WorldWideScience

Sample records for total dose gamma

  1. Airborne and total gamma absorbed dose rates at Patiala - India

    International Nuclear Information System (INIS)

    Tesfaye, Tilahun; Sahota, H.S.; Singh, K.

    1999-01-01

    The external gamma absorbed dose rate due to gamma rays originating from gamma emitting aerosols in air, is compared with the total external gamma absorbed dose rate at the Physics Department of Punjabi University, Patiala. It has been found out that the contribution, to the total external gamma absorbed dose rate, of radionuclides on particulate matter suspended in air is about 20% of the overall gamma absorbed dose rate. (author)

  2. Dose calculation method with 60-cobalt gamma rays in total body irradiation

    International Nuclear Information System (INIS)

    Scaff, Luiz Alberto Malaguti

    2001-01-01

    Physical factors associated to total body irradiation using 60 Co gamma rays beams, were studied in order to develop a calculation method of the dose distribution that could be reproduced in any radiotherapy center with good precision. The method is based on considering total body irradiation as a large and irregular field with heterogeneities. To calculate doses, or doses rates, of each area of interest (head, thorax, thigh, etc.), scattered radiation is determined. It was observed that if dismagnified fields were considered to calculate the scattered radiation, the resulting values could be applied on a projection to the real size to obtain the values for dose rate calculations. In a parallel work it was determined the variation of the dose rate in the air, for the distance of treatment, and for points out of the central axis. This confirm that the use of the inverse square law is not valid. An attenuation curve for a broad beam was also determined in order to allow the use of absorbers. In this work all the adapted formulas for dose rate calculations in several areas of the body are described, as well time/dose templates sheets for total body irradiation. The in vivo dosimetry, proved that either experimental or calculated dose rate values (achieved by the proposed method), did not have significant discrepancies. (author)

  3. Low Dose Gamma Irradiation Does Not Affect the Quality or Total Ascorbic Acid Concentration of "Sweetheart" Passionfruit (Passiflora edulis).

    Science.gov (United States)

    Golding, John B; Blades, Barbara L; Satyan, Shashirekha; Spohr, Lorraine J; Harris, Anne; Jessup, Andrew J; Archer, John R; Davies, Justin B; Banos, Connie

    2015-08-26

    Passionfruit ( Passiflora edulis , Sims, cultivar "Sweetheart") were subject to gamma irradiation at levels suitable for phytosanitary purposes (0, 150, 400 and 1000 Gy) then stored at 8 °C and assessed for fruit quality and total ascorbic acid concentration after one and fourteen days. Irradiation at any dose (≤1000 Gy) did not affect passionfruit quality (overall fruit quality, colour, firmness, fruit shrivel, stem condition, weight loss, total soluble solids level (TSS), titratable acidity (TA) level, TSS/TA ratio, juice pH and rot development), nor the total ascorbic acid concentration. The length of time in storage affected some fruit quality parameters and total ascorbic acid concentration, with longer storage periods resulting in lower quality fruit and lower total ascorbic acid concentration, irrespective of irradiation. There was no interaction between irradiation treatment and storage time, indicating that irradiation did not influence the effect of storage on passionfruit quality. The results showed that the application of 150, 400 and 1000 Gy gamma irradiation to "Sweetheart" purple passionfruit did not produce any deleterious effects on fruit quality or total ascorbic acid concentration during cold storage, thus supporting the use of low dose irradiation as a phytosanitary treatment against quarantine pests in purple passionfruit.

  4. Concentration of total proteins in blood plasma of chickens hatched from irradiated eggs with low dose gamma radiation

    International Nuclear Information System (INIS)

    Vilic, M.; Kraljevic, P.; Miljanic, S.; Simpraga, M.

    2005-01-01

    It is known that low-dose ionising radiation may have stimulating effects on chickens. Low doses may also cause changes in the concentration of blood plasma total proteins, glucose and cholesterol in chickens. This study investigates the effects of low dose gamma-radiation on the concentration of total proteins in the blood plasma of chickens hatched from eggs irradiated with a dose of 0.15 Gy on incubation days 7 and 19. Results were compared with the control group (chickens hatched from non-irradiated eggs). After hatching, all other conditions were the same for both groups. Blood samples were drawn from the heart, and later from the wing vein on days 1, 3, 5, 7,10, 20, 30 and 42. The concentration of total proteins was determined spectrophotometrically using Boehringer Mannheim GmbH optimised kits. The concentration of total proteins in blood plasma in chickens hatched from eggs irradiated with 0.15 Gy on incubation day 7 showed a statistically significant decrease on the sampling day 3 (P less than 0.05) and 7 (P less than 0.01). The concentration of total proteins in blood plasma in chickens hatched from eggs irradiated with 0.15 Gy on incubation day 19 showed a statistically significant increase only on sampling day 1 (P less than 0.05). These results suggest that exposure of eggs to 0.15 Gy of gamma-radiation on the 7th and 19th day of incubation could produce different effects on the protein metabolism in chickens.(author)

  5. Total dose meter development

    International Nuclear Information System (INIS)

    Brackenbush, L.W.

    1986-09-01

    This report describes an alarming ''pocket'' monitor/dosimeter, based on a tissue-equivalent proportional counter, that measure both neutron and gamma dose and determines dose equivalent for the mixed radiation field. This report details the operation of the device and provides information on: the necessity for a device to measure dose equivalent in mixed radiation fields; the mathematical theory required to determine dose equivalent from tissue equivalent proportional; the detailed electronic circuits required; the algorithms required in the microprocessor used to calculate dose equivalent; the features of the instrument; program accomplishments and future plans

  6. Total integrated dose testing of solid-state scientific CD4011, CD4013, and CD4060 devices by irradiation with CO-60 gamma rays

    Science.gov (United States)

    Dantas, A. R. V.; Gauthier, M. K.; Coss, J. R.

    1985-01-01

    The total integrated dose response of three CMOS devices manufactured by Solid State Scientific has been measured using CO-60 gamma rays. Key parameter measurements were made and compared for each device type. The data show that the CD4011, CD4013, and CD4060 produced by this manufacturers should not be used in any environments where radiation levels might exceed 1,000 rad(Si).

  7. TLD-300 detectors for separate measurement of total and gamma absorbed dose distributions of single, multiple, and moving-field neutron treatments

    International Nuclear Information System (INIS)

    Rassow, J.

    1984-01-01

    Fast neutron therapy requirements, because of the poor depth dose characteristic of present therapeutical sources, are at least as complex in treatment plans as photon therapy. The physical part of the treatment planning is very important; however, it is much more complicated than for photons or electrons owing to the need for: Separation of total and gamma absorbed dose distributions (Dsub(T) and Dsub(G)); and more stringent tissue-equivalence conditions of phantoms than in photon therapy. Therefore, methods of clinical dosimetry for the separate determination of total and gamma absorbed dose distributions in irregularly shaped (inhomogeneous) phantoms are needed. A method using TLD-300 (CaF 2 :Tm) detectors is described, which is able to give an approximate solution of the above-mentioned dosimetric requirements. The two independent doses, Dsub(T) and Dsub(G), can be calculated by an on-line computer analysis of the digitalized glow curve of TLD-300 detectors, irradiated with d(14)+Be neutrons of the cyclotron isocentric neutron therapy facility CIRCE in Essen. Results are presented for depth and lateral absorbed dose distributions (Dsub(T) and Dsub(G)) for fixed neutron beams of different field sizes compared with measurements by standard procedures (TE-TE ionization chamber, GM counter) in an A-150 phantom. The TLD-300 results for multiple and moving-field treatments (with and without wedge filters) in a patient simulating irregularly shaped (inhomogeneous) phantoms, are shown together with computer calculations of these dose distributions. The probable causes for some systematic deviations are discussed, which lead to open problems for further investigations owing to features of the detector material and the evaluation method, but mainly to differences in the composition of phantom materials used for the calculations (standard dose distributions) and TLD-300 measurements. (author)

  8. Pocket total dose meter

    International Nuclear Information System (INIS)

    Brackenbush, L.W.; Endres, G.W.R.

    1984-10-01

    Laboratory measurements have demonstrated that it is possible to simultaneously measure absorbed dose and dose equivalent using a single tissue equivalent proportional counter. Small, pocket sized instruments are being developed to determine dose equivalent as the worker is exposed to mixed field radiation. This paper describes the electronic circuitry and computer algorithms used to determine dose equivalent in these devices

  9. Effect of cross-linkage by gamma radiation in heavy doses to low wear polyethylene in total hip prostheses

    International Nuclear Information System (INIS)

    Oonishi, H.

    1996-01-01

    Wear, frictional torque and creep deformity of UHMWPE sockets crosslinked by gamma radiation of 100, 500 and 1000 Mrad in combination with 28 mm alumina heads, were measured using a hip simulator (under constant load 250 kgf with lubrication of saline solution). Hardness and hydrophilic increased and creep deformity decreased as a result of gamma radiation. The initial wear (decrement of the thickness) of the socket with radiation of 0, 100, 500 and 1000 Mrad was, 150 μm, 100 μm, 70 μm and 50 μm, respectively. The time to steady-state wear at 0, 100, 5000 and 1000 Mrad was about 0.15 million, 0.15 million, 0.1 million, and 0.05 million cycles, respectively. The steady-state wear (decrement of the thickness) of the socket without and with radiation was 200 μm/million cycles and less than 20 μm/million cycles, respectively. Rotational torque was under 0.65 Nm in every case. Swing frictional torque at radiation levels of 0, 100, 500 and 1000 MRad were 1.60-2.84 Nm, 3.24-9.02 Nm, 5.23-8.78 Nm, and 2.51-6.79 Nm, respectively. (Author)

  10. Gamma dosimetry of high doses

    International Nuclear Information System (INIS)

    Martinez C, T.; Galvan G, A.; Canizal, G.

    1991-01-01

    The gamma dosimetry of high doses is problematic in almost all the classic dosemeters either based on the thermoluminescence, electric, chemical properties, etc., because they are saturated to very high dose and they are no longer useful. This work carries out an investigation in the interval of high doses. The solid system of heptahydrate ferrous sulfate, can be used as solid dosemeter of routine for high doses of radiation. The proposed method is simple, cheap and it doesn't require sophisticated spectrophotometers or spectrometers but expensive and not common in some laboratories

  11. Gamma Radiation Doses In Sweden

    International Nuclear Information System (INIS)

    Almgren, Sara; Isaksson, Mats; Barregaard, Lars

    2008-01-01

    Gamma dose rate measurements were performed in one urban and one rural area using thermoluminescence dosimeters (TLD) worn by 46 participants and placed in their dwellings. The personal effective dose rates were 0.096±0.019(1 SD) and 0.092±0.016(1 SD)μSv/h in the urban and rural area, respectively. The corresponding dose rates in the dwellings were 0.11±0.042(1 SD) and 0.091±0.026(1 SD)μSv/h. However, the differences between the areas were not significant. The values were higher in buildings made of concrete than of wood and higher in apartments than in detached houses. Also, 222 Rn measurements were performed in each dwelling, which showed no correlation with the gamma dose rates in the dwellings

  12. Dose Distribution of Gamma Irradiators

    International Nuclear Information System (INIS)

    Park, Seung Woo; Shin, Sang Hun; Son, Ki Hong; Lee, Chang Yeol; Kim, Kum Bae; Jung, Hai Jo; Ji, Young Hoon

    2010-01-01

    Gamma irradiator using Cs-137 have been widely utilized to the irradiation of cell, blood, and animal, and the dose measurement and education. The Gamma cell 3000 Elan (Nordion International, Kanata, Ontario, Canada) irradiator was installed in 2003 with Cs-137 and dose rate of 3.2 Gy/min. And the BioBeam 8000 (Gamma-Service Medical GmbH, Leipzig, Germany) irradiator was installed in 2008 with Cs-137 and dose rate of 3.5 Gy/min. Our purpose was to evaluate the practical dosimetric problems associated with inhomogeneous dose distribution within the irradiated volume in open air state using glass dosimeter and Gafchromic EBT film dosimeter for routine Gamma irradiator dosimetry applications at the KIRAMS and the measurements were compared with each other. In addition, an user guideline for useful utilization of the device based on practical dosimetry will be prepared. The measurement results of uniformity of delivered dose within the device showed variation more than 14% between middle point and the lowest position at central axis. Therefore, to maintain dose variation within 10%, the criteria of useful dose distribution, for research radiation effects, the irradiated specimen located at central axis of the container should be placed within 30 mm from top and bottom surface, respectively. In addition, for measurements using the film, the variations of dose distribution were more then 50% for the case of less than 10 second irradiation, mostly within 20% for the case of more than 20 second irradiation, respectively. Therefore, the irradiation experiments using the BioBeam 8000 irradiator are recommended to be used for specimen required at least more than 20 second irradiation time.

  13. Clinical and symptomatological study of pigs subjected to a lethal dose of integral gamma irradiation; Etude clinique et symptomatologique chez le porc soumis a une irradiation gamma totale a dose letale

    Energy Technology Data Exchange (ETDEWEB)

    Vaiman, M; Guenet, J -L; Maas, J; Nizza, P

    1966-05-01

    Results are reported from a clinical and haematological study on a Corsican species of pigs wholly exposed to an approximately lethal dose of {gamma} radiation. The aim of this work was to examine the changes in the irradiation syndrome of irradiation for pigs to make it thus possible to devise further experiments, in particular in the therapeutic field. The dose received was 285 rads (measured as the absorption in the vertical antero-posterior medial plane). Data are presented on cyto-haematological changes in the blood circulating immediately after irradiation, and followed up to death, and changes in the medullary cytology after irradiation. The clinical picture of lethal radiation injury in swine is described. (authors) [French] Les auteurs rapportent les resultats d'une etude clinique et hematologique chez des porcs de race corse irradies in toto a dose sensiblement letale. Le but de cette etude etait de connaitre l'evolution du syndrome aigu d'irradiation chez le porc et de permettre ainsi le developpement d'experimentations ulterieures, en particulier dans le domaine therapeutique. La dose delivree etait de 285 rad (en dose absorbee au niveau du plan median vertical anteroposterieur. L'etude a porte essentiellement: 1. Sur les modifications cyclo-hematologiques du sang circulant immediatement apres l'irradiation, pour les differentes lignees cellulaires; l'evolution de ces modifications a ete notee jusqu'a la mort; 2. Sur les modifications de la cytologie medullaire apres irradiation (evolution du myelogramme et essai d'evaluation de la cellularite de la moelle osseuse);: 3. Sur les signes cliniques, d'ailleurs tres discrets, observes chez les porcs apres irradiation. (auteurs)

  14. Clinical and symptomatological study of pigs subjected to a lethal dose of integral gamma irradiation; Etude clinique et symptomatologique chez le porc soumis a une irradiation gamma totale a dose letale

    Energy Technology Data Exchange (ETDEWEB)

    Vaiman, M.; Guenet, J.-L.; Maas, J.; Nizza, P

    1966-05-01

    Results are reported from a clinical and haematological study on a Corsican species of pigs wholly exposed to an approximately lethal dose of {gamma} radiation. The aim of this work was to examine the changes in the irradiation syndrome of irradiation for pigs to make it thus possible to devise further experiments, in particular in the therapeutic field. The dose received was 285 rads (measured as the absorption in the vertical antero-posterior medial plane). Data are presented on cyto-haematological changes in the blood circulating immediately after irradiation, and followed up to death, and changes in the medullary cytology after irradiation. The clinical picture of lethal radiation injury in swine is described. (authors) [French] Les auteurs rapportent les resultats d'une etude clinique et hematologique chez des porcs de race corse irradies in toto a dose sensiblement letale. Le but de cette etude etait de connaitre l'evolution du syndrome aigu d'irradiation chez le porc et de permettre ainsi le developpement d'experimentations ulterieures, en particulier dans le domaine therapeutique. La dose delivree etait de 285 rad (en dose absorbee au niveau du plan median vertical anteroposterieur. L'etude a porte essentiellement: 1. Sur les modifications cyclo-hematologiques du sang circulant immediatement apres l'irradiation, pour les differentes lignees cellulaires; l'evolution de ces modifications a ete notee jusqu'a la mort; 2. Sur les modifications de la cytologie medullaire apres irradiation (evolution du myelogramme et essai d'evaluation de la cellularite de la moelle osseuse);: 3. Sur les signes cliniques, d'ailleurs tres discrets, observes chez les porcs apres irradiation. (auteurs)

  15. Low doses of gamma radiation in soybean

    International Nuclear Information System (INIS)

    Franco, José G.; Franco, Suely S.H.; Villavicencio, Anna L.C.; Arthur, Valter; Arthur, Paula B.; Franco, Caio H.

    2017-01-01

    The degree of radiosensitivity depends mostly on the species, the stage of the embryo at irradiation, the doses employed and the criteria used to measure the effect. One of the most common criteria to evaluate radiosensitivity in seeds is to measure the average plant production. Dry soya seeds were exposed to low doses of gamma radiation from source of Cobalt-60, type Gammecell-220, at 0.210 kGy dose rate. In order to study stimulation effects of radiation on germination, plant growth and production. A treatment with four radiation doses was applied as follows: 0 (control); 12.5; 25.0 and 50.0 Gy. Seed germination and harvested of number of seeds and total production were assessed to identify occurrence of stimulation. Soya seeds number and plants were handled as for usual seed production in Brazil. The low doses of gamma radiation in the seeds that stimulate the production were the doses of 12.5 and 50.0 Gy. The results show that the use of low doses of gamma radiation can stimulate germination and plant production. (author)

  16. Low doses of gamma radiation in soybean

    Energy Technology Data Exchange (ETDEWEB)

    Franco, José G.; Franco, Suely S.H.; Villavicencio, Anna L.C., E-mail: zegilmar60@gmail.com, E-mail: gilmita@uol.com.br, E-mail: villavic@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil); Arthur, Valter; Arthur, Paula B., E-mail: arthur@cena.usp.br [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil); Franco, Caio H. [Universidade Federal de São Paulo (UNIFESP), SP (Brazil). Departamento de Microbiologia, Imunologia e Parasitologia

    2017-07-01

    The degree of radiosensitivity depends mostly on the species, the stage of the embryo at irradiation, the doses employed and the criteria used to measure the effect. One of the most common criteria to evaluate radiosensitivity in seeds is to measure the average plant production. Dry soya seeds were exposed to low doses of gamma radiation from source of Cobalt-60, type Gammecell-220, at 0.210 kGy dose rate. In order to study stimulation effects of radiation on germination, plant growth and production. A treatment with four radiation doses was applied as follows: 0 (control); 12.5; 25.0 and 50.0 Gy. Seed germination and harvested of number of seeds and total production were assessed to identify occurrence of stimulation. Soya seeds number and plants were handled as for usual seed production in Brazil. The low doses of gamma radiation in the seeds that stimulate the production were the doses of 12.5 and 50.0 Gy. The results show that the use of low doses of gamma radiation can stimulate germination and plant production. (author)

  17. Total Cross Section in $\\gamma\\gamma$ Collisions at LEP

    CERN Document Server

    Acciarri, M.; Adriani, O.; Aguilar-Benitez, M.; Alcaraz, J.; Alemanni, G.; Allaby, J.; Aloisio, A.; Alviggi, M.G.; Ambrosi, G.; Anderhub, H.; Andreev, Valery P.; Angelescu, T.; Anselmo, F.; Arefev, A.; Azemoon, T.; Aziz, T.; Bagnaia, P.; Bajo, A.; Baksay, L.; Balandras, A.; Baldew, S.V.; Banerjee, S.; Banerjee, Sw.; Barczyk, A.; Barillere, R.; Bartalini, P.; Basile, M.; Batalova, N.; Battiston, R.; Bay, A.; Becattini, F.; Becker, U.; Behner, F.; Bellucci, L.; Berbeco, R.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B.L.; Bhattacharya, S.; Biasini, M.; Biland, A.; Blaising, J.J.; Blyth, S.C.; Bobbink, G.J.; Bohm, A.; Boldizsar, L.; Borgia, B.; Bourilkov, D.; Bourquin, M.; Braccini, S.; Branson, J.G.; Brochu, F.; Buffini, A.; Buijs, A.; Burger, J.D.; Burger, W.J.; Cai, X.D.; Capell, M.; Cara Romeo, G.; Carlino, G.; Cartacci, A.M.; Casaus, J.; Castellini, G.; Cavallari, F.; Cavallo, N.; Cecchi, C.; Cerrada, M.; Cesaroni, F.; Chamizo, M.; Chang, Y.H.; Chaturvedi, U.K.; Chemarin, M.; Chen, A.; Chen, G.; Chen, G.M.; Chen, H.F.; Chen, H.S.; Chiefari, G.; Cifarelli, L.; Cindolo, F.; Civinini, C.; Clare, I.; Clare, R.; Coignet, G.; Colino, N.; Costantini, S.; Cotorobai, F.; de la Cruz, B.; Csilling, A.; Cucciarelli, S.; Dai, T.S.; van Dalen, J.A.; D'Alessandro, R.; de Asmundis, R.; Deglon, P.; Degre, A.; Deiters, K.; della Volpe, D.; Delmeire, E.; Denes, P.; DeNotaristefani, F.; De Salvo, A.; Diemoz, M.; Dierckxsens, M.; van Dierendonck, D.; Dionisi, C.; Dittmar, M.; Dominguez, A.; Doria, A.; Dova, M.T.; Duchesneau, D.; Dufournaud, D.; Duinker, P.; El Mamouni, H.; Engler, A.; Eppling, F.J.; Erne, F.C.; Ewers, A.; Extermann, P.; Fabre, M.; Falagan, M.A.; Falciano, S.; Favara, A.; Fay, J.; Fedin, O.; Felcini, M.; Ferguson, T.; Fesefeldt, H.; Fiandrini, E.; Field, J.H.; Filthaut, F.; Fisher, P.H.; Fisk, I.; Forconi, G.; Freudenreich, K.; Furetta, C.; Galaktionov, Iouri; Ganguli, S.N.; Garcia-Abia, Pablo; Gataullin, M.; Gau, S.S.; Gentile, S.; Gheordanescu, N.; Giagu, S.; Gong, Z.F.; Grenier, Gerald Jean; Grimm, O.; Gruenewald, M.W.; Guida, M.; van Gulik, R.; Gupta, V.K.; Gurtu, A.; Gutay, L.J.; Haas, D.; Hasan, A.; Hatzifotiadou, D.; Hebbeker, T.; Herve, Alain; Hidas, P.; Hirschfelder, J.; Hofer, H.; Holzner, G.; Hoorani, H.; Hou, S.R.; Hu, Y.; Iashvili, I.; Jin, B.N.; Jones, Lawrence W.; de Jong, P.; Josa-Mutuberria, I.; Khan, R.A.; Kafer, D.; Kaur, M.; Kienzle-Focacci, M.N.; Kim, D.; Kim, J.K.; Kirkby, Jasper; Kiss, D.; Kittel, W.; Klimentov, A.; Konig, A.C.; Kopal, M.; Kopp, A.; Koutsenko, V.; Kraber, M.; Kraemer, R.W.; Krenz, W.; Kruger, A.; Kunin, A.; Ladron de Guevara, P.; Laktineh, I.; Landi, G.; Lebeau, M.; Lebedev, A.; Lebrun, P.; Lecomte, P.; Lecoq, P.; Le Coultre, P.; Lee, H.J.; Le Goff, J.M.; Leiste, R.; Levtchenko, P.; Li, C.; Likhoded, S.; Lin, C.H.; Lin, W.T.; Linde, F.L.; Lista, L.; Liu, Z.A.; Lohmann, W.; Longo, E.; Lu, Y.S.; Lubelsmeyer, K.; Luci, C.; Luckey, David; Lugnier, L.; Luminari, L.; Lustermann, W.; Ma, W.G.; Maity, M.; Malgeri, L.; Malinin, A.; Mana, C.; Mangeol, D.; Mans, J.; Marian, G.; Martin, J.P.; Marzano, F.; Mazumdar, K.; McNeil, R.R.; Mele, S.; Merola, L.; Meschini, M.; Metzger, W.J.; von der Mey, M.; Mihul, A.; Milcent, H.; Mirabelli, G.; Mnich, J.; Mohanty, G.B.; Moulik, T.; Muanza, G.S.; Muijs, A.J.M.; Musicar, B.; Musy, M.; Napolitano, M.; Nessi-Tedaldi, F.; Newman, H.; Niessen, T.; Nisati, A.; Kluge, Hannelies; Ofierzynski, R.; Organtini, G.; Oulianov, A.; Palomares, C.; Pandoulas, D.; Paoletti, S.; Paolucci, P.; Paramatti, R.; Park, H.K.; Park, I.H.; Passaleva, G.; Patricelli, S.; Paul, Thomas Cantzon; Pauluzzi, M.; Paus, C.; Pauss, F.; Pedace, M.; Pensotti, S.; Perret-Gallix, D.; Petersen, B.; Piccolo, D.; Pierella, F.; Pieri, M.; Piroue, P.A.; Pistolesi, E.; Plyaskin, V.; Pohl, M.; Pojidaev, V.; Postema, H.; Pothier, J.; Prokofev, D.O.; Prokofiev, D.; Quartieri, J.; Rahal-Callot, G.; Rahaman, M.A.; Raics, P.; Raja, N.; Ramelli, R.; Rancoita, P.G.; Ranieri, R.; Raspereza, A.; Raven, G.; Razis, P.; Ren, D.; Rescigno, M.; Reucroft, S.; Riemann, S.; Riles, Keith; Rodin, J.; Roe, B.P.; Romero, L.; Rosca, A.; Rosier-Lees, S.; Roth, Stefan; Rosenbleck, C.; Roux, B.; Rubio, J.A.; Ruggiero, G.; Rykaczewski, H.; Saremi, S.; Sarkar, S.; Salicio, J.; Sanchez, E.; Sanders, M.P.; Schafer, C.; Schegelsky, V.; Schmidt-Kaerst, S.; Schmitz, D.; Schopper, H.; Schotanus, D.J.; Schwering, G.; Sciacca, C.; Seganti, A.; Servoli, L.; Shevchenko, S.; Shivarov, N.; Shoutko, V.; Shumilov, E.; Shvorob, A.; Siedenburg, T.; Son, D.; Smith, B.; Spillantini, P.; Steuer, M.; Stickland, D.P.; Stone, A.; Stoyanov, B.; Straessner, A.; Sudhakar, K.; Sultanov, G.; Sun, L.Z.; Sushkov, S.; Suter, H.; Swain, J.D.; Szillasi, Z.; Sztaricskai, T.; Tang, X.W.; Tauscher, L.; Taylor, L.; Tellili, B.; Teyssier, D.; Timmermans, Charles; Ting, Samuel C.C.; Ting, S.M.; Tonwar, S.C.; Toth, J.; Tully, C.; Tung, K.L.; Uchida, Y.; Ulbricht, J.; Valente, E.; Vesztergombi, G.; Vetlitsky, I.; Vicinanza, D.; Viertel, G.; Villa, S.; Vivargent, M.; Vlachos, S.; Vodopianov, I.; Vogel, H.; Vogt, H.; Vorobev, I.; Vorobov, A.A.; Vorvolakos, A.; Wadhwa, M.; Wallraff, W.; Wang, M.; Wang, X.L.; Wang, Z.M.; Weber, A.; Weber, M.; Wienemann, P.; Wilkens, H.; Wu, S.X.; Wynhoff, S.; Xia, L.; Xu, Z.Z.; Yamamoto, J.; Yang, B.Z.; Yang, C.G.; Yang, H.J.; Yang, M.; Ye, J.B.; Yeh, S.C.; Zalite, A.; Zalite, Yu.; Zhang, Z.P.; Zhu, G.Y.; Zhu, R.Y.; Zichichi, A.; Zilizi, G.; Zimmermann, B.; Zoller, M.

    2001-01-01

    The reaction e+e- -> e+e- gamma* gamma* -> e+e- hadrons for quasi-real photons is studied using data from root(s) = 183 GeV up to 202 GeV. Results on the total cross sections sigma(e+e- -> e+e- hadrons) and sigma(+e- gamma* gamma* -> e+e- hadrons) are given for the two-photon centre-of-mass energies 5 GeV < Wgammagamma < 185 GeV. The total cross section of two real photons is described by a Regge parametrisation. We observe a steeper rise with the two-photon centre-of-mass energy as compared to the hadron-hadron and the photon-proton cross sections. The data are also compared to the expectations of different theoretical models.

  18. Dose mapping role in gamma irradiation industry

    International Nuclear Information System (INIS)

    Noriah Mod Ali; John Konsoh Sangau; Mazni Abd Latif

    2002-01-01

    In this studies, the role of dosimetry activity in gamma irradiator was discussed. Dose distribution in the irradiator, which is a main needs in irradiator or chamber commissioning. This distribution data were used to confirm the dosimetry parameters i.e. exposure time, maximum and minimum dose map/points, and dose distribution - in which were used as guidelines for optimum product irradiation. (Author)

  19. beta. and. gamma. -comparative dose estimates on Enewetak Atoll

    Energy Technology Data Exchange (ETDEWEB)

    Crase, K.W.; Gudiksen, P.H.; Robison, W.L. (California Univ., Livermore (USA). Lawrence Livermore National Lab.)

    1982-05-01

    Enewetak Atoll in the Pacific is used for atmospheric testing of U.S. nuclear weapons. Beta dose and ..gamma..-ray exposure measurements were made on two islands of the Enewetak Atoll during July-August 1976 to determine the ..beta.. and low energy ..gamma..-contribution to the total external radiation doses to the returning Marshallese. Measurements were made at numerous locations with thermoluminescent dosimeters (TLD), pressurized ionization chambers, portable NaI detectors, and thin-window pancake GM probes. Results of the TLD measurements with and without a ..beta..-attenuator indicate that approx. 29% of the total dose rate at 1 m in air is due to ..beta..- or low energy ..gamma..-contribution. The contribution at any particular site, however, is reduced by vegetation. Integral 30-yr external shallow dose estimates for future inhabitants were made and compared with external dose estimates of a previous large scale radiological survey. Integral 30-yr shallow external dose estimates are 25-50% higher than whole body estimates. Due to the low penetrating ability of the ..beta..'s or low energy ..gamma..'s, however, several remedial actions can be taken to reduce the shallow dose contribution to the total external dose.

  20. beta- and gamma-Comparative dose estimates on Eniwetok Atoll

    Energy Technology Data Exchange (ETDEWEB)

    Crase, K.W.; Gudiksen, P.H.; Robison, W.L.

    1982-05-01

    Eniwetok Atoll is one of the Pacific atolls used for atmospheric testing of U.S. nuclear weapons. Beta dose and gamma-ray exposure measurements were made on two islands of the Eniwetok Atoll during July-August 1976 to determine the beta and low energy gamma-contribution to the total external radiation doses to the returning Marshallese. Measurements were made at numerous locations with thermoluminescent dosimeters (TLD), pressurized ionization chambers, portable NaI detectors, and thin-window pancake GM probes. Results of the TLD measurements with and without a beta-attenuator indicate that approx. 29% of the total dose rate at 1 m in air is due to beta- or low energy gamma-contribution. The contribution at any particular site, however, is somewhat dependent on ground cover, since a minimal amount of vegetation will reduce it significantly from that over bare soil, but thick stands of vegetation have little effect on any further reductions. Integral 30-yr external shallow dose estimates for future inhabitants were made and compared with external dose estimates of a previous large scale radiological survey (En73). Integral 30-yr shallow external dose estimates are 25-50% higher than whole body estimates. Due to the low penetrating ability of the beta's or low energy gamma's, however, several remedial actions can be taken to reduce the shallow dose contribution to the total external dose.

  1. Development of air equivalent gamma dose monitor

    International Nuclear Information System (INIS)

    Alex, Mary; Bhattacharya, Sadhana; Karpagam, R.; Prasad, D.N.; Jakati, R.K.; Mukhopadhyay, P.K.; Patil, R.K.

    2010-01-01

    The paper describes design and development of air equivalent gamma absorbed dose monitor. The monitor has gamma sensitivity of 84 pA/R/h for 60 Co source. The characterization of the monitor has been done to get energy dependence on gamma sensitivity and response to gamma radiation field from 1 R/hr to 5000 R/hr. The gamma sensitivity in the energy range of 0.06 to 1.25MeV relative to 137 Cs nuclide was within 2.5%. The linearity of the monitor response as a function of gamma field from 10 R/h to 3.8 kR/h was within 6%. The monitor has been designed for its application in harsh environment. It has been successfully qualified to meet environmental requirements of shock. (author)

  2. A study on gamma dose rate in Seoul (I)

    International Nuclear Information System (INIS)

    Kim, You Hyun; Kim, Chang Kyun; Choi, Jong Hak; Kim, Jeong Min

    2001-01-01

    This study was conducted to find out gamma dose rate in Seoul, from January to December in 2000, and the following results were achieved : The annual gamma dose rate in Seoul was 17.24 μR/hr as average. The annual gamma dose rate in subway of Seoul was 14.96 μR/hr as average. The highest annual gamma dose rate was Dong-daemon ku. Annual gamma dose rate in Seoul was higher autumn than winter

  3. Gamma dose rate effect on JFET transistors

    International Nuclear Information System (INIS)

    Assaf, J.

    2011-04-01

    The effect of Gamma dose rate on JFET transistors is presented. The irradiation was accomplished at the following available dose rates: 1, 2.38, 5, 10 , 17 and 19 kGy/h at a constant dose of 600 kGy. A non proportional relationship between the noise and dose rate in the medium range (between 2.38 and 5 kGy/h) was observed. While in the low and high ranges, the noise was proportional to the dose rate as the case of the dose effect. This may be explained as follows: the obtained result is considered as the yield of a competition between many reactions and events which are dependent on the dose rate. At a given values of that events parameters, a proportional or a non proportional dose rate effects are generated. No dependence effects between the dose rate and thermal annealing recovery after irradiation was observed . (author)

  4. High dose gamma-ray standard

    International Nuclear Information System (INIS)

    Macrin, R.; Moraru, R.

    1999-01-01

    The high gamma-ray doses produced in a gamma irradiator are used, mainly, for radiation processing, i.e. sterilization of medical products, processing of food, modifications of polymers, irradiation of electronic devices, a.s.o. The used absorbed doses depend on the application and cover the range 10 Gy to 100 MGy. The regulations in our country require that the response of the dosimetry systems, used for the irradiation of food and medical products, be calibrated and traceable to the national standards. In order to be sure that the products receive the desired absorbed dose, appropriate dosimetric measurements must be performed, including the calibration of the dosemeters and their traceability to the national standards. The high dose gamma-ray measurements are predominantly based on the use of reference radiochemical dosemeters. Among them the ferrous sulfate can be used as reference dosemeter for low doses (up to 400 Gy) but due to its characteristics it deserves to be considered a standard dosemeter and to be used for transferring the conventional absorbed dose to other chemical dosemeters used for absorbed doses up to 100 MGy. The study of the ferrous sulfate dosemeter consisted in preparing many batches of solution by different operators in quality assurance conditions and in determining for all batches the linearity, the relative intrinsic error, the repeatability and the reproducibility. The principal results are the following: the linear regression coefficient: 0.999, the relative intrinsic error: max.6 %, the repeatability (for P* = 95 %): max.3 %, the reproducibility (P* = 95%): max.5 %. (authors)

  5. Study of total ionization dose effects in electronic devices

    International Nuclear Information System (INIS)

    Nidhin, T.S.; Bhattacharyya, Anindya; Gour, Aditya; Behera, R.P.; Jayanthi, T.

    2018-01-01

    Radiation effects in electronic devices are a major challenge in the dependable application developments of nuclear power plant instrumentation and control systems. The main radiation effects are total ionization dose (TID) effects, displacement damage dose (DDD) effects and single event effects (SEE). In this study, we are concentrating on TID effects in electronic devices. The focus of the study is mainly on SRAM based field programmable gate arrays (FPGA) along with that the devices of our interest are voltage regulators, flash memory and optocoupler. The experiments are conducted by exposing the devices to gamma radiation in power off condition and the degradation in the performances are analysed

  6. Mapping the outdoor gamma dose rate in Indonesia

    International Nuclear Information System (INIS)

    Iskandar, Dadong; Syarbaini, Sutarman; Bunawas, Kusdiana

    2008-01-01

    Full text: Indonesia is the largest archipelago in the world, comprising five main islands - Java, Sumatra, Sulawesi, Kalimantan and Papua - as well as 30 archipelagoes totaling 17,508 islands with about 6000 of those inhabited. Mapping the outdoor gamma dose rate in Indonesia is a research project conducted by National Nuclear Energy Agency since 2005 aiming to produce a baseline data map as an overview for planning purposes. In these three years 4 main islands has been measured. The grid system has been used in the research. In Sumatra Island the grid is 50 x 50 km 2 , while in Java 40 x 40 km 2 , in Kalimantan 60 x 60 km 2 , and in Sulawesi 40 x 40 km 2 . The gamma dose rates have been measured by Mini Gamma Ray Spectrometer Model GR-130 made by Exploranium-Canada. Figure 1 shows the map of outdoor gamma dose rate in Indonesia. Range of dose rate are in Sumatra from 22,96 ± 0,46 n Sv/h to 186,08 ± 3,72 n Sv/h, in Java 11,32 ± 0,72 n Sv/h to 127,54 ± 6,14 n Sv/h, in Kalimantan 10.72 ± 8.32 n Sv/h to 349,48 ± 57,21 n Sv/h, and in Sulawesi 17.7 ± 11,5 n Sv/h to 467 ± 102 n Sv/h. The arithmetic and geometric mean of dose rate in Indonesia are 68 n Sv/h and 53 n Sv/h, respectively. In general, outdoor gamma dose rate in Indonesia is in a normal range. There are some regions have anomaly of gamma dose rate, for examples at North Sumatra 186.08 ± 3,72 n Sv/h (N 2.12727, E 99.80909), at West Kalimantan 349,48 ± 57,21 n Sv/h (S 1.39507, E 110.57584), at West Sulawesi 487 ± 103 n Sv/h (S 2.95781, E 118.86995), etc. These data is very useful as a radiation baseline in Indonesia. (author)

  7. Car-borne survey of natural background gamma dose rate in Canakkale region (Turkey)

    International Nuclear Information System (INIS)

    Turhan, S.; Arikan, I. H.; Oquz, F.; Aezdemir, T.; Yuecel, B.; Varinlioqlu, A.; Koese, A.

    2012-01-01

    Natural background gamma radiation was measured along roads in the environs of Canakkale region by using a car-borne spectrometer system with a plastic gamma radiation detector. In addition, activity concentrations of 238 U, 226 Ra, 232 Th and 40 K in soil samples from the Canakkale region were determined by using a gamma spectrometer with an HPGe detector. A total of 92 856 data of the background gamma dose rate were collected for the Canakkale region. The background gamma dose rate of the Canakkale region was mapped using ArcGIS software, applying the geostatistical inverse distance-weighted method. The average and population-weighted average of the gamma dose are 55.4 and 40.6 nGy h -1 , respectively. The corresponding average annual effective dose to the public ranged from 26.6 to 96.8 μSv. (authors)

  8. Calculating gamma dose factors for hot particle exposures

    International Nuclear Information System (INIS)

    Murphy, P.

    1990-01-01

    For hot particle exposures to the skin, the beta component of radiation delivers the majority of the dose. However, in order to fully demonstrate regulatory compliance, licenses must ordinarily provide reasonable bases for assuming that both the gamma component of the skin dose and the whole body doses are negligible. While beta dose factors are commonly available in the literature, gamma dose factors are not. This paper describes in detail a method by which gamma skin dose factors may be calculated using the Specific Gamma-ray Constant, even if the particle is not located directly on the skin. Two common hot particle exposure geometries are considered: first, a single square centimeter of skin lying at density thickness of 7 mg/cm 2 and then at 1000 mg/cm 2 . A table provides example gamma dose factors for a number of isotopes encountered at power reactors

  9. Evaluation of effective dose equivalent from environmental gamma rays

    International Nuclear Information System (INIS)

    Saito, K.; Tsutsumi, M.; Moriuchi, S.; Petoussi, N.; Zankl, M.; Veit, R.; Jacob, P.; Drexler, G.

    1991-01-01

    Organ doses and effective dose equivalents for environmental gamma rays were calculated using human phantoms and Monte Carlo methods accounting rigorously the environmental gamma ray fields. It was suggested that body weight is the dominant factor to determine organ doses. The weight function expressing organ doses was introduced. Using this function, the variation in organ doses due to several physical factors were investigated. A detector having gamma-ray response similar to that of human bodies has been developed using a NaI(Tl) scintillator. (author)

  10. COSANI-2, Gamma Doses from SABINE Calculation, Activity from ANISN Flux Calculation

    International Nuclear Information System (INIS)

    Dupont, C.

    1975-01-01

    1 - Nature of physical problem solved: Retrieval of SABINE and/or ANISN results. Calculates in case of SABINE results the individual contributions of capture gamma rays in each region to the total gamma dose and to the total gamma heating may calculate in case of ANISN new activity rates starting from ANISN flux saved on tape and activity cross sections taken on an ANISN binary library tape. The program can draw on a BENSON plotter any of the following quantities: - group flux; - activity rates; - dose rates; - neutron spectra for SABINE; - neutron or gamma direct or adjoint spectra for ANISN; - gamma heating and dose rate for SABINE including individual contributions from each region. Several ANISN and/or SABINE cases can be drawn on the same graph for comparison purposes. 2 - Restrictions on the complexity of the problem: Maximum number of: - tapes containing ANISN and/or SABINE results: 5; - curves per graph: 3; - regions: 40; - points per curve: 500; - energy groups: 200

  11. Development of autonomous gamma dose logger for environmental monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Jisha, N. V.; Krishnakumar, D. N.; Surya Prakash, G.; Kumari, Anju; Baskaran, R.; Venkatraman, B. [Radiological Safety Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamil Nadu (India)

    2012-03-15

    Continuous monitoring and archiving of background radiation levels in and around the nuclear installation is essential and the data would be of immense use during analysis of any untoward incidents. A portable Geiger Muller detector based autonomous gamma dose logger (AGDL) for environmental monitoring is indigenously designed and developed. The system operations are controlled by microcontroller (AT89S52) and the main features of the system are software data acquisition, real time LCD display of radiation level, data archiving at removable compact flash card. The complete system operates on 12 V battery backed up by solar panel and hence the system is totally portable and ideal for field use. The system has been calibrated with Co-60 source (8.1 MBq) at various source-detector distances. The system is field tested and performance evaluation is carried out. This paper covers the design considerations of the hardware, software architecture of the system along with details of the front-end operation of the autonomous gamma dose logger and the data file formats. The data gathered during field testing and inter comparison with GammaTRACER are also presented in the paper. AGDL has shown excellent correlation with energy fluence monitor tuned to identify {sup 41}Ar, proving its utility for real-time plume tracking and source term estimation.

  12. Development of autonomous gamma dose logger for environmental monitoring.

    Science.gov (United States)

    Jisha, N V; Krishnakumar, D N; Surya Prakash, G; Kumari, Anju; Baskaran, R; Venkatraman, B

    2012-03-01

    Continuous monitoring and archiving of background radiation levels in and around the nuclear installation is essential and the data would be of immense use during analysis of any untoward incidents. A portable Geiger Muller detector based autonomous gamma dose logger (AGDL) for environmental monitoring is indigenously designed and developed. The system operations are controlled by microcontroller (AT89S52) and the main features of the system are software data acquisition, real time LCD display of radiation level, data archiving at removable compact flash card. The complete system operates on 12 V battery backed up by solar panel and hence the system is totally portable and ideal for field use. The system has been calibrated with Co-60 source (8.1 MBq) at various source-detector distances. The system is field tested and performance evaluation is carried out. This paper covers the design considerations of the hardware, software architecture of the system along with details of the front-end operation of the autonomous gamma dose logger and the data file formats. The data gathered during field testing and inter comparison with GammaTRACER are also presented in the paper. AGDL has shown excellent correlation with energy fluence monitor tuned to identify (41)Ar, proving its utility for real-time plume tracking and source term estimation.

  13. Terrestrial Gamma Radiation Dose Rate of West Sarawak

    Science.gov (United States)

    Izham, A.; Ramli, A. T.; Saridan Wan Hassan, W. M.; Idris, H. N.; Basri, N. A.

    2017-10-01

    A study of terrestrial gamma radiation (TGR) dose rate was conducted in west of Sarawak, covering Kuching, Samarahan, Serian, Sri Aman, and Betong divisions to construct a baseline TGR dose rate level data of the areas. The total area covered was 20,259.2 km2, where in-situ measurements of TGR dose rate were taken using NaI(Tl) scintillation detector Ludlum 19 micro R meter NaI(Tl) approximately 1 meter above ground level. Twenty-nine soil samples were taken across the 5 divisions covering 26 pairings of 9 geological formations and 7 soil types. A hyperpure Germanium detector was then used to find the samples' 238U, 232Th, and 40K radionuclides concentrations producing a correction factor Cf = 0.544. A total of239 measured data were corrected with Cf resulting in a mean Dm of 47 ± 1 nGy h-1, with a range between 5 nGy h-1 - 103 nGy h-1. A multiple regression analysis was conducted between geological means and soil types means against the corrected TGR dose rate Dm, generating Dg,s= 0.847Dg+ 0.637Ds- 22.313 prediction model with a normalized Beta equation of Dg,s= 0.605Dg+ 0.395Ds. The model has an 84.6% acceptance of Whitney- Mann test null hypothesis when tested against the corrected TGR dose rates.

  14. Inactive Doses and Protein Concentration of Gamma Irradiated Yersinia Enterocolitica

    International Nuclear Information System (INIS)

    Irawan Sugoro; Sandra Hermanto

    2009-01-01

    Yersinia enterocolitica is one of bacteria which cause coliform mastitis in dairy cows. The bacteria could be inactivated by gamma irradiation as inactivated vaccine candidate. The experiment has been conducted to determine the inactive doses and the protein concentration of Yersinia enterocolitica Y3 which has been irradiated by gamma rays. The cells cultures were irradiated by gamma rays with doses of 0, 100, 200, 400, 600, 800, 1.000 and 1.500 Gy (doses rate was 1089,59 Gy/hours). The inactive dose was determined by the drop test method and the protein concentration of cells were determined by Lowry method. The results showed that the inactive doses occurred on 800 – 1500 Gy. The different irradiation doses of cell cultures showed the effect of gamma irradiation on the protein concentration that was random and has a significant effect on the protein concentration. (author)

  15. Beta and gamma dose calculations for PWR and BWR containments

    International Nuclear Information System (INIS)

    King, D.B.

    1989-07-01

    Analyses of gamma and beta dose in selected regions in PWR and BWR containment buildings have been performed for a range of fission product releases from selected severe accidents. The objective of this study was to determine the radiation dose that safety-related equipment could experience during the selected severe accident sequences. The resulting dose calculations demonstrate the extent to which design basis accident qualified equipment could also be qualified for the severe accident environments. Surry was chosen as the representative PWR plant while Peach Bottom was selected to represent BWRs. Battelle Columbus Laboratory performed the source term release analyses. The AB epsilon scenario (an intermediate to large LOCA with failure to recover onsite or offsite electrical power) was selected as the base case Surry accident, and the AE scenario (a large break LOCA with one initiating event and a combination of failures in two emergency cooling systems) was selected as the base case Peach Bottom accident. Radionuclide release was bounded for both scenarios by including spray operation and arrested sequences as variations of the base scenarios. Sandia National Laboratories used the source terms to calculate dose to selected containment regions. Scenarios with sprays operational resulted in a total dose comparable to that (2.20 x 10 8 rads) used in current equipment qualification testing. The base case scenarios resulted in some calculated doses roughly an order of magnitude above the current 2.20 x 10 8 rad equipment qualification test region. 8 refs., 23 figs., 12 tabs

  16. p-MOSFET total dose dosimeter

    Science.gov (United States)

    Buehler, Martin G. (Inventor); Blaes, Brent R. (Inventor)

    1994-01-01

    A p-MOSFET total dose dosimeter where the gate voltage is proportional to the incident radiation dose. It is configured in an n-WELL of a p-BODY substrate. It is operated in the saturation region which is ensured by connecting the gate to the drain. The n-well is connected to zero bias. Current flow from source to drain, rather than from peripheral leakage, is ensured by configuring the device as an edgeless MOSFET where the source completely surrounds the drain. The drain junction is the only junction not connected to zero bias. The MOSFET is connected as part of the feedback loop of an operational amplifier. The operational amplifier holds the drain current fixed at a level which minimizes temperature dependence and also fixes the drain voltage. The sensitivity to radiation is made maximum by operating the MOSFET in the OFF state during radiation soak.

  17. Radon-222 related influence on ambient gamma dose.

    Science.gov (United States)

    Melintescu, A; Chambers, S D; Crawford, J; Williams, A G; Zorila, B; Galeriu, D

    2018-04-03

    Ambient gamma dose, radon, and rainfall have been monitored in southern Bucharest, Romania, from 2010 to 2016. The seasonal cycle of background ambient gamma dose peaked between July and October (100-105 nSv h -1 ), with minimum values in February (75-80 nSv h -1 ), the time of maximum snow cover. Based on 10 m a.g.l. radon concentrations, the ambient gamma dose increased by around 1 nSv h -1 for every 5 Bq m -3 increase in radon. Radon variability attributable to diurnal changes in atmospheric mixing contributed less than 15 nSv h -1 to the overall variability in ambient gamma dose, a factor of 4 more than synoptic timescale changes in air mass fetch. By contrast, precipitation-related enhancements of the ambient gamma dose were 15-80 nSv h -1 . To facilitate routine analysis, and account in part for occasional equipment failure, an automated method for identifying precipitation spikes in the ambient gamma dose was developed. Lastly, a simple model for predicting rainfall-related enhancement of the ambient gamma dose is tested against rainfall observations from events of contrasting duration and intensity. Results are also compared with those from previously published models of simple and complex formulation. Generally, the model performed very well. When simulations underestimated observations the absolute difference was typically less than the natural variability in ambient gamma dose arising from atmospheric mixing influences. Consequently, combined use of the automated event detection method and the simple model of this study could enable the ambient gamma dose "attention limit" (which indicates a potential radiological emergency) to be reduced from 200 to 400% above background to 25-50%. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. The gamma knife: Dose and risk evaluation

    International Nuclear Information System (INIS)

    Jones, E.D.; Alesso, H.P.; Banks, W.W.; Rathbun, P.A.

    1992-01-01

    This paper outlines a risk analysis approach designed to identify and assess most likely failure modes and high-risk, human initiated actions for nuclear medical devices. This approach is being developed under the auspices of the US Nuclear Regulatory Commission, Office of Nuclear Material Safety and Safeguards. The methodology is initiated intended to assess risk associated with the use of the Leksell Gamma Unit (LGU) or gamma knife, a gamma stereotactic radiosurgical device

  19. Studying and measuring the gamma radiation doses in Homs city

    International Nuclear Information System (INIS)

    Sofaan, A. H.

    2001-01-01

    The gamma radiation dose was measured in Homs city by using many portable dosimeters (electronic dosimeter and Geiger-Muller). The measurements were carried out in the indoor and outdoor buildings, for different time period, through one year (1999-2000). High purity germanium detector with low back ground radiation (HpGe) was used to determine radiation element contained in some building and the surrounding soil. The statistical analysis laws were applied to make sure that the measured dose distribution around average value is normal distribution. The measurement indicates that the gamma indoor dose varies from 312μSv/y to 511μSv/y, with the average annual dose of 385μSv/y. However the gamma outdoor dose rate varies from 307μSv/y to 366μSv/y with an average annual dose 385μSv/y. The annual outdoor gamma radiation dose is about %16 lower than the outdoor dose in Homs City. These measurements have indicated that environmental gamma doses in Homs City are relatively low. This is because that most of the soils and rocks in the area are limestone. (author)

  20. Dose Rate of Environmental Gamma Radiation in Java Island

    International Nuclear Information System (INIS)

    Gatot Suhariyono; Buchori; Dadong Iskandar

    2007-01-01

    The dose rate Monitoring of environmental gamma radiation at some locations in Java Island in the year 2005 / 2006 has been carried out. The dose rate measurement of gamma radiation is carried out by using the peripheral of Portable Gamma of Ray Spectrometer with detector of NaI(Tl), Merck Exploranium, Model GR-130- MINISPEC, while to determine its geographic position is used by the GPS (Global Positioning System), made in German corporation of GPS III Plus type. The division of measurement region was conducted by dividing Java Island become 66 parts with same distance, except in Jepara area that will built PLTN (Nuclear Energy Power), distance between measurement points is more closed. The results of dose rate measurement are in 66 locations in Java Island the range of (19.24 ± 4.05) nSv/hour until (150.78 ± 12.26) nSv/hour with mean (51.93 ± 36.53) nSv/h. The lowest dose rate was in location of Garut, while highest dose rate was in Ujung Lemah Abang, Jepara location. The data can be used for base line data of dose rate of environmental gamma radiation in Indonesia, specially in Java Island. The mean level of gamma radiation in Java monitoring area (0.46 mSv / year) was still lower than worldwide average effective dose rate of terrestrial gamma rays 0.5 mSv / year (report of UNSCEAR, 2000). (author)

  1. Measurement of gamma radiation doses in nuclear power plant environment

    International Nuclear Information System (INIS)

    Bochvar, I.A.; Keirim-Markus, I.B.; Sergeeva, N.A.

    1976-01-01

    Considered are the problems of measuring gamma radiation dose values and the dose distribution in the nuclear power plant area with the aim of estimating the extent of their effect on the population. Presented are the dosimeters applied, their distribution throughout the controlled area, time of measurement. The distribution of gamma radiation doses over the controlled area and the dose alteration with the increase of the distance from the release source are shown. The results of measurements are investigated. The conclusion is made that operating nuclear power plants do not cause any increase in the gamma radiation dose over the area. Recommendations for clarifying the techniques for using dose-meters and decreasing measurement errors are given [ru

  2. In situ measurements of dose rates from terrestrial gamma rays

    International Nuclear Information System (INIS)

    Horng, M.C.; Jiang, S.H.

    2002-01-01

    A portable, high purity germanium (HPGe) detector was employed for the performance of in situ measurements of radionuclide activity concentrations in the ground in Taiwan, at altitudes ranging from sea level to 3900 m. The absolute peak efficiency of the HPGe detector for a gamma-ray source uniformly distributed in the semi-infinite ground was determined using a semi-empirical method. The gamma-ray dose rates from terrestrial radionuclides were calculated from the measured activity levels using recently published dose rate conversion factors. The absorbed dose rate in air due to cosmic rays was derived by subtracting the terrestrial gamma-ray dose rate from the overall absorbed dose rate in air measured using a high-pressure ionization chamber. The cosmic-ray dose rate calculated as a function of altitude, was found to be in good agreement with the data reported by UNSCEAR. (orig.)

  3. Terrestrial gamma dose rate in Pahang state Malaysia

    International Nuclear Information System (INIS)

    Gabdo, H.T.; Federal College of Education, Yola; Ramli, A.T.; Sanusi, M.S.; Saleh, M.A.; Garba, N.N.; Ahmadu Bello University, Zaria

    2014-01-01

    Environmental terrestrial gamma radiations (TGR) were measured in Pahang state Malaysia between January and April 2013. The TGR dose rates ranged from 26 to 750 nGy h -1 . The measurements were done based on geology and soil types of the area. The mean TGR dose rate was found to be 176 ± 5 nGy h -1 . Few areas of relatively enhanced activity were located in Raub, Temerloh, Bentong and Rompin districts. These areas have external gamma dose rates of between 500 and 750 nGy h -1 . An Isodose map of the state was produced using ArcGIS9 software version 9.3. To evaluate the radiological hazard due to terrestrial gamma dose, the annual effective dose equivalent and the mean population weighted dose rate were calculated and found to be 0.22 mSv year -1 and 168 nGy h -1 respectively. (author)

  4. Yield and Chemical Composition of Cucumber Treated by Nitrogen Levels and Doses of Gamma Rays

    International Nuclear Information System (INIS)

    Fath El-Bab, T.Sh.; Abo El-Khier, Om.M.; Abdallah, A.A.G.

    2013-01-01

    Two field experiments were performed at the Atomic Energy Authority, Experimental farm, Inshas, Egypt during 2010 and 2011 summer growing seasons in sandy soil. The experiments were conducted to study the effect of pre-sowing seeds which treated by gamma irradiation with different doses of 0, 2, 4 and 6 Gy. This was in combination with three rates of nitrogen, fertilizer i.e., 30, 60 and 90 Kg N/fed. The experiments were laid out using drip irrigation system. The obtained results indicated that gamma rays doses showed significant differences on cucumber yield per plot or per Fed., increasing doses of gamma rays gradually increased cucumber yield per plot up to highest dose, i.e., (6 Gy). The highest value of total yield was obtained with the highest nitrogen rate (90 Kg N/fed.). Doses of gamma rays significantly increased total soluble solids (T.S.S.), total Carbohydrates, fats, total protein, NPK and Ca of cucumber fruits. Application of 60 Kg N/fed. recorded the highest values of all above mentioned chemical characters except of total protein with 90 kg N/fed. every all dose treatments. The effect of interaction between doses and fertilizer levels on chemical characters were significant therefore, the highest values was found at 4 Gy and 60 Kg N/fed. treatment for protein, fat, nitrogen and potassium contents while the carbohydrate and calcium contents had the highest value with the treatment of 6 Gy and 60 Kg N/fed

  5. Isodose distributions and dose uniformity in the Portuguese gamma irradiation facility calculated using the MCNP code

    CERN Document Server

    Oliveira, C

    2001-01-01

    A systematic study of isodose distributions and dose uniformity in sample carriers of the Portuguese Gamma Irradiation Facility was carried out using the MCNP code. The absorbed dose rate, gamma flux per energy interval and average gamma energy were calculated. For comparison purposes, boxes filled with air and 'dummy' boxes loaded with layers of folded and crumpled newspapers to achieve a given value of density were used. The magnitude of various contributions to the total photon spectra, including source-dependent factors, irradiator structures, sample material and other origins were also calculated.

  6. Cellular response to low Gamma-ray doses

    Energy Technology Data Exchange (ETDEWEB)

    Manzanares A, E; Vega C, H R; Leon, L.C. de . [Unidades Academicas de Estudios Nucleares, Universidad Autonoma de Zacatecas, A.P. 336, 98000 Zacatecas (Mexico); Rebolledo D, O; Radillo J, F [Facultad de Ciencias Biologicas y Agropecuarias de la Universidad de Colima, Colima (Mexico)

    2002-07-01

    Lymphocytes, obtained from healthy donors, were exposed to a low strength gamma-ray field to determine heat shock protein expression in function of radiation dose. Protein identification was carried out using mAb raised against Hsp70 and Hsc70.Hsp70 protein was detected after lymphocyte irradiation. In all cases, an increasing trend of relative amounts of Hsp70 in function to irradiation time was observed. After 1.25 c Gy gamma-ray dose, lymphocytes expressed Hsp70 protein, indicating a threshold response to gamma rays. (Author)

  7. Cellular response to low Gamma-ray doses

    International Nuclear Information System (INIS)

    Manzanares A, E.; Vega C, H.R.; Leon, L.C. de; Rebolledo D, O.; Radillo J, F.

    2002-01-01

    Lymphocytes, obtained from healthy donors, were exposed to a low strength gamma-ray field to determine heat shock protein expression in function of radiation dose. Protein identification was carried out using mAb raised against Hsp70 and Hsc70.Hsp70 protein was detected after lymphocyte irradiation. In all cases, an increasing trend of relative amounts of Hsp70 in function to irradiation time was observed. After 1.25 c Gy gamma-ray dose, lymphocytes expressed Hsp70 protein, indicating a threshold response to gamma rays. (Author)

  8. Characteristics of environmental gamma-rays and dose assessment

    International Nuclear Information System (INIS)

    Saito, Kimiaki; Moriuchi, Shigeru

    1986-01-01

    Environmental radioactivity has attracted much attention in terms of exposure to the population, although its exposure doses are minimal. This paper presents problems encountered in the assessment of exposure doses using model and monitoring systems, focusing on the characteristics, such as energy distribution, direction distribution, and site, of environmental gamma-rays. The assessment of outdoor and indoor exposure doses of natural gamma-rays is discussed in relation to the shielding effect of the human body. In the assessment of artificial gamma-rays, calculation of exposure doses using build-up factor, the shielding effect of the human body, and energy dependency of the measuring instrument are covered. A continuing elucidation about uncertainties in dose assessment is emphasized. (Namekawa, K.)

  9. Effect of gamma radiation on total antioxidant capacity, total lipid concentration and shelf life of finger millet flour

    International Nuclear Information System (INIS)

    Lathika; Manupriya, B.R.; Shenoy, K.B.; Patil, S.L.; Somashekarappa, H.M.

    2016-01-01

    The present study is an attempt to study the impact of gamma radiation on the shelf life, total antioxidant capacity and total lipid concentration of finger millet (Eleusine coracana L.) flour. Finger millet flour was procured from market. Flour samples of 50 g were taken in triplicates in a polyethylene pouch, air sealed and subjected to gamma irradiation doses ranging from 0.25 to 10 kGy and stored in polyethylene bags and plastic containers for a period of 1 year. Within 24 hours of irradiation, the samples were tested for moisture (2 ± 0.2%), total antioxidant capacity (0.12 ± 0.010 mg) and lipid concentration (15 ± 0.4 mg)

  10. Simulation of Shielding Effects on the Total Dose Observed in TDE of KISAT-1

    Directory of Open Access Journals (Sweden)

    Sung-Joon Kim

    2001-06-01

    Full Text Available The threshold voltage shift observed in TDE (Total Dose Experiment on board the KITSAT-1 is converted into dose (rad(SiO2 usinsg the result of laboratory calibration with Co-60 gamma ray source in KAERI (Korea Atomic Energy Research Institute. Simulation using the NASA radiation model of geomagnetosphere verifies that the dose difference between RADFET1 and RADFET3 observed on KITSAT-1 comes from the difference in shielding thickness at the position of these RADFETs.

  11. Dose-response of photographic emulsions under gamma irradiation

    International Nuclear Information System (INIS)

    Tran Dai Nghiep; Do Thi Nguyet Minh; Le Van Vinh

    2003-01-01

    Photographic emulsion is irradiated under gamma rays irradiation of 137 Cs in the IAEA/WHO secondary standard dosimetry laboratory. Dose-response of the film is established. The sensitivity of the film is determined. The dose-rate effect is studied. (author)

  12. Dose Rate Determination from Airborne Gamma-ray Spectra

    DEFF Research Database (Denmark)

    Bargholz, Kim

    1996-01-01

    The standard method for determination of ground level dose rates from airborne gamma-ray is the integral count rate which for a constant flying altitude is assumed proportional to the dose rate. The method gives reasonably results for natural radioactivity which almost always has the same energy...

  13. Standardization of high-dose measurement of electron and gamma ray absorbed doses and dose rates

    International Nuclear Information System (INIS)

    McLaughlin, W.L.

    1985-01-01

    Intense electron beams and gamma radiation fields are used for sterilizing medical devices, treating municipal wastes, processing industrial goods, controlling parasites and pathogens, and extending the shelf-life of foods. Quality control of such radiation processes depends largely on maintaining measurement quality assurance through sound dosimetry procedures in the research leading to each process, in the commissioning of that process, and in the routine dose monitoring practices. This affords documentation as to whether satisfactory dose uniformity is maintained throughout the product and throughout the process. Therefore, dosimetry at high doses and dose rates must in many radiation processes be standardized carefully, so that 'dosimetry release' of a product is verified. This standardization is initiated through preliminary dosimetry intercomparison studies such as those sponsored recently by the IAEA. This is followed by establishing periodic exercises in traceability to national or international standards of absorbed dose and dose rate. Traceability is achieved by careful selection of dosimetry methods and proven reference dosimeters capable of giving sufficiently accurate and precise 'transfer' dose assessments: (1) they must be calibrated or have well-established radiation-yield indices; (2) their radiation response characteristics must be reproducible and cover the dose range of interest; (3) they must withstand the rigours of back-and-forth mailing between a central standardizing laboratory and radiation processing facilities, without excessive errors arising due to instabilities, dosimeter batch non-uniformities, and environmental and handling stresses. (author)

  14. Evaluation and comparison of gamma- and electron beam irradiation effects on total and free gossypol of cottonseed meal

    International Nuclear Information System (INIS)

    Shawrang, P.; Mansouri, M.H.; Sadeghi, A.A.; Ziaie, F.

    2011-01-01

    Impact of gamma- and electron beam irradiation on total and free gossypol content of cottonseed meal was assessed by exposing them to doses of 10, 15, 20, 25 and 30 kGy. Gamma rays and electron beam showed the same effects with significant dose-dependent decrease in total and free gossypol content. Based on these results, ionizing irradiation at doses of 25 kGy and above could completely remove free gossypol and bring down total gossypol content to permissible level in poultry feed.

  15. Contributions to indoor gamma dose rate from building materials

    International Nuclear Information System (INIS)

    Liu Xionghua; Li Guangming; Yang Xiangdong

    1990-01-01

    In the coures of construction of a building structured with bricks and concrets, the indoor gamma air absorbed dose rates were seperately measured from the floors, brick walls and prefabricated plates of concrets, etc.. It suggested that the indoor gamma dose rates from building materials are mainly attributed to the brick walls and the floors. A little contribution comes from other brilding materials. The dose rates can be calculated through a 4π-infinite thick model with a correction factor of 0.52

  16. Theoretic simulation for CMOS device on total dose radiation response

    International Nuclear Information System (INIS)

    He Baoping; Zhou Heqin; Guo Hongxia; He Chaohui; Zhou Hui; Luo Yinhong; Zhang Fengqi

    2006-01-01

    Total dose effect is simulated for C4007B, CC4007RH and CC4011 devices at different absorbed dose rate by using linear system theory. When irradiation response and dose are linear, total dose radiation and post-irradiation annealing at room temperature are determined for one random by choosing absorbed dose rate, and total dose effect at other absorbed dose rate can be predicted by using linear system theory. The simulating results agree with the experimental results at different absorbed dose rate. (authors)

  17. Changes in total carbohydrate and total antioxidant activity induced by gamma irradiation of wheat flour

    International Nuclear Information System (INIS)

    Manupriya, B.R.; Shenoy, K. Bhasker; Patil, Shrikant L.; Somashekarappa, H.M.

    2015-01-01

    Wheat is a staple food grain in India after rice and occupies number one position in the world. The wheat crop not only gives food grains but also gives fodder for animals. Among many preservation methods irradiation is a current technique used to overcome infestation, contamination and spoilage of stored grains. The present study is aimed to check the changes in composition of irradiated wheat flour. Wheat flour was exposed to five different irradiation doses (0.25 KGy, 0.5KGy, 1KGy, 5KGy and 10 KGy) by using 60 Co gamma-irradiation chamber. Irradiated flour was stored in air sealed polyethylene pouch and plastic container at room temperature for different time intervals (0 th day, 1 month and 3 months). The stored flour was checked for total antioxidant activity by phosphomolybdate method and total carbohydrates concentration by phenol-sulphuric acid method. On 0 th day total antioxidant activity and total carbohydrate concentration was found to be increased at 0.5KGy (0.113 mg/ml and 0.045 mg/ml respectively) when compared to control (0.79 mg/ml and 39.5 mg/ml). Similarly for 1 month stored samples of air sealed polyethylene pouch total antioxidant activity and total carbohydrate concentration was observed to be increased at 0.5KGy (0.117 mg/ml and 0.045mg/ml respectively) when compared to control (0.096 mg/ml and 0.035 mg/ml). But in case of stored samples of plastic container total antioxidant activity increased at 0.25KGy (0.060 mg/ml) and total carbohydrate increased at 5KGy (0.051 mg/ml). Increased and decreased values were found in both factors for 3 months stored samples of air sealed polyethylene pouch and plastic container. Total antioxidant activity increased at 5KGy (0.072 mg/ml) for polyethylene bag samples and at 0.5KGy (0.137 mg/ml) for plastic container sample. Same way total carbohydrate concentration increased at 0.25KGy (0.046 mg/ml) and at 1KGy (0.045 mg/ml) respectively. This increase is due to affects of γ-irradiation on biomolecules by

  18. Responses of rat R-1 cells to low dose rate gamma radiation and multiple daily dose fractions

    International Nuclear Information System (INIS)

    Kal, H.B.; Bijman, J.Th.

    1981-01-01

    Multifraction irradiation may offer the same therapeutic gain as continuous irradiation. Therefore, a comparison of the efficacy of low dose rate irradiation and multifraction irradiation was the main objective of the experiments to be described. Both regimens were tested on rat rhabdomyosarcoma (R-1) cells in vitro and in vivo. Exponentially growing R-1 cells were treated in vitro by a multifraction irradiation procedure with dose fractions of 2 Gy gamma radiation and time intervals of 1 to 3 h. The dose rate was 1.3 Gy.min -1 . The results indicate that multifractionation of the total dose is more effective with respect to cell inactivation than continuous irradiation. (Auth.)

  19. Total proteins and protein fractions levels in pregnant rats subjected to whole-body gamma irradiation

    International Nuclear Information System (INIS)

    Mansour, M.A.; Roushdy, H.M.; Mazhar, F.M.; Abu-Gabal, H.A.

    1986-01-01

    A total number of 180 mature rats (120 females and 60 males) weighing from 120-140 g were used to study the effect of two doses (2 and 4 Gy) whole-body gamma irradiation on the level of total protein and protein fractions in serum of pregnant rats during the period of organogenesis. It was found that the levels of total protein, albumin and gamma globulins significantly decreased according to the doses of exposure. The levels of alpha and beta globulins significantly increased more in the serum of rats exposed to 2 Gy than in rats exposed to 4 Gy. The level of A/G ratio significantly decreased more in the serum of rats exposed to 2Gy than in those exposed to 4 Gy

  20. Spectroscopic gamma camera for use in high dose environments

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, Yuichiro, E-mail: yuichiro.ueno.bv@hitachi.com [Research and Development Group, Hitachi, Ltd., Hitachi-shi, Ibaraki-ken 319-1221 (Japan); Takahashi, Isao; Ishitsu, Takafumi; Tadokoro, Takahiro; Okada, Koichi; Nagumo, Yasushi [Research and Development Group, Hitachi, Ltd., Hitachi-shi, Ibaraki-ken 319-1221 (Japan); Fujishima, Yasutake; Kometani, Yutaka [Hitachi Works, Hitachi-GE Nuclear Energy, Ltd., Hitachi-shi, Ibaraki-ken (Japan); Suzuki, Yasuhiko [Measuring Systems Engineering Dept., Hitachi Aloka Medical, Ltd., Ome-shi, Tokyo (Japan); Umegaki, Kikuo [Faculty of Engineering, Hokkaido University, Sapporo-shi, Hokkaido (Japan)

    2016-06-21

    We developed a pinhole gamma camera to measure distributions of radioactive material contaminants and to identify radionuclides in extraordinarily high dose regions (1000 mSv/h). The developed gamma camera is characterized by: (1) tolerance for high dose rate environments; (2) high spatial and spectral resolution for identifying unknown contaminating sources; and (3) good usability for being carried on a robot and remotely controlled. These are achieved by using a compact pixelated detector module with CdTe semiconductors, efficient shielding, and a fine resolution pinhole collimator. The gamma camera weighs less than 100 kg, and its field of view is an 8 m square in the case of a distance of 10 m and its image is divided into 256 (16×16) pixels. From the laboratory test, we found the energy resolution at the 662 keV photopeak was 2.3% FWHM, which is enough to identify the radionuclides. We found that the count rate per background dose rate was 220 cps h/mSv and the maximum count rate was 300 kcps, so the maximum dose rate of the environment where the gamma camera can be operated was calculated as 1400 mSv/h. We investigated the reactor building of Unit 1 at the Fukushima Dai-ichi Nuclear Power Plant using the gamma camera and could identify the unknown contaminating source in the dose rate environment that was as high as 659 mSv/h.

  1. Response of human lymphocytes to low gamma ray doses

    International Nuclear Information System (INIS)

    Vega Carrillo, HR; Banuelos Valenzuela, R; Manzanares Acuna, E; Sanchez-Rodriguez, S.H

    2001-01-01

    Radiation and non-radiation workers lymphocytes were exposed to a low strength gamma-ray field to determine heat shock protein expression in function of radiation dose. Protein identification was carried out using mAb raised against Hsp25, Hsp60, Hsp70 and Hsp90; from these, only Hsp70 protein was detected before and after lymphocyte irradiation. In all cases, an increasing trend of relative amounts of Hsp70 in function to irradiation time was observed. After 70.5 mGy gamma-ray dose, radiation worker's lymphocytes expressed more Hsp70 protein, than non-radiation workers' lymphocytes, indicating a larger tolerance to gamma rays (gamma tolerance), due to an adaptation process developed by their labor condition (Au)

  2. Relationship of dose rate and total dose to responses of continuously irradiated beagles

    International Nuclear Information System (INIS)

    Fritz, T.E.; Norris, W.P.; Tolle, D.V.; Seed, T.M.; Poole, C.M.; Lombard, L.S.; Doyle, D.E.

    1978-01-01

    Young-adult beagles were exposed continuously (22 hours/day) to 60 Co gamma rays in a specially constructed facility. The exposure rates were 5, 19, 17 or 35 R/day, and the exposures were terminated at 600, 1400, 2000 or 4000 R. A total of 354 dogs were irradiated; 221 are still alive as long-term survivors, some after more than 2000 days. The data on survival of these dogs, coupled with data from similar preliminary experiments, allow an estimate of the LD 50 for gamma-ray exposures given at a number of exposure rates. They also allow comparison of the relativeimportance of dose rate and total dose, and the interaction of these two variables, in the early and late effects after protracted irradiation. The LD 50 for the beagle increases from 344 R (258 rads) delivered at 15 R/minute to approximately 4000 R (approximately 3000 rads) at 10 R/day. Over this entire range, the LD 50 is dependent upon haematopoietic damage. At 5 R/day and less, no definitive LD 50 can be determined; there is nearly normal continued haematopoietic function, survival is prolonged, and the dogs manifest varied individual responses in the organ systems. Although the experiment is not complete, interim data allow serveral important conclusions. Terminated exposures, while not as effective as irradiation continued until death, can produce myelogenous leukaemia at the same exposure rate, 10 R/day. More importantly, at the same total accumulated dose, lower exposure rates appear more damaging than higher rates on the basis of the rate and degree of haematological recovery that occurs after termination of irradiation. Thus, the rate of haematologic depression, the nadir of the depression and the rate of recovery are dependent upon exposure rate; the latter is inversely related and the first two are directly related to exposure rate. ( author)

  3. Assessment of genetically significant doses to the Sofia population from natural gamma background

    International Nuclear Information System (INIS)

    Vasilev, G.; Khristova, M.

    1977-01-01

    Genetically significant dose to the population of Sofia city was assessed within a program covering larger urban communities in the country. Measurements were made of gamma background exposure rates in the gonadal region. Gonad doses were estimated using a screening factor of 0.73. Based on statistical data for total number of inhabitants and number of people of reproductive age, and on the mean annual gonad doses derived, calculations were made of genetically significant dose to the Sofia population. Base-line data were thus provided for an assessment of extra radiation dose resulting from occupational radiation exposure. (author)

  4. Low doses effects and gamma radiations low dose rates

    International Nuclear Information System (INIS)

    Averbeck, D.

    1999-01-01

    This expose wishes for bringing some definitions and base facts relative to the problematics of low doses effects and low dose rates effects. It shows some already used methods and some actual experimental approaches by focusing on the effects of ionizing radiations with a low linear energy transfer. (N.C.)

  5. Calculation method for gamma dose rates from Gaussian puffs

    Energy Technology Data Exchange (ETDEWEB)

    Thykier-Nielsen, S; Deme, S; Lang, E

    1995-06-01

    The Lagrangian puff models are widely used for calculation of the dispersion of releases to the atmosphere. Basic output from such models is concentration of material in the air and on the ground. The most simple method for calculation of the gamma dose from the concentration of airborne activity is based on the semi-infinite cloud model. This method is however only applicable for puffs with large dispersion parameters, i.e. for receptors far away from the release point. The exact calculation of the cloud dose using volume integral requires large computer time usually exceeding what is available for real time calculations. The volume integral for gamma doses could be approximated by using the semi-infinite cloud model combined with correction factors. This type of calculation procedure is very fast, but usually the accuracy is poor because only a few of the relevant parameters are considered. A multi-parameter method for calculation of gamma doses is described here. This method uses precalculated values of the gamma dose rates as a function of E{sub {gamma}}, {sigma}{sub y}, the asymmetry factor - {sigma}{sub y}/{sigma}{sub z}, the height of puff center - H and the distance from puff center R{sub xy}. To accelerate the calculations the release energy, for each significant radionuclide in each energy group, has been calculated and tabulated. Based on the precalculated values and suitable interpolation procedure the calculation of gamma doses needs only short computing time and it is almost independent of the number of radionuclides considered. (au) 2 tabs., 15 ills., 12 refs.

  6. Population doses from terrestrial gamma exposure in China

    International Nuclear Information System (INIS)

    Ren, T.; Wang, Z.; Zhu, C.

    1992-01-01

    In order to estimate terrestrial gamma radiation exposure three nationwide surveys have been completed since 1981. The population-weighted outdoor and indoor arithmetic means of gamma dose rate based on momentary dose rate measurements using a NaI(Tl) environmental radiation meter and high-pressure ionisation chamber are, respectively, 80.3 nGy.h -1 and 120 nGy.h -1 . Based on integrating dose measurement using TLD CaSO 4 /Dy they are 67 nGy.h -1 and 89 nGy.h -1 respectively, and based on natural radionuclides concentrations in soil, determined by gamma spectroscopy analyses, they are 72.8 nGy.h -1 and 102 nGy.h -1 , respectively. These surveys were conducted independently by different groups. The best estimations of population-weighted gamma dose rates in China, based on all these surveys, would be 70 nGy.h -1 and 98 nGy.h -1 for outdoors and indoors, respectively. The annual average of effective dose equivalent is 0.56 mSv. These values are higher than the world averages estimated by UNSCEAR. The main reason is that the concentrations of 232 Th and 40 K in the soil of China are much higher than the world average estimated. (author)

  7. Population doses from terrestrial gamma exposure in China

    Energy Technology Data Exchange (ETDEWEB)

    Ren, T.; Wang, Z.; Zhu, C. (Ministry of Public Health, Beijing, BJ (China))

    1992-01-01

    In order to estimate terrestrial gamma radiation exposure three nationwide surveys have been completed since 1981. The population-weighted outdoor and indoor arithmetic means of gamma dose rate based on momentary dose rate measurements using a NaI(Tl) environmental radiation meter and high-pressure ionisation chamber are, respectively, 80.3 nGy.h[sup -1] and 120 nGy.h[sup -1]. Based on integrating dose measurement using TLD CaSO[sub 4]/Dy they are 67 nGy.h[sup -1] and 89 nGy.h[sup -1] respectively, and based on natural radionuclides concentrations in soil, determined by gamma spectroscopy analyses, they are 72.8 nGy.h[sup -1] and 102 nGy.h[sup -1], respectively. These surveys were conducted independently by different groups. The best estimations of population-weighted gamma dose rates in China, based on all these surveys, would be 70 nGy.h[sup -1] and 98 nGy.h[sup -1] for outdoors and indoors, respectively. The annual average of effective dose equivalent is 0.56 mSv. These values are higher than the world averages estimated by UNSCEAR. The main reason is that the concentrations of [sup 232]Th and [sup 40]K in the soil of China are much higher than the world average estimated. (author).

  8. Calculation method for gamma-dose rates from spherical puffs

    International Nuclear Information System (INIS)

    Thykier-Nielsen, S.; Deme, S.; Lang, E.

    1993-05-01

    The Lagrangian puff-models are widely used for calculation of the dispersion of atmospheric releases. Basic output from such models are concentrations of material in the air and on the ground. The most simple method for calculation of the gamma dose from the concentration of airborne activity is based on semi-infinite cloud model. This method is however only applicable for points far away from the release point. The exact calculation of the cloud dose using the volume integral requires significant computer time. The volume integral for the gamma dose could be approximated by using the semi-infinite cloud model combined with correction factors. This type of calculation procedure is very fast, but usually the accuracy is poor due to the fact that the same correction factors are used for all isotopes. The authors describe a more elaborate correction method. This method uses precalculated values of the gamma-dose rate as a function of the puff dispersion parameter (δ p ) and the distance from the puff centre for four energy groups. The release of energy for each radionuclide in each energy group has been calculated and tabulated. Based on these tables and a suitable interpolation procedure the calculation of gamma doses takes very short time and is almost independent of the number of radionuclides. (au) (7 tabs., 7 ills., 12 refs.)

  9. Investigation of PBAT dosimetric properties for high gamma dose dosimetry

    International Nuclear Information System (INIS)

    Cunha, Elisete L.; Schimitberger, Thiago

    2017-01-01

    Poly(butylene adipate-co-terephthalate) (PBAT) is an aliphatic-aromatic copolyester which is biodegradable. It is a non-photoluminescent copolyester that becomes photoluminescent after previous exposure to gamma doses higher than 100 kGy. After the previous high energy irradiation, the material shows the highest photo-stimulated luminescence emission when excited with a LED source at wavelengths ranging from 370 to 405 nm. In this work we investigated the enhancement of the photoluminescence (PL) and dosimetric properties of PBAT, after exposure to high doses of gamma radiation ranging from 50 to 4,000 kGy. In this investigation we demonstrate that increasing the PBAT film thickness by 100 μm enhances the PL output by 3.5 times, when irradiated with 500 kGy. Also, besides the already known color green brightness, the PL intensity can also be used for high dose dosimetry purposes for doses ranging from 50 to 750 kGy. The FTIR analysis has demonstrated that the there is a linear relationship between peak intensity and dose for doses ranging from 100 and 2,000 kGy for the absorbance peaks at 3,241 cm -1 and 3271 cm -1 , with linear correlation coefficients of 0.9981 and 0.9992, respectively. The results indicate that PBAT has great potential for applications in bio-imaging devices and high gamma dose dosimetry. (author)

  10. Investigation of PBAT dosimetric properties for high gamma dose dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, Elisete L.; Schimitberger, Thiago, E-mail: elisete.cunha@cdtn.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Oliveira, Cristiana M.; Faria, Luiz O., E-mail: farialo@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    Poly(butylene adipate-co-terephthalate) (PBAT) is an aliphatic-aromatic copolyester which is biodegradable. It is a non-photoluminescent copolyester that becomes photoluminescent after previous exposure to gamma doses higher than 100 kGy. After the previous high energy irradiation, the material shows the highest photo-stimulated luminescence emission when excited with a LED source at wavelengths ranging from 370 to 405 nm. In this work we investigated the enhancement of the photoluminescence (PL) and dosimetric properties of PBAT, after exposure to high doses of gamma radiation ranging from 50 to 4,000 kGy. In this investigation we demonstrate that increasing the PBAT film thickness by 100 μm enhances the PL output by 3.5 times, when irradiated with 500 kGy. Also, besides the already known color green brightness, the PL intensity can also be used for high dose dosimetry purposes for doses ranging from 50 to 750 kGy. The FTIR analysis has demonstrated that the there is a linear relationship between peak intensity and dose for doses ranging from 100 and 2,000 kGy for the absorbance peaks at 3,241 cm{sup -1} and 3271 cm{sup -1}, with linear correlation coefficients of 0.9981 and 0.9992, respectively. The results indicate that PBAT has great potential for applications in bio-imaging devices and high gamma dose dosimetry. (author)

  11. TL detectors for gamma ray dose measurements in criticality accidents

    International Nuclear Information System (INIS)

    Miljanic, S.; Zorko, B.; Gregori, B.; Knezevic, Z.

    2007-01-01

    Determination of gamma ray dose in mixed neutron + gamma ray fields is still a demanding task. Dosemeters used for gamma ray dosimetry are usually in some extent sensitive to neutrons and their response variations depend on neutron energy i.e., on neutron spectra. Besides, it is necessary to take into account the energy dependence of dosemeter responses to gamma rays. In this work, several types of thermoluminescent detectors (TLD) placed in different holders used for gamma ray dose determination in the mixed fields were examined. Dosemeters were from three different institutions: Ruder Boskovic Inst. (RBI), Croatia, Jozef Stefan Inst. (JSI), Slovenia and Autoridad Regulatoria Nuclear (ARN), Argentina. All dosemeters were irradiated during the International Intercomparison of Criticality Accident Dosimetry Systems at the SILENE Reactor, Valduc, June 2002. Three accidental scenarios were reproduced and in each irradiation the dosemeters were exposed placed on the front of phantom and 'free in air'. Following types of TLDs were used: 7 LiF (TLD-700), CaF 2 :Mn and Al2 O3 :Mg,Y - all from RBI; CaF 2 :Mn from JSI and 7 LiF (TLD-700) from ARN. Reported doses were compared with the reference values as well as with the values obtained from the results of all participants. The results show satisfactory agreement with other dosimetry systems used in the Intercomparison. The influence of different types of holders and applied corrections of dosemeters' readings are discussed. (authors)

  12. TL detectors for gamma ray dose measurements in criticality accidents.

    Science.gov (United States)

    Miljanić, Saveta; Zorko, Benjamin; Gregori, Beatriz; Knezević, Zeljka

    2007-01-01

    Determination of gamma ray dose in mixed neutron+gamma ray fields is still a demanding task. Dosemeters used for gamma ray dosimetry are usually in some extent sensitive to neutrons and their response variations depend on neutron energy i.e., on neutron spectra. Besides, it is necessary to take into account the energy dependence of dosemeter responses to gamma rays. In this work, several types of thermoluminescent detectors (TLD) placed in different holders used for gamma ray dose determination in the mixed fields were examined. Dosemeters were from three different institutions: Ruder Bosković Institute (RBI), Croatia, JoZef Stefan Institute (JSI), Slovenia and Autoridad Regulatoria Nuclear (ARN), Argentina. All dosemeters were irradiated during the International Intercomparison of Criticality Accident Dosimetry Systems at the SILENE Reactor, Valduc, June 2002. Three accidental scenarios were reproduced and in each irradiation the dosemeters were exposed placed on the front of phantom and 'free in air'. Following types of TLDs were used: 7LiF (TLD-700), CaF2:Mn and Al2O3:Mg,Y-all from RBI; CaF2:Mn from JSI and 7LiF (TLD-700) from ARN. Reported doses were compared with the reference values as well as with the values obtained from the results of all participants. The results show satisfactory agreement with other dosimetry systems used in the Intercomparison. The influence of different types of holders and applied corrections of dosemeters' readings are discussed.

  13. Calculation method for gamma dose rates from Gaussian puffs

    International Nuclear Information System (INIS)

    Thykier-Nielsen, S.; Deme, S.; Lang, E.

    1995-06-01

    The Lagrangian puff models are widely used for calculation of the dispersion of releases to the atmosphere. Basic output from such models is concentration of material in the air and on the ground. The most simple method for calculation of the gamma dose from the concentration of airborne activity is based on the semi-infinite cloud model. This method is however only applicable for puffs with large dispersion parameters, i.e. for receptors far away from the release point. The exact calculation of the cloud dose using volume integral requires large computer time usually exceeding what is available for real time calculations. The volume integral for gamma doses could be approximated by using the semi-infinite cloud model combined with correction factors. This type of calculation procedure is very fast, but usually the accuracy is poor because only a few of the relevant parameters are considered. A multi-parameter method for calculation of gamma doses is described here. This method uses precalculated values of the gamma dose rates as a function of E γ , σ y , the asymmetry factor - σ y /σ z , the height of puff center - H and the distance from puff center R xy . To accelerate the calculations the release energy, for each significant radionuclide in each energy group, has been calculated and tabulated. Based on the precalculated values and suitable interpolation procedure the calculation of gamma doses needs only short computing time and it is almost independent of the number of radionuclides considered. (au) 2 tabs., 15 ills., 12 refs

  14. The effect of gamma dose on the PADC detectors

    International Nuclear Information System (INIS)

    Zaky, M.F.; Youssef, A.A.

    2002-01-01

    The effect of irradiation by 6 0C O gamma rays in the range 0-60 K gray has been examined on CR-39 SSNTDs. The fission fragment tracks diameter were measured using an optical microscope, the bulk etching rate was calculated using the equation V B = D/2 t. The results indicate that, the track diameter is seen increase slowly in the range 0-60 K gray. The bulk etching rate increases almost linearly as the given gamma dose increases up to (22.5 K Gray), at higher doses the bulk etching rate increases exponentially. The exposure of the CR-39 to gamma rays could sensitize the CR-39 plastic and thus improve the Z/P threshold for track registration

  15. In vitro cell culture lethal dose submitted to gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, Carolina S.; Rogero, Sizue O.; Rogero, Jose Roberto [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)], e-mail: carolina_sm@hotmail.com; Ikeda, Tamiko I.; Cruz, Aurea S. [Instituto Adolfo Lutz, Sao Paulo, SP (Brazil)

    2009-07-01

    The present study was designed to evaluate the in vitro effect of gamma radiation in cell culture of mouse connective tissue exposed to different doses of gamma radiation and under several conditions. The cell viability was analyzed by neutral red uptake methodology. This assay was developed for establish a methodology to be used in the future in the study of resveratrol radioprotection. Resveratrol (3,4',5- trihydroxystilbene), a phenolic phytoalexin that occurs naturally in some spermatophytes, such as grapevines, in response to injury as fungal infections and exposure to ultraviolet light. In the wines this compound is found at high levels and is considered one of the highest antioxidant constituents. The intense antioxidant potential of resveratrol provides many pharmacological activities including cardioprotection, chemoprevention and anti-tumor effects. Our results demonstrated that {sup 60}Co gamma radiation lethal dose (LD50) on NCTC clone 929 cells was about 340Gy. (author)

  16. In vitro cell culture lethal dose submitted to gamma radiation

    International Nuclear Information System (INIS)

    Moreno, Carolina S.; Rogero, Sizue O.; Rogero, Jose Roberto; Ikeda, Tamiko I.; Cruz, Aurea S.

    2009-01-01

    The present study was designed to evaluate the in vitro effect of gamma radiation in cell culture of mouse connective tissue exposed to different doses of gamma radiation and under several conditions. The cell viability was analyzed by neutral red uptake methodology. This assay was developed for establish a methodology to be used in the future in the study of resveratrol radioprotection. Resveratrol (3,4',5- trihydroxystilbene), a phenolic phytoalexin that occurs naturally in some spermatophytes, such as grapevines, in response to injury as fungal infections and exposure to ultraviolet light. In the wines this compound is found at high levels and is considered one of the highest antioxidant constituents. The intense antioxidant potential of resveratrol provides many pharmacological activities including cardioprotection, chemoprevention and anti-tumor effects. Our results demonstrated that 60 Co gamma radiation lethal dose (LD50) on NCTC clone 929 cells was about 340Gy. (author)

  17. A formalism for independent checking of Gamma Knife dose calculations

    International Nuclear Information System (INIS)

    Tsai Jensan; Engler, Mark J.; Rivard, Mark J.; Mahajan, Anita; Borden, Jonathan A.; Zheng Zhen

    2001-01-01

    For stereotactic radiosurgery using the Leksell Gamma Knife system, it is important to perform a pre-treatment verification of the maximum dose calculated with the Leksell GammaPlan[reg] (D LGP ) stereotactic radiosurgery system. This verification can be incorporated as part of a routine quality assurance (QA) procedure to minimize the chance of a hazardous overdose. To implement this procedure, a formalism has been developed to calculate the dose D CAL (X,Y,Z,d av ,t) using the following parameters: average target depth (d av ), coordinates (X,Y,Z) of the maximum dose location or any other dose point(s) to be verified, 3-dimensional (3-dim) beam profiles or off-center-ratios (OCR) of the four helmets, helmet size i, output factor O i , plug factor P i , each shot j coordinates (x,y,z) i,j , and shot treatment time (t i,j ). The average depth of the target d av was obtained either from MRI/CT images or ruler measurements of the Gamma Knife Bubble Head Frame. D CAL and D LGP were then compared to evaluate the accuracy of this independent calculation. The proposed calculation for an independent check of D LGP has been demonstrated to be accurate and reliable, and thus serves as a QA tool for Gamma Knife stereotactic radiosurgery

  18. $\\gamma^{*}\\gamma^{*}$ total cross-section in the dipole picture of BFKL dynamics

    CERN Document Server

    Boonekamp, M; Royon, C; Wallon, S

    1999-01-01

    The total $\\gamma^*\\gamma^*$ cross-section is derived in the Leading Order QCD dipole picture of BFKL dynamics, and compared with the one from 2-gluon exchange. The Double Leading Logarithm approximation of the DGLAP cross-section is found to be small in the phase space studied. Cross sections are calculated for realistic data samples at the $e^+e^-$ collider LEP and a future high energy linear collider. Next to Leading order corrections to the BFKL evolution have been determined phenomenologically, and are found to give very large corrections to the BFKL cross-section, leading to a reduced sensitivity for observing BFKL.

  19. Dose Rate and Mass Attenuation Coefficients of Gamma Ray for Concretes

    CERN Document Server

    Abdel-Latif, A A; Kansouh, W A; El-Sayed, F H

    2003-01-01

    This work is concerned with the study of the leakage gamma ray dose and mass attenuation coefficients for ordinary, basalt and dolomite concretes made from local ores. Concretes under investigation were constructed from gravel, basalt and dolomite ores, and then reconstructed with the addition of 3% steel fibers by weight. Measurements were carried out using a collimated beam from sup 6 sup 0 Co gamma ray source and sodium iodide (3x3) crystal with the genie 2000 gamma spectrometer. The obtained fluxes were transformed to gamma ray doses and displayed in the form of gamma ray dose rates distribution. The displayed curves were used to estimate the linear attenuation coefficients (mu), the relaxation lengths (lambda), half value layer (t sub 1 /2) and tenth value layer (t sub 1 /10). Also, The total mass attenuation coefficients of gamma ray have been calculated to the concerned concretes using XCOM (version 3.1) program and database elements cross sections from Z=1 to 100 at energies from 10 keV to 100 MeV. In...

  20. RSAC, Gamma Doses, Inhalation and Ingestion Doses, Fission Products Inventory after Fission Products Release

    International Nuclear Information System (INIS)

    Richardson, L.C.

    1967-01-01

    1 - Description of problem or function: RSAC generates a fission product inventory from a given set of reactor operating conditions and then computes the external gamma dose, the deposition gamma dose, and the inhalation-ingestion dose to critical body organs as a result of exposure to these fission products. Program output includes reactor operating history, fission product inventory, dosages, and ingestion parameters. 2 - Method of solution: The fission product inventory generated by the reactor operating conditions and the inventory remaining at various times after release are computed using the equations of W. Rubinson in Journal of Chemical Physics, Vol. 17, pages 542-547, June 1949. The external gamma dose and the deposition gamma dose are calculated by determining disintegration rates as a function of space and time, then integrating using Hermite's numerical techniques for the spatial dependence. The inhalation-ingestion dose is determined by the type and quantity of activity inhaled and the biological rate of decay following inhalation. These quantities are integrated with respect to time to obtain the dosage. The ingestion dose is related to the inhalation dose by an input constant

  1. Dose mapping of the multi-purpose gamma irradiation facility

    Energy Technology Data Exchange (ETDEWEB)

    Cabalfin, E G; Lanuza, L G; Villamater, D T [Irradiation Services, Nuclear Services and Training Division, Philippine Nuclear Research Institute, Quezon City (Philippines)

    1989-12-01

    In radiation processing, reliable dosimetry constitutes a very important part of process control and quality assurance. Radiation dosimetry is the only acceptable method to guarantee that the irradiated product has undergone the correct radiation treatment. In preparation therefore, for the routine operation of the newly installed multi-purpose gamma irradiation facility at the Philippine Nuclear Research Institute (PNRI), dose mapping distribution studies were undertaken. Results of dose distribution in air as well as in dummy product are presented. The effects of product bulk density, product geometry and product to source distance on minimum absorbed dose and uniformity ratio have been determined. (Author).

  2. Dose mapping of the multi-purpose gamma irradiation facility

    International Nuclear Information System (INIS)

    Cabalfin, E.G.; Lanuza, L.G.; Villamater, D.T.

    1989-01-01

    In radiation processing, reliable dosimetry constitutes a very important part of process control and quality assurance. Radiation dosimetry is the only acceptable method to guarantee that the irradiated product has undergone the correct radiation treatment. In preparation therefore, for the routine operation of the newly installed multi-purpose gamma irradiation facility at the Philippine Nuclear Research Institute (PNRI), dose mapping distribution studies were undertaken. Results of dose distribution in air as well as in dummy product are presented. The effects of product bulk density, product geometry and product to source distance on minimum absorbed dose and uniformity ratio have been determined. (Author)

  3. Population doses from terrestrial gamma exposure in China

    International Nuclear Information System (INIS)

    Ren, T.; Wang, Z.; Zhu, C.

    1993-01-01

    In order to estimate terrestrial gamma radiation exposures, three nationwide surveys have been completed since 1981. The population weighted outdoor and indoor arithmetic means of gamma dose rates based on momentary measurements using a NaI(T1) environmental radiation meter and a high pressured ionization chamber are 80.3 and 120 nGy.h -1 . The means based on integrating measurements using TLD natural radionuclides concentrations in soil, determined by gamma spectrometry analyses, are 72.8 and 102 nGy.h -1 , respectively. These surveys were conducted independently and equally representative. The best estimation of site-averaged and population weighted gamma dose rates in China, based on all these surveys, would be 70 and 98 nGy.h -1 for indoor and outdoor, respectively. The annual average of effective dose equivalent is 0.56 mSv. These values are higher than the world averages estimated by UNSCEAR. The main reason is that the concentrations of 232 Th and 40 K in soil of China are much higher than the world average estimated. (author). 4 refs, 2 tabs

  4. Gamma-Ray Doses Affected on Alfalfa (Medicago sativa L.)

    International Nuclear Information System (INIS)

    Zayed, E.M; Tarrad, M.M.; Abd El-Daem, G.A.N.A.

    2013-01-01

    Field experiments were conducted at the experimental from, Nuclear Research Center at Inshas. Atomic Energy Authority (AEA) at Egypt during 2011– 2012 growing seasons on alfalfa genotype. The aim of this investigation to evaluate the effect of different gamma ray doses (100-300 Gy) on the alfalfa yield and related traits. Seeds lots of alfalfa genotype were subjected to five gamma ray treatments (100,150,200,250 and 300 Gray). Over all cuts, the dose treatment 300 Gy increased the majority of studied traits i.e., plant height, No. of shoots/plant, fresh weight/plant, fresh yield/Fadden and dry weight yield/fed. The results observed indicated that. In addition, dose of 200 and 250 Gy increased No. of leaves /plant, No. of shoots/plant, stem diameter and fresh weight /plant. However, the plant dry weight was decreased by all doses used and over all cuts, but the dose of 100 and 150 Gy increased leaves /stem ratio. Meanwhile, the later cuts were more affected by irradiation treatments than the earlier ones. In general, the low doses had negative effects on yield traits, but, the relatively high doses exhibited an increase in yield traits

  5. Biological responses to low dose rate gamma radiation

    International Nuclear Information System (INIS)

    Magae, Junji; Ogata, Hiromitsu

    2003-01-01

    Linear non-threshold (LNT) theory is a basic theory for radioprotection. While LNT dose not consider irradiation time or dose-rate, biological responses to radiation are complex processes dependent on irradiation time as well as total dose. Moreover, experimental and epidemiological studies that can evaluate LNT at low dose/low dose-rate are not sufficiently accumulated. Here we analyzed quantitative relationship among dose, dose-rate and irradiation time using chromosomal breakage and proliferation inhibition of human cells as indicators of biological responses. We also acquired quantitative data at low doses that can evaluate adaptability of LNT with statistically sufficient accuracy. Our results demonstrate that biological responses at low dose-rate are remarkably affected by exposure time, and they are dependent on dose-rate rather than total dose in long-term irradiation. We also found that change of biological responses at low dose was not linearly correlated to dose. These results suggest that it is necessary for us to create a new model which sufficiently includes dose-rate effect and correctly fits of actual experimental and epidemiological results to evaluate risk of radiation at low dose/low dose-rate. (author)

  6. Skin dose assessment in routine personnel beta/gamma dosimetry

    International Nuclear Information System (INIS)

    Christensen, P.

    1980-01-01

    The International Commission on Radiological Protection (Publication 26) has recommended a tissue depth of 5 to 10 mg.cm -2 for skin dose assessments. This requirement is generally not fulfilled by routine monitoring procedures because of practical difficulties in using very thin dosemeters with low sensitivity and therefore a high minimum detectable dose. Especially for low-energy beta-ray exposures underestimations of the skin dose by a factor of more than ten may occur. Low-transparent graphite-mixed sintered LiF and Li 2 B 4 0 7 : Mn dosemeters were produced which show a skin-equivalent response to beta and gamma exposures over a wide range of energies. These have found wide-spread application for extremity dosimetry but have not yet been generally introduced in routine personnel beta/gamma monitoring. The following adaptations of existing routine monitoring systems for improved skin dose assessments have been investigated: 1) Placement of a supplementary, thin, skin-dose equivalent dosemeter in the TLD badge to give additional information on low-energy exposures. 2) Introduction of a second photomultiplier in the read-out chamber which enables a simultaneous determination of emitted TL from both sides of the dosemeter separately. This method makes use of the selfshielding of the dosemeter to give information on the low-energy dose contribution. 3) By diffusion of Li 2 B 4 0 7 into solid LiF-dosemeters it was possible to produce a surface layer with a new distinct glow-peak at about 340 deg C which is not present in the undiffused part of the LiF chip, and which can be utilized for the assessment of the skin-dose. Data on energy response and accuracy of dose measurement for beta/gamma exposures are given for the three methods and advantages and disadvantages are discussed (H.K.)

  7. Gamma irradiation affects the total phenol, anthocyanin and antioxidant properties in three different persian pistachio nuts.

    Science.gov (United States)

    Akbari, Mohammad; Farajpour, Mostafa; Aalifar, Mostafa; Sadat Hosseini, Mohammad

    2018-02-01

    The effects of gamma irradiation (GR) on total phenol, anthocyanin and antioxidant activity were investigated in three different Persian pistachio nuts at doses of 0, 1, 2 and 4 kGy. The antioxidant activity, as determined by FRAP and DPPH methods, revealed a significant increase in the 1-2 kGy dose range. Total phenol content (TPC) revealed a similar pattern or increase in this range. However, when radiation was increased to 4 kGy, TPC in all genotypes decreased. A radiation dose of 1 kGy had no significant effect on anthocyanin content of Kale-Ghouchi (K) and Akbari (A) genotypes, while it significantly increased the anthocyanin content in the Ghazvini (G) genotype. In addition, increasing the radiation to 4 kGy significantly increased the anthocyanin content of K and G genotypes. To conclude, irradiation could increase the phenolic content, anthocyanin and antioxidant activity of pistachio nuts.

  8. Anomalous dose rate effects in gamma irradiated SiGe heterojunction bipolar transistors

    International Nuclear Information System (INIS)

    Banerjee, G.; Niu, G.; Cressler, J.D.; Clark, S.D.; Palmer, M.J.; Ahlgren, D.C.

    1999-01-01

    Low dose rate (LDR) cobalt-60 (0.1 rad(Si)/s) gamma irradiated Silicon Germanium (SiGe) Heterojunction Bipolar Transistors (HBTs) were studied. Comparisons were made with devices irradiated with 300 rad(Si)/s gamma radiation to verify if LDR radiation is a serious radiation hardness assurance (RHA) issue. Almost no LDR degradation was observed in this technology up to 50 krad(Si). The assumption of the presence of two competing mechanisms is justified by experimental results. At low total dose (le20 krad), an anomalous base current decrease was observed which is attributed to self-annealing of deep-level traps to shallower levels. An increase in base current at larger total doses is attributed to radiation induced generation-recombination (G/R) center generation. Experiments on gate-assisted lateral PNP transistors and 2D numerical simulations using MEDICI were used to confirm these assertions

  9. GLODEP2: a computer model for estimating gamma dose due to worldwide fallout of radioactive debris

    International Nuclear Information System (INIS)

    Edwards, L.L.; Harvey, T.F.; Peterson, K.R.

    1984-03-01

    The GLODEP2 computer code provides estimates of the surface deposition of worldwide radioactivity and the gamma-ray dose to man from intermediate and long-term fallout. The code is based on empirical models derived primarily from injection-deposition experience gained from the US and USSR nuclear tests in 1958. Under the assumption that a nuclear power facility is destroyed and that its debris behaves in the same manner as the radioactive cloud produced by the nuclear weapon that attached the facility, predictions are made for the gamma does from this source of radioactivity. As a comparison study the gamma dose due to the atmospheric nuclear tests from the period of 1951 to 1962 has been computed. The computed and measured values from Grove, UK and Chiba, Japan agree to within a few percent. The global deposition of radioactivity and resultant gamma dose from a hypothetical strategic nuclear exchange between the US and the USSR is reported. Of the assumed 5300 Mton in the exchange, 2031 Mton of radioactive debris is injected in the atmosphere. The highest estimated average whole body total integrated dose over 50 years (assuming no reduction by sheltering or weathering) is 23 rem in the 30 to 50 degree latitude band. If the attack included a 100 GW(e) nuclear power industry as targets in the US, this dose is increased to 84.6 rem. Hotspots due to rainfall could increase these values by factors of 10 to 50

  10. Level of terrestrial gamma radiation and doses to population in Jiangsu province

    International Nuclear Information System (INIS)

    1985-01-01

    In this paper the results of investigation of terrestrial gamma radiation level in Jiangsu Province are reported and the population doses due to this radiation are estimated. The sketch map of the geographical distribution of the terrestrial gamma radiation level is given. In this investigation FD-71 portable scintillation counters and RSS-111 high pressure ionization chambers were used. The results showed that the terrestrial gamma absorbed dose rates in air for indoors and outdoors were 10.7 x 10 -8 Gy/h and 6.5 x 10 -8 Gy/h (weighted values) respectively. The indoors-to-outdoors ratio was 1.65. The total (indoor plus outdoor) annual effective dose equivalent from terrestrial gamma radiation, averaged over the population in this province, was 6.0 x 10 -4 Sv. The collective annual effective dose equivalent was 3.6 x 10 4 man.Sv. Therefore, the absorbed dose to population in Jiangsu Province is in the range of the normal background

  11. Biological dose estimation for accidental supra-high dose gamma-ray exposure

    International Nuclear Information System (INIS)

    Chen, Y.; Yan, X.K.; Du, J.; Wang, Z.D.; Zhang, X.Q.; Zeng, F.G.; Zhou, P.K.

    2011-01-01

    To correctly estimate the biological dose of victims accidentally exposed to a very high dose of 60 Co gamma-ray, a new dose-effect curve of chromosomal dicentrics/multicentrics and rings in the supra-high dose range was established. Peripheral blood from two healthy men was irradiated in vitro with doses of 60 Co gamma-rays ranging from 6 to 22 Gy at a dose rate of 2.0 Gy/min. Lymphocytes were concentrated, cultured and harvested at 52 h, 68 h and 72 h. The numbers of dic + r were counted. The dose-effect curves were established and validated using comparisons with doses from the Tokai-mura accident and were then applied to two victims of supra-high dose exposure accident. The results indicated that there were no significant differences in chromosome aberration frequency among the different culture times from 52 h to 72 h. The 6-22 Gy dose-effect curve was fitted to a linear quadratic model Y = -2.269 + 0.776D - 7.868 x l0 -3 D 2 . Using this mathematic model, the dose estimates were similar to data from Tokai-mura which were estimated by PCC ring. Whole body average doses of 9.7 Gy and 18.1 Gy for two victims in the Jining accident were satisfactorily given. We established and successfully applied a new dose-effect curve of chromosomal dicentrics plus ring (dic + r) after 6-22 Gy γ-irradiation from a supra-high dose 60 Co gamma-ray accident.

  12. Dose equivalent distributions in the AAEC total body nitrogen facility

    International Nuclear Information System (INIS)

    Allen, B.J.; Bailey, G.M.; McGregor, B.J.

    1985-01-01

    The incident neutron dose equivalent in the AAEC total body nitrogen facility is measured by a calibrated remmeter. Dose equivalent rates and distributions are calculated by Monte Carlo techniques which take account of the secondary neutron flux from the collimator. Experiment and calculation are found to be in satisfactory agreement. The effective dose equivalent per exposure is determined by weighting organ doses, and the potential detriment per exposure is calculated from ICRP risk factors

  13. Dose and dose rate effects of whole-body gamma-irradiation: II. Hematological variables and cytokines

    Science.gov (United States)

    Gridley, D. S.; Pecaut, M. J.; Miller, G. M.; Moyers, M. F.; Nelson, G. A.

    2001-01-01

    The goal of part II of this study was to evaluate the effects of gamma-radiation on circulating blood cells, functional characteristics of splenocytes, and cytokine expression after whole-body irradiation at varying total doses and at low- and high-dose-rates (LDR, HDR). Young adult C57BL/6 mice (n = 75) were irradiated with either 1 cGy/min or 80 cGy/min photons from a 60Co source to cumulative doses of 0.5, 1.5, and 3.0 Gy. The animals were euthanized at 4 days post-exposure for in vitro assays. Significant dose- (but not dose-rate-) dependent decreases were observed in erythrocyte and blood leukocyte counts, hemoglobin, hematocrit, lipopolysaccharide (LPS)-induced 3H-thymidine incorporation, and interleukin-2 (IL-2) secretion by activated spleen cells when compared to sham-irradiated controls (p factor-beta 1 (TGF-beta 1) and splenocyte secretion of tumor necrosis factor-alpha (TNF-alpha) were not affected by either the dose or dose rate of radiation. The data demonstrate that the responses of blood and spleen were largely dependent upon the total dose of radiation employed and that an 80-fold difference in the dose rate was not a significant factor in the great majority of measurements.

  14. Correct statistical evaluation for total dose in rural settlement

    International Nuclear Information System (INIS)

    Vlasova, N.G.; Skryabin, A.M.

    2001-01-01

    Statistical evaluation of dose reduced to the determination of an average value and its error. If an average value of a total dose in general can be determined by simple summarizing of the averages of its external and internal components, the evaluation of an error can be received only from its distribution. Herewith, considering that both components of the dose are interdependent, to summarize their distributions, as a last ones of a random independent variables, is incorrect. It follows that an evaluation of the parameters of the total dose distribution, including an error, in general, cannot be received empirically, particularly, at the lack or absence of the data on one of the components of the last one, that constantly is happens in practice. If the evaluation of an average for total dose was defined somehow, as the best, as an average of a distribution of the values of individual total doses, as summarizing the individual external and internal doses by the random type, that an error of evaluation had not been produced. The methodical approach to evaluation of the total dose distribution at the lack of dosimetric information was designed. The essence of it is original way of an interpolation of an external dose distribution, using data on an internal dose

  15. Gamma regularization based reconstruction for low dose CT

    International Nuclear Information System (INIS)

    Zhang, Junfeng; Chen, Yang; Hu, Yining; Luo, Limin; Shu, Huazhong; Li, Bicao; Liu, Jin; Coatrieux, Jean-Louis

    2015-01-01

    Reducing the radiation in computerized tomography is today a major concern in radiology. Low dose computerized tomography (LDCT) offers a sound way to deal with this problem. However, more severe noise in the reconstructed CT images is observed under low dose scan protocols (e.g. lowered tube current or voltage values). In this paper we propose a Gamma regularization based algorithm for LDCT image reconstruction. This solution is flexible and provides a good balance between the regularizations based on l 0 -norm and l 1 -norm. We evaluate the proposed approach using the projection data from simulated phantoms and scanned Catphan phantoms. Qualitative and quantitative results show that the Gamma regularization based reconstruction can perform better in both edge-preserving and noise suppression when compared with other norms. (paper)

  16. Optical fiber sensor for low dose gamma irradiation monitoring

    Science.gov (United States)

    de Andrés, Ana I.; Esteban, Ã.`scar; Embid, Miguel

    2016-05-01

    An optical fiber gamma ray detector is presented in this work. It is based on a Terbium doped Gadolinium Oxysulfide (Gd2O2S:Tb) scintillating powder which cover a chemically etched polymer fiber tip. This etching improves the fluorescence gathering by the optical fiber. The final diameter has been selected to fulfill the trade-off between light gathering and mechanical strength. Powder has been encapsulated inside a microtube where the fiber tip is immersed. The sensor has been irradiated with different air Kerma doses up to 2 Gy/h with a 137Cs source, and the spectral distribution of the fluorescence intensity has been recorded in a commercial grade CCD spectrometer. The obtained signal-to-noise ratio is good enough even for low doses, which has allowed to reduce the integration time in the spectrometer. The presented results show the feasibility for using low cost equipment to detect/measure ionizing radiation as gamma rays are.

  17. Gamma dose effects valuation on micro computing components

    International Nuclear Information System (INIS)

    Joffre, F.

    1995-01-01

    Robotics in hostile environment raises the problem of micro computing components resistance with gamma radiation cumulated dose. The current aim is to reach a dose of 3000 grays with industrial components. A methodology and an instrumentation adapted to test this type of components have been developed. The aim of this work is to present the advantages and disadvantages bound to the use of industrial components in the presence of gamma radiation. After an analysis of the criteria allowing to justify the technological choices, the different steps which characterize the selection and the assessment methodology used are explained. The irradiation and measures means now operational are mentioned. Moreover, the supply aspects of the chosen components for the design of an industrialized system is taken into account. These selection and assessment components contribute to the development and design of computers for civil nuclear robotics. (O.M.)

  18. In vivo prompt gamma activation analysis facility for total body nitrogen and cadmium

    International Nuclear Information System (INIS)

    Munive, Marco; Solis, Jose; Revilla, Angel

    2008-01-01

    Full text: Prompt Neutron Activation Analysis (PGNAA) is a technique that could have medical applications, like determination of body's contents of protein and heavy metals in vivo. The in vivo PGNAA facility, contains a neutron source (Cf-252) with safety device, a compartment for animal irradiation, and a gamma rays detecting system based on the NaI(Tl) detector with an analytical software. The prompt gamma rays were emitted after 10 -15 s of the interaction, so they don't produce radioactive waste, and have a characteristics energy for each element, i.e. a strong peak at 2.24 MeV is observed for H. The facility has been used with laboratory mice. Water-filled phantom placed in the neutron beam was used to system calibration. Three study groups of 5 mice each one were selected and were feed with a different diet and the total body nitrogen (TBN) of the mice was monitored with the facility. The diet produced a different TBN for each group. Some mice drunk diluted water with Cl 2 Cd, so the presence of Cd was detected in the mouse. The minimum Cd concentration that the system can detect was 20 ppm. The total dose (neutron and gamma dose was measured from TLDs and simulated by MNCP-4B in the sample compartment during the irradiation time (5 minutes) is less than 2.5 mSv. This total dose is low than the dose from other analytical radiological techniques (25 a 50 mSv). (author)

  19. Dose rate modelled for the outdoors of a gamma irradiation

    International Nuclear Information System (INIS)

    Mangussi, J

    2012-01-01

    A model for the absorbed dose rate calculation on the surroundings of a gamma irradiation plant is developed. In such plants, a part of the radiation emitted upwards reach's the outdoors. The Compton scatterings on the wall of the exhausting pipes through de plant roof and on the outdoors air are modelled. The absorbed dose rate generated by the scattered radiation as far as 200 m is calculated. The results of the models, to be used for the irradiation plant design and for the environmental studies, are showed on graphics (author)

  20. Indoor gamma dose measurements in Gudalore (India) using TLD

    International Nuclear Information System (INIS)

    Sivakumar, R.; Selvasekarapandian, S.; Mugunthamanikandan, N.; Raghunath, V.M.

    2002-01-01

    Indoor gamma radiation dose rates were measured inside residential buildings in Gudalore using a CaSO 4 : Dy thermoluminescent dosimeter for 1 year . Significant seasonal variations are observed. The highest dose rate is observed during summer and the lowest in winter. The dose rates observed are between 77.9 and 229.3 nGy h -1 and may be attributed to the type of building materials used in the dwellings monitored. The calculated mean annual effective dose equivalent rates range between 477.6 μSv y -1 , for the inhabitants of mud houses to 1406.3 μSv y -1 , for those living in terrace houses made of cement and brick

  1. Indoor gamma dose measurements in Gudalore (India) using TLD

    Energy Technology Data Exchange (ETDEWEB)

    Sivakumar, R.; Selvasekarapandian, S. E-mail: spandian@bharathi.ernet.in; Mugunthamanikandan, N.; Raghunath, V.M

    2002-06-01

    Indoor gamma radiation dose rates were measured inside residential buildings in Gudalore using a CaSO{sub 4} : Dy thermoluminescent dosimeter for 1 year . Significant seasonal variations are observed. The highest dose rate is observed during summer and the lowest in winter. The dose rates observed are between 77.9 and 229.3 nGy h{sup -1} and may be attributed to the type of building materials used in the dwellings monitored. The calculated mean annual effective dose equivalent rates range between 477.6 {mu}Sv y{sup -1}, for the inhabitants of mud houses to 1406.3 {mu}Sv y{sup -1}, for those living in terrace houses made of cement and brick.

  2. Gamma dose from activation of internal shields in IRIS reactor.

    Science.gov (United States)

    Agosteo, Stefano; Cammi, Antonio; Garlati, Luisella; Lombardi, Carlo; Padovani, Enrico

    2005-01-01

    The International Reactor Innovative and Secure is a modular pressurised water reactor with an integral design. This means that all the primary system components, such as the steam generators, pumps, pressuriser and control rod drive mechanisms, are located inside the reactor vessel, which requires a large diameter. For the sake of better reliability and safety, it is desirable to achieve the reduction of vessel embrittlement as well as the lowering of the dose beyond the vessel. The former can be easily accomplished by the presence of a wide downcomer, filled with water, which surrounds the core region, while the latter needs the presence of additional internal shields. An optimal shielding configuration is under investigation, for reducing the ex-vessel dose due to activated internals and for limiting the amount of the biological shielding. MCNP 4C calculations were performed to evaluate the neutron and the gamma dose during operation and the 60Co activation of various shields configurations. The gamma dose beyond the vessel from activation of its structural components was estimated in a shutdown condition, with the Monte Carlo code FLUKA 2002 and the MicroShield software. The results of the two codes are in agreement and show that the dose is sufficiently low, even without an additional shield.

  3. Gamma dose from activation of internal shields in IRIS reactor

    International Nuclear Information System (INIS)

    Agosteo, S.; Cammi, A.; Garlati, L.; Lombardi, C.; Padovani, E.

    2005-01-01

    The International Reactor Innovative and Secure is a modular pressurised water reactor with an integral design. This means that all the primary system components, such as the steam generators, pumps, pressurizer and control rod drive mechanisms, are located inside the reactor vessel, which requires a large diameter. For the sake of better reliability and safety, it is desirable to achieve the reduction of vessel embrittlement as well as the lowering of the dose beyond the vessel. The former can be easily accomplished by the presence of a wide downcomer, filled with water, which surrounds the core region, while the latter needs the presence of additional internal shields. An optimal shielding configuration is under investigation, for reducing the ex-vessel dose due to activated internals and for limiting the amount of the biological shielding. MCNP 4C calculations were performed to evaluate the neutron and the gamma dose during operation and the 60 Co activation of various shields configurations. The gamma dose beyond the vessel from activation of its structural components was estimated in a shutdown condition, with the Monte Carlo code FLUKA 2002 and the MicroShield software. The results of the two codes are in agreement and show that the dose is sufficiently low, even without an additional shield. (authors)

  4. Effect of low gamma ray doses on sugar beet

    International Nuclear Information System (INIS)

    Al-Oudat, M.

    1993-01-01

    We studied the effect of presowing irradiation simulation on sugar beet seeds in two regions (Deir Elzour and Damascus) and for three successive cropping seasons (1986-1989). Those seeds were irradiated with gamma radiation doses varying from 0.005 to 0.050 kGy in the first region, and from 0.005 to 0.025 kGy in the second region. Results showed that doses varying from 0.005 to 0.05 kGy in Deir Elzour gave a mean yield increase varying from 17.4% to 22.6%. However, doses varying from 0.005 to 0.025 in Damascus gave an increase of the same parameter between 19.5% and 23.8%. The best results for pure sugar yield increase obtained for a dose of 0.015 kGy (27.1% in Deir Elzour and 31.9% in Damascus). Yields on the farm level obtained from presowing irradiated seeds showed an increase in sugar beets when using 0.015 kGy gamma radiation dose. (author)

  5. Cellular Stress to Low Gamma-ray Dose

    International Nuclear Information System (INIS)

    Manzanares-Acuna, E.; Vega-Carrillo, H. R.; Letechipia de Leon, C.; Guzman Enriquez, L. J.; Garcia-Talavera, M.

    2004-01-01

    The purpose of this study was to evaluate the effect of low gamma ray intensity upon Hsp 70 expression in human lymphocytes. the heat shock proteins (Hsp) family, are a group of proteins present in all living organism, therefore there are highly conserved and are related to adaptation and evolution. At cellular level these proteins acts as chaperones correcting denatured proteins. when a stress agent, such heavy metals, UV, heat, etc. is affecting a cell a response to this aggression is triggered through overexpression of Hsp. Several studies has been carried out in which the cellular effect are observed, mostly of these studies uses large doses, but very few studies are related with low doses. Blood of healthy volunteers was obtained and the lymphocytes were isolated by ficoll-histopaque gradient. Experimental lots were irradiated in a ''137Cs gamma-ray. Hsp70 expression was found since 0.5 cGy, indicating a threshold to very low doses of gamma rays. (Author) 27 refs

  6. Effects of differents gamma radiation doses absorbed for postharvest tomato fruits

    International Nuclear Information System (INIS)

    Silva Abreu, Toneypson da; Jesus, Edgar F.O. de; Soares, Antonio G.

    1997-01-01

    Postharvest tomato fuits Santa Cruz were submitted to prestorage gamma irradiation treatment with different doses range zero (unirradiated fruits) to 1000 Gy. The aim of this study is to evaluate the postharvest quality parameters: Hunter colour values for light transmittance analysis, pH, total titratable acidity, total soluble solids, maximum firmness and maturity stage. The fruits were stored under (25±1) 0 C with (93±3) relative humidity. The results obtained from the different irradiated treatments showed 600 Gy as the best dose to increase the shelf-life of tomato fruits and to decay its ripening. (author). 5 refs., 12 figs., 1 tab

  7. Gamma dose rate changes in buildings in the region of Southeastern Iran using thermoluminescence dosimetry

    International Nuclear Information System (INIS)

    Jomehzadeh Mahani, A.; Bahreyni Toosi, M.T.

    2006-01-01

    Introduction: It is important to measure background radiation, because human beings are always exposed to environmental radiation. The terrestrial component of the natural background depends on the compositions of soils and rocks in which are contained. A significant contribution to total dose from natural sources comes from terrestrial radionuclides such as U- 238, Th- 232 and K- 40. The level of gamma dose rate in buildings depends on the climate / weather, ventilation of living environment, local geology, drainage patterns and other factors. The objective of this study was to establishing the distribution of environmental gamma dose rates in the type of building sampled included cement-sand and soil brick buildings. Materials and Methods: Equipments used in this study include: 1-TLD-100 H (LiF: Mg, Cu, P) dosimeters. 2- TLD-Reader 3500 made by Harshaw, USA. In order to determine indoor gamma dose rate, the dosimeters were calibrated at room temperature with Co-60 source. Before using the dosimeters to measure environmental dose they were subjected to the thermal treatment in a normal oven. Two TLDs, were embedded in a 5 mm PMMA mini-phantom to register only gamma ray. 20 buildings for this study chosen randomly throughout Kerman town, southeastern Iran. Inside each building a holder was hung at a height of above 3 m. The period of monitoring of TLDs was 15 days. The TLDs were retrieved from the buildings and taken to the Mashhad university of medical sciences where they were read with a Harshaw TLD reader model 3500. Results: Our results indicate that indoor gamma dose rate ranged from 106 n Sv/h to 133 n Sv/h for cement-sand buildings with an average of 114.72 n Sv/h. For soil buildings the indoor gamma dose rate varied from 86 n Sv/h to 116 n Sv/h with an average of 100.50 n Sv/h. While the average gamma dose rate in cement-sand buildings is highest (114.72 n Sv/h), that of soil buildings is lowest (100.50 n Sv/h). Discussion: Average values vary from building

  8. Effect of low doses gamma irradiation of cotton seeds

    International Nuclear Information System (INIS)

    Al-Oudat, M.; Khalifa, Kh.

    1996-01-01

    Field experiments and then large scale application of irradiated cotton seeds (C.V. Aleppo-40) were carried out during three seasons (1986, 1987 and 1988) for field experiment at ACSAD Station in Dier-Ezzor and 1988, 1989 and 1990 for large scale application at Euphrate's Basin, Al-Ghab and Salamia, farmers farms. The above areas were selected as they represent major cotton production areas in Syria. The aims of the experiments were to study the effect of low doses of gamma irradiation 0, 5, 10, 20, 30, 40 and 50 Gy on cotton yield and to look for the optimum dose of gamma irradiation to obtain best results. The results show that, there were positive effect (P<0.95) for doses 5-30 Gy in increasing cotton yield. The highest increase was at dose of 10 Gy. which as 19.5% higher than control. For the large scale application using 10 Gy the increase in cotton yield varied from 10-39% compared to control. (author). 11 refs., 6 figs

  9. Effect of large dose gamma-ray irradiation on polyimide

    International Nuclear Information System (INIS)

    Morita, Yohsuke; Watanabe, Kiyoshi; Yagyu, Hideki.

    1988-01-01

    In the radiation environment of atomic energy, space and so on, with the heightening of the performance of equipment, the organic materials having the radiation resistance up to several hundreds MGy have been demanded. Polyimide is one of a small number of the polymers which are considered to be applicable to such environment. However, actually the characteristics as the insulator for such large dose radiation environment have not been sufficiently verified. In this study, the gamma-ray of as large dose as 100 MGy was irradiated on the polyimides having different chemical structure in the air and in nitrogen, and the change of their mechanical and electrical characteristics was elucidated, at the same time, the structural change was examined. The four kinds of polyimides used for the experiment were three kinds of thermosetting type and thermoplastic polyether imide. Co-60 gamma-ray was irradiated at the dose rate of 17 kGy/h at room temperature. The tensile properties, volume resistivity, dielectric tangent, gel fraction, glass transition temperature and IR spectra were examined. In the air, the characteristics lowered by large dose irradiation due to the severance of main chains. In nitrogen, the deterioration was extremely slight, and cross-linking occurred. (K.I.)

  10. Two gamma dose evaluation methods for silicon semiconductor detector

    International Nuclear Information System (INIS)

    Chen Faguo; Jin Gen; Yang Yapeng; Xu Yuan

    2011-01-01

    Silicon PIN diodes have been widely used as personal and areal dosimeters because of their small volume, simplicity and real-time operation. However, because silicon is neither a tissue-equivalent nor an air-equivalent material, an intrinsic disadvantage for silicon dosimeters is that a significant over-response occurs at low-energy region, especially below 200 keV. Using a energy compensation filter to flatten the energy response is one method overcoming this disadvantage. But for dose compensation method, the estimated dose depends only on the number of the detector pulses. So a weight function method was introduced to evaluate gamma dose, which depends on pulse number as well as its amplitude. (authors)

  11. Effects of total dose of ionizing radiation on integrated circuits

    Energy Technology Data Exchange (ETDEWEB)

    Silveira, Marcilei A.G.; Cirne, K.H.; Gimenez, S.; Santos, R.B.B. [Centro Universitario da FEI, Sao Bernardo do Campo, SP (Brazil); Added, N.; Barbosa, M.D.L.; Medina, N.H.; Tabacniks, M.H. [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica; Lima, J.A. de; Seixas Junior, L.E.; Melo, W. [Centro de Tecnologia da Informacao Paulo Archer, Sao Paulo, SP (Brazil)

    2011-07-01

    Full text: The study of ionizing radiation effects on materials used in electronic devices is of great relevance for the progress of global technological development and, particularly, it is a necessity in some strategic areas in Brazil. Electronic circuits are strongly influenced by radiation and the need for IC's featuring radiation hardness is largely growing to meet the stringent environment in space electronics. On the other hand, aerospace agencies are encouraging both scientific community and semiconductors industry to develop hardened-by-design components using standard manufacturing processes to achieve maximum performance, while significantly reducing costs. To understand the physical phenomena responsible for changes in devices exposed to ionizing radiation several kinds of radiation should then be considered, among them alpha particles, protons, gamma and X-rays. Radiation effects on the integrated circuits are usually divided into two categories: total ionizing dose (TID), a cumulative dose that shifts the threshold voltage and increases transistor's off-state current; single events effects (SEE), a transient effect which can deposit charge directly into the device and disturb the properties of electronic circuits. TID is one of the most common effects and may generate degradation in some parameters of the CMOS electronic devices, such as the threshold voltage oscillation, increase of the sub-threshold slope and increase of the off-state current. The effects of ionizing radiation are the creation of electron-hole pairs in the oxide layer changing operation mode parameters of the electronic device. Indirectly, there will be also changes in the device due to the formation of secondary electrons from the interaction of electromagnetic radiation with the material, since the charge carriers can be trapped both in the oxide layer and in the interface with the oxide. In this work we have investigated the behavior of MOSFET devices fabricated with

  12. Calculation of dose conversion factors for doses in the fingernails to organ doses at external gamma irradiation in air

    International Nuclear Information System (INIS)

    Khailov, A.M.; Ivannikov, A.I.; Skvortsov, V.G.; Stepanenko, V.F.; Orlenko, S.P.; Flood, A.B.; Williams, B.B.; Swartz, H.M.

    2015-01-01

    Absorbed doses to fingernails and organs were calculated for a set of homogenous external gamma-ray irradiation geometries in air. The doses were obtained by stochastic modeling of the ionizing particle transport (Monte Carlo method) for a mathematical human phantom with arms and hands placed loosely along the sides of the body. The resulting dose conversion factors for absorbed doses in fingernails can be used to assess the dose distribution and magnitude in practical dose reconstruction problems. For purposes of estimating dose in a large population exposed to radiation in order to triage people for treatment of acute radiation syndrome, the calculated data for a range of energies having a width of from 0.05 to 3.5 MeV were used to convert absorbed doses in fingernails to corresponding doses in organs and the whole body as well as the effective dose. Doses were assessed based on assumed rates of radioactive fallout at different time periods following a nuclear explosion. - Highlights: • Elemental composition and density of nails were determined. • MIRD-type mathematical human phantom with arms and hands was created. • Organ doses and doses to nails were calculated for external photon exposure in air. • Effective dose and nail doses values are close for rotational and soil surface exposures.

  13. Simulation experiment on total ionization dose effects of linear CCD

    International Nuclear Information System (INIS)

    Tang Benqi; Zhang Yong; Xiao Zhigang; Wang Zujun; Huang Shaoyan

    2004-01-01

    We carry out the ionization radiation experiment of linear CCDs operated in unbiased, biased, biased and driven mode respectively by Co-60 γ source with our self-designed test system, and offline test the Dark signal and Saturation voltage and SNR varied with total dose for TCD132D, and get some valuable results. On the basis of above work, we set forth a primary experiment approaches to simulate the total dose radiation effects of charge coupled devices. (authors)

  14. Effect of low doses of gamma radiation on barley tolerance grown under saline conditions

    International Nuclear Information System (INIS)

    Charbaji, T.; Khalifa, Kh; Al-Ain, F.

    2003-01-01

    A field experiment was conducted at Al-Hijanah, an area located at about 35 km south east of Damascus. Seeds of two barley varieties [White Arabi (WA) and Pakistani 30163 (PK) were irradiated with 2 doses 0 and 15 Gy of gamma irradiation. Then, they were shown on salty soil (17.6-18,9 m mos/cm) and irrigated with salty water (5.12-5.75 m mos/cm). A dose of 15 Gy of gamma irradiation was shown to positively affect the percent germination of PK but had no similar effect on WA. The results were obtained at 3 different growth stages: first, the heading stage, 15 Gy dose increased shoots dry weight, Mg ++ , P content and percent of WA, whereas N percent of PK was decreased. When the seeds were irradiated by the same dose. K + content in WA was significantly higher than that in PK. Second, physiological maturity stage, the same dose (15 Gy) increased shoot dry, but affected negatively K + and Na + contents in PK variety. As for WA variety, Mg ++ and P contents were increased, whereas Na + and Cl - were slightly decreased. Third, harvest stage, gamma irradiation had a positive effect on total yield, grain yield, nitrogen yield and harvest index of PK variety. A positive effect was produced on straw yield, 1000-grain weight, and nitrogen yield of WA variety. (author)

  15. Gamma dose rate changes in buildings in the region of Southeastern Iran using thermoluminescence dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Jomehzadeh Mahani, A. [Hormozgan un Univ. of medical sciences, Paramedical School, Bandarabbas (Iran, Islamic Republic of); Bahreyni Toosi, M.T. [Mashhad Univ. of medical sciences, Medical school (Iran, Islamic Republic of)

    2006-07-01

    oduction: It is important to measure background radiation, because human beings are always exposed to environmental radiation. The terrestrial component of the natural background depends on the compositions of soils and rocks in which are contained. A significant contribution to total dose from natural sources comes from terrestrial radionuclides such as U- 238, Th- 232 and K- 40. The level of gamma dose rate in buildings depends on the climate / weather, ventilation of living environment, local geology, drainage patterns and other factors. The objective of this study was to establishing the distribution of environmental gamma dose rates in the type of building sampled included cement-sand and soil brick buildings. Materials and Methods: Equipments used in this study include: 1-TLD-100 H (LiF: Mg, Cu, P) dosimeters. 2- TLD-Reader 3500 made by Harshaw, USA. In order to determine indoor gamma dose rate, the dosimeters were calibrated at room temperature with Co-60 source. Before using the dosimeters to measure environmental dose they were subjected to the thermal treatment in a normal oven. Two TLDs, were embedded in a 5 mm PMMA mini-phantom to register only gamma ray. 20 buildings for this study chosen randomly throughout Kerman town, southeastern Iran. Inside each building a holder was hung at a height of above 3 m. The period of monitoring of TLDs was 15 days. The TLDs were retrieved from the buildings and taken to the Mashhad university of medical sciences where they were read with a Harshaw TLD reader model 3500. Results: Our results indicate that indoor gamma dose rate ranged from 106 n Sv/h to 133 n Sv/h for cement-sand buildings with an average of 114.72 n Sv/h. For soil buildings the indoor gamma dose rate varied from 86 n Sv/h to 116 n Sv/h with an average of 100.50 n Sv/h. While the average gamma drate in cement-sand buildings is highest (114.72 n Sv/h), that of soil buildings is lowest (100.50 n Sv/h). Discussion: Average values vary from building to

  16. Measurement of total body chlorine by prompt gamma in vivo neutron activation analysis

    International Nuclear Information System (INIS)

    Beddoe, A.H.; Streat, S.J.; Hill, G.L.

    1987-01-01

    A method of measuring total body chlorine (TBCl) by prompt gamma in vivo neutron activation analysis is described depending on the same NaI(Tl) spectra used for determinations of total body nitrogen. Ratios of chlorine to hydrogen are derived and TBCl determined using a model of body composition depending on measured body weight, total body water (by tritium dilution) and protein (6.25 x nitrogen) as well as estimated body minerals and glycogen. The precision of the method based on scanning an anthropomorphic phantom is approximately 9% (SD), for a patient dose equivalent of less than 0.30 mSv. Spectra collected from 67 normal volunteers (32 male, 35 female) yielded mean values of TBCl of 72 +- 19 (SD) g in males and 53.6 +- 15 g in females, in broad agreement with values reported by workers using delayed gamma methods. Results are presented for two human cadavers analysed by neutron activation and conventional chemical analysis; the ratios of TBCl (neutron activation) to TBCl (chemical) were 0.980 +- 0.028 (SEM) and 0.91 +- 0.09. It is suggested that an improvement in precision will be achieved by increasing the scanning time (thereby increasing the radiation dose equivalent) and by adding two more detectors. (author)

  17. Dose and dose rate effects of whole-body gamma-irradiation: II. Hematological variables and cytokines

    Science.gov (United States)

    Gridley, D. S.; Pecaut, M. J.; Miller, G. M.; Moyers, M. F.; Nelson, G. A.

    2001-01-01

    The goal of part II of this study was to evaluate the effects of gamma-radiation on circulating blood cells, functional characteristics of splenocytes, and cytokine expression after whole-body irradiation at varying total doses and at low- and high-dose-rates (LDR, HDR). Young adult C57BL/6 mice (n = 75) were irradiated with either 1 cGy/min or 80 cGy/min photons from a 60Co source to cumulative doses of 0.5, 1.5, and 3.0 Gy. The animals were euthanized at 4 days post-exposure for in vitro assays. Significant dose- (but not dose-rate-) dependent decreases were observed in erythrocyte and blood leukocyte counts, hemoglobin, hematocrit, lipopolysaccharide (LPS)-induced 3H-thymidine incorporation, and interleukin-2 (IL-2) secretion by activated spleen cells when compared to sham-irradiated controls (p < 0.05). Basal proliferation of leukocytes in the blood and spleen increased significantly with increasing dose (p < 0.05). Significant dose rate effects were observed only in thrombocyte counts. Plasma levels of transforming growth factor-beta 1 (TGF-beta 1) and splenocyte secretion of tumor necrosis factor-alpha (TNF-alpha) were not affected by either the dose or dose rate of radiation. The data demonstrate that the responses of blood and spleen were largely dependent upon the total dose of radiation employed and that an 80-fold difference in the dose rate was not a significant factor in the great majority of measurements.

  18. Determination of dose factors for external gamma radiation in dwellings

    International Nuclear Information System (INIS)

    Maduar, M.F.; Hiromoto, G.

    2000-01-01

    A significant contribution to the global population exposure to ionizing radiation arises from natural sources, especially from radionuclides present in terrestrial crust. Human activities can eventually increase that exposure to significant levels, from the point of view of radiological protection. The presence of natural radionuclides in building materials may lead to an increment of both external and internal radiation exposure of the population. External exposure in dwellings arises from gamma-emitter radionuclides existing in the walls, floor and ceiling of their rooms. Mathematical models can be used to predict external dose rates inside the room, known the radionuclide concentration activities in dwelling constituents. This paper presents a methodology for theoretical evaluation of external gamma doses due to radionuclides present in the walls of an hypothetical standard room. The room is modeled as three pairs of rectangular sheets with finite thickness. Assessment of doses was performed through the application of photon transport model, taking in account self-absorption and radiation buildup. As the external dose due to a particular radionuclide is proportional to its activity concentration, results are presented as dose factors, defined as a ratio of absorbed dose (nGy.h -1 ) to the activity concentration (Bq.kg -1 ), for each radionuclide. The radionuclides were assumed to be uniformly distributed in the building materials. Calculations were performed for concrete walls and results are presented for 40 K, 226 Ra, and 232 Th, taking in account, for dose calculations, all gamma emitters from 226 Ra and 232 Th decay chains. Sensitivity of the model was estimated by varying four of its input parameters within a reasonable range of applicability, while leaving all other parameters at fixed selected values. The parameters studied and respective ranges of variation were: for thickness, 5 to 60 cm; for density, 0.5 to 4 g.cm -3 ; for the room length, 1.5 to 10 m

  19. On-Line High Dose-rate Gamma Irradiation Test of the Profibus/DP module

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jai Wan; Choi, Young Soo; Kim, Chang Hoi; Koo, In Soo; Hong, Seok Boong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-05-15

    The field bus data communication is considered for application in nuclear environments. The nuclear facilities, including nuclear power plants, high radioactivity waste disposals, reprocessing plants and thermonuclear fusion installations can benefit from the unique advantages of the field bus communication network for the smart field instruments and controls. A major problem which arises when dealing with one in these nuclear environments, in special circumstances such as the RCS (reactor coolant system) area, is the presence of high gamma-ray irradiation fields. Radioactive constraints for the DBA(design basis accident) qualification of the RTD transmitter installed in the inside of the RCS pump are typically on the order of 4kGy/h with total doses up to 10kGy. In order to use an industrial field bus communication network as an ad-hoc sensor data link in the vicinity of the RCS area of the nuclear power plant, the robust survivability of these system in such intense gamma-radiation fields therefore needs to be verified. We have conducted high dose-rate (up to 4kGy) gamma irradiation experiments on a profibus/DP communication module. In this paper we describe the evolution of its basic characteristics with high dose-rate gamma irradiation and shortly explain the observed phenomena.

  20. Dependence of total dose response of bipolar linear microcircuits on applied dose rate

    International Nuclear Information System (INIS)

    McClure, S.; Will, W.; Perry, G.; Pease, R.L.

    1994-01-01

    The effect of dose rate on the total dose radiation hardness of three commercial bipolar linear microcircuits is investigated. Total dose tests of linear bipolar microcircuits show larger degradation at 0.167 rad/s than at 90 rad/s even after the high dose rate test is followed by a room temperature plus a 100 C anneal. No systematic correlation could be found for degradation at low dose rate versus high dose rate and anneal. Comparison of the low dose rate with the high dose rate anneal data indicates that MIL-STD-883, method 1019.4 is not a worst-case test method when applied to bipolar microcircuits for low dose rate space applications

  1. Effects of high dose gamma irradiation on ITO thin film properties

    Energy Technology Data Exchange (ETDEWEB)

    Alyamani, A. [National Nanotechnology Center, King Abdul-Aziz City for Science and Technology (KACST), Riyadh (Saudi Arabia); Mustapha, N., E-mail: nazirmustapha@hotmail.com [Dept. of Physics, College of Sciences, Al Imam Mohammad Ibn Saud Islamic University, P.O. Box 90950, Riyadh 11623 (Saudi Arabia)

    2016-07-29

    Transparent thin-film Indium Tin Oxides (ITO) were prepared on 0.7 mm thick glass substrates using a pulsed laser deposition (PLD) process with average thickness of 150 nm. The samples were then exposed to high gamma γ radiation doses by {sup 60}Co radioisotope. The films have been irradiated by performing exposure cycles up to 250 kGy total doses at room temperature. The surface structures before and after irradiation were analysed by x-ray diffraction. Atomic Force Microscopy (AFM) was performed on all samples before and after irradiation to investigate any change in the grain sizes, and also in the roughness of the ITO surface. We investigated the influence of γ irradiation on the spectra of transmittance T, in the ultraviolet-visible-near infrared spectrum using spectrophotometer measurements. Energy band gap E{sub g} was then calculated from the optical spectra for all ITO films. It was found that the optical band gap values decreased as the radiation dose was increased. To compare the effect of the irradiation on refractive index n and extinction coefficient k properties, additional measurements were done on the ITO samples before and after gamma irradiation using an ellipsometer. The optical constants n and k increased by increasing the irradiation doses. Electrical properties such as resistivity and sheet resistance were measured using the four-point probe method. The good optical, electrical and morphological properties maintained by the ITO films even after being exposed to high gamma irradiation doses, made them very favourable to be used as anodes for solar cells and as protective coatings in space windows. - Highlights: • Indium Tin Oxide (ITO) thin films were deposited by pulsed laser deposition. • Effects of Gamma irradiation were investigated. • Changes of optical transmission and electrical properties of ITO films were studied. • Intensity of the diffraction peaks and the film's structure changed with increasing irradiation doses.

  2. Effect of γ-dose rate and total dose interrelation on the polymeric hydrogel: A novel injectable male contraceptive

    International Nuclear Information System (INIS)

    Jha, Pradeep K.; Jha, Rakhi; Gupta, B.L.; Guha, Sujoy K.

    2010-01-01

    Functional necessity to use a particular range of dose rate and total dose of γ-initiated polymerization to manufacture a novel polymeric hydrogel RISUG (reversible inhibition of sperm under guidance) made of styrene maleic anhydride (SMA) dissolved in dimethyl sulphoxide (DMSO), for its broad biomedical application explores new dimension of research. The present work involves 16 irradiated samples. They were tested by fourier transform infrared spectroscopy, matrix assisted laser desorption/ionization-TOF, field emission scanning electron microscopy, high resolution transmission electron microscopy, etc. to see the interrelation effect of gamma dose rates (8.25, 17.29, 20.01 and 25.00 Gy/min) and four sets of doses (1.8, 2.0, 2.2 and 2.4 kGy) on the molecular weight, molecular weight distribution and porosity analysis of the biopolymeric drug RISUG. The results of randomized experiment indicated that a range of 18-24 Gy/min γ-dose rate and 2.0-2.4 kGy γ-total doses is suitable for the desirable in vivo performance of the contraceptive copolymer.

  3. Theory of thermoluminescence gamma dose response: The unified interaction model

    International Nuclear Information System (INIS)

    Horowitz, Y.S.

    2001-01-01

    We describe the development of a comprehensive theory of thermoluminescence (TL) dose response, the unified interaction model (UNIM). The UNIM is based on both radiation absorption stage and recombination stage mechanisms and can describe dose response for heavy charged particles (in the framework of the extended track interaction model - ETIM) as well as for isotropically ionising gamma rays and electrons (in the framework of the TC/LC geminate recombination model) in a unified and self-consistent conceptual and mathematical formalism. A theory of optical absorption dose response is also incorporated in the UNIM to describe the radiation absorption stage. The UNIM is applied to the dose response supralinearity characteristics of LiF:Mg,Ti and is especially and uniquely successful in explaining the ionisation density dependence of the supralinearity of composite peak 5 in TLD-100. The UNIM is demonstrated to be capable of explaining either qualitatively or quantitatively all of the major features of TL dose response with many of the variable parameters of the model strongly constrained by ancilliary optical absorption and sensitisation measurements

  4. Serum protein concentration in low-dose total body irradiation of normal and malnourished rats

    International Nuclear Information System (INIS)

    Viana, W.C.M.; Lambertz, D.; Borges, E.S.; Neto, A.M.O.; Lambertz, K.M.F.T.; Amaral, A.

    2016-01-01

    Among the radiotherapeutics' modalities, total body irradiation (TBI) is used as treatment for certain hematological, oncological and immunological diseases. The aim of this study was to evaluate the long-term effects of low-dose TBI on plasma concentration of total protein and albumin using prematurely and undernourished rats as animal model. For this, four groups with 9 animals each were formed: Normal nourished (N); Malnourished (M); Irradiated Normal nourished (IN); Irradiated Malnourished (IM). At the age of 28 days, rats of the IN and IM groups underwent total body gamma irradiation with a source of cobalt-60. Total protein and Albumin in the blood serum was quantified by colorimetry. This research indicates that procedures involving low-dose total body irradiation in children have repercussions in the reduction in body-mass as well as in the plasma levels of total protein and albumin. Our findings reinforce the periodic monitoring of total serum protein and albumin levels as an important tool in long-term follow-up of pediatric patients in treatments associated to total body irradiation. - Highlights: • Low-dose total body irradiation (TBI) in children have repercussions in their body-mass. • Long-term total protein and albumin levels are affected by TBI. • The monitoring of total protein and albumin levels are useful in the follow-up of TBI pediatric patients.

  5. Effect of low doses of gamma radiation of Co-60 (radio-hormesis) in tomato seeds

    International Nuclear Information System (INIS)

    Wiendl, Toni Andreas

    2010-01-01

    Tomato seeds of the Gladiador hybrid were exposed to gamma radiation of Co-60 with the following doses: 0; 2,5; 5; 7,5; 10; 12,5; 15 e 20 Gy. Analysis were performed on germination, seedlings height to cotyledon, seedling total height, seedling fresh and dry weight, plant height, stalk diameter at the root beginning, fresh and dry weight of the 5 th leaf, number of green fruits with diameter higher than 3 cm, number of green, half ripen and ripen fruits, total number of fruits, Brix and pH of fruits, average fruit weight and fruit total production. A variety of stimulation effects were observed on the different plant developing stages. The greatest stimulus for production was observed in the 10 Gy dose. The highest seedling average height and plant average height were observed for the 7,5 Gy dose. The biggest number of green fruits with diameter higher than 3 cm occurred for the 12,5 and 15 Gy treatments. Irradiation also stimulated a higher total number of fruits in all doses, having advantage the 10 Gy dose which produced 88% more fruits than control as well as 86% more weight production. The fruits pH acidified significantly in a dose of 12,5 Gy and higher. Production increased in all treatments comparing to control and the highest stimulus for production observed was for the 10, 12,5 and 15 Gy. The use of low gamma radiation doses of Co-60 applied as pre-sowing treatment in the seeds, efficiently stimulated the development of plants and the tomato production. (author)

  6. Development of a dose simulation software for gamma irradiation systems

    International Nuclear Information System (INIS)

    Omi, Nelson Minoru

    2000-01-01

    The use of high temperature, thermal and chemical treatment are among the used sterilization process of food and many products. The ionizing radiation came as another option, it has being used for many purposes and it became available due to the technological development in the second half of the 20 th century. Together with sterilization, many uses of the ionizing radiation were developed, such as applications on health, industrial products and waste recycling, food irradiation, vulcanizing, polymerization and gems color enhancing. The 60 Co gamma stands out among the used radiation sources on commercial facilities. lt is used to optimize this process with many dose mapping tests. The objective of this work is to develop a software to simulate the doses in 60 Co gamma irradiation systems. lt can be used to optimize a process on the project stage of a facility and to make viability studies for new applications in installations already set up. The validation of this software was done comparing the simulation results with the dosimetry data of an operating irradiation plant. The flexibility of the software was verified with extra dosimetry tests performed in another sterilization facility. (author)

  7. Prediction of terrestrial gamma dose rate based on geological formations and soil types in the Johor State, Malaysia.

    Science.gov (United States)

    Saleh, Muneer Aziz; Ramli, Ahmad Termizi; bin Hamzah, Khaidzir; Alajerami, Yasser; Moharib, Mohammed; Saeed, Ismael

    2015-10-01

    This study aims to predict and estimate unmeasured terrestrial gamma dose rate (TGDR) using statistical analysis methods to derive a model from the actual measurement based on geological formation and soil type. The measurements of TGDR were conducted in the state of Johor with a total of 3873 measured points which covered all geological formations, soil types and districts. The measurements were taken 1 m above the soil surface using NaI [Ti] detector. The measured gamma dose rates ranged from 9 nGy h(-1) to 1237 nGy h(-1) with a mean value of 151 nGy h(-1). The data have been normalized to fit a normal distribution. Tests of significance were conducted among all geological formations and soil types, using the unbalanced one way ANOVA. The results indicated strong significant differences due to the different geological formations and soil types present in Johor State. Pearson Correlation was used to measure the relations between gamma dose rate based on geological formation and soil type (D(G,S)) with the gamma dose rate based on geological formation (D(G)) or soil type (D(s)). A very good correlation was found between D(G,S) and D(G) or D(G,S) and D(s). A total of 118 pairs of geological formations and soil types were used to derive the statistical contribution of geological formations and soil types to gamma dose rates. The contribution of the gamma dose rate from geological formation and soil type were found to be 0.594 and 0.399, respectively. The null hypotheses were accepted for 83% of examined data, therefore, the model could be used to predict gamma dose rates based on geological formation and soil type information. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Protective and Therapeutic Role of Low Dose Gamma Radiation on Streptozotocin Induced Diabetes in Rats

    International Nuclear Information System (INIS)

    Mansour, H.H.; Hafez, H.F.; Shouman, S.A.

    2011-01-01

    Diabetes mellitus is a multi-factorial disease which is characterized by vascular and renal complication. This study was initiated to investigate the protective and the therapeutic effect of low dose of gamma radiation (LDR) on diabetic complications. A total of 30 adult male rats were divided into 5 groups: Group I: served as control and injected intraperitoneally with 0.2 ml of 0.1 mol/l citrate buffer (ph 4.5), group II: rats became diabetic via intraperitoneal injection with 60 mg/kg streptozotocin (STZ) dissolved in 0.2 ml of 0.1 mol/l citrate buffer (ph 4.5), group III irradiated rats (IRR): submitted to fractionated dose of whole body gamma rays; 0.25 Gy for 2 consecutive days (whole dose 0.5 Gy), group IV diabetic irradiated rats (STZ + IRR): rats became diabetic as group II then four weeks after diabetes induction (day 28), rats were submitted to 2 fractions of whole body gamma rays as in group III, and group V irradiated diabetic rats (IRR + STZ): rats were injected intraperitoneally with 0.2 ml of 0.1 mol/l citrate buffer then submitted to whole body gamma rays; 0.25 Gy for 2 consecutive days then one hour after the last IRR dose, rats were made diabetic as group II. In pre and post-irradiation of STZ rats, significant changes were observed in serum lipid profiles, hepatic and cardiac serum enzymes. Significant decrease in hepatic and cardiac malondialdehyde (MDA) and total nitrate/nitrite (NO(x)) levels, and significant increase in superoxide dismutase (SOD) and glutathione (GSH) levels were observed as compared to diabetic group. The study suggests that LDR may provide useful protective and therapeutic option in the reversal of oxidative stress induced in diabetic rats

  9. Specific gamma-ray dose constants for nuclides important to dosimetry and radiological assessment

    International Nuclear Information System (INIS)

    Unger, L.M.; Trubey, D.K.

    1982-05-01

    Tables of specific gamma-ray dose constants (the unshielded gamma-ray dose equivalent rate at 1 m from a point source) have been computed for approximately 500 nuclides important to dosimetry and radiological assessment. The half life, the mean attenuation coefficient, and thickness for a lead shield providing 95% dose equivalent attenuation are also listed

  10. Modeling gamma radiation dose in dwellings due to building materials.

    Science.gov (United States)

    de Jong, Peter; van Dijk, Willem

    2008-01-01

    A model is presented that calculates the absorbed dose rate in air of gamma radiation emitted by building materials in a rectangular body construction. The basis for these calculations is formed by a fixed set of specific absorbed dose rates (the dose rate per Bq kg(-1) 238U, 232Th, and 40K), as determined for a standard geometry with the dimensions 4 x 5 x 2.8 m3. Using the computer codes Marmer and MicroShield, correction factors are assessed that quantify the influence of several room and material related parameters on the specific absorbed dose rates. The investigated parameters are the position in the construction; the thickness, density, and dimensions of the construction parts; the contribution from the outer leave; the presence of doors and windows; the attenuation by internal partition walls; the contribution from building materials present in adjacent rooms; and the effect of non-equilibrium due to 222Rn exhalation. To verify the precision, the proposed method is applied to three Dutch reference dwellings, i.e., a row house, a coupled house, and a gallery apartment. The averaged difference with MCNP calculations is found to be 4%.

  11. Calculational methods for estimating skin dose from electrons in Co-60 gamma-ray beams

    International Nuclear Information System (INIS)

    Higgins, P.D.; Sibata, C.H.; Attix, F.H.; Paliwal, B.R.

    1983-01-01

    Several methods have been employed to calculate the relative contribution to skin dose due to scattered electrons in Co-60 gamma-ray beams. Either the Klein-Nishina differential scattering probability is employed to determine the number and initial energy of electrons scattered into the direction of a detector, or a Gaussian approximation is used to specify the surface distribution of initial pencil electron beams created by parallel or diverging photon fields. Results of these calculations are compared with experimental data. In addition, that fraction of relative surface dose resulting from photon interactions in air alone is estimated and compared with data extrapolated from measurements at large source-surface distance (SSD). The contribution to surface dose from electrons generated in air is 50% or more of the total skin dose for SSDs greater than 80 cm

  12. Effect of Low Gamma Irradiation Doses on Growth and Productivity of Green Bean

    International Nuclear Information System (INIS)

    Mohamed, A.M.M.F.

    2011-01-01

    The field experiment was conducted within the two successive growing seasons of 2007/2008 and 2008/2009 to study the effect of low gamma irradiation doses (0, 10, 20, 30, 40, 50 and 60 Gy) on growth and productivity of green bean cv. Bronco with 3 sowing dates 8, 18 and 28th of October in the first season and 30th of September, 10 and 20th of October in the second season. The results of laboratory determinations showed that gamma irradiation doses did not affect the germination percent but slightly affected germination rate and electrical conductivity. Concerning field experiment, data revealed that green bean plant vegetative growth, i.e., plant height, fresh and dry weight, leaf number and leaf area, at 45 days after planting (DAP) and shoot number at 30, 45 DAP recorded significantly the highest values at the first sowing date in both seasons. With respect of gamma irradiation doses, all the previously mentioned parameters of plant vegetative growth recorded the highest values with 40 Gy at 15, 30, and 45 DAP except number of leaves which recorded the highest value with 30 Gy at 15, 30 and 45 DAP. Concerning shoot number there was no significant difference among several doses at 30 DAP in the first season but in the second season it was 20 Gy and at 45 DAP compared with the control. Also the first sowing date in both seasons gave the highest pod length, fresh and dry weight, plant yield, number of pods per plant, marketable yield per plot and total yield per feddan. Whereas ,the second sowing date led to the lowest pod thickness. In addition, 20 Gy of gamma irradiation doses recorded the highest value of pod length .The 30 Gy dose showed the highest value of pod fresh and dry weight, plant yield and total yield per feddan. In addition ,the 20 and 30 Gy doses led to the highest pod number per plant and marketable yield, concerning pod thickness there was slight difference only in the second season between several doses. The second sowing date in the first season

  13. Prediction of midline dose from entrance ad exit dose using OSLD measurements for total irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Chang Heon; Park, Jong Min; Park, So Yeon; Chun, Min Soo; Han, Ji Hye; Cho, Jin Dong; Kim, Jung In [Dept. of Radiation Oncology, Seoul National University Hospital, Seoul (Korea, Republic of)

    2017-06-15

    This study aims to predict the midline dose based on the entrance and exit doses from optically stimulated luminescence detector (OSLD) measurements for total body irradiation (TBI). For TBI treatment, beam data sets were measured for 6 MV and 15 MV beams. To evaluate the tissue lateral effect of various thicknesses, the midline dose and peak dose were measured using a solid water phantom (SWP) and ion chamber. The entrance and exit doses were measured using OSLDs. OSLDs were attached onto the central beam axis at the entrance and exit surfaces of the phantom. The predicted midline dose was evaluated as the sum of the entrance and exit doses by OSLD measurement. The ratio of the entrance dose to the exit dose was evaluated at various thicknesses. The ratio of the peak dose to the midline dose was 1.12 for a 30 cm thick SWP at both energies. When the patient thickness is greater than 30 cm, the 15 MV should be used to ensure dose homogeneity. The ratio of the entrance dose to the exit dose was less than 1.0 for thicknesses of less than 30 cm and 40 cm at 6 MV and 15 MV, respectively. Therefore, the predicted midline dose can be underestimated for thinner body. At 15 MV, the ratios were approximately 1.06 for a thickness of 50 cm. In cases where adult patients are treated with the 15 MV photon beam, it is possible for the predicted midline dose to be overestimated for parts of the body with a thickness of 50 cm or greater. The predicted midline dose and OSLD-measured midline dose depend on the phantom thickness. For in-vivo dosimetry of TBI, the measurement dose should be corrected in order to accurately predict the midline dose.

  14. Serum immunoglobulin levels in humans exposed to therapeutic total-body gamma irradiation

    International Nuclear Information System (INIS)

    Chaskes, S.; Kingdon, G.C.; Balish, E.

    1975-01-01

    Reduced serum immunoglobulin (IgA, IgG, IgM) levels developed in the majority of 27 patients with hematologic disorders after treatment with 100 to 350 R total-body gamma-ray exposures at a dose rate of either 1.5 R/min to 1.5 R/hr. A reduction in IgA of 20 percent or more was found in 66 percent of the cases, while 56 percent showed an IgM decrease, and 49 percent an IgG decrease of 20 percent. The severity of immunoglobulin depression was influenced by the total radiation dose and the patient's primary disease. The occurrence of IgG and IgM depression was greater when the radiation was given at 1.5 R/hr than when the dose rate was 1.5 R/min. Substantial but incomplete recovery toward preirradiation immunoglobulin levels was found for most patients by 7 wk after total-body irradiation (TBI). (U.S.)

  15. Pulsed total dose damage effect experimental study on EPROM

    International Nuclear Information System (INIS)

    Luo Yinhong; Yao Zhibin; Zhang Fengqi; Guo Hongxia; Zhang Keying; Wang Yuanming; He Baoping

    2011-01-01

    Nowadays, memory radiation effect study mainly focus on functionality measurement. Measurable parameters is few in china. According to the present situation, threshold voltage testing method was presented on floating gate EPROM memory. Experimental study of pulsed total dose effect on EPROM threshold voltage was carried out. Damage mechanism was analysed The experiment results showed that memory cell threshold voltage negative shift was caused by pulsed total dose, memory cell threshold voltage shift is basically coincident under steady bias supply and no bias supply. (authors)

  16. Evaluation of gamma dose effect on PIN photodiode using analytical model

    Science.gov (United States)

    Jafari, H.; Feghhi, S. A. H.; Boorboor, S.

    2018-03-01

    The PIN silicon photodiodes are widely used in the applications which may be found in radiation environment such as space mission, medical imaging and non-destructive testing. Radiation-induced damage in these devices causes to degrade the photodiode parameters. In this work, we have used new approach to evaluate gamma dose effects on a commercial PIN photodiode (BPX65) based on an analytical model. In this approach, the NIEL parameter has been calculated for gamma rays from a 60Co source by GEANT4. The radiation damage mechanisms have been considered by solving numerically the Poisson and continuity equations with the appropriate boundary conditions, parameters and physical models. Defects caused by radiation in silicon have been formulated in terms of the damage coefficient for the minority carriers' lifetime. The gamma induced degradation parameters of the silicon PIN photodiode have been analyzed in detail and the results were compared with experimental measurements and as well as the results of ATLAS semiconductor simulator to verify and parameterize the analytical model calculations. The results showed reasonable agreement between them for BPX65 silicon photodiode irradiated by 60Co gamma source at total doses up to 5 kGy under different reverse voltages.

  17. Pathological consequences of chronic low daily dose gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Seed, T.M.; Miller, A.C.; Ramakrishnan, N. [Armed Forces Radiobiology Research Inst., Bethesda, MD (United States); Fritz, T.E.

    2000-07-01

    The quantitative relationships between the chronic radiation exposure parameters of dose-rate and total dose in relation to associated health risks was examined in dogs. At a dose-rate of 75, 128, and 263 mGy/d the incidence of acute lymphohematopoietic suppression (aplastic anemia) and associated septic complications was 73%, 87%, and 100%, respectively, and it increased in dose-dependent manner. By contrast, at dose-rates below 75 mGy/d, late cancers contributed significantly to the death of relatively long-lived animals, whose mean survival time was 1800 days. Myeloproliferative disease (MPD), mainly myeloid leukemia, was the dominant pathology seen at the higher daily dose-rates (18.8-75 mGy/d). When daily exposure was carried out continuously, the incidence of MPD was quite high. It should be noted that the induction radiation-induced MPD in this study was highly significant, because spontaneous MPD is exceedingly rare in the dog. However, when the daily dose-rate was reduced further or exposure was discontinued, the incidence of MPD declined significantly. At these lower dose-rates, solid tumors contributed heavily to the life-shortening effects of chronic irradiation. The induction and progression of these survival-compromising, late forms of pathology appeared to be driven by the degree of hematopoietic suppression that occurred early during the exposure phase, and in turn by the capacity of hematopoietic system to repair itself, recover, and to accommodate under chronic radiation stress. (K.H.)

  18. Using RADFET for the real-time measurement of gamma radiation dose rate

    Science.gov (United States)

    Andjelković, Marko S.; Ristić, Goran S.; Jakšić, Aleksandar B.

    2015-02-01

    RADFETs (RADiation sensitive Field Effect Transistors) are integrating ionizing radiation dosimeters operating on the principle of conversion of radiation-induced threshold voltage shift into absorbed dose. However, one of the major drawbacks of RADFETs is the inability to provide the information on the dose rate in real-time using the conventional absorbed dose measurement technique. The real-time monitoring of dose rate and absorbed dose can be achieved with the current mode dosimeters such as PN and PIN diodes/photodiodes, but these dosimeters have some limitations as absorbed dose meters and hence they are often not a suitable replacement for RADFETs. In that sense, this paper investigates the possibility of using the RADFET as a real-time dose rate meter so that it could be applied for simultaneous online measurement of the dose rate and absorbed dose. A RADFET sample, manufactured by Tyndall National Institute, Cork, Ireland, was tested as a dose rate meter under gamma irradiation from a Co-60 source. The RADFET was configured as a PN junction, such that the drain, gate and source terminals were grounded, while the radiation-induced current was measured at the bulk terminal, whereby the bulk was successively biased with 0 , 10 , 20  and 30 V. In zero-bias mode the radiation-induced current was unstable, but in the biased mode the current response was stable for the investigated dose rates from 0.65  to 32.1 Gy h-1 and up to the total absorbed dose of 25 Gy. The current increased with the dose rate in accordance with the power law, whereas the sensitivity of the current read-out was linear with respect to the applied bias voltage. Comparison with previously analyzed PIN photodiodes has shown that the investigated RADFET is competitive with PIN photodiodes as a gamma radiation dose rate meter and therefore has the potential to be employed for the real-time monitoring of the dose rate and absorbed dose.

  19. Using RADFET for the real-time measurement of gamma radiation dose rate

    International Nuclear Information System (INIS)

    Andjelković, Marko S; Ristić, Goran S; Jakšić, Aleksandar B

    2015-01-01

    RADFETs (RADiation sensitive Field Effect Transistors) are integrating ionizing radiation dosimeters operating on the principle of conversion of radiation-induced threshold voltage shift into absorbed dose. However, one of the major drawbacks of RADFETs is the inability to provide the information on the dose rate in real-time using the conventional absorbed dose measurement technique. The real-time monitoring of dose rate and absorbed dose can be achieved with the current mode dosimeters such as PN and PIN diodes/photodiodes, but these dosimeters have some limitations as absorbed dose meters and hence they are often not a suitable replacement for RADFETs. In that sense, this paper investigates the possibility of using the RADFET as a real-time dose rate meter so that it could be applied for simultaneous online measurement of the dose rate and absorbed dose. A RADFET sample, manufactured by Tyndall National Institute, Cork, Ireland, was tested as a dose rate meter under gamma irradiation from a Co-60 source. The RADFET was configured as a PN junction, such that the drain, gate and source terminals were grounded, while the radiation-induced current was measured at the bulk terminal, whereby the bulk was successively biased with 0 , 10 , 20  and 30 V. In zero-bias mode the radiation-induced current was unstable, but in the biased mode the current response was stable for the investigated dose rates from 0.65  to 32.1 Gy h −1 and up to the total absorbed dose of 25 Gy. The current increased with the dose rate in accordance with the power law, whereas the sensitivity of the current read-out was linear with respect to the applied bias voltage. Comparison with previously analyzed PIN photodiodes has shown that the investigated RADFET is competitive with PIN photodiodes as a gamma radiation dose rate meter and therefore has the potential to be employed for the real-time monitoring of the dose rate and absorbed dose. (paper)

  20. Assessment of Annual Effective Dose for Natural Radioactivity of Gamma Emitters in Biscuit Samples in Iraq.

    Science.gov (United States)

    Abojassim, Ali Abid; Al-Alasadi, Lubna A; Shitake, Ahmed R; Al-Tememie, Faeq A; Husain, Afnan A

    2015-09-01

    Biscuits are an important type of food, widely consumed by babies in Iraq and other countries. This work uses gamma spectroscopy to measure the natural radioactivity due to long-lived gamma emitters in children's biscuits; it also estimates radiation hazard indices, that is, the radium equivalent activity, the representative of gamma level index, the internal hazard index, and the annual effective dose in children. Ten samples were collected from the Iraqi market from different countries of origin. The average specific activities for (226)Ra, (232)Th, and (40)K were 9.390, 3.1213, and 214.969 Bq/kg, respectively, but the average of the radium equivalent activity and the internal hazard index were 33.101 Bq/kg and 0.107, respectively. The total average annual effective dose from consumption by adults, children, and infants is estimated to be 0.655, 1.009, and 0.875 mSv, respectively. The values found for specific activity, radiation hazard indices, and annual effective dose in all samples in this study were lower than worldwide median values for all groups; therefore, these values are found to be safe.

  1. Alkaline and Acid Phosphatase Activity in Blood Plasma of Chickens Irradiated by Low dose Gamma Radiation

    International Nuclear Information System (INIS)

    Petar, K.; Marinko, V.; Saveta, M.; Miljenko, S.

    2004-01-01

    In our previous paper (Kraljevic et, al, 2000; Kraljevic et al 2002) we showed that the growth of the chickens hatched from eggs irradiated with 0.15 Gy gamma-rays before incubation was significantly higher than in controls during the fattening period (1-42 days). The concentration of total protein, glucose and cholesterol in the blood plasma of the same chickens was also significantly changed. In this paper an attempt was made to determine the effect of irradiation of eggs by low dose ionizing radiation before incubation upon activity of alkaline and acid phosphatase in the blood plasma of chickens hatched from irradiated eggs. The eggs of heavy breeding chickens were irradiated by dose of 0.15 Gy gamma radiation (60 Co) before incubation. Along with the chickens which were hatched from irradiated eggs, there was a control group of chickens hatched from nonirradiated eggs. All other conditions were the same for both groups. After hatching, blood samples were taken from the wing vein on days 1, 3, 5, 6, 10, 20, 30 and 42. The activity of both enzymes was determined spectrophotometrically by using Boehring Mannheim GmbH optimized kits. the activity of alkaline phosphatase in blood plasma was decreased on days 42, and the activity of acid phosphatase in the blood plasma of the same chickens was increased on day 42. Obtained results confirm our early obtained results that low dose of gamma radiation has effects upon metabolic processes in the chickens hatched from eggs irradiated before incubation. (Author)

  2. Inhaled /sup 147/Pm and/or total-body gamma radiation: Early mortality and morbidity in rats

    Energy Technology Data Exchange (ETDEWEB)

    Filipy, R.E.; Lauhala, K.E.; McGee, D.R.; Cannon, W.C.; Buschbom, R.L.; Decker, J.R.; Kuffel, E.G.; Park, J.F.; Ragan, H.A.; Yaniv, S.S.; Scott, B.R.

    1989-05-01

    Rats were given doses of /sup 60/Co gamma radiation and/or lung burdens of /sup 147/Pm (in fused aluminosilicate particles) within lethal ranges in an experiment to determine and compare morbidity and mortality responses for the radiation insults within 1 year after exposure. Radiation-induced morbidity was assessed by measuring changes in body weights, hematologic parameters, and pulmonary-function parameters. Acute mortality and morbidity from inhaled promethium were caused primarily by radiation pneumonitis and pulmonary fibrosis that occurred more than 53 days after exposure. Acute mortality and morbidity from total-body gamma irradiation occurred within 30 days of exposure and resulted from the bone-marrow radiation syndrome. Gamma radiation caused transient morbidity, reflected by immediately depressed blood cell levels and by reduced body weight gain in animals that survived the acute gamma radiation syndrome. Inhaled promethium caused a loss of body weight and diminished pulmonary function, but its only effect on blood cell levels was lymphocytopenia. Combined gamma irradiation and promethium lung burdens were synergistic, in that animals receiving both radiation insults had higher morbidity and mortality rates than would be predicted based on the effect of either kind of radiation alone. Promethium lung burdens enhanced the effect of gamma radiation in rats within the first 30 days of exposure, and gamma radiation enhanced the later effect of promethium lung burdens. 70 refs., 68 figs., 21 tabs.

  3. Calculation of midplane dose for total body irradiation from entrance and exit dose MOSFET measurements.

    Science.gov (United States)

    Satory, P R

    2012-03-01

    This work is the development of a MOSFET based surface in vivo dosimetry system for total body irradiation patients treated with bilateral extended SSD beams using PMMA missing tissue compensators adjacent to the patient. An empirical formula to calculate midplane dose from MOSFET measured entrance and exit doses has been derived. The dependency of surface dose on the air-gap between the spoiler and the surface was investigated by suspending a spoiler above a water phantom, and taking percentage depth dose measurements (PDD). Exit and entrances doses were measured with MOSFETs in conjunction with midplane doses measured with an ion chamber. The entrance and exit doses were combined using an exponential attenuation formula to give an estimate of midplane dose and were compared to the midplane ion chamber measurement for a range of phantom thicknesses. Having a maximum PDD at the surface simplifies the prediction of midplane dose, which is achieved by ensuring that the air gap between the compensator and the surface is less than 10 cm. The comparison of estimated midplane dose and measured midplane dose showed no dependence on phantom thickness and an average correction factor of 0.88 was found. If the missing tissue compensators are kept within 10 cm of the patient then MOSFET measurements of entrance and exit dose can predict the midplane dose for the patient.

  4. Gamma radiation dose from radionuclides in Kong Kong soil

    International Nuclear Information System (INIS)

    Leung, K.C.

    1990-01-01

    Calculations have been made of the γ dose rate at one metre above ground from the results of measurements of radionuclide concentrations in soil at various locations in Hong Kong and prior to the Chernobyl accident. The average dose rate is found to be 0.076 μGy h -1 , or 0.67 mGy year -1 . The contribution from fallout nuclides to the annual dose is shown to be small, at about 0.4% of the total. The calculated dose rate in this work is about 80% higher than the world average given by the United Nations Scientific Committee on the Effects of Atomic Radiation, in Ionizing Radiation: Sources and Biological Effects, Annex B (Exposure to natural radiation sources). A United Nations Publication, 1982. (author)

  5. Application of a Pelletron accelerator to study total dose radiation effects on 50 GHz SiGe HBTs

    Energy Technology Data Exchange (ETDEWEB)

    Praveen, K.C.; Pushpa, N.; Naik, P.S. [Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore 570 006 (India); Cressler, John D. [School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA (United States); Tripathi, Ambuj [Inter University Accelerator Centre (IUAC), New Delhi 110 067 (India); Gnana Prakash, A.P., E-mail: gnanaprakash@physics.uni-mysore.ac.in [Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore 570 006 (India)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Total dose effects of 50 MeV Li3+ ion on 50 GHz SiGe HBTs is investigated. Black-Right-Pointing-Pointer Ion irradiated results were compared with Co-60 gamma results. Black-Right-Pointing-Pointer 50 MeV Li ions create more damage in E-B spacer oxide when compared to Co-60 gamma radiation. Black-Right-Pointing-Pointer Co-60 gamma radiation create more damage in STI oxide when compared to 50 MeV Li ions. Black-Right-Pointing-Pointer Worst case total dose radiation effects can be studied using Pelletron accelerator facilities. - Abstract: We have investigated the effects of 50 MeV lithium ion irradiation on the DC electrical characteristics of first-generation silicon-germanium heterojunction bipolar transistors (50 GHz SiGe HBTs) in the dose range of 600 krad to 100 Mrad. The results of 50 MeV Li{sup 3+} ion irradiation on the SiGe HBTs are compared with 63 MeV proton and Co-60 gamma irradiation results in the same dose range in order to understand the damage induced by different LET species. The radiation response of emitter-base (EB) spacer oxide and shallow trench isolation (STI) oxide to different irradiation types are discussed in this paper. We have also focused on the efficacy in the application of a Pelletron accelerator to study total dose irradiation studies in SiGe HBTs.

  6. Methods of assessing total doses integrated across pathways

    International Nuclear Information System (INIS)

    Grzechnik, M.; Camplin, W.; Clyne, F.; Allott, R.; Webbe-Wood, D.

    2006-01-01

    Calculated doses for comparison with limits resulting from discharges into the environment should be summed across all relevant pathways and food groups to ensure adequate protection. Current methodology for assessments used in the radioactivity in Food and the Environment (R.I.F.E.) reports separate doses from pathways related to liquid discharges of radioactivity to the environment from those due to gaseous releases. Surveys of local inhabitant food consumption and occupancy rates are conducted in the vicinity of nuclear sites. Information has been recorded in an integrated way, such that the data for each individual is recorded for all pathways of interest. These can include consumption of foods, such as fish, crustaceans, molluscs, fruit and vegetables, milk and meats. Occupancy times over beach sediments and time spent in close proximity to the site is also recorded for inclusion of external and inhalation radiation dose pathways. The integrated habits survey data may be combined with monitored environmental radionuclide concentrations to calculate total dose. The criteria for successful adoption of a method for this calculation were: Reproducibility can others easily use the approach and reassess doses? Rigour and realism how good is the match with reality?Transparency a measure of the ease with which others can understand how the calculations are performed and what they mean. Homogeneity is the group receiving the dose relatively homogeneous with respect to age, diet and those aspects that affect the dose received? Five methods of total dose calculation were compared and ranked according to their suitability. Each method was labelled (A to E) and given a short, relevant name for identification. The methods are described below; A) Individual doses to individuals are calculated and critical group selection is dependent on dose received. B) Individual Plus As in A, but consumption and occupancy rates for high dose is used to derive rates for application in

  7. Effect of dose and dose rate of gamma radiation on catalytic activity of catalase

    International Nuclear Information System (INIS)

    Vaclav Cuba; Tereza Pavelkova; Viliam Mucka

    2010-01-01

    Catalytic activity of gamma irradiated catalase from bovine liver was studied for hydrogen peroxide decomposition at constant temperature and pressure. The measurement was performed at temperatures 27, 32, 37, 42 and 47 deg C. Solutions containing 1 and 0.01 g dm -3 of catalase in phosphate buffer were used for the study. Repeatability of both sample preparation and kinetics measurement was experimentally verified. Rate constants of the reaction were determined for all temperatures and the activation energy was evaluated from Arrhenius plot. Gamma irradiation was performed using 60 Co radionuclide source Gammacell 220 at two different dose rates 5.5 and 70 Gy h -1 , with doses ranging from 10 to 1000 Gy. The observed reaction of irradiated and non-irradiated catalase with hydrogen peroxide is of the first order. Irradiation significantly decreases catalytic activity of catalase, but the activation energy does not depend markedly on the dose. The effect of irradiation is more significant at higher dose rate. (author)

  8. Ionizing radiation population doses at Sao Paulo city, Brazil: open-pit gamma dose measurement

    International Nuclear Information System (INIS)

    Oliveira, Raimundo Enoch Rodrigues

    2001-01-01

    The effects of ionizing radiation to the human beings are well known for high and intermediate doses. As far as low level) radiation doses are concerned, there is no consensus. In order to get a better understanding of such effects it is necessary to assess the low doses with better accuracy. In this work, it was made an estimate of the annual ambient dose equivalent (H * (10)) to which the people are exposed in the city of Sao Paulo. Until now there are no data about it available in the literature. For the purpose of this evaluation, a map with various routes covering the largest and more representative area of the city was designed. The choice of points for data collection was made taking into account mainly the occupancy of the region. A portable gamma spectrometry system was used. It furnishes the rate of H * (10) and the measured gamma spectrum (in the range from 50 to 1670 keV) in the place of interest. The measurements were performed in a short time interval, since the gamma radiation arrives from a great extent of soil. Each measurement was done 1 m above the soil during 300 s. The rates of H * (10) varied from 33.1 to 152.3 nSv.h -1 , net values, obtained after subtraction of the cosmic rays contribution. The standard deviation was 22 n Sv.h -1 for an average for the city of Sao Paulo of 96.1(24) nSv.h -1 . In addition, average values of H * (10) rates for the city Health Divisions were calculated. Those values are not statistically equivalent and the whole set of data could not be treated as one, as the statistical Student test indicated a non homogeneity of the group of data. Hence it is necessary the accomplishment of a more detailed survey in order to verify the origin of the discrepancy. The mean value of H * (10) rate obtained for the city of Sao Paulo as converted to effective dose. in order to be compared with other places results It could be noticed that the annual average of effective dose for the city of Sao Paulo, 0.522(13) mSv, is superior to

  9. Prediction of terrestrial gamma dose rate based on geological formations and soil types in the Johor State, Malaysia

    International Nuclear Information System (INIS)

    Saleh, Muneer Aziz; Ramli, Ahmad Termizi; Hamzah, Khaidzir bin; Alajerami, Yasser; Moharib, Mohammed; Saeed, Ismael

    2015-01-01

    This study aims to predict and estimate unmeasured terrestrial gamma dose rate (TGDR) using statistical analysis methods to derive a model from the actual measurement based on geological formation and soil type. The measurements of TGDR were conducted in the state of Johor with a total of 3873 measured points which covered all geological formations, soil types and districts. The measurements were taken 1 m above the soil surface using NaI [Ti] detector. The measured gamma dose rates ranged from 9 nGy h −1 to 1237 nGy h −1 with a mean value of 151 nGy h −1 . The data have been normalized to fit a normal distribution. Tests of significance were conducted among all geological formations and soil types, using the unbalanced one way ANOVA. The results indicated strong significant differences due to the different geological formations and soil types present in Johor State. Pearson Correlation was used to measure the relations between gamma dose rate based on geological formation and soil type (D G,S ) with the gamma dose rate based on geological formation (D G ) or soil type (D s ). A very good correlation was found between D G,S and D G or D G,S and D s . A total of 118 pairs of geological formations and soil types were used to derive the statistical contribution of geological formations and soil types to gamma dose rates. The contribution of the gamma dose rate from geological formation and soil type were found to be 0.594 and 0.399, respectively. The null hypotheses were accepted for 83% of examined data, therefore, the model could be used to predict gamma dose rates based on geological formation and soil type information. - Highlights: • A very good correlation coefficient was found between D G,S and D G or D G,S and D s . • The contribution of the gamma dose rate from geological formation (GDR) is 0.594. • The contribution of the GDR from soil type was found to be 0.399. • A 83% of examined data were accepted the null hypotheses. • The model

  10. High gamma dose response of the electrical properties of polyethylene terephthalate thin films

    International Nuclear Information System (INIS)

    Radwan, R.M.

    2007-01-01

    Electrical properties of polyethylene terephthalate (PET), irradiated with gamma rays, have been investigated. The PET films were irradiated with high gamma dose levels in the range from 100 to 2000 kGy. The changes in the DC (σ DC ) and the ac (σ ac ) conductivities, with the dose, have been performed. The effect of gamma irradiation on the dielectric constant (ε') and loss (ε'') has been determined. Also, the dose dependence of the frequency exponent index (S), the resonance frequency (Fc) and the hopping frequency (ω P ) have been obtained. The obtained results show that increasing gamma dose leads to slight increase in σ DC , σ ac and ε', while no change was observed in ε'' value. Meanwhile, S, Fc and ω P are inversely proportional to the dose. Accordingly, the study suggests the possibility of using PET films in electronic components (capacitors, resistors, etc.), especially that operate at high gamma dose environments for the frequency independent applications

  11. Effect of low-dose gamma-radiation upon hatchability and weight of chickens

    International Nuclear Information System (INIS)

    Vilic, M.; Kraljevic, P.; Simpraga, M.; Miljanic, S.

    2006-01-01

    Full text of publication follows: Although any dose of ionizing radiation has generally been recognized to be detrimental to living being, low dose ionizing radiation seems to invoke primary stimulative effects. Stimulatory effects of low dose ionizing radiation include many aspects such as growth, fecundity and longevity stimulation, accelerated development, enhance biological responses for immune systems, enzymatic repair, physiological functions, and the removal of cellular damage, including prevention and removal of cancers and other diseases. Low dose ionizing radiation might also cause changes in the concentration of some biochemical parameters in blood plasma of chickens such as changes in the concentration of total proteins, glucose and cholesterol. The objective of this study was to determine the effect of low doses of gamma irradiation before incubation and on the seventh day of incubation on hatchability of eggs and body weight of chickens. This study includes three independent experiments. In the first experiment, six-hundred eggs produced by a commercial flock of Avian-line 34, were irradiated by a dose of 0.15 Gy gamma radiation (60 Co) before incubation. In the second experiments also involving six-hundred-line 34 eggs were irradiated by dose of 0.15 Gy gamma radiation on the seventh day of incubation. In the third experiment three-hundred eggs produced by a commercial flock of Ross 308 were irradiated by dose 0.30 Gy gamma irradiation before incubation. Along with the chickens which were hatched from irradiated eggs, there was a control group of chickens hatched from nonirradiated eggs. All other conditions were the same for both groups. Hatchability was calculated in terms of all eggs divided with fertile eggs which hatched. The individual weights of the chickens were determined on the first and on the forty second day. Growth data were analyzed statistically by t-test. Irradiation of chicken eggs and embryos at rates o f 0.15 Gy increases

  12. Gamma and electron high dose dosimetry with rad-hard Si diodes

    International Nuclear Information System (INIS)

    Pascoalino, Kelly Cristina da Silva

    2014-01-01

    In this work the main dosimetric characteristics of rad-hard Float Zone (FZ) and magnetic Czochralski (MCz) diodes to electrons (1.5 MeV) and gamma ( 60 Co) radiation are evaluated. The dosimetric system proposed is based on electrical current measurements due to radiation interactions on the devices. The batch response uniformity was studied for the n-type FZ diodes irradiated with gamma rays. The coefficient of variation of the current measurement was about 1.25% at 5 kGy of accumulated dose. A sensitivity decrease with the increase of the accumulated dose (Total Ionizing Dose - TID) was observed for both FZ and MCz diodes. For gamma irradiation, these effect is more pronounced for n-type or smaller resistivity diodes. Two types of dosimetric probe were used on the electron irradiation procedures, one of them specially designed to avoid the deterioration of the electrical contacts and the diodes metallization. The sensitivity of the preirradiated FZ and MCz diodes fell about 10% and 40%, respectively, during electron irradiation at 1.25 MGy of accumulated dose. The effect of electron radiation damage on the electrical properties of the diodes was studied by the means of leakage current and capacitance measurements as a function of bias voltage. The leakage current increases with the accumulated dose but does not contributes significantly to the current signal, since the diodes are operated in photovoltaic mode, without bias voltage. For the MCz diode no change in the full depletion voltage was observed, which indicates its higher tolerance to radiation-induced damage, as expected. During electron irradiation the temperature increases and in order to determine its influence for the current signals, the leakage current values were extrapolated up to 35 °C. The contribution does not exceed 0.1% for FZ and MCz diodes. The effect of the radiation type, electrons or gamma rays, on the pre dose procedures was analyzed for the FZ n-type device and was observed that the

  13. Dose Response Model of Biological Reaction to Low Dose Rate Gamma Radiation

    International Nuclear Information System (INIS)

    Magae, J.; Furikawa, C.; Hoshi, Y.; Kawakami, Y.; Ogata, H.

    2004-01-01

    It is necessary to use reproducible and stable indicators to evaluate biological responses to long term irradiation at low dose-rate. They should be simple and quantitative enough to produce the results statistically accurate, because we have to analyze the subtle changes of biological responses around background level at low dose. For these purposes we chose micronucleus formation of U2OS, a human osteosarcoma cell line, as indicators of biological responses. Cells were exposed to gamma ray in irradiation rom bearing 50,000 Ci 60Co. After irradiation, they were cultured for 24 h in the presence of cytochalasin B to block cytokinesis, and cytoplasm and nucleus were stained with DAPI and prospidium iodide, respectively. the number of binuclear cells bearing micronuclei was counted under a fluorescence microscope. Dose rate in the irradiation room was measured with PLD. Dose response of PLD is linear between 1 mGy to 10 Gy, and standard deviation of triplicate count was several percent of mean value. We fitted statistically dose response curves to the data, and they were plotted on the coordinate of linearly scale response and dose. The results followed to the straight line passing through the origin of the coordinate axes between 0.1-5 Gy, and dose and does rate effectiveness factor (DDREF) was less than 2 when cells were irradiated for 1-10 min. Difference of the percent binuclear cells bearing micronucleus between irradiated cells and control cells was not statistically significant at the dose above 0.1 Gy when 5,000 binuclear cells were analyzed. In contrast, dose response curves never followed LNT, when cells were irradiated for 7 to 124 days. Difference of the percent binuclear cells bearing micronucleus between irradiated cells and control cells was not statistically significant at the dose below 6 Gy, when cells were continuously irradiated for 124 days. These results suggest that dose response curve of biological reaction is remarkably affected by exposure

  14. Validation of a model for calculating environmental doses caused by gamma emitters in the soil

    International Nuclear Information System (INIS)

    Ortega, X.; Rosell, J.R.; Dies, X.

    1991-01-01

    A model has been developed to calculate the absorbed dose rates caused by gamma emitters of both natural and artificial origin distributed in the soil. The model divides the soil into five compartments corresponding to layers situated at different depths, and assumes that the concentration of radionuclides is constant in each one of them. The calculations, following the model developed, are undertaken through a program which, based on the concentrations of the radionuclides in the different compartments, gives as a result the dose rate at a height of one metre above the ground caused by each radionuclide and the percentage this represents with respect to the total absorbed dose rate originating from this soil. The validity of the model has been checked in the case of sandy soils by comparing the exposure rates calculated for five sites with the experimental values obtained with an ionisation chamber. (author)

  15. The effect of Low-dose Gamma Radiation on the Bio-chemical ...

    African Journals Online (AJOL)

    Low-dose gamma radiation has been applied to intravenous fluids to enhance the sterility assurance levels. This study was undertaken to determine the stability of gamma irradiated 2.5 % dextrose, 2.5 % dextrose in saline, Ringers lactate and Gastrointestinal replacement fluid at doses of 0, 2, 4, 6, 8, 10 and 20 kGy.

  16. The annual terrestrial gamma radiation dose to the population of the urban Christchurch area

    International Nuclear Information System (INIS)

    Chapman, R.H.

    1983-01-01

    Natural terrestrial gamma radiation dose rates were measured with a high pressure ionization chamber at 70 indoor (195 site measurements) and 58 outdoor locations in the metropolitan Christchurch area. Based on these site measurements, the average gonad dose rate to the population from natural terrestrial gamma radiation was estimated to be 273+-56 microgray per annum. (auth)

  17. Effect of gamma background on the dose absorbed by human embryon and foetus

    International Nuclear Information System (INIS)

    Miloslavov, V.; Doncheva, B.

    1989-01-01

    A method is proposed for calculation of absorbed radiation dose in different stages of human foetus development under normal or increased gamma background. On the base of ICRP-data for critical organ's mass (foetus, placenta, blood, uterus) a formula is given for absorbed dose evaluation of gonads. It is concluded that increased gamma background is insignificant compared to internal irradiation from absorbed radionuclides

  18. SU-F-T-370: A Fast Monte Carlo Dose Engine for Gamma Knife

    Energy Technology Data Exchange (ETDEWEB)

    Song, T; Zhou, L [Southern Medical University, Guangzhou, Guangdong (China); Li, Y [Beihang University, Beijing, Beijing (China)

    2016-06-15

    Purpose: To develop a fast Monte Carlo dose calculation algorithm for Gamma Knife. Methods: To make the simulation more efficient, we implemented the track repeating technique on GPU. We first use EGSnrc to pre-calculate the photon and secondary electron tracks in water from two mono-energy photons of 60Co. The total photon mean free paths for different materials and energies are obtained from NIST. During simulation, each entire photon track was first loaded to shared memory for each block, the incident original photon was then splitted to Nthread sub-photons, each thread transport one sub-photon, the Russian roulette technique was applied for scattered and bremsstrahlung photons. The resultant electrons from photon interactions are simulated by repeating the recorded electron tracks. The electron step length is stretched/shrunk proportionally based on the local density and stopping power ratios of the local material. Energy deposition in a voxel is proportional to the fraction of the equivalent step length in that voxel. To evaluate its accuracy, dose deposition in a 300mm*300mm*300mm water phantom is calculated, and compared to EGSnrc results. Results: Both PDD and OAR showed great agreements (within 0.5%) between our dose engine result and the EGSnrc result. It only takes less than 1 min for every simulation, being reduced up to ∼40 times compared to EGSnrc simulations. Conclusion: We have successfully developed a fast Monte Carlo dose engine for Gamma Knife.

  19. Effect of Low Dose Gamma Radiation on Some Biochemical Indicators in the Blood Plasma of Chickens

    International Nuclear Information System (INIS)

    Kraljevic, P.; Simpraga, M.; Vilic, M.; Miljanic, S.

    2001-01-01

    Full text: An attempt was made to determine the effect of irradiation of eggs by low dose ionising radiation before incubation on concentration of total protein, glucose and cholesterol in the blood plasma of chickens hatched from irradiated eggs. The eggs of heavy breeding chickens were irradiated by dose of 0.15 Gy gamma radiation ( 60 Co) before incubation. Along with the chickens which were hatched from irradiated eggs, there was the control group of chickens hatched from nonirradiated eggs. All other conditions were the same for the both groups. After hatching, blood samples were taken from the wing vein on days 1, 3, 5, 7, 10, 20, 30 and 42. The concentration of all three parameters was determined spectrophotometrically using Boehringer Mannheim GmbH optimized kits. The concentration of total protein was significantly decreased in the blood plasma of chickens hatched from irradiated eggs on days 3, 7 and 30 and increased only on day 5. The concentration of glucose in the blood plasma was increased in the same chickens on days 1 and 30. The concentration of the cholesterol was decreased in the same chickens on day 7, and increased on day 10. Obtained results indicate that low-dose of gamma radiation has effects on some metabolic processes in the chickens hatched from eggs irradiated before incubation. (author)

  20. Unscheduled DNA synthesis in spleen cells of mice exposed to low doses of total body irradiation

    International Nuclear Information System (INIS)

    Tuschl, H.; Kovac, R.; Hruby, E.

    1983-07-01

    Unscheduled DNA synthesis was induced by UV irradiation of spleen cells obtained from C 57 Bl mice after repeated total body irradiation of 0.05 Gy 60 Co (0.00125 Gy/mice) and determined autoradiographically. An enhancement in the ability for repair of UV induced DNA lesions was observed in cells of gamma irradiated animals. While the amount of 3 H-thymidine incorporated per cell was increased, the percentage of labeled cells remained unchanged. The present results are compared with previous data on low dose radiation exposure in men. (Author) [de

  1. In-situ gamma spectrometry method for determination of environmental gamma dose

    International Nuclear Information System (INIS)

    Conti, Claudio de Carvalho

    1995-07-01

    This work tries to establish a methodology for germanium detectors calibration, normally used for in situ gamma ray spectrometry, for determining the environmental exposure rate in function of the energy of the incident photons. For this purpose a computer code has been developed, based on the stripping method, for the computational spectra analysis to calculate the contribution of the partial absorption of the gamma rays (Compton effect) in the active and nonactive parts of the detector. The resulting total absorption spectrum is then converted to fluence distribution in function of the energy for the photons reaching the detector, which is then used to calculate the exposure rate or kerma in air. The unfolding and fluency convention parameters are determined by detector calibration using point gamma sources. The method is validated by comparison of the results against the calculated exposure rate at a point of interest for the standards. This method is used for the direct measurement of the exposure rate distribution in function of the energy at the site, in situ measurement technic, leading to rapid results during an emergency situation and also used for indoor measurements. (author)

  2. High Doses Gamma Radiolysis of PVC: Mechanisms of Degradation

    International Nuclear Information System (INIS)

    Colombani, J.

    2006-01-01

    PVC radiolysis leads to the formation of various degradation products: radicals, gas, oxidized products or polyenes. In order to predict the formation of the degradation products with regard to irradiation and ageing parameters, it is important to improve the understanding of the radiolysis mechanisms of PVC. Thus, we used several analytical techniques (Electron Spin Resonance, Fourier Transform Infrared spectroscopy, Nuclear Magnetic Resonance, Size Exclusion Chromatography) to get information on PVC samples irradiated at high doses (up to 4MGy) under different conditions. Gamma irradiation induces the formation of various radicals into PVC. Older studies were generally focused on the effect of low dose and/or low temperature irradiations on PVC. We present here ESR signals of PVC irradiated at high doses and at room temperature. We show that peroxyl radicals are producted by radiolysis under aerobe conditions and that polyenyl radicals are formed under anaerobe conditions. PVC radiolysis induces gas production and especially hydrogen chloride. Production of hydrogen chloride is well known until 1 MGy. We have studied by FTIR, the evolution of the quantity of HCl produced until 4 MGy. We show that higher irradiation dose leads to the lower radiolytic yield of HCl (G(HCl)). Moreover, G(HCl) obtained in aerobe conditions is about fourfold as great as G(HCl) observed in anaerobe radiolysis. Propagation and termination reactions induce degradation products: polyene sequences and crosslinking reactions are observed under anaerobe conditions; oxidized products with addition of chain scissions are formed under aerobe conditions. Although the literature about PVC radiolysis is rich, the main reacting pathways are not well established. Moreover the high doses studies are almost non-existent. We show by FTIR that aerobe radiolysis induces formation of ketons and acids. NMR experiments confirme these results but also focuse on small acids formed (with 2, 3 or 4 carbons). The

  3. Evaluation of dose distributions in gamma chamber using glass plate detector

    Directory of Open Access Journals (Sweden)

    Narayan Pradeep

    2008-01-01

    Full Text Available A commercial glass plate of thickness 1.75 mm has been utilized for evaluation of dose distributions inside the irradiation volume of gamma chamber using optical densitometry technique. The glass plate showed linear response in the dose range 0.10 Kilo Gray (kGy to 10 kGy of cobalt-60 gamma radiation with optical sensitivity 0.04 Optical Density (OD /kGy. The change in the optical density at each identified spatial dose matrix on the glass plate in relation to the position in the irradiation volume has been presented as dose distributions inside the gamma chamber. The optical density changes have been graphically plotted in the form of surface diagram of color washes for different percentage dose rate levels as isodose distributions in gamma chamber. The variation in dose distribution inside the gamma chamber unit, GC 900, BRIT India make, using this technique has been observed within ± 15%. This technique can be used for routine quality assurances and dose distribution validation of any gamma chamber during commissioning and source replacement. The application of commercial glass plate for dose mapping in gamma chambers has been found very promising due to its wider dose linearity, quick measurement, and lesser expertise requirement in application of the technique.

  4. External gamma radiation dose studies in the proposed uranium mining areas of Andhra Pradesh, India

    International Nuclear Information System (INIS)

    Reddy, P.; Reddy, K.; Reddy, C.; Reddy, K.

    2006-01-01

    Natural radiation sources contribute the largest component to the total effective dose received by the human population. Among these sources, natural background gamma radiation shares a noteworthy amount. The present study aims at the establishment of baseline environmental gamma radiation data in the environs of proposed uranium mining areas of Andhra Pradesh, India. To this end, a systematic study has been undertaken using Thermoluminescence (T.L.) dosimeters and G.M. (Geiger - Muller) tube based survey meter. These levels are estimated both indoors and outdoors in the study area covering about 23 villages surrounding the proposed mining sites. The estimated external gamma radiation levels (air kerma) varied from 0.605 to 4.39 mGy.y -1 . The mean indoor to outdoor radiation level ratio is found to be 1.1 ± 0.1. The estimated mean equivalent doses due to external background radiation in the villages of the study area range from 1.03 to 2.83 mSv.y -1 with a mean of 2.34 ± 0.39 mSv.y -1 . (authors)

  5. Determination of dose components in mixed gamma neutron fields by use of high pressure ionization chambers

    International Nuclear Information System (INIS)

    Golnik, N.; Pliszczynski, T.; Wysocka, A.; Zielczynski, M.

    1985-01-01

    The two ionization chamber method for determination of dose components in mixed γ-neutron field has been improved by increasing gas pressure in the chambers up to some milions pascals. Advantages of high pressure gas filling are the followings: 1) significant reduction of the ratio of neutron-to gamma sensitivity for the hydrogen-free chamber, 2) possibility of sensitivity correction for both chambers by application of appropriate voltage, 3) high sensitivity for small detectors. High-pressure, pen-like ionization chambers have been examined in fields of different neutron sources: a TE-chamber, filled with 0.2 MPa of quasi-TE-gas and a conductive PTFE chamber, filled with 3.1 MPa of CO 2 . The ratio of neutron-to-gamma sensitivity for the PTFE chamber, operated at electrical field strength below 100 V/cm, has not exceeded 0.01 for neutrons with energy below 8 MeV. Formula is presented for calculation of this ratio for any high-pressure, CO 2 -filled ionization chamber. Contribution of gamma component to total tissue dose in the field of typical neutron sources has been found to be 3 to 70%

  6. Risk and dose assessment methods in gamma knife QA

    International Nuclear Information System (INIS)

    Banks, W.W.; Jones, E.D.; Rathbun, P.

    1992-10-01

    Traditional methods used in assessing risk in nuclear power plants may be inappropriate to use in assessing medical radiation risks. The typical philosophy used in assessing nuclear reactor risks is machine dominated with only secondary attention paid to the human component, and only after critical machine failure events have been identified. In assessing the risk of a misadministrative radiation dose to patients, the primary source of failures seems to stem overwhelmingly, from the actions of people and only secondarily from machine mode failures. In essence, certain medical misadministrations are dominated by human events not machine failures. Radiological medical devices such as the Leksell Gamma Knife are very simple in design, have few moving parts, and are relatively free from the risks of wear when compared with a nuclear power plant. Since there are major technical differences between a gamma knife and a nuclear power plant, one must select a particular risk assessment method which is sensitive to these system differences and tailored to the unique medical aspects of the phenomena under study. These differences also generate major shifts in the philosophy and assumptions which drive the risk assessment (Machine-centered vs Person-centered) method. We were prompted by these basic differences to develop a person-centered approach to risk assessment which would reflect these basic philosophical and technological differences, have the necessary resolution in its metrics, and be highly reliable (repeatable). The risk approach chosen by the Livermore investigative team has been called the ''Relative Risk Profile Method'' and has been described in detail by Banks and Paramore, (1983)

  7. SU-E-T-647: Quality Assurance of VMAT by Gamma Analysis Dependence On Low-Dose Threshold

    Energy Technology Data Exchange (ETDEWEB)

    Song, J; Kim, M; Lee, S; Lee, M; Suh, T [Department of Biomedical Engineering, Reasearch Institute of Biomedical Engineering, The Catholic University of Korea, Seoul (Korea, Republic of); Park, S [Department of Biomedical Engineering, Reasearch Institute of Biomedical Engineering, The Catholic University of Korea, Seoul (Korea, Republic of); Department of Radiation Oncology, Uijeongbu St. Mary’s Hospital, Gyeonggi-do (Korea, Republic of)

    2015-06-15

    Purpose: The AAPM TG-119 instructed institutions to use low-dose threshold (LDT) of 10% or a ROI determined by the jaw when they collected gamma analysis QA data of planar dose distribution. Also, based on a survey by Nelms and Simon, more than 70% of institutions use a LDT between 0% and 10% for gamma analysis. However, there are no clinical data to quantitatively demonstrate the impact of the LDT on the gamma index. Therefore, we performed a gamma analysis with LDTs of 0% to 15% according to both global and local normalization and different acceptance criteria: 3%/3 mm, 2%/2 mm, and 1%/1 mm. Methods: A total of 30 treatment plans—10 head and neck, 10 brain, and 10 prostate cancer cases—were randomly selected from the Varian Eclipse TPS, retrospectively. For the gamma analysis, a predicted portal image was acquired through a portal dose calculation algorithm in the Eclipse TPS, and a measured portal image was obtained using a Varian Clinac iX and an EPID. Then, the gamma analysis was performed using the Portal Dosimetry software. Results: For the global normalization, the gamma passing rate (%GP) decreased as the LDT increased, and all cases of low-dose thresholds exhibited a %GP above 95% for both the 3%/3 mm and 2%/2 mm criteria. However, for local normalization, the %GP increased as LDT increased. The gamma passing rate with LDT of 10% increased by 6.86%, 9.22% and 6.14% compared with the 0% in the case of the head and neck, brain and prostate for 3%/3 mm criteria, respectively. Conclusion: Applying the LDT in the global normalization does not have critical impact to judge patient-specific QA results. However, LDT for the local normalization should be carefully selected because applying the LDT could affect the average of the %GP to increase rapidly.

  8. SU-E-T-647: Quality Assurance of VMAT by Gamma Analysis Dependence On Low-Dose Threshold

    International Nuclear Information System (INIS)

    Song, J; Kim, M; Lee, S; Lee, M; Suh, T; Park, S

    2015-01-01

    Purpose: The AAPM TG-119 instructed institutions to use low-dose threshold (LDT) of 10% or a ROI determined by the jaw when they collected gamma analysis QA data of planar dose distribution. Also, based on a survey by Nelms and Simon, more than 70% of institutions use a LDT between 0% and 10% for gamma analysis. However, there are no clinical data to quantitatively demonstrate the impact of the LDT on the gamma index. Therefore, we performed a gamma analysis with LDTs of 0% to 15% according to both global and local normalization and different acceptance criteria: 3%/3 mm, 2%/2 mm, and 1%/1 mm. Methods: A total of 30 treatment plans—10 head and neck, 10 brain, and 10 prostate cancer cases—were randomly selected from the Varian Eclipse TPS, retrospectively. For the gamma analysis, a predicted portal image was acquired through a portal dose calculation algorithm in the Eclipse TPS, and a measured portal image was obtained using a Varian Clinac iX and an EPID. Then, the gamma analysis was performed using the Portal Dosimetry software. Results: For the global normalization, the gamma passing rate (%GP) decreased as the LDT increased, and all cases of low-dose thresholds exhibited a %GP above 95% for both the 3%/3 mm and 2%/2 mm criteria. However, for local normalization, the %GP increased as LDT increased. The gamma passing rate with LDT of 10% increased by 6.86%, 9.22% and 6.14% compared with the 0% in the case of the head and neck, brain and prostate for 3%/3 mm criteria, respectively. Conclusion: Applying the LDT in the global normalization does not have critical impact to judge patient-specific QA results. However, LDT for the local normalization should be carefully selected because applying the LDT could affect the average of the %GP to increase rapidly

  9. Dose rate and dose fractionation studies in total body irradiation of dogs

    International Nuclear Information System (INIS)

    Kolb, H.J.; Netzel, B.; Schaffer, E.; Kolb, H.

    1979-01-01

    Total body irradiation (TBI) with 800-900 rads and allogeneic bone marrow transplantation according to the regimen designated by the Seattle group has induced remissions in patients with otherwise refractory acute leukemias. Relapse of leukemia after bone marrow transplantation remains the major problem, when the Seattle set up of two opposing 60 Co-sources and a low dose rate is used in TBI. Studies in dogs with TBI at various dose rates confirmed observations in mice that gastrointestinal toxicity is unlike toxicity against hemopoietic stem cells and possibly also leukemic stem cells depending on the dose rate. However, following very high single doses (2400 R) and marrow infusion acute gastrointestinal toxicity was not prevented by the lowest dose rate studied (0.5 R/min). Fractionated TBI with fractions of 600 R in addition to 1200 R (1000 rads) permitted the application of total doses up to 300 R followed by marrow infusion without irreversible toxicity. 26 dogs given 2400-3000 R have been observed for presently up to 2 years with regard to delayed radiation toxicity. This toxicity was mild in dogs given single doses at a low dose rate or fractionated TBI. Fractionated TBI is presently evaluated with allogeneic transplants in the dog before being applied to leukemic patients

  10. Shelf Life of Tilapia Fillets Treated with low dose Gamma Irradiation

    International Nuclear Information System (INIS)

    Mohamed, W.S.; El-Mossalami, I.I.

    2009-01-01

    The bacterial load (total bacterial count), Psychrophilic count, chemical and sensory examinations in Tilapia fish fillets were determined to evaluate its sanitary status and to increase its storage period during storage at -18 degree C for one year. The experiment was carried out at the time of receiving the samples and after gamma radiation treatment with dose levels of 1, 2 and 3 kGy. The initial total bacterial count was 5.4x10 0 cfu/gm and the psychrophilic count was 4x10 5 cfu/gm; it was slightly increased during freezing storage. The chemical parameters were more indicative in evaluating the shelf life of frozen fish; as they exceeded the permissible limits, so that the frozen non-irradiated samples were rejected after 6 months. The exposure to gamma irradiation at a dose of 1 kGy extended the storage time of the samples to 9 months while irradiation with 3 kGy extended the storage time of the samples to 12 months without changing its quality attributes. The quality during storage at -18 degree C of non irradiated and irradiated fish fillets was investigated every 3 months for one year by measuring the bacterial counts, chemical parameters and sensorial evaluation of the samples to study the effect of irradiation on increasing the storage time of fish fillets. So, it is recommended that fish fillets should be properly cleaned, packaged and exposed to gamma irradiation at a dose of 3 kGy to extend its freezing storage period

  11. Effect of gamma irradiation on the total nitrogen and protein content in body during different stages of silkworm development

    International Nuclear Information System (INIS)

    Petkov, N.; Malinova, K.; Binkh, N.T.

    1996-01-01

    The aim was to determine the effect of gamma irradiation of eggs of silk moth in B 2 stage in doses of 1.00, 2.00 and 3.00 Gy on the changes of total nitrogen and protein content during different stages of Bombyx mori L. development. Highest levels of total nitrogen and protein were found in silk gland 14.032-14.355 mg%, followed by pupae - 7.448-8.092 and 46.550-48.906 mg%, moths after egg laying - 6.650-7.825 and 41.563-48.906 mg% and silkworm hemolymph - 6.920-6.980 and 43.250-43.625 mg%, respectively. The irradiation of eggs with 2.00 and 3,00 Gy gamma rays stimulated the increase of total nitrogen and protein content in silk gland by 6.66-7.3% compared to non-irradiated eggs of the same breed. 14 refs., 3 tabs. (author)

  12. Novel Radiobiological Gamma Index for Evaluation of 3-Dimensional Predicted Dose Distribution

    Energy Technology Data Exchange (ETDEWEB)

    Sumida, Iori, E-mail: sumida@radonc.med.osaka-u.ac.jp [Department of Radiation Oncology, Osaka University Graduate School of Medicine, Osaka (Japan); Yamaguchi, Hajime; Kizaki, Hisao; Aboshi, Keiko; Tsujii, Mari; Yoshikawa, Nobuhiko; Yamada, Yuji [Department of Radiation Oncology, NTT West Osaka Hospital, Osaka (Japan); Suzuki, Osamu; Seo, Yuji [Department of Radiation Oncology, Osaka University Graduate School of Medicine, Osaka (Japan); Isohashi, Fumiaki [Department of Radiation Oncology, NTT West Osaka Hospital, Osaka (Japan); Yoshioka, Yasuo [Department of Radiation Oncology, Osaka University Graduate School of Medicine, Osaka (Japan); Ogawa, Kazuhiko [Department of Radiation Oncology, NTT West Osaka Hospital, Osaka (Japan)

    2015-07-15

    Purpose: To propose a gamma index-based dose evaluation index that integrates the radiobiological parameters of tumor control (TCP) and normal tissue complication probabilities (NTCP). Methods and Materials: Fifteen prostate and head and neck (H&N) cancer patients received intensity modulated radiation therapy. Before treatment, patient-specific quality assurance was conducted via beam-by-beam analysis, and beam-specific dose error distributions were generated. The predicted 3-dimensional (3D) dose distribution was calculated by back-projection of relative dose error distribution per beam. A 3D gamma analysis of different organs (prostate: clinical [CTV] and planned target volumes [PTV], rectum, bladder, femoral heads; H&N: gross tumor volume [GTV], CTV, spinal cord, brain stem, both parotids) was performed using predicted and planned dose distributions under 2%/2 mm tolerance and physical gamma passing rate was calculated. TCP and NTCP values were calculated for voxels with physical gamma indices (PGI) >1. We propose a new radiobiological gamma index (RGI) to quantify the radiobiological effects of TCP and NTCP and calculate radiobiological gamma passing rates. Results: The mean RGI gamma passing rates for prostate cases were significantly different compared with those of PGI (P<.03–.001). The mean RGI gamma passing rates for H&N cases (except for GTV) were significantly different compared with those of PGI (P<.001). Differences in gamma passing rates between PGI and RGI were due to dose differences between the planned and predicted dose distributions. Radiobiological gamma distribution was visualized to identify areas where the dose was radiobiologically important. Conclusions: RGI was proposed to integrate radiobiological effects into PGI. This index would assist physicians and medical physicists not only in physical evaluations of treatment delivery accuracy, but also in clinical evaluations of predicted dose distribution.

  13. An improved standard total dose test for CMOS space electronics

    International Nuclear Information System (INIS)

    Fleetwood, D.M.; Winokur, P.S.; Riewe, L.C.; Pease, R.L.

    1989-01-01

    The postirradiation response of hardened and commercial CMOS devices is investigated as a function of total dose, dose rate, and annealing time and temperature. Cobalt-60 irradiation at ≅ 200 rad(SiO 2 )/s followed by a 1-week 100 degrees C biased anneal and testing is shown to be an effective screen of hardened devices for space use. However, a similar screen and single-point test performed after Co-60 irradiation and elevated temperature anneal cannot be generally defined for commercial devices. In the absence of detailed knowledge about device and circuit radiation response, a two-point standard test is proposed to ensure space surviability of CMOS circuits: a Co-60 irradiation and test to screen against oxide-trapped charge related failures, and an additional rebound test to screen against interface-trap related failures. Testing implications for bipolar technologies are also discussed

  14. Total dose and dose rate models for bipolar transistors in circuit simulation.

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Phillip Montgomery; Wix, Steven D.

    2013-05-01

    The objective of this work is to develop a model for total dose effects in bipolar junction transistors for use in circuit simulation. The components of the model are an electrical model of device performance that includes the effects of trapped charge on device behavior, and a model that calculates the trapped charge densities in a specific device structure as a function of radiation dose and dose rate. Simulations based on this model are found to agree well with measurements on a number of devices for which data are available.

  15. Adjustment of gamma radiation doses for sterilization of Egyptian surgical sutures

    International Nuclear Information System (INIS)

    Tawfik, Z.S.; Helmy, M.M.; Roushdy, H.M.

    1984-01-01

    The adjustment of gamma radiation doses for sterilization of catguts under local manufacturing conditions has been performed. Average total initial counts for aerobic and anaerobic bacteria per item were relatively low, in the range of 1000 counts for aerobic and 10 counts for anaerobic bacteria. The microfiora (aerobic bacteria) of the studied sutures were isolated and identified to be: Bacillus sp.; Micrococcus varians, Micrococcus roseus, and Staphylococcus. Each purified and identified isolate was exposed to gamma radiation both in liquid media (broth) and in the preservative in which the sutures were supplied by the company. The LD values of the most resistant microorganisms in both case of liquid media and preservative, were obtained to be around 5 KGy. Deliberately contaminated sterile sutures with each isolate and with mixture of isolates were studied. The sterilizing dose was obtained to be 20KGy for most heavily contaminated items (10 10 counts) irradiated both in saline and in preservative. This sterilizing dose was found to be dependent of the initial viable counts. This value was considered to be a safe value for radiosterilization of the studied sutures preserved in isopropyl alcohol, glycerin, and water (90:3.5:16)

  16. Total-dose radiation effects data for semiconductor devices. 1985 supplement. Volume 2, part A

    International Nuclear Information System (INIS)

    Martin, K.E.; Gauthier, M.K.; Coss, J.R.; Dantas, A.R.V.; Price, W.E.

    1986-05-01

    Steady-state, total-dose radiation test data, are provided in graphic format for use by electronic designers and other personnel using semiconductor devices in a radiation environment. The data were generated by JPL for various NASA space programs. This volume provides data on integrated circuits. The data are presented in graphic, tabular, and/or narrative format, depending on the complexity of the integrated circuit. Most tests were done using the JPL or Boeing electron accelerator (Dynamitron) which provides a steady-state 2.5 MeV electron beam. However, some radiation exposures were made with a cobalt-60 gamma ray source, the results of which should be regarded as only an approximate measure of the radiation damage that would be incurred by an equivalent electron dose

  17. Theoretical considerations for SRAM total-dose hardening

    International Nuclear Information System (INIS)

    Francis, P.; Flandre, D.; Colinge, J.P.

    1995-01-01

    The theoretical hardness against total dose of the six-transistor SRAM cell is investigated in detail. An explicit analytical expression of the maximum tolerable threshold voltage shift is derived for two cross-coupled inverters. A numerical method is used to explore the hardness of the read and write operations. Both N- and P-channel access transistors designs are considered and their respective advantages are compared. The study points out that the radiation hardness mainly relies on the technology. Results obtained with the very robust Gate-All-Around process are finally presented

  18. Terrestrial gamma radiation dose rate in Ryukyu Islands, subtropical region of Japan

    International Nuclear Information System (INIS)

    Furukawa, M.; Shiroma, M.; Motomura, D.; Fujioka, S.; Kawakami, T.; Yasuda, Y.; Arakawa, K.; Fukahori, K.; Jyunicho, M.; Ishikawa, S.; Ohomoto, T.; Kina, S.; Shiroma, Y.; Masuda, N.; Hiraoka, H.; Shingaki, R.; Akata, N.; Zhuo, W.; Tokonami, S.

    2015-01-01

    In order to explain the distribution of natural radiation level in the Asia, in situ measurements of dose rate in air due to terrestrial gamma radiation have been conducted in a total of 21 islands that belong to Ryukyu Islands (Ryukyu Archipelago), subtropical rejoin of southwest Japan. Car-borne surveys have also been carried out in Okinawa-jima, the biggest island of the archipelago. Based on the results for these measurements, arithmetic mean, the maximum and the minimum of the dose rates at 1 m in height from the unpaved soil ground in the archipelago were estimated to be 47, 165 and 8 nGy h -1 , respectively. A comparative study of car-borne data obtained prior to and subsequent to the 2011 Fukushima nuclear accident, as for Okinawa-jima, indicated that the nuclear accident has no impact on the environmental radiation at the present time. (authors)

  19. Estimation of the effectivity of gamma teletherapy with fractionated daily doses in inoperable malignant tumors

    International Nuclear Information System (INIS)

    Mardynskij, Yu.S.; Leskov, V.P.

    1982-01-01

    131 patients with lung, esophagus, rectum and mandibulofacial tumors, most of them being inoperable, were treated with fractionated gamma teletherapy. The daily focus dose of 2-2.2 Gy was applied in 2 fractions with an interval of 4-6 h. The total focus dose of one course of treatment was 40-70 Gy. In 56 patients (42.7%) a complete regression of the tumors and of the increased regional lymph nodes was obtained. The irradiation by the mentioned technique showed the highest effectivity for tumors of the lung and the esophagus. The diminished frequency and an easier progress of the radiation reactions are important because they often prevent to carry out a radical therapy. (author)

  20. Total Ambient Dose Equivalent Buildup Factor Determination for Nbs04 Concrete.

    Science.gov (United States)

    Duckic, Paulina; Hayes, Robert B

    2018-06-01

    Buildup factors are dimensionless multiplicative factors required by the point kernel method to account for scattered radiation through a shielding material. The accuracy of the point kernel method is strongly affected by the correspondence of analyzed parameters to experimental configurations, which is attempted to be simplified here. The point kernel method has not been found to have widespread practical use for neutron shielding calculations due to the complex neutron transport behavior through shielding materials (i.e. the variety of interaction mechanisms that neutrons may undergo while traversing the shield) as well as non-linear neutron total cross section energy dependence. In this work, total ambient dose buildup factors for NBS04 concrete are calculated in terms of neutron and secondary gamma ray transmission factors. The neutron and secondary gamma ray transmission factors are calculated using MCNP6™ code with updated cross sections. Both transmission factors and buildup factors are given in a tabulated form. Practical use of neutron transmission and buildup factors warrants rigorously calculated results with all associated uncertainties. In this work, sensitivity analysis of neutron transmission factors and total buildup factors with varying water content has been conducted. The analysis showed significant impact of varying water content in concrete on both neutron transmission factors and total buildup factors. Finally, support vector regression, a machine learning technique, has been engaged to make a model based on the calculated data for calculation of the buildup factors. The developed model can predict most of the data with 20% relative error.

  1. Analytical calculations of the efficiency of gamma scintillators total efficiency for coaxial disk sources

    Energy Technology Data Exchange (ETDEWEB)

    Selim, Y S; Abbas, M I; Fawzy, M A [Physics Department, Faculty of Science, Alexandria University, Aleaxndria (Egypt)

    1997-12-31

    Total efficiency of clad right circular cylindrical Nal(TI) scintillation detector from a coaxial isotropic radiating circular disk source has been calculated by the of rigid mathematical expressions. Results were tabulated for various gamma energies. 2 figs., 5 tabs.

  2. Total effective dose equivalent associated with fixed uranium surface contamination

    International Nuclear Information System (INIS)

    Bogard, J.S.; Hamm, R.N.; Ashley, J.C.; Turner, J.E.; England, C.A.; Swenson, D.E.; Brown, K.S.

    1997-04-01

    This report provides the technical basis for establishing a uranium fixed-contamination action level, a fixed uranium surface contamination level exceeding the total radioactivity values of Appendix D of Title 10, Code of Federal Regulations, part 835 (10CFR835), but below which the monitoring, posting, and control requirements for Radiological Areas are not required for the area of the contamination. An area of fixed uranium contamination between 1,000 dpm/100 cm 2 and that level corresponding to an annual total effective dose equivalent (TEDE) of 100 mrem requires only routine monitoring, posting to alert personnel of the contamination, and administrative control. The more extensive requirements for monitoring, posting, and control designated by 10CFR835 for Radiological Areas do not have to be applied for these intermediate fixed-contamination levels

  3. Assessment of changes in plasma total antioxidant status in gamma irradiated rats treated with eugenol

    International Nuclear Information System (INIS)

    Azab, Kh. SH.

    2002-01-01

    Eugenol, a volatile phenolic phyto chemical, is a major constituent of clove oil. The present study was carried out to evaluate the antioxidant effect of eugenol on certain lipid metabolites and variations in the antioxidant status. In vitro study (oxidative susceptibility of lipoprotein) revealed that eugenol elongates the lag phase for the induction of conjugated diene and decreased the rate of lipid peroxidation (production of thiobarbituric reactive substances; TBARS) during the propagation phase. In vivo study on rats revealed a significant increase in plasma total antioxidant status after eugenol regime. Furthermore, eugenol water emulsion delivered to rats by garage in a concentration of 1 g/kg body weight for 15 days before and during exposure to fractionated whole body gamma radiation (1.5 Gy every other day) up to a total dose of 7.5 Gy showed that, administration of eugenol reduces significantly the concentration of plasma TBARS and minimize the decrease in plasma antioxidants. Amelioration in the concentration of reduced glutathione (GSH) in blood and liver and the activities of cytosolic glutathione-S-transferase (GST) in the liver were also observed. Furthermore, the changes in the concentrations of total cholesterol, triglycerides, LDL-cholesterol and HDL-cholesterol were less pronounced. It could be postulated that by minimizing the decrease in antioxidant status, eugenol could prevents the radiation induce alterations in lipid metabolism

  4. A simulation study on the dose distribution for a single beam of the gamma knife

    International Nuclear Information System (INIS)

    Chen, Chin-cheng; Jiang, Shiang-Huei; Lee, Chung-chi; Shiau, Cheng-Ying

    2000-01-01

    The purpose of this study is to evaluate the impact of the tissue heterogeneity on the dose distribution for a single beam of the gamma knife. The EGS4 Monte Carlo code was used to simulate both depth and radial profiles of the radiation dose in homogeneous and heterogeneous phantoms, respectively. The results are compared with the dose distribution calculated using the mathematical model of Gamma Plan, the treatment planning system of the gamma knife. The skull and sinus heterogeneity were simulated by a Teflon shell and an air shell, respectively. It was found that the tissue heterogeneity caused significant perturbation on the absolute depth dose at the focus as well as on the depth-dose distribution near the phantom surface and/or at the interface but little effect on the radial dose distribution. The effect of the beam aperture on the depth-dose distribution was also investigated in this study. (author)

  5. Physical changes associated with gamma doses of PM-555 solid-state nuclear track detector

    International Nuclear Information System (INIS)

    Nouh, S.A.

    2004-01-01

    The effect of gamma irradiation on the electrical, molecular and structural properties of copolymers of methacrylic esters and olefins, PM-555 solid-state nuclear track detector was investigated. DC conductivity measurements were studied in the temperature range 293-417 K using solid-state samples of the PM-555 polymer. These samples were irradiated with gamma doses in the range 5-63 kGy. Furthermore, the activation energy was measured, at various temperatures, as a function of the gamma dose. It was found that many changes in electrical resistance of PM-555 polymer could be produced by gamma irradiation via the degradation mechanism. Also, the gamma dose gives an advantage for the increasing correlation between the DC conductivity and the number and mobility of the charge carriers created by the ionizing effect of gamma radiation. Moreover, solutions of different loadings (0.2%, 0.4%, 0.6% and 0.8%) were prepared from the irradiated and non irradiated sheets using pure chloroform as a solvent. The effect of both temperature and gamma dose on the intrinsic viscosity of the liquid samples, as a measure of the mean molecular mass of the PM-555 polymer, were studied. In addition, structural and optical property studies using X-ray diffraction and refractive index measurements were performed on all irradiated and non irradiated PM-555 samples. The results indicate that both the degree of ordering or disordering and the anisotropic character of the PM-555 polymer are dependent on the gamma dose

  6. Gamma irradiator dose mapping simulation using the MCNP code and benchmarking with dosimetry

    International Nuclear Information System (INIS)

    Sohrabpour, M.; Hassanzadeh, M.; Shahriari, M.; Sharifzadeh, M.

    2002-01-01

    The Monte Carlo transport code, MCNP, has been applied in simulating dose rate distribution in the IR-136 gamma irradiator system. Isodose curves, cumulative dose values, and system design data such as throughputs, over-dose-ratios, and efficiencies have been simulated as functions of product density. Simulated isodose curves, and cumulative dose values were compared with dosimetry values obtained using polymethyle-methacrylate, Fricke, ethanol-chlorobenzene, and potassium dichromate dosimeters. The produced system design data were also found to agree quite favorably with those of the system manufacturer's data. MCNP has thus been found to be an effective transport code for handling of various dose mapping excercises for gamma irradiators

  7. Monte Carlo simulation of gamma-ray total counting efficiency for a Phoswich detector

    Energy Technology Data Exchange (ETDEWEB)

    Yalcin, S. [Education Faculty, Kastamonu University, 37200 Kastamonu (Turkey)], E-mail: syalcin@kastamonu.edu.tr; Gurler, O. [Department of Physics, Faculty of Arts and Sciences, Uludag University, Gorukle Campus, 16059 Bursa (Turkey); Gundogdu, O. [Department of Physics, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, GU2 7XH (United Kingdom); NCCPM, Medical Physics, Royal Surrey County Hospital, Guildford, GU2 7XX (United Kingdom); Kaynak, G. [Department of Physics, Faculty of Arts and Sciences, Uludag University, Gorukle Campus, 16059 Bursa (Turkey)

    2009-01-15

    The LB 1000-PW detector is mainly used for determining total alpha, beta and gamma activity of low activity natural sources such as water, soil, air filters and any other environmental sources. Detector efficiency needs to be known in order to measure the absolute activity of such samples. This paper presents results on the total gamma counting efficiency of a Phoswich detector from point and disk sources. The directions of photons emitted from the source were determined by Monte Carlo techniques and the true path lengths in the detector were determined by analytical equations depending on photon directions. Results are tabulated for various gamma energies.

  8. Monte Carlo simulation of gamma-ray total counting efficiency for a Phoswich detector

    International Nuclear Information System (INIS)

    Yalcin, S.; Gurler, O.; Gundogdu, O.; Kaynak, G.

    2009-01-01

    The LB 1000-PW detector is mainly used for determining total alpha, beta and gamma activity of low activity natural sources such as water, soil, air filters and any other environmental sources. Detector efficiency needs to be known in order to measure the absolute activity of such samples. This paper presents results on the total gamma counting efficiency of a Phoswich detector from point and disk sources. The directions of photons emitted from the source were determined by Monte Carlo techniques and the true path lengths in the detector were determined by analytical equations depending on photon directions. Results are tabulated for various gamma energies

  9. Lifetime Effective Dose Assessment Based on Background Outdoor Gamma Exposure in Chihuahua City, Mexico

    Directory of Open Access Journals (Sweden)

    Sergio Luevano-Gurrola

    2015-09-01

    Full Text Available Determining ionizing radiation in a geographic area serves to assess its effects on a population’s health. The aim of this study was to evaluate the spatial distribution of the background environmental outdoor gamma dose rates in Chihuahua City. This study also estimated the annual effective dose and the lifetime cancer risks of the population of this city. To determine the outdoor gamma dose rate in air, the annual effective dose and the lifetime cancer risk, 48 sampling points were randomly selected in Chihuahua City. Outdoor gamma dose rate measurements were carried out by using a Geiger-Müller counter. Outdoor gamma dose rates ranged from 113 to 310 nGy·h−1. At the same sites, 48 soil samples were taken to obtain the activity concentrations of 226Ra, 232Th and 40K and to calculate their terrestrial gamma dose rates. Radioisotope activity concentrations were determined by gamma spectrometry. Calculated gamma dose rates ranged from 56 to 193 nGy·h−1. Results indicated that the lifetime effective dose of the inhabitants of Chihuahua City is on average 19.8 mSv, resulting in a lifetime cancer risk of 0.001. In addition, the mean of the activity concentrations in soil were 52, 73 and 1097 Bq·kg−1, for 226Ra, 232Th and 40K, respectively. From the analysis, the spatial distribution of 232Th, 226Ra and 40K is to the north, to the north-center and to the south of city, respectively. In conclusion, the natural background gamma dose received by the inhabitants of Chihuahua City is high and mainly due to the geological characteristics of the zone. From the radiological point of view, this kind of study allows us to identify the importance of manmade environments, which are often highly variable and difficult to characterize.

  10. Lifetime Effective Dose Assessment Based on Background Outdoor Gamma Exposure in Chihuahua City, Mexico.

    Science.gov (United States)

    Luevano-Gurrola, Sergio; Perez-Tapia, Angelica; Pinedo-Alvarez, Carmelo; Carrillo-Flores, Jorge; Montero-Cabrera, Maria Elena; Renteria-Villalobos, Marusia

    2015-09-30

    Determining ionizing radiation in a geographic area serves to assess its effects on a population's health. The aim of this study was to evaluate the spatial distribution of the background environmental outdoor gamma dose rates in Chihuahua City. This study also estimated the annual effective dose and the lifetime cancer risks of the population of this city. To determine the outdoor gamma dose rate in air, the annual effective dose and the lifetime cancer risk, 48 sampling points were randomly selected in Chihuahua City. Outdoor gamma dose rate measurements were carried out by using a Geiger-Müller counter. Outdoor gamma dose rates ranged from 113 to 310 nGy·h(-1). At the same sites, 48 soil samples were taken to obtain the activity concentrations of (226)Ra, (232)Th and (40)K and to calculate their terrestrial gamma dose rates. Radioisotope activity concentrations were determined by gamma spectrometry. Calculated gamma dose rates ranged from 56 to 193 nGy·h(-1). Results indicated that the lifetime effective dose of the inhabitants of Chihuahua City is on average 19.8 mSv, resulting in a lifetime cancer risk of 0.001. In addition, the mean of the activity concentrations in soil were 52, 73 and 1097 Bq·kg(-1), for (226)Ra, (232)Th and (40)K, respectively. From the analysis, the spatial distribution of (232)Th, (226)Ra and (40)K is to the north, to the north-center and to the south of city, respectively. In conclusion, the natural background gamma dose received by the inhabitants of Chihuahua City is high and mainly due to the geological characteristics of the zone. From the radiological point of view, this kind of study allows us to identify the importance of manmade environments, which are often highly variable and difficult to characterize.

  11. Lifetime Effective Dose Assessment Based on Background Outdoor Gamma Exposure in Chihuahua City, Mexico

    Science.gov (United States)

    Luevano-Gurrola, Sergio; Perez-Tapia, Angelica; Pinedo-Alvarez, Carmelo; Carrillo-Flores, Jorge; Montero-Cabrera, Maria Elena; Renteria-Villalobos, Marusia

    2015-01-01

    Determining ionizing radiation in a geographic area serves to assess its effects on a population’s health. The aim of this study was to evaluate the spatial distribution of the background environmental outdoor gamma dose rates in Chihuahua City. This study also estimated the annual effective dose and the lifetime cancer risks of the population of this city. To determine the outdoor gamma dose rate in air, the annual effective dose and the lifetime cancer risk, 48 sampling points were randomly selected in Chihuahua City. Outdoor gamma dose rate measurements were carried out by using a Geiger-Müller counter. Outdoor gamma dose rates ranged from 113 to 310 nGy·h−1. At the same sites, 48 soil samples were taken to obtain the activity concentrations of 226Ra, 232Th and 40K and to calculate their terrestrial gamma dose rates. Radioisotope activity concentrations were determined by gamma spectrometry. Calculated gamma dose rates ranged from 56 to 193 nGy·h−1. Results indicated that the lifetime effective dose of the inhabitants of Chihuahua City is on average 19.8 mSv, resulting in a lifetime cancer risk of 0.001. In addition, the mean of the activity concentrations in soil were 52, 73 and 1097 Bq·kg−1, for 226Ra, 232Th and 40K, respectively. From the analysis, the spatial distribution of 232Th, 226Ra and 40K is to the north, to the north-center and to the south of city, respectively. In conclusion, the natural background gamma dose received by the inhabitants of Chihuahua City is high and mainly due to the geological characteristics of the zone. From the radiological point of view, this kind of study allows us to identify the importance of manmade environments, which are often highly variable and difficult to characterize. PMID:26437425

  12. Degradation and annealing studies on gamma rays irradiated COTS PPD CISs at different dose rates

    International Nuclear Information System (INIS)

    Wang, Zujun; Ma, Yingwu; Liu, Jing; Xue, Yuan; He, Baoping; Yao, Zhibin; Huang, Shaoyan; Liu, Minbo; Sheng, Jiangkun

    2016-01-01

    The degradation and annealing studies on Colbalt-60 gamma-rays irradiated commercial-off-the-shelf (COTS) pinned photodiode (PPD) CMOS image sensors (CISs) at the various dose rates are presented. The irradiation experiments of COTS PPD CISs are carried out at 0.3, 3.0 and 30.0 rad(Si)/s. The COTS PPD CISs are manufactured using a standard 0.18-μm CMOS technology with four-transistor pixel PPD architecture. The behavior of the tested CISs shows a remarkable degradation after irradiation and differs in the dose rates. The dark current, dark signal non-uniformity (DSNU), random noise, saturation output, signal to noise ratio (SNR), and dynamic range (DR) versus the total ionizing dose (TID) at the various dose rates are investigated. The tendency of dark current, DSNU, and random noise increase and saturation output, SNR, and DR to decrease at 3.0 rad(Si)/s are far greater than those at 0.3 and 30.0 rad(Si)/s. The damage mechanisms caused by TID irradiation at the various dose rates are also analyzed. The annealing tests are carried out at room temperature with unbiased conditions after irradiation.

  13. Degradation and annealing studies on gamma rays irradiated COTS PPD CISs at different dose rates

    Science.gov (United States)

    Wang, Zujun; Ma, Yingwu; Liu, Jing; Xue, Yuan; He, Baoping; Yao, Zhibin; Huang, Shaoyan; Liu, Minbo; Sheng, Jiangkun

    2016-06-01

    The degradation and annealing studies on Colbalt-60 gamma-rays irradiated commercial-off-the-shelf (COTS) pinned photodiode (PPD) CMOS image sensors (CISs) at the various dose rates are presented. The irradiation experiments of COTS PPD CISs are carried out at 0.3, 3.0 and 30.0 rad(Si)/s. The COTS PPD CISs are manufactured using a standard 0.18-μm CMOS technology with four-transistor pixel PPD architecture. The behavior of the tested CISs shows a remarkable degradation after irradiation and differs in the dose rates. The dark current, dark signal non-uniformity (DSNU), random noise, saturation output, signal to noise ratio (SNR), and dynamic range (DR) versus the total ionizing dose (TID) at the various dose rates are investigated. The tendency of dark current, DSNU, and random noise increase and saturation output, SNR, and DR to decrease at 3.0 rad(Si)/s are far greater than those at 0.3 and 30.0 rad(Si)/s. The damage mechanisms caused by TID irradiation at the various dose rates are also analyzed. The annealing tests are carried out at room temperature with unbiased conditions after irradiation.

  14. Gamma-ray dose-rates to human tissues from natural external sources in Great Britain

    International Nuclear Information System (INIS)

    Spiers, F.W.

    1960-01-01

    The information on environmental gamma radiation given in the last report (Spiers, 1956) was limited by the small amount of experimental data then available. Considerably more information has been accumulated since then and a summary has been published in the Report of the United Nations Scientific Committee on te Effects of Atomic Radiation 1958). The data reported from Austria, France, Sweden and the U.S.A. show that in general dose-rates out-of-doors range from about 0 mrads per year over sedimentary rocks to about 200 mrads per year in granite districts. In houses a similar range of doserates is indicated, the rates in individual houses depending upon the nature of the building materials. In some parts of the world, however, very much higher dose-rates have been observed. On the extensive area of monazite sand in the Kerala State of India dose-rates of up to 4000 mrads per year have been recorded and the mean dose-rate for 10 villages with a total population of 52,000 has been estimated to be 1270 mrads per year. Mean dose-rates of 500 and 1600 mrads per year have also been reported from two localities in Brazil

  15. Quantification of micronuclei in blood lymphocytes of patients exposed to gamma radiation for dose absorbed assessment

    International Nuclear Information System (INIS)

    Barbosa, Isvania Maria Serafim da Silva

    2003-02-01

    Dose assessment in an important step to evaluate biological effects as a result of individual exposure to ionizing radiation. The use of cytogenetic dosimetry based on the quantification of micronuclei in lymphocytes is very important to complement physical dosimetry, since the measurement of absorbed dose cannot be always performed. In this research, the quantification of micronuclei was carried out in order to evaluate absorbed dose as a result of radiotherapy with 60 Co, using peripheral blood samples from 5 patients with cervical uterine cancer. For this purpose, an aliquot of whole blood from the individual patients was added in culture medium RPMI 1640 supplemented with fetal calf serum and phytohaemagglutinin. The culture was incubated for 44 hours. Henceforth, cytochalasin B was added to block the dividing lymphocytes in cytokinesis. The culture was returned to the incubator for further of 28 hours. Thus, cells were harvested, processed and analyzed. Values obtained considering micronuclei frequency after pelvis irradiation with absorption of 0,08 Gy and 1,8 Gy were, respectively, 0,0021 and 0,052. These results are in agreement with some recent researches that provided some standard values related to micronuclei frequency induced by gamma radiation exposure in different exposed areas for the human body. The results presented in this report emphasizes biological dosimetry as an important tool for dose assessment of either total or partial-body exposure to ionizing radiation, mainly in retrospective dose investigation. (author)

  16. Gamma-ray dose-rates to human tissues from natural external sources in Great Britain

    Energy Technology Data Exchange (ETDEWEB)

    Spiers, F W

    1960-12-01

    The information on environmental gamma radiation given in the last report (Spiers, 1956) was limited by the small amount of experimental data then available. Considerably more information has been accumulated since then and a summary has been published in the Report of the United Nations Scientific Committee on te Effects of Atomic Radiation 1958). The data reported from Austria, France, Sweden and the U.S.A. show that in general dose-rates out-of-doors range from about 0 mrads per year over sedimentary rocks to about 200 mrads per year in granite districts. In houses a similar range of doserates is indicated, the rates in individual houses depending upon the nature of the building materials. In some parts of the world, however, very much higher dose-rates have been observed. On the extensive area of monazite sand in the Kerala State of India dose-rates of up to 4000 mrads per year have been recorded and the mean dose-rate for 10 villages with a total population of 52,000 has been estimated to be 1270 mrads per year. Mean dose-rates of 500 and 1600 mrads per year have also been reported from two localities in Brazil.

  17. Assessment and characterization of the total geometric uncertainty in Gamma Knife radiosurgery using polymer gels

    International Nuclear Information System (INIS)

    Moutsatsos, A.; Karaiskos, P.; Pantelis, E.; Georgiou, E.; Petrokokkinos, L.; Sakelliou, L.; Torrens, M.; Seimenis, I.

    2013-01-01

    Purpose: This work proposes and implements an experimental methodology, based on polymer gels, for assessing the total geometric uncertainty and characterizing its contributors in Gamma Knife (GK) radiosurgery. Methods: A treatment plan consisting of 26, 4-mm GK single shot dose distributions, covering an extended region of the Leksell stereotactic space, was prepared and delivered to a polymer gel filled polymethyl methacrylate (PMMA) head phantom (16 cm diameter) used to accurately reproduce every link in the GK treatment chain. The center of each shot served as a “control point” in the assessment of the GK total geometric uncertainty, which depends on (a) the spatial dose delivery uncertainty of the PERFEXION GK unit used in this work, (b) the spatial distortions inherent in MR images commonly used for target delineation, and (c) the geometric uncertainty contributor associated with the image registration procedure performed by the Leksell GammaPlan (LGP) treatment planning system (TPS), in the case that registration is directly based on the apparent fiducial locations depicted in each MR image by the N-shaped rods on the Leksell localization box. The irradiated phantom was MR imaged at 1.5 T employing a T2-weighted pulse sequence. Four image series were acquired by alternating the frequency encoding axis and reversing the read gradient polarity, thus allowing the characterization of the MR-related spatial distortions. Results: MR spatial distortions stemming from main field (B 0 ) inhomogeneity as well as from susceptibility and chemical shift phenomena (also known as sequence dependent distortions) were found to be of the order of 0.5 mm, while those owing to gradient nonlinearities (also known as sequence independent distortions) were found to increase with distance from the MR scanner isocenter extending up to 0.47 mm at an Euclidean distance of 69.6 mm. Regarding the LGP image registration procedure, the corresponding average contribution to the total

  18. Assessment and characterization of the total geometric uncertainty in Gamma Knife radiosurgery using polymer gels.

    Science.gov (United States)

    Moutsatsos, A; Karaiskos, P; Petrokokkinos, L; Sakelliou, L; Pantelis, E; Georgiou, E; Torrens, M; Seimenis, I

    2013-03-01

    This work proposes and implements an experimental methodology, based on polymer gels, for assessing the total geometric uncertainty and characterizing its contributors in Gamma Knife (GK) radiosurgery. A treatment plan consisting of 26, 4-mm GK single shot dose distributions, covering an extended region of the Leksell stereotactic space, was prepared and delivered to a polymer gel filled polymethyl methacrylate (PMMA) head phantom (16 cm diameter) used to accurately reproduce every link in the GK treatment chain. The center of each shot served as a "control point" in the assessment of the GK total geometric uncertainty, which depends on (a) the spatial dose delivery uncertainty of the PERFEXION GK unit used in this work, (b) the spatial distortions inherent in MR images commonly used for target delineation, and (c) the geometric uncertainty contributor associated with the image registration procedure performed by the Leksell GammaPlan (LGP) treatment planning system (TPS), in the case that registration is directly based on the apparent fiducial locations depicted in each MR image by the N-shaped rods on the Leksell localization box. The irradiated phantom was MR imaged at 1.5 T employing a T2-weighted pulse sequence. Four image series were acquired by alternating the frequency encoding axis and reversing the read gradient polarity, thus allowing the characterization of the MR-related spatial distortions. MR spatial distortions stemming from main field (B0) inhomogeneity as well as from susceptibility and chemical shift phenomena (also known as sequence dependent distortions) were found to be of the order of 0.5 mm, while those owing to gradient nonlinearities (also known as sequence independent distortions) were found to increase with distance from the MR scanner isocenter extending up to 0.47 mm at an Euclidean distance of 69.6 mm. Regarding the LGP image registration procedure, the corresponding average contribution to the total geometric uncertainty ranged from

  19. RSAC-6, Gamma doses, inhalation and ingestion doses, fission products inventory after fission products release

    International Nuclear Information System (INIS)

    Wenzel, Douglas R.; Schrader, Brad J.

    2007-01-01

    1 - Description of program or function: RSAC-6 is the latest version of the program RSAC (Radiological Safety Analysis Computer Program). It calculates the consequences of a release of radionuclides to the atmosphere. Using a personal computer, a user can generate a fission product inventory; decay and in-grow the inventory during transport through processes, facilities, and the environment; model the downwind dispersion of the activity; and calculate doses to downwind individuals. Internal dose from the inhalation and ingestion pathways is calculated. External dose from ground surface and plume gamma pathways is calculated. New and exciting updates to the program include the ability to evaluate a release to an enclosed room, resuspension of deposited activity and evaluation of a release up to 1 meter from the release point. Enhanced tools are included for dry deposition, building wake, occupancy factors, respirable fraction, AMAD adjustment, updated and enhanced radionuclide inventory and inclusion of the dose-conversion factors from FOR 11 and 12. 2 - Methods: RSAC6 calculates meteorological dispersion in the atmosphere using Gaussian plume diffusion for Pasquill-Gifford, Hilmeier-Gifford and Markee models. A unique capability is the ability to model Class F fumigation conditions, the meteorological condition that causes the highest ground level concentrations from an elevated release. Doses may be calculated for various pathways including inhalation, ingestion, ground surface, air immersion, water immersion pathways. Dose calculations may be made for either acute or chronic releases. Internal doses (inhalation and ingestion) are calculated using the ICRP-30 model with dose conversion factors from FOR 11. External factors are calculated using FOR 12. 3 - Unusual Features: RSAC6 calculates complete progeny in-growth and decay during all accident phases. The calculation of fission product inventories in particularly useful in the analysis of accidents where the

  20. Measurement of gamma radiation doses at the RA reactor by thermoluminescent dosemeters

    International Nuclear Information System (INIS)

    Prokic, M.

    1974-01-01

    This paper presents the procedures and gamma radiation doses measured at the exit from the horizontal experimental channel HK-5, vertical experimental channel VK-5 and in the thermal column of the RA reactor in Vinca. Measurement of gamma radiation dose in the mixed intense gamma and neutron radiation field was done by two types of thermoluminescent dosemeters, LiF (TLD-700) and CaF 2 (TLD-08). Gamma dose in the VK-5 was measured in the air and on the bottle filled with tissue-equivalent solution. Increase of the dose on the surface of the bottle was 2.3 compared to the gamma dose value in the air. Correction for the influence of neutrons having different energies was done by using the known sensitivity values of both TL dosemeter types for thermal, intermediate and fast neutrons. Results showed that the TLD-700 dosemeter contains 5 time more Li-6 isotopes (0.035%) than the declared value causing increased neutron sensitivity of this dosemeter. This paper includes numerical sensitivity data for neutrons of different energies for both types of TL dosemeters. Neutron sensitivity values for TLD-700 are related to LiF with 0.035% of Li-6 isotope. Result of measurement have also shown that the CaF 2 :Mn (TLD-08) thermoluminescent dosemeter is more suitable for gamma radiation dose measurements in mixed n-gamma fields with intensive neutron fluxes due to lower neutron sensitivity compared to TLD-700 [sr

  1. In-situ gamma spectrometry method for determination of environmental gamma dose; Metodo de espectrometria gamma in situ para determinacao de dose gama ambiental

    Energy Technology Data Exchange (ETDEWEB)

    Conti, Claudio de Carvalho

    1995-07-15

    This work tries to establish a methodology for germanium detectors calibration, normally used for in situ gamma ray spectrometry, for determining the environmental exposure rate in function of the energy of the incident photons. For this purpose a computer code has been developed, based on the stripping method, for the computational spectra analysis to calculate the contribution of the partial absorption of the gamma rays (Compton effect) in the active and nonactive parts of the detector. The resulting total absorption spectrum is then converted to fluence distribution in function of the energy for the photons reaching the detector, which is then used to calculate the exposure rate or kerma in air. The unfolding and fluency convention parameters are determined by detector calibration using point gamma sources. The method is validated by comparison of the results against the calculated exposure rate at a point of interest for the standards. This method is used for the direct measurement of the exposure rate distribution in function of the energy at the site, in situ measurement technic, leading to rapid results during an emergency situation and also used for indoor measurements. (author)

  2. Exposure of luminous marine bacteria to low-dose gamma-radiation.

    Science.gov (United States)

    Kudryasheva, N S; Petrova, A S; Dementyev, D V; Bondar, A A

    2017-04-01

    The study addresses biological effects of low-dose gamma-radiation. Radioactive 137 Cs-containing particles were used as model sources of gamma-radiation. Luminous marine bacterium Photobacterium phosphoreum was used as a bioassay with the bioluminescent intensity as the physiological parameter tested. To investigate the sensitivity of the bacteria to the low-dose gamma-radiation exposure (≤250 mGy), the irradiation conditions were varied as follows: bioluminescence intensity was measured at 5, 10, and 20°С for 175, 100, and 47 h, respectively, at different dose rates (up to 4100 μGy/h). There was no noticeable effect of gamma-radiation at 5 and 10°С, while the 20°С exposure revealed authentic bioluminescence inhibition. The 20°С results of gamma-radiation exposure were compared to those for low-dose alpha- and beta-radiation exposures studied previously under comparable experimental conditions. In contrast to ionizing radiation of alpha and beta types, gamma-emission did not initiate bacterial bioluminescence activation (adaptive response). As with alpha- and beta-radiation, gamma-emission did not demonstrate monotonic dose-effect dependencies; the bioluminescence inhibition efficiency was found to be related to the exposure time, while no dose rate dependence was found. The sequence analysis of 16S ribosomal RNA gene did not reveal a mutagenic effect of low-dose gamma radiation. The exposure time that caused 50% bioluminescence inhibition was suggested as a test parameter for radiotoxicity evaluation under conditions of chronic low-dose gamma irradiation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Assessment of absorbed dose rate from terrestrial gamma radiation in Red Sea State

    International Nuclear Information System (INIS)

    Abdalrahman, H. E. K.

    2012-09-01

    This study is primarily conducted to contribute in the overall strategic objective of producing Sudan radiation map which will include natural radiation levels and the resultant absorbed dose rate in air. The part covered by this study is the Red Sea State. Soil samples were collected from locations lie between latitudes 17.03 ° and the 20.18 ° N and longitudes 36.06 ° E during September 2007. Activity concentrations of the primordial radionuclides, 226 Ra, 232 Th, and 40 K in the samples were measured using gamma-ray spectrometry equipped with Nal (Tl) detector. Absorbed dose rates in air a height of 1 from the ground level and the corresponding annual effective doses were calculated from the measured activities using Dose Rate Conversion Factors (DRCFs). On the average, the activity concentrations were 19.22±13.13 Bq kg -1 ( 232 Th), 17.91±15.44 Bq kg -1 ( 226 Ra) and (507.13±161.67) Bq kg -1 for 40 K. The obtained results were found to be within the global values reported in the UNSCEAR publication for normal background areas with the exception of the samples taken from Arbaat area. The absorbed dose rate in air as calculated using UNSCEAR conversion factor averaged 40.93 n Gy h -1 which corresponds to annual effective dose of 50.23 μSvy -1 . The major contribution to the total absorbed dose rate comes from 40 K, which amounts to 53.36%. Using Geographical Information System (GIS), predication maps for activity concentrations levels of the measured radionuclides in the Red Sea state was prepared to show their respective spatial distributions. Similarly, GIS predictive map was produced for annual effective dose.(Author)

  4. Characteristics of 3D gamma evaluation according to phantom rotation error and dose gradient

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyeong Hyun; Kim, Dong Su; Kim, Tae Ho; Kang, Seong Hee; Shin, Dong Seok; Noh, Yu Yoon; Suh, Tae Seok [Dept. of Biomedical Engineering, Research Institute of Biomedical Engineering, College of Medicine, the Catholic University of Korea, Seoul (Korea, Republic of); Cho, Min Seok [Dept. of Radiation Oncology, Asan Medical Center, Seoul (Korea, Republic of)

    2016-12-15

    In intensity modulated radiation therapy (IMRT) quality assurance (QA) using dosimetric phantom, a spatial uncertainty induced from phantom set-up inevitably occurs and gamma index that is used to evaluate IMRT plan quality can be affected differently by a combination of the spatial uncertainty and magnitude of dose gradient. In this study, we investigated the impacts of dose gradient and the phantom set-up error on 3D gamma evaluation. In this study, we investigated the characteristics of gamma evaluation according to dose gradient and phantom rotation axis. As a result, 3D gamma had better performance than 2D gamma. Therefore, it can be useful for IMRT QA analysis at clinical field.

  5. Effect of gamma radiation dose and sensitizer on the physical properties of irradiated natural rubber latex

    International Nuclear Information System (INIS)

    Komgrit, R.; Thawat, C.; B, Tripob; Wirach, T.

    2009-07-01

    Full text: The vulcanization of natural rubber latex can be induced by gamma radiation, which enhances cross-linking within the rubber matrix. The purpose of this research is to investigate the effect of gamma radiation dose and sensitizers on the physical properties of irradiated natural rubber. Three sensitizers n-butyl acrylate (n-B A), tetrachloroethylene (C 2 Cl 4 ) and trichloromethane (CHCl 3 ) were mixed with natural rubber latex before irradiation with gamma ray dose varied from 14 to 22 kGy. Results showed that the mixture of three sensitizers with specific ratios effectively induced the cross-linking of natural rubber latex. The cross-linking ratio and improved physical properties increased with increasing gamma dose. Therefore, the mixture ratios of n-B A, C 2 Cl 4 and CHCl 3 have shown to be a critical parameter in the vulcanization of natural rubber latex by gamma radiation

  6. [Induction of glutathione and activation of immune functions by low-dose, whole-body irradiation with gamma-rays].

    Science.gov (United States)

    Kojima, Shuji

    2006-10-01

    We first examined the relation between the induction of glutathione and immune functions in mice after low-dose gamma-ray irradiation. Thereafter, inhibition of tumor growth by radiation was confirmed in Ehrlich solid tumor (EST)-bearing mice. The total glutathione level of the splenocytes transiently increased soon after irradiation and reached a maximum at around 4 h postirradiation. Thereafter, the level reverted to the 0 h value by 24 h postirradiation. A significantly high splenocyte proliferative response was also recognized 4 h postirradiation. Natural killer (NK) activity was also increased significantly in a similar manner. The time at which the response reached the maximum coincided well with that of maximum total glutathione levels of the splenocytes in the gamma-ray-irradiated mice. Reduced glutathione exogenously added to splenocytes obtained from normal mice enhanced the proliferative response and NK activity in a dose-dependent manner. The inhibitory effects of radiation on tumor growth was then examined in EST-bearing mice. Repeated low-dose irradiation (0.5 Gy, four times, before and within an early time after inoculation) significantly delayed the tumor growth. Finally, the effect of single low-dose (0.5 Gy), whole-body gamma-ray irradiation on immune balance was examined to elucidate the mechanism underlying the antitumor immunity. The percentage of B cells in blood lymphocytes was selectively decreased after radiation, concomitant with an increase in that of the helper T cell population. The IFN-gamma level in splenocyte culture prepared from EST-bearing mice was significantly increased 48 h after radiation, although the level of IL-4 was unchanged. IL-12 secretion from macrophages was also enhanced by radiation. These results suggest that low-dose gamma-rays induce Th1 polarization and enhance the activities of tumoricidal effector cells, leading to an inhibition of tumor growth.

  7. Effect of gamma irradiation on total carbohydrate concentration of finger millet flour

    International Nuclear Information System (INIS)

    Lathika; Patil, Shrikant L.; Bhasker Shenoy, K.; Somashekarappa, H.M.

    2015-01-01

    Ragi or finger millet (Eleusine coracana L.) is one of the common millets in several regions of India. The effect of gamma irradiation, on ragi flour was investigated in the study. Ragi flour is procured from market. Flour samples of 50 gms were taken in triplicates in a polyethylene pouch, air sealed and subjected to gamma irradiation doses ranging from 0.25 to 10 kGy and stored in polyethylene bags and plastic containers for a period of 30 and 90 days. Within 24 hours of irradiation, the samples were tested for total carbohydrate concentration by phenol-sulphuric acid method. The same was repeated after 30 and 90 days of storage. The comparative study showed that, at 0 day, total carbohydrate concentration has decreased slightly when compared to the non-irradiated sample (0.024 mg/ml). The lowest concentration of carbohydrate is seen at 0.025 kGy (0.019mg/ml). The samples stored in polyethylene bag, after 30 days showed both increase (0.056 mg/ml at 0.025 kGy) and decrease (0.04 mg/ml at 10 kGy) in total carbohydrate concentration when compared to control (0.046 mg/ml). 90 days stored samples showed increase in carbohydrate concentration when compared to control (0.029 mg/ml). The highest carbohydrate concentration is seen in 1 kGy dose (0.037 mg/ml). The samples stored at container after 30 days showed both increase (0.045 mg/ml at 5 kGy) and decrease (0.034 mg/ml at 0.025 mg/ml) of carbohydrate concentration when compared to control (0.043 mg/ml). 90 days stored samples showed decrease in carbohydrate concentration when compared to control (0.034 mg/ml). The lowest concentration is seen at 5 kGy (0.022 mg/ml). (author)

  8. Secondary radiation dose during high-energy total body irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Janiszewska, M.; Raczkowski, M. [Lower Silesian Oncology Center, Medical Physics Department, Wroclaw (Poland); Polaczek-Grelik, K. [University of Silesia, Medical Physics Department, Katowice (Poland); Szafron, B.; Konefal, A.; Zipper, W. [University of Silesia, Department of Nuclear Physics and Its Applications, Katowice (Poland)

    2014-05-15

    The goal of this work was to assess the additional dose from secondary neutrons and γ-rays generated during total body irradiation (TBI) using a medical linac X-ray beam. Nuclear reactions that occur in the accelerator construction during emission of high-energy beams in teleradiotherapy are the source of secondary radiation. Induced activity is dependent on the half-lives of the generated radionuclides, whereas neutron flux accompanies the treatment process only. The TBI procedure using a 18 MV beam (Clinac 2100) was considered. Lateral and anterior-posterior/posterior-anterior fractions were investigated during delivery of 2 Gy of therapeutic dose. Neutron and photon flux densities were measured using neutron activation analysis (NAA) and semiconductor spectrometry. The secondary dose was estimated applying the fluence-to-dose conversion coefficients. The main contribution to the secondary dose is associated with fast neutrons. The main sources of γ-radiation are the following: {sup 56}Mn in the stainless steel and {sup 187}W of the collimation system as well as positron emitters, activated via (n,γ) and (γ,n) processes, respectively. In addition to 12 Gy of therapeutic dose, the patient could receive 57.43 mSv in the studied conditions, including 4.63 μSv from activated radionuclides. Neutron dose is mainly influenced by the time of beam emission. However, it is moderated by long source-surface distances (SSD) and application of plexiglass plates covering the patient body during treatment. Secondary radiation gives the whole body a dose, which should be taken into consideration especially when one fraction of irradiation does not cover the whole body at once. (orig.) [German] Die zusaetzliche Dosis durch sekundaere Neutronen- und γ-Strahlung waehrend der Ganzkoerperbestrahlung mit Roentgenstrahlung aus medizinischen Linearbeschleunigern wurde abgeschaetzt. Bei der Emission hochenergetischer Strahlen zur Teletherapie finden hauptsaechlich im Beschleuniger

  9. Total Risk Management for Low Dose Radiation Exposures

    International Nuclear Information System (INIS)

    Simic, Z.; Mikulicic, V.; Sterc, D.

    2012-01-01

    health. This view is supported with numerous evidences, and explained with beneficial effects from the increased activity of immune system activated with small radiation exposures. Finally, theory in between is that small doses are less than linearly proportionally harmful and that they are presenting a much smaller risks than according to the LNT. This view is derived from the use of different evidences. Difficulties to find one single theory about effects of small radiation doses are related to existence of huge variability and uncertainty in the evidence data. This is very hard experimental and theoretical problem. It will require lots of additional research to reduce these uncertainties and find final theory. This might be too late for the number of people affected in different ways with current single most conservative LNT approach. The problem with the conservative LNT regulatory approach is resulting in enormous additional costs of nuclear energy and medical applications. Which is reasonable and acceptable during the regular operation when source is high and concentrated. But, this becomes unreasonable huge economic burden after accidents and for cleanups with nuclear facilities. Similar problem arises with restriction of medical examinations and treatments based on over conservative risk estimate. Special circumstances are with evacuated people from contaminated areas where they are on the one side saved from small radiation exposures, and on the other side exposed to years of life away from their home and with numerous direct and indirect additional risks (i.e., stress, social problems, etc.). It seems reasonable that some alternative (total) risk management approach might be much more suitable for this situation. Evacuation of people from contaminated area with small doses sources should not be done when that induces larger risks from even what is expected from radiation based on LNT. Similar total risk management could be also applied for with medical

  10. Linear optical absorption response of poly(vinylidene fluoride - trifluoroethylene) copolymers to high gamma dose

    International Nuclear Information System (INIS)

    Medeiros, Adriana S.

    2009-01-01

    Poly(vinylidene fluoride) [PVDF] is a semicrystalline linear homopolymer composed by the repetition of CH 2 - CF 2 monomers. The Poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] is a copolymer which is obtained with the random introduction of fluorinated CHF-CF 2 monomers in the PVDF main chain. PVDF, and also its copolymers with TrFE contents ranging from 18 to 63 wt. %, have long been studied for their striking ferroelectric properties and their applications in actuators, transducers and ferroelectric memory. Recent research work around the world have demonstrated that, for TrFE contents ranging from with 30 to 50 wt. %, the copolymer can have its ferroelectric properties modified by high doses of ionizing radiation, with the appearing of radio-induced relaxor ferroelectric features. These studies have lead us to investigate the possible use of these copolymers as high dose dosemeters, once the reported amount of induced C=C conjugated bonds after X-ray, UV and gamma irradiation seems to be a function of the delivered radiation dose. In a first investigation for doses ranging from 0.1 to 100 kGy we found out a linear relation between the gamma radiation dose and the absorption peak intensities in the UV region of the spectrum, i.e., at 223 and 274 nm. The absorption peak at 223 nm is the most sensitive to gamma rays and can be used for detecting gamma doses ranging from 0.3 to 75 kGy. Simultaneously, the absorption peak at 274 nm can be used for doses ranging from 1 to 100 kGy. Now, in the present work, we extended the investigation to gamma doses up to 3 MGy. Particularly, this study is focused in the optical absorption peak at 274 nm, corresponding to the radio-induction of triplets of conjugated C=C double bonds. The investigation revealed a linear correlation between the gamma dose and peak intensity at 274 nm for gamma doses ranging from 0.1 to more than 750 KGy, with a huge extension of the original usable dose range. Calorimetric data revealed a

  11. Dose-dependent hepatic transcriptional responses in Atlantic salmon (Salmo salar) exposed to sublethal doses of gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Song, You, E-mail: you.song@niva.no [Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV), Centre for Environmental Radioactivity - CERAD, P.O. Box 5003, N-1432 Ås (Norway); Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349 Oslo (Norway); Salbu, Brit; Teien, Hans-Christian; Heier, Lene Sørlie [Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV), Centre for Environmental Radioactivity - CERAD, P.O. Box 5003, N-1432 Ås (Norway); Rosseland, Bjørn Olav [Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV), Centre for Environmental Radioactivity - CERAD, P.O. Box 5003, N-1432 Ås (Norway); Norwegian University of Life Sciences (NMBU), Department of Ecology and Natural Resource Management, P.O. Box 5003, N-1432 Ås (Norway); Tollefsen, Knut Erik [Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV), Centre for Environmental Radioactivity - CERAD, P.O. Box 5003, N-1432 Ås (Norway); Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349 Oslo (Norway)

    2014-11-15

    Highlights: • First study on early stress responses in salmon exposed to low-dose gamma radiation. • Dramatic dose-dependent transcriptional responses characterized. • Multiple modes of action proposed for gamma radiation. - Abstract: Due to the production of free radicals, gamma radiation may pose a hazard to living organisms. The high-dose radiation effects have been extensively studied, whereas the ecotoxicity data on low-dose gamma radiation is still limited. The present study was therefore performed using Atlantic salmon (Salmo salar) to characterize effects of low-dose (15, 70 and 280 mGy) gamma radiation after short-term (48 h) exposure. Global transcriptional changes were studied using a combination of high-density oligonucleotide microarrays and quantitative real-time reverse transcription polymerase chain reaction (qPCR). Differentially expressed genes (DEGs; in this article the phrase gene expression is taken as a synonym of gene transcription, although it is acknowledged that gene expression can also be regulated, e.g., at protein stability and translational level) were determined and linked to their biological meanings predicted using both Gene Ontology (GO) and mammalian ortholog-based functional analyses. The plasma glucose level was also measured as a general stress biomarker at the organism level. Results from the microarray analysis revealed a dose-dependent pattern of global transcriptional responses, with 222, 495 and 909 DEGs regulated by 15, 70 and 280 mGy gamma radiation, respectively. Among these DEGs, only 34 were commonly regulated by all radiation doses, whereas the majority of differences were dose-specific. No GO functions were identified at low or medium doses, but repression of DEGs associated with GO functions such as DNA replication, cell cycle regulation and response to reactive oxygen species (ROS) were observed after 280 mGy gamma exposure. Ortholog-based toxicity pathway analysis further showed that 15 mGy radiation

  12. Neutron and gamma dose and spectra measurements on the Little Boy replica

    International Nuclear Information System (INIS)

    Hoots, S.; Wadsworth, D.

    1984-01-01

    The radiation-measurement team of the Weapons Engineering Division at Lawrence Livermore National Laboratory (LLNL) measured neutron and gamma dose and spectra on the Little Boy replica at Los Alamos National Laboratory (LANL) in April 1983. This assembly is a replica of the gun-type atomic bomb exploded over Hiroshima in 1945. These measurements support the National Academy of Sciences Program to reassess the radiation doses due to atomic bomb explosions in Japan. Specifically, the following types of information were important: neutron spectra as a function of geometry, gamma to neutron dose ratios out to 1.5 km, and neutron attenuation in the atmosphere. We measured neutron and gamma dose/fission from close-in to a kilometer out, and neutron and gamma spectra at 90 and 30 0 close-in. This paper describes these measurements and the results. 12 references, 13 figures, 5 tables

  13. Analytical models for total dose ionization effects in MOS devices.

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Phillip Montgomery; Bogdan, Carolyn W.

    2008-08-01

    MOS devices are susceptible to damage by ionizing radiation due to charge buildup in gate, field and SOI buried oxides. Under positive bias holes created in the gate oxide will transport to the Si / SiO{sub 2} interface creating oxide-trapped charge. As a result of hole transport and trapping, hydrogen is liberated in the oxide which can create interface-trapped charge. The trapped charge will affect the threshold voltage and degrade the channel mobility. Neutralization of oxidetrapped charge by electron tunneling from the silicon and by thermal emission can take place over long periods of time. Neutralization of interface-trapped charge is not observed at room temperature. Analytical models are developed that account for the principal effects of total dose in MOS devices under different gate bias. The intent is to obtain closed-form solutions that can be used in circuit simulation. Expressions are derived for the aging effects of very low dose rate radiation over long time periods.

  14. Total Dose Effects on Bipolar Integrated Circuits at Low Temperature

    Science.gov (United States)

    Johnston, A. H.; Swimm, R. T.; Thorbourn, D. O.

    2012-01-01

    Total dose damage in bipolar integrated circuits is investigated at low temperature, along with the temperature dependence of the electrical parameters of internal transistors. Bandgap narrowing causes the gain of npn transistors to decrease far more at low temperature compared to pnp transistors, due to the large difference in emitter doping concentration. When irradiations are done at temperatures of -140 deg C, no damage occurs until devices are warmed to temperatures above -50 deg C. After warm-up, subsequent cooling shows that damage is then present at low temperature. This can be explained by the very strong temperature dependence of dispersive transport in the continuous-time-random-walk model for hole transport. For linear integrated circuits, low temperature operation is affected by the strong temperature dependence of npn transistors along with the higher sensitivity of lateral and substrate pnp transistors to radiation damage.

  15. Dose response of alanine and methyl alanine towards gamma and in-situ alpha irradiation

    International Nuclear Information System (INIS)

    Mohapatra, M.; Rajeswari, B.; Bhide, M.K.; Rane, Vinayak; Kadam, R.M.

    2017-01-01

    In situ alpha and external gamma dose response of two ESR (electron spin resonance) dosimetric materials namely alanine and methyl alanine were investigated. It was observed that alanine dosimeter had a better dose response in comparison to methyl alanine for the in-situ alpha irradiation by using 239 Pu powder. On the other hand, in case of gamma radiation, methyl alanine was found to have the sensitivity as twice that of alanine. (author)

  16. Measurement of californium-252 gamma photons depth dose distribution in tissue equivalent material. Vol. 4

    Energy Technology Data Exchange (ETDEWEB)

    Fadel, M A; El-Fiki, M A; Eissa, H M; Abdel-Hafez, A; Naguib, S H [National Institute of Standards, Cairo (Egypt)

    1996-03-01

    Phantom of tissue equivalent material with and without bone was used measuring depth dose distribution of gamma-rays from californium-252 source. The source was positioned at center of perspex walled phantom. Depth dose measurements were recorded for X, Y and Z planes at different distances from source. TLD 700 was used for measuring the dose distribution. Results indicate that implantation of bone in tissue equivalent medium cause changes in the gamma depth dose distribution which varies according to variation in bone geometry. 9 figs.

  17. Distributions of neutron and gamma doses in phantom under a mixed field

    International Nuclear Information System (INIS)

    Beraud-Sudreau, E.

    1982-06-01

    A calculation program, based on Monte Carlo method, allowed to estimate the absorbed doses relatives to the reactor primary radiation, in a water cubic phantom and in cylindrical phantoms modelized from tissue compositions. This calculation is a theoretical approach of gamma and neutron dose gradient study in an animal phantom. PIN junction dosimetric characteristics have been studied experimentally. Air and water phantom radiation doses measured by PIN junction and lithium 7 fluoride, in reactor field have been compared to doses given by dosimetry classical techniques as tissue equivalent plastic and aluminium ionization chambers. Dosimeter responses have been employed to evaluate neutron and gamma doses in plastinaut (tissue equivalent plastic) and animal (piglet). Dose repartition in the piglet bone medulla has been also determined. This work has been completed by comparisons with Doerschell, Dousset and Brown results and by neutron dose calculations; the dose distribution related to lineic energy transfer in Auxier phantom has been also calculated [fr

  18. Isodose mapping of terrestrial gamma radiation dose rate of Selangor state, Kuala Lumpur and Putrajaya, Malaysia

    International Nuclear Information System (INIS)

    Sanusi, M.S.M.; Ramli, A.T.; Gabdo, H.T.; Garba, N.N.; Heryanshah, A.; Wagiran, H.; Said, M.N.

    2014-01-01

    A terrestrial gamma radiation survey for the state of Selangor, Kuala Lumpur and Putrajaya was conducted to obtain baseline data for environmental radiological health practices. Based on soil type, geological background and information from airborne survey maps, 95 survey points statistically representing the study area were determined. The measured doses varied according to geological background and soil types. They ranged from 17 nGy h −1 to 500 nGy h −1 . The mean terrestrial gamma dose rate in air above the ground was 182 ± 81 nGy h −1 . This is two times higher than the average dose rate of terrestrial gamma radiation in Malaysia which is 92 nGy h −1 (UNSCEAR 2000). An isodose map was produced to represent exposure rate from natural sources of terrestrial gamma radiation. - Highlights: • A methodology is presented to reduce terrestrial gamma dose rate field survey. • Geological background of acid intrusive of granitic type has the highest dose rates. • The mean dose rate is 2 times higher than the world average. • Isodose map of terrestrial gamma radiation for Selangor, Kuala Lumpur and Putrajaya was produced

  19. Dose and dose rate effects of whole-body gamma-irradiation: I. Lymphocytes and lymphoid organs

    Science.gov (United States)

    Pecaut, M. J.; Nelson, G. A.; Gridley, D. S.

    2001-01-01

    The major goal of part I of this study was to compare varying doses and dose rates of whole-body gamma-radiation on lymphoid cells and organs. C57BL/6 mice (n = 75) were exposed to 0, 0.5, 1.5, and 3.0 Gy gamma-rays (60Co) at 1 cGy/min (low-dose rate, LDR) and 80 cGy/min (high-dose rate, HDR) and euthanized 4 days later. A significant dose-dependent loss of spleen mass was observed with both LDR and HDR irradiation; for the thymus this was true only with HDR. Decreasing leukocyte and lymphocyte numbers occurred with increasing dose in blood and spleen at both dose rates. The numbers (not percentages) of CD3+ T lymphocytes decreased in the blood in a dose-dependent manner at both HDR and LDR. Splenic T cell counts decreased with dose only in HDR groups; percentages increased with dose at both dose rates. Dose-dependent decreases occurred in CD4+ T helper and CD8+ T cytotoxic cell counts at HDR and LDR. In the blood the percentages of CD4+ cells increased with increasing dose at both dose rates, whereas in the spleen the counts decreased only in the HDR groups. The percentages of the CD8+ population remained stable in both blood and spleen. CD19+ B cell counts and percentages in both compartments declined markedly with increasing HDR and LDR radiation. NK1.1+ natural killer cell numbers and proportions remained relatively stable. Overall, these data indicate that the observed changes were highly dependent on the dose, but not dose rate, and that cells in the spleen are more affected by dose rate than those in blood. The results also suggest that the response of lymphocytes in different body compartments may be variable.

  20. Gamma-Dose rate above uranium mineralization areas in western sudan

    International Nuclear Information System (INIS)

    Sam, A.K; Sirelkhatim, D.A; Hassona, R.K.

    2003-01-01

    Absorbed dose rate received from natural external irradiation in uranium mineralisation areas at Uro, Kurun and Jebel Mun was evaluated from the measured activity concentrations of 238 U, 232 Th and 40 K in rock samples.The analyses were performed using alpha-spectrometry and high-resolution gamma-ray spectrometry. A great spatial variability was observed in activity concentration of the primordial radionuclides indicating complexity in geological features. Converses to Jebel Mun, Uro and Kurun deposits exhibit very high U:Th mass ratio. The resulting absorbed dose rate in air as estimated using DRCF's fall within the range of 70-522 (Mun), 569-349 (Uro) and 84-320 n Gy/h (Kurun). At maximum, they correspond to annual effective dose of 0.64, 7.78 and 0.39 mSv, respectively. Uranium is the principal producer of the surface radioactivity at Uro and Kurun as it contributes 99.6% and 95% of the total absorbed dose whereas, in Jebel Mun the cause of radioactive anomaly is due to 40 K and 232 Th. In Uro and Kurun deposits, daughter/parent activity ratios along uranium series, Viz. 234 U: 238 U, 230 Th:U, 210 Po:U, are not differ from the equilibrium value of unity.(Author)

  1. Effects on Ferroelectric Thin-Film Stacks and Devices for Piezoelectric MEMS Applications at Varied Total Ionizing Dose (TID)

    Science.gov (United States)

    2017-03-01

    non -linearly mobile internal interfaces, e.g. domain walls and eventual phase boundaries. Radiation exposure is expected...zirconate titanate; PZT; actuator; radiation ; gamma; total ionization dose; TID; top electrode; Pt; IrO2; polarization; PE; hysteresis; permittivity...Hayashigawa, et. al., “A 2 Mbit Radiation Hardened Stackable Ferroelectric Memory” Non - Volatile Memory Technology Symposium, NVMTS 07, Nov 10-13, 2007 Albuquerque, NM, USA

  2. Committed dose assessment based on background outdoor gamma exposure in Chihuahua City, Mexico

    International Nuclear Information System (INIS)

    Luevano G, S.; Perez T, A.; Pinedo A, C.; Renteria V, M.; Carrillo F, J.; Montero C, M. E.

    2015-10-01

    Full text: Determining ionizing radiation in a geographic area serves to assess its effects on populations health. The aim of this study was to evaluate the spatial distribution of the background environmental outdoor gamma dose rates in Chihuahua City. This study also estimated the committed dose and the lifetime cancer risks of the population of this city. To determine the outdoor gamma dose rate in air, annual effective dose, and the lifetime cancer risk, 48 sampling points were randomly selected along the Chihuahua City. Outdoor gamma dose rate measurements were carried out by using a Geiger-Muller counter. At the same sites, 48 soil samples were taken to obtain the activity concentrations of 226 Ra, 232 Th, 40 K and their terrestrial gamma dose rates. Radioisotope activity concentrations were determined by gamma spectrometry. Outdoor gamma dose rates ranged from 56 to 193 n Gy h -1 . Results indicated that lifetime effective dose to inhabitants of Chihuahua City is in average of 19.8 mSv, resulting in a lifetime cancer risk of 0.001. In addition, the mean of activity concentrations in soil were 51.8, 73.1, and 1096.5 Bq kg -1 , of 226 Ra, 232 Th and 40 K, respectively. From the analysis of the spatial distribution of 232 Th, 226 Ra, and 40 K is to north, to north-center, and to south of city, respectively. In conclusion, natural background gamma dose received by inhabitants of Chihuahua City is high and mainly due to geological characteristics of the zone. (Author)

  3. Committed dose assessment based on background outdoor gamma exposure in Chihuahua City, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Luevano G, S.; Perez T, A.; Pinedo A, C.; Renteria V, M. [Universidad Autonoma de Chihuahua, Facultad de Zootecnia y Ecologia, Perif. Francisco R. Almada Km 1, 31415 Chihuahua, Chih. (Mexico); Carrillo F, J.; Montero C, M. E., E-mail: mrenteria@uach.mx [Centro de Investigacion en Materiales Avanzados, Miguel de Cervantes 120, 31136 Chihuahua, Chih. (Mexico)

    2015-10-15

    Full text: Determining ionizing radiation in a geographic area serves to assess its effects on populations health. The aim of this study was to evaluate the spatial distribution of the background environmental outdoor gamma dose rates in Chihuahua City. This study also estimated the committed dose and the lifetime cancer risks of the population of this city. To determine the outdoor gamma dose rate in air, annual effective dose, and the lifetime cancer risk, 48 sampling points were randomly selected along the Chihuahua City. Outdoor gamma dose rate measurements were carried out by using a Geiger-Muller counter. At the same sites, 48 soil samples were taken to obtain the activity concentrations of {sup 226}Ra, {sup 232}Th, {sup 40}K and their terrestrial gamma dose rates. Radioisotope activity concentrations were determined by gamma spectrometry. Outdoor gamma dose rates ranged from 56 to 193 n Gy h{sup -1}. Results indicated that lifetime effective dose to inhabitants of Chihuahua City is in average of 19.8 mSv, resulting in a lifetime cancer risk of 0.001. In addition, the mean of activity concentrations in soil were 51.8, 73.1, and 1096.5 Bq kg{sup -1}, of {sup 226}Ra, {sup 232}Th and {sup 40}K, respectively. From the analysis of the spatial distribution of {sup 232}Th, {sup 226}Ra, and {sup 40}K is to north, to north-center, and to south of city, respectively. In conclusion, natural background gamma dose received by inhabitants of Chihuahua City is high and mainly due to geological characteristics of the zone. (Author)

  4. Low dose UV and gamma radiation on storage rot and physicochemical changes in peaches

    International Nuclear Information System (INIS)

    Lu, J.Y.; Lukombo, S.M.; Stevens, C.; Khan, V.A.; Wilson, C.L.; Pusey, P.L.; Chaultz, E.

    1993-01-01

    Peach fruit were irradiated with 7.5 x 10(4) ergs/mm(2) of UV (254nm) or 0.1 kGy gamma rays or a combination of both, then stored at 16C for 21 days. The results showed that both UV and gamma rays reduced storage rot and delayed ripening. UV treated peaches had lower sugar concentration, total phenols, anthocyanins and lower weight loss than the gamma treated peaches. The combination of UV and gamma showed no advantage over the use of UV or gamma alone

  5. Dose rate and total dose dependence of the 1/f noise performance of a GaAs operational amplifier during irradiation

    International Nuclear Information System (INIS)

    Hiemstra, D.M.

    1995-01-01

    A pictorial of a sectioned view of the torus of the International Thermonuclear Experimental Reactor (ITER) is shown. Maintenance and inspection of the reactor are required to be performed remotely. This is due to the high gamma radiation environment in vessel during inspection and maintenance activities. The custom GaAs operational amplifier is to be used to readout sensors on the in-vessel manipulator and inspection equipment. The gamma dose rate during maintenance and inspection is anticipated to be 3 Mrad(GaAs)/hour. Here, dose rate and total dose dependence of the 1/f noise performance of a custom GaAs MESFET operational amplifier during irradiation are presented. Dose rate dependent 1/f noise degradation during irradiation is believed to be due to electron trapping in deep levels, enhanced by backgating and shallow traps excited during irradiation. The reduction of this affect with accumulated total dose is believed to be due a reduction of deep level site concentration associated with substitutional oxygen. Post irradiation 1/f noise degradation is also presented.The generation-recombination noise observed post irradiation can be attributed to the production of shallow traps due to ionizing radiation

  6. Tumor induction in mice after local irradiation with single doses of either carbon-ion beams or gamma rays.

    Science.gov (United States)

    Ando, Koichi; Koike, Sachiko; Ohmachi, Yasushi; Ando, Yutaka; Kobashi, Gen

    2014-12-01

    To determine the dose-dependent relative biological effectiveness (RBE) for tumor prevalence in mice receiving single localized doses to their right leg of either carbon ions (15, 45 or 75 keV/μm) or 137Cs gamma rays. A total of 1647 female C3H mice were irradiated to their hind legs with a localized dose of either reference gamma rays or 15, 45 or 75 keV/μm carbon-ion beams. Irradiated mice were evaluated for tumors twice a month during their three-year life span, and the dimensions of any tumors found were measured with a caliper. The tumor induction frequency was calculated by Kaplan-Meier analysis. The incidence of tumors from 50 Gy of 45 keV/μm carbon ions was marginally higher than those from 50 Gy of gamma rays. However, 60 Gy of 15 keV/μm carbon ions induced significantly fewer tumors than did gamma rays. RBE values of 0.87 + 0.12, 1.29 + 0.08 or 2.06 + 0.39 for lifetime tumorigenesis were calculated for 15, 45 or 75 keV/μm carbon-ion beams, respectively. Fibrosarcoma predominated, with no Linear Energy Transfer (LET)-dependent differences in the tumor histology. Experiments measuring the late effect of leg skin shrinkage suggested that the carcinogenic damage of 15 keV/μm carbon ions would be less than that of gamma rays. We conclude that patients receiving radiation doses to their normal tissues would face less risk of secondary tumor induction by carbon ions of intermediate LET values compared to equivalent doses of photons.

  7. The recovery of bone marrow derived GM-CFU in baboons unilaterally exposed to a total body LD50/30d mixed neutron-gamma irradiation

    International Nuclear Information System (INIS)

    Herodin, F.; Orfeuvre, H.; Janodet, D.; Mestries, J.C.; Fatome, M.

    1990-01-01

    The unilateral exposure of baboons to a total body LD 50/30d mixed neutron/gamma irradiation was characterized to be non uniform in dose distribution. The pattern of recovery of granulocyte-macrophage progenitors in bone marrow samples collected from entrance and exit sides respectively is consistent with this observed heterogeneity [fr

  8. Evaluation of skyshine dose due to gamma-rays from a cobalt-60 irradiation facility

    International Nuclear Information System (INIS)

    Kanazawa, Tamotsu; Okamoto, Shinichi; Ohnishi, Tokuhiro; Tsujii, Yukio

    1991-01-01

    We attempted to evaluate skyshine dose due to gamma-rays from a cobalt-60 irradiation facility. As the first step, the results of measurements and calculations were compared of the skyshine dose due to gamma-rays from the cobalt-60 source of 1.45 PBq set in the No.4 irradiation room of our laboratory. Distances of measuring points from the cobalt source were in the range from 17 m to about 100 m in the site of our office. Calculation was carried out with simplified single scattering method. The calculated values of the skyshine dose were higher than the measured values. For more precise evaluation of the skyshine dose, the following factors are to be considered; the dose rate distribution on the roof above the source and the attenuation of gamma-rays by air. (author)

  9. Analysis of gamma irradiator dose rate using spent fuel elements with parallel configuration

    International Nuclear Information System (INIS)

    Setiyanto; Pudjijanto MS; Ardani

    2006-01-01

    To enhance the utilization of the RSG-GAS reactor spent fuel, the gamma irradiator using spent fuel elements as a gamma source is a suitable choice. This irradiator can be used for food sterilization and preservation. The first step before realization, it is necessary to determine the gamma dose rate theoretically. The assessment was realized for parallel configuration fuel elements with the irradiation space can be placed between fuel element series. This analysis of parallel model was choice to compare with the circle model and as long as possible to get more space for irradiation and to do manipulation of irradiation target. Dose rate calculation were done with MCNP, while the estimation of gamma activities of fuel element was realized by OREGEN code with 1 year of average delay time. The calculation result show that the gamma dose rate of parallel model decreased up to 50% relatively compared with the circle model, but the value still enough for sterilization and preservation. Especially for food preservation, this parallel model give more flexible, while the gamma dose rate can be adjusted to the irradiation needed. The conclusion of this assessment showed that the utilization of reactor spent fuels for gamma irradiator with parallel model give more advantage the circle model. (author)

  10. Total-dose hardness assurance for low earth orbit

    International Nuclear Information System (INIS)

    Maurer, R.H.; Suter, J.J.

    1987-01-01

    The Low Earth Orbit radiation environment has two significant characteristics that make laboratory simulation exposures difficult: (1) a low dose rate and (2) many cycles of low dose accumulation followed by dose-free annealing. Hardness assurance considerations for this environment are discussed and related to data from the testing of Advanced Low Power Schottky and High-speed CMOS devices

  11. Gamma ray doses proceeding from natural occurring radionuclides in closed environments

    International Nuclear Information System (INIS)

    Aguiar, Vitor Angelo P. de; Medina, Nilberto H.; Silveira, Marcilei A. Guazzelli da; Moreira, Ramon H.

    2009-01-01

    In this work we report on the application of gamma-ray spectrometry in the study of the effective dose coming from terrestrial natural elements present in building materials such as sand, cement, lime (CaO) and milled granitic stones. The major contribution to annual gamma-ray radiation effective dose is due to the natural occurring radionuclides 40 K, 232 Th and 238 U. Two spectrometry systems were employed to measure the gamma radiation: one with a 60% efficient GeHP detector and the second one with a 2''x2'' NaI(Tl) scintillator. The estimated effective dose coming from the three reference rooms assumed is 0.63 mSv/yr, proceeding from terrestrial natural elements. The principal gamma radiation sources are cement, sand and bricks. (author)

  12. Effect of gamma irradiation on shelf life extension, total counts of microbials and biochemical sensory change on luncheon meat

    International Nuclear Information System (INIS)

    Al-Bachir, M.; Mehyou, A.

    1999-11-01

    To investigate the effect of gamma irradiation and sodium nitrate on storability and marketability of luncheon, packed luncheon was exposed to several treatments; gamma irradiation at doses 0, 1, 2, 3 and 4 KGy using a 60 CO package irradiator, mixed with sodium nitrite (NaNO 2 ) 60 mg/Kg meat, with no irradiation and a combined treatment of both NaNO 2 treatment and irradiated with a dose of 2 KGy only. Half of the irradiated and unirradiated samples were stored in refrigeration (1-4 centigrade), to study storability and the second half were stored at room temperature (18-20 centigrade) to study marketability of luncheon. During storage period the population of microorganisms, biochemical changes and sensory properties were evaluated every two weeks for the refrigerated samples and weekly for the unrefrigerated samples. The results indicated that gamma irradiation and sodium nitrite reduced the counts of microorganisms and increased the shelf-life of luncheon. Both treatments (irradiation, sodium nitrite) increased total acidity, lipid oxidation, and the volatile basic nitrogen (VBN) immediately after processing and reduced all of them through out storage. Sensory evaluation (firmness, color, taste, and flavor) indicated no significant differences (P>0.05) between treated and untreated samples. (author)

  13. Effect of gamma irradiation on shelf life extension, total counts of microbials and biochemical sensory change on luncheon meat

    Energy Technology Data Exchange (ETDEWEB)

    Al-Bachir, M; Mehyou, A [Atomic Energy Commission, Dept. of Radiation Technology, Damascus (Syrian Arab Republic)

    1999-11-01

    To investigate the effect of gamma irradiation and sodium nitrate on storability and marketability of luncheon, packed luncheon was exposed to several treatments; gamma irradiation at doses 0, 1, 2, 3 and 4 KGy using a {sup 60} CO package irradiator, mixed with sodium nitrite (NaNO{sub 2}) 60 mg/Kg meat, with no irradiation and a combined treatment of both NaNO{sub 2} treatment and irradiated with a dose of 2 KGy only. Half of the irradiated and unirradiated samples were stored in refrigeration (1-4 centigrade), to study storability and the second half were stored at room temperature (18-20 centigrade) to study marketability of luncheon. During storage period the population of microorganisms, biochemical changes and sensory properties were evaluated every two weeks for the refrigerated samples and weekly for the unrefrigerated samples. The results indicated that gamma irradiation and sodium nitrite reduced the counts of microorganisms and increased the shelf-life of luncheon. Both treatments (irradiation, sodium nitrite) increased total acidity, lipid oxidation, and the volatile basic nitrogen (VBN) immediately after processing and reduced all of them through out storage. Sensory evaluation (firmness, color, taste, and flavor) indicated no significant differences (P>0.05) between treated and untreated samples. (author)

  14. Northern Marshall Islands radiological survey: terrestrial food chain and total doses

    International Nuclear Information System (INIS)

    Robison, W.L.; Mount, M.E.; Phillips, W.A.; Conrado, C.A.; Stuart, M.L.; Stoker, C.E.

    1982-01-01

    A radiological survey was conducted from September through November of 1978 to assess the concentrations of persistent manmade radionuclides in the terrestrial and marine environments of 11 atolls and 2 islands in the Northern Marshall Islands. The survey consisted mainly of an aerial radiological reconnaissance to map the external gamma-ray exposure rates over the islands of each atoll. The logistical support for the entire survey was designed to accommodate this operation. As a secondary phase of the survey, shore parties collected appropriate terrestrial and marine samples to assess the radiological dose from pertinent food chains to those individuals residing on the atolls, who may in the future reside on some of the presently uninhabited atolls, or who collect food from these atolls. Over 5000 terrestrial and marine samples were collected for radionuclide analysis from 76 different islands. Soils, vegetation, indigenous animals, and cistern water and groundwater were collected from the islands. Reef and pelagic fish, clams, lagoon water, and sediments were obtained from the lagoons. The concentration data for 90 Sr, 137 Cs, 238 Pu, 239 240 Pu, and 241 Am in terrestrial food crops, fowl, and animals collected at the atolls or islands are summarized. An assessment of the total dose from the major exposure pathways including external gamma, terrestrial food chain including food products and drinking water, marine food chain, and inhalation is provided. Radiological doses at each atoll or island are calculated from the average radionuclide concentrations in the terrestrial foods, marine foods, etc. assuming the average daily intake for each food item

  15. Area and environmental gamma dose monitoring at PINSTECH

    International Nuclear Information System (INIS)

    Javed, M.; Awan, M.A.; Ahmad, S.; Afsar, M.; Orfi, S.D.

    1986-11-01

    Radiation dose monitoring of various radioactive laboratories including PARR building, radioactive waste disposal area and the environment upto initial peripheral limits of PINSTECH has been carried out by TLD's installed at different locations. Average dose rates in terms of percentage of dose limits have been compiled. The results for the year 1985 have been discussed in this report. (author)

  16. Application of airborne gamma spectrometric survey data to estimating terrestrial gamma-ray dose rates: An example in California

    International Nuclear Information System (INIS)

    Wollenberg, H.A.; Revzan, K.L.; Smith, A.R.

    1992-01-01

    The authors examine the applicability of radioelement data from the National Aerial Radiometric Reconnaissance (NARR) to estimate terrestrial gamma-ray absorbed dose rates, by comparing dose rates calculated from aeroradiometric surveys of U, Th, and K concentrations in 1 x 2 degree quadrangles with dose rates calculated from a radiogeologic data base and the distribution of lithologies in California. Gamma-ray dose rates increase generally from north to south following lithological trends. Low values of 25--30 nG/h occur in the northernmost quadrangles where low-radioactivity basaltic and ultramafic rocks predominate. Dose rates then increase southward due to the preponderance of clastic sediments and basic volcanics of the Franciscan Formation and Sierran metamorphics in north central and central California, and to increasing exposure southward of the Sierra Nevada batholith, Tertiary marine sedimentary rocks, intermediate to acidic volcanics, and granitic rocks of the Coast Ranges. High values, to 100 nGy/h occur in southeastern California, due primarily to the presence of high-radioactivity Precambrian and pre Cenozoic metamorphic rocks. Lithologic-based estimates of mean dose rates in the quadrangles generally match those from aeroradiometric data, with statewide means of 63 and 60 nGy/h, respectively. These are intermediate between a population-weighted global average of 51 nGy/h and a weighted continental average of 70 nGy/h, based on the global distribution of rock types. The concurrence of lithologically- and aeroradiometrically- determined dose rates in California, with its varied geology and topography encompassing settings representative of the continents, indicates that the NARR data are applicable to estimates of terrestrial absorbed dose rates from natural gamma emitters

  17. Hard beta and gamma emissions of 124I. Impact on occupational dose in PET/CT.

    Science.gov (United States)

    Kemerink, G J; Franssen, R; Visser, M G W; Urbach, C J A; Halders, S G E A; Frantzen, M J; Brans, B; Teule, G J J; Mottaghy, F M

    2011-01-01

    The hard beta and gamma radiation of 124I can cause high doses to PET/CT workers. In this study we tried to quantify this occupational exposure and to optimize radioprotection. Thin MCP-Ns thermoluminescent dosimeters suitable for measuring beta and gamma radiation were used for extremity dosimetry, active personal dosimeters for whole-body dosimetry. Extremity doses were determined during dispensing of 124I and oral administration of the activity to the patient, the body dose during all phases of the PET/CT procedure. In addition, dose rates of vials and syringes as used in clinical practice were measured. The procedure for dispensing 124I was optimized using newly developed shielding. Skin dose rates up to 100 mSv/min were measured when in contact with the manufacturer's vial containing 370 MBq of 124I. For an unshielded 5 ml syringe the positron skin dose was about seven times the gamma dose. Before optimization of the preparation of 124I, using an already reasonably safe technique, the highest mean skin dose caused by handling 370 MBq was 1.9 mSv (max. 4.4 mSv). After optimization the skin dose was below 0.2 mSv. The highly energetic positrons emitted by 124I can cause high skin doses if radioprotection is poor. Under optimized conditions occupational doses are acceptable. Education of workers is of paramount importance.

  18. Effect of gamma irradiation dose on the fabrication of α-elastin nanoparticles by gamma-ray crosslinking

    International Nuclear Information System (INIS)

    Fujimoto, Mari; Takeda, Mayuko; Okamoto, Kouji; Furuta, Masakazu

    2011-01-01

    Nanoparticles were prepared utilizing the thermosensitive aggregation of α-elastin and gamma-ray crosslinking. We investigated the effect of the α-elastin irradiation doses to verify the yield of crosslinked nanoparticles. Aqueous solution of α-elastin (10 mg/ml) was used for the aggregation on raising temperature above its cloudy point (CP), followed by gamma-ray crosslinking. A slow heating process (1.9 o C/min) effectively led to aggregation of polypeptide and irradiation with more than 15 kGy yielded stable crosslinked nanoparticles with diameters less than ca. 200 nm and a narrow size distribution.

  19. Effect of gamma irradiation dose on the fabrication of {alpha}-elastin nanoparticles by gamma-ray crosslinking

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Mari; Takeda, Mayuko [Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570 (Japan); Okamoto, Kouji [Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502 (Japan); Furuta, Masakazu, E-mail: mfuruta@b.s.osakafu-u.ac.j [Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570 (Japan)

    2011-02-15

    Nanoparticles were prepared utilizing the thermosensitive aggregation of {alpha}-elastin and gamma-ray crosslinking. We investigated the effect of the {alpha}-elastin irradiation doses to verify the yield of crosslinked nanoparticles. Aqueous solution of {alpha}-elastin (10 mg/ml) was used for the aggregation on raising temperature above its cloudy point (CP), followed by gamma-ray crosslinking. A slow heating process (1.9 {sup o}C/min) effectively led to aggregation of polypeptide and irradiation with more than 15 kGy yielded stable crosslinked nanoparticles with diameters less than ca. 200 nm and a narrow size distribution.

  20. Sterilization and lethal gamma radiation doses on adults and eggs of Sitotroga Cerealella (OLIVIER)

    International Nuclear Information System (INIS)

    Wiendl, F.M.; Bovi, O.A.; Arthur, V.

    1975-04-01

    The influence of lethal doses of radiation from a cobalt 60 gamma source on eggs, adults and fertitility of Sitotroga Cerealella (Olivier) is described. Eggs irradiated with a dose of 14 Krad still showed viability of 16.1%. On longevity doses up to 70 Krad were usually non lethal but some variation could be observed related to the larval diet. Females fertilized by males irradiated with a dose of 70 Krad produced 36% fertile eggs. When the females were irradiated with the same dose, their fertility dropped to 2.2% and when both sexes were irradiated with a 60 Krad dose, the fertility was 28.8%

  1. Gamma ray NDA assay system for total plutonium and isotopics in plutonium product solutions

    International Nuclear Information System (INIS)

    Cowder, L.R.; Hsue, S.T.; Johnson, S.S.; Parker, J.L.; Russo, P.A.; Sprinkle, J.K.; Asakura, Y.; Fukuda, T.; Kondo, I.

    1979-01-01

    A LASL-designed gamma-ray NDA instrument for assay of total plutonium and isotopics of product solutions at Tokai-Mura is currently installed and operating. The instrument is, optimally, a densitometer that uses radioisotopic sources for total plutonium measurements at the K absorption edge. The measured transmissions of additional gamma-ray lines from the same radioisotopic sources are used to correct for self-attenuation of passive gamma rays from plutonium. The corrected passive data give the plutonium isotopic content of freshly separated to moderately aged solutions. This off-line instrument is fully automated under computer control, with the exception of sample positioning, and operates routinely in a mode designed for measurement control. A one-half percent precision in total plutonium concentration is achieved with a 15-minute measurement

  2. Low doses effects and gamma radiations low dose rates; Les effets des faibles doses et des faibles debits de doses de rayons gamma

    Energy Technology Data Exchange (ETDEWEB)

    Averbeck, D [Institut Curie, CNRS UMR 2027, 75 - Paris (France)

    1999-07-01

    This expose wishes for bringing some definitions and base facts relative to the problematics of low doses effects and low dose rates effects. It shows some already used methods and some actual experimental approaches by focusing on the effects of ionizing radiations with a low linear energy transfer. (N.C.)

  3. Measurements of gamma-ray dose from a moderated 252Cf source

    International Nuclear Information System (INIS)

    McDonald, J.C.; Griffith, R.V.; Plato, P.; Miklos, J.

    1983-06-01

    The gamma-ray dose fraction from a moderated 252 Cf source was determined by using three types of dosimetry systems. Measurements were carried out in air at a distance of 35 cm from the surface of the moderating sphere (50 cm from the source which is at the center of the sphere) to the geometrical center of each detector. The moderating sphere is 0.8-mm-thick stainless steel shell filled with D 2 O and covered with 0.5 mm of cadmium. Measurements were also carried out with instruments and dosimeters positioned at the surface of a 40 cm x 40 cm x 15 cm plexiglass irradiation phantom whose front surface was also 35 cm from the surface of the moderating sphere. A-150 tissue-equivalent (TE) plastic ionization chambers and a TE proportional counter (TEPC) were used to measure tissue dose, from which the neutron dose equivalent was computed. The ratio of gamma-ray dose to the neutron dose equivalent was determined by using a relatively neutron-insensitive Geiger-Mueller (GM) counter and thermoluminescent dosimeters (TLD). In addition, the event-size spectrum measured by the TEPC was also used to compute the gamma-ray dose fraction. The average value for the ratio of gamma-ray dose to neutron dose equivalent was found to be 0.18 with an uncertainty of about +-18%

  4. Hippophae leaf extract (SBL-1) countered radiation induced dysbiosis in jejunum of total body 60Cobalt gamma - irradiated mice

    International Nuclear Information System (INIS)

    Beniwal, C.S.; Madhu Bala

    2014-01-01

    Single dose of SBL-1 administered at the rate 30 mg/kg body weight (b.w.) 30 min prior to whole body 60 Co-gamma-irradiation at lethal dose (10 Gy), rendered >90% survival in comparison to zero survival in the non-SBL-1 treated 60 Co-gamma-irradiated (10 Gy) mice population (J Herbs Spices Med Plants, 2009; 15(2): 203-215). Present study investigated the effect of SBL-1 on jejunal microbiota in lethally irradiated mice. Study was performed with inbred Swiss albino Strain 'A' male mice (age 9 weeks) weighing 28±2 g. The animals were maintained under controlled environment at 26±2℃; 12 h light/dark cycle and offered standard animal food (Golden feed, Delhi) as well as tap water ad libitum. Metagenomic DNA was extracted, purified and quantified from jejunum of the mice. Universal primers (27f and 1492r) were used to amplify the 16S rRNA DNA from the metagenomic DNA. Amplicons were sequenced, vector contamination and chimeras were removed. The sequences (GenBank Accession No: KF681283 to KF681351) were taxonomically classified by using Sequence Match program, Ribosomal Database Project as well as by nucleotide-BLAST (E-value: 10, database: 16S rRNA gene sequences, Bacteria and Archea). Phylogenetic Tree was prepared using MEGA 5.2 package, using maximum likelihood algorithm after sequence alignment by MUSCLE. Thermus aquaticus was used as out-group to construct rooted tree. Branch stability was assessed by bootstrap analysis. Untreated animals and the animals treated with SBL-1 had 100% Lactobacillus; 60 Co gamma-irradiated animals had 55% Cohaesibacter (Alphaproteobacteria); 27% Mycoplasma (Tenericutes) and only 18% Lactobacillus; animals treated with SBL-1 prior to irradiation had 89% Lactobacillus and 11% Clostridium. This study demonstrated that treatment with SBL-1 at radioprotective doses before total body irradiation with lethal dose (10 Gy) countered the jejunal dysbiosis. (author)

  5. Determination of plutonium isotopic ratios and total concentration by gamma ray spectrometry

    International Nuclear Information System (INIS)

    Despres, Michele.

    1980-11-01

    A non-destructive method of analysis is being investigated for the control in situ of plutonium isotopic composition and total concentration in different matrix without preliminary calibration. The plutonium isotopic composition is determined by gamma-ray spectrometry using germanium detector systems. The same apparatus is used for direct measuring of the total plutonium concentration in solutions or solids by a differential attenuation technique based on two transmitted gamma rays with energies on both sides of the k shell absorption edge of plutonium [fr

  6. Gamma dose estimation to the gastric wall after administration of a capsule containing a large dose of /sup 131/I

    Energy Technology Data Exchange (ETDEWEB)

    Oyamada, H; Fukukita, H; Kawai, H; Nagaiwa, K [National Cancer Center, Tokyo (Japan); Kawachi, K

    1980-05-01

    Gamma dose to the gastric wall from a capsule containing 1.85 GBq (50 mCi) of /sup 131/I was estimated in 6 patients who had received total thyroidectomy for thyroid carcinoma some years before. The tests were done with a 37 MBq (1 mCi) capsule each in 5 patients and with a 185 MBq (5 mCi) capsule in one patient. All the patients were requested to fast in the morning. The capsule was given with a glass of water (200 ml). Then, the patient kept supine position under the scintillation camera for a period of one hour except one patient on whom the test was suspended at 30 minutes because of early clearance of the radioactivity from the stomach. In one of 5 patients who were tested for a period of one hour, serial scinticamera images showed almost no movement and minimum dissolution of the capsule. The remaining 4 patients showed slight to moderate movements of the capsules with a variety of dissolution speeds. Data processing were done by Scintipac-1200. The estimated doses at the distance of 0.5 cm from the source were 3.820, 2.074, 1.445, 1.154 and 1.462 grays (382.0, 207.4, 144.5, 115.4 and 146.2 rads) per initial one hour and 375 mGy (37.5 rad) per initial 30 minutes, respectively. From these data, it is thought to be wise to advise the patient to rotate or shake the body on bed occasionally after swallowing the capsules containing a large dose of /sup 131/I for the treatment of thyroid cancer. It is also desirable to recommend the patient to walk around even though the controlled patient's room is small. Additional water may be also meaningful to avoid unnecessary irradiation to the gastric wall.

  7. Determination the lethal dose of ascaris lumbricoides ova by gamma irradiation

    CERN Document Server

    Shamma, M A; Sharabi, N

    2002-01-01

    The lethal gamma irradiation dose of ascaris lumbricoides which collected from Damascus Sewage water Plant was determined. Ascaris lumbricoides ova were treated with several gamma irradiation doses with (0.1, 0.2, 0.3, 0.4,...and 1.5 KGy). No morphological changes were observed on the eggs when directly examined microscopically after irradiation. However after two weeks of incubation at 37 degree centigrade the cell contents of the eggs which irradiated with 0.5 KGy and beyond were fragmented and scattered in the whole eggs and no larvae were observed after eight weeks of incubation. It is concluded that the dose 0.5 my be considered as the dose of choice if sewage water is to be treated by gamma rays.

  8. Determination the lethal dose of ascaris lumbricoides ova by gamma irradiation

    International Nuclear Information System (INIS)

    Shamma, M.; Al-Adawi, M.; Sharabi, N.

    2002-11-01

    The lethal gamma irradiation dose of ascaris lumbricoides which collected from Damascus Sewage water Plant was determined. Ascaris lumbricoides ova were treated with several gamma irradiation doses with (0.1, 0.2, 0.3, 0.4,...and 1.5 KGy). No morphological changes were observed on the eggs when directly examined microscopically after irradiation. However after two weeks of incubation at 37 degree centigrade the cell contents of the eggs which irradiated with 0.5 KGy and beyond were fragmented and scattered in the whole eggs and no larvae were observed after eight weeks of incubation. It is concluded that the dose 0.5 my be considered as the dose of choice if sewage water is to be treated by gamma rays. (author)

  9. Calculation of Dose Gamma Ray Build up Factor in Some ...

    African Journals Online (AJOL)

    The gamma ray buildup factor was calculated by analyzing the narrow- beam and broad-beam geometry equations using Taylor's formula for isotropic sources and homogeneous materials. The buildup factor was programmed using MATLAB software to operate with any radiation energy (E), atomic number (Z) and the ...

  10. Effects of high dose rate gamma radiation on survival and reproduction of Biomphalaria glabrata

    International Nuclear Information System (INIS)

    Cantinha, Rebeca S.; Nakano, Eliana; Silva, Luanna R.S.

    2009-01-01

    Ionizing radiations are known as mutagenic agents, causing lethality and infertility. This characteristic has motivated its application on animal biological control. In this context, the freshwater snail Biomphalaria glabrata can be considered an excellent experimental model to study effects of ionizing radiations on lethality and reproduction. This work was designed to evaluate effects of 60 Co gamma radiation at high dose rate (10.04 kGy/h) on B. glabrata. For this purpose, adult snails were selected and exposed to doses ranging from 20 to 100 Gy, with 10 Gy intervals; one group was kept as control. There was not effect of dose rate in the lethality of gamma radiation; the value of 64,3 Gy of LD 50 obtained in our study was similar to that obtained by other authors with low dose rates. Nevertheless, our data suggest that there was a dose rate effect in the reproduction. On all dose levels, radiation improved the production of embryos for all exposed individuals. However, viability indexes were below 6% and, even 65 days after irradiation, fertility was not recovered. These results are not in agreement with other studies using low dose rates. Lethality was obtained in all groups irradiated, and the highest doses presented percentiles of dead animals above 50%. The results demonstrated that doses of 20 and 30 Gy were ideal for population control of B. glabrata. Further studies are needed; nevertheless, this research evidenced great potential of high dose rate gamma radiation on B. glabrata reproductive control. (author)

  11. Effects of high dose rate gamma radiation on survival and reproduction of Biomphalaria glabrata

    Energy Technology Data Exchange (ETDEWEB)

    Cantinha, Rebeca S.; Nakano, Eliana [Instituto Butantan, Sao Paulo, SP (Brazil). Lab. de Parasitologia], e-mail: rebecanuclear@gmail.com, e-mail: eliananakano@butantan.gov.br; Borrely, Sueli I. [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo, SP (Brazil). Centro de Tecnologia das Radiacoes], e-mail: sborrely@ipen.br; Amaral, Ademir; Melo, Ana M.M.A. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear. Grupo de Estudos em Radioprotecao e Radioecologia (GERAR)], e-mail: amaral@ufpe.br; Silva, Luanna R.S. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Biofisica e Radiobiologia. Lab. de Radiobiologia], e-mail: amdemelo@hotmail.com, e-mail: luannaribeiro_lua@hotmail.com

    2009-07-01

    Ionizing radiations are known as mutagenic agents, causing lethality and infertility. This characteristic has motivated its application on animal biological control. In this context, the freshwater snail Biomphalaria glabrata can be considered an excellent experimental model to study effects of ionizing radiations on lethality and reproduction. This work was designed to evaluate effects of {sup 60}Co gamma radiation at high dose rate (10.04 kGy/h) on B. glabrata. For this purpose, adult snails were selected and exposed to doses ranging from 20 to 100 Gy, with 10 Gy intervals; one group was kept as control. There was not effect of dose rate in the lethality of gamma radiation; the value of 64,3 Gy of LD{sub 50} obtained in our study was similar to that obtained by other authors with low dose rates. Nevertheless, our data suggest that there was a dose rate effect in the reproduction. On all dose levels, radiation improved the production of embryos for all exposed individuals. However, viability indexes were below 6% and, even 65 days after irradiation, fertility was not recovered. These results are not in agreement with other studies using low dose rates. Lethality was obtained in all groups irradiated, and the highest doses presented percentiles of dead animals above 50%. The results demonstrated that doses of 20 and 30 Gy were ideal for population control of B. glabrata. Further studies are needed; nevertheless, this research evidenced great potential of high dose rate gamma radiation on B. glabrata reproductive control. (author)

  12. Influence of high-dose gamma radiation and particle size on antioxidant properties of Maize ( Zea mays L.) flour

    International Nuclear Information System (INIS)

    Nawaz, Haq; Shad, Muhammad Aslam; Rehman, Tanzila; Ramzan, Ayesha

    2016-01-01

    Influence of high-dose gamma radiation and particle size on antioxidant properties of maize (Zea mays L.) flour was studied using response surface methodology. A central composite design based on three levels of each of particle size, in terms of mesh number (40, 60 and 80 meshes), and gamma radiation dose (25, 50 and 75 kGy) was constructed. A statistically significant dose-dependent decrease (p<0.05) in antioxidant properties of gamma irradiated flour was observed. However, an increase in the mesh number (decrease in particle size of flour) resulted in an increase in antioxidant properties. The optimum level of radiation dose to achieve maximum value of responses was found to be 50 kGy for Trolox equivalent total antioxidant activity (TETAOA), 25 kGy for iron chelating ability (ICA), 25 kGy for reducing power (RP) and 75 kGy for linoleic acid reduction capacity (LARC). However, the optimum level of mesh number to achieve desired levels of TETAOA, ICA, RP and LARC was found to be 80 meshes. (author)

  13. Influence of high-dose gamma radiation and particle size on antioxidant properties of Maize ( Zea mays L.) flour

    Energy Technology Data Exchange (ETDEWEB)

    Nawaz, Haq; Shad, Muhammad Aslam; Rehman, Tanzila; Ramzan, Ayesha, E-mail: haqnawaz@bzu.edu.pk [Bahauddin Zakariya University, Multan (Pakistan)

    2016-10-15

    Influence of high-dose gamma radiation and particle size on antioxidant properties of maize (Zea mays L.) flour was studied using response surface methodology. A central composite design based on three levels of each of particle size, in terms of mesh number (40, 60 and 80 meshes), and gamma radiation dose (25, 50 and 75 kGy) was constructed. A statistically significant dose-dependent decrease (p<0.05) in antioxidant properties of gamma irradiated flour was observed. However, an increase in the mesh number (decrease in particle size of flour) resulted in an increase in antioxidant properties. The optimum level of radiation dose to achieve maximum value of responses was found to be 50 kGy for Trolox equivalent total antioxidant activity (TETAOA), 25 kGy for iron chelating ability (ICA), 25 kGy for reducing power (RP) and 75 kGy for linoleic acid reduction capacity (LARC). However, the optimum level of mesh number to achieve desired levels of TETAOA, ICA, RP and LARC was found to be 80 meshes. (author)

  14. Relationship of dose rate and total dose to responses of continuously irradiated beagles

    International Nuclear Information System (INIS)

    Fritz, T.E.; Norris, W.P.; Tolle, D.V.; Seed, T.M.; Poole, C.M.; Lombard, L.S.; Doyle, D.E.

    1978-01-01

    Young-adult beagles were exposed continuously (22 hours/day) to 60 Co γ rays in a specially constructed facility. The exposure rates were either 5, 10, 17, or 35 R/day, and the exposures were terminated at either 600, 1400, 2000, or 4000 R. A total of 354 dogs were irradiated; 221 are still alive as long-term survivors, some after more than 2000 days. The data on survival of these dogs, coupled with data from similar preliminary experiments, allow an estimate of the LD 50 for γ-ray exposures given at a number of exposure rates. They also allow comparison of the relative importance of dose rate and total dose, and the interaction of these two variables, in the early and late effects after protracted irradiation. The LD 50 for the beagle increases from 258 rad delivered at 15 R/minute to approximately 3000 rad at 10 R/day. Over this entire range, the LD 50 is dependent upon hematopoietic damage. At 5 R/day and less, no meaningful LD 50 can be determined; there is nearly normal continued hematopoietic function, survival is prolonged, and the dogs manifest varied individual responses in other organ systems. Although the experiment is not complete, interim data allow several important conclusions. Terminated exposures, while not as effective as radiation continued until death, can produce myelogenous leukemia at the same exposure rate, 10 R/day. More importantly, at the same total accumulated dose, lower exposure rates are more damaging than higher rates on the basis of the rate and degree of hematological recovery that occurs after termination of irradiation. Thus, the rate of hematologic depression, the nadir of the depression, and the rate of recovery are dependent upon exposure rate; the latter is inversely related and the former two are directly related to exposure rate

  15. Calibration curve to establish the exposure dose at Co60 gamma radiation

    International Nuclear Information System (INIS)

    Guerrero C, C.; Brena V, M.

    2000-01-01

    The biological dosimetry is an adequate method for the dose determination in cases of overexposure to ionizing radiation or doubt of the dose obtained by physical methods. It is based in the aberrations analysis produced in the chromosomes. The behavior of leisure in chromosomes is of dose-response type and it has been generated curves in distinct laboratories. Next is presented the curve for gamma radiation produced in the National Institute of Nuclear Research (ININ) laboratory. (Author)

  16. Evaluation of mathematical methods for predicting optimum dose of gamma radiation in sugarcane (Saccharum sp.)

    International Nuclear Information System (INIS)

    Wu, K.K.; Siddiqui, S.H.; Heinz, D.J.; Ladd, S.L.

    1978-01-01

    Two mathematical methods - the reversed logarithmic method and the regression method - were used to compare the predicted and the observed optimum gamma radiation dose (OD 50 ) in vegetative propagules of sugarcane. The reversed logarithmic method, usually used in sexually propagated crops, showed the largest difference between the predicted and observed optimum dose. The regression method resulted in a better prediction of the observed values and is suggested as a better method for the prediction of optimum dose for vegetatively propagated crops. (author)

  17. New Insights into Fully-Depleted SOI Transistor Response During Total Dose Irradiation

    International Nuclear Information System (INIS)

    Burns, J.A.; Dodd, P.E.; Keast, C.L.; Schwank, J.R.; Shaneyfelt, M.R.; Wyatt, P.W.

    1999-01-01

    Worst-case bias configuration for total-dose testing fully-depleted SOI transistors was found to be process dependent. No evidence was found for total-dose induced snap back. These results have implications for hardness assurance testing

  18. Influence of Exposure to Fractionated Dose of Gamma Radiation and Antioxidants Supplementation to Mice on program cell death induction

    International Nuclear Information System (INIS)

    Hanafi, A.

    2010-01-01

    The previous studies reported that the tumor suppressor protein (P53) is not functioning correctly in most human cancers, and that it plays a crucial role in the prevention of tumor development. This study was designed to evaluate if exposure to fractionated dose of gamma radiation impair function of P53 by the administration of antioxidants. Group of control mice was used. Another groups treated with 3 mg/mouse/day of Antox drug which contains the three main antioxidant vitamins (A, C, and E) together with trace element selenium for 15 days. Another group subjected to 1 Gy of gamma radiation 5 times every other day either alone or combined with the Antox drug supplementation. Hepatic and renal functions were evaluated. Antioxidant markers (MDA and GSH) levels, histopathological changes and P53 expression were recorded in liver and kidney tissues. Animals treated with Antox showed some increase in liver transaminases, non significant changes in total protein and albumin levels, a non significant change in kidney function profiles, a non significant increase in MDA and a significant increase in GSH levels in liver and kidney tissues. However, the exposure of mice to fractionated dose of gamma radiation led to a significant increase in kidney function profiles, AST and ALT activity, a significant decrease in total protein and albumin level, a significant increase in MDA levels and a significant decrease in GSH levels in liver and kidney were observed. Exposure of experimental animals post treatment with Antox drug to fractionated dose of gamma radiation revealed a significant amelioration in liver and kidney function profiles, a highly significant decrease in MDA levels and a significant increase in GSH level in comparison with irradiated group. Histopathological changes in liver and kidney recorded the same alterations observed with the biochemical parameters. P53 expression negatively expressed in normal liver and kidney tissues. However, the exposure of mice to

  19. Determination of gamma ray doses suitable for mutation induction in garlic (Allium sativum L.)

    International Nuclear Information System (INIS)

    Al-Safadi, Bassam; Ayyoubi, Zouhair

    1993-04-01

    Garlic (Allium sativum L.) cloves were exposed to different doses of gamma radiation (Control, 100, 250, 500, 750, and 1000 rads). The cloves were planted in 4 replicates at Deer Alhajar station of the Dept. of Radiation Agriculture. Number of surviving plants was recorded at 2 months after planting and at harvest. Length of foliage was measured at harvest time and weight of cloves was taken two weeks after harvest. Visual readings in the field on plant shape and leaf color were also taken. The results indicated a negative effect of gamma radiation on plant survival especially at doses of 750 and 1000 rads where no plants survived until harvest. Plant length and clove weight were reduced even at 500 rad dose. Percentage of yellow and necrotic plants increased with increasing gamma ray dosage. No stimulation of plant growth was noticed as a result of irradiation with low doses of gamma rays. Treatment with 500 rads of gamma radiation was considered the best among tested doses for garlic mutagenesis (Using cloves) since it gave acceptable rate of survival and morphologic variation. (author). 14 refs., 4 figs

  20. Development of a high sensitivity pinhole type gamma camera using semiconductors for low dose rate fields

    Science.gov (United States)

    Ueno, Yuichiro; Takahashi, Isao; Ishitsu, Takafumi; Tadokoro, Takahiro; Okada, Koichi; Nagumo, Yasushi; Fujishima, Yasutake; Yoshida, Akira; Umegaki, Kikuo

    2018-06-01

    We developed a pinhole type gamma camera, using a compact detector module of a pixelated CdTe semiconductor, which has suitable sensitivity and quantitative accuracy for low dose rate fields. In order to improve the sensitivity of the pinhole type semiconductor gamma camera, we adopted three methods: a signal processing method to set the discriminating level lower, a high sensitivity pinhole collimator and a smoothing image filter that improves the efficiency of the source identification. We tested basic performances of the developed gamma camera and carefully examined effects of the three methods. From the sensitivity test, we found that the effective sensitivity was about 21 times higher than that of the gamma camera for high dose rate fields which we had previously developed. We confirmed that the gamma camera had sufficient sensitivity and high quantitative accuracy; for example, a weak hot spot (0.9 μSv/h) around a tree root could be detected within 45 min in a low dose rate field test, and errors of measured dose rates with point sources were less than 7% in a dose rate accuracy test.

  1. Spatial interpolation of gamma dose in radioactive waste storage facility

    Science.gov (United States)

    Harun, Nazran; Fathi Sujan, Muhammad; Zaidi Ibrahim, Mohd

    2018-01-01

    External radiation measurement for a radioactive waste storage facility in Malaysian Nuclear Agency is a part of Class G License requirement under Atomic Licensing Energy Board (AELB). The objectives of this paper are to obtain the distribution of radiation dose, create dose database and generate dose map in the storage facility. The radiation dose measurement is important to fulfil the radiation protection requirement to ensure the safety of the workers. There are 118 sampling points that had been recorded in the storage facility. The highest and lowest reading for external radiation recorded is 651 microSv/hr and 0.648 microSv/hour respectively. The calculated annual dose shows the highest and lowest reading is 1302 mSv/year and 1.3 mSv/year while the highest and lowest effective dose reading is 260.4 mSv/year and 0.26 mSv/year. The result shows that the ALARA concept along time, distance and shield principles shall be adopted to ensure the dose for the workers is kept below the dose limit regulated by AELB which is 20 mSv/year for radiation workers. This study is important for the improvement of planning and the development of shielding design for the facility.

  2. Determination of crossed gamma doses for garlic improvement (Allium Sativum)

    International Nuclear Information System (INIS)

    Perez Talavera, S.; Labrada, A.; Savin, V.

    1991-01-01

    The determination of four Cuban varieties of garlic was made so as to optimized the use of ionizing radiations in Cuba to breed vegetatively propagated crops such as garlic. The dose-effect regresion equation characterizing the radioinhibition zone of each crop was presented. We used a criteria to select the irradiation dose to be used in mutation breeding techniques based on obtaining height variability in the productive indicators, a survival and a number of garlic cloves high enough to allow and adequate reproduction of M1 plants. It was verified that this small inhibitor doses of radiations produced a higher percentage of good variability than the medium and high doses. With the use of small inhibitor doses (GR10-GR20) on the Guadalupe-15 garlic variety, 65 variety plants were obtained., 93.7% out of this number is higher than the control in the indicators considered

  3. Simple approximation for estimating centerline gamma absorbed dose rates due to a continuous Gaussian plume

    International Nuclear Information System (INIS)

    Overcamp, T.J.; Fjeld, R.A.

    1987-01-01

    A simple approximation for estimating the centerline gamma absorbed dose rates due to a continuous Gaussian plume was developed. To simplify the integration of the dose integral, this approach makes use of the Gaussian cloud concentration distribution. The solution is expressed in terms of the I1 and I2 integrals which were developed for estimating long-term dose due to a sector-averaged Gaussian plume. Estimates of tissue absorbed dose rates for the new approach and for the uniform cloud model were compared to numerical integration of the dose integral over a Gaussian plume distribution

  4. Thyroid doses from external gamma-exposure following the Chernobyl accident

    International Nuclear Information System (INIS)

    Tretyakevich, Sergey; Kukhta, Tatyana; Minenko, Victor; Drozdovitch, Vladimir; Luckyanov, Nickolas; Gavrilin, Yury; Khrouch, Valeri; Shinkarev, Sergey

    2008-01-01

    Full text: An increase of thyroid cancer incidence among children in Belarus has been observed after the Chernobyl accident. The main contributor to the thyroid dose was caused by 131 I intake with fresh milk in 1986. Other contributions to the thyroid dose (external gamma-exposure, short-lived iodine isotopes, internal radiocesium) were small in comparison to the dose from 131 I intakes soon after the accident. However, exposures to external radiation continued for a number of years after the accident. Thyroid doses from external gamma-exposure following the Chernobyl accident were mainly caused by gamma-exposure to 24 nuclides: 95 Zr, 95 Nb, 99 Mo, 99 mTc, 103 Ru, 103m Rh, 106 Ru, 125 Sb, 125m Te, 131m Te, 131 I, 132 Te, 132 I, 133 I, 135 I, 134 Cs, 136 Cs, 137 Cs, 140 Ba, 140 La, 141 Ce, 144 Ce, 144 Pr, 239 Np. Data of personal interview were used to take into account the personal residence history for the time elapsed from the Chernobyl accident until the interview (10 to 15 years later). Cumulative thyroid doses caused by external gamma-exposure during the passage of the radioactive cloud and from the ground contamination following the Chernobyl accident have been reconstructed. The median thyroid dose from external gamma-exposure to ∼11,770 cohort members of an epidemiological study was estimated to be ∼6 mGy. There are ∼3,400 persons with external dose estimates that exceed 20 mGy. Exposure from radionuclides deposited on the ground was the main source of external dose. The contribution from the passing radioactive cloud to external dose was found to be negligible. (author)

  5. Dose compensation of the total body irradiation therapy

    International Nuclear Information System (INIS)

    Lin, J.-P.; Chu, T.-C.; Liu, M.-T.

    2001-01-01

    The aim of the study is to improve dose uniformity in the body by the compensator-rice and to decrease the dose to the lung by the partial lung block. Rando phantom supine was set up to treat bilateral fields with a 15 MV linear accelerator at 415 cm treatment distance. The experimental procedure included three parts. The first part was the bilateral irradiation without rice compensator, and the second part was with rice compensator. In the third part, rice compensator and partial lung block were both used. The results of thermoluminescent dosimeters measurements indicated that without rice compensator the dose was non-uniform. Contrarily, the average dose homogeneity with rice compensator was measured within ±5%, except for the thorax region. Partial lung block can reduce the dose which the lung received. This is a simple method to improve the dose homogeneity and to reduce the lung dose received. The compensator-rice is cheap, and acrylic boxes are easy to obtain. Therefore, this technique is suitable for more studies

  6. Effect of finite sample dimensions and total scatter acceptance angle on the gamma ray buildup factor

    International Nuclear Information System (INIS)

    Singh, Sukhpal; Kumar, Ashok; Singh, Charanjeet; Thind, Kulwant Singh; Mudahar, Gurmel S.

    2008-01-01

    The simultaneous variation of gamma ray buildup factors with absorber thickness (up to 6.5 mfp) and total scatter acceptance angle (which is the sum of incidence and exit beam divergence) in the media of high volume flyash concrete and water was studied experimentally using a point isotropic 137 Cs source

  7. Study on dose distribution of therapeutic proton beams with prompt gamma measurement

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. W. [National Cancer Center, Seoul (Korea, Republic of); Min, C. H.; Kim, C. H.; Kim, D. K.; Yoon, M. Y. [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2007-03-15

    The proton beam has an advantage of the sharp dose falloff in dose distribution called Bragg peak while conventional radiation therapy modalities such as photons exhibit considerable amount of exit dose. To take advantage of this property it is important to know the exact location of the distal dose falloff. An error can cause overdose to the normal tissue or underdose to the tumor volume. The only way of finding out the dose distribution in-situ in particle therapy is to measure the gammas produced by nuclear reactions with tissue materials. Two kinds of gammas can be used: one is prompt gamma and the other is coincident gamma from the positron-emission isotopes. We chose to detect prompt gammas, and developed a prompt gamma scanning system (PGS). The proton beams of the proton therapy facility at National Cancer Center were used. The gamma distribution was compared to the dose distribution measured by an ionization chamber at three different energies of 100, 150, 200 MeV's. The two distributions were well correlated within 1-2 mm. The effect of high-energy neutron appeared as blurred distribution near the distal dose falloff at the energy of 200 MeV. We then tested the PGS shielding design by adding additional layer of paraffin plates outside of the PGS, and found that fast neutrons significantly affect the background level. But the location of the dose fall-off was nearly coincident. The analysis of gamma energy spectrum showed that cut-off energy in gamma counting can be adjusted to enhance the signal to noise ratio. Further the ATOM phantom, which has similar tissue structure to human, was used to investigate the gamma distribution for the case of inhomogeneous matter. The location of dose falloff region was found to be well defined as for water phantom. Next an actual therapy beam, which was produced by the double scattering method, was used, for which the dose falloff by the gamma distribution was completely wiped out by background neutrons. It is not

  8. New model for assessing dose and dose rate sensitivity of Gamma ray radiation loss in polarization maintaining optical fibers

    International Nuclear Information System (INIS)

    Zhang Hongchen; Liu Hai; Qiao Wenqiang; Xue Huijie; He Shiyu

    2012-01-01

    Highlights: ► Building a new phenomenological theory model to investigate the relation about the irradiation induced loss with irradiation dose and dose rate. ► The Gamma ray irradiation induced loss of the “Capsule” type and “Panda” type polarization maintaining optical fibers at 1310 nm wavelength are investigated. ► The anti irradiation performance of the “Panda” type polarization maintaining optical fiber is better than that of the “Capsule” type polarization maintaining optical fiber, the reason is that the stress region doped by GeO 2 . - Abstract: The Gamma ray irradiation induced loss of the “Capsule” type and “Panda” type polarization maintaining optical fibers at 1310 nm wavelength are investigated. A phenomenological theory model is introduced and the influence of irradiation dose and dose rate on the irradiation induced loss is discussed. The phenomenological theoretical results are consistent with the experimental results of the irradiation induced loss for the two types of polarization maintaining optical fibers. The anti irradiation performance of the “Panda” type polarization maintaining optical fiber is better than that of the “Capsule” type polarization maintaining optical fiber, the reason is that the stress region dope with GeO 2 . Meanwhile, both of the polarization maintaining optical fiber irradiation induced loss increase with increasing the irradiation dose. In the case of same dose, the high dose rate Gamma ray irradiation induced optical fiber losses are higher than that of the low dose rate.

  9. A novel time dependent gamma evaluation function for dynamic 2D and 3D dose distributions

    International Nuclear Information System (INIS)

    Podesta, Mark; Persoon, Lucas CGG; Verhaegen, Frank

    2014-01-01

    Modern external beam radiotherapy requires detailed verification and quality assurance so that confidence can be placed on both the delivery of a single treatment fraction and on the consistency of delivery throughout the treatment course. To verify dose distributions, a comparison between prediction and measurement must be made. Comparisons between two dose distributions are commonly performed using a Gamma evaluation which is a calculation of two quantities on a pixel by pixel basis; the dose difference, and the distance to agreement. By providing acceptance criteria (e.g. 3%, 3 mm), the function will find the most appropriate match within its two degrees of freedom. For complex dynamic treatments such as IMRT or VMAT it is important to verify the dose delivery in a time dependent manner and so a gamma evaluation that includes a degree of freedom in the time domain via a third parameter, time to agreement, is presented here. A C++ (mex) based gamma function was created that could be run on either CPU and GPU computing platforms that would allow a degree of freedom in the time domain. Simple test cases were created in both 2D and 3D comprising of simple geometrical shapes with well-defined boundaries varying over time. Changes of varying magnitude in either space or time were introduced and repeated gamma analyses were performed varying the criteria. A clinical VMAT case was also included, artificial air bubbles of varying size were introduced to a patient geometry, along with shifts of varying magnitude in treatment time. For all test cases where errors in distance, dose or time were introduced, the time dependent gamma evaluation could accurately highlight the errors. The time dependent gamma function presented here allows time to be included as a degree of freedom in gamma evaluations. The function allows for 2D and 3D data sets which are varying over time to be compared using appropriate criteria without penalising minor offsets of subsequent radiation

  10. Gamma dose effects valuation on micro computing components; Evaluation des effets de la dose gamma sur les composants micro-informatiques

    Energy Technology Data Exchange (ETDEWEB)

    Joffre, F

    1996-12-31

    Robotics in hostile environment raises the problem of micro computing components resistance with gamma radiation cumulated dose. The current aim is to reach a dose of 3000 grays with industrial components. A methodology and an instrumentation adapted to test this type of components have been developed. The aim of this work is to present the advantages and disadvantages bound to the use of industrial components in the presence of gamma radiation. After an analysis of the criteria allowing to justify the technological choices, the different steps which characterize the selection and the assessment methodology used are explained. The irradiation and measures means now operational are mentioned. Moreover, the supply aspects of the chosen components for the design of an industrialized system is taken into account. These selection and assessment components contribute to the development and design of computers for civil nuclear robotics. (O.M.). 7 refs.

  11. Distribution and characteristics of gamma and cosmic ray dose rate in living environment

    International Nuclear Information System (INIS)

    Nagaoka, Toshi; Moriuchi, Shigeru

    1991-01-01

    A series of environmental radiation surveys was carried out from the viewpoint of characterizing the natural radiation dose rate distribution in the living environment, including natural and artificial ones. Through the analysis of the data obtained at numbers of places, several aspects of the radiation field in living environments were clarified. That is the gamma ray dose rate varies due to the following three dominant causes: 1) the radionuclide concentration of surrounding materials acting as gamma ray sources, 2) the spatial distribution of surrounding materials, and 3) the geometrical and shielding conditions between the natural gamma ray sources and the measured point; whereas, the cosmic ray dose rate varies due to the thickness of upper shielding materials. It was also suggested that the gamma ray dose rate generally shows an upward tendency, and the cosmic ray dose rate a downward one in artificial environment. This kind of knowledge is expected to serve as fundamental information for accurate and realistic evaluation of the collective dose in the living environment. (author)

  12. Aging of magnesium stearate under high doses gamma irradiation and oxidative conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lebeau, D.; Beuvier, L.; Cornaton, M. [CEA, DEN, DPC, SECR, LRMO, F-91191 Gif-sur-Yvette (France); Miserque, F. [CEA, DEN, DPC, SCCME, LECA, F-91191 Gif-sur-Yvette (France); Tabarant, M. [CEA, DEN, DPC, SEARS, LISL, F-91191 Gif-sur-Yvette (France); Esnouf, S. [CEA, DEN, DPC, SECR, LRMO, F-91191 Gif-sur-Yvette (France); Ferry, M., E-mail: muriel.ferry@cea.fr [CEA, DEN, DPC, SECR, LRMO, F-91191 Gif-sur-Yvette (France)

    2015-05-15

    Highlights: • Magnesium stearate was radio-oxidized at very high doses using gamma-rays. • H{sub 2} emission was estimated as a function of the integrated dose. • Modifications in the organic solid were followed as a function of the integrated dose. • A non-exhaustive degradation mechanism of magnesium stearate was proposed. - Abstract: In nuclear waste packages conditioning processes, magnesium stearate is widely used because of its high lubricating properties. For safety purposes, the radiolytic degradation of these organic materials has to be better understood to be able to predict their aging in repository conditions. This study reports the radiolytic degradation of magnesium stearate, using gamma-rays at room temperature and under air. Modifications were followed using different analytical tools (XPS, ATR-FTIR, ICP-AES, ATG and mass spectrometry). It has been observed that molecules mainly formed up to 1000 kGy of gamma irradiation dose under radio-oxidation are alkanes, hydroperoxides, double bonds in the aliphatic chain, carboxylates with aliphatic chain shorter than the one of stearate and ketones. At a dose of 4000 kGy, dicarboxylic acids are observed: the formation of these molecules needs a dose of at least 1000 kGy to be created under radio-oxidation. These observations allow us to propose a non-exhaustive degradation mechanism of magnesium stearate under gamma-irradiation at room temperature and under air.

  13. American National Standard: neutron and gamma-ray flux-to-dose rate factors

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    This Standard presents data recommended for computing biological dose rates due to neutron and gamma-ray radiation fields. Neutron flux-to-dose-rate conversion factors for energies from 2.5 x 10 -8 to 20 MeV are given; the energy range for the gamma-ray conversion factors is 0.01 to 15 MeV. Specifically, this Standard is intended for use by shield designers to calculate wholebody dose rates to radiation workers and the general public. Establishing dose-rate limits is outside the scope of this Standard. Use of this Standard in cases where the dose equivalents are far in excess of occupational exposure guidelines is not recommended

  14. Automatic optimisation of gamma dose rate sensor networks: The DETECT Optimisation Tool

    DEFF Research Database (Denmark)

    Helle, K.B.; Müller, T.O.; Astrup, Poul

    2014-01-01

    of the EU FP 7 project DETECT. It evaluates the gamma dose rates that a proposed set of sensors might measure in an emergency and uses this information to optimise the sensor locations. The gamma dose rates are taken from a comprehensive library of simulations of atmospheric radioactive plumes from 64......Fast delivery of comprehensive information on the radiological situation is essential for decision-making in nuclear emergencies. Most national radiological agencies in Europe employ gamma dose rate sensor networks to monitor radioactive pollution of the atmosphere. Sensor locations were often...... source locations. These simulations cover the whole European Union, so the DOT allows evaluation and optimisation of sensor networks for all EU countries, as well as evaluation of fencing sensors around possible sources. Users can choose from seven cost functions to evaluate the capability of a given...

  15. Response of human fibroblasts to low dose rate gamma irradiation

    International Nuclear Information System (INIS)

    Dritschilo, A.; Brennan, T.; Weichselbaum, R.R.; Mossman, K.L.

    1984-01-01

    Cells from 11 human strains, including fibroblasts from patients with the genetic diseases of ataxia telangiectasia (AT), xeroderma pigmentosum (XP), and Fanconi's anemia (FA), were exposed to γ radiation at high (1.6-2.2 Gy/min) and at low (0.03-0.07 Gy/min) dose rates. Survival curves reveal an increase inthe terminal slope (D 0 ) when cells are irradiated at low dose rates compared to high dose rates. This was true for all cell lines tested, although the AT, FA, and XP cells are reported or postulated to have radiation repair deficiencies. From the response of these cells, it is apparent that radiation sensitivities differ; however, at low dose rate, all tested human cells are able to repair injury

  16. Facility for gamma irradiations of cultured cells at low dose rates: design, physical characteristics and functioning

    International Nuclear Information System (INIS)

    Esposito, Giuseppe; Anello, Pasquale; Pecchia, Ilaria; Tabocchini, Maria Antonella; Campa, Alessandro

    2016-01-01

    We describe a low dose/dose rate gamma irradiation facility (called LIBIS) for in vitro biological systems, for the exposure, inside a CO_2 cell culture incubator, of cells at a dose rate ranging from few μGy/h to some tens of mGy/h. Three different "1"3"7Cs sources are used, depending on the desired dose rate. The sample is irradiated with a gamma ray beam with a dose rate uniformity of at least 92% and a percentage of primary 662 keV photons greater than 80%. LIBIS complies with high safety standards. - Highlights: • A gamma irradiation facility for chronic exposures of cells was set up at the Istituto Superiore di Sanità. • The dose rate uniformity and the percentage of primary 662 keV photons on the sample are greater than 92% and 80%, respectively. • The GEANT4 code was used to design the facility. • Good agreement between simulation and experimental dose rate measurements has been obtained. • The facility will allow to safely investigate different issues about low dose rate effects on cultured cells.

  17. STUDY CONCERNING THE POSSIBILITY OF GAMMA-SPECTROSCOPY METHOD TO DETERMINE THE TOTAL POTASSIUM IN SOILS

    Directory of Open Access Journals (Sweden)

    Tamara Leah

    2011-12-01

    Full Text Available It was proved the possibility of determination the total potassium in soils by gamma-spectroscopic method with subsequent calculation of total potassium content in according to value of 40K isotope (expressed in Becquerel, Bq, using the formula: К2О, % = С . А, where: C – conversion coefficient, A – activity of isotope 40K in soil, Bq/kg. Conversion coefficient for chernozems of Moldova – C=0,00337.

  18. Dose verification to cochlea during gamma knife radiosurgery of acoustic schwannoma using MOSFET dosimeter.

    Science.gov (United States)

    Sharma, Sunil D; Kumar, Rajesh; Akhilesh, Philomina; Pendse, Anil M; Deshpande, Sudesh; Misra, Basant K

    2012-01-01

    Dose verification to cochlea using metal oxide semiconductor field effect transistor (MOSFET) dosimeter using a specially designed multi slice head and neck phantom during the treatment of acoustic schwannoma by Gamma Knife radiosurgery unit. A multi slice polystyrene head phantom was designed and fabricated for measurement of dose to cochlea during the treatment of the acoustic schwannoma. The phantom has provision to position the MOSFET dosimeters at the desired location precisely. MOSFET dosimeters of 0.2 mm x 0.2 mm x 0.5 μm were used to measure the dose to the cochlea. CT scans of the phantom with MOSFETs in situ were taken along with Leksell frame. The treatment plans of five patients treated earlier for acoustic schwannoma were transferred to the phantom. Dose and coordinates of maximum dose point inside the cochlea were derived. The phantom along with the MOSFET dosimeters was irradiated to deliver the planned treatment and dose received by cochlea were measured. The treatment planning system (TPS) estimated and measured dose to the cochlea were in the range of 7.4 - 8.4 Gy and 7.1 - 8 Gy, respectively. The maximum variation between TPS calculated and measured dose to cochlea was 5%. The measured dose values were found in good agreement with the dose values calculated using the TPS. The MOSFET dosimeter can be a suitable choice for routine dose verification in the Gamma Knife radiosurgery.

  19. Use of prompt gamma emissions from polyethylene to estimate neutron ambient dose equivalent

    Energy Technology Data Exchange (ETDEWEB)

    Priyada, P.; Sarkar, P.K., E-mail: pradip.sarkar@manipal.edu

    2015-06-11

    The possibility of using measured prompt gamma emissions from polyethylene to estimate neutron ambient dose equivalent is explored theoretically. Monte Carlo simulations have been carried out using the FLUKA code to calculate the response of a high density polyethylene cylinder to emit prompt gammas from interaction of neutrons with the nuclei of hydrogen and carbon present in polyethylene. The neutron energy dependent responses of hydrogen and carbon nuclei are combined appropriately to match the energy dependent neutron fluence to ambient dose equivalent conversion coefficients. The proposed method is tested initially with simulated spectra and then validated using experimental measurements with an Am–Be neutron source. Experimental measurements and theoretical simulations have established the feasibility of estimating neutron ambient dose equivalent using measured neutron induced prompt gammas emitted from polyethylene with an overestimation of neutron dose at very low energies. - Highlights: • A new method for estimating H{sup ⁎}(10) using prompt gamma emissions from HDPE. • Linear combination of 2.2 MeV and 4.4 MeV gamma intensities approximates DCC (ICRP). • Feasibility of the method was established theoretically and experimentally. • The response of the present technique is very similar to that of the rem meters.

  20. Dose mapping simulation using the MCNP code for the Syrian gamma irradiation facility and benchmarking

    International Nuclear Information System (INIS)

    Khattab, K.; Boush, M.; Alkassiri, H.

    2013-01-01

    Highlights: • The MCNP4C was used to calculate the gamma ray dose rate spatial distribution in for the SGIF. • Measurement of the gamma ray dose rate spatial distribution using the Chlorobenzene dosimeter was conducted as well. • Good agreements were noticed between the calculated and measured results. • The maximum relative differences were less than 7%, 4% and 4% in the x, y and z directions respectively. - Abstract: A three dimensional model for the Syrian gamma irradiation facility (SGIF) is developed in this paper to calculate the gamma ray dose rate spatial distribution in the irradiation room at the 60 Co source board using the MCNP-4C code. Measurement of the gamma ray dose rate spatial distribution using the Chlorobenzene dosimeter is conducted as well to compare the calculated and measured results. Good agreements are noticed between the calculated and measured results with maximum relative differences less than 7%, 4% and 4% in the x, y and z directions respectively. This agreement indicates that the established model is an accurate representation of the SGIF and can be used in the future to make the calculation design for a new irradiation facility

  1. Neurogenic Effects of Low-Dose Whole-Body HZE (Fe) Ion and Gamma Irradiation.

    Science.gov (United States)

    Sweet, Tara B; Hurley, Sean D; Wu, Michael D; Olschowka, John A; Williams, Jacqueline P; O'Banion, M Kerry

    2016-12-01

    Understanding the dose-toxicity profile of radiation is critical when evaluating potential health risks associated with natural and man-made sources in our environment. The purpose of this study was to evaluate the effects of low-dose whole-body high-energy charged (HZE) iron (Fe) ions and low-energy gamma exposure on proliferation and differentiation of adult-born neurons within the dentate gyrus of the hippocampus, cells deemed to play a critical role in memory regulation. To determine the dose-response characteristics of the brain to whole-body Fe-ion vs. gamma-radiation exposure, C57BL/6J mice were irradiated with 1 GeV/n Fe ions or a static 137 Cs source (0.662 MeV) at doses ranging from 0 to 300 cGy. The neurogenesis was analyzed at 48 h and one month postirradiation. These experiments revealed that whole-body exposure to either Fe ions or gamma radiation leads to: 1. An acute decrease in cell division within the dentate gyrus of the hippocampus, detected at doses as low as 30 and 100 cGy for Fe ions and gamma radiation, respectively; and 2. A reduction in newly differentiated neurons (DCX immunoreactivity) at one month postirradiation, with significant decreases detected at doses as low as 100 cGy for both Fe ions and gamma rays. The data presented here contribute to our understanding of brain responses to whole-body Fe ions and gamma rays and may help inform health-risk evaluations related to systemic exposure during a medical or radiologic/nuclear event or as a result of prolonged space travel.

  2. Hearing preservation after low-dose gamma knife radiosurgery of vestibular schwannomas

    International Nuclear Information System (INIS)

    Horiba, Ayako; Hayashi, Motohiro; Chernov, Mikhail; Kawamata, Takakazu; Okada, Yoshikazu

    2016-01-01

    The objective of the retrospective study was to evaluate the factors associated with hearing preservation after low-dose Gamma Knife radiosurgery (GKS) of vestibular schwannomas performed according to the modern standards. From January 2005 to September 2010, 141 consecutive patients underwent such treatment in Tokyo Women's Medical University. Mean marginal dose was 11.9 Gy (range, 11-12 Gy). The doses for the brain stem, cranial nerves (V, VII, and VHIII), and cochlea were kept below 14 Gy, 12 Gy, and 4 Gy, respectively. Out of the total cohort, 102 cases with at least 24 months follow-up were analyzed. Within the median follow-up of 56 months (range, 24-99 months) the crude tumor growth control was 92% (94 cases), whereas its actuarial rate at 5 years was 93%. Out of 49 patients with serviceable hearing on the side of the tumor before GKS, 28 (57%) demonstrated its preservation at the time of the last follow-up. No one evaluated factor, namely Gardner-Robertson hearing class before irradiation, Koos tumor stage, extension of the intrameatal part of the neoplasm up to fundus, nerve of tumor origin, presence of cystic changes in the neoplasm, and cochlea dose demonstrated statistically significant association with preservation of the serviceable hearing after radiosurgery. In conclusion, GKS of vestibular schwannomas performed according to the modern standards of treatment permits to preserve serviceable hearing on the side of the tumor in more than half of the patients. The actual causes of hearing deterioration after radiosurgery remain unclear. (author)

  3. DELFIC-TES, Gamma Doses from Nuclear Explosion Radioactive Clouds

    International Nuclear Information System (INIS)

    1991-01-01

    1 - Description of program or function: DELFIC-TES computes the transit gamma exposure from the airborne cloud resulting from a nuclear burst for fixed targets located on or above the earth's surface. 2 - Method of solution - The system is based on a method of producing 'snapshots' of the moving cloud of airborne particles during the transport process of DELFIC. Each particle in each snapshot is then assigned an activity and these data are used to calculate transit exposure by employing an energy-dependent buildup factor technique

  4. An energy-independent dose rate meter for beta and gamma radiation

    International Nuclear Information System (INIS)

    Heinzelmann, M.; Keller, M.

    1986-01-01

    An easy to handle dose rate meter has been developed at the Juelich Nuclear Research Centre with a small probe for the energy-independent determination of the dose rate in mixed radiation fields. The dose rate meter contains a small ionisation chamber with a volume of 15.5 cm 3 . The window of the ionisation chamber consists of an aluminised plastic foil of 7 mg.cm -2 . The dose rate meter is suitable for determining the dose rate in skin. With a supplementary depth dose cap, the dose rate can be determined in tissue at a depth of 1 cm. The dose rate meter is energy-independent within +-20% for 147 Pm, 204 Tl and 90 Sr/ 90 Y beta radiation and for gamma radiation in the energy range above 35 keV. (author)

  5. A study on the effect of low doses gamma radiation on mushroom spawn

    International Nuclear Information System (INIS)

    Ajlouni, Said

    1993-03-01

    Mushroom spawn (Hybrid-521) was irradiated at room temperature using low doses of gamma radiation (50-600 rad). The spawn was then planted at two stages; first, after 24 hours of irradiation, and second after storage for three weeks at refrigeration temperature. Results of this study showed that the applied doses of gamma radiation did not have any stimulatory effect on mushroom growth or productivity. It was also noticed that mushroom production rate decreased when irradiated spawn was stored for three weeks prior to planting, as compared with spawn planted 24 hours after irradiation. (author). 18 refs., 2 figs., 2 tabs

  6. Terrestrial gamma radiation dose rates and radiological mapping of Terengganu state, Malaysia

    International Nuclear Information System (INIS)

    Garba, N.N.

    2015-01-01

    Measurement of terrestrial gamma radiation dose (TGRD) rates in Terengganu state, Malaysia was carried out from 145 different locations using NaI[Tl] micro roentgen survey meter. The measured TGRD rates ranged from 35 to 340 nGy h -1 with mean value of 150 nGy h -1 . The annual effective dose to population was found to be 0.92 mSv y -1 . The data obtained were used in constructing the gamma isodose map using ArcGis 9.3 which shows the distribution of TGRD rates across the state. (author)

  7. Observation of neutron standing waves at total reflection by precision gamma spectroscopy

    International Nuclear Information System (INIS)

    Aksenov, V.L.; Gundorin, N.A.; Nikitenko, Yu.V.; Popov, Yu.P.; Cser, L.

    1998-01-01

    Total reflection of polarized neutrons from the layered structure glass/Fe (1000 A Angstrom)/Gd (50 A Angstrom) is investigated by registering neutrons and gamma-quanta from thermal neutron capture. The polarization ratio of gamma counts of neutron beams polarized in and opposite the direction of the magnetic field is measured. The polarization ratio is larger than unity for the neutron wavelengths λ 2.2 A Angstrom. Such behaviour of the wavelength dependence of the gamma-quanta polarization ratio points to the fact that over the surface of the Fe Layer a neutron standing wave caused by the interference of the incident neutron wave and the wave refracted from the magnetized Fe layer is formed

  8. Dose-rate effects and chronological changes of chromosome aberration rates in spleen cells from mice that are chronically exposed to gamma-ray at low dose rates

    International Nuclear Information System (INIS)

    Tanaka, Kimio; Kohda, Atsushi; Ichinohe, Kazuaki; Matsumoto, Tsuneya; Oghiso, Yoichi

    2006-01-01

    Dose-rate effects have not been examined in the low dose-rate regions of less than 60-600 mGy/h. Mice were chronically exposed to gamma-ray at 20 mGy/day (approximately 1 mGy/h) up to 700 days and at 1 mGy/day (approximately 0.05 mGy/h) for 500 days under SPF conditions. Chronological changes of chromosome aberration rates in spleen cells were observed along with accumulated doses at both low dose-rates. Unstable aberrations increased in a biphasic manner within 0-2 Gy and 4-14 Gy in 20 mGy/day irradiation. They slightly increased up to 0.5 Gy in 1 mGy/day irradiation. Chromosome aberration rates at 20 mGy/day and 1 mGy/day were compared at the same total doses of 0.5 Gy and 0.25 Gy. They were 2.0 vs. 0.53, and 1.0 vs. 0.47 respectively. Thus, dose-rate effects were observed in these low dose-rate regions. (author)

  9. MO-F-CAMPUS-T-03: Continuous Dose Delivery with Gamma Knife Perfexion

    International Nuclear Information System (INIS)

    Ghobadi,; Li, W; Chung, C; Jaffray, D; Aleman, D

    2015-01-01

    Purpose: We propose continuous dose delivery techniques for stereotactic treatments delivered by Gamma Knife Perfexion using inverse treatment planning system that can be applied to various tumour sites in the brain. We test the accuracy of the plans on Perfexion’s planning system (GammaPlan) to ensure the obtained plans are viable. This approach introduces continuous dose delivery for Perefxion, as opposed to the currently employed step-and-shoot approaches, for different tumour sites. Additionally, this is the first realization of automated inverse planning on GammaPlan. Methods: The inverse planning approach is divided into two steps of identifying a quality path inside the target, and finding the best collimator composition for the path. To find a path, we select strategic regions inside the target volume and find a path that visits each region exactly once. This path is then passed to a mathematical model which finds the best combination of collimators and their durations. The mathematical model minimizes the dose spillage to the surrounding tissues while ensuring the prescribed dose is delivered to the target(s). Organs-at-risk and their corresponding allowable doses can also be added to the model to protect adjacent organs. Results: We test this approach on various tumour sizes and sites. The quality of the obtained treatment plans are comparable or better than forward plans and inverse plans that use step- and-shoot technique. The conformity indices in the obtained continuous dose delivery plans are similar to those of forward plans while the beam-on time is improved on average (see Table 1 in supporting document). Conclusion: We employ inverse planning for continuous dose delivery in Perfexion for brain tumours. The quality of the obtained plans is similar to forward and inverse plans that use conventional step-and-shoot technique. We tested the inverse plans on GammaPlan to verify clinical relevance. This research was partially supported by Elekta

  10. MO-F-CAMPUS-T-03: Continuous Dose Delivery with Gamma Knife Perfexion

    Energy Technology Data Exchange (ETDEWEB)

    Ghobadi,; Li, W; Chung, C; Jaffray, D [Princess Margaret Cancer Centre and University Health Network, Toronto, Ontario (Canada); Aleman, D [University of Toronto, Toronto, Ontario (Canada)

    2015-06-15

    Purpose: We propose continuous dose delivery techniques for stereotactic treatments delivered by Gamma Knife Perfexion using inverse treatment planning system that can be applied to various tumour sites in the brain. We test the accuracy of the plans on Perfexion’s planning system (GammaPlan) to ensure the obtained plans are viable. This approach introduces continuous dose delivery for Perefxion, as opposed to the currently employed step-and-shoot approaches, for different tumour sites. Additionally, this is the first realization of automated inverse planning on GammaPlan. Methods: The inverse planning approach is divided into two steps of identifying a quality path inside the target, and finding the best collimator composition for the path. To find a path, we select strategic regions inside the target volume and find a path that visits each region exactly once. This path is then passed to a mathematical model which finds the best combination of collimators and their durations. The mathematical model minimizes the dose spillage to the surrounding tissues while ensuring the prescribed dose is delivered to the target(s). Organs-at-risk and their corresponding allowable doses can also be added to the model to protect adjacent organs. Results: We test this approach on various tumour sizes and sites. The quality of the obtained treatment plans are comparable or better than forward plans and inverse plans that use step- and-shoot technique. The conformity indices in the obtained continuous dose delivery plans are similar to those of forward plans while the beam-on time is improved on average (see Table 1 in supporting document). Conclusion: We employ inverse planning for continuous dose delivery in Perfexion for brain tumours. The quality of the obtained plans is similar to forward and inverse plans that use conventional step-and-shoot technique. We tested the inverse plans on GammaPlan to verify clinical relevance. This research was partially supported by Elekta

  11. Total dose and dose rate radiation characterization of EPI-CMOS radiation hardened memory and microprocessor devices

    International Nuclear Information System (INIS)

    Gingerich, B.L.; Hermsen, J.M.; Lee, J.C.; Schroeder, J.E.

    1984-01-01

    The process, circuit discription, and total dose radiation characteristics are presented for two second generation hardened 4K EPI-CMOS RAMs and a first generation 80C85 microprocessor. Total dose radiation performance is presented to 10M rad-Si and effects of biasing and operating conditions are discussed. The dose rate sensitivity of the 4K RAMs is also presented along with single event upset (SEU) test data

  12. Morphological changes induced by different doses of gamma irradiation in garlic sprouts

    Energy Technology Data Exchange (ETDEWEB)

    Pellegrini, C.N. E-mail: pellegri@criba.edu.ar; Croci, C.A.; Orioli, G.A

    2000-03-01

    The objective of this work was to evaluate the effects of different doses of gamma rays applied in dormancy and post-dormancy on garlic bulbs in relation with some morphophysiological parameters. High (commercial) doses cause the complete inhibition of sprouting and mitosis (due to nuclear aberrations). Relatively low doses show no effects on bulbs but doses of 10 Gy applied in post-dormancy reduce sprouting and stop mitosis. This inhibition becomes noticeable from 150 days post-harvest onwards. Exogenous growth regulators can reverse these effects. Results may reinforce the good practice of radioinhibition processes in garlic. (author)0.

  13. Life shortening, tumor induction, and tissue dose for fission-neutron and gamma-ray irradiations

    International Nuclear Information System (INIS)

    Grahn, D.; Duggal, K.; Lombard, L.S.

    1985-01-01

    The primary focus of this program is to obtain information on the late effects of whole body exposure to low doses of a high linear-energy-transfer (LET) and a low-LET ionizing radiation in experimental animals to provide guidance for the prediction of radiation hazards to man. The information obtained takes the form of dose-response curves for life shortening and for the induction of numerous specific types of tumors. The animals are irradiated with fission neutrons from the Janus reactor and with 60 Co gamma rays, delivered as single, weekly, or duration-of-life exposures covering the range of doses and dose rates. 6 refs

  14. Protective Effect of Low Dose Gamma Irradiation against Oxidative Damage in Rats Administrated with Ferric- Nitrilotriacetate

    International Nuclear Information System (INIS)

    Mansonr, S.Z.

    2009-01-01

    Many studies have demonstrated the beneficial adaptive response of low dose gamma-irradiation. Low dose gamma-irradiation (LDR) might be effective for the prevention of various reactive oxygen species-related diseases. Ferric nitrilotriacetate (Fe-NTA) is a strong oxidant, which generates highly reactive hydroxyl radical and causes injuries of various organs including the kidney and liver. This study was designed to investigate the ability of low dose gamma-irradiation to restrain Fe-NT A induced oxidative stress. Sprague Dawley male albino rats were subjected to low dose gamma-irradiation (50 cGy). Animals were challenged with Fe-NT A (9 mg Fe/kg body weight, intraperitoneally). Results showed that Fe-NTA enhances lipid peroxidation (LPx) accompanied with reduction in glutathione (GSH) content, antioxidant enzymes, viz., glutathione peroxidase (GPX), glutathione reductase (GR), superoxide dismutase (SOD), catalase (CAT) and phase-U metabolizing enzyme glutathione-S-transferase (GST). Fe-NTA also enhances the concentration of blood urea nitrogen (BUN) and serum creatinine as well as alanine aminotransferase (ALT), aspartate aminotransferase (AST) and gamma-glutamyl transpeptidase (GGT) activities. Exposure to low dose gamma- irradiation (3 h after Fe-NTA administration) resulted in a significant decrease in LPx, BUN, serum creatinine contents as well as ALT, AST and GGT enzyme activities. GSH content; GST and antioxidant enzymes were also recovered to significant level. Thus, our data suggest that exposure to LDR might be a useful antioxidant mediator to suppress the Fe-NTA induced-oxidative damage in rats

  15. Protective Effect of Low Dose Gamma Irradiation against Oxidative Damage in Rats Administrated with Ferric- Nitrilotriacetate

    International Nuclear Information System (INIS)

    Mansonr, S.Z.

    2008-01-01

    Many studies have demonstrated the beneficial adaptive response of low dose gamma-irradiation. Low dose gamma-irradiation (LDR) might be effective for the prevention of various reactive oxygen species-related diseases. Ferric nitrilotriacetate (Fe-NTA) is a strong oxidant, which generates highly reactive hydroxyl radical and causes injuries of various organs including the kidney and liver. This study was designed to investigate the ability of low dose gamma-irradiation to restrain Fe-NT A induced oxidative stress. Sprague Dawley male albino rats were subjected to low dose gamma-irradiation (50 cGy). Animals were challenged with Fe-NT A (9 mg Fe/kg body weight, intraperitoneally). Results showed that Fe-NTA enhances lipid peroxidation (LPx) accompanied with reduction in glutathione (GSH) content, antioxidant enzymes, viz., glutathione peroxidase (GPX), glutathione reductase (GR), superoxide dismutase (SOD), catalase (CAT) and phase-U metabolizing enzyme glutathione-S-transferase (GST). Fe-NTA also enhances the concentration of blood urea nitrogen (BUN) and serum creatinine as well as alanine aminotransferase (ALT), aspartate aminotransferase (AST) and gamma-glutamyl transpeptidase (GGT) activities. Exposure to low dose gamma- irradiation (3 h after Fe-NTA administration) resulted in a significant decrease in LPx, BUN, serum creatinine contents as well as ALT, AST and GGT enzyme activities. GSH content; GST and antioxidant enzymes were also recovered to significant level. Thus, our data suggest that exposure to LDR might be a useful antioxidant mediator to suppress the Fe-NTA induced-oxidative damage in rats

  16. The influence of geology on terrestrial gamma radiation dose rate in Pahang state, Malaysia

    International Nuclear Information System (INIS)

    Gabdo, H.T.; Ramli, A.T.; Sanusi, M.S.; Garba, N.N.; Saleh, M.A.

    2015-01-01

    Terrestrial gamma radiation dose (TGRD) rate measurements have been made in Pahang state, Malaysia. Significant variations were found between TGRD measurements and the underlying geological formations. In some cases revealing significant elevations of TGRD. The acid-intrusive geological formation has the highest mean TGRD measurement of 367 nGy/h -1 . This is more than six times the world average value of 59 nGy/h -1 , while the quaternary geological formation has the lowest mean gamma radiation dose rate of 99 nGy h -1 . The annual effective dose equivalent outdoor to the population was 0.216 mSv. The lifetime equivalent dose and relative lifetime cancer risks for an individual living in Pahang state were 81 mSv and 4.7 x 10 -3 respectively. These values are more than two times the world average of 34 mSv and 1.95 x 10 -3 respectively. (author)

  17. Aspartame tablets-gamma dose response and usability for routine radiation processing dosimetry using spectrophotometry

    Energy Technology Data Exchange (ETDEWEB)

    Shinde, S.H. [Radiation Safety Systems Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)]. E-mail: shs_barc@yahoo.com; Mukherjee, T. [Radiation Safety Systems Division, Chemistry Group, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2007-02-15

    Aspartame tablets were studied for gamma dose response, using spectrophotometric read-out method. The optimum concentration for ferrous ions was 2x10{sup -4}moldm{sup -3} and xylenol orange with 2.5x10{sup -1}moldm{sup -3} of sulphuric acid for the optimum acidity in FX solution. Wavelength of maximum absorbance is 548nm. Post-irradiation stability is appreciable i.e. for not less than one month. Dose response is non-linear with third order polynomial fit, in the dose range of 1000-10000Gy. This system of aspartame was further used for carrying out relative percentage dose profile measurement in Gamma Cell-220. Results obtained were inter-compared with that of a glutamine dosimeter, which showed that maximum difference between the values of aspartame and glutamine systems is within +/-10%.

  18. Dose distribution close to metal implants in Gamma Knife Radiosurgery: A Monte Carlo study

    International Nuclear Information System (INIS)

    Cheung, Joel Y.C.; Yu, K.N.; Chan, Josie F.K.; Ho, Robert T.K.; Yu, C.P.

    2003-01-01

    Materials with high atomic numbers favor the occurrence of the photoelectric effect when they are irradiated with gamma rays. Therefore, the photoelectric effects of metal implants within the target regions in Gamma Knife Radiosurgery are worth studying. In the present work, Monte Carlo simulations using EGS4 were employed to investigate the resulting dose enhancements. A dose enhancement as high as 10% was observed close to a platinum implant along the x and y axes, while no significant dose enhancements were observed for silver, stainless steel 301, and titanium ones. A dose enhancement as high as 20% was observed close to the platinum implant along the z axis at the superior position of the metal-phantom interface and was 10% higher for other metal implants

  19. Aspartame tablets-gamma dose response and usability for routine radiation processing dosimetry using spectrophotometry

    International Nuclear Information System (INIS)

    Shinde, S.H.; Mukherjee, T.

    2007-01-01

    Aspartame tablets were studied for gamma dose response, using spectrophotometric read-out method. The optimum concentration for ferrous ions was 2x10 -4 moldm -3 and xylenol orange with 2.5x10 -1 moldm -3 of sulphuric acid for the optimum acidity in FX solution. Wavelength of maximum absorbance is 548nm. Post-irradiation stability is appreciable i.e. for not less than one month. Dose response is non-linear with third order polynomial fit, in the dose range of 1000-10000Gy. This system of aspartame was further used for carrying out relative percentage dose profile measurement in Gamma Cell-220. Results obtained were inter-compared with that of a glutamine dosimeter, which showed that maximum difference between the values of aspartame and glutamine systems is within +/-10%

  20. Evaluation of accelerated test parameters for CMOS IC total dose hardness prediction

    International Nuclear Information System (INIS)

    Sogoyan, A.V.; Nikiforov, A.Y.; Chumakov, A.I.

    1999-01-01

    The approach to accelerated test parameters evaluation is presented in order to predict CMOS IC total dose behavior in variable dose-rate environment. The technique is based on the analytical model of MOSFET parameters total dose degradation. The simple way to estimate model parameter is proposed using IC's input-output MOSFET radiation test results. (authors)

  1. Prophylactic action of Alpha-tocopherol against Gamma irradiation changes in total lipid and phospholipid contents of brain cerebral hemispheres in Rats

    Energy Technology Data Exchange (ETDEWEB)

    Mahdy, A M; Helen, N S; Roushdy, H M [National Centre for Radiation Research and Technology, Cairo (Egypt)

    1987-12-31

    Male albino rats were intraperitoneally injected with Gamma tocopherol (vitamin E) at 10 mg/100 g animal body weight, 2 hr, before irradiation exposure. exposure. Rats were then exposed to a whole body dose of gamma irradiation at 7 Gy. Rats were sacrificed 1, 3, 7 and 10 days post irradiation. The two cerebral hemispheres were taken to determine the phospholipids and total lipid contents. whole body gamma irradiation of rats at 7 Gy caused a significant decrease in the levels of both phospholipids and total lipid contents in the cerebral hemispheres on the 3 rd, 7 Th, and 10 Th days post-irradiation, the decrease was insignificant on the 1 st day post exposure. The variations were less pronounced in rats treated with vitamin E. The results obtained were discussed in view of the relevant literature. 2 tabs.

  2. Whole-body dose meters. Measurements of total activity

    International Nuclear Information System (INIS)

    Koeppe, P.; Klinikum Steglitz, Berlin

    1990-01-01

    By means of measurements using a whole-body dose meter, the course of the incorporation of radionuclides was established between April 1986 and May 1989 for unchanged conditions of alimentation, activity-conscious alimentation, and uniquely increased incorporation. Monitoring covered persons from the most different spheres of life. The incorporation is compared with the one resulting from nuclear weapons explosions in the atmosphere. (DG) [de

  3. Reaction of the hematopoietic system under long-term emotional stress developed after preliminary gamma-irradiation with low doses

    International Nuclear Information System (INIS)

    Moroz, B.B.; Deshevoj, Yu.B.; Lebedev, V.G.; Lyrshchikova, A.V.; Vorotnikova, T.V.

    1997-01-01

    In experiments on rats and mice it was shown that the preliminary protected gamma-irradiation with cumulative dose of 0.9 Gy (dose rate - 0.03 Gy/day) or single short-term gamma-irradiation with dose of 0.9 Gy (dose rate - 1.61 Gy/min) inhibited development of adaptive reactions and compensatory abilities of the hematopoietic system under long-term emotional stress

  4. Effects of sublethal doses of gamma radiation on the developing rat brain

    International Nuclear Information System (INIS)

    Cerda, H.; Carlsson, J.; Larsson, B.; Saefwenberg, J.O.

    1975-01-01

    Newborn rats were irradiated with 60 Co gamma rays. Doses of 0, 80 or 160 rads were given to the whole body. The whole body and brain weights, DNA and RNA contents of the brain and 3 H-thymidine or 3 H-uridine incorporated by the brain were measured at 5, 10 or 15 days after birth. A dose of 160 rads produced clear alterations in the brain but no clear effects could be detected when 80 rads were given. (author)

  5. SU-E-T-453: Optimization of Dose Gradient for Gamma Knife Radiosurgery.

    Science.gov (United States)

    Sheth, N; Chen, Y; Yang, J

    2012-06-01

    The goals of stereotactic radiosurgery (SRS) are the ablation of target tissue and sparing of critical normal tissue. We develop tools to aid in the selection of collimation and prescription (Rx) isodose line to optimize the dose gradient for single isocenter intracranial stereotactic radiosurgery (SRS) with GammaKnife 4C utilizing the updated physics data in GammaPlan v10.1. Single isocenter intracranial SRS plans were created to treat the center of a solid water anthropomorphism head phantom for each GammaKnife collimator (4 mm, 8 mm, 14 mm, and 18 mm). The dose gradient, defined as the difference of effective radii of spheres equal to half and full Rx volumes, and Rx treatment volume was analyzed for isodoses from 99% to 20% of Rx. The dosimetric data on Rx volume and dose gradient vs. Rx isodose for each collimator was compiled into an easy to read nomogram as well as plotted graphically. The 4, 8, 14, and 18 mm collimators have the sharpest dose gradient at the 64%, 70%, 76%, and 77% Rx isodose lines, respectively. This corresponds to treating 4.77 mm, 8.86 mm, 14.78 mm, and 18.77 mm diameter targets with dose gradients radii of 1.06 mm, 1.63 mm, 2.54 mm, and 3.17 mm, respectively. We analyzed the dosimetric data for the most recent version of GammaPlan treatment planning software to develop tools that when applied clinically will aid in the selection of a collimator and Rx isodose line for optimal dose gradient and target coverage for single isocenter intracranial SRS with GammaKnife 4C. © 2012 American Association of Physicists in Medicine.

  6. Population kinetics studies in mouse jejunum exposed prenatally to gamma rays at different dose rates

    International Nuclear Information System (INIS)

    Godha, Meena; Nand Chahal, K.

    2001-01-01

    Pregnant Swiss albino mice of 18 days post conception were exposed to 0.80 Gy, 0.40 Gy and 0.20 Gy of gamma rays from a Cobalt-60 source at different dose rates (.0584 Gy/min and .00091 Gy/min). Post irradiation variations in the cell population of crypts and villus of jejunum were studied in the F 1 -generation at 1 day, 3 day and 1,2,4,6 and 12 weeks of post-partum age. In all the exposure groups at 1 day post-partum age, crypts show a decrease in total cells, mitotic figures and goblet cells on one hand and an increase in PNNC on the other hand in comparison to coeval controls. At this interval a decrease in the number of total cells as well as goblet cells/villus column was also noticeable. Dead cells which were prominently seen in crypts were totally absent in villi. The first signs of recovery can be observed on day 3 p.p. when total cell population, mitotic activity and goblet cells of crypt registered an increase while percentage of PNNC showed a fall. Percentage of total cell population and goblet cells/villus column also increased. The recovery continued up to 2 week of p.p. age. At p.p. age of 4 weeks a relapse of damage was observed when values for all the parameters of crypt and villi registered a fall except PNNC. This is followed by a second phase of recovery and by 6 and 12 weeks of post-partum age, normal value were obtained for all the parameters. (author)

  7. Skin dose assessment in routine personnel beta/gamma dosimetry

    International Nuclear Information System (INIS)

    Christensen, P.

    1980-01-01

    Three alternative methods are outlined by which substantial improvements of the capabilities of existing routine monitoring systems for skin dose assessment can be obtained. The introduction of a supplementary skin dosemeter may be an attractive method for systems with badges that have a capability for an additional dosemeter already built-in. The two-side reading method has limited possibilities because of reduced accuracy for mixed radiation and technical difficulties in using it for TLD systems with planchet heating. The use of a boron diffused LiF layer for skin dose assessment seems to be most attractive method since the only modification needed here is replacement of a dosemeter. However the study of this method is so far only in a preliminary stage and further investigations are needed. (U.K.)

  8. Use of 60Co gamma radiation in increased levels of total polyphenol extracts of bark of Schinus terebinthifolius Raddi

    International Nuclear Information System (INIS)

    Santos, Gustavo H.F.; Silva, Edvane B.; Silva, Hianna A.M.F.; Amorin, Elba L.C.; Peixoto, Tadeu J.S.; Yara, Ricardo; Lima, Claudia S.A.

    2013-01-01

    Schinus terebinthifolius Raddi (Anacardiaceae) is well known as sources of phenolic compounds. Known as mastic pepper, red pepper tree is a plant native to midsize coast of Brazil. Some of its structures have proven antibacterial, anti-inflammatory, antifungal and healing. The aim of this study was to evaluate the difference in the phenol contents of crude extracts that were measured after irradiating the barks of S. terebinthifolius using gamma radiation from 60 Co. The crude extract were divided into a control group and eight experimental groups, which were separated based on the doses of gamma radiation to which they were exposed: 2.5, 5.0, 7.5, 10.0, 12.5, 15.0, 20.0 and 50.0 kGy (Assays were performed in triplicate). The results allow observe that gamma radiation promoted in extracts of bark of S. terebinthifolius, many percents increase (p> 0.05) of total polyphenol content between 2.5 kGy (41.93%) and 50.0 kGy (44.52%) compared to 0 kGy (30.07%), with the same gradual to 10.0 kGy, and reaching peak maximum at 10.0 kGy (68.44%). However, the study puts the process of gamma radiation from 60 Co as an alternative significant increase in the percentage of some natural substances of plant material, and subsequently contribute to the augmentation of various therapeutic applications to which they are assigned. (author)

  9. Use of {sup 60}Co gamma radiation in increased levels of total polyphenol extracts of bark of Schinus terebinthifolius Raddi

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Gustavo H.F.; Silva, Edvane B.; Silva, Hianna A.M.F.; Amorin, Elba L.C.; Peixoto, Tadeu J.S.; Yara, Ricardo; Lima, Claudia S.A., E-mail: santosghf@hotmail.com, E-mail: edvborges@yahoo.com, E-mail: amdemelo@hotmail.com, E-mail: claudia.salima@gmail.com, E-mail: ricardo.yara@gmail.com, E-mail: tadeu1903@yahoo.com.br, E-mail: elba@ufpe.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil)

    2013-07-01

    Schinus terebinthifolius Raddi (Anacardiaceae) is well known as sources of phenolic compounds. Known as mastic pepper, red pepper tree is a plant native to midsize coast of Brazil. Some of its structures have proven antibacterial, anti-inflammatory, antifungal and healing. The aim of this study was to evaluate the difference in the phenol contents of crude extracts that were measured after irradiating the barks of S. terebinthifolius using gamma radiation from {sup 60}Co. The crude extract were divided into a control group and eight experimental groups, which were separated based on the doses of gamma radiation to which they were exposed: 2.5, 5.0, 7.5, 10.0, 12.5, 15.0, 20.0 and 50.0 kGy (Assays were performed in triplicate). The results allow observe that gamma radiation promoted in extracts of bark of S. terebinthifolius, many percents increase (p> 0.05) of total polyphenol content between 2.5 kGy (41.93%) and 50.0 kGy (44.52%) compared to 0 kGy (30.07%), with the same gradual to 10.0 kGy, and reaching peak maximum at 10.0 kGy (68.44%). However, the study puts the process of gamma radiation from {sup 60}Co as an alternative significant increase in the percentage of some natural substances of plant material, and subsequently contribute to the augmentation of various therapeutic applications to which they are assigned. (author)

  10. Dose reduction by ploughing down gamma-active isotopes

    International Nuclear Information System (INIS)

    Roed, J.

    1982-12-01

    This report discusses the effectiveness and feasibility of various treatments, especially ploughing, for reducing the doses on farmlands that have been contaminated with radioactive isotopes. Experiments have been conducted where contamination has been spread on three 100 m 2 farmland areas that have subsequently been ploughed with a 14-inch moldboard plough. The reduction factor of the dose rate has been found to be around 5, by measuring the rate 1 m above the surface before and after ploughing. The reduction factor for a large area, on the other hand, is calculated to be 3 times as great, or approximately 15. The purpose of the ploughing procedure was to place the contaminated surface in the bottom of the furrow. However, an investigation of the distribution of the contamination in the vertical direction revealed that this ideal distribution was not at all reached. To produce the desired distribution, and reduce doses through ploughing, it is recommended that either a tracer plough or one that is able to place the uppermost layer in the furrow without altering the intermediate layer positions be used. It is suggested that this latter type of plough be developed. (author)

  11. High dose effect of gamma and neutrons on the N-JFET electronic components

    International Nuclear Information System (INIS)

    Assaf, Jamal-Eddin

    2006-11-01

    Two types of N-JFET components have been irradiated by high doses of thermal neutrons and gamma rays up to 2000x10 12 n/cm 2 and 1000 kGy, respectively. The static tests show a decrease of the g m and I d s parameters. The behaviour of electronic noise on the output was the principal dynamic test after irradiation. The result of this test gives an increase of the noise with radiation dose increasing. The noise was described as the Equivalent Noise of Charge (ENC) at the output of the measurements set-up. The quantities and the qualities of the noise depend on the N-JEET type and the type of radiation (neutrons or gamma). Other tests were carried out like the relaxation or recovery phenomena after radiation, and the superposed effects of gamma and neutrons.(author)

  12. Neutron and gamma-ray dose-rates from the Little Boy replica

    International Nuclear Information System (INIS)

    Plassmann, E.A.; Pederson, R.A.

    1984-01-01

    We report dose-rate information obtained at many locations in the near vicinity of, and at distances out to 0.64 km from, the Little Boy replica while it was operated as a critical assembly. The measurements were made with modified conventional dosimetry instruments that used an Anderson-Braun detector for neutrons and a Geiger-Mueller tube for gamma rays with suitable electronic modules to count particle-induced pulses. Thermoluminescent dosimetry methods provide corroborative data. Our analysis gives estimates of both neutron and gamma-ray relaxation lengths in air for comparison with earlier calculations. We also show the neutron-to-gamma-ray dose ratio as a function of distance from the replica. Current experiments and further data analysis will refine these results. 7 references, 8 figures

  13. Effects of low dose gamma irradiation on PVC blood bags containing anticoagulant CPDA solution

    International Nuclear Information System (INIS)

    Mitra, D.; Varshney, Lalit; Arjun, Chanda

    2006-01-01

    PVC blood bags were exposed to 20Gy and 60Gy low gamma radiation dose to investigate possibility of change in leaching behavior of the plasticizer into CPDA solution and the blood. Reversed phase HPLC was used for the investigations on anti coagulant solution CPDA(citrate, phosphate, dextrose and adenine) contained in PVC bag before and after gamma irradiation. The studies were repeated using methanol as an extractant instead of CPDA solution, considering higher extractability of plasticizer by blood. Irradiation of PVC bags by gamma radiation for a dose up to 60Gy does not lead to change in leaching behavior of the plasticizer in CPDA solution and methanol indicating similar expected behavior in blood. (author)

  14. Improved estimates of external gamma dose rates in the environs of Hinkley Point Power Station

    International Nuclear Information System (INIS)

    Macdonald, H.F.; Thompson, I.M.G.

    1988-07-01

    The dominant source of external gamma dose rates at centres of population within a few kilometres of Hinkley Point Power Station is the routine discharge of 41-Ar from the 'A' station magnox reactors. Earlier estimates of the 41-Ar radiation dose rates were based upon measured discharge rates, combined with calculations using standard plume dispersion and cloud-gamma integration models. This report presents improved dose estimates derived from environmental gamma dose rate measurements made at distances up to about 1 km from the site, thus minimising the degree of extrapolation introduced in estimating dose rates at locations up to a few kilometres from the site. In addition, results from associated chemical tracer measurements and wind tunnel simulations covering distances up to about 4 km from the station are outlined. These provide information on the spatial distribution of the 41-Ar plume during the initial stages of its dispersion, including effects due to plume buoyancy and momentum and behaviour under light wind conditions. In addition to supporting the methodology used for the 41-Ar dose calculations, this information is also of generic interest in the treatment of a range of operational and accidental releases from nuclear power station sites and will assist in the development and validation of existing environmental models. (author)

  15. Effects of low dose gamma- and UV-radiation on sea urchin eggs and spermatozoa

    International Nuclear Information System (INIS)

    Czihak, G.K.

    1991-01-01

    The paper outlines the results of a study of the effects of low dose gamma-and UV-irradiation on sea urchin eggs and spermatozoa with particular reference to the effects on the stages of the mitotic cycle and individual susceptibility. (UK)

  16. Assessment of dose load of personnel in intratissue gamma beam therapy

    International Nuclear Information System (INIS)

    Stavitskij, R.V.; Zamyatin, O.A.; Varennikov, O.I.; Astakhova, I.V.

    1995-01-01

    Suggest a method for retrospective assessment of levels of irradiation of small groups of personnel exposed to radiation sources. Presents estimated values of cumulative and local doses obtained by personnel during intratissue gamma beam therapy carried out by manual consecutive injections of intrastats and irradiation sources. 3 refs.; 5 tabs

  17. Sampling optimization trade-offs for long-term monitoring of gamma dose rates

    NARCIS (Netherlands)

    Melles, S.J.; Heuvelink, G.B.M.; Twenhöfel, C.J.W.; Stöhlker, U.

    2008-01-01

    This paper applies a recently developed optimization method to examine the design of networks that monitor radiation under routine conditions. Annual gamma dose rates were modelled by combining regression with interpolation of the regression residuals using spatially exhaustive predictors and an

  18. Geological influence on terrestrial gamma radiation dose rate in the Malaysian State of Johore

    International Nuclear Information System (INIS)

    Ramli, A.T.; Hussein, A.W.M.A.; Lee, M.H.

    2001-01-01

    Measurements of environmental terrestrial gamma radiation dose-rate (TGRD) have been made in Johore, Malaysia. The focus is on determining a relationship between geological type and TGRD levels. Data were compared using the one way analysis of variance (ANOVA), in some instances revealing significant differences between TGRD measurements and the underlying geological structure

  19. Total Measurement Uncertainty for the Plutonium Finishing Plant (PFP) Segmented Gamma Scan Assay System

    CERN Document Server

    Fazzari, D M

    2001-01-01

    This report presents the results of an evaluation of the Total Measurement Uncertainty (TMU) for the Canberra manufactured Segmented Gamma Scanner Assay System (SGSAS) as employed at the Hanford Plutonium Finishing Plant (PFP). In this document, TMU embodies the combined uncertainties due to all of the individual random and systematic sources of measurement uncertainty. It includes uncertainties arising from corrections and factors applied to the analysis of transuranic waste to compensate for inhomogeneities and interferences from the waste matrix and radioactive components. These include uncertainty components for any assumptions contained in the calibration of the system or computation of the data. Uncertainties are propagated at 1 sigma. The final total measurement uncertainty value is reported at the 95% confidence level. The SGSAS is a gamma assay system that is used to assay plutonium and uranium waste. The SGSAS system can be used in a stand-alone mode to perform the NDA characterization of a containe...

  20. Effect of continuous exposure to very low dose rates of gamma rays on life span and neoplasia in mice

    International Nuclear Information System (INIS)

    Tanaka, I.B. III; Tanaka, Satoshi; Ichinohe, Kazuaki; Matsumoto, Tsuneya; Otsu, Hiroshi; Oghiso, Yoichi; Sato, Fumiaki; Matsushita, Satoru

    2008-01-01

    Late effects of continuous exposure to ionizing radiation are potential hazards to workers in radiation facilities as well as to the general public. In the recent years, low-dose-rate and low-dose effects have become a serious concern. Using a total of 4,000 mice, we studied the late biological effects of chronic exposure to low-dose-rate radiation on life span and neoplasia. Two thousand male and 2000 female 8-week-old specific pathogen free (SPF) B6C3F1 mice were randomly divided into 4 groups, one non-irradiated (control) and three irradiated. The irradiated groups were exposed to 137 Cs gamma rays at dose-rates of 21, 1.1 and 0.05 mGy day -1 for approximately 400 days with total doses equivalent to 8000, 400 and 20 mGy, respectively. All mice were kept under SPF conditions until natural death and pathological examination was performed to determine the cause of death. Statistical analyses showed that the life spans of mice of both sexes irradiated with 21 mGy day -1 (P -1 (P 86.7% of all deaths. Compared to the non-irradiated controls, incidences of lethal neoplasms were significantly increased for myeloid leukaemia and hemangiosarcoma in males, soft tissue neoplasms and malignant granulosa cell tumors in females exposed to 21 mGy day -1 . The number of multiple primary neoplasms per mouse was significantly increased in mice irradiated at 21 mGy day -1 . Our results suggest that life shortening in mice continuously exposed to low dose-rate gamma rays is due to early death from a variety of neoplasms and not from increased incidence of specific lethal neoplasms. (author)

  1. Moving from gamma passing rates to patient DVH-based QA metrics in pretreatment dose QA

    Energy Technology Data Exchange (ETDEWEB)

    Zhen, Heming; Nelms, Benjamin E.; Tome, Wolfgang A. [Department of Medical Physics, University of Wisconsin, Madison, Wisconsin 53705 (United States); Department of Human Oncology, University of Wisconsin, Madison, Wisconsin 53792 and Canis Lupus LLC, Merrimac, Wisconsin 53561 (United States); Department of Medical Physics, University of Wisconsin, Madison, Wisconsin 53705 and Department of Human Oncology, University of Wisconsin, Madison, Wisconsin 53792 (United States)

    2011-10-15

    Purpose: The purpose of this work is to explore the usefulness of the gamma passing rate metric for per-patient, pretreatment dose QA and to validate a novel patient-dose/DVH-based method and its accuracy and correlation. Specifically, correlations between: (1) gamma passing rates for three 3D dosimeter detector geometries vs clinically relevant patient DVH-based metrics; (2) Gamma passing rates of whole patient dose grids vs DVH-based metrics, (3) gamma passing rates filtered by region of interest (ROI) vs DVH-based metrics, and (4) the capability of a novel software algorithm that estimates corrected patient Dose-DVH based on conventional phan-tom QA data are analyzed. Methods: Ninety six unique ''imperfect'' step-and-shoot IMRT plans were generated by applying four different types of errors on 24 clinical Head/Neck patients. The 3D patient doses as well as the dose to a cylindrical QA phantom were then recalculated using an error-free beam model to serve as a simulated measurement for comparison. Resulting deviations to the planned vs simulated measured DVH-based metrics were generated, as were gamma passing rates for a variety of difference/distance criteria covering: dose-in-phantom comparisons and dose-in-patient comparisons, with the in-patient results calculated both over the whole grid and per-ROI volume. Finally, patient dose and DVH were predicted using the conventional per-beam planar data as input into a commercial ''planned dose perturbation'' (PDP) algorithm, and the results of these predicted DVH-based metrics were compared to the known values. Results: A range of weak to moderate correlations were found between clinically relevant patient DVH metrics (CTV-D95, parotid D{sub mean}, spinal cord D1cc, and larynx D{sub mean}) and both 3D detector and 3D patient gamma passing rate (3%/3 mm, 2%/2 mm) for dose-in-phantom along with dose-in-patient for both whole patient volume and filtered per-ROI. There was

  2. Effect of Low Doses of Gamma Radiation and Nitrogen Fertilization on Growth and Yield of Wheat (Triticum aestivum L.)

    International Nuclear Information System (INIS)

    Moussa, H.R.; Khodary, S.E.A.

    2006-01-01

    An experiment was conducted to study the effect of gamma radiation at the rates of 0.0, 5, 10 and 20 Gy on growth characteristics and total yield of wheat fertilized with 40,80 and 100 kg ha of urea as a source of nitrogen. The application of 100 kg N ha -1 produced 8170 kg ha 1 of grain and 10477 kg ha of straw yield. The nitrogen fertilization increased significantly plant height, 1000-grain weight grain and straw yield. Nitrogen at 100 kg ha -1 produced 8170 kg ha -1 of grain and 10477 kg ha -1 of straw yield. Also, the radiation dose (20 Gy) produced 4895 kg ha -1 of grain and 9150 kg ha 1 of straw yield. The interaction of both radiation dose (20 Gy) and nitrogen fertilization (100 kg ha -1 ) increased significantly the spike length, 1000-grain weight and consequently the total grain and straw yield. It can be concluded from the present study that pretreatment of wheat grain by gamma radiation dose (20 Gy) before.planting and using nitrogen fertilization (100 kg ha -1 ) may be considered as promising useful in increasing the efficiency of wheat productivity, which is very important crop in Egypt

  3. Well logging study using total gamma rays in the region of Khnefis

    International Nuclear Information System (INIS)

    Asfahani, Jamal; Aslim, Ghassan

    1992-11-01

    Total gamma ray method has been used in some boreholes in Khnefis ores (a phosphate mine). The aim of the study was to determine the thickness and spreading of the phosphate beds in this area. Many anomalously ratio active zones have been identified, which reflect the P 2 O 5 and uranium content of the phosphate. The obtained data has been treated by using a developed Rock were-Logger. (author). 2 refs., 11 figs.,

  4. Total body-calcium measurements: comparison of two delayed-gamma neutron activation facilities

    International Nuclear Information System (INIS)

    Ma, R.; Ellis, K.J.; Shypailo, R.J.; Pierson, R.N. Jr.

    1999-01-01

    This study compares two independently calibrated delayed-gamma neutron activation (DGNA) facilities, one at the Brookhaven National Laboratory (BNL), Upton, New York, and the other at the Children's Nutrition Research Center (CNRC), Houston, Texas that measure total body calcium (TBCa). A set of BNL phantoms was sent to CNRC for neutron activation analysis, and a set of CNRC phantoms was measured at BNL. Both facilities showed high precision (<2%), and the results were in good agreement, within 5%. (author)

  5. Recommendations on dose buildup factors used in models for calculating gamma doses for a plume

    International Nuclear Information System (INIS)

    Hedemann Jensen, P.; Thykier-Nielsen, S.

    1980-09-01

    Calculations of external γ-doses from radioactivity released to the atmosphere have been made using different dose buildup factor formulas. Some of the dose buildup factor formulas are used by the Nordic countries in their respective γ-dose models. A comparison of calculated γ-doses using these dose buildup factors shows that the γ-doses can be significantly dependent on the buildup factor formula used in the calculation. Increasing differences occur for increasing plume height, crosswind distance, and atmospheric stability and also for decreasing downwind distance. It is concluded that the most accurate γ-dose can be calculated by use of Capo's polynomial buildup factor formula. Capo-coefficients have been calculated and shown in this report for γ-energies below the original lower limit given by Capo. (author)

  6. Effect of different doses of gamma radiation on shelf life of mango (Mangifera indica L.) fruits cv. Dashehari

    International Nuclear Information System (INIS)

    Baghel, B.S.; Gupta, N.; Tiwari, R.

    2005-01-01

    The mango fruits cv. Dashehari irradiated with different doses of gamma radiation for extending their shelf life and for stabilizing the market demand, revealed that irradiation of mango fruits with 200 Gy gamma radiation increase the post harvest life of 93.75 percent mango fruits by 12 days over control (46.66 percent) and proved superior to maintain the considerable physico-chemical composition of mango fruits as compared to control and higher doses of gamma radiation. (author)

  7. Simulation and measurement of total ionizing dose radiation induced image lag increase in pinned photodiode CMOS image sensors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jing [School of Materials Science and Engineering, Xiangtan University, Hunan (China); State Key Laboratory of Intense Pulsed Irradiation Simulation and Effect, Northwest Institute of Nuclear Technology, P.O.Box 69-10, Xi’an (China); Chen, Wei, E-mail: chenwei@nint.ac.cn [State Key Laboratory of Intense Pulsed Irradiation Simulation and Effect, Northwest Institute of Nuclear Technology, P.O.Box 69-10, Xi’an (China); Wang, Zujun, E-mail: wangzujun@nint.ac.cn [State Key Laboratory of Intense Pulsed Irradiation Simulation and Effect, Northwest Institute of Nuclear Technology, P.O.Box 69-10, Xi’an (China); Xue, Yuanyuan; Yao, Zhibin; He, Baoping; Ma, Wuying; Jin, Junshan; Sheng, Jiangkun; Dong, Guantao [State Key Laboratory of Intense Pulsed Irradiation Simulation and Effect, Northwest Institute of Nuclear Technology, P.O.Box 69-10, Xi’an (China)

    2017-06-01

    This paper presents an investigation of total ionizing dose (TID) induced image lag sources in pinned photodiodes (PPD) CMOS image sensors based on radiation experiments and TCAD simulation. The radiation experiments have been carried out at the Cobalt −60 gamma-ray source. The experimental results show the image lag degradation is more and more serious with increasing TID. Combining with the TCAD simulation results, we can confirm that the junction of PPD and transfer gate (TG) is an important region forming image lag during irradiation. These simulations demonstrate that TID can generate a potential pocket leading to incomplete transfer.

  8. Assessment of a new p-Mosfet usable as a dose rate insensitive gamma dose sensor

    International Nuclear Information System (INIS)

    Vettese, F.; Donichak, C.; Bourgeault, P.

    1995-01-01

    Dosimetric response of unbiased MOS devices has been assessed at dose rates greater than 2000 cGy/h. Application have been made to a personal dosemeter / dose rate meter to measure the absorbed tissue dose received in the case of acute external irradiation. (D.L.)

  9. Spirogyra varians mutant generated by high dose gamma-irradiation shows increased antioxidant properties

    International Nuclear Information System (INIS)

    Lee, Hak-Jyung; Yoon, Minchul; Sung, Nak-Yun; Choi, Jong-il

    2012-01-01

    The aim of this study was to evaluate the antioxidant properties of a Spirogyra varians mutant (Mut) produced by gamma irradiation. Methanol extracts were prepared from Spirogyra varians wild-type and Mut plants, and their antioxidant activities and total phenolic content (TPC) were determined. Antioxidant parameters, including the 2-diphenyl-1-picrylhydrazyl radical-scavenging activity and ferric-reducing/antioxidant power, were higher in the Mut extract. Moreover, the TPC level was higher (P<0.05) in the Mut methanol extract. Therefore, these results suggest that gamma irradiation-induced S. varians Mut has superior antioxidant properties. - Highlights: ► The antioxidative properties of a Spirogyra varians mutant produced by gamma-irradiation was investiated. ► The antioxidant activities and total phenolic content levels were higher in mutant strain. ► These results suggest that gamma-irradiation induced algae mutant with superior antioxidant properties.

  10. Transport calculations of. gamma. -ray flux density and dose rate about implantable californium-252 sources

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, A; Lin, B I [Cincinnati Univ., Ohio (USA). Dept. of Chemical and Nuclear Engineering; Windham, J P; Kereiakes, J G

    1976-07-01

    ..gamma.. flux density and dose rate distributions have been calculated about implantable californium-252 sources for an infinite tissue medium. Point source flux densities as a function of energy and position were obtained from a discrete-ordinates calculation, and the flux densities were multiplied by their corresponding kerma factors and added to obtain point source dose rates. The point dose rates were integrated over the line source to obtain line dose rates. Container attenuation was accounted for by evaluating the point dose rate as a function of platinum thickness. Both primary and secondary flux densities and dose rates are presented. The agreement with an independent Monte Carlo calculation was excellent. The data presented should be useful for the design of new source configurations.

  11. Effects of Gamma Irradiation and Dose Accumulation on the Histology of Spodoptera littoralis (Boisd.) Male Testes

    International Nuclear Information System (INIS)

    Sallam, H.A.; El-Naggar, S.E.M.; Shibel, M.M.; El-Dossouki, S.A.

    2000-01-01

    Full-grown male pupae of the cotton leaf worm Spodoptera littoralis (Boisd.) were gamma irradiated with low doses of 25, 50, 75 or 100 Gy. The effects of accumulating doses applied to these pupae through three consequent filial generations and the retarded influence on their F 1 , F 2 and F 3 generations progeny were examined. The histological observations showed that the damage in the testes was correlated with increasing the dose applied to the male parents and was the highest among the adults of F 1 . Also, the damage at any acute dose was less than the damage occurred in the same accumulated dose. The deteriorations on the testes were more evident in case of F 1 males resulting from parental males irradiated through two or three successive generations or three accumulated doses of 25 or 50 Gy

  12. Dose-rate effects on gamma-induced genetic injury in rat spermatogonia

    International Nuclear Information System (INIS)

    Vyglenov, A.

    1990-01-01

    Data for correlation between the reciprocal translocations (RT) yield in rat germ cells and the doses of 0.5 - 3.0 Gy are presented. A 60 Co source has been used with dose rates of 0.25, 8 x 10 -2 and 7 x 10 -3 Gy/min. The results from the cytogenetic analysis made 6 months after irradiation have shown an increase of the yield with the increase of the dose, which can be described as a linear unthreshold dependence. The dose rate effect is expressed in decrease of mutation frequency. The comparison with earlier author's data from similar experiments for acute irradiation allows to determine the RBE of gamma irradiation at the three dose rates investigated as 0.6, 0.2 and 0.1 respectively. The reported results are connected with the problem of variety specificity of the dose rate effect. 2 figs., 2 tabs., 15 refs

  13. Impact peculiarities of long-term gamma-irradiation with low-dose rate on the development of laboratory rats and their sperm production

    International Nuclear Information System (INIS)

    Klepko, A.V.; Motrina, O.A.; Vatlyitsova, O.S.; And Others

    2015-01-01

    The experiments were performed on laboratory white rats of 2.5 months in age. Animals were irradiated in gamma-field of 'Ethalon' device in a dose range 0.1-1.0 Gy. Testicles, epididymices, ventral prostate were retrieved from decapitated animal, each organ weight being determined for every exposure dose. Sperm quantities in testicles and epididymices were identified with aid of phase-contrast microscopy after tissue homogenization in saline containing Triton X-100 and NaN_3. Kinetic characteristics of spermatozoa were analyzed by video recording at 37 C. The longterm gamma-irradiation with low dose rate was shown to cause no effect on the dynamics of animal weight and weight of epididymices changes. However the testes weight was noticed to diminish at doses 0.1, 0.3, 0.6 and 1.0 Gy, the latter dose being stimulative for the ventral prostate growth and weight accumulation. Total sperm quantities in testicles and epididymices along with daily sperm production declined in gamma-irradiated rats compared to control. However curvilinear and straight line spermatozoid velocity as well as the frequency of tail oscillations tended to increase. Long-term gamma-irradiation of the rat whole body with low dose rate just insignificantly affects the development of testes and ventral prostate. Apart from this, radiation effects showed up in sperm production slight suppression, from the on hand, and sperm velocity along with tail oscillations intensification, from the other hand

  14. Radioactivity Risk Assessment of Radon and Gamma Dose at One Uranium Tailings Pond in China

    Science.gov (United States)

    Lou, Yalong; Liu, Yong; Peng, Guowen; Zhao, Guodong; Zhang, Yan; Yang, Zhu

    2018-01-01

    A year-long monitoring of gamma radiation effective dose rate and radon concentration had been done in the reservoir area of one uranium tailings pond in Hunan province (The monitoring area included indoor and outdoor area of residential buildings and workshops, tailings dam slope). Afterwards, the annual effective radiation dose of the people in that radiation environment had been calculated based on the results of monitoring, as well as a radiation risk assessment. According to the assessment, gamma radiation effective dose rate and radon concentration in the monitoring area were low, and the annual effective radiation dose was far below the international standard (30mSv), which showed that the radiation would not put the people’s health at risk. However, the annual effective radiation dose of gamma was far above that of radon in the area of uranium tailings pond; therefore, it’s advisable to take quarantine measures in in the area of uranium tailings pond to keep the surrounding residents away from unnecessary ionizing radiation.

  15. Organ doses for foetuses, babies, children and adults from environmental gamma rays

    International Nuclear Information System (INIS)

    Petoussi, N.; Jacob, P.; Zankl, M.; Saito, K.

    1991-01-01

    Organ doses for babies, children and adults and doses to foetuses from environmental gamma rays were calculated using Monte Carlo codes. Firstly, gamma ray fields in the air-over-ground geometry were simulated, neglecting the disturbances of the radiation field by the human body. The exposure modes considered were semi-infinite homogeneous volume sources in the air, infinite plane sources at a depth of 0.5 g.cm -2 in the ground and homogeneous volume sources of natural radionuclides in the ground. The results of the simulation of the gamma ray transport in the air-over-ground geometry were used as sources irradiating the anthropomorphic phantoms: an 8 week old baby, a seven year old child and two 'reference' adult phantoms of a male and a female. The dose to foetuses were estimated from the dose to the uterus of the adult female. Dose conversion factors normalised to source intensity and air kerma were calculated for monoenergetic sources (15 keV to 10 MeV) and natural and artificial radionuclides. (author)

  16. Calculation of neutron and gamma-ray flux-to-dose-rate conversion factors

    International Nuclear Information System (INIS)

    Kwon, S.G.; Lee, S.Y.; Yook, C.C.

    1981-01-01

    This paper presents flux-to-dose-rate conversion factors for neutrons and gamma rays based on the American National Standard Institute (ANSI) N666. These data are used to calculate the dose rate distribution of neutron and gamma ray in radiation fields. Neutron flux-to-dose-rate conversion factors for energies from 2.5 x 10 -8 to 20 MeV are presented; the corresponding energy range for gamma rays is 0.01 to 15 MeV. Flux-to-dose-rate conversion factors were calculated, under the assumption that radiation energy distribution has nonlinearity in the phantom, have different meaning from those values obtained by monoenergetic radiation. Especially, these values were determined with the cross section library. The flux-to-dose-rate conversion factors obtained in this work were in a good agreement to the values presented by ANSI. Those data will be useful for the radiation shielding analysis and the radiation dosimetry in the case of continuous energy distributions. (author)

  17. Radon survey and soil gamma doses in primary schools of Batman, Turkey.

    Science.gov (United States)

    Damla, Nevzat; Aldemir, Kamuran

    2014-06-01

    A survey was conducted to evaluate levels of indoor radon and gamma doses in 42 primary schools located in Batman, southeastern Anatolia, Turkey. Indoor radon measurements were carried out using CR-39 solid-state nuclear track detector-based radon dosimeters. The overall mean annual (222)Rn activity in the surveyed area was found to be 49 Bq m(-3) (equivalent to an annual effective dose of 0.25 mSv). However, in one of the districts (Besiri) the maximum radon value turned out to be 307 Bq m(-3). The estimated annual effective doses are less than the recommended action level (3-10 mSv). It is found that the radon concentration decreases with increasing floor number. The concentrations of natural and artificial radioisotopes were determined using gamma-ray spectroscopy for soil samples collected in close vicinity of the studied schools. The mean gamma activity concentrations in the soil samples were 31, 25, 329 and 12 Bq kg(-1) for (226)Ra, (232)Th, (40)K and (137)Cs, respectively. The radiological parameters such as the absorbed dose rate in air and the annual effective dose equivalent were calculated. These radiological parameters were evaluated and compared with the internationally recommended values.

  18. Monitoring and Analysis of Environmental Gamma Dose Rate around Serpong Nuclear Complex

    Directory of Open Access Journals (Sweden)

    I.P. Susila

    2017-08-01

    Full Text Available An environmental radiation monitoring system that continuously measures gamma dose rate around nuclear facilities is an important tool to present dose rate information to the public or authorities for radiological protection during both normal operation and radiological accidents. We have developed such a system that consists of six GM-based device for monitoring the environmental dose rate around Serpong Nuclear Complex. It has operated since 2010. In this study, a description of the system and analysis of measured data are presented. Analysis of the data for the last five years shows that the average dose rate levels were between 84-99 nSv/h which are still lower than terrestrial gamma radiation levels at several other locations in Indonesia. Time series analysis of the monitoring data demonstrates a good agreement between an increase in environmental gamma dose rate and the presence of iodine and argon in the air by in situ measurement. This result indicates that system is also effective for an early warning system in the case of radiological emergency.

  19. Estimate on external effective doses received by the Iranian population from environmental gamma radiation sources

    Energy Technology Data Exchange (ETDEWEB)

    Roozitalab, J.; Reza deevband, M.; Rastkhah, N. [National Radiation Protection Dept. Atomic Energy Organization (Iran, Islamic Republic of); Sohrabi, M. [Intenatinal atomic Energy Agency, Vienna (Austria)

    2006-07-01

    Concentration of natural radioactive materials, especially available U 238, Ra 226, Th 232, and K 40 in construction materials and soil, as well as absorb dose from cosmic rays, is the most important source of the people for effective doses from the environment radiation. In order to evaluate external effective dose, it has been carried out more than 1000 measurements in 36 cities by sensitive dosimeters to environmental gamma radiation for indoor and outdoor conditions in residential areas; which its results show that range of gamma exposure for inside of buildings in Iran is 8.7-20.5 {mu}R/h, and outdoor environments of different cities is 7.9-20.6 {mu}R/h, which their mean value are 14.33 and 12.62 {mu}R/h respectively. Meanwhile, it has been estimated that beam-absorbing ratio between indoor and outdoor in measured environments is 1.55, except contribution of cosmic rays. This studies show that average effective dose for each Iranian person from environmental gamma is 96.9 n Sv/h, and annually effective dose for every person is 0.848 mSv. (authors)

  20. Estimate on external effective doses received by the Iranian population from environmental gamma radiation sources

    International Nuclear Information System (INIS)

    Roozitalab, J.; Reza deevband, M.; Rastkhah, N.; Sohrabi, M.

    2006-01-01

    Concentration of natural radioactive materials, especially available U 238, Ra 226, Th 232, and K 40 in construction materials and soil, as well as absorb dose from cosmic rays, is the most important source of the people for effective doses from the environment radiation. In order to evaluate external effective dose, it has been carried out more than 1000 measurements in 36 cities by sensitive dosimeters to environmental gamma radiation for indoor and outdoor conditions in residential areas; which its results show that range of gamma exposure for inside of buildings in Iran is 8.7-20.5 μR/h, and outdoor environments of different cities is 7.9-20.6 μR/h, which their mean value are 14.33 and 12.62 μR/h respectively. Meanwhile, it has been estimated that beam-absorbing ratio between indoor and outdoor in measured environments is 1.55, except contribution of cosmic rays. This studies show that average effective dose for each Iranian person from environmental gamma is 96.9 n Sv/h, and annually effective dose for every person is 0.848 mSv. (authors)

  1. Radionuclide content in some building materials and gamma dose rate in dwellings in Cuba

    International Nuclear Information System (INIS)

    Brigido, Oslvaldo; Montalvan, Adelmo; Rosa, Ramon; Hernandez, Alberto

    2008-01-01

    Naturally occurring radionuclides in building materials are one of the sources of radiation exposure of the population. This study was undertaken with the purpose of determining radioactivity in some Cuban building materials and for assessing the annual effective dose to Cuban population due external gamma exposure in dwellings for typical Cuban room model. Forty four samples of raw materials and building products were collected in some Cuban provinces. The activity concentrations of natural radionuclides were determined by gamma ray spectrometry using a p-type coaxial high purity germanium detector and their mean values are in the ranges: 9 to 857 Bq.kg -1 for 40 K; 6 to 57 Bq.kg -1 for 226 Ra; and 1.2 to 22 Bq.kg -1 for 232 Th. The radium equivalent activity in the 44 samples varied from 4 Bq.kg -1 (wood) to 272 Bq.kg -1 (brick). A high pressure ionisation chamber was used for measuring of the indoor absorbed dose rate in 543 dwellings and workplaces in five Cuban provinces. The average absorbed dose rates in air ranged from 43 n Gy.h -1 (Holguin) to 73 n Gy.h -1 (Camaguey) and the corresponding population-weighted annual effective dose due to terrestrial gamma radiation was estimated to be 145 ± 40 μSv. This dose value is 16% higher than the calculated value for typical room geometry of Cuban house. (author)

  2. A simple method for conversion of airborne gamma-ray spectra to ground level doses

    DEFF Research Database (Denmark)

    Korsbech, Uffe C C; Bargholz, Kim

    1996-01-01

    A new and simple method for conversion of airborne NaI(Tl) gamma-ray spectra to dose rates at ground level has been developed. By weighting the channel count rates with the channel numbers a spectrum dose index (SDI) is calculated for each spectrum. Ground level dose rates then are determined...... by multiplying the SDI by an altitude dependent conversion factor. The conversion factors are determined from spectra based on Monte Carlo calculations. The results are compared with measurements in a laboratory calibration set-up. IT-NT-27. June 1996. 27 p....

  3. Effect of low-doses gamma radiation on physico-chemical properties of cereal starches

    International Nuclear Information System (INIS)

    Gambus, H.; Juszczak, L.; Achremowicz, B.

    1995-01-01

    Wheat starch of Emika variety was treated with 3 and 5 kGy doses of gamma radiation, rye starch of Dankowskie Zlote variety and triticale starch of Dagro variety - with 3 kGy doses. Radiation of this starch caused an increase of reduction ability and water solubility at 60 and 80 o C. However with the increased radiation doses a significant decrease of maximum viscosity and of the viscosity of starch pastes being cooled to 50% was observed. Mild radiopolimerization also decreased the degree of retrogradation of wheat and rye starch pastes stored at above 0 o C. (author)

  4. In vitro study of dose rate effect on Leksell Gamma Knife Perfexion

    International Nuclear Information System (INIS)

    Pastykova, V.; Novotny, J. jr.; Vachelova, J.; Davidkova, M.; Liscak, R.

    2018-01-01

    The main purpose of the study is to evaluate the radiobiological effect of the dose rate changes in Leksell Gamma Knife (LGK) clinical conditions. In principle there are two reasons why dose rate on LGK is reduced during patient irradiation: 1) Co-60 sources decay with a half-life of 5.26 years and 2) using multiple iso-centers and conformal treatment plans (e.g. with blocked beams). This pilot study is an experimental work performed in vitro with medulloblastoma DAOY cells. Are there effects caused by low dose rate which could negatively influence the clinical outcome of the radiosurgery? (authors)

  5. Dose rate distribution of the GammaBeam: 127 irradiator using MCNPX code

    International Nuclear Information System (INIS)

    Gual, Maritza Rodriguez; Batista, Adriana de Souza Medeiros; Pereira, Claubia; Faria, Luiz O. de; Grossi, Pablo Andrade

    2013-01-01

    The GammaBeam - 127 Irradiator is widely used for biological, chemical and medical applications of the gamma irradiation technology using Cobalt 60 radioactive at the Centro de Desenvolvimento da Tecnologia Nuclear CDTN/CNEN, Belo Horizonte, Brazil. The source has maximum activity of 60.000Ci, which is composed by 16 double encapsulated radioactive pencils placed in a rack. The facility is classified by the IAEA as Category II (dry storage facility). The aim of this work is to present a modelling developed to evaluate the dose rates at the irradiation room and the dose distribution at the irradiated products. In addition, the simulations could be used as a predictive tool of dose evaluation in the irradiation facility helping benchmark experiments in new similar facilities. The MCNPX simulated results were compared and validated with radiometric measurements using Fricke and TLDs dosimeters along several positions inside the irradiation room. (author)

  6. Dose profile monitoring with carbon ions by means of prompt-gamma measurements

    Energy Technology Data Exchange (ETDEWEB)

    Testa, E. [Institut de Physique Nucleaire de Lyon, Universite de Lyon, F-69003 Lyon, Universite Lyon 1 and IN2P3/CNRS, UMR 5822, F-69622 Villeurbanne (France)], E-mail: e.testa@ipnl.in2p3.fr; Bajard, M.; Chevallier, M.; Dauvergne, D.; Le Foulher, F. [Institut de Physique Nucleaire de Lyon, Universite de Lyon, F-69003 Lyon, Universite Lyon 1 and IN2P3/CNRS, UMR 5822, F-69622 Villeurbanne (France); Freud, N.; Letang, J.M. [Institut National des Sciences Appliquees de Lyon, Laboratoire de Controle Non-Destructif par Rayonnements Ionisants (France); Poizat, J.C.; Ray, C.; Testa, M. [Institut de Physique Nucleaire de Lyon, Universite de Lyon, F-69003 Lyon, Universite Lyon 1 and IN2P3/CNRS, UMR 5822, F-69622 Villeurbanne (France)

    2009-03-15

    A key point in the quality control of ion therapy is real-time monitoring and imaging of the dose delivered to the patient. Among the possible signals that can be used to make such a monitoring, prompt gamma-rays issued from nuclear fragmentation are possible candidates, provided the correlation between the emission profile and the primary beam range can be established. By means of simultaneous energy and time-of-flight discrimination, we could measure the longitudinal profile of the prompt gamma-rays emitted by 73 MeV/u carbon ions stopping inside a PMMA target. This technique allowed us to minimize the shielding against neutrons and scattered gamma rays, and to find a good correlation between the prompt-gamma profile and the ion range. This profile was studied as a function of the observation angle. By extrapolating our results to higher energies and realistic detection efficiencies, we showed that prompt gamma-ray measurements make it feasible to control in real time the longitudinal dose during ion therapy treatments.

  7. In vivo Prompt Gamma Neutron Activation Analysis Facility for Total Body Nitrogen and Cd

    International Nuclear Information System (INIS)

    Munive, Marco; Revilla, Angel; Solis, Jose L.

    2007-01-01

    A Prompt Gamma Neutron Activation Analysis (PGNAA) system has been designed and constructed to measure the total body nitrogen and Cd for in vivo studies. An aqueous solution of KNO 3 was used as phantom for system calibration. The facility has been used to monitor total body nitrogen (TBN) of mice and found that is related to their diet. Some mice swallowed diluted water with Cl 2 Cd, and the presence of Cd was detected in the animals. The minimum Cd concentration that the system can detect was 20 ppm

  8. Marrow toxicity of fractionated vs. single dose total body irradiation is identical in a canine model

    International Nuclear Information System (INIS)

    Storb, R.; Raff, R.F.; Graham, T.; Appelbaum, F.R.; Deeg, H.J.; Schuening, F.G.; Shulman, H.; Pepe, M.

    1993-01-01

    The authors explored in dogs the marrow toxicity of single dose total body irradiation delivered from two opposing 60 Co sources at a rate of 10 cGy/min and compared results to those seen with total body irradiation administered in 100 cGy fractions with minimum interfraction intervals of 6 hr. Dogs were not given marrow transplants. They found that 200 cGy single dose total body irradiation was sublethal, with 12 of 13 dogs showing hematopoietic recovery and survival. Seven of 21 dogs given 300 cGy single dose total body irradiation survived compared to 6 of 10 dogs given 300 cGy fractionated total body irradiation. One of 28 dogs given 400 cGy single dose total body irradiation survived compared to none of six given fractionated radiation. With granulocyte colony stimulating factor (GCSF) administered from day 0-21 after 400 cGy total body irradiation, most dogs survived with hematological recovery. Because of the almost uniform success with GCSF after 400 cGy single dose total body irradiation, a study of GCSF after 400 cGy fractionated total body irradiation was deemed not to be informative and, thus, not carried out. Additional comparisons between single dose and fractionated total body irradiation were carried out with GCSF administered after 500 and 600 cGy of total body irradiation. As with lower doses of total body irradiation, no significant survival differences were seen between the two modes of total body irradiation, and only 3 of 26 dogs studied survived with complete hematological recovery. Overall, therefore, survival among dogs given single dose total body irradiation was not different from that of dogs given fractionated total body irradiation (p = .67). Similarly, the slopes of the postirradiation declines of granulocyte and platelet counts and the rates of their recovery in surviving dogs given equal total doses of single versus fractionated total body irradiation were indistinguishable. 24 refs., 3 figs., 2 tabs

  9. Compendium of Total Ionizing Dose and Displacement Damage for Candidate Spacecraft Electronics for NASA

    Science.gov (United States)

    Cochran, Donna J.; Boutte, Alvin J.; Chen, Dakai; Pellish, Jonathan A.; Ladbury, Raymond L.; Casey, Megan C.; Campola, Michael J.; Wilcox, Edward P.; Obryan, Martha V.; LaBel, Kenneth A.; hide

    2012-01-01

    Vulnerability of a variety of candidate spacecraft electronics to total ionizing dose and displacement damage is studied. Devices tested include optoelectronics, digital, analog, linear, and hybrid devices.

  10. A study on mice exposure dose for low-dose gamma-irradiation using glass dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Sung Jin; Kim, Hyo Jin; Kim, Hyun; Jeong, Dong Hyeok; Son, Tae Gen; Kim, Jung Ki; Yang, Kwang Mo; Kang, Yeong Rok [Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan (Korea, Republic of); Nam, Sang Hee [Dept. of Biomedical Engineering, Inje University, Gimhae (Korea, Republic of)

    2015-12-15

    The low dose radiation is done for a long period, thus researchers have to know the exact dose distribution for the irradiated mouse. This research has been conducted in order to find out methods in transmitting an exact dose to mouse in a mouse irradiation experiment carried out using {sup 137}C{sub s} irradiation equipment installed in the DIRAMS (Dongnam Institution of Radiological and Medical Sciences) research center. We developed a single mouse housing cage and shelf with adjustable geometric factors such as distance and angle from collimator. The measurement of irradiated dose showed a maximal 42% difference of absorbed dose from the desired dose in the conventional irradiation system, whereas only 6% difference of the absorbed dose was measured in the self-developed mouse apartment system. In addition, multi mice housing showed much difference of the absorbed dose in between head and body, compared to single mouse housing in the conventional irradiation system. This research may allow further research about biological effect assessment for the low dose irradiation using the self-developed mouse apartment to provide more exact doses which it tries to transmit, and to have more reliability for the biological analysis results.

  11. Gamma knife radiosurgery for ten or more brain metastases. Analysis of the whole brain irradiation doses

    International Nuclear Information System (INIS)

    Nakaya, Kotaro; Hori, Tomokatsu; Izawa, Masahiro; Yamamoto, Masaaki

    2002-01-01

    Gamma knife (GK) radiosurgery has recently been recognized as the most powerful treatment modality in managing patients with brain metastasis, be they radioresistant or not, solitary or multiple. Very recently, this treatment has been employed in patients with numerous brain metastases, even those with 10 or more lesions. However, cumulative irradiation doses to the whole brain, with such treatment, remain unknown. Since the Gamma Plan ver. 5.10 (ver. 5.30 is presently available, Leksell Gamma Plan) became available in November, 1998, 105 GK procedures have been performed at our two facilities, Tokyo Women's Medical University and Katsuta Hospital Mito Gamma House. The median lesion number was 17, ranging 10-43, and the median cumulative volume of all tumors was 8.72 cm 3 , ranging 0.41-81.41 cm 3 . The selected doses at the lesion periphery ranged 12-25 Gy, the median being 20 Gy. Based on these treatment protocols, the cumulative irradiation dose was computed. The median cumulative irradiation dose to the whole brain was 4.83, ranging 2.16-8.51 Gy: the median integrated dose to the whole brain was 6.2 J, ranging 2.16-11.9 J. The median brain volumes receiving ≥2, ≥5, ≥10, ≥15 and ≥20 Gy were 1105 (range: 410-1501), 309 (46-1247), 64 (13-282), 24 (2-77), and 8 (0-40) cm 3 , respectively. The cumulative whole brain irradiation doses for patients with numerous radiosurgical targets were considered not to exceed the threshold level of normal brain necrosis. (author)

  12. TL detectors for gamma-ray dose measurements in critically accidents

    International Nuclear Information System (INIS)

    Miljanic, S.; Knezevic, Z.; Zorko, B.; Gregori, B.

    2005-01-01

    Full text: Determination of gamma-ray dose in mixed neutron + gamma-ray fields is still a challenging task. Dosemeters used for gamma-ray dosimetry are usually in some extent sensitive to neutrons and their response variations depend on neutron energy i.e. on neutron spectra. Besides, it is necessary to take into account the energy dependence of dosimeter responses to gamma-rays. To reduce all these influences, design of dosemeter holders is of special importance. In this work, several types of thermoluminescent detectors (TLD) placed in different holders used for gamma-ray dose determination in mixed fields were examined. Dosemeters were from three different institutions: Ruder Boscovic Institute (RBI), Croatia, Jozef Stefan Institute (JSI), Slovenia and Autoridad Regulatoria Nuclear (ARN), Argentina. All dosemeters were irradiated during the International Intercomparison of Criticality Accident Dosimetry Systems at the SILENE Reactor, Valduc, June 2002. At that exercise three accidental scenarios were reproduced: bare reactor, free evolution; lead shielded reactor, steady state; and lead shielded reactor, free evolution. In each irradiation dosemeters were exposed placed on the front of phantom and 'free-in-air'. Also, dosemeters were irradiated in a pure gamma ray field of 60 Co source. Following types of TLDs were used: 7 LiF (TLD-700), CaF 2 :Mn and AI 2 O 3 :Mg,Y - all from RBI; CaF 2 :Mn from JSI and 7 LiF (TLD-700) from ARN. Reported doses were compared with the reference values as well as with the mean participants' values. The results show satisfactory agreement with other dosimetry systems used in the Intercomparison. The influence of different types of holders and applied corrections of dosemeters' readings are discussed. (author)

  13. Antioxidant Capacities and Total Phenolic Contents Enhancement with Acute Gamma Irradiation in Curcuma alismatifolia (Zingiberaceae Leaves

    Directory of Open Access Journals (Sweden)

    Sima Taheri

    2014-07-01

    Full Text Available The present study was conducted in order to assess the effect of various doses of acute gamma irradiation (0, 10, 15, and 20 Gy on the improvement of bioactive compounds and their antioxidant properties of Curcuma alismatifolia var. Sweet pink. The high performance liquid chromatography (HPLC and gas chromatography (GC analysis uncovered that various types of phenolic, flavonoid compounds, and fatty acids gradually altered in response to radiation doses. On the other hand, antioxidant activities determined by 1,1-Diphenyl-2-picryl-hydrazyl (DPPH, ferric reduction, antioxidant power (FRAP, and 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS radical scavenging assay showed a higher irradiation level significantly increased the antioxidant properties. This study revealed an efficient effect of varying levels of gamma radiation, based on the pharmaceutical demand to enhance the accumulation and distribution of bioactive compounds such as phenolic and flavonoid compounds, fatty acids, as well as their antioxidant activities in the leaves of C. alismatifolia var. Sweet pink.

  14. Effect of low dose gamma-radiation upon Newcastle disease virus antibody level in chicken

    International Nuclear Information System (INIS)

    Vilic, M.; Gottstein, Z.; Ciglar Grozdanic, I.; Matanovic, K.; Miljanic, S.; Mazija, H.; Kraljevic, P.

    2009-01-01

    The specific antibody response against Newcastle disease virus in the blood serum of chickens hatched from eggs exposed to low dose gamma-radiation was studied. Materials and methods: Two groups of eggs of commercial meat chicken lines were irradiated with the dose of 0.30 Gy 60 Co gamma-rays before incubation and on the 19 th day of incubation, respectively. The same number of eggs unexposed to gamma-radiation served as controls. After hatching the group of chicken hatched from eggs irradiated on the 19 th day of incubation was not vaccinated while the group of chicken hatched from eggs irradiated before incubation was vaccinated on the 14 day. Specific serum anti-Newcastle disease virus antibodies were quantified by the hemagglutination inhibition assay with 4 HA units of Newcastle disease virus La Sota strain. Result: Specific antibody titres against Newcastle disease virus in the blood serum of chickens hatched from eggs irradiated before incubation and vaccinated on the 14 th day significantly increased on the 28 th day. Specific antibody titre against Newcastle disease virus in the blood serum of chickens hatched from eggs irradiated on the 19 th day of incubation and non-vaccinated was significantly higher on the 1 st and 14 th day. Conclusion: Acute irradiation of heavy breeding chicken eggs with the dose of 0.30 Gy 60 Co gamma-rays before incubation and on the 19 th day of incubation could have a stimulative effect on humoral immunity in chickens.

  15. A study on seasonal variations of indoor gamma dose in Bangladesh

    International Nuclear Information System (INIS)

    Miah, M. Idrish

    2005-01-01

    Monthly variation of gamma dose rate measured in indoor air of buildings of Bangladesh was found to vary cosinusoidally through a period of 1 year. Significant seasonal variations were observed. Maximum dose rate, however, was observed in January and a minimum in July. Dose rate in January was 32% higher than the annual average, whereas dose rate in July was 50% lower. Seasonally varied ventilation and air exchange rates of the houses might play an important role in the observed variation. The average reduction with respect to winter dose was 59% in summer. Because of lower ventilation and air exchange rates between indoor and outdoor atmosphere, it is expected that the indoor dose rate would be higher in basements than that of upper floors. Monthly dose rate was also found to be influenced by the meteorological conditions. Correlations between dose rate and temperature (r 2 =0.85), rainfall (r=-0.83) and atmospheric pressure (r=0.92) were obtained, but no significant correlation (r=-0.45) was seen between dose rate and humidity. The results show that the seasonal variations of indoor dose rates should be taken into account to estimate annual effective dose equivalent. (author)

  16. Evaluation of low doses of gamma irradiation in the formation of mineralization nodules in osteoblasts culture

    Energy Technology Data Exchange (ETDEWEB)

    Targino, Bárbara; Pinto, Thais Lazarine; Silva, Evily Fernandes; Somessari, E.S.R.; Bellini, Maria Helena; Affonso, Regina [Instituto De Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    stained with Alizarin red S (Sigma). All in three biological replicates (a total of 54 samples) and multiple comparisons were assessed by One-way ANOVA followed by Bonferroni's tests with GraphPad Prism version 6.0 software. P< 0.05 was considered statistically significant. Results: Plating efficiency (PF) analysis is generally considered to be the gold standard of assays for testing the sensitivity of cell lines to ionizing radiation or other cytotoxic agents in vitro. The results obtained were a PF of 30% for non-irradiated culture, however, the irradiated culture obtained 40% in relation to the no-irradiated one, already with 0.5 Gy, and this percentage was maintained in the other larger doses. Regarding the evaluation of the formation of mineralization nodules, significant difference in 0.5 Gy group was observed compared with the control group (0 Gy), 64.7±1.8 and 53.0±0.9, respectively. The groups of 1.0, 1.5 and 2.0 Gy obtained a decrease in the mineralization nodules. The data obtained with increasing irradiation produced an increase of mineralization nodules up to 0.5 Gy and in the higher doses had a decrease. Applying the data in a non-linear function it is observed that the line has a decreasing tendency with the negative angular coefficient. This analysis is in agreement with the hormesis model, in which low doses induce a stimulatory effect while high doses cause inhibition4. Conclusions: This study is one among the first that investigating the biophysics of low-dose gamma-irradiation on MC3T3-E1 culture, focusing on the potential applications in bone replacement therapy. (author)

  17. Evaluation of low doses of gamma irradiation in the formation of mineralization nodules in osteoblasts culture

    International Nuclear Information System (INIS)

    Targino, Bárbara; Pinto, Thais Lazarine; Silva, Evily Fernandes; Somessari, E.S.R.; Bellini, Maria Helena; Affonso, Regina

    2017-01-01

    stained with Alizarin red S (Sigma). All in three biological replicates (a total of 54 samples) and multiple comparisons were assessed by One-way ANOVA followed by Bonferroni's tests with GraphPad Prism version 6.0 software. P< 0.05 was considered statistically significant. Results: Plating efficiency (PF) analysis is generally considered to be the gold standard of assays for testing the sensitivity of cell lines to ionizing radiation or other cytotoxic agents in vitro. The results obtained were a PF of 30% for non-irradiated culture, however, the irradiated culture obtained 40% in relation to the no-irradiated one, already with 0.5 Gy, and this percentage was maintained in the other larger doses. Regarding the evaluation of the formation of mineralization nodules, significant difference in 0.5 Gy group was observed compared with the control group (0 Gy), 64.7±1.8 and 53.0±0.9, respectively. The groups of 1.0, 1.5 and 2.0 Gy obtained a decrease in the mineralization nodules. The data obtained with increasing irradiation produced an increase of mineralization nodules up to 0.5 Gy and in the higher doses had a decrease. Applying the data in a non-linear function it is observed that the line has a decreasing tendency with the negative angular coefficient. This analysis is in agreement with the hormesis model, in which low doses induce a stimulatory effect while high doses cause inhibition4. Conclusions: This study is one among the first that investigating the biophysics of low-dose gamma-irradiation on MC3T3-E1 culture, focusing on the potential applications in bone replacement therapy. (author)

  18. Influence of dose on particle size of colloidal silver nanoparticles synthesized by gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Naghavi, Kazem, E-mail: Kazem.naghavi@gmail.co [Universiti Putra Malaysia, Physics Department, 43400 UPM SERDANG, Selangor (Malaysia); Saion, Elias [Universiti Putra Malaysia, Physics Department, 43400 UPM SERDANG, Selangor (Malaysia); Rezaee, Khadijeh [Department of Nuclear Engineering, Faculty of Modern Sciences and Technologies, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of); Yunus, Wan Mahmood Mat [Universiti Putra Malaysia, Physics Department, 43400 UPM SERDANG, Selangor (Malaysia)

    2010-12-15

    Colloidal silver nanoparticles were synthesized by {gamma}-irradiation-induced reduction method of an aqueous solution containing silver nitrate as a precursor in various concentrations between 7.40x10{sup -4} and 1.84x10{sup -3} M, polyvinyl pyrrolidone for capping colloidal nanoparticles, isopropanol as radical scavenger of hydroxyl radicals and deionised water as a solvent. The irradiations were carried out in a {sup 60}Co {gamma} source chamber at doses up to 70 kGy. The optical absorption spectra were measured using UV-vis spectrophotometer and used to study the particle distribution and electronic structure of silver nanoparticles. As the radiation dose increases from 10 to 70 kGy, the absorption intensity increases with increasing dose. The absorption peak {lambda}{sub max} blue shifted from 410 to 403 nm correspond to the increase of absorption conduction electron energy from 3.02 to 3.08 eV, indicating the particle size decreases with increasing dose. The particle size was determined by photon cross correlation spectroscopy and the results showed that the particle diameter decreases exponentially with the increase of dose. The transmission electron microscopy images were taken at doses of 20 and 60 kGy and the results confirmed that as the dose increases the diameter of colloidal silver nanoparticle decreases and the particle distribution increases.

  19. Assessment of ambient gamma dose rate around a prospective uranium mining area of South India - A comparative study of dose by direct methods and soil radioactivity measurements

    Science.gov (United States)

    Karunakara, N.; Yashodhara, I.; Sudeep Kumara, K.; Tripathi, R. M.; Menon, S. N.; Kadam, S.; Chougaonkar, M. P.

    Indoor and outdoor gamma dose rates were evaluated around a prospective uranium mining region - Gogi, South India through (i) direct measurements using a GM based gamma dose survey meter, (ii) integrated measurement days using CaSO4:Dy based thermo luminescent dosimeters (TLDs), and (iii) analyses of 273 soil samples for 226Ra, 232Th, and 40K activity concentration using HPGe gamma spectrometry. The geometric mean values of indoor and outdoor gamma dose rates were 104 nGy h-1 and 97 nGy h-1, respectively with an indoor to outdoor dose ratio of 1.09. The gamma dose rates and activity concentrations of 226Ra, 232Th, and 40K varied significantly within a small area due to the highly localized mineralization of the elements. Correlation study showed that the dose estimated from the soil radioactivity is better correlated with that measured directly using the portable survey meter, when compared to that obtained from TLDs. This study showed that in a region having localized mineralization in situ measurements using dose survey meter provide better representative values of gamma dose rates.

  20. Quality Control of Gamma Irradiated Dwarf Mallow (Malva neglecta Wallr.) Based on Color, Organic Acids, Total Phenolics and Antioxidant Parameters.

    Science.gov (United States)

    Pinela, José; Barros, Lillian; Antonio, Amilcar L; Carvalho, Ana Maria; Oliveira, M Beatriz P P; Ferreira, Isabel C F R

    2016-04-08

    This study addresses the effects of gamma irradiation (1, 5 and 8 kGy) on color, organic acids, total phenolics, total flavonoids, and antioxidant activity of dwarf mallow (Malva neglecta Wallr.). Organic acids were analyzed by ultra fast liquid chromatography (UFLC) coupled to a photodiode array (PDA) detector. Total phenolics and flavonoids were measured by the Folin-Ciocalteu and aluminium chloride colorimetric methods, respectively. The antioxidant activity was evaluated based on the DPPH(•) scavenging activity, reducing power, β-carotene bleaching inhibition and thiobarbituric acid reactive substances (TBARS) formation inhibition. Analyses were performed in the non-irradiated and irradiated plant material, as well as in decoctions obtained from the same samples. The total amounts of organic acids and phenolics recorded in decocted extracts were always higher than those found in the plant material or hydromethanolic extracts, respectively. The DPPH(•) scavenging activity and reducing power were also higher in decocted extracts. The assayed irradiation doses affected differently the organic acids profile. The levels of total phenolics and flavonoids were lower in the hydromethanolic extracts prepared from samples irradiated at 1 kGy (dose that induced color changes) and in decocted extracts prepared from those irradiated at 8 kGy. The last samples also showed a lower antioxidant activity. In turn, irradiation at 5 kGy favored the amounts of total phenolics and flavonoids. Overall, this study contributes to the understanding of the effects of irradiation in indicators of dwarf mallow quality, and highlighted the decoctions for its antioxidant properties.

  1. Gamma dose assessment to the environment of uraniferous area - Case of Vinaninkarena

    International Nuclear Information System (INIS)

    Andriamarojaona, A.A.

    2014-01-01

    Madagascar has several old abandoned uranium sites. Mining exploitations have been undertaken as the case of uranium in sedimentary formation of Vinaninkarena. After its exploitation, it still presents risks. The mine can cause harmful effects to human health and the environment. This work concerns especially the gamma dose assessment, identification of existing radionuclides gamma emitters and measurements of contamination level of the mine. The obtained results were compared with the standards fixed by the regulatory body and International Reference. In order to protect the public and the environment against the harmful effect of ionizing radiation around the sites, the proposed recommendations should be applied and respected. [fr

  2. Natural gamma-ray spectrometry as a tool for radiation dose and radon hazard modelling

    International Nuclear Information System (INIS)

    Verdoya, M.; Chiozzi, P.; De Felice, P.; Pasquale, V.; Bochiolo, M.; Genovesi, I.

    2009-01-01

    We reviewed the calibration procedures of gamma-ray spectrometry with particular emphasis to factors that affect accuracy, detection limits and background radiation in field measurements for dosimetric and radon potential mapping. Gamma-ray spectra were acquired in western Liguria (Italy). The energy windows investigated are centred on the photopeaks of 214 Bi (1.76 MeV), 208 Tl (2.62 MeV) and 40 K (1.46 MeV). The inferred absorbed dose rate and the radon flux are estimated to be lower than 60 nGy h -1 and 22 Bq m -2 h -1 , respectively.

  3. Estimation of outdoor and indoor effective dose and excess lifetime cancer risk from Gamma dose rates in Gonabad, Iran

    Energy Technology Data Exchange (ETDEWEB)

    Jafaria, R.; Zarghania, H.; Mohammadia, A., E-mail: rvzreza@gmail.com [Paramedical faculty, Birjand University of Medical Sciences, Birjand (Iran, Islamic Republic of)

    2017-07-01

    Background gamma irradiation in the indoor and outdoor environments is a major concern in the world. The study area was Gonabad city. Three stations and buildings for background radiation measurement of outdoor and indoor were randomly selected and the Geiger-Muller detector (X5C plus) was used. All dose rates on display of survey meter were recorded and mean of all data in each station and buildings was computed and taken as measured dose rate of that particular station. The average dose rates of background radiation were 84.2 nSv/h for outdoor and 108.6 nSv/h for indoor, maximum and minimum dose rates were 88.9 nSv/h and 77.7 nSv/h for outdoor measurements and 125.4 nSv/h and 94.1 nSv/h for indoor measurements, respectively. Results show that the annual effective dose is 0.64 mSv, which compare to global level of the annual effective dose 0.48 mSv is high. Estimated excess lifetime cancer risk was 2.24×10{sup -3} , indicated that it is large compared to the world average value of 0.25×10{sup -3}. (author)

  4. Public effective doses from environmental natural gamma exposures indoors and outdoors in Iran

    International Nuclear Information System (INIS)

    Sohrabi, Mehdi; Roositalab, Jalil; Mohammadi, Jahangir

    2015-01-01

    The effective doses of public in Iran due to external gamma exposures from terrestrial radionuclides and from cosmic radiation indoors and outdoors of normal natural background radiation areas were determined by measurements and by calculations. For direct measurements, three measurement methods were used including a NaI(TI) scintillation survey meter for preliminary screening, a pressurised ionising chamber for more precise measurements and early warning measurement equipment systems. Measurements were carried out in a large number of locations indoors and outdoors ∼1000 houses selected randomly in 36 large cities of Iran. The external gamma doses of public from living indoors and outdoors were also calculated based on the radioactivity measurements of samples taken from soil and building materials by gamma spectrometry using a high-resolution HPGe system. The national mean background gamma dose rates in air indoors and outdoors based on measurements are 126.9±24.3 and 111.7±17.72 nGy h -1 , respectively. When the contribution from cosmic rays was excluded, the values indoors and outdoors are 109.2±20.2 and 70.2±20.59.4 nGy h -1 , respectively. The dose rates determined for indoors and outdoors by calculations are 101.5±9.2 and 72.2±9.4 nGy h -1 , respectively, which are in good agreement with directly measured dose rates within statistical variations. By considering a population-weighted mean for terrestrial radiation, the ratio of indoor to outdoor dose rates is 1.55. The mean annual effective dose of each individual member of the public from terrestrial radionuclides and cosmic radiation, indoors and outdoors, is 0.86±0.16 mSv y -1 by measurements and 0.8±0.2 mSv y -1 by calculations. The results of this national survey of public annual effective doses from national natural background external gamma radiation determined by measurements and calculations indoors and outdoors of 1000 houses in 36 cities of Iran are presented and discussed. (authors)

  5. Effect of sublethal doses of gamma radiation on DNA super helicity and survival of human fibroblasts

    International Nuclear Information System (INIS)

    Koceva-Chyla, A.

    1992-01-01

    Effect of sublethal doses of gamma radiation on cell survival and DNA super helicity in human fibroblasts was studied. Cell survival was estimated on the basis the basis of clonal growth of irradiated fibroblasts in monolayer culture in vitro. The nucleoid sedimentation technique was used to study ionizing radiation-induced DNA damage in vivo as well as to examine DNA super helicity. Increased concentrations of ethidium bromine (EB) were used to titrate the DNA super coiling response in non-irradiated cells. This response consisted of a relaxation phase (1-5 μg/ml EB) and rewinding phase (5-20 μg/ml EB). Observed biphasic dependence of sedimentation distance of nucleoid on the concentration of EB suggests the dye altered the amount of DNA super coiling in situ. The degree of DNA super coiling and thus the sedimentation rate of nucleoid in absence of EB was very sensitive to strand break induced in DNA by the doses of gamma radiation employed in the cell survival assay. Doses of 2-8 Gy of gamma radiation induced a dose -dependent reduction in the sedimentation of nucleoid. Loss of negative DNA super coiling was initially rapid (about 30% after the dose of 2 Gy) and then proceeded at a slower rate (about 35% and 48% after the doses of 4 Gy and 8 Gy respectively), indicating a significant relaxation of nucleoid structure at the doses of gamma radiation greater than 4 Gy, at which also significant decrease in fibroblasts survival occurred. Significant loss of negative DNA super coiling within the range of doses of gamma radiation resulting in significant decrease of cell survival suggests that destabilizing effect of radiation on DNA tertiary- and quaternary structures (extensive DNA breaks and relaxation of nucleonic super helicity) disturb normal functions and replications of genomic DNA, in consequence leading to a reproductive death of cells. Considering the sensitivity and simplicity of the method, the nucleoid sedimentation technique might be also a useful tool

  6. Measurement of neutron and gamma absorbed doses in phantoms exposed to mixed fields

    International Nuclear Information System (INIS)

    Beraud-Sudreau, E.; Lemaire, G.; Maas, J.

    1985-01-01

    In order to study the dosimetric characteristics of PIN junctions, the absorbed doses measured by junctions and FLi7 in air and water phantoms were compared with the doses measured by classical neutron dosimetry in mixed fields. The validity of the experimental responses of PIN junctions being thus checked and established, neutron and gamma dose distributions in tissue equivalent plastic phantoms (plastinaut) and mammals (piglets) were evaluated as well as the absorbed dose distributions in the pig bone-marrow producing areas. By using correlatively a Monte-Carlo calculation method and applying some simplifying assumptions, the absorbed doses were derived from the spectrum of SILENE's neutrons at various depths inside a cubic water phantom and the results were compared with some from the literature [fr

  7. SU-E-T-86: A Systematic Method for GammaKnife SRS Fetal Dose Estimation

    Energy Technology Data Exchange (ETDEWEB)

    Geneser, S; Paulsson, A; Sneed, P; Braunstein, S; Ma, L [UCSF Comprehensive Cancer Center, San Francisco, CA (United States)

    2015-06-15

    Purpose: Estimating fetal dose is critical to the decision-making process when radiation treatment is indicated during pregnancy. Fetal doses less than 5cGy confer no measurable non-cancer developmental risks but can produce a threefold increase in developing childhood cancer. In this study, we estimate fetal dose for a patient receiving Gamma Knife stereotactic radiosurgery (GKSRS) treatment and develop a method to estimate dose directly from plan details. Methods: A patient underwent GKSRS on a Perfexion unit for eight brain metastases (two infratentorial and one brainstem). Dose measurements were performed using a CC13, head phantom, and solid water. Superficial doses to the thyroid, sternum, and pelvis were measured using MOSFETs during treatment. Because the fetal dose was too low to accurately measure, we obtained measurements proximally to the isocenter, fitted to an exponential function, and extrapolated dose to the fundus of the uterus, uterine midpoint, and pubic synthesis for both the preliminary and delivered plans. Results: The R-squared fit for the delivered doses was 0.995. The estimated fetal doses for the 72 minute preliminary and 138 minute delivered plans range from 0.0014 to 0.028cGy and 0.07 to 0.38cGy, respectively. MOSFET readings during treatment were just above background for the thyroid and negligible for all inferior positions. The method for estimating fetal dose from plan shot information was within 0.2cGy of the measured values at 14cm cranial to the fetal location. Conclusion: Estimated fetal doses for both the preliminary and delivered plan were well below the 5cGy recommended limit. Due to Pefexion shielding, internal dose is primarily governed by attenuation and drops off exponentially. This is the first work that reports fetal dose for a GK Perfexion unit. Although multiple lesions were treated and the duration of treatment was long, the estimated fetal dose remained very low.

  8. SU-E-T-86: A Systematic Method for GammaKnife SRS Fetal Dose Estimation

    International Nuclear Information System (INIS)

    Geneser, S; Paulsson, A; Sneed, P; Braunstein, S; Ma, L

    2015-01-01

    Purpose: Estimating fetal dose is critical to the decision-making process when radiation treatment is indicated during pregnancy. Fetal doses less than 5cGy confer no measurable non-cancer developmental risks but can produce a threefold increase in developing childhood cancer. In this study, we estimate fetal dose for a patient receiving Gamma Knife stereotactic radiosurgery (GKSRS) treatment and develop a method to estimate dose directly from plan details. Methods: A patient underwent GKSRS on a Perfexion unit for eight brain metastases (two infratentorial and one brainstem). Dose measurements were performed using a CC13, head phantom, and solid water. Superficial doses to the thyroid, sternum, and pelvis were measured using MOSFETs during treatment. Because the fetal dose was too low to accurately measure, we obtained measurements proximally to the isocenter, fitted to an exponential function, and extrapolated dose to the fundus of the uterus, uterine midpoint, and pubic synthesis for both the preliminary and delivered plans. Results: The R-squared fit for the delivered doses was 0.995. The estimated fetal doses for the 72 minute preliminary and 138 minute delivered plans range from 0.0014 to 0.028cGy and 0.07 to 0.38cGy, respectively. MOSFET readings during treatment were just above background for the thyroid and negligible for all inferior positions. The method for estimating fetal dose from plan shot information was within 0.2cGy of the measured values at 14cm cranial to the fetal location. Conclusion: Estimated fetal doses for both the preliminary and delivered plan were well below the 5cGy recommended limit. Due to Pefexion shielding, internal dose is primarily governed by attenuation and drops off exponentially. This is the first work that reports fetal dose for a GK Perfexion unit. Although multiple lesions were treated and the duration of treatment was long, the estimated fetal dose remained very low

  9. Temporal reduction of the external gamma dose rate due to 137Cs mobility in sandy beaches

    International Nuclear Information System (INIS)

    Rizzotto, M.; Toso, J.; Velasco, H.; Belli, M.; Sansone, U.

    2009-01-01

    In the present paper the contribution to the external gamma dose rate due o 137 Cs in soil as a function of time is presented. Sampling sites were elected along the Calabria and Basilicata Regions coastal beaches (southern art of Italy) to assess the external gamma dose rate in air, 1 m above the round level. A convection-dispersion model, with constant parameters was sed to approximate the radiocesium soil vertical migration. The model was calibrated using the initial 137 Cs activity deposition in this region Chernobyl fallout) and 137 Cs activity concentration down the soil profile, measured 10 years later. The dispersion coefficient and the advection velocity values, were respectively: 2.17 cm 2 y -1 and 0.32 cm -1 . The Radionuclide Software Package (RSP), which uses a Monte Carlo simulation code, was used to determine the primary 137 Cs gamma dose contribution in air 1 m above the ground surface. The resulting 137 Cs external dose rate ranged from 0.42 nGy h -1 in 1986, to 0.05 nGy h -1 in 007. (author)

  10. Exfoliated graphite with graphene flakes as potential candidates for TL dosimeters at high gamma doses.

    Science.gov (United States)

    Ortiz-Morales, A; López-González, E; Rueda-Morales, G; Ortega-Cervantez, G; Ortiz-Lopez, J

    2018-06-06

    Graphite powder (GP) subjected to microwave radiation (MWG) results in exfoliation of graphite particles into few-layered graphene flakes (GF) intermixed with partially exfoliated graphite particles (PEG). Characterization of MWG by Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM) and Raman spectroscopy reveal few-layer GF with sizes ranging from 0.2 to 5 µm. Raman D, G, and 2D (G') bands characteristic of graphitic structures include evidence of the presence of bilayered graphene. The thermoluminescent (TL) dosimetric properties of MWG are evaluated and can be characterized as a gamma-ray sensitive and dose-resistant material with kinetic parameters (activation energy for the main peak located at 400 and 408 K is 0.69 and 0.72 eV) and threshold dose (~1 kGy and 5 kGy respectively). MWG is a low-Z material (Z eff = 6) with a wide linear range of TL dose-response (0.170-2.5 kGy) tested at doses in the 1-20 kGy range with promising results for applications in gamma-ray dosimetry. Results obtained in gamma irradiated MWG are compared with those obtained in graphite powder samples (GP) without microwave treatment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Verification by the FISH translocation assay of historic doses to Mayak workers from external gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Sotnik, Natalia V.; Azizova, Tamara V. [Southern Urals Biophysics Institute (SUBI), Ozyorsk, Chelyabinsk Region (Russian Federation); Darroudi, Firouz [Leiden University Medical Center, Department of Toxicogenetics, Leiden (Netherlands); College of North Atlantic, Department of Health Science, Centre for Human Safety and Environmental Research, Doha (Qatar); Ainsbury, Elizabeth A.; Moquet, Jayne E.; Lloyd, David C.; Hone, Pat A.; Edwards, Alan A. [Public Health England, Chilton, Oxfordshire (United Kingdom); Fomina, Janna [Leiden University Medical Center, Department of Toxicogenetics, Leiden (Netherlands)

    2015-11-15

    The aim of this study was to apply the fluorescence in situ hybridization (FISH) translocation assay in combination with chromosome painting of peripheral blood lymphocytes for retrospective biological dosimetry of Mayak nuclear power plant workers exposed chronically to external gamma radiation. These data were compared with physical dose estimates based on monitoring with badge dosimeters throughout each person's working life. Chromosome translocation yields for 94 workers of the Mayak production association were measured in three laboratories: Southern Urals Biophysics Institute, Leiden University Medical Center and the former Health Protection Agency of the UK (hereinafter Public Health England). The results of the study demonstrated that the FISH-based translocation assay in workers with prolonged (chronic) occupational gamma-ray exposure was a reliable biological dosimeter even many years after radiation exposure. Cytogenetic estimates of red bone marrow doses from external gamma rays were reasonably consistent with dose measurements based on film badge readings successfully validated in dosimetry system ''Doses-2005'' by FISH, within the bounds of the associated uncertainties. (orig.)

  12. Detection unit for measuring dose rate and/or dose of gamma radiation

    International Nuclear Information System (INIS)

    Viererbl, L.

    1987-01-01

    A detection unit is designed consisting of a scintillation detector of the NaI(Tl) type on which there is a correction filter. The filter is an aluminium case in which are placed alternately side by side lead and iron absorption layers. The sensitivity of the detector with this filter is constant for gamma energy within the range 50 to 1300 keV. (M.D.). 2 figs

  13. Effect of Fractionated Low Doses of Gamma Radiation on Some Haematological and Immunological Parameters in Albino Rat

    International Nuclear Information System (INIS)

    Bahgat, M.M.; Abdel-Khalek, L.G.

    2003-01-01

    This study was performed on 30 mature male albino rats to evaluate the direct effect of fractionated low doses (0.5 Gy twice weekly) gamma radiation and delayed effect (one month post-irradiation) on some haematological and immunological parameters. The rats were divided into three equal groups, Control and two whole body gamma-irradiated groups the irradiated groups were subjected to total doses of 4 and 8 Grays over a period of one and two months, respectively. The blood samples and peritoneal macrophages were taken twice from each irradiated rats at the end of their irradiation period and after one month post irradiation. Activated peritoneal macrophages in all groups showed significant decrease as compared to control group denoting that irradiation may cause receptor alteration and/or decrease in the phagocytic power of macrophages lasting for a longer time. Throughout the whole experiment there was wide variation in platelet count with no significant or minimal changes in other blood elements. Moreover, in the post irradiation group after two months irradiation, all the haematological parameters tested, except the Hct, were increased as compared to the control group. These results pointed to that the bone marrow and lymphoid organs of the animals can tolerate fractionated low dose irradiation through rapid recovery and/or compensatory stimulation. The presence of many target cells in the post irradiated group increases the red blood cell fragility

  14. Effect of low doses of gamma radiation on alfalfa (Lucerne) yield

    Energy Technology Data Exchange (ETDEWEB)

    Al-Odat, M; Khalifa, Kh [Atomic Energy Commission, Damascus (Syrian Arab Republic). Dept. of Radiation Agriculture

    1994-11-01

    Presowing seed irradiation has been reported frequently as a useful application of radiation in agriculture to stimulate growth and increase the yield of field and horticulture crops. Lucerne seeds of previous season (local variety) were irradiated by gamma rays Cs sup 1 sup 3 sup 7 source using doses of 5, 10, 15, 20, 30, and 40 Gy at dose rate of 9.2 Gy/min. Then were planted after 7 days from irradiation with unirradiated control in complete randomized block design and 5 replicates for three seasons (1986, 1987, 1988), the field experiment was carried out at ACSAD research station in Der-Ezzor. Also pot experiments were carried out to study the effect of low doses gamma irradiation on seed germination and growth of shoot and root systems of seedlings. The following observation were made on plants grown in the field:- fresh weight and dry weight of shoot system, - seed yield at the end of the experiment. The results show that there is a positive effect of seed irradiation on percentage of germination and root systems of seedling compared with the control. the highest increase in dry weight of shoot and root systems was at doses of 10 and 15 Gy. specially when sowing was 10 days after irradiation. Gamma irradiation doses of 10 and 15 Gy led to significant increases in fresh and dry weight at shoot system in the three seasons. The increases were 17.5% and 14.6% for the doses of 10 and 15 Gy respectively. A considerable increase in seed yield obtained at doses from 10 to 40 Gy, and the seed yield varied from 13.3% to 17.9% Compared with the control. (author). 20 refs., 18 tabs.

  15. Use of normalized total dose to represent the biological effect of fractionated radiotherapy

    International Nuclear Information System (INIS)

    Flickinger, J.C.; Kalend, A.

    1990-01-01

    There are currently a number of radiobiological models to account for the effects of dose fractionation and time. Normalized total dose (NTD) is not another new model but is a previously reported, clinically useful form in which to represent the biological effect, determined by any specific radiobiological dose-fractionation model, of a course of radiation using a single set of standardized, easily understood terminology. The generalized form of NTD reviewed in this paper describes the effect of a course of radiotherapy administered with nonstandard fractionation as the total dose of radiation in Gy that could be administered with a given reference fractionation such as 2 Gy per fraction, 5 fractions per week that would produce an equivalent biological effect (probability of complications or tumor control) as predicted by a given dose-fractionation formula. The use of normalized total dose with several different exponential and linear-quadratic dose-fraction formulas is presented. (author). 51 refs.; 1 fig.; 1 tab

  16. Use of normalized total dose to represent the biological effect of fractionated radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Flickinger, J C; Kalend, A [Pittsburgh University School of Medicine (USA). Department of Radiation Oncology Pittsburg Cancer Institute (USA)

    1990-03-01

    There are currently a number of radiobiological models to account for the effects of dose fractionation and time. Normalized total dose (NTD) is not another new model but is a previously reported, clinically useful form in which to represent the biological effect, determined by any specific radiobiological dose-fractionation model, of a course of radiation using a single set of standardized, easily understood terminology. The generalized form of NTD reviewed in this paper describes the effect of a course of radiotherapy administered with nonstandard fractionation as the total dose of radiation in Gy that could be administered with a given reference fractionation such as 2 Gy per fraction, 5 fractions per week that would produce an equivalent biological effect (probability of complications or tumor control) as predicted by a given dose-fractionation formula. The use of normalized total dose with several different exponential and linear-quadratic dose-fraction formulas is presented. (author). 51 refs.; 1 fig.; 1 tab.

  17. Combined use of low dose gamma irradiation and fenoxycarb, as a means of protection against infestation of wheat grains with khapra beetle Trogoderma granarium, Everts

    International Nuclear Information System (INIS)

    Ghanem, I; Al-Ek, H.

    2006-04-01

    Larvae of khapra beetle were exposed to one of the following treatments: Rearing on wheat grains treated with varying concentrations of fenoxycarb. Irradiation with varying doses of gamma rays followed by rearing on non-treated wheat grains. Irradiation with varying doses of gamma rays followed by rearing on fenoxycarb-treated wheat grains. The development of these larvae was followed and the percentage of each developmental stage was recorded. Results indicate that the combined use of radiation and fenoxycarb resulted in a accumulative effect that leads to the reduction in the doses of both treatments needed to achieve a complete abolition of adult emergence. Within five weeks of commencement about 85% of the larvae in the control treatment have reached adulthood, eggs laid by these adults have hatched into life larvae. When larvae were irradiated with gamma ray, development was disrupted and percentages of emerging adults decreased with the increase in irradiation dose. At a dose of 100 Gy adult emergence was abolished and no adults were found five weeks from the start of the experiment. Likewise, Rearing of larvae on fenoxycarb-treated grains resulted in a disruption of development and a dose of 1ppm was necessary to achieve total abolishment of adult emergence. However, when a combination of gamma ray and fenoxycarb treatment was applied a accumulative effect was observed resulting in a reduction in the doses of irradiation and fenoxycarb needed to achieve similar results. The doses needed to achieve a total absence of adult emergence were reduced to 50Gy and 0.063 ppm for irradiation and fenoxycarb treatment respectively. The significance of the above results is discussed, and an explanation to the observed accumulative effect is offered. (author)

  18. Gamma irradiator dose mapping: a Monte Carlo simulation and experimental measurements

    International Nuclear Information System (INIS)

    Rodrigues, Rogerio R.; Ribeiro, Mariana A.; Grynberg, Suely E.; Ferreira, Andrea V.; Meira-Belo, Luiz Claudio; Sousa, Romulo V.; Sebastiao, Rita de C.O.

    2009-01-01

    Gamma irradiator facilities can be used in a wide range of applications such as biological and chemical researches, food treatment and sterilization of medical devices and products. Dose mapping must be performed in these equipment in order to establish plant operational parameters, as dose uniformity, source utilization efficiency and maximum and minimum dose positions. The isodoses curves are generally measured using dosimeters distributed throughout the device, and this procedure often consume a large amount of dosimeters, irradiation time and manpower. However, a detailed curve doses identification of the irradiation facility can be performed using Monte Carlo simulation, which reduces significantly the monitoring with dosimeters. The present work evaluates the absorbed dose in the CDTN/CNEN Gammacell Irradiation Facility, using the Monte Carlo N-particles (MCNP) code. The Gammacell 220, serial number 39, was produced by Atomic Energy of Canada Limited and was loaded with sources of 60 Co. Dose measurements using TLD and Fricke dosimeters were also performed to validate the calculations. The good agreement of the results shows that Monte Carlo simulations can be used as a predictive tool of irradiation planning for the CDTN/CNEN Gamma Cell Irradiator. (author)

  19. Real time monitoring automation of dose rate absorbed in air due to environmental gamma radiation

    International Nuclear Information System (INIS)

    Dominguez Ley, Orlando; Capote Ferrera, Eduardo; Carrazana Gonzalez, Jorge A.; Manzano de Armas, Jose F.; Alonso Abad, Dolores; Prendes Alonso, Miguel; Tomas Zerquera, Juan; Caveda Ramos, Celia A.; Kalber, Olof; Fabelo Bonet, Orlando; Montalvan Estrada, Adelmo; Cartas Aguila, Hector; Leyva Fernandez, Julio C.

    2005-01-01

    The Center of Radiation Protection and Hygiene (CPHR) as the head institution of the National Radiological Environmental Surveillance Network (RNVRA) has strengthened its detection and response capacity for a radiological emergency situation. The measurements of gamma dose rate at the main point of the RNVRA are obtained in real time and the CPHR receives the data coming from those points in a short time. To achieve the operability of the RNVRA it was necessary to complete the existent monitoring facilities using 4 automatic gamma probes, implementing in this way a real time measurement system. The software, GenitronProbe for obtaining the data automatically from the probe, Data Mail , for sending the data via e-mail, and Gamma Red , for receiving and processing the data in the head institution ,were developed

  20. Dose Distribution Calculation Using MCNPX Code in the Gamma-ray Irradiation Cell

    International Nuclear Information System (INIS)

    Kim, Yong Ho

    1991-02-01

    60 Co-gamma irradiators have long been used for foods sterilization, plant mutation and development of radio-protective agents, radio-sensitizers and other purposes. The Applied Radiological Science Research Institute of Cheju National University has a multipurpose gamma irradiation facility loaded with a MDS Nordin standard 60 Co source (C188), of which the initial activity was 400 TBq (10,800 Ci) on February 19, 2004. This panoramic gamma irradiator is designed to irradiate in all directions various samples such as plants, cultured cells and mice to administer given radiation doses. In order to give accurate doses to irradiation samples, appropriate methods of evaluating, both by calculation and measurement, the radiation doses delivered to the samples should be set up. Computational models have been developed to evaluate the radiation dose distributions inside the irradiation chamber and the radiation doses delivered to typical biolological samples which are frequently irradiated in the facility. The computational models are based on using the MCNPX code. The horizontal and vertical dose distributions has been calculated inside the irradiation chamber and compared the calculated results with measured data obtained with radiation dosimeters to verify the computational models. The radiation dosimeters employed are a Famer's type ion chamber and MOSFET dosimeters. Radiation doses were calculated by computational models, which were delivered to cultured cell samples contained in test tubes and to a mouse fixed in a irradiation cage, and compared the calculated results with the measured data. The computation models are also tested to see if they can accurately simulate the case where a thick lead shield is placed between the source and detector. Three tally options of the MCNPX code, F4, F5 and F6, are alternately used to see which option produces optimum results. The computation models are also used to calculate gamma ray energy spectra of a BGO scintillator at

  1. Low Doses of Gamma-Irradiation Induce an Early Bystander Effect in Zebrafish Cells Which Is Sufficient to Radioprotect Cells

    Science.gov (United States)

    Pereira, Sandrine; Malard, Véronique; Ravanat, Jean-Luc; Davin, Anne-Hélène; Armengaud, Jean; Foray, Nicolas; Adam-Guillermin, Christelle

    2014-01-01

    The term “bystander effect” is used to describe an effect in which cells that have not been exposed to radiation are affected by irradiated cells though various intracellular signaling mechanisms. In this study we analyzed the kinetics and mechanisms of bystander effect and radioadaptation in embryonic zebrafish cells (ZF4) exposed to chronic low dose of gamma rays. ZF4 cells were irradiated for 4 hours with total doses of gamma irradiation ranging from 0.01–0.1 Gy. In two experimental conditions, the transfer of irradiated cells or culture medium from irradiated cells results in the occurrence of DNA double strand breaks in non-irradiated cells (assessed by the number of γ-H2AX foci) that are repaired at 24 hours post-irradiation whatever the dose. At low total irradiation doses the bystander effect observed does not affect DNA repair mechanisms in targeted and bystander cells. An increase in global methylation of ZF4 cells was observed in irradiated cells and bystander cells compared to control cells. We observed that pre-irradiated cells which are then irradiated for a second time with the same doses contained significantly less γ-H2AX foci than in 24 h gamma-irradiated control cells. We also showed that bystander cells that have been in contact with the pre-irradiated cells and then irradiated alone present less γ-H2AX foci compared to the control cells. This radioadaptation effect is significantly more pronounced at the highest doses. To determine the factors involved in the early events of the bystander effect, we performed an extensive comparative proteomic study of the ZF4 secretomes upon irradiation. In the experimental conditions assayed here, we showed that the early events of bystander effect are probably not due to the secretion of specific proteins neither the oxidation of these secreted proteins. These results suggest that early bystander effect may be due probably to a combination of multiple factors. PMID:24667817

  2. Doses of external exposure in Jordan house due to gamma-emitting natural radionuclides in building materials.

    Science.gov (United States)

    Al-Jundi, J; Ulanovsky, A; Pröhl, G

    2009-10-01

    The use of building materials containing naturally occurring radionuclides as (40)K, (232)Th, and (238)U and their progeny results in external exposures of the residents of such buildings. In the present study, indoor dose rates for a typical Jordan concrete room are calculated using Monte Carlo method. Uniform chemical composition of the walls, floor and ceiling as well as uniform mass concentrations of the radionuclides in walls, floor and ceiling are assumed. Using activity concentrations of natural radionuclides typical for the Jordan houses and assuming them to be in secular equilibrium with their progeny, the maximum annual effective doses are estimated to be 0.16, 0.12 and 0.22 mSv a(-1) for (40)K, (232)Th- and (238)U-series, respectively. In a total, the maximum annual effective indoor dose due to external gamma-radiation is 0.50 mSv a(-1). Additionally, organ dose coefficients are calculated for all organs considered in ICRP Publication 74. Breast, skin and eye lenses have the maximum equivalent dose rate values due to indoor exposures caused by the natural radionuclides, while equivalent dose rates for uterus, colon (LLI) and small intestine are found to be the smallest. More specifically, organ dose rates (nSv a(-1)per Bq kg(-1)) vary from 0.044 to 0.060 for (40)K, from 0.44 to 0.60 for radionuclides from (238)U-series and from 0.60 to 0.81 for radionuclides from (232)Th-series. The obtained organ and effective dose conversion coefficients can be conveniently used in practical dose assessment tasks for the rooms of similar geometry and varying activity concentrations and local-specific occupancy factors.

  3. Dose-rate effects for apoptosis and micronucleus formation in gamma-irradiated human lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Boreham, D.R.; Dolling, J.-A.; Maves, S.R. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Siwarungsun, N. [Chulalongkorn Univ., Bangkok (Thailand); Mitchel, R.E.J. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2000-07-01

    We have compared dose-rate effects for {gamma}-radiation-induced apoptosis and micronucleus formation in human lymphocytes. Long-term assessment of individual radiation-induced apoptosis showed little intraindividual variation but significant interindividual variation. The effectiveness of radiation exposure to cause apoptosis or micronucleus formation was reduced by low-dose-rate exposures, but the reduction was apparent at different dose rates for these two end points. Micronucleus formation showed a dose-rate effect when the dose rate was lowered to 0.29 cGy/min, but there was no accompanying cell cycle delay. A further increase in the dose-rate effect was seen at 0.15 cGy/min, but was now accompanied by cell cycle delay. There was no dose-rate effect for the induction of apoptosis until the dose rate was reduced to 0.15 cGy/min, indicating that the mechanisms or signals for processing radiation-induced lesions for these two end points must be different at least in part. There appear to be two mechanisms that contribute to the dose-rate effect for micronucleus formation. One of these does not affect binucleate cell frequency and occurs at dose rates higher than that required to produce a dose-rate effect for apoptosis, and one affects binucleate cell frequency, induced only at the very low dose rate which coincidentally produces a dose-rate effect for apoptosis. Since the dose rate at which cells showed reduced apoptosis as well as a further reduction in micronucleus formation was very low, we conclude that the processing of the radiation-induced lesions that induce apoptosis, and some micronuclei, is very slow in quiescent and PHA-stimulated lymphocytes, respectively. (author)

  4. Higher dose rate Gamma Knife radiosurgery may provide earlier and longer-lasting pain relief for patients with trigeminal neuralgia.

    Science.gov (United States)

    Lee, John Y K; Sandhu, Sukhmeet; Miller, Denise; Solberg, Timothy; Dorsey, Jay F; Alonso-Basanta, Michelle

    2015-10-01

    Gamma Knife radiosurgery (GKRS) utilizes cobalt-60 as its radiation source, and thus dose rate varies as the fixed source decays over its half-life of approximately 5.26 years. This natural decay results in increasing treatment times when delivering the same cumulative dose. It is also possible, however, that the biological effective dose may change based on this dose rate even if the total dose is kept constant. Because patients are generally treated in a uniform manner, radiosurgery for trigeminal neuralgia (TN) represents a clinical model whereby biological efficacy can be tested. The authors hypothesized that higher dose rates would result in earlier and more complete pain relief but only if measured with a sensitive pain assessment tool. One hundred thirty-three patients were treated with the Gamma Knife Model 4C unit at a single center by a single neurosurgeon during a single cobalt life cycle from January 2006 to May 2012. All patients were treated with 80 Gy with a single 4-mm isocenter without blocking. Using an output factor of 0.87, dose rates ranged from 1.28 to 2.95 Gy/min. The Brief Pain Inventory (BPI)-Facial was administered before the procedure and at the first follow-up office visit 1 month from the procedure (mean 1.3 months). Phone calls were made to evaluate patients after their procedures as part of a retrospective study. Univariate and multivariate linear regression was performed on several independent variables, including sex, age in deciles, diagnosis, follow-up duration, prior surgery, and dose rate. In the short-term analysis (mean 1.3 months), patients' self-reported pain intensity at its worst was significantly correlated with dose rate on multivariate analysis (p = 0.028). Similarly, patients' self-reported interference with activities of daily living was closely correlated with dose rate on multivariate analysis (p = 0.067). A 1 Gy/min decrease in dose rate resulted in a 17% decrease in pain intensity at its worst and a 22% decrease

  5. Characterizing low dose and dose rate effects in rodent and human neural stem cells exposed to proton and gamma irradiation

    Directory of Open Access Journals (Sweden)

    Bertrand P. Tseng

    2013-01-01

    Full Text Available Past work has shown that exposure to gamma rays and protons elicit a persistent oxidative stress in rodent and human neural stem cells (hNSCs. We have now adapted these studies to more realistic exposure scenarios in space, using lower doses and dose rates of these radiation modalities, to further elucidate the role of radiation-induced oxidative stress in these cells. Rodent neural stem and precursor cells grown as neurospheres and human neural stem cells grown as monolayers were subjected to acute and multi-dosing paradigms at differing dose rates and analyzed for changes in reactive oxygen species (ROS, reactive nitrogen species (RNS, nitric oxide and superoxide for 2 days after irradiation. While acute exposures led to significant changes in both cell types, hNSCs in particular, exhibited marked and significant elevations in radiation-induced oxidative stress. Elevated oxidative stress was more significant in hNSCs as opposed to their rodent counterparts, and hNSCs were significantly more sensitive to low dose exposures in terms of survival. Combinations of protons and γ-rays delivered as lower priming or higher challenge doses elicited radioadaptive changes that were associated with improved survival, but in general, only under conditions where the levels of reactive species were suppressed compared to cells irradiated acutely. Protective radioadaptive effects on survival were eliminated in the presence of the antioxidant N-acetylcysteine, suggesting further that radiation-induced oxidative stress could activate pro-survival signaling pathways that were sensitive to redox state. Data corroborates much of our past work and shows that low dose and dose rate exposures elicit significant changes in oxidative stress that have functional consequences on survival.

  6. Crystal growth and thermoluminescence response of NaZr2(PO4)3 at high gamma radiation doses

    International Nuclear Information System (INIS)

    Ordóñez-Regil, E.; Contreras-Ramírez, A.; Fernández-Valverde, S.M.; González-Martínez, P.R.; Carrasco-Ábrego, H.

    2013-01-01

    Graphical abstract: -- Highlights: •NaZr 2 (PO 4 ) 3 exposed to gamma doses of 10, 30 and 50 MGy. •Gamma radiation produced growth of the crystal size of the NZP. •Morphology changes were reversible by heating. •Linear relationship between the thermoluminescence and the applied gamma dose. •This property could be useful for high-level gamma dosimetry. -- Abstract: This work describes the synthesis and characterization of NaZr 2 (PO 4 ) 3 . The stability of this material under high doses of gamma radiation was investigated in the range of 10–50 MGy. Samples of unaltered and gamma irradiated NaZr 2 (PO 4 ) 3 were characterized by X-ray diffraction, infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, and thermoluminescence. The results showed that while functional groups were not affected by the gamma irradiation, morphology changes were observed with increasing doses of gamma irradiation. The morphology of the non-irradiated compound is agglomerated flakes; however, irradiation at 10 MGy splits the flakes inducing the formation of well-defined cubes. Gamma irradiation induced the crystal size of the NaZr 2 (PO 4 ) 3 to grow. The heat treatment (973 K) of samples irradiated at 50 MGy resulted in the recovery of the original morphology. Furthermore, the thermoluminescence analysis of the irradiated compound is reported

  7. An empirical method for peak-to-total ratio computation of a gamma-ray detector

    International Nuclear Information System (INIS)

    Cesana, A.; Terrani, M.

    1989-01-01

    A simple expression for peak-to-total ratio evaluation of gamma-ray detectors in the energy range 0.3-10 MeV is proposed. The quantities one needs to know for the computation are: Detector dimensions and chemical composition, photon corss sections and an empirical energy dependent function which is valid for all the detector materials considered. This procedure seems able to produce peak-to-total values with an accuracy comparable with the most sophisticated Monte Carlo calculations. It has been tested using experimental peak-to-total values of Ge, NaI, CsI and BGO detectors but it is reasonable to suppose that it is valid for any detector material. (orig.)

  8. CONTRASTING DOSE-RATE EFFECTS OF GAMMA-IRRADIATION ON RAT SALIVARY-GLAND FUNCTION

    NARCIS (Netherlands)

    VISSINK, A; DOWN, JD; KONINGS, AWT

    The aim of this study was to investigate the effects of Co-60 irradiation delivered at high (HDR) and low (LDR) dose-rates on rat salivary gland function. Total-body irradiation (TBI; total doses 7.5, 10 and 12.5 Gy) was applied from a Co-60 source at dose-rates of 1 cGy/min (LDR) and 40 cGy/min

  9. EPR response of sucrose and microcrystalline cellulose to measure high doses of gamma radiation

    International Nuclear Information System (INIS)

    Torijano, E.; Cruz, L.; Gutierrez, G.; Azorin, J.; Aguirre, F.; Cruz Z, E.

    2015-10-01

    Solid dosimeters of sucrose and microcrystalline cellulose (Avicel Ph-102) were prepared, following the same process, in order to compare their EPR response against that of the l-alanine dosimeters considered as reference. All lots of dosimeters were irradiated with gamma radiation in Gamma beam irradiator with 8 kGy/h of the Nuclear Sciences Institute of UNAM. Doses ranged from 1 to 10 kGy respectively. We found that both the response of sucrose as microcrystalline cellulose were linear; however, the response intensity was, on average, twenty times more for sucrose. Comparing this against the EPR response of l-alanine in the range of doses, it was found that the response to sucrose is a third part; and microcrystalline cellulose is a sixtieth, approximately. The results agree with those found in the literature for sucrose, leaving open the possibility of investigating other dosage ranges for cellulose. (Author)

  10. Activity concentrations and mean annual effective dose from gamma-emitting radionuclides in the Lebanese diet

    International Nuclear Information System (INIS)

    Nasreddine, L.; Hwalla, N.; El Samad, O.; Baydoun, R.; Hamze, M.; Parent-Massin, D.

    2008-01-01

    Since the primary factor contributing to the internal effective dose in the human organism is contaminated food, the control of radionuclides in food represents the most important means of protection. This study was conducted to determine the levels of the dietary exposure of the Lebanese population to gamma-emitting radioisotopes. The activity concentrations of gamma-emitting radioisotopes have been measured in food samples that represent the market basket of an adult urban population in Lebanon. The artificial radionuclide 137 Cs was measured above detection limits in only fish, meat and milk-based deserts. The most abundant natural radionuclide was 40 K (31-121 Bq kg -1 ), with the highest content in fish and meat samples. The annual mean effective dose contributed by 40 K in the reference typical diet was estimated equal to 186 μSv y -1 , a value reasonably consistent with findings reported by several other countries. (authors)

  11. The analogy research study on gamma radiation dose rate of radioisotopes 131Ba and 131I

    International Nuclear Information System (INIS)

    Hu Youhua; Feng Guangwen

    2013-01-01

    Analogy is a inference method ,according some properties of a class of things to inferring the similar things should also have the similar properties. The analogy of same radionuclides is widely used in radioisotope logging environment impact assessment so far. This paper is to provide fFor future providing a theoretical calculation method and analogy method between different radionuclides in radioisotope logging environment impact assessment. In this paper, using the latest decay scheme, through theoretical modeling, the aim is the the establishment of 131 Ba and 131 I radioisotopes gamma radiation dose rate calculation method, and try to carry out analogy research on gamma radiation dose rate of different radioisotopes with the same activity. The results show that the analogy of different radionuclides is feasible, which provides the new method reference for carrying out such radiation environmental impact assessment in future. (authors)

  12. Study of the Melting Latent Heat of Semicrystalline PVDF applied to High Gamma Dose Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Batista, Adriana S.M. [Departamento de Anatomia e Imagem - IMA, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, MG (Brazil); Gual, Maritza R.; Faria, Luiz O. [Centro de Desenvolvimento da Tecnologia Nuclear - CDTN, Av. Antonio Carlos 6627, C.P. 941, 31270-901, Belo Horizonte, MG (Brazil); Lima, Claubia P.B. [Departamento de Engenharia Nuclear - DEN, Universidade Federal de Minas Gerais - UFMG, Av. Antonio Carlos 6627, 31270-970 Belo Horizonte, MG (Brazil)

    2015-07-01

    Poly(vinylidene fluoride) homopolymers [PVDF] homopolymers were irradiated with gamma doses ranging from 0.5 to 2.75 MGy. Differential scanning calorimetry (DSC) and FTIR spectrometry were used in order to study the effects of gamma radiation in the amorphous and crystalline polymer structures. The FTIR data revealed absorption bands at 1730 and 1853 cm{sup -1} which were attributed to the stretch of C=O bonds, at 1715 and 1754 cm{sup -1} which were attributed to the C=C stretching and at 3518, 3585 and 3673 cm{sup -1} which were associated with NH stretch of NH{sub 2} and OH. The melting latent heat (LM) measured by DSC was used to construct an unambiguous relationship with the delivered dose. Regression analyses revealed that the best mathematical function that fits the experimental calibration curve is a 4-degree polynomial function, with an adjusted Rsquare of 0.99817. (authors)

  13. ZZ DOSDAT-2, Gamma and Electron Dose Conversion Factor Data Library for Body Organs

    International Nuclear Information System (INIS)

    1983-01-01

    1 - Description of problem or function: Format: DOSDAT-R; Nuclides: gamma-ray and electron dose rates for whole-body and for various body organs (24) for air and water immersion and from ground-surface sources (approximately 500 radioactive nuclides). Origin: DLC-80/DRALIST library of radioactive decay data. The data are used to estimate the gamma-ray and electron dose rates for whole-body and for various body organs (24) for air and water immersion and from ground-surface sources. The data are given for approximately 500 radioactive nuclides. 2 - Method of solution: The data were computed by the CCC-400 DOSAFACTER II code from the DLC-80/DRALIST library of radioactive decay data for approximately 500 nuclides

  14. Assessment of natural radioactivity concentrations and gamma dose levels around Shorapur, Karnataka

    Energy Technology Data Exchange (ETDEWEB)

    Rajesh, S.; Avinash, P.; Kerur, B. R., E-mail: kerurpbk@rediffmail.com.com [Department of Physics, Gulbarga University Kalaburagi – 585 106 India (India); Anilkumar, S. [Radiation Safety Systems Division, BARC, Mumbai - 400 085 (India)

    2015-08-28

    This study assesses the level of background radiation around Shorapur. The study region locates the western part of the Yadgir district of Karnataka. Shorapur and Shahapur talukas are mostly composed of clay, shale sandstone, granite rock and part of study area is black soil. Thirty sample locations were selected along the length and breadth of Shorapur and Shahapur taluka. Natural radionuclide activity concentrations in soil samples were determined using 4'X4' NaI (Tl) gamma spectroscopy. Outdoor gamma dose measurements in air at 1 m above ground level were determined using Rad Eye PRD survey meter. Estimated dose values are compared with the survey meter values and found to be good agreement between them and also with the data obtained from different other areas of Karnataka and India. The average values were found to be slightly higher in the present investigation.

  15. Measurement of total-body cobalt-57 vitamin B12 absorption with a gamma camera

    International Nuclear Information System (INIS)

    Cardarelli, J.A.; Slingerland, D.W.; Burrows, B.A.; Miller, A.

    1985-01-01

    Previously described techniques for the measurement of the absorption of [ 57 Co]vitamin B 12 by total-body counting have required an iron room equipped with scanning or multiple detectors. The present study uses simplifying modifications which make the technique more available and include the use of static geometry, the measurement of body thickness to correct for attenuation, a simple formula to convert the capsule-in-air count to a 100% absorption count, and finally the use of an adequately shielded gamma camera obviating the need of an iron room

  16. Total gamma activity measurements for determining the radioactivity of residual materials from nuclear power stations

    International Nuclear Information System (INIS)

    Auler, I.; Meyer, M.; Stickelmann, J.

    1995-01-01

    Large amounts of residual materials from retrofitting measures and from decommissioning of nuclear power stations shows such a weak level of radioactivity that they could be released after decision measurements. Expenses incurred with complex geometry cannot be taken with common methods. NIS developed a Release Measurement Facility (RMF) based on total gamma activity measurements especially for these kind of residual materials. The RMF has been applied for decision measurements in different nuclear power plants. Altogether about 2,000 Mg of various types of materials have been measured up to now. More than 90 % of these materials could be released 0 without any restriction after decision measurements

  17. Life span and tumorigenesis in mice exposed to continuous low dose-rate gamma-rays

    International Nuclear Information System (INIS)

    Tanaka, Satoshi; Braga-Tanaka III, Ignacia; Takabatake, Takashi; Ichinohe, Kazuaki; Tanaka, Kimio; Matsumoto, Tsuneya; Sato, Fumiaki

    2004-01-01

    Two experiments were conducted to evaluate late biological effects of chronic low dose-rate radiation. 1: Late effects of chronic low dose-rate gamma-ray irradiation on SPF mice, using life span and pathological changes as parameters. Continuous irradiation for approximately 400 days was performed using 137 Cs gamma-rays at dose-rates of 20 mGy/day, 1 mGy/day and 0.05 mGy/day with accumulated doses equivalent to 8000 mGy, 400 mGy and 20 mGy, respectively. All mice were kept until their natural death. Statistical analyses show that the life spans of the both sexes irradiated at 20 mGy/day (p<0.0001) and of females irradiated at 1 mGy/day (p<0.05) were significantly shorter than those of the control group. There was no evidence of lengthened life span in mice continuously exposed to very low dose-rates of gama-rays. Pathodological examinations showed that the most frequently observed lethal neoplasms in males were malignant lymphomas, liver, lung, and soft tissue neoplasms, whereas, in females, malignant lymphomas and soft tissue neoplasms were common. No significant difference in the causes of death and mortality rates between groups. Hematopoietic neoplasms (malignant lymphoma and myeloid leukemia), liver, lung and soft tissue neoplasms, showed a tendency to appear at a younger age in both sexes irradiated at 20 mGy/day. Experiment 2: effects on the progeny of chronic low dose-rate gamma-ray irradiated SPF mice: preliminary study. No significant difference was observed between non-irradiated group and irradiated group with regards to litter size, sex ratio and causes of death in F1 and F2 mice. (author)

  18. Dose rate effect on material aging due to radiation. [Gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Shin-ichi (Radiation Center of Osaka Prefecture, Sakai (Japan)); Hayakawa, Chikara; Takeya, Chikashi

    1982-12-01

    Although many reports have been presented on the radiation aging of the organic materials for electric cables, those have been based on the experiments carried out at high dose rate near 1 x 10/sup 6/ rad/h, assuming that aging effect depends on only radiation dose. Therefore, to investigate the aging behaviour in low dose rate range is an important subject to predict their practical life time. In this report, the results of having investigated the aging behaviour of six types of materials are described, (polyethylene for general insulation purpose, chemically cross-linked polyethylene, fire-retardant chemically cross-linked polyethylene, fire-retardant ethylene-propylene rubber, fire-retardant chloro-sulfonated polyethylene for sheaths, and fire-retardant, low hydrochloric acid, special heat-resistant vinyl for insulation purpose or chloroclean). They were irradiated with /sup 60/Co ..gamma..-ray at the dose from 5 x 10/sup 3/ to 1 x 10/sup 6/ rad/h, and their deterioration was tested for the items of elongation, tensile strength, resistivity, dielectric tangent and gel fraction. The aging mechanism and dose rate effect were also considered. The dose rate effect appeared or did not appear depending on the types of materials and also their properties. The materials that showed the dose rate effect included the typical ones whose characteristics degraded with the decreasing dose rate, and the peculiar ones whose deterioration of characteristics did not appear constantly. Aging mechanism may vary in the case of high dose rate and low dose rate. Also, if the life time at respective dose rate in relatively higher dose rate region is clarified, the life time in low dose rate region may possibly be predicted.

  19. Sensory evaluation of Regina freestone peaches treated with low doses of gamma radiation

    International Nuclear Information System (INIS)

    O'Mahony, M.; Wong, S.Y.; Odbert, N.

    1985-01-01

    Sensory appraisal of low post-harvest gamma irradiation dosing (65-75 Krad) of a single batch of peaches revealed significant differences in aroma and in taste components not associated with sweetness, but only slight differences in firmness and appearance. A panel of practiced judges evaluated irradiated and non-irradiated peaches using a technique of minimal cross-sensory inference. The significant differences in aroma and taste also were detected by untrained judges

  20. Measurement of changes in viscosity in polymers with gamma-ray dose using a differential viscometer

    International Nuclear Information System (INIS)

    Santra, L.; Bhaumik, D.; Roy, S.C.

    1988-01-01

    Although some works on changes in viscosity of liquids with gamma-ray dose have been made near the ''gel point'', very little works have been done bellow this point. Changes in viscosities of different-grade silicone fluids below gel point have been measured using a differential viscometer developed in our laboratory, capable of measuring change in viscosities of two liquids directly. Preliminary results on viscosity changes when irradiated with energetic alpha particles will also be reported [pt

  1. Measurement of changes in viscosity in polymers with gamma-ray dose using a differential viscometer

    International Nuclear Information System (INIS)

    Santra, L.; Bhaumik, D.; Roy, S.C.

    1989-01-01

    Although some works on changes in viscosity of liquids with gamma-ray dose have been made near the 'gel point', very little works have been done below this point. Changes in viscosities of different-grade silicone fluids below gel point have been measured using a differential viscometer developed in our laboratory, capable of measuring change in viscosities of two liquids directly. Preliminary results on viscosity changes when irradiated with energetic alpha particles will also be reported. (orig.)

  2. Radon concentration in air and external gamma dose rate. Is there a correlation?

    International Nuclear Information System (INIS)

    Yoshimura, E.M.; Umisedo, N.K.; Marcos Rizzotto; Hugo Velasco; Valladares, D.L.

    2016-01-01

    We checked the existence of correlations between experimentally determined radon concentration in indoor air and gamma dose rate, in different environments: residences, workplaces in subway stations and radiotherapies, and a gold mine. Except for the mine environment, where a linear correlation (r 2 = 0.86) was obtained with statistical significance, we found no correlations between those quantities. Both radiation sources are originated from natural radionuclides, nonetheless the observation of correlations depends on various conditions, as we discuss here. (author)

  3. Application of combined TLD and CR-39 PNTD method for measurement of total dose and dose equivalent on ISS

    International Nuclear Information System (INIS)

    Benton, E.R.; Deme, S.; Apathy, I.

    2006-01-01

    To date, no single passive detector has been found that measures dose equivalent from ionizing radiation exposure in low-Earth orbit. We have developed the I.S.S. Passive Dosimetry System (P.D.S.), utilizing a combination of TLD in the form of the self-contained Pille TLD system and stacks of CR-39 plastic nuclear track detector (P.N.T.D.) oriented in three mutually orthogonal directions, to measure total dose and dose equivalent aboard the International Space Station (I.S.S.). The Pille TLD system, consisting on an on board reader and a large number of Ca 2 SO 4 :Dy TLD cells, is used to measure absorbed dose. The Pille TLD cells are read out and annealed by the I.S.S. crew on orbit, such that dose information for any time period or condition, e.g. for E.V.A. or following a solar particle event, is immediately available. Near-tissue equivalent CR-39 P.N.T.D. provides Let spectrum, dose, and dose equivalent from charged particles of LET ∞ H 2 O ≥ 10 keV/μm, including the secondaries produced in interactions with high-energy neutrons. Dose information from CR-39 P.N.T.D. is used to correct the absorbed dose component ≥ 10 keV/μm measured in TLD to obtain total dose. Dose equivalent from CR-39 P.N.T.D. is combined with the dose component <10 keV/μm measured in TLD to obtain total dose equivalent. Dose rates ranging from 165 to 250 μGy/day and dose equivalent rates ranging from 340 to 450 μSv/day were measured aboard I.S.S. during the Expedition 2 mission in 2001. Results from the P.D.S. are consistent with those from other passive detectors tested as part of the ground-based I.C.C.H.I.B.A.N. intercomparison of space radiation dosimeters. (authors)

  4. Effects of low dose gamma radiation on the early growth of red pepper and the resistance to subsquent high dose of radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. S.; Baek, M. H.; Kim, D. H.; Lee, Y. K. [KAERI, Taejon (Korea, Republic of); Lee, Y. B. [Chungnam National Univ., Taejon (Korea, Republic of)

    2001-05-01

    Red pepper (capsicum annuum L. cv. Jokwang and cv. Johong) seeds were irradiated with the dose of 0{approx}50 Gy to investigated the effect of the low dose gamma radiation on the early growth and resistance to subsequent high dose of radiation. The effect of the low dose gamma radiation on the early growth and resistance to subsequenct high dose of radiation were enhanced in Johong cultivar but not in Jokwang cultivar. Germination rate and early growth of Johong cultivar were noticeably increased at 4 Gy-, 8 Gy- and 20 Gy irradiation group. Resistance to subsequent high dose of radiation of Johong cultivar were increased at almost all of the low dose irradiation group. Especially it was highest at 4 Gy irradiation group. The carotenoid contents and enzyme activity on the resistance to subsequent high dose of radiation of Johong cultivar were increased at the 4 Gy and 8 Gy irradiation group.

  5. Gamma-irradiated onions as a biological indicator of radiation dose

    International Nuclear Information System (INIS)

    Vaijapurkar, S.G.; Agarwal, Deepshikha; Chaudhuri, S.K.; Ram Senwar, Kana; Bhatnagar, P.K.

    2001-01-01

    Post-irradiation identification and dose estimation are required to assess the radiation-induced effects on living things in any nuclear emergency. In this study, radiation-induced morphological/cytological changes i.e., number of root formation and its length, shooting length, reduction in mitotic index, micronuclei formation and chromosomal aberrations in the root tip cells of gamma-irradiated onions at lower doses (50-2000 cGy) are reported. The capabilities of this biological species to store the radiation-induced information are also studied

  6. Dose rate on the environment generated by a gamma irradiation plant

    International Nuclear Information System (INIS)

    Mangussi, J.

    2011-01-01

    A model for the absorbed dose rate calculation on the surroundings of a gamma irradiation plant is developed. In such plants, a part of the radiation emitted upwards reach the outdoors. The Compton scatterings on the wall of the exhausting pipes through de plant roof and on the outdoors air are modelled. The absorbed dose rate generated by the scattered radiation reaching the outdoors floor is calculated. The results of the models, to be used for the irradiation plant design and for the environmental studies, are showed on tables and graphics. (author) [es

  7. Effect of low dose gamma irradiation on onion yield: Large scale application

    International Nuclear Information System (INIS)

    Al-Oudat, M.

    1993-01-01

    Large scale application of presowing gamma-irradiation of seeds, bulblets and bulbs of onion, performed in 1989, using the doses of 10 Gy for seeds and 1 Gy for bulblets and bulbs. The doses were chosen on the basis of previous experiments. Reliable increases in yield of seeds (19.3%), bulblets (18.9) and bulbs (31.4%) for red variety. and of 22.3% and 23.4% for seeds and bulbs of white variety were obtained. (author). 2 tabs

  8. Relationship between terrestrial gamma ray dose rates and geology of Awaji Island in Hyogo Prefecture

    International Nuclear Information System (INIS)

    Shibayama, Motohiko; Hiraoka, Yoshitsugu; Ikeda, Tadashi; Terado, Shin

    2004-01-01

    In order to clarify the relationship between terrestrial gamma ray dose rates and surface geology, measurements were carried out for the entire part f Awaji Island in Hyogo Prefecture. The results of analysis were summarized as follows. (1) The mean value for each geology was nearly the same as that in the whole of Japan. (2) The granitic rocks can be divided into three groups, based on their stages of intrusion (Tainsyo, 1985). the dose rate levels for granitic rocks increased from fast stage over third stage. (author)

  9. Lethal dose of gamma radiation for eggs of Corcyra cephalonica (Stainton, 1865) (Lepidoptera: Pyralidae), rice moth

    International Nuclear Information System (INIS)

    Aguilar, J.A.D.; Arthur, V.

    1994-01-01

    The aim of this experiment was to observe the effects of gamma radiation on rice moth Corcyra cephalonica (STAINTON, 1865) eggs. The doses utilized in this experiment were 0; 25; 50; 75; 100; 125; 150; 175; 200 Gy. The experiment was carried out in a climatic room at 25 ± 2 0 C and 70 ± 10% R.H. It was observed that lethal dose LD50 and LD100 for eggs from adults reared by artificial diet were 16 and 75 Gy, respectively. (author). 14 refs, 1 fig, 1 tab

  10. Effect of superlarge dose of gamma radiation on the rat cerebral cortex (ultrastructural aspects)

    International Nuclear Information System (INIS)

    Abdrakhmanov, A.A.; AN Kazakhskoj SSR, Alma-Ata

    1988-01-01

    Puberal Wistar line mall rats (180-210 g) were subjected to single whole-body gamma irradiation with 150 Gy dose and 75 Gy/min dose rate. Electron-microscopic investigation into dynamics of sensory-motor cortex ultrastructural changes during 24 hours after irradiation is conducted. Along with destructive changes compensator-reduction processes are developed in brain tissue at this period. Already during the first hours after irradiation the neutron ultrastructure change dynamics has been determined, alongside with direct radiation effect, by indirect effects juries of neuroglia and microcirculatory channel

  11. Effect of superlarge dose of gamma radiation on the rat cerebral cortex (ultrastructural aspects)

    Energy Technology Data Exchange (ETDEWEB)

    Abdrakhmanov, A A

    1988-06-01

    Puberal Wistar line mall rats (180-210 g) were subjected to single whole-body gamma irradiation with 150 Gy dose and 75 Gy/min dose rate. Electron-microscopic investigation into dynamics of sensory-motor cortex ultrastructural changes during 24 hours after irradiation is conducted. Along with destructive changes compensator-reduction processes are developed in brain tissue at this period. Already during the first hours after irradiation the neutron ultrastructure change dynamics has been determined, alongside with direct radiation effect, by indirect effects juries of neuroglia and microcirculatory channel.

  12. Inhibition of alloxan diabetes by low dose {gamma}-irradiation before alloxan administration

    Energy Technology Data Exchange (ETDEWEB)

    Yamaoka, Kiyonori [Central Research Inst. of Electric Power Industry, Komae, Tokyo (Japan). Komae Research Lab.; Takehara, Yoshiki; Yoshioka, Tamotsu; Utsumi, Kozo

    1994-10-01

    We evaluated the inhibitory effects of whole body {sup 60}Co-{gamma} irradiation at a single low dose on alloxan-induced hyperglycemia in rats. (1) In rats that received alloxan, SOD activity in pancreas significantly decreased, but the decrease was inhibited by irradiation at a dose of 0.5 Gy. (2) Similarly, plasma peroxide, pancreatic peroxide, and blood glucose increased. However, the increase in pancreatic peroxide was inhibited by irradiation at a dose of 0.5 or 1.0 Gy and the increase in blood glucose by irradiation at 0.5 Gy. (3) After alloxan administration, degranulation was observed in cells, but this was inhibited by irradiation at 0.5 Gy. These results suggest that alloxan diabetes was inhibited by the increase of SOD activity in pancreas after low dose irradiation at 0.5 Gy. (author).

  13. The effect of low doses of gamma rays on hatchability of broiler parent stocks

    International Nuclear Information System (INIS)

    Zakaria, Abdul-Hamid

    1990-01-01

    It is a summary of the report written about the three experiments which have been carried out to study the stimulatory effect of different doses of gamma irradiation on the hatchability of broiler parent stocks at 45 weeks of age. It has been shown that doses at 0.1 and 0.15 GY had a stimulatory effect on hatchability of highly-fertile broiler parent stock. Doses at 1.20, 1.60 and 2.10 GY had an inhibitory effect on hatchability of low-fertile broiler parent stock. No significant difference has been detected on the chicks weights hatched from eggs exposed to doses ranged from 0.05 to 1.20 GY of highly-fertile broiler parent stock. 4 tabs

  14. Gamma-ray dose rate in air on the subway lines in Tokyo metropolitan area

    International Nuclear Information System (INIS)

    Ogawa, Masayuki; Hosoda, Masahiro; Ogashiwa, Susumu; Fukushi, Masahiro

    2008-01-01

    Measurements of gamma-ray dose rates in air were performed on 12 subway lines in Tokyo from the perspective of health physics, because the subways are commonly used for commuting in the Tokyo metropolitan area. The results showed that the maximum dose rate (36.5 nGy/h) was 1.6 times higher than that of the minimum one (23.3 nGy/h), and that the dose rate in the subway car was 33% lower than the outside. Also the results strongly suggested that the dose rates depend on the concentration of natural radionuclide around the subway lines and the platform structures rather than the depth. (author)

  15. Spatial variation of natural terrestrial gamma-ray dose rates in Brunei

    International Nuclear Information System (INIS)

    Hu, S.J.; Lai, K.K.; Manato, S.; Kodaira, K.

    1998-01-01

    A carbon survey of natural terrestrial gamma-rat dose rates along the main roads of the western part of Brunei Darussalam was carried out using two portable type 1.5 φ x 4 NaI(TI) and 1 φ x 2 NaI(TI) scintillation counters. A series of semicontinuous count rates measurements were performed inside a moving vehicle. This yielded equal-distance data which were analysed statistically to obtain the spatial variation of the natural terrestrial gamma-ray dose rates. The equal-distance data of dose rates were obtained by correcting for shielding effect of the car. The thickness of the pavement and the contribution from the pavement material were estimated from a correlation curve between the dose rates measured on pavements and on the nearby soils. A spectral analysis of the equal-distance data enabled us to clarify the structure of the spatial variation in dose rates. The data could be reasonably smoothened by removing the random noise components in a higher wave number region. (author). 6 refs., 7 figs., 1 tab

  16. Effect of sub-sterilizing doses of gamma radiation on Spodoptera frugiperda (Smith) pupae

    International Nuclear Information System (INIS)

    Duarte Aguilar, J.A.; Arthur, Valter

    1998-01-01

    Studies were undertaken to verify the effects of sub-sterilizing doses of gamma radiations on pupae of Spodoptera frugiperda (Smith) and transfer of genetic heredity on the first and second generations. Statistical analysis showed difference in the ageing effect of gamma radiations on the larval phase and larval viability ranged between 72 and 94 percent, when irradiated (50 Gy) males or females were crossed with non-irradiated adults. With doses of 100, 125, 150 and 175 Gy the crossing of irradiated males x non irradiated females the larval viability was between 64 and 94 per cent in F-1 and F-2 generations. The duration and other life parameters of the pupae and adults did not differ from the controls. The egg laying ability was not affected by doses up to 150 Gy on both the sexes. If irradiated females with doses of 175 and 200 Gy were crossed with non-irradiated males, the egg laying was inhibited when males were irradiated with one of these doses, the offspring females did not lay eggs or laid non-fertile eggs. (author)

  17. Dose Response for Monokaryon mycelium of Pleurotus pulmonarius After Acute Gamma Radiation

    International Nuclear Information System (INIS)

    Wan Safina Wan Abdul Razak; Azhar Mohamad; Nie, H.J.

    2016-01-01

    Pleurotus pulmonarius is locally known as Grey oyster. The species is popular and widely cultivated throughout the world mostly in Asia Europe as their simple and low cost production technology and higher biological efficiency. Mutation induction is an alternative ways for improving available commercial strain for better quality traits. Dose response is important in evaluating effects of mutagenesis via acute gamma radiation. Monokaryon mycelium of Pleurotus pulmonarius was exposed to acute gamma radiation ranged from 0 Gy, 0.1 kGy, 0.2 kGy, 0.3 kGy, 0.4 kGy, 0.5 kGy, 0.6 kGy, 0.7 kGy, 0.8 kGy, 0.9 kGy, 1.0 kGy, 1.5 Gy, 2.0 kGy, 3.0 kGy and 4.0 kGy at dose rate 0.013 kGy/ min. growth performance was measured at 2 days interval to get the LD_5_0. Increasing of the irradiation dose found to decrease the growth performance of the monokaryon mycelium. LD_5_0 was revealed at 1.56 kGy for mono karyon mycelium. Discoveries of the works are important for the improvement of Pleurotus species via acute gamma radiation and benefiting to growers and mushroom industries. (author)

  18. Effect of Gamma Irradiation Doses on Some Chemical Characteristics of Cotton Seed Oil

    International Nuclear Information System (INIS)

    Saleh, O.I.

    2011-01-01

    Cotton Seeds c.v. Giza 85 (Gossypium hirsutum L.) were exposed to gamma irradiation doses of 0.5, 1.0 and 1.5 kGy to improve some chemical characteristics of cotton seed oil i.e. saturated and unsaturated fatty acids, gossypol and βsitosterol that were bound oil. The presented study showed that, the saturated fatty acids; lauric, palmitic and stearic increased when the cotton seeds were exposed to gamma irradiation doses of 0.5 up to 1.5 kGy, On the other hand, arachidic acid content decreased in all the irradiated treatments compared with untreated cotton seed. The unsaturated fatty acid oleic was increased in irradiated cotton seed samples compared with untreated one, while linoleic, the major unsaturated fatty acid decreased in irradiated cotton seed oil than untreated seeds. Gossypol and βsitosterol, bound oil, in irradiated cotton seeds increased gradually with gamma irradiated doses compared with untreated control samples

  19. Cytosolic Hsp70/Hsc70 protein expression in lymphocytes exposed to low gamma-ray dose

    International Nuclear Information System (INIS)

    Manzanares A, E.; Vega C, H.R.; Letechipia de Leon, C.; Guzman E, L.J.; Garcia T, M.

    2004-01-01

    The purpose of this study was to evaluate the effect of low gamma ray intensity upon Hsp70 expression in human Iymphocytes. The heat shock proteins (Hsp) family, are a group of proteins present in all living organism, therefore there are highly conserved and are related to adaptation and evolution. At cellular level these proteins acts as chaperones correcting denatured proteins. When a stress agent, such heavy metals, UV, heat, etc. is affecting a cell a response to this aggression is triggered only through over expression of Hsp. Several studies has been carried out in which the cellular effect are observed, mostly of these studies uses large doses, but very few studies are related with low doses. Blood of healthy volunteers was obtained and the Iymphocytes were isolated by ficoll- histopaque gradient. Experimental lots were irradiated in a 137 Cs gamma-ray. Hsp70 expression was found since 0.5 c Gy, indicating a threshold to very low doses of gamma rays. (Author)

  20. Statistical approaches to forecast gamma dose rates by using measurements from the atmosphere

    International Nuclear Information System (INIS)

    Jeong, H.J.; Hwang, W. T.; Kim, E.H.; Han, M.H.

    2008-01-01

    In this paper, the results obtained by inter-comparing several statistical techniques for estimating gamma dose rates, such as an exponential moving average model, a seasonal exponential smoothing model and an artificial neural networks model, are reported. Seven years of gamma dose rates data measured in Daejeon City, Korea, were divided into two parts to develop the models and validate the effectiveness of the generated predictions by the techniques mentioned above. Artificial neural networks model shows the best forecasting capability among the three statistical models. The reason why the artificial neural networks model provides a superior prediction to the other models would be its ability for a non-linear approximation. To replace the gamma dose rates when missing data for an environmental monitoring system occurs, the moving average model and the seasonal exponential smoothing model can be better because they are faster and easier for applicability than the artificial neural networks model. These kinds of statistical approaches will be helpful for a real-time control of radio emissions or for an environmental quality assessment. (authors)

  1. Cytosolic Hsp70/Hsc70 protein expression in lymphocytes exposed to low gamma-ray dose

    Energy Technology Data Exchange (ETDEWEB)

    Manzanares A, E.; Vega C, H.R.; Letechipia de Leon, C. [Unidades Academicas de Estudios Nucleares, UAZ, A.P. 336, 98000 Zacatecas (Mexico)]. E-mail: emanz@cantera.reduaz.mx; Guzman E, L.J. [Unidad Academica de Biologia Experimental, Guadalupe, Zacatecas (Mexico); Garcia T, M. [LIBRA, Centro I and D, Campus Miguel Delibes, Valladolid 47011 (Spain)

    2004-07-01

    The purpose of this study was to evaluate the effect of low gamma ray intensity upon Hsp70 expression in human Iymphocytes. The heat shock proteins (Hsp) family, are a group of proteins present in all living organism, therefore there are highly conserved and are related to adaptation and evolution. At cellular level these proteins acts as chaperones correcting denatured proteins. When a stress agent, such heavy metals, UV, heat, etc. is affecting a cell a response to this aggression is triggered only through over expression of Hsp. Several studies has been carried out in which the cellular effect are observed, mostly of these studies uses large doses, but very few studies are related with low doses. Blood of healthy volunteers was obtained and the Iymphocytes were isolated by ficoll- histopaque gradient. Experimental lots were irradiated in a {sup 137} Cs gamma-ray. Hsp70 expression was found since 0.5 c Gy, indicating a threshold to very low doses of gamma rays. (Author)

  2. On-site gamma dose rates at the Andreeva Bay shore technical base, northwest Russia.

    Science.gov (United States)

    Reistad, O; Dowdall, M; Standring, W J F; Selnaes, Ø G; Hustveit, S; Steinhusen, F; Sørlie, A

    2008-07-01

    The spent nuclear fuel (SNF) and radioactive waste (RAW) storage facility at Andreeva Bay shore technical base (STB) is one of the largest and most hazardous nuclear legacy sites in northwest Russia. Originally commissioned in the 1960s the facility now stores large amounts of SNF and RAW associated with the Russian Northern Fleet of nuclear powered submarines. The objective of the present study was to map ambient gamma dose rates throughout the facility, in particular at a number of specific sites where SNF and RAW are stored. The data presented here are taken from a Norwegian-Russian collaboration enabling the first publication in the scientific literature of the complete survey of on-site dose rates. Results indicate that elevated gamma dose rates are found primarily at discrete sites within the facility; maximum dose rates of up to 1000 microSv/h close to the ground (0.1m) and up to 3000 microSv/h at 1m above ground were recorded, higher doses at the 1m height being indicative primarily of the presence of contaminated equipment as opposed to ground contamination. Highest dose rates were measured at sites located in the immediate vicinity of buildings used for storing SNF and sites associated with storage of solid and liquid radioactive wastes. Elevated dose rates were also observed near the former channel of a small brook that became heavily contaminated as a result of radioactive leaks from the SNF storage at Building 5 starting in 1982. Isolated patches of elevated dose rates were also observed throughout the STB. A second paper detailing the radioactive soil contamination at the site is published in this issue of Journal of Environmental Radioactivity.

  3. Effects of low-dose gamma and neutron radiation on genotoxicity and cytotoxicity of reticulocytes in a mouse model

    International Nuclear Information System (INIS)

    Phan, N.; McFarlane, N.M.; Lemon, J.; Boreham, D.R.

    2008-01-01

    Using a successful new automation of micronucleated reticulocyte (MN-RET) scoring, the effects of low-dose (< 1.0 Gy) gamma and neutron radiation on genotoxicity and cytotoxicity of reticulocytes (RET) in a mouse model were investigated. Gamma and neutron irradiation induced significant (p<0.001) increases in the levels of %MN-RET and decreases in the levels of %RET (p<0.001) as the dose level increased. Increasing dose levels showed that gamma radiation induced significantly (p<0.05) more %MN-RET and more %RET than neutron radiation. The results suggest that neutron irradiation may be more cytotoxic (less %RET) than gamma irradiation; however, gamma irradiation may be producing cells with more chromosomal aberrations (more %MN-RET) than neutron irradiation. (author)

  4. Dosimetric evaluation of lithium carbonate (Li2CO3) as a dosemeter for gamma-radiation dose measurements.

    Science.gov (United States)

    Popoca, R; Ureña-Núñez, F

    2009-06-01

    This work reports the possibility of using lithium carbonate as a dosimetric material for gamma-radiation measurements. Carboxi-radical ions, CO(2)(-) and CO(3)(-), arise from the gamma irradiation of Li(2)CO(3), and these radical ions can be quantified by electron paramagnetic resonance (EPR) spectrometry. The EPR-signal response of gamma-irradiated lithium carbonate has been investigated to determine some dosimetric characteristics such as: peak-to-peak signal intensity versus gamma dose received, zero-dose response, signal fading, signal repeatability, batch homogeneity, dose rate effect and stability at different environmental conditions. Using the conventional peak-to-peak method of stable ion radicals, it is concluded that lithium carbonate could be used as a gamma dosemeter in the range of 3-100 Gy.

  5. Effects of low-dose gamma and neutron radiation on genotoxicity and cytotoxicity of reticulocytes in a mouse model

    Energy Technology Data Exchange (ETDEWEB)

    Phan, N.; McFarlane, N.M.; Lemon, J.; Boreham, D.R. [McMaster Univ., Medical Physics and Applied Radiation Sciences Unit, Hamilton, Ontario (Canada)

    2008-07-01

    Using a successful new automation of micronucleated reticulocyte (MN-RET) scoring, the effects of low-dose (< 1.0 Gy) gamma and neutron radiation on genotoxicity and cytotoxicity of reticulocytes (RET) in a mouse model were investigated. Gamma and neutron irradiation induced significant (p<0.001) increases in the levels of %MN-RET and decreases in the levels of %RET (p<0.001) as the dose level increased. Increasing dose levels showed that gamma radiation induced significantly (p<0.05) more %MN-RET and more %RET than neutron radiation. The results suggest that neutron irradiation may be more cytotoxic (less %RET) than gamma irradiation; however, gamma irradiation may be producing cells with more chromosomal aberrations (more %MN-RET) than neutron irradiation. (author)

  6. Non-linear dose response of a few plant taxa to acute gamma radiation

    International Nuclear Information System (INIS)

    George, J.T.; Patel, B.B.; Pius, J.; Narula, B.; Shankhadarwar, S.; Rane, V.A.; Venu-Babu, P.; Eapen, S.; Singhal, R.K.

    2014-01-01

    Micronuclei induction serves as an essential biomarker of radiation stress in a living system, and the simplicity of its detection technique has made it a widely used indicator of radiation damage. The present study was conducted to reveal the cytological dose-response of a few plant taxa, viz., Allium cepa var. aggregatum Linn., Allium sativum Linn., Chlorophytum comosum (Thunb.) Jacques and Eichhornia crassipes (Mart.) Solms, to low LET gamma radiation with special emphasis on the pattern of micronuclei induced across low and high dose regimes. A tri-phasic non-linear dose-response pattern was observed in the four taxa studied, characterized by a low dose linear segment, a plateau and a high dose linear segment. Despite a similar response trend, the critical doses where the phase transitions occurred varied amongst the plant taxa, giving an indication to their relative radiosensitivities. E. crassipes and A. sativum, with their lower critical doses for slope modifications of phase transitions, were concluded as being more radiosensitive as compared to C. comosum and A. cepa, which had relatively higher critical doses. (author)

  7. Stereotactic radiosurgery with the gamma knife. Possibilities of dose distribution optimizations

    International Nuclear Information System (INIS)

    Stuecklschweiger, G.

    1995-01-01

    On April 1992, the first stereotactic radiosurgical procedure using the gamma knife was performed at the University Medical School Graz, Department of Neurosurgery. Accurate dose optimization is the foundation of a convenient and responsible utilization of this modality. But there are limits, because the final collimation is only achieved by 1 of the 4 special helm collimators. The possibilities of dose optimization and its influence on the dose distributions were investigated and partly compared with results of film densitometry measurements. In detail, the technique, which uses the same isocenter, but different sized collimators was studied. The influence of these optimization techniques on the resulting dose distributions and the dose gradient at the edge of the treatment planning volume was analyzed. Also the visions for an effective dose optimization are discussed. With 2 shots of different diameters, located at the same target coordinates and different weighting of time any collimator size between the 4 mm and 18 mm can be achieved. Because of that, a combination of more than 2 collimators is not meaningful. With the combined shots the dose fall gradient was less than that of either of the single shots involved in the combination. With the available physical and technical possibilities only a limited, very time consuming optimization is practicable. The quality control of isodose distributions requires optimizations in hard-and software, that enable CT- or MRT-based 3-dimensional visualization and dose volume analysis. (orig./MG) [de

  8. Precise determination of total absorption coefficients for low-energy gamma-quanta with Moessbauer effect

    International Nuclear Information System (INIS)

    Bonchev, T.; Statev, S.; Nejkov, Kh.

    1980-01-01

    A new method of determining the total absorption coefficient applying the Moessbauer effect is proposed. This method enables the accuracy of the measurement increase. The coefficient is measured with practically no background on using the recoilless part of gamma radiation obtained from the Moessbauer source with and without the sample between the source of the gamma-quanta and the detector. Moessbauer sources and absorbers with a single line and without an isomeric shift are used. The recoilless part of the radiation is obtained by the ''two point'' method as a difference between the numbers of photons corresponding to the stationary source and to the vibrating one with a big mean square velocity, respectively. In the concrete measurements the sources 57 Co and 119 Sn are used. The total absorption coefficient for different samples beginning with water up to plumbum is determined. The mean square error for the mean result in all measurements is less than the mean statistical error for the coefficient. The obtained experimental data give a much smaller deviation from the theoretical data of the last issue of the Stom-Israel Tables than the one expected by their authors

  9. Evaluation of the total gamma-ray production cross-sections for nonelastic interaction of fast neutrons with iron nuclei

    International Nuclear Information System (INIS)

    Savin, M.V.; Nefedov, Yu.Ya; Livke, A.V.; Zvenigorodskij, A.G.

    2001-01-01

    Experimental data on the total gamma-ray production cross-sections for inelastic interaction of fast neutrons with iron nuclei were analysed. The total gamma-ray production cross-sections, grouped according to E γ , were evaluated in the neutron energy range 0.5-19 MeV. The statistical spline approximation method was used to evaluate the experimental data. Evaluated data stored in the ENDF, JENDL, BROND, and other libraries on gamma-ray production spectra and cross-sections for inelastic interaction of fast neutrons with iron nuclei, were analysed. (author)

  10. Effect of low doses gamma irradiation on seed, bulblets and bulbs of onion

    International Nuclear Information System (INIS)

    Al-Oudat, Mohammad

    1991-10-01

    Presowing seed irradiation has been reported as a useful application of radiation in agriculture to stimulate growth and increase the yield of certain crops. To the best of our knowledge the feasibility of this treatment has not yet been tested on onion in Syria. The effect of low doses gamma irradiation on onion seeds, bulblets and bulbs of two local varieties, red and white, was studied during three consecutive seasons (1986 - 1988). Air dried seeds were irradiated by gamma rays from 137 Cs source. Five, 10, 15, 20 and 30 GY, were applied at dose rate of 9.8 Gy/min. The irradiation of onion bulblets and bulbs were carried out with gamma-rays from 60 Co source at a dose rate of 0.5 Gy/min. using 1, 2, 3, 4 and 5 Gy. Within 7 - 10 days after irradiation, both controlled and irradiated seeds, bulblets and bulbs were sown in the field in complete randomized block design with 4 replicates. Irradiation of seeds with doses of 5, 10 and 15 Gy led to highly significant increases in bulblets yield in the three seasons. The increases ranged from 14.5 to 22.1 for red variety and from 16.2 to 22.3 for white variety. The irradiation of bulblets with 1 and 2 Gy increase significantly the yield of bulbs by 21.6 - 26.0% for red variety and 21.6 - 24.4% for white variety. A considerable increase in seed yield was obtained after irradiation of bulbs with 1 and 2 Gy doses. The average increment was about 21.0% for both varieties. Large scale application were performed in 1989 and 1990 using doses of 10 Gy for seeds and 1 Gy for bulblets and bulbs. A considerable increase in the yield was obtained. The average percentage increment was 16.9% and 23.3% for seeds, 18.6 and 20.9% for bulblets, 24.8 and 27.3% for bulbs, for red and white varieties respectively. Therefore, presowing irradiation of seeds, bulblets and bulbs of onion with low doses of gamma-rays (5 - 15 Gy for seeds and 1 - 2 Gy for bulblets and bulbs) can be of practical application resulting in improvement of yield of

  11. The effect of low dose gamma irradiation on maize production (1985-1988)

    International Nuclear Information System (INIS)

    Al-Oudat, M.; Khalifa, K.

    1990-06-01

    Presowing seed irradiation has been reported as a useful application of radiation in agriculture to stimulate growth and increase the yield of certain field crops. To the best of our knowledge the feasibility of this treatment has not yet been tested on maize in Syria. Our experiments were carried out in controlled, in field conditions, and in a large scale application. Samples of air dried seeds of maize (Var. Gota-82 and LG-11) of previous season were irradiated by gamma-rays from a 137 Cs sourse using doses of 5, 7.5, 10, 15, 20, 30, 40 and 50 Gy. at dose rate of 9.8 - 9.2 Gy/min. Then were planted after 2 days from irradiation with unirradiated control, in complete randomized block design and replicated 4 times for four seasons (1985-1988). The date revealed that gamma irradiation, at interval doses of 5 - 10 Gy led to, first: Acceleration of seed germination, faster development, intensive development of root system, increase plant hieght (12 - 19%) and significant increase in ear size and number, and second: Increase both green mass (15 - 35%) and seed yield (10 - 31%), and percentage of seed protein (2 - 17%). Large scale applications were performed in 1987 and 1988 using a transportable irradiation unit POC-1 137 Cs and dose of 7.5 Gy. A significant yield increase was obtained from all fields. The average percentage increment varied from 13 - 30% which is approximately 382-765 Kg/h. Therefore, presowing seed irradiation with low doses gamma irradiation ranging from 5 to 10 Gy, was found to be feasible for application in qualitative and quantitative improvement of maize yield. (author). 38 refs., 12 figs., 44 tabs

  12. The Measuring of the Gamma Dose Rate in the Air at Location of the Sar-Mountain

    International Nuclear Information System (INIS)

    Adrovic, F.; Ninkovic, M.; Adrovic, S.

    1999-01-01

    The results of the measured values of gamma dose rate in the air at the location of Sar-mountain (Balkan Peninsula) using autonomous ADL-probe Gamma Tracer system. The difference between levels of the natural background radiation and natural environment has been pointed out at the different chosen measuring overall research of natural radioactivity at the location of Sar-mountain

  13. Effects of gamma radiation on total phenolics, trypsin and tannin inhibitors in soybean grains

    Science.gov (United States)

    de Toledo, T. C. F.; Canniatti-Brazaca, S. G.; Arthur, V.; Piedade, S. M. S.

    2007-10-01

    The objective was determining possible radiation-induced alterations (with doses of 2, 4 and 8 kGy) in raw or cooked grains from five soybean cultivars through the analysis of some antinutrient. Total phenolic ranged from 2.46 to 10.83 mg/g, the trypsin inhibited from 18.19 to 71.64 UTI/g and tannins from 0.01 to 0.39 mg/g. All the antinutrient studied underwent reduction with increases in the doses and cooking process was effective too.

  14. Effects of gamma radiation on total phenolics, trypsin and tannin inhibitors in soybean grains

    International Nuclear Information System (INIS)

    de Toledo, T.C.F; Canniatti-Brazaca, S.G.; Arthur, V.; Piedade, S.M.S.

    2007-01-01

    The objective was determining possible radiation-induced alterations (with doses of 2, 4 and 8 kGy) in raw or cooked grains from five soybean cultivars through the analysis of some antinutrient. Total phenolic ranged from 2.46 to 10.83 mg/g, the trypsin inhibited from 18.19 to 71.64 UTI/g and tannins from 0.01 to 0.39 mg/g. All the antinutrient studied underwent reduction with increases in the doses and cooking process was effective too

  15. Effects of gamma radiation on total phenolics, trypsin and tannin inhibitors in soybean grains

    Energy Technology Data Exchange (ETDEWEB)

    de Toledo, T.C.F [Department of Agroindustry, Food and Nutrition Escola Superior de Agricultura ' Luiz de Queiroz' , Universidade de Sao Paulo (ESALQ/USP), Piracicaba, SP (Brazil)]. E-mail: tcftoled@esalq.usp.br; Canniatti-Brazaca, S.G. [Department of Agroindustry, Food and Nutrition, Escola Superior de Agricultura ' Luiz de Queiroz' , Universidade de Sao Paulo (ESALQ/USP), Av. Padua Dias, 11 Box 9, CEP 13418-900, Piracicaba, SP (Brazil)]. E-mail: sgcbraza@esalq.usp.br; Arthur, V. [Food Irradiation and Entomology Laboratory, Center for Nuclear Agriculture-CENA/USP, Av. Centenario 303, Caixa Postal 96, 13400-970, Piracicaba, SP (Brazil)]. E-mail: arthur@cena.usp.br; Piedade, S.M.S. [Department of Mathematic Sciences, Escola Superior de Agricultura ' Luiz de Queiroz' , Universidade de Sao Paulo (ESALQ/USP), Piracicaba, SP (Brazil)]. E-mail: soniamsp@esalq.usp.br

    2007-10-15

    The objective was determining possible radiation-induced alterations (with doses of 2, 4 and 8 kGy) in raw or cooked grains from five soybean cultivars through the analysis of some antinutrient. Total phenolic ranged from 2.46 to 10.83 mg/g, the trypsin inhibited from 18.19 to 71.64 UTI/g and tannins from 0.01 to 0.39 mg/g. All the antinutrient studied underwent reduction with increases in the doses and cooking process was effective too.

  16. Environmental radiation monitoring: mobile gamma dose rate measurements along Mumbai-Hyderabad rail route and Hyderabad city roads

    International Nuclear Information System (INIS)

    Divkar, J.K.; Padmanabhan, N.; Chaudhury, Probal; Pradeepkumar, K.S.; Pujari, R.N.; Dogra, Santosh; Sharma, D.N.; Rajagopalan, S.; Srivastava, G.K.

    2005-01-01

    Environmental Radiation monitoring based on gamma dose rate logging on a mobile platform integrated with real time position from a Global Positioning System is an effective tool to acquire dose rate profile and generate radiological map of any geographical region. The microcontroller based dose rate data acquisition system capable of storing the acquired data and transferring to an attached laptop/PC and providing a graphical illustration of relative variations in gamma background can also be used for quick assessment of environmental radiological impact assessment. This paper describes the methodology and results of the environmental gamma dose rate monitoring surveys carried out: (i) on Mumbai-Hyderabad rail route with the systems installed in the trains guard's room and (ii) Hyderabad city roads with systems installed in a monitoring van. The results indicate significant difference in the gamma background measured along the rail route between Mumbai-Hyderabad and in the radiological map generated after the Hyderabad city survey. (author)

  17. Determining lethal dose of gamma radiation on different stages of Tribolium Cosmonauts H b s t

    International Nuclear Information System (INIS)

    Zolfagharieh, H.R.; Majd, F.; Torshyzie, M.; Babaie, M.

    1992-10-01

    Pest infestation causes great losses to stored grain through out the world. This is specially true in developing countries where the technology is less advanced, and climatic conditions are extremely favourable for the development of pests. Irradiation is on approved method of direct control for stored-product insect in wheat and wheat flour in many countries, and in dictation are that it will soon be approved for all grain, grain products and other dry food commodities. Radiation doses required to kill or sterilized the most important storage pests in all stages are known. However irradiation is very effective in preventing insect development and in producing sterility. A detailed analysis of the radiosensitivity of stored-product insects shows the different groups of pests have very different sensitivities and quarantine doses can be tailored to kill or sterilize the species of quarantine concern. The effect of irradiation on insects are many, and varied, depending primarily on the species, stage, age and physical factors. The aim is to survey the effect of gamma radiation on stored pest, which can categorized under following classes: 1-The effect of gamma radiation on different stages grow of tribolium castaneum (H B S T); 2-Determination of lethal doses.; 3-The study of gamma radiation on products. In summary these information indicated that fairly low dosages of gamma radiation could be used on commodities such as bulk grain in which some infestation by insect stages of irradiation would be required on products such package foods where hundred percent mortality must be obtain. (author)

  18. Determination of Absorbed Dose to Water for Leksell Gamma Knife Unit

    International Nuclear Information System (INIS)

    Hrsak, H.

    2013-01-01

    Because of geometry of photon beams in Leksell Gamma Knife Unit (LGK), there are several technical problems in applying standard protocols for determination of absorbed dose to water (Dw). Currently, Dw in LGK unit, measured at the center of spherical plastic phantom, is used for dose calculation in LGK radiosurgery. Treatment planning software (LGP TPS) accepts this value as a measurement in water and since plastic phantom has higher electron density than water, this leads to systematic errors in dose calculation. To reduce these errors, a photon attenuation correction (PAC) method was applied. For that purpose, measurements of absorbed dose in a center of three different plastic phantoms with 16 cm diameter (ABS - acrylonitrile butadiene styrene, PMMA - polymethyl metacrylate, PMMA + teflon - polytetrafluoroethylene 5 mm shell) were made with ionization chamber (Semiflex, PTW Freiburg). For measured dose values, PAC to water was applied based on electron density (ED) and equivalent water depths (EWD) of the plastic phantoms. The relation between CT number and ED was determined by measuring CT number of standard CT to ED phantom (CIRS Model 062 Phantom). Absorbed dose in plastic phantoms was 2.5 % lower than calculated dose in water for ABS phantom and more than 5.5 % lower for PMMA and PMMA+teflon phantom. Calculated dose in water showed more consistent values for all three phantoms (max. difference 2.6 %). EWD for human cranial bones and brain has value close to the EWD of ABS phantom, which makes this phantom most suitable for dose measurements in clinical application. In LGK radiosurgery determination of errors related to the difference of phantom materials should not be neglected and measured dose should be corrected before usage for patient treatment dose calculation.(author)

  19. Impact of total ionizing dose on the electromagnetic susceptibility of a single bipolar transistor

    International Nuclear Information System (INIS)

    Doridant, A.; Jarrix, S.; Raoult, J.; Blain, A.; Dusseau, L.; Chatry, N.; Calvel, P.; Hoffmann, P.

    2012-01-01

    Space or military electronic components are subject to both electromagnetic fields and total ionizing dose. This paper deals with the electromagnetic susceptibility of a discrete low frequency transistor subject to total ionizing dose deposition. The electromagnetic susceptibility is investigated on both non-irradiated and irradiated transistors mounted in common emitter configuration. The change in susceptibility to 100 MHz-1.5 GHz interferences lights up a synergy effect between near field electromagnetic waves and total ionizing dose. Physical mechanisms leading to changes in signal output are detailed. (authors)

  20. Analysis of bias effects on the total ionizing dose response in a 180 nm technology

    International Nuclear Information System (INIS)

    Liu Zhangli; Hu Zhiyuan; Zhang, Zhengxuan; Shao Hua; Chen Ming; Bi Dawei; Ning Bingxu; Zou Shichang

    2011-01-01

    The effects of gamma ray irradiation on the shallow trench isolation (STI) leakage current in a 180 nm technology are investigated. The radiation response is strongly influenced by the bias modes, gate bias during irradiation, substrate bias during irradiation and operating substrate bias after irradiation. We found that the worst case occurs under the ON bias condition for the ON, OFF and PASS bias mode. A positive gate bias during irradiation significantly enhances the STI leakage current, indicating the electric field influence on the charge buildup process during radiation. Also, a negative substrate bias during irradiation enhances the STI leakage current. However a negative operating substrate bias effectively suppresses the STI leakage current, and can be used to eliminate the leakage current produced by the charge trapped in the deep STI oxide. Appropriate substrate bias should be introduced to alleviate the total ionizing dose (TID) response, and lead to acceptable threshold voltage shift and subthreshold hump effect. Depending on the simulation results, we believe that the electric field distribution in the STI oxide is the key parameter influencing bias effects on the radiation response of transistor. - Highlights: → ON bias is the worst bias condition for the ON, PASS and OFF bias modes. → Larger gate bias during irradiation leads to more pronounced characteristic degradation. → TID induced STI leakage can be suppressed by negative operating substrate bias voltage. → Negative substrate bias during irradiation leads to larger increase of off-state leakage. → Electric field in the STI oxide greatly influences the device's radiation effect.

  1. Effects of gamma irradiation dose rate on microbiological and physical quality of mushrooms (Agaricus bisporus)

    International Nuclear Information System (INIS)

    Beaulieu, M.; Lacroix, M.; Charbonneau, R.; Laberge, I.; Gagnon, M.

    1992-01-01

    The effects of gamma irradiation (2 kGy) and dose rate of irradiation (4.5 and 32.0 kGy/h) on increasing the shelf-life and some quality properties of the mushrooms (Agaricus bisporus) were investigated during storage at 15 deg C and 90% R.H. The retardation of mushroom growth and ageing by reduction of gamma irradiation dose rate (4.5 kGy) was observed by measurements of the cap opening, the stipe increase, the cap diameter, the weight loss and the color of the caps. The color was measured in order to evaluate the lightness with the L value measurement and the color changes were measured in terms of lightness, hue and chroma. The control of fungal and bacterial diseases were also evaluated. The irradiation of mushrooms at both dose rates of irradiation was found to be effective in lowering microorganism counts initially and throughout storage and increased the shelf-life by four days. This study also showed that mushrooms exposed to a lower dose rate (4.5 kGy/h) of irradiation preserve the whiteness and reduce the stripe increase of mushrooms during storage

  2. Different gamma ray (60 Co) dose effects on Sorghum genotype germination

    International Nuclear Information System (INIS)

    Tabosa, Jose Nildo; Gomes, Roberto Vicente; Reis, Odemar Vicente dos; Colaco, Waldeciro

    2004-01-01

    In agriculture, applying irradiation is a very valuable way of obtaining vegetable products for human and animal consumption. Cobalt-60, one of the main sources of gamma-rays, is considered an important tool in plant breeding programs, which have the objective of promoting genetic variability of cultivars with resistance to adverse environments. In this research, the effects of different 60 Co doses on germination vigor and seed germination velocity of forage sorghum genotypes were evaluated. The study was carried out at the IPA (Empresa Pernambucana de Pesquisa Agropecuaria) in Recife, Pernambuco, Brazil. The work was installed in germination boxes, following laboratory recommendations. Thus, a experiment involving three sorghum genotypes (IPA 467-4-2, IPA 02-03-01, and Sudan 4202), five 60 Co doses (Zero, 150, 300, 350, and 400 Gy), was set up. The sees were irradiated before the beginning of the experiment being exposed to gamma rays from a 60 Co-source (cobalt irradiator) at DEN (Nuclear Engineering Department) of the UFPE (Pernambuco Federal University), Brazil. The work also had the objective of evaluating the sorghum genotypes x 60 Co dose interaction. The main results obtained showed that the sorghum genotype IPA 02-03-01 presented the greatest values of germination and vigor percentages, and seed germination velocity, when compared to the others evaluated, on 350 and 400 Gy of 60 Co doses. (author)

  3. Increase of onion yield through low dose of gamma irradiation of its seeds

    International Nuclear Information System (INIS)

    Wiendl, F.M.; Wiendl, F.W.; Wiendl, J.A.; Vedovatto, A.; Arthur, V.

    1995-01-01

    The increase of onions' yield could be achieved by the common farmer through the use of nuclear techniques. This report describes the results obtained with the irradiation of onion seeds, with low doses of gamma radiations (Cobalt-60), at doses of 0 (control), 150, 400 and 700 Gy. Beyond the proper onion's variety als use of low dose rates of 13.1, 39.2 and 52.3 Gy per hour were of the great importance during irradiation. The results showed to be promising both in laboratory studies and in the field, resulting in an increase of onions production: A greater number of seedlings, bulbs and a higher yield in weight per hectar were planted. In the field the most promising dose and dose rate to the variety ''Super-X'' were respectively 150 Gy and 13.1 Gy per hour, yielding an 24.9 percent heavier weight of onions than the control. The other tested variety was ''Granex-33'', which did not respond so favorable to irradiation. However, also with this variety we harvested a 2.1 percent heavier weight than its control, if the onion seeds were irradiated with the dose of 700 Gy at a dose rate of 13.1 Gy per hour. (Author)

  4. Novel Concrete Chemistry Achieved with Low Dose Gamma Radiation Curing and Resistance to Neutron Activation

    Science.gov (United States)

    Burnham, Steven Robert

    As much as 50% of ageing-related problems with concrete structures can be attributed to con-struction deficiencies at the time of placement. The most influential time affecting longevity of concrete structures is the curing phase, or commonly the initial 28 days following its placement. A novel advanced atomistic analysis of novel concrete chemistry is presented in this dissertation with the objective to improve concrete structural properties and its longevity. Based on experiments and computational models, this novel concrete chemistry is discussed in two cases: (a) concrete chemistry changes when exposed to low-dose gamma radiation in its early curing stage, thus improving its strength in a shorter period of time then curing for the conventional 28 days; (b) concrete chemistry is controlled by its atomistic components to assure strength is not reduced but that its activation due to long-term exposure to neutron flux in nuclear power plants is negligible. High dose gamma radiation is well documented as a degradation mechanism that decreases concrete's compressive strength; however, the effects of low-dose gamma radiation on the initial curing phase of concrete, having never been studied before, proved its compressive strength increases. Using a 137 Cs source, concrete samples were subjected to gamma radiation during the initial curing phase for seven, 14, and 28 days. The compressive strength after seven days is improved for gamma cured concrete by 24% and after 14 days by 76%. Concrete shows no improvement in compressive strength after 28 days of exposure to gamma radiation, showing that there is a threshold effect. Scanning Electron Microscopy is used to examine the microstructure of low-dose gamma radiation where no damage to its microstructure is found, showing no difference between gamma cured and conventionally cured concrete. Molecular dynamics modeling based on the MOPAC package is used to study how gamma radiation during the curing stage improves

  5. Effect of Low Dose Gamma Radiation Upon the Concentration of Calcium and Inorganic Phosphorus in the Blood Plasma of Chickens

    International Nuclear Information System (INIS)

    Kraljevic, P.; Vilic, M.; Miljanic, S.; Simpraga, M.

    2003-01-01

    In our previous paper it has been showed that the irradiation of chickens eggs before incubation by low dose gamma irradiation effects upon growth of the chickens hatched from irradiated eggs as well as upon activity of ALT and AST, and on the concentration of total proteins, glucose and cholesterol in the blood plasma of those chickens. Therefore in this paper an attempt was made to determine the effects of irradiation of eggs by low dose of ionizing radiation on the 19th day of incubation upon the concentration of calcium (Ca) and inorganic phosphorus (P) in the blood plasma of chickens hatched from irradiated eggs. The eggs of heavy breeding chickens (Gent, line COBB 500) were irradiated by a dose of 0.15 Gy gamma radiation (6 0C o source) on the 19th day of incubation. Along with the chickens, which were hatched from irradiated eggs, there was a control group of chickens hatched from nonirradiated eggs. All other conditions were the same for both groups. After hatching, blood samples were taken on day 1, 3, 5, 7, 10, 20, 30 and 42. The concentration of Ca was determined calorimetrically using Randox optimized kits, while the concentration of P was determined by Herbos dijagnostika Sisak (Croatia) optimized kits. The concentration of Ca in the blood plasma of chickens hatched from irradiated eggs was significantly increased on the first day, while it was decreased on the day 42. The concentration of P was decreased on the first day in blood plasma of chickens hatched from irradiated eggs. The fact that the concentration of both minerals in blood plasma of chickens hatched from irradiated eggs was significantly changed on the first day proves that the irradiation of eggs by low dose of ionizing radiation on the nineteenth day of incubation had an effect on metabolism of both minerals in those chickens. (author)

  6. Low-dose total skin electron beam therapy for cutaneous lymphoma : Minimal risk of acute toxicities.

    Science.gov (United States)

    Kroeger, Kai; Elsayad, Khaled; Moustakis, Christos; Haverkamp, Uwe; Eich, Hans Theodor

    2017-12-01

    Low-dose total skin electron beam therapy (TSEBT) is attracting increased interest for the effective palliative treatment of primary cutaneous T‑cell lymphoma (pCTCL). In this study, we compared toxicity profiles following various radiation doses. We reviewed the records of 60 patients who underwent TSEBT for pCTCL between 2000 and 2016 at the University Hospital of Munster. The treatment characteristics of the radiotherapy (RT) regimens and adverse events (AEs) were then analyzed and compared. In total, 67 courses of TSEBT were administered to 60 patients. Of these patients, 34 (51%) received a standard dose with a median surface dose of 30 Gy and 33 patients (49%) received a low dose with the median surface dose of 12 Gy (7 salvage low-dose TSEBT courses were administered to 5 patients). After a median follow-up of 15 months, the overall AE rate was 100%, including 38 patients (57%) with grade 2 and 7 (10%) with grade 3 AEs. Patients treated with low-dose TSEBT had significantly fewer grade 2 AEs than those with conventional dose regimens (33 vs. 79%, P dose regimen compared to those with the conventional dose regimens (6 vs. 15%, P = 0.78). Multiple/salvage low-dose TSEBT courses were not associated with an increased risk of acute AEs. Low-dose TSEBT regimens are associated with significantly fewer grade 2 acute toxicities compared with conventional doses of TSEBT. Repeated/Salvage low-dose TSEBT, however, appears to be tolerable and can even be applied safely in patients with cutaneous relapses.

  7. Incidence of leukemia among atomic bomb survivors in relation to neutron and gamma dose, Hiroshima and Nagasaki, 1950-71

    International Nuclear Information System (INIS)

    Ishimaru, Toranosuke; Otake, Masanori; Ichimaru, Michito.

    1978-03-01

    The incidence of leukemia during 1950-71 in the fixed mortality sample of atomic bomb survivors in Hiroshima and Nagasaki has been analyzed as a function of individual gamma and neutron kerma and marrow dose. Two dose response models were tested for each of acute leukemia, chronic granulocytic leukemia, and all types of leukemia, respectively. Each model postulates that leukemia incidence depends upon the sum of the separate risks imposed by the gamma ray and neutron doses; in Model I both are assumed to be directly proportional to the respective doses, while Model II assumes that while the risk from neutrons is directly proportional to the dose, the risk from gamma rays is proportional to dose-squared. Weighted regression analyses were performed for each model. When the two models were fitted to the data for all types of leukemia, the estimated regression coefficients corresponding to the neutron and gamma ray doses both differed significantly from zero, for each model. However, when analysis was restricted to acute leukemia, both the neutron and gamma ray coefficients were significant only for Model II, and with respect to chronic granulocytic leukemia, only the coefficient of the neutron dose was significant, using either Model I or Model II. It appeared that the responses of the two leukemia types differed by type of radiation. If the chronic granulocytic and acute leukemias are considered together, the Model II appears to fit the data slightly better than Model I, but neither models is rejected by the data. (author)

  8. Determination of the total indicative dose in drinking and mineral waters

    International Nuclear Information System (INIS)

    Flesch, K.; Schulz, H.; Knappik, R.; Koehler, M.

    2006-01-01

    In Europe and Germany administrative regulations exist for the surveillance of the total indicative dose of water supplied for human consumption. This parameter, which cannot be analyzed directly, has to be calculated using nuclide specific activity concentration and age specific dose conversion factors and consumption rates. Available calculation methods differ regarding the used radionuclides, consumption rates and whether they use age specific dose conversion factors or not. In Germany administrative guidelines for the determination of the total indicative dose are still not available. As they have analyzed a large number of waters in the past, the authors derive a praxis orientated concept for the determination of the total indicative dose which respects radiological, analytical and hydrochemical aspects as well. Finally it is suggested to handle sparkling waters in the same manner as drinking waters. (orig.)

  9. Measurement of high dose rates of 60Co by gamma activation of115In and 111Cd foils

    International Nuclear Information System (INIS)

    Haddad, Kh; Qattan, M.; Taleb, A.

    2009-12-01

    The high gamma dose rate measurement technique using nuclear reaction (γ,(γ ' ') was introduced in this work. This technique is cheap, easy, reliable, and independent of chemical and physical factors, which affect other techniques. The response to the absorbed dose in this technique is linear and can be used for high dose. Cd and In foils were irradiated using 60 Co source and the resulted isomer activities were measured using gamma spectrometer. These foils were calibrated to be used as dosemeter and its results were compared with conventional one. The dose distribution in the irradiation field was determined using In foils. (authors)

  10. Gamma dose rate estimation and operation management suggestions for decommissioning the reactor pressure vessel of HTR-PM

    Energy Technology Data Exchange (ETDEWEB)

    Sheng Fang; Hong Li; Jianzhu Cao; Wenqian Li; Feng Xie; Jiejuan Tong [Institute of Nuclear and New Energy Technology, Tsinghua, University, Beijing (China)

    2013-07-01

    China is now designing and constructing a high temperature gas cooled reactor-pebble bed module (HTR-PM). In order to investigate the future decommissioning approach and evaluate possible radiation dose, gamma dose rate near the reactor pressure vessel was calculated for different cooling durations using QAD-CGA program. The source term of this calculation was provided by KORIGEN program. Based on the calculated results, the spatial distribution and temporal changes of gamma dose rate near reactor pressure vessel was systematically analyzed. A suggestion on planning decommissioning operation of reactor pressure vessel of HTRPM was given based on calculated dose rate and the Chinese Standard GB18871-2002. (authors)

  11. Environmental gamma-ray dose measurements with thermoluminescence dosemeters (TLD) and environmental radiation characteristics

    International Nuclear Information System (INIS)

    Kanematsu, Seiko

    1999-01-01

    It is important to evaluate environmental gamma-ray exposure both at work and home in order to assess people's collective dosages. Environmental gamma radiation was measured for air-absorbed dose with a thermoluminescence dosemeter at various points in the workplace and Ningyotoge, and workplace radiation characteristics were analyzed. From the results, the public dose due to gamma rays generated artificially was assessed to be sufficiently lower than the annual limit. For indoor environments of the workplace, the maximum dosage rate among measured values was 97 nGy/h and the minimum value was 70 nGy/h, the average over one year was 83 nGy/h. The average annual outdoor dosage for a year was 82 nGy/ h. In Ningyotoge, the maximum was 103 nGy/h, minimum 60 nGy/h, and average 88 nGy/h. These values depend on the nature of the soil and weather factors, showing higher values in the summer than in the winter in the workplace. There was no significant difference in the dosage rate in houses and the workplace. (author)

  12. Low rate doses effects of gamma radiation on glycoproteins of transmembrane junctions in fibroblasts

    International Nuclear Information System (INIS)

    Bringas, J.E.; Caceres, J.L.

    1996-01-01

    Glycoproteins of trans-membrane junctions are molecules that help to bind cells with the extracellular matrix. Integrins are the most important trans-membrane molecules among others. The damage of gamma radiation on those proteins could be an important early event that causes membrane abnormalities which may lead to cell malfunction and cancer induced by radiation due to cell dissociation. Randomized blocks with 3 repetitions of mouse embryo fibroblast cultures, were irradiated with Cobalt-60 gamma rays, during 20 days. Biological damage to glycoproteins and integrins was evaluated by cellular growth and fibroblast proliferative capacity. Integrins damage was studied by isolation by column immunoaffinity chromatography migrated on SDS-Page under reducing and non reducing conditions, and inhibition of integrins extracellular matrix adhesion by monoclonal antibodies effect. The dose/rate (0.05 Gy/day-0.2 Gy/day) of gamma given to cells did not show damage evidence on glycoproteins and integrins. If damage happened, it was repaired by cells very soon, was delayed by continuous cellular division or by glycoproteins characteristic of being multiple extracellular ligatures. Bio effects became more evident with an irradiation time greater than 20 days or a high dose/rate. (authors). 6 refs

  13. Neutron/gamma dose separation by the multiple-ion-chamber technique

    International Nuclear Information System (INIS)

    Goetsch, S.J.

    1983-01-01

    Many mixed n/γ dosimetry systems rely on two dosimeters, one composed of a tissue-equivalent material and the other made from a non-hydrogenous material. The paired chamber technique works well in fields of neutron radiation nearly identical in spectral composition to that in which the dosimeters were calibrated. However, this technique is drastically compromised in phantom due to the degradation of the neutron spectrum. The three-dosimeter technique allows for the fall-off in neutron sensitivity of the two non-hydrogenous dosimeters. Precise and physically meaningful results were obtained with this technique with a D-T source in air and in phantom and with simultaneous D-T neutron and 60 Co gamma ray irradiation in air. The MORSE-CG coupled n/γ three-dimensional Monte Carlo code was employed to calculate neutron and gamma doses in a water phantom. Gamma doses calculated in phantom with this code were generally lower than corresponding ion chamber measurements. This can be explained by the departure of irradiation conditions from ideal narrow-beam geometry. 97 references

  14. Dose conformity of gamma knife radiosurgery and risk factors for complications

    International Nuclear Information System (INIS)

    Nakamura, Jean L.; Verhey, Lynn J.; Smith, Vernon; Petti, Paula L.; Lamborn, Kathleen R.; Larson, David A.; Wara, William M.; McDermott, Michael W.; Sneed, Penny K.

    2001-01-01

    Purpose: To quantitatively evaluate dose conformity achieved using Gamma Knife radiosurgery, compare results with those reported in the literature, and evaluate risk factors for complications. Methods and Materials: All lesions treated at our institution with Gamma Knife radiosurgery from May 1993 (when volume criteria were routinely recorded) through December 1998 were reviewed. Lesions were excluded from analysis for reasons listed below. Conformity index (the ratio of prescription volume to target volume) was calculated for all evaluable lesions and for lesions comparable to those reported in the literature on conformity of linac radiosurgery. Univariate Cox regression models were used to test for associations between treatment parameters and toxicity. Results: Of 1612 targets treated in 874 patients, 274 were excluded, most commonly for unavailability of individual prescription volume data because two or more lesions were included within the same dose matrix (176 lesions), intentional partial coverage for staged treatment of large arteriovenous malformations (AVMs) (33 lesions), and missing target volume data (26 lesions). The median conformity indices were 1.67 for all 1338 evaluable lesions and 1.40-1.43 for lesions comparable to two linac radiosurgery series that reported conformity indices of 1.8 and 2.7, respectively. Among all 651 patients evaluable for complications, there were one Grade 5, eight Grade 4, and 27 Grade 3 complications. Increased risk of toxicity was associated with larger target volume, maximum lesion diameter, prescription volume, or volume of nontarget tissue within the prescription volume. Conclusions: Gamma Knife radiosurgery achieves much more conformal dose distributions than those reported for conventional linac radiosurgery and somewhat more conformal dose distributions than sophisticated linac radiosurgery techniques. Larger target, nontarget, or prescription volumes are associated with increased risk of toxicity

  15. A study on the relationship dose-effect in case of gamma irradiation on leptospira

    International Nuclear Information System (INIS)

    Vasilevska, M.; Yankov, N.; Grigorov, L.

    1977-01-01

    The influence of gamma rays in doses 400, 2000, 10000 and 100000 rads upon two serotypes of leptospira has been examined. The development of the leptospira after the irradiation was traced upon a dark field of vision and by counting in Petroff-chamber. The morphological and functional changes (size, agility, reproduction and degree of lysis) have been determined and proved to be dependent on the dose. Differences in the indices have been observed in the pathogenic (L.Pomona (local strain Tsalapitsa)) and sapropyte (L.Thraciae (local strain Bulgaria 4)) serotypes, the saprophytic one being more resistant. The age of the culture was significant for the degree of the observed changes. Regarding the eventual practical use of the present study for obtaining killed leptospira antigens doses of 10000 and 100000 rad which are dependent of the age and the pathogenicity of the culture might be taken into consideration. (author)

  16. Sterilization of boll weevil pupae with fractionated doses of gamma irradiation

    International Nuclear Information System (INIS)

    Haynes, J.W.; Mitlin, N.; Davich, T.B.; Dawson, J.R.; McGovern, W.L.; McKibben, G.H.

    1977-01-01

    Fractionated doses of 6,250-8,000 rads of gamma irradiation administered to pupae of the boll weevil, Anthonomus grandis Boh., sexually sterilized both sexes. Mortality of males thus treated with 6,250 and 8,000 rads via fractionation was 14% and 27% respectively, by 5 days posttreatment compared with 46% mortality when an equivalent acute dose was administered to newly emerged adults. Pheromone production of males irradiated at 6,250 rads was one-third that of the control for the first 4 days, but equal that of the control during 5-11 days posttreatment. This procedure lends itself to the large-scale sterilization of weevils needed in an eradication program. This technique is applicable to other insects that are highly susceptible to acute doses

  17. Calculation of the gamma-dose rate from a continuously emitted plume

    International Nuclear Information System (INIS)

    Huebschmann, W.; Papadopoulos, D.

    1975-06-01

    A computer model is presented which calculates the long term gamma dose rate caused by the radioactive off-gas continuously emitted from a stack. The statistical distribution of the wind direction and velocity and of the stability categories is taken into account. The emitted activity, distributed in the atmosphere according to this statistics, is assumed to be concentrated at the mesh points of a three-dimensional grid. The grid spacing and the integration limits determine the accuracy as well as the computer time needed. When calculating the dose rate in a given wind direction, the contribution of the activity emitted into the neighbouring sectors is evaluated. This influence is demonstrated in the results, which are calculated with a error below 3% and compared to the dose rate distribution curves of the submersion model and the model developed by K.J. Vogt. (orig.) [de

  18. Dose rate determinations in the Portuguese Gamma Irradiation Facility: Monte Carlo simulations and measurements

    International Nuclear Information System (INIS)

    Oliveira, C.; Salgado, J.; Ferro de Carvalho, A.

    2000-01-01

    A simulation study of the Portuguese Gamma Irradiation Facility, UTR, has been carried out using the MCNP code. The work focused on the optimisation of the dose distribution inside the irradiation cell, dose calculations inside irradiated samples and dose calculations in critical points for protection purposes. Calculations were carried out at points inside and outside the irradiation cell, where different behaviour was expected (distance from the source, radiation absorption and scattering in irradiator structure and walls). The contributions from source, irradiator structure, sample material, carriers, walls, ceiling and floor to the photon spectra and air kerma at those points are reported and discussed. Air kerma measurements were also carried out using an ionisation chamber. Good agreement was found between experimental and calculated air kermas. (author)

  19. Determination of the sterilizing gamma radiation dose of 60Co to ACANTHOSCELIDES OBTECTUS imagos (col. bruchidae)

    International Nuclear Information System (INIS)

    Arthur, V.; Wiendl, F.M.; Sgrillo, R.B.; Campanhola, C.

    1980-01-01

    This paper relates the results of experiments dealing with irradiation of adults of Acanthoscelides obtectus (Say, 1831). The insects were irradiated with doses of 0 (control), 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 and 20 krad gamma radiation of a 60 Co source. After irradiation, the adults were kept for observation on beans (Phaseolus vulgaris) var. Jalo, in a controlled environmen t chamber at 30 +- 1 0 C and 70 +- 5% relative humidity. Continuous weighing at weekly intervals was done 22 times, showing, by weight loss in percent, that the sterilizing dose for adults was 10,65 krad. It could also be observed that losses of less than 0,5% occured at 9 krad. For a possible employment on commercial scale, the ideal radiation dose for bean desinfestation would be 10 krad, after which no weight loss occurrence. (Author) [pt

  20. Studies on the effect of low dose gamma irradiation on the chemical, microbial quality and shelf life of squid

    International Nuclear Information System (INIS)

    Bojayanaik, Manjanaik; Naroth, Kavya; Shetty, Veena; Hiriyur, Somashekarappa

    2014-01-01

    The present investigation was carried out to study the combined effect of low dose gamma irradiation (1, 3 and 5 kGy) and storage at refrigeration (+4℃) and frozen (-18℃) temperatures, on the shelf life extension of fresh squid. The study was based on microbiological and physico-chemical changes occurring in the squid samples. The biochemical parameters such as total volatile base nitrogen and trimethyl amine nitrogen values for irradiated squid samples were significantly lower than non-irradiated samples at both storage temperatures and the rate of decrease was more pronounced in samples irradiated at the higher dose of 3 and 5 kGy (p<0.05). pH values of squid samples were affected by both irradiation dose and storage temperature (p<0.05). Total microbial load for non- irradiated (control) squid samples were higher than the respective irradiated samples at both storage temperatures. The results revealed that the combination of irradiation and low temperature storage resulted in a significant reduction of microbial growth and extend the shelf life of squid at refrigeration and frozen temperature to about 12 and 90 days respectively. (author)

  1. Characterization of Radiation Hardened Bipolar Linear Devices for High Total Dose Missions

    Science.gov (United States)

    McClure, Steven S.; Harris, Richard D.; Rax, Bernard G.; Thorbourn, Dennis O.

    2012-01-01

    Radiation hardened linear devices are characterized for performance in combined total dose and displacement damage environments for a mission scenario with a high radiation level. Performance at low and high dose rate for both biased and unbiased conditions is compared and the impact to hardness assurance methodology is discussed.

  2. Compendium of Current Total Ionizing Dose and Displacement Damage Results from NASA GSFC and NEPP

    Science.gov (United States)

    Topper, Alyson D.; Campola, Michael J.; Chen, Dakai; Casey, Megan C.; Yau, Ka-Yen; Label, Kenneth A.; Cochran, Donna J.; O'Bryan, Martha V.

    2017-01-01

    Total ionizing dose and displacement damage testing was performed to characterize and determine the suitability of candidate electronics for NASA space utilization. Devices tested include opto-electronics, digital, analog, linear bipolar devices, and hybrid devices.

  3. Recent Total Ionizing Dose and Displacement Damage Compendium of Candidate Electronics for NASA Space Systems

    Science.gov (United States)

    Cochran, Donna J.; Boutte, Alvin J.; Campola, Michael J.; Carts, Martin A.; Casey, Megan C.; Chen, Dakai; LaBel, Kenneth A.; Ladbury, Raymond L.; Lauenstein, Jean-Marie; Marshall, Cheryl J.; hide

    2011-01-01

    Vulnerability of a variety of candidate spacecraft electronics to total ionizing dose and displacement damage is studied. Devices tested include optoelectronics, digital, analog, linear bipolar devices, and hybrid devices.

  4. The Role of Electron Transport and Trapping in MOS Total-Dose Modeling

    International Nuclear Information System (INIS)

    Flament, O.; Fleetwood, D.M.; Leray, J.L.; Paillet, P.; Riewe, L.C.; Winokur, P.S.

    1999-01-01

    Deep and shallow electron traps form in irradiated thermal SiO 2 as a natural response to hole transport and trapping. The density and stability of these defects are discussed, as are their implications for total-dose modeling

  5. Total dose effects on the matching properties of deep submicron MOS transistors

    International Nuclear Information System (INIS)

    Wang Yuxin; Hu Rongbin; Li Ruzhang; Chen Guangbing; Fu Dongbing; Lu Wu

    2014-01-01

    Based on 0.18 μm MOS transistors, for the first time, the total dose effects on the matching properties of deep submicron MOS transistors are studied. The experimental results show that the total dose radiation magnifies the mismatch among identically designed MOS transistors. In our experiments, as the radiation total dose rises to 200 krad, the threshold voltage and drain current mismatch percentages of NMOS transistors increase from 0.55% and 1.4% before radiation to 17.4% and 13.5% after radiation, respectively. PMOS transistors seem to be resistant to radiation damage. For all the range of radiation total dose, the threshold voltage and drain current mismatch percentages of PMOS transistors keep under 0.5% and 2.72%, respectively. (semiconductor devices)

  6. Cosmic-ray contribution in measurement of environmental gamma-ray dose

    International Nuclear Information System (INIS)

    Nagaoka, Kazunori; Honda, Kouichirou; Miyano, Keiji

    1996-01-01

    Nowadays several kinds of dosimeters are being used for environmental gamma-ray monitoring. However the results measured by those instruments are not always in good agreement. It may be caused from the different characteristics of dosimeters. In particular the different responses of the instruments to cosmic-rays give significant influence on the results. Environmental radiation measurements at various altitudes on Mt. Fuji were carried out using a scintillation spectrometer with 3''φ spherical NaI(Tl), a pressurized ionization chamber (PIC), an air-equivalent ionization chamber (IC), thermoluminescence dosimeters (TLD), radiophotoluminescence glass dosimeters (RPLD) and NaI(Tl) scintillation survey meters so that the response characteristics of these instruments to cosmic-rays could be clarified. Cosmic-ray contributions for all instruments were correlated with counting rate over 3 MeV by the spectrometer. Each contribution can be estimated by measurement of the counting rate. Conversion factors (nGy/h/cpm) for IC, PIC, TLD, RPLD and NaI survey meters (TCS166 and TCS121C) were 0.33, 0.32, 0.25, 0.24, 0.06 and -0.01, respectively. Self-doses of these instruments were estimated by measurements at Nokogiriyama facilities of the Institute for Cosmic Ray Research, University of Tokyo. Self-doses for TLD and RPLD were approximately 6 nGy/h. The self dose effect should be taken into consideration in environmental dose measurements. These data are expected to be useful in estimating the cosmic-ray contribution and self-dose in the measurement of environmental gamma-ray dose. (author)

  7. Analysis of Surface Dose Refer to Distance between Beam Spoiler and Patient in Total Body Irradiation

    International Nuclear Information System (INIS)

    Choi, Jong Hwan; Kim, Jong Sik; Choi, Ji Min; Shin, Eun Hyuk; Song, Ki Won; Park, Young Hwan

    2007-01-01

    Total body irradiation is used to kill the total malignant cell and for immunosuppression component of preparatory regimens for bone-marrow restitution of patients. Beam spoiler is used to increase the dose to the superficial tissues. This paper finds the property of the distance between beam spoiler and patient. Set-up conditions are 6 MV-Xray, 300 MU, SAD = 400 cm, field size = 40 x 40 cm 2 . The parallel plate chamber located in surface, midpoint and exit of solid water phantom. The surface dose is measured while the distance between beam spoiler and patient is altered. Because it should be found proper distance. The solid water phantom is fixer and beam spoiler is moving. Central dose of phantom is 10.7 cGy and exit dose is 6.7 cGy. In case of distance of 50 cm to 60 cm between beam spoiler and solid water phantom, incidence dose is 14.58-14.92 cGy. Therefore, The surface dose was measured 99.4-101% with got near most to the prescription dose. In clinical case, distance between beam spoiler and patient affect surface dose. If once 50-60 cm of distance between beam spoiler and patient, surface dose of patient got near prescription dose. It would be taken distance between beam spoiler and patient into account in clinical therapy.

  8. Estimation of the dose distribution within, and total dose to, the body of an acutely overexposed person

    International Nuclear Information System (INIS)

    Beer, G.P. de; Feather, J.I.; Oude, A. de; Language, A.E.

    1981-01-01

    In a case of accidental overexposure of a person, it is important to obtain a reliable value of the whole body dose as well as of the dose distribution within the body. Any follow-up treatment based only on the clinical effects as and when they appear, may result in insufficient or even erroneous therapy. In this respect knowledge of total dose and its distribution within the body may be a valuable aid in deciding on the follow-up treatment, taking into account the latent nature of the clinical effects. The calculated whole body dose and its distribution within the body of a person overexposed to a 192 Ir radiography source, are compared to experimentally determined values. In both cases the calculated values prove to be of sufficient accuracy to serve as an aid in decisions on the follow-up treatment. (author)

  9. Natural terrestrial radiation exposure in Hong Kong. A survey on environmental gamma absorbed dose rate in air

    International Nuclear Information System (INIS)

    Wong, M.C.; Poon, H.T.; Chan, Y.K.; So, C.K.

    2000-01-01

    Hong Kong is a metropolitan city located on the southern coast of China with a population of some six million. About 90% of the population is concentrated in heavily built-up residential and commercial areas, which accounts for less than 50% of the total area in the territory. Hong Kong Observatory, 134A Nathan Road, Kowloon, Hong Kong, China. In order to understand the spatial variations in the environmental radiation levels in Hong Kong, the Hong Kong Observatory (HKO) in early 1999 conducted a study of the environmental gamma absorbed dose rate in air. The study combined data collected by the HKO radiation monitoring network (RMN) and data from a comprehensive territory-wide radiological survey conducted in January and February 1999. The RMN of ten stations each equipped with a Reuter-Stokes Model RSS-1013 HPIC has been in operation since 1987 to continuously monitor the environmental radiation levels over the territory as part of the emergency monitoring programme for response to nuclear accidents at a nearby nuclear power station. The terrestrial component of the environmental radiation field was estimated by subtracting from the measurements the cosmic contribution, which is determined to be about 39 nGy/h from measurements conducted over two large fresh water reservoirs. The RMN data with the long history was analysed to derive the seasonal variations in the environmental radiation levels. On average the environmental gamma absorbed dose rate in air in January and February is 1.03 times of the annual figure. This seasonal correction was applied to the results of the year 1999 survey. As the radiation field in the heavily built-up areas is enhanced by contribution from buildings, in the territory-wide survey measurements were made both in the open field and built-up areas. The territory of Hong Kong was divided into 42 grid boxes of 5 km x 5 km for open field and 61 grid boxes of 2.5 km x 2.5 km for built-up areas according to the population and land use. A

  10. Low-dose-rate total lymphoid irradiation: a new method of rapid immunosuppression

    International Nuclear Information System (INIS)

    Blum, J.E.; de Silva, S.M.; Rachman, D.B.; Order, S.E.

    1988-01-01

    Total Lymphoid Irradiation (TLI) has been successful in inducing immunosuppression in experimental and clinical applications. However, both the experimental and clinical utility of TLI are hampered by the prolonged treatment courses required (23 days in rats and 30-60 days in humans). Low-dose-rate TLI has the potential of reducing overall treatment time while achieving comparable immunosuppression. This study examines the immunosuppressive activity and treatment toxicity of conventional-dose-rate (23 days) vs low-dose-rate (2-7 days) TLI. Seven groups of Lewis rats were given TLI with 60Co. One group was treated at conventional-dose-rates (80-110 cGy/min) and received 3400 cGy in 17 fractions over 23 days. Six groups were treated at low-dose-rate (7 cGy/min) and received total doses of 800, 1200, 1800, 2400, 3000, and 3400 cGy over 2-7 days. Rats treated at conventional-dose-rates over 23 days and at low-dose-rate over 2-7 days tolerated radiation with minimal toxicity. The level of immunosuppression was tested using allogeneic (Brown-Norway) skin graft survival. Control animals retained allogeneic skin grafts for a mean of 14 days (range 8-21 days). Conventional-dose-rate treated animals (3400 cGy in 23 days) kept their grafts 60 days (range 50-66 days) (p less than .001). Low-dose-rate treated rats (800 to 3400 cGy total dose over 2-7 days) also had prolongation of allogeneic graft survival times following TLI with a dose-response curve established. The graft survival time for the 3400 cGy low-dose-rate group (66 days, range 52-78 days) was not significantly different from the 3400 cGy conventional-dose-rate group (p less than 0.10). When the total dose given was equivalent, low-dose-rate TLI demonstrated an advantage of reduced overall treatment time compared to conventional-dose-rate TLI (7 days vs. 23 days) with no increase in toxicity

  11. Gamma Radiation Dose from Radionuclides in Soil Samples of Udagamandalam (Ooty) in India

    International Nuclear Information System (INIS)

    Selvasekarapandian, S.; Muguntha Manikandan, N.; Sivakumar, R.; Balasubramanian, S.; Venkatesan, T.; Meenakshisundram, V.; Ragunath, V.M.; Gajendran, V.

    1999-01-01

    The systematic study of background radiation and the distribution of radionuclides in the environment of Udagamandalam in Nilgiri District of Tamil Nadu has been made. Gamma spectrometric analysis of the soil samples of this area has been carried out. The measured gamma dose in air is in the range 31.6 nGy.h -1 - 221.1 nGy.h -1 with a mean value 121.8 nGy.h -1 . The average activities of the 232 Th series, 238 U series and 40 K in soil samples are 114.6 ± 52.5 Bq.kg -1 , 43.2 ± 23.2 Bq.kg -1 and 274.6 ± 86.7 Bq.kg -1 respectively. (author)

  12. Impact of radiation technique, radiation fraction dose, and total cisplatin dose on hearing. Retrospective analysis of 29 medulloblastoma patients

    International Nuclear Information System (INIS)

    Scobioala, Sergiu; Kittel, Christopher; Ebrahimi, Fatemeh; Wolters, Heidi; Eich, Hans Theodor; Parfitt, Ross; Matulat, Peter; Am Zehnhoff-Dinnesen, Antoinette

    2017-01-01

    To analyze the incidence and degree of sensorineural hearing loss (SNHL) resulting from different radiation techniques, fractionation dose, mean cochlear radiation dose (D mean ), and total cisplatin dose. In all, 29 children with medulloblastoma (58 ears) with subclinical pretreatment hearing thresholds participated. Radiotherapy (RT) and cisplatin had been applied sequentially according to the HIT MED Guidance. Audiological outcomes up to the latest follow-up (median 2.6 years) were compared. Bilateral high-frequency SNHL was observed in 26 patients (90%). No significant differences were found in mean hearing threshold between left and right ears at any frequency. A significantly better audiological outcome (p < 0.05) was found after tomotherapy at the 6 kHz bone-conduction threshold (BCT) and left-sided 8 kHz air-conduction threshold (ACT) than after a combined radiotherapy technique (CT). Fraction dose was not found to have any impact on the incidence, degree, and time-to-onset of SNHL. Patients treated with CT had a greater risk of SNHL at high frequencies than tomotherapy patients even though D mean was similar. Increase in severity of SNHL was seen when the total cisplatin dose reached above 210 mg/m 2 , with the highest abnormal level found 8-12 months after RT regardless of radiation technique or fraction dose. The cochlear radiation dose should be kept as low as possible in patients who receive simultaneous cisplatin-based chemotherapy. The risk of clinically relevant HL was shown when D mean exceeds 45 Gy independent of radiation technique or radiation regime. Cisplatin ototoxicity was shown to have a dose-dependent effect on bilateral SNHL, which was more pronounced in higher frequencies. (orig.) [de

  13. Investigation of intracranial peripheral dose arising from the treatment of large lesions with Leksell GammaKnife Perfexion.

    Science.gov (United States)

    Ruschin, Mark; Nordström, Håkan; Kjäll, Per; Cho, Young-Bin; Jaffray, David

    2009-06-01

    This investigation involves quantifying the extent of intracranial peripheral dose arising from simulated targets situated in the skull-base or upper-spine region using the Leksell GammaKnife Perfexion treatment unit. For each of three spherical target volumes--denoted as Vs (4 cm3), VM (18 cm3), and VL (60 cm3)--three treatment plans were manually generated, one for each of the three collimator sizes--4, 8, and 16 mm. Each of the plans was delivered to a spherical dosimetry phantom with an insert containing EBT Gafchromic film. The total dose at 70 mm from the targets' edges, %D(70 mm), was measured as a function of elevation angle and expressed as a percentage of the prescription dose. The film insert was placed centered in the median sagittal plane (Leksell X = 100) and %D(70 mm) was measured for the angular range from 0 degree (superior/along Z axis) to 90 degrees (anterior/along Y axis). For a given collimator i, the irradiation time ti to treat a spherical target of volume V using the 50% isodose line was observed to follow a power-law relationship of the form ti = Ai(V/ Vi)n where Ai was the maximum dose divided by collimator dose rate and Vi was the volume encompassed by the 50% isodose line for a single shot. The mean value of n was 0.61 (range: 0.61-0.62). Along the superior (Z) direction (angle=0 degree) and up to angles of around 30 degrees, the %D(70 mm) was always highest for the 4 mm plans, followed by the 8 mm, followed by the 16 mm. In this angular range, the maximum measured %D(70 mm) was 1.7% of the prescription dose. The intracranial peripheral dose along the superior direction (combined scatter and leakage dose) resulting from irradiation of upper-spine or base-of-skull lesions is measured to be less than 2% of the prescription dose, even for very large (60 cm3) targets. The results of this study indicate that, for a given target volume, treatment plans consisting of only 4 mm shots yield larger peripheral dose in the superior direction than 8

  14. Two Dimensional Verification of the Dose Distribution of Gamma Knife Model C using Monte Carlo Simulation with a Virtual Source

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae-Hoon; Kim, Yong-Kyun; Lee, Cheol Ho; Son, Jaebum; Lee, Sangmin; Kim, Dong Geon; Choi, Joonbum; Jang, Jae Yeong [Hanyang University, Seoul (Korea, Republic of); Chung, Hyun-Tai [Seoul National University, Seoul (Korea, Republic of)

    2016-10-15

    Gamma Knife model C contains 201 {sup 60}Co sources located on a spherical surface, so that each beam is concentrated on the center of the sphere. In the last work, we simulated the Gamma Knife model C through Monte Carlo simulation code using Geant4. Instead of 201 multi-collimation system, we made one single collimation system that collects source parameter passing through the collimator helmet. Using the virtual source, we drastically reduced the simulation time to transport 201 gamma circle beams to the target. Gamma index has been widely used to compare two dose distributions in cancer radiotherapy. Gamma index pass rates were compared in two calculated results using the virtual source method and the original method and measured results obtained using radiocrhomic films. A virtual source method significantly reduces simulation time of a Gamma Knife Model C and provides equivalent absorbed dose distributions as that of the original method showing Gamma Index pass rate close to 100% under 1mm/3% criteria. On the other hand, it gives a little narrow dose distribution compared to the film measurement showing Gamma Index pass rate of 94%. More accurate and sophisticated examination on the accuracy of the simulation and film measurement is necessary.

  15. Neutron-gamma flux and dose calculations for feasibility study of DISCOMS instrumentation in case of severe accident in a GEN 3 reactor

    Science.gov (United States)

    Brovchenko, Mariya; Duhamel, Isabelle; Dechenaux, Benjamin

    2017-09-01

    The present paper presents the study carried out in the frame of the DISCOMS project, which stands for "DIstributed Sensing for COrium Monitoring and Safety". This study concerns the calculation of the neutron and gamma radiations received by the considered instrumentation during the normal reactor operation as well as in case of a severe accident for the EPR reactor, outside the reactor pressure vessel and in the containment basemat. This paper summarizes the methods and hypotheses used for the particle transport simulation outside the vessel during normal reactor operation. The results of the simulations are then presented including the responses for distributed Optical Fiber Sensors (OFS), such as the gamma dose and the fast neutron fluence, and for Self Powered Neutron Detectors (SPNDs), namely the neutron and gamma spectra. Same responses are also evaluated for severe accident situations in order to design the SPNDs being sensitive to the both types of received neutron-gamma radiation. By contrast, fibers, involved as transducers in distributed OFS have to resist to the total radiation gamma dose and neutron fluence received during normal operation and the severe accident.

  16. Dose-modifying factors for skin ulceration in mouse legs exposed to gamma rays

    International Nuclear Information System (INIS)

    Masuda, Kouji; Miyoshi, Makoto; Uehara, Satoru; Omagari, Junichi; Withers, H.R.

    1996-01-01

    To assess the dose-modifying factors for skin ulceration, the hind legs of mice were irradiated using gamma-rays of various doses in single exposures. The skin ulceration began to occur 2 months after irradiation, after early skin reactions such as wet desquamation, had healed completely. No new skin ulceration was observed more than 8 months after irradiation even though the observations were continued until 12 months post-irradiation. The ulceration dose 50 (UD50), a dose required to produce skin ulceration in from 2 to 8 months in 50% of the tested animals, was calculated for each treatment schedule. The preliminary shaving procedure reduced the UD50 dose to 0.85 that of the untreated controls. The ventral aspect of the hind leg was more radioresistant to single-dose irradiation than was to the dorsal aspect. The UD50 for the ventral aspect was 1.29 times that for the dorsal aspect when the skin had been previously shaved, and 1.46 times that for the unshaved control legs. The UD50 was 7 and 14% larger when mice were kept in the dorsal rather than the abdominal position during irradiation, for the preliminarily shaved and unshaved skin, respectively. (author)

  17. Effect of low doses gamma irradiation on the yield of cucumber grown under field and protected conditions

    International Nuclear Information System (INIS)

    Al-Oudat, M.; Ayyoubi, Z.; Razzouk, A.K.

    1994-08-01

    Presowing seed irradiation has been reported as a useful application of radiation in agriculture to stimulate growth and increase the yield of certain field crops. To the best of our knowledge the feasibility of this treatment has not yet been tested on cucumber in Syria. Our experiments were carried out in field and greenhouse conditions. Two experiments were under field conditions, the first at Der-El-Hajar (Unfertile soil with high mean temperature), and the second at Khan-El-Sheeh (fertile soil with lower mean temperature), in these two experiments local variety was used. The third experiment was under greenhouse condition using two varieties, F1 Hybrid Taha and Sahara. Samples of air dried seeds of previous season were irradiated by gamma rays from a 60 Co source using doses of 2, 3, 4, 5, 7.5, 10 and 15 Gy at dose rate of 0.8 Gy/min. Seeds were planted after two days from irradiation and replicated 4 times. The data revealed that gamma irradiation at interval doses of 3-7.5 Gy led to increase the number of leaves and plant height. The radiation treatment had stimulating effects on earliness especially for doses of 4-7.5 Gy in Khan-El-Sheeh (14-31%) and 7.5 Gy in Der-El-Hajar (28%). In greenhouse dose of 2-4 Gy and 2-7.5 Gy stimulate the earliness by 12-36% and 11-18% for Sahara and Taha varieties respectively. The results of total yield (as well as fruits number) were significantly increased when doses of 7.5 Gy in Der-El-Hajar (25%) and 4 and 5 Gy in Khan-El-Sheeh (28-30%). The optimum doses in greenhouse condition ranged between 32-4 Gy for Taha var. and 4-5 Gy for Sahara var., and the percentage of increment was 19 and 16% respectively. In view of all above mentioned results, the use of radiation might be recommended as easy tool for seed treatment to stimulate earliness and increase productivity of cucumber. (author). 17 refs., 23 tabs

  18. Dose response relationship for unstable-type chromosome aberration rate of spleen cells from mice continuously exposed to low-dose-rate gamma-rays

    International Nuclear Information System (INIS)

    Tanaka, Kimio; Khoda, Atsushi; Ichinohe, Kazuaki; Oghiso, Yoichi

    2007-01-01

    It has been reported that people who are chronically exposed to radiation such as nuclear facility workers and medical radiologists have slightly higher incidences of chromosome aberrations than non-exposed people. However, chronological changes of chromosome aberration rates related to accumulated doses and dose-rates for low dose-rate radiation exposures have not been well studied. Precise analyses of human populations are quite limited because confounding factors influence the results. For this reason, animal experiments are important for analyses. Mice were continuously exposed to gamma-rays at 400 mGy/22 hr/day for 10 days, 20 mGy/22 hr/day for about 400 days, and 1 mGy/22 hr/day for about 615 days under SPF conditions. Chronological changes of unstable-type chromosome aberration rates of spleen cells were observed along with accumulated doses at the middle dose rate and the two low-dose rates by conventional Giemsa-staining method. Aberrations such as dicentric chromosome, ring chromosome and fragment increased in a two-phase manner within 0-1.2 Gy and 2-8 Gy at 20 mGy/22 hr/day. They slightly increased up to 0.5 Gy at 1 mGy/22 hr/day. Aberration rates for 1, 2, 8 Gy at the 20 mGy/22 hr/day and for 0.5 Gy at 1 mGy/22 hr/day were 5.1, 9.6, 13.9 and 2.2 times higher than those of age-matched, non-irradiated control mice, respectively. Chromosome aberration rates at 400 mGy/22 hr/day were 2.7 times higher than that of 20 mGy/22 hr/day for the same total dose of 1.2 Gy. The results that unstable-type chromosome aberrations increased with accumulated dose of the low-dose rate radiation will be important to establish biological dosimetry for people who are chronically exposed to radiation. (author)

  19. Pretreatment with low-dose gamma irradiation enhances tolerance to the stress of cadmium and lead in Arabidopsis thaliana seedlings.

    Science.gov (United States)

    Qi, Wencai; Zhang, Liang; Wang, Lin; Xu, Hangbo; Jin, Qingsheng; Jiao, Zhen

    2015-05-01

    Heavy metals are important environmental pollutants with negative impact on plant growth and development. To investigate the physiological and molecular mechanisms of heavy metal stress mitigated by low-dose gamma irradiation, the dry seeds of Arabidopsis thaliana were exposed to a Cobalt-60 gamma source at doses ranging from 25 to 150Gy before being subjected to 75µM CdCl2 or 500µM Pb(NO3)2. Then, the growth parameters, and physiological and molecular changes were determined in response to gamma irradiation. Our results showed that 50-Gy gamma irradiation gave maximal beneficial effects on the germination index and root length in response to cadmium/lead stress in Arabidopsis seedlings. The hydrogen peroxide and malondialdehyde contents in seedlings irradiated with 50-Gy gamma rays under stress were significantly lower than those of controls. The antioxidant enzyme activities and proline levels in the irradiated seedlings were significantly increased compared with the controls. Furthermore, a transcriptional expression analysis of selected genes revealed that some components of heavy metal detoxification were stimulated by low-dose gamma irradiation under cadmium/lead stress. Our results suggest that low-dose gamma irradiation alleviates heavy metal stress, probably by modulating the physiological responses and gene expression levels related to heavy metal resistance in Arabidopsis seedlings. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Determination of the distal dose edge in a human phantom by measuring the prompt gamma distribution: a Monte Carlo study

    Energy Technology Data Exchange (ETDEWEB)

    Min, Chul Hee; Lee, Han Rim; Yeom, Yeon Su; Cho, Sung Koo; Kim, Chan Hyeong [Hanyang University, Seoul (Korea, Republic of)

    2010-06-15

    The close relationship between the proton dose distribution and the distribution of prompt gammas generated by proton-induced nuclear interactions along the path of protons in a water phantom was demonstrated by means of both Monte Carlo simulations and limited experiments. In order to test the clinical applicability of the method for determining the distal dose edge in a human body, a human voxel model, constructed based on a body-composition-approximated physical phantom, was used, after which the MCNPX code was used to analyze the energy spectra and the prompt