WorldWideScience

Sample records for total dose equivalent

  1. Dose equivalent distributions in the AAEC total body nitrogen facility

    International Nuclear Information System (INIS)

    Allen, B.J.; Bailey, G.M.; McGregor, B.J.

    1985-01-01

    The incident neutron dose equivalent in the AAEC total body nitrogen facility is measured by a calibrated remmeter. Dose equivalent rates and distributions are calculated by Monte Carlo techniques which take account of the secondary neutron flux from the collimator. Experiment and calculation are found to be in satisfactory agreement. The effective dose equivalent per exposure is determined by weighting organ doses, and the potential detriment per exposure is calculated from ICRP risk factors

  2. Total effective dose equivalent associated with fixed uranium surface contamination

    International Nuclear Information System (INIS)

    Bogard, J.S.; Hamm, R.N.; Ashley, J.C.; Turner, J.E.; England, C.A.; Swenson, D.E.; Brown, K.S.

    1997-04-01

    This report provides the technical basis for establishing a uranium fixed-contamination action level, a fixed uranium surface contamination level exceeding the total radioactivity values of Appendix D of Title 10, Code of Federal Regulations, part 835 (10CFR835), but below which the monitoring, posting, and control requirements for Radiological Areas are not required for the area of the contamination. An area of fixed uranium contamination between 1,000 dpm/100 cm 2 and that level corresponding to an annual total effective dose equivalent (TEDE) of 100 mrem requires only routine monitoring, posting to alert personnel of the contamination, and administrative control. The more extensive requirements for monitoring, posting, and control designated by 10CFR835 for Radiological Areas do not have to be applied for these intermediate fixed-contamination levels

  3. Application of combined TLD and CR-39 PNTD method for measurement of total dose and dose equivalent on ISS

    International Nuclear Information System (INIS)

    Benton, E.R.; Deme, S.; Apathy, I.

    2006-01-01

    To date, no single passive detector has been found that measures dose equivalent from ionizing radiation exposure in low-Earth orbit. We have developed the I.S.S. Passive Dosimetry System (P.D.S.), utilizing a combination of TLD in the form of the self-contained Pille TLD system and stacks of CR-39 plastic nuclear track detector (P.N.T.D.) oriented in three mutually orthogonal directions, to measure total dose and dose equivalent aboard the International Space Station (I.S.S.). The Pille TLD system, consisting on an on board reader and a large number of Ca 2 SO 4 :Dy TLD cells, is used to measure absorbed dose. The Pille TLD cells are read out and annealed by the I.S.S. crew on orbit, such that dose information for any time period or condition, e.g. for E.V.A. or following a solar particle event, is immediately available. Near-tissue equivalent CR-39 P.N.T.D. provides Let spectrum, dose, and dose equivalent from charged particles of LET ∞ H 2 O ≥ 10 keV/μm, including the secondaries produced in interactions with high-energy neutrons. Dose information from CR-39 P.N.T.D. is used to correct the absorbed dose component ≥ 10 keV/μm measured in TLD to obtain total dose. Dose equivalent from CR-39 P.N.T.D. is combined with the dose component <10 keV/μm measured in TLD to obtain total dose equivalent. Dose rates ranging from 165 to 250 μGy/day and dose equivalent rates ranging from 340 to 450 μSv/day were measured aboard I.S.S. during the Expedition 2 mission in 2001. Results from the P.D.S. are consistent with those from other passive detectors tested as part of the ground-based I.C.C.H.I.B.A.N. intercomparison of space radiation dosimeters. (authors)

  4. Effective dose equivalent

    International Nuclear Information System (INIS)

    Huyskens, C.J.; Passchier, W.F.

    1988-01-01

    The effective dose equivalent is a quantity which is used in the daily practice of radiation protection as well as in the radiation hygienic rules as measure for the health risks. In this contribution it is worked out upon which assumptions this quantity is based and in which cases the effective dose equivalent can be used more or less well. (H.W.)

  5. Total Ambient Dose Equivalent Buildup Factor Determination for Nbs04 Concrete.

    Science.gov (United States)

    Duckic, Paulina; Hayes, Robert B

    2018-06-01

    Buildup factors are dimensionless multiplicative factors required by the point kernel method to account for scattered radiation through a shielding material. The accuracy of the point kernel method is strongly affected by the correspondence of analyzed parameters to experimental configurations, which is attempted to be simplified here. The point kernel method has not been found to have widespread practical use for neutron shielding calculations due to the complex neutron transport behavior through shielding materials (i.e. the variety of interaction mechanisms that neutrons may undergo while traversing the shield) as well as non-linear neutron total cross section energy dependence. In this work, total ambient dose buildup factors for NBS04 concrete are calculated in terms of neutron and secondary gamma ray transmission factors. The neutron and secondary gamma ray transmission factors are calculated using MCNP6™ code with updated cross sections. Both transmission factors and buildup factors are given in a tabulated form. Practical use of neutron transmission and buildup factors warrants rigorously calculated results with all associated uncertainties. In this work, sensitivity analysis of neutron transmission factors and total buildup factors with varying water content has been conducted. The analysis showed significant impact of varying water content in concrete on both neutron transmission factors and total buildup factors. Finally, support vector regression, a machine learning technique, has been engaged to make a model based on the calculated data for calculation of the buildup factors. The developed model can predict most of the data with 20% relative error.

  6. New recommendations for dose equivalent

    International Nuclear Information System (INIS)

    Bengtsson, G.

    1985-01-01

    In its report 39, the International Commission on Radiation Units and Measurements (ICRU), has defined four new quantities for the determination of dose equivalents from external sources: the ambient dose equivalent, the directional dose equivalent, the individual dose equivalent, penetrating and the individual dose equivalent, superficial. The rationale behind these concepts and their practical application are discussed. Reference is made to numerical values of these quantities which will be the subject of a coming publication from the International Commission on Radiological Protection, ICRP. (Author)

  7. Pocket total dose meter

    International Nuclear Information System (INIS)

    Brackenbush, L.W.; Endres, G.W.R.

    1984-10-01

    Laboratory measurements have demonstrated that it is possible to simultaneously measure absorbed dose and dose equivalent using a single tissue equivalent proportional counter. Small, pocket sized instruments are being developed to determine dose equivalent as the worker is exposed to mixed field radiation. This paper describes the electronic circuitry and computer algorithms used to determine dose equivalent in these devices

  8. What is correct: equivalent dose or dose equivalent

    International Nuclear Information System (INIS)

    Franic, Z.

    1994-01-01

    In Croatian language some physical quantities in radiation protection dosimetry have not precise names. Consequently, in practice either terms in English or mathematical formulas are used. The situation is even worse since the Croatian language only a limited number of textbooks, reference books and other papers are available. This paper compares the concept of ''dose equivalent'' as outlined in International Commission on Radiological Protection (ICRP) recommendations No. 26 and newest, conceptually different concept of ''equivalent dose'' which is introduced in ICRP 60. It was found out that Croatian terminology is both not uniform and unprecise. For the term ''dose equivalent'' was, under influence of Russian and Serbian languages, often used as term ''equivalent dose'' even from the point of view of ICRP 26 recommendations, which was not justified. Unfortunately, even now, in Croatia the legal unit still ''dose equivalent'' defined as in ICRP 26, but the term used for it is ''equivalent dose''. Therefore, in Croatian legislation a modified set of quantities introduced in ICRP 60, should be incorporated as soon as possible

  9. Total dose meter development

    International Nuclear Information System (INIS)

    Brackenbush, L.W.

    1986-09-01

    This report describes an alarming ''pocket'' monitor/dosimeter, based on a tissue-equivalent proportional counter, that measure both neutron and gamma dose and determines dose equivalent for the mixed radiation field. This report details the operation of the device and provides information on: the necessity for a device to measure dose equivalent in mixed radiation fields; the mathematical theory required to determine dose equivalent from tissue equivalent proportional; the detailed electronic circuits required; the algorithms required in the microprocessor used to calculate dose equivalent; the features of the instrument; program accomplishments and future plans

  10. Total external dose equivalent and effective dose derived to the Piedmont population in the period 30 Apr 1986 - 22 Sep 1987

    International Nuclear Information System (INIS)

    Cortissone, C.; Giacomelli, R.; Spezzano, P.; Porzio, L.

    1988-01-01

    Some dosimetric evaluations concerning the population of the Piemonte Region, obtained after the measurements made following the Chernobyl accident, are reported. The individual effective mean dose equivalent derived from the exposure and intake in the period April 30, 1986 - September 22, 1987, is about 0.50 mSv

  11. Mixed field dose equivalent measuring instruments

    International Nuclear Information System (INIS)

    Brackenbush, L.W.; McDonald, J.C.; Endres, G.W.R.; Quam, W.

    1985-01-01

    In the past, separate instruments have been used to monitor dose equivalent from neutrons and gamma rays. It has been demonstrated that it is now possible to measure simultaneously neutron and gamma dose with a single instrument, the tissue equivalent proportional counter (TEPC). With appropriate algorithms dose equivalent can also be determined from the TEPC. A simple ''pocket rem meter'' for measuring neutron dose equivalent has already been developed. Improved algorithms for determining dose equivalent for mixed fields are presented. (author)

  12. Dose sculpting with generalized equivalent uniform dose

    International Nuclear Information System (INIS)

    Wu Qiuwen; Djajaputra, David; Liu, Helen H.; Dong Lei; Mohan, Radhe; Wu, Yan

    2005-01-01

    With intensity-modulated radiotherapy (IMRT), a variety of user-defined dose distribution can be produced using inverse planning. The generalized equivalent uniform dose (gEUD) has been used in IMRT optimization as an alternative objective function to the conventional dose-volume-based criteria. The purpose of this study was to investigate the effectiveness of gEUD optimization to fine tune the dose distributions of IMRT plans. We analyzed the effect of gEUD-based optimization parameters on plan quality. The objective was to determine whether dose distribution to selected structures could be improved using gEUD optimization without adversely altering the doses delivered to other structures, as in sculpting. We hypothesized that by carefully defining gEUD parameters (EUD 0 and n) based on the current dose distributions, the optimization system could be instructed to search for alternative solutions in the neighborhood, and we could maintain the dose distributions for structures already satisfactory and improve dose for structures that need enhancement. We started with an already acceptable IMRT plan optimized with any objective function. The dose distribution was analyzed first. For structures that dose should not be changed, a higher value of n was used and EUD 0 was set slightly higher/lower than the EUD value at the current dose distribution for critical structures/targets. For structures that needed improvement in dose, a higher to medium value of n was used, and EUD 0 was set to the EUD value or slightly lower/higher for the critical structure/target at the current dose distribution. We evaluated this method in one clinical case each of head and neck, lung and prostate cancer. Dose volume histograms, isodose distributions, and relevant tolerance doses for critical structures were used for the assessment. We found that by adjusting gEUD optimization parameters, the dose distribution could be improved with only a few iterations. A larger value of n could lead to

  13. Calculation methods for determining dose equivalent

    International Nuclear Information System (INIS)

    Endres, G.W.R.; Tanner, J.E.; Scherpelz, R.I.; Hadlock, D.E.

    1987-11-01

    A series of calculations of neutron fluence as a function of energy in an anthropomorphic phantom was performed to develop a system for determining effective dose equivalent for external radiation sources. Critical organ dose equivalents are calculated and effective dose equivalents are determined using ICRP-26 [1] methods. Quality factors based on both present definitions and ICRP-40 definitions are used in the analysis. The results of these calculations are presented and discussed. The effective dose equivalent determined using ICRP-26 methods is significantly smaller than the dose equivalent determined by traditional methods. No existing personnel dosimeter or health physics instrument can determine effective dose equivalent. At the present time, the conversion of dosimeter response to dose equivalent is based on calculations for maximal or ''cap'' values using homogeneous spherical or cylindrical phantoms. The evaluated dose equivalent is, therefore, a poor approximation of the effective dose equivalent as defined by ICRP Publication 26. 3 refs., 2 figs., 1 tab

  14. Editorial: New operational dose equivalent quantities

    International Nuclear Information System (INIS)

    Harvey, J.R.

    1985-01-01

    The ICRU Report 39 entitled ''Determination of Dose Equivalents Resulting from External Radiation Sources'' is briefly discussed. Four new operational dose equivalent quantities have been recommended in ICRU 39. The 'ambient dose equivalent' and the 'directional dose equivalent' are applicable to environmental monitoring and the 'individual dose equivalent, penetrating' and the 'individual dose equivalent, superficial' are applicable to individual monitoring. The quantities should meet the needs of day-to-day operational practice, while being acceptable to those concerned with metrological precision, and at the same time be used to give effective control consistent with current perceptions of the risks associated with exposure to ionizing radiations. (U.K.)

  15. The definition of the individual dose equivalent

    International Nuclear Information System (INIS)

    Ehrlich, Margarete

    1986-01-01

    A brief note examines the choice of the present definition of the individual dose equivalent, the new operational dosimetry quantity for external exposure. The consequences of the use of the individual dose equivalent and the danger facing the individual dose equivalent, as currently defined, are briefly discussed. (UK)

  16. Determination of dose equivalent with tissue-equivalent proportional counters

    International Nuclear Information System (INIS)

    Dietze, G.; Schuhmacher, H.; Menzel, H.G.

    1989-01-01

    Low pressure tissue-equivalent proportional counters (TEPC) are instruments based on the cavity chamber principle and provide spectral information on the energy loss of single charged particles crossing the cavity. Hence such detectors measure absorbed dose or kerma and are able to provide estimates on radiation quality. During recent years TEPC based instruments have been developed for radiation protection applications in photon and neutron fields. This was mainly based on the expectation that the energy dependence of their dose equivalent response is smaller than that of other instruments in use. Recently, such instruments have been investigated by intercomparison measurements in various neutron and photon fields. Although their principles of measurements are more closely related to the definition of dose equivalent quantities than those of other existing dosemeters, there are distinct differences and limitations with respect to the irradiation geometry and the determination of the quality factor. The application of such instruments for measuring ambient dose equivalent is discussed. (author)

  17. Calculation methods for determining dose equivalent

    International Nuclear Information System (INIS)

    Endres, G.W.R.; Tanner, J.E.; Scherpelz, R.I.; Hadlock, D.E.

    1988-01-01

    A series of calculations of neutron fluence as a function of energy in an anthropomorphic phantom was performed to develop a system for determining effective dose equivalent for external radiation sources. critical organ dose equivalents are calculated and effective dose equivalents are determined using ICRP-26 methods. Quality factors based on both present definitions and ICRP-40 definitions are used in the analysis. The results of these calculations are presented and discussed

  18. On uncertainties in definition of dose equivalent

    International Nuclear Information System (INIS)

    Oda, Keiji

    1995-01-01

    The author has entertained always the doubt that in a neutron field, if the measured value of the absorbed dose with a tissue equivalent ionization chamber is 1.02±0.01 mGy, may the dose equivalent be taken as 10.2±0.1 mSv. Should it be 10.2 or 11, but the author considers it is 10 or 20. Even if effort is exerted for the precision measurement of absorbed dose, if the coefficient being multiplied to it is not precise, it is meaningless. [Absorbed dose] x [Radiation quality fctor] = [Dose equivalent] seems peculiar. How accurately can dose equivalent be evaluated ? The descriptions related to uncertainties in the publications of ICRU and ICRP are introduced, which are related to radiation quality factor, the accuracy of measuring dose equivalent and so on. Dose equivalent shows the criterion for the degree of risk, or it is considered only as a controlling quantity. The description in the ICRU report 1973 related to dose equivalent and its unit is cited. It was concluded that dose equivalent can be considered only as the absorbed dose being multiplied by a dimensionless factor. The author presented the questions. (K.I.)

  19. Mathematical simulation of biologically equivalent doses for LDR-HDR

    International Nuclear Information System (INIS)

    Slosarek, K.; Zajusz, A.

    1996-01-01

    Based on the LQ model examples of biologically equivalent doses LDR, HDR and external beams were calculated. The biologically equivalent doses for LDR were calculated by appending to the LQ model the corrector for the time of repair of radiation sublethal damages. For radiation continuously delivered at a low dose rate the influence of sublethal damage repair time changes on biologically equivalent doses were analysed. For fractionated treatment with high dose rate the biologically equivalent doses were calculated by adding to the LQ model the formula of accelerated repopulation. For total biologically equivalent dose calculation for combine LDR-HDR-Tele irradiation examples are presented with the use of different parameters of the time of repair of sublethal damages and accelerated repopulation. The calculations performed show, that the same biologically equivalent doses can be obtained for different parameters of cell kinetics changes during radiation treatment. It also shows, that during biologically equivalent dose calculations for different radiotherapy schedules, ignorance of cell kinetics parameters can lead to relevant errors

  20. A neutron dose equivalent meter at CAEP

    International Nuclear Information System (INIS)

    Tian Shihai; Lu Yan; Wang Heyi; Yuan Yonggang; Chen Xu

    2012-01-01

    The measurement of neutron dose equivalent has been a widespread need in industry and research. In this paper, aimed at improving the accuracy of neutron dose equivalent meter: a neutron dose counter is simulated with MCNP5, and the energy response curve is optimized. The results show that the energy response factor is from 0.2 to 1.8 for neutrons in the energy range of 2.53×10 -8 MeV to 10 MeV Compared with other related meters, it turns that the design of this meter is right. (authors)

  1. Measurements of the personal dose equivalent

    International Nuclear Information System (INIS)

    Scarlat, F.; Scarisoreanu, A.; Badita, E.; Oane, M.; Mitru, E.

    2008-01-01

    Full text: The paper presents the results of measurements related to the personal dose equivalent in the rooms adjacent to NILPRP 7 MeV linear accelerator, by means of the secondary standard chamber T34035 Hp(10). The chamber was calibrated by PTB at S- 137 Cs (E av = 661.6 keV, T 1/2 11050 days) and has N H = 3.17x10 6 Sv/C calibration factor for the personal dose equivalent, Hp(10), at a depth of 10 mm in climatic reference conditions. The measurements were made for the two operation mode of the 7 MeV linac: electrons and bremsstrahlung

  2. Thermoluminescence dosemeter for personal dose equivalent assessment

    International Nuclear Information System (INIS)

    Silva, T.A. da; Rosa, L.A.R. da; Campos, L.L.

    1995-01-01

    The possibility was investigated of utilising a Brazilian thermoluminescence individual dosemeter, usually calibrated in terms of photon dose equivalent, for the assessment of the personal dose equivalent, H p (d), at depths of 0.07 and 10 mm. The dosemeter uses four CaSO 4 :Dy thermoluminescent detectors, between different filters, as the sensitive materials. It was calibrated in gamma and X radiation fields in the energy range from 17 to 1250 keV. Linear combinations of the responses of three detectors, in this energy range, allow the evaluation of H p (0.07) and H p (10), for radiation incidence angles varying from 0 to 60 degrees, with an accuracy better than 35%. The method is not applicable to mixed photon-beta fields. (author)

  3. Development of air equivalent gamma dose monitor

    International Nuclear Information System (INIS)

    Alex, Mary; Bhattacharya, Sadhana; Karpagam, R.; Prasad, D.N.; Jakati, R.K.; Mukhopadhyay, P.K.; Patil, R.K.

    2010-01-01

    The paper describes design and development of air equivalent gamma absorbed dose monitor. The monitor has gamma sensitivity of 84 pA/R/h for 60 Co source. The characterization of the monitor has been done to get energy dependence on gamma sensitivity and response to gamma radiation field from 1 R/hr to 5000 R/hr. The gamma sensitivity in the energy range of 0.06 to 1.25MeV relative to 137 Cs nuclide was within 2.5%. The linearity of the monitor response as a function of gamma field from 10 R/h to 3.8 kR/h was within 6%. The monitor has been designed for its application in harsh environment. It has been successfully qualified to meet environmental requirements of shock. (author)

  4. 10 CFR 835.203 - Combining internal and external equivalent doses.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Combining internal and external equivalent doses. 835.203 Section 835.203 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Standards for Internal and External Exposure § 835.203 Combining internal and external equivalent doses. (a) The total effective dose...

  5. Collective effective dose equivalent, population doses and risk estimates from occupational exposures in Japan

    International Nuclear Information System (INIS)

    Maruyama, Takashi; Nishizawa, Kanae; Kumamoto, Yoshikazu; Iwai, Kazuo; Mase, Naomichi.

    1993-01-01

    Collective dose equivalent and population dose from occupational exposures in Japan, 1988 were estimated on the basis of a nationwide survey. The survey was conducted on annual collective dose equivalents by sex, age group and type of radiation work for about 0.21 million workers except for the workers in nuclear power stations. The data on the workers in nuclear power stations were obtained from the official report of the Japan Nuclear Safety Commission. The total number of workers including nuclear power stations was estimated to be about 0.26 million. Radiation works were subdivided as follows: medical works including dental; non-atomic energy industry; research and education; atomic energy industry and nuclear power station. For the determination of effective dose equivalent and population dose, organ or tissue doses were measured with a phantom experiment. The resultant doses were compared with the doses previously calculated using a chord length technique and with data from ICRP publications. The annual collective effective dose equivalent were estimated to be about 21.94 person·Sv for medical workers, 7.73 person·Sv for industrial workers, 0.75 person·Sv for research and educational workers, 2.48 person·Sv for atomic energy industry and 84.4 person ·Sv for workers in nuclear power station. The population doses were calculated to be about 1.07 Sv for genetically significant dose, 0.89 Sv for leukemia significant dose and 0.42 Sv for malignant significant dose. The population risks were estimated using these population doses. (author)

  6. Characteristics of natural background external radiation and effective dose equivalent

    International Nuclear Information System (INIS)

    Fujimoto, Kenzo

    1989-01-01

    The two sources of natural radiation - cosmic rays and primordial radionuclides - are described. The factors affecting radiation doses received from natural radiation and the calculation of effective dose equivalent due to natural radiation are discussed. 10 figs., 3 tabs

  7. Calculation of committed dose equivalent from intake of tritiated water

    International Nuclear Information System (INIS)

    Law, D.V.

    1978-08-01

    A new computerized method of calculating the committed dose equivalent from the intake of tritiated water at Harwell is described in this report. The computer program has been designed to deal with a variety of intake patterns and urine sampling schemes, as well as to produce committed dose equivalents corresponding to any periods for which individual monitoring for external radiation is undertaken. Details of retrospective doses are added semi-automatically to the Radiation Dose Records and committed dose equivalents are retained on a separate file. (author)

  8. Equivalent-spherical-shield neutron dose calculations

    International Nuclear Information System (INIS)

    Russell, G.J.; Robinson, H.

    1988-01-01

    Neutron doses through 162-cm-thick spherical shields were calculated to be 1090 and 448 mrem/h for regular and magnetite concrete, respectively. These results bracket the measured data, for reinforced regular concrete, of /approximately/600 mrem/h. The calculated fraction of the high-energy (>20 MeV) dose component also bracketed the experimental data. The measured and calculated doses were for a graphite beam stop bombarded with 100 nA of 800-MeV protons. 6 refs., 2 figs., 1 tab

  9. Annual average equivalent dose of workers form health area

    International Nuclear Information System (INIS)

    Daltro, T.F.L.; Campos, L.L.

    1992-01-01

    The data of personnel monitoring during 1985 and 1991 of personnel that work in health area were studied, obtaining a general overview of the value change of annual average equivalent dose. Two different aspects were presented: the analysis of annual average equivalent dose in the different sectors of a hospital and the comparison of these doses in the same sectors in different hospitals. (C.G.C.)

  10. Committed dose equivalent in the practice of radiological protection

    International Nuclear Information System (INIS)

    Nenot, J.C.; Piechowski, J.

    1985-01-01

    In the case of internal exposure, the dose is not received at the moment of exposure, as happens with external exposure, since the incorporated radionuclide irradiates the various organs and tissues during the time it is present in the body. By definition, the committed dose equivalent corresponds to the received dose integrated over 50 years from the date of intake. In order to calculate it, one has to know the intake activity and the value of the committed dose equivalent per unit of intake activity. The uncertainties of the first parameter are such that the committed dose equivalent can only be regarded as an order of magnitude and not as a very accurate quantity. The use of it is justified, however, for, like the dose equivalent for external exposure, it expresses the risk of stochastic effects for the individual concerned since these effects, should they appear, would do so only after a latent period which is generally longer than the dose integration time. Moreover, the use of the committed dose equivalent offers certain advantages for dosimetric management, especially when it is simplified. A practical problem which may arise is that the annual dose limit is apparently exceeded by virtue of the fact that one is taking account, in the first year, of doses which will actually be received only in the following years. These problems are rare enough in practice to be dealt with individually in each case. (author)

  11. The cost of collective dose equivalent

    International Nuclear Information System (INIS)

    Clark, M.J.; Fleishman, A.B.

    1979-01-01

    The successful application of the ALARA principle is dependent on a monetary evaluation of collective dose, so that the costs of control may be directly compared with the costs of detriment. The paper initially reviews the traditional, quantitative methods of valuing human life from which a monetary value of the man-sievert can be derived by subsequent application of risk factors. The political, ethical and economic implications of employing such techniques in radiological protection are noted. An alternative approach to the problem is then outlined, based on estimating the marginal value of a change in risk. At low levels of individual risk this includes only the tangible, economic consequences of detriment from output losses and medical costs. However, as risk levels rise, social costs related to the anxiety associated with radiation-induced health effects are also incorporated and the valuation increases disproportionally. While such valuations are in principle measurable, in the absence of empirical data a risk/detriment cost relationship is proposed, leading to a variable monetary value of the man-sievert which is a function of the per caput dose of a given population sub-group. Application of this methodology will help to ensure that radiological protection resources are spent in areas where they are most required. (author)

  12. Effective dose equivalents from external radiation due to Chernobyl accident

    International Nuclear Information System (INIS)

    Erkin, V.G.; Debedev, O.V.; Balonov, M.I.; Parkhomenko, V.I.

    1992-01-01

    Summarized data on measurements of individual dose of external γ-sources in 1987-1990 of population of western areas of Bryansk region were presented. Type of distribution of effective dose equivalent, its significance for various professional and social groups of population depending on the type of the house was discussed. Dependences connecting surface soil activity in the populated locality with average dose of external radiation sources were presented. Tendency of dose variation in 1987-1990 was shown

  13. Development of dose equivalent meters based on microdosimetric principles

    International Nuclear Information System (INIS)

    Booz, J.

    1984-01-01

    In this paper, the employment of microdosimetric dose-equivalent meters in radiation protection is described considering the advantages of introducing microdosimetric methods into radiation protection, the technical suitability of such instruments for measuring dose equivalent, and finally technical requirements, constraints and solutions together with some examples of instruments and experimental results. The advantage of microdosimetric methods in radiation protection is illustrated with the evaluation of dose-mean quality factors in radiation fields of unknown composition and with the methods of evaluating neutron- and gamma-dose fractions. - It is shown that there is good correlation between dose-mean lineal energy, anti ysub(anti D), and the ICRP quality factor. - Neutron- and gamma-dose fractions of unknown radiation fields can be evaluated with microdosimetric proportional counters without recurrence to other instruments and methods. The problems of separation are discussed. The technical suitability of microdosimetric instruments for measuring dose equivalent is discussed considering the energy response to neutrons and photons and the sensitivity in terms of dose-equivalent rate. Then, considering technical requirements, constraints, and solutions, the problem of the large dynamic range in LET, the large dynamic range in pulse rate, geometry of sensitive volume and electrodes, evaluation of dose-mean quality factors, calibration methods, and uncertainties are discussed. (orig.)

  14. Verification of an effective dose equivalent model for neutrons

    International Nuclear Information System (INIS)

    Tanner, J.E.; Piper, R.K.; Leonowich, J.A.; Faust, L.G.

    1992-01-01

    Since the effective dose equivalent, based on the weighted sum of organ dose equivalents, is not a directly measurable quantity, it must be estimated with the assistance of computer modelling techniques and a knowledge of the incident radiation field. Although extreme accuracy is not necessary for radiation protection purposes, a few well chosen measurements are required to confirm the theoretical models. Neutron doses and dose equivalents were measured in a RANDO phantom at specific locations using thermoluminescence dosemeters, etched track dosemeters, and a 1.27 cm (1/2 in) tissue-equivalent proportional counter. The phantom was exposed to a bare and a D 2 O-moderated 252 Cf neutron source at the Pacific Northwest Laboratory's Low Scatter Facility. The Monte Carlo code MCNP with the MIRD-V mathematical phantom was used to model the human body and to calculate the organ doses and dose equivalents. The experimental methods are described and the results of the measurements are compared with the calculations. (author)

  15. Verification of an effective dose equivalent model for neutrons

    International Nuclear Information System (INIS)

    Tanner, J.E.; Piper, R.K.; Leonowich, J.A.; Faust, L.G.

    1991-10-01

    Since the effective dose equivalent, based on the weighted sum of organ dose equivalents, is not a directly measurable quantity, it must be estimated with the assistance of computer modeling techniques and a knowledge of the radiation field. Although extreme accuracy is not necessary for radiation protection purposes, a few well-chosen measurements are required to confirm the theoretical models. Neutron measurements were performed in a RANDO phantom using thermoluminescent dosemeters, track etch dosemeters, and a 1/2-in. (1.27-cm) tissue equivalent proportional counter in order to estimate neutron doses and dose equivalents within the phantom at specific locations. The phantom was exposed to bare and D 2 O-moderated 252 Cf neutrons at the Pacific Northwest Laboratory's Low Scatter Facility. The Monte Carlo code MCNP with the MIRD-V mathematical phantom was used to model the human body and calculate organ doses and dose equivalents. The experimental methods are described and the results of the measurements are compared to the calculations. 8 refs., 3 figs., 3 tabs

  16. Interaction of 2-Gy Equivalent Dose and Margin Status in Perioperative High-Dose-Rate Brachytherapy

    International Nuclear Information System (INIS)

    Martinez-Monge, Rafael; Cambeiro, Mauricio; Moreno, Marta; Gaztanaga, Miren; San Julian, Mikel; Alcalde, Juan; Jurado, Matias

    2011-01-01

    Purpose: To determine patient, tumor, and treatment factors predictive of local control (LC) in a series of patients treated with either perioperative high-dose-rate brachytherapy (PHDRB) alone (Group 1) or with PHDRB combined with external-beam radiotherapy (EBRT) (Group 2). Patient and Methods: Patients (n = 312) enrolled in several PHDRB prospective Phase I-II studies conducted at the Clinica Universidad de Navarra were analyzed. Treatment with PHDRB alone, mainly because of prior irradiation, was used in 126 patients to total doses of 32 Gy/8 b.i.d. or 40 Gy/10 b.i.d. treatments after R0 or R1 resections. Treatment with PHDRB plus EBRT was used in 186 patients to total doses of 16 Gy/4 b.i.d. or 24 Gy/6 b.i.d. treatments after R0 or R1 resections along with 45 Gy of EBRT with or without concomitant chemotherapy. Results: No dose-margin interaction was observed in Group 1 patients. In Group 2 patients there was a significant interaction between margin status and 2-Gy equivalent (Eq2Gy) dose (p = 0.002): (1) patients with negative margins had 9-year LC of 95.7% at Eq2Gy = 62.9Gy; (2) patients with close margins of >1 mm had 9-year LC of 92.4% at Eq2Gy = 72.2Gy, and (3) patients with positive/close <1-mm margins had 9-year LC of 68.0% at Eq2Gy = 72.2Gy. Conclusions: Two-gray equivalent doses ≥70 Gy may compensate the effect of close margins ≥1 mm but do not counterbalance the detrimental effect of unfavorable (positive/close <1 mm) resection margins. No dose-margin interaction is observed in patients treated at lower Eq2Gy doses ≤50 Gy with PHDRB alone.

  17. Evaluation of effective dose equivalent from environmental gamma rays

    International Nuclear Information System (INIS)

    Saito, K.; Tsutsumi, M.; Moriuchi, S.; Petoussi, N.; Zankl, M.; Veit, R.; Jacob, P.; Drexler, G.

    1991-01-01

    Organ doses and effective dose equivalents for environmental gamma rays were calculated using human phantoms and Monte Carlo methods accounting rigorously the environmental gamma ray fields. It was suggested that body weight is the dominant factor to determine organ doses. The weight function expressing organ doses was introduced. Using this function, the variation in organ doses due to several physical factors were investigated. A detector having gamma-ray response similar to that of human bodies has been developed using a NaI(Tl) scintillator. (author)

  18. Implementation of an Analytical Model for Leakage Neutron Equivalent Dose in a Proton Radiotherapy Planning System

    Energy Technology Data Exchange (ETDEWEB)

    Eley, John [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030 (United States); Graduate School of Biomedical Sciences, The University of Texas, 6767 Bertner Ave., Houston, TX 77030 (United States); Newhauser, Wayne, E-mail: newhauser@lsu.edu [Department of Physics and Astronomy, Louisiana State University and Agricultural and Mechanical College, 202 Nicholson Hall, Tower Drive, Baton Rouge, LA 70803 (United States); Mary Bird Perkins Cancer Center, 4950 Essen Lane, Baton Rouge, LA 70809 (United States); Homann, Kenneth; Howell, Rebecca [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030 (United States); Graduate School of Biomedical Sciences, The University of Texas, 6767 Bertner Ave., Houston, TX 77030 (United States); Schneider, Christopher [Department of Physics and Astronomy, Louisiana State University and Agricultural and Mechanical College, 202 Nicholson Hall, Tower Drive, Baton Rouge, LA 70803 (United States); Mary Bird Perkins Cancer Center, 4950 Essen Lane, Baton Rouge, LA 70809 (United States); Durante, Marco; Bert, Christoph [GSI Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, Darmstadt 64291 (Germany)

    2015-03-11

    Equivalent dose from neutrons produced during proton radiotherapy increases the predicted risk of radiogenic late effects. However, out-of-field neutron dose is not taken into account by commercial proton radiotherapy treatment planning systems. The purpose of this study was to demonstrate the feasibility of implementing an analytical model to calculate leakage neutron equivalent dose in a treatment planning system. Passive scattering proton treatment plans were created for a water phantom and for a patient. For both the phantom and patient, the neutron equivalent doses were small but non-negligible and extended far beyond the therapeutic field. The time required for neutron equivalent dose calculation was 1.6 times longer than that required for proton dose calculation, with a total calculation time of less than 1 h on one processor for both treatment plans. Our results demonstrate that it is feasible to predict neutron equivalent dose distributions using an analytical dose algorithm for individual patients with irregular surfaces and internal tissue heterogeneities. Eventually, personalized estimates of neutron equivalent dose to organs far from the treatment field may guide clinicians to create treatment plans that reduce the risk of late effects.

  19. The effective dose equivalent from external and internal radiation

    International Nuclear Information System (INIS)

    Mattsson, Soeren

    1989-01-01

    The various sources of low-level ionizing radiation are discussed and compared in terms of mean effective dose equivalent to man. For the most nonoccupationally exposed individuals, natural sources given the dominating contribution to the effective dose equivalent. The size of this contribution is strongly dependent on human activities. Natural sources contribution on average 2.4 mSV per year, of which half is due to irradiation of lungs and airways from short lived radon daughters present in indoor air. In Sweden this radon daughter contribution is considerably higher and contributes a mean of 3 mSv per year, thus giving a total contribution from natural radiation of about 4 mSV per year. In extreme cases, radon daughter contributions of several hundreds of mSv per year may be reached. Medical exposure, mainly diagnostic X-rays, contributes 0.4-1 mSv per year both in Sweden and as a world average. The testing of nuclear weapons in the atmosphere has given 1-2 mSv to each person in the world as a mean. The contribution from the routine operation of nuclear reactors is insignificant. The reactor accident in Chernobyl resulted in widely varying exposures of the European population. The average for Sweden is estimated to be 0.1 mSv during the first year and about 1 mSv during a 50-year period. For groups of Swedes who eat a considerable amount of game this contribution will be 10 times higher, and for the Lapps who breed reindeer in the most contaminated areas, typical values of 20-70 mSv and extreme values of about 1 Sv may be reached in 50 years. This means that the Chernobyl reactor accident for several years will be their dominating source of irradiation

  20. The experimental method for neutron dose-equivalent detection

    International Nuclear Information System (INIS)

    Ji Changsong

    1992-01-01

    A new method, for getting neutron dose-equivalent Cd rode absorption method is described. The method adopts Cd-rode-swarm buck absorption, which greatly improved the neutron sensitivity and simplified the adjustment method. By this method, the author has developed BH3105 model neutron dose equivalent meter, the sensitivity of this instrument reach 10 cps/μSvh -1 . γ-ray depression rate reaches 4000:1, the measurement range is 0.1 μSv/h-10 6 μSv/h. The energy response is good (from thermal neutron-14 MeV neutron), this instrument can be used to measure the dose equivalent of the neutron areas

  1. Is the dose equivalent index a quantity to be measured

    International Nuclear Information System (INIS)

    Wagner, S.R.

    1980-01-01

    ICRP introduced the concept of Effective Dose Equivalent H(sub)E and fixed the basic limits of radiation exposure in terms of H(sub)I. As H(sub)E cannot be measured, ICRP stated that with external exposure to penetrating radiation the limitation of the Dose Equivalent Index H(sub)I would afford at least as good a level of protection. However, difficulties arise in measuring H(sub)I and in calibrating instruments in terms of H(sub)I, since the height and location of the dose equivalent maximum in the sphere which is the phantom used in the definition of H(sub)I, depend on the energy and the angular distribution of the incident radiation. That is, H(sub)I is not an additive quantity relative to the partial H(sub)I(sub)i-values of the different energy and angular components. Hence, 1) the distribution of dose equivalent in the sphere must be measured in full for a determination of H(sub)I, and 2) it is not possible to calibrate an instrument which does not exhibit the scattering and absorption properties of the sphere, consistently for arbitrary radiation fields in terms of H(sub)I. Thus the calibration in an unidirectional beam would infer an uncertainty which may amount to a factor of up to 4. This would hardly be tolerable as a base for radiation protection provisions. An alternative is to introduce operational quantities which are additive, e.g. 1) the sum of maxima of the dose equivalent distributions in the sphere produced by different radiation components, and 2) the mean dose equivalent in the sphere. Their relation to H(sub)E for different types of radiation and consequences on secondary limits are discussed. (H.K.)

  2. The radiobiology of boron neutron capture therapy: Are ''photon-equivalent'' doses really photon-equivalent?

    International Nuclear Information System (INIS)

    Coderre, J.A.; Diaz, A.Z.; Ma, R.

    2001-01-01

    Boron neutron capture therapy (BNCT) produces a mixture of radiation dose components. The high-linear energy transfer (LET) particles are more damaging in tissue than equal doses of low-LET radiation. Each of the high-LET components can multiplied by an experimentally determined factor to adjust for the increased biological effectiveness and the resulting sum expressed in photon-equivalent units (Gy-Eq). BNCT doses in photon-equivalent units are based on a number of assumptions. It may be possible to test the validity of these assumptions and the accuracy of the calculated BNCT doses by 1) comparing the effects of BNCT in other animal or biological models where the effects of photon radiation are known, or 2) if there are endpoints reached in the BNCT dose escalation clinical trials that can be related to the known response to photons of the tissue in question. The calculated Gy-Eq BNCT doses delivered to dogs and to humans with BPA and the epithermal neutron beam of the Brookhaven Medical Research Reactor were compared to expected responses to photon irradiation. The data indicate that Gy-Eq doses in brain may be underestimated. Doses to skin are consistent with the expected response to photons. Gy-Eq doses to tumor are significantly overestimated. A model system of cells in culture irradiated at various depths in a lucite phantom using the epithermal beam is under development. Preliminary data indicate that this approach can be used to detect differences in the relative biological effectiveness of the beam. The rat 9L gliosarcoma cell survival data was converted to photon-equivalent doses using the same factors assumed in the clinical studies. The results superimposed on the survival curve derived from irradiation with Cs-137 photons indicating the potential utility of this model system. (author)

  3. Skin Dose Equivalent Measurement from Neutron-Deficient Isotopes

    International Nuclear Information System (INIS)

    Hsu, Hsiao-Hua; Costigan, Steve A.; Romero, Leonard L.; Whicker, Jeffrey J.

    1997-12-01

    Neutron-deficient-isotopes decay via positron emission and/or electron capture often followed by x-ray, gamma-ray, and 0.511 MeV photons from positron annihilation. For cases of significant area and/or personnel contamination with these isotopes, determination of skin dose equivalent (SDE) is required by 10CFR835. For assessment of SDE, we evaluated the MICROSPEC-2(TM) system manufactured by Bubble Technology Industries of Canada which uses three different probes for dose measurement. We used two probes: (1) the X-probe which measures lower energy (4 - 120 keV) photon energy distributions and determines deep dose equivalent, SDE and dose equivalent to eyes, and (2) the B-probe which measures electron (positron) energy distributions, and determines skin dose equivalent. Also, the measured photon and beta spectra can be used to identify radioactive isotopes in the contaminated area. Measurements with several neutron-deficient sources showed that this system provided reasonably accurate SDE rate measurements when compared with calculated benchmark SDE rates with an average percent difference of 40%. Variations were expected because of differences between the assumed geometries used by MlCROSPEC-2 and the calculations when compared to the measurement conditions

  4. Method to account for dose fractionation in analysis of IMRT plans: Modified equivalent uniform dose

    International Nuclear Information System (INIS)

    Park, Clinton S.; Kim, Yongbok; Lee, Nancy; Bucci, Kara M.; Quivey, Jeanne M.; Verhey, Lynn J.; Xia Ping

    2005-01-01

    Purpose: To propose a modified equivalent uniform dose (mEUD) to account for dose fractionation using the biologically effective dose without losing the advantages of the generalized equivalent uniform dose (gEUD) and to report the calculated mEUD and gEUD in clinically used intensity-modulated radiotherapy (IMRT) plans. Methods and Materials: The proposed mEUD replaces the dose to each voxel in the gEUD formulation by a biologically effective dose with a normalization factor. We propose to use the term mEUD D o /n o that includes the total dose (D o ) and number of fractions (n o ) and to use the term mEUD o that includes the same total dose but a standard fraction size of 2 Gy. A total of 41 IMRT plans for patients with nasopharyngeal cancer treated at our institution between October 1997 and March 2002 were selected for the study. The gEUD and mEUD were calculated for the planning gross tumor volume (pGTV), planning clinical tumor volume (pCTV), parotid glands, and spinal cord. The prescription dose for these patients was 70 Gy to >95% of the pGTV and 59.4 Gy to >95% of the pCTV in 33 fractions. Results: The calculated average gEUD was 72.2 ± 2.4 Gy for the pGTV, 54.2 ± 7.1 Gy for the pCTV, 26.7 ± 4.2 Gy for the parotid glands, and 34.1 ± 6.8 Gy for the spinal cord. The calculated average mEUD D o /n o using 33 fractions was 71.7 ± 3.5 Gy for mEUD 70/33 of the pGTV, 49.9 ± 7.9 Gy for mEUD 59.5/33 of the pCTV, 27.6 ± 4.8 Gy for mEUD 26/33 of the parotid glands, and 32.7 ± 7.8 Gy for mEUD 45/33 of the spinal cord. Conclusion: The proposed mEUD, combining the gEUD with the biologically effective dose, preserves all advantages of the gEUD while reflecting the fractionation effects and linear and quadratic survival characteristics

  5. Is the dose equivalent index a quantity to be measured

    International Nuclear Information System (INIS)

    Wagner, S.R.

    1980-01-01

    The following modifying factors are briefly considered in relation to the ambiguities and limitations of the Dose Equivalent Index: 1) Variations with time or of the movement of the exposed person 2) Irradiation geometry 3) Effect of radiation energy 4) Instrument performance and calibration, and other operational quantities. (U.K.)

  6. Technical background for shallow (skin) dose equivalent evaluations

    International Nuclear Information System (INIS)

    Ashley, J.C.; Turner, J.E.; Crawford, O.H.; Hamm, R.N.; Reaves, K.L.; McMahan, K.L.

    1991-01-01

    Department of Energy Order 5480.11 describes procedures for radiation protection for occupational workers. The revisions dealing with non-uniform exposure to the skin are the subject of this report. We describe measurements and analysis required to assess shallow (skin) dose equivalent from skin contamination. 6 refs., 4 tabs

  7. Antipsychotic dose equivalents and dose-years: a standardized method for comparing exposure to different drugs.

    Science.gov (United States)

    Andreasen, Nancy C; Pressler, Marcus; Nopoulos, Peg; Miller, Del; Ho, Beng-Choon

    2010-02-01

    A standardized quantitative method for comparing dosages of different drugs is a useful tool for designing clinical trials and for examining the effects of long-term medication side effects such as tardive dyskinesia. Such a method requires establishing dose equivalents. An expert consensus group has published charts of equivalent doses for various antipsychotic medications for first- and second-generation medications. These charts were used in this study. Regression was used to compare each drug in the experts' charts to chlorpromazine and haloperidol and to create formulas for each relationship. The formulas were solved for chlorpromazine 100 mg and haloperidol 2 mg to derive new chlorpromazine and haloperidol equivalents. The formulas were incorporated into our definition of dose-years such that 100 mg/day of chlorpromazine equivalent or 2 mg/day of haloperidol equivalent taken for 1 year is equal to one dose-year. All comparisons to chlorpromazine and haloperidol were highly linear with R(2) values greater than .9. A power transformation further improved linearity. By deriving a unique formula that converts doses to chlorpromazine or haloperidol equivalents, we can compare otherwise dissimilar drugs. These equivalents can be multiplied by the time an individual has been on a given dose to derive a cumulative value measured in dose-years in the form of (chlorpromazine equivalent in mg) x (time on dose measured in years). After each dose has been converted to dose-years, the results can be summed to provide a cumulative quantitative measure of lifetime exposure. Copyright 2010 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  8. Metoprolol Dose Equivalence in Adult Men and Women Based on Gender Differences: Pharmacokinetic Modeling and Simulations

    Directory of Open Access Journals (Sweden)

    Andy R. Eugene

    2016-11-01

    Full Text Available Recent meta-analyses and publications over the past 15 years have provided evidence showing there are considerable gender differences in the pharmacokinetics of metoprolol. Throughout this time, there have not been any research articles proposing a gender stratified dose-adjustment resulting in an equivalent total drug exposure. Metoprolol pharmacokinetic data was obtained from a previous publication. Data was modeled using nonlinear mixed effect modeling using the MONOLIX software package to quantify metoprolol concentration–time data. Gender-stratified dosing simulations were conducted to identify equivalent total drug exposure based on a 100 mg dose in adults. Based on the pharmacokinetic modeling and simulations, a 50 mg dose in adult women provides an approximately similar metoprolol drug exposure to a 100 mg dose in adult men.

  9. Dose equivalent distribution during occupational exposure in oncology

    International Nuclear Information System (INIS)

    Marco H, J.

    1996-01-01

    In this work are presented the results of the radiological surveillance of occupationally exposed workers at the National Institute of Oncology and Radiology during 26 years. The incidence of the equivalent dose in the personal working with radiant sources and radioactive substances in areas of x rays diagnostic, teletherapy, brachytherapy, nuclear medicine and biomedical research was showed. The employed dosimetric system makes use of ORWO RD3/RD4 monitoring film with copper and lead filters inside a plastic cassette manufactured in Cuba. The experimental method is supported by the optical densitometric analysis of films together with a set of standard film calibrated in standard X and gamma photon beams by means of a secondary standard dosimeter, type NPL. Statistics show that except those workings with radium-226, manual brachytherapy or Mo-99/Tc-99 generator elution, the equivalent dose distribution in our workers has been kept in regions well down the annual permissible limit. (authors). 6 refs., 3 tabs

  10. Determination of dose equivalent and risk in thorium cycle

    International Nuclear Information System (INIS)

    Ney, C.L.V.N.

    1988-01-01

    In these report are presented the calculations of dose equivalent and risk, utilizing the dosimetric model described in publication 30 of the International Comission on Radiological Protection. This information was obtained by the workers of the thorium cycle, employed at the Praia and Santo Amaro Facilities, by assessing the quantity and concentration of thorium in the air. The samples and the number of measurements were established through design of experiments techniques, and the results were evaluated with the aid of variance analysis. The estimater of dose equivalent for internal and external radiation exposure and risk associated were compared with the maximum recommended limits. The results indicate the existence of operation areas whose values were above those limits, requiring so an improvement in the procedures and services in order to meet the requirements of the radiological protetion. (author) [pt

  11. Development of a neutron personal dose equivalent detector

    International Nuclear Information System (INIS)

    Tsujimura, N.; Yoshida, T.; Takada, C.; Momose, T.; Nunomiya, T.; Aoyama, K.

    2007-01-01

    A new neutron-measuring instrument that is intended to measure a neutron personal dose equivalent, H p (10) was developed. This instrument is composed of two parts: (1) a conventional moderator-based neutron dose equivalent meter and (2) a neutron shield made of borated polyethylene, which covers a backward hemisphere to adjust the angular dependence. The whole design was determined on the basis of MCNP calculations so as to have response characteristics that would generally match both the energy and angular dependencies of H p (10). This new instrument will be a great help in assessing the reference values of neutron H p (10) during field testing of personal neutron dosemeters in workplaces and also in interpreting their readings. (authors)

  12. Dose distribution around ion track in tissue equivalent material

    International Nuclear Information System (INIS)

    Zhang Wenzhong; Guo Yong; Luo Yisheng

    2007-01-01

    Objective: To study the energy deposition micro-specialty of ions in body-tissue or tissue equivalent material (TEM). Methods: The water vapor was determined as the tissue equivalent material, based on the analysis to the body-tissue, and Monte Carlo method was used to simulate the behavior of proton in the tissue equivalent material. Some features of the energy deposition micro-specialty of ion in tissue equivalent material were obtained through the analysis to the data from calculation. Results: The ion will give the energy by the way of excitation and ionization in material, then the secondary electrons will be generated in the progress of ionization, these electron will finished ions energy deposition progress. When ions deposited their energy, large amount energy will be in the core of tracks, and secondary electrons will devote its' energy around ion track, the ion dose distribution is then formed in TEM. Conclusions: To know biological effects of radiation , the research to dose distribution of ions is of importance(significance). (authors)

  13. BH3105 type neutron dose equivalent meter of high sensitivity

    International Nuclear Information System (INIS)

    Ji Changsong; Zhang Enshan; Yang Jianfeng; Zhang Hong; Huang Jiling

    1995-10-01

    It is noted that to design a neutron dose meter of high sensitivity is almost impossible in the frame of traditional designing principle--'absorption net principle'. Based on a newly proposed principle of obtaining neutron dose equi-biological effect adjustment--' absorption stick principle', a brand-new neutron dose-equivalent meter with high neutron sensitivity BH3105 has been developed. Its sensitivity reaches 10 cps/(μSv·h -1 ), which is 18∼40 times higher than one of foreign products of the same kind and is 10 4 times higher than that of domestic FJ342 neutron rem-meter. BH3105 has a measurement range from 0.1μSv/h to 1 Sv/h which is 1 or 2 orders wider than that of the other's. It has the advanced properties of gamma-resistance, energy response, orientation, etc. (6 tabs., 5 figs.)

  14. Neutrons in active proton therapy. Parameterization of dose and dose equivalent

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Uwe; Haelg, Roger A. [Univ. of Zurich (Switzerland). Dept. of Physics; Radiotherapy Hirslanden AG, Aarau (Switzerland); Lomax, Tony [Paul Scherrer Institute, Villigen (Switzerland). Center for Proton Therapy

    2017-08-01

    One of the essential elements of an epidemiological study to decide if proton therapy may be associated with increased or decreased subsequent malignancies compared to photon therapy is an ability to estimate all doses to non-target tissues, including neutron dose. This work therefore aims to predict for patients using proton pencil beam scanning the spatially localized neutron doses and dose equivalents. The proton pencil beam of Gantry 1 at the Paul Scherrer Institute (PSI) was Monte Carlo simulated using GEANT. Based on the simulated neutron dose and neutron spectra an analytical mechanistic dose model was developed. The pencil beam algorithm used for treatment planning at PSI has been extended using the developed model in order to calculate the neutron component of the delivered dose distribution for each treated patient. The neutron dose was estimated for two patient example cases. The analytical neutron dose model represents the three-dimensional Monte Carlo simulated dose distribution up to 85 cm from the proton pencil beam with a satisfying precision. The root mean square error between Monte Carlo simulation and model is largest for 138 MeV protons and is 19% and 20% for dose and dose equivalent, respectively. The model was successfully integrated into the PSI treatment planning system. In average the neutron dose is increased by 10% or 65% when using 160 MeV or 177 MeV instead of 138 MeV. For the neutron dose equivalent the increase is 8% and 57%. The presented neutron dose calculations allow for estimates of dose that can be used in subsequent epidemiological studies or, should the need arise, to estimate the neutron dose at any point where a subsequent secondary tumour may occur. It was found that the neutron dose to the patient is heavily increased with proton energy.

  15. Annual dose equivalents estimation received by Cienfuegos population due medical practice

    International Nuclear Information System (INIS)

    Usagaua R, Z.; Santander I, E.

    1996-01-01

    This study represents the first evaluation of the effective equivalent dose that receives the population of the Cienfuegos province in Cuba because of medical practice. The evaluation is based on the tables of doses depending on several parameters that influence over these ones, and also based on large diagnostic examinations statistics of all medical institutions over a 9 years period. Values of examinations frequency, contribution to total dose from radiography, fluoroscopy, dental radiography and nuclear medicine, and other characteristics of the last ones are offered. A comparative reflection dealing with received doses by radiography and fluoroscopy techniques is also included. (authors). 4 refs

  16. Bone marrow equivalent prompt dose from two common fallout scenarios

    International Nuclear Information System (INIS)

    Morris, M.D.; Jones, T.D.; Young, R.W.

    1994-01-01

    A cell-kinetics model for radiation-induced myelopoiesis has been derived for mice, rats, dogs, sheep, swine, and burros. The model was extended to humans after extensive comparisons with molecular and cellular data from biological experiments and an assortment of predictive/validation tests on animal mortality, cell survival, and cellular repopulation following irradiations. One advantage of the model is that any complex pattern of protracted irradiation can be equated to its equivalent prompt dose. Severity of biological response depends upon target-organ dose, dose rate, and dose fractionation. Epidemiological and animal data are best suited for exposures given in brief periods of time. To use those data to assess risk from protracted human exposures, it is obligatory to model molecular repair and compensatory proliferation in terms of prompt dose. Although the model is somewhat complex both mathematically and biologically, this note describes simple numerical approximations for two common exposure scenarios. Both approximations are easily evaluated on a simple pocket calculator by a health physicist or emergency management officer. 12 refs., 5 figs

  17. Equivalent dose determination in foraminifera: analytical description of the CO2--signal dose-response curve

    International Nuclear Information System (INIS)

    Hoffmann, D.; Woda, C.; Mangini, A.

    2003-01-01

    The dose-response of the CO 2 - signal (g=2.0006) in foraminifera with ages between 19 and 300 ka is investigated. The sum of two exponential saturation functions is an adequate function to describe the dose-response curve up to an additional dose of 8000 Gy. It yields excellent dating results but requires an artificial doses of at least 5000 Gy. For small additional doses of about 500 Gy the single exponential saturation function can be used to calculate a reliable equivalent dose D E , although it does not describ the dose-response for higher doses. The CO 2 - -signal dose-response indicates that the signal has two components of which one is less stable than the other

  18. A comparison of the angular dependence of effective dose and effective dose equivalent

    International Nuclear Information System (INIS)

    Sitek, M.A.; Gierga, D.P.; Xu, X.G.

    1996-01-01

    In ICRP (International Commission on Radiological Protection) Publication 60, the set of critical organs and their weighing factors were changed, defining the quantity effective dose, E. This quantity replaced the effective dose equivalent, H E , as defined by ICRP 26. Most notably, the esophagus was added to the list of critical organs. The Monte Carlo neutron/photon transport code MCNP was used to determine the effective dose to sex-specific anthropomorphic phantoms. The phantoms, developed in previous research, were modified to include the esophagus. Monte Carlo simulations were performed for monoenergetic photon beams of energies 0.08 MeV, 0.3 MeV, and 1.0 MeV for various azimuthal and polar angles. Separate organ equivalent doses were determined for male and female phantoms. The resulting organ equivalent doses were calculated from arithmetic mean averages. The angular dependence of effective dose was compared with that of effective dose equivalent reported in previous research. The differences between the two definitions and possible implications to regulatory agencies were summarized

  19. On the calibration of photon dosemeters in the equivalent dose units

    International Nuclear Information System (INIS)

    Bregadze, Yu.I.; Isaev, B.M.; Maslyaev, P.F.

    1980-01-01

    General aspects of transition from exposure dose of photo radiation to equivalent one are considered. By determination the equivalent dose is a function of point location in an irradiated object, that is why it is necessary to know equivalent dose distribution in the human body for uniform description of the risk degree. The international electrotechnical comission recommends to measure equivalent doses at 7 and 800 mg/cm 2 depths in a tissue-equivalent ball with 30 cm diameter, calling them skin equivalent dose and depth equivalent dose, respectively, and to compare them with the permissible 500 mZ and 50 mZ a year, respectively. Practical transition to using equivalent dose for evaluation of radiation danger of being in photon radiation field of low energy should include measures on regraduating already produced dose meters, graduating the dose meters under production and developing the system of their metrologic supply [ru

  20. Experimental method research on neutron equal dose-equivalent detection

    International Nuclear Information System (INIS)

    Ji Changsong

    1995-10-01

    The design principles of neutron dose-equivalent meter for neutron biological equi-effect detection are studied. Two traditional principles 'absorption net principle' and 'multi-detector principle' are discussed, and on the basis of which a new theoretical principle for neutron biological equi-effect detection--'absorption stick principle' has been put forward to place high hope on both increasing neutron sensitivity of this type of meters and overcoming the shortages of the two traditional methods. In accordance with this new principle a brand-new model of neutron dose-equivalent meter BH3105 has been developed. Its neutron sensitivity reaches 10 cps/(μSv·h -1 ), 18∼40 times higher than that of all the same kinds of meters 0.23∼0.56 cps/(μSv·h -1 ), available today at home and abroad and the specifications of the newly developed meter reach or surpass the levels of the same kind of meters. Therefore the new theoretical principle of neutron biological equi-effect detection--'absorption stick principle' is proved to be scientific, advanced and useful by experiments. (3 refs., 3 figs., 2 tabs.)

  1. Response of radiation monitors for ambient dose equivalent, H*(10)

    International Nuclear Information System (INIS)

    Grecco, Claudio Henrique dos Santos

    2001-01-01

    Radiation monitors are used all over the world to evaluate if places with presence of ionising radiation present safe conditions for people. Radiation monitors should be tested according to international or national standards in order to be qualified for use. This work describes a methodology and procedures to evaluate the energy and angular responses of any radiation monitor for ambient dose equivalent, H*(10), according to the recommendations of ISO and IEC standards. The methodology and the procedures were applied to the Monitor Inteligente de Radiacao MIR 7026, developed by the Instituto em Engenharia Nuclear (IEN), to evaluate and to adjust its response for H*(10), characterizing it as an ambient dose equivalent meter. The tests were performed at the Laboratorio Nacional de Metrologia das Radiacoes Ionizantes (LNMRI), at Instituto de Radioprotecao e Dosimetria (IRD), and results showed that the Monitor Inteligente de Radiacao MIR 7026 can be used as an EI*(10) meter, in accordance to the IEC 60846 standard requirements. The overall estimated uncertainty for the determination of the MIR 7026 response, in all radiation qualities used in this work, was 4,5 % to a 95 % confidence limit. (author)

  2. Application of the personnel photographic monitoring method to determine equivalent radiation dose beyond proton accelerator shielding

    International Nuclear Information System (INIS)

    Gel'fand, E.K.; Komochkov, M.M.; Man'ko, B.V.; Salatskaya, M.I.; Sychev, B.S.

    1980-01-01

    Calculations of regularities to form radiation dose beyond proton accelerator shielding are carried out. Numerical data on photographic monitoring dosemeter in radiation fields investigated are obtained. It was shown how to determine the total equivalent dose of radiation fields beyond proton accelerator shielding by means of the photographic monitoring method by introduction into the procedure of considering nuclear emulsions of division of particle tracks into the black and grey ones. A comparison of experimental and calculational data has shown the applicability of the used calculation method for modelling dose radiation characteristics beyond proton accelerator shielding [ru

  3. Committed equivalent organ doses and committed effective doses from intakes of radionuclides

    CERN Document Server

    Phipps, A W; Kendall, G M; Silk, T J; Stather, J W

    1991-01-01

    This report contains details of committed equivalent doses to individual organs for intakes by ingestion and inhalation of 1 mu m AMAD particles of 359 nuclides by infants aged 3 months, by children aged 1, 5, 10 and 15 years, and by adults. It complements NRPB-R245 which describes the changes which have taken place since the last NRPB compendium of dose per unit intake factors (dose coefficients) and gives summary tables. Information on the way committed doses increase with the integration period is given in NRPB-M289. The information given in these memoranda is also available as a microcomputer package - NRPB-SR245.

  4. Measurement of ambient dose equivalent H*(10) and directional dose equivalent H'(0.07) with pocket sized survey meters

    International Nuclear Information System (INIS)

    Iwatschenko, Michael

    2008-01-01

    Full text: In many parts of the world, predominantly in Europe, small sized survey meters based on Geiger-Mueller or proportional counters are widely used for dose rate and dose equivalent rate measurements, while in other regions, especially in the U.S., ionisation chambers are preferred for this task. This paper tries to shed some light on the likely reasons for these two diverging instrumental inclinations. Their respective strengths and weaknesses is analyzed in respect to energy response, dose rate measuring range, size, weight and susceptibility to environmental influences. Furthermore the response and limitations regarding the measurement of pulsed radiation (medical X-ray and CT-devices, accelerators, non-destructive testing) is discussed. A newly developed pocket size instrument based on a pan-cake Geiger-Mueller tube is used as an example to explain the capability and flexibility of modern survey meters. The RadEye B20 is a compact multi-purpose dose rate meter and contamination meter for alpha, beta, gamma and X-ray radiation. By virtue of carefully designed multi-layer gamma energy filters, H*(10) (deep dose) or H'(0,07) (shallow dose) measurements from 17 - 1300 keV can be performed. The instrument can even be worn in a belt holster, so that the impact to the mobility of the user is minimized. For emergency response purposes alpha and beta contamination can be discriminated using another optional filter; a simple sample changer adapter can extend the scope of application. Immediate and reproducible counter measurements, e.g. of smear tests can be performed locally. (author)

  5. The performance of low pressure tissue-equivalent chambers and a new method for parameterising the dose equivalent

    International Nuclear Information System (INIS)

    Eisen, Y.

    1986-01-01

    The performance of Rossi-type spherical tissue-equivalent chambers with equivalent diameters between 0.5 μm and 2 μm was tested experimentally using monoenergetic and polyenergetic neutron sources in the energy region of 10 keV to 14.5 MeV. In agreement with theoretical predictions both chambers failed to provide LET information at low neutron energies. A dose equivalent algorithm was derived that utilises the event distribution but does not attempt to correlate event size with LET. The algorithm was predicted theoretically and confirmed by experiment. The algorithm that was developed determines the neutron dose equivalent, from the data of the 0.5 μm chamber, to better than +-20% over the energy range of 30 keV to 14.5 MeV. The same algorithm also determines the dose equivalent from the data of the 2 μm chamber to better than +-20% over the energy range of 60 keV to 14.5 MeV. The efficiency of the chambers is 33 counts per μSv, or equivalently about 10 counts s -1 per mSv.h -1 . This efficiency enables the measurement of dose equivalent rates above 1 mSv.h -1 for an integration period of 3 s. Integrated dose equivalents can be measured as low as 1 μSv. (author)

  6. Evaluation of 1cm dose equivalent rate using a NaI(Tl) scintilation spectrometer

    International Nuclear Information System (INIS)

    Matsuda, Hideharu

    1990-01-01

    A method for evaluating 1 cm dose equivalent rates from a pulse height distribution obtained by a 76.2mmφ spherical NaI(Tl) scintillation spectrometer was described. Weak leakage radiation from nuclear facilities were also measured and dose equivalent conversion factor and effective energy of leakage radiation were evaluated from 1 cm dose equivalent rate and exposure rate. (author)

  7. 10 CFR 20.1208 - Dose equivalent to an embryo/fetus.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Dose equivalent to an embryo/fetus. 20.1208 Section 20... Limits § 20.1208 Dose equivalent to an embryo/fetus. (a) The licensee shall ensure that the dose equivalent to the embryo/fetus during the entire pregnancy, due to the occupational exposure of a declared...

  8. A single-aliquot OSL protocol using bracketing regenerative doses to accurately determine equivalent doses in quartz

    International Nuclear Information System (INIS)

    Folz, Elise; Mercier, Norbert

    1999-01-01

    In most cases, sediments show inherent heterogeneity in their luminescence behaviours and bleaching histories, and identical aliquots are not available: single-aliquot determination of the equivalent dose (ED) is then the approach of choice and the advantages of using regenerative protocols are outlined. Experiments on five laboratory bleached and dosed quartz samples, following the protocol described by Murray and Roberts (1998. Measurement of the equivalent dose in quartz using a regenerative-dose single aliquot protocol. Radiation Measurements 27, 171-184), showed the hazards of using a single regeneration dose: a 10% variation in the regenerative dose yielded some equivalent dose estimates that differed from the expected value by more than 5%. A protocol is proposed that allows the use of different regenerative doses to bracket the estimated equivalent dose. The measured ED is found to be in excellent agreement with the known value when the main regeneration dose is within 10% of the true equivalent dose

  9. A single-aliquot OSL protocol using bracketing regenerative doses to accurately determine equivalent doses in quartz

    CERN Document Server

    Folz, E

    1999-01-01

    In most cases, sediments show inherent heterogeneity in their luminescence behaviours and bleaching histories, and identical aliquots are not available: single-aliquot determination of the equivalent dose (ED) is then the approach of choice and the advantages of using regenerative protocols are outlined. Experiments on five laboratory bleached and dosed quartz samples, following the protocol described by Murray and Roberts (1998. Measurement of the equivalent dose in quartz using a regenerative-dose single aliquot protocol. Radiation Measurements 27, 171-184), showed the hazards of using a single regeneration dose: a 10% variation in the regenerative dose yielded some equivalent dose estimates that differed from the expected value by more than 5%. A protocol is proposed that allows the use of different regenerative doses to bracket the estimated equivalent dose. The measured ED is found to be in excellent agreement with the known value when the main regeneration dose is within 10% of the true equivalent dose.

  10. Determination of skin dose reduction by lead equivalent gloves

    International Nuclear Information System (INIS)

    Norriza Mohd Isa; Abd Aziz Mhd Ramli

    2006-01-01

    Radiation protective gloves are always used in medical facilities to protect radiation workers from unnecessary radiation exposure. A study on radiation protection gloves which are produced by local company had been performed by the Medical Physics Group, MINT. The gloves were made of lead equivalent material, as the attenuating element. The gloves were evaluated in term of the percentage of skin dose reduction by using a newly developed procedure and facilities in MINT. Attenuation measurements of the gloves had been carried out using direct beams and scattered radiations of different qualities. TLD rings were fitted on finger phantom; and water phantom were used in the measurement. The result were obtained and analysed based on data supplied by manufacturer. (Author)

  11. A phantom for assessing the personal dose equivalent, HP(10)

    International Nuclear Information System (INIS)

    Santoro, C.; Filho, J.A

    2013-01-01

    Characteristics of a phantom designed to evaluate the personal dose equivalent, H P (10), and appropriate for photographic dosimetry are presented. It is called HP(10) phantom due to cavities constructed to insert dosimetric films at a depth of 10 mm. The H P (10) phantom is irradiated with ionizing radiation energy, E, from 45 to 1250 keV, with doses ranging from 0.2 to 50 mSv. It is positioned in the direction α = 0 °, and the radiation field focusing perpendicular to its front surface. So, are established calibration curves of dosimeters in the position conventionally true and quantities H P (10). It made a comparison between the responses obtained with the H P (10) phantom and responses obtained when using the calibration procedure recommended by ISO dosimeters. The ISO recommends getting the air kerma, Ka, for photons at test point of the radiation field by an ionization chamber. And through conversion coefficients, h pK (10; E, α), becomes the air kerma for H P (10). The ISO 4037-3 recommendation has been studied by researchers to ensure that the low energy spectral differences occur in radiation fields which are generated by various X-ray equipment, and induce changes in the percentages of conversion coefficients on the order of 10% to 90% . On the basis of the recommendations ISO, this article develops phantom able to assess the dose to the influence of scattering and absorption of radiation, its implications with respect to dosimetry, providing improvement in the assessment of doses. (author)

  12. From physical dose constraints to equivalent uniform dose constraints in inverse radiotherapy planning

    International Nuclear Information System (INIS)

    Thieke, Christian; Bortfeld, Thomas; Niemierko, Andrzej; Nill, Simeon

    2003-01-01

    Optimization algorithms in inverse radiotherapy planning need information about the desired dose distribution. Usually the planner defines physical dose constraints for each structure of the treatment plan, either in form of minimum and maximum doses or as dose-volume constraints. The concept of equivalent uniform dose (EUD) was designed to describe dose distributions with a higher clinical relevance. In this paper, we present a method to consider the EUD as an optimization constraint by using the method of projections onto convex sets (POCS). In each iteration of the optimization loop, for the actual dose distribution of an organ that violates an EUD constraint a new dose distribution is calculated that satisfies the EUD constraint, leading to voxel-based physical dose constraints. The new dose distribution is found by projecting the current one onto the convex set of all dose distributions fulfilling the EUD constraint. The algorithm is easy to integrate into existing inverse planning systems, and it allows the planner to choose between physical and EUD constraints separately for each structure. A clinical case of a head and neck tumor is optimized using three different sets of constraints: physical constraints for all structures, physical constraints for the target and EUD constraints for the organs at risk, and EUD constraints for all structures. The results show that the POCS method converges stable and given EUD constraints are reached closely

  13. Equivalent dose, effective dose and risk assessment from panoramic radiography to the critical organs of head and neck region

    International Nuclear Information System (INIS)

    Cho, Bong Hae; Nah, Kyung Soo; Lee, Ae Ryeon

    1995-01-01

    The purpose of this study was to evaluate the equivalent and effective dose, and estimate radiation risk to the critical organs of head and neck region from the use of adult and child mode in panoramic radiography. The results were as follows. 1. The salivary glands showed the highest equivalent and effective dose in adult and child mode. The equivalent and effective dose in adult mode were 837 μSv and 20.93 μSv, those in child mode were 462 μSv and 11.54 μSv, respectively. 2. Total effective doses to the critical head and neck organs were estimated 34.2l μSv in adult mode, 20.14 μSv in child mode. From these data, the probabilities of stochastic effect from adult and child mode were 2.50xl0 -6 and 1.47x10 -6 3. The other remainder showed the greatest risk of fatal cancer. The risk estimate were 4.5 and 2.7 fatal malignancies in adult and child mode from million examinations. The bone marrow and thyroid gland showed about 0.1 fatal cancer in adult. and child mode from these examinations.

  14. Reassessment of calculation of effective dose equivalent for the CRCN-CO Environmental Radiological Monitoring Program

    International Nuclear Information System (INIS)

    Carneiro, L.B.; Dourado, M.A.; Barbosa, R.C.

    2017-01-01

    To reassess the calculations of the effective dose equivalent to obtain data of dosimetry and the accomplishment of the analysis comparing the data of several techniques that record doses of radiation originating from the cosmogenic and terrestrial contributions that make up the so-called background radiation. the basic information to be obtained is the contribution of the difference between the terrestrial dose equivalents, even the lowest concentration of primordial radionuclides, and that of the dose equivalent, deduced from TLD readings. (author)

  15. Reassessment of calculation of effective dose equivalent for the CRCN-CO Environmental Radiological Monitoring Program

    Energy Technology Data Exchange (ETDEWEB)

    Carneiro, L.B.; Dourado, M.A.; Barbosa, R.C., E-mail: research.photonics@gmail.com [Centro Regional de Ciências Nucleares do Centro-Oeste (CRCN-CO/CNEN-GO), Abadia de Goiás, GO (Brazil)

    2017-07-01

    To reassess the calculations of the effective dose equivalent to obtain data of dosimetry and the accomplishment of the analysis comparing the data of several techniques that record doses of radiation originating from the cosmogenic and terrestrial contributions that make up the so-called background radiation. the basic information to be obtained is the contribution of the difference between the terrestrial dose equivalents, even the lowest concentration of primordial radionuclides, and that of the dose equivalent, deduced from TLD readings. (author)

  16. Total free radical species and oxidation equivalent in polluted air.

    Science.gov (United States)

    Wang, Guoying; Jia, Shiming; Niu, Xiuli; Tian, Haoqi; Liu, Yanrong; Chen, Xuefu; Li, Lan; Zhang, Yuanhang; Shi, Gaofeng

    2017-12-31

    Free radicals are the most important chemical intermediate or agent of the atmosphere and influenced by thousands of reactants. The free radicals determine the oxidizing power of the polluted air. Various gases present in smog or haze are oxidants and induce organ and cellular damage via generation of free radical species. At present, however, the high variability of total free radicals in polluted air has prevented the detection of possible trends or distributions in the concentration of those species. The total free radicals are a kind of contaminants with colorless, tasteless characteristics, and almost imperceptible by human body. Here we present total free radical detection and distribution characteristics, and analyze the effects of total free radicals in polluted air on human health. We find that the total free radical values can be described by not only a linear dependence on ozone at higher temperature period, but also a linear delay dependence on particulate matter at lower temperature period throughout the measurement period. The total free radical species distribution is decrease from west to east in Lanzhou, which closely related to the distribution of the air pollutants. The total free radical oxidation capacity in polluted air roughly matches the effects of tobacco smoke produced by the incomplete combustion of a controlled amount of tobacco in a smoke chamber. A relatively unsophisticated chromatographic fingerprint similarity is used for indicating preliminarily the effect of total free radicals in polluted air on human health. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. The Use Of Optical Properties Of Cr-39 In Alpha Particle Equivalent Dose Measurements

    International Nuclear Information System (INIS)

    Shnishin, K.A.

    2007-01-01

    In this work, optical properties of alpha irradiated Cr-39 were measured as a function of optical photon wavelength from 200-1100 nm. Optical energy gap and optical absorption at finite wavelength was also calculated and correlated to alpha fluence and dose equivalent. Alpha doses were calculated from the corresponding irradiation fluence and specific energy loss using TRIM computer program. It was found that, the optical absorption of unattached Cr-39 was varied with alpha fluence and corresponding equivalent doses. Also the optical energy gab was varied with fluence and dose equivalent of alpha particles. This work introduces a reasonably simple method for the Rn dose equivalent calculation by Cr-39 track

  18. Measurements of thorium-B (212Pb) in the outdoor environment and evaluation of equivalent dose

    International Nuclear Information System (INIS)

    Mohammed, A.; El-Hussein, A.; Ali, A.E.

    2000-01-01

    The activity size distribution of unattached as well as attached 212 Pb to aerosol particles was measured in the open air of El-Minia City, Egypt. The samples were collected using a wire screen diffusion battery technique and a low pressure cascade impactor. The mean activity median thermodynamic diameter (AMTD) of unattached 212 Pb was determined to be 1.4 nm with a relative mean geometric standard deviation (σ g ) of 1.55. A mean unattached fraction (f p ) of 0.03±0.007 was obtained at a mean aerosol particle concentration of 32x10 3 cm -3 . Sometimes the f p values were less than the detection limit of 0.008. The mean concentration of activity of 212 Pb was found to be 9.6±1.1 mBq m -3 . The mean activity median aerodynamic diameter (AMAD) of the accumulation mode of attached 212 Pb was determined to be 360 nm with a mean (σ g ) of 2.7. The mean value of specific air activity concentration of 212 Pb associated with that mode was determined to be 303±12 mBq m -3 . With a dosimetric model calculation (International Commission on Radiological Protection. Human respiratory tract model for radiological protection. Oxford: Pergamon Press, ICRP Publication 66, 1994) the total deposition fractions as well as total equivalent and effective dose have been evaluated considering the obtained parameters of the activity size distributions. At a total deposition fraction of about 97% for unattached activities the total equivalent and effective doses to the lung were determined to be about 0.18 and 0.02 μSv, respectively, while total equivalent and effective doses of about 0.45 and 0.05 μ Sv, respectively, were determined at a total deposition fraction of about 23% for the attached activities

  19. Equivalent dose, effective dose and risk assessment from cephalometric radiography to critical organs

    International Nuclear Information System (INIS)

    Kang, Seong Sook; Cho, Bon Hae; Kim, Hyun Ja

    1995-01-01

    In head and neck region, the critical organ and tissue doses were determined, and the risks were estimated from lateral, posteroanterial and basilar cephalometric radiography. For each cephalometric radiography, 31 TLDs were placed in selected sites (18 internal and 13 external sites) in a tissue-equivalent phantom and exposed, then read-out in the TLD reader. The following results were obtained; 1. From lateral cephalometric radiography, the highest effective dose recorded was that delivered to the salivary gland (3.6 μSv) and the next highest dose was that received by the bone marrow (3 μSv). 2. From posteroanterial cephalometric radiography, the highest effective dose recorded was that delivered to the salivary gland (2 μSv) and the next highest dose was that received by the bone marrow (1.8 μSv). 3. From basilar cephalometric radiography, the highest effective dose recorded was that delivered to the thyroid gland (31.4 μSv) and the next highest dose was that received by the salivary gland (13.3 μSv). 4. The probabilities of stochastic effect from lateral, posteroanterial and basilar cephalometric radiography were 0.72 X 10 -6 , 0.49 X 10 -6 and 3.51 X 10 -6 , respectively.

  20. p-MOSFET total dose dosimeter

    Science.gov (United States)

    Buehler, Martin G. (Inventor); Blaes, Brent R. (Inventor)

    1994-01-01

    A p-MOSFET total dose dosimeter where the gate voltage is proportional to the incident radiation dose. It is configured in an n-WELL of a p-BODY substrate. It is operated in the saturation region which is ensured by connecting the gate to the drain. The n-well is connected to zero bias. Current flow from source to drain, rather than from peripheral leakage, is ensured by configuring the device as an edgeless MOSFET where the source completely surrounds the drain. The drain junction is the only junction not connected to zero bias. The MOSFET is connected as part of the feedback loop of an operational amplifier. The operational amplifier holds the drain current fixed at a level which minimizes temperature dependence and also fixes the drain voltage. The sensitivity to radiation is made maximum by operating the MOSFET in the OFF state during radiation soak.

  1. Assessment of organ equivalent doses and effective doses from diagnostic X-ray examinations

    International Nuclear Information System (INIS)

    Park, Sang Hyun

    2003-02-01

    The MIRD-type adult male, female and age 10 phantoms were constructed to evaluate organ equivalent dose and effective dose of patient due to typical diagnostic X-ray examination. These phantoms were constructed with external and internal dimensions of Korean. The X-ray energy spectra were generated with SPEC78. MCNP4B ,the general-purposed Monte Carlo code, was used. Information of chest PA , chest LAT, and abdomen AP diagnostic X-ray procedures was collected on the protocol of domestic hospitals. The results showed that patients pick up approximate 0.02 to 0.18 mSv of effective dose from a single chest PA examination, and 0.01 to 0.19 mSv from a chest LAT examination depending on the ages. From an abdomen AP examination, patients pick up 0.17 to 1.40 mSv of effective dose. Exposure time, organ depth from the entrance surface and X-ray beam field coverage considerably affect the resulting doses. Deviation among medical institutions is somewhat high, and this indicated that medical institutions should interchange their information and the need of education for medical staff. The methodology and the established system can be applied, with some expansion, to dose assessment for other medical procedures accompanying radiation exposure of patients like nuclear medicine or therapeutic radiology

  2. Measurement of the equivalent dose in quartz using a regenerative-dose single-aliquot protocol

    International Nuclear Information System (INIS)

    Murray, A.S.; Roberts, R.G.

    1998-01-01

    The principles behind a regenerative-dose single-aliquot protocol are outlined. It is shown for three laboratory-bleached Australian sedimentary quartz samples that the relative change in sensitivity of the optically stimulated luminescence (OSL) during a repeated measurement cycle (consisting of a dose followed by a 10 s preheat at a given temperature and then a 100 s exposure to blue/green light at 125 deg. C) is very similar to that of the 110 deg. C thermoluminescence (TL) peak measured during the preheat cycle. The absolute change in the TL sensitivity with preheat temperature is different for samples containing a natural or a regenerative dose. Furthermore, the absolute change in sensitivity in both the OSL and TL signals is non-linear with regeneration cycle, but the relative change in the OSL signal compared to the following 110 deg. C TL measurement is well approximated by a straight line. Both signals are thought to use the same luminescence centres, and so some common behaviour is not unexpected. A new regenerative-dose protocol is presented which makes use of this linear relationship to correct for sensitivity changes with regeneration cycle, and requires only one aliquot for the estimation of the equivalent dose (D e ). The protocol has been applied to quartz from nine Australian sites. To illustrate the value of the regenerative-dose single-aliquot approach, the apparent values of D e for 13 samples, containing doses of between 0.01 and 100 Gy, have been measured at various preheat temperatures of between 160 and 300 deg. C, using a single aliquot for each D e measurement. Excellent agreement is found between these single-aliquot estimates of D e and those obtained from additive-dose multiple-aliquot and single-aliquot protocols, over the entire dose range

  3. Changes in ambient dose equivalent rates around roads at Kawamata town after the Fukushima accident

    International Nuclear Information System (INIS)

    Kinase, Sakae; Sato, Satoshi; Yamamoto, Hideaki; Saito, Kimiaki; Sakamoto, Ryuichi

    2015-01-01

    Changes in ambient dose equivalent rates noted through vehicle-borne surveys have elucidated ecological half-lives of radioactive caesium in the environment. To confirm that the ecological half-lives are appropriate for predicting ambient dose equivalent rates within living areas, it is important to ascertain ambient dose equivalent rates on/around roads. In this study, radiation monitoring on/around roads at Kawamata town, located about 37 km northwest of the Fukushima Daiichi Nuclear Power Plant, was performed using monitoring vehicles and survey meters. It was found that the ambient dose equivalent rates around roads were higher than those on roads as of October 2012. And withal the ecological half-lives on roads were essentially consistent with those around roads. With dose predictions using ecological half-lives on roads, it is necessary to make corrections to ambient dose equivalent rates through the vehicle-borne surveys against those within living areas. (authors)

  4. Investigation of 1-cm dose equivalent for photons behind shielding materials

    International Nuclear Information System (INIS)

    Hirayama, Hideo; Tanaka, Shun-ichi

    1991-03-01

    The ambient dose equivalent at 1-cm depth, assumed equivalent to the 1-cm dose equivalent in practical dose estimations behind shielding slabs of water, concrete, iron or lead for normally incident photons having various energies was calculated by using conversion factors for a slab phantom. It was compared with the 1-cm depth dose calculated with the Monte Carlo code EGS4. It was concluded from this comparison that the ambient dose equivalent calculated by using the conversion factors for the ICRU sphere could be used for the evaluation of the 1-cm dose equivalent for the sphere phantom within 20% errors. Average and practical conversion factors are defined as the conversion factors from exposure to ambient dose equivalent in a finite slab or an infinite one, respectively. They were calculated with EGS4 and the discrete ordinates code PALLAS. The exposure calculated with simple estimation procedures such as point kernel methods can be easily converted to ambient dose equivalent by using these conversion factors. The maximum value between 1 and 30 mfp can be adopted as the conversion factor which depends only on material and incident photon energy. This gives the ambient dose equivalent on the safe side. 13 refs., 7 figs., 2 tabs

  5. Simulation of lung cancer treatment with equivalent dose calculation and analysis of the dose distribution profile

    International Nuclear Information System (INIS)

    Thalhofer, J. L.; Marques L, J.; Da Silva, A. X.; Dos Reis J, J. P.; Da Silva J, W. F. R.; Arruda C, S. C.; Monteiro de S, E.; Santos B, D. V.

    2017-10-01

    Actually, lung cancer is one of the most lethal types, due to the disease in the majority of the cases asymptomatic in the early stages, being the detection of the pathology in advanced stage, with tumor considerable volume. Dosimetry analysis of healthy organs under real conditions is not feasible. Therefore, computational simulations are used to auxiliary in dose verification in organs of patients submitted to radiotherapy. The goal of this study is to calculate the equivalent dose, due to photons, in surrounding in healthy organs of a patient submitted to radiotherapy for lung cancer, through computational modeling. The simulation was performed using the MCNPX code (Version, 2006], Rex and Regina phantom [ICRP 110, 2008], radiotherapy room, Siemens Oncor Expression accelerator operating at 6 MV and treatment protocol adopted at the Inca (National Cancer Institute, Brazil). The results obtained, considering the dose due to photons for both phantom indicate that organs located inside the thoracic cavity received higher dose, being the bronchi, heart and esophagus more affected, due to the anatomical positioning. Clinical data describe the development of bronchiolitis, esophagitis, and cardiomyopathies with decreased cardiopulmonary function as one of the major effects of lung cancer treatment. In the Regina phantom, the second largest dose was in the region of the breasts with 615,73 mSv / Gy, while in the Rex 514,06 mSv / Gy, event related to the difference of anatomical structure of the organ. Through the t mesh command, a qualitative analysis was performed between the dose deposition profile of the planning system and the simulated treatment, with a similar profile of the dose distribution being verified along the patients body. (Author)

  6. The development of BH3105E type neutron dose-equivalent meter

    International Nuclear Information System (INIS)

    Ji Changsong; Wang Tingting; Zhang Shuheng; Tan Baozeng

    2011-01-01

    A new BH3105E Type Neutron Dose-equivalent Meter has been developed. The 'multi-stick' ab- sorption method is used for thermal -14 MeV neutron equal dose-equivalent detection, what gives a high neutron sensitivity of 5 cps/μSv · h-1. RS-232 interface is accepted for signal communication (authors)

  7. Determination of Dose-Equivalent Response of A Typical Diamond Microdosimeter in Space Radiation Fields

    Directory of Open Access Journals (Sweden)

    firouz payervand

    2018-01-01

    Conclusion: The reasonable agreement between the dose equivalents calculated in this study and the results reported by other researchers confirmed that this type of microdosimeter could be a promising candidate suitable for the measurement of the dose equivalent in space radiation fields.

  8. Risk equivalent of exposure versus dose of radiation

    International Nuclear Information System (INIS)

    Bond, V.P.

    1986-01-01

    This report describes a risk analysis study of low-dose irradiation and the resulting biological effects on a cell. The author describes fundamental differences between the effects of high-level exposure (HLE) and low-level exposure (LLE). He stresses that the concept of absorbed dose to an organ is not a dose but a level of effect produced by a particular number of particles. He discusses the confusion between a linear-proportional representation of dose limits and a threshold-curvilinear representation, suggesting that a LLE is a composite of both systems

  9. Change of annual collective dose equivalent of radiation workers at KURRI

    International Nuclear Information System (INIS)

    Okamoto, Kenichi

    1994-01-01

    The change of exposure dose equivalent of radiation workers at KURRI (Kyoto University Research Reactor Institute) in the past 30 years is reported together with the operational accomplishments. The reactor achieved criticality on June 24, 1964 and reached the normal power of 1000 kW on August 17 of the same year, and the normal power was elevated to 5000 kW on July 16, 1968 until today. The change of the annual effective dose equivalent, the collective dose equivalent, the average annual dose equivalent and the maximum dose equivalent are indicated in the table and the figure. The chronological table on the activities of the reactor is added. (T.H.)

  10. Dose equivalent response of personal neutron dosemeters as a function of angle

    International Nuclear Information System (INIS)

    Tanner, J.E.; McDonald, J.C.; Stewart, R.D.; Wernli, C.

    1997-01-01

    The measured and calculated dose equivalent response as a function of angle has been examined for an albedo-type thermoluminescence dosemeter (TLD) that was exposed to unmoderated and D 2 O-moderated 252 Cf neutron sources while mounted on a 40 x 40 15 cm 3 polymethylmethacrylate phantom. The dosemeter used in this study is similar to many neutron personal dosemeters currently in use. The detailed construction of the dosemeter was modelled, and the dose equivalent response was calculated, using the MCNP code. Good agreement was found between the measured and calculated values of the relative dose equivalent angular response for the TLD albedo dosemeter. The relative dose equivalent angular response was also compared with the values of directional and personal dose equivalent as a function of angle published by Siebert and Schuhmacher. (author)

  11. Guideline values for skin decontamination measures based on nuclidspecific dose equivalent rate factors

    International Nuclear Information System (INIS)

    Pfob, H.; Heinemann, G.

    1992-01-01

    Corresponding dose equivalent rate factors for various radionuclides are now available for determining the skin dose caused by skin contamination. These dose equivalent rate factors take into account all contributions from the types of radiation emitted. Any limits for skin decontamination measures are nowhere contained or determined yet. However, radiological protection does in practice require at least guideline values in order to prevent unsuitable or detrimental measures that can be noticed quite often. New calculations of dose equivalent rate factors for the skin now make the recommendation of guideline values possible. (author)

  12. Determination of the equivalent of environmental dose, H*(d), in a radiotherapy installation

    International Nuclear Information System (INIS)

    Lima, M.A.F.; Borges, J.C.; Mota, H.C.

    1998-01-01

    In order to put into practice radiological protection has been required conversion factors for environmental dose equivalent determination to air kerma value for different kinds of photon and electron beams, such dose values have been determined in a spheric phantom of 30 cm diameter in a alignment field and expanded in a depth of this sphere. Details will be given for determining of equivalent dose distribution calculation using Monte Carlo computational method (ESG4) following the recommendations of ICRU. (Author)

  13. PUDEQ: a computer code for calculating dose equivalent from internal deposition of plutonium at Hanford

    International Nuclear Information System (INIS)

    Houston, J.R.; Heid, K.R.

    1975-10-01

    Presented here are the procedures and mathematical models used in developing PUDEQ, a computer program for computing the dose equivalent to body organs from intake of Pu. The program was designed specifically to use the data recorded on the Hanford Internal Exposure (HIE) System magnetic tape as input. Insofar as was possible, the recommendations of the Advisory Committee on Dose from Plutonium and other Transuranics was followed. Some deviations were made where errors, omissions, or inconsistencies were found, after consultation with members of the Committee. In the current version of the program only Pu and its immediate important daughters are considered. The program could, however, be expanded to include other transuranic nuclides. At present, only a few depositions of transuranic nuclides other than plutonium are recorded out of about 450 individuals involved in a total of over 700 plutonium intakes

  14. Measured Neutron Spectra and Dose Equivalents From a Mevion Single-Room, Passively Scattered Proton System Used for Craniospinal Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Howell, Rebecca M., E-mail: rhowell@mdanderson.org [Department of Radiation Physics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas (United States); Burgett, Eric A.; Isaacs, Daniel [Department of Nuclear Engineering, Idaho State University, Pocatello, Idaho (United States); Price Hedrick, Samantha G.; Reilly, Michael P.; Rankine, Leith J.; Grantham, Kevin K.; Perkins, Stephanie; Klein, Eric E. [Department of Radiation Oncology, Washington University, St. Louis, Missouri (United States)

    2016-05-01

    Purpose: To measure, in the setting of typical passively scattered proton craniospinal irradiation (CSI) treatment, the secondary neutron spectra, and use these spectra to calculate dose equivalents for both internal and external neutrons delivered via a Mevion single-room compact proton system. Methods and Materials: Secondary neutron spectra were measured using extended-range Bonner spheres for whole brain, upper spine, and lower spine proton fields. The detector used can discriminate neutrons over the entire range of the energy spectrum encountered in proton therapy. To separately assess internally and externally generated neutrons, each of the fields was delivered with and without a phantom. Average neutron energy, total neutron fluence, and ambient dose equivalent [H* (10)] were calculated for each spectrum. Neutron dose equivalents as a function of depth were estimated by applying published neutron depth–dose data to in-air H* (10) values. Results: For CSI fields, neutron spectra were similar, with a high-energy direct neutron peak, an evaporation peak, a thermal peak, and an intermediate continuum between the evaporation and thermal peaks. Neutrons in the evaporation peak made the largest contribution to dose equivalent. Internal neutrons had a very low to negligible contribution to dose equivalent compared with external neutrons, largely attributed to the measurement location being far outside the primary proton beam. Average energies ranged from 8.6 to 14.5 MeV, whereas fluences ranged from 6.91 × 10{sup 6} to 1.04 × 10{sup 7} n/cm{sup 2}/Gy, and H* (10) ranged from 2.27 to 3.92 mSv/Gy. Conclusions: For CSI treatments delivered with a Mevion single-gantry proton therapy system, we found measured neutron dose was consistent with dose equivalents reported for CSI with other proton beamlines.

  15. Fast neutron dose equivalent rates in heavy ion target areas

    International Nuclear Information System (INIS)

    Fulmer, C.B.; Butler, H.M.; Ohnesorge, W.F.; Mosko, S.W.

    1978-01-01

    At heavy ion accelerators, personnel access to areas near the target is sometimes important for successful performance of experiments. Radiation levels determine the amount of time that can be spent in these areas without exceeding maximum permissible exposures. Inasmuch as the fast neutrons contribute the major part of the Rem dose rates in these areas, knowledge of the fast neutron levels is important for planning permissive entry to target areas. Fast neutron dose rates were measured near thick medium mass targets bombarded with beams of C, N, O, and Ne ions. beam energies ranged from 3 to 16 MeV/amu. Dose rates (mrem/h) 1 meter from the target 90 degrees from the beam direction range from approx. 0.05 at MeV/amu to approx. 50 at 16 MeV/amu. These data should be helpful in planning permissive entry to heavy ion target areas

  16. Fast neutron dose equivalent rates in heavy ion target areas

    Energy Technology Data Exchange (ETDEWEB)

    Fulmer, C.B.; Butler, H.M.; Ohnesorge, W.F.; Mosko, S.W.

    1978-01-01

    At heavy ion accelerators, personnel access to areas near the target is sometimes important for successful performance of experiments. Radiation levels determine the amount of time that can be spent in these areas without exceeding maximum permissible exposures. Inasmuch as the fast neutrons contribute the major part of the Rem dose rates in these areas, knowledge of the fast neutron levels is important for planning permissive entry to target areas. Fast neutron dose rates were measured near thick medium mass targets bombarded with beams of C, N, O, and Ne ions. beam energies ranged from 3 to 16 MeV/amu. Dose rates (mrem/h) 1 meter from the target 90 degrees from the beam direction range from approx. 0.05 at MeV/amu to approx. 50 at 16 MeV/amu. These data should be helpful in planning permissive entry to heavy ion target areas.

  17. Variation of indoor radon concentration and ambient dose equivalent rate in different outdoor and indoor environments

    Energy Technology Data Exchange (ETDEWEB)

    Stojanovska, Zdenka; Janevik, Emilija; Taleski, Vaso [Goce Delcev University, Faculty of Medical Sciences, Stip (Macedonia, The Former Yugoslav Republic of); Boev, Blazo [Goce Delcev University, Faculty of Natural and Technical Sciences, Stip (Macedonia, The Former Yugoslav Republic of); Zunic, Zora S. [University of Belgrade, Institute of Nuclear Sciences ' ' Vinca' ' , Belgrade (Serbia); Ivanova, Kremena; Tsenova, Martina [National Center of Radiobiology and Radiation Protection, Sofia (Bulgaria); Ristova, Mimoza [University in Ss. Cyril and Methodius, Faculty of Natural Sciences and Mathematic, Institute of Physics, Skopje (Macedonia, The Former Yugoslav Republic of); Ajka, Sorsa [Croatian Geological Survey, Zagreb (Croatia); Bossew, Peter [German Federal Office for Radiation Protection, Berlin (Germany)

    2016-05-15

    Subject of this study is an investigation of the variations of indoor radon concentration and ambient dose equivalent rate in outdoor and indoor environments of 40 dwellings, 31 elementary schools and five kindergartens. The buildings are located in three municipalities of two, geologically different, areas of the Republic of Macedonia. Indoor radon concentrations were measured by nuclear track detectors, deployed in the most occupied room of the building, between June 2013 and May 2014. During the deploying campaign, indoor and outdoor ambient dose equivalent rates were measured simultaneously at the same location. It appeared that the measured values varied from 22 to 990 Bq/m{sup 3} for indoor radon concentrations, from 50 to 195 nSv/h for outdoor ambient dose equivalent rates, and from 38 to 184 nSv/h for indoor ambient dose equivalent rates. The geometric mean value of indoor to outdoor ambient dose equivalent rates was found to be 0.88, i.e. the outdoor ambient dose equivalent rates were on average higher than the indoor ambient dose equivalent rates. All measured can reasonably well be described by log-normal distributions. A detailed statistical analysis of factors which influence the measured quantities is reported. (orig.)

  18. Assessment of Effective Dose Equivalent of Indoor 222Rn Daughters in Inchass

    International Nuclear Information System (INIS)

    Ali, E.M.; Taha, T.M.; Gomaa, M.A.; El-Hussein, A.M.; Ahmad, A.A.

    2000-01-01

    The dominant component of natural radiation dose for the general population comes from the radon gas 222 Rn and its short-lived decay products, Ra A ( 214 Po), Ra B ( 214 Pb), Ra C ( 214 Bi), Ra C( 214 Po) in the breathing air. The objective of the present work is to assess the affective dose equivalent of the inhalation exposure of indoor 222 Rn for occupational workers. Average indon concentrations (Bqm -3 ) were monitored in several departments in Nuclear Research Center by radon monitor. We have calculated the lung dose equivalent and the effective dose equivalent for the Egyptian workers due to inhalation exposure of an equilibrium equivalent concentrations of radon daughters which varies from 0.27 to 2.5 mSvy -1 and 0.016 to 0.152mSvy -1 respectively. The annual effective doses obtained are within the accepted range of ICRP recommendations

  19. Evaluation of dose equivalent rate distribution in JCO critical accident by radiation transport calculation

    CERN Document Server

    Sakamoto, Y

    2002-01-01

    In the prevention of nuclear disaster, there needs the information on the dose equivalent rate distribution inside and outside the site, and energy spectra. The three dimensional radiation transport calculation code is a useful tool for the site specific detailed analysis with the consideration of facility structures. It is important in the prediction of individual doses in the future countermeasure that the reliability of the evaluation methods of dose equivalent rate distribution and energy spectra by using of Monte Carlo radiation transport calculation code, and the factors which influence the dose equivalent rate distribution outside the site are confirmed. The reliability of radiation transport calculation code and the influence factors of dose equivalent rate distribution were examined through the analyses of critical accident at JCO's uranium processing plant occurred on September 30, 1999. The radiation transport calculations including the burn-up calculations were done by using of the structural info...

  20. Skin dose estimation due to a contamination by a radionuclide β emitter: are doses equivalent good estimator of protection quantities?

    International Nuclear Information System (INIS)

    Bourgois, L.

    2011-01-01

    When handling radioactive β emitters, measurements in terms of personal dose equivalents H p (0.07) are used to estimate the equivalent dose limit to skin or extremities given by regulations. First of all, analytical expressions for individual dose equivalents H p (0.07) and equivalent doses to the extremities H skin are given for a point source and for contamination with a radionuclide β emitter. Second of all, operational quantities and protection quantities are compared. It is shown that in this case the operational quantities significantly overstate the protection quantities. For a skin contamination the ratio between operational quantities and protection quantities is 2 for a maximum β energy of 3 MeV and 90 for a maximum β energy of 150 keV. (author)

  1. Theoretic simulation for CMOS device on total dose radiation response

    International Nuclear Information System (INIS)

    He Baoping; Zhou Heqin; Guo Hongxia; He Chaohui; Zhou Hui; Luo Yinhong; Zhang Fengqi

    2006-01-01

    Total dose effect is simulated for C4007B, CC4007RH and CC4011 devices at different absorbed dose rate by using linear system theory. When irradiation response and dose are linear, total dose radiation and post-irradiation annealing at room temperature are determined for one random by choosing absorbed dose rate, and total dose effect at other absorbed dose rate can be predicted by using linear system theory. The simulating results agree with the experimental results at different absorbed dose rate. (authors)

  2. Optimization of a neutron ambient dose equivalent rate meter

    International Nuclear Information System (INIS)

    Burgkhardt, B.; Fieg, G.; Piesch, E.; Klett, A.; Maushart, R.

    1994-01-01

    Co-operating in a technology transfer project, the Karlsruhe Nuclear Research Center and EG and G Berthold have developed a neutron equivalent doserate probe with high sensitivity and an energy dependent detection efficiency in accordance with the ICRP60 requirements. The special features of this probe were realized, on the one hand, by optimizing the moderator and absorber geometry through simulation calculations with the neutron transport code MCNP, and, on the other hand, by using a newly designed 3 He-methane proportional counter tube. The measurements were not yet completed when this paper went to press, however, it is to be expected that the response sensitivity will be more than 3 counts/nSv. (orig.) [de

  3. Measurement of californium-252 gamma photons depth dose distribution in tissue equivalent material. Vol. 4

    Energy Technology Data Exchange (ETDEWEB)

    Fadel, M A; El-Fiki, M A; Eissa, H M; Abdel-Hafez, A; Naguib, S H [National Institute of Standards, Cairo (Egypt)

    1996-03-01

    Phantom of tissue equivalent material with and without bone was used measuring depth dose distribution of gamma-rays from californium-252 source. The source was positioned at center of perspex walled phantom. Depth dose measurements were recorded for X, Y and Z planes at different distances from source. TLD 700 was used for measuring the dose distribution. Results indicate that implantation of bone in tissue equivalent medium cause changes in the gamma depth dose distribution which varies according to variation in bone geometry. 9 figs.

  4. Equivalent doses of ionizing radiation received by medical staff at a nuclear medicine department

    International Nuclear Information System (INIS)

    Dziuk, E.; Kowalczyk, A.; Siekierzynski, M.; Jazwinski, J.; Chas, J.; Janiak, M.K.; Palijczuk, D.

    2002-01-01

    Aim: Total annual activity of I-131 used for the treatment of thyroid disorders at the Dept.of Nuclear Medicine, Central Clinical Hospital, Military University School of Medicine, in Warsaw, Poland, equal to 190 GBq; at the same time, total activity of Tc-99m utilized at the same Department for diagnostic purposes reached 1 TBq. As estimated from the radiometer readings, in extreme cases the equivalent at a couple of measurement points at this Department may exceed 200 mSv per year. Thus, in the present study we aimed to assess the potential risk of the exposure of medical personnel of the Department to ionizing radiation. Material and Methods: Polymethacrylate cases each housing four thermoluminescent dosimeters were continuously worn for one year by the nurses and doctors with the dosimeters being replaced by the new ones every three months. In addition, cases containing thermoluminescent dosimeters (three dosimeters per case) were placed in 20 different measurement points across the Department and the monitoring of the doses was carried out continuously for more than six years (from May 1995 to March 2002). Based on the quarterly readings of the dosimeters, equivalent doses were calculated for both the members of the personnel and the measurement space points. Results: The doses registered in the patient rooms ranged 5 to 90 mSv x y -1 , in the application room 10 to 15 mSv x y -1 , in the laboratory rooms 1.5 to 30 mSv x y -1 , and in the waiting room 2 to 6 mSv x y -1 ; no increment above the background level was detected in the nurses' station. Accordingly, the annual doses calculated from the dosimeters worn by the staff ranged 0.2 to 1.1 mSv x y -1 ; these latter findings were confirmed by direct readings from individual film dosimeters additionally worn by the staff members. Conclusion: The obtained results indicate that it is unlikely for the personnel of the monitored Nuclear Medicine Department to receive doses of radiation exceeding 40% of the annual

  5. Risk equivalent of exposure versus dose of radiation

    International Nuclear Information System (INIS)

    Bond, V.P.

    1986-01-01

    Radiation is perhaps unique among all agents of interest in the Health Sciences in that it alone is both a therapeutic agent for the control of cancer and an essentially ubiquitous environmental agent with a potential for increasing the cancer rate in human populations. Therapy of tumors is accomplished with the high-level exposure (HLE) to radiation in order to effect control or a cure. Thus, it conforms to the concepts and approaches of pharmacology, toxicology, and therapeutic medicine. Only one function, that which relates the object-oriented and nonstochastic independent variable organ dose to its effect on a cancer or an organ, is needed to estimate the probability, P 2 , of a quantal response. Only P 2 is needed because P 1 , that the cancer slated for such treatment will receive some amount of the agent and be affected to some degree, is effectively unity. The health problem involving low-level exposure (LLE) to radiation, in contrast, is not at all analogous to those of pharmacology, toxicology, and medicine. Rather, it presents a public health problem in that it is a health population, albeit of cells, that is exposed in a radiation field composed of moving radiation particles with some attendant low-order carcinogenic or mutagenic risk. Thus, the concepts, quantities, and terminology applied to low-level radiation must be modified from their present orientation toward pharmacology, toxicology, medicine, and dose to conform to those of public health and accident statistics, in which both P 1 and P 2 for the exposed cells must be estimated

  6. Alternatives to dose, quality factor and dose equivalent for low level irradiation

    International Nuclear Information System (INIS)

    Sondhaus, C.A.; Bond, V.P.; Feinendegen, L.E.

    1988-01-01

    Randomly occurring energy deposition events produced by low levels of ionizing radiation interacting with tissue deliver variable amounts of energy to the sensitive target volumes within a small fraction of the cell population. A model is described in which an experimentally derived function relating event size to cell response probability operates mathematically on the microdosimetric event size distribution characterizing a given irradiation and thus determines the total fractional number of responding cells; this fraction measures the effectiveness of the given radiation. Normalizing to equal numbers of events produced by different radiations and applying this cell response or hit size effectiveness function (HSEF) should define radiation quality, or relative effectiveness, on a more nearly absolute basis than do the absorbed dose and dose evaluation, which are confounded when applied to low level irradiations. Examples using both calculation and experimental data are presented. 15 refs., 18 figs

  7. Longterm monitoring of ambient dose equivalent rates at aviation altitudes

    Energy Technology Data Exchange (ETDEWEB)

    Heber, B.; Burmeister, S.; Moeller, T.; Scharrenberg, E. [Institut fuer Experimentelle und Angewandte Physik, Christian-Albrechts-Universitaet zu Kiel, Kiel (Germany); Briese, J. [Deutsche Lufthansa AG, Frankfurt am Main (Germany); Burda, O.; Klages, T.; Langner, F.; Marquardt, J.; Wissmann, F. [Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig Germany (Germany); Matthiae, D.; Reitz, G. [German Aerospace Center, Institute of Aerospace Medicine, Linder Hoehe, 51147 Koeln (Germany)

    2012-07-01

    The complex radiation field at flight altitudes results mainly from the interaction of energetic charged particles with atmospheric molecules and atoms and consists of secondary neutrons, protons, gamma rays, electrons, positrons and muons. Due to the continuous interactions of primary and secondary particles within the atmosphere, the intensity of each component depends on the height. Since the Earth's magnetic field acts as rigidity filter for the charged primary particles, the flux of the primary particles into the atmosphere and the resulting intensity of secondary particles depend on the geomagnetic latitude being highest over the geomagnetic poles. The main primary component consists of Galactic Cosmic Rays (GCRs), mainly protons and alpha particles, whose flux is modulated in the heliosphere. Beside this slowly varying galactic component, solar energetic particle events may temporarily increase the intensity of this radiation field. In the frame of the Radiation Monitoring on Board Aircraft (RAMONA) collaboration, three NAVIgation and DOSimetry (NAVIDOS) systems were installed in 2008 and 2009 on board of three Lufthansa Airbus A340 aircraft. They have been maintained since then by the consortium. Two of the NAVIDOS units rely on the DOSimetry TELescopes (DOSTELs), one is based on a LIULIN detector. This unique setup is ideally suited to investigate variations in the radiation field at different flight altitudes and geomagnetic positions and has been used to measure the radiation exposure during the recent extended solar minimum and thereafter. With increasing solar activity in 2010 the measured dose rates have been decreasing. Since these variations depend on the location of the aircraft, a detailed data analysis is required and presented.

  8. Applicability of ambient dose equivalent H*(d) in mixed radiation fields - a critical discussion

    International Nuclear Information System (INIS)

    Hajek, M.; Vana, N.

    2004-01-01

    For purposes of routine radiation protection, it is desirable to characterize the potential irradiation of individuals in terms of a single dose equivalent quantity that would exist in a phantom approximating the human body. The phantom of choice is the ICRU sphere made of 30 cm diameter tissue-equivalent plastic with a density of 1 g.cm-3 and a mass composition of 76.2 % O, 11.1 % C, 10.1 % H and 2.6 % N. Ambient dose equivalent, H*(d), was defined in ICRU report 51 as the dose equivalent that would be produced by an expanded and aligned radiation field at a depth d in the ICRU sphere. The recommended reference depths are 10 mm for strongly penetrating radiation and 0.07 mm for weakly penetrating radiation, respectively. As an operational quantity in radiation protection, H*(d) shall serve as a conservative and directly measurable estimate of protection quantities, e.g. effective dose E, which in turn are intended to give an indication of the risk associated with radiation exposure. The situation attains increased complexity in radiation environments being composed of a variety of charged and uncharged particles in a broad energetic spectrum. Radiation fields of similarly complex nature are, for example, encountered onboard aircraft and in space. Dose equivalent was assessed as a function of depth in quasi tissue-equivalent spheres by means of thermoluminescent dosemeters evaluated according to the high-temperature ratio (HTR) method. The presented experiments were performed both onboard aircraft and the Russian space station Mir. As a result of interaction processes within the phantom body, the incident primary spectrum may be significantly modified with increasing depth. For the radiation field at aviation altitudes we found the maximum of dose equivalent in a depth of 60 mm which conflicts with the 10 mm value recommended by ICRU. Contrary, for the space radiation environment the maximum dose equivalent was found at the surface of the sphere. This suggests that

  9. Applicability of Ambient Dose Equivalent H (d) in Mixed Radiation Fields - A Critical Discussion

    International Nuclear Information System (INIS)

    Vana, R.; Hajek, M.; Bergerm, T.

    2004-01-01

    For purposes of routine radiation protection, it is desirable to characterize the potential irradiation of individuals in terms of a single dose equivalent quantity that would exist in a phantom approximating the human body. The phantom of choice is the ICRU sphere made of 30 cm diameter tissue-equivalent plastic with a density of 1 g/cm3 and a mass composition of 76.2% O, 11.1% C, 10.1% H and 2.6% N. Ambient dose equivalent, H(d), was defined in ICRU report 51 as the dose equivalent that would be produced by an expanded and aligned radiation field at a depth d in the ICRU sphere. The recommended reference depths are 10 mm for strongly penetrating radiation and 0.07 mm for weakly penetrating radiation, respectively. As an operational quantity in radiation protection, H(d) shall serve as a conservative and directly measurable estimate of protection quantities, e.g. effective dose E, which in turn are intended to give an indication of the risk associated with radiation exposure. The situation attains increased complexity in radiation environments being composed of a variety of charged and uncharged particles in a broad energetic spectrum. Radiation fields of similarly complex nature are, for example, encountered onboard aircraft and in space. Dose equivalent was assessed as a function of depth in quasi tissue-equivalent spheres by means of thermoluminescent dosemeters evaluated according to the high-temperature ratio (HTR) method. The presented experiments were performed both onboard aircraft and the Russian space station Mir. As a result of interaction processes within the phantom body, the incident primary spectrum may be significantly modified with increasing depth. For the radiation field at aviation altitudes we found the maximum of dose equivalent in a depth of 60 mm which conflicts with the 10 mm value recommended by ICRU. Contrary, for the space radiation environment the maximum dose equivalent was found at the surface of the sphere. This suggests that skin

  10. Quality factor and dose equivalent investigations aboard the Soviet Space Station Mir

    Science.gov (United States)

    Bouisset, P.; Nguyen, V. D.; Parmentier, N.; Akatov, Ia. A.; Arkhangel'Skii, V. V.; Vorozhtsov, A. S.; Petrov, V. M.; Kovalev, E. E.; Siegrist, M.

    1992-07-01

    Since Dec 1988, date of the French-Soviet joint space mission 'ARAGATZ', the CIRCE device, had recorded dose equivalent and quality factor values inside the Mir station (380-410 km, 51.5 deg). After the initial gas filling two years ago, the low pressure tissue equivalent proportional counter is still in good working conditions. Some results of three periods are presented. The average dose equivalent rates measured are respectively 0.6, 0.8 and 0.6 mSv/day with a quality factor equal to 1.9. Some detailed measurements show the increasing of the dose equivalent rates through the SAA and near polar horns. The real time determination of the quality factors allows to point out high linear energy transfer events with quality factors in the range 10-20.

  11. Use of normalized total dose to represent the biological effect of fractionated radiotherapy

    International Nuclear Information System (INIS)

    Flickinger, J.C.; Kalend, A.

    1990-01-01

    There are currently a number of radiobiological models to account for the effects of dose fractionation and time. Normalized total dose (NTD) is not another new model but is a previously reported, clinically useful form in which to represent the biological effect, determined by any specific radiobiological dose-fractionation model, of a course of radiation using a single set of standardized, easily understood terminology. The generalized form of NTD reviewed in this paper describes the effect of a course of radiotherapy administered with nonstandard fractionation as the total dose of radiation in Gy that could be administered with a given reference fractionation such as 2 Gy per fraction, 5 fractions per week that would produce an equivalent biological effect (probability of complications or tumor control) as predicted by a given dose-fractionation formula. The use of normalized total dose with several different exponential and linear-quadratic dose-fraction formulas is presented. (author). 51 refs.; 1 fig.; 1 tab

  12. Use of normalized total dose to represent the biological effect of fractionated radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Flickinger, J C; Kalend, A [Pittsburgh University School of Medicine (USA). Department of Radiation Oncology Pittsburg Cancer Institute (USA)

    1990-03-01

    There are currently a number of radiobiological models to account for the effects of dose fractionation and time. Normalized total dose (NTD) is not another new model but is a previously reported, clinically useful form in which to represent the biological effect, determined by any specific radiobiological dose-fractionation model, of a course of radiation using a single set of standardized, easily understood terminology. The generalized form of NTD reviewed in this paper describes the effect of a course of radiotherapy administered with nonstandard fractionation as the total dose of radiation in Gy that could be administered with a given reference fractionation such as 2 Gy per fraction, 5 fractions per week that would produce an equivalent biological effect (probability of complications or tumor control) as predicted by a given dose-fractionation formula. The use of normalized total dose with several different exponential and linear-quadratic dose-fraction formulas is presented. (author). 51 refs.; 1 fig.; 1 tab.

  13. Measurement of dose equivalent distribution on-board commercial jet aircraft

    International Nuclear Information System (INIS)

    Kubancak, J.; Ambrozova, I.; Ploc, O.; Pachnerova Brabcova, K.; Stepan, V.; Uchihori, Y.

    2014-01-01

    The annual effective doses of aircrew members often exceed the limit of 1 mSv for the public due to the increased level of cosmic radiation at the flight altitudes, and thus, it is recommended to monitor them [International Commission on Radiation Protection. 1990 Recommendations of the International Commission on Radiological Protection. ICRP Publication 60. Ann. ICRP 21(1-3), (1991)]. According to the Monte Carlo simulations [Battistoni, G., Ferrari, A., Pelliccioni, M. and Villari, R. Evaluation of the doses to aircrew members taking into consideration the aircraft structures. Adv. Space Res. 36, 1645-1652 (2005) and Ferrari, A., Pelliccioni, M. and Villari, R. Evaluation of the influence of aircraft shielding on the aircrew exposure through an aircraft mathematical model. Radiat. Prot. Dosim. 108(2), 91-105 (2004)], the ambient dose equivalent rate H*(10) depends on the location in the aircraft. The aim of this article is to experimentally evaluate H*(10) on-board selected types of aircraft. The authors found that H*(10) values are higher in the front and the back of the cabin and lesser in the middle of the cabin. Moreover, total dosimetry characteristics obtained in this way are in a reasonable agreement with other data, in particular with the above-mentioned simulations. (authors)

  14. Benefits of the effective dose equivalent concept at a medical center

    International Nuclear Information System (INIS)

    Vetter, R.J.; Classic, K.L.

    1991-01-01

    A primary objective of the recommendations of the International Committee on Radiological Protection Publication 26 is to insure that no source of radiation exposure is unjustified in relation to its benefits. This objective is consistent with goals of the Radiation Safety Committee and Institutional Review Board at medical centers where research may involve radiation exposure of human subjects. The effective dose equivalent concept facilitates evaluation of risk by those who have little or no knowledge of quantities or biological effects of radiation. This paper presents effective dose equivalent data used by radiation workers and those who evaluate human research protocols as these data relate to personal dosimeter reading, entrance skin exposure, and target organ dose. The benefits of using effective dose equivalent to evaluate risk of medical radiation environments and research protocols are also described

  15. Preliminary study of dose equivalent evaluation for residents in radioactivity contaminated rebar buildings

    International Nuclear Information System (INIS)

    Chen, W.L.; Liao, C.C.; Wang, M.T.; Chen, F. D.

    1998-01-01

    It has recently been found that several resident and office buildings in Taiwan were constructed with 60 Co-contaminated reinforcing steel bar (rebar). Both governmental officials and the residents of such buildings have been concerned about this finding. In order to respond to the situation, the government has adopted a number of remedial measures, including full-scale radiation survey, dose evaluation and physical examinations of residents. This article presents three methods for evaluating the dose equivalents of the residents living in the contaminated rebar buildings by means of γ-ray survey, necklace-type thermoluminescence dosimeters (TLDs) and the human lymphocyte chromosome aberration analyses. The results reveal that the dose evaluation by γ-ray survey is rather conservative. Generally for the residents whose annual dose equivalents are greater than 5 mSv (0.5 rem) by γ-ray survey, the dose equivalents from necklace-type TLDs are only within the range of 20 to 50% of the evaluated values mentioned above. For chromosome analyses, at least 500 lymphocyte cells were scored and analyzed for each resident. Most of the chromosome analysis data show that the dose equivalents received by residents are lower than the detection limit of the method (100 mSv) and quite different from the estimated dose obtained from either γ-ray survey or necklace-type TLD measurements

  16. Airborne and total gamma absorbed dose rates at Patiala - India

    International Nuclear Information System (INIS)

    Tesfaye, Tilahun; Sahota, H.S.; Singh, K.

    1999-01-01

    The external gamma absorbed dose rate due to gamma rays originating from gamma emitting aerosols in air, is compared with the total external gamma absorbed dose rate at the Physics Department of Punjabi University, Patiala. It has been found out that the contribution, to the total external gamma absorbed dose rate, of radionuclides on particulate matter suspended in air is about 20% of the overall gamma absorbed dose rate. (author)

  17. Out‐of‐field doses and neutron dose equivalents for electron beams from modern Varian and Elekta linear accelerators

    Science.gov (United States)

    Cardenas, Carlos E.; Nitsch, Paige L.; Kudchadker, Rajat J.; Howell, Rebecca M.

    2016-01-01

    Out‐of‐field doses from radiotherapy can cause harmful side effects or eventually lead to secondary cancers. Scattered doses outside the applicator field, neutron source strength values, and neutron dose equivalents have not been broadly investigated for high‐energy electron beams. To better understand the extent of these exposures, we measured out‐of‐field dose characteristics of electron applicators for high‐energy electron beams on two Varian 21iXs, a Varian TrueBeam, and an Elekta Versa HD operating at various energy levels. Out‐of‐field dose profiles and percent depth‐dose curves were measured in a Wellhofer water phantom using a Farmer ion chamber. Neutron dose was assessed using a combination of moderator buckets and gold activation foils placed on the treatment couch at various locations in the patient plane on both the Varian 21iX and Elekta Versa HD linear accelerators. Our findings showed that out‐of‐field electron doses were highest for the highest electron energies. These doses typically decreased with increasing distance from the field edge but showed substantial increases over some distance ranges. The Elekta linear accelerator had higher electron out‐of‐field doses than the Varian units examined, and the Elekta dose profiles exhibited a second dose peak about 20 to 30 cm from central‐axis, which was found to be higher than typical out‐of‐field doses from photon beams. Electron doses decreased sharply with depth before becoming nearly constant; the dose was found to decrease to a depth of approximately E(MeV)/4 in cm. With respect to neutron dosimetry, Q values and neutron dose equivalents increased with electron beam energy. Neutron contamination from electron beams was found to be much lower than that from photon beams. Even though the neutron dose equivalent for electron beams represented a small portion of neutron doses observed under photon beams, neutron doses from electron beams may need to be considered for

  18. Out-of-field doses and neutron dose equivalents for electron beams from modern Varian and Elekta linear accelerators.

    Science.gov (United States)

    Cardenas, Carlos E; Nitsch, Paige L; Kudchadker, Rajat J; Howell, Rebecca M; Kry, Stephen F

    2016-07-08

    Out-of-field doses from radiotherapy can cause harmful side effects or eventually lead to secondary cancers. Scattered doses outside the applicator field, neutron source strength values, and neutron dose equivalents have not been broadly investigated for high-energy electron beams. To better understand the extent of these exposures, we measured out-of-field dose characteristics of electron applicators for high-energy electron beams on two Varian 21iXs, a Varian TrueBeam, and an Elekta Versa HD operating at various energy levels. Out-of-field dose profiles and percent depth-dose curves were measured in a Wellhofer water phantom using a Farmer ion chamber. Neutron dose was assessed using a combination of moderator buckets and gold activation foils placed on the treatment couch at various locations in the patient plane on both the Varian 21iX and Elekta Versa HD linear accelerators. Our findings showed that out-of-field electron doses were highest for the highest electron energies. These doses typically decreased with increasing distance from the field edge but showed substantial increases over some distance ranges. The Elekta linear accelerator had higher electron out-of-field doses than the Varian units examined, and the Elekta dose profiles exhibited a second dose peak about 20 to 30 cm from central-axis, which was found to be higher than typical out-of-field doses from photon beams. Electron doses decreased sharply with depth before becoming nearly constant; the dose was found to decrease to a depth of approximately E(MeV)/4 in cm. With respect to neutron dosimetry, Q values and neutron dose equivalents increased with electron beam energy. Neutron contamination from electron beams was found to be much lower than that from photon beams. Even though the neutron dose equivalent for electron beams represented a small portion of neutron doses observed under photon beams, neutron doses from electron beams may need to be considered for special cases.

  19. Estimation of equivalent dose on the ends of hemodynamic physicians during neurological procedures

    International Nuclear Information System (INIS)

    Squair, Peterson L.; Souza, Luiz C. de; Oliveira, Paulo Marcio C. de

    2005-01-01

    The estimation of doses in the hands of physicists during hemodynamic procedures is important to verify the application of radiation protection related to the optimization and limit of dose, principles required by the Portaria 453/98 of Ministry of Health/ANVISA, Brazil. It was checked the levels of exposure of the hands of doctors during the use of the equipment in hemodynamic neurological procedures through dosimetric rings with thermoluminescent dosemeters detectors of LiF: Mg, Ti (TLD-100), calibrated in personal Dose equivalent HP (0.07). The average equivalent dose in the end obtained was 41.12. μSv per scan with an expanded uncertainty of 20% for k = 2. This value is relative to the hemodynamic Neurology procedure using radiological protection procedures accessible to minimize the dose

  20. Effectance, committed effective dose equivalent and annual limits on intake: what are the changes?

    International Nuclear Information System (INIS)

    Kendall, G.M.; Stather, J.W.; Phipps, A.W.

    1990-01-01

    This paper outlines the concept of effectance, compares committed effectance with the old committed effective dose equivalent and goes on to discuss changes in the annual limits on intakes and the maximum organ doses which would result from an intake of an ALI (Annual Limit of Intake). It is shown that committed effectance is usually, but not always, higher than committed effective dose equivalent. ALIS are usually well below those resulting from the ICRP Publication 30 scheme. However, if the ALI were based only on a limit on effectance it would imply a high dose to specific organs for certain nuclides. In order to control maximum organ doses an explicit limit could be introduced. However, this would destroy some of the attractive features of the new scheme. An alternative would be a slight modification to some of the weighting factors. (author)

  1. Quantifying the Combined Effect of Radiation Therapy and Hyperthermia in Terms of Equivalent Dose Distributions

    International Nuclear Information System (INIS)

    Kok, H. Petra; Crezee, Johannes; Franken, Nicolaas A.P.; Stalpers, Lukas J.A.; Barendsen, Gerrit W.; Bel, Arjan

    2014-01-01

    Purpose: To develop a method to quantify the therapeutic effect of radiosensitization by hyperthermia; to this end, a numerical method was proposed to convert radiation therapy dose distributions with hyperthermia to equivalent dose distributions without hyperthermia. Methods and Materials: Clinical intensity modulated radiation therapy plans were created for 15 prostate cancer cases. To simulate a clinically relevant heterogeneous temperature distribution, hyperthermia treatment planning was performed for heating with the AMC-8 system. The temperature-dependent parameters α (Gy −1 ) and β (Gy −2 ) of the linear–quadratic model for prostate cancer were estimated from the literature. No thermal enhancement was assumed for normal tissue. The intensity modulated radiation therapy plans and temperature distributions were exported to our in-house-developed radiation therapy treatment planning system, APlan, and equivalent dose distributions without hyperthermia were calculated voxel by voxel using the linear–quadratic model. Results: The planned average tumor temperatures T90, T50, and T10 in the planning target volume were 40.5°C, 41.6°C, and 42.4°C, respectively. The planned minimum, mean, and maximum radiation therapy doses were 62.9 Gy, 76.0 Gy, and 81.0 Gy, respectively. Adding hyperthermia yielded an equivalent dose distribution with an extended 95% isodose level. The equivalent minimum, mean, and maximum doses reflecting the radiosensitization by hyperthermia were 70.3 Gy, 86.3 Gy, and 93.6 Gy, respectively, for a linear increase of α with temperature. This can be considered similar to a dose escalation with a substantial increase in tumor control probability for high-risk prostate carcinoma. Conclusion: A model to quantify the effect of combined radiation therapy and hyperthermia in terms of equivalent dose distributions was presented. This model is particularly instructive to estimate the potential effects of interaction from different treatment

  2. Dose determination algorithms for a nearly tissue equivalent multi-element thermoluminescent dosimeter

    International Nuclear Information System (INIS)

    Moscovitch, M.; Chamberlain, J.; Velbeck, K.J.

    1988-01-01

    In a continuing effort to develop dosimetric systems that will enable reliable interpretation of dosimeter readings in terms of the absorbed dose or dose-equivalent, a new multi-element TL dosimeter assembly for Beta and Gamma dose monitoring has been designed. The radiation-sensitive volumes are four LiF-TLD elements, each covered by its own unique filter. For media-matching, care has been taken to employ nearly tissue equivalent filters of thicknesses of 1000 mg/cm 2 and 300 mg/cm 2 for deep dose and dose to the lens-of-the-eye measurements respectively. Only one metal filter (Cu) is employed to provide low energy photon discrimination. A Thin TL element (0.09 mm thick) is located behind an open window designed to improve the energy under-response to low energy beta rays and to provide closer estimate of the shallow dose equivalent. The deep and shallow dose equivalents are derived from the correlation of the response of the various TL elements to the above quantities through computations based on previously defined relationships obtained from experimental results. The theoretical formalization for the dose calculation algorithms is described in detail, and provides a useful methodology which can be applied to different tissue-equivalent dosimeter assemblies. Experimental data has been obtained by performing irradiation according to the specifications established by DOELAP, using 27 types of pure and mixed radiation fields including Cs-137 gamma rays, low energy photons down to 20 keV, Sr/Y-90, Uranium, and Tl-204 beta particles

  3. EFFDOS - a FORTRAN-77-code for the calculation of the effective dose equivalent

    International Nuclear Information System (INIS)

    Baer, M.; Honcu, S.; Huebschmann, W.

    1984-01-01

    The FORTRAN-77-code EFFDOS calculates the effective dose equivalent according to ICRP 26 due to the longterm emission of radionuclides into the atmosphere for the following exposure pathways: inhalation, ingestion, γ-ground irradiation (γ-irradiation by radionuclides deposited on the ground) and β- or γ-submersion (irradiation by the passing radioactive cloud). For calculating the effective dose equivalent at a single spot it is necessary to put in the diffusion factor and - if need be - the washout factor; otherwise EFFDOS calculates the input data for the computer codes ISOLA III and WOLGA-1, which then are enabled to compute the atmospheric diffusion, ground deposition and local dose equivalent distribution for the requested exposure pathway. Atmospheric diffusion, deposition and radionuclide transfer are calculated according to the ''Allgemeine Berechnungsgrundlage ....'' recommended by the German Fed. Ministry of Interior. A sample calculated is added. (orig.) [de

  4. Influence of thermoluminescence trapping parameter from abundant quartz powder on equivalent dose

    International Nuclear Information System (INIS)

    Zhao Qiuyue; Wei Mingjian; Song Bo; Pan Baolin; Zhou Rui

    2014-01-01

    Glow curves of abundant quartz powder were obtained with the RGD-3B thermoluminescence (TL) reader. TL peaks with 448, 551, 654, 756 K were identified at the heating rate of 5 K/s. The activation energy, frequency factor and lifetime of trapped charge were evaluated at ambient temperature for four peaks by the method of various heating rates. Within a certain range of activation energy, the equivalent dose increases exponentially with the activation energy. The equivalent dose increases from 54 Gy to 485 Gy with the temperature from 548 K to 608 K, and it fluctuates around 531 Gy with the temperature from 608 K to 748 K. (authors)

  5. Neutron fluence-to-dose equivalent conversion factors: a comparison of data sets and interpolation methods

    International Nuclear Information System (INIS)

    Sims, C.S.; Killough, G.G.

    1983-01-01

    Various segments of the health physics community advocate the use of different sets of neutron fluence-to-dose equivalent conversion factors as a function of energy and different methods of interpolation between discrete points in those data sets. The major data sets and interpolation methods are used to calculate the spectrum average fluence-to-dose equivalent conversion factors for five spectra associated with the various shielded conditions of the Health Physics Research Reactor. The results obtained by use of the different data sets and interpolation methods are compared and discussed. (author)

  6. Prediction analysis of dose equivalent responses of neutron dosemeters used at a MOX fuel facility

    International Nuclear Information System (INIS)

    Tsujimura, N.; Yoshida, T.; Takada, C.

    2011-01-01

    To predict how accurately neutron dosemeters can measure the neutron dose equivalent (rate) in MOX fuel fabrication facility work environments, the dose equivalent responses of neutron dosemeters were calculated by the spectral folding method. The dosemeters selected included two types of personal dosemeter, namely a thermoluminescent albedo neutron dosemeter and an electronic neutron dosemeter, three moderator-based neutron survey meters, and one special instrument called an H p (10) monitor. The calculations revealed the energy dependences of the responses expected within the entire range of neutron spectral variations observed in neutron fields at workplaces. (authors)

  7. Measurement of absorbed dose with a bone-equivalent extrapolation chamber

    International Nuclear Information System (INIS)

    DeBlois, Francois; Abdel-Rahman, Wamied; Seuntjens, Jan P.; Podgorsak, Ervin B.

    2002-01-01

    A hybrid phantom-embedded extrapolation chamber (PEEC) made of Solid Water trade mark sign and bone-equivalent material was used for determining absorbed dose in a bone-equivalent phantom irradiated with clinical radiation beams (cobalt-60 gamma rays; 6 and 18 MV x rays; and 9 and 15 MeV electrons). The dose was determined with the Spencer-Attix cavity theory, using ionization gradient measurements and an indirect determination of the chamber air-mass through measurements of chamber capacitance. The collected charge was corrected for ionic recombination and diffusion in the chamber air volume following the standard two-voltage technique. Due to the hybrid chamber design, correction factors accounting for scatter deficit and electrode composition were determined and applied in the dose equation to obtain absorbed dose in bone for the equivalent homogeneous bone phantom. Correction factors for graphite electrodes were calculated with Monte Carlo techniques and the calculated results were verified through relative air cavity dose measurements for three different polarizing electrode materials: graphite, steel, and brass in conjunction with a graphite collecting electrode. Scatter deficit, due mainly to loss of lateral scatter in the hybrid chamber, reduces the dose to the air cavity in the hybrid PEEC in comparison with full bone PEEC by 0.7% to ∼2% depending on beam quality and energy. In megavoltage photon and electron beams, graphite electrodes do not affect the dose measurement in the Solid Water trade mark sign PEEC but decrease the cavity dose by up to 5% in the bone-equivalent PEEC even for very thin graphite electrodes (<0.0025 cm). In conjunction with appropriate correction factors determined with Monte Carlo techniques, the uncalibrated hybrid PEEC can be used for measuring absorbed dose in bone material to within 2% for high-energy photon and electron beams

  8. The neutron dose equivalent around high energy medical electron linear accelerators

    Directory of Open Access Journals (Sweden)

    Poje Marina

    2014-01-01

    Full Text Available The measurement of neutron dose equivalent was made in four dual energy linear accelerator rooms. Two of the rooms were reconstructed after decommissioning of 60Co units, so the main limitation was the space. The measurements were performed by a nuclear track etched detectors LR-115 associated with the converter (radiator that consist of 10B and with the active neutron detector Thermo BIOREM FHT 742. The detectors were set at several locations to evaluate the neutron ambient dose equivalent and/or neutron dose rate to which medical personnel could be exposed. Also, the neutron dose dependence on collimator aperture was analyzed. The obtained neutron dose rates outside the accelerator rooms were several times smaller than the neutron dose rates inside the accelerator rooms. Nevertheless, the measured neutron dose equivalent was not negligible from the aspect of the personal dosimetry with almost 2 mSv a year per person in the areas occupied by staff (conservative estimation. In rooms with 15 MV accelerators, the neutron exposure to the personnel was significantly lower than in the rooms having 18 MV accelerators installed. It was even more pronounced in the room reconstructed after the 60Co decommissioning. This study confirms that shielding from the neutron radiation should be considered when building vaults for high energy linear accelerators, especially when the space constraints exist.

  9. Personal dose equivalent conversion coefficients for electrons to 1 Ge V.

    Science.gov (United States)

    Veinot, K G; Hertel, N E

    2012-04-01

    In a previous paper, conversion coefficients for the personal dose equivalent, H(p)(d), for photons were reported. This note reports values for electrons calculated using similar techniques. The personal dose equivalent is the quantity used to approximate the protection quantity effective dose when performing personal dosemeter calibrations and in practice the personal dose equivalent is determined using a 30×30×15 cm slab-type phantom. Conversion coefficients to 1 GeV have been calculated for H(p)(10), H(p)(3) and H(p)(0.07) in the recommended slab phantom. Although the conversion coefficients were determined for discrete incident energies, analytical fits of the conversion coefficients over the energy range are provided using a similar formulation as in the photon results previously reported. The conversion coefficients for the personal dose equivalent are compared with the appropriate protection quantity, calculated according to the recommendations of the latest International Commission on Radiological Protection guidance. Effects of eyewear on H(p)(3) are also discussed.

  10. Absorbed dose measurement by using tissue equivalent ionization chamber (pair ionization chamber) in the Yayoi reactor

    International Nuclear Information System (INIS)

    Sasuga, N.; Okamura, K.; Terakado, T.; Mabuchi, Y.; Nakagawa, T.; Sukegawa, Toshio; Aizawa, C.; Saito, I.; Oka, Yoshiaki

    1998-01-01

    Each dose rate of neutron and gamma ray in the thermal column of the Yayoi reactor, in which an epithermal neutron field will be used for the boron neutron capture therapy, was measured by using a tissue equivalent ionization chamber and a graphite chamber. The tissue equivalent ionization chamber has some response to both neutron and gamma ray, but the graphite chamber has a few response to the neutron, so called pair ionization chamber method. The epithermal neutron fluxes of the thermal column were calculated by ANISN (one dimensional neutron-gamma transport code). A measured value for gamma dose rate by the pair ionization chamber agrees relevantly with a calculated result. For neutron dose rate, however, the measured value was too much small in comparison with the calculated result. The discrepancy between the measured value and the calculated result for neutron dose rate is discussed in detail in the report. (M. Suetake)

  11. Preliminary characterization of the passive neutron dose equivalent monitor with TLDs

    Energy Technology Data Exchange (ETDEWEB)

    Tsujimura, Norio; Kanai, Katsuta; Momose, Takumaro; Hayashi, Naomi [Japan Nuclear Cycle Development Inst., Tokai Works, Tokai, Ibaraki (Japan); Chen Erhu [Beijing Institute of Nuclear Engineering, Beijing (China)

    2001-02-01

    The passive neutron dose equivalent monitor with TLDs is composed of a cubic polyethylene moderator and TLDs at the center of moderator. This monitor was originally designed for measurements of neutron doses over long-term period of time around the nuclear facilities. In this study, the energy response of this monitor was calculated by Monte Carlo methods and experimentally obtained under {sup 241}Am-Be, {sup 252}Cf and moderated {sup 252}Cf neutron irradiation. Additionally, the responses of two types of conventional neutron dose equivalent meters (rem counters) were also investigated as comparison. The authors concluded that this passive neutron monitor with TLDs had a good energy response similar to conventional rem counters and could evaluate neutron doses within 10% of accuracy to the moderated fission spectra. (author)

  12. Correct statistical evaluation for total dose in rural settlement

    International Nuclear Information System (INIS)

    Vlasova, N.G.; Skryabin, A.M.

    2001-01-01

    Statistical evaluation of dose reduced to the determination of an average value and its error. If an average value of a total dose in general can be determined by simple summarizing of the averages of its external and internal components, the evaluation of an error can be received only from its distribution. Herewith, considering that both components of the dose are interdependent, to summarize their distributions, as a last ones of a random independent variables, is incorrect. It follows that an evaluation of the parameters of the total dose distribution, including an error, in general, cannot be received empirically, particularly, at the lack or absence of the data on one of the components of the last one, that constantly is happens in practice. If the evaluation of an average for total dose was defined somehow, as the best, as an average of a distribution of the values of individual total doses, as summarizing the individual external and internal doses by the random type, that an error of evaluation had not been produced. The methodical approach to evaluation of the total dose distribution at the lack of dosimetric information was designed. The essence of it is original way of an interpolation of an external dose distribution, using data on an internal dose

  13. A study on the annual equivalent doses received by cardiologists in a UK hospital

    International Nuclear Information System (INIS)

    Fong, R.Y.L.; Ryan, E.; Alonso-Arrizabalaga, S.

    2001-01-01

    A dose assessment study was carried out to determine the likely annual equivalent doses received by various parts of a cardiologist's body. High sensitivity GR-200 thermoluminescent dosemeters were attached to cardiologists' foreheads, little fingers, wrists, elbows, knees and ankles. Three common cardiology procedures were investigated, namely, percutaneous transluminal coronary angioplasty (PTCA), permanent pacemaker insertion (PPM) and left heart catheterisation (LHC). Dose monitoring was done on a case-by-case basis. Data on ten cases of each procedure were gathered. The projected annual equivalent doses were computed by averaging the ten doses measured at each site for each examination type and finding out from the cardiologists how many cases of PTCA, PPM and LHC they do in a year. Results in this study show that for the lens of the eye, the projected annual equivalent dose is below 10 mSv and for the other body parts, it is below 100 mSv per year. The study demonstrated that the methodology used can help to optimise radiation protection in diagnostic radiology. (author)

  14. Additional effective dose equivalent for adults and children in Poland as the result of mushroom consumption

    International Nuclear Information System (INIS)

    Jasinska, H.; Kozak, K.; Mietelski, J.W.

    2004-01-01

    Experimental data of caesium radioactivity in samples of various mushrooms collected all over Poland from 1986 to 1989 are presented. Nearly 80 samples from Poland and a few samples from Austria and USSR were analysed. The effective dose equivalents for adults and children caused by the consumption of one mass unit of dried mushrooms for each sample were estimated. (author)

  15. Evaluation of the effective dose equivalent to tbe public of Pavia after the Chernobyl nuclear accident

    International Nuclear Information System (INIS)

    Altieri, S.; Berzero, A.; Meloni, S.; Rosti, G.; Genova, N.

    1988-01-01

    The Chernobyl radionuclide monitoring campaign in air particulate and foodstuffs was carried out and continued up to June 1987. On the basis of collected data estimates of the collective effective dose equivalent commitment to the public of province of Pavia, by external irradiation or by inhalation, were carried out and are reported in the present paper

  16. Dependence on age at intake of committed dose equivalents from radionuclides

    International Nuclear Information System (INIS)

    Adams, N.

    1981-01-01

    The dependence of committed dose equivalents on age at intake is needed to assess the significance of exposures of young persons among the general public resulting from inhaled or ingested radionuclides. The committed dose equivalents, evaluated using ICRP principles, depend on the body dimensions of the young person at the time of intake of a radionuclide and on subsequent body growth. Representation of growth by a series of exponential segments facilitates the derivation of general expressions for the age dependence of committed dose equivalents if metabolic models do not change with age. The additional assumption that intakes of radionuclides in air or food are proportional to a person's energy expenditure (implying age-independent dietary composition) enables the demonstration that the age of the most highly exposed 'critical groups' of the general public from these radionuclides is either about 1 year or 17 years. With the above assumptions the exposure of the critical group is less than three times the exposure of adult members of the general public. Approximate values of committed dose equivalents which avoid both underestimation and excessive overestimation are shown to be obtainable by simplified procedures. Modified procedures are suggested for use if metabolic models change with age. (author)

  17. A design of ambient dose equivalent dosimeter and its dosimetric performance

    International Nuclear Information System (INIS)

    Zhao Shian; Ou Xiangming; Li Kaibao

    1997-01-01

    Objective: To design an ambient dose equivalent dosimeter with digital display for radiation protection, which is based on the definition of the new operational radiation quantity for environmental monitoring-ambient dose equivalent recommended by the International Commission on Radiation Units and Measurements (ICRU) Report 39. Methods: Considering the energy response of the instrument, the inner wall of ionizing chamber is coated with gum graphite added with a bit of metal powder. Results: Using this chamber, measurement of H * (10) for photon radiation with unknown spectrum distribution is possible in the energy range from 47 keV to 230 keV with an uncertainty of better than 5%. The configuration, technology and dosimetric performance of the chamber and automatic functions of the reader are presented. Conclusion: The ambient dose equivalent dosimeter can be used as not only a working reference dosimeter, but also a field dosimeter for radiation protection because the readings are expressed directly in ambient dose equivalent and averaged automatically in the period of measurement. Also, its power is supplied by battery for the portable purpose and the readings are displayed on the screen with light-background for dim field

  18. Radiobiological equivalent of low/high dose rate brachytherapy and evaluation of tumor and normal responses to the dose.

    Science.gov (United States)

    Manimaran, S

    2007-06-01

    The aim of this study was to compare the biological equivalent of low-dose-rate (LDR) and high-dose-rate (HDR) brachytherapy in terms of the more recent linear quadratic (LQ) model, which leads to theoretical estimation of biological equivalence. One of the key features of the LQ model is that it allows a more systematic radiobiological comparison between different types of treatment because the main parameters alpha/beta and micro are tissue-specific. Such comparisons also allow assessment of the likely change in the therapeutic ratio when switching between LDR and HDR treatments. The main application of LQ methodology, which focuses on by increasing the availability of remote afterloading units, has been to design fractionated HDR treatments that can replace existing LDR techniques. In this study, with LDR treatments (39 Gy in 48 h) equivalent to 11 fractions of HDR irradiation at the experimental level, there are increasing reports of reproducible animal models that may be used to investigate the biological basis of brachytherapy and to help confirm theoretical predictions. This is a timely development owing to the nonavailability of sufficient retrospective patient data analysis. It appears that HDR brachytherapy is likely to be a viable alternative to LDR only if it is delivered without a prohibitively large number of fractions (e.g., fewer than 11). With increased scientific understanding and technological capability, the prospect of a dose equivalent to HDR brachytherapy will allow greater utilization of the concepts discussed in this article.

  19. Estimates of effective equivalent dose commitments for Slovene population following the Chernobyl accident

    International Nuclear Information System (INIS)

    Kanduc, M.; Jovanowic, O.; Kuhar, B.

    2004-01-01

    This paper shows the estimates of effective equivalent dose commitments for the two groups of Slovene population, 5 years old children and adults. Doses were calculated on the basis of the ICRP 30 methodology, first from the measurements of the concentrations of the radionuclides in air, water and food samples and then compared with the results of the measurements of radionuclides in composite samples of the prepared food, taken in the kindergarten nearby. Results show that there is certain degree of conservatism hidden in the calculation of the doses on the basis of measurements of the activity concentration in the elements of the biosphere and is estimated to be roughly 50%. (author)

  20. Method for calculating individual equivalent doses and cumulative dose of population in the vicinity of nuclear power plant site

    International Nuclear Information System (INIS)

    Namestek, L.; Khorvat, D; Shvets, J.; Kunz, Eh.

    1976-01-01

    A method of calculating the doses of external and internal person irradiation in the nuclear power plant vicinity under conditions of normal operation and accident situations has been described. The main difference between the above method and methods used up to now is the use of a new antropomorphous representation of a human body model together with all the organs. The antropomorphous model of human body and its organs is determined as a set of simple solids, coordinates of disposistion of the solids, sizes, masses, densities and composition corresponding the genuine organs. The use of the Monte-Carlo method is the second difference. The results of the calculations according to the model suggested can be used for determination: a critical group of inhabitans under conditions of normal plant operation; groups of inhabitants most subjected to irradiation in the case of possible accident; a critical sector with a maximum collective dose in the case of an accident; a critical radioisotope favouring the greatest contribution to an individual equivalent dose; critical irradiation ways promoting a maximum contribution to individual equivalent doses; cumulative collective doses for the whole region or for a chosen part of the region permitting to estimate a population dose. The consequent method evoluation suggests the development of separate units of the calculationg program, critical application and the selection of input data of physical, plysiological and ecological character and improvement of the calculated program for the separate concrete events [ru

  1. Calculation of the individual effective dose equivalent in Italy following the Chernobyl accident

    International Nuclear Information System (INIS)

    Lotfi, M.; Mancioppi, S.; Piermattei, S.; Tommasino, L.; Azimi-Garakani, D.

    1991-01-01

    Estimates are presented here for the individual effective dose equivalents (EDE) from dietary intake of radiocaesium-contaminated food by the average Italian consumer in different age groups. Food items of consumption rate greater than 50kg/y were included in the food basket studies. In view of the pattern of food consumption in Italy, the radiocaesium concentrations of foodstuffs such as milk, milk products, bread, pasta, meat fruit, vegetables and babyfoods were measured between January 1987 and December 1988 inclusive. These measurements were carried out mainly by the environmental radioactivity laboratories in three administrative districts of Italy. The results show that the total individual EDE values received in 1987 from foodstuffs were around 175, 110 and 70 μSv/year for adults, children (up to 10 years old) and infants (up to one year old), respectively. The corresponding values for 1988 are about 15, 10 and 20 μSv/year, respectively. The EDE committed in the latter half relative to the first half of 1987 was a factor of 2.5 and 3 less for adults and children, respectively, and a factor of about 2 for infants. In 1988, no significant change was observed in EDE values during the year. (author)

  2. Effective equivalent dose in the critical group due to release of radioactive effluents

    International Nuclear Information System (INIS)

    Santos, John W.A. dos; Varandas, Luciana R.; Souza, Denise N.; Souza, Cristiano B.F.; Lima, Sandro Leonardo N.; Mattos, Marcos Fernando M.; Moraes, Jose Adenildo T.

    2005-01-01

    To ensure that the emissions of radioactive material by liquid and gaseous pathways are below applicable limits it is necessary to evaluate the effective equivalent dose in the critical group, which is a magnitude that takes into consideration the modeling used and the terms radioactive activity source. The calculation of this dose considers each radionuclide released by the activity of Nuclear plant, liquid and gaseous by, and the sum of the values obtained is controlled so that this dose does not exceed the goals of the regulatory body, the CNEN and the goals established by the Nuclear power plant. To hit these targets various controls are used such as: controls for effluent monitors instrumentation, environmental monitoring programs, effluent release controls and dose calculation in the environment. According to the findings, it is concluded that during the period of operation of the plants, this dose is below of the required limits

  3. A Comparison of Equivalent Doses of Lidocaine and Articaine in Maxillary Posterior Tooth Extractions: Case Series

    Directory of Open Access Journals (Sweden)

    Christopher C. Friedl

    2012-06-01

    Full Text Available Objectives: Local anaesthesia is the standard of care during dental extractions. With the advent of newer local anesthetic agents, it is often difficult for the clinician to decide which agent would be most efficacious in a given clinical scenario. This study assessed the efficacy of equal-milligram doses of lidocaine and articaine in achieving surgical anaesthesia of maxillary posterior teeth diagnosed with irreversible pulpitis. Material and Methods: This case-series evaluated a total of 41 patients diagnosed with irreversible pulpitis in a maxillary posterior tooth. Patients randomly received an infiltration of either 3.6 mL (72 mg 2% lidocaine with 1:100,000 epinephrine or 1.8 mL (72 mg 4% articaine with 1:100,000 epinephrine in the buccal fold and palatal soft tissue adjacent to the tooth. After 10 minutes, initial anaesthesia of the tooth was assessed by introducing a sterile 27-gauge needle into the gingival tissue adjacent to the tooth, followed by relief of the gingival cuff. Successful treatment was considered to have occurred when the tooth was extracted with no reported pain. Data was analyzed with the Fisher’s exact test, unpaired t-test and normality test. Results: Twenty-one patients received lidocaine and 20 received articaine. Forty of the 41 patients achieved initial anaesthesia 10 minutes after injection: 21 after lidocaine and 19 after articaine (P = 0.488. Pain-free extraction was accomplished in 33 patients: 19 after lidocaine and 14 after articaine buccal and palatal infiltrations (P = 0.226. Conclusions: There was no significant difference in efficacy between equivalent doses of lidocaine and articaine in the anaesthesia of maxillary posterior teeth with irreversible pulpitis.

  4. The justification for the use of table of equivalent squares with respect to reference depth total scatter factor, and phantom scatter factor, for cobalt-60 teletherapy

    International Nuclear Information System (INIS)

    Afari, F.

    2011-01-01

    The use of equivalent squares is of great value and importance when determining output and depth dose data for rectangular fields. The variation with field shape of collimator scatter factors (S c ), phantom scatter factors (S c,p ) were studied using measurements on GWGP 80 cobalt - 60 teletherapy machine at the National Centre of Radiotherapy and Nuclear Medicine in the Korle-Bu Teaching Hospital. Measurements of the collimator scatter factors (S c ), phantom scatter factors (S p ) and total scatter factors (S c, p) were made at the depth of 5 cm, 10 cm, 15 cm and 20 cm in full scatter water phantom for square field side and rectangular fields of varying dimensions. The measurements were done using the source - axis distance (Sad) technique. The values of total scatter factor (S c,p ), phantom scatter factor and collimator scatter factor (S c ) obtained were used to estimate equivalent squares for the rectangular fields at the various depths. The equivalent squares were computed using the method of interpolation which is based on the scatter analysis of these scatter factors and these estimated equivalent squares were then compared with equivalent squares were then compared with equivalent square fields from BJR (supplement 21) tables of equivalent squares. The research revealed that there were average deviation of 1.5% for smaller rectangular field sizes and 8.8% for elongated rectangular field sizes between the estimated square field sizes and the equivalent square field from BJR (supplement 21) Table of equivalent square fields. The 8.8% for the elongated rectangular fields is not accepted, though such fields are rarely used in our Hospitals. It was found that the values of the equivalent square at the various depth were very consistent and do not vary with reference depth. These findings confirm that the clinical use of the BJR (supplement 21) Table of equivalent squares for total scatter factors and phantom scatter related quantities of rectangular fields is

  5. Personnel dose equivalent monitoring at SLAC using lithium-fluoride TLD's [thermoluminescent dosimeters

    International Nuclear Information System (INIS)

    Jenkins, T.M.; Busick, D.D.

    1987-03-01

    TLD's replaced film badges in the early 1970's for all dose equivalent monitoring, both neutron and photon, and for all locations at SLAC. The photon TLD's, composed of Li-7 loaded teflon discs, are calibrated using conventional gamma-ray sources; i.e., Co-60, Cs-137, etc. For these TLD's a nominal value of 1 nC/mrem is used, and is independent of source energy for 100 keV to 3 MeV. Since measured dose equivalents at SLAC are only a small fraction of the allowable levels, it was not deemed necessary to develop neutron dosimeters which would measure dose equivalent accurately for all possible neutron spectra. Today, wallet TLD's, composed of pairs of Li-7 and Li-6 discs, are used, with the Li-6 measuring only thermal neutrons; i.e., they aren't moderated in any way to make them sensitive to neutrons with energies greater than thermal. The assumption is made that there is a correlation between thermal neutron fluences and fast neutron fluences around the research area where almost all neutron doses (exclusive of sealed sources) are received. The calibration factor for these Li-6 TLD's is 1 nC/mrem of fast neutrons. The method of determining the validity of this calibration is the subject of this note. 4 refs., 9 figs., 1 tab

  6. Use of prompt gamma emissions from polyethylene to estimate neutron ambient dose equivalent

    Energy Technology Data Exchange (ETDEWEB)

    Priyada, P.; Sarkar, P.K., E-mail: pradip.sarkar@manipal.edu

    2015-06-11

    The possibility of using measured prompt gamma emissions from polyethylene to estimate neutron ambient dose equivalent is explored theoretically. Monte Carlo simulations have been carried out using the FLUKA code to calculate the response of a high density polyethylene cylinder to emit prompt gammas from interaction of neutrons with the nuclei of hydrogen and carbon present in polyethylene. The neutron energy dependent responses of hydrogen and carbon nuclei are combined appropriately to match the energy dependent neutron fluence to ambient dose equivalent conversion coefficients. The proposed method is tested initially with simulated spectra and then validated using experimental measurements with an Am–Be neutron source. Experimental measurements and theoretical simulations have established the feasibility of estimating neutron ambient dose equivalent using measured neutron induced prompt gammas emitted from polyethylene with an overestimation of neutron dose at very low energies. - Highlights: • A new method for estimating H{sup ⁎}(10) using prompt gamma emissions from HDPE. • Linear combination of 2.2 MeV and 4.4 MeV gamma intensities approximates DCC (ICRP). • Feasibility of the method was established theoretically and experimentally. • The response of the present technique is very similar to that of the rem meters.

  7. Software for the estimation of organ equivalent and effective doses from diagnostic radiology procedures

    International Nuclear Information System (INIS)

    Osei, Ernest K; Barnett, Rob

    2009-01-01

    Diagnostic radiological imaging such as conventional radiography, fluoroscopy and computed tomography (CT) examinations will continue to provide tremendous benefits in modern healthcare. The benefit derived by the patient should far outweigh the risk associated with a properly conducted imaging examination. Nonetheless, it is very important to be able to quantify the risk associated with any radiological examination of patients, and effective dose has been considered a useful indicator of patient exposure. Quantification of the risks associated with radiological imaging is very important as such information will be helpful to physicians and their patients for comparing risks from various imaging examinations and for making informed decisions whenever there is a need for any radiological imaging. The determination of equivalent and effective doses in diagnostic radiology is of interest as a basis for estimates of risk from medical exposures. In this paper we describe a simple computer program OrgDose, which calculates the doses to 27 organs in the body and then calculates the organ equivalent and effective doses and the risk from various procedures in the radiology department including conventional radiography, fluoroscopy and computed tomography examinations. The program will be a useful tool for the medical and paramedical personnel who are involved with assessing organ and effective doses and risks from diagnostic radiology procedures.

  8. Dose of radiation enhancement, using silver nanoparticles in a human tissue equivalent gel dosimeter.

    Science.gov (United States)

    Hassan, Muhammad; Waheed, Muhammad Mohsin; Anjum, Muhammad Naeem

    2016-01-01

    To quantify the radiation dose enhancement in a human tissue-equivalent polymer gel impregnated with silver nanoparticles. The case-control study was conducted at the Bahawalpur Institute of Nuclear Medicine and Oncology, Bahawalpur, Pakistan, in January 2014. Silver nanoparticles used in this study were prepared by wet chemical method. Polymer gel was prepared by known quantity of gelatine, methacrylic acid, ascorbic acid, copper sulphate pentahydrate, hydroquinone and water. Different concentrations of silver nanoparticles were added to the gel during its cooling process. The gel was cooled in six plastic vials of 50ml each. Two vials were used as a control sample while four vials were impregnated with silver nanoparticles. After 22 hours, the vials were irradiated with gamma rays by aCobalt-60 unit. Radiation enhancement was assessed by taking magnetic resonance images of the vials. The images were analysed using Image J software. The dose enhancement factor was 24.17% and 40.49% for 5Gy and 10Gy dose respectively. The dose enhancement factor for the gel impregnated with 0.10mM silver nanoparticles was 32.88% and 51.98% for 5Gy and 10Gy dose respectively. The impregnation of a tissue-equivalent gel with silver nanoparticles resulted in dose enhancement and this effect was magnified up to a certain level with the increase in concentration of silver nanoparticles.

  9. Equivalent uniform dose concept evaluated by theoretical dose volume histograms for thoracic irradiation.

    Science.gov (United States)

    Dumas, J L; Lorchel, F; Perrot, Y; Aletti, P; Noel, A; Wolf, D; Courvoisier, P; Bosset, J F

    2007-03-01

    The goal of our study was to quantify the limits of the EUD models for use in score functions in inverse planning software, and for clinical application. We focused on oesophagus cancer irradiation. Our evaluation was based on theoretical dose volume histograms (DVH), and we analyzed them using volumetric and linear quadratic EUD models, average and maximum dose concepts, the linear quadratic model and the differential area between each DVH. We evaluated our models using theoretical and more complex DVHs for the above regions of interest. We studied three types of DVH for the target volume: the first followed the ICRU dose homogeneity recommendations; the second was built out of the first requirements and the same average dose was built in for all cases; the third was truncated by a small dose hole. We also built theoretical DVHs for the organs at risk, in order to evaluate the limits of, and the ways to use both EUD(1) and EUD/LQ models, comparing them to the traditional ways of scoring a treatment plan. For each volume of interest we built theoretical treatment plans with differences in the fractionation. We concluded that both volumetric and linear quadratic EUDs should be used. Volumetric EUD(1) takes into account neither hot-cold spot compensation nor the differences in fractionation, but it is more sensitive to the increase of the irradiated volume. With linear quadratic EUD/LQ, a volumetric analysis of fractionation variation effort can be performed.

  10. Comparison of dose calculation algorithms in slab phantoms with cortical bone equivalent heterogeneities

    International Nuclear Information System (INIS)

    Carrasco, P.; Jornet, N.; Duch, M. A.; Panettieri, V.; Weber, L.; Eudaldo, T.; Ginjaume, M.; Ribas, M.

    2007-01-01

    To evaluate the dose values predicted by several calculation algorithms in two treatment planning systems, Monte Carlo (MC) simulations and measurements by means of various detectors were performed in heterogeneous layer phantoms with water- and bone-equivalent materials. Percentage depth doses (PDDs) were measured with thermoluminescent dosimeters (TLDs), metal-oxide semiconductor field-effect transistors (MOSFETs), plane parallel and cylindrical ionization chambers, and beam profiles with films. The MC code used for the simulations was the PENELOPE code. Three different field sizes (10x10, 5x5, and 2x2 cm 2 ) were studied in two phantom configurations and a bone equivalent material. These two phantom configurations contained heterogeneities of 5 and 2 cm of bone, respectively. We analyzed the performance of four correction-based algorithms and one based on convolution superposition. The correction-based algorithms were the Batho, the Modified Batho, the Equivalent TAR implemented in the Cadplan (Varian) treatment planning system (TPS), and the Helax-TMS Pencil Beam from the Helax-TMS (Nucletron) TPS. The convolution-superposition algorithm was the Collapsed Cone implemented in the Helax-TMS. All the correction-based calculation algorithms underestimated the dose inside the bone-equivalent material for 18 MV compared to MC simulations. The maximum underestimation, in terms of root-mean-square (RMS), was about 15% for the Helax-TMS Pencil Beam (Helax-TMS PB) for a 2x2 cm 2 field inside the bone-equivalent material. In contrast, the Collapsed Cone algorithm yielded values around 3%. A more complex behavior was found for 6 MV where the Collapsed Cone performed less well, overestimating the dose inside the heterogeneity in 3%-5%. The rebuildup in the interface bone-water and the penumbra shrinking in high-density media were not predicted by any of the calculation algorithms except the Collapsed Cone, and only the MC simulations matched the experimental values within

  11. Comparison of dose calculation algorithms in slab phantoms with cortical bone equivalent heterogeneities.

    Science.gov (United States)

    Carrasco, P; Jornet, N; Duch, M A; Panettieri, V; Weber, L; Eudaldo, T; Ginjaume, M; Ribas, M

    2007-08-01

    To evaluate the dose values predicted by several calculation algorithms in two treatment planning systems, Monte Carlo (MC) simulations and measurements by means of various detectors were performed in heterogeneous layer phantoms with water- and bone-equivalent materials. Percentage depth doses (PDDs) were measured with thermoluminescent dosimeters (TLDs), metal-oxide semiconductor field-effect transistors (MOSFETs), plane parallel and cylindrical ionization chambers, and beam profiles with films. The MC code used for the simulations was the PENELOPE code. Three different field sizes (10 x 10, 5 x 5, and 2 x 2 cm2) were studied in two phantom configurations and a bone equivalent material. These two phantom configurations contained heterogeneities of 5 and 2 cm of bone, respectively. We analyzed the performance of four correction-based algorithms and one based on convolution superposition. The correction-based algorithms were the Batho, the Modified Batho, the Equivalent TAR implemented in the Cadplan (Varian) treatment planning system (TPS), and the Helax-TMS Pencil Beam from the Helax-TMS (Nucletron) TPS. The convolution-superposition algorithm was the Collapsed Cone implemented in the Helax-TMS. All the correction-based calculation algorithms underestimated the dose inside the bone-equivalent material for 18 MV compared to MC simulations. The maximum underestimation, in terms of root-mean-square (RMS), was about 15% for the Helax-TMS Pencil Beam (Helax-TMS PB) for a 2 x 2 cm2 field inside the bone-equivalent material. In contrast, the Collapsed Cone algorithm yielded values around 3%. A more complex behavior was found for 6 MV where the Collapsed Cone performed less well, overestimating the dose inside the heterogeneity in 3%-5%. The rebuildup in the interface bone-water and the penumbra shrinking in high-density media were not predicted by any of the calculation algorithms except the Collapsed Cone, and only the MC simulations matched the experimental values

  12. Deuterons at energies of 10 MeV to 1 TeV: Conversion coefficients for fluence-to-absorbed dose, equivalent dose, effective dose and gray equivalent, calculated using Monte Carlo radiation transport code MCNPX 2.7.C

    International Nuclear Information System (INIS)

    Copeland, K.; Parker, D. E.; Friedberg, W.

    2011-01-01

    Conversion coefficients were calculated for fluence-to-absorbed dose, fluence-to-equivalent dose, fluence-to-effective dose and fluence-to-gray equivalent for isotropic exposure of an adult female and an adult male to deuterons ( 2 H + ) in the energy range 10 MeV -1 TeV (0.01-1000 GeV). Coefficients were calculated using the Monte Carlo transport code MCNPX 2.7.C and BodyBuilder TM 1.3 anthropomorphic phantoms. Phantoms were modified to allow calculation of the effective dose to a Reference Person using tissues and tissue weighting factors from 1990 and 2007 recommendations of the International Commission on Radiological Protection (ICRP) and gray equivalent to selected tissues as recommended by the National Council on Radiation Protection and Measurements. Coefficients for the equivalent and effective dose incorporated a radiation weighting factor of 2. At 15 of 19 energies for which coefficients for the effective dose were calculated, coefficients based on ICRP 1990 and 2007 recommendations differed by < 3 %. The greatest difference, 47 %, occurred at 30 MeV. (authors)

  13. Simulation experiment on total ionization dose effects of linear CCD

    International Nuclear Information System (INIS)

    Tang Benqi; Zhang Yong; Xiao Zhigang; Wang Zujun; Huang Shaoyan

    2004-01-01

    We carry out the ionization radiation experiment of linear CCDs operated in unbiased, biased, biased and driven mode respectively by Co-60 γ source with our self-designed test system, and offline test the Dark signal and Saturation voltage and SNR varied with total dose for TCD132D, and get some valuable results. On the basis of above work, we set forth a primary experiment approaches to simulate the total dose radiation effects of charge coupled devices. (authors)

  14. Universal Survival Curve and Single Fraction Equivalent Dose: Useful Tools in Understanding Potency of Ablative Radiotherapy

    International Nuclear Information System (INIS)

    Park, Clint; Papiez, Lech; Zhang Shichuan; Story, Michael; Timmerman, Robert D.

    2008-01-01

    Purpose: Overprediction of the potency and toxicity of high-dose ablative radiotherapy such as stereotactic body radiotherapy (SBRT) by the linear quadratic (LQ) model led to many clinicians' hesitating to adopt this efficacious and well-tolerated therapeutic option. The aim of this study was to offer an alternative method of analyzing the effect of SBRT by constructing a universal survival curve (USC) that provides superior approximation of the experimentally measured survival curves in the ablative, high-dose range without losing the strengths of the LQ model around the shoulder. Methods and Materials: The USC was constructed by hybridizing two classic radiobiologic models: the LQ model and the multitarget model. We have assumed that the LQ model gives a good description for conventionally fractionated radiotherapy (CFRT) for the dose to the shoulder. For ablative doses beyond the shoulder, the survival curve is better described as a straight line as predicted by the multitarget model. The USC smoothly interpolates from a parabola predicted by the LQ model to the terminal asymptote of the multitarget model in the high-dose region. From the USC, we derived two equivalence functions, the biologically effective dose and the single fraction equivalent dose for both CFRT and SBRT. Results: The validity of the USC was tested by using previously published parameters of the LQ and multitarget models for non-small-cell lung cancer cell lines. A comparison of the goodness-of-fit of the LQ and USC models was made to a high-dose survival curve of the H460 non-small-cell lung cancer cell line. Conclusion: The USC can be used to compare the dose fractionation schemes of both CFRT and SBRT. The USC provides an empirically and a clinically well-justified rationale for SBRT while preserving the strengths of the LQ model for CFRT

  15. Ambient neutron dose equivalent outside concrete vault rooms for 15 and 18 MV radiotherapy accelerators

    International Nuclear Information System (INIS)

    Martinez-ovalle, S. A.; Barquero, R.; Gomez-ros, J. M.; Lallena, A. M.

    2012-01-01

    In this work, the ambient dose equivalent, H*(10), due to neutrons outside three bunkers that house a 15- and a 18-MV Varian Clinac 2100C/D and a 15-MV Elekta Inor clinical linacs, has been calculated. The Monte Carlo code MCNPX (v. 2.5) has been used to simulate the neutron production and transport. The complete geometries including linacs and full installations have been built up according to the specifications of the manufacturers and the planes provided by the corresponding medical physical services of the hospitals where the three linacs operate. Two of these installations, those lodging the Varian linacs, have an entrance door to the bunker while the other one does not, although it has a maze with two bends. Various treatment orientations were simulated in order to establish plausible annual equivalent doses. Specifically anterior-posterior, posterior-anterior, left lateral, right lateral orientations and an additional one with the gantry rotated 30 deg. have been studied. Significant dose rates have been found only behind the walls and the door of the bunker, near the entrance and the console, with a maximum of 12 μSv h -1 . Dose rates per year have been calculated assuming a conservative workload for the three facilities. The higher dose rates in the corresponding control areas were 799 μSv y -1 , in the case of the facility which operates the 15-MV Clinac, 159 μSv y -1 , for that with the 15-MV Elekta, and 21 μSv y -1 for the facility housing the 18-MV Varian. A comparison with measurements performed in similar installations has been carried out and a reasonable agreement has been found. The results obtained indicate that the neutron contamination does not increase the doses above the legal limits and does not produce a significant enhancement of the dose equivalent calculated. When doses are below the detection limits provided by the measuring devices available today, MCNPX simulation provides an useful method to evaluate neutron dose equivalents

  16. Evaluation of the effective equivalent dose in the general public due to the discharge of uranium in groundwater

    International Nuclear Information System (INIS)

    Gordon, A.M.P.L.; Jacomino, V.M.F.

    1989-12-01

    Some facilities available at IPEN-CNEN/SP may discharge uranium in their liquid effluents. The uranium contents of these effluents are analyzed by photometry or fluorimetry, and according to the results obtained a decision is made, by the Environmental Monitoring Division, upon their discharge to the environment. In 1988 a total activity of 3.66x10 9 Bq of uranium was discharge in a volume of approximately 30 m 3 . The effective equivalent dose in the general public was evaluated by making a conservative assumption that all the liquid effluents containing uranium are discharged directly to the soil reaching the groundwater. The dose calculation was carried out by using a generic model which described the transport of radionuclides in the groundwater. In order to be conservative it was also assumed that the critical pathway is the direct in gestion of water through hypothetical wells around the Institute. Conservative assumptions were also made in the characterization of the local aquifer parameters such as vertical and longitudinal dispersivity, effective porosity of the soil, hydraulic conductivity etc., in roder to overestimate the effective equivalent dose. The result obtained, of 5.3x10 -10 mSv/a is far below the dose limit for the public adopted by the Radiological Protection Board. The derived limit for the discharge was also evaluated, using the same model, giving a result of 3.6x10 13 Bq/a. (author) [pt

  17. Developing a single-aliquot protocol for measuring equivalent dose in biogenic carbonates

    International Nuclear Information System (INIS)

    Stirling, R.J.; Duller, G.A.T.; Roberts, H.M.

    2012-01-01

    Exploiting biogenic carbonates as thermoluminescence dosimeters requires an understanding of trap kinetics and an appropriate sequence with which to measure equivalent dose. The trap kinetics of two high temperature peaks (peaks II and III) from calcitic snail opercula have been investigated resulting in the calculation of lifetimes of 7.4 × 10 7 and 1.4 × 10 11 years for the two peaks respectively. Two measurement sequences, based upon changes in the application and measurement of a test dose, have been applied to peaks II and III, and though both methods were equally successful in dose recovery and production of a dose response curve some differences were observed. Primarily, the use of method 1 lead to dose dependant sensitivity change implying competition effects occurring during irradiation; method 2 did not experience this phenomenon. As a consequence method 2 was chosen as the most appropriate protocol for single-aliquot dating of this material. When assessing the TL behaviour of the two peaks, peak II performed poorly in dose recovery experiments recovering a dose 60–100% larger than that applied. Disproportionate growth of peak II in response to a beta dose applied prior to measurement, compared to growth following regeneration doses indicated that peak II was not suitable for use in single-aliquot protocols. However, dose recovery results for peak III were all within errors of unity of the given dose, and peak III was therefore chosen as the most appropriate peak for TL dosimetry in these single-aliquot procedures. The lifetime of charge in peak III is sufficient to date over many millions of years, and furthermore using the chosen method 2 the dose response curve has a D 0 of 3,250 ± 163 Gy allowing dating to over 3 million years.

  18. General requirements to implement the personal dose equivalent Hp(10) in Brazil

    International Nuclear Information System (INIS)

    Lopes, Amanda Gomes; Silva, Francisco Cesar Augusto da

    2017-01-01

    To update the dosimetry quantity with the international community, Brazil is changing the Individual Dose Hx to the Personal Dose Equivalent Hp(10). A bibliographical survey on the technical and administrative requirements of nine countries that use Hp(10) was carried out to obtain the most relevant ones. All of them follow IEC and ISO guidelines for technical requirements, while administrative requirements change from country to country. Based on countries experiences, this paper presents a list of important general requirements to implement Hp(10) and to prepare the Brazilian requirements according to the international scientific community. (author)

  19. General requirements to implement the personal dose equivalent Hp(10) in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Amanda Gomes; Silva, Francisco Cesar Augusto da, E-mail: amandagl@bolsista.ird.gov.br [Instituto de Radioproteção e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    To update the dosimetry quantity with the international community, Brazil is changing the Individual Dose Hx to the Personal Dose Equivalent Hp(10). A bibliographical survey on the technical and administrative requirements of nine countries that use Hp(10) was carried out to obtain the most relevant ones. All of them follow IEC and ISO guidelines for technical requirements, while administrative requirements change from country to country. Based on countries experiences, this paper presents a list of important general requirements to implement Hp(10) and to prepare the Brazilian requirements according to the international scientific community. (author)

  20. The meaning and the principle of determination of the effective dose equivalent in radiation protection

    International Nuclear Information System (INIS)

    Drexler, G.; Williams, G.; Zankl, M.

    1985-01-01

    Since the introduction of the quantity ''effective dose equivalent'' within the framework of new radiation concepts, the meaning and interpretation of the quantity is often discussed and debated. Because of its adoption as a limiting quantity in many international and national laws, it is necessary to be able to interpret this main radiation protection quantity. Examples of organ doses and the related Hsub(E) values in occupational and medical exposures are presented and the meaning of the quantity is considered for whole body exposures to external and internal photon sources, as well as for partial body external exposures to photons. (author)

  1. Optimization of equivalent uniform dose using the L-curve criterion

    International Nuclear Information System (INIS)

    Chvetsov, Alexei V; Dempsey, James F; Palta, Jatinder R

    2007-01-01

    Optimization of equivalent uniform dose (EUD) in inverse planning for intensity-modulated radiation therapy (IMRT) prevents variation in radiobiological effect between different radiotherapy treatment plans, which is due to variation in the pattern of dose nonuniformity. For instance, the survival fraction of clonogens would be consistent with the prescription when the optimized EUD is equal to the prescribed EUD. One of the problems in the practical implementation of this approach is that the spatial dose distribution in EUD-based inverse planning would be underdetermined because an unlimited number of nonuniform dose distributions can be computed for a prescribed value of EUD. Together with ill-posedness of the underlying integral equation, this may significantly increase the dose nonuniformity. To optimize EUD and keep dose nonuniformity within reasonable limits, we implemented into an EUD-based objective function an additional criterion which ensures the smoothness of beam intensity functions. This approach is similar to the variational regularization technique which was previously studied for the dose-based least-squares optimization. We show that the variational regularization together with the L-curve criterion for the regularization parameter can significantly reduce dose nonuniformity in EUD-based inverse planning

  2. Optimization of equivalent uniform dose using the L-curve criterion

    Energy Technology Data Exchange (ETDEWEB)

    Chvetsov, Alexei V; Dempsey, James F; Palta, Jatinder R [Department of Radiation Oncology, University of Florida, Gainesville, FL 32610-0385 (United States)

    2007-09-21

    Optimization of equivalent uniform dose (EUD) in inverse planning for intensity-modulated radiation therapy (IMRT) prevents variation in radiobiological effect between different radiotherapy treatment plans, which is due to variation in the pattern of dose nonuniformity. For instance, the survival fraction of clonogens would be consistent with the prescription when the optimized EUD is equal to the prescribed EUD. One of the problems in the practical implementation of this approach is that the spatial dose distribution in EUD-based inverse planning would be underdetermined because an unlimited number of nonuniform dose distributions can be computed for a prescribed value of EUD. Together with ill-posedness of the underlying integral equation, this may significantly increase the dose nonuniformity. To optimize EUD and keep dose nonuniformity within reasonable limits, we implemented into an EUD-based objective function an additional criterion which ensures the smoothness of beam intensity functions. This approach is similar to the variational regularization technique which was previously studied for the dose-based least-squares optimization. We show that the variational regularization together with the L-curve criterion for the regularization parameter can significantly reduce dose nonuniformity in EUD-based inverse planning.

  3. Optimization of equivalent uniform dose using the L-curve criterion.

    Science.gov (United States)

    Chvetsov, Alexei V; Dempsey, James F; Palta, Jatinder R

    2007-10-07

    Optimization of equivalent uniform dose (EUD) in inverse planning for intensity-modulated radiation therapy (IMRT) prevents variation in radiobiological effect between different radiotherapy treatment plans, which is due to variation in the pattern of dose nonuniformity. For instance, the survival fraction of clonogens would be consistent with the prescription when the optimized EUD is equal to the prescribed EUD. One of the problems in the practical implementation of this approach is that the spatial dose distribution in EUD-based inverse planning would be underdetermined because an unlimited number of nonuniform dose distributions can be computed for a prescribed value of EUD. Together with ill-posedness of the underlying integral equation, this may significantly increase the dose nonuniformity. To optimize EUD and keep dose nonuniformity within reasonable limits, we implemented into an EUD-based objective function an additional criterion which ensures the smoothness of beam intensity functions. This approach is similar to the variational regularization technique which was previously studied for the dose-based least-squares optimization. We show that the variational regularization together with the L-curve criterion for the regularization parameter can significantly reduce dose nonuniformity in EUD-based inverse planning.

  4. Evaluation of fluence to dose equivalent conversion factors for high energy radiations, (1)

    International Nuclear Information System (INIS)

    Sato, Osamu; Uehara, Takashi; Yoshizawa, Nobuaki; Iwai, Satoshi; Tanaka, Shun-ichi.

    1992-09-01

    Computer code system and basic data have been investigated for evaluating fluence to dose equivalent conversion factors for photons and neutrons up to 10 GeV. The present work suggested that the conversion factors would be obtained by incorporating effective quality factors of charged particles into the HERMES (High Energy Radiation Monte Carlo Elaborate System) code system. The effective quality factors for charged particles were calculated on the basis of the Q-L relationships specified in the ICRP Publication-60. (author)

  5. Biological clearance and committed dose equivalent in pulmonary region from inhaled radioaerosols for lung scanning

    Energy Technology Data Exchange (ETDEWEB)

    Soni, P.S.; Sharma, S.M.; Raghunath, B.; Somasundaram, S.

    1987-01-01

    Biological clearance half-lives (Tsub(b)) of different /sup 99/Tcsup(m)-labelled compounds from each lung have been determined, after administering the radioaerosol to normal subjects using the BARC dry aerosol generation and inhalation system. Based on these experimental clearance half-lives, the committed dose equivalent to the lungs has been computed using both the ICRP lung model and MIRD-11 values.

  6. Biological clearance and committed dose equivalent in pulmonary region from inhaled radioaerosols for lung scanning

    International Nuclear Information System (INIS)

    Soni, P.S.; Sharma, S.M.; Raghunath, B.; Somasundaram, S.

    1987-01-01

    Biological clearance half-lives (Tsub(b)) of different 99 Tcsup(m)-labelled compounds from each lung have been determined, after administering the radioaerosol to normal subjects using the BARC dry aerosol generation and inhalation system. Based on these experimental clearance half-lives, the committed dose equivalent to the lungs has been computed using both the ICRP lung model and MIRD-11 values. (author)

  7. A study of the responses of neutron dose equivalent survey meters with computer codes

    International Nuclear Information System (INIS)

    Sartori, D.E.; Beer, G.P. de

    1983-01-01

    The ANISN and DOT discrete-ordinates radiation transport codes for one and two dimensions have been proved as effective and simple techniques to study the response of dose equivalent neutron detectors. Comparisons between results of an experimental calibration of the Harwell 95/0075 survey meter and calculated results rendered satisfactory agreement, considering the different techniques and sources of error involved. Possible improvements in the methods and designs and causes of error are discussed. (author)

  8. Dependence of total dose response of bipolar linear microcircuits on applied dose rate

    International Nuclear Information System (INIS)

    McClure, S.; Will, W.; Perry, G.; Pease, R.L.

    1994-01-01

    The effect of dose rate on the total dose radiation hardness of three commercial bipolar linear microcircuits is investigated. Total dose tests of linear bipolar microcircuits show larger degradation at 0.167 rad/s than at 90 rad/s even after the high dose rate test is followed by a room temperature plus a 100 C anneal. No systematic correlation could be found for degradation at low dose rate versus high dose rate and anneal. Comparison of the low dose rate with the high dose rate anneal data indicates that MIL-STD-883, method 1019.4 is not a worst-case test method when applied to bipolar microcircuits for low dose rate space applications

  9. Measurement of neutron dose equivalent outside and inside of the treatment vault of GRID therapy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xudong; Charlton, Michael A.; Esquivel, Carlos; Eng, Tony Y.; Li, Ying; Papanikolaou, Nikos [University of Texas Health Science Center, San Antonio, Texas 78229 (United States)

    2013-09-15

    Purpose: To evaluate the neutron and photon dose equivalent rates at the treatment vault entrance (H{sub n,D} and H{sub G}), and to study the secondary radiation to the patient in GRID therapy. The radiation activation on the grid was studied.Methods: A Varian Clinac 23EX accelerator was working at 18 MV mode with a grid manufactured by .decimal, Inc. The H{sub n,D} and H{sub G} were measured using an Andersson–Braun neutron REM meter, and a Geiger Müller counter. The radiation activation on the grid was measured after the irradiation with an ion chamber γ-ray survey meter. The secondary radiation dose equivalent to patient was evaluated by etched track detectors and OSL detectors on a RANDO{sup ®} phantom.Results: Within the measurement uncertainty, there is no significant difference between the H{sub n,D} and H{sub G} with and without a grid. However, the neutron dose equivalent to the patient with the grid is, on average, 35.3% lower than that without the grid when using the same field size and the same amount of monitor unit. The photon dose equivalent to the patient with the grid is, on average, 44.9% lower. The measured average half-life of the radiation activation in the grid is 12.0 (±0.9) min. The activation can be categorized into a fast decay component and a slow decay component with half-lives of 3.4 (±1.6) min and 15.3 (±4.0) min, respectively. There was no detectable radioactive contamination found on the surface of the grid through a wipe test.Conclusions: This work indicates that there is no significant change of the H{sub n,D} and H{sub G} in GRID therapy, compared with a conventional external beam therapy. However, the neutron and scattered photon dose equivalent to the patient decrease dramatically with the grid and can be clinical irrelevant. Meanwhile, the users of a grid should be aware of the possible high dose to the radiation worker from the radiation activation on the surface of the grid. A delay in handling the grid after the beam

  10. Calculation of neutron fluence to dose equivalent conversion coefficients using GEANT4

    International Nuclear Information System (INIS)

    Ribeiro, Rosane M.; Santos, Denison de S.; Queiroz Filho, Pedro P. de; Mauricio, CLaudia L.P.; Silva, Livia K. da; Pessanha, Paula R.

    2014-01-01

    Fluence to dose equivalent conversion coefficients provide the basis for the calculation of area and personal monitors. Recently, the ICRP has started a revision of these coefficients, including new Monte Carlo codes for benchmarking. So far, little information is available about neutron transport below 10 MeV in tissue-equivalent (TE) material performed with Monte Carlo GEANT4 code. The objective of this work is to calculate neutron fluence to personal dose equivalent conversion coefficients, H p (10)/Φ, with GEANT4 code. The incidence of monoenergetic neutrons was simulated as an expanded and aligned field, with energies ranging between thermal neutrons to 10 MeV on the ICRU slab of dimension 30 x 30 x 15 cm 3 , composed of 76.2% of oxygen, 10.1% of hydrogen, 11.1% of carbon and 2.6% of nitrogen. For all incident energy, a cylindrical sensitive volume is placed at a depth of 10 mm, in the largest surface of the slab (30 x 30 cm 2 ). Physic process are included for neutrons, photons and charged particles, and calculations are made for neutrons and secondary particles which reach the sensitive volume. Results obtained are thus compared with values published in ICRP 74. Neutron fluence in the sensitive volume was calculated for benchmarking. The Monte Carlo GEANT4 code was found to be appropriate to calculate neutron doses at energies below 10 MeV correctly. (author)

  11. Development of neutron dosimeter using CR-39 for measurement of ambient dose equivalent

    International Nuclear Information System (INIS)

    Maki, Daisuke; Shinozaki, Wakako; Ohguchi, Hiroyuki; Yamamoto, Takayoshi; Nakamura, Takayoshi

    2010-01-01

    A CR-39 has good advantages such as cumulative type dosimeter, small fading effect and gamma-ray insensitive. Therefore, we developed the wide energy-range environmental neutron dosimeter using eight CR-39s for area monitoring in this study. This dosimeter is made of octagonal columnar polyethylene block which height is 60 mm and bottom side is 25 mm. The dosimeter contains two types of CR-39s for fast neutron detection and slow neutron detection. Four CR-39s for fast neutron detection are used for detection of recoil protons produced by H (n, p) reactions. Four CR-39s for slow neutron detection are used with boron nitride converter to detect alpha-rays produced by 10 B (n, α) 7 Li reactions. Ambient dose equivalent is obtained by adding the number of etch-pits observed in four CR-39s for fast neutron detection to the number of etch-pits observed in four CR-39s for slow neutron detection with appropriate constants respectively. Dosimeters were irradiated with some energetic neutrons and evaluated results of ambient dose equivalent were compared with results from neutron transport calculations. Energy response of dosimeter shows good agreement with neutron fluence to ambient dose equivalent conversion coefficients. Directional dependence of dosimeter is at the same level as the rem-counter. (author)

  12. Experiences of calibration in photon beams for the personal dose equivalent

    International Nuclear Information System (INIS)

    Lindborg, L.; Gullberg, O.

    1994-01-01

    The calibration quantity shall, according to ICRU, be the personal dose equivalent, H p (d), in a phantom having the composition of the ICRU tissue and the same shape and size as the recommended PMMA calibration phantom, 30 x 30 x 15 cm 3 . There exist differences in backscattering between PMMA and tissue that for certain photon energies could be of importance. This could either be treated as a systematic uncertainty or be incorporated in the definition. However, monoenergetic beams seldom appear in reality and the difference in backscatter is not thought to be important. The calibration quantity for photons was chosen as the absorbed dose to ICRU tissue (times a quality factor 1) at 10 mm depth in a tissue-equivalent slab phantom. In Sweden 13 different services run personal dosimetry. Their initial hesitation about the change of quantity disappeared after testing their photon energy responses. It was found that most TLD systems were measuring the new quantity better than the old one and that the film systems needed only minor corrections. Most TLD systems now report 5% larger dose equivalents for the same irradiation in a photon beam from a 137 Cs source. (author)

  13. Determination of eye lenses dose equivalent in terms of Hp(3)

    International Nuclear Information System (INIS)

    Klamert, V.; Caresana, M.; Minchillo, G.; Tambussi, O.

    2002-01-01

    The Italian radioprotection legislation requires the determination of personal dose equivalent in terms of H p (10) and H p (0.07) and the determination of the eye lenses dose equivalent in terms of H p (3). Whereas the calibration of a dosemeter for the determination of H p (10) and H p (0.07) is feasible, the calibration of a dosemeter in terms of H p (3) is impossible, owing to the absence of the suitable phantom and the conversion coefficients h pk (3) from air kerma to H p (3). Using an anthropomorphic phantom for the irradiation, the aim of this work is to determine the experimental values of the conversion coefficients and to relate the result of the dosemeter worn on the forehead with the dose equivalent to the eye lenses. The study is performed in the X energy range from 30 keV to 100 keV, i.e. the one most widely used in medical practices

  14. Application of biological effective dose (BED) to estimate the duration of symptomatic relief and repopulation dose equivalent in palliative radiotherapy and chemotherapy

    International Nuclear Information System (INIS)

    Jones, Bleddyn; Cominos, Matilda; Dale, Roger G.

    2003-01-01

    Purpose: To investigate the potential for mathematic modeling in the assessment of symptom relief in palliative radiotherapy and cytotoxic chemotherapy. Methods: The linear quadratic model of radiation effect with the overall treatment time and the daily dose equivalent of repopulation is modified to include the regrowth time after completion of therapy. Results: The predicted times to restore the original tumor volumes after treatment are dependent on the biological effective dose (BED) delivered and the repopulation parameter (K); it is also possible to estimate K values from analysis of palliative treatment response durations. Hypofractionated radiotherapy given at a low total dose may produce long symptom relief in slow-growing tumors because of their low α/β ratios (which confer high fraction sensitivity) and their slow regrowth rates. Cancers that have high α/β ratios (which confer low fraction sensitivity), and that are expected to repopulate rapidly during therapy, are predicted to have short durations of symptom control. The BED concept can be used to estimate the equivalent dose of radiotherapy that will achieve the same duration of symptom relief as palliative chemotherapy. Conclusion: Relatively simple radiobiologic modeling can be used to guide decision-making regarding the choice of the most appropriate palliative schedules and has important implications in the design of radiotherapy or chemotherapy clinical trials. The methods described provide a rationalization for treatment selection in a wide variety of tumors

  15. A reappraisal of the reported dose equivalents at the boundary of the University of California Radiation Laboratory during the early days of Bevatron operation

    International Nuclear Information System (INIS)

    Thomas, Ralph H.; Smith, Alan R.; Zeman, Gary H.

    2000-01-01

    Accelerator-produced radiation levels at the perimeter of the Ernest Orlando Lawrence Berkeley National Laboratory (the Berkeley Laboratory) reached a maximum in 1959. Neutrons produced by the Bevatron were the dominant component of the radiation field. Radiation levels were estimated from measurements of total neutron fluence and reported in units of dose equivalent (rem). Accurate conversion from total fluence to dose equivalent demands knowledge of both the energy spectrum of accelerator-produced neutrons and the appropriate conversion coefficient functions for different irradiation geometries. At that time (circa 1960), such information was limited, and it was necessary to use judgment in the interpretation of measured data. The Health Physics Group of the Berkeley Laboratory used the best data then available and, as a matter of policy, reported the most conservative (largest) values of dose equivalent supported by their data. Since the early sixties, significant improvements in the information required to compute dose equivalent, particularly in the case of conversion coefficients, have been reported in the scientific literature. This paper reinterprets the older neutron measurements using the best conversion coefficient data available today. It is concluded that the dose equivalents reported in the early sixties would be reduced by at least a factor of two using current methods of analysis

  16. The simulated measurements of area and personal neutron-gamma dose equivalent in the building of HWRR

    International Nuclear Information System (INIS)

    Chen Changmao; Wen Youqin; Su Jingling; Liu Shuying; Liu Nairong

    1988-01-01

    The measuring methods and results for area and personal n-γ dose equivalent in the building of HWRR of Institute of Atomic Energy were reported. The reactor operated 4440 hours during 1985, the average themal power was 11 MW. The average area n-γ dose equivalents of the basement, experimental hall, corridors and laboratories in the building were 12.2, 11.6, 0.45 and 0.23 cSv/a, respectively. The fraction of the neutron dose equivalent in any working area was less than 21%. The average personal n-γ dose equivalent to radiation workers in the building was about 0.49 cSv/a, the γ dose equivalent was a major component. The measuring methods were compared

  17. Improvement of the equivalent sphere model for better estimates of skin or eye dose in space radiation environments

    International Nuclear Information System (INIS)

    Lin, Z.W.

    2011-01-01

    It is often useful to get a quick estimate of the dose or dose equivalent of an organ, such as blood-forming organs, the eye or the skin, in a radiation field. Sometimes an equivalent sphere is used to represent the organ for this purpose. For space radiation environments, recently it has been shown that the equivalent sphere model does not work for the eye or the skin in solar particle event environments. In this study, we improve the representation of the eye and the skin using a two-component equivalent sphere model. Motivated by the two-peak structure of the body organ shielding distribution for the eye and the skin, we use an equivalent sphere with two radius parameters, for example a partial spherical shell of a smaller thickness over a proper fraction of the full solid angle combined with a concentric partial spherical shell of a larger thickness over the rest of the full solid angle, to represent the eye or the skin. We find that using an equivalent sphere with two radius parameters instead of one drastically improves the accuracy of the estimates of dose and dose equivalent in space radiation environments. For example, in solar particle event environments the average error in the estimate of the skin dose equivalent using an equivalent sphere with two radius parameters is about 8%, while the average error of the conventional equivalent sphere model using one radius parameter is around 100%.

  18. Determination of the conversion coefficient for ambient dose equivalent, H(10), from air kerma measurements

    International Nuclear Information System (INIS)

    Gonzalez J, F.; Alvarez R, J. T.

    2015-09-01

    Namely the operational magnitudes can be determined by the product of a conversion coefficient by exposure air kerma or fluence, etc. In particular in Mexico for the first time is determined the conversion coefficient (Cc) for operational magnitude Environmental Dose Equivalent H(10) by thermoluminescence dosimetry (TLD) technique. First 30 TLD-100 dosimeters are calibrated in terms of air kerma, then these dosimeters are irradiated inside a sphere ICRU type of PMMA and with the aid of theory cavity the absorbed dose in PMMA is determined at a depth of 10 mm within the sphere D PMMA (10), subsequently absorbed dose to ICRU tissue is corrected and the dose equivalent H(10) is determined. The Cc is determined as the ratio of H(10)/K a obtaining a value of 1.20 Sv Gy -1 with a u c = 3.66%, this being consistent with the published value in ISO-4037-3 of 1.20 Sv Gy -1 with a u c = 2%. (Author)

  19. Application of radio-thermoluminescence to the experimental study of the dose equivalent index

    International Nuclear Information System (INIS)

    Katz, Elvira-Beatriz

    1980-01-01

    First, the Systems of dose limitation proposed by the ICRP since 1965 are analysed. The notion of 'critical organ' is replaced by the system based on the effective dose equivalent (ICRP 77). In the same document, the 'dose equivalent index' (H I ) is suggested as a secondary limit. Here, its first definition, later modifications, advantages, and inconveniences are discussed. The second part of the study is devoted to the experimental determination of H I for X and gamma (Co 60 ) beams by radioluminescent (RTL) dosimetry. In order to take into account the different chromatic relative sensitivities of the detectors used lithium fluoride (powder and pellets), lithium borate (pellets) and calcium sulfate activated by dysprosium (powder) these latter are measured within the (10-1250) keV energy range. With the help of the preceding values and the results of the RTL measurements carried out inside the ICRU spherical phantom, the corresponding absorbed doses are deduced in order to calculate H I . (author) [fr

  20. Variability in dose-equivalent assessments for inhaled U3O8 concentrations

    International Nuclear Information System (INIS)

    Hewson, G.; Blyth, D.I.

    1985-01-01

    A potentially significant radiological hazard exists in the packaging area of uranium mills through the inhalation of airborne uranium octoxide (U 3 O 8 ). The Radiation Protection (Mining and Milling Code (1980) requires the measurement and assessment of quarterly, annual and cumulative dose equivalents for employees working in these areas. Arising through differences which exist between the abovementioned Code and ICRP 30, and assumptions of particle size and dust concentration distributions, confusion exists within Australia regarding the methods which can be used to make the required assessments. Exposure data were collected during routine monitoring at an operating mill facility and were interpreted using different methods and a range of assumptions. Results indicated the dust at this facility is characterised by an AMAD greater than 10 μ, and dust concentrations were distributed lognormally. Assumptions of a normal distribution may result in an overestimate of the dose equivalent. The importance of particle size in dose assessments using ICRP 30 techniques was highlighted. Information was masked when employee data was grouped to provide work category dose assessments. The use of ICRP 30 methods were recommended to provide uniformity throughout Australia

  1. Assessment of equivalent dose on the lens in cone beam computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, M. V. L.; Campos, P. S. F. [Federal University of Bahia, Department of Health Sciences, Salvador (Brazil); Andrade, M. E. A. [Federal University of Pernambuco, Department of Nuclear Energy, Recife (Brazil); Soares, M. R. [Federal University of Sergipe, Department of Physics, Sao Cristovao (Brazil); Batista, W. O., E-mail: marcusradiology@gmail.com [Federal Institute of Bahia, Department of Applied Sciences, 40.301-015 Salvador (Brazil)

    2014-08-15

    The Cone Beam Computed Tomography (CBCT) is presented as a useful test method for the evaluation of craniofacial structures. Among them stands the temporomandibular joint (T MJ) imaging as complementary to clinical evaluation. It must be considered that there is no reference levels established for diagnosis of this imaging modality. In this same context, recently the limit for crystalline lens was reviewed by ICRP which set new values to the equivalent dose. The aim of this study was to evaluate the kerma at the surface of the crystalline lens in T MJ CBCT and derive the equivalent dose. It was used an anthropomorphic phantom of the head and neck (manufactured by: Radiation Support Devices, model; Rs-230) containing equivalent tissue with dimensions of a typical patient. The dosimetric measurements were obtained by using seven pairs of thermoluminescent dosimetry (TLD) dosimeters (LiF: Mg, Ti) positioned on the surface of the crystalline lens, divided into two pairs (one pair for each eye) per scanner evaluated. The tomographic images were obtained in three CBCT equipment s (Kodak 9000, Gendex GXCB 500 and i-Cat). Values of equivalent dose obtained were: 5.82 mSv (Kodak 9000); 5.38 mSv (Gendex GXCB 500) and 7.98 mSv (i-Cat). These results demonstrate that for this type of procedure the doses are below the annual limit but may vary in accordance with the scanner and the exposure factors used in the image acquisition. The Gendex GXCB500 uses larger Fov and higher kV. It results in levels close to those obtained on Kodak 9000. Larger doses are associated with the i-Cat. Another factor that rises is the repetition of examinations due to positioning errors and / or patient movement, which may exceed the annual limit established by ICRP. Although the ICRP limits are not applied to medical exposures, it is advisable to consider the sensitivity of the organ. For this reason, it is concluded that doses per T MJ procedure on CBCT are below the annual limit and may vary

  2. Assessment of equivalent dose on the lens in cone beam computed tomography

    International Nuclear Information System (INIS)

    Oliveira, M. V. L.; Campos, P. S. F.; Andrade, M. E. A.; Soares, M. R.; Batista, W. O.

    2014-08-01

    The Cone Beam Computed Tomography (CBCT) is presented as a useful test method for the evaluation of craniofacial structures. Among them stands the temporomandibular joint (T MJ) imaging as complementary to clinical evaluation. It must be considered that there is no reference levels established for diagnosis of this imaging modality. In this same context, recently the limit for crystalline lens was reviewed by ICRP which set new values to the equivalent dose. The aim of this study was to evaluate the kerma at the surface of the crystalline lens in T MJ CBCT and derive the equivalent dose. It was used an anthropomorphic phantom of the head and neck (manufactured by: Radiation Support Devices, model; Rs-230) containing equivalent tissue with dimensions of a typical patient. The dosimetric measurements were obtained by using seven pairs of thermoluminescent dosimetry (TLD) dosimeters (LiF: Mg, Ti) positioned on the surface of the crystalline lens, divided into two pairs (one pair for each eye) per scanner evaluated. The tomographic images were obtained in three CBCT equipment s (Kodak 9000, Gendex GXCB 500 and i-Cat). Values of equivalent dose obtained were: 5.82 mSv (Kodak 9000); 5.38 mSv (Gendex GXCB 500) and 7.98 mSv (i-Cat). These results demonstrate that for this type of procedure the doses are below the annual limit but may vary in accordance with the scanner and the exposure factors used in the image acquisition. The Gendex GXCB500 uses larger Fov and higher kV. It results in levels close to those obtained on Kodak 9000. Larger doses are associated with the i-Cat. Another factor that rises is the repetition of examinations due to positioning errors and / or patient movement, which may exceed the annual limit established by ICRP. Although the ICRP limits are not applied to medical exposures, it is advisable to consider the sensitivity of the organ. For this reason, it is concluded that doses per T MJ procedure on CBCT are below the annual limit and may vary

  3. Contribution of the height in the ambient dose equivalent; Contribuicao da altitude no equivalente de dose ambiente

    Energy Technology Data Exchange (ETDEWEB)

    de Campos, Vicente de P.; Manzoli, Jose E.; Alipio, Osvaldo C.; Carneiro, Janete C.G.; Rodrigues Junior, Orlando, E-mail: vpcampos@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    The aim of this study is to evaluate the contribution of natural sources in the ambient dose equivalent. The evaluation of the levels of environmental radiation was performed using thermoluminescent dosimeters CaSO{sub 4} of doped C, which have high sensitivity and little fading. The dosimeters were placed in five locations at different altitudes, covering the period from three to nine years depending on their location. The results were grouped according to the use and occupation of land in the vicinity of the measurement point.

  4. The use of the effective dose equivalent, Hsub(E), as a risk parameter in computed tomography

    International Nuclear Information System (INIS)

    Huda, W.; Sandison, G.A.

    1986-01-01

    This note employs the concept of the effective dose equivalent, Hsub(E) to overcome the problems of comparing the non-uniform radiation doses encountered in CT examinations with the whole-body dose-equivalent limits imposed for non-medical exposures for members of the public (5 mSv/year), or with the risks from familiar everyday activities such as smoking cigarettes or driving cars. (U.K.)

  5. Reduction of outdoor and indoor ambient dose equivalent after decontamination in the Fukushima evacuation zones

    International Nuclear Information System (INIS)

    Yoshida-Ohuchi, Hiroko; Kanagami, Takashi; Naitoh, Yutaka; Kameyama, Mizuki; Hosoda, Masahiro

    2017-01-01

    One of the most urgent issues following the accident at the Fukushima Daiichi nuclear power plant (FDNPP) was the remediation of the land, in particular, for residential area contaminated by the radioactive materials discharged. In this study, the effect of decontamination on reduction of ambient dose equivalent outdoors and indoors was evaluated. The latter is essential for residents as most individuals spend a large portion of their time indoors. From December 2012 to November 2014, thirty-seven Japanese single-family detached wooden houses were investigated before and after decontamination in evacuation zones. Outdoor and indoor dose measurements (n=84 and 114, respectively) were collected based on in situ measurements using the NaI (Tl) scintillation surveymeter. The outdoor ambient dose equivalents [H"*(10)_o_u_t] ranged from 0.61 to 3.71 μSv h"-"1 and from 0.23 to 1.32 μSv h"-"1 before and after decontamination, respectively. The indoor ambient dose equivalents [H"*(10)"i"n] ranged from 0.29 to 2.53 μSv h"-"1 and from 0.16 to 1.22 μSv h"-"1 before and after decontamination, respectively. The values of reduction efficiency (RE), defined as the ratio by which the radiation dose has been reduced via decontamination, were evaluated as 0.47±0.13, 0.51±0.13, and 0.58±0.08 (average±σ) when H"*(10)_o_u_t <1.0 μSv h"-"1, 1.0 μSv h"-"1 < H"*(10)_o_u_t <2.0 μSv h"-"1, and 2.0 μSv h"-"1< H"*(10)_o_u_t, respectively, indicating the values of RE increased as H"*(10)_o_u_t increased. It was found that the values of RE were 0.53±0.12 outdoors and 0.41±0.09 indoors, respectively, indicating RE was larger outdoors than indoors. Indoor dose is essential as most individuals spend a large portion of their time indoors. The difference between outdoors and indoors should be considered carefully in order to estimate residents’ exposure dose before their returning home

  6. Reduction of outdoor and indoor ambient dose equivalent after decontamination in the Fukushima evacuation zones

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida-Ohuchi, Hiroko; Kanagami, Takashi [Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi (Japan); Naitoh, Yutaka; Kameyama, Mizuki [Japan Environment Research Co., Ltd., Miyagi (Japan); Hosoda, Masahiro [Dept. of Radiological Life Sciences, Hirosaki University Graduate School of Health Sciences, Aomori (Japan)

    2017-03-15

    One of the most urgent issues following the accident at the Fukushima Daiichi nuclear power plant (FDNPP) was the remediation of the land, in particular, for residential area contaminated by the radioactive materials discharged. In this study, the effect of decontamination on reduction of ambient dose equivalent outdoors and indoors was evaluated. The latter is essential for residents as most individuals spend a large portion of their time indoors. From December 2012 to November 2014, thirty-seven Japanese single-family detached wooden houses were investigated before and after decontamination in evacuation zones. Outdoor and indoor dose measurements (n=84 and 114, respectively) were collected based on in situ measurements using the NaI (Tl) scintillation surveymeter. The outdoor ambient dose equivalents [H{sup *}(10){sub out}] ranged from 0.61 to 3.71 μSv h{sup -1} and from 0.23 to 1.32 μSv h{sup -1} before and after decontamination, respectively. The indoor ambient dose equivalents [H{sup *}(10){sup in}] ranged from 0.29 to 2.53 μSv h{sup -1} and from 0.16 to 1.22 μSv h{sup -1} before and after decontamination, respectively. The values of reduction efficiency (RE), defined as the ratio by which the radiation dose has been reduced via decontamination, were evaluated as 0.47±0.13, 0.51±0.13, and 0.58±0.08 (average±σ) when H{sup *}(10){sub out} <1.0 μSv h{sup -1}, 1.0 μSv h{sup -1} dose is essential as most individuals spend a large portion of their time indoors. The difference between outdoors and indoors should be considered carefully in order to estimate residents’ exposure dose before their returning home.

  7. Prediction of midline dose from entrance ad exit dose using OSLD measurements for total irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Chang Heon; Park, Jong Min; Park, So Yeon; Chun, Min Soo; Han, Ji Hye; Cho, Jin Dong; Kim, Jung In [Dept. of Radiation Oncology, Seoul National University Hospital, Seoul (Korea, Republic of)

    2017-06-15

    This study aims to predict the midline dose based on the entrance and exit doses from optically stimulated luminescence detector (OSLD) measurements for total body irradiation (TBI). For TBI treatment, beam data sets were measured for 6 MV and 15 MV beams. To evaluate the tissue lateral effect of various thicknesses, the midline dose and peak dose were measured using a solid water phantom (SWP) and ion chamber. The entrance and exit doses were measured using OSLDs. OSLDs were attached onto the central beam axis at the entrance and exit surfaces of the phantom. The predicted midline dose was evaluated as the sum of the entrance and exit doses by OSLD measurement. The ratio of the entrance dose to the exit dose was evaluated at various thicknesses. The ratio of the peak dose to the midline dose was 1.12 for a 30 cm thick SWP at both energies. When the patient thickness is greater than 30 cm, the 15 MV should be used to ensure dose homogeneity. The ratio of the entrance dose to the exit dose was less than 1.0 for thicknesses of less than 30 cm and 40 cm at 6 MV and 15 MV, respectively. Therefore, the predicted midline dose can be underestimated for thinner body. At 15 MV, the ratios were approximately 1.06 for a thickness of 50 cm. In cases where adult patients are treated with the 15 MV photon beam, it is possible for the predicted midline dose to be overestimated for parts of the body with a thickness of 50 cm or greater. The predicted midline dose and OSLD-measured midline dose depend on the phantom thickness. For in-vivo dosimetry of TBI, the measurement dose should be corrected in order to accurately predict the midline dose.

  8. Pulsed total dose damage effect experimental study on EPROM

    International Nuclear Information System (INIS)

    Luo Yinhong; Yao Zhibin; Zhang Fengqi; Guo Hongxia; Zhang Keying; Wang Yuanming; He Baoping

    2011-01-01

    Nowadays, memory radiation effect study mainly focus on functionality measurement. Measurable parameters is few in china. According to the present situation, threshold voltage testing method was presented on floating gate EPROM memory. Experimental study of pulsed total dose effect on EPROM threshold voltage was carried out. Damage mechanism was analysed The experiment results showed that memory cell threshold voltage negative shift was caused by pulsed total dose, memory cell threshold voltage shift is basically coincident under steady bias supply and no bias supply. (authors)

  9. Tritons at energies of 10 MeV to 1 TeV: Conversion coefficients for fluence-to-absorbed dose, equivalent dose, effective dose, and gray equivalent, calculated using Monte Carlo radiation transport code MCNPX 2.7.C

    International Nuclear Information System (INIS)

    Copeland, K.; Parker, D. E.; Friedberg, W.

    2010-01-01

    Conversion coefficients were calculated for fluence-to-absorbed dose, fluence-to-equivalent dose, fluence-to-effective dose and fluence-to-gray equivalent for isotropic exposure of an adult female and an adult male to tritons ( 3 H + ) in the energy range of 10 MeV to 1 TeV (0.01-1000 GeV). Coefficients were calculated using Monte Carlo transport code MCNPX 2.7.C and BodyBuilder TM 1.3 anthropomorphic phantoms. Phantoms were modified to allow calculation of effective dose to a Reference Person using tissues and tissue weighting factors from 1990 and 2007 recommendations of the International Commission on Radiological Protection (ICRP) and calculation of gray equivalent to selected tissues as recommended by the National Council on Radiation Protection and Measurements. At 15 of the 19 energies for which coefficients for effective dose were calculated, coefficients based on ICRP 2007 and 1990 recommendations differed by less than 3%. The greatest difference, 43%, occurred at 30 MeV. Published by Oxford Univ. Press on behalf of the US Government 2010. (authors)

  10. Helions at energies of 10 MeV to 1 TeV: Conversion coefficients for fluence-to-absorbed dose, equivalent dose, effective dose and gray equivalent, calculated using Monte Carlo radiation transport code MCNPX 2.7.C

    International Nuclear Information System (INIS)

    Copeland, K.; Parker, D. E.; Friedberg, W.

    2010-01-01

    Conversion coefficients were calculated for fluence-to-absorbed dose, fluence-to-equivalent dose, fluence-to-effective dose and fluence-to-gray equivalent, for isotropic exposure of an adult male and an adult female to helions ( 3 He 2+ ) in the energy range of 10 MeV to 1 TeV (0.01-1000 GeV). Calculations were performed using Monte Carlo transport code MCNPX 2.7.C and BodyBuilder TM 1.3 anthropomorphic phantoms modified to allow calculation of effective dose using tissues and tissue weighting factors from either the 1990 or 2007 recommendations of the International Commission on Radiological Protection (ICRP), and gray equivalent to selected tissues as recommended by the National Council on Radiation Protection and Measurements. At 15 of the 19 energies for which coefficients for effective dose were calculated, coefficients based on ICRP 2007 and 1990 recommendations differed by less than 2%. The greatest difference, 62%, occurred at 100 MeV. Published by Oxford Univ. Press on behalf of the U.S. Government 2010. (authors)

  11. Effective Equivalent Doses of External Irradiation of Population by Man-made Radionuclides from the Soil in the Sarajevo Region Over the Period of 1986-1989

    International Nuclear Information System (INIS)

    Saracevic, L.; Samek, D.; Hasanbasic, D.; Gradascevic, N.

    1998-01-01

    Assessment of exposition of human body to radioactive materials is seen as radiation-hygienic measure of utmost importance, since the doses absorbed due to radionuclides present in soil, air, food and water are significant integral parts of the total dose that the human being receives in all kinds and conditions of exposition. External irradiation by radionuclides deposed in soil is a major contributor to the whole dose of irradiation of population. Assuming that fission radionuclides Cs-134 and Cs-137 had a specially significant contribution to the total dose of irradiation of the population over the investigation period (1986-1989), we established their levels of activity in the soil in different localities of the Sarajevo region, and then calculated the effective equivalent dose for the population for each year of investigation. The mean values for the yearly effective equivalent doses of external irradiation of the population by fission radionuclides Cs-134 and Cs-137 from the soil in the Sarajevo region were 0.77 mSv/year in 1989. Contribution by Cs-134 to the total effective equivalent dose was 63.64 % in 1986 year, to be reeducated in 1987 to 45.67 %, in 1988 to 35.89 % and in the year 1989 to 33.33 %. The effective equivalent dose was different to a great extent by the investigated localities (town sections) during the started period. It can be inferred from the above that the average population of the Sarajevo region did not receive a larger dose of radiation than the one established by the International Commission for Radiological Protection as the limit for subsequent exposition to radiation. (author)

  12. Neutron spectrum and dose-equivalent in shuttle flights during solar maximum

    Energy Technology Data Exchange (ETDEWEB)

    Keith, J E; Badhwar, G D; Lindstrom, D J [National Aeronautics and Space Administration, Houston, TX (United States). Lyndon B. Johnson Space Center

    1992-01-01

    This paper presents unambiguous measurements of the spectrum of neutrons found in spacecraft during spaceflight. The neutron spectrum was measured from thermal energies to about 10 MeV using a completely passive system of metal foils as neutron detectors. These foils were exposed to the neutron flux bare, covered by thermal neutron absorbers (Gd) and inside moderators (Bonner spheres). This set of detectors was flown on three U.S. Space Shuttle flights, STS-28, STS-36 and STS-31, during the solar maximum. We show that the measurements of the radioactivity of these foils lead to a differential neutron energy spectrum in all three flights that can be represented by a power law, J(E){approx equal}E{sup -0.765} neutrons cm{sup -2} day {sup -1} MeV{sup -1}. We also show that the measurements are even better represented by a linear combination of the terrestrial neutron albedo and a spectrum of neutrons locally produced in a aluminium by protons, computed by a previous author. We use both approximations to the neutron spectrum to produce a worst case and most probable case for the neutron spectra and the resulting dose-equivalents, computed using ICRP-51 neutron fluence-dose conversion tables. We compare these to the skin dose-equivalents due to charged particles during the same flights. (author).

  13. Test of tissue-equivalent scintillation detector for dose measurement of megavoltage beams

    International Nuclear Information System (INIS)

    Geso, M.; Ackerly, T.; Clift, M.A.

    2000-01-01

    Full text: The measurement of depth doses and profiles for a stereotactic radiotherapy beam presents special problems associated with the small beam size compared to the dosimeter's active detection area. In this work a locally fabricated organic plastic scintillator detector has been used to measure the depth dose and profile of a stereotactic radiotherapy beam. The 6MV beam is 1.25 cm diameter at isocentre, typical of small field stereotactic radiosurgery. The detector is a water/tissue equivalent plastic scintillator that is accompanied by Cerenkov subtraction detector. In this particular application, a negligible amount of Cerenkov light was detected. A photodiode and an electronic circuit is used instead of a photomultiplier for signal amplification. Comparison with data using a diode detector and a small size ionization chamber, indicate that the organic plastic scintillator detector is a valid detector for stereotactic radiosurgery dosimetry. The tissue equivalence of the organic scintillator also holds the promise of accurate dosimetry in the build up region. Depth doses measured using our plastic scintillator agree to within about 1% with those obtained using commercially available silicon diodes. Beam profiles obtained using plastic scintillator presents correct field width to within 0.35 mm, however some artifacts are visible in the profiles. These artifacts are about 5% discrepancy which has been shown not to be a significant factor in stereotactic radiotherapy dosimetry. Copyright (2000) Australasian College of Physical Scientists and Engineers in Medicine

  14. A new online detector for estimation of peripheral neutron equivalent dose in organ

    Energy Technology Data Exchange (ETDEWEB)

    Irazola, L., E-mail: leticia@us.es; Sanchez-Doblado, F. [Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Sevilla 41009, Spain and Servicio de Radiofísica, Hospital Universitario Virgen Macarena, Sevilla 41007 (Spain); Lorenzoli, M.; Pola, A. [Departimento di Ingegneria Nuclear, Politecnico di Milano, Milano 20133 (Italy); Bedogni, R. [Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare (INFN), Frascati Roma 00044 (Italy); Terrón, J. A. [Servicio de Radiofísica, Hospital Universitario Virgen Macarena, Sevilla 41007 (Spain); Sanchez-Nieto, B. [Instituto de Física, Pontificia Universidad Católica de Chile, Santiago 4880 (Chile); Expósito, M. R. [Departamento de Física, Universitat Autònoma de Barcelona, Bellaterra 08193 (Spain); Lagares, J. I.; Sansaloni, F. [Centro de Investigaciones Energéticas y Medioambientales y Tecnológicas (CIEMAT), Madrid 28040 (Spain)

    2014-11-01

    Purpose: Peripheral dose in radiotherapy treatments represents a potential source of secondary neoplasic processes. As in the last few years, there has been a fast-growing concern on neutron collateral effects, this work focuses on this component. A previous established methodology to estimate peripheral neutron equivalent doses relied on passive (TLD, CR39) neutron detectors exposed in-phantom, in parallel to an active [static random access memory (SRAMnd)] thermal neutron detector exposed ex-phantom. A newly miniaturized, quick, and reliable active thermal neutron detector (TNRD, Thermal Neutron Rate Detector) was validated for both procedures. This first miniaturized active system eliminates the long postprocessing, required for passive detectors, giving thermal neutron fluences in real time. Methods: To validate TNRD for the established methodology, intrinsic characteristics, characterization of 4 facilities [to correlate monitor value (MU) with risk], and a cohort of 200 real patients (for second cancer risk estimates) were evaluated and compared with the well-established SRAMnd device. Finally, TNRD was compared to TLD pairs for 3 generic radiotherapy treatments through 16 strategic points inside an anthropomorphic phantom. Results: The performed tests indicate similar linear dependence with dose for both detectors, TNRD and SRAMnd, while a slightly better reproducibility has been obtained for TNRD (1.7% vs 2.2%). Risk estimates when delivering 1000 MU are in good agreement between both detectors (mean deviation of TNRD measurements with respect to the ones of SRAMnd is 0.07 cases per 1000, with differences always smaller than 0.08 cases per 1000). As far as the in-phantom measurements are concerned, a mean deviation smaller than 1.7% was obtained. Conclusions: The results obtained indicate that direct evaluation of equivalent dose estimation in organs, both in phantom and patients, is perfectly feasible with this new detector. This will open the door to an

  15. Assessment of doses caused by electrons in thin layers of tissue-equivalent materials, using MCNP.

    Science.gov (United States)

    Heide, Bernd

    2013-10-01

    Absorbed doses caused by electron irradiation were calculated with Monte Carlo N-Particle transport code (MCNP) for thin layers of tissue-equivalent materials. The layers were so thin that the calculation of energy deposition was on the border of the scope of MCNP. Therefore, in this article application of three different methods of calculation of energy deposition is discussed. This was done by means of two scenarios: in the first one, electrons were emitted from the centre of a sphere of water and also recorded in that sphere; and in the second, an irradiation with the PTB Secondary Standard BSS2 was modelled, where electrons were emitted from an (90)Sr/(90)Y area source and recorded inside a cuboid phantom made of tissue-equivalent material. The speed and accuracy of the different methods were of interest. While a significant difference in accuracy was visible for one method in the first scenario, the difference in accuracy of the three methods was insignificant for the second one. Considerable differences in speed were found for both scenarios. In order to demonstrate the need for calculating the dose in thin small zones, a third scenario was constructed and simulated as well. The third scenario was nearly equal to the second one, but a pike of lead was assumed to be inside the phantom in addition. A dose enhancement (caused by the pike of lead) of ∼113 % was recorded for a thin hollow cylinder at a depth of 0.007 cm, which the basal-skin layer is referred to in particular. Dose enhancements between 68 and 88 % were found for a slab with a radius of 0.09 cm for all depths. All dose enhancements were hardly noticeable for a slab with a cross-sectional area of 1 cm(2), which is usually applied to operational radiation protection.

  16. Superiority of Equivalent Uniform Dose (EUD)-Based Optimization for Breast and Chest Wall

    International Nuclear Information System (INIS)

    Mihailidis, Dimitris N.; Plants, Brian; Farinash, Lloyd; Harmon, Michael; Whaley, Lewis; Raja, Prem; Tomara, Pelagia

    2010-01-01

    We investigate whether IMRT optimization based on generalized equivalent uniform dose (gEUD) objectives for organs at risk (OAR) results in superior dosimetric outcomes when compared with multiple dose-volume (DV)-based objectives plans for patients with intact breast and postmastectomy chest wall (CW) cancer. Four separate IMRT plans were prepared for each of the breast and CW cases (10 patients). The first three plans used our standard in-house, physician-selected, DV objectives (phys-plan); gEUD-based objectives for the OARs (gEUD-plan); and multiple, 'very stringent,' DV objectives for each OAR and PTV (DV-plan), respectively. The fourth plan was only beam-fluence optimized (FO-plan), without segmentation, which used the same objectives as in the DV-plan. The latter plan was to be used as an 'optimum' benchmark without the effects of the segmentation for deliverability. Dosimetric quantities, such as V 20Gy for the ipsilateral lung and mean dose (D mean ) for heart, contralateral breast, and contralateral lung were used to evaluate the results. For all patients in this study, we have seen that the gEUD-based plans allow greater sparing of the OARs while maintaining equivalent target coverage. The average ipsilateral lung V 20Gy reduced from 22 ± 4.4% for the FO-plan to 18 ± 3% for the gEUD-plan. All other dosimetric quantities shifted towards lower doses for the gEUD-plan. gEUD-based optimization can be used to search for plans of different DVHs with the same gEUDs. The use of gEUD allows selective optimization and reduction of the dose for each OAR and results in a truly individualized treatment plan.

  17. A new online detector for estimation of peripheral neutron equivalent dose in organ

    International Nuclear Information System (INIS)

    Irazola, L.; Sanchez-Doblado, F.; Lorenzoli, M.; Pola, A.; Bedogni, R.; Terrón, J. A.; Sanchez-Nieto, B.; Expósito, M. R.; Lagares, J. I.; Sansaloni, F.

    2014-01-01

    Purpose: Peripheral dose in radiotherapy treatments represents a potential source of secondary neoplasic processes. As in the last few years, there has been a fast-growing concern on neutron collateral effects, this work focuses on this component. A previous established methodology to estimate peripheral neutron equivalent doses relied on passive (TLD, CR39) neutron detectors exposed in-phantom, in parallel to an active [static random access memory (SRAMnd)] thermal neutron detector exposed ex-phantom. A newly miniaturized, quick, and reliable active thermal neutron detector (TNRD, Thermal Neutron Rate Detector) was validated for both procedures. This first miniaturized active system eliminates the long postprocessing, required for passive detectors, giving thermal neutron fluences in real time. Methods: To validate TNRD for the established methodology, intrinsic characteristics, characterization of 4 facilities [to correlate monitor value (MU) with risk], and a cohort of 200 real patients (for second cancer risk estimates) were evaluated and compared with the well-established SRAMnd device. Finally, TNRD was compared to TLD pairs for 3 generic radiotherapy treatments through 16 strategic points inside an anthropomorphic phantom. Results: The performed tests indicate similar linear dependence with dose for both detectors, TNRD and SRAMnd, while a slightly better reproducibility has been obtained for TNRD (1.7% vs 2.2%). Risk estimates when delivering 1000 MU are in good agreement between both detectors (mean deviation of TNRD measurements with respect to the ones of SRAMnd is 0.07 cases per 1000, with differences always smaller than 0.08 cases per 1000). As far as the in-phantom measurements are concerned, a mean deviation smaller than 1.7% was obtained. Conclusions: The results obtained indicate that direct evaluation of equivalent dose estimation in organs, both in phantom and patients, is perfectly feasible with this new detector. This will open the door to an

  18. Low-dose-rate total lymphoid irradiation: a new method of rapid immunosuppression

    International Nuclear Information System (INIS)

    Blum, J.E.; de Silva, S.M.; Rachman, D.B.; Order, S.E.

    1988-01-01

    Total Lymphoid Irradiation (TLI) has been successful in inducing immunosuppression in experimental and clinical applications. However, both the experimental and clinical utility of TLI are hampered by the prolonged treatment courses required (23 days in rats and 30-60 days in humans). Low-dose-rate TLI has the potential of reducing overall treatment time while achieving comparable immunosuppression. This study examines the immunosuppressive activity and treatment toxicity of conventional-dose-rate (23 days) vs low-dose-rate (2-7 days) TLI. Seven groups of Lewis rats were given TLI with 60Co. One group was treated at conventional-dose-rates (80-110 cGy/min) and received 3400 cGy in 17 fractions over 23 days. Six groups were treated at low-dose-rate (7 cGy/min) and received total doses of 800, 1200, 1800, 2400, 3000, and 3400 cGy over 2-7 days. Rats treated at conventional-dose-rates over 23 days and at low-dose-rate over 2-7 days tolerated radiation with minimal toxicity. The level of immunosuppression was tested using allogeneic (Brown-Norway) skin graft survival. Control animals retained allogeneic skin grafts for a mean of 14 days (range 8-21 days). Conventional-dose-rate treated animals (3400 cGy in 23 days) kept their grafts 60 days (range 50-66 days) (p less than .001). Low-dose-rate treated rats (800 to 3400 cGy total dose over 2-7 days) also had prolongation of allogeneic graft survival times following TLI with a dose-response curve established. The graft survival time for the 3400 cGy low-dose-rate group (66 days, range 52-78 days) was not significantly different from the 3400 cGy conventional-dose-rate group (p less than 0.10). When the total dose given was equivalent, low-dose-rate TLI demonstrated an advantage of reduced overall treatment time compared to conventional-dose-rate TLI (7 days vs. 23 days) with no increase in toxicity

  19. Evaluation of the collective effective dose equivalent of atmospheric discharges in the Rhone valley

    International Nuclear Information System (INIS)

    Le Grand, J.; Despres, A.; Robeau, D.; Bouville, A.

    1982-01-01

    Two models were used to evaluate the integrated atmospheric concentrations: - TALD, a long-range atmospheric transport model which takes account of the actual trajectories of the discharged matter; - a Gaussian plume model which assumes straight-line trajectories defined by the wind at the point of emission. In order to bring out the differences due to the use of the two models the dose equivalents are presented as a function of wind direction at the point of emission and the contributions of the near zone and the further zone are compared. (author)

  20. Calculation of midplane dose for total body irradiation from entrance and exit dose MOSFET measurements.

    Science.gov (United States)

    Satory, P R

    2012-03-01

    This work is the development of a MOSFET based surface in vivo dosimetry system for total body irradiation patients treated with bilateral extended SSD beams using PMMA missing tissue compensators adjacent to the patient. An empirical formula to calculate midplane dose from MOSFET measured entrance and exit doses has been derived. The dependency of surface dose on the air-gap between the spoiler and the surface was investigated by suspending a spoiler above a water phantom, and taking percentage depth dose measurements (PDD). Exit and entrances doses were measured with MOSFETs in conjunction with midplane doses measured with an ion chamber. The entrance and exit doses were combined using an exponential attenuation formula to give an estimate of midplane dose and were compared to the midplane ion chamber measurement for a range of phantom thicknesses. Having a maximum PDD at the surface simplifies the prediction of midplane dose, which is achieved by ensuring that the air gap between the compensator and the surface is less than 10 cm. The comparison of estimated midplane dose and measured midplane dose showed no dependence on phantom thickness and an average correction factor of 0.88 was found. If the missing tissue compensators are kept within 10 cm of the patient then MOSFET measurements of entrance and exit dose can predict the midplane dose for the patient.

  1. The study on pre-heat conditions in the equivalent-dose estimation of holocene loess using the single-aliquot regenerative-dose (SAR) protocol

    International Nuclear Information System (INIS)

    Jia Yaofeng; Huang Chunchang; Pang Jiangli; Lu Xinwei; Zhang Xu

    2008-01-01

    The thermal treatment in the equivalent-dose estimation often is carried in the OSL dating, and pre-heat is a main thermal treatment. Due to which will originate the problems of thermal transfer and thermal activation, the thermal treatment and the setup of their conditions are key problems influencing the accuracy of OSL dating. The paper combined the temperature of pre-heat and cut-heat used in the routine measurement of IRSL and Post-IR OSL, and then estimated the equivalent-dose of several loess samples. The estimated result presents that the equivalent-dose depends on the heat temperature, especially depends on the cut-heat temperature, which is to say that the equivalent-dose increases with the cut-heat temperature; a plateau of equivalent-dose appears when using the 200-240 degree C cut-heat in the range of 200-300 degree C pre-heat, and the equivalent-doses estimated by IRSL and Post-IR OSL respectively are close to each other, which resulted from the similar sensitivity change direction of optical stimulated signals and its smaller change range in the measurement cycles using the combined temperature of pre- heat and cut-heat, and the incomplete calibration of sensitivity change of optical stimulated signals in the whole measurement cycles caused the variation of estimated equivalent-dose corresponding to the cut-heat temperature. (authors)

  2. Methods of assessing total doses integrated across pathways

    International Nuclear Information System (INIS)

    Grzechnik, M.; Camplin, W.; Clyne, F.; Allott, R.; Webbe-Wood, D.

    2006-01-01

    Calculated doses for comparison with limits resulting from discharges into the environment should be summed across all relevant pathways and food groups to ensure adequate protection. Current methodology for assessments used in the radioactivity in Food and the Environment (R.I.F.E.) reports separate doses from pathways related to liquid discharges of radioactivity to the environment from those due to gaseous releases. Surveys of local inhabitant food consumption and occupancy rates are conducted in the vicinity of nuclear sites. Information has been recorded in an integrated way, such that the data for each individual is recorded for all pathways of interest. These can include consumption of foods, such as fish, crustaceans, molluscs, fruit and vegetables, milk and meats. Occupancy times over beach sediments and time spent in close proximity to the site is also recorded for inclusion of external and inhalation radiation dose pathways. The integrated habits survey data may be combined with monitored environmental radionuclide concentrations to calculate total dose. The criteria for successful adoption of a method for this calculation were: Reproducibility can others easily use the approach and reassess doses? Rigour and realism how good is the match with reality?Transparency a measure of the ease with which others can understand how the calculations are performed and what they mean. Homogeneity is the group receiving the dose relatively homogeneous with respect to age, diet and those aspects that affect the dose received? Five methods of total dose calculation were compared and ranked according to their suitability. Each method was labelled (A to E) and given a short, relevant name for identification. The methods are described below; A) Individual doses to individuals are calculated and critical group selection is dependent on dose received. B) Individual Plus As in A, but consumption and occupancy rates for high dose is used to derive rates for application in

  3. Bioequivalence of a fixed-dose repaglinide/metformin combination tablet and equivalent doses of repaglinide and metformin tablets
.

    Science.gov (United States)

    Cho, Hea-Young; Ngo, Lien; Kim, Sang-Ki; Choi, Yoonho; Lee, Yong-Bok

    2018-06-01

    This study was conducted to determine whether a fixed-dose combination (FDC) tablet of repaglinide/metformin (2/500 mg) is equivalent to coadministration of equivalent doses of individual (EDI) tablets of repaglinide (2 mg) and metformin (500 mg) in healthy Korean male subjects. This study was conducted as an open-label, randomized, single-dose, two-period, two-sequence crossover design in 50 healthy Korean male subjects who received an FDC tablet or EDI tablets. Plasma concentrations of repaglinide and metformin were determined for up to 24 hours using a validated UPLC-MS/MS method. Bioequivalence was assessed according to current guidelines issued by the U.S. Food and Drug Administration (FDA) and Korean legislation. Tolerability was also evaluated throughout the study via subject interview, vital signs, and blood sampling. Point estimates (90% CIs) for AUC0-t, AUC0-∞, and Cmax based on EDI tablets were 110.07 (102.25 - 118.49), 109.90 (101.70 - 118.39), and 112.60 (101.49 - 124.85), respectively, for repaglinide. They were 95.18 (89.62 - 101.05), 95.00 (89.74 - 100.65), and 98.44 (92.72 - 104.50), respectively, for metformin. These results satisfied the bioequivalence criteria of 80.00 - 125.00% proposed by the FDA and Korean legislation. Results of pharmacokinetic analysis suggested that repaglinide and metformin in FDC tablets were bioequivalent to EDI tablets of repaglinide (2 mg) and metformin (500 mg) in healthy Korean male subjects. Both formulations appeared to be well tolerated.
.

  4. Efficiency improvement in proton dose calculations with an equivalent restricted stopping power formalism

    Science.gov (United States)

    Maneval, Daniel; Bouchard, Hugo; Ozell, Benoît; Després, Philippe

    2018-01-01

    The equivalent restricted stopping power formalism is introduced for proton mean energy loss calculations under the continuous slowing down approximation. The objective is the acceleration of Monte Carlo dose calculations by allowing larger steps while preserving accuracy. The fractional energy loss per step length ɛ was obtained with a secant method and a Gauss-Kronrod quadrature estimation of the integral equation relating the mean energy loss to the step length. The midpoint rule of the Newton-Cotes formulae was then used to solve this equation, allowing the creation of a lookup table linking ɛ to the equivalent restricted stopping power L eq, used here as a key physical quantity. The mean energy loss for any step length was simply defined as the product of the step length with L eq. Proton inelastic collisions with electrons were added to GPUMCD, a GPU-based Monte Carlo dose calculation code. The proton continuous slowing-down was modelled with the L eq formalism. GPUMCD was compared to Geant4 in a validation study where ionization processes alone were activated and a voxelized geometry was used. The energy straggling was first switched off to validate the L eq formalism alone. Dose differences between Geant4 and GPUMCD were smaller than 0.31% for the L eq formalism. The mean error and the standard deviation were below 0.035% and 0.038% respectively. 99.4 to 100% of GPUMCD dose points were consistent with a 0.3% dose tolerance. GPUMCD 80% falloff positions (R80 ) matched Geant’s R80 within 1 μm. With the energy straggling, dose differences were below 2.7% in the Bragg peak falloff and smaller than 0.83% elsewhere. The R80 positions matched within 100 μm. The overall computation times to transport one million protons with GPUMCD were 31-173 ms. Under similar conditions, Geant4 computation times were 1.4-20 h. The L eq formalism led to an intrinsic efficiency gain factor ranging between 30-630, increasing with the prescribed accuracy of simulations. The

  5. Study of total ionization dose effects in electronic devices

    International Nuclear Information System (INIS)

    Nidhin, T.S.; Bhattacharyya, Anindya; Gour, Aditya; Behera, R.P.; Jayanthi, T.

    2018-01-01

    Radiation effects in electronic devices are a major challenge in the dependable application developments of nuclear power plant instrumentation and control systems. The main radiation effects are total ionization dose (TID) effects, displacement damage dose (DDD) effects and single event effects (SEE). In this study, we are concentrating on TID effects in electronic devices. The focus of the study is mainly on SRAM based field programmable gate arrays (FPGA) along with that the devices of our interest are voltage regulators, flash memory and optocoupler. The experiments are conducted by exposing the devices to gamma radiation in power off condition and the degradation in the performances are analysed

  6. Evaluation of the directional dose equivalent H,(0.07) for ring dosemeters

    International Nuclear Information System (INIS)

    Alvarez R, J.T.; Tovar M, V.M.

    2006-01-01

    The personnel dosimetry laboratory (LDP) of the Metrology department received an user's of radiation beta application that incidentally had irradiated 14 couples of ring dosemeters for extremities of the type TLD-100 given by the LDP. This sample of 14 couples of rings tentatively it was irradiated in the months of July-August of the year 2004, and he requested in an expedite way the evaluation of the received dose equivalent. The LSCD builds two calibration curves in terms of the directional dose equivalent H'(0.07) using two sources patterns of 90 Sr- 90 Y for beta radiation: one of 74 MBq and another of 1850 MBq with traceability to the PTB. The first curve in the interval of 0 to 5 mSv, the second in the range of 5 to 50 mSv, taking into account effects by positioned of the rings in the phantom. Both calibration curves were validated by adjustment lack, symmetry of residuals and normality of the same ones. It is evaluated and analyzing the H'(0.007) for these 14 couples of rings using the Tukey test of media of a single road. It was found that the H , its could be classified in 4 groups, and that the probability that its has irradiated in a random way it was smaller to the level at α = 0.05. (Author)

  7. Individual monitoring of external exposure in terms of personal dose equivalent, Hp(d)

    International Nuclear Information System (INIS)

    Fantuzzi, E.

    2001-01-01

    The institute for Radiation Protection of ENEA - Bologna has organised a one day-workshop on the subject: Individual monitoring of external exposure in terms of personal dose equivalent, H p (d). The aim of the workshop was the discussion of the new implications and modifications to be expected in the routine individual monitoring of external radiation, due to the issue of the Decree 241/00 (G.U. 31/8/2000) in charge since 01/01/2001. The decree set up in Italian law the standards contained in the European Directive EURATOM 96/29-Basic Standards for the Protection of Health of Workers and the General Public against Dangers arising from Ionizing Radiation. Among others, the definition of the operational quantities for external radiation for personal and environmental monitoring, H p (d) e H * (d) respectively as defined by ICRU (International Commission for Radiation Units and Measurements), requires to update the methods of measurements and calibration of the personal dosemeters and environmental monitors. This report collects the papers presented at the workshop dealing with the Personal Dose Equivalent, H p (d), the conversion coefficients, H p (d)/K a e H p (d)/ , obtained through Monte Carlo calculations published by ICRU and ICRP (International Commission for Radiation Protection), the new calibration procedures and the practical implication in the routine of individual monitoring in terms of H p (d). Eventually, in the last chapter, the answers to Frequently Asked Questions (FAQ) are briefly reported [it

  8. Angular dependence of dose equivalent response of an albedo neutron dosimeter

    International Nuclear Information System (INIS)

    Torres, B.A.; Boswell, E.; Schwartz, R.B.

    1994-01-01

    The ANSI provides procedures for testing the performance of dosimetry services. Although neutron dose equivalent angular response studies are not now mandated, future standards may well require that such studies be performed. Current studies with an albedo dosimeter will yield information regarding the angular dependence of dose equivalent response for this type of personnel dosimeter. Preliminary data for bare 252 Cf fluences show a marked decrease in dosimeter reading with increasing angle. The response decreased by an approximate factor of four. For the horizontal orientation, the same response was noted from both positive and negative angles. However, for the vertical orientation, the response was unexplainably assymetric. We are also examining the response of the personnel badge in moderated 252 Cf fluences. Responses from the moderated and unmoderated 252 Cf fields and theoretical calculations of the neutron angular response will be compared. This information will assist in building a data base for future comparisons of neutron angular responses with other neutron albedo dosimeters and phantoms

  9. The monetary value of the collective dose equivalent unit (person-rem)

    International Nuclear Information System (INIS)

    Rodgers, Reginald C.

    1978-01-01

    In the design and operation of nuclear power reactor facilities, it is recommended that radiation exposures to the workers and the general public be kept as 'low as reasonably achievable' (ALARA). In the process of implementing this principle cost-benefit evaluations are part of the decision making process. For this reason a monetary value has to be assigned to the collective dose equivalent unit (person-rem). The various factors such as medical health care, societal penalty and manpower replacement/saving are essential ingredients to determine a monetary value for the person-rem. These factors and their dependence on the level of risk (or exposure level) are evaluated. Monetary values of well under $100 are determined for the public dose equivalent unit. The occupational worker person-rem value is determined to be in the range of $500 to about $5000 depending on the exposure level and the type of worker and his affiliation, i.e., temporary or permanent. A discussion of the variability and the range of the monetary values will be presented. (author)

  10. Comparison between measured and design dose rate equivalents on board of Nuclear Ship Mutsu

    International Nuclear Information System (INIS)

    Yamaji, Akio; Sakamoto, Yukio

    1993-01-01

    The power-up test of the Nuclear Ship Mutsu was restarted in March 1990 and completed successfully in February 1991. The experimental voyages were carried out for about one year and all experiments were completed in February 1992. A comparison between the measured and design dose rate equivalents on board is described with showing a modified method in the shielding design. The measured values were obtained extensively in the cavity between the primary and secondary shields, in the double bottom, outside the secondary shield, and on the surface of the main coolant loop. The shielding design calculations were made with the most conservative geometries and material compositions within the allowed tolerance. In addition, a conservative model was adopted in case of performing the approximation due to the geometrical restriction of calculation code. The computational accuracies were evaluated based on various experimental analyses. The evaluated value was used as the design value. The shield structures were determined with a judgement that the real value does not exceed the design value. The adequacy of the judgement was confirmed by measurements on board. The measured dose rate equivalents in all positions on board satisfied the design criteria. (author)

  11. Equivalent dose measurements on board an Armenian Airline flight and Concord (9-17 km)

    International Nuclear Information System (INIS)

    Akopova, A.B.; Melkonyan, A.A.; Tatikyan, S.Sh.; Capdevielle, J-N.

    2002-01-01

    The results of investigations of the neutron component (E=1-10 MeV) of cosmic radiation on board the 'Armenian Airlines' aircrafts using nuclear photoemulsion are presented. The emulsions were exposed on the flights from Yerevan to Moscow, St.-Petersburg, Beirut, Athens, Frankfurt, Amsterdam, Paris and Sofia, and on Concord supersonic flights from Paris to New York. The dependence of the neutron fluxes, and on absorbed and equivalent doses on the flight parameters were investigated. On the flights of the supersonic Concord, with an altitude of 17 km, the neutron fluxes were essentially higher in comparison to those measured on Armenian airliners. It is interesting to note, that the neutron flux and equivalent dose rate decrease with altitude up to 470 km in space, for example, on board the STS-57. The shape of the differential energy spectrum for fast neutrons is the same on all Armenian airlines flights, but significantly different at 17 km altitude, where the flux in the energy region above 3 MeV is increasing

  12. Equivalent dose measurements on board an Armenian Airline flight and Concord (9-17 km)

    Energy Technology Data Exchange (ETDEWEB)

    Akopova, A.B. E-mail: akopova@lx2.yerphi.am; Melkonyan, A.A.; Tatikyan, S.Sh.; Capdevielle, J-N

    2002-12-01

    The results of investigations of the neutron component (E=1-10 MeV) of cosmic radiation on board the 'Armenian Airlines' aircrafts using nuclear photoemulsion are presented. The emulsions were exposed on the flights from Yerevan to Moscow, St.-Petersburg, Beirut, Athens, Frankfurt, Amsterdam, Paris and Sofia, and on Concord supersonic flights from Paris to New York. The dependence of the neutron fluxes, and on absorbed and equivalent doses on the flight parameters were investigated. On the flights of the supersonic Concord, with an altitude of 17 km, the neutron fluxes were essentially higher in comparison to those measured on Armenian airliners. It is interesting to note, that the neutron flux and equivalent dose rate decrease with altitude up to 470 km in space, for example, on board the STS-57. The shape of the differential energy spectrum for fast neutrons is the same on all Armenian airlines flights, but significantly different at 17 km altitude, where the flux in the energy region above 3 MeV is increasing.

  13. Understanding differences in dose-equivalents reported by passive and electronic personal dosemeters

    International Nuclear Information System (INIS)

    Perks, Christopher A.; Burgess, Peter; Smith, David; Salasky, Mark; Yahnke, Cliff

    2008-01-01

    Full text: In a number of challenging environments, clients occasionally double badge with electronic personal dosemeters (EPDs) to ensure day-to-day management of their employees personal dose-equivalent while using passive (in our case Luxel or InLight) dosemeters for monthly monitoring for approved results for dose record keeping. In some cases there have been significant differences in the cumulative doses recorded by the EPDs and the passive dosemeters. In these circumstances the passive dosemeters usually report a higher dose than the EPD by up to a factor of two, though more commonly 1.3. In this paper we describe the differences seen between EPD and passive dosemeters (in a number of countries). We then examine the possible causes for such discrepancies by comparison with published response function data available for the EPDs and Landauer dosemeters. We have undertaken a number of experiments comparing directly a number of EPDs and passive dosemeter response to a variety of energy and complex angular geometries where the two types of dosimeter have been exposed at the same time. Recommendations will be made on the appropriate use of double badging in difficult environments and interpretation of the results. (author)

  14. Procedures for operational monitoring of the environmental equivalent doses in cobalt therapy

    International Nuclear Information System (INIS)

    Perez Velasquez, Reytel; Gonzalez Lopez, Nadia; Perez Tamayo, Luis

    2009-01-01

    It took as its object of study environmental equivalent dose rates of field radiation they face radiophysicists technicians and medical physicists in the irradiation site of the radiation department of Lenin Hospital in Holguin, and the public that travels or remains in premises and areas surrounding the campus. It A review of national and international publications as well as technical documents to study the state of the art of the methodological existing monitoring of those dose rates and the valuation of impact in the context of an environmental management system. Since no detailed instructions and to perform the above-mentioned monitoring was proposed structure should contain a procedure to regulate the steps for this monitoring in the radiotherapy department of the Lenin Hospital Holguin, for which we studied the guidelines of NC ISO 14000 , and was conducted wide experiment whose led to: illustrate the level of doses required workers exposed occupationally exposed to radiation and the public compare these levels with natural radiation sources, assess the effectiveness of shielding the site of irradiation and the points of greatest risk within and outside the enclosure irradiation.Also assessed the impact it can have on the health of people exposed to such doses. Finally, we proposed a procedure for conducting subsequent monitoring and made recommendations to reduce levels radiation determined the lowest level reasonably achievable. (author)

  15. Measurement of conversion coefficients between air Kerma and personal dose equivalent and backscatter factors for diagnostic X-ray beams

    International Nuclear Information System (INIS)

    Rosado, Paulo Henrique Goncalves

    2008-01-01

    Two sets of quantities are import in radiological protection: the protection and operational quantities. Both sets can be related to basic physical quantities such as kerma through conversion coefficients. For diagnostic x-ray beams the conversion coefficients and backscatter factors have not been determined yet, those parameters are need for calibrating dosimeters that will be used to determine the personal dose equivalent or the entrance skin dose. Conversion coefficients between air kerma and personal dose equivalent and backscatter factors were experimentally determined for the diagnostic x-ray qualities RQR and RQA recommended by the International Electrotechnical Commission (IEC). The air kerma in the phantom and the mean energy of the spectrum were measured for such purpose. Harshaw LiF-100H thermoluminescent dosemeters (TLD) were used for measurements after being calibrated against an 180 cm 3 Radcal Corporation ionization chamber traceable to a reference laboratory. A 300 mm x 300 mm x 150 mm polymethylmethacrylate (PMMA) slab phantom was used for deep-dose measurements. Tl dosemeters were placed in the central axis of the x-ray beam at 5, 10, 15, 25 and 35 mm depth in the phantom upstream the beam direction Another required parameter for determining the conversion coefficients from was the mean energy of the x-ray spectrum. The spectroscopy of x-ray beams was done with a CdTe semiconductor detector that was calibrated with 133 Ba, 241 Am and 57 Co radiation sources. Measurements of the x-ray spectra were carried out for all RQR and RQA IEC qualities. Corrections due to the detector intrinsic efficiency, total energy absorption, escape fraction of the characteristic x-rays, Compton effect and attenuation in the detector were done aiming an the accurate determination of the mean energy. Measured x-ray spectra were corrected with the stripping method by using these response functions. The typical combined standard uncertainties of conversion coefficients and

  16. The Evaluation of the 0.07 and 3 mm Dose Equivalent with a Portable Beta Spectrometer

    Science.gov (United States)

    Hoshi, Katsuya; Yoshida, Tadayoshi; Tsujimura, Norio; Okada, Kazuhiko

    Beta spectra of various nuclide species were measured using a commercially available compact spectrometer. The shape of the spectra obtained via the spectrometer was almost similar to that of the theoretical spectra. The beta dose equivalent at any depth was obtained as a product of the measured pulse height spectra and the appropriate conversion coefficients of ICRP Publication 74. The dose rates evaluated from the spectra were comparable with the reference dose rates of standard beta calibration sources. In addition, we were able to determine the dose equivalents with a relative error of indication of 10% without the need for complicated correction.

  17. The evaluation of the 0.07 mm and 3 mm dose equivalent with a portable beta spectrometer

    International Nuclear Information System (INIS)

    Hoshi, Katsuya; Yoshida, Tadayoshi; Tsujimura, Norio; Okada, Kazuhiko

    2016-01-01

    Beta spectra of various nuclide species were measured using a commercially available compact spectrometer. The shape of the spectra obtained via the spectrometer was almost similar to that of the theoretical spectra. The beta dose equivalent at any depth was obtained as a product of the measured pulse height spectra and the appropriate conversion coefficients of ICRP Publication 74. The dose rates evaluated from the spectra were comparable with the reference dose rates of standard beta calibration sources. In addition, we were able to determine the dose equivalents with a relative error of indication of 10% without the need for complicated correction. (author)

  18. Evaluation of ambient dose equivalent rates influenced by vertical and horizontal distribution of radioactive cesium in soil in Fukushima Prefecture

    OpenAIRE

    Malins, Alex; Kurikami, Hiroshi; Nakama, Shigeo; Saito, Tatsuo; Okumura, Masahiko; Machida, Masahiko; Kitamura, Akihiro

    2015-01-01

    The air dose rate in an environment contaminated with 134Cs and 137Cs depends on the amount, depth profile and horizontal distribution of these contaminants within the ground. This paper introduces and verifies a tool that models these variables and calculates ambient dose equivalent rates at 1 m above the ground. Good correlation is found between predicted dose rates and dose rates measured with survey meters in Fukushima Prefecture in areas contaminated with radiocesium from the Fukushima D...

  19. The equivalent doses of indoor radon in some dwellings and enclosed areas in Morocco

    International Nuclear Information System (INIS)

    Hakam, O.; Choukri, J.; Reyss, L.

    2008-01-01

    Full text: The principal source of exposure to radiation for public in built-up areas is known to be the inhalation for radon its short-lived daughters.Most of this exposure occurs inside homes,where many hours are spent each day and where the volumic activity of radon is usually higher than outdoors. The compelling effects of radon and its short-lived decay products spread slowly but surely through a wide range of biological problems encountered in such areas as the mortality rates and lung cancer in uranium mines,the results of experimental work with animals, and the discovery of unsually high levels of radon in the living environments of the general population. As a way of prevention, we have measured the volumic activities of indoor radon-222 and we have calculated their effective equivalent dose in some dwellings and enclosed areas in Morocco. The obtained results show that the effective equivalent dose of activities measured indoor dwellings are inferior to the admissible annual limit fixed by ICRP for population, except in two twons situated in regions rich in phosphate deposits where the calculated doses are slightly upper than this limit. The results obtained for enclosed areas are inferior to the admissible annual limit fixed by ICRP for workers, except in the cave of geophysical observatory situated at depth of-12 meters where the obtained value don't present in risk for workers health because workers pass only a few minutes by day in this cave. The risks related to the volumic activities for indoor radon could be avoided by simple precautions such the continuous ventilation

  20. Comparison of adult and child radiation equivalent doses from 2 dental cone-beam computed tomography units.

    Science.gov (United States)

    Al Najjar, Anas; Colosi, Dan; Dauer, Lawrence T; Prins, Robert; Patchell, Gayle; Branets, Iryna; Goren, Arthur D; Faber, Richard D

    2013-06-01

    With the advent of cone-beam computed tomography (CBCT) scans, there has been a transition toward these scans' replacing traditional radiographs for orthodontic diagnosis and treatment planning. Children represent a significant proportion of orthodontic patients. Similar CBCT exposure settings are predicted to result in higher equivalent doses to the head and neck organs in children than in adults. The purpose of this study was to measure the difference in equivalent organ doses from different scanners under similar settings in children compared with adults. Two phantom heads were used, representing a 33-year-old woman and a 5-year-old boy. Optically stimulated dosimeters were placed at 8 key head and neck organs, and equivalent doses to these organs were calculated after scanning. The manufacturers' predefined exposure settings were used. One scanner had a pediatric preset option; the other did not. Scanning the child's phantom head with the adult settings resulted in significantly higher equivalent radiation doses to children compared with adults, ranging from a 117% average ratio of equivalent dose to 341%. Readings at the cervical spine level were decreased significantly, down to 30% of the adult equivalent dose. When the pediatric preset was used for the scans, there was a decrease in the ratio of equivalent dose to the child mandible and thyroid. CBCT scans with adult settings on both phantom heads resulted in higher radiation doses to the head and neck organs in the child compared with the adult. In practice, this might result in excessive radiation to children scanned with default adult settings. Collimation should be used when possible to reduce the radiation dose to the patient. While CBCT scans offer a valuable tool, use of CBCT scans should be justified on a specific case-by-case basis. Copyright © 2013 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  1. A study on pre-heat conditions in equivalent-dose estimation of holocene loess using single-aliquot regenerative-dose (SAR) protocol

    International Nuclear Information System (INIS)

    Jia Yaofeng; Huang Chunchang; Pang Jiangli; Lu Xinwei; Zhang Xu

    2007-01-01

    Through various arrangements of pre-heat and cut-heat temperatures in the equivalent-dose estimation of Holocene loess using a Double-SAR dating protocol, the paper estimated the equivalent-doses from several loess samples by application of IRSL and Post-IR OSL signals, respectively. The measured results present that the equivalent-dose depends on the heat temperature, especially depends on the cut-heat temperature, showing the equivalent-dose increases with the cut-heat temperature; a plateau of equivalent-dose appears at the 200-300 degree C preheat temperatures and the 200-240 degree C cut-heat temperatures, furthermore, the equivalent-doses estimated by IRSL and Post-IR OSL signals respectively are close to each other, which resulted from the similar sensitivity change directions of optical stimulated signals and their smaller change ranges in the measurement cycles using the various temperatures of pre-heat and cut-heat. This suggests that the 200-300 degree C pre-heat temperatures and the 200-240 degree C cut-heat temperatures are fit for dating young Holocene loess samples. (authors)

  2. Dose rate and dose fractionation studies in total body irradiation of dogs

    International Nuclear Information System (INIS)

    Kolb, H.J.; Netzel, B.; Schaffer, E.; Kolb, H.

    1979-01-01

    Total body irradiation (TBI) with 800-900 rads and allogeneic bone marrow transplantation according to the regimen designated by the Seattle group has induced remissions in patients with otherwise refractory acute leukemias. Relapse of leukemia after bone marrow transplantation remains the major problem, when the Seattle set up of two opposing 60 Co-sources and a low dose rate is used in TBI. Studies in dogs with TBI at various dose rates confirmed observations in mice that gastrointestinal toxicity is unlike toxicity against hemopoietic stem cells and possibly also leukemic stem cells depending on the dose rate. However, following very high single doses (2400 R) and marrow infusion acute gastrointestinal toxicity was not prevented by the lowest dose rate studied (0.5 R/min). Fractionated TBI with fractions of 600 R in addition to 1200 R (1000 rads) permitted the application of total doses up to 300 R followed by marrow infusion without irreversible toxicity. 26 dogs given 2400-3000 R have been observed for presently up to 2 years with regard to delayed radiation toxicity. This toxicity was mild in dogs given single doses at a low dose rate or fractionated TBI. Fractionated TBI is presently evaluated with allogeneic transplants in the dog before being applied to leukemic patients

  3. Basis for calculating body equivalent doses after external radiation exposure. 3. rev. and enl. ed.; Berechnungsgrundlage fuer die Ermittlung von Koerper-Aequivalentdosen bei aeusserer Strahlenexposition

    Energy Technology Data Exchange (ETDEWEB)

    Sarenio, O. (comp.) [Geschaeftsstelle der Strahlenschutzkommission beim Bundesamt fuer Strahlenschutz, Bonn (Germany)

    2017-07-01

    The book on the basis for calculating body equivalent doses after external radiation exposure includes the following issues: introduction covering the scope of coverage and body equivalent doses for radiation protection, terminology, photon radiation, neutron radiation, electron radiation, mixed radiation fields and the estimation of body equivalent doses for skin surface contamination.

  4. Criterion 6, indicator 28 : total and per capita consumption of wood and wood products in round wood equivalents

    Science.gov (United States)

    James L. Howard; Rebecca Westby; Kenneth E. Skog

    2010-01-01

    Total consumption of wood and paper products and fuelwood, in roundwood equivalents, increased between 1965 and 1988 from 13.2 to 18.9 billion cubic feet. Since 1988, it has been about 20 billion cubic feet per year. Total per capita consumption increased between 1965 and 1987, from 68 to 83 ft3 per year. Since 1987 through 2006, per capita...

  5. Dose-equivalent response CR-39 track detector for personnel neutron dosimetry

    International Nuclear Information System (INIS)

    Oda, K.; Ito, M.; Yoneda, H.; Miyake, H.; Yamamoto, J.; Tsuruta, T.

    1991-01-01

    A dose-equivalent response detector based on CR-39 has been designed to be applied for personnel neutron dosimetry. The intrinsic detection efficiency of bare CR-39 was first evaluated from irradiation experiments with monoenergetic neutrons and theoretical calculations. In the second step, the radiator effect was investigated for the purpose of sensitization to fast neutrons. A two-layer radiator consisting of deuterized dotriacontane (C 32 D 66 ) and polyethylene (CH 2 ) was designed. Finally, we made the CR-39 detector sensitive to thermal neutrons by doping with orthocarbone (B 10 H 12 C 2 ), and also estimated the contribution of albedo neutrons. It was found that the new detector - boron-doped CR-39 with the two-layer radiator - would have a flat response with an error of about 70% in a wide energy region, ranging from thermal to 15 MeV. (orig.)

  6. Effective Dose Equivalent To The Cypriot Population Due To Natural Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Christofides, S [Medical Physics Department, Nicosia General Hospital (Cyprus)

    1994-12-31

    A study was initiated by the Biomedical Research Foundation, two years ago, to estimate the various natural radiation components that contribute to the Effective Dose Equivalent (EDE) to the Cypriot population. The present study has shown that the contribution due to cosmic radiation is estimated to be less than 270 microSiverts per annum, while that due to airborne Rn-222 concentration in Cypriot houses is estimated to be less then 330 microSieverts per annum. The contribution due to terrestrial gamma radiations, which is currently under investigation, is so far estimated to be around 108 microSieverts per annum. Therefore the EDE to the Cypriot population due to natural radiation is likely to be around 700 microSieverts per annum, not taking into account the internal exposure due to other naturally occuring radionuclides. (author). 7 refs, 4 figs, 4 tabs.

  7. Evaluation of energy responses for neutron dose-equivalent meters made in Japan

    International Nuclear Information System (INIS)

    Saegusa, J.; Yoshizawa, M.; Tanimura, Y.; Yoshida, M.; Yamano, T.; Nakaoka, H.

    2004-01-01

    Energy responses of three types of Japanese neutron dose-equivalent (DE) meters were evaluated by Monte Carlo simulations and measurements. The energy responses were evaluated for thermal neutrons, monoenergetic neutrons with energies up to 15.2 MeV, and also for neutrons from such radionuclide sources as 252 Cf and 241 Am-Be. The calculated results were corroborated with the measured ones. The angular dependence of the response and the DE response were also evaluated. As a result, reliable energy responses were obtained by careful simulations of the proportional counter, moderator and absorber of the DE meters. Furthermore, the relationship between pressure of counting gas and response of the DE meter was discussed. By using the obtained responses, relations between predicted readings of the DE meters and true DE values were studied for various workplace spectra

  8. An improved standard total dose test for CMOS space electronics

    International Nuclear Information System (INIS)

    Fleetwood, D.M.; Winokur, P.S.; Riewe, L.C.; Pease, R.L.

    1989-01-01

    The postirradiation response of hardened and commercial CMOS devices is investigated as a function of total dose, dose rate, and annealing time and temperature. Cobalt-60 irradiation at ≅ 200 rad(SiO 2 )/s followed by a 1-week 100 degrees C biased anneal and testing is shown to be an effective screen of hardened devices for space use. However, a similar screen and single-point test performed after Co-60 irradiation and elevated temperature anneal cannot be generally defined for commercial devices. In the absence of detailed knowledge about device and circuit radiation response, a two-point standard test is proposed to ensure space surviability of CMOS circuits: a Co-60 irradiation and test to screen against oxide-trapped charge related failures, and an additional rebound test to screen against interface-trap related failures. Testing implications for bipolar technologies are also discussed

  9. Total dose and dose rate models for bipolar transistors in circuit simulation.

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Phillip Montgomery; Wix, Steven D.

    2013-05-01

    The objective of this work is to develop a model for total dose effects in bipolar junction transistors for use in circuit simulation. The components of the model are an electrical model of device performance that includes the effects of trapped charge on device behavior, and a model that calculates the trapped charge densities in a specific device structure as a function of radiation dose and dose rate. Simulations based on this model are found to agree well with measurements on a number of devices for which data are available.

  10. Derivation of a reference dose and drinking water equivalent level for 1,2,3-trichloropropane.

    Science.gov (United States)

    Tardiff, Robert G; Carson, M Leigh

    2010-06-01

    In some US potable water supplies, 1,2,3-trichloropropane (TCP) has been present at ranges of non-detect to less than 100 ppb, resulting from past uses. In subchronic oral studies, TCP produced toxicity in kidneys, liver, and other tissues. TCP administered by corn oil gavage in chronic studies produced tumors at multiple sites in rats and mice; however, interpretation of these studies was impeded by substantial premature mortality. Drinking water equivalent levels (DWELs) were estimated for a lifetime of consumption by applying biologically-based safety/risk assessment approaches, including Monte Carlo techniques, and with consideration of kinetics and modes of action, to possibly replace default assumptions. Internationally recognized Frameworks for human relevance of animal data were employed to interpret the findings. Calculated were a reference dose (=39 microg/kg d) for non-cancer and Cancer Values (CV) (=10-14 microg/kg d) based on non-linear dose-response relationships for mutagenicity as a precursor of cancer. Lifetime Average Daily Intakes (LADI) are 3130 and 790-1120 microg/person-d for non-cancer and cancer, respectively. DWELs, estimated by applying a relative source contribution (RSC) of 50% to the LADIs, are 780 and 200-280 microg/L for non-cancer and cancer, respectively. These DWELs may inform establishment of formal/informal guidelines and standards to protect public health. Copyright 2010 Elsevier Ltd. All rights reserved.

  11. The choice of a biological model in assessing internal dose equivalent

    International Nuclear Information System (INIS)

    Parodo, A.; Erre, N.

    1977-01-01

    Many are the biological models related to kinetic behavior of radioactive materials within the organism, or in an organ. This is true particularly for the metabolic kinetics of bone-seekers radionuclides described differently by various authors: as a consequence, different forms of the retention function have been used in calculating internal dose equivalent. In our opinion, the retention functions expressed as linear combinations of exponential terms with negative exponents are preferable. In fact, they can be obtained by coherent compartmental analysis and allow a mathematical formalism fairly well definite and easily adaptable to computers. Moreover, it is possible to make use of graphs and monograms already published. The role of the biological model in internal dosimetry, referred to the reliability of the quantitative informations on the kinetic behavior of the radionuclides in the organism and, therefrom, to the accuracy of the doses calculated, is discussed. By comparing the results obtained with different biological models, one finds that the choice of a model is less important than the choice of the value of the appropriate parameters

  12. Study of response of radiation monitors for environmental dose equivalent measurements

    International Nuclear Information System (INIS)

    Souza, Macilene N.; Khoury, H.J.

    2005-01-01

    The environmental dose equivalent H * (10), is the magnitude recommended by ICRU 39 for environmental monitoring in fields of radiation of photons. Most of the equipment used for area monitoring, only quantifies the magnitudes exposure or dose not being designed to this new magnitude. In Brazil, particularly, is not yet regulated the use of H * (10). However, with the revision of the standard 3.01 it will necessary the use of monitors that allow the achievement of measures according to H * (10). The transition for using new magnitudes will be a slow process and the contribution that the laboratories of metrology of ionizing radiation in the country can give is, at first, promote and create the habit of using the unit Sievert (Sv) in the calibration of the instruments, and that is the unit recommended for H * (10). In a second step, the tests for determining the response of the instruments for H * (10) should be made and this is the harder step, taking into account the large number of area monitors around the country. These tests will provide information about the limitations of the instrument to the new magnitude, that is, the range where the instrument will have the best performance in quantification of new magnitude. This paper evaluates the performance for H * (10), with the variation of energy and angle of incidence of radiation, of three of the most used monitors in the country

  13. Comparison of diagnostic protocols and the equivalent effective dose in renal cancer and herniated lumbar disc

    International Nuclear Information System (INIS)

    Ruiz Perez de Villar, M.J.; Vano Carruana, E.; Lanzos Gonbzalez, E.; Perez Torrubia, A.

    1994-01-01

    Renal cancer (RC) and herniated lumbar disc (HLD) were the two pathologies selected for the study of the diagnostic protocols applied in different centers to determine how their variability is reflected in the effective equivalent dose (EED) and establish the optimal radiological protocol for diagnostic purposes, while using the lowest possible dose. On the basis of 222 case histories, it was observed that the EED resulting from the diagnosis of HLD can vary as much as a factor of 3(6.2-18.9 mSv). Likewise, the EED related to the diagnosis of RC can be modified by a factor of 1.5(32.6-48.3 mSv), depending on the diagnostic protocol employed. It can be considered that the optimal protocol to reach a diagnosis of HLD includes chest x-ray, lumbar spine x-ray and lumbar CT scan, while that required for the diagnosis of RC involves chest x-ray, IVU, abdominal CT scan and digital subtraction angiography. The optimization of the study protocols-especially the reduction of the number of exposures, modernization and quality control of the equipment, among other aspects, can reduce the EED by a factor of 2. (Author)

  14. Optimal use of β-blockers in high-risk hypertension: A guide to dosing equivalence

    Directory of Open Access Journals (Sweden)

    Janet B McGill

    2010-05-01

    Full Text Available Janet B McGillDepartment of Medicine, Washington University School of Medicine, St. Louis, Missouri, USAAbstract: Hypertension is the number one diagnosis made by primary care physicians, placing them in a unique position to prescribe the antihypertensive agent best suited to the individual patient. In individuals with diabetes mellitus, blood pressure (BP levels > 130/80 mmHg confer an even higher risk for cardiovascular and renal disease, and these patients will benefit from aggressive antihypertensive treatment using a combination of agents. β‑blockers are playing an increasingly important role in the management of hypertension in high-risk patients. β‑blockers are a heterogeneous class of agents, and this review presents the differences between β‑blockers and provides evidence-based protocols to assist in understanding dose equivalence in the selection of an optimal regimen in patients with complex needs. The clinical benefits provided by β‑blockers are only effective if patients adhere to medication treatment long term. β‑blockers with proven efficacy, once-daily dosing, and lower side effect profiles may become instrumental in the treatment of hypertensive diabetic and nondiabetic patients.Keywords: antihypertensive, blood pressure, atenolol, carvedilol, labetalol, metoprolol, nebivolol

  15. Theoretical considerations for SRAM total-dose hardening

    International Nuclear Information System (INIS)

    Francis, P.; Flandre, D.; Colinge, J.P.

    1995-01-01

    The theoretical hardness against total dose of the six-transistor SRAM cell is investigated in detail. An explicit analytical expression of the maximum tolerable threshold voltage shift is derived for two cross-coupled inverters. A numerical method is used to explore the hardness of the read and write operations. Both N- and P-channel access transistors designs are considered and their respective advantages are compared. The study points out that the radiation hardness mainly relies on the technology. Results obtained with the very robust Gate-All-Around process are finally presented

  16. Investigation of real tissue water equivalent path lengths using an efficient dose extinction method

    Science.gov (United States)

    Zhang, Rongxiao; Baer, Esther; Jee, Kyung-Wook; Sharp, Gregory C.; Flanz, Jay; Lu, Hsiao-Ming

    2017-07-01

    For proton therapy, an accurate conversion of CT HU to relative stopping power (RSP) is essential. Validation of the conversion based on real tissue samples is more direct than the current practice solely based on tissue substitutes and can potentially address variations over the population. Based on a novel dose extinction method, we measured water equivalent path lengths (WEPL) on animal tissue samples to evaluate the accuracy of CT HU to RSP conversion and potential variations over a population. A broad proton beam delivered a spread out Bragg peak to the samples sandwiched between a water tank and a 2D ion-chamber detector. WEPLs of the samples were determined from the transmission dose profiles measured as a function of the water level in the tank. Tissue substitute inserts and Lucite blocks with known WEPLs were used to validate the accuracy. A large number of real tissue samples were measured. Variations of WEPL over different batches of tissue samples were also investigated. The measured WEPLs were compared with those computed from CT scans with the Stoichiometric calibration method. WEPLs were determined within  ±0.5% percentage deviation (% std/mean) and  ±0.5% error for most of the tissue surrogate inserts and the calibration blocks. For biological tissue samples, percentage deviations were within  ±0.3%. No considerable difference (extinction measurement took around 5 min to produce ~1000 WEPL values to be compared with calculations. This dose extinction system measures WEPL efficiently and accurately, which allows the validation of CT HU to RSP conversions based on the WEPL measured for a large number of samples and real tissues.

  17. Eye lens dose correlations with personal dose equivalent and patient exposure in paediatric interventional cardiology performed with a fluoroscopic biplane system.

    Science.gov (United States)

    Alejo, L; Koren, C; Corredoira, E; Sánchez, F; Bayón, J; Serrada, A; Guibelalde, E

    2017-04-01

    To analyse the correlations between the eye lens dose estimates performed with dosimeters placed next to the eyes of paediatric interventional cardiologists working with a biplane system, the personal dose equivalent measured on the thorax and the patient dose. The eye lens dose was estimated in terms of H p (0.07) on a monthly basis, placing optically stimulated luminescence dosimeters (OSLDs) on goggles. The H p (0.07) personal dose equivalent was measured over aprons with whole-body OSLDs. Data on patient dose as recorded by the kerma-area product (P KA ) were collected using an automatic dose management system. The 2 paediatric cardiologists working in the facility were involved in the study, and 222 interventions in a 1-year period were evaluated. The ceiling-suspended screen was often disregarded during interventions. The annual eye lens doses estimated on goggles were 4.13±0.93 and 4.98±1.28mSv. Over the aprons, the doses obtained were 10.83±0.99 and 11.97±1.44mSv. The correlation between the goggles and the apron dose was R 2 =0.89, with a ratio of 0.38. The correlation with the patient dose was R 2 =0.40, with a ratio of 1.79μSvGy -1 cm -2 . The dose per procedure obtained over the aprons was 102±16μSv, and on goggles 40±9μSv. The eye lens dose normalized to P KA was 2.21±0.58μSvGy -1 cm -2 . Measurements of personal dose equivalent over the paediatric cardiologist's apron are useful to estimate eye lens dose levels if no radiation protection devices are typically used. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  18. Determination of the dose equivalent Hp(0.07) in hands of occupationally exposed personnel in the practice of proton emission tomography (PET/CT)

    International Nuclear Information System (INIS)

    Lea, D.; Ruiz, N.; Esteves, L.

    2006-01-01

    In Venezuela recently it was implanted the Positron Emission Tomography technique (PET) with the perspective of implanting it at national level. Even when in our country practices it of nuclear medicine it exists from early of 70, there is not experience in the determination of the occupational doses by exposure to the external radiation in hands. By this reason, a concern exists in the workers of the centers of nuclear medicine where it is practiced the Positron Emission Tomography technique. In absence of the TLD dosimetry to measure dose in hands in our country, measurements of the dose equivalent of the workers of the PET national reference center were made, using a detector of hands type diode. It was determined the dose in hands in terms of dose equivalent Hp(0.07) in two work positions, that is: the corresponding to the transfer of the receiving vial of ( 18 F) FDG to the shield, quality control and uni doses division. The second work position corresponds the person in charge of administering, via intravenous, the ( 18 F) FDG. In this work it realizes the dose equivalent in hands Hp(0.07) measures in each one of the work positions before described by daily production. The informed doses correspond to a total average produced activity of 20.4 GBq (550 mCi). The results of the measurements in terms of dose equivalent in hands Hp(0.07) correspond to 2.1 ± 20% mSv in the work position of division and 0.4 ± 10% mSv in the position of injection of the radioactive material. At short term this foreseen until 4 productions per week, what means an annual dose equivalent Hp(0.07) in hands of 400 mSv approximately, without taking into account abnormal situations as its are spills of the ( 18 F) FDG in the work place. This work is the starting point so that the regulatory authority settles down, in Venezuela, dose restrictions in the PET practices and implant, in the centers of nuclear medicine, an optimization politics of this practice in conformity with the ALARA

  19. A method, using ICRP 26 weighting factors, to determine effective dose equivalent due to nonuniform external exposures

    International Nuclear Information System (INIS)

    Dyer, S.G.

    1993-01-01

    Westinghouse Savannah River Company (WSRC) has recently implemented a methodology and supporting procedures to calculate effective dose equivalent for external exposures. The calculations are based on ICRP 26 methodology and are used to evaluate exposures when multibadging is used. The methodology is based upon the concept of open-quotes whole bodyclose quotes compartmentalization (i.e., the whole body is separated into seven specific regions of radiological concern and weighted accordingly). The highest dose measured in each compartment is used to determine the weighted dose to that compartment. Benefits of determining effective dose equivalent are compliance with DOE Orders, more accurate dose assessments, and the opportunity for improved worker protection through new ALARA opportunities

  20. Determination of the dose equivalents due to neutrons produced during therapeutic irradiations with a Varian CLINAC 2500

    International Nuclear Information System (INIS)

    Carrillo, Ricardo E.

    1991-01-01

    This experiment it was designed to quantify that so important it is the dose equivalent deposited by the neutron flow that is generated by photonuclear reactions during therapeutic irradiations with X rays of produced high-energy for an accelerator Varian CLINAC 2500. This accelerator type is routinely used in the Department of Radiotherapy of the Hospital of the University of Wisconsin, E.U. The equivalent dose was measured in diverse towns of the room of irradiations using the activation of thin sheets of gold put in the center of plastic recipients full with water. In general, the recipients were 1 m or more than the floor and at distances still bigger than the walls. The irradiations were made using photons with the highest energy that you can select with this team - 24 MeV. The due equivalent dose to neutrons taken place here by the energy photons used they were measured and reported. (author)

  1. Secondary radiation dose during high-energy total body irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Janiszewska, M.; Raczkowski, M. [Lower Silesian Oncology Center, Medical Physics Department, Wroclaw (Poland); Polaczek-Grelik, K. [University of Silesia, Medical Physics Department, Katowice (Poland); Szafron, B.; Konefal, A.; Zipper, W. [University of Silesia, Department of Nuclear Physics and Its Applications, Katowice (Poland)

    2014-05-15

    The goal of this work was to assess the additional dose from secondary neutrons and γ-rays generated during total body irradiation (TBI) using a medical linac X-ray beam. Nuclear reactions that occur in the accelerator construction during emission of high-energy beams in teleradiotherapy are the source of secondary radiation. Induced activity is dependent on the half-lives of the generated radionuclides, whereas neutron flux accompanies the treatment process only. The TBI procedure using a 18 MV beam (Clinac 2100) was considered. Lateral and anterior-posterior/posterior-anterior fractions were investigated during delivery of 2 Gy of therapeutic dose. Neutron and photon flux densities were measured using neutron activation analysis (NAA) and semiconductor spectrometry. The secondary dose was estimated applying the fluence-to-dose conversion coefficients. The main contribution to the secondary dose is associated with fast neutrons. The main sources of γ-radiation are the following: {sup 56}Mn in the stainless steel and {sup 187}W of the collimation system as well as positron emitters, activated via (n,γ) and (γ,n) processes, respectively. In addition to 12 Gy of therapeutic dose, the patient could receive 57.43 mSv in the studied conditions, including 4.63 μSv from activated radionuclides. Neutron dose is mainly influenced by the time of beam emission. However, it is moderated by long source-surface distances (SSD) and application of plexiglass plates covering the patient body during treatment. Secondary radiation gives the whole body a dose, which should be taken into consideration especially when one fraction of irradiation does not cover the whole body at once. (orig.) [German] Die zusaetzliche Dosis durch sekundaere Neutronen- und γ-Strahlung waehrend der Ganzkoerperbestrahlung mit Roentgenstrahlung aus medizinischen Linearbeschleunigern wurde abgeschaetzt. Bei der Emission hochenergetischer Strahlen zur Teletherapie finden hauptsaechlich im Beschleuniger

  2. Total-dose radiation effects data for semiconductor devices. 1985 supplement. Volume 2, part A

    International Nuclear Information System (INIS)

    Martin, K.E.; Gauthier, M.K.; Coss, J.R.; Dantas, A.R.V.; Price, W.E.

    1986-05-01

    Steady-state, total-dose radiation test data, are provided in graphic format for use by electronic designers and other personnel using semiconductor devices in a radiation environment. The data were generated by JPL for various NASA space programs. This volume provides data on integrated circuits. The data are presented in graphic, tabular, and/or narrative format, depending on the complexity of the integrated circuit. Most tests were done using the JPL or Boeing electron accelerator (Dynamitron) which provides a steady-state 2.5 MeV electron beam. However, some radiation exposures were made with a cobalt-60 gamma ray source, the results of which should be regarded as only an approximate measure of the radiation damage that would be incurred by an equivalent electron dose

  3. Total Risk Management for Low Dose Radiation Exposures

    International Nuclear Information System (INIS)

    Simic, Z.; Mikulicic, V.; Sterc, D.

    2012-01-01

    health. This view is supported with numerous evidences, and explained with beneficial effects from the increased activity of immune system activated with small radiation exposures. Finally, theory in between is that small doses are less than linearly proportionally harmful and that they are presenting a much smaller risks than according to the LNT. This view is derived from the use of different evidences. Difficulties to find one single theory about effects of small radiation doses are related to existence of huge variability and uncertainty in the evidence data. This is very hard experimental and theoretical problem. It will require lots of additional research to reduce these uncertainties and find final theory. This might be too late for the number of people affected in different ways with current single most conservative LNT approach. The problem with the conservative LNT regulatory approach is resulting in enormous additional costs of nuclear energy and medical applications. Which is reasonable and acceptable during the regular operation when source is high and concentrated. But, this becomes unreasonable huge economic burden after accidents and for cleanups with nuclear facilities. Similar problem arises with restriction of medical examinations and treatments based on over conservative risk estimate. Special circumstances are with evacuated people from contaminated areas where they are on the one side saved from small radiation exposures, and on the other side exposed to years of life away from their home and with numerous direct and indirect additional risks (i.e., stress, social problems, etc.). It seems reasonable that some alternative (total) risk management approach might be much more suitable for this situation. Evacuation of people from contaminated area with small doses sources should not be done when that induces larger risks from even what is expected from radiation based on LNT. Similar total risk management could be also applied for with medical

  4. Neutron dose equivalent next to the target shield of a neutron therapy facility using an LET counter

    International Nuclear Information System (INIS)

    Stinchcomb, T.G.; Kuchnir, F.T.

    1981-01-01

    The use of a spherical tissue-equivalent proportional counter for measurements of the lineal energy (y) and derivations of the linear energy transfer (LET) for fast neutrons has the advantage of giving distributions of dose and dose equivalent as functions of either LET or y. A measurement next to the target shielding of the neutron therapy facility at the University of Chicago Hospitals and Clinics (UCHC) is described, and the data processing is outlined. The distributions are presented and compared to those from measurements in the neutron beam. The average quality factors are presented

  5. SOILD: A computer model for calculating the effective dose equivalent from external exposure to distributed gamma sources in soil

    International Nuclear Information System (INIS)

    Chen, S.Y.; LePoire, D.; Yu, C.; Schafetz, S.; Mehta, P.

    1991-01-01

    The SOLID computer model was developed for calculating the effective dose equivalent from external exposure to distributed gamma sources in soil. It is designed to assess external doses under various exposure scenarios that may be encountered in environmental restoration programs. The models four major functional features address (1) dose versus source depth in soil, (2) shielding of clean cover soil, (3) area of contamination, and (4) nonuniform distribution of sources. The model is also capable of adjusting doses when there are variations in soil densities for both source and cover soils. The model is supported by a data base of approximately 500 radionuclides. 4 refs

  6. A survey to establish ambient and personal dose equivalent standards in the X- and γ-ray field

    International Nuclear Information System (INIS)

    Morishita, Yuichiro

    2007-01-01

    National Institute of Advanced Industrial Science and Technology (AIST) develops and supplies standards of ionizing radiations as national primary references. Fundamental matters to establish ambient and personal dose equivalent standards of X- and γ-radiation are reviewed in this report. First, units of radiation dose in measurements of X- and γ-radiation are surveyed. Next, the present status of the preparation of X-radiation standard is explained, and finally the relationship between the physical dose and the radiation-protection dose is described. (J.P.N.)

  7. Equivalence of Gyn GEC-ESTRO guidelines for image guided cervical brachytherapy with EUD-based dose prescription

    International Nuclear Information System (INIS)

    Shaw, William; Rae, William ID; Alber, Markus L

    2013-01-01

    To establish a generalized equivalent uniform dose (gEUD) -based prescription method for Image Guided Brachytherapy (IGBT) that reproduces the Gyn GEC-ESTRO WG (GGE) prescription for cervix carcinoma patients on CT images with limited soft tissue resolution. The equivalence of two IGBT planning approaches was investigated in 20 patients who received external beam radiotherapy (EBT) and 5 concomitant high dose rate IGBT treatments. The GGE planning strategy based on dose to the most exposed 2 cm 3 (D2cc) was used to derive criteria for the gEUD-based planning of the bladder and rectum. The safety of gEUD constraints in terms of GGE criteria was tested by maximizing dose to the gEUD constraints for individual fractions. The gEUD constraints of 3.55 Gy for the rectum and 5.19 Gy for the bladder were derived. Rectum and bladder gEUD-maximized plans resulted in D2cc averages very similar to the initial GGE criteria. Average D2ccs and EUDs from the full treatment course were comparable for the two techniques within both sets of normal tissue constraints. The same was found for the tumor doses. The derived gEUD criteria for normal organs result in GGE-equivalent IGBT treatment plans. The gEUD-based planning considers the entire dose distribution of organs in contrast to a single dose-volume-histogram point

  8. Effective dose equivalent to breast fed infants due to artificial and natural radioactivity

    International Nuclear Information System (INIS)

    Campos Venuti, G.; Felici, F.; Grisanti, A.; Grisanti, G.; Risica, S.; Simula, S.

    1988-01-01

    After the Chernobyl accident, the Italian National Institute of Health (ISS), with the collaboration of the Epidemiological Unit of Latium District, started a research devoted to the study of the radioactive contamination of human milk in Latium. The motivation is three-fold, namely: to measure the contamination of a food product utilised for infants in order to assess the corresponding dose to breast-fed infants; to clarify any possible correlations between radioactive levels in human milk and those in the total body; to correlate the levels in human milk with those in the maternal diet

  9. Development of prediction system of dose equivalent rate around a package

    International Nuclear Information System (INIS)

    Nakao, Tetsuya; Minakami, Goro; Taniuchi, Hiroaki; Fujisawa, Kyosuke; Matsukawa, Yukio; Mimura, Shigemi.

    1993-01-01

    A new system is developed that can evaluate the radiation strength of the source in detail, on the basis of the irradiation history of each fuel assembly in a TN-12 or 12A package, and then to determine the best way to organize the assemblies in the package so that the dose equivalent rate around a package is kept to a minimum. This system for minimizing the danger of radiation for operators involved in packaging and transporting spent fuel was developed for personal computer use, to offer ease in handling and high adaptability. The data input is done in dialogue style, with a variety of check functions. In checks to verify the accuracy of the shielding calculation data in this system by comparing the calculated values with several kinds of measured values, the reliability of this new system has been shown to be very high. Since its high utility has been recognized, the system has already been put into use in actual transportation situations. (J.P.N.)

  10. A computer program to calculate the committed dose equivalent after the inhalation of radioactivity

    International Nuclear Information System (INIS)

    Van der Woude, S.

    1989-03-01

    A growing number of people are, as part of their occupation, at risk of being exposed to radiation originating from sources inside their bodies. The quantification of this exposure is an important part of health physics. The International Commission on Radiological Protection (ICRP) developed a first-order kinetics compartmental model to determine the transport of radioactive material through the human body. The model and the parameters involved in its use, are discussed. A versatile computer program was developed to do the following after the in vivo measurement of either the organ- or whole-body activity: calculate the original amount of radioactive material which was inhaled (intake) by employing the ICRP compartmental model of the human body; compare this intake to calculated reference levels and state any action to be taken for the case under consideration; calculate the committed dose equivalent resulting from this intake. In the execution of the above-mentioned calculations, the computer program makes provision for different aerosol particle sizes and the effect of previous intakes. Model parameters can easily be changed to take the effects of, for instance, medical intervention into account. The computer program and the organization of the data in the input files are such that the computer program can be applied to any first-order kinetics compartmental model. The computer program can also conveniently be used for research on problems related to the application of the ICRP model. 18 refs., 25 figs., 5 tabs

  11. Regional inter-comparison of measurements of personal dose equivalent Hp(10) using photon beams

    International Nuclear Information System (INIS)

    Bero, M.; Zahili, M.; Kharita, M.H.

    2012-11-01

    The overall objective is to verify performance and to improve the Individual Monitoring services (IMS). This can be achieved with the following specific objectives of the intercomparison:1. To assess the capabilities of the dosimetry services to measure the quantity H p (10) in photon (gamma and x-ray) fields. 2. To help the participating Member States in achieving sufficiently accurate dosimetry service and, if necessary, 3. To provide guidelines for improvements and not simply a test of the performance of the existing dosimetric service. Actually a significant improvement has been achieved by the participants in the accuracy of evaluating personal dose equivalent from 15% in the first phase to 5% in the second phase. Some participants used the results of the inter-comparison to verify the calibration and to improve their dosimetric procedures, but from the results it was clear that some participants need to a technical support especially in calibration and using their measuring system in the field of personal monitoring. The conclusion contains advises, solutions, propositions and evaluation for all situations which noticed during the intercomparison. (authors)

  12. Mapping of isoexposure curves for evaluation of equivalent environmental doses for radiodiagnostic mobile equipment

    International Nuclear Information System (INIS)

    Bacelar, Alexandre; Andrade, Jose Rodrigo Mendes; Fischer, Andreia Caroline Fischer da Silveira; Accurso, Andre; Hoff, Gabriela

    2011-01-01

    This paper generates iso exposure curves in areas where the mobile radiodiagnostic equipment are used for evaluation of iso kerma map and the environment equivalent dose (H * (d)). It was used a Shimadzu mobile equipment and two Siemens, with non anthropomorphic scatter. The exposure was measured in a mesh of 4.20 x 4.20 square meter in steps of 30 cm, at half height from the scatterer. The calculation of H * (d) were estimated for a worker present in all the procedures in a period of 11 months, being considered 3.55 m As/examination and 44.5 procedures/month (adult UTI) and 3.16 m As/examination and 20.1 procedure/month (pediatric UTI), and 3.16 m As/examination and 20.1 procedure/month (pediatric UTI). It was observed that there exist points where the H * (d) was over the limit established for the free area inside the radius of 30 cm from the central beam of radiation in the case of pediatric UTI and 60 cm for adult UTI. The points localized 2.1 m from the center presented values lower than 25% of those limit

  13. Analytical models for total dose ionization effects in MOS devices.

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Phillip Montgomery; Bogdan, Carolyn W.

    2008-08-01

    MOS devices are susceptible to damage by ionizing radiation due to charge buildup in gate, field and SOI buried oxides. Under positive bias holes created in the gate oxide will transport to the Si / SiO{sub 2} interface creating oxide-trapped charge. As a result of hole transport and trapping, hydrogen is liberated in the oxide which can create interface-trapped charge. The trapped charge will affect the threshold voltage and degrade the channel mobility. Neutralization of oxidetrapped charge by electron tunneling from the silicon and by thermal emission can take place over long periods of time. Neutralization of interface-trapped charge is not observed at room temperature. Analytical models are developed that account for the principal effects of total dose in MOS devices under different gate bias. The intent is to obtain closed-form solutions that can be used in circuit simulation. Expressions are derived for the aging effects of very low dose rate radiation over long time periods.

  14. Significance and principles of the calculation of the effective dose equivalent for radiological protection of personnel and patients

    International Nuclear Information System (INIS)

    Drexler, G.; Williams, G.

    1985-01-01

    The application of the effective dose equivalent, Hsub(E), concept for radiological protection assessments of occupationally exposed persons is justifiable by the practicability thus achieved with regard to the limiting principles. Nevertheless, it would be proper logic to further use as the basic limiting quantity the real physical dose equivalent of homogeneous whole-body exposure, and for inhomogeneous whole-body irradiation the Hsub(E) value, calculated by means of the concept of the effective dose equivalent. For then the required concepts, models and calculations would not be connected with a basic radiation protection quantity. Application of the effective dose equivalent for radiation protection assessments for patients is misleading and is not practical with regard to assessing an individual or collective radiation risk of patients. The quantity of expected harm would be better suited to this purpose. There is no need to express the radiation risk by a dose quantity, which means careless handling of good information. (orig./WU) [de

  15. Assessment of physician and patient (child and adult) equivalent doses during renal angiography by Monte Carlo method

    International Nuclear Information System (INIS)

    Karimian, A.; Nikparvar, B.; Jabbari, I.

    2014-01-01

    Renal angiography is one of the medical imaging methods in which patient and physician receive high equivalent doses due to long duration of fluoroscopy. In this research, equivalent doses of some radiosensitive tissues of patient (adult and child) and physician during renal angiography have been calculated by using adult and child Oak Ridge National Laboratory phantoms and Monte Carlo method (MCNPX). The results showed, in angiography of right kidney in a child and adult patient, that gall bladder with the amounts of 2.32 and 0.35 mSv, respectively, has received the most equivalent dose. About the physician, left hand, left eye and thymus absorbed the most amounts of doses, means 0.020 mSv. In addition, equivalent doses of the physician's lens eye, thyroid and knees were 0.023, 0.007 and 7.9 - 4 mSv, respectively. Although these values are less than the reported thresholds by ICRP 103, it should be noted that these amounts are related to one examination. (authors)

  16. Total Dose Effects on Bipolar Integrated Circuits at Low Temperature

    Science.gov (United States)

    Johnston, A. H.; Swimm, R. T.; Thorbourn, D. O.

    2012-01-01

    Total dose damage in bipolar integrated circuits is investigated at low temperature, along with the temperature dependence of the electrical parameters of internal transistors. Bandgap narrowing causes the gain of npn transistors to decrease far more at low temperature compared to pnp transistors, due to the large difference in emitter doping concentration. When irradiations are done at temperatures of -140 deg C, no damage occurs until devices are warmed to temperatures above -50 deg C. After warm-up, subsequent cooling shows that damage is then present at low temperature. This can be explained by the very strong temperature dependence of dispersive transport in the continuous-time-random-walk model for hole transport. For linear integrated circuits, low temperature operation is affected by the strong temperature dependence of npn transistors along with the higher sensitivity of lateral and substrate pnp transistors to radiation damage.

  17. Simulation and experimental study of an indigenously designed and constructed THGEM-based microdosimeter for dose-equivalent measurement

    International Nuclear Information System (INIS)

    Moslehi, A.; Raisali, G.; Lamehi, M.

    2016-01-01

    Most of the GEM/THGEM-based microdosimetric detectors presented in the literature simulate 2 μm of tissue which results in a flat neutron dose-equivalent response in the MeV region. The objective of this work was to introduce a neutron microdosimeter with a more extended flat response. In this regard, a THGEM-based microdosimeter with plexiglas walls, simulating 1 μm of tissue was designed and constructed. Its performance was investigated by both simulation and experimentation to determine the microdosimetric quantity of “lineal energy”. In the simulation study, lineal energy distribution, mean quality factor and dose-equivalent response of the microdosimeter for eleven neutron energies from 10 keV to 14 MeV, along with the energy spectrum of "2"4"1Am-Be neutrons, were calculated by the Geant4 simulation toolkit. Obtained lineal energy distributions were compatible with the distributions determined by a Rossi counter. Also, the mean quality factors agreed well with the values reported by the ICRU report 40 which confirmed tissue equivalent behavior of the microdosimeter. They were different from the effective quality factor values within 15% between 20 keV and 14 MeV. This led to a flat dose-equivalent response with 20% difference from a median value of 0.82 in the above energy range which was an improvement compared with other THGEM-based detectors, simulating 2 μm of tissue. In spite of the satisfactory determination of the dose-equivalent, the microdosimeter had low detection sensitivity. In the experimental study, the measured lineal energy distribution of "2"4"1Am-Be neutrons was in agreement with the simulated distribution. Further, the measured mean quality factor and dose-equivalent differed by 1.5% and 3.5%, respectively, from the calculated values. Finally, it could be concluded that the investigated microdosimeter reliably determined the desired dose-equivalent value of each neutron field with every energy spectrum lying between 20 keV and

  18. The study of equivalent dose of uranium in long bean (V. U. Sesquipedalis) and the effect on human

    International Nuclear Information System (INIS)

    Rashid, Nur Shahidah Abdul; Yoshandi, Tengku Mohammad; Majid, Sukiman Sarmania Amran Ab.; Mohamed, Faizal; Siong, Khoo Kok

    2016-01-01

    In the case of accidental release of Uranium-238 ( 238 U) radionuclides in a nuclear facility or in the environment, internal contamination by either acute or chronic exposure has the potential to induce both radiological and chemical toxic effects. A study was conducted to estimate the 238 U radionuclide concentration in the long beans using Induced Coupled Mass Plasma-Spectrometry (ICP-MS). 238 U radionuclide is a naturally occurring radioactive material that can be found in soil and can be transferred to the long bean (Vigna unguiculata subsp. Sesquapedalis) directly or indirectly via water or air. Kidney and liver are the major sites of deposition of 238 U radionuclide. The obtained dose exposed in the liver and kidney is used to assess the safety level for public intake of 238 U radionuclide from the consumption of long beans. The concentration of 238 U radionuclide measured in long bean samples was 0.0226 ± 0.0009 mg/kg. Total activity of 238 U radionuclide was 0.0044 ± 0.0002 Bq/day with the daily intake of 0.3545 ± 0.0143 µg/day and the annual committed effective dose due to ingestion of 238 U radionuclide in long beans was 0.2230 ± 0.0087 µSv/year. The committed equivalent dose of 238 U radionuclide from the assessment in the liver and kidney are 0.4198 ± 0.0165 nSv and 10.9335 ± 0.4288 nSv. The risk of cancer of 238 U radionuclide was determined to be (86.0466 ± 3.3748) × 10-9. Thus, the results concluded that 238 U radionuclide in local long beans was in the permitted level and safe to consume without posing any significant radiological threat to population

  19. The study of equivalent dose of uranium in long bean (V. U. Sesquipedalis) and the effect on human

    Energy Technology Data Exchange (ETDEWEB)

    Rashid, Nur Shahidah Abdul; Yoshandi, Tengku Mohammad; Majid, Sukiman Sarmania Amran Ab.; Mohamed, Faizal; Siong, Khoo Kok, E-mail: khoo@ukm.edu.my [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor (Malaysia)

    2016-01-22

    In the case of accidental release of Uranium-238 ({sup 238}U) radionuclides in a nuclear facility or in the environment, internal contamination by either acute or chronic exposure has the potential to induce both radiological and chemical toxic effects. A study was conducted to estimate the {sup 238}U radionuclide concentration in the long beans using Induced Coupled Mass Plasma-Spectrometry (ICP-MS). {sup 238}U radionuclide is a naturally occurring radioactive material that can be found in soil and can be transferred to the long bean (Vigna unguiculata subsp. Sesquapedalis) directly or indirectly via water or air. Kidney and liver are the major sites of deposition of {sup 238}U radionuclide. The obtained dose exposed in the liver and kidney is used to assess the safety level for public intake of {sup 238}U radionuclide from the consumption of long beans. The concentration of {sup 238}U radionuclide measured in long bean samples was 0.0226 ± 0.0009 mg/kg. Total activity of {sup 238}U radionuclide was 0.0044 ± 0.0002 Bq/day with the daily intake of 0.3545 ± 0.0143 µg/day and the annual committed effective dose due to ingestion of {sup 238}U radionuclide in long beans was 0.2230 ± 0.0087 µSv/year. The committed equivalent dose of {sup 238}U radionuclide from the assessment in the liver and kidney are 0.4198 ± 0.0165 nSv and 10.9335 ± 0.4288 nSv. The risk of cancer of {sup 238}U radionuclide was determined to be (86.0466 ± 3.3748) × 10-9. Thus, the results concluded that {sup 238}U radionuclide in local long beans was in the permitted level and safe to consume without posing any significant radiological threat to population.

  20. The study of equivalent dose of uranium in long bean (V. U. Sesquipedalis) and the effect on human

    Science.gov (United States)

    Rashid, Nur Shahidah Abdul; Yoshandi, Tengku Mohammad; Majid, Sukiman Sarmania Amran Ab.; Mohamed, Faizal; Siong, Khoo Kok

    2016-01-01

    In the case of accidental release of Uranium-238 (238U) radionuclides in a nuclear facility or in the environment, internal contamination by either acute or chronic exposure has the potential to induce both radiological and chemical toxic effects. A study was conducted to estimate the 238U radionuclide concentration in the long beans using Induced Coupled Mass Plasma-Spectrometry (ICP-MS). 238U radionuclide is a naturally occurring radioactive material that can be found in soil and can be transferred to the long bean (Vigna unguiculata subsp. Sesquapedalis) directly or indirectly via water or air. Kidney and liver are the major sites of deposition of 238U radionuclide. The obtained dose exposed in the liver and kidney is used to assess the safety level for public intake of 238U radionuclide from the consumption of long beans. The concentration of 238U radionuclide measured in long bean samples was 0.0226 ± 0.0009 mg/kg. Total activity of 238U radionuclide was 0.0044 ± 0.0002 Bq/day with the daily intake of 0.3545 ± 0.0143 µg/day and the annual committed effective dose due to ingestion of 238U radionuclide in long beans was 0.2230 ± 0.0087 µSv/year. The committed equivalent dose of 238U radionuclide from the assessment in the liver and kidney are 0.4198 ± 0.0165 nSv and 10.9335 ± 0.4288 nSv. The risk of cancer of 238U radionuclide was determined to be (86.0466 ± 3.3748) × 10-9. Thus, the results concluded that 238U radionuclide in local long beans was in the permitted level and safe to consume without posing any significant radiological threat to population.

  1. Monte Carlo simulations of the secondary neutron ambient and effective dose equivalent rates from surface to suborbital altitudes and low Earth orbit.

    Science.gov (United States)

    El-Jaby, Samy; Richardson, Richard B

    2015-07-01

    Occupational exposures from ionizing radiation are currently regulated for airline travel (Earth orbit (∼300-400 km). Aircrew typically receive between 1 and 6 mSv of occupational dose annually, while aboard the International Space Station, the area radiation dose equivalent measured over just 168 days was 106 mSv at solar minimum conditions. It is anticipated that space tourism vehicles will reach suborbital altitudes of approximately 100 km and, therefore, the annual occupational dose to flight crew during repeated transits is expected to fall somewhere between those observed for aircrew and astronauts. Unfortunately, measurements of the radiation environment at the high altitudes reached by suborbital vehicles are sparse, and modelling efforts have been similarly limited. In this paper, preliminary MCNPX radiation transport code simulations are developed of the secondary neutron flux profile in air from surface altitudes up to low Earth orbit at solar minimum conditions and excluding the effects of spacecraft shielding. These secondary neutrons are produced by galactic cosmic radiation interacting with Earth's atmosphere and are among the sources of radiation that can pose a health risk. Associated estimates of the operational neutron ambient dose equivalent, used for radiation protection purposes, and the neutron effective dose equivalent that is typically used for estimates of stochastic health risks, are provided in air. Simulations show that the neutron radiation dose rates received at suborbital altitudes are comparable to those experienced by aircrew flying at 7 to 14 km. We also show that the total neutron dose rate tails off beyond the Pfotzer maximum on ascension from surface up to low Earth orbit. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  2. Intercomparison of personnel dosimetry for thermal neutron dose equivalent in neutron and gamma-ray mixed fields

    International Nuclear Information System (INIS)

    Ogawa, Yoshihiro

    1985-01-01

    In order to consider the problems concerned with personnel dosimetry using film badges and TLDs, an intercomparison of personnel dosimetry, especially dose equivalent responses of personnel dosimeters to thermal neutron, was carried out in five different neutron and gamma-ray mixed fields at KUR and UTR-KINKI from the practical point of view. For the estimation of thermal neutron dose equivalent, it may be concluded that each personnel dosimeter has good performances in the precision, that is, the standard deviations in the measured values by individual dosimeter were within 24 %, and the dose equivalent responses to thermal neutron were almost independent on cadmium ratio and gamma-ray contamination. However, the relative thermal neutron dose equivalent of individual dosimeter normalized to the ICRP recommended value varied considerably and a difference of about 4 times was observed among the dosimeters. From the results obtained, it is suggested that the standardization of calibration factors and procedures is required from the practical point of radiation protection and safety. (author)

  3. Evaluation of equivalent doses in 18F PET/CT using the Monte Carlo method with MCNPX code

    International Nuclear Information System (INIS)

    Belinato, Walmir; Santos, William Souza; Perini, Ana Paula; Neves, Lucio Pereira; Souza, Divanizia N.

    2017-01-01

    The present work used the Monte Carlo method (MMC), specifically the Monte Carlo NParticle - MCNPX, to simulate the interaction of radiation involving photons and particles, such as positrons and electrons, with virtual adult anthropomorphic simulators on PET / CT scans and to determine absorbed and equivalent doses in adult male and female patients

  4. Radon and daughters in cigarette smoke measured with SSNTD and corresponding committed equivalent dose to respiratory tract

    International Nuclear Information System (INIS)

    Misdaq, M.A.; Flata, K.

    2003-01-01

    Uranium ( 238 U) and Thorium ( 232 Th) contents were measured inside various tobacco samples by using a method based on determining detection efficiencies of the CR-39 and LR-115 II solid state nuclear track detector (SSNTD) for the emitted alpha particles. Alpha and beta activities per unit volume, due to radon ( 222 Rn), thoron ( 220 Rn) and their decay products, were evaluated inside cigarette smokes of tobacco samples studied. Annual committed equivalent doses due to short-lived radon decay products from the inhalation of various cigarette smokes were determined in the thoracic and extrathoracic regions of the respiratory tract. Three types of cigarettes made in Morocco of black tobacco show higher annual committed equivalent doses in the extrathoracic and thoracic regions of the respiratory tract than the other studied cigarettes (except one type of cigarettes made in France of yellow tobacco); their corresponding annual committed equivalent dose ratios are larger than 1.8. Measured annual committed equivalent doses ranged from 1.8x10 -9 to 1.10x10 -3 Sv yr -1 in the extrathoracic region and from 1.3x10 -10 to 7.6x10 -6 Sv yr -1 in the thoracic region of the respiratory tract for a smoker consuming 20 cigarettes a day

  5. The distribution of committed dose equivalents to workers exposed to tritium in the luminising industry in the United Kingdom

    International Nuclear Information System (INIS)

    Hipkin, J.

    1977-01-01

    In the United Kingdom tritium has become almost the only radionuclide that is used in luminising. Two distinct methods of luminising are used, one involving the use of tritium gas and the other involving the use of tritium activated luminous paint. All major luminisers have voluntarily taken part in urine monitoring programmes. The analyses have been carried out by the National Radiological Protection Board and estimates of committed dose equivalent have been made from the results. The work presented is an analysis of the committed dose equivalents received by all the individuals monitored in the years 1974, 1975 and 1976. It is shown that doses follow, in general, a lognormal distribution modified only at the high dose end by what must be described as dose management. Further evidence for dose management is seen when the pattern of dose versus time are analysed for selected individuals. It is shown that the maximum permissible dose as recommended by the International Commission on Radiological Protection, is only rarely exceeded. It is also shown that there is a substantial difference in the degree of exposure between workers involved in gaseous tritium luminising and workers using paint luminising. A comparison is made between exposure in gaseous tritium luminising and exposure in another common use of gaseous tritium, ie. the filling of electronic devices with tritium gas. It is shown that exposure is very much less in the electronic device work

  6. Fluence to Effective Dose and Effective Dose Equivalent Conversion Coefficients for Photons from 50 KeV to 10 GeV

    International Nuclear Information System (INIS)

    Ferrari, A.; Pelliccioni, M.; Pillon, M.

    1996-07-01

    Effective dose equivalent and effective dose per unit photon fluence have been calculated by the FLUKA code for various geometrical conditions of irradiation of an anthropomorphic phantom placed in a vacuum. Calculations have been performed for monoenergetic photons of energy ranging from 50 keV to 10 GeV. The agreement with the results of other authors, when existing, is generally very satisfactory

  7. Simulation studies on a prototype ionization chamber for measurement of personal dose equivalent, Hp(10)

    International Nuclear Information System (INIS)

    Cardoso, J.; Oliveira, C.; Carvalho, A.F.

    2005-01-01

    Full text: The Metrological Laboratory of lonizing Radiation and Radioactivity (LMRIR) of Nuclear and Technological Institute (ITN) has designed and constructed a prototype ionization chamber for direct measurement of the personal dose equivalent, H p (10), similar to the developed by the Physikalisch-Technische Bundesanstalt (PTB) and now commercialized by PTW. Tests already performed had shown that the behaviour of this chamber is very close to the PTB chamber, namely the energy dependence for the x-ray radiation qualities of the ISO 4037-1 narrow series N-30, N-40, N-60, N-80, N-100 and N-120 and also for gamma radiation of 137 Cs and 60 Co. However, the results obtained also show a high dependence on the energy for some incident radiation angles and a low magnitude of the electrical response of the ionization chamber. In order to try to optimize the performance of the chamber, namely to decrease the energy dependence and to improve the magnitude of the electrical response of the ionization chamber, the LMRIR initiated numerical simulation of this ionization chamber using a Monte-Carlo method for simulation of radiation transport using, in a first step, the MCNPX code. So, simulation studies of some physical parameters are been performed in order to optimize the response of the ionization chamber, namely the diameter of the central electrode of the ionization chamber, the thickness of the front wall of the ionization chamber, among others. Preliminary results show that probably the actual geometry of the ionization chamber is not yet the optimized configuration. The simulation study will carry on in order to find the optimum geometry. (author)

  8. Total-dose hardness assurance for low earth orbit

    International Nuclear Information System (INIS)

    Maurer, R.H.; Suter, J.J.

    1987-01-01

    The Low Earth Orbit radiation environment has two significant characteristics that make laboratory simulation exposures difficult: (1) a low dose rate and (2) many cycles of low dose accumulation followed by dose-free annealing. Hardness assurance considerations for this environment are discussed and related to data from the testing of Advanced Low Power Schottky and High-speed CMOS devices

  9. Out-of-Field Dose Equivalents Delivered by Passively Scattered Therapeutic Proton Beams for Clinically Relevant Field Configurations

    International Nuclear Information System (INIS)

    Wroe, Andrew; Clasie, Ben; Kooy, Hanne; Flanz, Jay; Schulte, Reinhard; Rosenfeld, Anatoly

    2009-01-01

    Purpose: Microdosimetric measurements were performed at Massachusetts General Hospital, Boston, MA, to assess the dose equivalent external to passively delivered proton fields for various clinical treatment scenarios. Methods and Materials: Treatment fields evaluated included a prostate cancer field, cranial and spinal medulloblastoma fields, ocular melanoma field, and a field for an intracranial stereotactic treatment. Measurements were completed with patient-specific configurations of clinically relevant treatment settings using a silicon-on-insulator microdosimeter placed on the surface of and at various depths within a homogeneous Lucite phantom. The dose equivalent and average quality factor were assessed as a function of both lateral displacement from the treatment field edge and distance downstream of the beam's distal edge. Results: Dose-equivalent value range was 8.3-0.3 mSv/Gy (2.5-60-cm lateral displacement) for a typical prostate cancer field, 10.8-0.58 mSv/Gy (2.5-40-cm lateral displacement) for the cranial medulloblastoma field, 2.5-0.58 mSv/Gy (5-20-cm lateral displacement) for the spinal medulloblastoma field, and 0.5-0.08 mSv/Gy (2.5-10-cm lateral displacement) for the ocular melanoma field. Measurements of external field dose equivalent for the stereotactic field case showed differences as high as 50% depending on the modality of beam collimation. Average quality factors derived from this work ranged from 2-7, with the value dependent on the position within the phantom in relation to the primary beam. Conclusions: This work provides a valuable and clinically relevant comparison of the external field dose equivalents for various passively scattered proton treatment fields

  10. DEEP code to calculate dose equivalents in human phantom for external photon exposure by Monte Carlo method

    International Nuclear Information System (INIS)

    Yamaguchi, Yasuhiro

    1991-01-01

    The present report describes a computer code DEEP which calculates the organ dose equivalents and the effective dose equivalent for external photon exposure by the Monte Carlo method. MORSE-CG, Monte Carlo radiation transport code, is incorporated into the DEEP code to simulate photon transport phenomena in and around a human body. The code treats an anthropomorphic phantom represented by mathematical formulae and user has a choice for the phantom sex: male, female and unisex. The phantom can wear personal dosimeters on it and user can specify their location and dimension. This document includes instruction and sample problem for the code as well as the general description of dose calculation, human phantom and computer code. (author)

  11. A calculational method of photon dose equivalent based on the revised technical standards of radiological protection law

    International Nuclear Information System (INIS)

    Tanaka, Shun-ichi; Suzuki, Tomoo

    1991-03-01

    The effective conversion factor for photons from 0.03 to 10 MeV were calculated to convert the absorbed dose in air to the 1 cm, 3 mm, and 70 μm depth dose equivalents behind iron, lead, concrete, and water shields up to 30 mfp thickness. The effective conversion factor changes slightly with thickness of the shields and becomes nearly constant at 5 to 10 mfp. The difference of the effective conversion factor was less than 2% between plane normal and point isotropic geometries. It is suggested that the present method, making the data base of the exposure buildup factors useful, would be very effective as compared to a new evaluation of the dose equivalent buildup factors. 5 refs., 7 figs., 22 tabs

  12. Calculation of dose distribution for 252Cf fission neutron source in tissue equivalent phantoms using Monte Carlo method

    International Nuclear Information System (INIS)

    Ji Gang; Guo Yong; Luo Yisheng; Zhang Wenzhong

    2001-01-01

    Objective: To provide useful parameters for neutron radiotherapy, the author presents results of a Monte Carlo simulation study investigating the dosimetric characteristics of linear 252 Cf fission neutron sources. Methods: A 252 Cf fission source and tissue equivalent phantom were modeled. The dose of neutron and gamma radiations were calculated using Monte Carlo Code. Results: The dose of neutron and gamma at several positions for 252 Cf in the phantom made of equivalent materials to water, blood, muscle, skin, bone and lung were calculated. Conclusion: The results by Monte Carlo methods were compared with the data by measurement and references. According to the calculation, the method using water phantom to simulate local tissues such as muscle, blood and skin is reasonable for the calculation and measurements of dose distribution for 252 Cf

  13. Method for measuring and evaluation dose equivalent rate from fast neutrons in mixed gamma-neutron fields around particles accelerators

    International Nuclear Information System (INIS)

    Cruceru, I.; Sandu, M.; Cruceru, M.

    1994-01-01

    A method for measuring and evaluation of doses and dose equivalent rate in mixed gamma- neutron fields is discussed in this paper. The method is basedon a double detector system consist of an ionization chamber with components made from a plastic scintillator, coupled to on photomultiplier. Generally the radiation fields around accelerators are complex, often consisting of many different ionizing radiations extending over a broad range of energies. This method solve two major difficulties: determination of response functions of radiation detectors; interpretation of measurement and determination of accuracy. The discrimination gamma-fast neutrons is assured directly without a pulse shape discrimination circuit. The method is applied to mixed fields in which particle energies are situated in the energy range under 20 MeV and an izotropic emision (Φ=10 4 -10 11 n.s -1 ). The dose equivalent rates explored is 0.01mSV--0.1SV

  14. Statistical analysis of dose heterogeneity in circulating blood: Implications for sequential methods of total body irradiation

    International Nuclear Information System (INIS)

    Molloy, Janelle A.

    2010-01-01

    Purpose: Improvements in delivery techniques for total body irradiation (TBI) using Tomotherapy and intensity modulated radiation therapy have been proven feasible. Despite the promise of improved dose conformality, the application of these ''sequential'' techniques has been hampered by concerns over dose heterogeneity to circulating blood. The present study was conducted to provide quantitative evidence regarding the potential clinical impact of this heterogeneity. Methods: Blood perfusion was modeled analytically as possessing linear, sinusoidal motion in the craniocaudal dimension. The average perfusion period for human circulation was estimated to be approximately 78 s. Sequential treatment delivery was modeled as a Gaussian-shaped dose cloud with a 10 cm length that traversed a 183 cm patient length at a uniform speed. Total dose to circulating blood voxels was calculated via numerical integration and normalized to 2 Gy per fraction. Dose statistics and equivalent uniform dose (EUD) were calculated for relevant treatment times, radiobiological parameters, blood perfusion rates, and fractionation schemes. The model was then refined to account for random dispersion superimposed onto the underlying periodic blood flow. Finally, a fully stochastic model was developed using binomial and trinomial probability distributions. These models allowed for the analysis of nonlinear sequential treatment modalities and treatment designs that incorporate deliberate organ sparing. Results: The dose received by individual blood voxels exhibited asymmetric behavior that depended on the coherence among the blood velocity, circulation phase, and the spatiotemporal characteristics of the irradiation beam. Heterogeneity increased with the perfusion period and decreased with the treatment time. Notwithstanding, heterogeneity was less than ±10% for perfusion periods less than 150 s. The EUD was compromised for radiosensitive cells, long perfusion periods, and short treatment times

  15. Statistical analysis of dose heterogeneity in circulating blood: implications for sequential methods of total body irradiation.

    Science.gov (United States)

    Molloy, Janelle A

    2010-11-01

    Improvements in delivery techniques for total body irradiation (TBI) using Tomotherapy and intensity modulated radiation therapy have been proven feasible. Despite the promise of improved dose conformality, the application of these "sequential" techniques has been hampered by concerns over dose heterogeneity to circulating blood. The present study was conducted to provide quantitative evidence regarding the potential clinical impact of this heterogeneity. Blood perfusion was modeled analytically as possessing linear, sinusoidal motion in the craniocaudal dimension. The average perfusion period for human circulation was estimated to be approximately 78 s. Sequential treatment delivery was modeled as a Gaussian-shaped dose cloud with a 10 cm length that traversed a 183 cm patient length at a uniform speed. Total dose to circulating blood voxels was calculated via numerical integration and normalized to 2 Gy per fraction. Dose statistics and equivalent uniform dose (EUD) were calculated for relevant treatment times, radiobiological parameters, blood perfusion rates, and fractionation schemes. The model was then refined to account for random dispersion superimposed onto the underlying periodic blood flow. Finally, a fully stochastic model was developed using binomial and trinomial probability distributions. These models allowed for the analysis of nonlinear sequential treatment modalities and treatment designs that incorporate deliberate organ sparing. The dose received by individual blood voxels exhibited asymmetric behavior that depended on the coherence among the blood velocity, circulation phase, and the spatiotemporal characteristics of the irradiation beam. Heterogeneity increased with the perfusion period and decreased with the treatment time. Notwithstanding, heterogeneity was less than +/- 10% for perfusion periods less than 150 s. The EUD was compromised for radiosensitive cells, long perfusion periods, and short treatment times. However, the EUD was

  16. Effects of total dose of ionizing radiation on integrated circuits

    Energy Technology Data Exchange (ETDEWEB)

    Silveira, Marcilei A.G.; Cirne, K.H.; Gimenez, S.; Santos, R.B.B. [Centro Universitario da FEI, Sao Bernardo do Campo, SP (Brazil); Added, N.; Barbosa, M.D.L.; Medina, N.H.; Tabacniks, M.H. [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica; Lima, J.A. de; Seixas Junior, L.E.; Melo, W. [Centro de Tecnologia da Informacao Paulo Archer, Sao Paulo, SP (Brazil)

    2011-07-01

    Full text: The study of ionizing radiation effects on materials used in electronic devices is of great relevance for the progress of global technological development and, particularly, it is a necessity in some strategic areas in Brazil. Electronic circuits are strongly influenced by radiation and the need for IC's featuring radiation hardness is largely growing to meet the stringent environment in space electronics. On the other hand, aerospace agencies are encouraging both scientific community and semiconductors industry to develop hardened-by-design components using standard manufacturing processes to achieve maximum performance, while significantly reducing costs. To understand the physical phenomena responsible for changes in devices exposed to ionizing radiation several kinds of radiation should then be considered, among them alpha particles, protons, gamma and X-rays. Radiation effects on the integrated circuits are usually divided into two categories: total ionizing dose (TID), a cumulative dose that shifts the threshold voltage and increases transistor's off-state current; single events effects (SEE), a transient effect which can deposit charge directly into the device and disturb the properties of electronic circuits. TID is one of the most common effects and may generate degradation in some parameters of the CMOS electronic devices, such as the threshold voltage oscillation, increase of the sub-threshold slope and increase of the off-state current. The effects of ionizing radiation are the creation of electron-hole pairs in the oxide layer changing operation mode parameters of the electronic device. Indirectly, there will be also changes in the device due to the formation of secondary electrons from the interaction of electromagnetic radiation with the material, since the charge carriers can be trapped both in the oxide layer and in the interface with the oxide. In this work we have investigated the behavior of MOSFET devices fabricated with

  17. Determination of the neutron and photon dose equivalent at work places in nuclear facilities of Sweden. An SSI - EURADOS comparison exercise. Part 2: Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Bartlett, D. [National Radiological Protection Board, Chilton (United Kingdom); Drake, P. [Vattenfall AB, Vaeroebacka (Sweden); Lindborg, L. [Swedish Radiation Protection Inst., Stockholm (Sweden); Klein, H. [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany); Schmitz, Th. [Forschungszentrum Juelich GmbH, Juelich (Germany); Tichy, M

    1999-06-01

    Various mixed neutron-photon fields at workplaces in the containment of pressurised water reactors and in the vicinity of transport containers with spent fuel elements were investigated with spectrometers and dosimeters. The spectral neutron fluences evaluated from measurements with multisphere systems were recommended to be used for the calculation of dosimetric reference values for comparison with the readings of the dosemeters applied simultaneously. It turned out that most of the moderator based area dosemeters overestimated, while the TEPC systems generally underestimated the ambient dose equivalent (DE) values of the rather soft neutron fields encountered at these workplaces. The discrepancies can, however, be explained on the basis of energy dependent responses of the instruments used. The ambient DE values obtained with recently developed area dosemeters based on superheated drop detectors and with track etch based personal dosemeters on phantoms, however, were in satisfying agreement with the reference data. Sets of personal dosemeters simultaneously irradiated on a phantom allowed to roughly estimate the directional dependence of the neutron fluence. Hence, personal and limiting dose equivalent quantities could also be calculated. The personal and ambient DE values were always conservative estimates of the limiting quantities. Unexpectedly, discrepancies were observed for photon DE data measured with GM counters and TEPC systems. The up to 50 % higher readings of the GM counters may be explained by a considerable contribution of high energy photons to the total photon dose equivalent, but photon spectrometry is necessary for final clarification.

  18. Determination of the neutron and photon dose equivalent at work places in nuclear facilities of Sweden. An SSI - EURADOS comparison exercise. Part 2: Evaluation

    International Nuclear Information System (INIS)

    Bartlett, D.; Drake, P.; Lindborg, L.; Klein, H.; Schmitz, Th.; Tichy, M.

    1999-06-01

    Various mixed neutron-photon fields at workplaces in the containment of pressurised water reactors and in the vicinity of transport containers with spent fuel elements were investigated with spectrometers and dosimeters. The spectral neutron fluences evaluated from measurements with multisphere systems were recommended to be used for the calculation of dosimetric reference values for comparison with the readings of the dosemeters applied simultaneously. It turned out that most of the moderator based area dosemeters overestimated, while the TEPC systems generally underestimated the ambient dose equivalent (DE) values of the rather soft neutron fields encountered at these workplaces. The discrepancies can, however, be explained on the basis of energy dependent responses of the instruments used. The ambient DE values obtained with recently developed area dosemeters based on superheated drop detectors and with track etch based personal dosemeters on phantoms, however, were in satisfying agreement with the reference data. Sets of personal dosemeters simultaneously irradiated on a phantom allowed to roughly estimate the directional dependence of the neutron fluence. Hence, personal and limiting dose equivalent quantities could also be calculated. The personal and ambient DE values were always conservative estimates of the limiting quantities. Unexpectedly, discrepancies were observed for photon DE data measured with GM counters and TEPC systems. The up to 50 % higher readings of the GM counters may be explained by a considerable contribution of high energy photons to the total photon dose equivalent, but photon spectrometry is necessary for final clarification

  19. Relationship of dose rate and total dose to responses of continuously irradiated beagles

    International Nuclear Information System (INIS)

    Fritz, T.E.; Norris, W.P.; Tolle, D.V.; Seed, T.M.; Poole, C.M.; Lombard, L.S.; Doyle, D.E.

    1978-01-01

    Young-adult beagles were exposed continuously (22 hours/day) to 60 Co γ rays in a specially constructed facility. The exposure rates were either 5, 10, 17, or 35 R/day, and the exposures were terminated at either 600, 1400, 2000, or 4000 R. A total of 354 dogs were irradiated; 221 are still alive as long-term survivors, some after more than 2000 days. The data on survival of these dogs, coupled with data from similar preliminary experiments, allow an estimate of the LD 50 for γ-ray exposures given at a number of exposure rates. They also allow comparison of the relative importance of dose rate and total dose, and the interaction of these two variables, in the early and late effects after protracted irradiation. The LD 50 for the beagle increases from 258 rad delivered at 15 R/minute to approximately 3000 rad at 10 R/day. Over this entire range, the LD 50 is dependent upon hematopoietic damage. At 5 R/day and less, no meaningful LD 50 can be determined; there is nearly normal continued hematopoietic function, survival is prolonged, and the dogs manifest varied individual responses in other organ systems. Although the experiment is not complete, interim data allow several important conclusions. Terminated exposures, while not as effective as radiation continued until death, can produce myelogenous leukemia at the same exposure rate, 10 R/day. More importantly, at the same total accumulated dose, lower exposure rates are more damaging than higher rates on the basis of the rate and degree of hematological recovery that occurs after termination of irradiation. Thus, the rate of hematologic depression, the nadir of the depression, and the rate of recovery are dependent upon exposure rate; the latter is inversely related and the former two are directly related to exposure rate

  20. Relationship of dose rate and total dose to responses of continuously irradiated beagles

    International Nuclear Information System (INIS)

    Fritz, T.E.; Norris, W.P.; Tolle, D.V.; Seed, T.M.; Poole, C.M.; Lombard, L.S.; Doyle, D.E.

    1978-01-01

    Young-adult beagles were exposed continuously (22 hours/day) to 60 Co gamma rays in a specially constructed facility. The exposure rates were 5, 19, 17 or 35 R/day, and the exposures were terminated at 600, 1400, 2000 or 4000 R. A total of 354 dogs were irradiated; 221 are still alive as long-term survivors, some after more than 2000 days. The data on survival of these dogs, coupled with data from similar preliminary experiments, allow an estimate of the LD 50 for gamma-ray exposures given at a number of exposure rates. They also allow comparison of the relativeimportance of dose rate and total dose, and the interaction of these two variables, in the early and late effects after protracted irradiation. The LD 50 for the beagle increases from 344 R (258 rads) delivered at 15 R/minute to approximately 4000 R (approximately 3000 rads) at 10 R/day. Over this entire range, the LD 50 is dependent upon haematopoietic damage. At 5 R/day and less, no definitive LD 50 can be determined; there is nearly normal continued haematopoietic function, survival is prolonged, and the dogs manifest varied individual responses in the organ systems. Although the experiment is not complete, interim data allow serveral important conclusions. Terminated exposures, while not as effective as irradiation continued until death, can produce myelogenous leukaemia at the same exposure rate, 10 R/day. More importantly, at the same total accumulated dose, lower exposure rates appear more damaging than higher rates on the basis of the rate and degree of haematological recovery that occurs after termination of irradiation. Thus, the rate of haematologic depression, the nadir of the depression and the rate of recovery are dependent upon exposure rate; the latter is inversely related and the first two are directly related to exposure rate. ( author)

  1. The equidosemeter ED-02 as a device for dose equivalent measurements in mixed neutron and photon radiation fields

    International Nuclear Information System (INIS)

    Abrosimov, A.I.; Alekseev, A.G.; Antipov, V.A.; Golovachik, V.T.

    1985-01-01

    The equidosemeter ED-02 is to be used for simultaneous measurements of the dose equivalent, absorbed dose, and mean quality factor of mixed radiations. The detector is a tissue equivalent spherical low-pressure proportional counter tube the signal of which is simultaneously recorded in two channels - a current channel and a pulse one. The current channel is linear and its response proportional to the absorbed dose. The pulse channel includes a nonlinear pulse amplitude converter the characteristic of which, taking into account the required dependence of the mean quality factor on linear energy transfer, has been chosen in such a way that in final counting the pulse channel response is proportional to the difference between dose equivalent and absorbed dose. On the basis of calculations of event spectra in the sensitive volume of the detector, the energy dependence of the dosemeter sensitivity is analysed for neutron energies up to 20 MeV. The characteristic of the nonlinear converter has been calculated on the basis of the construction parameters of the detector and optimized with respect to a representative sample of neutron spectra beyond the shields of nuclear plants. The heterogeneity of the detector, i.e. the difference between the atomic composition of wall and filling and the composition of soft biological tissue as well as the effect of the conducting coating of the case cathode, has been taken into consideration. Moreover, the test results of the device in mixed neutron-photon fields of 60 Co, 239 Pu-α-Be and 252 Cf radioisotope sources are presented. The main measuring error of dose characteristics is shown to be less than 20% in the dose range 1 x 10 -3 to 4 x 10 -3 Sv/h. (author)

  2. The biologically equivalent dose BED - Is the approach for calculation of this factor really a reliable basis?

    International Nuclear Information System (INIS)

    Jensen, J.M.; Zimmermann, J.

    2000-01-01

    To predict the effect on tumours in radiotherapy, especially relating to irreversible effects, but also to realize the retrospective assessment the so called L-Q-model is relied on at present. Internal specific organ parameters, such as α, β, γ, T p , T k , and ρ, as well as external parameters, so as D, d, n, V, and V ref , were used for determination of the biologically equivalent dose BED. While the external parameters are determinable with small deviations, the internal parameters depend on biological varieties and dispersons: In some cases the lowest value is assumed to be Δ=±25%. This margin of error goes on to the biologically equivalent dose by means of the principle of superposition of errors. In some selected cases (lung, kidney, skin, rectum) these margins of error were calculated exemplarily. The input errors especially of the internal parameters cause a mean error Δ on the biologically equivalent dose and a dispersion of the single fraction dose d dependent on the organ taking into consideration, of approximately 8-30%. Hence it follows only a very critical and cautious application of those L-Q-algorithms in expert proceedings, and in radiotherapy more experienced based decisions are recommended, instead of acting only upon simple two-dimensional mechanistic ideas. (orig.) [de

  3. New Insights into Fully-Depleted SOI Transistor Response During Total Dose Irradiation

    International Nuclear Information System (INIS)

    Burns, J.A.; Dodd, P.E.; Keast, C.L.; Schwank, J.R.; Shaneyfelt, M.R.; Wyatt, P.W.

    1999-01-01

    Worst-case bias configuration for total-dose testing fully-depleted SOI transistors was found to be process dependent. No evidence was found for total-dose induced snap back. These results have implications for hardness assurance testing

  4. Thermally assisted OSL application for equivalent dose estimation; comparison of multiple equivalent dose values as well as saturation levels determined by luminescence and ESR techniques for a sedimentary sample collected from a fault gouge

    Energy Technology Data Exchange (ETDEWEB)

    Şahiner, Eren, E-mail: sahiner@ankara.edu.tr; Meriç, Niyazi, E-mail: meric@ankara.edu.tr; Polymeris, George S., E-mail: gspolymeris@ankara.edu.tr

    2017-02-01

    Highlights: • Multiple equivalent dose estimations were carried out. • Additive ESR and regenerative luminescence were applied. • Preliminary SAR results employing TA-OSL signal were discussed. • Saturation levels of ESR and luminescence were investigated. • IRSL{sub 175} and SAR TA-OSL stand as very promising for large doses. - Abstract: Equivalent dose estimation (D{sub e}) constitutes the most important part of either trap-charge dating techniques or dosimetry applications. In the present work, multiple, independent equivalent dose estimation approaches were adopted, using both luminescence and ESR techniques; two different minerals were studied, namely quartz as well as feldspathic polymineral samples. The work is divided into three independent parts, depending on the type of signal employed. Firstly, different D{sub e} estimation approaches were carried out on both polymineral and contaminated quartz, using single aliquot regenerative dose protocols employing conventional OSL and IRSL signals, acquired at different temperatures. Secondly, ESR equivalent dose estimations using the additive dose procedure both at room temperature and at 90 K were discussed. Lastly, for the first time in the literature, a single aliquot regenerative protocol employing a thermally assisted OSL signal originating from Very Deep Traps was applied for natural minerals. Rejection criteria such as recycling and recovery ratios are also presented. The SAR protocol, whenever applied, provided with compatible D{sub e} estimations with great accuracy, independent on either the type of mineral or the stimulation temperature. Low temperature ESR signals resulting from Al and Ti centers indicate very large D{sub e} values due to bleaching in-ability, associated with large uncertainty values. Additionally, dose saturation of different approaches was investigated. For the signal arising from Very Deep Traps in quartz saturation is extended almost by one order of magnitude. It is

  5. Estimation of the total effective dose from low-dose CT scans and radiopharmaceutical administrations delivered to patients undergoing SPECT/CT explorations

    International Nuclear Information System (INIS)

    Montes, C.; Hernandez, J.; Gomez-Caminero, F.; Garcia, S.; Martin, C.; Rosero, A.; Tamayo, P.

    2013-01-01

    Hybrid imaging, such as single photon emission computed tomography (SPECT)/CT, is used in routine clinical practice, allowing coregistered images of the functional and structural information provided by the two imaging modalities. However, this multimodality imaging may mean that patients are exposed to a higher radiation dose than those receiving SPECT alone. The study aimed to determine the radiation exposure of patients who had undergone SPECT/CT examinations and to relate this to the Background Equivalent Radiation Time (BERT). 145 SPECT/CT studies were used to estimate the total effective dose to patients due to both radiopharmaceutical administrations and low-dose CT scans. The CT contribution was estimated by the Dose-Length Product method. Specific conversion coefficients were calculated for SPECT explorations. The radiation dose from low-dose CTs ranged between 0.6 mSv for head and neck CT and 2.6 mSv for whole body CT scan, representing a maximum of 1 year of background radiation exposure. These values represent a decrease of 80-85% with respect to the radiation dose from diagnostic CT. The radiation exposure from radiopharmaceutical administration varied from 2.1 mSv for stress myocardial perfusion SPECT to 26 mSv for gallium SPECT in patients with lymphoma. The BERT ranged from 1 to 11 years. The contribution of low-dose CT scans to the total radiation dose to patients undergoing SPECT/CT examinations is relatively low compared with the effective dose from radiopharmaceutical administration. When a CT scan is only acquired for anatomical localization and attenuation correction, low-dose CT scan is justified on the basis of its lower dose. (author)

  6. Relationship between the generalized equivalent uniform dose formulation and the Poisson statistics-based tumor control probability model

    International Nuclear Information System (INIS)

    Zhou Sumin; Das, Shiva; Wang Zhiheng; Marks, Lawrence B.

    2004-01-01

    The generalized equivalent uniform dose (GEUD) model uses a power-law formalism, where the outcome is related to the dose via a power law. We herein investigate the mathematical compatibility between this GEUD model and the Poisson statistics based tumor control probability (TCP) model. The GEUD and TCP formulations are combined and subjected to a compatibility constraint equation. This compatibility constraint equates tumor control probability from the original heterogeneous target dose distribution to that from the homogeneous dose from the GEUD formalism. It is shown that this constraint equation possesses a unique, analytical closed-form solution which relates radiation dose to the tumor cell survival fraction. It is further demonstrated that, when there is no positive threshold or finite critical dose in the tumor response to radiation, this relationship is not bounded within the realistic cell survival limits of 0%-100%. Thus, the GEUD and TCP formalisms are, in general, mathematically inconsistent. However, when a threshold dose or finite critical dose exists in the tumor response to radiation, there is a unique mathematical solution for the tumor cell survival fraction that allows the GEUD and TCP formalisms to coexist, provided that all portions of the tumor are confined within certain specific dose ranges

  7. Dose compensation of the total body irradiation therapy

    International Nuclear Information System (INIS)

    Lin, J.-P.; Chu, T.-C.; Liu, M.-T.

    2001-01-01

    The aim of the study is to improve dose uniformity in the body by the compensator-rice and to decrease the dose to the lung by the partial lung block. Rando phantom supine was set up to treat bilateral fields with a 15 MV linear accelerator at 415 cm treatment distance. The experimental procedure included three parts. The first part was the bilateral irradiation without rice compensator, and the second part was with rice compensator. In the third part, rice compensator and partial lung block were both used. The results of thermoluminescent dosimeters measurements indicated that without rice compensator the dose was non-uniform. Contrarily, the average dose homogeneity with rice compensator was measured within ±5%, except for the thorax region. Partial lung block can reduce the dose which the lung received. This is a simple method to improve the dose homogeneity and to reduce the lung dose received. The compensator-rice is cheap, and acrylic boxes are easy to obtain. Therefore, this technique is suitable for more studies

  8. Patient-centric dose equivalency pilot study of incobotulinumtoxin a (xeomin vs. abobotulinumtoxin a (dysport in the treatment of glabellar frown lines

    Directory of Open Access Journals (Sweden)

    Jonathan Bank

    2015-03-01

    Full Text Available Aim: Incobotulinumtoxin A (xeomin has been proposed as an alternative to abobotulinumtoxin A (dysport and onabotulinumtoxin A (Botox in the treatment of glabellar frown lines. A recent study is comparing abobotulinumtoxin A and onabotulinumtoxin A revealed equivalent efficacy with a dose conversion ratio of 2.5:1. We sought to establish effectiveness and dosing equivalency of incobotulinumtoxin A vs. abobotulinumtoxin A. Methods: Inclusion criteria for this pilot study included patients of a single surgeon (LAC who had previously received a constant dose of abobotulinumtoxin A over at least four consecutive treatment sessions for the previous 12 months to achieve an 85-90% elimination of dynamic glabellar frown lines. The primary outcome sought dose comparison between established maintenance abobotulinumtoxin A dosing and incobotulinumtoxin A first-time dosing. A 2:1 conversion (abobotulinumtoxin A: incobotulinumtoxin A was chosen in most patients. Secondary outcomes were patient-reported onset of effect, physician-assessed effect at 10-12 weeks, pain associated with administration, and patient perceived need for re-treatment at 2 weeks. Results: A total of 32 subjects were included. The mean dose of incobotulinumtoxin A was 17.1 units (± 6.1, the median dose 20 units. The mean dose of abobotulinumtoxin A was 27.6 (± 11.7, the median dose 27.5 units. The mean difference in treatment units was -10.5 (95% confidence interval, P < 0.001. Among 30 patients who reported effect onset, the median was 8.5 days, with a range of 1-14. At 10-12 weeks, muscle paralysis was assessed to be 69.2% (± 27.3, vs. 90.3% (± 1.8 with abobotulinumtoxin A (P < 0.001. The majority of patients rated pain of administration as equal or greater to that of abobotulinumtoxin A (63% and 22%, respectively. Three patients (9% required re-treatment at 2 weeks with abobotulinumtoxin A due to lack of effective treatment with incobotulinumtoxin A. Abobotulinumtoxin A re

  9. Semi-empirical equivalent field method for dose determination in midline block fields for cobalt - 60 beam

    International Nuclear Information System (INIS)

    Tagoe, S.N.A.; Nani, E.K.; Yarney, J.; Edusa, C.; Quayson-Sackey, K.; Nyamadi, K.M.; Sasu, E.

    2012-01-01

    For teletherapy treatment time calculations, midline block fields are resolved into two fields, but neglecting scattering from other fields, the effective equivalent square field size of the midline block is assumed to the resultant field. Such approach is underestimation, and may be detrimental in achieving the recommended uncertainty of ± 5 % for patient's radiation dose delivery. By comparison, the deviations of effective equivalent square field sizes by calculations and experiments were within 13.2 % for cobalt 60 beams of GWGP80 cobalt 60 teletherapy. Therefore, a modified method incorporating the scatter contributions was adopted to estimate the effective equivalent square field size for midline block field. The measured outputs of radiation beams with the block were compared with outputs of square fields without the blocks (only the block tray) at depths of 5 and 10 cm for the teletherapy machine employing isocentric technique, and the accuracy was within ± 3 % for the cobalt 60 beams. (au)

  10. Medical irradiation and the use of the ''effective dose equivalent'' concept

    International Nuclear Information System (INIS)

    Persson, B.R.R.

    1980-01-01

    The aim of this paper is to demonstrate the use of the effective dose for all kinds of medical irradiation. In order to estimate the 'somatic effective dose' the weighting factors recommended by ICRP 26 have been separated into those for somatic effects and for genetic effects. Calculation of the effective dose in diagnostic radiology procedures must consider the various technical parameters which determine the absorbed dose in the various organs, i.e. beam quality, typical entrance dose and the number of films of each view. Knowledge about these parameters is not always well established and therefore the effective dose estimates are very uncertain. The average dose absorbed by various organs in the case of administration of radionuclides to the body depends to a much higher degree on biological parameters than in the case of external irradiation. In contrast to the variability and lack of reliability of biological data, the physical methods for internal dose calculation are quite elaborate. However, these methods have to be extended to involve the target dose from the radioactivity distributed within the remaining parts of the body. An attempt was made to estimate the somatic effective dose for the most common diagnostic X-ray and nuclear medicine procedures. This would make it possible to compare the risk of X-ray and nuclear medicine techniques on a more equitable basis. The collective effective dose from medical irradiation is estimated for various countries on the basis of reported statistical data. (H.K.)

  11. Stepped-irradiation SAR: A viable approach to circumvent OSL equivalent dose underestimation in last glacial loess of northwestern China

    International Nuclear Information System (INIS)

    Qin, J.T.; Zhou, L.P.

    2009-01-01

    The equivalent dose (D e ) obtained with the continuous irradiation SAR (CI-SAR) protocol for fine-grained quartz from loess of northwestern China is found to be lower than the expected value for samples older than 70 ka based on the regional stratigraphy. This is attributed to the difference in the response of the quartz to natural radiation and laboratory beta irradiation whose rates vary by ∼10 8 times. A stepped irradiation SAR protocol was employed to evaluate the influence of such a 'dose rate effect' on the equivalent dose determination. After investigating the effects of thermal treatment and 'unit-dose' on OSL signal and D e , we refined the stepped irradiation strategy with a 'unit-dose' of ∼25 Gy and successive thermal treatments at 250 deg. C for 10 s, and applied it to the SAR protocol. This stepped irradiation SAR (SI-SAR) protocol led to a 20%-70% increase in D e value for loess deposited during the early last glacial period.

  12. Bone-and-muscle-equivalent solid chemical dose meters for photon and electron doses above one kilorad

    International Nuclear Information System (INIS)

    McLaughlin, W.L.; Rosenstein, M.; Levine, H.

    1975-01-01

    Conventional solid dose meters, such as plastic films, powders, emulsions, glasses, ceramics and gels, have a response to ionizing photons and electrons that varies markedly over a broad spectrum when compared with the absorption characteristics of biological tissues. New radiochromic dyed plastic dose meters have been developed with X- and gamma ray and electron energy absorption cross-sections (calculated) and radiation energy responses (experimental) corresponding approximately to those for human muscle and bone, for a spectrum from a few keV to at least 10 MeV. Three-dimensional solid dose meters useful over the absorbed dose range of 10 3 to 10 6 rad are formed by thermosetting a selected combination of monomers containing the radiochromic dye in solution. Thin-film dose meters for the dose range 10 5 to 10 7 rad are formed by casting on optically flat surfaces strippable layers of special combinations of polymers and dyes in solution. The response of these systems to X- and gamma rays and electrons has been studied over various radiation spectra, dose-rates and temperatures during irradiation. (author)

  13. A point-kernel shielding code for calculations of neutron and secondary gamma-ray 1cm dose equivalents: PKN

    International Nuclear Information System (INIS)

    Kotegawa, Hiroshi; Tanaka, Shun-ichi

    1991-09-01

    A point-kernel integral technique code, PKN, and the related data library have been developed to calculate neutron and secondary gamma-ray dose equivalents in water, concrete and iron shields for neutron sources in 3-dimensional geometry. The comparison between calculational results of the present code and those of the 1-dimensional transport code ANISN = JR, and the 2-dimensional transport code DOT4.2 showed a sufficient accuracy, and the availability of the PKN code has been confirmed. (author)

  14. Ambient dose equivalent H*(d) - an appropriate philosophy for radiation monitoring onboard aircraft and in space?

    International Nuclear Information System (INIS)

    Vana, N.; Hajek, M.; Berger, T.

    2003-01-01

    In this paper authors deals with the ambient dose equivalent H * (d) and their application for onboard Aircraft and Space station. The discussion and the carried out experiments demonstrated that the philosophy of H * (10) leads to an underestimation of the whole-body radiation exposure when applied onboard aircraft and in space. It therefore has to be considered to introduce a new concept that could be based on microdosimetric principles, offering the unique potential of a more direct correlation to radiobiological parameters

  15. The paradox of human equivalent dose formula: A canonical case study of abrus precatorius aqueous leaf extract in monogastric animals

    Directory of Open Access Journals (Sweden)

    Saganuwan Alhaji Saganuwan

    2016-03-01

    Full Text Available There is abundant literature on the toxicity of A. precatorius seeds. However there is a need to define the toxicity limit of the Abrus precatorius leaf in monogastric animals. Human Equivalent Dose (HED which is equal to animal dose multiplied by animal km (metabolism constant divided by human km was used to project the LD50 of fifteen monogastric animals , where human km factor is body weight (kg divided by body surface area (m2. Human Equivalent No-observable Adverse Effect Doses were determined by multiplying the animal no-observable adverse effect dose by animal weight (Wa divided by human weight (Wh. The LD50 of the aqueous leaf extract of Abrus precatorius in mice was estimated to be between 2559.5 and 3123.3 mg/kg body weight. The LD50 extrapolated from mouse to rat (1349.3-1646.6 mg/kg, hamster (1855.3-2264.1 mg/kg, guinea pig (1279.5-1561.4 mg/kg, rabbit (618.4-754.7 mg/kg, monkey (593.7-724.5 mg/kg, cat (392.7-479.2 mg/kg, dog and baboon (371.1-452.8 mg/kg, child (297-362 mg/kg and adult human (197.8-241.5 mg/kg body weight respectively could be a reality. The therapeutic safe dose range for the animals was 1-12.5 mg/kg body weight for a period of 7 days, but at a dose (≤ 200 mg/kg body weight the leaf extract showed haematinic effect. However, at a higher dose (> 200 mg/kg, the extract showed haemolytic activity in rats, whereas at a dose (≥25.0 mg/kg, the leaf extract might be organotoxic in hamster, guinea pig, rabbit, monkey, cat, dog, baboon, child and adult human if administered orally for a period of 7 days.

  16. Calculation of equivalent dose index for electrons from 5,0 to 22,0 MeV by the Monte Carlo method

    International Nuclear Information System (INIS)

    Peixoto, J.E.

    1979-01-01

    The index of equivalent dose in depth and in a sphere surface of a soft tissue equivalent material were determined by Monte Carlo method for electron irradiations from 5,0 to 22.00 MeV. The effect of different irradiation geometries which simulate the incidence of onedirectional opposite rotational and isotropic beams was studied. It is also shown that the detector of wall thickness with 0.5g/cm 2 and isotropic response com be used to measure index of equivalent dose for fast electrons. The alternative concept of average equivalent dose for radiation protection is discussed. (M.C.K.) [pt

  17. Criteria and methods for estimating external effective dose equivalent from personnel monitoring results: EDE implementation guide. Final report

    International Nuclear Information System (INIS)

    Owen, D.

    1998-09-01

    Title 10 Part 20 of the Code of Federal regulations requires that nuclear power plant licensees evaluate worker radiation exposure using a risk-based methodology termed the effective dose equivalent (EDE). EDE is a measure of radiation exposure that represents an individual's risk of stochastic injury from their exposure. EPRI has conducted research into how photons interact with the body. These results have been coupled with information on how the body's organs differ in their susceptibility to radiation injury, to produce a methodology for assessing the effective dose equivalent. The research and the resultant methodology have been described in numerous technical reports, scientific journal articles, and technical meetings. EPRI is working with the Nuclear Energy Institute to have the EPRI effective dose equivalent methodology accepted by the Nuclear Regulatory Commission for use at US nuclear power plants. In order to further familiarize power plant personnel with the methodology, this report summarizes the EDE research and presents some simple guidelines for its implementing the methodology

  18. Off-axis dose equivalent due to secondary neutrons from uniform scanning proton beams during proton radiotherapy

    Science.gov (United States)

    Islam, M. R.; Collums, T. L.; Zheng, Y.; Monson, J.; Benton, E. R.

    2013-11-01

    The production of secondary neutrons is an undesirable byproduct of proton therapy and it is important to quantify the contribution from secondary neutrons to patient dose received outside the treatment volume. The purpose of this study is to investigate the off-axis dose equivalent from secondary neutrons experimentally using CR-39 plastic nuclear track detectors (PNTD) at ProCure Proton Therapy Center, Oklahoma City, OK. In this experiment, we placed several layers of CR-39 PNTD laterally outside the treatment volume inside a phantom and in air at various depths and angles with respect to the primary beam axis. Three different proton beams with max energies of 78, 162 and 226 MeV and 4 cm modulation width, a 5 cm diameter brass aperture, and a small snout located 38 cm from isocenter were used for the entire experiment. Monte Carlo simulations were also performed based on the experimental setup using a simplified snout configuration and the FLUKA Monte Carlo radiation transport code. The measured ratio of secondary neutron dose equivalent to therapeutic primary proton dose (H/D) ranged from 0.3 ± 0.08 mSv Gy-1 for 78 MeV proton beam to 37.4 ± 2.42 mSv Gy-1 for 226 MeV proton beam. Both experiment and simulation showed a similar decreasing trend in dose equivalent with distance to the central axis and the magnitude varied by a factor of about 2 in most locations. H/D was found to increase as the energy of the primary proton beam increased and higher H/D was observed at 135° compared to 45° and 90°. The overall higher H/D in air indicates the predominance of external neutrons produced in the nozzle rather than inside the body.

  19. Off-axis dose equivalent due to secondary neutrons from uniform scanning proton beams during proton radiotherapy

    International Nuclear Information System (INIS)

    Islam, M R; Collums, T L; Monson, J; Benton, E R; Zheng, Y

    2013-01-01

    The production of secondary neutrons is an undesirable byproduct of proton therapy and it is important to quantify the contribution from secondary neutrons to patient dose received outside the treatment volume. The purpose of this study is to investigate the off-axis dose equivalent from secondary neutrons experimentally using CR-39 plastic nuclear track detectors (PNTD) at ProCure Proton Therapy Center, Oklahoma City, OK. In this experiment, we placed several layers of CR-39 PNTD laterally outside the treatment volume inside a phantom and in air at various depths and angles with respect to the primary beam axis. Three different proton beams with max energies of 78, 162 and 226 MeV and 4 cm modulation width, a 5 cm diameter brass aperture, and a small snout located 38 cm from isocenter were used for the entire experiment. Monte Carlo simulations were also performed based on the experimental setup using a simplified snout configuration and the FLUKA Monte Carlo radiation transport code. The measured ratio of secondary neutron dose equivalent to therapeutic primary proton dose (H/D) ranged from 0.3 ± 0.08 mSv Gy −1  for 78 MeV proton beam to 37.4 ± 2.42 mSv Gy −1  for 226 MeV proton beam. Both experiment and simulation showed a similar decreasing trend in dose equivalent with distance to the central axis and the magnitude varied by a factor of about 2 in most locations. H/D was found to increase as the energy of the primary proton beam increased and higher H/D was observed at 135° compared to 45° and 90°. The overall higher H/D in air indicates the predominance of external neutrons produced in the nozzle rather than inside the body. (paper)

  20. The intercomparison of 137Cs irradiator output measurement and personal dose equivalent, Hp(10), using TLD and film

    International Nuclear Information System (INIS)

    Nazaroh; Susetyo Trijoko; Sri Inang Sunaryati

    2010-01-01

    Intercomparison of output measurement of 137 Cs irradiator and personal dose equivalent, Hp(10) using TLD and film have been carried out in the year of 2006 to 2008. According to IAEA recommendation, intercomparison is one of audit activities but it is performed in the spirit of collaboration and support rather than in the spirit of inspection. The aim of intercomparison of output measurement of 137 Cs irradiator is to verify the dose stated by the participant laboratories. Intercomparison is also to assess the competency of the participant, to keep traceability and consistency of measurement result, to assure that instrument work correctly and the result of evaluation was in agreement, and also for fulfilling one of the clauses of ISO-17025-2005. Besides that, this intercomparison aimed to facilitate link between the system and members of national measurement and transfer of experience in measurement technique and dose evaluation of radiation. The benefit of intercomparison is important among others as tests of proficiency in dose evaluation or measurement, upgrading quality of service and for obeying supervisor body legislation (BAPETEN). TLD was used as a means of output 137 Cs irradiator measurement, whereas film and TLD were used for dose intercomparison. This paper presented result of intercomparison of output measurement and evaluation of personal dose equivalent, Hp(10) in the year of 2006 to 2008 followed by 6 participants: Balai Pengamanan Fasilitas Kesehatan (BPFK) Jakarta, Medan, Surabaya, Makasar, PTLR and Laboratory of Keselamatan dan Kesehatan Lingkungan (KKL)-PTKMR BATAN. In this intercomparison, the dose of TLD stated by participant were compared with the dose measured by Radiation Metrology Laboratory (LMR), and the results showed the differences were within 10 %, so it was satisfied. The results of intercomparison of personal dose equivalent, Hp(10) were evaluated based on ISO/IEC Guide 43-1, 1997 analysis and expressed as E n . The values of E n

  1. Measuring instruments of the Physikalisch-Technische Bundesanstalt for realization of the units of the dosimetric quantities standard ion dose, photon-equivalent dose and air-kerma

    International Nuclear Information System (INIS)

    Engelke, B.A.; Oetzmann, W.; Struppek, G.

    1988-08-01

    The realization of the units of the dosimetric quantities exposure, air-kerma and photon-equivalent dose is an important task of the Physikalisch-Technische Bundesanstalt. The report describes the measuring instruments and other technical equipment as well as the determination of the numerous corrections needed. All data and correction factors required for the realization of the units mentioned above are given in many diagrams and tables. (orig.) [de

  2. Study of the equivalent dose distribution in organs and tissues using periapical odontological radiography

    International Nuclear Information System (INIS)

    Santos, H.F.S.; Cipeli, J.F.; Fortes, M.A.B.; Federico, C.A.

    2017-01-01

    In this article presents a study of the doses obtained in periapical odontological radiography in main tissues of the head, using thermoluminescent dosemeters of type TLD-700H applied to a anthropomorphic simulator. The results indicate that the skin and salivary glands received the highest doses and the risk of calculated injury was 1.44 x 10 -6 Sv -1 per radiograph

  3. Calculation of neutron fluence to dose equivalent conversion coefficients using GEANT4; Calculo de coeficientes de fluencia de neutrons para equivalente de dose individual utilizando o GEANT4

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Rosane M.; Santos, Denison de S.; Queiroz Filho, Pedro P. de; Mauricio, CLaudia L.P.; Silva, Livia K. da; Pessanha, Paula R., E-mail: rosanemribeiro@oi.com.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2014-07-01

    Fluence to dose equivalent conversion coefficients provide the basis for the calculation of area and personal monitors. Recently, the ICRP has started a revision of these coefficients, including new Monte Carlo codes for benchmarking. So far, little information is available about neutron transport below 10 MeV in tissue-equivalent (TE) material performed with Monte Carlo GEANT4 code. The objective of this work is to calculate neutron fluence to personal dose equivalent conversion coefficients, H{sub p} (10)/Φ, with GEANT4 code. The incidence of monoenergetic neutrons was simulated as an expanded and aligned field, with energies ranging between thermal neutrons to 10 MeV on the ICRU slab of dimension 30 x 30 x 15 cm{sup 3}, composed of 76.2% of oxygen, 10.1% of hydrogen, 11.1% of carbon and 2.6% of nitrogen. For all incident energy, a cylindrical sensitive volume is placed at a depth of 10 mm, in the largest surface of the slab (30 x 30 cm{sup 2}). Physic process are included for neutrons, photons and charged particles, and calculations are made for neutrons and secondary particles which reach the sensitive volume. Results obtained are thus compared with values published in ICRP 74. Neutron fluence in the sensitive volume was calculated for benchmarking. The Monte Carlo GEANT4 code was found to be appropriate to calculate neutron doses at energies below 10 MeV correctly. (author)

  4. Total dose and dose rate radiation characterization of EPI-CMOS radiation hardened memory and microprocessor devices

    International Nuclear Information System (INIS)

    Gingerich, B.L.; Hermsen, J.M.; Lee, J.C.; Schroeder, J.E.

    1984-01-01

    The process, circuit discription, and total dose radiation characteristics are presented for two second generation hardened 4K EPI-CMOS RAMs and a first generation 80C85 microprocessor. Total dose radiation performance is presented to 10M rad-Si and effects of biasing and operating conditions are discussed. The dose rate sensitivity of the 4K RAMs is also presented along with single event upset (SEU) test data

  5. Different concentrations and volumes of p-phenylenediamine in pet. (equivalent doses) are associated with similar patch test outcomes

    DEFF Research Database (Denmark)

    Andersen, Flemming; Hamann, Carsten R; Andersen, Klaus E

    2018-01-01

    BACKGROUND: Concern about causing active sensitization when patch testing is performed with p-phenylenediamine (PPD) 1% pet. has led to a recommendation to use PPD 0.3% pet. as a potentially safer preparation. However, the dose per area of allergen delivered, and hence the risk of active...... sensitization, depend on the amount dispensed into the patch test chamber, which can vary widely. OBJECTIVE: To evaluate whether patch testing with equivalent doses of different concentrations of PPD in pet. is associated with similar outcomes. METHODS: Seventeen known PPD-sensitive subjects were patch tested...... with different volumes and concentrations of PPD in pet. that deliver the same allergen dose per unit area (6 mg of PPD 1% pet. and 20 mg of PPD 0.3% pet. in Finn Chambers®, both equivalent to ∼ 0.09 mg/cm2 ). RESULTS: Eleven patients (65%) had positive reactions to both doses; 4 patients (24%) had negative...

  6. Dose equivalent near the bone-soft tissue interface from nuclear fragments produced by high-energy protons

    Science.gov (United States)

    Shavers, M. R.; Poston, J. W.; Cucinotta, F. A.; Wilson, J. W.

    1996-01-01

    During manned space missions, high-energy nucleons of cosmic and solar origin collide with atomic nuclei of the human body and produce a broad linear energy transfer spectrum of secondary particles, called target fragments. These nuclear fragments are often more biologically harmful than the direct ionization of the incident nucleon. That these secondary particles increase tissue absorbed dose in regions adjacent to the bone-soft tissue interface was demonstrated in a previous publication. To assess radiological risks to tissue near the bone-soft tissue interface, a computer transport model for nuclear fragments produced by high energy nucleons was used in this study to calculate integral linear energy transfer spectra and dose equivalents resulting from nuclear collisions of 1-GeV protons transversing bone and red bone marrow. In terms of dose equivalent averaged over trabecular bone marrow, target fragments emitted from interactions in both tissues are predicted to be at least as important as the direct ionization of the primary protons-twice as important, if recently recommended radiation weighting factors and "worst-case" geometry are used. The use of conventional dosimetry (absorbed dose weighted by aa linear energy transfer-dependent quality factor) as an appropriate framework for predicting risk from low fluences of high-linear energy transfer target fragments is discussed.

  7. Emphysema quantification and lung volumetry in chest X-ray equivalent ultralow dose CT - Intra-individual comparison with standard dose CT.

    Science.gov (United States)

    Messerli, Michael; Ottilinger, Thorsten; Warschkow, René; Leschka, Sebastian; Alkadhi, Hatem; Wildermuth, Simon; Bauer, Ralf W

    2017-06-01

    To determine whether ultralow dose chest CT with tin filtration can be used for emphysema quantification and lung volumetry and to assess differences in emphysema measurements and lung volume between standard dose and ultralow dose CT scans using advanced modeled iterative reconstruction (ADMIRE). 84 consecutive patients from a prospective, IRB-approved single-center study were included and underwent clinically indicated standard dose chest CT (1.7±0.6mSv) and additional single-energy ultralow dose CT (0.14±0.01mSv) at 100kV and fixed tube current at 70mAs with tin filtration in the same session. Forty of the 84 patients (48%) had no emphysema, 44 (52%) had emphysema. One radiologist performed fully automated software-based pulmonary emphysema quantification and lung volumetry of standard and ultralow dose CT with different levels of ADMIRE. Friedman test and Wilcoxon rank sum test were used for multiple comparison of emphysema and lung volume. Lung volumes were compared using the concordance correlation coefficient. The median low-attenuation areas (LAA) using filtered back projection (FBP) in standard dose was 4.4% and decreased to 2.6%, 2.1% and 1.8% using ADMIRE 3, 4, and 5, respectively. The median values of LAA in ultralow dose CT were 5.7%, 4.1% and 2.4% for ADMIRE 3, 4, and 5, respectively. There was no statistically significant difference between LAA in standard dose CT using FBP and ultralow dose using ADMIRE 4 (p=0.358) as well as in standard dose CT using ADMIRE 3 and ultralow dose using ADMIRE 5 (p=0.966). In comparison with standard dose FBP the concordance correlation coefficients of lung volumetry were 1.000, 0.999, and 0.999 for ADMIRE 3, 4, and 5 in standard dose, and 0.972 for ADMIRE 3, 4 and 5 in ultralow dose CT. Ultralow dose CT at chest X-ray equivalent dose levels allows for lung volumetry as well as detection and quantification of emphysema. However, longitudinal emphysema analyses should be performed with the same scan protocol and

  8. Fast method for in-flight estimation of total dose from protons and electrons using RADE Minstrument on JUICE

    Science.gov (United States)

    Hajdas, Wojtek; Mrigakshi, Alankrita; Xiao, Hualin

    2017-04-01

    The primary concern of the ESA JUICE mission to Jupiter is the harsh particle radiation environment. Ionizing particles introduce radiation damage by total dose effects, displacement damages or single events effects. Therefore, both the total ionizing dose and the displacement damage equivalent fluence must be assessed to alert spacecraft and its payload as well as to quantify radiation levels for the entire mission lifetime. We present a concept and implementations steps for simplified method used to compute in flight a dose rate and total dose caused by protons. We also provide refinement of the method previously developed for electrons. The dose rates values are given for predefined active volumes located behind layers of materials with known thickness. Both methods are based on the electron and proton flux measurements provided by the Electron and Proton Detectors inside the Radiation Hard Electron Monitor (RADEM) located on-board of JUICE. The trade-off between method accuracy and programming limitations for in-flight computations are discussed. More comprehensive and precise dose rate computations based on detailed analysis of all stack detectors will be made during off-line data processing. It will utilize full spectral unfolding from all RADEM detector subsystems.

  9. Estimation of collective effective dose equivalent from environmental radiation and radioactive materials in Japan. A preliminary study

    International Nuclear Information System (INIS)

    Maruyama, Takashi; Noda, Yutaka; Takeshita, Mitsue; Iwai, Kazuo.

    1994-01-01

    The peaceful uses of nuclear power and radiations have been developed into a stage of practical applications for human life. Radiation causes harmful effects to human beings, although human beings receives a number of invaluable benefits from the nuclear energy and the uses of radiation. In order to examine the optimization of radiation protection in these practices, collective effective dose equivalent from environmental exposures due to natural and artificial radiations have been preliminarily evaluated using most recent data. The resultant collective doses were compared with those from medical and occupational exposures. It is noted that, in Japan, the collective effective dose from environmental radiation sources can be approximately same to that from medical exposure. (author)

  10. Evaluation of accelerated test parameters for CMOS IC total dose hardness prediction

    International Nuclear Information System (INIS)

    Sogoyan, A.V.; Nikiforov, A.Y.; Chumakov, A.I.

    1999-01-01

    The approach to accelerated test parameters evaluation is presented in order to predict CMOS IC total dose behavior in variable dose-rate environment. The technique is based on the analytical model of MOSFET parameters total dose degradation. The simple way to estimate model parameter is proposed using IC's input-output MOSFET radiation test results. (authors)

  11. Whole-body dose meters. Measurements of total activity

    International Nuclear Information System (INIS)

    Koeppe, P.; Klinikum Steglitz, Berlin

    1990-01-01

    By means of measurements using a whole-body dose meter, the course of the incorporation of radionuclides was established between April 1986 and May 1989 for unchanged conditions of alimentation, activity-conscious alimentation, and uniquely increased incorporation. Monitoring covered persons from the most different spheres of life. The incorporation is compared with the one resulting from nuclear weapons explosions in the atmosphere. (DG) [de

  12. An overview of equivalent doses in eye lens of occupational radiation workers in medical, industrial and nuclear areas

    International Nuclear Information System (INIS)

    Lima, A.R.; Silva, F.C.A. da; Hunt, J.G.

    2013-01-01

    Some epidemiological evidences were recently reviewed by the ICRP and it was suggested that, for the eye lens, the absorbed dose threshold for induction of late detriments is about 0.5 Gy. On this basis, on 2011, the ICRP has recommended changes to the occupational dose limit in planned exposure situations, reducing the eye lens dose equivalent limit of 150 mSv to 20 mSv per year, on average, during the period of 5 years, with exposure not exceeding 50 mSv in a single year. Following the ICRP recommendation, the Brazilian Commission of Nuclear Energy (CNEN) adopted immediately the new limit to the eyes lens. This study aimed to show an overview about the doses in eye lens of occupational radiation workers in situations of planned exposures in the medical, industrial and nuclear areas, emphasizing the greatest radiological risks applications. It was observed that there are some limitations, such as example, to use individual monitor calibrated on Hp(3), to assess the equivalent dose in the eye lens. This limitation obstructs some experimental studies and monitoring of the levels of radiation received in the eye lens of radiation workers. Recent studies have showed that the lenses of eyes monitoring of workers, mainly in the planned exposure, must be follow-up. However, such researches were obtained only in medical exposures, mainly in interventional medicine procedures. Studies with planned exposure on nuclear and industrial areas are really needed and will be very important due to the new recommended by ICRP dose limits. (author)

  13. Dose rate considerations in brachytherapy: biological equivalence of LDR and HDR

    International Nuclear Information System (INIS)

    Orton, C.G.

    1994-01-01

    The linear-quadratic model for cell survival and bioeffect doses is discussed and equations for low dose rate (LDR), high dose rate (HDR) and intermediate situations are presented. The model, when used to define LDR and single fractions of HDR, shows, that these correspond to irradiations lasting longer than about 14 hours or shorter than about 0.7 hours, respectively. It is shown that, for HDR to be as safe and effective as LDR, the dose-rate effect of LDR has to be replaced by the fractionation-effect of HDR. This is necessary in order to take advantage of the differential repair characteristics between late-reacting normal tissue and tumor cells at low doses and low dose rates. Using the linear-quadratic model to simulate repair mathematically, it is shown that the number of fractions required is highly dependent upon what parameters are assumed for normal tissues and tumor, as well as whether or not there is any physical advantage gained by conversion from LDR to HDR. (author). 20 refs., 7 figs

  14. Evaluation of ambient dose equivalent rates influenced by vertical and horizontal distribution of radioactive cesium in soil in Fukushima Prefecture.

    Science.gov (United States)

    Malins, Alex; Kurikami, Hiroshi; Nakama, Shigeo; Saito, Tatsuo; Okumura, Masahiko; Machida, Masahiko; Kitamura, Akihiro

    2016-01-01

    The air dose rate in an environment contaminated with (134)Cs and (137)Cs depends on the amount, depth profile and horizontal distribution of these contaminants within the ground. This paper introduces and verifies a tool that models these variables and calculates ambient dose equivalent rates at 1 m above the ground. Good correlation is found between predicted dose rates and dose rates measured with survey meters in Fukushima Prefecture in areas contaminated with radiocesium from the Fukushima Dai-ichi Nuclear Power Plant accident. This finding is insensitive to the choice for modeling the activity depth distribution in the ground using activity measurements of collected soil layers, or by using exponential and hyperbolic secant fits to the measurement data. Better predictions are obtained by modeling the horizontal distribution of radioactive cesium across an area if multiple soil samples are available, as opposed to assuming a spatially homogeneous contamination distribution. Reductions seen in air dose rates above flat, undisturbed fields in Fukushima Prefecture are consistent with decrement by radioactive decay and downward migration of cesium into soil. Analysis of remediation strategies for farmland soils confirmed that topsoil removal and interchanging a topsoil layer with a subsoil layer result in similar reductions in the air dose rate. These two strategies are more effective than reverse tillage to invert and mix the topsoil. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Modelling normal tissue isoeffect distribution in conformal radiotherapy of glioblastoma provides an alternative dose escalation pattern through hypofractionation without reducing the total dose

    International Nuclear Information System (INIS)

    Mangel, L.; Skriba, Z.; Major, T.; Polgar, C.; Fodor, J.; Somogyi, A.; Nemeth, G.

    2002-01-01

    The purpose of this study was to prove that by using conformal external beam radiotherapy (RT) normal brain structures can be protected even when applying an alternative approach of biological dose escalation: hypofractionation (HOF) without total dose reduction (TDR). Traditional 2-dimensional (2D) and conformal 3-dimensional (3D) treatment plans were prepared for 10 gliomas representing the subanatomical sites of the supratentorial brain. Isoeffect distributions were generated by the biologically effective dose (BED) formula to analyse the effect of conventionally fractionated (CF) and HOF schedules on both the spatial biological dose distribution and biological dose-volume histograms. A comparison was made between 2D-CF (2.0 Gy/day) and 3D-HOF (2.5 Gy/day) regimens, applying the same 60 Gy total doses. Integral biologically effective dose (IBED) and volumes received biologically equivalent to a dose of 54 Gy or more (V-BED54) were calculated for the lower and upper brain stem as organs of risk. The IBED values were lower with the 3D-HOF than with the 2D-CF schedule in each tumour location, means 22.7±17.1 and 40.4±16.9 in Gy, respectively (p<0.0001). The V-BED54 values were also smaller or equal in 90% of the cases favouring the 3D-HOF scheme. The means were 2.7±4.8 ccm for 3D-HOF and 10.7±12.7 ccm for 2D-CF (p=0.0006). Our results suggest that with conformal RT, fraction size can gradually be increased. HOF radiotherapy regimens without TDR shorten the treatment time and seem to be an alternative way of dose escalation in the treatment of glioblastoma

  16. Modelling normal tissue isoeffect distribution in conformal radiotherapy of glioblastoma provides an alternative dose escalation pattern through hypofractionation without reducing the total dose

    Energy Technology Data Exchange (ETDEWEB)

    Mangel, L.; Skriba, Z.; Major, T.; Polgar, C.; Fodor, J.; Somogyi, A.; Nemeth, G. [National Research Inst. for Radiobiology and Radiohygiene, Budapest (Hungary)

    2002-04-01

    The purpose of this study was to prove that by using conformal external beam radiotherapy (RT) normal brain structures can be protected even when applying an alternative approach of biological dose escalation: hypofractionation (HOF) without total dose reduction (TDR). Traditional 2-dimensional (2D) and conformal 3-dimensional (3D) treatment plans were prepared for 10 gliomas representing the subanatomical sites of the supratentorial brain. Isoeffect distributions were generated by the biologically effective dose (BED) formula to analyse the effect of conventionally fractionated (CF) and HOF schedules on both the spatial biological dose distribution and biological dose-volume histograms. A comparison was made between 2D-CF (2.0 Gy/day) and 3D-HOF (2.5 Gy/day) regimens, applying the same 60 Gy total doses. Integral biologically effective dose (IBED) and volumes received biologically equivalent to a dose of 54 Gy or more (V-BED54) were calculated for the lower and upper brain stem as organs of risk. The IBED values were lower with the 3D-HOF than with the 2D-CF schedule in each tumour location, means 22.7{+-}17.1 and 40.4{+-}16.9 in Gy, respectively (p<0.0001). The V-BED54 values were also smaller or equal in 90% of the cases favouring the 3D-HOF scheme. The means were 2.7{+-}4.8 ccm for 3D-HOF and 10.7{+-}12.7 ccm for 2D-CF (p=0.0006). Our results suggest that with conformal RT, fraction size can gradually be increased. HOF radiotherapy regimens without TDR shorten the treatment time and seem to be an alternative way of dose escalation in the treatment of glioblastoma.

  17. Estimation of the radiation strength and dose equivalent from activities produced by p+ sup 2 sup 3 sup 8 U fission reaction

    CERN Document Server

    Kawakami, H

    2002-01-01

    The decay curves of radiation and dose equivalent of mass from 72 to 171 produced by p+ sup 2 sup 3 sup 8 U fission reaction are calculated under the consideration that 1) dose equivalent by decay of each nuclide is estimated by each calculation and 2) only one isomer is considered when there are some isomers in the chain decay. Four isotopes selected to calculate the time-depend intensity in the chain decay. Total radiation is 150 times, which is difference of proton beam current, larger than the value not considered isomer. There is no problem in the following isobar, which decays after beam off, 75, 78, 79, 81, 89, 100, 101, 104, 107, 116, 138, 163, 164 and 168. The nuclides such as 81, 95, 98, 102, 108, 146, 152, 158, 165, 169 and 170 are long life, but have low or weak energy of gamma-ray. Nuclides of gas or high vapor pressure show different values from the calculation results, because total nuclide did not accumulate. This analysis showed the isomer ratio was not identified by experiments. The value is...

  18. The impact of fixed-dose combination versus free-equivalent combination therapies on adherence for hypertension: a meta-analysis.

    Science.gov (United States)

    Du, Li-Ping; Cheng, Zhong-Wei; Zhang, Yu-Xuan; Li, Ying; Mei, Dan

    2018-04-27

    Nonadherence to antihypertensive medication is considered as a reason of inadequate control of blood pressure. This meta-analysis aimed to systemically evaluate the impact of fixed-dose combination (FDC) therapy on hypertensive medication adherence compared with free-equivalent combination therapies. Articles were retrieved from MEDLINE and Embase databases using a combination of terms "fixed-dose combinations" and "adherence or compliance or persistence" and "hypertension or antihypertensive" from January 2000 to June 2017 without any language restriction. A meta-analysis was performed to parallel compare the impact of FDC vs free-equivalent combination on medicine adherence or persistence. Studies were independently reviewed by two investigators. Data from eligible studies were extracted and a meta-analysis was performed using R version 3.1.0 software. A total of nine studies scored as six of nine to eight of nine for Newcastle-Ottawa rating with 62 481 patients with hypertension were finally included for analysis. Results showed that the mean difference of medication adherence for FDC vs free-equivalent combination therapies was 14.92% (95% confidence interval, 7.38%-22.46%). Patients in FDC group were more likely to persist with their antihypertensive treatment, with a risk ratio of 1.84 (95% confidence interval, 1.00-3.39). This meta-analysis confirmed that FDC therapy, compared with free-equivalent combinations, was associated with better medication adherence or persistence for patients with hypertension. It can be reasonable for physicians, pharmacists, and policy makers to facilitate the use of FDCs for patients who need to take two or more antihypertensive drugs. ©2018 Wiley Periodicals, Inc.

  19. A study of dose equivalent for the nurses in Hirosaki University Hospital

    International Nuclear Information System (INIS)

    Kon, Masanori; Abe, Katsumi

    2001-01-01

    The annual relationships in 1997-1999 between exposure dose of those nurses engaging in full-time radiological works and the number of patients subjected to radiological examinations were investigated in authors' hospital. The annual number of those patients was rather constant. Exposure was measured by film-, carrot- and ring-badges. Eight to nine nurses engaged in radiological examinations like CT, fluoroscopy, urinary tract fluoroscopy and angiography, and other 8 nurses, therapy with sealed 137 Cs and 192 Ir and unsealed 131 I as well. No significant changes in exposure dose were observed in the former group of nurses and in the latter. The dose decreased annually to the level of the former due to skill advancement. (K.H.)

  20. An Analytical Model of Leakage Neutron Equivalent Dose for Passively-Scattered Proton Radiotherapy and Validation with Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Christopher; Newhauser, Wayne, E-mail: newhauser@lsu.edu [Department of Physics and Astronomy, Louisiana State University and Agricultural and Mechanical College, 202 Nicholson Hall, Baton Rouge, LA 70803 (United States); Mary Bird Perkins Cancer Center, 4950 Essen Lane, Baton Rouge, LA 70809 (United States); Farah, Jad [Institut de Radioprotection et de Sûreté Nucléaire, Service de Dosimétrie Externe, BP-17, 92262 Fontenay-aux-Roses (France)

    2015-05-18

    Exposure to stray neutrons increases the risk of second cancer development after proton therapy. Previously reported analytical models of this exposure were difficult to configure and had not been investigated below 100 MeV proton energy. The purposes of this study were to test an analytical model of neutron equivalent dose per therapeutic absorbed dose (H/D) at 75 MeV and to improve the model by reducing the number of configuration parameters and making it continuous in proton energy from 100 to 250 MeV. To develop the analytical model, we used previously published H/D values in water from Monte Carlo simulations of a general-purpose beamline for proton energies from 100 to 250 MeV. We also configured and tested the model on in-air neutron equivalent doses measured for a 75 MeV ocular beamline. Predicted H/D values from the analytical model and Monte Carlo agreed well from 100 to 250 MeV (10% average difference). Predicted H/D values from the analytical model also agreed well with measurements at 75 MeV (15% average difference). The results indicate that analytical models can give fast, reliable calculations of neutron exposure after proton therapy. This ability is absent in treatment planning systems but vital to second cancer risk estimation.

  1. An Analytical Model of Leakage Neutron Equivalent Dose for Passively-Scattered Proton Radiotherapy and Validation with Measurements

    International Nuclear Information System (INIS)

    Schneider, Christopher; Newhauser, Wayne; Farah, Jad

    2015-01-01

    Exposure to stray neutrons increases the risk of second cancer development after proton therapy. Previously reported analytical models of this exposure were difficult to configure and had not been investigated below 100 MeV proton energy. The purposes of this study were to test an analytical model of neutron equivalent dose per therapeutic absorbed dose (H/D) at 75 MeV and to improve the model by reducing the number of configuration parameters and making it continuous in proton energy from 100 to 250 MeV. To develop the analytical model, we used previously published H/D values in water from Monte Carlo simulations of a general-purpose beamline for proton energies from 100 to 250 MeV. We also configured and tested the model on in-air neutron equivalent doses measured for a 75 MeV ocular beamline. Predicted H/D values from the analytical model and Monte Carlo agreed well from 100 to 250 MeV (10% average difference). Predicted H/D values from the analytical model also agreed well with measurements at 75 MeV (15% average difference). The results indicate that analytical models can give fast, reliable calculations of neutron exposure after proton therapy. This ability is absent in treatment planning systems but vital to second cancer risk estimation

  2. An analytical model of leakage neutron equivalent dose for passively-scattered proton radiotherapy and validation with measurements.

    Science.gov (United States)

    Schneider, Christopher; Newhauser, Wayne; Farah, Jad

    2015-05-18

    Exposure to stray neutrons increases the risk of second cancer development after proton therapy. Previously reported analytical models of this exposure were difficult to configure and had not been investigated below 100 MeV proton energy. The purposes of this study were to test an analytical model of neutron equivalent dose per therapeutic absorbed dose  at 75 MeV and to improve the model by reducing the number of configuration parameters and making it continuous in proton energy from 100 to 250 MeV. To develop the analytical model, we used previously published H/D values in water from Monte Carlo simulations of a general-purpose beamline for proton energies from 100 to 250 MeV. We also configured and tested the model on in-air neutron equivalent doses measured for a 75 MeV ocular beamline. Predicted H/D values from the analytical model and Monte Carlo agreed well from 100 to 250 MeV (10% average difference). Predicted H/D values from the analytical model also agreed well with measurements at 75 MeV (15% average difference). The results indicate that analytical models can give fast, reliable calculations of neutron exposure after proton therapy. This ability is absent in treatment planning systems but vital to second cancer risk estimation.

  3. The new remcounter LB6411: Measurement of neutron ambient dose equivalent H*(10) according to ICRP60 with high sensitivity

    International Nuclear Information System (INIS)

    Klett, A.; Burgkhardt, B.

    1996-01-01

    Since the International Commission on Radiological Protection has issued in publication ICRP60 new recommendations on radiation protection quantities, in neutron monitoring there is now increasing Interest in commercially available instruments optimized and calibrated for the measurement of ambient dose equivalent H*(10). Therefore within a joint cooperation between the Research Center Karlsruhe and EG ampersand G Berthold the neutron-dose-rate meter LB6411 was newly developed. The detector system with integrated electronics has a 3 He proportional counter tube centered in a moderating sphere. The response between thermal energies and 20 MeV was optimized with the help of extensive MCNP Monte-Carlo calculations. The instrument has extremely high sensitivity of approximately 3 counts per nSv and can be used both as a portable or as a stationary neutron monitor. Fluence responses and angular dependencies had been measured in monoenergetic neutron beams provided by the Physikalisch-Technische Bundesanstalt (PTB) in Braunschweig, Germany. The ambient dose equivalent response of the LB6411 is reported over the whole energy range

  4. Thermal neutron equivalent doses assessment around KFUPM neutron source storage area using NTDs

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Jarad, F.; Fazal-ur-Rehman; Al-Haddad, M.N.; Al-Jarrallah, M.I.; Nassar, R

    2002-07-01

    Area passive neutron dosemeters based on nuclear track detectors (NTDs) have been used for 13 days to assess accumulated low doses of thermal neutrons around neutron source storage area of the King Fahd University of Petroleum and Minerals (KFUPM). Moreover, the aim of this study is to check the effectiveness of shielding of the storage area. NTDs were mounted with the boron converter on their surface as one compressed unit. The converter is a lithium tetraborate (Li{sub 2}B{sub 4}O{sub 7}) layer for thermal neutron detection via {sup 10}B(N,{alpha}){sup 7}Li and {sup 6}Li(n,{alpha}){sup 3}H nuclear reactions. The area passive dosemeters were installed on 26 different locations around the source storage area and adjacent rooms. The calibration factor for NTD-based area passive neutron dosemeters was found to be 8.3 alpha tracks.cm{sup -2}.{mu}Sv{sup -1} using active snoopy neutron dosemeters in the KFUPM neutron irradiation facility. The results show the variation of accumulated dose with locations around the storage area. The range of dose rates varied from as low as 40 nSv.h{sup -1} up to 11 {mu}Sv.h{sup -1}. The study indicates that the area passive neutron dosemeter was able to detect accumulated doses as low as 40 nSv.h{sup -1}, which could not be detected with the available active neutron dosemeters. The results of the study also indicate that an additional shielding is required to bring the dose rates down to background level. The present investigation suggests extending this study to find the contribution of doses from fast neutrons around the neutron source storage area using NTDs through proton recoil. The significance of this passive technique is that it is highly sensitive and does not require any electronics or power supplies, as is the case in active systems. (author)

  5. The risk equivalent of an exposure to-, versus a dose of radiation

    International Nuclear Information System (INIS)

    Bond, V.P.

    1986-01-01

    The long-term potential carcinogenic effects of low-level exposure (LLE) are addressed. The principal point discussed is linear, no-threshold dose-response curve. That the linear no-threshold, or proportional relationship is widely used is seen in the way in which the values for cancer risk coefficients are expressed - in terms of new cases, per million persons exposed, per year, per unit exposure or dose. This implies that the underlying relationship is proportional, i.e., ''linear, without threshold''. 12 refs., 9 figs., 1 tab

  6. Comparison of dose calculation algorithms in phantoms with lung equivalent heterogeneities under conditions of lateral electronic disequilibrium

    International Nuclear Information System (INIS)

    Carrasco, P.; Jornet, N.; Duch, M.A.; Weber, L.; Ginjaume, M.; Eudaldo, T.; Jurado, D.; Ruiz, A.; Ribas, M.

    2004-01-01

    An extensive set of benchmark measurement of PDDs and beam profiles was performed in a heterogeneous layer phantom, including a lung equivalent heterogeneity, by means of several detectors and compared against the predicted dose values by different calculation algorithms in two treatment planning systems. PDDs were measured with TLDs, plane parallel and cylindrical ionization chambers and beam profiles with films. Additionally, Monte Carlo simulations by meansof the PENELOPE code were performed. Four different field sizes (10x10, 5x5, 2x2, and1x1 cm 2 ) and two lung equivalent materials (CIRS, ρ e w =0.195 and St. Bartholomew Hospital, London, ρ e w =0.244-0.322) were studied. The performance of four correction-based algorithms and one based on convolution-superposition was analyzed. The correction-based algorithms were the Batho, the Modified Batho, and the Equivalent TAR implemented in the Cadplan (Varian) treatment planning system and the TMS Pencil Beam from the Helax-TMS (Nucletron) treatment planning system. The convolution-superposition algorithm was the Collapsed Cone implemented in the Helax-TMS. The only studied calculation methods that correlated successfully with the measured values with a 2% average inside all media were the Collapsed Cone and the Monte Carlo simulation. The biggest difference between the predicted and the delivered dose in the beam axis was found for the EqTAR algorithm inside the CIRS lung equivalent material in a 2x2 cm 2 18 MV x-ray beam. In these conditions, average and maximum difference against the TLD measurements were 32% and 39%, respectively. In the water equivalent part of the phantom every algorithm correctly predicted the dose (within 2%) everywhere except very close to the interfaces where differences up to 24% were found for 2x2 cm 2 18 MV photon beams. Consistent values were found between the reference detector (ionization chamber in water and TLD in lung) and Monte Carlo simulations, yielding minimal differences (0

  7. Radiation brain dose to vascular surgeons during fluoroscopically guided interventions is not effectively reduced by wearing lead equivalent surgical caps.

    Science.gov (United States)

    Kirkwood, Melissa L; Arbique, Gary M; Guild, Jeffrey B; Zeng, Katie; Xi, Yin; Rectenwald, John; Anderson, Jon A; Timaran, Carlos

    2018-03-12

    Radiation to the interventionalist's brain during fluoroscopically guided interventions (FGIs) may increase the incidence of cerebral neoplasms. Lead equivalent surgical caps claim to reduce radiation brain doses by 50% to 95%. We sought to determine the efficacy of the RADPAD (Worldwide Innovations & Technologies, Lenexa, Kan) No Brainer surgical cap (0.06 mm lead equivalent at 90 kVp) in reducing radiation dose to the surgeon's and trainee's head during FGIs and to a phantom to determine relative brain dose reductions. Optically stimulated, luminescent nanoDot detectors (Landauer, Glenwood, Ill) inside and outside of the cap at the left temporal position were used to measure cap attenuation during FGIs. To check relative brain doses, nanoDot detectors were placed in 15 positions within an anthropomorphic head phantom (ATOM model 701; CIRS, Norfolk, Va). The phantom was positioned to represent a primary operator performing femoral access. Fluorography was performed on a plastic scatter phantom at 80 kVp for an exposure of 5 Gy reference air kerma with or without the hat. For each brain location, the percentage dose reduction with the hat was calculated. Means and standard errors were calculated using a pooled linear mixed model with repeated measurements. Anatomically similar locations were combined into five groups: upper brain, upper skull, midbrain, eyes, and left temporal position. This was a prospective, single-center study that included 29 endovascular aortic aneurysm procedures. The average procedure reference air kerma was 2.6 Gy. The hat attenuation at the temporal position for the attending physician and fellow was 60% ± 20% and 33% ± 36%, respectively. The equivalent phantom measurements demonstrated an attenuation of 71% ± 2.0% (P < .0001). In the interior phantom locations, attenuation was statistically significant for the skull (6% ± 1.4%) and upper brain (7.2% ± 1.0%; P < .0001) but not for the middle brain (1.4% ± 1.0%; P = .15

  8. Using two detectors concurrently to monitor ambient dose equivalent rates in vehicle surveys of radiocesium contaminated land.

    Science.gov (United States)

    Takeishi, Minoru; Shibamichi, Masaru; Malins, Alex; Kurikami, Hiroshi; Murakami, Mitsuhiro; Saegusa, Jun; Yoneya, Masayuki

    2017-10-01

    In response to the accident at Tokyo Electric Power Company's Fukushima Dai-ichi Nuclear Power Plant (FDNPP), vehicle-borne monitoring was used to map radiation levels for radiological protection of the public. By convention measurements from vehicle-borne surveys are converted to the ambient dose equivalent rate at 1 m height in the absence of the vehicle. This allows for comparison with results from other types of survey, including surveys with hand-held or airborne instruments. To improve the accuracy of the converted results from vehicle-borne surveys, we investigated combining measurements from two detectors mounted on the vehicle at different heights above the ground. A dual-detector setup was added to a JAEA monitoring car and compared against hand-held survey meter measurements in Fukushima Prefecture. The results obtained by combining measurements from two detectors were within ±20% of the hand-held reference measurements. The mean absolute percentage deviation from the reference measurements was 7.2%. The combined results from the two detectors were more accurate than those from either the roof-mounted detector, or the detector inside the vehicle, taken alone. One issue with vehicle-borne surveys is that ambient dose equivalent rates above roads are not necessarily representative of adjacent areas. This is because radiocesium is often deficient on asphalt surfaces, as it is easily scrubbed off by rain, wind and vehicle tires. To tackle this issue, we investigated mounting heights for vehicle-borne detectors using Monte Carlo gamma-ray simulations. When radiocesium is deficient on a road compared to the adjacent land, mounting detectors high on vehicles yields results closer to the values adjacent to the road. The ratio of ambient dose equivalent rates reported by detectors mounted at different heights in a dual-detector setup indicates whether radiocesium is deficient on the road compared to the adjacent land. Copyright © 2017 Elsevier Ltd. All rights

  9. Biologically-equivalent dose and long-term survival time in radiation treatments

    International Nuclear Information System (INIS)

    Zaider, Marco; Hanin, Leonid

    2007-01-01

    Within the linear-quadratic model the biologically-effective dose (BED)-taken to represent treatments with an equal tumor control probability (TCP)-is commonly (and plausibly) calculated according to BED(D) = -log[S(D)]/α. We ask whether in the presence of cellular proliferation this claim is justified and examine, as a related question, the extent to which BED approximates an isoeffective dose (IED) defined, more sensibly, in terms of an equal long-term survival probability, rather than TCP. We derive, under the assumption that cellular birth and death rates are time homogeneous, exact equations for the isoeffective dose, IED. As well, we give a rigorous definition of effective long-term survival time, T eff . By using several sets of radiobiological parameters, we illustrate potential differences between BED and IED on the one hand and, on the other, between T eff calculated as suggested here or by an earlier recipe. In summary: (a) the equations currently in use for calculating the effective treatment time may underestimate the isoeffective dose and should be avoided. The same is the case for the tumor control probability (TCP), only more so; (b) for permanent implants BED may be a poor substitute for IED; (c) for a fractionated treatment schedule, interpreting the observed probability of cure in terms of a TCP formalism that refers to the end of the treatment (rather than T eff ) may result in a miscalculation (underestimation) of the initial number of clonogens

  10. The cyclophosphamide equivalent dose as an approach for quantifying alkylating agent exposure: a report from the Childhood Cancer Survivor Study.

    Science.gov (United States)

    Green, Daniel M; Nolan, Vikki G; Goodman, Pamela J; Whitton, John A; Srivastava, DeoKumar; Leisenring, Wendy M; Neglia, Joseph P; Sklar, Charles A; Kaste, Sue C; Hudson, Melissa M; Diller, Lisa R; Stovall, Marilyn; Donaldson, Sarah S; Robison, Leslie L

    2014-01-01

    Estimation of the risk of adverse long-term outcomes such as second malignant neoplasms and infertility often requires reproducible quantification of exposures. The method for quantification should be easily utilized and valid across different study populations. The widely used Alkylating Agent Dose (AAD) score is derived from the drug dose distribution of the study population and thus cannot be used for comparisons across populations as each will have a unique distribution of drug doses. We compared the performance of the Cyclophosphamide Equivalent Dose (CED), a unit for quantifying alkylating agent exposure independent of study population, to the AAD. Comparisons included associations from three Childhood Cancer Survivor Study (CCSS) outcome analyses, receiver operator characteristic (ROC) curves and goodness of fit based on the Akaike's Information Criterion (AIC). The CED and AAD performed essentially identically in analyses of risk for pregnancy among the partners of male CCSS participants, risk for adverse dental outcomes among all CCSS participants and risk for premature menopause among female CCSS participants, based on similar associations, lack of statistically significant differences between the areas under the ROC curves and similar model fit values for the AIC between models including the two measures of exposure. The CED is easily calculated, facilitating its use for patient counseling. It is independent of the drug dose distribution of a particular patient population, a characteristic that will allow direct comparisons of outcomes among epidemiological cohorts. We recommend the use of the CED in future research assessing cumulative alkylating agent exposure. © 2013 Wiley Periodicals, Inc.

  11. Degradation of proton depth dose distributions attributable to microstructures in lung-equivalent material

    Energy Technology Data Exchange (ETDEWEB)

    Titt, Uwe, E-mail: utitt@mdanderson.org; Mirkovic, Dragan; Mohan, Radhe [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030 (United States); Sell, Martin [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030 and Department of Medical Physics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120 (Germany); Unkelbach, Jan [Department of Radiation Oncology, Massachusetts General Hospital, 55 Fruit Street, Boston, Massachusetts 02114 (United States); Bangert, Mark [Department of Medical Physics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120 (Germany); Oelfke, Uwe [Department of Medical Physics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany and Department of Physics, The Institute of Cancer Research, 123 Old Brompton Road, London SW7 3RP (United Kingdom)

    2015-11-15

    Purpose: The purpose of the work reported here was to investigate the influence of sub-millimeter size heterogeneities on the degradation of the distal edges of proton beams and to validate Monte Carlo (MC) methods’ ability to correctly predict such degradation. Methods: A custom-designed high-resolution plastic phantom approximating highly heterogeneous, lung-like structures was employed in measurements and in Monte Carlo simulations to evaluate the degradation of proton Bragg curves penetrating heterogeneous media. Results: Significant differences in distal falloff widths and in peak dose values were observed in the measured and the Monte Carlo simulated curves compared to pristine proton Bragg curves. Furthermore, differences between simulations of beams penetrating CT images of the phantom did not agree well with the corresponding experimental differences. The distal falloff widths in CT image-based geometries were underestimated by up to 0.2 cm in water (corresponding to 0.8–1.4 cm in lung tissue), and the peak dose values of pristine proton beams were overestimated by as much as ~35% compared to measured curves or depth-dose curves simulated on the basis of true geometry. The authors demonstrate that these discrepancies were caused by the limited spatial resolution of CT images that served as a basis for dose calculations and lead to underestimation of the impact of the fine structure of tissue heterogeneities. A convolution model was successfully applied to mitigate the underestimation. Conclusions: The results of this study justify further development of models to better represent heterogeneity effects in soft-tissue geometries, such as lung, and to correct systematic underestimation of the degradation of the distal edge of proton doses.

  12. Degradation of proton depth dose distributions attributable to microstructures in lung-equivalent material

    International Nuclear Information System (INIS)

    Titt, Uwe; Mirkovic, Dragan; Mohan, Radhe; Sell, Martin; Unkelbach, Jan; Bangert, Mark; Oelfke, Uwe

    2015-01-01

    Purpose: The purpose of the work reported here was to investigate the influence of sub-millimeter size heterogeneities on the degradation of the distal edges of proton beams and to validate Monte Carlo (MC) methods’ ability to correctly predict such degradation. Methods: A custom-designed high-resolution plastic phantom approximating highly heterogeneous, lung-like structures was employed in measurements and in Monte Carlo simulations to evaluate the degradation of proton Bragg curves penetrating heterogeneous media. Results: Significant differences in distal falloff widths and in peak dose values were observed in the measured and the Monte Carlo simulated curves compared to pristine proton Bragg curves. Furthermore, differences between simulations of beams penetrating CT images of the phantom did not agree well with the corresponding experimental differences. The distal falloff widths in CT image-based geometries were underestimated by up to 0.2 cm in water (corresponding to 0.8–1.4 cm in lung tissue), and the peak dose values of pristine proton beams were overestimated by as much as ~35% compared to measured curves or depth-dose curves simulated on the basis of true geometry. The authors demonstrate that these discrepancies were caused by the limited spatial resolution of CT images that served as a basis for dose calculations and lead to underestimation of the impact of the fine structure of tissue heterogeneities. A convolution model was successfully applied to mitigate the underestimation. Conclusions: The results of this study justify further development of models to better represent heterogeneity effects in soft-tissue geometries, such as lung, and to correct systematic underestimation of the degradation of the distal edge of proton doses

  13. ORION: a computer code for evaluating environmental concentrations and dose equivalent to human organs or tissue from airborne radionuclides

    International Nuclear Information System (INIS)

    Shinohara, K.; Nomura, T.; Iwai, M.

    1983-05-01

    The computer code ORION has been developed to evaluate the environmental concentrations and the dose equivalent to human organs or tissue from air-borne radionuclides released from multiple nuclear installations. The modified Gaussian plume model is applied to calculate the dispersion of the radionuclide. Gravitational settling, dry deposition, precipitation scavenging and radioactive decay are considered to be the causes of depletion and deposition on the ground or on vegetation. ORION is written in the FORTRAN IV language and can be run on IBM 360, 370, 303X, 43XX and FACOM M-series computers. 8 references, 6 tables

  14. Estimate of the Effective Dose Equivalent to the Cypriot Population due to Diagnostic Nuclear Medicine Procedures in the Public Sector

    Energy Technology Data Exchange (ETDEWEB)

    Christofides, S [Medical Physics Department, Nicosia General Hospital (Cyprus)

    1994-12-31

    The Effective Dose Equivalent (EDE) to the Cypriot population due to Diagnostic Nuclear Medicine procedures has been estimated from data published by the Government of Cyprus, in its Health and Hospital Statistics Series for the years 1990, 1991, and 1992. The average EDE per patient was estimated to be 3,09, 3,75 and 4,01 microSievert for 1990, 1991 and 1992 respectively, while the per caput EDE was estimated to be 11,75, 15,16 and 17,09 microSieverts for 1990, 1991 and 1992 respectively, from the procedures in the public sector. (author). 11 refs, 4 tabs.

  15. Estimate of the Effective Dose Equivalent to the Cypriot Population due to Diagnostic Nuclear Medicine Procedures in the Public Sector

    International Nuclear Information System (INIS)

    Christofides, S.

    1994-01-01

    The Effective Dose Equivalent (EDE) to the Cypriot population due to Diagnostic Nuclear Medicine procedures has been estimated from data published by the Government of Cyprus, in its Health and Hospital Statistics Series for the years 1990, 1991, and 1992. The average EDE per patient was estimated to be 3,09, 3,75 and 4,01 microSievert for 1990, 1991 and 1992 respectively, while the per caput EDE was estimated to be 11,75, 15,16 and 17,09 microSieverts for 1990, 1991 and 1992 respectively, from the procedures in the public sector. (author)

  16. Evaluation of equivalent and effective dose by KAP for patient and orthopedic surgeon in vertebral compression fracture surgery

    International Nuclear Information System (INIS)

    Santos, Felipe A.; Galeano, Diego C.; Santos, William S.; Silva, Ademir X.; Souza, Susana O.; Carvalho Júnior, Albérico B.

    2017-01-01

    Clinical scenarios were virtually modeled to estimate both the equivalent and effective doses normalized by KAP (Kerma Area Product) to vertebra compression fracture surgery in patient and surgeon. This surgery is known as kyphoplasty and involves the use of X-ray equipment, the C-arm, which provides real-time images to assist the surgeon in conducting instruments inserted into the patient and in the delivery of surgical cement into the fractured vertebra. The radiation transport code used was MCNPX (Monte Carlo N-Particle eXtended) and a pair of UFHADM (University of Florida Hybrid ADult Male) virtual phantoms. The developed scenarios allowed us to calculate a set of equivalent dose (H T ) and effective dose (E) for patients and surgeons. In additional, the same scenario was calculated KAP in the tube output and was used for calculating conversion coefficients (E/KAP and H T /KAP). From the knowledge of the experimental values of KAP and the results presented in this study, it is possible to estimate absolute values of effective doses for different exposure conditions. In this work, we developed scenarios with and without the surgical table with the purpose of comparison with the existing data in the literature. The absence of the bed in the scenario promoted a percentage absolute difference of 56% in the patient effective doses in relation to scenarios calculated with a bed. Regarding the surgeon, the use of the personal protective equipment (PPE) reduces between 75% and 79% the effective dose and the use of the under table shield (UTS) reduces the effective dose of between 3% and 7%. All these variations emphasize the importance of the elaboration of virtual scenarios that approach the actual clinical conditions generating E/KAP and H T /KAP closer to the actual values. - Highlights: • Virtual scenarios of vertebra compression fracture surgery. • MC simulations using virtual anthropomorphic phantoms and surgical setups. • Estimation of E/KAP and H T /KAP

  17. Calculation of dose equivalents for photon skyshine production; Calculo da dose equivalente para fotons decorrente da producao de skyshine

    Energy Technology Data Exchange (ETDEWEB)

    Frota, Marco A.; Kelecom, Alphonse [Universidade Federal Fluminense, Niteroi, RJ (Brazil). Dept. de Biologia Geral. Lab. de Radiobiologia e Radiometria (LARARA)]. E-mail: egbakel@vm.uff.br

    2005-07-01

    Some radiation facilities are designed with little shielding in the ceiling above the accelerator. A problem may then arise as a result of the radiation scattered by the atmosphere to points at ground level outside the treatment room. Stray radiation of this type is referred to as skyshine, and the National Council on Radiation Protection and Measurements Report No. 51 (NCRP 1977) gives methods for the calculation of skyshine for accelerator facilities. McGinley (1993) has compared skyshine measurements made at an 18 MeV medical accelerator facility with values calculated using the techniques presented in NCRP Report No. 51. Measurements were made of the photon levels outside a treatment room housing a Varian 2100 deg C. The roof above the accelerator was designed for weather protection only and offered little shielding for the primary beam and scattered radiation. The distance from the treatment room floor to the roof was 4.27 m, and the primary walls were constructed of concrete 2.0 m thick.The secondary walls were fabricated of concrete 0.99 m thick. The results for the photon skyshine rate dose as a function of distance from the isocenter using Monte Carlo code, are compared with those in NCRP publication 74 and measured obtained. The photon skyshine dose rates simulated for real clinic spectra transmitted through roof range from 4.7 to 14.6 nSv.s{sup -1}. (author)

  18. Marrow toxicity of fractionated vs. single dose total body irradiation is identical in a canine model

    International Nuclear Information System (INIS)

    Storb, R.; Raff, R.F.; Graham, T.; Appelbaum, F.R.; Deeg, H.J.; Schuening, F.G.; Shulman, H.; Pepe, M.

    1993-01-01

    The authors explored in dogs the marrow toxicity of single dose total body irradiation delivered from two opposing 60 Co sources at a rate of 10 cGy/min and compared results to those seen with total body irradiation administered in 100 cGy fractions with minimum interfraction intervals of 6 hr. Dogs were not given marrow transplants. They found that 200 cGy single dose total body irradiation was sublethal, with 12 of 13 dogs showing hematopoietic recovery and survival. Seven of 21 dogs given 300 cGy single dose total body irradiation survived compared to 6 of 10 dogs given 300 cGy fractionated total body irradiation. One of 28 dogs given 400 cGy single dose total body irradiation survived compared to none of six given fractionated radiation. With granulocyte colony stimulating factor (GCSF) administered from day 0-21 after 400 cGy total body irradiation, most dogs survived with hematological recovery. Because of the almost uniform success with GCSF after 400 cGy single dose total body irradiation, a study of GCSF after 400 cGy fractionated total body irradiation was deemed not to be informative and, thus, not carried out. Additional comparisons between single dose and fractionated total body irradiation were carried out with GCSF administered after 500 and 600 cGy of total body irradiation. As with lower doses of total body irradiation, no significant survival differences were seen between the two modes of total body irradiation, and only 3 of 26 dogs studied survived with complete hematological recovery. Overall, therefore, survival among dogs given single dose total body irradiation was not different from that of dogs given fractionated total body irradiation (p = .67). Similarly, the slopes of the postirradiation declines of granulocyte and platelet counts and the rates of their recovery in surviving dogs given equal total doses of single versus fractionated total body irradiation were indistinguishable. 24 refs., 3 figs., 2 tabs

  19. Compendium of Total Ionizing Dose and Displacement Damage for Candidate Spacecraft Electronics for NASA

    Science.gov (United States)

    Cochran, Donna J.; Boutte, Alvin J.; Chen, Dakai; Pellish, Jonathan A.; Ladbury, Raymond L.; Casey, Megan C.; Campola, Michael J.; Wilcox, Edward P.; Obryan, Martha V.; LaBel, Kenneth A.; hide

    2012-01-01

    Vulnerability of a variety of candidate spacecraft electronics to total ionizing dose and displacement damage is studied. Devices tested include optoelectronics, digital, analog, linear, and hybrid devices.

  20. Muscle and plastic equivalent glass dosimeter for high-dose dosimetry

    International Nuclear Information System (INIS)

    Abdel-Rehim, F.; Maged, A.F.; Morsy, M.A.; Hashad, A.M.

    1990-01-01

    The alkali-silicate glass dosimeter is made up of 66.8% SiO 2 , 31.2% Li 2 O, 2% K 2 O. It is nearly colourless before irradiation and then takes on an amber colour with increasing doses of gamma radiation. This colouration is represented by the appearance of broad absorption bands at 405 nm and 600 nm wavelengths. The change in absorbance is linear with the absorbed dose in the range of 0.1-4.5 kGy, when measured at its 405 nm absorption band maximum. This glass dosimeter simulates low-z plastics and muscle tissue in terms of gamma-ray absorption properties over broad radiation spectra (0.1 MeV to 10 MeV). (author) 22 refs.; 4 figs.; 2 tabs

  1. SU-F-I-05: Dose Symmetry for CTDI Equivalent Measurements with Limited Angle CBCT

    Energy Technology Data Exchange (ETDEWEB)

    Singh, V [Henry Ford Hospital, Detroit, MI (United States); McKenney, S [Children’s National Medical Center, Washington, DC (United States); Sunde, P [Radcal, Inc, Monrovia, CA (United States); Feng, W [New York Presbyterian Hospital, Tenafly, NJ (United States); Bakalyar, D [Henry Ford Health System, Detroit, MI (United States)

    2016-06-15

    Purpose: CTDI measurements, useful for characterizing the x-ray output for multi-detector CT (MDCT), require a 360° rotation of the gantry; this presents a problem for cone beam CT (CBCT) due to its limited angular rotation. The purpose of this work is to demonstrate a methodology for overcoming this limited angular rotation so that CTDI measurements can also be made on CBCT systems making it possible to compare the radiation output from both types of system with a common metric. Methods: The symmetry of the CTDI phantom allows a 360° CTDI measurement to be replaced with two 180° measurements. A pencil chamber with a real-time digitizer was placed at the center of the head phantom (16 cm, PMMA) and the resulting exposure measurement from a 180° acquisition was doubled. A pair of edge measurements, each obtained with the gantry passing through the same 180 arc, was obtained with the pencil chamber at opposite edges of the diameter of the phantom and then summed. The method was demonstrated on a clinical CT scanner (Philips, Brilliance6) and then implemented on an interventional system (Siemens, Axiom Artis). Results: The equivalent CTDI measurement agreed with the conventional CTDI measurement within 8%. The discrepancy in the two measurements is largely attributed to uncertainties in cropping the waveform to a 180°acquisition. (Note: Because of the reduced fan angle in the CBCT, CTDI is not directly comparable to MDCT values when a 32 cm phantom is used.) Conclusion: The symmetry-based CTDI measurement is an equivalent measurement to the conventional CTDI measurement when the fan angle is large enough to encompass the phantom diameter. This allows a familiar metric of radiation output to be employed on systems with a limited angular rotation.

  2. A new Monte Carlo program for calculations of dose distributions within tissue equivalent phantoms irradiated from π--meson beams

    International Nuclear Information System (INIS)

    Przybilla, G.

    1980-11-01

    The present paper reports on the structure and first results from a new Monte Carlo programme for calculations of energy distributions within tissue equivalent phantoms irradiated from π - -beams. Each pion or generated secondary particle is transported until to the complete loss of its kinetic energy taking into account pion processes like multiple Coulomb scattering, pion reactions in flight and absorption of stopped pions. The code uses mainly data from experiments, and physical models have been added only in cases of lacking data. Depth dose curves for a pensil beam of 170 MeV/c within a water phantom are discussed as a function of various parameters. Isodose contours are plotted resulting from a convolution of an extended beam profile and the dose distribution of a pencil beams. (orig.) [de

  3. Experimental determination of the angular dependence factor for the dose equivalent for photons in calibration phantoms of PMMA

    International Nuclear Information System (INIS)

    Lund, E.; Carlsson, C.A.; Pernicka, F.

    1994-01-01

    The conversion coefficients from air kerma to dose equivalent at a depth of 10 mm in both a spherical and a slab phantom of PMMA have been determined for the X ray qualities: 40, 80 and 295 kV, ISO 'narrow' spectra; and for 137 Cs γ rays. The angular dependence factors have been experimentally determined for the same qualities and for different angles between 0 o and 180 o . The absorbed doses have been measured with thermoluminescence LiF dosemeters. The conversion coefficients and the angular dependence factors are generally found to agree well with calculated ones. Some minor discrepancies are found for the angular dependence factors and the 30 x 30 x 15 cm 3 PMMA slab phantom. (Author)

  4. Didactic revision of the operative magnitudes system ICRU for the evaluation of the equivalent dose in radiation external fields

    International Nuclear Information System (INIS)

    Alvarez R, J. T.

    2014-10-01

    In this work is presented in a didactic way the operative magnitudes system ICRU, showing as these magnitudes carry out an appropriate estimate of the effective equivalent doses H E and the effective dose. The objective is to present the basic concepts of the dosimetry for radiation external fields with purposes of radiological protection, because the assimilation lack and technological development of this dosimetric magnitudes system has persisted for near 50 years, in terms of practice of the radiological protection in Mexico. Also, this system is an essential part of safety basic standards of the IAEA and ICRP recommendations 26, 60, 74 and 103, as well as of the ICRU 25, 39, 43, 51 and 57. (Author)

  5. Determination of attenuation factors for mortar of barite in terms of environmental dose equivalent and effective dose

    International Nuclear Information System (INIS)

    Almeida Junior, Airton T.; Campos, L.L.R.; Araujo, F.G.S.; Santos, M.A.P.; Nogueira, M.S.

    2014-01-01

    This work addresses the characterization of barite mortars used as Xray shielding materials through the following quantities: mass attenuation coefficient, air kerma, effective dose and ambient dose - H⁎(10). The experiment was carried out with the use of the following reference qualities: RQR4, RQR6, RQR9 e RQR10, specified in accordance with norm IEC 61267: Medical diagnostic Xray equipment - radiation conditions for use in the determination of characteristics. In this study values was determined experimentally for the attenuation of the Cream barite (density 2.99g/cm 3 , collected in the state of Sao Paulo), Purple barite (density 2.95g/cm 3 , collected in the state of Bahia) and White barite (density 3.10g/cm 3 , collected in the state of Paraiba). These materials, in the form of mortar, were disposed in the form of squares namely poof bodies, whose dimensions were 10 x 10 cm and thickness ranging from 3 to 15 mm approximately. In the experimental procedure, these proof bodies were irradiated with a Pantak, model HF320 industrial X-ray apparatus. The potentials applied to the respective X-ray tube were: 60kV, 80kV, 120kV and 150kV at a constant current of 1mA. The attenuation responses in function of thickness, for each of the materials analyzed, were used to draw the attenuation and transmission curves. The efficiency of the barite studied concerning the capacity to attenuate X-ray radiation for X-ray beams ranging from 60 to 150 kV indicated

  6. Neutron spectrometry and determination of neutron ambient dose equivalents in different LINAC radiotherapy rooms

    International Nuclear Information System (INIS)

    Domingo, C.; Garcia-Fuste, M.J.; Morales, E.; Amgarou, K.; Terron, J.A.; Rosello, J.; Brualla, L.; Nunez, L.; Colmenares, R.; Gomez, F.; Hartmann, G.H.; Sanchez-Doblado, F.; Fernandez, F.

    2010-01-01

    A project has been set up to study the effect on a radiotherapy patient of the neutrons produced around the LINAC accelerator head by photonuclear reactions induced by photons above ∼8 MeV. These neutrons may reach directly the patient, or they may interact with the surrounding materials until they become thermalised, scattering all over the treatment room and affecting the patient as well, contributing to peripheral dose. Spectrometry was performed with a calibrated and validated set of Bonner spheres at a point located at 50 cm from the isocenter, as well as at the place where a digital device for measuring neutrons, based on the upset of SRAM memories induced by thermal neutrons, is located inside the treatment room. Exposures have taken place in six LINAC accelerators with different energies (from 15 to 23 MV) with the aim of relating the spectrometer measurements with the readings of the digital device under various exposure and room geometry conditions. The final purpose of the project is to be able to relate, under any given treatment condition and room geometry, the readings of this digital device to patient neutron effective dose and peripheral dose in organs of interest. This would allow inferring the probability of developing second malignancies as a consequence of the treatment. Results indicate that unit neutron fluence spectra at 50 cm from the isocenter do not depend on accelerator characteristics, while spectra at the place of the digital device are strongly influenced by the treatment room geometry.

  7. Development and use of a fifteen year-old equivalent mathematical phantom for internal dose calculations

    International Nuclear Information System (INIS)

    Jones, R.M.; Poston, J.W.; Hwang, J.L.; Jones, T.D.; Warner, G.G.

    1976-06-01

    The existence of a phantom based on anatomical data for the average fifteen-year-old provides for a proficient means of obtaining estimates of absorbed dose for children of that age. Dimensions representative of an average fifteen-year-old human, obtained from various biological and medical research, were transformed into a mathematical construct of idealized shapes of the exterior, skeletal system, and internal organs of a human. The idealization for an average adult presently in use by the International Commission on Radiological Protection was used as a basis for design. The mathematical equations describing the phantom were developed to be readily adaptable to present-day methods of dose estimation. Typical exposure situations in nuclear medicine have previously been modeled for existing phantoms. With no further development of the exposure model necessary, adaptation to the fifteen-year-old phantom demonstrated the utility of the design. Estimates of absorbed dose were obtained for the administration of two radiopharmaceuticals, /sup 99m/Tc-sulfur colloid and /sup 99m/Tc-DMSA

  8. Evaluation of dose equivalent to the people accompanying patients in diagnostic radiology using MCNP4C Monte Carlo code

    International Nuclear Information System (INIS)

    Mehdizadeh, S.; Faghihi, R.; Sina, S.; Zehtabian, M.

    2007-01-01

    Complete text of publication follows. Objective: X rays used in diagnostic radiology contribute a major share to population doses from man-made sources of radiation. In some branches of radiology, it is necessary that another person stay in the imaging room and immobilize the patient to carry out radiological operation. ICRP 70 recommends that this should be done by parents or accompanying nursing or ancillary personnel and not in any case by radiation workers. Methods: Dose measurements were made previously using standard methods employing LiF TLD-100 dosimeters. A TLD card was installed on the main trunk of the body of the accompanying people where the maximum dose was probable. In this research the general purpose Monte Carlo N-particle radiation transport computer code (MCNP4C) is used to calculate the equivalent dose to the people accompanying patients exposed to radiation scattered from the patient (Without protective clothing). To do the simulations, all components of the geometry are placed within an air-filled box. Two homogeneous water phantoms are used to simulate the patient and the accompanying person. The accompanying person leans against the table at one side of the patient. Finally in case of source specification, only the focus of the X-ray tube is modelled, i.e. as a standard MCNP point source emitting a cone of photons. Photon stopping material is used as a collimator model to reduce the circular cross section of the cone to a rectangle. The X-ray spectra to be used in the MCNP simulations are generated with spectrum generator software, taking the X-ray voltage and all filtration applied in the clinic as input parameters. These calculations are done for different patient sizes and for different radiological operations. Results: In case of TL dosimetry, for a group of 100 examinations, the dose equivalents ranged from 0.01 μsv to 0.13 msv with the average of 0.05 msv. The results are seen to be in close agreement with Monte Carlo simulations

  9. Development of a Reference System for the determination of the personal dose equivalent and the constancy of X- Ray beams

    International Nuclear Information System (INIS)

    Vivolo, Vitor

    2006-01-01

    A reference system for the determination of the personal dose equivalent, Hp (10), and a quality control program of X-ray equipment used In radioprotection require the periodic verification of the X-ray beams constancy. In this work, two parallel-plate ionization chambers were developed with inner electrodes of different materials, and inserted into PMMA slab phantoms. One ionization chamber was developed with inner carbon electrodes and the other with inner aluminium electrodes. The two ionization chambers can be used as a Tandem system. The different energy response of the two ionization chambers allowed the development of the Tandem system that is very useful for the checking of the constancy of beam qualities. Standard intermediary energy X-ray beams (from 48 keV to 118 keV), radioprotection level, were established through the development of a dosimetric methodology and the analysis of their physical parameters. The ionization chambers were studied in relation to their operational characteristics, and they were calibrated in X-ray beams (radioprotection, diagnostic radiology, mammography and radiotherapy levels) in accordance to international recommendations. They presented good performance. The determination procedure of personal dose equivalent, Hp (10), was established. (author)

  10. A new formula for normal tissue complication probability (NTCP) as a function of equivalent uniform dose (EUD).

    Science.gov (United States)

    Luxton, Gary; Keall, Paul J; King, Christopher R

    2008-01-07

    To facilitate the use of biological outcome modeling for treatment planning, an exponential function is introduced as a simpler equivalent to the Lyman formula for calculating normal tissue complication probability (NTCP). The single parameter of the exponential function is chosen to reproduce the Lyman calculation to within approximately 0.3%, and thus enable easy conversion of data contained in empirical fits of Lyman parameters for organs at risk (OARs). Organ parameters for the new formula are given in terms of Lyman model m and TD(50), and conversely m and TD(50) are expressed in terms of the parameters of the new equation. The role of the Lyman volume-effect parameter n is unchanged from its role in the Lyman model. For a non-homogeneously irradiated OAR, an equation relates d(ref), n, v(eff) and the Niemierko equivalent uniform dose (EUD), where d(ref) and v(eff) are the reference dose and effective fractional volume of the Kutcher-Burman reduction algorithm (i.e. the LKB model). It follows in the LKB model that uniform EUD irradiation of an OAR results in the same NTCP as the original non-homogeneous distribution. The NTCP equation is therefore represented as a function of EUD. The inverse equation expresses EUD as a function of NTCP and is used to generate a table of EUD versus normal tissue complication probability for the Emami-Burman parameter fits as well as for OAR parameter sets from more recent data.

  11. A new formula for normal tissue complication probability (NTCP) as a function of equivalent uniform dose (EUD)

    International Nuclear Information System (INIS)

    Luxton, Gary; Keall, Paul J; King, Christopher R

    2008-01-01

    To facilitate the use of biological outcome modeling for treatment planning, an exponential function is introduced as a simpler equivalent to the Lyman formula for calculating normal tissue complication probability (NTCP). The single parameter of the exponential function is chosen to reproduce the Lyman calculation to within ∼0.3%, and thus enable easy conversion of data contained in empirical fits of Lyman parameters for organs at risk (OARs). Organ parameters for the new formula are given in terms of Lyman model m and TD 50 , and conversely m and TD 50 are expressed in terms of the parameters of the new equation. The role of the Lyman volume-effect parameter n is unchanged from its role in the Lyman model. For a non-homogeneously irradiated OAR, an equation relates d ref , n, v eff and the Niemierko equivalent uniform dose (EUD), where d ref and v eff are the reference dose and effective fractional volume of the Kutcher-Burman reduction algorithm (i.e. the LKB model). It follows in the LKB model that uniform EUD irradiation of an OAR results in the same NTCP as the original non-homogeneous distribution. The NTCP equation is therefore represented as a function of EUD. The inverse equation expresses EUD as a function of NTCP and is used to generate a table of EUD versus normal tissue complication probability for the Emami-Burman parameter fits as well as for OAR parameter sets from more recent data

  12. Morphological differences in the response of mouse small intestine to radiobiologically equivalent doses of X and neutron irradiation

    International Nuclear Information System (INIS)

    Carr, K.E.; Hamlet, R.; Nias, A.H.; Watt, C.

    1984-01-01

    A scale has been developed to describe the effects of radiation on small intestinal villi. The scale has been used to compare the damage done to the villi in the period 0-5 days after irradiation by X-irradiation or neutron irradiation, using 10 Gy X-rays and 5 Gy neutrons, doses which are radiobiologically equivalent when assessed by the microcolony assay method. Use of the scale indicates that the damage done to the villi by neutrons is greater than that produced by X-rays. This has implications for the interpretation of radiobiological equivalent doses (R.B.E.). Resin light microscopy and transmission electron microscopy (T.E.M.) have also been used to examine small intestinal damage after 10 Gy X-irradiation and 5 Gy neutron irradiation. Differences include variations in crypt shape, mitotic activity and the proportion of crypts which are heavily parasitised. As well as the differences in villous shape which have been reflected in the different values on the scoring system, there are also variations in the response of the constituent cells of the epithelial compartment of the villi. In general, the effect of the neutron irradiation is more severe than that of the X-rays, particularly as would be suggested by a simple quantitation of crypt regeneration

  13. Role of the parameters involved in the plan optimization based on the generalized equivalent uniform dose and radiobiological implications

    International Nuclear Information System (INIS)

    Widesott, L; Strigari, L; Pressello, M C; Landoni, V; Benassi, M

    2008-01-01

    We investigated the role and the weight of the parameters involved in the intensity modulated radiation therapy (IMRT) optimization based on the generalized equivalent uniform dose (gEUD) method, for prostate and head-and-neck plans. We systematically varied the parameters (gEUD max and weight) involved in the gEUD-based optimization of rectal wall and parotid glands. We found that the proper value of weight factor, still guaranteeing planning treatment volumes coverage, produced similar organs at risks dose-volume (DV) histograms for different gEUD max with fixed a = 1. Most of all, we formulated a simple relation that links the reference gEUD max and the associated weight factor. As secondary objective, we evaluated plans obtained with the gEUD-based optimization and ones based on DV criteria, using the normal tissue complication probability (NTCP) models. gEUD criteria seemed to improve sparing of rectum and parotid glands with respect to DV-based optimization: the mean dose, the V 40 and V 50 values to the rectal wall were decreased of about 10%, the mean dose to parotids decreased of about 20-30%. But more than the OARs sparing, we underlined the halving of the OARs optimization time with the implementation of the gEUD-based cost function. Using NTCP models we enhanced differences between the two optimization criteria for parotid glands, but no for rectum wall

  14. Estimation of the radiation strength, dose equivalent and mean gamma-ray energy form p+ sup 2 sup 3 sup 8 U fission products

    CERN Document Server

    Kawakami, H

    2003-01-01

    On 100 isobars from 72 to 171 mass number, the radiation strength, dose equivalent and mean gamma-ray energy from p+ sup 2 sup 3 sup 8 U fission products at Tandem accelerator facility were estimated on the basis of data of proton induced fission mass yield by T. Tsukada. In order to control radiation, the decay curves of radiation of each mass after irradiation were estimated and illustrated. These calculation results showed 1) the peak of p+ sup 2 sup 3 sup 8 U fission products is 101 and 133 mass number. 2) gamma-ray strength of target ion source immediately after irradiation is 3.12x10 sup 1 sup 1 (Radiation/s) when it repeated 4 cycles of UC sub 2 (2.6 g/cm sup 2) target radiated by 30 MeV and 3 mu A proton for 5 days and then cooled for 2 days. It decreased to 3.85x10 sup 1 sup 0 and 6.7x10 sup 9 (Radiation/s) after one day and two weeks cooling, respectively. 3) Total dose equivalent is 3.8x10 sup 4 (mu S/h) at 1 m distance without shield. 4) There are no problems on control the following isobars, beca...

  15. The consequences of a reduction in the administratively applied maximum annual dose equivalent level for an individual in a group of occupationally exposed workers

    International Nuclear Information System (INIS)

    Harrison, N.T.

    1980-02-01

    An analysis is described for predicting the consequences of a reduction in the administratively applied maximum dose equivalent level to individuals in a group of workers occupationally exposed to ionising radiations, for the situation in which no changes are made to the working environment. This limitation of the maximum individual dose equivalent is accommodated by allowing the number of individuals in the working group to increase. The derivation of the analysis is given, together with worked examples, which highlight the important assumptions that have been made and the conclusions that can be drawn. The results are obtained in the form of the capacity of the particular working environment to accommodate the limitation of the maximum individual dose equivalent, the increase in the number of workers required to carry out the productive work and any consequent increase in the occupational collective dose equivalent. (author)

  16. The interpretation of quartz optically stimulated luminescence equivalent dose versus time plots

    International Nuclear Information System (INIS)

    Bailey, R.M.

    2000-01-01

    Numerical modelling has shown that the form of the quartz OSL shine plateau (hereafter 'D e (t)-plot') is influenced by the effects of phototransferred TL in the ∼110 deg. C region. It is suggested also that the presence of multiple OSL components (as described by Partial bleaching and the decay form characteristics of quartz OSL. Radiat. Meas., 27, 123-136. The form of the optically stimulated luminescence signal of quartz: implications of dating. Unpublished PhD thesis, University of London) affects the form of the D e (t)-plot. Laboratory measurements of a fully reset and artificially dosed sample yielded non-flat D e (t)-plots, the deviation being greater for the larger of the two simulated palaeodoses, in accordance with theoretical predictions. It is suggested that the so-called 'shine plateau' test is of limited use in assessing the bleaching history of quartz sediments

  17. Fluence to Dose Equivalent Conversion Coefficients for Evaluation of Accelerator Radiation Environments

    International Nuclear Information System (INIS)

    Thomas, Ralph H.; Zeman, Gary H.

    2001-01-01

    The derivation of a set of conversion functions for the expression of neutron fluence measurements in terms of Effective Dose, E, is described. Four functions in analytical form are presented, covering the neutron energy range from 2.5 10-8 to 10+4 MeV, for the interpretation of fluence measurements in the typical irradiation conditions experienced around high-energy proton accelerators such as the Bevatron. For neutron energies below 200 MeV the analytical functions were modeled after the ISO and ROT conversion coefficients in ICRU 57. For neutron energies above 200 MeV, the analytical function was derived from an analysis of recent published data. Sample calculations using either the analytical expressions or the tabulated conversion coefficients from which the analytical expressions are derived show agreement to better than plus/minus 5%

  18. MOSFET dosimeter depth-dose measurements in heterogeneous tissue-equivalent phantoms at diagnostic x-ray energies

    International Nuclear Information System (INIS)

    Jones, A.K.; Pazik, F.D.; Hintenlang, D.E.; Bolch, W.E.

    2005-01-01

    The objective of the present study was to explore the use of the TN-1002RD metal-oxide-semiconductor field effect transistor (MOSFET) dosimeter for measuring tissue depth dose at diagnostic photon energies in both homogeneous and heterogeneous tissue-equivalent materials. Three cylindrical phantoms were constructed and utilized as a prelude to more complex measurements within tomographic physical phantoms of pediatric patients. Each cylindrical phantom was constructed as a stack of seven 5-cm-diameter and 1-cm-thick discs of materials radiographically representative of either soft tissue (S), bone (B), or lung tissue (L) at diagnostic photon energies. In addition to a homogeneous phantom of soft tissue (SSSSSSS), two heterogeneous phantoms were constructed: SSBBSSS and SBLLBSS. MOSFET dosimeters were then positioned at the interface of each disc, and the phantoms were then irradiated at 66 kVp and 200 mAs. Measured values of absorbed dose at depth were then compared to predicated values of point tissue dose as determined via Monte Carlo radiation transport modeling. At depths exceeding 2 cm, experimental results matched the computed values of dose with high accuracy regardless of the dosimeter orientation (epoxy bubble facing toward or away from the x-ray beam). Discrepancies were noted, however, between measured and calculated point doses near the surface of the phantom (surface to 2 cm depth) when the dosimeters were oriented with the epoxy bubble facing the x-ray beam. These discrepancies were largely eliminated when the dosimeters were placed with the flat side facing the x-ray beam. It is therefore recommended that the MOSFET dosimeters be oriented with their flat sides facing the beam when they are used at shallow depths or on the surface of either phantoms or patients

  19. Assessment of fast and thermal neutron ambient dose equivalents around the KFUPM neutron source storage area using nuclear track detectors

    Energy Technology Data Exchange (ETDEWEB)

    Fazal-ur-Rehman [Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)]. E-mail: fazalr@kfupm.edu.sa; Al-Jarallah, M.I. [Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Abu-Jarad, F. [Radiation Protection Unit, Environmental Protection Department, Saudi Aramco, P. O. Box 13027, Dhahran 31311 (Saudi Arabia); Qureshi, M.A. [Center for Applied Physical Sciences, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2005-11-15

    A set of five {sup 241}Am-Be neutron sources are utilized in research and teaching at King Fahd University of Petroleum and Minerals (KFUPM). Three of these sources have an activity of 16Ci each and the other two are of 5Ci each. A well-shielded storage area was designed for these sources. The aim of the study is to check the effectiveness of shielding of the KFUPM neutron source storage area. Poly allyl diglycol carbonate (PADC) Nuclear track detectors (NTDs) based fast and thermal neutron area passive dosimeters have been utilized side by side for 33 days to assess accumulated low ambient dose equivalents of fast and thermal neutrons at 30 different locations around the source storage area and adjacent rooms. Fast neutron measurements have been carried out using bare NTDs, which register fast neutrons through recoils of protons, in the detector material. NTDs were mounted with lithium tetra borate (Li{sub 2}B{sub 4}O{sub 7}) converters on their surfaces for thermal neutron detection via B10(n,{alpha})Li6 and Li6(n,{alpha})H3 nuclear reactions. The calibration factors of NTD both for fast and thermal neutron area passive dosimeters were determined using thermoluminescent dosimeters (TLD) with and without a polyethylene moderator. The calibration factors for fast and thermal neutron area passive dosimeters were found to be 1.33 proton tracks cm{sup -2}{mu}Sv{sup -1} and 31.5 alpha tracks cm{sup -2}{mu}Sv{sup -1}, respectively. The results show variations of accumulated dose with the locations around the storage area. The fast neutron dose equivalents rates varied from as low as 182nSvh{sup -1} up to 10.4{mu}Svh{sup -1} whereas those for thermal neutron ranged from as low as 7nSvh{sup -1} up to 9.3{mu}Svh{sup -1}. The study indicates that the area passive neutron dosimeter was able to detect dose rates as low as 7 and 182nSvh{sup -1} from accumulated dose for thermal and fast neutrons, respectively, which were not possible to detect with the available active neutron

  20. Radiation quality and effective dose equivalent of alpha particles from radon decay products indoors: uncertainties in risk estimation

    Energy Technology Data Exchange (ETDEWEB)

    Al-Affan, I.A. (Velindre Hospital, Whitchurch, Cardiff (United Kingdom))

    1994-01-01

    In order to make a better estimate of cancer risk due to radon the radiation quality of alpha particles emitted from the element and its daughters has been re-assessed. In particular, uncertainties in all components involved in the calculations of the effective dose E, have been investigated. This has been done in the light of the recent draft report of the ICRU on quantities and units for use in radiation protection (Allisy et al (1991) ICRU NEWS 2). On the assumption of an indoor radon concentration of 30 Bq.m[sup -3], microdose spectra have been calculated for alpha particles hitting lung cells at different depths. Then the mean quality factor Q-bar in the lung, dose equivalent H[sub T] to the lung and the effective dose have been calculated. A comparison between lung cancer risk from radon and that arising from diagnostic X rays to the chest is made. A suggestion to make the lung weighting factor w[sub T] a function of the fraction of lung cells hit is discussed. (Author).

  1. Thyroid equivalent doses due to radioiodine-131 intake for evacuees from Fukushima Daiichi Nuclear Power Plant accident

    Energy Technology Data Exchange (ETDEWEB)

    Tokonami, Shinji; Sorimachi, Atsuyuki; Kashiwakura, Ikuo [Hirosaki University, Institute of Radiation Emergency Medicine, Hirosaki, Aomori (Japan); Hosoda, Masahiro [Hirosaki University, Graduate School of Health Sciences, Hirosaki, Aomori (Japan); Akiba, Suminori [Kagoshima University, Graduate School of Medical and Dental Sciences, Kagoshima (Japan); Balonov, Mikhail [Protection Laboratory, Institute of Radiation Hygiene, Petersburg (Russian Federation)

    2012-11-15

    A primary health concern among residents and evacuees in affected areas immediately after a nuclear accident is the internal exposure of the thyroid to radioiodine, particularly I-131, and subsequent thyroid cancer risk. In Japan, the natural disasters of the earthquake and tsunami in March 2011 destroyed an important function of the Fukushima Daiichi Nuclear Power Plant (F1-NPP) and a large amount of radioactive material was released to the environment. Here we report for the first time extensive measurements of the exposure to I-131 revealing I-131 activity in the thyroid of 46 out of the 62 residents and evacuees measured. The median thyroid equivalent dose was estimated to be 4.2 mSv and 3.5 mSv for children and adults, respectively, much smaller than the mean thyroid dose in the Chernobyl accident (490 mSv in evacuees). Maximum thyroid doses for children and adults were 23 mSv and 33 mSv, respectively. (author)

  2. Oral tranexamic acid is equivalent to topical tranexamic acid without drainage in primary total hip arthroplasty: A double-blind randomized clinical trial.

    Science.gov (United States)

    Luo, Ze-Yu; Wang, Duan; Meng, Wei-Kun; Wang, Hao-Yang; Pan, Hui; Pei, Fu-Xing; Zhou, Zong-Ke

    2018-05-01

    To compare the efficacy of multiple doses of oral tranexamic acid (TXA) with topical TXA administration in reducing blood loss following total hip arthroplasty (THA). In this double-blinded trial, 117 patients undergoing primary THA were randomized to receive 2 g TXA orally 2 h preoperatively, and two doses of 1 g TXA postoperatively (oral group) or 3 g of TXA topical administration in the operating room (topical group). The primary outcome was a reduction in hemoglobin concentration. Other outcomes-such as blood loss, TXA-related cost (¥), length of hospital stay (days), complications such as pulmonary thromboembolism (PE), deep vein thrombosis (DVT), and infection, blood coagulation and fibrinolysis, and hip function-were recorded. The mean reduction in hemoglobin level was similar between the oral and topical groups (3.07 g/dL compared with 3.12 g/dL; p = 0.85). Similarly, there was no significant difference in the mean total blood loss between oral and topical administration (863 mL compared with 902 mL; p = 0.62). Three patients received an allogeneic blood transfusion, including one patient in the oral group and two patients in the topical group (p = 0.55). The oral group had a significantly lower TXA-related cost than the topical group: ¥944 and ¥4359, respectively (p = 0.01). No PE, DVT, cardiac infarction or renal failure occurred during the 90-day follow-up. The coagulation and fibrinolysis parameters were similar between the two groups. Oral TXA is equivalent to topical TXA administration in the reduction of blood loss in the setting of primary THA without drainage. Copyright © 2018. Published by Elsevier Ltd.

  3. Beta-ray depth dose in tissue equivalent material due to gaseous radioactive effluents from nuclear power plants

    International Nuclear Information System (INIS)

    Schadt, W.W.

    1978-01-01

    The magnitude of the absorbed dose to skin from beta particles emitted by the radionuclides in gaseous effluents from boiling water nuclear power reactors is investigated in this dissertation. Using the radionuclide release patterns of F. Brutschy and the beta dosimetry methods of M. Berger, an equation is derived which gives the dose rate in rads per day when the total radionuclide concentration is one microcurie per gram of air. The coefficients in the equation are presented for a wide range of reactor gas hold-up times (48 minutes to 6 days) and plume environmental transit time (0.5 to 60 minutes). The beta dose rates at the skin surface are found to range from 3.9 to 26.7 rads per day. An upper limit of the relative standard deviation in the dose rate is estimated to be 30 percent. The techniques used to develop the equation are applied to data from the Millstone Nuclear Power Station obtained during the summer of 1972. The beta dose at a site 1.7 miles from the reactor is determined to have been 675 millirads per year at the skin surface and 476 millirads per year at a depth of 200 micrometers. At a site 5.1 miles from the reactor these dose rates were 138 and 100 millirads per year respectively

  4. Reduced recanalization rates of the great saphenous vein after endovenous laser treatment with increased energy dosing: definition of a threshold for the endovenous fluence equivalent.

    Science.gov (United States)

    Proebstle, Thomas Michael; Moehler, Thomas; Herdemann, Sylvia

    2006-10-01

    Recent reports indicated a correlation between the amount of energy released during endovenous laser treatment (ELT) of the great saphenous vein (GSV) and the success and durability of the procedure. Our objective was to analyze the influence of increased energy dosing on immediate occlusion and recanalization rates after ELT of the GSV. GSVs were treated with either 15 or 30 W of laser power by using a 940-nm diode laser with continuous fiber pullback and tumescent local anesthesia. Patients were followed up prospectively with duplex ultrasonography at day 1 and at 1, 3, 6, and 12 months. A total of 114 GSVs were treated with 15 W, and 149 GSVs were treated with 30 W. The average endovenous fluence equivalents were 12.8 +/- 5.1 J/cm2 and 35.1 +/- 15.6 J/cm2, respectively. GSV occlusion rates according to the method of Kaplan and Meier for the 15- and 30-W groups were 95.6% and 100%, respectively, at day 1, 90.4% and 100% at 3 months, and 82.7% and 97.0% at 12 months after ELT (log-rank; P = .001). An endovenous fluence equivalent exceeding 20 J/cm2 was associated with durable GSV occlusion after 12 months' follow-up, thus suggesting a schedule for dosing of laser energy with respect to the vein diameter. Higher dosing of laser energy shows a 100% immediate success rate and a significantly reduced recanalization rate during 12 months' follow-up.

  5. Characterization of thermal neutron fields for calibration of neutron monitors in accordance with great equivalent dose environment H⁎(10)

    International Nuclear Information System (INIS)

    Silva, Larissa P. S. da; Silva, Felipe S.; Fonseca, Evaldo S.; Patrao, Karla C.S.; Pereira, Walsan W.

    2017-01-01

    The Laboratório Brasileiro de Nêutrons do Instituto de Radioproteção e Dosimetria (IRD/CNEN) has developed and built a thermal neutron flux facility to provide neutron fluence for dosimeters (Astuto, 2014). This fluency is obtained by four 16 Ci sources 241 AmBe (α, n) positioned around the channel positioned in the center of the Thermal Flow Unit (UFT). The UFT was built with blocks of paraffin with graphite addition and graphite blocks of high purity to obtain a central field with a homogeneous thermal neutron fluence for calibration purposes with the following measurements: 1.2 x 1.2 x 1.2 m 3 . The objective of this work is to characterize several points, in the thermal energy range, in terms of the equivalent ambient dose quantity H⁎(10) for calibration and irradiation of monitors neutrons

  6. Alkaline earth metabolism: a model useful in calculating organ burdens, excretion rates and committed effective dose equivalent conversion factors

    International Nuclear Information System (INIS)

    Johnson, J.R.; Myers, R.C.

    1981-01-01

    Two mathematical models of alkaline earth metabolism in man have been developed from the postulates given in ICRP Publication 20. Both models have recycling between the organs and blood included explicitly, and the first one retains the power function used by the ICRP for diminution in mineral bone from being available for resorption by blood. In the second model, this diminution is represented by secondary compartments in mineral bone. Both models give good agreement with the retention functions developed in ICRP Publication 20. The second one has been incorporated into a larger model which includes the lung and G.I. tract. This overall model has been used to calculate organ burdens excretion rates, and committed effective dose equivalent factors for the more important radioisotopes of the alkaline earth elements for inhalation and ingestion exposures. (author)

  7. The impact of ICRP 60 recommendations on the dose equivalent in low- and high energy neutron fields

    Energy Technology Data Exchange (ETDEWEB)

    Jakes, J; Schraube, H [GSF-Forschungszentrum Neuberg, D-85758 Oberschleissheim (Germany). Inst. fuer Strahlenschutz

    1996-12-31

    The objectives of this study was to determine the impact of the increased risk factors for neutrons after ICRP 60 on the operational dose equivalent quantities at a few neutron fields selected with the respect to cover the broad variety of neutron spectra: (1) Cadarache calibration assembly, with average neutron energy around 0.6 MeV, designed to simulate realistic neutron spectra at workplaces. This assembly is basically composed of an almost spherical {sup 238}U converter irradiated by 14.6 MeV neutrons from an accelerator target, placed at its center, and a scattering chamber consisting of a cylindrical polyethylene duct and a series of additional shieldings; (2) Neutron spectra at exposed workplaces in nuclear power plants; (3) Moderated spectra of {sup 252}Cf fission source; (4) Neutron spectra behind a shielding made of the iron (the average energy 5.,89 MeV) and concrete (the average energy 46.51 MeV), respectively; (5) Cosmic rays induced neutron spectra measured on the top of the Zugspitze (2968 m) where there is the average neutron energy around 40 MeV. From the derived neutron spectra, the mean quality factors and conversion factors h after ICRP 21 and ICRP 60, respectively, were calculated. The dose equivalent conversion factors were taken for the region below 20 MeV, and the energy region above 20 MeV. The results show that the operational quantities were affected predominately in the low energy fields, where the changes are given by a factor of 1,3 for the neutron fields given above. As has been expected, the impact of the new recommendations depends on the shape of the neutron spectra. Therefore, this factor can be much higher in the fields where the intermediate energy region is dominant, which is the case of moderated and scattered spectra at some places in the nuclear power plant and around containers with the spent fuel elements. (J.K.) 9 refs.

  8. Optimization of artificial neural networks for the reconstruction of the neutrons spectrum and their equivalent doses

    International Nuclear Information System (INIS)

    Reyes A, A.; Ortiz R, J. M.; Reyes H, A.; Castaneda M, R.; Solis S, L. O.; Vega C, H. R.

    2014-08-01

    In this work was used the robust design methodology of artificial neural networks to determine a good topology of net able to solve with efficiency the problems of neutrons spectrometry and dosimetry. For the design of the topology of optimized net 36 different net architectures based on an orthogonal arrangement with a configuration L 9 (3 4 ), L 4 (3 2 ) were trained. For the training of the neural networks, was used a computer code developed in the ambient of Mat lab programming, which automates the process and analysis of the information, reducing the time used in this activity considerably for the investigator. For the training of the propagation nets forward was utilized a neutrons spectrum compendium published by the International Atomic Energy Agency, where of the total 80% was used for the training and 20% for the test, it trained with an inverse propagation algorithm being the entrance data the count rates corresponding to the 7 spheres of the spectrometric system of Bonner spheres, as exit data, the neural network obtains the neutrons spectrum expressed in 60 energy groups and are calculated of simultaneous way 15 dosimetric quantities. (Author)

  9. Neutron equivalent dose rates at the surroundings of the electron linear accelerator operated by the university of Sao Paulo - Physics institute

    International Nuclear Information System (INIS)

    Yanagihara, L.S.

    1984-01-01

    For the determination of the neutron dose rates at the surroundings of an electron linear accelerators it is necessary the knowledge of the neutron spectrum or its mean energy, because the conversion factor of the flux in equivalent dose rates, is strongly dependent on the neutron energy. Taking this fact into consideration, equivalent dose rates were determined in the three representative sites of the IF/USP Linear Electron Accelerator. Also, due to the radiation field be pulsed, a theoretical and experimental study has been realized to evaluate the effect produced by the variation of the field on the detector. (author)

  10. Impact of total ionizing dose on the electromagnetic susceptibility of a single bipolar transistor

    International Nuclear Information System (INIS)

    Doridant, A.; Jarrix, S.; Raoult, J.; Blain, A.; Dusseau, L.; Chatry, N.; Calvel, P.; Hoffmann, P.

    2012-01-01

    Space or military electronic components are subject to both electromagnetic fields and total ionizing dose. This paper deals with the electromagnetic susceptibility of a discrete low frequency transistor subject to total ionizing dose deposition. The electromagnetic susceptibility is investigated on both non-irradiated and irradiated transistors mounted in common emitter configuration. The change in susceptibility to 100 MHz-1.5 GHz interferences lights up a synergy effect between near field electromagnetic waves and total ionizing dose. Physical mechanisms leading to changes in signal output are detailed. (authors)

  11. Low-dose total skin electron beam therapy for cutaneous lymphoma : Minimal risk of acute toxicities.

    Science.gov (United States)

    Kroeger, Kai; Elsayad, Khaled; Moustakis, Christos; Haverkamp, Uwe; Eich, Hans Theodor

    2017-12-01

    Low-dose total skin electron beam therapy (TSEBT) is attracting increased interest for the effective palliative treatment of primary cutaneous T‑cell lymphoma (pCTCL). In this study, we compared toxicity profiles following various radiation doses. We reviewed the records of 60 patients who underwent TSEBT for pCTCL between 2000 and 2016 at the University Hospital of Munster. The treatment characteristics of the radiotherapy (RT) regimens and adverse events (AEs) were then analyzed and compared. In total, 67 courses of TSEBT were administered to 60 patients. Of these patients, 34 (51%) received a standard dose with a median surface dose of 30 Gy and 33 patients (49%) received a low dose with the median surface dose of 12 Gy (7 salvage low-dose TSEBT courses were administered to 5 patients). After a median follow-up of 15 months, the overall AE rate was 100%, including 38 patients (57%) with grade 2 and 7 (10%) with grade 3 AEs. Patients treated with low-dose TSEBT had significantly fewer grade 2 AEs than those with conventional dose regimens (33 vs. 79%, P dose regimen compared to those with the conventional dose regimens (6 vs. 15%, P = 0.78). Multiple/salvage low-dose TSEBT courses were not associated with an increased risk of acute AEs. Low-dose TSEBT regimens are associated with significantly fewer grade 2 acute toxicities compared with conventional doses of TSEBT. Repeated/Salvage low-dose TSEBT, however, appears to be tolerable and can even be applied safely in patients with cutaneous relapses.

  12. Determination of the total indicative dose in drinking and mineral waters

    International Nuclear Information System (INIS)

    Flesch, K.; Schulz, H.; Knappik, R.; Koehler, M.

    2006-01-01

    In Europe and Germany administrative regulations exist for the surveillance of the total indicative dose of water supplied for human consumption. This parameter, which cannot be analyzed directly, has to be calculated using nuclide specific activity concentration and age specific dose conversion factors and consumption rates. Available calculation methods differ regarding the used radionuclides, consumption rates and whether they use age specific dose conversion factors or not. In Germany administrative guidelines for the determination of the total indicative dose are still not available. As they have analyzed a large number of waters in the past, the authors derive a praxis orientated concept for the determination of the total indicative dose which respects radiological, analytical and hydrochemical aspects as well. Finally it is suggested to handle sparkling waters in the same manner as drinking waters. (orig.)

  13. The ambient dose equivalent at flight altitudes: a fit to a large set of data using a Bayesian approach

    International Nuclear Information System (INIS)

    Wissmann, F; Reginatto, M; Moeller, T

    2010-01-01

    The problem of finding a simple, generally applicable description of worldwide measured ambient dose equivalent rates at aviation altitudes between 8 and 12 km is difficult to solve due to the large variety of functional forms and parametrisations that are possible. We present an approach that uses Bayesian statistics and Monte Carlo methods to fit mathematical models to a large set of data and to compare the different models. About 2500 data points measured in the periods 1997-1999 and 2003-2006 were used. Since the data cover wide ranges of barometric altitude, vertical cut-off rigidity and phases in the solar cycle 23, we developed functions which depend on these three variables. Whereas the dependence on the vertical cut-off rigidity is described by an exponential, the dependences on barometric altitude and solar activity may be approximated by linear functions in the ranges under consideration. Therefore, a simple Taylor expansion was used to define different models and to investigate the relevance of the different expansion coefficients. With the method presented here, it is possible to obtain probability distributions for each expansion coefficient and thus to extract reliable uncertainties even for the dose rate evaluated. The resulting function agrees well with new measurements made at fixed geographic positions and during long haul flights covering a wide range of latitudes.

  14. Radium equivalent activity of building materials and gamma ray dose rates in ordinary houses of Sao Paulo, Brazil

    International Nuclear Information System (INIS)

    Campos, M.P.; Pecequilo, B.R.S.

    1994-01-01

    The external radiation exposure from natural radioactivity represents, approximately, 50% of the average annual dose caused to the human body by all natural and artificial radiation sources. Natural radioactivity in building materials is the most important source of external radiation exposure in dwellings because of the gamma rays emitted from potassium 40 and member of the uranium 238 and thorium 232 decay chains. Concrete is one of the most potential sources of elevated radiation exposure, however, little is known about the natural radioactivity of Brazilian construction materials. A study to predict the exposure rates of several ordinary houses built almost of concrete, consisting of 38 samples of 6 different materials was conducted by using high resolution gamma-ray spectrometry. The radium equivalent activity was calculated for all 38 samples in order to compare the specific activities of the construction materials containing different amounts of radium, thorium, and potassium. The effective dose rate due to the indoor gamma radiation from the building materials was performed following the 1988 UNSCEAR procedures

  15. A phantom for assessing the personal dose equivalent, H{sub P}(10); Um fantoma para a avaliacao do equivalente de dose pessoal, H{sub P}(10).

    Energy Technology Data Exchange (ETDEWEB)

    Santoro, C.; Filho, J.A [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Departamento de Energia Nuclear; Santos, M.A.P.; Filho, L.C.G., E-mail: chsantoro@gmail.com, E-mail: masantos@cnen.gov.br, E-mail: l.filho@cnen.gov.br, E-mail: jaf@ufpe.br [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil)

    2013-10-15

    Characteristics of a phantom designed to evaluate the personal dose equivalent, H{sub P}(10), and appropriate for photographic dosimetry are presented. It is called HP(10) phantom due to cavities constructed to insert dosimetric films at a depth of 10 mm. The H{sub P}(10) phantom is irradiated with ionizing radiation energy, E, from 45 to 1250 keV, with doses ranging from 0.2 to 50 mSv. It is positioned in the direction α = 0 °, and the radiation field focusing perpendicular to its front surface. So, are established calibration curves of dosimeters in the position conventionally true and quantities H{sub P}(10). It made a comparison between the responses obtained with the H{sub P}(10) phantom and responses obtained when using the calibration procedure recommended by ISO dosimeters. The ISO recommends getting the air kerma, Ka, for photons at test point of the radiation field by an ionization chamber. And through conversion coefficients, h{sub pK} (10; E, α), becomes the air kerma for H{sub P}(10). The ISO 4037-3 recommendation has been studied by researchers to ensure that the low energy spectral differences occur in radiation fields which are generated by various X-ray equipment, and induce changes in the percentages of conversion coefficients on the order of 10% to 90% . On the basis of the recommendations ISO, this article develops phantom able to assess the dose to the influence of scattering and absorption of radiation, its implications with respect to dosimetry, providing improvement in the assessment of doses. (author)

  16. Simulation of Shielding Effects on the Total Dose Observed in TDE of KISAT-1

    Directory of Open Access Journals (Sweden)

    Sung-Joon Kim

    2001-06-01

    Full Text Available The threshold voltage shift observed in TDE (Total Dose Experiment on board the KITSAT-1 is converted into dose (rad(SiO2 usinsg the result of laboratory calibration with Co-60 gamma ray source in KAERI (Korea Atomic Energy Research Institute. Simulation using the NASA radiation model of geomagnetosphere verifies that the dose difference between RADFET1 and RADFET3 observed on KITSAT-1 comes from the difference in shielding thickness at the position of these RADFETs.

  17. Effect of γ-dose rate and total dose interrelation on the polymeric hydrogel: A novel injectable male contraceptive

    International Nuclear Information System (INIS)

    Jha, Pradeep K.; Jha, Rakhi; Gupta, B.L.; Guha, Sujoy K.

    2010-01-01

    Functional necessity to use a particular range of dose rate and total dose of γ-initiated polymerization to manufacture a novel polymeric hydrogel RISUG (reversible inhibition of sperm under guidance) made of styrene maleic anhydride (SMA) dissolved in dimethyl sulphoxide (DMSO), for its broad biomedical application explores new dimension of research. The present work involves 16 irradiated samples. They were tested by fourier transform infrared spectroscopy, matrix assisted laser desorption/ionization-TOF, field emission scanning electron microscopy, high resolution transmission electron microscopy, etc. to see the interrelation effect of gamma dose rates (8.25, 17.29, 20.01 and 25.00 Gy/min) and four sets of doses (1.8, 2.0, 2.2 and 2.4 kGy) on the molecular weight, molecular weight distribution and porosity analysis of the biopolymeric drug RISUG. The results of randomized experiment indicated that a range of 18-24 Gy/min γ-dose rate and 2.0-2.4 kGy γ-total doses is suitable for the desirable in vivo performance of the contraceptive copolymer.

  18. Characterization of Radiation Hardened Bipolar Linear Devices for High Total Dose Missions

    Science.gov (United States)

    McClure, Steven S.; Harris, Richard D.; Rax, Bernard G.; Thorbourn, Dennis O.

    2012-01-01

    Radiation hardened linear devices are characterized for performance in combined total dose and displacement damage environments for a mission scenario with a high radiation level. Performance at low and high dose rate for both biased and unbiased conditions is compared and the impact to hardness assurance methodology is discussed.

  19. Compendium of Current Total Ionizing Dose and Displacement Damage Results from NASA GSFC and NEPP

    Science.gov (United States)

    Topper, Alyson D.; Campola, Michael J.; Chen, Dakai; Casey, Megan C.; Yau, Ka-Yen; Label, Kenneth A.; Cochran, Donna J.; O'Bryan, Martha V.

    2017-01-01

    Total ionizing dose and displacement damage testing was performed to characterize and determine the suitability of candidate electronics for NASA space utilization. Devices tested include opto-electronics, digital, analog, linear bipolar devices, and hybrid devices.

  20. Recent Total Ionizing Dose and Displacement Damage Compendium of Candidate Electronics for NASA Space Systems

    Science.gov (United States)

    Cochran, Donna J.; Boutte, Alvin J.; Campola, Michael J.; Carts, Martin A.; Casey, Megan C.; Chen, Dakai; LaBel, Kenneth A.; Ladbury, Raymond L.; Lauenstein, Jean-Marie; Marshall, Cheryl J.; hide

    2011-01-01

    Vulnerability of a variety of candidate spacecraft electronics to total ionizing dose and displacement damage is studied. Devices tested include optoelectronics, digital, analog, linear bipolar devices, and hybrid devices.

  1. The Role of Electron Transport and Trapping in MOS Total-Dose Modeling

    International Nuclear Information System (INIS)

    Flament, O.; Fleetwood, D.M.; Leray, J.L.; Paillet, P.; Riewe, L.C.; Winokur, P.S.

    1999-01-01

    Deep and shallow electron traps form in irradiated thermal SiO 2 as a natural response to hole transport and trapping. The density and stability of these defects are discussed, as are their implications for total-dose modeling

  2. Total dose effects on the matching properties of deep submicron MOS transistors

    International Nuclear Information System (INIS)

    Wang Yuxin; Hu Rongbin; Li Ruzhang; Chen Guangbing; Fu Dongbing; Lu Wu

    2014-01-01

    Based on 0.18 μm MOS transistors, for the first time, the total dose effects on the matching properties of deep submicron MOS transistors are studied. The experimental results show that the total dose radiation magnifies the mismatch among identically designed MOS transistors. In our experiments, as the radiation total dose rises to 200 krad, the threshold voltage and drain current mismatch percentages of NMOS transistors increase from 0.55% and 1.4% before radiation to 17.4% and 13.5% after radiation, respectively. PMOS transistors seem to be resistant to radiation damage. For all the range of radiation total dose, the threshold voltage and drain current mismatch percentages of PMOS transistors keep under 0.5% and 2.72%, respectively. (semiconductor devices)

  3. Using FDG-PET activity as a surrogate for tumor cell density and its effect on equivalent uniform dose calculation

    International Nuclear Information System (INIS)

    Zhou Sumin; Wong, Terence Z.; Marks, Lawrence B.

    2004-01-01

    The concept of equivalent uniform dose (EUD) has been suggested as a means to quantitatively consider heterogeneous dose distributions within targets. Tumor cell density/function is typically assumed to be uniform. We herein propose to use 18 F-labeled 2-deoxyglucose (FDG) positron emission tomography (PET) tumor imaging activity as a surrogate marker for tumor cell density to allow the EUD concept to include intratumor heterogeneities and to study its effect on EUD calculation. Thirty-one patients with lung cancer who had computerized tomography (CT)-based 3D planning and PET imaging were studied. Treatment beams were designed based on the information from both the CT and PET scans. Doses were calculated in 3D based on CT images to reflect tissue heterogeneity. The EUD was calculated in two different ways: first, assuming a uniform tumor cell density within the tumor target; second, using FDG-PET activity (counts/cm 3 ) as a surrogate for tumor cell density at different parts of tumor to calculate the functional-imaging-weighted EUD (therefore will be labeled fEUD for convenience). The EUD calculation can be easily incorporated into the treatment planning process. For 28/31 patients, their fEUD and EUD differed by less than 6%. Twenty-one of these twenty-eight patients had tumor volumes 3 . In the three patients with larger tumor volume, the fEUD and EUD differed by 8%-14%. Incorporating information from PET imaging to represent tumor cell density in the EUD calculation is straightforward. This approach provides the opportunity to include heterogeneity in tumor function/metabolism into the EUD calculation. The difference between fEUD and EUD, i.e., whether including or not including the possible tumor cell density heterogeneity within tumor can be significant with large tumor volumes. Further research is needed to assess the usefulness of the fEUD concept in radiation treatment

  4. Comparison of average glandular dose in screen-film and digital mammography using breast tissue-equivalent phantom

    International Nuclear Information System (INIS)

    Shin, Gwi Soon; Kim, Jung Min; Kim, You Hyun; Choi, Jong Hak; Kim, Chang Kyun

    2007-01-01

    In recent years, mammography system is changed rapidly from conventional screen-film system to digital system for application to screening and diagnosis. Digital mammography system provides several advantages over screen-film mammography system. According to the information provided by the manufacturer, digital mammography system offers radiation dose reduction in comparison with screen-film mammography system, because of digital detector, particularly direct digital detector has higher x-ray absorption efficiency than screen-film combination or imaging plate (IP). We measured average glandular doses (ADG) in screen-film mammography (SFM) system with slow screen-film combination, computed mammography (CM) system, indirect digital mammography (IDM) system and direct digital mammography (DDM) system using breast tissue-equivalent phantom (glandularity 30%, 50% and 70%). The results were shown as follows: AGD values for DDM system were highest than those for other systems. Although automatic exposure control (AEC) mode was selected, the curve of the AGD values against thickness or glandularity increased significantly for the SFM system with the uniform target/filter (Mo/Mo) combination. Therefore, the AGD values for the high energy examinations were highest in the SFM system, and those for the low energy examinations were highest in the DDM system. But the curve of the AGD values against thickness and glandularity increased gently for CM system with the automatic selection of the target/filter combination (from Mo/Mo to Mo/Rh or from Mo/Rh to Rh/Rh), and the AGD values were lowest. Consequently, the parameters in mammography for each exposure besides detection efficiency play an important role in order to estimate a patient radiation dose

  5. Analysis of Surface Dose Refer to Distance between Beam Spoiler and Patient in Total Body Irradiation

    International Nuclear Information System (INIS)

    Choi, Jong Hwan; Kim, Jong Sik; Choi, Ji Min; Shin, Eun Hyuk; Song, Ki Won; Park, Young Hwan

    2007-01-01

    Total body irradiation is used to kill the total malignant cell and for immunosuppression component of preparatory regimens for bone-marrow restitution of patients. Beam spoiler is used to increase the dose to the superficial tissues. This paper finds the property of the distance between beam spoiler and patient. Set-up conditions are 6 MV-Xray, 300 MU, SAD = 400 cm, field size = 40 x 40 cm 2 . The parallel plate chamber located in surface, midpoint and exit of solid water phantom. The surface dose is measured while the distance between beam spoiler and patient is altered. Because it should be found proper distance. The solid water phantom is fixer and beam spoiler is moving. Central dose of phantom is 10.7 cGy and exit dose is 6.7 cGy. In case of distance of 50 cm to 60 cm between beam spoiler and solid water phantom, incidence dose is 14.58-14.92 cGy. Therefore, The surface dose was measured 99.4-101% with got near most to the prescription dose. In clinical case, distance between beam spoiler and patient affect surface dose. If once 50-60 cm of distance between beam spoiler and patient, surface dose of patient got near prescription dose. It would be taken distance between beam spoiler and patient into account in clinical therapy.

  6. Estimation of the dose distribution within, and total dose to, the body of an acutely overexposed person

    International Nuclear Information System (INIS)

    Beer, G.P. de; Feather, J.I.; Oude, A. de; Language, A.E.

    1981-01-01

    In a case of accidental overexposure of a person, it is important to obtain a reliable value of the whole body dose as well as of the dose distribution within the body. Any follow-up treatment based only on the clinical effects as and when they appear, may result in insufficient or even erroneous therapy. In this respect knowledge of total dose and its distribution within the body may be a valuable aid in deciding on the follow-up treatment, taking into account the latent nature of the clinical effects. The calculated whole body dose and its distribution within the body of a person overexposed to a 192 Ir radiography source, are compared to experimentally determined values. In both cases the calculated values prove to be of sufficient accuracy to serve as an aid in decisions on the follow-up treatment. (author)

  7. Individual external monitoring system for gamma and X ray evaluation of the individual dose equivalent 'HP(10)', utilizing a photographic dosimetry technique

    International Nuclear Information System (INIS)

    Santoro, Christiana; Filho, Joao Antonio

    2008-01-01

    Full text: Individual monitoring evaluates external sources of ionizing radiation X, γ, β and n, to which workers are occupationally exposed, for ensuring safe and acceptable radiological conditions in their places of employment. The dose received by workers should attend the limits authorized by national regulatory organs. Nowadays, there are two radiometric unit systems, based on resolutions of the National Nuclear Energy Commission (NNEC) and the International Commission on Radiation Units and Measurements (ICRU); in the conventional (NNEC) system, the doses received by workers are evaluated through the individual dose H x , where dosemeters used on surface of thorax are calibrated in terms of air kerma; in the recent system (ICRU), the doses are evaluated through the individual dose equivalent H P (d), where dosemeters are calibrated in terms of dose from phantom. The recent system improves the method of evaluation, by taking into account the scattering effect and absorption of radiation in the human body. This work adapts a photographic dosimetry service to the recent ICRU publications, for evaluation of individual monitoring, in function of the individual dose equivalent H P (10) of strong penetrating radiation. For this, a methodology based on linear programming and determination of calibration curves is used for radiation capacities, wide (W) and narrow (N) spectra, as described by the International Organization for Standardization (ISO 4037-1, 1995). These calibration curves offer better accuracy in the determination of doses and energy, which will improve the quality of the service given to society. The results show that the values of individual dose equivalent, evaluated at intervals of 0.2 to 200 mSv, have lower significant uncertainties (10%) than those recommended by the ICRP 75, for individual monitoring; therefore, the evaluation system for developed doses attends the new recommendations proposed by International Commissions. From what has been

  8. Impact of radiation technique, radiation fraction dose, and total cisplatin dose on hearing. Retrospective analysis of 29 medulloblastoma patients

    International Nuclear Information System (INIS)

    Scobioala, Sergiu; Kittel, Christopher; Ebrahimi, Fatemeh; Wolters, Heidi; Eich, Hans Theodor; Parfitt, Ross; Matulat, Peter; Am Zehnhoff-Dinnesen, Antoinette

    2017-01-01

    To analyze the incidence and degree of sensorineural hearing loss (SNHL) resulting from different radiation techniques, fractionation dose, mean cochlear radiation dose (D mean ), and total cisplatin dose. In all, 29 children with medulloblastoma (58 ears) with subclinical pretreatment hearing thresholds participated. Radiotherapy (RT) and cisplatin had been applied sequentially according to the HIT MED Guidance. Audiological outcomes up to the latest follow-up (median 2.6 years) were compared. Bilateral high-frequency SNHL was observed in 26 patients (90%). No significant differences were found in mean hearing threshold between left and right ears at any frequency. A significantly better audiological outcome (p < 0.05) was found after tomotherapy at the 6 kHz bone-conduction threshold (BCT) and left-sided 8 kHz air-conduction threshold (ACT) than after a combined radiotherapy technique (CT). Fraction dose was not found to have any impact on the incidence, degree, and time-to-onset of SNHL. Patients treated with CT had a greater risk of SNHL at high frequencies than tomotherapy patients even though D mean was similar. Increase in severity of SNHL was seen when the total cisplatin dose reached above 210 mg/m 2 , with the highest abnormal level found 8-12 months after RT regardless of radiation technique or fraction dose. The cochlear radiation dose should be kept as low as possible in patients who receive simultaneous cisplatin-based chemotherapy. The risk of clinically relevant HL was shown when D mean exceeds 45 Gy independent of radiation technique or radiation regime. Cisplatin ototoxicity was shown to have a dose-dependent effect on bilateral SNHL, which was more pronounced in higher frequencies. (orig.) [de

  9. Occupational dose equivalent limits

    International Nuclear Information System (INIS)

    Goldfinch, E.P.

    1980-01-01

    This paper considers methods of limiting individual radiation risks by recognizing the variation of risk with age at exposure, taking into account both somatic and genetic risks and proposes a simple formula for controlling individual cumulative exposure and hence risk. (Author)

  10. Xerostomia after radiotherapy. What matters - mean total dose or dose to each parotid gland?

    International Nuclear Information System (INIS)

    Tribius, S.; Sommer, J.; Prosch, C.; Bajrovic, A.; Kruell, A.; Petersen, C.; Muenscher, A.; Blessmann, M.; Todorovic, M.; Tennstedt, P.

    2013-01-01

    Purpose: Xerostomia is a debilitating side effect of radiotherapy in patients with head and neck cancer. We undertook a prospective study of the effect on xerostomia and outcomes of sparing one or both parotid glands during radiotherapy for patients with squamous cell carcinoma of the head and neck. Methods and materials: Patients with locally advanced squamous cell carcinoma of the head and neck received definitive (70 Gy in 2 Gy fractions) or adjuvant (60-66 Gy in 2 Gy fractions) curative-intent radiotherapy using helical tomotherapy with concurrent chemotherapy if appropriate. Group A received < 26 Gy to the left and right parotids and group B received < 26 Gy to either parotid. Results: The study included 126 patients; 114 (55 in group A and 59 in group B) had follow-up data. There were no statistically significant differences between groups in disease stage. Xerostomia was significantly reduced in group A vs. group B (p = 0.0381). Patients in group A also had significantly less dysphagia. Relapse-free and overall survival were not compromised in group A: 2-year relapse-free survival was 86% vs. 72% in group B (p = 0.361); 2-year overall survival was 88% and 76%, respectively (p = 0.251). Conclusion: This analysis suggests that reducing radiotherapy doses to both parotid glands to < 26 Gy can reduce xerostomia and dysphagia significantly without compromising survival. Sparing both parotids while maintaining target volume coverage and clinical outcome should be the treatment goal and reporting radiotherapy doses delivered to the individual parotids should be standard practice. (orig.)

  11. Xerostomia after radiotherapy. What matters - mean total dose or dose to each parotid gland?

    Energy Technology Data Exchange (ETDEWEB)

    Tribius, S.; Sommer, J.; Prosch, C.; Bajrovic, A.; Kruell, A.; Petersen, C. [University Medical Center Hamburg-Eppendorf, Hamburg (Germany). Dept. of Radiation Oncology; Muenscher, A. [University Medical Center Hamburg-Eppendorf, Hamburg (Germany). Dept. of Otorhinolaryngology and Head and Neck Surgery; Blessmann, M. [University Medical Center Hamburg-Eppendorf, Hamburg (Germany). Dept. of Oral and Maxillofacial Surgery; Todorovic, M. [University Medical Center Hamburg-Eppendorf, Hamburg (Germany). Dept. of Medical Physics; Tennstedt, P. [University Medical Center Hamburg-Eppendorf, Hamburg (Germany). Martini-Clinic, Prostate Cancer Center

    2013-03-15

    Purpose: Xerostomia is a debilitating side effect of radiotherapy in patients with head and neck cancer. We undertook a prospective study of the effect on xerostomia and outcomes of sparing one or both parotid glands during radiotherapy for patients with squamous cell carcinoma of the head and neck. Methods and materials: Patients with locally advanced squamous cell carcinoma of the head and neck received definitive (70 Gy in 2 Gy fractions) or adjuvant (60-66 Gy in 2 Gy fractions) curative-intent radiotherapy using helical tomotherapy with concurrent chemotherapy if appropriate. Group A received < 26 Gy to the left and right parotids and group B received < 26 Gy to either parotid. Results: The study included 126 patients; 114 (55 in group A and 59 in group B) had follow-up data. There were no statistically significant differences between groups in disease stage. Xerostomia was significantly reduced in group A vs. group B (p = 0.0381). Patients in group A also had significantly less dysphagia. Relapse-free and overall survival were not compromised in group A: 2-year relapse-free survival was 86% vs. 72% in group B (p = 0.361); 2-year overall survival was 88% and 76%, respectively (p = 0.251). Conclusion: This analysis suggests that reducing radiotherapy doses to both parotid glands to < 26 Gy can reduce xerostomia and dysphagia significantly without compromising survival. Sparing both parotids while maintaining target volume coverage and clinical outcome should be the treatment goal and reporting radiotherapy doses delivered to the individual parotids should be standard practice. (orig.)

  12. Estimation of the total absorbed dose by quartz in retrospective conditions

    International Nuclear Information System (INIS)

    Correcher, V.; Delgado, A.

    2003-01-01

    The estimation of the total absorbed dose is of great interest in areas affected by a radiological accident when no conventional dosimetric systems are available. This paper reports about the usual methodology employed in dose reconstruction from the thermoluminescence (TL) properties of natural quartz, extracted from selected ceramic materials (12 bricks) picked up in the Chernobyl area. It has been possible to evaluate doses under 50mGy after more than 11 years later since the radiological accident happened. The main advance of this fact is the reduction of the commonly accepted limit dose estimation more than 20 times employing luminescence methods. (Author) 11 refs

  13. Dose calculation method with 60-cobalt gamma rays in total body irradiation

    International Nuclear Information System (INIS)

    Scaff, Luiz Alberto Malaguti

    2001-01-01

    Physical factors associated to total body irradiation using 60 Co gamma rays beams, were studied in order to develop a calculation method of the dose distribution that could be reproduced in any radiotherapy center with good precision. The method is based on considering total body irradiation as a large and irregular field with heterogeneities. To calculate doses, or doses rates, of each area of interest (head, thorax, thigh, etc.), scattered radiation is determined. It was observed that if dismagnified fields were considered to calculate the scattered radiation, the resulting values could be applied on a projection to the real size to obtain the values for dose rate calculations. In a parallel work it was determined the variation of the dose rate in the air, for the distance of treatment, and for points out of the central axis. This confirm that the use of the inverse square law is not valid. An attenuation curve for a broad beam was also determined in order to allow the use of absorbers. In this work all the adapted formulas for dose rate calculations in several areas of the body are described, as well time/dose templates sheets for total body irradiation. The in vivo dosimetry, proved that either experimental or calculated dose rate values (achieved by the proposed method), did not have significant discrepancies. (author)

  14. Single event effects and total ionizing dose effects of typical VDMOSFET devices

    International Nuclear Information System (INIS)

    Lou Jianshe; Cai Nan; Liu Jiaxin; Wu Qinzhi; Wang Jia

    2012-01-01

    In this work, single event effects and total ionizing dose effects of typical VDMOSFET irradiated by 60 Co γ-rays and 252 Cf source were studied. The single event burnout and single event gate rupture (SEB/SEGR) effects were investigated, and the relationship between drain-source breakdown voltage and ionizing dose was obtained. The results showed that the VDMOSFET devices were sensitive to SEB and SEGR, and measures to improve their resistance to SEB and SEGR should be considered seriously for their space applications. The drain-source breakdown voltage was sensitive to total ionizing dose effects as the threshold voltage. In assessing the devices' resistance to the total ionizing dose effects, both the threshold voltage and the drain-source breakdown voltage should be taken into account. (authors)

  15. Estimation of annual dose equivalent (internal and external) for new thorium plant workers of IRE OSCOM, Orissa

    International Nuclear Information System (INIS)

    Vidya Sagar, D.; Tripathy, S.K.; Khan, A.H.; Maharana, L.N.

    2001-01-01

    In addition to thoron, thoron daughters and gamma radiation, the New Thorium Plant workers are exposed to long lived alpha emitters due to inhalation of thorium fine dust present in the working environment. Air samplers were used for measurement of thoron daughters and long lived alpha concentration. Each sample was counted for 3-4 hours for alpha activity and the long lived alpha concentration was calculated after taking the self absorption effect of the deposit on the filter paper into account. Internal dose of individual workers due to thoron daughter concentration and long lived alpha concentration was determined using time weighted factors. Based on the results, it is observed that contribution of thoron daughters, long lived alpha and external gamma is about 2 mSv /y, 1 mSv /y and 5 mSv/y, respectively, to total dose to the workers. (author)

  16. Serum protein concentration in low-dose total body irradiation of normal and malnourished rats

    International Nuclear Information System (INIS)

    Viana, W.C.M.; Lambertz, D.; Borges, E.S.; Neto, A.M.O.; Lambertz, K.M.F.T.; Amaral, A.

    2016-01-01

    Among the radiotherapeutics' modalities, total body irradiation (TBI) is used as treatment for certain hematological, oncological and immunological diseases. The aim of this study was to evaluate the long-term effects of low-dose TBI on plasma concentration of total protein and albumin using prematurely and undernourished rats as animal model. For this, four groups with 9 animals each were formed: Normal nourished (N); Malnourished (M); Irradiated Normal nourished (IN); Irradiated Malnourished (IM). At the age of 28 days, rats of the IN and IM groups underwent total body gamma irradiation with a source of cobalt-60. Total protein and Albumin in the blood serum was quantified by colorimetry. This research indicates that procedures involving low-dose total body irradiation in children have repercussions in the reduction in body-mass as well as in the plasma levels of total protein and albumin. Our findings reinforce the periodic monitoring of total serum protein and albumin levels as an important tool in long-term follow-up of pediatric patients in treatments associated to total body irradiation. - Highlights: • Low-dose total body irradiation (TBI) in children have repercussions in their body-mass. • Long-term total protein and albumin levels are affected by TBI. • The monitoring of total protein and albumin levels are useful in the follow-up of TBI pediatric patients.

  17. Dose characteristics of total-skin electron-beam irradiation with six-dual electron fields

    International Nuclear Information System (INIS)

    Choi, Tae Jin; Kim, Jin Hee; Kim, Ok Bae

    1998-01-01

    To obtain the uniform dose at limited depth to entire surface of the body, the dose characteristics of degraded electron beam of the large target-skin distance and the dose distribution of the six-dual electron fields were investigated. The experimental dose distributions included the depth dose curve, spatial dose and attenuated electron beam were determined with 300 cm of Target-Skin Distance (TSD) and full collimator size (35x35 cm 2 on TSD 100 cm) in 4 MeV electron beam energy. Actual collimated field size of 105 cmx105 cm at the distance of 300 cm could include entire hemibody. A patient was standing on step board with hands up and holding the pole to stabilize his/her positions for the six-dual fields technique. As a scatter-degrader, 0.5 cm of acrylic plate was inserted at 20 cm from the body surface on the electron beam path to induce ray scattering and to increase the skin dose. The Full Width at Half Maximum(FWHM) of dose profile was 130 cm in large field of 105x105 cm 2 . The width of 100±10% of the resultant dose from two adjacent fields which were separated at 25 cm from field edge for obtaining the dose uniformity was extended to 186 cm. The depth of maximum dose lies at 5 mm and the 80% depth dose lies between 7 and 8 mm for the degraded electron beam by using the 0.5 cm thickness of acrylic absorber. Total skin electron beam irradiation (TSEBI) was carried out using the six dual fields has been developed at Stanford University. The dose distribution in TSEBI showed relatively uniform around the flat region of skin except the protruding and deeply curvatured portion of the body, which showed excess of dose at the former and less dose at the latter. The percent depth dose, profile curves and superimposed dose distribution were investigated using the degraded using the degraded electron beam through the beam absorber. The dose distribution obtained by experiments of TSEBI showed within±10% difference excepts the protruding area of skin which needs a

  18. Intercomparison of measurements of personal dose equivalent Hp(10) in photon fields in the West Asia Region

    International Nuclear Information System (INIS)

    2007-01-01

    In accordance with its statutory function, the International Atomic Energy Agency (IAEA) has been assisting its Member States in establishing and upgrading their radiation protection infrastructures, including activities in occupation radiation protection. Individual external dosimetry services for photon radiation have been under establishment or upgrading with support through the Technical Cooperation Model Projects RAW/9/006, Upgrading Radiation Protection Infrastructure (concluded in 2000), and RAW/9/008, Development of Technical Capabilities for Sustainable Radiation and Waste Safety Infrastructure (2001-2004), in all the participating countries in the West Asia Region. Two regional training courses were organized by the IAEA, in Germany in 1998, on Design, Implementation and Management of Individual Monitoring Services (IMS), and in the Syrian Arabic Republic in 2001, on Assessment of Occupational Exposure due to External Sources, under the above stated projects. However, no performance testing has yet been carried out and no regional intercomparisons have been established before in this region. Only two Member States from the region (the Syrian Arab Republic and Lebanon) participated in the interregional Intercomparison for Individual Monitoring of Radiological Measurements for Purposes of Monitoring Personal Dose Equivalent Hp(10) in 1999

  19. Photo neutron dose equivalent rate in 15 MV X-ray beam from a Siemens Primus Linac

    Directory of Open Access Journals (Sweden)

    A Ghasemi

    2015-01-01

    Full Text Available Fast and thermal neutron fluence rates from a 15 MV X-ray beams of a Siemens Primus Linac were measured using bare and moderated BF 3 proportional counter inside the treatment room at different locations. Fluence rate values were converted to dose equivalent rate (DER utilizing conversion factors of American Association of Physicist in Medicine′s (AAPM report number 19. For thermal neutrons, maximum and minimum DERs were 3.46 × 10 -6 (3 m from isocenter in +Y direction, 0 × 0 field size and 8.36 × 10 -8 Sv/min (in maze, 40 × 40 field size, respectively. For fast neutrons, maximum DERs using 9" and 3" moderators were 1.6 × 10 -5 and 1.74 × 10 -5 Sv/min (2 m from isocenter in +Y direction, 0 × 0 field size, respectively. By changing the field size, the variation in thermal neutron DER was more than the fast neutron DER and the changes in fast neutron DER were not significant in the bunker except inside the radiation field. This study showed that at all points and distances, by decreasing field size of the beam, thermal and fast neutron DER increases and the number of thermal neutrons is more than fast neutrons.

  20. Comparison of Diagnostic Accuracy of Radiation Dose-Equivalent Radiography, Multidetector Computed Tomography and Cone Beam Computed Tomography for Fractures of Adult Cadaveric Wrists.

    Science.gov (United States)

    Neubauer, Jakob; Benndorf, Matthias; Reidelbach, Carolin; Krauß, Tobias; Lampert, Florian; Zajonc, Horst; Kotter, Elmar; Langer, Mathias; Fiebich, Martin; Goerke, Sebastian M

    2016-01-01

    To compare the diagnostic accuracy of radiography, to radiography equivalent dose multidetector computed tomography (RED-MDCT) and to radiography equivalent dose cone beam computed tomography (RED-CBCT) for wrist fractures. As study subjects we obtained 10 cadaveric human hands from body donors. Distal radius, distal ulna and carpal bones (n = 100) were artificially fractured in random order in a controlled experimental setting. We performed radiation dose equivalent radiography (settings as in standard clinical care), RED-MDCT in a 320 row MDCT with single shot mode and RED-CBCT in a device dedicated to musculoskeletal imaging. Three raters independently evaluated the resulting images for fractures and the level of confidence for each finding. Gold standard was evaluated by consensus reading of a high-dose MDCT. Pooled sensitivity was higher in RED-MDCT with 0.89 and RED-MDCT with 0.81 compared to radiography with 0.54 (P = radiography (P radiography. Readers are more confident in their reporting with the cross sectional modalities. Dose equivalent cross sectional computed tomography of the wrist could replace plain radiography for fracture diagnosis in the long run.

  1. Using generalized equivalent uniform dose atlases to combine and analyze prospective dosimetric and radiation pneumonitis data from 2 non-small cell lung cancer dose escalation protocols.

    Science.gov (United States)

    Liu, Fan; Yorke, Ellen D; Belderbos, José S A; Borst, Gerben R; Rosenzweig, Kenneth E; Lebesque, Joos V; Jackson, Andrew

    2013-01-01

    To demonstrate the use of generalized equivalent uniform dose (gEUD) atlas for data pooling in radiation pneumonitis (RP) modeling, to determine the dependence of RP on gEUD, to study the consistency between data sets, and to verify the increased statistical power of the combination. Patients enrolled in prospective phase I/II dose escalation studies of radiation therapy of non-small cell lung cancer at Memorial Sloan-Kettering Cancer Center (MSKCC) (78 pts) and the Netherlands Cancer Institute (NKI) (86 pts) were included; 10 (13%) and 14 (17%) experienced RP requiring steroids (RPS) within 6 months after treatment. gEUD was calculated from dose-volume histograms. Atlases for each data set were created using 1-Gy steps from exact gEUDs and RPS data. The Lyman-Kutcher-Burman model was fit to the atlas and exact gEUD data. Heterogeneity and inconsistency statistics for the fitted parameters were computed. gEUD maps of the probability of RPS rate≥20% were plotted. The 2 data sets were homogeneous and consistent. The best fit values of the volume effect parameter a were small, with upper 95% confidence limit around 1.0 in the joint data. The likelihood profiles around the best fit a values were flat in all cases, making determination of the best fit a weak. All confidence intervals (CIs) were narrower in the joint than in the individual data sets. The minimum P value for correlations of gEUD with RPS in the joint data was .002, compared with P=.01 and .05 for MSKCC and NKI data sets, respectively. gEUD maps showed that at small a, RPS risk increases with gEUD. The atlas can be used to combine gEUD and RPS information from different institutions and model gEUD dependence of RPS. RPS has a large volume effect with the mean dose model barely included in the 95% CI. Data pooling increased statistical power. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Incidence of late rectal bleeding in high-dose conformal radiotherapy of prostate cancer using equivalent uniform dose-based and dose-volume-based normal tissue complication probability models

    International Nuclear Information System (INIS)

    Soehn, Matthias; Yan Di; Liang Jian; Meldolesi, Elisa; Vargas, Carlos; Alber, Markus

    2007-01-01

    Purpose: Accurate modeling of rectal complications based on dose-volume histogram (DVH) data are necessary to allow safe dose escalation in radiotherapy of prostate cancer. We applied different equivalent uniform dose (EUD)-based and dose-volume-based normal tissue complication probability (NTCP) models to rectal wall DVHs and follow-up data for 319 prostate cancer patients to identify the dosimetric factors most predictive for Grade ≥ 2 rectal bleeding. Methods and Materials: Data for 319 patients treated at the William Beaumont Hospital with three-dimensional conformal radiotherapy (3D-CRT) under an adaptive radiotherapy protocol were used for this study. The following models were considered: (1) Lyman model and (2) logit-formula with DVH reduced to generalized EUD (3) serial reconstruction unit (RU) model (4) Poisson-EUD model, and (5) mean dose- and (6) cutoff dose-logistic regression model. The parameters and their confidence intervals were determined using maximum likelihood estimation. Results: Of the patients, 51 (16.0%) showed Grade 2 or higher bleeding. As assessed qualitatively and quantitatively, the Lyman- and Logit-EUD, serial RU, and Poisson-EUD model fitted the data very well. Rectal wall mean dose did not correlate to Grade 2 or higher bleeding. For the cutoff dose model, the volume receiving > 73.7 Gy showed most significant correlation to bleeding. However, this model fitted the data more poorly than the EUD-based models. Conclusions: Our study clearly confirms a volume effect for late rectal bleeding. This can be described very well by the EUD-like models, of which the serial RU- and Poisson-EUD model can describe the data with only two parameters. Dose-volume-based cutoff-dose models performed worse

  3. Enhancement of Transistor-to-Transistor Variability Due to Total Dose Effects in 65-nm MOSFETs

    CERN Document Server

    Gerardin, S; Cornale, D; Ding, L; Mattiazzo, S; Paccagnella, A; Faccio, F; Michelis, S

    2015-01-01

    We studied device-to-device variations as a function of total dose in MOSFETs, using specially designed test structures and procedures aimed at maximizing matching between transistors. Degradation in nMOSFETs is less severe than in pMOSFETs and does not show any clear increase in sample-to-sample variability due to the exposure. At doses smaller than 1 Mrad( SiO2) variability in pMOSFETs is also practically unaffected, whereas at very high doses-in excess of tens of Mrad( SiO2)-variability in the on-current is enhanced in a way not correlated to pre-rad variability. The phenomenon is likely due to the impact of random dopant fluctuations on total ionizing dose effects.

  4. A conversion method of air-kerma from the primary, scatter and leakage radiations to ambient dose equivalent for calculating the mamography x-ray shielding barrier

    International Nuclear Information System (INIS)

    Kharrati, H.

    2005-01-01

    The primary, scatter, and leakage doses(in Gy), which constitute the data base for calculating shielding requirements for x-ray facilities, are often converted to the equivalent dose (in sievert) by using a constant of conversion of 1.145Sv/Gy. This constant is used for diagnostic radiology as well as for mammography spectra, and is derived by considering an exposure of 1 R corresponds to an air kerma of 8.73 m Gy, which renders by tradition an equivalent dose of 10 mSv. However, this conversion does not take into account the energy dependence of the conversion coefficients relating air kerma to the equivalent dose as described in ICRU report. Moreover, current radiation protection standards propose the use of the quantity ambient dose equivalent in order to qualify the efficiently of given radiation shielding. Therefore, in this study, a new approach has been introduced for derivation ambient dose equivalent from air kerma to calculate shielding requirements in mammography facilities. This new approach has been used to compute the conversion coefficients relating air kerma to ambient dose equivalent for mammography reference beam series of the Netherlands Metrology Institute Van Swinden Laboratorium (NMi), National Institute of Standards and Technology (NIST), and International Atomic Energy Agency (AIEA) laboratories. The calculation has been performed by the means of two methods which show a maximum deviation less than 10%2 for the primary, scatter, and leakage radiations. The results show that the conversion coefficients vary from 0.242 Sv/ Gy to 0.692 Sv/Gy with an average value of 0.436 Sv/Gy for the primary and the scatter radiations, and form 0.156 Sv/Gy to 1.329 Sv/Gy with an average value of 0.98 Sv/Gy for the leakage radiation. Simpkin et al. using an empirical approach propose a conversion value of 0.50 Sv/Gy for the mammography x-ray spectra. This value approximately coincides with the average conversion value of 0.436 Sv/Gy obtained in this work for

  5. Relative effect of radiation dose rate on hemopoietic and nonhemopoietic lethality of total-body irradiation

    International Nuclear Information System (INIS)

    Peters, L.J.; McNeill, J.; Karolis, C.; Thames, H.D. Jr.; Travis, E.L.

    1986-01-01

    Experiments were undertaken to determine the influence of dose rate on the toxicity of total-body irrdiation (TBI) with and without syngeneic bone-marrow rescue in mice. The results showed a much greater dose-rate dependence for death from nonhemopoietic toxicity than from bone-marrow ablation, with the ratio of LD 50 's increasing from 1.73 at 25 cGy/min to 2.80 at 1 cGy/min. At the higher dose rates, dose-limiting nonhemopoietic toxicity resulted from late organ injury, affecting the lungs, kidneys, and liver. At 1 cGy/min the major dose-limiting nonhemopoietic toxicity was acute gastrointestinal injury. The implications of these results in the context of TBI in preparation for bone-marrow transplantation are discussed. 15 refs., 4 figs

  6. Safety aspects of preoperative high-dose glucocorticoid in primary total knee replacement

    DEFF Research Database (Denmark)

    Jørgensen, C C; Pitter, F T; Kehlet, H

    2017-01-01

    Background: Preoperative single high-dose glucocorticoid may have early outcome benefits in total hip arthroplasty (THA) and knee arthroplasty (TKA), but long-term safety aspects have not been evaluated. Methods: From October 2013, the departments reporting to the prospective Lundbeck Foundation....... Conclusions: In this detailed prospective cohort study, preoperative high-dose glucocorticoid administration was not associated with LOS >4 days, readmissions or infectious complications in TKA patients without contraindications....

  7. Total dose effects on ATLAS-SCT front-end electronics

    CERN Document Server

    Ullán, M; Dubbs, T; Grillo, A A; Spencer, E; Seiden, A; Spieler, H; Gilchriese, M G D; Lozano, M

    2002-01-01

    Low dose rate effects (LDRE) in bipolar technologies complicate the hardness assurance testing for high energy physics applications. The damage produced in the ICs in the real experiment can be underestimated if fast irradiations are carried out, while experiments done at the real dose rate are usually unpractical due to the still high total doses involved. In this work the sensitivity to LDRE of two bipolar technologies proposed for the ATLAS-SCT experiment at CERN is evaluated, finding one of them free of those effects. (12 refs).

  8. The total dose effects on the 1/f noise of deep submicron CMOS transistors

    International Nuclear Information System (INIS)

    Hu Rongbin; Wang Yuxin; Lu Wu

    2014-01-01

    Using 0.18 μm CMOS transistors, the total dose effects on the 1/f noise of deep-submicron CMOS transistors are studied for the first time in mainland China. From the experimental results and the theoretic analysis, we realize that total dose radiation causes a lot of trapped positive charges in STI (shallow trench isolation) SiO 2 layers, which induces a current leakage passage, increasing the 1/f noise power of CMOS transistors. In addition, we design some radiation-hardness structures on the CMOS transistors and the experimental results show that, until the total dose achieves 750 krad, the 1/f noise power of the radiation-hardness CMOS transistors remains unchanged, which proves our conclusion. (semiconductor devices)

  9. Study of the radiation scattered and produced by concrete shielding of radiotherapy rooms and its effects on equivalent doses in patients' organs

    International Nuclear Information System (INIS)

    Braga, K.L.; Rebello, W.F.; Andrade, E.R.; Gavazza, S.; Medeiros, M.P.C.; Mendes, R.M.S.; Gomes, R.G.; Silva, M.G.; Thalhofer, J.L.; Silva, A.X.; Santos, R.F.G.

    2015-01-01

    Within a radiotherapy room, in addition to the primary beam, there is also secondary radiation due to the leakage of the accelerator head and the radiation scattering from room objects, patient and even the room's shielding itself, which is projected to protect external individuals disregarding its effects on the patient. This work aims to study the effect of concrete shielding wall over the patient, taking into account its contribution on equivalent doses. The MCNPX code was used to model the linear accelerator Varian 2100/2300 C/D operating at 18MeV, with MAX phantom representing the patient undergoing radiotherapy treatment for prostate cancer following Brazilian Institute of Cancer four-fields radiation application protocol (0°, 90°, 180° and 270°). Firstly, the treatment was patterned within a standard radiotherapy room, calculating the equivalent doses on patient's organs individually. In a second step, this treatment was modeled withdrawing the walls, floor and ceiling from the radiotherapy room, and then the equivalent doses calculated again. Comparing these results, it was found that the concrete has an average shielding contribution of around 20% in the equivalent dose on the patient's organs. (author)

  10. Calibration procedures of area monitors in terms of the Ambient Dose Equivalent H*(10), for gamma, x-ray radiation fields

    International Nuclear Information System (INIS)

    Dieguez Davila, L.E.

    1998-01-01

    In the present thesis procedures for calibrating portable survey meters in terms of the new ICRU quantities H*(10) ambient dose equivalent are discussed. Also the remendations of International Comission on Radiation Protection in their report ICRP 60 that inludes the operational magnitudes that the International Comission of Radiation Units proposed for calibrating area monitors

  11. Application of the high-temperature ratio method for evaluation of the depth distribution of dose equivalent in a water-filled phantom on board space station Mir

    International Nuclear Information System (INIS)

    Berger, T.; Hajek, M.; Schoener, W.; Fugger, M.; Vana, N.; Akatov, Y.; Shurshakov, V.; Arkhangelsky, V.; Kartashov, D.

    2002-01-01

    A water-filled tissue equivalent phantom with a diameter of 35 cm was developed at the Institute for Biomedical Problems, Moscow, Russia. It contains four channels perpendicular to each other, where dosemeters can be exposed at different depths. Between May 1997 and February 1999 the phantom was installed at three different locations on board the Mir space station. Thermoluminescence dosemeters (TLDs) were exposed at various depths inside the phantom either parallel or perpendicular to the hull of the spacecraft. The high-temperature ratio (HTR) method was used for the evaluation of the TLDs. The method was developed at the Atominstitute of the Austrian Universities, Vienna, Austria, and has already been used for measurements in mixed radiation fields on earth and in space with great success. It uses the changes of peak height ratios in LiF:Mg,Ti glow curves in dependence on the linear energy transfer (LET), and therefore allows determination of an 'averaged' LET as well as measurement of the absorbed dose. A mean quality factor and, subsequently, the dose equivalent can be calculated according to the Q(LET ( ) relationship proposed by the ICRP. The small size of the LiF dosemeters means that the HTR method can be used to determine the gradient of absorbed dose and dose equivalent inside the tissue equivalent body. (author)

  12. Development of an experimental method for the determination of the dose equivalent indices for low - and medium energy X- and gamma rays

    International Nuclear Information System (INIS)

    Silva Estrada, J.J. da.

    1980-01-01

    An experimental method was developed to measure Dose Equivalent Indices for low and medium energy X-rays. A sphere was constructed to simulate the human body in accordance with ICRU Report 19 but using plexiglass instead of tissue equivalent material of density 1 g.cm -3 . Experimentally it was demonstrated that for the purpose of applied radiation protection both materials are equivalent in spite of a 18% higher density of plexiglass. CaF 2 :Mn and LiF:Mg might be utilized to determine the absorbed dose distribution within the sphere. Measurements indicate that the effective energy can be determined with an accuracy better than 15% for the energy range under consideration. Depth dose curves measured with ionization chamber compared with those of LiF:Mg showed an agreement better than 12% and in the case of CaF 2 :Mn better than 11% for all irradiation conditions used. Conversion factors in units rad R -1 measured with TLD and compared with those obtained from the literature based upon Monte Carlo calculation showed an agreement better than 23% for CaF 2 :Mn and 19% for LiF:Mg. It is concluded from these experiments that the system plexiglass sphere-TLD dosimeters might be used to measure Dose Equivalent Indices for low and medium energy photons. (Author) [pt

  13. Re-establishment of the air kerma and ambient dose equivalent standards for the BIPM protection-level 60Co beam

    International Nuclear Information System (INIS)

    Kessler, C.; Roger, P.

    2005-07-01

    The air kerma and ambient dose equivalent standards for the protection-level 60 Co beam have been re-established following the repositioning of the irradiator and modifications to the beam. Details concerning the standards and the new uncertainty budgets are described in this report with their implications for dosimetry comparisons and calibrations. (authors)

  14. Determination of the equivalent doses due to the ingestion of radionuclides from the uranium and thorium series presents in drinking waters of the region of Santa Luzia, Paraiba state, Brazil

    International Nuclear Information System (INIS)

    Pastura, Valeria F. da S.; Campos, Thomas F. da C.; Petta, Reinaldo A.

    2011-01-01

    This paper determined the original dose equivalents from radionuclides of uranium and thorium series in a drinking water of well which is supplied to the population of Santa Luzia, Paraiba state, Brazil. The collected waters are near to the mineralized phlegmatic bodies in rose quartz and amazonite feldspar. Radiometric measurements performed on the feldspar vein point out counting ratios surrounding 30000 cps and the analysis of collected samples of minerals presented tenors for the 226 Ra and 219 Pb varying from 0.50 to 2.30 Bq/sw. For determination of concentration of radionuclides U Total , 226 Ra, 228 Ra and 219 Pb, found in the not desalinated, two methods were used, spectrophotometry with arsenazo and radiochemistry, both realized in the CNEN-LAPOC laboratories. For the calculation of dose equivalent it was taken into consideration the following parameters: the dose coefficients for incorporation by ingestion for public individuals with ages over 17 years (Norma CNEN-NN-3.01, Regulatory Position 3.01/011) and daily ingestion of 4 liters of water, which is over the recommended by the WHO of 2L/day - 1993. The obtained values were compared with the reference value for compromised dose equivalent established by WHO for evaluate the risk potential to the health of population, by ingestion. The radionuclide concentrations in the wells varies from 0.054 to 0.21 Bq/L, resulting dose equivalents of 3.94 x 10 -3 mSv/year and 0.17 mSv/year in the studied population

  15. Composite depth dose measurement for total skin electron (TSE) treatments using radiochromic film

    International Nuclear Information System (INIS)

    Gamble, Lisa M; Farrell, Thomas J; Jones, Glenn W; Hayward, Joseph E

    2003-01-01

    Total skin electron (TSE) radiotherapy is routinely used to treat cutaneous T-cell lymphomas and can be implemented using a modified Stanford technique. In our centre, the composite depth dose for this technique is achieved by a combination of two patient positions per day over a three-day cycle, and two gantry angles per patient position. Due to patient morphology, underdosed regions typically occur and have historically been measured using multiple thermoluminescent dosimeters (TLDs). We show that radiochromic film can be used as a two-dimensional relative dosimeter to measure the percent depth dose in TSE radiotherapy. Composite depth dose curves were measured in a cylindrical, polystyrene phantom and compared with TLD data. Both multiple films (1 film per day) and a single film were used in order to reproduce a realistic clinical scenario. First, three individual films were used to measure the depth dose, one per treatment day, and then compared with TLD data; this comparison showed a reasonable agreement. Secondly, a single film was used to measure the dose delivered over three daily treatments and then compared with TLD data; this comparison showed good agreement throughout the depth dose, which includes doses well below 1 Gy. It will be shown that one piece of radiochromic film is sufficient to measure the composite percent depth dose for a TSE beam, hence making radiochromic film a suitable candidate for monitoring underdosed patient regions

  16. An experimental study on total dose effects in SRAM-based FPGAs

    International Nuclear Information System (INIS)

    Yao Zhibin; He Baoping; Zhang Fengqi; Guo Hongxia; Luo Yinhong; Wang Yuanming; Zhang Keying

    2009-01-01

    In order to study testing methods and find sensitive parameters in total dose effects on SRAM-based FPGA, XC2S100 chips were irradiated by 60 Co γ-rays and tested with two test circuit designs. By analyzing the experimental results, the test flow of configuration RAM and bock RAM was given, and the most sensitive parameter was obtained. The results will be a solid foundation for establishing test specification and evaluation methods of total dose effects on SRAM-based FPGAs. (authors)

  17. Electron fluence to dose equivalent conversion factors calculated with EGS3 for electrons and positrons with energies from 100 keV to 20 GeV

    International Nuclear Information System (INIS)

    Rogers, D.W.O.

    1983-01-01

    At NRC the general purpose Monte-Carlo electron-photon transport code EGS3 is being applied to a variety of radiation dosimetry problems. To test its accuracy at low energies a detailed set of depth-dose curves for electrons and photons has been generated and compared to previous calculations. It was found that by changing the default step-size algorithm in EGS3, significant changes were obtained for incident electron beam cases. It was found that restricting the step-size to a 4% energy loss was appropriate below incident electron beam energies of 10 MeV. With this change, the calculated depth-dose curves were found to be in reasonable agreement with other calculations right down to incident electron energies of 100 keV although small (less than or equal to 10%) but persistent discrepancies with the NBS code ETRAN were obtained. EGS3 predicts higher initial dose and shorter range than ETRAN. These discrepancies are typical of a wide range of energies as is the better agreement with the results of Nahum. Data is presented for the electron fluence to maximal dose equivalent in a 30 cm thick slab of ICRU 4-element tissue irradiated by broad parallel beams of electrons incident normal to the surface. On their own, these values only give an indication of the dose equivalent expected from a spectrum of electrons since one needs to fold the spectrum maximal dose equivalent value. Calculations have also been done for incident positron beams. Despite the large statistical uncertainties, maximal dose equivalent although their values are 5 to 10% lower in a band around 10 MeV

  18. Intercomparison of personal dose equivalent measurements by active personal dosimeters. Final report of a joint IAEA-EURADOS project

    International Nuclear Information System (INIS)

    2007-11-01

    standard laboratory. The final results, as assessed by the irradiation laboratories and discussed with the APD suppliers, were: - The general dosimetric performance of the tested APD is comparable with the performance of standard passive dosimetric systems; - The accuracy at reference photon radiation, the reproducibility and the repeatability of measurements are even better than for most passive dosimeters; - Only three devices have given satisfactory results both for 60 kV (RQR4) and for 120 kV (RQR9) pulsed radiation. Not all the devices have been designed for any radiation field and the end-user should at least take into account information about the dose equivalent rate and energy ranges before using the dosimeters. The performance results confirm that the IEC standard requirements are adequate but that they can be insufficient for some applications such as with pulsed radiation fields

  19. Single-dose radiation therapy for prevention of heterotopic ossification after total hip arthroplasty

    International Nuclear Information System (INIS)

    Healy, W.L.; Lo, T.C.; Covall, D.J.; Pfeifer, B.A.; Wasilewski, S.A.

    1990-01-01

    Single-dose radiation therapy was prospectively evaluated for its efficacy in prevention of heterotopic ossification in patients at high risk after total hip arthroplasty. Thirty-one patients (34 hips) were treated between 1981 and 1988. Risk factors for inclusion in the protocol included prior evidence of heterotopic ossification, ankylosing spondylitis, and diffuse idiopathic skeletal hyperostosis. Patients with hypertrophic osteoarthritis or traumatic arthritis with osteophytes were not included. Operations on 34 hips included 19 primary total and 11 revision total hip arthroplasties and 4 excisions of heterotopic ossification. All patients received radiotherapy to the hip after operation with a single dose of 700 centigray. Radiotherapy is recommended on the first postoperative day. After this single-dose radiation treatment, no patient had clinically significant heterotopic ossification. Recurrent disease developed in two hips (6%), as seen on radiography (grades 2 and 3). This series documents a 100% clinical success rate and a 94% radiographic success rate in preventing heterotopic ossification in patients at high risk after total hip arthroplasty. Single-dose radiotherapy is as effective as other radiation protocols in preventing heterotopic ossification after total hip arthroplasty. It is less expensive and easier to administer than multidose radiotherapy

  20. The practical application of ICRP recommendations regarding dose-equivalent limits for workers to staff in diagnostic X-ray departments

    International Nuclear Information System (INIS)

    Gill, J.R.; Beaver, P.F.; Dennis, J.A.

    1980-01-01

    Members of hospital staff who work in the X-ray room with patients, wear lead aprons to protect their bodies. These aprons greatly reduce the radiation dose rate at the surface of the body underneath the apron, but do not give any protection to parts of the body not covered by the apron, especially the head, neck, arms and legs. The ICRP's system of dose limitation for non-uniform irradiation of the body has been applied to exposure of this kind and a simple formula has been derived that permits the calculation of a good approximation to the effective dose-equivalent, using two dosemeters. One dosemeter is worn at chest or waist level under the apron to monitor the dose-equivalent received by protected organs while the other is worn on the collar or forehead to monitor the head and neck. Evidence based on published data is presented that suggests that in work of this nature, contrary to earlier opinion, the limiting factor is the dose equivalent received by the organs of the head and neck. The implications of this conclusion for routine personal monitoring are discussed. (H.K.)

  1. A Monte Carlo study of the impact of the choice of rectum volume definition on estimates of equivalent uniform doses and the volume parameter

    International Nuclear Information System (INIS)

    Kvinnsland, Yngve; Muren, Ludvig Paul; Dahl, Olav

    2004-01-01

    Calculations of normal tissue complication probability (NTCP) values for the rectum are difficult because it is a hollow, non-rigid, organ. Finding the true cumulative dose distribution for a number of treatment fractions requires a CT scan before each treatment fraction. This is labour intensive, and several surrogate distributions have therefore been suggested, such as dose wall histograms, dose surface histograms and histograms for the solid rectum, with and without margins. In this study, a Monte Carlo method is used to investigate the relationships between the cumulative dose distributions based on all treatment fractions and the above-mentioned histograms that are based on one CT scan only, in terms of equivalent uniform dose. Furthermore, the effect of a specific choice of histogram on estimates of the volume parameter of the probit NTCP model was investigated. It was found that the solid rectum and the rectum wall histograms (without margins) gave equivalent uniform doses with an expected value close to the values calculated from the cumulative dose distributions in the rectum wall. With the number of patients available in this study the standard deviations of the estimates of the volume parameter were large, and it was not possible to decide which volume gave the best estimates of the volume parameter, but there were distinct differences in the mean values of the values obtained

  2. Enchanced total dose damage in junction field effect transistors and related linear integrated circuits

    International Nuclear Information System (INIS)

    Flament, O.; Autran, J.L.; Roche, P.; Leray, J.L.; Musseau, O.

    1996-01-01

    Enhanced total dose damage of Junction Field-effect Transistors (JFETs) due to low dose rate and/or elevated temperature has been investigated for elementary p-channel structures fabricated on bulk and SOI substrates as well as for related linear integrated circuits. All these devices were fabricated with conventional junction isolation (field oxide). Large increases in damage have been revealed by performing high temperature and/or low dose rate irradiations. These results are consistent with previous studies concerning bipolar field oxides under low-field conditions. They suggest that the transport of radiation-induced holes through the oxide is the underlying mechanism. Such an enhanced degradation must be taken into account for low dose rate effects on linear integrated circuits

  3. Total dose hardness of a commercial SiGe BiCMOS technology

    International Nuclear Information System (INIS)

    Van Vonno, N.; Lucas, R.; Thornberry, D.

    1999-01-01

    Over the past decade SiGe HBT technology has progress from the laboratory to actual commercial applications. When integrated into a BiMOS process, this technology has applications in low-cost space systems. In this paper, we report results of total dose testing of a SiGe/CMOS process accessible through a commercial foundry. (authors)

  4. Worst-Case Bias During Total Dose Irradiation of SOI Transistors

    International Nuclear Information System (INIS)

    Ferlet-Cavrois, V.; Colladant, T.; Paillet, P.; Leray, J.-L; Musseau, O.; Schwank, James R.; Shaneyfelt, Marty R.; Pelloie, J.L.; Du Port de Poncharra, J.

    2000-01-01

    The worst case bias during total dose irradiation of partially depleted SOI transistors (from SNL and from CEA/LETI) is correlated to the device architecture. Experiments and simulations are used to analyze SOI back transistor threshold voltage shift and charge trapping in the buried oxide

  5. Recent Total Ionizing Dose Results and Displacement Damage Results for Candidate Spacecraft Electronics for NASA

    Science.gov (United States)

    Cochran, Donna J.; Buchner, Stephen P.; Irwin, Tim L.; LaBel, Kenneth A.; Marshall, Cheryl J.; Reed, Robert A.; Sanders, Anthony B.; Hawkins, Donald K.; Flanigan, Ryan J.; Cox, Stephen R.

    2005-01-01

    We present data on the vulnerability of a variety of candidate spacecraft electronics to total ionizing dose and displacement damage. Devices tested include optoelectronics, digital, analog, linear bipolar devices, hybrid devices, Analog-to- Digital Converters (ADCs), and Digital-to-Analog Converters (DACs), among others. T

  6. Inclusion of Radiation Environment Variability in Total Dose Hardness Assurance Methodology

    Science.gov (United States)

    Xapsos, M. A.; Stauffer, C.; Phan, A.; McClure, S. S.; Ladbury, R. L.; Pellish, J. A.; Campola, M. J.; LaBel, K. A.

    2016-01-01

    Variability of the space radiation environment is investigated with regard to parts categorization for total dose hardness assurance methods. It is shown that it can have a significant impact. A modified approach is developed that uses current environment models more consistently and replaces the radiation design margin concept with one of failure probability during a mission.

  7. The influence of x-ray energy on lung dose uniformity in total-body irradiation

    International Nuclear Information System (INIS)

    Ekstrand, Kenneth; Greven, Kathryn; Wu Qingrong

    1997-01-01

    Purpose: In this study we examine the influence of x-ray energy on the uniformity of the dose within the lung in total-body irradiation treatments in which partial transmission blocks are used to control the lung dose. Methods and Materials: A solid water phantom with a cork insert to simulate a lung was irradiated by x-rays with energies of either 6, 10, or 18 MV. The source to phantom distance was 3.9 meters. The cork insert was either 10 cm wide or 6 cm wide. Partial transmission blocks with transmission factors of 50% were placed anterior to the cork insert. The blocks were either 8 or 4 cm in width. Kodak XV-2 film was placed in the midline of the phantom to record the dose. Midplane dose profiles were measured with a densitometer. Results: For the 10 cm wide cork insert the uniformity of the dose over 80% of the block width varied from 6.6% for the 6 MV x-rays to 12.2% for the 18 MV x-rays. For the 6 cm wide cork insert the uniformity was comparable for all three x-ray energies, but for 18 MV the central dose increased by 9.4% compared to the 10 cm wide insert. Conclusion: Many factors must be considered in optimizing the dose for total-body irradiation. This study suggests that for AP/PA techniques lung dose uniformity is superior with 6 MV irradiation. The blanket recommendation that the highest x-ray energy be used in TBI is not valid for all situations

  8. SU-E-T-357: Electronic Compensation Technique to Deliver Total Body Dose

    Energy Technology Data Exchange (ETDEWEB)

    Lakeman, T [State University of New York at Buffalo, Buffalo, NY (United States); Wang, I; Podgorsak, M [State University of New York at Buffalo, Buffalo, NY (United States); Roswell Park Cancer Institute, Buffalo, NY (United States)

    2015-06-15

    Purpose: Total body irradiation (TBI) uses large parallel-opposed radiation fields to suppress the patient’s immune system and eradicate the residual cancer cells in preparation of recipient for bone marrow transplant. The manual placement of lead compensators has conventionally been used to compensate for the varying thickness through the entire body in large-field TBI. The goal of this study is to pursue utilizing the modern electronic compensation technique to more accurately and efficiently deliver dose to patients in need of TBI. Methods: Treatment plans utilizing electronic compensation to deliver a total body dose were created retrospectively for patients for whom CT data had been previously acquired. Each treatment plan includes two, specifically weighted, pair of opposed fields. One pair of open, large fields (collimator=45°), to encompass the patient’s entire anatomy, and one pair of smaller fields (collimator=0°) focused only on the thicker midsection of the patient. The optimal fluence for each one of the smaller fields was calculated at a patient specific penetration depth. Irregular surface compensators provide a more uniform dose distribution within the smaller opposed fields. Results: Dose-volume histograms (DVH) were calculated for the evaluating the electronic compensation technique. In one case, the maximum body doses calculated from the DVH were reduced from the non-compensated 195.8% to 165.3% in the electronically compensated plans, indicating a more uniform dose with the region of electronic compensation. The mean body doses calculated from the DVH were also reduced from the non-compensated 120.6% to 112.7% in the electronically compensated plans, indicating a more accurate delivery of the prescription dose. All calculated monitor units were well within clinically acceptable limits. Conclusion: Electronic compensation technique for TBI will not substantially increase the beam on time while it can significantly reduce the compensator

  9. Emesis as a Screening Diagnostic for Low Dose Rate (LDR) Total Body Radiation Exposure.

    Science.gov (United States)

    Camarata, Andrew S; Switchenko, Jeffrey M; Demidenko, Eugene; Flood, Ann B; Swartz, Harold M; Ali, Arif N

    2016-04-01

    Current radiation disaster manuals list the time-to-emesis (TE) as the key triage indicator of radiation dose. The data used to support TE recommendations were derived primarily from nearly instantaneous, high dose-rate exposures as part of variable condition accident databases. To date, there has not been a systematic differentiation between triage dose estimates associated with high and low dose rate (LDR) exposures, even though it is likely that after a nuclear detonation or radiologic disaster, many surviving casualties would have received a significant portion of their total exposure from fallout (LDR exposure) rather than from the initial nuclear detonation or criticality event (high dose rate exposure). This commentary discusses the issues surrounding the use of emesis as a screening diagnostic for radiation dose after LDR exposure. As part of this discussion, previously published clinical data on emesis after LDR total body irradiation (TBI) is statistically re-analyzed as an illustration of the complexity of the issue and confounding factors. This previously published data includes 107 patients who underwent TBI up to 10.5 Gy in a single fraction delivered over several hours at 0.02 to 0.04 Gy min. Estimates based on these data for the sensitivity of emesis as a screening diagnostic for the low dose rate radiation exposure range from 57.1% to 76.6%, and the estimates for specificity range from 87.5% to 99.4%. Though the original data contain multiple confounding factors, the evidence regarding sensitivity suggests that emesis appears to be quite poor as a medical screening diagnostic for LDR exposures.

  10. Time- and dose-dependent effects of total-body ionizing radiation on muscle stem cells

    Science.gov (United States)

    Masuda, Shinya; Hisamatsu, Tsubasa; Seko, Daiki; Urata, Yoshishige; Goto, Shinji; Li, Tao-Sheng; Ono, Yusuke

    2015-01-01

    Exposure to high levels of genotoxic stress, such as high-dose ionizing radiation, increases both cancer and noncancer risks. However, it remains debatable whether low-dose ionizing radiation reduces cellular function, or rather induces hormetic health benefits. Here, we investigated the effects of total-body γ-ray radiation on muscle stem cells, called satellite cells. Adult C57BL/6 mice were exposed to γ-radiation at low- to high-dose rates (low, 2 or 10 mGy/day; moderate, 50 mGy/day; high, 250 mGy/day) for 30 days. No hormetic responses in proliferation, differentiation, or self-renewal of satellite cells were observed in low-dose radiation-exposed mice at the acute phase. However, at the chronic phase, population expansion of satellite cell-derived progeny was slightly decreased in mice exposed to low-dose radiation. Taken together, low-dose ionizing irradiation may suppress satellite cell function, rather than induce hormetic health benefits, in skeletal muscle in adult mice. PMID:25869487

  11. Impact of radiation technique, radiation fraction dose, and total cisplatin dose on hearing. Retrospective analysis of 29 medulloblastoma patients

    Energy Technology Data Exchange (ETDEWEB)

    Scobioala, Sergiu; Kittel, Christopher; Ebrahimi, Fatemeh; Wolters, Heidi; Eich, Hans Theodor [University Hospital of Muenster, Department of Radiotherapy and Radiooncology, Muenster (Germany); Parfitt, Ross; Matulat, Peter; Am Zehnhoff-Dinnesen, Antoinette [University Hospital of Muenster, Department of Phoniatrics and Pediatric Audiology, Muenster (Germany)

    2017-11-15

    To analyze the incidence and degree of sensorineural hearing loss (SNHL) resulting from different radiation techniques, fractionation dose, mean cochlear radiation dose (D{sub mean}), and total cisplatin dose. In all, 29 children with medulloblastoma (58 ears) with subclinical pretreatment hearing thresholds participated. Radiotherapy (RT) and cisplatin had been applied sequentially according to the HIT MED Guidance. Audiological outcomes up to the latest follow-up (median 2.6 years) were compared. Bilateral high-frequency SNHL was observed in 26 patients (90%). No significant differences were found in mean hearing threshold between left and right ears at any frequency. A significantly better audiological outcome (p < 0.05) was found after tomotherapy at the 6 kHz bone-conduction threshold (BCT) and left-sided 8 kHz air-conduction threshold (ACT) than after a combined radiotherapy technique (CT). Fraction dose was not found to have any impact on the incidence, degree, and time-to-onset of SNHL. Patients treated with CT had a greater risk of SNHL at high frequencies than tomotherapy patients even though D{sub mean} was similar. Increase in severity of SNHL was seen when the total cisplatin dose reached above 210 mg/m{sup 2}, with the highest abnormal level found 8-12 months after RT regardless of radiation technique or fraction dose. The cochlear radiation dose should be kept as low as possible in patients who receive simultaneous cisplatin-based chemotherapy. The risk of clinically relevant HL was shown when D{sub mean} exceeds 45 Gy independent of radiation technique or radiation regime. Cisplatin ototoxicity was shown to have a dose-dependent effect on bilateral SNHL, which was more pronounced in higher frequencies. (orig.) [German] Analyse von Inzidenz und Schweregrad einer sensorineuralen Schwerhoerigkeit (''sensorineural hearing loss'', SNHL) infolge der Wirkung unterschiedlicher Bestrahlungstechniken, Fraktionierungen, mittlerer

  12. Thyroid equivalent dose in staffs that use neck lead protector in pediatric barium meal; Dose equivalente na tireoide dos profissionais que utilizam o protetor plumbifero nos exames de seed pediatrico

    Energy Technology Data Exchange (ETDEWEB)

    Filipov, Danielle; Sauzen, Jessica; Paschuk, Sergei A., E-mail: dfilipov@utfpr.edu.br [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil); Schelin, Hugo R.; Denyak, Valeriy [Instituto de Pesquisa Pele Pequeno Principe (IPPP), Curitiba, PR (Brazil); Legnani, Adriano [Hospital Pequeno Principe, Curitiba, PR (Brazil)

    2015-08-15

    The aim of this study is to estimate the thyroid equivalent dose in staffs that perform pediatric barium meal procedures and use neck lead protector. Thermoluminescent Dosimeters (TLDs) were positioned on the lead protectors, used by two professionals. After that, a solid state detector was exposed (with and without the protector above it). Therefore, it was possible to obtain both lead protectors attenuation factors. At the end, average and annual doses received by the TLDs and the thyroid (applying the attenuation factor over the dosimeters doses) were obtained. It was found that the average and annual equivalent doses in the thyroid gland are, respectively, higher than in comparative studies and within the established limits. With these data, it is concluded that the application of radiation protection optimization techniques is required. (author)

  13. Total skin high-dose-rate electron therapy dosimetry using TG-51

    International Nuclear Information System (INIS)

    Gossman, Michael S.; Sharma, Subhash C.

    2004-01-01

    An approach to dosimetry for total skin electron therapy (TSET) is discussed using the currently accepted TG-51 high-energy calibration protocol. The methodology incorporates water phantom data for absolute calibration and plastic phantom data for efficient reference dosimetry. The scheme is simplified to include the high-dose-rate mode conversion and provides support for its use, as it becomes more available on newer linear accelerators. Using a 6-field, modified Stanford technique, one may follow the process for accurate determination of absorbed dose

  14. Total dose hardening of buried insulator in implanted silicon-on-insulator structures

    International Nuclear Information System (INIS)

    Mao, B.Y.; Chen, C.E.; Pollack, G.; Hughes, H.L.; Davis, G.E.

    1987-01-01

    Total dose characteristics of the buried insulator in implanted silicon-on-insulator (SOI) substrates have been studied using MOS transistors. The threshold voltage shift of the parasitic back channel transistor, which is controlled by charge trapping in the buried insulator, is reduced by lowering the oxygen dose as well as by an additional nitrogen implant, without degrading the front channel transistor characteristics. The improvements in the radiation characteristics of the buried insulator are attributed to the decrease in the buried oxide thickness or to the presence of the interfacial oxynitride layer formed by the oxygen and nitrogen implants

  15. Comparison between the calculated and measured dose distributions for four beams of 6 MeV linac in a human-equivalent phantom

    Directory of Open Access Journals (Sweden)

    Reda Sonia M.

    2006-01-01

    Full Text Available Radiation dose distributions in various parts of the body are of importance in radiotherapy. Also, the percent depth dose at different body depths is an important parameter in radiation therapy applications. Monte Carlo simulation techniques are the most accurate methods for such purposes. Monte Carlo computer calculations of photon spectra and the dose ratios at surfaces and in some internal organs of a human equivalent phantom were performed. In the present paper, dose distributions in different organs during bladder radiotherapy by 6 MeV X-rays were measured using thermoluminescence dosimetry placed at different points in the human-phantom. The phantom was irradiated in exactly the same manner as in actual bladder radiotherapy. Four treatment fields were considered to maximize the dose at the center of the target and minimize it at non-target healthy organs. All experimental setup information was fed to the MCNP-4b code to calculate dose distributions at selected points inside the proposed phantom. Percent depth dose distribution was performed. Also, the absorbed dose as ratios relative to the original beam in the surrounding organs was calculated by MCNP-4b and measured by thermoluminescence dosimetry. Both measured and calculated data were compared. Results indicate good agreement between calculated and measured data inside the phantom. Comparison between MCNP-4b calculations and measurements of depth dose distribution indicated good agreement between both.

  16. Low-dose total skin electron beam therapy for cutaneous lymphoma. Minimal risk of acute toxicities

    Energy Technology Data Exchange (ETDEWEB)

    Kroeger, Kai; Elsayad, Khaled; Moustakis, Christos; Haverkamp, Uwe; Eich, Hans Theodor [University Hospital of Muenster, Department of Radiation Oncology, Muenster (Germany)

    2017-12-15

    Low-dose total skin electron beam therapy (TSEBT) is attracting increased interest for the effective palliative treatment of primary cutaneous T-cell lymphoma (pCTCL). In this study, we compared toxicity profiles following various radiation doses. We reviewed the records of 60 patients who underwent TSEBT for pCTCL between 2000 and 2016 at the University Hospital of Munster. The treatment characteristics of the radiotherapy (RT) regimens and adverse events (AEs) were then analyzed and compared. In total, 67 courses of TSEBT were administered to 60 patients. Of these patients, 34 (51%) received a standard dose with a median surface dose of 30 Gy and 33 patients (49%) received a low dose with the median surface dose of 12 Gy (7 salvage low-dose TSEBT courses were administered to 5 patients). After a median follow-up of 15 months, the overall AE rate was 100%, including 38 patients (57%) with grade 2 and 7 (10%) with grade 3 AEs. Patients treated with low-dose TSEBT had significantly fewer grade 2 AEs than those with conventional dose regimens (33 vs. 79%, P < 0.001). A lower grade 3 AE rate was also observed in patients who had received the low-dose regimen compared to those with the conventional dose regimens (6 vs. 15%, P = 0.78). Multiple/salvage low-dose TSEBT courses were not associated with an increased risk of acute AEs. Low-dose TSEBT regimens are associated with significantly fewer grade 2 acute toxicities compared with conventional doses of TSEBT. Repeated/Salvage low-dose TSEBT, however, appears to be tolerable and can even be applied safely in patients with cutaneous relapses. (orig.) [German] Eine niedrigdosierte Ganzhautelektronenbestrahlung (TSEBT) wird vermehrt zur effektiven palliativen Behandlung von Patienten mit primaer kutanen T-Zell-Lymphomen (pCTCL) eingesetzt. In dieser Studie vergleichen wir die Toxizitaetsprofile verschiedener Dosiskonzepte. Untersucht wurden 60 zwischen 2000 und 2016 am Universitaetsklinikum Muenster mittels TSEBT

  17. Dose-escalated total body irradiation and autologous stem cell transplantation for refractory hematologic malignancy

    International Nuclear Information System (INIS)

    McAfee, Steven L.; Powell, Simon N.; Colby, Christine; Spitzer, Thomas R.

    2002-01-01

    Purpose: To evaluate the feasibility of dose escalation of total body irradiation (TBI) above the previously reported maximally tolerated dose, we have undertaken a Phase I-II trial of dose-escalated TBI with autologous peripheral blood stem cell transplantation (PBSCT) for chemotherapy-refractory lymphoma. Methods and Materials: Nine lymphoma patients with primary refractory disease (PRD) or in resistant relapse (RR) received dose-escalated TBI and PBSCT. The three dose levels of fractionated TBI (200 cGy twice daily) were 1,600 cGy, 1,800 cGy, and 2,000 cGy. Lung blocks were used to reduce the TBI transmission dose by 50%, and the chest wall dose was supplemented to the prescribed dose using electrons. Shielding of the kidneys was performed to keep the maximal renal dose at 1,600 cGy. Three patients, two with non-Hodgkin's lymphoma (NHL) in RR and one with PRD Hodgkin's disease, received 1,600 cGy + PBSCT, three patients (two NHL in RR, one PRD) received 1,800 cGy + PBSCT, and three patients with NHL (two in RR, one PRD) received 2,000 cGy + PBSCT. Results: Toxicities associated with this high-dose TBI regimen included reversible hepatic veno-occlusive disease in 1 patient, Grade 2 mucositis requiring narcotic analgesics in 8 patients, and neurologic toxicities consisting of a symmetrical sensory neuropathy (n=4) and Lhermitte's syndrome (n=1). Interstitial pneumonitis developed in 1 patient who received 1,800 cGy after receiving recombinant α-interferon (with exacerbation after rechallenge with interferon). Six (66%) patients achieved a response. Four (44%) patients achieved complete responses, three of which were of a duration greater than 1 year, and 2 (22%) patients achieved a partial response. One patient remains disease-free more than 5 years posttransplant. Corticosteroid-induced gastritis and postoperative infection resulted in the death of 1 patient in complete response, 429 days posttransplant. Conclusion: TBI in a dose range 1,600-2,000 cGy as

  18. Measurement with total scatter calibrate factor at different depths in the calculation of prescription dose

    International Nuclear Information System (INIS)

    Li Lijun; Zhu Haijun; Zhang Xinzhong; Li Feizhou; Song Hongyu

    2004-01-01

    Objective: To evaluate the method of measurement of total scatter calibrate factor (Sc, p). Methods: To measure the Sc, p at different depths on central axis of 6MV, 15MV photon beams through different ways. Results: It was found that the measured data of Sc, p changed with the different depths to a range of 1% - 7%. Using the direct method, the Sc, p measured depth should be the same as the depth in dose normalization point of the prescription dose. If the Sc, p (fsz, d) was measured at the other depths, it could be obtained indirectly by the calculation formula. Conclusions: The Sc, p in the prescription dose can be obtained either by the direct measure method or the indirect calculation formula. But emphasis should be laid on the proper measure depth. (authors)

  19. SFACTOR: a computer code for calculating dose equivalent to a target organ per microcurie-day residence of a radionuclide in a source organ

    International Nuclear Information System (INIS)

    Dunning, D.E. Jr.; Pleasant, J.C.; Killough, G.G.

    1977-11-01

    A computer code SFACTOR was developed to estimate the average dose equivalent S (rem/μCi-day) to each of a specified list of target organs per microcurie-day residence of a radionuclide in source organs in man. Source and target organs of interest are specified in the input data stream, along with the nuclear decay information. The SFACTOR code computes components of the dose equivalent rate from each type of decay present for a particular radionuclide, including alpha, electron, and gamma radiation. For those transuranic isotopes which also decay by spontaneous fission, components of S from the resulting fission fragments, neutrons, betas, and gammas are included in the tabulation. Tabulations of all components of S are provided for an array of 22 source organs and 24 target organs for 52 radionuclides in an adult

  20. SFACTOR: a computer code for calculating dose equivalent to a target organ per microcurie-day residence of a radionuclide in a source organ

    Energy Technology Data Exchange (ETDEWEB)

    Dunning, D.E. Jr.; Pleasant, J.C.; Killough, G.G.

    1977-11-01

    A computer code SFACTOR was developed to estimate the average dose equivalent S (rem/..mu..Ci-day) to each of a specified list of target organs per microcurie-day residence of a radionuclide in source organs in man. Source and target organs of interest are specified in the input data stream, along with the nuclear decay information. The SFACTOR code computes components of the dose equivalent rate from each type of decay present for a particular radionuclide, including alpha, electron, and gamma radiation. For those transuranic isotopes which also decay by spontaneous fission, components of S from the resulting fission fragments, neutrons, betas, and gammas are included in the tabulation. Tabulations of all components of S are provided for an array of 22 source organs and 24 target organs for 52 radionuclides in an adult.

  1. A novel method for patient exit and entrance dose prediction based on water equivalent path length measured with an amorphous silicon electronic portal imaging device

    Science.gov (United States)

    Kavuma, Awusi; Glegg, Martin; Metwaly, Mohamed; Currie, Garry; Elliott, Alex

    2010-01-01

    In vivo dosimetry is one of the quality assurance tools used in radiotherapy to monitor the dose delivered to the patient. Electronic portal imaging device (EPID) images for a set of solid water phantoms of varying thicknesses were acquired and the data fitted onto a quadratic equation, which relates the reduction in photon beam intensity to the attenuation coefficient and material thickness at a reference condition. The quadratic model is used to convert the measured grey scale value into water equivalent path length (EPL) at each pixel for any material imaged by the detector. For any other non-reference conditions, scatter, field size and MU variation effects on the image were corrected by relative measurements using an ionization chamber and an EPID. The 2D EPL is linked to the percentage exit dose table, for different thicknesses and field sizes, thereby converting the plane pixel values at each point into a 2D dose map. The off-axis ratio is corrected using envelope and boundary profiles generated from the treatment planning system (TPS). The method requires field size, monitor unit and source-to-surface distance (SSD) as clinical input parameters to predict the exit dose, which is then used to determine the entrance dose. The measured pixel dose maps were compared with calculated doses from TPS for both entrance and exit depth of phantom. The gamma index at 3% dose difference (DD) and 3 mm distance to agreement (DTA) resulted in an average of 97% passing for the square fields of 5, 10, 15 and 20 cm. The exit dose EPID dose distributions predicted by the algorithm were in better agreement with TPS-calculated doses than phantom entrance dose distributions.

  2. The Role of Electron Transport and Trapping in MOS Total-Dose Modeling

    International Nuclear Information System (INIS)

    Fleetwood, D.M.; Winokur, P.S.; Riewe, L.C.; Flament, O.; Paillet, P.; Leray, J.L.

    1999-01-01

    Radiation-induced hole and electron transport and trapping are fundamental to MOS total-dose models. Here we separate the effects of electron-hole annihilation and electron trapping on the neutralization of radiation-induced charge during switched-bias irradiation for hard and soft oxides, via combined thermally stimulated current (TSC) and capacitance-voltage measurements. We also show that present total-dose models cannot account for the thermal stability of deeply trapped electrons near the Si/SiO 2 interface, or the inability of electrons in deep or shallow traps to contribute to TSC at positive bias following (1) room-temperature, (2) high-temperature, or (3) switched-bias irradiation. These results require revisions of modeling parameters and boundary conditions for hole and electron transport in SiO 2 . The nature of deep and shallow electron traps in the near-interfacial SiO 2 is discussed

  3. Revisiting Low-Dose Total Skin Electron Beam Therapy in Mycosis Fungoides

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Cameron, E-mail: cameronh@stanford.edu [Department of Dermatology, Stanford Cancer Center, Stanford, California (United States); Young, James; Navi, Daniel [Department of Dermatology, Stanford Cancer Center, Stanford, California (United States); Riaz, Nadeem [Department of Radiation Oncology, Stanford Cancer Center, Stanford, California (United States); Lingala, Bharathi; Kim, Youn [Department of Dermatology, Stanford Cancer Center, Stanford, California (United States); Hoppe, Richard [Department of Radiation Oncology, Stanford Cancer Center, Stanford, California (United States)

    2011-11-15

    Purpose: Total skin electron beam therapy (TSEBT) is a highly effective treatment for mycosis fungoides (MF). The standard course consists of 30 to 36 Gy delivered over an 8- to 10-week period. This regimen is time intensive and associated with significant treatment-related toxicities including erythema, desquamation, anhydrosis, alopecia, and xerosis. The aim of this study was to identify a lower dose alternative while retaining a favorable efficacy profile. Methods and Materials: One hundred two MF patients were identified who had been treated with an initial course of low-dose TSEBT (5-<30 Gy) between 1958 and 1995. Patients had a T stage classification of T2 (generalized patch/plaque, n = 51), T3 (tumor, n = 29), and T4 (erythrodermic, n = 22). Those with extracutaneous disease were excluded. Results: Overall response (OR) rates (>50% improvement) were 90% among patients with T2 to T4 disease receiving 5 to <10 Gy (n = 19). In comparison, OR rates between the 10 to <20 Gy and 20 to <30 Gy subgroups were 98% and 97%, respectively. There was no significant difference in median progression free survival (PFS) in T2 and T3 patients when stratified by dose group, and PFS in each was comparable to that of the standard dose. Conclusions: OR rates associated with low-dose TSEBT in the ranges of 10 to <20 Gy and 20 to <30 Gy are comparable to that of the standard dose ({>=} 30 Gy). Efficacy measures including OS, PFS, and RFS are also favorable. Given that the efficacy profile is similar between 10 and <20 Gy and 20 and <30 Gy, the utility of TSEBT within the lower dose range of 10 to <20 Gy merits further investigation, especially in the context of combined modality treatment.

  4. Total dose induced latch in short channel NMOS/SOI transistors

    International Nuclear Information System (INIS)

    Ferlet-Cavrois, V.; Quoizola, S.; Musseau, O.; Flament, O.; Leray, J.L.; Pelloie, J.L.; Raynaud, C.; Faynot, O.

    1998-01-01

    A latch effect induced by total dose irradiation is observed in short channel SOI transistors. This effect appears on NMOS transistors with either a fully or a partially depleted structure. It is characterized by a hysteresis behavior of the Id-Vg characteristics at high drain bias for a given critical dose. Above this dose, the authors still observe a limited leakage current at low drain bias (0.1 V), but a high conduction current at high drain bias (2 V) as the transistor should be in the off-state. The critical dose above which the latch appears strongly depends on gate length, transistor structure (fully or partially depleted), buried oxide thickness and supply voltage. Two-dimensional (2D) numerical simulations indicate that the parasitic condition is due to the latch of the back gate transistor triggered by charge trapping in the buried oxide. To avoid the latch induced by the floating body effect, different techniques can be used: doping engineering, body contacts, etc. The study of the main parameters influencing the latch (gate length, supply voltage) shows that the scaling of technologies does not necessarily imply an increased latch sensitivity. Some technological parameters like the buried oxide hardness and thickness can be used to avoid latch, even at high cumulated dose, on highly integrated SOI technologies

  5. Test methods of total dose effects in very large scale integrated circuits

    International Nuclear Information System (INIS)

    He Chaohui; Geng Bin; He Baoping; Yao Yujuan; Li Yonghong; Peng Honglun; Lin Dongsheng; Zhou Hui; Chen Yusheng

    2004-01-01

    A kind of test method of total dose effects (TDE) is presented for very large scale integrated circuits (VLSI). The consumption current of devices is measured while function parameters of devices (or circuits) are measured. Then the relation between data errors and consumption current can be analyzed and mechanism of TDE in VLSI can be proposed. Experimental results of 60 Co γ TDEs are given for SRAMs, EEPROMs, FLASH ROMs and a kind of CPU

  6. Total skin electron irradiation: evaluation of dose uniformity throughout the skin surface

    International Nuclear Information System (INIS)

    Anacak, Yavuz; Arican, Zumre; Bar-Deroma, Raquel; Tamir, Ada; Kuten, Abraham

    2003-01-01

    In this study, in vivo dosimetic data of 67 total skin electron irradiation (TSEI) treatments were analyzed. Thermoluminescent dosimetry (TLD) measurements were made at 10 different body points for every patient. The results demonstrated that the dose inhomogeneity throughout the skin surface is around 15%. The homogeneity was better at the trunk than at the extratrunk points, and was worse when a degrader was used. There was minimal improvement of homogeneity in subsequent days of treatment

  7. Comparison of Out-Of-Field Neutron Equivalent Doses in Scanning Carbon and Proton Therapies for Cranial Fields

    DEFF Research Database (Denmark)

    Athar, B.; Henker, K.; Jäkel, O.

    2010-01-01

    Purpose: The purpose of this analysis is to compare the secondary neutron lateral doses from scanning carbon and proton beam therapies. Method and Materials: We simulated secondary neutron doses for out-of-field organs in an 11-year old male patient. Scanned carbon and proton beams were simulated...

  8. The Sandia total-dose estimator: SANDOSE description and user guide

    International Nuclear Information System (INIS)

    Turner, C.D.

    1995-02-01

    The SANdia total-DOSe Estimator (SANDOSE) is used to estimate total radiation dose to a (BRL-CAT) solid model, SANDOSE uses the mass-sectoring technique to sample the model using ray-tracing techniques. The code is integrated directly into the BRL-CAD solid model editor and is operated using a simple graphical user interface. Several diagnostic tools are available to allow the user to analyze the results. Based on limited validation using several benchmark problems, results can be expected to fall between a 10% underestimate and a factor of 2 overestimate of the actual dose predicted by rigorous radiation transport techniques. However, other situations may be encountered where the results might fall outside of this range. The code is written in C and uses X-windows graphics. It presently runs on SUN SPARCstations, but in theory could be ported to any workstation with a C compiler and X-windows. SANDOSE is available via license by contacting either the Sandia National Laboratories Technology Transfer Center or the author

  9. Estimation of thyroid equivalent doses during evacuation based on body surface contamination levels in the nuclear accident of FDNPS in 2011

    Science.gov (United States)

    Ohba, Takashi; Hasegawa, Arifumi; Kohayakawa, Yoshitaka; Kondo, Hisayoshi; Suzuki, Gen

    2017-09-01

    To reduce uncertainty in thyroid dose estimation, residents' radiation protection behavior should be reflected in the estimation. Screening data of body surface contamination provide information on exposure levels during evacuation. Our purpose is to estimate thyroid equivalent doses based on body surface contamination levels using a new methodology. We obtained a record of 7,539 residents/evacuees. Geiger-Mueller survey meter measurement value in cpm was translated into Bq/cm2 according to the nuclides densities obtained by measuring clothing from two persons by germanium γ-spectrometer. The measurement value of body surface contamination on head was adjusted by a natural removal rate of 15 hours and radionuclides' physical half-life. Thyroid equivalent dose of 1-year-old children by inhalation was estimated by two-dimensional Monte Carlo simulation. The proportions of evacuees/residents with measurement value in cpm of Namie and Minamisoma groups were higher than those of other groups during both periods (p<0.01, Kruskal-Wallis). During 12-14 March period, 50 and 95 percentiles of thyroid equivalent doses by inhalation were estimated as 2.7 and 86.0 mSv, respectively, for Namie group, and 4.2 and 17.2 mSv, respectively, for Minamisoma group, 0.1 and 1.0 mSv, respectively, for Tomioka/Okuma/Futaba/Naraha group, and 0.2 and 2.1 mSv, respectively, for the other group. During 15- 17 March period, 50 and 95 percentiles of thyroid equivalent doses by inhalation were 0.8 and 15.7 mSv, respectively, for Namie group, and 1.6 and 8.4 mSv, respectively, for Minamisoma group, 0.2 and 13.2 mSv, respectively, for Tomioka/Okuma/Futaba/Naraha group, and 1.2 and 12.7 mSv, respectively, for the other group. It was indicated that inhalation dose was generally higher in Namie and Minamisoma groups during 12-14 March than those during 15-17 March might reflect different self-protective behavior to radioactive plumes from other groups.

  10. Computer-aided detection (CAD) of solid pulmonary nodules in chest x-ray equivalent ultralow dose chest CT - first in-vivo results at dose levels of 0.13 mSv

    Energy Technology Data Exchange (ETDEWEB)

    Messerli, Michael, E-mail: Michael.Messerli@usz.ch [Division of Radiology and Nuclear Medicine, Cantonal Hospital St. Gallen (Switzerland); Kluckert, Thomas; Knitel, Meinhard [Division of Radiology and Nuclear Medicine, Cantonal Hospital St. Gallen (Switzerland); Rengier, Fabian [Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg (Germany); Warschkow, René [Department of Surgery, Cantonal Hospital St. Gallen (Switzerland); Alkadhi, Hatem [Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University Zurich (Switzerland); Leschka, Sebastian [Division of Radiology and Nuclear Medicine, Cantonal Hospital St. Gallen (Switzerland); Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University Zurich (Switzerland); Wildermuth, Simon; Bauer, Ralf W. [Division of Radiology and Nuclear Medicine, Cantonal Hospital St. Gallen (Switzerland)

    2016-12-15

    of CAD (p < 0.001), and nodule size (p < 0.0001) were independent predictors for nodule detection, but not BMI (p = 0.933) and the use of contrast agents (p = 0.176). Conclusions: Computer-aided detection of solid pulmonary nodules using ultralow dose CT with chest X-ray equivalent radiation dose has similar sensitivities to those from standard dose CT. Adding CAD in ultralow dose CT significantly improves the sensitivity of radiologists.

  11. Computer-aided detection (CAD) of solid pulmonary nodules in chest x-ray equivalent ultralow dose chest CT - first in-vivo results at dose levels of 0.13 mSv

    International Nuclear Information System (INIS)

    Messerli, Michael; Kluckert, Thomas; Knitel, Meinhard; Rengier, Fabian; Warschkow, René; Alkadhi, Hatem; Leschka, Sebastian; Wildermuth, Simon; Bauer, Ralf W.

    2016-01-01

    of CAD (p < 0.001), and nodule size (p < 0.0001) were independent predictors for nodule detection, but not BMI (p = 0.933) and the use of contrast agents (p = 0.176). Conclusions: Computer-aided detection of solid pulmonary nodules using ultralow dose CT with chest X-ray equivalent radiation dose has similar sensitivities to those from standard dose CT. Adding CAD in ultralow dose CT significantly improves the sensitivity of radiologists.

  12. Pattern imprinting in deep sub-micron static random access memories induced by total dose irradiation

    International Nuclear Information System (INIS)

    Zheng Qi-Wen; Yu Xue-Feng; Cui Jiang-Wei; Guo Qi; Ren Di-Yuan; Cong Zhong-Chao; Zhou Hang

    2014-01-01

    Pattern imprinting in deep sub-micron static random access memories (SRAMs) during total dose irradiation is investigated in detail. As the dose accumulates, the data pattern of memory cells loading during irradiation is gradually imprinted on their background data pattern. We build a relationship between the memory cell's static noise margin (SNM) and the background data, and study the influence of irradiation on the probability density function of ΔSNM, which is the difference between two data sides' SNMs, to discuss the reason for pattern imprinting. Finally, we demonstrate that, for micron and deep sub-micron devices, the mechanism of pattern imprinting is the bias-dependent threshold shift of the transistor, but for a deep sub-micron device the shift results from charge trapping in the shallow trench isolation (STI) oxide rather than from the gate oxide of the micron-device. (condensed matter: structural, mechanical, and thermal properties)

  13. Pattern imprinting in deep sub-micron static random access memories induced by total dose irradiation

    Science.gov (United States)

    Zheng, Qi-Wen; Yu, Xue-Feng; Cui, Jiang-Wei; Guo, Qi; Ren, Di-Yuan; Cong, Zhong-Chao; Zhou, Hang

    2014-10-01

    Pattern imprinting in deep sub-micron static random access memories (SRAMs) during total dose irradiation is investigated in detail. As the dose accumulates, the data pattern of memory cells loading during irradiation is gradually imprinted on their background data pattern. We build a relationship between the memory cell's static noise margin (SNM) and the background data, and study the influence of irradiation on the probability density function of ΔSNM, which is the difference between two data sides' SNMs, to discuss the reason for pattern imprinting. Finally, we demonstrate that, for micron and deep sub-micron devices, the mechanism of pattern imprinting is the bias-dependent threshold shift of the transistor, but for a deep sub-micron device the shift results from charge trapping in the shallow trench isolation (STI) oxide rather than from the gate oxide of the micron-device.

  14. Ultralow dose CT for pulmonary nodule detection with chest X-ray equivalent dose - a prospective intra-individual comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Messerli, Michael [University Zurich, Department of Nuclear Medicine, University Hospital Zurich, Zurich (Switzerland); Cantonal Hospital St. Gallen, Division of Radiology and Nuclear Medicine, St. Gallen (Switzerland); Kluckert, Thomas; Knitel, Meinhard; Desbiolles, Lotus; Bauer, Ralf W.; Wildermuth, Simon [Cantonal Hospital St. Gallen, Division of Radiology and Nuclear Medicine, St. Gallen (Switzerland); Waelti, Stephan [Cantonal Hospital St. Gallen, Division of Radiology and Nuclear Medicine, St. Gallen (Switzerland); University of Montreal, Department of Radiology, CHU Sainte-Justine, Montreal, Quebec (Canada); Rengier, Fabian [University Hospital Heidelberg, Department of Diagnostic and Interventional Radiology, Heidelberg (Germany); Warschkow, Rene [Cantonal Hospital St. Gallen, Department of Surgery, St. Gallen (Switzerland); Alkadhi, Hatem [University Zurich, Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich (Switzerland); Leschka, Sebastian [Cantonal Hospital St. Gallen, Division of Radiology and Nuclear Medicine, St. Gallen (Switzerland); University Zurich, Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich (Switzerland)

    2017-08-15

    To prospectively evaluate the accuracy of ultralow radiation dose CT of the chest with tin filtration at 100 kV for pulmonary nodule detection. 202 consecutive patients undergoing clinically indicated chest CT (standard dose, 1.8 ± 0.7 mSv) were prospectively included and additionally scanned with an ultralow dose protocol (0.13 ± 0.01 mSv). Standard dose CT was read in consensus by two board-certified radiologists to determine the presence of lung nodules and served as standard of reference (SOR). Two radiologists assessed the presence of lung nodules and their locations on ultralow dose CT. Sensitivity and specificity of the ultralow dose protocol was compared against the SOR, including subgroup analyses of different nodule sizes and types. A mixed effects logistic regression was used to test for independent predictors for sensitivity of pulmonary nodule detection. 425 nodules (mean diameter 3.7 ± 2.9 mm) were found on SOR. Overall sensitivity for nodule detection by ultralow dose CT was 91%. In multivariate analysis, nodule type, size and patients BMI were independent predictors for sensitivity (p < 0.001). Ultralow dose chest CT at 100 kV with spectral shaping enables a high sensitivity for the detection of pulmonary nodules at exposure levels comparable to plain film chest X-ray. (orig.)

  15. SU-E-T-365: Estimation of Neutron Ambient Dose Equivalents for Radioprotection Exposed Workers in Radiotherapy Facilities Based On Characterization Patient Risk Estimation

    Energy Technology Data Exchange (ETDEWEB)

    Irazola, L; Terron, J; Sanchez-Doblado, F [Departamento de Fisiologia Medica y Biofisica, Universidad de Sevilla (Spain); Servicio de Radiofisica, Hospital Universitario Virgen Macarena, Sevilla (Spain); Domingo, C; Romero-Exposito, M [Departament de Fisica, Universitat Autonoma de Barcelona, Bellaterra (Spain); Garcia-Fuste, M [Health and Safety Department, ALBA Synchrotron Light Source, Cerdanyola del Valles (Spain); Sanchez-Nieto, B [Instituto de Fisica, Pontificia Universidad Catolica de Chile, Santiago (Chile); Bedogni, R [Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare (INFN) (Italy)

    2015-06-15

    Purpose: Previous measurements with Bonner spheres{sup 1} showed that normalized neutron spectra are equal for the majority of the existing linacs{sup 2}. This information, in addition to thermal neutron fluences obtained in the characterization procedure{sup 3}3, would allow to estimate neutron doses accidentally received by exposed workers, without the need of an extra experimental measurement. Methods: Monte Carlo (MC) simulations demonstrated that the thermal neutron fluence distribution inside the bunker is quite uniform, as a consequence of multiple scatter in the walls{sup 4}. Although inverse square law is approximately valid for the fast component, a more precise calculation could be obtained with a generic fast fluence distribution map around the linac, from MC simulations{sup 4}. Thus, measurements of thermal neutron fluences performed during the characterization procedure{sup 3}, together with a generic unitary spectra{sup 2}, would allow to estimate the total neutron fluences and H*(10) at any point{sup 5}. As an example, we compared estimations with Bonner sphere measurements{sup 1}, for two points in five facilities: 3 Siemens (15–23 MV), Elekta (15 MV) and Varian (15 MV). Results: Thermal neutron fluences obtained from characterization, are within (0.2–1.6×10{sup 6}) cm−{sup 2}•Gy{sup −1} for the five studied facilities. This implies ambient equivalent doses ranging from (0.27–2.01) mSv/Gy 50 cm far from the isocenter and (0.03–0.26) mSv/Gy at detector location with an average deviation of ±12.1% respect to Bonner measurements. Conclusion: The good results obtained demonstrate that neutron fluence and H*(10) can be estimated based on: (a) characterization procedure established for patient risk estimation in each facility, (b) generic unitary neutron spectrum and (c) generic MC map distribution of the fast component. [1] Radiat. Meas (2010) 45: 1391 – 1397; [2] Phys. Med. Biol (2012) 5 7:6167–6191; [3] Med. Phys (2015) 42

  16. Evaluation of personal dose equivalent 'HP(d)' in a external individual monitoring system for X and gamma radiation

    International Nuclear Information System (INIS)

    Santoro, C.; Antonio Filho, J.; Santos, M.A.P.

    2007-01-01

    The good of individual monitoring for external radiation is the assessment of occupational exposure from X and γ radiations in order to assure that the radiological conditions of the workplace are acceptable, safe and satisfactory. The evaluation of radiations doses for workers must not exceed dose limits specified for workers, according to national regulatory agencies. Nowadays, there are two external monitoring systems in use, both based on ICRU definitions. In the conventional system, the workers doses are evaluated in terms of Hx. The personal dosimeter is worn over chest surface and it is calibrated in function of air kerma. In the new system, the workers doses are evaluated in terms of HP(d) and the personal dosimeter is calibrated in function of phantom doses. The aim of this paper is to adapt an external dosimetry laboratory (based on photographic dosimetry) to evaluate the personal dosimeters in terms of HP(d). In this way, a simple methodology, based on linear programming, was utilized. In this adaptation, calibration curves were obtained for radiation qualities (W and N series) described by International Organization for Standardization (ISO 4037-1, 1995). These calibration curves offer a better accuracy on dose determinations and energy below 140 keV, improving the quality of service rendered the society. (author)

  17. Estimation of low-level neutron dose-equivalent rate by using extrapolation method for a curie level Am–Be neutron source

    International Nuclear Information System (INIS)

    Li, Gang; Xu, Jiayun; Zhang, Jie

    2015-01-01

    Neutron radiation protection is an important research area because of the strong radiation biological effect of neutron field. The radiation dose of neutron is closely related to the neutron energy, and the connected relationship is a complex function of energy. For the low-level neutron radiation field (e.g. the Am–Be source), the commonly used commercial neutron dosimeter cannot always reflect the low-level dose rate, which is restricted by its own sensitivity limit and measuring range. In this paper, the intensity distribution of neutron field caused by a curie level Am–Be neutron source was investigated by measuring the count rates obtained through a 3 He proportional counter at different locations around the source. The results indicate that the count rates outside of the source room are negligible compared with the count rates measured in the source room. In the source room, 3 He proportional counter and neutron dosimeter were used to measure the count rates and dose rates respectively at different distances to the source. The results indicate that both the count rates and dose rates decrease exponentially with the increasing distance, and the dose rates measured by a commercial dosimeter are in good agreement with the results calculated by the Geant4 simulation within the inherent errors recommended by ICRP and IEC. Further studies presented in this paper indicate that the low-level neutron dose equivalent rates in the source room increase exponentially with the increasing low-energy neutron count rates when the source is lifted from the shield with different radiation intensities. Based on this relationship as well as the count rates measured at larger distance to the source, the dose rates can be calculated approximately by the extrapolation method. This principle can be used to estimate the low level neutron dose values in the source room which cannot be measured directly by a commercial dosimeter. - Highlights: • The scope of the affected area for

  18. Determination of the equivalent doses due to the ingestion of radionuclides from the uranium and thorium series presents in drinking waters of the region of Santa Luzia, Paraiba state, Brazil; Determinacao das doses equivalentes devido a ingestao de radionuclideos das series do uranio e torio presentes em aguas de consumo do municipio de Santa Luzia, estado da Paraiba

    Energy Technology Data Exchange (ETDEWEB)

    Pastura, Valeria F. da S., E-mail: vpastura@cnen.gov.b [Comissao Nacional de Energia Nuclear (DRSN/CNEN), Rio de Janeiro, RJ (Brazil). Diretoria de Radioprotecao e Seguranca Nuclear. Coordenacao de Materias Primas e Minerais; Campos, Thomas F. da C.; Petta, Reinaldo A., E-mail: thomascampos@geologia.ufrn.b, E-mail: petta@geologia.ufrn.b [Universidade Federal do Rio Grande do Norte (LARANA/UFRN), Natal, RN (Brazil). Lab. de Radioatividade Natural

    2011-10-26

    This paper determined the original dose equivalents from radionuclides of uranium and thorium series in a drinking water of well which is supplied to the population of Santa Luzia, Paraiba state, Brazil. The collected waters are near to the mineralized phlegmatic bodies in rose quartz and amazonite feldspar. Radiometric measurements performed on the feldspar vein point out counting ratios surrounding 30000 cps and the analysis of collected samples of minerals presented tenors for the {sup 226}Ra and {sup 219}Pb varying from 0.50 to 2.30 Bq/sw. For determination of concentration of radionuclides U{sub Total}, {sup 226}Ra, {sup 228}Ra and {sup 219}Pb, found in the not desalinated, two methods were used, spectrophotometry with arsenazo and radiochemistry, both realized in the CNEN-LAPOC laboratories. For the calculation of dose equivalent it was taken into consideration the following parameters: the dose coefficients for incorporation by ingestion for public individuals with ages over 17 years (Norma CNEN-NN-3.01, Regulatory Position 3.01/011) and daily ingestion of 4 liters of water, which is over the recommended by the WHO of 2L/day - 1993. The obtained values were compared with the reference value for compromised dose equivalent established by WHO for evaluate the risk potential to the health of population, by ingestion. The radionuclide concentrations in the wells varies from 0.054 to 0.21 Bq/L, resulting dose equivalents of 3.94 x 10{sup -3} mSv/year and 0.17 mSv/year in the studied population

  19. The review of radiation effects of γ total dose in CMOS circuits

    International Nuclear Information System (INIS)

    Chen Panxun; Gao Wenming; Xie Zeyuan; Mi Bang

    1992-01-01

    Radiation performances of commercial and rad-hard CMOS circuits are reviewed. Threshold voltage, static power current, V in -V out characteristic and propagation delay time related with total dose are presented for CMOS circuits from several manufacturing processes. The performance of radiation-annealing of experimental circuits had been observed for two years. The comparison has been made between the CMOS circuits made in China and the commercial RCA products. 60 Co γ source can serve as γ simulator of the nuclear explosion

  20. Unscheduled DNA synthesis in spleen cells of mice exposed to low doses of total body irradiation

    International Nuclear Information System (INIS)

    Tuschl, H.; Kovac, R.; Hruby, E.

    1983-07-01

    Unscheduled DNA synthesis was induced by UV irradiation of spleen cells obtained from C 57 Bl mice after repeated total body irradiation of 0.05 Gy 60 Co (0.00125 Gy/mice) and determined autoradiographically. An enhancement in the ability for repair of UV induced DNA lesions was observed in cells of gamma irradiated animals. While the amount of 3 H-thymidine incorporated per cell was increased, the percentage of labeled cells remained unchanged. The present results are compared with previous data on low dose radiation exposure in men. (Author) [de

  1. Acute non-stochastic effect of very low dose whole-body exposure, a thymidine equivalent serum factor

    International Nuclear Information System (INIS)

    Feinendegen, L.E.; Muehlensiepen, H.; Porschen, W.; Booz, J.

    1982-01-01

    Whole-body irradiation of mice causes the dose-dependent appearance of a humoral factor in blood serum which inhibits incorporation of 125-IUdR into tissue culture cells. This factor appears even at doses below 0.01 Gy gamma irradiation and thus is probably not related to cell death. Data are presented relating this humoral factor to thymidine. Since at low doses the target size for this effect was calculated to be the entire cell, a cellular effect is postulated linking the site of few primary absorption events, anywhere in the cell, with the cellular membrane, thus causing changes in membrane charge, structure and/or fluidity. This may lead to blocking thymidine acceptance by the cell, and thus would cause a pile-up of thymidine in the reutilization pathway in peripheral blood and would give rise to the observed effect. The effect appears as a temporary disturbance of the physiological equilibrium and should not be related at present to any cellular damage. The acute low-dose effect described has implications for the measurement of low-dose exposure by biological dosimeters and on basic research on membrane function. (author)

  2. INREM II: a computer implementation of recent models for estimating the dose equivalent to organs of man from an inhaled or ingested radionuclide

    International Nuclear Information System (INIS)

    Killough, G.G.; Dunning, D.E. Jr.; Pleasant, J.C.

    1978-01-01

    This report describes a computer code, INREM II, which calculates the internal radiation dose equivalent to organs of man which results from the intake of a radionuclide by inhalation or ingestion. Deposition and removal of radioactivity from the respiratory tract is represented by the ICRP Task Group Lung Model. A four-segment catenary model of the GI tract is used to estimate movement of radioactive material that is ingested or swallowed after being cleared from the respiratory tract. Retention of radioactivity in other organs is specified by linear combinations of decaying exponential functions. The formation and decay of radioactive daughters is treated explicitly, with each radionuclide species in the chain having its own uptake and retention parameters, as supplied by the user. The dose equivalent to a target organ is computed as the sum of contributions from each source organ in which radioactivity is assumed to be situated. This calculation utilizes a matrix of S-factors (rem/μCi-day) supplied by the user for the particular choice of source and target organs. Output permits the evaluation of crossfire components of dose when penetrating radiations are present. INREM II is coded in FORTRAN IV and has been compiled and executed on an IBM-360 computer

  3. Assessment of ambient dose equivalent rate performance of an automatic survey meter as an instrument to quantify the presence of radiation in soils

    CERN Document Server

    Yoshimura, E M; Okuno, E

    2002-01-01

    Those who work in radiation protection are faced with various quantities that were created to account for the effects of ionizing radiation in the human body. As far as the experimental point of view is concerned, each available equipment is planned to measure a distinct quantity, for a specific radiation protection application, and it is not always clear which one it is. This paper shows a series of tests, planned and applied to a portable gamma ray spectrometer, in order to assure that the monitoring low dose levels of radiation with it is reliable. The equipment is fully automated and does not allow modifications of the conversion factors from counts to ambient dose equivalent. It is therefore necessary to assure that the values provided by the equipment are correct and refer to the actual situation one expects to find in practice. The system is based on an NaI(Tl) scintillation detector, mounted with its electronics in a portable case, suitable for field measurements. It measures ambient dose equivalent r...

  4. Quantitative relations between beta-gamma mixed-field dosimeter responses and dose-equivalent conversion factors according to the testing standard

    International Nuclear Information System (INIS)

    Gupta, V.P.

    1982-08-01

    The conventional two-element personnel dosimeters, usually having two thick TLD (thermoluminescent dosimetry) ribbons, are used extensively for radiation protection dosimetry. Many of these dosimeters are used for the measurement of beta and gamma radiation doses received in mixed beta-gamma fields. Severe limitations exist, however, on the relative magnitudes and energies of these fields that may be measured simultaneously. Moreover, due to a well-known energy dependence of these dosimeters, particularly for the beta-radiations, systematic errors will occur whenever the differences in workplaces and calibration radiation energies exist. A simple mathematical approach is presented to estimate the deep and shallow dose equivalent values at different energies for such dosimeters. The formulae correlate the dosimeter responses and dose equivalent conversion factors at different energies by taking into account the guidelines of the adopted ANSI Standard N13.11 and the dosimetry practices followed by most dosimeter processors. This standard is to be used in a mandatory testing program in the United States

  5. Ambient dose equivalent measurements in secondary radiation fields at proton therapy facility CCB IFJ PAN in Krakow using recombination chambers

    Directory of Open Access Journals (Sweden)

    Jakubowska Edyta A.

    2016-03-01

    Full Text Available This work presents recombination methods used for secondary radiation measurements at the Facility for Proton Radiotherapy of Eye Cancer at the Institute for Nuclear Physics, IFJ, in Krakow (Poland. The measurements of H*(10 were performed, with REM-2 tissue equivalent chamber in two halls of cyclotrons AIC-144 and Proteus C-235 and in the corridors close to treatment rooms. The measurements were completed by determination of gamma radiation component, using a hydrogen-free recombination chamber. The results were compared with the measurements using rem meter types FHT 762 (WENDI-II and NM2 FHT 192 gamma probe and with stationary dosimetric system.

  6. The biological effects of high dose total body irradiation in beagle dogs

    International Nuclear Information System (INIS)

    Luo Qingliang; Liu Xiaolan; Hao Jing; Xiong Guolin; Dong Bo; Zhao Zhenhu; Xia Zhengbiao; Qiu Liling; Mao Bingzhi

    2002-01-01

    Objective: To evaluate the biological effects of Beagle dogs irradiated by γ-rays at different doses. Methods: All Beagle dogs were divided into six groups and were subjected respectively to total-body irradiation (TBI) with a single dose of 6.5, 5.5, 5.0, 4.5, 3, 5 and 2.5 Gy γ-rays delivered by 60 Co sources at 7.224 x 10 -2 C/kg per minute. The general condition, blood cell counts and bone marrow cell CFC assays were observed. Results: Vomiting occurred at 0.5 to 2 hours after TBI in all groups. In 6.5 Gy group 3/5 dogs had blood-watery stool and 1/5 in 5.5 Gy group had watery stool. Diarrhea occurred in all other animals. Only one dog in 2.5 Gy group survived, all of others died. in order of decreasing irradiation dosage, the average survival time was 5.0, 8.0, 9.3, 9.5, 10.5 and 14.1 days, respectively. Conclusions: According to the clinical symptoms, leukocyte count and survival time of the dogs, the irradiation dose which will induce very severe hematopoietic radiation syndrome in Beagle dogs is 4.5 to 5.0 Gy

  7. The effect of low-dose total body irradiation on tumor control

    International Nuclear Information System (INIS)

    Sakamoto, Kiyohiko; Miyamoto, Miyako; Watabe, Nobuyuki.

    1987-01-01

    Total body irradiation (TBI) is considered to bring about an immunosuppressive effect on an organism, on the basis of data obtained from sublethal doses of TBI. However, there are no data on how low-dose TBI affects an organism. Over the last five years, we have been studying the effects of low-dose TBI on normal or tumor-bearing mice and the immunological background of these effects. In experimental studies, an increase in the TD50 value (the number of cells required for a tumor incidence of 50 %) in mice exposed to 10 rad was recognized and showed a remarkable increase at 6 hours to 15 hours after irradiation. TBI of 10 rad also showed an enhancement effect on tumor cell killing when given 12 hours before local tumor irradiation. In order to clarify the mechanism of this kind of effect, some immunological studies were performed using several immunological procedures, and the results suggested that 10 rad of TBI caused increasing tumor immunity in irradiated mice. Clinical trials in some patients with advanced tumors are now being undertaken on the basis of these experimental data, and the effect of TBI on tumor control appears promising, although it is too early to draw conclusions. (author)

  8. Biologically effective dose in total-body irradiation and hematopoietic stem cell transplantation

    International Nuclear Information System (INIS)

    Kal, H.B.; Kempen-Harteveld, M.L. van; Heijenbrok-Kal, M.H.; Struikmans, H.

    2006-01-01

    Background and Purpose: Total-body irradiation (TBI) is an important part of the conditioning regimen for hematopoietic stem cell transplantation (HSCT) in patients with hematologic malignancies. The results after treatment with various TBI regimes were compared, and dose-effect relationships for the endpoints relapse incidence, disease-free survival, treatment-related mortality, and overall survival were derived. The aim was to define requirements for an optimal treatment schedule with respect to leukemic cell kill and late normal-tissue morbidity. Material and Methods: A literature search was performed. Three randomized studies, four studies comparing results of two or three TBI regimens, and nine reports with results of one specific TBI regimen were identified. Biologically effective doses (BEDs) were calculated. The results of the randomized studies and the studies comparing results of two or three TBI regimens were pooled, and the pooled relative risk (RR) was calculated for the treatments with high BED values versus treatments with a low BED. BED-effect relationships were obtained. Results: RRs for the high BED treatments were significantly lower for relapse incidence, not significantly different for disease-free survival and treatment-related mortality, and significantly higher for overall survival. BED-effect relationships indicate a decrease in relapse incidence and treatment-related mortality and an increase in disease-free and overall survival with higher BED values. Conclusion: 'More dose is better', provided that a TBI setting is used limiting the BEDs of lungs, kidneys, and eye lenses. (orig.)

  9. In pediatric leukemia, dose evaluation according to the type of compensators in total body irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Yeon [Dongnam Inst. of Radiological and Medical science, Busan (Korea, Republic of); Kim, Chang Soo; Kim, Jung Hoon [Dept. of Radiological Science, College of Health Science, Catholic University of Busan, Busan (Korea, Republic of)

    2015-04-15

    Total body irradiation (TBI) and chemotherapy are the pre-treatment method of a stem cell transplantations of the childhood leukemia. in this study, we evaluate the Quantitative human body dose prior to the treatment. The MCNPX simulation program evaluated by changing the material of the tissue compensators with imitation material of pediatric exposure in a virtual space. As a result, first, the average skin dose with the material of the tissue compensators of Plexiglass tissue compensators is 74.60 mGy/min, Al is 73.96 mGy/min, Cu is 72.26 mGy/min and Pb 67.90 mGy/min respectively. Second, regardless of the tissue compensators material that organ dose were thyroid, gentile, digestive system, brain, lungs, kidneys higher in order. Finally, the ideal distance between body compensator and the patient were 50 cm aparting each other. In conclusion, tissue compensators Al, Cu, Pb are able to replace of the currently used in Plexiglass materials.

  10. Low-dose (10-Gy) total skin electron beam therapy for cutaneous T-cell lymphoma

    DEFF Research Database (Denmark)

    Kamstrup, Maria R; Gniadecki, Robert; Iversen, Lars

    2015-01-01

    a total dose of 10 Gy in 10 fractions. Data from 10 of these patients were published previously but were included in the current pooled data analysis. Outcome measures were response rate, duration of response, and toxicity. RESULTS: The overall response rate was 95% with a complete cutaneous response......PURPOSE: Cutaneous T-cell lymphomas (CTCLs) are dominated by mycosis fungoides (MF) and Sézary syndrome (SS), and durable disease control is a therapeutic challenge. Standard total skin electron beam therapy (TSEBT) is an effective skin-directed therapy, but the possibility of retreatments...... or a very good partial response rate (response was 174 days (5.8 months; range: 60-675 days). TSEBT-related acute adverse events (grade 1 or 2) were observed in 60% of patients. CONCLUSIONS...

  11. Influence of length of interval between pulses in PDR brachytherapy (PDRBT on value of Biologically Equivalent Dose (BED in healthy tissues

    Directory of Open Access Journals (Sweden)

    Tomasz Piotrowski

    2010-07-01

    Full Text Available Purpose: Different PDR treatment schemas are used in clinical practice, however optimal length of interval between pulses still remains unclear. The aim of this work was to compare value of BED doses measured in surrounded healthy tissues according to different intervals between pulses in PDRBT. Influence of doses optimization on BED values was analyzed.Material and methods: Fifty-one patients treated in Greater Poland Cancer Centre were qualified for calculations.Calculations of doses were made in 51 patients with head and neck cancer, brain tumor, breast cancer, sarcoma, penis cancer and rectal cancer. Doses were calculated with the use of PLATO planning system in chosen critical points in surrounded healthy tissues. For all treatment plans the doses were compared using Biologically Equivalent Dose formula.Three interval lengths (1, 2 and 4 hours between pulses were chosen for calculations. For statistical analysis Friedman ANOVA test and Kendall ratio were used.Results: The median value of BED in chosen critical points in healthy tissues was statistically related to the length of interval between PDR pulses and decreased exponentially with 1 hour interval to 4 hours (Kendall = from 0.48 to 1.0; p = from 0.002 to 0.00001.Conclusions: Prolongation of intervals between pulses in PDR brachytherapy was connected with lower values of BED doses in healthy tissues. It seems that longer intervals between pulses reduced the risk of late complications, but also decreased the tumour control. Furthermore, optimization influenced the increase of doses in healthy tissues.

  12. Simulation of equivalent dose due to accidental electron beam loss in Indus-1 and Indus-2 synchrotron radiation sources using FLUKA code

    International Nuclear Information System (INIS)

    Sahani, P.K.; Dev, Vipin; Singh, Gurnam; Haridas, G.; Thakkar, K.K.; Sarkar, P.K.; Sharma, D.N.

    2008-01-01

    Indus-1 and Indus-2 are two Synchrotron radiation sources at Raja Ramanna Centre for Advanced Technology (RRCAT), India. Stored electron energy in Indus-1 and Indus-2 are 450MeV and 2.5GeV respectively. During operation of storage ring, accidental electron beam loss may occur in addition to normal beam losses. The Bremsstrahlung radiation produced due to the beam losses creates a major radiation hazard in these high energy electron accelerators. FLUKA, the Monte Carlo radiation transport code is used to simulate the accidental beam loss. The simulation was carried out to estimate the equivalent dose likely to be received by a trapped person closer to the storage ring. Depth dose profile in water phantom for 450MeV and 2.5GeV electron beam is generated, from which percentage energy absorbed in 30cm water phantom (analogous to human body) is calculated. The simulation showed the percentage energy deposition in the phantom is about 19% for 450MeV electron and 4.3% for 2.5GeV electron. The dose build up factor in 30cm water phantom for 450MeV and 2.5GeV electron beam are found to be 1.85 and 2.94 respectively. Based on the depth dose profile, dose equivalent index of 0.026Sv and 1.08Sv are likely to be received by the trapped person near the storage ring in Indus-1 and Indus-2 respectively. (author)

  13. A first-principles approach to total-dose hardness assurance

    International Nuclear Information System (INIS)

    Fleetwood, D.M.

    1995-01-01

    A first-principles approach to radiation hardness assurance was described that provides the technical background to the present US and European total-dose radiation hardness assurance test methods for MOS technologies, TM 1019.4 and BS 22900. These test methods could not have been developed otherwise, as their existence depends not on a wealth of empirical comparisons of IC data from ground and space testing, but on a fundamental understanding of MOS defect growth and annealing processes. Rebound testing should become less of a problem for advanced MOS small-signal electronics technologies for systems with total dose requirements below 50--100 krad(SiO 2 ) because of trends toward much thinner gate oxides. For older technologies with thicker gate oxides and for power devices, rebound testing is unavoidable without detailed characterization studies to assess the impact of interface traps on devices response in space. The QML approach is promising for future hardened technologies. A sufficient understanding of process effects on radiation hardness has been developed that should be able to reduce testing costs in the future for hardened parts. Finally, it is hoped that the above discussions have demonstrated that the foundation for cost-effective hardness assurance tests is laid with studies of the basic mechanisms of radiation effects. Without a diligent assessment of new radiation effects mechanisms in future technologies, one cannot be assured that the present generation of radiation test standards will continue to apply

  14. A rapid infusion protocol is safe for total dose iron polymaltose: time for change.

    Science.gov (United States)

    Garg, M; Morrison, G; Friedman, A; Lau, A; Lau, D; Gibson, P R

    2011-07-01

    Intravenous correction of iron deficiency by total dose iron polymaltose is inexpensive and safe, but current protocols entail prolonged administration over more than 4 h. This results in reduced patient acceptance, and hospital resource strain. We aimed to assess prospectively the safety of a rapid intravenous protocol and compare this with historical controls. Consecutive patients in whom intravenous iron replacement was indicated were invited to have up to 1.5 g iron polymaltose by a 58-min infusion protocol after an initial 15-min test dose without pre-medication. Infusion-related adverse events (AE) and delayed AE over the ensuing 5 days were also prospectively documented and graded as mild, moderate or severe. One hundred patients, 63 female, mean age 54 (range 18-85) years were studied. Thirty-four infusion-related AE to iron polymaltose occurred in a total of 24 patients--25 mild, 8 moderate and 1 severe; higher than previously reported for a slow protocol iron infusion. Thirty-one delayed AE occurred in 26 patients--26 mild, 3 moderate and 2 severe; similar to previously reported. All but five patients reported they would prefer iron replacement through the rapid protocol again. The presence of inflammatory bowel disease (IBD) predicted infusion-related reactions (54% vs 14% without IBD, P cost, resource utilization and time benefits for the patient and hospital system. © 2011 The Authors. Internal Medicine Journal © 2011 Royal Australasian College of Physicians.

  15. Influence of burn-in on total-ionizing-dose effect of SRAM device

    International Nuclear Information System (INIS)

    Liu Minbo; Yao Zhibin; Huang Shaoyan; He Baoping; Sheng Jiangkun

    2014-01-01

    The influence of Burn-in on the total-ionizing-dose (TID) effect of SRAM device was investigated. SRAM devices of three different feature sizes were selected and irradiated by "6"0Co source with or without pre-irradiation Burn-in. Some