively. TDD was 31.5±9.0 U, and TBD was 27.0±6.5% of TDD. CIR×TDD of breakfast was significantly lower than those of lunch and supper (288±73 vs. 408±92 and 387±83, respectively; Plunch and supper in type 1 diabetes patients. These results indicate that the insulin dose has been underestimated by using previously established calculations.

  20. Cardiac-Specific Conversion Factors to Estimate Radiation Effective Dose From Dose-Length Product in Computed Tomography.

    Science.gov (United States)

    Trattner, Sigal; Halliburton, Sandra; Thompson, Carla M; Xu, Yanping; Chelliah, Anjali; Jambawalikar, Sachin R; Peng, Boyu; Peters, M Robert; Jacobs, Jill E; Ghesani, Munir; Jang, James J; Al-Khalidi, Hussein; Einstein, Andrew J

    2018-01-01

    This study sought to determine updated conversion factors (k-factors) that would enable accurate estimation of radiation effective dose (ED) for coronary computed tomography angiography (CTA) and calcium scoring performed on 12 contemporary scanner models and current clinical cardiac protocols and to compare these methods to the standard chest k-factor of 0.014 mSv·mGy -1 cm -1 . Accurate estimation of ED from cardiac CT scans is essential to meaningfully compare the benefits and risks of different cardiac imaging strategies and optimize test and protocol selection. Presently, ED from cardiac CT is generally estimated by multiplying a scanner-reported parameter, the dose-length product, by a k-factor which was determined for noncardiac chest CT, using single-slice scanners and a superseded definition of ED. Metal-oxide-semiconductor field-effect transistor radiation detectors were positioned in organs of anthropomorphic phantoms, which were scanned using all cardiac protocols, 120 clinical protocols in total, on 12 CT scanners representing the spectrum of scanners from 5 manufacturers (GE, Hitachi, Philips, Siemens, Toshiba). Organ doses were determined for each protocol, and ED was calculated as defined in International Commission on Radiological Protection Publication 103. Effective doses and scanner-reported dose-length products were used to determine k-factors for each scanner model and protocol. k-Factors averaged 0.026 mSv·mGy -1 cm -1 (95% confidence interval: 0.0258 to 0.0266) and ranged between 0.020 and 0.035 mSv·mGy -1 cm -1 . The standard chest k-factor underestimates ED by an average of 46%, ranging from 30% to 60%, depending on scanner, mode, and tube potential. Factors were higher for prospective axial versus retrospective helical scan modes, calcium scoring versus coronary CTA, and higher (100 to 120 kV) versus lower (80 kV) tube potential and varied among scanner models (range of average k-factors: 0.0229 to 0.0277 mSv·mGy -1 cm -1 ). Cardiac k

  1. Low-Dose versus Standard-Dose Intravenous Immunoglobulin to Prevent Fetal Intracranial Hemorrhage in Fetal and Neonatal Alloimmune Thrombocytopenia: A Randomized Trial.

    Science.gov (United States)

    Paridaans, Noortje P; Kamphuis, Marije M; Taune Wikman, Agneta; Tiblad, Eleonor; Van den Akker, Eline S; Lopriore, Enrico; Challis, Daniel; Westgren, Magnus; Oepkes, Dick

    2015-01-01

    Pregnancies at risk of fetal and neonatal alloimmune thrombocytopenia (FNAIT) are commonly treated using weekly intravenous immunoglobulin (IVIG) at 1 g/kg maternal weight. IVIG is an expensive multidonor human blood product with dose-related side effects. Our aim was to evaluate the effectiveness of IVIG at a lower dose, i.e., 0.5 g/kg. This was a randomized controlled multicenter trial conducted in Sweden, the Netherlands and Australia. Pregnant women with human platelet antigen alloantibodies and an affected previous child without intracranial hemorrhage (ICH) were enrolled. The participants were randomized to IVIG at 0.5 or 1 g/kg per week. The analyses were per intention to treat. The primary outcome was fetal or neonatal ICH. Secondary outcomes were platelet count at birth, maternal and neonatal IgG levels, neonatal treatment and bleeding other than ICH. A total of 23 women were randomized into two groups (low dose: n = 12; standard dose: n = 11). The trial was stopped early due to poor recruitment. No ICH occurred. The median newborn platelet count was 81 × 10(9)/l (range 8-269) in the 0.5 g/kg group versus 110 × 10(9)/l (range 11-279) in the 1 g/kg group (p = 0.644). The risk of adverse outcomes in FNAIT pregnancies treated with IVIG at 0.5 g/kg is very low, similar to that using 1 g/kg, although our uncompleted trial lacked the power to conclusively prove the noninferiority of using the low dose.

  2. Total lymphoid irradiation

    International Nuclear Information System (INIS)

    Sutherland, D.E.; Ferguson, R.M.; Simmons, R.L.; Kim, T.H.; Slavin, S.; Najarian, J.S.

    1983-01-01

    Total lymphoid irradiation by itself can produce sufficient immunosuppression to prolong the survival of a variety of organ allografts in experimental animals. The degree of prolongation is dose-dependent and is limited by the toxicity that occurs with higher doses. Total lymphoid irradiation is more effective before transplantation than after, but when used after transplantation can be combined with pharmacologic immunosuppression to achieve a positive effect. In some animal models, total lymphoid irradiation induces an environment in which fully allogeneic bone marrow will engraft and induce permanent chimerism in the recipients who are then tolerant to organ allografts from the donor strain. If total lymphoid irradiation is ever to have clinical applicability on a large scale, it would seem that it would have to be under circumstances in which tolerance can be induced. However, in some animal models graft-versus-host disease occurs following bone marrow transplantation, and methods to obviate its occurrence probably will be needed if this approach is to be applied clinically. In recent years, patient and graft survival rates in renal allograft recipients treated with conventional immunosuppression have improved considerably, and thus the impetus to utilize total lymphoid irradiation for its immunosuppressive effect alone is less compelling. The future of total lymphoid irradiation probably lies in devising protocols in which maintenance immunosuppression can be eliminated, or nearly eliminated, altogether. Such protocols are effective in rodents. Whether they can be applied to clinical transplantation remains to be seen

  3. Simulation and measurement of total ionizing dose radiation induced image lag increase in pinned photodiode CMOS image sensors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jing [School of Materials Science and Engineering, Xiangtan University, Hunan (China); State Key Laboratory of Intense Pulsed Irradiation Simulation and Effect, Northwest Institute of Nuclear Technology, P.O.Box 69-10, Xi’an (China); Chen, Wei, E-mail: chenwei@nint.ac.cn [State Key Laboratory of Intense Pulsed Irradiation Simulation and Effect, Northwest Institute of Nuclear Technology, P.O.Box 69-10, Xi’an (China); Wang, Zujun, E-mail: wangzujun@nint.ac.cn [State Key Laboratory of Intense Pulsed Irradiation Simulation and Effect, Northwest Institute of Nuclear Technology, P.O.Box 69-10, Xi’an (China); Xue, Yuanyuan; Yao, Zhibin; He, Baoping; Ma, Wuying; Jin, Junshan; Sheng, Jiangkun; Dong, Guantao [State Key Laboratory of Intense Pulsed Irradiation Simulation and Effect, Northwest Institute of Nuclear Technology, P.O.Box 69-10, Xi’an (China)

    2017-06-01

    This paper presents an investigation of total ionizing dose (TID) induced image lag sources in pinned photodiodes (PPD) CMOS image sensors based on radiation experiments and TCAD simulation. The radiation experiments have been carried out at the Cobalt −60 gamma-ray source. The experimental results show the image lag degradation is more and more serious with increasing TID. Combining with the TCAD simulation results, we can confirm that the junction of PPD and transfer gate (TG) is an important region forming image lag during irradiation. These simulations demonstrate that TID can generate a potential pocket leading to incomplete transfer.

  4. Cancer risk estimates from radiation therapy for heterotopic ossification prophylaxis after total hip arthroplasty

    Energy Technology Data Exchange (ETDEWEB)

    Mazonakis, Michalis; Berris, Theoharris; Damilakis, John [Department of Medical Physics, Faculty of Medicine, University of Crete, P.O. Box 2208, 71003 Iraklion, Crete (Greece); Lyraraki, Efrossyni [Department of Radiotherapy and Oncology, University Hospital of Iraklion, 71110 Iraklion, Crete (Greece)

    2013-10-15

    Purpose: Heterotopic ossification (HO) is a frequent complication following total hip arthroplasty. This study was conducted to calculate the radiation dose to organs-at-risk and estimate the probability of cancer induction from radiotherapy for HO prophylaxis.Methods: Hip irradiation for HO with a 6 MV photon beam was simulated with the aid of a Monte Carlo model. A realistic humanoid phantom representing an average adult patient was implemented in Monte Carlo environment for dosimetric calculations. The average out-of-field radiation dose to stomach, liver, lung, prostate, bladder, thyroid, breast, uterus, and ovary was calculated. The organ-equivalent-dose to colon, that was partly included within the treatment field, was also determined. Organ dose calculations were carried out using three different field sizes. The dependence of organ doses upon the block insertion into primary beam for shielding colon and prosthesis was investigated. The lifetime attributable risk for cancer development was estimated using organ, age, and gender-specific risk coefficients.Results: For a typical target dose of 7 Gy, organ doses varied from 1.0 to 741.1 mGy by the field dimensions and organ location relative to the field edge. Blocked field irradiations resulted in a dose range of 1.4–146.3 mGy. The most probable detriment from open field treatment of male patients was colon cancer with a high risk of 564.3 × 10{sup −5} to 837.4 × 10{sup −5} depending upon the organ dose magnitude and the patient's age. The corresponding colon cancer risk for female patients was (372.2–541.0) × 10{sup −5}. The probability of bladder cancer development was more than 113.7 × 10{sup −5} and 110.3 × 10{sup −5} for males and females, respectively. The cancer risk range to other individual organs was reduced to (0.003–68.5) × 10{sup −5}.Conclusions: The risk for cancer induction from radiation therapy for HO prophylaxis after total hip arthroplasty varies considerably by

  5. Cancer risk estimates from radiation therapy for heterotopic ossification prophylaxis after total hip arthroplasty

    International Nuclear Information System (INIS)

    Mazonakis, Michalis; Berris, Theoharris; Damilakis, John; Lyraraki, Efrossyni

    2013-01-01

    Purpose: Heterotopic ossification (HO) is a frequent complication following total hip arthroplasty. This study was conducted to calculate the radiation dose to organs-at-risk and estimate the probability of cancer induction from radiotherapy for HO prophylaxis.Methods: Hip irradiation for HO with a 6 MV photon beam was simulated with the aid of a Monte Carlo model. A realistic humanoid phantom representing an average adult patient was implemented in Monte Carlo environment for dosimetric calculations. The average out-of-field radiation dose to stomach, liver, lung, prostate, bladder, thyroid, breast, uterus, and ovary was calculated. The organ-equivalent-dose to colon, that was partly included within the treatment field, was also determined. Organ dose calculations were carried out using three different field sizes. The dependence of organ doses upon the block insertion into primary beam for shielding colon and prosthesis was investigated. The lifetime attributable risk for cancer development was estimated using organ, age, and gender-specific risk coefficients.Results: For a typical target dose of 7 Gy, organ doses varied from 1.0 to 741.1 mGy by the field dimensions and organ location relative to the field edge. Blocked field irradiations resulted in a dose range of 1.4–146.3 mGy. The most probable detriment from open field treatment of male patients was colon cancer with a high risk of 564.3 × 10 −5 to 837.4 × 10 −5 depending upon the organ dose magnitude and the patient's age. The corresponding colon cancer risk for female patients was (372.2–541.0) × 10 −5 . The probability of bladder cancer development was more than 113.7 × 10 −5 and 110.3 × 10 −5 for males and females, respectively. The cancer risk range to other individual organs was reduced to (0.003–68.5) × 10 −5 .Conclusions: The risk for cancer induction from radiation therapy for HO prophylaxis after total hip arthroplasty varies considerably by the treatment parameters, organ

  6. A method for total body irradiation

    International Nuclear Information System (INIS)

    Yasukochi, Hiroshi; Higashi, Shizuka; Okuhata, Yoshitaka; Lee, Keiichi; Ishioka, Kuniaki; Murakami, Koji; Nagai, Jun; Kuniyasu, Yoshio

    1988-01-01

    In these two years, we have treated four infant patients of acute leukemia by Cobalt-60 total body irradiation and bone marrow transplantation. During total body irradiation, thermoluminescence dosimeters were attached to the skin of patients. For four patients, nine dosimetries were performed. Reliability of this method was examined by phantom experiment. Every irradiation for the patient per fraction was 2.4 Gy, that is, 60 cGy for each four positions, right decubitus A-P and PA directions and left decubitus A-P and PA directions under aseptic circumstances. Radiation dose was uniform by this technique for each patient, and average determined dose for surface of the patients was between 87 % and 106 % compared with the air dose of the center of aseptic space (wagon). As the result, we suggest that this method is suitable for the total body irradiation of acute leukemia of infant. (author)

  7. Patterns of patient specific dosimetry in total body irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Akino, Yuichi [Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202 (United States); Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871 (Japan); McMullen, Kevin P.; Das, Indra J. [Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202 (United States)

    2013-04-15

    Purpose: Total body irradiation (TBI) has been used for bone marrow transplant for hematologic and immune deficiency conditions. The goal of TBI is to deliver a homogeneous dose to the entire body, with a generally accepted range of dose uniformity being within {+-}10% of the prescribed dose. The moving table technique for TBI could make dose uniform in whole body by adjusting couch speed. However, it is difficult to accurately estimate the actual dose by calculation and hence in vivo dosimetry (IVD) is routinely performed. Here, the authors present patterns of patient-specific IVD in 161 TBI patients treated at our institution. Methods: Cobalt-60 teletherapy unit (Model C9 Cobalt-60 teletherapy unit, Picker X-ray Corporation) with customized moving bed (SITI Industrial Products, Inc., Fishers, IN) were used for TBI treatment. During treatment, OneDose{sup TM} (Sicel Technology, NC) Metal Oxide-silicon Semiconductor Field Effect Transistor detectors were placed at patient body surface; both entrance and exit side of the beam at patient head, neck, mediastinum, umbilicus, and knee to estimate midplane dose. When large differences (>10%) between the prescribed and measured dose were observed, dose delivery was corrected for subsequent fractions by the adjustment of couch speed and/or bolus placement. Under IRB exempt status, the authors retrospectively analyzed the treatment records of 161 patients who received TBI treatment between 2006 and 2011. Results: Across the entire cohort, the median {+-} SD (range) percent variance between calculated and measured dose for head, neck, mediastinum, umbilicus, and knee was -2.3 {+-} 10.2% (-66.2 to +35.3), 1.1 {+-} 11.5% (-62.2 to +40.3), -1.9 {+-} 9.5% (-66.4 to +46.6), -1.1 {+-} 7.2% (-35.2 to +42.9), and 3.4 {+-} 12.2% (-47.9 to +108.5), respectively. More than half of treatments were within {+-}10% of the prescribed dose for all anatomical regions. For 80% of treatments (10%-90%), dose at the umbilicus was within {+-}10

  8. Level and distribution of the radiation dose to the population from a mammography screening programme in New Zealand

    Energy Technology Data Exchange (ETDEWEB)

    Bulling, S.M.; Nicoll, J.J. [Otago Univ., Dunedin (New Zealand). Dept. of Physics

    1995-12-31

    The Otago Southland Breast Screening Programme offers biennial mammography to 19,000 eligible women on the South Island of New Zealand. A Quality Assurance programme ensures that international performance standards are met, in particular the radiation dose for a mammogram of 5 cm CIRS-X phantom is 1.7 mGy and careful retake analysis undertaken. This however does not reveal the absorbed dose received by individuals, nor how this varies between individuals. Machine parameters and compressed breast thickness for each film were recorded for 310 women who attended one centre during the three months ending February 1993 and absorbed doses calculated using Monte Carlo data. The mean compressed breast thickness for the 310 women was 4.9 cm, doses received for individual films ranged from 0.7 to 8.5 mGy while patient total doses were in the range 4 to 29 mGy with 75% of women receiving a dose of 7.1 mGy or less. (Author).

  9. Chest X ray effective doses estimation in computed radiography

    International Nuclear Information System (INIS)

    Abdalla, Esra Abdalrhman Dfaalla

    2013-06-01

    Conventional chest radiography is technically difficult because of wide in tissue attenuations in the chest and limitations of screen-film systems. Computed radiography (CR) offers a different approach utilizing a photostimulable phosphor. photostimulable phosphors overcome some image quality limitations of chest imaging. The objective of this study was to estimate the effective dose in computed radiography at three hospitals in Khartoum. This study has been conducted in radiography departments in three centres Advanced Diagnostic Center, Nilain Diagnostic Center, Modern Diagnostic Center. The entrance surface dose (ESD) measurement was conducted for quality control of x-ray machines and survey of operators experimental techniques. The ESDs were measured by UNFORS dosimeter and mathematical equations to estimate patient doses during chest X rays. A total of 120 patients were examined in three centres, among them 62 were males and 58 were females. The overall mean and range of patient dosed was 0.073±0.037 (0.014-0.16) mGy per procedure while the effective dose was 3.4±01.7 (0.6-7.0) mSv per procedure. This study compared radiation doses to patients radiographic examinations of chest using computed radiology. The radiation dose was measured in three centres in Khartoum- Sudan. The results of the measured effective dose showed that the dose in chest radiography was lower in computed radiography compared to previous studies.(Author)

  10. The determination of patient dose from 18F-FDG PET/CT examination

    International Nuclear Information System (INIS)

    Khamwan, K.; Krisanachinda, A.; Pasawang, P.

    2010-01-01

    The use of positron emission tomography/computed tomography (PET/CT) system has heightened the need for medical diagnosis. However, the patient dose is increasing in comparison to whole-body PET/CT dose. The aim of this study is to determine the patient effective dose in 35 oncology Thai patients with the age range of 28-60 y from PET scan using [fluorine-18]-fluoro-2-deoxy-D-glucose and from CT scan. Cumulated activity and residence time of various organs were calculated from time-activity curves by using S-value based on the body mass. Mean organ absorbed dose and the effective dose from CT scan were calculated using the Medical Internal Radiation Dosimetry method and Monte Carlo simulation, respectively. The average whole-body effective doses from PET and CT were 4.40 ± 0.61 and 14.45 ± 2.82 mSv, respectively, resulting in the total patient dose of 18.85 mSv. This can be used as the reference dose in Thai patients. (authors)

  11. Late biological effects of ionizing radiation as influenced by dose, dose rate, age at exposure and genetic sensitivity to neoplastic transformation

    International Nuclear Information System (INIS)

    Spalding, J.F.; Prine, J.R.; Tietjen, G.L.

    1978-01-01

    A most comprehensive investigation is in progress at the Los Alamos Scientific Laboratory to study the late biological effects of whole-body exposure to gamma irradiation as they may be influenced by total dose, dose rate, age at exposure and genetic background. Strain C57B1/6J mice of four age groups (newborn, 2, 6 and l5 months) were given five doses (20, 60, 180, 540, and 1620 rads) of gamma rays, with each dose being delivered at six dose rates (0.7, 2.1, 6.3, 18.9, 56.7 rads/day and 25 rads/min). Forty to sixty mice were used in each of the approximately 119 dose/dose-rate and age combinations. The study was done in two replications with an equal number of mice per replicaton. Strain RF/J mice were used in a companion study to investigate the influence of genetic background on the type and magnitude of effect. Results of the first and second replications of the l5-month-old age group and data on the influence of genetic background on biological response have been completed, and the results show no significant life shortening within the dose and dose-rate range used. It was also concluded that radiaton-induced neoplastic transformaton was significantly greater in mice with a known genetic sensitivity to neoplastic disease than in mammals which do not normally have a significant incidence of tumours. (author)

  12. Serum total homocystein, folate and vitamin B12 levels and their correlation with antipsychotic drug doses in adult male patients with chronic schizophrenia.

    Science.gov (United States)

    Eren, Esin; Yeğin, Ayşenur; Yilmaz, Necat; Herken, Hasan

    2010-01-01

    Elevated blood levels of homocysteine (hCY) have been associated with schizophrenic male patients. However, controversy remains regarding the association between lowered plasma folate and vitamin B12, hyperhomocysteinemia, and schizophrenia. Sixty-six (66) male patients with chronic schizophrenia were investigated to test the hypotheses that alterations in Hcy, folate, and vitamin B12 levels might be related to the antipsychotic drug doses used in treatment. Serum total homocysteine, folic acid, and vitamin B12 levels were determined by chemiluminescence methods in both patients and control subjects. The patients were grouped according to the antipsychotic drug doses used in their treatment. Patients had higher homocysteine levels but they did not differ from controls in terms of folate and vitamin B12 levels. On the other hand, only folate levels were negatively correlated in the patient group treated with higher therapeutic doses of chlorpromazine equivalents (> 400 mg/day) compared to the patient group with lower doses (< 400 mg/day). Our findings show that higher typical antipsychotic drugs may play a role as modifiying factor for folate metabolism in chronic schizoprenic male patients.

  13. A methodology for the evaluation of collective doses arising from radioactive discharges to the atmosphere

    International Nuclear Information System (INIS)

    Hallam, J.; Linsley, G.S.

    1980-01-01

    The ICRP recommend the use of optimisation as a means of ensuring that the total detriment from any practice is appropriately small in relation to the benefit resulting from its introduction. The calculation of total health detriment requires the evaluation of the complete dose distribution throughout the irradiated population from all isotopes via all pathways. This paper describes methods for the evaluation of collective dose, which may be used in the assessment of detriment. The stages in the assessment of collective dose from an atmospheric release can be summarised as follows: (1) An atmospheric dispersion model is used to evaluate the spatial distribution of activity and thereby the dose to an individual from inhalation and external irradiation at any position with respect to the discharge point. (2) The UK population distribution on a 1 x 1 km grid is then used for the evaluation of collective dose from these pathways. (3) Foodchain models are used to estimate the radioactivity per unit mass in a range of different foodstuffs per unit deposition rate or surface deposit. (4) The distribution of agricultural practices in the UK on a 5 x 5 km grid, taken together with the atmospheric dispersion model allows the estimation of the total activity reaching man via food, and hence the collective dose. This combination of models and data arrays allows assessments to be made of the collective dose due to atmospheric releases of radioactive materials at any geographical location in the United Kingdom. (author)

  14. Total-dose radiation-induced degradation of thin film ferroelectric capacitors

    International Nuclear Information System (INIS)

    Schwank, J.R.; Nasby, R.D.; Miller, S.L.; Rodgers, M.S.; Dressendorfer, P.V.

    1990-01-01

    Thin film PbZr y Ti 1-y O 3 (PZT) ferroelectric memories offer the potential for radiation-hardened, high-speed nonvolatile memories with good retention and fatigue properties. In this paper we explore in detail the radiation hardness of PZT ferroelectric capacitors. Ferroelectric capacitors were irradiated using x-ray and Co-60 sources to dose levels up to 16 Mrad(Si). The capacitors were characterized for their memory properties both before and after irradiation. The radiation hardness was process dependent. Three out of four processes resulted in capacitors that showed less than 30% radiation-induced degradation in retained polarization charge and remanent polarization after irradiating to 16 Mrad(Si). On the other hand, one of the processes showed significant radiation-induced degradation in retained polarization charge and remanent polarization at dose levels above 1 Mrad(Si). The decrease in retained polarization charge appears to be due to an alteration of the switching characteristics of the ferroelectric due to changes in the internal fields. The radiation-induced degradation is recoverable by a postirradiation biased anneal and can be prevented entirely if devices are cycled during irradiation. The authors have developed a model to simulate the observed degradation

  15. The evaluation of dose of TSEI with TLD and diode detector of the uterine cervix cancer

    International Nuclear Information System (INIS)

    Je, Young Wan; Na, Keyung Su; Yoon, Il Kyu; Park, Heung Deuk

    2005-01-01

    To evaluate radiation dose and accuracy with TLD and diode detector when treat total skin with electron beam. Using Stanford Technique, we treated patient with Mycosis Fungoides. 6 MeV electron beam of LINAC was used and the SSD was 300 cm. Also, acrylic speller(0.8 cm) was used. The patient position was 6 types and the gantry angle was 64, 90 and 116 degree. The patient's skin dose and the output were detected 5 to 6 times with TLD and diode. The deviations of dose detected with TLD from tumor dose were CA + 6%, thigh + 8%, umbilicus + 4%, calf - 8%, vertex - 74.4%, deep axillae - 10.2%, anus and testis - 87%, sole - 86% and nails shielded with 4 mm lead + 4%. The deviations of dose detected with diode were - 4.5% ∼ + 5% at the patient center and - 1.1% ∼ + 1% at the speller. The deviation of total skin dose was + 8% ∼ - 8% and that deviation was within the acceptable range(±10%). The boost dose was irradiated for the low dose areas(vertex, anus, sole). The electron beam output detected at the sootier was stable. It is thought that the deviation of dose at patient center detected with diode was induced by detection point and patient position.

  16. Impact of obesity on the pharmacokinetics of levonorgestrel-based emergency contraception: single and double dosing.

    Science.gov (United States)

    Edelman, Alison B; Cherala, Ganesh; Blue, Steven W; Erikson, David W; Jensen, Jeffrey T

    2016-07-01

    To determine if differences exist in the pharmacokinetics (PK) of levonorgestrel-based emergency contraception (LNG-EC) in obese and normal body mass index (BMI) users and test whether doubling the dose of LNG-EC in obese women increases total and free (active) LNG serum concentrations. Healthy, reproductive-age women with obese and normal BMIs received 1.5mg LNG orally (ECx1) and then in a subsequent menstrual cycle, the obese group also received 3mg LNG (ECx2). Dosing occurred during the follicular phase. Total and free LNG PK parameters were obtained via serum samples through an indwelling catheter at 0, 0.5, 1, 1.5, 2, and 2.5h. The primary outcome was the difference in total and free LNG concentration maximum (Cmax) between ECx1 and ECx2 in the obese group. A total of 10 women enrolled and completed the study (normal BMI=5, median 22.8kg/m(2), range 20.8-23.7; obese BMI=5, 39.5kg/m(2), range 35.9-46.7). The total LNG Cmax for obese subjects following ECx1 (5.57±2.48ng/mL) was significantly lower than the level observed in normal BMI women (10.30±2.47, p=.027). Notably, ECx2 increased the Cmax significantly (10.52±2.76, p=.002); approximating the level in normal BMI subjects receiving ECx1. Free LNG Cmax followed a similar pattern. Obesity adversely impacts both the total and free Cmax levels of LNG EC and this likely explains its lack of efficacy in obese women. Doubling the dose appears to correct the obesity-related PK changes but additional research is needed to determine if this also improves EC effectiveness in obese women. This study demonstrates that obesity interferes with the pharmacokinetics of LNG EC, and that doubling the dose may be an effective strategy to improve its efficacy in obese women. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Analysis of functional failure mode of commercial deep sub-micron SRAM induced by total dose irradiation

    International Nuclear Information System (INIS)

    Zheng Qi-Wen; Cui Jiang-Wei; Zhou Hang; Yu De-Zhao; Yu Xue-Feng; Lu Wu; Guo Qi; Ren Di-Yuan

    2015-01-01

    Functional failure mode of commercial deep sub-micron static random access memory (SRAM) induced by total dose irradiation is experimentally analyzed and verified by circuit simulation. We extensively characterize the functional failure mode of the device by testing its electrical parameters and function with test patterns covering different functional failure modes. Experimental results reveal that the functional failure mode of the device is a temporary function interruption caused by peripheral circuits being sensitive to the standby current rising. By including radiation-induced threshold shift and off-state leakage current in memory cell transistors, we simulate the influence of radiation on the functionality of the memory cell. Simulation results reveal that the memory cell is tolerant to irradiation due to its high stability, which agrees with our experimental result. (paper)

  18. Cancer risk of low dose/low dose rate radiation: a meta-analysis of cancer data of mammals exposed to low doses of radiation

    International Nuclear Information System (INIS)

    Ogata, Hiromitsu; Magae, Junji

    2008-01-01

    Full text: Linear No Threshold (LNT) model is a basic theory for radioprotection, but the adaptability of this hypothesis to biological responses at low doses or at low dose rates is not sufficiently investigated. Simultaneous consideration of the cumulative dose and the dose rate is necessary for evaluating the risk of long-term exposure to ionizing radiation at low dose. This study intends to examine several numerical relationships between doses and dose rates in biological responses to gamma radiation. Collected datasets on the relationship between dose and the incidence of cancer in mammals exposed to low doses of radiation were analysed using meta-regression models and modified exponential (MOE) model, which we previously published, that predicts irradiation time-dependent biological response at low dose rate ionizing radiation. Minimum doses of observable risk and effective doses with a variety of dose rates were calculated using parameters estimated by fitting meta-regression models to the data and compared them with other statistical models that find values corresponding to 'threshold limits'. By fitting a weighted regression model (fixed-effects meta-regression model) to the data on risk of all cancers, it was found that the log relative risk [log(RR)] increased as the total exposure dose increased. The intersection of this regression line with the x-axis denotes the minimum dose of observable risk. These estimated minimum doses and effective doses increased with decrease of dose rate. The goodness of fits of MOE-model depended on cancer types, but the total cancer risk is reduced when dose rates are very low. The results suggest that dose response curve for cancer risk is remarkably affected by dose rate and that dose rate effect changes as a function of dose rate. For scientific discussion on the low dose exposure risk and its uncertainty, the term 'threshold' should be statistically defined, and dose rate effects should be included in the risk

  19. Prediction of total dose effects on sub-micron process metal oxide semiconductor devices

    International Nuclear Information System (INIS)

    Kamimura, Hiroshi; Kato, Masataka.

    1991-01-01

    A method for correcting leakage currents is described to predict the radiation-induced threshold voltage shift of sub-micron MOSFETs. A practical model for predicting the leakage current generated by irradiation is also given on the basis of experimental results on 0.8-μm process MOSFETs. The constants in the threshold voltage shift model are determined from the 'true' I-V characteristic of the MOSFET, which is obtained by correction of leakage currents due to characteristic change of a parasitic transistor. In this way, the threshold voltage shift of the n-channel MOSFET irradiated at a low dose rate of 2 Gy(Si)/h was also calculated by using data from a high dose rate irradiation experiment (100 Gy(Si)/h, 5 h). The calculated result well represented the tendency of measured data on threshold voltage shift. The radiation-induced leakage current was considered to decay approximately in two exponential modes. The constants in this leakage current model were determined from the above high dose rate experiment. The response of leakage current predicted at a low dose rate of 2 Gy(Si)/h approximately agreed with that measured during and after irradiation. (author)

  20. Comparison of radiation absorbed dose in target organs in maxillofacial imaging with panoramic, conventional linear tomography, cone beam computed tomography and computed tomography

    Directory of Open Access Journals (Sweden)

    Panjnoush M.

    2009-12-01

    Full Text Available "nBackground and Aim: The objective of this study was to measure and compare the tissue absorbed dose in thyroid gland, salivary glands, eye and skin in maxillofacial imaging with panoramic, conventional linear tomography, cone beam computed tomography (CBCT and computed tomography (CT."nMaterials and Methods: Thermoluminescent dosimeters (TLD were implanted in 14 sites of RANDO phantom to measure average tissue absorbed dose in thyroid gland, parotid glands, submandibular glands, sublingual gland, lenses and buccal skin. The Promax (PLANMECA, Helsinki, Finland unit was selected for Panoramic, conventional linear tomography and cone beam computed tomography examinations and spiral Hispeed/Fxi (General Electric,USA was selected for CT examination. The average tissue absorbed doses were used for the calculation of the equivalent and effective doses in each organ."nResults: The average absorbed dose for Panoramic ranged from 0.038 mGY (Buccal skin to 0.308 mGY (submandibular gland, linear tomography ranged from 0.048 mGY (Lens to 0.510 mGY (submandibular gland,CBCT ranged from 0.322 mGY (thyroid glad to 1.144 mGY (Parotid gland and in CT ranged from 2.495 mGY (sublingual gland to 3.424 mGY (submandibular gland. Total effective dose in CBCT is 5 times greater than Panoramic and 4 times greater than linear tomography, and in CT, 30 and 22 times greater than Panoramic and linear tomography, respectively. Total effective dose in CT is 6 times greater than CBCT."nConclusion: For obtaining 3-dimensional (3D information in maxillofacial region, CBCT delivers the lower dose than CT, and should be preferred over a medical CT imaging. Furthermore, during maxillofacial imaging, salivary glands receive the highest dose of radiation.