WorldWideScience

Sample records for total dissolved fe

  1. Speciative Determination of Dissolved Inorganic Fe(II), Fe(III) and Total Fe in Natural Waters by Coupling CPE with FAAS

    International Nuclear Information System (INIS)

    Gurkan, R.; Altunay, N.

    2013-01-01

    A new cloud point extraction (CPE) method for the preconcentration of trace iron speciation in natural waters prior to determination by flame atomic absorption spectrometry (FAAS) was developed in the present study. In this method, Fe(II) sensitively and selectively reacts with Calcon carboxylic acid (CCA) in presence of cetylpyridinium chloride (CPC) yielding a hydrophobic complex at pH 10.5, which is then entrapped in surfactant-rich phase. Total Fe was accurately and reliably determined after the reduction of Fe(III) to Fe(II) with sulfite. The amount of Fe(III) in samples was determined from the difference between total Fe and Fe(II). CPC was used not only as an auxiliary ligand in CPE, but also as sensitivity enhancement agent in FAAS. The nonionic surfactant, polyethylene glycol tert-octylphenyl ether (Triton X-114) was used as an extracting agent. The analytical variables affecting CPE efficiency were investigated in detail. The preconcentration/enhancement factors of 50 and 82 respectively, were obtained for the preconcentration of Fe(II) with 50 mL solution. Under the optimized conditions, the detection limit of Fe(II) in linear range of 0.2-60 μg L/sup -1/ was 0.06 μg L/sup -1/. The relative standard deviation was 2.7 percentage (20 μg L/sup -1/, N: 5), recoveries for Fe(II) were in range of 99.0-102.0 percentage for all water samples including certified reference materials (CRMs). In order to verify its accuracy, two CRMs were analyzed and the results obtained were statistically in good agreement with the certified values. (author)

  2. Total dissolved carbohydrate in Mahi river estuary

    Digital Repository Service at National Institute of Oceanography (India)

    Bhosle, N.B.; Rokade, M.A.; Zingde, M.D.

    Total dissolved carbohydrate varied from 4.37-15 mg l-1 and 3.71-15.95 mg l-1 in the surface and bottom samples respectively. Highest concentration of carbohydrate was observed at station 1 which decreased downward upto Station 6 which showed...

  3. The distribution and stabilisation of dissolved Fe in deep-sea hydrothermal plumes

    Science.gov (United States)

    Bennett, Sarah A.; Achterberg, Eric P.; Connelly, Douglas P.; Statham, Peter J.; Fones, Gary R.; German, Christopher R.

    2008-06-01

    We have conducted a study of hydrothermal plumes overlying the Mid-Atlantic Ridge near 5° S to investigate whether there is a significant export flux of dissolved Fe from hydrothermal venting to the oceans. Our study combined measurements of plume-height Fe concentrations from a series of 6 CTD stations together with studies of dissolved Fe speciation in a subset of those samples. At 2.5 km down plume from the nearest known vent site dissolved Fe concentrations were ˜ 20 nM. This is much higher than would be predicted from a combination of plume dilution and dissolved Fe(II) oxidation rates, but consistent with stabilisation due to the presence of organic Fe complexes and Fe colloids. Using Competitive Ligand Exchange-Cathodic Stripping Voltammetry (CLE-CSV), stabilised dissolved Fe complexes were detected within the dissolved Fe fraction on the edges of one non-buoyant hydrothermal plume with observed ligand concentrations high enough to account for stabilisation of ˜ 4% of the total Fe emitted from the 5° S vent sites. If these results were representative of all hydrothermal systems, submarine venting could provide 12-22% of the global deep-ocean dissolved Fe budget.

  4. Salinity: Electrical conductivity and total dissolved solids

    Science.gov (United States)

    The measurement of soil salinity is a quantification of the total salts present in the liquid portion of the soil. Soil salinity is important in agriculture because salinity reduces crop yields by reducing the osmotic potential making it more difficult for the plant to extract water, by causing spe...

  5. Geographical differences in the relationship between total dissolved ...

    African Journals Online (AJOL)

    on the Department of Water Affairs water quality database. ... Keywords: conversion factors, electrical conductivity, field instruments, rivers, total dissolved solids, water quality ... of a number of TDS:EC ratios in samples where both measure-.

  6. Geographical differences in the relationship between total dissolved ...

    African Journals Online (AJOL)

    The practical application of these findings is that users of EC meters should not simply apply a blanket conversion factor, but need to select an applicable factor for the river system in which they are measuring. Keywords: conversion factors, electrical conductivity, field instruments, rivers, total dissolved solids, water quality ...

  7. Inter-relationship between major ions, total dissolved solids and ...

    African Journals Online (AJOL)

    Sulphate and magnesium concentrations were highest in station 7 while other parameters (potassium, chloride, calcium, alkalinity, conductivity and total dissolved solids (T. D. S.)) were highest in station 6. The ponds belong to class 1 of the African waters since they all have electrical conductance of less than 600 s cm-1.

  8. Measurement of total dissolved solids using electrical conductivity

    International Nuclear Information System (INIS)

    Ray, Vinod K.; Jat, J.R.; Reddy, G.B.; Balaji Rao, Y.; Phani Babu, C.; Kalyanakrishnan, G.

    2017-01-01

    Total dissolved solids (TDS) is an important parameter for the disposal of effluents generated during processing of different raw materials like Magnesium Di-uranate (MDU), Heat Treated Uranium Peroxide (HTUP), Sodium Di-uranate (SDU) in Uranium Extraction plant and Washed and Dried Frit (WDF) in Zirconium Extraction Plant. The present paper describes the use of electrical conductivity for determination of TDS. As electrical conductivity is matrix dependent property, matrix matched standards were prepared for determination of TDS in ammonium nitrate solution (AN) and mixture of ammonium nitrate and ammonium sulphate (AN/AS) and results were found to be in good agreement when compared with evaporation method. (author)

  9. Measuring and understanding total dissolved gas pressure in groundwater

    Science.gov (United States)

    Ryan, C.; Roy, J. W.; Randell, J.; Castellon, L.

    2009-05-01

    Since dissolved gases are important to a number of aspects of groundwater (e.g. age dating, active or passive bioremediation, greenhouse gas fluxes, understanding biogeochemical processes involving gases, assessing potential impacts of coal bed methane activities), accurate concentration measurements, and understanding of their subsurface behaviour are important. Researchers have recently begun using total dissolved gas pressure (TGP) sensor measurements, more commonly applied for surface water monitoring, in concert with gas composition analyses to estimate more accurate groundwater gas concentrations in wells. We have used hydraulic packers to isolate the well screens where TDP is being measured, and pump tests to indicate that in-well degassing may reduce TDG below background groundwater levels. Thus, in gas-charged groundwater zones, TGPs can be considerably underestimated in the absence of pumping or screen isolation. We have also observed transient decreased TGPs during pumping that are thought to result from ebullition induced when the water table or water level in the well is lowered below a critical hydrostatic pressure.

  10. Experimental study on total dissolved gas supersaturation in water

    Directory of Open Access Journals (Sweden)

    Lu Qu

    2011-12-01

    Full Text Available More and more high dams have been constructed and operated in China. The total dissolved gas (TDG supersaturation caused by dam discharge leads to gas bubble disease or even death of fish. Through a series of experiments, the conditions and requirements of supersaturated TDG generation were examined in this study. The results show that pressure (water depth, aeration, and bubble dissolution time are required for supersaturated TDG generation, and the air-water contact area and turbulence intensity are the main factors that affect the generation rate of supersaturated TDG. The TDG supersaturation levels can be reduced by discharging water to shallow shoals downstream of the dam or using negative pressure pipelines. Furthermore, the TDG supersaturation levels in stilling basins have no direct relationship with those in reservoirs. These results are of great importance for further research on the prediction of supersaturated TDG generation caused by dam discharge and aquatic protection.

  11. Total dissolved atmospheric nitrogen deposition in the anoxic Cariaco basin

    Science.gov (United States)

    Rasse, R.; Pérez, T.; Giuliante, A.; Donoso, L.

    2018-04-01

    Atmospheric deposition of total dissolved nitrogen (TDN) is an important source of nitrogen for ocean primary productivity that has increased since the industrial revolution. Thus, understanding its role in the ocean nitrogen cycle will help assess recent changes in ocean biogeochemistry. In the anoxic Cariaco basin, the place of the CARIACO Ocean Time-Series Program, the influence of atmospherically-deposited TDN on marine biogeochemistry is unknown. In this study, we measured atmospheric TDN concentrations as dissolved organic (DON) and inorganic (DIN) nitrogen (TDN = DIN + DON) in atmospheric suspended particles and wet deposition samples at the northeast of the basin during periods of the wet (August-September 2008) and dry (March-April 2009) seasons. We evaluated the potential anthropogenic N influences by measuring wind velocity and direction, size-fractionated suspended particles, chemical traces and by performing back trajectories. We found DIN and DON concentration values that ranged between 0.11 and 0.58 μg-N m-3 and 0.11-0.56 μg-N m-3 in total suspended particles samples and between 0.08 and 0.54 mg-N l-1 and 0.02-1.3 mg-N l-1 in wet deposition samples, respectively. Continental air masses increased DON and DIN concentrations in atmospheric suspended particles during the wet season. We estimate an annual TDN atmospheric deposition (wet + particles) of 3.6 × 103 ton-N year-1 and concluded that: 1) Atmospheric supply of TDN plays a key role in the C and N budget of the basin because replaces a fraction of the C (20% by induced primary production) and N (40%) removed by sediment burial, 2) present anthropogenic N could contribute to 30% of TDN atmospheric deposition in the basin, and 3) reduced DON (gas + particles) should be a significant component of bulk N deposition.

  12. First principles study of dissolved oxygen water adsorption on Fe (001 surfaces

    Directory of Open Access Journals (Sweden)

    Dong ZHANG

    2018-02-01

    Full Text Available In order to study the mechanism of dissolved oxygen content on the surface corrosion behavior of Fe-based heat transfer, the first principle is used to study the adsorption of O2 monomolecular, H2O monolayer and dissolved oxygen system on Fe-based heat transfer surface. The GGA/PBE approximation is used to calculate the adsorption energy, state density and population change during the adsorption process. Calculations prove that when the dissolved oxygen is adsorbed on the Fe-based surface, the water molecule tends to adsorb at the top sites, and the oxygen molecule tends to adsorb at Griffiths. When the H2O molecule adsorbs and interacts on the Fe (001 surface, the charge distribution of the interfacial double electric layer changes to cause the Fe atoms to lose electrons, resulting in the change of the surface potential. When the O2 molecule adsorbs on the Fe (001 crystal surfaces, the electrons on the Fe (001 surface are lost and the surface potential increases. O2 molecule and the surface of the Fe atoms are prone to electron transfer, in which O atom's 2p orbit for the adsorption of O2 molecule on Fe (001 crystal surface play a major role. With the increase of the proportion of O2 molecule in the dissolved oxygen water, the absolute value of the adsorption energy increases, and the interaction of the Fe-based heat transfer surface is stronger. This study explores the influence law of different dissolved oxygen on the Fe base heat exchange surface corrosion, and the base metal corrosion mechanism for experimental study provides a theoretical reference.

  13. Total Strain FE Model for Reinforced Concrete Floors on Piles

    NARCIS (Netherlands)

    Hofmeyer, H.; Bos, van den A.A.

    2008-01-01

    A finite element (FE) model using a total strain material model has been developed to predict the behavior of warehouse reinforced concrete floors on piles. The material model (not the FE model itself) was calibrated to material tests. The FE model for the floor structure was checked with full-scale

  14. PREDICTION OF TOTAL DISSOLVED GAS EXCHANGE AT HYDROPOWER DAMS

    Energy Technology Data Exchange (ETDEWEB)

    Hadjerioua, Boualem [ORNL; Pasha, MD Fayzul K [ORNL; Stewart, Kevin M [ORNL; Bender, Merlynn [Bureau of Reclamation; Schneider, Michael L. [U.S. Army Corps of Engineers

    2012-07-01

    Total dissolved gas (TDG) supersaturation in waters released at hydropower dams can cause gas bubble trauma in fisheries resulting in physical injuries and eyeball protrusion that can lead to mortality. Elevated TDG pressures in hydropower releases are generally caused by the entrainment of air in spillway releases and the subsequent exchange of atmospheric gasses into solution during passage through the stilling basin. The network of dams throughout the Columbia River Basin (CRB) are managed for irrigation, hydropower production, flood control, navigation, and fish passage that frequently result in both voluntary and involuntary spillway releases. These dam operations are constrained by state and federal water quality standards for TDG saturation which balance the benefits of spillway operations designed for Endangered Species Act (ESA)-listed fisheries versus the degradation to water quality as defined by TDG saturation. In the 1970s, the United States Environmental Protection Agency (USEPA), under the federal Clean Water Act (Section 303(d)), established a criterion not to exceed the TDG saturation level of 110% in order to protect freshwater and marine aquatic life. The states of Washington and Oregon have adopted special water quality standards for TDG saturation in the tailrace and forebays of hydropower facilities on the Columbia and Snake Rivers where spillway operations support fish passage objectives. The physical processes that affect TDG exchange at hydropower facilities have been studied throughout the CRB in site-specific studies and routine water quality monitoring programs. These data have been used to quantify the relationship between project operations, structural properties, and TDG exchange. These data have also been used to develop predictive models of TDG exchange to support real-time TDG management decisions. These empirically based predictive models have been developed for specific projects and account for both the fate of spillway and

  15. Total dissolved gas prediction and optimization in RiverWare

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Kevin M. [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Witt, Adam M. [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Hadjerioua, Boualem [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)

    2015-09-01

    Management and operation of dams within the Columbia River Basin (CRB) provides the region with irrigation, hydropower production, flood control, navigation, and fish passage. These various system-wide demands can require unique dam operations that may result in both voluntary and involuntary spill, thereby increasing tailrace levels of total dissolved gas (TDG) which can be fatal to fish. Appropriately managing TDG levels within the context of the systematic demands requires a predictive framework robust enough to capture the operationally related effects on TDG levels. Development of the TDG predictive methodology herein attempts to capture the different modes of hydro operation, thereby making it a viable tool to be used in conjunction with a real-time scheduling model such as RiverWare. The end result of the effort will allow hydro operators to minimize system-wide TDG while meeting hydropower operational targets and constraints. The physical parameters such as spill and hydropower flow proportions, accompanied by the characteristics of the dam such as plant head levels and tailrace depths, are used to develop the empirically-based prediction model. In the broader study, two different models are developed a simplified and comprehensive model. The latter model incorporates more specific bubble physics parameters for the prediction of tailrace TDG levels. The former model is presented herein and utilizes an empirically based approach to predict downstream TDG levels based on local saturation depth, spillway and powerhouse flow proportions, and entrainment effects. Representative data collected from each of the hydro projects is used to calibrate and validate model performance and the accuracy of predicted TDG uptake. ORNL, in conjunction with IIHR - Hydroscience & Engineering, The University of Iowa, carried out model adjustments to adequately capture TDG levels with respect to each plant while maintaining a generalized model configuration. Validation results

  16. Total dissolved gas, barometric pressure, and water temperature data, lower Columbia River, Oregon and Washington, 1996

    Science.gov (United States)

    Tanner, Dwight Q.; Harrison, Howard E.; McKenzie, Stuart W.

    1996-01-01

    Increased levels of total dissolved gas pressure can cause gas-bubble trauma in fish downstream from dams on the Columbia River. In cooperation with the U.S. Army Corps of Engineers, the U.S. Geological Survey collected data on total dissolved gas pressure, barometric pressure, water temperature, and dissolved oxygen pressure at 11 stations on the lower Columbia River from the John Day forebay (river mile 215.6) to Wauna Mill (river mile 41.9) from March to September 1996. Methods of data collection, review, and processing are described in this report. Summaries of daily minimum, maximum, and mean hourly values are presented for total dissolved gas pressure, barometric pressure, and water temperature. Hourly values for these parameters are presented graphically. Dissolved oxygen data are not presented in this report because the quality-control data show that the data have poor precision and high bias. Suggested changes to monitoring procedures for future studies include (1) improved calibration procedures for total dissolved gas and dissolved oxygen to better define accuracy at elevated levels of supersaturation and (2) equipping dissolved oxygen sensors with stirrers because river velocities at the shoreline monitoring stations probably cannot maintain an adequate flow of water across the membrane surface of the dissolved oxygen sensor.

  17. [Determination of Total Iron and Fe2+ in Basalt].

    Science.gov (United States)

    Liu, Jian-xun; Chen, Mei-rong; Jian, Zheng-guo; Wu, Gang; Wu, Zhi-shen

    2015-08-01

    Basalt is the raw material of basalt fiber. The content of FeO and Fe2O3 has a great impact on the properties of basalt fibers. ICP-OES and dichromate method were used to test total Fe and Fe(2+) in basalt. Suitable instrument parameters and analysis lines of Fe were chosen for ICP-OES. The relative standard deviation (RSD) of ICP-OES is 2.2%, and the recovery is in the range of 98%~101%. The method shows simple, rapid and highly accurate for determination of total Fe and Fe(2+) in basalt. The RSD of ICP-OES and dichromate method is 0.42% and 1.4%, respectively.

  18. Analysis of total and dissolved heavy metals in surface water of a Mexican polluted river by total reflection X-ray fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zarazua, G. [Instituto Nacional de Investigaciones Nucleares, Gerencia de Ciencias Ambientales, Apartado Postal 18-1027, Mexico D.F., C.P. 11801 (Mexico)]. E-mail: gzo@nuclear.inin.mx; Avila-Perez, P. [Instituto Nacional de Investigaciones Nucleares, Gerencia de Ciencias Ambientales, Apartado Postal 18-1027, Mexico D.F., C.P. 11801 (Mexico); Tejeda, S. [Instituto Nacional de Investigaciones Nucleares, Gerencia de Ciencias Ambientales, Apartado Postal 18-1027, Mexico D.F., C.P. 11801 (Mexico); Barcelo-Quintal, I. [Universidad Autonoma Metropolitana, Unidad Azcapotzalco, Mexico, D.F. (Mexico); Martinez, T. [Universidad Nacional Autonoma de Mexico, Facultad de Quimica, Mexico, D.F. (Mexico)

    2006-11-15

    The present area of study is located in the Upper Course of the Lerma River (UCLR). The Lerma is one of the most important rivers of Mexico, where it drains highly populated and industrialized regions. The aim of the present study is to determine the heavy metal concentration of Cr, Mn, Fe, Cu and Pb in dissolved and total phases of the UCLR by means of Total Reflection X-ray Fluorescence Spectrometry (TXRF). The surface water samples were collected at 8 sites distributed following the stream flow direction of the river. Four sampling campaigns were carried out in each site in a 1-year period. A sample preparation method was applied in order to obtain the total and dissolved fraction and to destroy the organic matter. The total heavy metal average concentration decrease in the following order: Fe (2566 {mu}g/L) > Mn (300 {mu}g/L) > Cu (66 {mu}g/L) > Cr (21 {mu}g/L) > Pb (15 {mu}g/L). In general, the heavy metal concentrations in water of the UCLR are below the maximum permissible limits.

  19. Analysis of total and dissolved heavy metals in surface water of a Mexican polluted river by total reflection X-ray fluorescence spectrometry

    Science.gov (United States)

    Zarazua, G.; Ávila-Pérez, P.; Tejeda, S.; Barcelo-Quintal, I.; Martínez, T.

    2006-11-01

    The present area of study is located in the Upper Course of the Lerma River (UCLR). The Lerma is one of the most important rivers of Mexico, where it drains highly populated and industrialized regions. The aim of the present study is to determine the heavy metal concentration of Cr, Mn, Fe, Cu and Pb in dissolved and total phases of the UCLR by means of Total Reflection X-ray Fluorescence Spectrometry (TXRF). The surface water samples were collected at 8 sites distributed following the stream flow direction of the river. Four sampling campaigns were carried out in each site in a 1-year period. A sample preparation method was applied in order to obtain the total and dissolved fraction and to destroy the organic matter. The total heavy metal average concentration decrease in the following order: Fe (2566 μg/L) > Mn (300 μg/L) > Cu (66 μg/L) > Cr (21 μg/L) > Pb (15 μg/L). In general, the heavy metal concentrations in water of the UCLR are below the maximum permissible limits.

  20. Analysis of total and dissolved heavy metals in surface water of a Mexican polluted river by total reflection X-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Zarazua, G.; Avila-Perez, P.; Tejeda, S.; Barcelo-Quintal, I.; Martinez, T.

    2006-01-01

    The present area of study is located in the Upper Course of the Lerma River (UCLR). The Lerma is one of the most important rivers of Mexico, where it drains highly populated and industrialized regions. The aim of the present study is to determine the heavy metal concentration of Cr, Mn, Fe, Cu and Pb in dissolved and total phases of the UCLR by means of Total Reflection X-ray Fluorescence Spectrometry (TXRF). The surface water samples were collected at 8 sites distributed following the stream flow direction of the river. Four sampling campaigns were carried out in each site in a 1-year period. A sample preparation method was applied in order to obtain the total and dissolved fraction and to destroy the organic matter. The total heavy metal average concentration decrease in the following order: Fe (2566 μg/L) > Mn (300 μg/L) > Cu (66 μg/L) > Cr (21 μg/L) > Pb (15 μg/L). In general, the heavy metal concentrations in water of the UCLR are below the maximum permissible limits

  1. Response surface modeling for optimization heterocatalytic Fenton oxidation of persistence organic pollution in high total dissolved solid containing wastewater.

    Science.gov (United States)

    Sekaran, G; Karthikeyan, S; Boopathy, R; Maharaja, P; Gupta, V K; Anandan, C

    2014-01-01

    The rice-husk-based mesoporous activated carbon (MAC) used in this study was precarbonized and activated using phosphoric acid. N2 adsorption/desorption isotherm, X-ray powder diffraction, electron spin resonance, X-ray photoelectron spectroscopy and scanning electron microscopy, transmission electron microscopy, (29)Si-NMR spectroscopy, and diffuse reflectance spectroscopy were used to characterize the MAC. The tannery wastewater carrying high total dissolved solids (TDS) discharged from leather industry lacks biodegradability despite the presence of dissolved protein. This paper demonstrates the application of free electron-rich MAC as heterogeneous catalyst along with Fenton reagent for the oxidation of persistence organic compounds in high TDS wastewater. The heterogeneous Fenton oxidation of the pretreated wastewater at optimum pH (3.5), H2O2 (4 mmol/L), FeSO4[Symbol: see text]7H2O (0.2 mmol/L), and time (4 h) removed chemical oxygen demand, biochemical oxygen demand, total organic carbon and dissolved protein by 86, 91, 83, and 90%, respectively.

  2. Dissolved Fe in the Deep and Upper Arctic Ocean With a Focus on Fe Limitation in the Nansen Basin

    Directory of Open Access Journals (Sweden)

    Micha J. A. Rijkenberg

    2018-03-01

    Full Text Available Global warming resulting from the release of anthropogenic carbon dioxide is rapidly changing the Arctic Ocean. Over the last decade sea ice declined in extent and thickness. As a result, improved light availability has increased Arctic net primary production, including in under-ice phytoplankton blooms. During the GEOTRACES cruise PS94 in the summer of 2015 we measured dissolved iron (DFe, nitrate and phosphate throughout the central part of the Eurasian Arctic. In the deeper waters concentrations of DFe were higher, which we relate to resuspension on the continental slope in the Nansen Basin and hydrothermal activity at the Gakkel Ridge. The main source of DFe in the surface was the Trans Polar Drift (TPD, resulting in concentrations up to 4.42 nM. Nevertheless, using nutrient ratios we show that a large under-ice bloom in the Nansen basin was limited by Fe. Fe limitation potentially prevented up to 54% of the available nitrate and nitrite from being used for primary production. In the Barents Sea, Fe is expected to be the first nutrient to be depleted as well. Changes in the Arctic biogeochemical cycle of Fe due to retreating ice may therefore have large consequences for primary production, the Arctic ecosystem and the subsequent drawdown of carbon dioxide.

  3. COMMUNITY SCALE STREAM TAXA SENSITIVITIES TO DIFFERENT COMPOSITIONS OF EXCESS TOTAL DISSOLVED SOLIDS

    Science.gov (United States)

    Model stream chronic dosing studies (42 d) were conducted with three total dissolved solids (TDS) recipes. The recipes differed in composition of major ions. Community scale emergence was compared with single-species responses conducted simultaneously using the whole effluent tox...

  4. Total Dissolved Gas Monitoring in Chum Salmon Spawning Gravels Below Bonneville Dam

    Energy Technology Data Exchange (ETDEWEB)

    Arntzen, Evan V.; Geist, David R.; Panther, Jennifer L.; Dawley, Earl

    2007-01-30

    At the request of the U.S. Army Corps of Engineers (Portland District), Pacific Northwest National Laboratory (PNNL) conducted research to determine whether total dissolved gas concentrations are elevated in chum salmon redds during spring spill operations at Bonneville Dam. The study involved monitoring the total dissolved gas levels at egg pocket depth and in the river at two chum salmon spawning locations downstream from Bonneville Dam. Dissolved atmospheric gas supersaturation generated by spill from Bonneville Dam may diminish survival of chum (Oncorhynchus keta) salmon when sac fry are still present in the gravel downstream from Bonneville Dam. However, no previous work has been conducted to determine whether total dissolved gas (TDG) levels are elevated during spring spill operations within incubation habitats. The guidance used by hydropower system managers to provide protection for pre-emergent chum salmon fry has been to limit TDG to 105% after allowing for depth compensation. A previous literature review completed in early 2006 shows that TDG levels as low as 103% have been documented to cause mortality in sac fry. Our study measured TDG in the incubation environment to evaluate whether these levels were exceeded during spring spill operations. Total dissolved gas levels were measured within chum salmon spawning areas near Ives Island and Multnomah Falls on the Columbia River. Water quality sensors screened at egg pocket depth and to the river were installed at both sites. At each location, we also measured dissolved oxygen, temperature, specific conductance, and water depth to assist with the interpretation of TDG results. Total dissolved gas was depth-compensated to determine when levels were high enough to potentially affect sac fry. This report provides detailed descriptions of the two study sites downstream of Bonneville Dam, as well as the equipment and procedures employed to monitor the TDG levels at the study sites. Results of the monitoring at

  5. Transformation impacts of dissolved and solid phase Fe(II) on trichloroethylene (TCE) reduction in an iron-reducing bacteria (IRB) mixed column system: a mathematical model.

    Science.gov (United States)

    Bae, Yeunook; Kim, Dooil; Cho, Hyun-Hee; Singhal, Naresh; Park, Jae-Woo

    2012-12-01

    In this research, we conducted trichloroethylene (TCE) reduction in a column filled with iron and iron-reducing bacteria (IRB) and developed a mathematical model to investigate the critical reactions between active species in iron/IRB/contaminant systems. The formation of ferrous iron (Fe(II)) in this system with IRB and zero-valent iron (ZVI, Fe(0)) coated with a ferric iron (Fe(III)) crust significantly affected TCE reduction and IRB respiration in various ways. This study presents a new framework for transformation property and reducing ability of both dissolved (Fe(II)(dissolved)) and solid form ferrous iron (Fe(II)(solid)). Results showed that TCE reduction was strongly depressed by Fe(II)(solid) rather than by other inhibitors (e.g., Fe(III) and lactate), suggesting that Fe(II)(solid) might reduce IRB activation due to attachment to IRB cells. Newly exposed Fe(0) from the released Fe(II)(dissolved) was a strong contributor to TCE reduction compared to Fe(II)(solid). In addition, our research confirmed that less Fe(II)(solid) production strongly supported long-term TCE reduction because it may create an easier TCE approach to Fe(0) or increase IRB growth. Our findings will aid the understanding of the contributions of iron media (e.g., Fe(II)(solid), Fe(II)(dissolved), Fe(III), and Fe(0)) to IRB for decontamination in natural groundwater systems. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Concentration and flux of total and dissolved phosphorus, total nitrogen, chloride, and total suspended solids for monitored tributaries of Lake Champlain, 1990-2012

    Science.gov (United States)

    Medalie, Laura

    2014-01-01

    Annual and daily concentrations and fluxes of total and dissolved phosphorus, total nitrogen, chloride, and total suspended solids were estimated for 18 monitored tributaries to Lake Champlain by using the Weighted Regressions on Time, Discharge, and Seasons regression model. Estimates were made for 21 or 23 years, depending on data availability, for the purpose of providing timely and accessible summary reports as stipulated in the 2010 update to the Lake Champlain “Opportunities for Action” management plan. Estimates of concentration and flux were provided for each tributary based on (1) observed daily discharges and (2) a flow-normalizing procedure, which removed the random fluctuations of climate-related variability. The flux bias statistic, an indicator of the ability of the Weighted Regressions on Time, Discharge, and Season regression models to provide accurate representations of flux, showed acceptable bias (less than ±10 percent) for 68 out of 72 models for total and dissolved phosphorus, total nitrogen, and chloride. Six out of 18 models for total suspended solids had moderate bias (between 10 and 30 percent), an expected result given the frequently nonlinear relation between total suspended solids and discharge. One model for total suspended solids with a very high bias was influenced by a single extreme value; however, removal of that value, although reducing the bias substantially, had little effect on annual fluxes.

  7. Ultraviolet absorbance as a proxy for total dissolved mercury in streams

    International Nuclear Information System (INIS)

    Dittman, Jason A.; Shanley, James B.; Driscoll, Charles T.; Aiken, George R.; Chalmers, Ann T.; Towse, Janet E.

    2009-01-01

    Stream water samples were collected over a range of hydrologic and seasonal conditions at three forested watersheds in the northeastern USA. Samples were analyzed for dissolved total mercury (THg d ), DOC concentration and DOC composition, and UV 254 absorbance across the three sites over different seasons and flow conditions. Pooling data from all sites, we found a strong positive correlation of THg d to DOC (r 2 = 0.87), but progressively stronger correlations of THg d with the hydrophobic acid fraction (HPOA) of DOC (r 2 = 0.91) and with UV 254 absorbance (r 2 = 0.92). The strength of the UV 254 absorbance-THg d relationship suggests that optical properties associated with dissolved organic matter may be excellent proxies for THg d concentration in these streams. Ease of sample collection and analysis, the potential application of in-situ optical sensors, and the possibility for intensive monitoring over the hydrograph make this an effective, inexpensive approach to estimate THg d flux in drainage waters. - Ultraviolet absorbance measurements are a cost-effective proxy to estimate dissolved mercury concentration in stream water.

  8. Development and application of the diffusive gradients in thin films technique for the measurement of total dissolved inorganic arsenic in waters

    International Nuclear Information System (INIS)

    Panther, Jared G.; Stillwell, Kathryn P.; Powell, Kipton J.; Downard, Alison J.

    2008-01-01

    The diffusive gradients in thin films (DGT) technique, utilizing an iron-hydroxide adsorbent, has been investigated for the in situ accumulation of total dissolved inorganic As in natural waters. Diffusion coefficients of the inorganic As V and As III species in the polyacrylamide gel were measured using a diffusion cell and DGT devices and a variety of factors that may affect the adsorption of the As species to the iron-hydroxide adsorbent, or the diffusion of the individual As species, were investigated. Under conditions commonly encountered in environmental samples, solution pH and the presence of anions, cations, fulvic acid, Fe III -fulvic acid complexes and colloidal iron-hydroxide were demonstrated not to affect uptake of dissolved As. To evaluate DGT as a method for accumulation and pre-concentration of total dissolved inorganic As in natural waters, DGT was applied to two well waters and a river water that was spiked with As. For each sample, the concentration obtained with use of DGT followed by measurement by hydride generation atomic absorption spectrometry with a Pd modifier (HG-AAS) was compared with the concentration of As measured directly by HG-AAS. The results confirmed that DGT is a reliable method for pre-concentration of total dissolved As

  9. Development and application of the diffusive gradients in thin films technique for the measurement of total dissolved inorganic arsenic in waters

    Energy Technology Data Exchange (ETDEWEB)

    Panther, Jared G.; Stillwell, Kathryn P.; Powell, Kipton J. [Chemistry Department, University of Canterbury, Private Bag 4800, Christchurch (New Zealand); Downard, Alison J. [Chemistry Department, University of Canterbury, Private Bag 4800, Christchurch (New Zealand)], E-mail: alison.downard@canterbury.ac.nz

    2008-08-01

    The diffusive gradients in thin films (DGT) technique, utilizing an iron-hydroxide adsorbent, has been investigated for the in situ accumulation of total dissolved inorganic As in natural waters. Diffusion coefficients of the inorganic As{sup V} and As{sup III} species in the polyacrylamide gel were measured using a diffusion cell and DGT devices and a variety of factors that may affect the adsorption of the As species to the iron-hydroxide adsorbent, or the diffusion of the individual As species, were investigated. Under conditions commonly encountered in environmental samples, solution pH and the presence of anions, cations, fulvic acid, Fe{sup III}-fulvic acid complexes and colloidal iron-hydroxide were demonstrated not to affect uptake of dissolved As. To evaluate DGT as a method for accumulation and pre-concentration of total dissolved inorganic As in natural waters, DGT was applied to two well waters and a river water that was spiked with As. For each sample, the concentration obtained with use of DGT followed by measurement by hydride generation atomic absorption spectrometry with a Pd modifier (HG-AAS) was compared with the concentration of As measured directly by HG-AAS. The results confirmed that DGT is a reliable method for pre-concentration of total dissolved As.

  10. Elevated concentrations of dissolved Ba, Fe and Mn in a mangrove subterranean estuary: Consequence of sea level rise?

    Science.gov (United States)

    Sanders, Christian J.; Santos, Isaac R.; Barcellos, Renato; Silva Filho, Emmanoel V.

    2012-07-01

    Groundwater underlying a mangrove habitat was studied to determine the geochemical nature of Ba, Fe and Mn as related to dissolved organic carbon (DOC), SO4 and salinity (Sepetiba Bay, Brazil). Wells were placed across geobotanic facies and sampled monthly for a year. We observed non-conservative behavior and elevated concentrations of dissolved metals relative to local end-members (i.e., fresh river water and seawater). Average Ba concentrations were near 2000 nM in an area with low salinity (˜5.3). Dissolved Fe (up to 654 μM) was two orders of magnitude greater in fresh groundwater than in the seaward sampling stations. Manganese concentrations were greatest (112 μM) in the high salinity (˜65) zone, being directly influenced by salinity. Groundwater Ba, Fe and Mn showed differing site specific concentrations, likely related to ion exchange processes and redox-controlled cycling along distinct mangrove facies. The results of this work show that metal concentrations are altered relative to conservative mixing between terrestrial and marine endmembers, illustrating the importance of mangrove subterranean estuaries as biogeochemical reactors. Roughly-estimated submarine groundwater discharge-derived dissolved Ba, Fe and Mn fluxes were at least one order of magnitude greater than river-derived fluxes into Sepetiba Bay.

  11. Effect of dissolved hydrogen on Schottky barrier height of Fe-Cr alloy heterojunction

    Science.gov (United States)

    Berahim, A. N.; Zaharudin, M. Z.; Ani, M. H.; Arifin, S. K.

    2018-01-01

    The presence of water vapour at high temperature oxidation has certain effects on ferritic alloy in comparison to dry environment. It is hypothesized that at high temperature; water vapour provides hydrogen, which will dissolve into ferritic alloy substrate and altering their electronic state at the metal-oxide interface. This work aimed to clarify the change in electronic state of metal-oxide heterojunction with the presence of hydrogen/water vapour. In this study, the Schottky Barrier (SB) was created by sputtering Cr2O3 onto prepared samples by using RF Magnetron sputtering machine. The existence of Fe/Cr2O3 junction was characterized by using XRD. The surfaces were observed by using Optical Microscope (OM) and Scanning Electron Microscope (SEM). The samples were then exposed in dry and humid condition at temperature of 473 K and 1073 K. In dry condition, 100% Ar is flown inside the furnace, while in wet condition mixture of 95% Ar and 5% H was used. I-V measurement of the junction was done to determine the Schottky Barrier Height(SBH) of the samples in the corresponding ambient. The results show that in Fe/Cr2O3 junction, with presence of hydrogen at temperature 473 K; the SBH was reduced by the scale factor of 1.054 and at 1073 K in wet ambient by factor of 1.068. Meanwhile, in Fe-Cr/Cr2O3 junction with presence of hydrogen, the value of SBH was increased by scale factor of 1.068 at temperature 473 K while at 1073 K, the SBH also increased by factor of 1.009.

  12. Factors influencing concentrations of dissolved gaseous mercury (DGM) and total mercury (TM) in an artificial reservoir

    International Nuclear Information System (INIS)

    Ahn, Myung-Chan; Kim, Bomchul; Holsen, Thomas M.; Yi, Seung-Muk; Han, Young-Ji

    2010-01-01

    The effects of various factors including turbidity, pH, DOC, temperature, and solar radiation on the concentrations of total mercury (TM) and dissolved gaseous mercury (DGM) were investigated in an artificial reservoir in Korea. Episodic total mercury accumulation events occurred during the rainy season as turbidity increased, indicating that the TM concentration was not controlled by direct atmospheric deposition. The DGM concentration in surface water ranged from 3.6 to 160 pg/L, having a maximum in summer and minimum in winter. While in most previous studies DGM was controlled primarily by a photo-reduction process, DGM concentrations tracked the amount of solar radiation only in winter when the water temperature was fairly low in this study. During the other seasons microbial transformation seemed to play an important role in reducing Hg(II) to Hg(0). DGM increased as dissolved organic carbon (DOC) concentration increased (p-value < 0.01) while it increased with a decrease of pH (p-value < 0.01). - Long-term in-situ monitoring of TM and DGM concentrations with various factors was executed in a large artificial reservoir in this study.

  13. Ultraviolet absorbance as a proxy for total dissolved mercury in streams

    Science.gov (United States)

    Dittman, J.A.; Shanley, J.B.; Driscoll, C.T.; Aiken, G.R.; Chalmers, A.T.; Towse, J.E.

    2009-01-01

    Stream water samples were collected over a range of hydrologic and seasonal conditions at three forested watersheds in the northeastern USA. Samples were analyzed for dissolved total mercury (THgd), DOC concentration and DOC composition, and UV254 absorbance across the three sites over different seasons and flow conditions. Pooling data from all sites, we found a strong positive correlation of THgd to DOC (r2 = 0.87), but progressively stronger correlations of THgd with the hydrophobic acid fraction (HPOA) of DOC (r2 = 0.91) and with UV254 absorbance (r2 = 0.92). The strength of the UV254 absorbance-THgd relationship suggests that optical properties associated with dissolved organic matter may be excellent proxies for THgd concentration in these streams. Ease of sample collection and analysis, the potential application of in-situ optical sensors, and the possibility for intensive monitoring over the hydrograph make this an effective, inexpensive approach to estimate THgd flux in drainage waters. ?? 2009 Elsevier Ltd.

  14. Forecasting models for flow and total dissolved solids in Karoun river-Iran

    Science.gov (United States)

    Salmani, Mohammad Hassan; Salmani Jajaei, Efat

    2016-04-01

    Water quality is one of the most important factors contributing to a healthy life. From the water quality management point of view, TDS (total dissolved solids) is the most important factor and many water developing plans have been implemented in recognition of this factor. However, these plans have not been perfect and very successful in overcoming the poor water quality problem, so there are a good volume of related studies in the literature. We study TDS and the water flow of the Karoun river in southwest Iran. We collected the necessary time series data from the Harmaleh station located in the river. We present two Univariate Seasonal Autoregressive Integrated Movement Average (ARIMA) models to forecast TDS and water flow in this river. Then, we build up a Transfer Function (TF) model to formulate the TDS as a function of water flow volume. A performance comparison between the Seasonal ARIMA and the TF models are presented.

  15. Design and Implementation of Remotely Monitoring System for Total Dissolved Solid in Baghdad Drinking Water Networks

    Directory of Open Access Journals (Sweden)

    Hussein Abdul-Ridha Mohammed

    2018-01-01

    Full Text Available he pollution of drinking water is a dangerous problem for the whole world, it can threaten the health of people and as people in developed society attaches more importance to environmental protection, it is of great research significance to intelligently and remotely monitoring the environment. Therefore in this paper, a remote water monitoring system for Baghdad drinking water system is suggested. The proposed system consists of data sensing and monitoring nodes at different locations in Baghdad to sensing and analyzes the data. These nodes are periodically measured Total Dissolved Solids (TDS. In case of measured value above TDS threshold which is 500 ppm, then an automated warning message will be sent to authorize persons in the maintenance center via Global Position System to take the correct action. This suggested structure has several advantages over traditional monitoring systems in terms of price, portability, reliability, applicability and takes a sample from a water tap in easy and real-time approach.

  16. Warming and organic matter sources impact the proportion of dissolved to total activities in marine extracellular enzymatic rates

    KAUST Repository

    Baltar, Federico

    2017-04-19

    Extracellular enzymatic activities (EEAs) are the rate-limiting step in the degradation of organic matter. Extracellular enzymes can be found associated to cells or dissolved in the surrounding water. The proportion of cell-free EEA constitutes in many marine environments more than half of the total activity. This high proportion causes an uncoupling between hydrolysis rates and the actual bacterial activity. However, we do not know what factors control the proportion of dissolved relative to total EEA, nor how this may change in the future ocean. To resolve this, we performed laboratory experiments with water from the Great Barrier Reef (Australia) to study the effects of temperature and dissolved organic matter sources on EEA and the proportion of dissolved EEA. We found that warming increases the rates of organic matter hydrolysis and reduces the proportion of dissolved relative to total EEA. This suggests a potential increase of the coupling between organic matter hydrolysis and heterotrophic activities with increasing ocean temperatures, although strongly dependent on the organic matter substrates available. Our study suggests that local differences in the organic matter composition in tropical coastal ecosystems will strongly affect the proportion of dissolved EEA in response to ocean warming.

  17. Voltammetric determination of total dissolved iron in coastal waters using a glassy carbon electrode modified with reduced graphene oxide, Methylene Blue and gold nanoparticles

    International Nuclear Information System (INIS)

    Lin, Mingyue; Zhang, Haiyun; Han, Haitao; Pan, Dawei; Su, Zhencui

    2015-01-01

    A nanocomposite, prepared from reduced graphene oxide (rGO), Methylene Blue (MB) and gold nanoparticles (AuNPs), was used to modify a glassy carbon electrode for the determination of total dissolved iron by differential pulse voltammetry. The use of rGO warrants a larger electrode surface and the presence of more active sites, while electron transfer is accelerated by incorporating AuNPs. MB acts as an electron mediator, as an anchor for the AuNPs (which were grown in situ), and also prevents the aggregation of rGO. The modified electrode displayed a remarkably improved sensitivity and selectivity for Fe(III). The kinetics of the electrode reaction is adsorption-controlled, and the reversible process involves one proton and one electron. The response to Fe(III) is linear in the 0.3 to 100 μM concentration range, and the detection limit is 15 nM. Possible interferences by other ions were studied. The electrode was successfully applied to the determination of total dissolved iron in real coastal waters. (author)

  18. Temporal and spatial variations in total suspended and dissolved solids in the upper part of Manoa stream, Hawaii

    NARCIS (Netherlands)

    Augustijn, Dionysius C.M.; Fares, Ali; Tran, Dai Ngia

    2011-01-01

    Hawaiian watersheds are small, steep, and receive high intensity rainfall events of non-uniform distribution. These geographic and weather patterns result in flashy streams of strongly variable water quality even within various stream segments. Total suspended solids (TSS) and total dissolved solids

  19. Dissolved Fe across the Weddell Sea and Drake Passage: impact of DFe on nutrient uptake

    NARCIS (Netherlands)

    Klunder, M.B.; Laan, P.; de Baar, H.J.W.; Middag, R.; Neven, I.; Van Ooijen, J.

    2014-01-01

    This manuscript reports the first full depth distributions of dissolved iron (DFe) over a high-resolution Weddell Sea and Drake Passage transect. Very low dissolved DFe concentrations (0.01-0.1 nM range) were observed in the surface waters of the Weddell Sea, and within the Drake Passage polar

  20. Dissolved Fe across the Weddell Sea and Drake Passage : Impact of DFe on nutrient uptake

    NARCIS (Netherlands)

    Klunder, M. B.; Laan, P.; De Baar, H. J. W.; Middag, R.; Neven, I.; Van Ooijen, J.

    2014-01-01

    This manuscript reports the first full depth distributions of dissolved iron (DFe) over a high-resolution Weddell Sea and Drake Passage transect. Very low dissolved DFe concentrations (0.01-0.1 nM range) were observed in the surface waters of the Weddell Sea, and within the Drake Passage polar

  1. Correlation between conductivity and total dissolved solid in various type of water: A review

    Science.gov (United States)

    Rusydi, Anna F.

    2018-02-01

    Conductivity (EC) and total dissolved solids (TDS) are water quality parameters, which are used to describe salinity level. These two parameters are correlated and usually expressed by a simple equation: TDS = k EC (in 25 °C). The process of obtaining TDS from water sample is more complex than that of EC. Meanwhile, TDS analysis is very important because it can illustrate groundwater quality, particularly in understanding the effect of seawater intrusion better than EC analysis. These conditions make research in revealing TDS/EC ratios interesting to do. By finding the ratio value, TDS concentration can be measured easily from EC value. However, the ratio cannot be defined easily. Previous research results have found that the correlation between TDS and EC are not always linear. The ratio is not only strongly influenced by salinity contents, but also by materials contents. Furthermore, the analysis of TDS concentration from EC value can be used to give an overview of water quality. For more precision, TDS concentrations need to be analyzed using the gravimetric method in the laboratory.

  2. Cumulative effects of cascade hydropower stations on total dissolved gas supersaturation.

    Science.gov (United States)

    Ma, Qian; Li, Ran; Feng, Jingjie; Lu, Jingying; Zhou, Qin

    2018-03-01

    Elevated levels of total dissolved gas (TDG) may occur downstream of dams during the spill process. These high levels would increase the incidence of gas bubble disease in fish and cause severe environmental impacts. With increasing numbers of cascade hydropower stations being built or planned, the cumulative effects of TDG supersaturation are becoming increasingly prominent. The TDG saturation distribution in the downstream reaches of the Jinsha River was studied to investigate the cumulative effects of TDG supersaturation resulting from the cascade hydropower stations. A comparison of the effects of the joint operation and the single operation of two hydropower stations (XLD and XJB) was performed to analyze the risk degree to fish posed by TDG supersaturation. The results showed that water with supersaturated TDG generated at the upstream cascade can be transported to the downstream power station, leading to cumulative TDG supersaturation effects. Compared with the single operation of XJB, the joint operation of both stations produced a much higher TDG saturation downstream of XJB, especially during the non-flood discharge period. Moreover, the duration of high TDG saturation and the lengths of the lethal and sub-lethal areas were much higher in the joint operation scenario, posing a greater threat to fish and severely damaging the environment. This work provides a scientific basis for strategies to reduce TDG supersaturation to the permissible level and minimize the potential risk of supersaturated TDG.

  3. Effects of Total Dissolved Gas on Chum Salmon Fry Incubating in the Lower Columbia River

    Energy Technology Data Exchange (ETDEWEB)

    Arntzen, Evan V.; Hand, Kristine D.; Geist, David R.; Murray, Katherine J.; Panther, Jenny; Cullinan, Valerie I.; Dawley, Earl M.; Elston, Ralph A.

    2008-01-30

    This report describes research conducted by Pacific Northwest National Laboratory in FY 2007 for the U.S. Army Corps of Engineers, Portland District, to characterize the effects of total dissolved gas (TDG) on the incubating fry of chum salmon (Onchorhynchus keta) in the lower Columbia River. The tasks conducted and results obtained in pursuit of three objectives are summarized: * to conduct a field monitoring program at the Ives Island and Multnomah Falls study sites, collecting empirical data on TDG to obtain a more thorough understanding of TDG levels during different river stage scenarios (i.e., high-water year versus low-water year) * to conduct laboratory toxicity tests on hatchery chum salmon fry at gas levels likely to occur downstream from Bonneville Dam * to sample chum salmon sac fry during Bonneville Dam spill operations to determine if there is a physiological response to TDG levels. Chapter 1 discusses the field monitoring, Chapter 2 reports the findings of the laboratory toxicity tests, and Chapter 3 describes the field-sampling task. Each chapter contains an objective-specific introduction, description of the study site and methods, results of research, and discussion of findings. Literature cited throughout this report is listed in Chapter 4. Additional details on the study methdology and results are provided in Appendixes A through D.

  4. Total Dissolved Gas Effects on Incubating Chum Salmon Below Bonneville Dam

    Energy Technology Data Exchange (ETDEWEB)

    Arntzen, Evan V.; Hand, Kristine D.; Carter, Kathleen M.; Geist, David R.; Murray, Katherine J.; Dawley, Earl M.; Cullinan, Valerie I.; Elston, Ralph A.; Vavrinec, John

    2009-01-29

    At the request of the U.S. Army Corps of Engineers (USACE; Portland District), Pacific Northwest National Laboratory (PNNL) undertook a project in 2006 to look further into issues of total dissolved gas (TDG) supersaturation in the lower Columbia River downstream of Bonneville Dam. In FY 2008, the third year of the project, PNNL conducted field monitoring and laboratory toxicity testing to both verify results from 2007 and answer some additional questions about how salmonid sac fry respond to elevated TDG in the field and the laboratory. For FY 2008, three objectives were 1) to repeat the 2006-2007 field effort to collect empirical data on TDG from the Ives Island and Multnomah Falls study sites; 2) to repeat the static laboratory toxicity tests on hatchery chum salmon fry to verify 2007 results and to expose wild chum salmon fry to incremental increases in TDG, above those of the static test, until external symptoms of gas bubble disease were clearly present; and 3) to assess physiological responses to TDG levels in wild chum salmon sac fry incubating below Bonneville Dam during spill operations. This report summarizes the tasks conducted and results obtained in pursuit of the three objectives. Chapter 1 discusses the field monitoring, Chapter 2 reports the findings of the laboratory toxicity tests, and Chapter 3 describes the field-sampling task. Each chapter contains an objective-specific introduction, description of the study site and methods, results of research, and discussion of findings. Literature cited throughout this report is listed in Chapter 4. Additional details on the monitoring methodology and results are provided in Appendices A and B included on the compact disc bound inside the back cover of the printed version of this report.

  5. Application of Fe3O4@MIL-100 (Fe) core-shell magnetic microspheres for evaluating the sorption of organophosphate esters to dissolved organic matter (DOM).

    Science.gov (United States)

    Pang, Long; Yang, Peijie; Yang, Huiqiang; Ge, Liming; Xiao, Jingwen; Zhou, Yifan

    2018-06-01

    Organophosphate esters (OPEs) are widely used as flame retardants and plasticizers in many products and materials. Because of the potential biologic toxicity on human beings, OPEs are regarded as a class of emerging pollutants. Dissolved organic matters (DOM) have significant effects on the bioavailability and toxicity of the pollutants in the environment. Negligible-depletion solid-phase microextraction (nd-SPME) is an efficient way for measuring the freely dissolved pollutants but suffers from long equilibrium time. Metal-organic frameworks (MOFs) are a class of porous crystalline materials with unique properties such as high pore volume, regular porosity, and tunable pore size, being widely used for the extraction of various organic compounds. Here we developed a novel method for quick determination the sorption coefficients of OPEs to DOM in aquatic phase using Fe 3 O 4 @MIL-100 (Fe) core-shell magnetic microspheres. The mesoporous structures of the as-synthesized microspheres hindered the extraction of OPEs which associated with humic acid due to the volume exclusion effect. However, the freely dissolved OPEs can access into the mesoporous and then were extracted by MIL-100 (Fe). Due to the small pore size (4.81 nm), large surface area (141 m 2  g -1 ), high pore volume (0.17 g 3  g -1 ), and ultra-thin MOFs layers, Fe 3 O 4 @MIL-100 (Fe) core-shell magnetic microspheres have large contact area for the analytes in aqueous phase and therefore the diffusion distance was largely shortened. Besides, the microspheres can be collected conveniently after the extraction process by applying a magnetic field. Compared to the nd-SPME method with 35 h equilibration time (t 90% ), the proposed method for these studied OPEs only need 24 min to achieve equilibration. The sorption coefficients (logK DOC ) of the OPEs to humic acid were ranged from 3.84-5.28, which were highly consistent with the results by using polyacrylate-coated fiber and polydimethylsiloxane

  6. Attenuated total reflection UV spectroscopy for simultaneous analysis of alkali, sulphide and dissolved lignin in pulping liquors

    International Nuclear Information System (INIS)

    Chai, X.S.; Zhu, J.Y.; Luo, Q.; Li, J.

    2003-01-01

    This study experimentally demonstrated attenuated total reflection (ATR) ultraviolet (UV) spectroscopy for rapid and simultaneous determination of the concentrations of hydroxide, sulphide and dissolved lignin in kraft pulping liquors. A multivariate partial least squares fitting procedure (using commercially available software) was employed to obtain the species concentrations from the measured absorption spectra of the pulping liquors. Good agreements between ATR-UV measured species concentrations and those obtained by reference methods (titration for hydroxide and sulphide and conventional UV absorption for dissolved lignin) were achieved. (author)

  7. Watershed scale spatial variability in dissolved and total organic and inorganic carbon in contrasting UK catchments

    Science.gov (United States)

    Cumberland, S.; Baker, A.; Hudson, N. J.

    2006-12-01

    Approximately 800 organic and inorganic carbon analyses have been undertaken from watershed scale and regional scale spatial surveys in various British catchments. These include (1) a small (urban catchment (Ouseburn, N England); (2) a headwater, lowland agricultural catchment (River Tern, C England) (3) a large UK catchment (River Tyne, ~3000 sq-km) and (4) a spatial survey of ~300 analyses from rivers from SW England (~1700 sq-km). Results demonstrate that: (1) the majority of organic and inorganic carbon is in the dissolved (DOC and DIC) fractions; (2) that with the exception of peat rich headwaters, DIC concentration is always greater than DOC; (3) In the rural River Tern, riverine DOC and DIC are shown to follow a simple end- member mixing between DIC (DOC) rich (poor) ground waters and DOC (DIC) rich (poor) riparian wetlands for all sample sites. (4) In the urbanized Ouseburn catchment, although many sample sites also show this same mixing trend, some tributaries follow a pollutant trend of simultaneous increases in both DOC and DIC. The Ouseburn is part of the larger Tyne catchment: this larger catchment follows the simple groundwater DIC- soil water DOC end member mixing model, with the exception of the urban catchments which exhibit an elevated DIC compared to rural sites. (5) Urbanization is demonstrated to increase DIC compared to equivalent rural catchments; this DIC has potential sources including diffuse source inputs from the dissolution of concrete, point sources such as trade effluents and landfill leachates, and bedrock derived carbonates relocated to the soil dissolution zone by urban development. (6) DIC in rural SW England demonstrates that spatial variability in DIC can be attributed to variations in geology; but that DIC concentrations in the SW England rivers dataset are typically lower than the urbanized Tyne catchments despite the presence of carbonate bedrock in many of the sample catchments in the SW England dataset. (7) Recent

  8. Arsenic removal by using colloidal adsorption flotation utilizing Fe(OH)3 floc in a dissolved air flotation system

    International Nuclear Information System (INIS)

    Pavez, O.; Palacios, J. M.; Aguilar, C.

    2009-01-01

    In the present work, the influence of Fe/As ratio on the As removal, from aqueous solutions, applying flotation by colloidal adsorption was studied. Ferric chloride was used as coagulant and dodec il sulfate as collector, and arsenic trioxide was utilized to preparing the solutions. The obtained results show that the highest arsenic removal was accomplished in the range of pH between 4 and 5,5, and the increasing of the initial concentration of Fe(III), increases the removal of arsenic from the solution. However, with the decreasing of the initial concentration of arsenic in the solution, it is required a larger Fe/As ratio for its removal. For solutions containing: 13,73, 1,71 and 0,105 mg/L of arsenic, it was shown that to remove around 95% of the dissolved arsenic, a Fe/As ratios of approximately 6/1, 18/1 and 800/1, respectively, are required. (Author) 31 refs

  9. Effects of different water storage procedures on the dissolved Fe concentration and isotopic composition of chemically contrasted waters from the Amazon River Basin.

    Science.gov (United States)

    Mulholland, Daniel S; Poitrasson, Franck; Boaventura, Geraldo R

    2015-11-15

    Although recent studies have investigated the Fe isotopic composition of dissolved, colloidal and particulate phases from continental and oceanic natural waters, few efforts have been made to evaluate whether water sample storage and the separation of different pore-size fractions through filtration can cause any change to the Fe isotopic compositions. The present study investigates the possible biases introduced by different water storage conditions on the dissolved Fe concentration and isotopic composition of chemically different waters. Water samples were collected from an organic-rich river and from mineral particulate-rich rivers. Filtered and unfiltered water samples were stored either at room temperature or frozen at -18°C in order to assess possible biases due to (i) different water storage temperature, and (ii) storage of bulk (unfiltered) vs filtered water. Iron isotope measurements were performed by Multicollector Inductively Coupled Plasma Mass Spectrometry with a Thermo Electron Neptune instrument, after Fe purification using anion-exchange resins. Our data reveal that bulk water storage at room temperature without filtration produces minor changes in the dissolved Fe isotopic composition of mineral particulate-rich waters, but significant isotopic composition changes in organic-rich waters. In both cases, however, the impact of the different procedures on the Fe concentrations was strong. On the other hand, the bulk water stored frozen without filtration produced more limited changes in the dissolved Fe concentrations, and also on isotopic compositions, relative to the samples filtered in the field. The largest effect was again observed for the organic-rich waters. These findings suggest that a time lag between water collection and filtration may cause isotopic exchanges between the dissolved and particulate Fe fractions. When it is not possible to filter the samples in the field immediately after collection, the less detrimental approach is to

  10. Fe-Binding Dissolved Organic Ligands in the Oxic and Suboxic Waters of the Black Sea

    NARCIS (Netherlands)

    Gerringa, L.J.A.; Rijkenberg, M.J.A.; Bown, J.; Margolin, A.R.; Laan, P.; De Baar, H.J.W.

    2016-01-01

    In the oxygen-rich layer of the Black Sea, above the permanent halocline, the Fe and nitrate concentrations are low where fluorescence is relatively high, indicating uptake by phytoplankton. In this study we used ligand exchange adsorptive cathodic stripping voltammetry (CLE-aCSV), using

  11. Automated determination of the stable carbon isotopic composition (δ13C) of total dissolved inorganic carbon (DIC) and total nonpurgeable dissolved organic carbon (DOC) in aqueous samples: RSIL lab codes 1851 and 1852

    Science.gov (United States)

    Révész, Kinga M.; Doctor, Daniel H.

    2014-01-01

    The purposes of the Reston Stable Isotope Laboratory (RSIL) lab codes 1851 and 1852 are to determine the total carbon mass and the ratio of the stable isotopes of carbon (δ13C) for total dissolved inorganic carbon (DIC, lab code 1851) and total nonpurgeable dissolved organic carbon (DOC, lab code 1852) in aqueous samples. The analysis procedure is automated according to a method that utilizes a total carbon analyzer as a peripheral sample preparation device for analysis of carbon dioxide (CO2) gas by a continuous-flow isotope ratio mass spectrometer (CF-IRMS). The carbon analyzer produces CO2 and determines the carbon mass in parts per million (ppm) of DIC and DOC in each sample separately, and the CF-IRMS determines the carbon isotope ratio of the produced CO2. This configuration provides a fully automated analysis of total carbon mass and δ13C with no operator intervention, additional sample preparation, or other manual analysis. To determine the DIC, the carbon analyzer transfers a specified sample volume to a heated (70 °C) reaction vessel with a preprogrammed volume of 10% phosphoric acid (H3PO4), which allows the carbonate and bicarbonate species in the sample to dissociate to CO2. The CO2 from the reacted sample is subsequently purged with a flow of helium gas that sweeps the CO2 through an infrared CO2 detector and quantifies the CO2. The CO2 is then carried through a high-temperature (650 °C) scrubber reactor, a series of water traps, and ultimately to the inlet of the mass spectrometer. For the analysis of total dissolved organic carbon, the carbon analyzer performs a second step on the sample in the heated reaction vessel during which a preprogrammed volume of sodium persulfate (Na2S2O8) is added, and the hydroxyl radicals oxidize the organics to CO2. Samples containing 2 ppm to 30,000 ppm of carbon are analyzed. The precision of the carbon isotope analysis is within 0.3 per mill for DIC, and within 0.5 per mill for DOC.

  12. Removal of two polycyclic musks in sewage treatment plants: Freely dissolved and total concentrations

    NARCIS (Netherlands)

    Artola-Garicano, E.; Borkent, I.; Hermens, J.L.M.; Vaes, W.H.J.

    2003-01-01

    In the current study, the removal of slowly degradable hydrophobic chemicals in sewage treatment plants (STPs) has been evaluated with emphasis on the combination of free and total concentration data. Free and total concentrations of two polycyclic musks were determined in each compartment of four

  13. Higher Fe{sup 2+}/total Fe ratio in iron doped phosphate glass melted by microwave heating

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Ashis K., E-mail: ashis@cgcri.res.in [CSIR-Central Glass and Ceramic Research Institute, 196 Raja S.C. Mullick Road, Kolkata 700032 (India); Sinha, Prasanta K. [CSIR-Central Glass and Ceramic Research Institute, 196 Raja S.C. Mullick Road, Kolkata 700032 (India); Das, Dipankar [UGC-DAE Consortium for Scientific Research, Kolkata 700098 (India); Guha, Chandan [Department of Chemical Engineering, Jadavpur University, Kolkata 700032 (India); Sen, Ranjan [CSIR-Central Glass and Ceramic Research Institute, 196 Raja S.C. Mullick Road, Kolkata 700032 (India)

    2015-03-15

    Highlights: • Iron doped phosphate glasses prepared using microwave heating and conventional heating under air and reducing atmosphere. • Presence of iron predominantly in the ferrous oxidation state in all the glasses. • Significant concentrations of iron in the ferrous oxidation state on both octahedral and tetrahedral sites in all the glasses. • Ratio of Fe{sup 2+} with total iron is found higher in microwave prepared glasses in comparison to conventional prepared glasses. - Abstract: Iron doped phosphate glasses containing P{sub 2}O{sub 5}–MgO–ZnO–B{sub 2}O{sub 3}–Al{sub 2}O{sub 3} were melted using conventional resistance heating and microwave heating in air and under reducing atmosphere. All the glasses were characterised by UV–Vis–NIR spectroscopy, Mössbauer spectroscopy, thermogravimetric analysis and wet colorimetry analysis. Mössbauer spectroscopy revealed presence of iron predominantly in the ferrous oxidation state on two different sites in all the glasses. The intensity of the ferrous absorption peaks in UV–Vis–NIR spectrum was found to be more in glasses prepared using microwave radiation compared to the glasses prepared in a resistance heating furnace. Thermogravimetric analysis showed increasing weight gain on heating under oxygen atmosphere for glass corroborating higher ratio of FeO/(FeO + Fe{sub 2}O{sub 3}) in glass melted by direct microwave heating. Wet chemical analysis also substantiated the finding of higher ratio Fe{sup +2}/ΣFe in microwave melted glasses. It was found that iron redox ratio was highest in the glasses prepared in a microwave furnace under reducing atmosphere.

  14. Tidally driven export of dissolved organic carbon, total mercury, and methylmercury from a mangrove-dominated estuary

    Science.gov (United States)

    Bergamaschi, B.A.; Krabbenhoft, D.P.; Aiken, G.R.; Patino, E.; Rumbold, D.G.; Orem, W.H.

    2012-01-01

    The flux of dissolved organic carbon (DOC) from mangrove swamps accounts for 10% of the global terrestrial flux of DOC to coastal oceans. Recent findings of high concentrations of mercury (Hg) and methylmercury (MeHg) in mangroves, in conjunction with the common co-occurrence of DOC and Hg species, have raised concerns that mercury fluxes may also be large. We used a novel approach to estimate export of DOC, Hg, and MeHg to coastal waters from a mangrove-dominated estuary in Everglades National Park (Florida, USA). Using in situ measurements of fluorescent dissolved organic matter as a proxy for DOC, filtered total Hg, and filtered MeHg, we estimated the DOC yield to be 180 (??12.6) g C m -2 yr -1, which is in the range of previously reported values. Although Hg and MeHg yields from tidal mangrove swamps have not been previously measured, our estimated yields of Hg species (28 ?? 4.5 ??g total Hg m -2 yr -1 and 3.1 ?? 0.4 ??g methyl Hg m -2 yr -1) were five times greater than is typically reported for terrestrial wetlands. These results indicate that in addition to the well documented contributions of DOC, tidally driven export from mangroves represents a significant potential source of Hg and MeHg to nearby coastal waters. ?? 2011 American Chemical Society.

  15. Bench-Scale and Pilot-Scale Treatment Technologies for the Removal of Total Dissolved Solids from Coal Mine Water: A Review

    Science.gov (United States)

    Coal mine water (CMW) is typically treated to remove suspended solids, acidity, and soluble metals, but high concentrations of total dissolved solids (TDS) have been reported to impact the environment at several CMW discharge points. Consequently, various states have establishe...

  16. Simplified sample treatment for the determination of total concentrations and chemical fractionation forms of Ca, Fe, Mg and Mn in soluble coffees.

    Science.gov (United States)

    Pohl, Pawel; Stelmach, Ewelina; Szymczycha-Madeja, Anna

    2014-11-15

    A simpler, and faster than wet digestion, sample treatment was proposed prior to determination of total concentrations for selected macro- (Ca, Mg) and microelements (Fe, Mn) in soluble coffees by flame atomic absorption spectrometry. Samples were dissolved in water and acidified with HNO3. Precision was in the range 1-4% and accuracy was better than 2.5%. The method was used in analysis of 18 soluble coffees available on the Polish market. Chemical fractionation patterns for Ca, Fe, Mg and Mn in soluble coffees, as consumed, using a two-column solid-phase extraction method, determined Ca, Mg and Mn were present predominantly as cations (80-93% of total content). This suggests these elements are likely to be highly bioaccessible. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Development of improved space sampling strategies for ocean chemical properties: Total carbon dioxide and dissolved nitrate

    Science.gov (United States)

    Goyet, Catherine; Davis, Daniel; Peltzer, Edward T.; Brewer, Peter G.

    1995-01-01

    Large-scale ocean observing programs such as the Joint Global Ocean Flux Study (JGOFS) and the World Ocean Circulation Experiment (WOCE) today, must face the problem of designing an adequate sampling strategy. For ocean chemical variables, the goals and observing technologies are quite different from ocean physical variables (temperature, salinity, pressure). We have recently acquired data on the ocean CO2 properties on WOCE cruises P16c and P17c that are sufficiently dense to test for sampling redundancy. We use linear and quadratic interpolation methods on the sampled field to investigate what is the minimum number of samples required to define the deep ocean total inorganic carbon (TCO2) field within the limits of experimental accuracy (+/- 4 micromol/kg). Within the limits of current measurements, these lines were oversampled in the deep ocean. Should the precision of the measurement be improved, then a denser sampling pattern may be desirable in the future. This approach rationalizes the efficient use of resources for field work and for estimating gridded (TCO2) fields needed to constrain geochemical models.

  18. Feasibility study for evaluating cumulative exposure of downstream migrant juvenile salmonids to total dissolved gas. Final report

    International Nuclear Information System (INIS)

    Abernethy, C.S.; Dauble, D.D.; Johnson, R.L.

    1997-11-01

    A feasibility study was initiated to determine if downstream migrant salmonids could be monitored to determine potential relationships between total dissolved gas (TDG) exposure and signs of gas bubble trauma (GBT). The primary objectives were to: (1) establish logistical requirements for in-river monitoring of TDG exposure, including net pen design, deployment, and navigation constraints; (2) resolve uncertainties associated with effects of the net pen on fish behavior; (3) test the accuracy and precision of in-river monitoring equipment used to measure fish distribution and water quality; and (4) determine the application of hydrologic/flow models to predictions of TDG exposure. In-river measurements included water velocity, boat position, and selected water quality parameters (temperature, dissolved oxygen, pH, depth, conductivity). Fish distribution within the net pen was monitored using scanning sonar, and a split-beam echo sounder was used to evaluate vertical distribution of fish m in the river adjacent to the net pen. Three test drifts were conducted from late July through late August. The studies demonstrated that it was feasible to assemble and deploy a large net pen for mobile monitoring of TDG exposure. Accurate monitoring of vertical and lateral distribution of smolts was performed, and diel differences in behavior were documented. Further, the fish sounded in response to researcher activity on the perimeter platform. Thus, in-transit monitoring for GBT or mortality would affect fish depth distribution and exposure to TDG. Principal recommendations for future studies are directed at improving maneuverability of the net pen in adverse weather conditions and applying new acoustics technology to simultaneously collect fish distribution data from within and outside of the pen. 6 refs., 17 figs., 2 tabs

  19. On-line technique for preparingand measuring stable carbon isotopeof total dissolved inorganic carbonin water samples ( d13CTDIC

    Directory of Open Access Journals (Sweden)

    S. Inguaggiato

    2005-06-01

    Full Text Available A fast and completely automated procedure is proposed for the preparation and determination of d13C of total inorganic carbon dissolved in water ( d13CTDIC. This method is based on the acidification of water samples transforming the whole dissolved inorganic carbon species into CO2. Water samples are directly injected by syringe into 5.9 ml vials with screw caps which have a pierciable rubber septum. An Analytical Precision «Carbonate Prep System» was used both to flush pure helium into the vials and to automatically dispense a fixed amount of H3PO4. Full-equilibrium conditions between produced CO2 and water are reached at a temperature of 70°C (± 0.1°C in less than 24 h. Carbon isotope ratios (13C/ 12C were measured on an AP 2003 continuous flow mass spectrometer, connected on-line with the injection system. The precision and reproducibility of the proposed method was tested both on aqueous standard solutions prepared using Na2CO3 with d13C=-10.78 per mil versus PDB (1 s= 0.08, n = 11, and at five different concentrations (2, 3, 4, 5 and 20 mmol/l and on more than thirty natural samples. Mean d13CTDIC on standard solution samples is ?10.89 < per mil versus PDB (1 s= 0.18, n = 50, thus revealing both a good analytical precision and reproducibility. A comparison between average d13CTDIC values on a quadruplicate set of natural samples and those obtained following the chemical and physical stripping method highlights a good agreement between the two analytical methods.

  20. Accuracy of different sensors for the estimation of pollutant concentrations (total suspended solids, total and dissolved chemical oxygen demand) in wastewater and stormwater.

    Science.gov (United States)

    Lepot, Mathieu; Aubin, Jean-Baptiste; Bertrand-Krajewski, Jean-Luc

    2013-01-01

    Many field investigations have used continuous sensors (turbidimeters and/or ultraviolet (UV)-visible spectrophotometers) to estimate with a short time step pollutant concentrations in sewer systems. Few, if any, publications compare the performance of various sensors for the same set of samples. Different surrogate sensors (turbidity sensors, UV-visible spectrophotometer, pH meter, conductivity meter and microwave sensor) were tested to link concentrations of total suspended solids (TSS), total and dissolved chemical oxygen demand (COD), and sensors' outputs. In the combined sewer at the inlet of a wastewater treatment plant, 94 samples were collected during dry weather, 44 samples were collected during wet weather, and 165 samples were collected under both dry and wet weather conditions. From these samples, triplicate standard laboratory analyses were performed and corresponding sensors outputs were recorded. Two outlier detection methods were developed, based, respectively, on the Mahalanobis and Euclidean distances. Several hundred regression models were tested, and the best ones (according to the root mean square error criterion) are presented in order of decreasing performance. No sensor appears as the best one for all three investigated pollutants.

  1. Speciative determination of total V and dissolved inorganic vanadium species in environmental waters by catalytic–kinetic spectrophotometric method

    Directory of Open Access Journals (Sweden)

    Ramazan Gürkan

    2017-02-01

    Full Text Available A kinetic determination of V(V as a catalyst was spectrophotometrically performed by using the indicator reaction of Gallamine blue (GB+ and bromate at pH 2.0. The reaction was followed by measuring absorbance change for a fixed-time of 3 min at 537 nm. The variables such as reagent concentration, pH, buffer concentration, ionic strength and temperature were optimized to improve the selectivity and sensitivity. Under the optimized conditions, the determination of V(V was performed in the range 1–100 μg L−1 with limits of detection and quantification of 0.31 and 0.94 μg L−1. The developed kinetic method is sufficiently sensitive, selective and simple. It was successfully applied to the speciative determination of total V and inorganic dissolved vanadium species, V(V and V(IV in environmental water samples. The oxidizing property of permanganate is used to differentiate between V(IV and V(V species. The V(IV content was found by subtracting the V(V content from those of total V. The recovery is above 95% for V(V spiked samples. Additionally, the accuracy was validated by analysis of a certified water sample, CRM TMDA-53.3, and the results were in good agreement with the certified value.

  2. Characterizing the production and retention of dissolved iron as Fe(II) across a natural gradient in chlorophyll concentrations in the Southern Drake Passage - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Katherine Barbeau

    2007-04-10

    Recent mesoscale iron fertilization studies in the Southern Ocean (e.g. SOIREE, EisenEx, SOFeX) have demonstrated the importance of iron as a limiting factor for phytoplankton growth in these high nutrient, low-chlorophyll (HNLC) waters. Results of these experiments have demonstrated that factors which influence the biological availability of the iron supplied to phytoplankton are crucial in bloom development, longevity, and generation of carbon export flux. These findings have important implications for the future development of iron fertilization protocols to enhance carbon sequestration in high-latitude oceans. In particular, processes which lead to the mobilization and retention of iron in dissolved form in the upper ocean are important in promoting continued biological availability of iron. Such processes can include photochemical redox cycling, which leads to the formation of soluble reduced iron, Fe(II), within iron-enriched waters. Creation of effective fertilization schemes will thus require more information about Fe(II) photoproduction in Southern Ocean waters as a means to retain new iron within the euphotic zone. To contribute to our knowledge base in this area, this project was funded by DOE with a goal of characterizing the production and retention of dissolved Fe as Fe(II) in an area of the southern Drake Passage near the Shackleton Transverse Ridge, a region with a strong recurrent chlorophyll gradient which is believed to be a site of natural iron enrichment in the Southern Ocean. This area was the focus of a multidisciplinary NSF/OPP-funded investigation in February 2004 (OPP02-30443, lead PI Greg Mitchell, SIO/UCSD) to determine the influence of mesoscale circulation and iron transport with regard to the observed patterns in sea surface chlorophyll in the region near the Shackleton Transverse Ridge. A number of parameters were assessed across this gradient in order to reveal interactions between plankton community structure and iron distributions

  3. Suppression of aqueous corrosion of La(Fe0.88Si0.12)13 by reducing dissolved oxygen concentration for high-performance magnetic refrigeration

    International Nuclear Information System (INIS)

    Fujieda, S.; Fukamichi, K.; Suzuki, S.

    2014-01-01

    Highlights: • The aqueous corrosion of La(Fe 0.88 Si 0.12 ) 13 and its suppression were investigated. • The lattice expansion after immersion was caused by the hydrogen absorption. • The itinerant-electron metamagnetic transition became indistinct after immersion. • The aqueous corrosion was suppressed by reducing the dissolved oxygen concentration. - Abstract: The itinerant-electron metamagnetic transition of La(Fe 0.88 Si 0.12 ) 13 becomes indistinct after immersion in distilled-water containing about 8 ppm of the dissolved oxygen (DO) concentration because of aqueous corrosion. However, the aqueous corrosion of La(Fe 0.88 Si 0.12 ) 13 is significantly suppressed by reducing the DO concentration. Thus, isothermal magnetic entropy change after immersion for 30 days in deaerated distilled-water with a DO concentration less than 0.1 ppm is larger than that after immersion for 5 days in distilled-water containing about 8 ppm of the DO concentration. Consequently, the reduction of the DO concentration is effective for preservation of the excellent magnetocaloric effects of La(Fe 0.88 Si 0.12 ) 13 in an aqueous solution, which is a promising heat transfer fluid of room-temperature magnetic refrigeration

  4. A flow injection analyser conductometric coupled system for the field analysis of free dissolved CO{sub 2} and total dissolved inorganic carbon in natural waters

    Energy Technology Data Exchange (ETDEWEB)

    Martinotti, Valter; Balordi, Marcella; Ciceri, Giovanni [RSE SpA - Environment and Sustainable Development Department, Milan (Italy)

    2012-05-15

    A flow injection analyser coupled with a gas diffusion membrane and a conductometric microdetector was adapted for the field analysis of natural concentrations of free dissolved CO{sub 2} and dissolved inorganic carbon in natural waters and used in a number of field campaigns for marine water monitoring. The dissolved gaseous CO{sub 2} presents naturally, or that generated by acidification of the sample, is separated by diffusion using a hydrophobic semipermeable gas porous membrane, and the permeating gas is incorporated into a stream of deionised water and measured by means of an electrical conductometric microdetector. In order to make the system suitable and easy to use for in-field measurements aboard oceanographic ships, the single components of the analyser were compacted into a robust and easy to use system. The calibration of the system is carried out by using standard solutions of potassium bicarbonate at two concentration ranges. Calibration and sample measurements are carried out inside a temperature-constant chamber at 25 C and in an inert atmosphere (N{sub 2}). The detection and quantification limits of the method, evaluated as 3 and 10 times the standard deviation of a series of measurements of the matrix solution were 2.9 and 9.6 {mu}mol/kg of CO{sub 2}, respectively. Data quality for dissolved inorganic carbon was checked with replicate measurements of a certified reference material (A. Dickson, Scripps Institution of Oceanography, University of California, San Diego), both accuracy and repeatability were -3.3% and 10%, respectively. Optimization, performance qualification of the system and its application in various natural water samples are reported and discussed. In the future, the calibration step will be operated automatically in order to improve the analytical performance and the applicability will be increased in the course of experimental surveys carried out both in marine and freshwater ecosystems. Considering the present stage of

  5. Differential chemical fractionation of dissolved organic matter during sorption by Fe mineral phases in a tropical soil from the Luquillo Critical Zone Observatory

    Science.gov (United States)

    Plante, A. F.; Coward, E.; Ohno, T.; Thompson, A.

    2017-12-01

    Fe-bearing mineral phases contribute substantially to adsorption and stabilization of soil organic matter (SOM), due largely to their high specific surface area (SSA) and reactivity. While the importance of adsorption onto mineral surfaces has been well-elucidated, selectivity of various mineral and organic phases remains poorly understood. The goals of this work were to: 1) quantify the contributions of Fe-minerals of varying crystallinity to dissolved organic matter (DOM) sorption, and 2) characterize the molecular fractionation of DOM induced by reactions at the mineral interface, using a highly-weathered Oxisol from the Luquillo Critical Zone Observatory (LCZO). Three selective dissolution experiments targeting Fe-mineral phases were followed by specific surface area (SSA) analysis of the residues and characterization of extracted DOM by high resolution mass spectrometry (FT-ICR-MS). Fe-depleted extraction residue samples, untreated control soil samples, and Fe-enriched ferrihydrite-coated soil samples were then subjected to a batch sorption experiment with litter-derived DOM. Results of selective dissolution experiments indicated that a substantial proportion of soil SSA was derived from extracted Fe-bearing phases, and FT-ICR-MS analysis of extracted DOM revealed distinct chemical signatures. Sorbed C concentrations were well correlated with Fe contents induced by treatments, and thus SSA. Molecular characterization of the DOM post-sorption indicated that poorly crystalline Fe phases preferentially adsorbed highly unsaturated aromatic compounds, and higher-crystallinity Fe phases were associated with more aliphatic compounds. These findings suggests that molecular fractionation via organomineral complexation may act as a physicochemical filter of DOM released to the critical zone.

  6. Methodology to quantify the role of the factors controlling the variation of rivers' total dissolved solids in Jiu Catchment (Romania)

    Science.gov (United States)

    Adina Morosanu, Gabriela; Zaharia, Liliana; Ioana-Toroimac, Gabriela; Belleudy, Philippe

    2017-04-01

    The total dissolved solids (TDS) is a river water quality parameter reflecting its concentration in solute ions. It is sensitive to many physical and anthropogenic features of the watershed. In this context, the objective of this work is to analyze the spatial variation of the TDS and to identify the role of the main controlling factors (e.g. geology, soils, land use) in Jiu River and some of its main tributaries, by using a methodology based on GIS and multivariate analysis. The Jiu watershed (10,000 kmp) is located in south-western Romania and it has a high diversity of physical and anthropogenic features influencing the water flow and its quality. The study is based on TDS measurements performed in August, 2016, during low flow conditions in the Jiu River and its tributaries. To measure in situ the TDS (ppm), an EC/TDS/Temperature Hand-held Tester was used in the 12 measuring points on Jiu River and in another 7 points on some of its tributaries. Across the hydrographic basin, the recorded TDS values ranged from 31 ppm to 607 ppm, while in the case of Jiu River, the TDS varied between 38 ppm at Lonea station (upper Jiu River) and 314 ppm at Išalniča (in the lower course). For each catchment corresponding to the sampling points, the influence of some contiguous features was defined on the basis of the lithology (marls, limestones, erodible bedrocks) and soils (clay textures), as well as the land cover/use influencing the solubility and solid content. This assessment was carried out in GIS through a set of spatial statistics analysis by calculating the percentages of the catchment coverage area for each determinant. In order to identify the contributions of different catchment features on the TDS variability, principal components analysis (PCA) was then applied. The results revealed the major role of the marls and clayey soils in the increase of TDS (on the Amaradia and Gilort rivers and some sections in the middle course of the Jiu River). In contrast

  7. Enhanced biotic and abiotic transformation of Cr(vi) by quinone-reducing bacteria/dissolved organic matter/Fe(iii) in anaerobic environment.

    Science.gov (United States)

    Huang, Bin; Gu, Lipeng; He, Huan; Xu, Zhixiang; Pan, Xuejun

    2016-09-14

    This study investigated the simultaneous transformation of Cr(vi) via a closely coupled biotic and abiotic pathway in an anaerobic system of quinone-reducing bacteria/dissolved organic matters (DOM)/Fe(iii). Batch studies were conducted with quinone-reducing bacteria to assess the influences of sodium formate (NaFc), electron shuttling compounds (DOM) and the Fe(iii) on Cr(vi) reduction rates as these chemical species are likely to be present in the environment during in situ bioremediation. Results indicated that the concentration of sodium formate and anthraquinone-2-sodium sulfonate (AQS) had apparently an effect on Cr(vi) reduction. The fastest decrease in rate for incubation supplemented with 5 mM sodium formate and 0.8 mM AQS showed that Fe(iii)/DOM significantly promoted the reduction of Cr(vi). Presumably due to the presence of more easily utilizable sodium formate, DOM and Fe(iii) have indirect Cr(vi) reduction capability. The coexisting cycles of Fe(ii)/Fe(iii) and DOM(ox)/DOM(red) exhibited a higher redox function than the individual cycle, and their abiotic coupling action can significantly enhance Cr(vi) reduction by quinone-reducing bacteria.

  8. Accumulation of Fe oxyhydroxides in the Peruvian oxygen deficient zone implies non-oxygen dependent Fe oxidation

    Science.gov (United States)

    Heller, Maija I.; Lam, Phoebe J.; Moffett, James W.; Till, Claire P.; Lee, Jong-Mi; Toner, Brandy M.; Marcus, Matthew A.

    2017-08-01

    Oxygen minimum zones (OMZs) have been proposed to be an important source of dissolved iron (Fe) into the interior ocean. However, previous studies in OMZs have shown a sharp decrease in total dissolved Fe (dFe) and/or dissolved Fe(II) (dFe(II)) concentrations at the shelf-break, despite constant temperature, salinity and continued lack of oxygen across the shelf-break. The loss of both total dFe and dFe(II) suggests a conversion of the dFe to particulate form, but studies that have coupled the reduction-oxidation (redox) speciation of both dissolved and particulate phases have not previously been done. Here we have measured the redox speciation and concentrations of both dissolved and particulate forms of Fe in samples collected during the U.S. GEOTRACES Eastern tropical Pacific Zonal Transect (EPZT) cruise in 2013 (GP16). This complete data set allows us to assess possible mechanisms for loss of dFe. We observed an offshore loss of dFe(II) within the oxygen deficient zone (ODZ), where dissolved oxygen is undetectable, accompanied by an increase in total particulate Fe (pFe). Total pFe concentrations were highest in the upper ODZ. X-ray absorption spectroscopy revealed that the pFe maximum was primarily in the Fe(III) form as Fe(III) oxyhydroxides. The remarkable similarity in the distributions of total particulate iron and nitrite suggests a role for nitrite in the oxidation of dFe(II) to pFe(III). We present a conceptual model for the rapid redox cycling of Fe that occurs in ODZs, despite the absence of oxygen.

  9. Technical Note: Precise quantitative measurements of total dissolved inorganic carbon from small amounts of seawater using a gas chromatographic system

    Directory of Open Access Journals (Sweden)

    T. Hansen

    2013-10-01

    Full Text Available Total dissolved inorganic carbon (CT is one of the most frequently measured parameters used to calculate the partial pressure of carbon dioxide in seawater. Its determination has become increasingly important because of the rising interest in the biological effects of ocean acidification. Coulometric and infrared detection methods are currently favored in order to precisely quantify CT. These methods however are not sufficiently validated for CT measurements of biological experiments manipulating seawater carbonate chemistry with an extended CT measurement range (~1250–2400 μmol kg–1 compared to natural open ocean seawater (~1950–2200 μmol kg−1. The requirement of total sample amounts between 0.1–1 L seawater in the coulometric- and infrared detection methods potentially exclude their use for experiments working with much smaller volumes. Additionally, precise CT analytics become difficult with high amounts of biomass (e.g., phytoplankton cultures or even impossible in the presence of planktonic calcifiers without sample pre-filtration. Filtration however, can alter CT concentration through gas exchange induced by high pressure. Addressing these problems, we present precise quantification of CT using a small, basic and inexpensive gas chromatograph as a CT analyzer. Our technique is able to provide a repeatability of ±3.1 μmol kg−1, given by the pooled standard deviation over a CT range typically applied in acidification experiments. 200 μL of sample is required to perform the actual CT measurement. The total sample amount needed is 12 mL. Moreover, we show that sample filtration is applicable with only minor alteration of the CT. The method is simple, reliable and with low cumulative material costs. Hence, it is potentially attractive for all researchers experimentally manipulating the seawater carbonate system.

  10. [Distributions and seasonal variations of total dissolved inorganic arsenic in the estuaries and coastal area of eastern Hainan].

    Science.gov (United States)

    Cao, Xiu-Hong; Ren, Jing-Ling; Zhang, Gui-Ling; Zhang, Jin-E; Du, Jin-Zhou; Zhu, De-Di

    2012-03-01

    The concentrations of total dissolved inorganic arsenic (TDIAs) were measured by Hydride Generation-Atomic Fluorescence Spectrometry (HG-AFS). Two cruises were carried out in the river, estuary, coastal area and groundwater of eastern Hainan in December 2006 and August 2007. The concentrations of TDIAs in the Wanquan and Wenchang/Wenjiao rivers and their estuaries, coastal area in December 2006 were 4.0-9.4, 1.3-13.3, 13.3-17.3 nmol x L(-1), respectively. The concentrations of TDIAs in the Wanquan and Wenchang/Wenjiao rivers and their estuaries, coastal area in August 2007 were 1.6-15.5, 2.4-15.9, 10.8-17.6 nmol x L(-1), respectively. There was no significantly seasonal variation of TDIAs in the rivers and estuaries during the dry and wet seasons. Compared with other areas in the world, the concentration of TDIAs in the Eastern Hainan remained at pristine levels. TDIAs showed conservatively mixing in the both estuaries. The concentration of TDIAs of groundwater was below detection limit (BDL)-41.7 nmol x L(-1). The submarine groundwater discharge (SGD) to the coastal area was estimated in the drainage basin of Wenchang/Wenjiao river based on the average concentration of TDIAs in the groundwater and SGD water discharge, with the value of 1 153 mol x a(-1). Budget estimation indicated that the SGD discharge is one of the important sources of arsenic in the coastal area.

  11. [Distributions and influencing factors of total dissolved inorganic antimony in the coastal area of Zhejiang and Fujian].

    Science.gov (United States)

    Zhang, Xu-Zhou; Ren, Jing-Ling; Liu, Zong-Guang; Fan, Xiao-Peng; Liu, Cheng-Gang; Wu, Ying

    2014-02-01

    Antimony has been ubiquitously present in the aquatic environment as a toxic and rare metalloid element. The contamination of antimony and its compounds in the environment is increasingly severe, so it has been received extensive attention by the international scientific community. The cruise was carried out in the coastal area of Zhejiang and Fujian provinces in the East China Sea (ECS) in May 2008. The concentrations of total dissolved inorganic antimony (TDISb) were measured by Hydride Generation-Atomic Fluorescence (HG-AFS). The concentration ranges of TDISb in the surface and bottom layer were 0.68-5.64 nmol x L(-1) and 0.71-5.25 nmol x L(-1) with averages of 2.25 and 1.79 nmol x L(-1), respectively. The concentration of TDISb in the study area was lower than the environmental quality standards for surface water of China and drinking water standards of World Health Organization (about 41.08 nmol x L(-1)), indicating that it remained at the pristine level. The concentration of TDISb decreased gradually from the coastal area to the central ECS shelf with higher concentration in the surface layer than the bottom. Water mass mixing, adsorption/desorption behavior on the surface of the suspended particulate matters (SPM) and biological activities were the main influence factors of TDISb biogeochemistry in the study area.

  12. Classification and Processing Optimization of Barley Milk Production Using NIR Spectroscopy, Particle Size, and Total Dissolved Solids Analysis

    Directory of Open Access Journals (Sweden)

    Jasenka Gajdoš Kljusurić

    2015-01-01

    Full Text Available Barley is a grain whose consumption has a significant nutritional benefit for human health as a very good source of dietary fibre, minerals, vitamins, and phenolic and phytic acids. Nowadays, it is more and more often used in the production of plant milk, which is used to replace cow milk in the diet by an increasing number of consumers. The aim of the study was to classify barley milk and determine the optimal processing conditions in barley milk production based on NIR spectra, particle size, and total dissolved solids analysis. Standard recipe for barley milk was used without added additives. Barley grain was ground and mixed in a blender for 15, 30, 45, and 60 seconds. The samples were filtered and particle size of the grains was determined by laser diffraction particle sizing. The plant milk was also analysed using near infrared spectroscopy (NIRS, in the range from 904 to 1699 nm. Furthermore, conductivity of each sample was determined and microphotographs were taken in order to identify the structure of fat globules and particles in the barley milk. NIR spectra, particle size distribution, and conductivity results all point to 45 seconds as the optimal blending time, since further blending results in the saturation of the samples.

  13. Dissolved inorganic carbon, total alkalinity, pH, dissolved oxygen, and nutrients collected from profile, discrete sampling, and time series observations using CTD, Niskin bottle, and other instruments from R/V Gulf Challenger near a buoy off the coast of New Hampshire, U.S. in the Gulf of Maine from 2011-01-11 to 2015-11-18 (NCEI Accession 0142327)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains discrete measurements of dissolved inorganic carbon, total alkalinity, pH, dissolved oxygen, and nutrients collected at the buoy off...

  14. Spatial and temporal variations of loads and sources of total and dissolved Phosphorus in a set of rivers (Western France).

    Science.gov (United States)

    Legeay, Pierre-Louis; Moatar, Florentina; Gascuel-Odoux, Chantal; Gruau, Gérard

    2015-04-01

    In intensive agricultural regions with important livestock farming, long-term land application of Phosphorus (P) both as chemical fertilizer and animal wastes, have resulted in elevated P contents in soils. Since we know that high P concentrations in rivers is of major concern, few studies have been done at to assess the spatiotemporal variability of P loads in rivers and apportionment of point and nonpoint source in total loads. Here we focus on Brittany (Western France) where even though P is a great issue in terms of human and drinking water safety (cyano-toxins), environmental protection and economic costs for Brittany with regards to the periodic proliferations of cyanobacteria that occur every year in this region, no regional-scale systematic study has been carried out so far. We selected a set of small rivers (stream order 3-5) with homogeneous agriculture and granitic catchment. By gathering data from three water quality monitoring networks, covering more than 100 measurements stations, we provide a regional-scale quantification of the spatiotemporal variability of dissolved P (DP) and total P (TP) interannual loads from 1992 to 2012. Build on mean P load in low flows and statistical significance tests, we developed a new indicator, called 'low flow P load' (LFP-load), which allows us to determine the importance of domestic and industrial P sources in total P load and to assess their spatiotemporal variability compared to agricultural sources. The calculation and the map representation of DP and TP interannual load variations allow identification of the greatest and lowest P contributory catchments over the study period and the way P loads of Brittany rivers have evolved through time. Both mean DP and TP loads have been divided by more than two over the last 20 years. Mean LFDP-load decreased by more than 60% and mean LFTP-load by more than 45% on average over the same period showing that this marked temporal decrease in total load is largely due to the

  15. Warming and organic matter sources impact the proportion of dissolved to total activities in marine extracellular enzymatic rates

    KAUST Repository

    Baltar, Federico; Moran, Xose Anxelu G.; Lø nborg, Christian

    2017-01-01

    Extracellular enzymatic activities (EEAs) are the rate-limiting step in the degradation of organic matter. Extracellular enzymes can be found associated to cells or dissolved in the surrounding water. The proportion of cell-free EEA constitutes

  16. Annual and seasonal variation of turbidity, total dissolved solids, nitrate and nitrite in the Parsabad water treatment plant, Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Zare

    2013-01-01

    Full Text Available Aims: This study investigated the annual and seasonal variation of turbidity; total dissolved solid (TDS, nitrate and nitrite in Parsabad water treatment plant (WTP, Iran. Materials and Methods: The water samples were obtained from the inlet and outlet of Parsabad WTP from February 2002 to June 2009. The samples′ turbidity, TDS, nitrate, nitrite, pH, and temperature were measured according to standard methods once a month and the average of these parameters were calculated for each season of year. Results: The maximum concentration of inlet turbidity, TDS, nitrate and nitrite were 691, 700.5, 25, and 0.17 mg/l, respectively. These parameters for outlet samples in the study period were 3.0, 696.7, 18, and 0.06 mg/l, respectively. While these concentrations in outlet zone were lower than World Health Organization (WHO or United States Environmental Protection Agency (US-EPA water quality guidelines, WTP could not reduce the TDS, nitrate, nitrite and pH value and these parameters were not different in the inlet and outlet samples. However, the WTP reduced the turbidity significantly with an efficiency of up to 85%. Conclusion: This study showed that a common WTP with rapid sand filtration can treat a maximum river turbidity of 700 NTU in several years. As no differences were observed between inlet and outlet TDS, nitrate, nitrite and pH in the studied WTP. It can be concluded that compensatory schemes should be predicted for modification of these parameters when they exceed the standards in the emergency situations.

  17. Determination of Cr, Mn, Fe, Co, Ni, Cu, Zn and As in the Rimac River waters by x-ray fluorescence in total reflection; Determinacion de Cr, Mn, Fe, Co, Ni, Cu, Zn y As en aguas del Rio Rimac por fluorescencia de rayos-x en reflexion total

    Energy Technology Data Exchange (ETDEWEB)

    Tiznado, W [Universidad Nacional Federico Villarreal, Lima (Peru). Facultad de Ciencias Naturales y Matematicas, EP Quimica; Olivera, P [Instituto Peruano de Energia Nuclear, Lima (Peru). Departamento de Quimica

    2002-07-01

    Samples from thirteen stations of the Rimac River has been analyzed. Samples were performed during one-year-period (september 1998-august 1999), with a frequency of one sample per month. The X-ray fluorescence analysis in total reflection technique has been used in order to determine the Cr, Mn, Fe, Co, Ni, Cu, Zn and As elements on its dissolved phase. The results obtained show: relation of the presence of mining stations with the metal concentration level, specially in the Zn and Fe; As is present in concentrations above those of permissible maximum levels in some of the sampled stations; moreover, Ni and Cr, toxic elements, are found in very low concentrations. On the other hand, it has been proved that the analysis method used is useful as a monitoring tool of superficial water-quality due to its low detection limits and because of the fastness the analysis are made.

  18. Low dissolved Fe and the absence of diatom blooms in remote Pacific waters of the Southern Ocean

    NARCIS (Netherlands)

    de Baar, Hein J.W.; de Jong, Jeroen T.M.; Nolting, Rob F.; Timmermans, Klaas R.; van Leeuwe, Maria A.; Bathmann, U.; Rutgers van der Loeff, Michiel; Sildam, Jüri

    The remote waters of the Pacific region of the Southern Ocean are the furthest away from any upstream and upwind continental Fe sources. This prime area for expecting Fe limitation of the plankton ecosystem was studied (March-April 1995) along a north-south transect at similar to 89 degrees W. At

  19. Effects of resuspension on benthic fluxes of oxygen, nutrients, dissolved inorganic carbon, iron and manganese in the Gulf of Finland, Baltic Sea

    NARCIS (Netherlands)

    Almroth, E.; Tengberg, A.; Andersson, J.H.; Pakhomova, S.; Hall, P.O.J.

    2009-01-01

    The effect of resuspension on benthic fluxes of oxygen (O2), ammonium (NH4+), nitrate (NO3-), phosphate (PO43-), silicate (Si(OH)4), dissolved inorganic carbon (DIC), total dissolved iron (Fe) and total dissolved manganese (Mn) was studied at three different stations in the Gulf of Finland (GoF),

  20. The total neutron cross section of 58Fe in the energy range 7 to 325 keV

    International Nuclear Information System (INIS)

    Hong, L.D.; Beer, H.; Kaeppeler, F.

    1976-08-01

    The total neutron cross section of 58 Fe has been determined in the energy range 7-325 keV by a transmission measurement using enriched 58 Fe samples. The data have been shape fitted by means of an R-matrix multi-level formalism to extract resonance parameters for s- and l > 0 wave resonances. The s-wave strength function was determined to S 0 = (4.3 +- 1.9) c 10 -4 . (orig.) [de

  1. The neutron total cross-section measurement of 56Fe and 57Fe by using Japan Proton Accelerator Research Complex facility

    International Nuclear Information System (INIS)

    Kim, Eun Ae; Shvetsov, Valery; Cho, Moo Hyun; Won, Nam Kung; Kim, Kwang Soo; Yang, Sung Chul; Lee, Man Woo; Kim, Guin Yun; Yi, Kyoung Rak; Choi, Hong Yub; Ro, Tae Ik; Mizumoto, Motoharu; Katabuchi, Tatsuya; Igashira, Masayuki

    2012-01-01

    The measurement of neutron cross section using Time-Of-Flight (TOF) method gives significant information for the nuclear data research. In the present work, the neutron total cross section of 56 Fe and 57 Fe has been measured in the energy range between 10 eV and 100 keV by using the neutron beam produced from 3-GeV proton synchrotron accelerator. The 3-GeV proton synchrotron accelerator is located at Japan Proton Accelerator Research Complex (J-PARC) facility in Tokai village. In this study, the neutron total cross section data measured by 6 Li glass scintillator detector was compared with the evaluated values of ENDF/B-VII.0

  2. The neutron total cross-section measurement of {sup 56}Fe and {sup 57}Fe by using Japan Proton Accelerator Research Complex facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun Ae; Shvetsov, Valery; Cho, Moo Hyun [Pohang University of Science and Technology, Pohang (Korea, Republic of); Won, Nam Kung [Pohang Accelerator Laboratory, Pohang (Korea, Republic of); Kim, Kwang Soo; Yang, Sung Chul; Lee, Man Woo; Kim, Guin Yun [Kyungpook National University, Daegu (Korea, Republic of); Yi, Kyoung Rak; Choi, Hong Yub; Ro, Tae Ik [Dong-A University, Pusan (Korea, Republic of); Mizumoto, Motoharu; Katabuchi, Tatsuya; Igashira, Masayuki [Tokyo Institute of Technology, Tokyo (Japan)

    2012-05-15

    The measurement of neutron cross section using Time-Of-Flight (TOF) method gives significant information for the nuclear data research. In the present work, the neutron total cross section of {sup 56}Fe and {sup 57}Fe has been measured in the energy range between 10 eV and 100 keV by using the neutron beam produced from 3-GeV proton synchrotron accelerator. The 3-GeV proton synchrotron accelerator is located at Japan Proton Accelerator Research Complex (J-PARC) facility in Tokai village. In this study, the neutron total cross section data measured by {sup 6}Li glass scintillator detector was compared with the evaluated values of ENDF/B-VII.0

  3. The relationship of metals, bifenthrin, physical habitat metrics, grain size, total organic carbon, dissolved oxygen and conductivity to Hyalella sp. abundance in urban California streams.

    Science.gov (United States)

    Hall, Lenwood W; Anderson, Ronald D

    2013-01-01

    The objectives of this study were to determine the relationship between Hyalella sp. abundance in four urban California streams and the following parameters: (1) 8 bulk metals (As, Cd, Cr, Cu, Pb, Hg, Ni, and Zn) and their associated sediment Threshold Effect Levels (TELs); (2) bifenthrin sediment concentrations; (3) 10 habitat metrics and total score; (4) grain size (% sand, silt and clay); (5) Total Organic Carbon (TOC); (6) dissolved oxygen; and (7) conductivity. California stream data used for this study were collected from Kirker Creek (2006 and 2007), Pleasant Grove Creek (2006, 2007 and 2008), Salinas streams (2009 and 2010) and Arcade Creek (2009 and 2010). Hyalella abundance in the four California streams generally declined when metals concentrations were elevated beyond the TELs. There was also a statistically significant negative relationship between Hyalella abundance and % silt for these 4 California streams as Hyalella were generally not present in silt areas. No statistically significant relationships were reported between Hyalella abundance and metals concentrations, bifenthrin concentrations, habitat metrics, % sand, % clay, TOC, dissolved oxygen and conductivity. The results from this study highlight the complexity of assessing which factors are responsible for determining the abundance of amphipods, such as Hyalella sp., in the natural environment.

  4. Dissolved inorganic carbon, total alkalinity, pH, phosphate, dissolved oxygen, and other variables collected from surface discrete observations using Niksin bottle and other instruments from R/V Sultana in the southwest coast of Puerto Rico from 2009-01-05 to 2016-02-01 (NCEI Accession 0145164)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This time series dataset includes weekly and bi-weekly discrete seawater samples of pH and total alkalinity, dissolved inorganic carbon, phosphates and profile...

  5. Seasonal variations of total {sup 234}Th and dissolved {sup 238}U concentration activities in surface water of Bransfield Strait, Antarctica, from March to October 2011

    Energy Technology Data Exchange (ETDEWEB)

    Lapa, Flavia V.; Oliveira, Joselene de; Costa, Alice M.R., E-mail: fvlapa@ipen.br, E-mail: jolivei@ipen.br, E-mail: lice_mrc@hotmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo, SP (Brazil). Laboratorio de Radiometria Ambiental; Braga, Elisabete S., E-mail: edsbraga@usp.br [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Inst. Oceanografico. Lab. de Nutrientes, Micronutrientes e Tracos nos Oceanos

    2013-07-01

    In this study the naturally occurring radionuclides {sup 234}Th and {sup 238}U were used to investigate the magnitude of upper ocean particulate organic carbon export in Bransfield Strait, Southern Ocean. This region is the largest oceanic high-nitrate low-chlorophyll (HNLC) area in the world and is known to contribute to regulate of the atmospheric CO{sub 2} via the biological pump. Due to its different geochemical behavior in seawater, the resulting U/Th disequilibria can be easily used to constrain the transport rates of particles and reaction processes between solution and particulate phases. Sampling occurred during the summer (March and November) 2011. Total {sup 234}Th activities in surface seawater samples ranged from 1.3 to 3.7 dpm L{sup -1} (station EB 011) during March/11 campaign, while in October/11 total {sup 234}Th activity concentrations varied from 1.4 to 2.9 dpm L{sup -1}. Highest total {sup 234}Th activities were found late in the austral summer season. Activity concentrations of dissolved {sup 238}U in surface seawater varied from 2.1 to 2.4 dpm L{sup -1}. Taking into account all sampling stations established in March and October/11 the relative variability of total {sup 234}Th distribution was 22%. (author)

  6. Seasonal variations of total 234Th and dissolved 238U concentration activities in surface water of Bransfield Strait, Antarctica, from March to October 2011

    International Nuclear Information System (INIS)

    Lapa, Flavia V.; Oliveira, Joselene de; Costa, Alice M.R.; Braga, Elisabete S.

    2013-01-01

    In this study the naturally occurring radionuclides 234 Th and 238 U were used to investigate the magnitude of upper ocean particulate organic carbon export in Bransfield Strait, Southern Ocean. This region is the largest oceanic high-nitrate low-chlorophyll (HNLC) area in the world and is known to contribute to regulate of the atmospheric CO 2 via the biological pump. Due to its different geochemical behavior in seawater, the resulting U/Th disequilibria can be easily used to constrain the transport rates of particles and reaction processes between solution and particulate phases. Sampling occurred during the summer (March and November) 2011. Total 234 Th activities in surface seawater samples ranged from 1.3 to 3.7 dpm L -1 (station EB 011) during March/11 campaign, while in October/11 total 234 Th activity concentrations varied from 1.4 to 2.9 dpm L -1 . Highest total 234 Th activities were found late in the austral summer season. Activity concentrations of dissolved 238 U in surface seawater varied from 2.1 to 2.4 dpm L -1 . Taking into account all sampling stations established in March and October/11 the relative variability of total 234 Th distribution was 22%. (author)

  7. COMPARISON OF DIFFERENT EXTRACTION METHODS REPRESENTING AVAILABLE AND TOTAL CONCENTRATIONS OF Cd, Cu, Fe, Mn and Zn IN SOIL

    Directory of Open Access Journals (Sweden)

    Vladimir Ivezić

    2013-06-01

    Full Text Available Various extraction methods are used to predict plant uptake of trace metals. Most commonly it is total concentration that is used for risk assessment and evaluation of trace metal availability. However, recent studies showed that total concentration is a poor indicator of availability while concentrations in soil solution show good correlation with plant uptake. Present study was conducted on magricultural soils with low levels of trace metals where 45 soil samples were collected from different soil types. The main objective was to compare four different extraction methods and examine how total and reactive (EDTA trace metal concentrations correlate ,with soil solution concentration (in this study determined by water extraction. The samples were analyzed by four extraction methods: strong acid extraction (ultra-pure HNO3 extraction and aqua regia, weak acid extraction by EDTA and the most available fraction, fraction in soil solution, were represented by water extraction (weakest extractant. Five elements were investigated (Cd, Cu, Fe, Mn and Zn. Water extraction significantly correlated with EDTA extraction for Cu, Fe and Mn, while total extraction (HNO3 extraction and aqua regia correlated significantly with water extraction only for Cu. No correlation between water extraction and total extraction confirmed poor role of total concentration as an indicator of availability. EDTA extraction can be used to represent reactive pool of trace metals in soil but it should be also taken with caution when using it to describe available fraction.

  8. Total Absorption Spectroscopy Study of the Beta Decay of 60Mn to Constrain the Neutron Capture Rate of 60Fe

    Science.gov (United States)

    Richman, Debra; Spyrou, Artemis; Dombos, Alex; Couture, Aaron; e15034 Collaboration

    2017-09-01

    Interest in 60Fe, a long lived radioisotope synthesized in massive stars, has recently peaked. The signature of its decay allows us to probe astrophysical processes, events such as the early formation of the solar system and nucleosynthesis. To understand these observations a complete understanding of the creation, destruction and nuclear properties of 60Fe in the astrophysical environment are required. Using the beta decay of 60Mn in conjunction with total absorption spectroscopy (TAS), made possible by the high efficiency gamma ray calorimeter SuN (Summing NaI detector) at the National Superconducting Cyclotron Laboratory (NSCL), to study the distribution of beta-decay intensity over the daughter-nucleus 60Fe, provides information about the structure of the daughter and improves the predictive power of astrophysical models. In addition to the ongoing TAS analysis, The Beta-Oslo method will be used to extract the nuclear level density and gamma-strength function of 60Fe providing much needed constraints on the neutron capture reaction rate responsible for the creation of this nucleus.

  9. Annual dissolved nitrite plus nitrate and total phosphorous loads for the Susquehanna, St. Lawrence, Mississippi-Atchafalaya, and Columbia River basins, 1968-2004

    Science.gov (United States)

    Aulenbach, Brent T.

    2006-01-01

    Annual stream-water loads were calculated near the outlet of four of the larger river basins (Susquehanna, St. Lawrence, Mississippi-Atchafalaya, and Columbia) in the United States for dissolved nitrite plus nitrate (NO2 + NO3) and total phosphorus using LOADEST load estimation software. Loads were estimated for the period 1968-2004; although loads estimated for individual river basins and chemical constituent combinations typically were for shorter time periods due to limitations in data availability. Stream discharge and water-quality data for load estimates were obtained from the U.S. Geological Survey (USGS) with additional stream discharge data for the Mississippi-Atchafalaya River Basin from the U.S. Army Corps of Engineers. The loads were estimated to support national assessments of changes in stream nutrient loads that are periodically conducted by Federal agencies (for example, U.S. Environmental Protection Agency) and other water- and land-resource organizations. Data, methods, and results of load estimates are summarized herein; including World Wide Web links to electronic ASCII text files containing the raw data. The load estimates are compared to dissolved NO2 + NO3 loads for three of the large river basins from 1971 to 1998 that the USGS provided during 2001 to The H. John Heinz III Center for Science, Economics and the Environment (The Heinz Center) for a report The Heinz Center published during 2002. Differences in the load estimates are the result of using the most up-to-date monitoring data since the 2001 analysis, differences in how concentrations less than the reporting limit were handled by the load estimation models, and some errors and exclusions in the 2001 analysis datasets (which resulted in some inaccurate load estimates).

  10. Study of total oxidation of ethanol using the perovskite-type oxides LaBO{sub 3} (B= Mn, Ni, Fe); Estudo da oxidacao total do etanol usando oxidos tipo perovskita LaBO{sub 3} (B= Mn, Ni, Fe)

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Ana Brigida [Centro Federal de Educacao Tecnologica do Espirito Santo, Vitoria, ES (Brazil). Centro de Ciencias e Tecnologias Quimicas]. E-mail: brigida@cefetes.br; Silva, Paulo Roberto Nagipe da [Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacases, RJ (Brazil). Centro de Ciencias e Tecnologia; Freitas, Jair C.C. [Universidade Federal do Espirito Santo, Vitoria, ES (Brazil). Centro de Ciencias Exatas. Dept. de Fisica; Almeida, Clara Muniz de [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil). Dept. de Fisica

    2007-09-15

    The present work investigated the effect of coprecipitation-oxidant synthesis on the specific surface area of perovskite-type oxides LaBO{sub 3} (BMn, Ni, Fe) for total oxidation of ethanol. The perovskite-type oxides were characterized by X-ray diffraction, nitrogen adsorption (BET method), thermogravimetric analysis (TGA-DTA), TPR and X-ray photoelectron spectroscopy (XPS). Through method involving the coprecipitation-oxidant was possible to obtain catalysts with different BET specific surface areas, of 33-51 m{sup 2}/g. The results of the catalytic test confirmed that all oxides investigated in this work have specific catalytic activity for total oxidation of ethanol, though the temperatures for total conversion change for each transition metal. (author)

  11. Suppression of aqueous corrosion of La(Fe{sub 0.88}Si{sub 0.12}){sub 13} by reducing dissolved oxygen concentration for high-performance magnetic refrigeration

    Energy Technology Data Exchange (ETDEWEB)

    Fujieda, S., E-mail: fujieda@tagen.tohoku.ac.jp; Fukamichi, K.; Suzuki, S.

    2014-07-05

    Highlights: • The aqueous corrosion of La(Fe{sub 0.88}Si{sub 0.12}){sub 13} and its suppression were investigated. • The lattice expansion after immersion was caused by the hydrogen absorption. • The itinerant-electron metamagnetic transition became indistinct after immersion. • The aqueous corrosion was suppressed by reducing the dissolved oxygen concentration. - Abstract: The itinerant-electron metamagnetic transition of La(Fe{sub 0.88}Si{sub 0.12}){sub 13} becomes indistinct after immersion in distilled-water containing about 8 ppm of the dissolved oxygen (DO) concentration because of aqueous corrosion. However, the aqueous corrosion of La(Fe{sub 0.88}Si{sub 0.12}){sub 13} is significantly suppressed by reducing the DO concentration. Thus, isothermal magnetic entropy change after immersion for 30 days in deaerated distilled-water with a DO concentration less than 0.1 ppm is larger than that after immersion for 5 days in distilled-water containing about 8 ppm of the DO concentration. Consequently, the reduction of the DO concentration is effective for preservation of the excellent magnetocaloric effects of La(Fe{sub 0.88}Si{sub 0.12}){sub 13} in an aqueous solution, which is a promising heat transfer fluid of room-temperature magnetic refrigeration.

  12. Denitrification activity is closely linked to the total ambient Fe concentration in mangrove sediments of Goa, India

    Science.gov (United States)

    Fernandes, Sheryl Oliveira; Gonsalves, Maria-Judith; Michotey, Valérie D.; Bonin, Patricia C.; Loka, A.; Bharathi, P.

    2013-10-01

    Denitrification activity (DNT) and associated environmental parameters were examined in two mangrove ecosystems of Goa, India - the relatively unimpacted Tuvem and the anthropogenically-influenced Divar. Sampling was carried out at every 2 cm interval within the 0-10 cm depth range to determine (1) seasonal (pre-monsoon, monsoon and post-monsoon) down-core variation in DNT (2) assess the environmental factors influencing the DNT and (3) to build predictive models for benthic DNT. Denitrification generally decreased with depth and showed marked seasonal variation at both the locations. Denitrification peaked during the pre-monsoon occurring at a rate of up to 21.00 ± 12.84 nmol N2O g-1 h-1 within 0-4 cm at both the locations. Further, DNT at pre-monsoon was significantly influenced by Fe content at Tuvem and Divar suggesting Fe-mediated nitrate respiration. The influence of other limiting substrates such as NO3- and NO2- was most important during the monsoon and post-monsoon especially at Divar. The multiple regression models developed could predict 67-98% of the observed variability in DNT through the seasons. About 6-9 environmental variables were required to relatively well-predict DNT in these sediments with the complexity governing DNT decreasing from pre-monsoon to post-monsoon. Our results reveal that seasonal dynamics of DNT in tropical mangrove sediments are closely linked to the total Fe at the prevailing ambient concentration in both the systems.

  13. Distal transport of dissolved hydrothermal iron in the deep South Pacific Ocean.

    Science.gov (United States)

    Fitzsimmons, Jessica N; Boyle, Edward A; Jenkins, William J

    2014-11-25

    Until recently, hydrothermal vents were not considered to be an important source to the marine dissolved Fe (dFe) inventory because hydrothermal Fe was believed to precipitate quantitatively near the vent site. Based on recent abyssal dFe enrichments near hydrothermal vents, however, the leaky vent hypothesis [Toner BM, et al. (2012) Oceanography 25(1):209-212] argues that some hydrothermal Fe persists in the dissolved phase and contributes a significant flux of dFe to the global ocean. We show here the first, to our knowledge, dFe (Pacific Ocean, where dFe of 1.0-1.5 nmol/kg near 2,000 m depth (0.4-0.9 nmol/kg above typical deep-sea dFe concentrations) was determined to be hydrothermally derived based on its correlation with primordial (3)He and dissolved Mn (dFe:(3)He of 0.9-2.7 × 10(6)). Given the known sites of hydrothermal venting in these regions, this dFe must have been transported thousands of kilometers away from its vent site to reach our sampling stations. Additionally, changes in the size partitioning of the hydrothermal dFe between soluble (Pacific Rise only leaks 0.02-1% of total Fe vented into the abyssal Pacific, this dFe persists thousands of kilometers away from the vent source with sufficient magnitude that hydrothermal vents can have far-field effects on global dFe distributions and inventories (≥3% of global aerosol dFe input).

  14. Importance of Dissolved Neutral Hg-Sulfides, Energy Rich Organic Matter and total Hg Concentrations for Methyl Mercury Production in Sediments

    Science.gov (United States)

    Drott, A.; Skyllberg, U.

    2007-12-01

    brackish waters (palgae and bacteria) in the sediment and a high annual temperature sum, resulted in high methylation rates. In conclusion, concentrations of neutral Hg-sulfides and availability of energy rich organic matter, but also total Hg concentrations in sediments are important factors behind net production and accumulation of MeHg . References: (1) Drott et. al. submitted, (2) Drott, A.; Lambertsson, L.; Björn, E.; Skyllberg, U. Importance of dissolved neutral mercury sulfides for methyl mercury production in contaminated sediments. Environmental Science & Technology 2007, 41, 2270-2276.

  15. Dissolved inorganic carbon, total alkalinity, pH, nutrients, and other variables collected from profile and discrete observations using Niskin bottle and other instruments from NOAA Ship Gordon Gunter on the northeastern U.S. continental shelf, Gulf of Maine, coastal waters of Canada, Greenland and Iceland from 2015-10-13 to 2015-10-24 (NCEI Accession 0157023)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains profile discrete measurements of dissolved inorganic carbon, total alkalinity, pH, dissolved oxygen, and nutrients in the North...

  16. Dissolved inorganic carbon, total alkalinity, pH, and other variables collected from surface and discrete observations using Niskin bottle, flow-through pump and other instruments from F.G. Walton Smith in the Gulf of Mexico (east coast of Florida near the Keys) from 2014-12-03 to 2014-12-04 (NCEI Accession 0154383)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains surface discrete measurement of dissolved inorganic carbon, total alkalinity, pH, dissolved oxygen and nutrients from a transect off...

  17. Time series models for prediction the total and dissolved heavy metals concentration in road runoff and soil solution of roadside embankments

    Science.gov (United States)

    Aljoumani, Basem; Kluge, Björn; sanchez, Josep; Wessolek, Gerd

    2017-04-01

    Highways and main roads are potential sources of contamination for the surrounding environment. High traffic rates result in elevated heavy metal concentrations in road runoff, soil and water seepage, which has attracted much attention in the recent past. Prediction of heavy metals transfer near the roadside into deeper soil layers are very important to prevent the groundwater pollution. This study was carried out on data of a number of lysimeters which were installed along the A115 highway (Germany) with a mean daily traffic of 90.000 vehicles per day. Three polyethylene (PE) lysimeters were installed at the A115 highway. They have the following dimensions: length 150 cm, width 100 cm, height 60 cm. The lysimeters were filled with different soil materials, which were recently used for embankment construction in Germany. With the obtained data, we will develop a time series analysis model to predict total and dissolved metal concentration in road runoff and in soil solution of the roadside embankments. The time series consisted of monthly measurements of heavy metals and was transformed to a stationary situation. Subsequently, the transformed data will be used to conduct analyses in the time domain in order to obtain the parameters of a seasonal autoregressive integrated moving average (ARIMA) model. Four phase approaches for identifying and fitting ARIMA models will be used: identification, parameter estimation, diagnostic checking, and forecasting. An automatic selection criterion, such as the Akaike information criterion, will use to enhance this flexible approach to model building

  18. Concentration, flux, and the analysis of trends of total and dissolved phosphorus, total nitrogen, and chloride in 18 tributaries to Lake Champlain, Vermont and New York, 1990–2011

    Science.gov (United States)

    Medalie, Laura

    2013-01-01

    Annual concentration, flux, and yield for total phosphorus, dissolved phosphorus, total nitrogen, and chloride for 18 tributaries to Lake Champlain were estimated for 1990 through 2011 using a weighted regression method based on time, tributary streamflows (discharges), and seasonal factors. The weighted regression method generated two series of daily estimates of flux and concentration during the period of record: one based on observed discharges and a second based on a flow-normalization procedure that removes random variation due to year-to-year climate-driven effects. The flownormalized estimate for a given date is similar to an average estimate of concentration or flux that would be made if all of the observed discharges for that date were equally likely to have occurred. The flux bias statistic showed that 68 of the 72 flux regression models were minimally biased. Temporal trends in the concentrations and fluxes were determined by calculating percent changes in flow-normalized annual fluxes for the full period of analysis (1990 through 2010) and for the decades 1990–2000 and 2000–2010. Basinwide, flow-normalized total phosphorus flux decreased by 42 metric tons per year (t/yr) between 1990 and 2010. This net result reflects a basinwide decrease in flux of 21 metric tons (t) between 1990 and 2000, followed by a decrease of 20 t between 2000 and 2010; both results were largely influenced by flux patterns in the large tributaries on the eastern side of the basin. A comparison of results for total phosphorus for the two separate decades of analysis found that more tributaries had decreasing concentrations and flux rates in the second decade than the first. An overall reduction in dissolved phosphorus flux of 0.7 t/yr was seen in the Lake Champlain Basin during the full period of analysis. That very small net change in flux reflects substantial reductions between 1990 and 2000 from eastern tributaries, especially in Otter Creek and the LaPlatte and Winooski

  19. Denitrification activity is closely linked to the total ambient Fe concentration in mangrove sediments of Goa, India

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, S.O.; Gonsalves, M.J.B.D.; Michotey, V.D.; Bonin, P.C.; LokaBharathi, P.A.

    hot air oven at 60 ± 2 ºC for 48 h. Total organic carbon (TOC) was then determined by wet oxidation method (El Wakeel and Riley, 1957) with a precision of 0.01%. Sub-samples for metal analyses were also dried at 60 ± 2oC for 48 h and disaggregated... was observed at Divar where TOC varied from 1.65 ± 1.37 % at 4-6 cm during monsoon to 4.88 ± 2.76 % at 2-4 cm during the post-monsoon (Fig. 3b; Table S2). Sediment Fe values at Tuvem ranged from 4.45 ± 3.70 % at 0-2 cm to 9.28 ± 4.33 % at 4-6 cm during...

  20. Neutron multimonochromator-bipolarizer based on magnetic multilayer Fe/Co and new scheme for the total neutron polarization analysis

    International Nuclear Information System (INIS)

    Syromyatnikov, V.G.; Zaw Lin, Kyaw

    2017-01-01

    In this paper, we present a new neutron-optical element, Neutron Multimonochromator-Bipolarizer (NMB). It consists of a multimultilayer structure made of 12 periodic multilayer Fe/Co magnetic nanostructures whose period increases with distance from the substrate. Results are presented of calculations of the reflection coefficients from the NMB. We propose a new scheme of the total neutron polarization analysis for the time-of-flight method in the reflectometry. In this scheme, double NMB is used as a polarizer and there is no spin-flipper before the sample. NMB can be used in polarized neutron reflectometry, in SESANS, and for research of low-angle and inelastic scattering of polarized neutrons. (paper)

  1. Catecholate-siderophore produced by As-resistant bacterium effectively dissolved FeAsO_4 and promoted Pteris vittata growth

    International Nuclear Information System (INIS)

    Liu, Xue; Yang, Guang-Mei; Guan, Dong-Xing; Ghosh, Piyasa; Ma, Lena Q.

    2015-01-01

    The impact of siderophore produced by arsenic-resistant bacterium Pseudomonas PG12 on FeAsO_4 dissolution and plant growth were examined. Arsenic-hyperaccumulator Pteris vittata was grown for 7 d in 0.2-strength Fe-free Hoagland solution containing FeAsO_4 mineral and PG12-siderophore or fungal-siderophore desferrioxamine B (DFOB). Standard siderophore assays indicated that PG12-siderophore was catecholate-type. PG12-siderophore was more effective in promoting FeAsO_4 dissolution, and Fe and As plant uptake than DFOB. Media soluble Fe and As in PG12 treatment were 34.6 and 3.07 μM, 1.6- and 1.4-fold of that in DFOB. Plant Fe content increased from 2.93 to 6.24 g kg"−"1 in the roots and As content increased from 14.3 to 78.5 mg kg"−"1 in the fronds. Besides, P. vittata in PG12 treatment showed 2.6-times greater biomass than DFOB. While P. vittata fronds in PG12 treatment were dominated by AsIII, those in DFOB treatment were dominated by AsV (61–77%). This study showed that siderophore-producing arsenic-resistant rhizobacteria may have potential in enhancing phytoremediation of arsenic-contaminated soils. - Graphical abstract: As-induced root exudate phytate enhanced FeAsO_4 dissolution, and As uptake and plant growth of Pteris vittata. Display Omitted - Highlights: • Arsenic-resistant rhizobacterium Pseudomonas PG12 was from rhizosphere of As-hyperaccumulator Pteris vittata. • PG12 was effective in producing catecholate-type siderophore with high affinity with Fe. • PG12-produced siderophore increased Fe and As uptake and growth in P. vittata. - Siderophores produced by arsenic-resistant bacteria were effective in solubilizing FeAsO_4 mineral and enhancing plant growth of As-hyperaccumulator Pteris vittata.

  2. Distribution of dissolved labile and particulate iron and copper in Terra Nova Bay polynya (Ross Sea, Antarctica) surface waters in relation to nutrients and phytoplankton growth

    Science.gov (United States)

    Rivaro, Paola; Ianni, Carmela; Massolo, Serena; Abelmoschi, M. Luisa; De Vittor, Cinzia; Frache, Roberto

    2011-05-01

    The distribution of the dissolved labile and of the particulate Fe and Cu together with dissolved oxygen, nutrients, chlorophyll a and total particulate matter was investigated in the surface waters of Terra Nova Bay polynya in mid-January 2003. The measurements were conducted within the framework of the Italian Climatic Long-term Interactions of the Mass balance in Antarctica (CLIMA) Project activities. The labile dissolved fraction was operationally defined by employing the chelating resin Chelex-100, which retains free and loosely bound trace metal species. The dissolved labile Fe ranges from below the detection limit (0.15 nM) to 3.71 nM, while the dissolved labile Cu from below the detection limit (0.10 nM) to 0.90 nM. The lowest concentrations for both metals were observed at 20 m depth (the shallowest depth for which metals were measured). The concentration of the particulate Fe was about 5 times higher than the dissolved Fe concentration, ranging from 0.56 to 24.83 nM with an average of 6.45 nM. The concentration of the particulate Cu ranged from 0.01 to 0.71 nM with an average of 0.17 nM. The values are in agreement with the previous data collected in the same area. We evaluated the role of the Fe and Cu as biolimiting metals. The N:dissolved labile Fe ratios (18,900-130,666) would or would not allow a complete nitrate removal, on the basis of the N:Fe requirement ratios that we calculated considering the N:P and the C:P ratios estimated for diatoms. This finding partially agrees with the Si:N ratio that we found (2.29). Moreover we considered a possible influence of the dissolved labile Cu on the Fe uptake process.

  3. Characterization of atmospheric aerosols using Synchroton radiation total reflection X-ray fluorescence and Fe K-edge total reflection X-ray fluorescence-X-ray absorption near-edge structure

    Energy Technology Data Exchange (ETDEWEB)

    Fittschen, U.E.A. [Department of Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg (Germany)], E-mail: ursula.fittschen@chemie.uni-hamburg.de; Meirer, F. [Atominstitut, Vienna University of Technology, Stadionallee 2, 1020 Wien (Austria)], E-mail: fmeirer@ati.ac.at; Streli, C. [Atominstitut, Vienna University of Technology, Stadionallee 2, 1020 Wien (Austria)], E-mail: streli@ati.ac.at; Wobrauschek, P. [Atominstitut, Vienna University of Technology, Stadionallee 2, 1020 Wien (Austria)], E-mail: wobi@ati.ac.at; Thiele, J. [Department of Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg (Germany)], E-mail: Julian.Thiele@gmx.de; Falkenberg, G. [Hamburger Synchrotronstrahlungslabor at Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22603 Hamburg (Germany)], E-mail: falkenbe@mail.desy.de; Pepponi, G. [ITC-irst, Via Sommarive 18, 38050 Povo (Trento) (Italy)], E-mail: pepponi@itc.it

    2008-12-15

    In this study a new procedure using Synchrotron total reflection X-ray fluorescence (SR-TXRF) to characterize elemental amounts in atmospheric aerosols down to particle sizes of 0.015 um is presented. The procedure was thoroughly evaluated regarding bounce off effects and blank values. Additionally the potential of total reflection X-ray fluorescence-X-ray absorption near edge structure (SR-TXRF-XANES) for speciation of FeII/III down to amounts of 34 pg in aerosols which were collected for 1 h is shown. The aerosols were collected in the city of Hamburg with a low pressure Berner impactor on Si carriers covered with silicone over time periods of 60 and 20 min each. The particles were collected in four and ten size fractions of 10.0-8.0 {mu}m, 8.0-2.0 {mu}m, 2.0-0.13 {mu}m 0.13-0.015 {mu}m (aerodynamic particle size) and 15-30 nm, 30-60 nm, 60-130 nm, 130-250 nm, 250-500 nm, 0.5-1 {mu}m, 1-2 {mu}m, 2-4 {mu}m, 4-8 {mu}m, 8-16 {mu}m. Prior to the sampling 'bounce off' effects on Silicone and Vaseline coated Si carriers were studied with total reflection X-ray fluorescence. According to the results silicone coated carriers were chosen for the analysis. Additionally, blank levels originating from the sampling device and the calibration procedure were studied. Blank levels of Fe corresponded to 1-10% of Fe in the aerosol samples. Blank levels stemming from the internal standard were found to be negligible. The results from the Synchroton radiation total reflection X-ray fluorescence analysis of the aerosols showed that 20 min of sampling time gave still enough sample material for elemental determination of most elements. For the determination of the oxidation state of Fe in the aerosols different Fe salts were prepared as a reference from suspensions in isopropanol. The results from the Fe K-edge Synchroton radiation total reflection X-ray fluorescence-X-ray absorption near-edge structure analysis of the aerosol samples showed that mainly Fe(III) was present in

  4. Characterization of atmospheric aerosols using Synchroton radiation total reflection X-ray fluorescence and Fe K-edge total reflection X-ray fluorescence-X-ray absorption near-edge structure

    International Nuclear Information System (INIS)

    Fittschen, U.E.A.; Meirer, F.; Streli, C.; Wobrauschek, P.; Thiele, J.; Falkenberg, G.; Pepponi, G.

    2008-01-01

    In this study a new procedure using Synchrotron total reflection X-ray fluorescence (SR-TXRF) to characterize elemental amounts in atmospheric aerosols down to particle sizes of 0.015 um is presented. The procedure was thoroughly evaluated regarding bounce off effects and blank values. Additionally the potential of total reflection X-ray fluorescence-X-ray absorption near edge structure (SR-TXRF-XANES) for speciation of FeII/III down to amounts of 34 pg in aerosols which were collected for 1 h is shown. The aerosols were collected in the city of Hamburg with a low pressure Berner impactor on Si carriers covered with silicone over time periods of 60 and 20 min each. The particles were collected in four and ten size fractions of 10.0-8.0 μm, 8.0-2.0 μm, 2.0-0.13 μm 0.13-0.015 μm (aerodynamic particle size) and 15-30 nm, 30-60 nm, 60-130 nm, 130-250 nm, 250-500 nm, 0.5-1 μm, 1-2 μm, 2-4 μm, 4-8 μm, 8-16 μm. Prior to the sampling 'bounce off' effects on Silicone and Vaseline coated Si carriers were studied with total reflection X-ray fluorescence. According to the results silicone coated carriers were chosen for the analysis. Additionally, blank levels originating from the sampling device and the calibration procedure were studied. Blank levels of Fe corresponded to 1-10% of Fe in the aerosol samples. Blank levels stemming from the internal standard were found to be negligible. The results from the Synchroton radiation total reflection X-ray fluorescence analysis of the aerosols showed that 20 min of sampling time gave still enough sample material for elemental determination of most elements. For the determination of the oxidation state of Fe in the aerosols different Fe salts were prepared as a reference from suspensions in isopropanol. The results from the Fe K-edge Synchroton radiation total reflection X-ray fluorescence-X-ray absorption near-edge structure analysis of the aerosol samples showed that mainly Fe(III) was present in all particle size fractions

  5. Arsenic removal by using colloidal adsorption flotation utilizing Fe(OH)3 floc in a dissolved air flotation system; Eliminacion de arsenico mediante flotacion por adsorcion coloidal utilizando floculos de Fe(OH){sub 3} en un sistema de flotacion por aire disuelto

    Energy Technology Data Exchange (ETDEWEB)

    Pavez, O.; Palacios, J. M.; Aguilar, C.

    2009-07-01

    In the present work, the influence of Fe/As ratio on the As removal, from aqueous solutions, applying flotation by colloidal adsorption was studied. Ferric chloride was used as coagulant and dodec il sulfate as collector, and arsenic trioxide was utilized to preparing the solutions. The obtained results show that the highest arsenic removal was accomplished in the range of pH between 4 and 5,5, and the increasing of the initial concentration of Fe(III), increases the removal of arsenic from the solution. However, with the decreasing of the initial concentration of arsenic in the solution, it is required a larger Fe/As ratio for its removal. For solutions containing: 13,73, 1,71 and 0,105 mg/L of arsenic, it was shown that to remove around 95% of the dissolved arsenic, a Fe/As ratios of approximately 6/1, 18/1 and 800/1, respectively, are required. (Author) 31 refs.

  6. Morphological Features of Diamond Crystals Dissolved in Fe0.7S0.3 Melt at 4 GPa and 1400°C

    Science.gov (United States)

    Sonin, V. M.; Zhimulev, E. I.; Pomazanskiy, B. S.; Zemnuhov, A. L.; Chepurov, A. A.; Afanasiev, V. P.; Chepurov, A. I.

    2018-01-01

    An experimental study of the dissolution of natural and synthetic diamonds in a sulfur-bearing iron melt (Fe0.7S0.3) with high P-T parameters (4 GPa, 1400°C) was performed. The results demonstrated that under these conditions, octahedral crystals with flat faces and rounded tetrahexahedral diamond crystals are transformed into rounded octahedroids, which have morphological characteristics similar to those of natural diamonds from kimberlite. It was suggested that, taking into account the complex history of individual natural diamond crystals, including the dissolution stages, sulfur-bearing metal melts up to sulfide melts were not only diamond-forming media during the early evolution of the Earth, but also natural solvents of diamond in the mantle environment before the formation of kimberlitic melts.

  7. Determination of the Anthropogenic Carbon Signal to the Total Change in Dissolved Carbon in the Coastal Upwelling Region Along the Washington-Oregon-California Continental Margin

    Science.gov (United States)

    Feely, R. A.

    2016-02-01

    The continental shelf region off the Washington-Oregon-California coast is seasonally exposed to water with a low aragonite saturation state by coastal upwelling of CO2-rich waters. To date, the spatial and temporal distribution of anthropogenic CO2 (Canthro) contribution to the CO2-rich waters is largely unknown. Here we use an adaptation of the linear regression approach described in Feely et al (2008) along with the GO-SHIP Repeat Hydrography data sets from the northeast Pacific to establish an annually updated relationship between Canthro and potential density. This relationship was then used with the NOAA Ocean Acidification Program west coast cruise data sets from 2007, 2011, 2012 and 2013 to determine the spatial variations of Canthro in the upwelled water. Our results show large spatial differences in Canthro in surface waters along the coast with the lowest surface values (40-45 µmol kg-1) in strong upwelling regions of off northern California and southern Oregon and higher values (50-70 µmol kg-1) to the north and south. Canthro contributes an average of about 70% of the increased amount of dissolved inorganic carbon in the upwelled waters at the surface. In contrast, at 50 m the Canthro contribution is approximately 31% and at 100 m it averages about 16%. The remaining contributions are primarily due to respiration processes in the water that was upwelled and transported to coastal regions or underwent respiration processes that occurred locally during the course of the upwelling season. The uptake of Canthro has caused the aragonite saturation horizon to shoal by approximately 30-50 m since preindustrial period so that the undersaturated waters are well within the regions that affect the biological communities on the continental shelf.

  8. Dissolved gases

    International Nuclear Information System (INIS)

    Heaton, T.H.E.

    1981-01-01

    The concentrations of gaseous nitrogen, argon, oxygen and helium dissolved in groundwater are often different from their concentrations in rain and surface waters. These differences reflect changes in the gas content occurring after rain or surface water, having infiltrated into the ground, become isolated from equilibrium contact with the atmosphere. A study of these changes can give insight into the origin and subsequent subsurface history of groundwater. Nitrogen and argon concentrations for many groundwaters in southern Africa indicate that excess air is added to water during infiltration. The amount of excess air is believed to reflect the physical structure of the unsaturated zone and the climate of the recharge area. Since nitrogen and argon are essentially conservative in many aquifer environments in South Africa, their concentrations can be used in distinguishing grondwaters of different recharge origins. In some areas the high helium content of the groundwater suggests that much of the helium is derived through migration from a source outside (e.g. below) the aquifer itself. Radiogenic helium concentrations nevertheless show, in two artesian aquifers, a close linear relationship to the radiocarbon age of the groundwater. This indicates a uniformity in the factors responsible for the accumulation of helium, and suggests that in these circumstances helium data can be used to give information on the age of very old groundwater. In some groundwater dissolved oxygen concentrations are found to decrease with increasing groundwater age. Whilst the rate of decrease may be very different for different aquifers, the field measurement of oxygen may be useful in preliminary surveys directed toward the location of recharge areas

  9. Dissolved inorganic carbon, total alkalinity, pH, and other variables collected from surface discrete observations using spectrophotometer and other instruments from NOAA Ship Henry B. Bigelow off the Northeastern coast of the United States from 2014-09-10 to 2014-11-05 (NCEI Accession 0138983)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains surface measurements of dissolved inorganic, total alkalinity, pH measurements off the Northeastern coast of the United States....

  10. Dissolved inorganic carbon, total alkalinity, pH, nutrients, and other variables collected from surface discrete observations using Niskin bottle and other instruments from R/V F. G. Walton Smith in the west coast of Florida within Gulf of Mexico from 2015-09-23 to 2015-09-24 (NCEI Accession 0157025)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains the surface discrete measurements of dissolved inorganic carbon, total alkalinity, pH and nutrients in the west coast of Florida near...

  11. Dissolved inorganic carbon, total alkalinity, pH, and other variables collected from surface and discrete observations using flow-through pump and other instruments from M/V Equinox in the North Atlantic ocean (east coast of Miami, FL, Bahamas, and Turks and Caicos Islands) from 2015-03-07 to 2015-03-09 (NCEI Accession 0154382)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains surface discrete measurements of dissolved inorganic carbon, total alkalinity, and pH from the east coast of Florida to Puerto Rico....

  12. Dissolved inorganic carbon, total alkalinity, pH, and other variables collected from surface discrete observations using flow through pump and other instruments from Explorer of the Seas (ID: 33KF) in the Caribbean Sea and North Atlantic ocean during the Ocean Acidification Cruise EX1507 from 2015-02-14 to 2015-02-15 (NCEI Accession 0154385)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains surface discrete measurements of dissolved inorganic carbon, total alkalinity, pH in the Caribbean Sea. Increasing amounts of...

  13. Dissolved inorganic carbon, total alkalinity, nutrients, and other variables collected from profile and discrete observations using Niskin bottle and other instruments from NOAA Ship Henry B. Bigelow in Gulf of Maine, Georges Bank, and Mid-Atlantic Bight from 2015-05-20 to 2015-06-02 (NCEI Accession 0157024)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains profile discrete measurements of dissolved inorganic carbon, total alkalinity, nutrients, and chlorophyll a in Mid-Atlantic Bight and...

  14. Dissolved inorganic carbon, total alkalinity, temperature, salinity and other variables collected from profile and discrete sample observations using CTD, Niskin bottle, and other instruments from NOAA Ship HI'IALAKAI and NOAA Ship OSCAR ELTON SETTE in the U.S. Pacific Reefs from 2012-03-02 to 2014-05-05 (NCEI Accession 0131502)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains data from samples collected and analyzed for total alkalinity (TA) and dissolved inorganic carbon (DIC). From these constituents,...

  15. Dissolved inorganic carbon, total alkalinity, pH, nutrients and other variables collected from profile and discrete sample observations using CTD, Niskin bottle, and other instruments from NOAA Ship Gordon Gunter off the U.S. East Coast during the East Coast Ocean Acidification (GU-15-04 ECOA1) from 2015-06-20 to 2015-07-23 (NCEI Accession 0159428)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains dissolved inorganic carbon, total alkalinity, pH, nutrients and other variables collected from profile and discrete sample...

  16. Dissolved inorganic carbon, total alkalinity, pH, nutrients, and other variables collected from surface discrete observations using flow-through pump and other instruments from NOAA Ship Henry B. Bigelow on the Northeast U.S. Shelf (Gulf of Maine and Mid-Atlantic Bight) from 2013-03-17 to 2013-05-09 (NCEI Accession 0154386)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains surface discrete measurements of dissolved inorganic carbon, total alkalinity, pH and nutrients in the Mid-Atlantic Bight and Gulf of...

  17. Dissolved inorganic carbon, total alkalinity, pH, nutrients and other variables collected from surface discrete sampling using flow through pump and other instruments from NOAA Ship Gordon Gunter in the U.S. East Coast during the East Coast Ocean Acidification (GU-15-04 ECOA1) from 2015-06-20 to 2015-07-23 (NCEI Accession 0157389)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains dissolved inorganic carbon, total alkalinity, pH, nutrients and other variables collected from surface discrete sampling using flow...

  18. Impact of total organic carbon (in sediments) and dissolved organic carbon (in overlying water column) on Hg sequestration by coastal sediments from the central east coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Chakrabortya, P.; Sharma, B.M.; Babu, P.V.R.; Yao, K.M.; Jaychandran, S.

    , 1991; Liu et al., 2006; Tack and Verloo, 1995). Mercury accumulates in sediment globally from many physical, chemical, biological, geological and anthropogenic environmental processes. Thus, sediment can be a good indicator of water quality of a...-Black method (Schumacher, 2002). This method has been widely used for the determination of total organic carbon in the soil and sediments. 3.0 Results and discussion The general description and texture analysis of the studied sediments are presented...

  19. Distribution of dissolved carbohydrates and uronic acids in a tropical estuary, India

    Digital Repository Service at National Institute of Oceanography (India)

    Khodse, V.B.; Bhosle, N.B.; Matondkar, S.G.P.

    , concentrations of total dissolved carbohydrate (TCHO), dissolved polysaccharide (PCHO), dissolved monosaccharide (MCHO), and dissolved uronic acid (URA) were measured in the Mandovi estuary, west coast of India during the monsoon and premonsoon seasons...

  20. Cross-sectional neck response of a total human body FE model during simulated frontal and side automobile impacts.

    Science.gov (United States)

    White, Nicholas A; Moreno, Daniel P; Gayzik, F Scott; Stitzel, Joel D

    2015-01-01

    Human body finite element (FE) models are beginning to play a more prevalent role in the advancement of automotive safety. A methodology has been developed to evaluate neck response at multiple levels in a human body FE model during simulated automotive impacts. Three different impact scenarios were simulated: a frontal impact of a belted driver with airbag deployment, a frontal impact of a belted passenger without airbag deployment and an unbelted side impact sled test. Cross sections were created at each vertebral level of the cervical spine to calculate the force and moment contributions of different anatomical components of the neck. Adjacent level axial force ratios varied between 0.74 and 1.11 and adjacent level bending moment ratios between 0.55 and 1.15. The present technique is ideal for comparing neck forces and moments to existing injury threshold values, calculating injury criteria and for better understanding the biomechanical mechanisms of neck injury and load sharing during sub-injurious and injurious loading.

  1. Evaluation of Fe and Zn/Cu ratio in serum of patients with sickle cell anemia by total reflection X-ray fluorescence using synchrotron radiation

    International Nuclear Information System (INIS)

    Canellas, Catarine G.L.; Leitao, Roberta G.; Lopes, Ricardo T.; Bellido, Alfredo Victor B.; Anjos, Marcelino J.

    2011-01-01

    Sickle cell anemia (SCA) is a blood disorder that affects hemoglobin, the protein found in red blood cells that help carry oxygen throughout the body. In this work we have analyzed serum samples from patients with SCA by using total reflection X-ray fluorescence using synchrotron radiation (SRTXRF). The SRTXRF measurements were performed at the X-ray fluorescence beamline at Brazilian National Synchrotron Light Laboratory (LNLS), in Campinas, Sao Paulo using a polychromatic beam. We have studied forty-three patients aged 18-50 years old, suffering from SCA and Sixty healthy volunteers aged 18-60 years old. It was possible to determine the concentrations of the following elements: P, S, Cl, K, Ca, Fe, Cu, Zn, Br and Rb. Student's t-test was applied in order to check whether the two populations (CG x SCA) had the same mean values. It was observed that elemental concentration of P, Cl, K, Fe, Cu, Zn and Br differed significantly (α = 0.05) between groups of healthy subjects and SCA. The concentrations of K, Fe and Cu in the serum samples of patients with SCA were larger 15%, 120 % and 20 %, respectively, when compared with the CG. On the other hand, the concentrations of P (-20 %), Cl (-6 %), Zn (-25 %) and Br (-22 %) were smaller than the values determined for the control group. The serum level Cu/Zn ratio was significantly higher (60%) in the serum samples of patients with SCA group than the CG. So, the Cu/Zn ratio can be used as an adjuvant index in enhancement for diagnosis of SCA. There are evidences of an association among Fe, Cu, Zn and Cu/Zn in the SCA pathogenesis process. (author)

  2. Evaluation of Fe and Zn/Cu ratio in serum of patients with sickle cell anemia by total reflection X-ray fluorescence using synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Canellas, Catarine G.L.; Leitao, Roberta G.; Lopes, Ricardo T., E-mail: catarine@lin.ufrj.b, E-mail: ricardo@lin.ufrj.b [Universidade Federal do Rio de Janeiro (PEN/COPPE/UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-Graduacao de Engenharia. Programa de Engenharia Nuclear. Lab. de Instrumentaco Nuclear; Carvalho, Silvia M.F., E-mail: silvia@hemorio.rj.gov.b [State Institute of Hematology Arthur de Siqueira Cavalcanti (HEMORIO), Rio de Janeiro, RJ (Brazil); Bellido, Alfredo Victor B., E-mail: alfredo@ien.gov.b [Federal Fluminense University (UFF), Niteroi, RJ (Brazil). Chemistry Inst.; Anjos, Marcelino J., E-mail: marcelin@lin.ufrj.b [State University of Rio de Janeiro (UERJ), RJ (Brazil). Physics Inst.

    2011-07-01

    Sickle cell anemia (SCA) is a blood disorder that affects hemoglobin, the protein found in red blood cells that help carry oxygen throughout the body. In this work we have analyzed serum samples from patients with SCA by using total reflection X-ray fluorescence using synchrotron radiation (SRTXRF). The SRTXRF measurements were performed at the X-ray fluorescence beamline at Brazilian National Synchrotron Light Laboratory (LNLS), in Campinas, Sao Paulo using a polychromatic beam. We have studied forty-three patients aged 18-50 years old, suffering from SCA and Sixty healthy volunteers aged 18-60 years old. It was possible to determine the concentrations of the following elements: P, S, Cl, K, Ca, Fe, Cu, Zn, Br and Rb. Student's t-test was applied in order to check whether the two populations (CG x SCA) had the same mean values. It was observed that elemental concentration of P, Cl, K, Fe, Cu, Zn and Br differed significantly ({alpha} = 0.05) between groups of healthy subjects and SCA. The concentrations of K, Fe and Cu in the serum samples of patients with SCA were larger 15%, 120 % and 20 %, respectively, when compared with the CG. On the other hand, the concentrations of P (-20 %), Cl (-6 %), Zn (-25 %) and Br (-22 %) were smaller than the values determined for the control group. The serum level Cu/Zn ratio was significantly higher (60%) in the serum samples of patients with SCA group than the CG. So, the Cu/Zn ratio can be used as an adjuvant index in enhancement for diagnosis of SCA. There are evidences of an association among Fe, Cu, Zn and Cu/Zn in the SCA pathogenesis process. (author)

  3. Evaluation of Fe and Zn/Cu ratio in serum of patients with sickle cell anemia by total reflection X-ray fluorescence using synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Canellas, Catarine G.L.; Leitao, Roberta G; Lopes, Ricardo T., E-mail: catarine@lin.ufrj.b, E-mail: ricardo@lin.ufrj.b [Universidade Federal do Rio de Janeiro (PEN/COPPE/UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-Graduacao de Engenharia. Programa de Engenharia Nuclear. Lab. de Instrumentaco Nuclear; Carvalho, Silvia M.F., E-mail: silvia@hemorio.rj.gov.b [State Institute of Hematology Arthur de Siqueira Cavalcanti (HEMORIO), Rio de Janeiro, RJ (Brazil); Bellido, Alfredo Victor B., E-mail: alfredo@ien.gov.b [Federal Fluminense University (UFF), Niteroi, RJ (Brazil). Chemistry Inst.; Anjos, Marcelino J., E-mail: marcelin@lin.ufrj.b [State University of Rio de Janeiro (UERJ), RJ (Brazil). Physics Inst.

    2011-07-01

    Sickle cell anemia (SCA) is a blood disorder that affects hemoglobin, the protein found in red blood cells that help carry oxygen throughout the body. In this work we have analyzed serum samples from patients with SCA by using total reflection X-ray fluorescence using synchrotron radiation (SRTXRF). The SRTXRF measurements were performed at the X-ray fluorescence beamline at Brazilian National Synchrotron Light Laboratory (LNLS), in Campinas, Sao Paulo using a polychromatic beam. We have studied forty-three patients aged 18-50 years old, suffering from SCA and Sixty healthy volunteers aged 18-60 years old. It was possible to determine the concentrations of the following elements: P, S, Cl, K, Ca, Fe, Cu, Zn, Br and Rb. Student's t-test was applied in order to check whether the two populations (CG x SCA) had the same mean values. It was observed that elemental concentration of P, Cl, K, Fe, Cu, Zn and Br differed significantly ({alpha} = 0.05) between groups of healthy subjects and SCA. The concentrations of K, Fe and Cu in the serum samples of patients with SCA were larger 15%, 120 % and 20 %, respectively, when compared with the CG. On the other hand, the concentrations of P (-20 %), Cl (-6 %), Zn (-25 %) and Br (-22 %) were smaller than the values determined for the control group. The serum level Cu/Zn ratio was significantly higher (60%) in the serum samples of patients with SCA group than the CG. So, the Cu/Zn ratio can be used as an adjuvant index in enhancement for diagnosis of SCA. There are evidences of an association among Fe, Cu, Zn and Cu/Zn in the SCA pathogenesis process. (author)

  4. Ground-fire effects on the composition of dissolved and total organic matter in forest floor and soil solutions from Scots pine forests in Germany: new insights from solid state 13C NMR analysis

    Science.gov (United States)

    Näthe, Kerstin; Michalzik, Beate; Levia, Delphis; Steffens, Markus

    2016-04-01

    Fires represent an ecosystem disturbance and are recognized to seriously pertubate the nutrient budgets of forested ecosystems. While the effects of fires on chemical, biological, and physical soil properties have been intensively studied, especially in Mediterranean areas and North America, few investigations examined the effects of fire-induced alterations in the water-bound fluxes and the chemical composition of dissolved and particulate organic carbon and nitrogen (DOC, POC, DN, PN). The exclusion of the particulate organic matter fraction (0.45 μm Independent from fire manipulation, the composition of TOM was generally less aromatic (aromaticity index [%] according to Hatcher et al., 1981) with values between 18 (FF) - 25% (B horizon) than the DOM fraction with 23 (FF) - 27% (B horizon). For DOM in FF solution, fire manipulation caused an increase in aromaticity from 23 to 27% compared to the control, due to an increase of the aryl-C and a decrease of the O-alkyl-C and alkyl-C signal. Fire effects were leveled out in the mineral soil. For TOM, fire effects became notable only in the A horizon, exhibiting a decrease in aromaticity from 22 to 18% compared to the control, due to increased O-alkyl-C and diminished aryl-C proportions. Compared to the control, fire only caused minor DOC release rates (events did not significantly enhance the proportion of POC and PN in the total C and N amounts exhibiting values between 10 and 20%. To fully understand the quality and amount of translocated organic C and N compounds within soils under both ambient as well as fire environments, dissolved and particulate size fractions need to be considered.

  5. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory : evaluation of alkaline persulfate digestion as an alternative to Kjeldahl digestion for determination of total and dissolved nitrogen and phosphorus in water

    Science.gov (United States)

    Patton, Charles J.; Kryskalla, Jennifer R.

    2003-01-01

    Alkaline persulfate digestion was evaluated and validated as a more sensitive, accurate, and less toxic alternative to Kjeldahl digestion for routine determination of nitrogen and phosphorus in surface- and ground-water samples in a large-scale and geographically diverse study conducted by U.S. Geological Survey (USGS) between October 1, 2001, and September 30, 2002. Data for this study were obtained from about 2,100 surface- and ground-water samples that were analyzed for Kjeldahl nitrogen and Kjeldahl phosphorus in the course of routine operations at the USGS National Water Quality Laboratory (NWQL). These samples were analyzed independently for total nitrogen and total phosphorus using an alkaline persulfate digestion method developed by the NWQL Methods Research and Development Program. About half of these samples were collected during nominally high-flow (April-June) conditions and the other half were collected during nominally low-flow (August-September) conditions. The number of filtered and whole-water samples analyzed from each flow regime was about equal.By operational definition, Kjeldahl nitrogen (ammonium + organic nitrogen) and alkaline persulfate digestion total nitrogen (ammonium + nitrite + nitrate + organic nitrogen) are not equivalent. It was necessary, therefore, to reconcile this operational difference by subtracting nitrate + nitrite concentra-tions from alkaline persulfate dissolved and total nitrogen concentrations prior to graphical and statistical comparisons with dissolved and total Kjeldahl nitrogen concentrations. On the basis of two-population paired t-test statistics, the means of all nitrate-corrected alkaline persulfate nitrogen and Kjeldahl nitrogen concentrations (2,066 paired results) were significantly different from zero at the p = 0.05 level. Statistically, the means of Kjeldahl nitrogen concentrations were greater than those of nitrate-corrected alkaline persulfate nitrogen concentrations. Experimental evidence strongly

  6. Trends in concentrations of nitrate and total dissolved solids in public supply wells of the Bunker Hill, Lytle, Rialto, and Colton groundwater subbasins, San Bernardino County, California: Influence of legacy land use

    Science.gov (United States)

    Kent, Robert; Landon, Matthew K.

    2013-01-01

    Concentrations and temporal changes in concentrations of nitrate and total dissolved solids (TDS) in groundwater of the Bunker Hill, Lytle, Rialto, and Colton groundwater subbasins of the Upper Santa Ana Valley Groundwater Basin were evaluated to identify trends and factors that may be affecting trends. One hundred, thirty-one public-supply wells were selected for analysis based on the availability of data spanning at least 11 years between the late 1980s and the 2000s. Forty-one of the 131 wells (31%) had a significant (p relations of nitrate trends to depth, lateral position, and VOCs imply that increasing nitrate concentrations are associated with nitrate loading from historical agricultural land use and that more recent urban land use is generally associated with lower nitrate concentrations and greater VOC occurrence. Increasing TDS trends were associated with relatively greater current nitrate concentrations and relatively greater amounts of urban land. Decreasing TDS trends were associated with relatively greater amounts of natural land use. Trends in TDS concentrations were not related to depth, lateral position, or VOC occurrence, reflecting more complex factors affecting TDS than nitrate in the study area.

  7. Trends in concentrations of nitrate and total dissolved solids in public supply wells of the Bunker Hill, Lytle, Rialto, and Colton groundwater subbasins, San Bernardino County, California: influence of legacy land use.

    Science.gov (United States)

    Kent, Robert; Landon, Matthew K

    2013-05-01

    Concentrations and temporal changes in concentrations of nitrate and total dissolved solids (TDS) in groundwater of the Bunker Hill, Lytle, Rialto, and Colton groundwater subbasins of the Upper Santa Ana Valley Groundwater Basin were evaluated to identify trends and factors that may be affecting trends. One hundred, thirty-one public-supply wells were selected for analysis based on the availability of data spanning at least 11 years between the late 1980s and the 2000s. Forty-one of the 131 wells (31%) had a significant (p<0.10) increase in nitrate and 14 wells (11%) had a significant decrease in nitrate. For TDS, 46 wells (35%) had a significant increase and 8 wells (6%) had a significant decrease. Slopes for the observed significant trends ranged from -0.44 to 0.91 mg/L/yr for nitrate (as N) and -8 to 13 mg/L/yr for TDS. Increasing nitrate trends were associated with greater well depth, higher percentage of agricultural land use, and being closer to the distal end of the flow system. Decreasing nitrate trends were associated with the occurrence of volatile organic compounds (VOCs); VOC occurrence decreases with increasing depth. The relations of nitrate trends to depth, lateral position, and VOCs imply that increasing nitrate concentrations are associated with nitrate loading from historical agricultural land use and that more recent urban land use is generally associated with lower nitrate concentrations and greater VOC occurrence. Increasing TDS trends were associated with relatively greater current nitrate concentrations and relatively greater amounts of urban land. Decreasing TDS trends were associated with relatively greater amounts of natural land use. Trends in TDS concentrations were not related to depth, lateral position, or VOC occurrence, reflecting more complex factors affecting TDS than nitrate in the study area. Published by Elsevier B.V.

  8. Surfactant-enhanced spectrofluorimetric determination of total aflatoxins from wheat samples after magnetic solid-phase extraction using modified Fe3O4 nanoparticles

    Science.gov (United States)

    Manafi, Mohammad Hanif; Allahyari, Mehdi; Pourghazi, Kamyar; Amoli-Diva, Mitra; Taherimaslak, Zohreh

    2015-07-01

    The extraction and preconcentration of total aflatoxins (including aflatoxin B1, B2, G1, and G2) using magnetic nanoparticles based solid phase extraction (MSPE) followed by surfactant-enhanced spectrofluorimetric detection was proposed. Ethylene glycol bis-mercaptoacetate modified silica coated Fe3O4 nanoparticles as an efficient antibody-free adsorbent was successfully applied to extract aflatoxins from wheat samples. High surface area and strong magnetization properties of magnetic nanoparticles were utilized to achieve high enrichment factor (97), and satisfactory recoveries (92-105%) using only 100 mg of the adsorbent. Furthermore, the fast separation time (less than 10 min) avoids many time-consuming cartridge loading or column-passing procedures accompany with the conventional SPE. In determination step, signal enhancement was performed by formation of Triton X-100 micelles around the analytes in 15% (v/v) acetonitrile-water which dramatically increase the sensitivity of the method. Main factors affecting the extraction efficiency and signal enhancement of the analytes including pH of sample solution, desorption conditions, extraction time, sample volume, adsorbent amount, surfactant concentration and volume and time of micelle formation were evaluated and optimized. Under the optimum conditions, wide linear range of 0.1-50 ng mL-1 with low detection limit of 0.03 ng mL-1 were obtained. The developed method was successfully applied to the extraction and preconcentration of aflatoxins in three commercially available wheat samples and the results were compared with the official AOAC method.

  9. Analyzing Solutions High in Total Dissolved Solids for Rare Earth Elements (REEs) Using Cation Exchange and Online Pre-Concentration with the seaFAST2 Unit; NETL-TRS-7-2017; NETL Technical Report Series; U.S. Department of Energy, National Energy Technology Laboratory: Albany, OR, 2017; p 32

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J. [National Energy Technology Lab. (NETL), Albany, OR (United States); Oregon State Univ., Corvallis, OR (United States). College of Earth, Ocean, and Atmospheric Science; Torres, M. [Oregon State Univ., Corvallis, OR (United States). College of Earth, Ocean, and Atmospheric Science; Verba, C. [National Energy Technology Lab. (NETL), Albany, OR (United States); Oregon State Univ., Corvallis, OR (United States); Hakala, A. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States)

    2017-08-01

    The accurate quantification of the rare earth element (REE) dissolved concentrations in natural waters are often inhibited by their low abundances in relation to other dissolved constituents such as alkali, alkaline earth elements, and dissolved solids. The high abundance of these constituents can suppress the overall analytical signal as well as create isobaric interferences on the REEs during analysis. Waters associated with natural gas operations on black shale plays are characterized by high salinities and high total dissolved solids (TDS) contents >150,000 mg/L. Methods used to isolate and quantify dissolved REEs in seawater were adapted in order to develop the capability of analyzing REEs in waters that are high in TDS. First, a synthetic fluid based on geochemical modelling of natural brine formation fluids was created within the Marcellus black shale with a TDS loading of 153,000 mg/L. To this solution, 1,000 ng/mL of REE standards was added based on preliminary analyses of experimental fluids reacted at high pressure and temperature with Marcellus black shale. These synthetic fluids were then run at three different dilution levels of 10, 100, and 1,000–fold dilutions through cation exchange columns using AG50-X8 exchange resin from Eichrom Industries. The eluent from the cation columns were then sent through a seaFAST2 unit directly connected to an inductively coupled plasma mass spectrometer (ICP-MS) to analyze the REEs. Percent recoveries of the REEs ranged from 80–110% and fell within error for the external reference standard used and no signal suppression or isobaric interferences on the REEs were observed. These results demonstrate that a combined use of cation exchange columns and seaFAST2 instrumentation are effective in accurately quantifying the dissolved REEs in fluids that are >150,000 mg/L in TDS and have Ba:Eu ratios in excess of 380,000.

  10. Recuento de bacterias totales en leche cruda de tambos que caracterizan la zona noroeste de Santa Fe y sur de Santiago del Estero Total bacterial count in raw milk of dairy farms that characterize the northwest zone of Santa Fe and south of Santiago del Estero

    Directory of Open Access Journals (Sweden)

    G.R. Revelli

    2004-09-01

    Full Text Available Un total de 6.998 muestras de leche cruda de pool de tanque, correspondientes a 55 establecimientos lecheros asociados a la Cooperativa Tambera Nueva Alpina Ltda., fueron recolectadas entre los años 1993 y 2002. Se realizó el Recuento de Microorganismos Aerobios Mesófilos Totales, obteniéndose como resultado un valor medio de 1,2 x 105± 2,4 x 105UFC/ml que caracteriza la zona. El año de finalización de la experiencia, se observó un 97% de los tambos evaluados con promedios £ 1,0 x 105UFC/ml. Solamente un 3% sobrepasa este límite, no encontrándose establecimientos con niveles superiores a 1,5 x 105UFC/ml. Al relacionar este indicador con parámetros composicionales, las correlaciones más significativas resultaron para: Recuento de Bacterias Totales vs Acidez (r = 0,292; P A total of 6.998 raw milk samples of bulk tank, belonging to 55 dairy farms associated to the Cooperativa Tambera Nueva Alpina Ltda., were collected between the years 1993 and 2002. The Total Mesophilic Aerobic Microorganisms Count was analyzed, obtaining a medium value of 1.2 x 105± 2.4 x 105CFU/ml that characterizes the zone. The final year of experience, observed a 97% of dairy farms evaluated with averages £ 1,0 x 105CFU/ml. Only a 3% it surpasses this limit, not being found establishments with levels over 1.5 x 105CFU/ml. Relating this indicators with compositionals parameters, the most significant correlation resulted for: Total Bacterial Count vs Acidity (r = 0.292; P < 0.001 and Total Bacterial Count vs Freezing Point (r = 0.157; P < 0.001. The microbiological quality in raw milk of dairy farms belonging to the northwest zone of Santa Fe and south of Santiago del Estero showed a significant improvement during this time.

  11. Characterisation of a tertiary mixture of {alpha}-Fe{sub 2}O{sub 3}, {gamma}-Fe{sub 2}O{sub 3} and Fe{sub 3}O{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, M.P.; Narasimhan, S.V. [Water and Steam Chemistry Laboratory (Chemistry Group, BARC) BARC Facilities, Kalpakkam, Tamil Nadu 603 102. (India)

    1998-12-31

    A method has been developed to quantify the individual components of a ternary mixture containing {alpha}-Fe{sub 2}O{sub 3}, {gamma}- Fe{sub 2}O{sub 3} and Fe{sub 3}O{sub 4} based on the preferential dissolution of the components at a fixed time (fixed time - depending on the strength of the chelating agent) in a dilute chemical formulation (containing a chelant and an organic acid) both in presence and absence of reductant. A ternary component diagram was constructed based on the percentage dissolution of the individual components in 2,6-Pyridine dicarboxylic acid (PDCA), Nitrilo triacetic acid (NTA) and EDTA based formulation at 60degC both in presence and absence of reductant. In these formulations, the observed behaviour that the {alpha}-Fe{sub 2}O{sub 3} dissolved very little both in presence and absence of reductant and {gamma}-Fe{sub 2}O{sub 3} dissolved very little in absence of reductant were used for resolving the ternary physical mixture composition. Physical mixtures of Fe{sub 3}O{sub 4}, {alpha}-Fe{sub 2}O{sub 3} and {gamma}-Fe{sub 2}O{sub 3} based on mole ratio were taken such that the total quantity of Fe present would be 1.37 mM for complete dissolution. In presence and absence of reductant, dissolution percentage of Fe observed at fixed time in these formulations, when fit into the already constructed three component phase diagram for each formulation at the same fixed duration, the experimentally resolved composition showed good agreement with that based on individual components. This method is useful to resolve different polymorphs of metal oxides having the metal ions in single and/or multiple oxidation states. (author)

  12. Characterization of Urban Runoff Pollution between Dissolved and Particulate Phases

    OpenAIRE

    Wei, Zhang; Simin, Li; Fengbing, Tang

    2013-01-01

    To develop urban stormwater management effectively, characterization of urban runoff pollution between dissolved and particulate phases was studied by 12 rainfall events monitored for five typical urban catchments. The average event mean concentration (AEMC) of runoff pollutants in different phases was evaluated. The AEMC values of runoff pollutants in different phases from urban roads were higher than the ones from urban roofs. The proportions of total dissolved solids, total dissolved nitr...

  13. Use of natural zeolites for creation of catalysts containing Cu, Cr, Co, Fe for total oxidation of CO, CH4, CH3OH gas wastes

    International Nuclear Information System (INIS)

    Grigoryan, R.R.; Vartikyan, L.A.; Gharibyan, T.A.; Sargsyan, H.H.

    2006-01-01

    On the basis of natural zeolites of 'Nor Koghb' from Noyemberyan Region of Armenia various quantities of metal containing (Cu,Cr, Co, Fe) catalysts were synthesized by methods of: impregnation; impregnation by ultrasonic treatment (UST); ion exchange. It was studied physico-chemical properties of synthesized catalysts with the help of X-ray, ESR and electronic microscope. Catalytic activity of synthesized catalysts is studied in the processes of deep oxidation by air under atmospheric pressure of methanol, carbon oxide and methane. It is shown that increase of quantity of CuO>2 weight % in clinoptilolite leads to decrease of CO, CH 3 OH and CH 4 conversion and increase of quantity of CoO, Cr 2 O 3 , Fe 2 O 3 (2-6 weight %) leads to increase of above mentioned conversion.These catalysts preserve their catalytic activity for a long period of time

  14. Effect of Organic Substances on the Efficiency of Fe(Ii to Fe(Iii Oxidation and Removal of Iron Compounds from Groundwater in the Sedimentation Process

    Directory of Open Access Journals (Sweden)

    Krupińska Izabela

    2017-09-01

    Full Text Available One of the problems with iron removal from groundwater is organic matter. The article presents the experiments involved groundwater samples with a high concentration of total iron - amounting to 7.20 mgFe/dm3 and an increased amount of organic substances (TOC from 5.50 to 7.50 mgC/dm3. The water samples examined differed in terms of the value of the ratio of the TOC concentration and the concentration of total iron (D. It was concluded that with increase in the coexistence ratio of organic substances and total iron in water (D = [TOC]/[Fetot], efficiency of Fe(II to Fe(III oxidization with dissolved oxygen decreased, while the oxidation time was increasing. This rule was not demonstrated for potassium manganate (VII when used as an oxidizing agent. The application of potassium manganate (VII for oxidation of Fe(II ions produced the better results in terms of total iron concentration reduction in the sedimentation process than the oxidation with dissolved oxygen.

  15. Effect of Organic Substances on the Efficiency of Fe(Ii) to Fe(Iii) Oxidation and Removal of Iron Compounds from Groundwater in the Sedimentation Process

    Science.gov (United States)

    Krupińska, Izabela

    2017-09-01

    One of the problems with iron removal from groundwater is organic matter. The article presents the experiments involved groundwater samples with a high concentration of total iron - amounting to 7.20 mgFe/dm3 and an increased amount of organic substances (TOC from 5.50 to 7.50 mgC/dm3). The water samples examined differed in terms of the value of the ratio of the TOC concentration and the concentration of total iron (D). It was concluded that with increase in the coexistence ratio of organic substances and total iron in water (D = [TOC]/[Fetot]), efficiency of Fe(II) to Fe(III) oxidization with dissolved oxygen decreased, while the oxidation time was increasing. This rule was not demonstrated for potassium manganate (VII) when used as an oxidizing agent. The application of potassium manganate (VII) for oxidation of Fe(II) ions produced the better results in terms of total iron concentration reduction in the sedimentation process than the oxidation with dissolved oxygen.

  16. Kinetic study reveals weak Fe-binding ligand, which affects the solubility of Fe in the Scheldt estuary

    NARCIS (Netherlands)

    Gerringa, L. J. A.; Rijkenberg, M. J. A.; Wolterbeek, H. Th.; Verburg, T. G.; Boye, M.; de Baar, H. J. W.

    2007-01-01

    The chemistry of dissolved Fe(III) was studied in the Scheldt estuary (The Netherlands). Two discrete size fractions of the dissolved bulk (<0.2 mu m and <1 kDa) were considered at three salinities (S = 26, 10 and 0.3). Within the upper estuary, where fresh river water meets seawater, the dissolved

  17. Occurrence and behaviour of dissolved, nano-particulate and micro-particulate iron in waste waters and treatment systems: new insights from electrochemical analysis.

    Science.gov (United States)

    Matthies, R; Aplin, A C; Horrocks, B R; Mudashiru, L K

    2012-04-01

    Cyclic-, Differential Pulse- and Steady-state Microdisc Voltammetry (CV, DPV, SMV) techniques have been used to quantify the occurrence and fate of dissolved Fe(ii)/Fe(iii), nano-particulate and micro-particulate iron over a 12 month period in a series of net-acidic and net-alkaline coal mine drainages and passive treatment systems. Total iron in the mine waters is typically 10-100 mg L(-1), with values up to 2100 mg L(-1). Between 30 and 80% of the total iron occurs as solid phase, of which 20 to 80% is nano-particulate. Nano-particulate iron comprises 20 to 70% of the nominally "dissolved" (i.e. sedimentation are the only processes required to remove solid phase iron, these data have important implications for the generation or consumption of acidity during water treatment. In most waters, the majority of truly dissolved iron occurs as Fe(ii) (average 64 ± 22%). Activities of Fe(ii) do not correlate with pH and geochemical modelling shows that no Fe(ii) mineral is supersaturated. Removal of Fe(ii) must proceed via oxidation and hydrolysis. Except in waters with pH waters are generally supersaturated with respect to ferrihydrite and schwertmannite, and are not at redox equilibrium, indicating the key role of oxidation and hydrolysis kinetics on water treatment. Typically 70-100% of iron is retained in the treatment systems. Oxidation, hydrolysis, precipitation, coagulation and sedimentation occur in all treatment systems and - independent of water chemistry and the type of treatment system - hydroxides and oxyhydroxysulfates are the main iron sinks. The electrochemical data thus reveal the rationale for incomplete iron retention in individual systems and can thus inform future design criteria. The successful application of this low cost and rapid electrochemical method demonstrates its significant potential for real-time, on-site monitoring of iron-enriched waters and may in future substitute traditional analytical methods.

  18. Dissolved iron in the Southern Ocean (Atlantic sector)

    NARCIS (Netherlands)

    Klunder, M. B.; Laan, P.; Middag, R.; De Baar, H. J. W.; van Ooijen, J. C.

    2011-01-01

    We report a comprehensive dataset of dissolved iron (Fe) comprising 482 values at 22 complete vertical profiles along a 1 degrees latitudinal section at the Zero meridian. In addition a shorter high resolution (similar to 00 degrees 09') surface section of the southernmost part of the transect (66

  19. Evaluation of Fe(II) oxidation at an acid mine drainage site using laboratory-scale reactors

    Science.gov (United States)

    Brown, Juliana; Burgos, William

    2010-05-01

    Acid mine drainage (AMD) is a severe environmental threat to the Appalachian region of the Eastern United States. The Susquehanna and Potomac River basins of Pennsylvania drain to the Chesapeake Bay, which is heavily polluted by acidity and metals from AMD. This study attempted to unravel the complex relationships between AMD geochemistry, microbial communities, hydrodynamic conditions, and the mineral precipitates for low-pH Fe mounds formed downstream of deep mine discharges, such as Lower Red Eyes in Somerset County, PA, USA. This site is contaminated with high concentrations of Fe (550 mg/L), Mn (115 mg/L), and other trace metals. At the site 95% of dissolved Fe(II) and 56% of total dissolved Fe is removed without treatment, across the mound, but there is no change in the concentration of trace metals. Fe(III) oxides were collected across the Red Eyes Fe mound and precipitates were analyzed by X-ray diffraction, electron microscopy and elemental analysis. Schwertmannite was the dominant mineral phase with traces of goethite. The precipitates also contained minor amounts of Al2O3, MgO,and P2O5. Laboratory flow-through reactors were constructed to quantify Fe(II) oxidation and Fe removal over time at terrace and pool depositional facies. Conditions such as residence time, number of reactors in sequence and water column height were varied to determine optimal conditions for Fe removal. Reactors with sediments collected from an upstream terrace oxidized more than 50% of dissolved Fe(II) at a ten hour residence time, while upstream pool sediments only oxidized 40% of dissolved Fe(II). Downstream terrace and pool sediments were only capable of oxidizing 25% and 20% of Fe(II), respectively. Fe(II) oxidation rates measured in the reactors were determined to be between 3.99 x 10-8and 1.94 x 10-7mol L-1s-1. The sediments were not as efficient for total dissolved Fe removal and only 25% was removed under optimal conditions. The removal efficiency for all sediments

  20. Effects of metal ions on the reactivity and corrosion electrochemistry of Fe/FeS nanoparticles.

    Science.gov (United States)

    Kim, Eun-Ju; Kim, Jae-Hwan; Chang, Yoon-Seok; Turcio-Ortega, David; Tratnyek, Paul G

    2014-04-01

    Nano-zerovalent iron (nZVI) formed under sulfidic conditions results in a biphasic material (Fe/FeS) that reduces trichloroethene (TCE) more rapidly than nZVI associated only with iron oxides (Fe/FeO). Exposing Fe/FeS to dissolved metals (Pd(2+), Cu(2+), Ni(2+), Co(2+), and Mn(2+)) results in their sequestration by coprecipitation as dopants into FeS and FeO and/or by electroless precipitation as zerovalent metals that are hydrogenation catalysts. Using TCE reduction rates to probe the effect of metal amendments on the reactivity of Fe/FeS, it was found that Mn(2+) and Cu(2+) decreased TCE reduction rates, while Pd(2+), Co(2+), and Ni(2+) increased them. Electrochemical characterization of metal-amended Fe/FeS showed that aging caused passivation by growth of FeO and FeS phases and poisoning of catalytic metal deposits by sulfide. Correlation of rate constants for TCE reduction (kobs) with electrochemical parameters (corrosion potentials and currents, Tafel slopes, and polarization resistance) and descriptors of hydrogen activation by metals (exchange current density for hydrogen reduction and enthalpy of solution into metals) showed the controlling process changed with aging. For fresh Fe/FeS, kobs was best described by the exchange current density for activation of hydrogen, whereas kobs for aged Fe/FeS correlated with electrochemical descriptors of electron transfer.

  1. Radiation-chemical sanitation of dissolved pollutants and environmental protection

    International Nuclear Information System (INIS)

    Petrukhin, N.V.; Putilov, A.V.

    1986-01-01

    Radiation-chemical sanitation of dissolved toxic pollutants resulted from the production processes of different substances and modern equipment operation is considered. The processes of fundamental industrial sewage processing and, as a result, features of practically total disposal of dissolved toxic agents are considered for the first time

  2. Performance of Electrocoagulation Process in the Removal of Total Coliform and Hetrotrophic Bacteria from Surface Water

    Directory of Open Access Journals (Sweden)

    Jamshid Derayat

    2015-03-01

    Full Text Available Electrocoagulation is an electrochemical method for the treatment of water and wastewater. The present cross-sectional study was designed to investigate the removal efficiency of total coliform and heterotrophic bacteria from surface water using the process. For this purpose, water samples were taken from the drinking water intake at Suleiman-Shahsonghur Dam. The electrocoagulation process was carried out in a Plexiglas reactor in the batch mode with Al and Fe used electrodes. The experiment design was carried out using the Design Expert Software (Stat-Ease Inc., Ver. 6.0.6. After each run, the values of metals dissolved due to anode electrode dissolution were measured using the Inductively Coupled Plasma (ICP and the results were analyzed using the RSM model. Results revealed maximum removal efficiencies of 100% and 89.1% for total coliform and heterotrophic bacteria using the Al electrode, respectively. Also, maximum removal efficiencies using the Fe electrode for the same pollutants were 100% and 76.1%. The measurements clearly indicate that the quantities of Al and Fe released in water were higher than the recommended values. While the electrocoagulation process showed to be effective in removing microbial agents from surface waters, the high concentrations of dissolved metals due to the dissolution of the anode electrode seem to remain a health problem that requires optimal conditions to be determined for acheiving standard concentrations of the dissolved metals.

  3. Dissolved inorganic carbon, total alkalinity, pH, and other variables collected from surface discrete observations using Flow through pump and other instruments from M/V Skogafoss in the Northeastern U.S. continental shelf and off the southern coast of Greenland during the ocean acidification cruise SKO0313, SKO0406, SKO0410, SKO0414, SKO0510, SKO0604, SKO0611, SKO0721, SKO_1406, SKO_1501, SKO_1506, SKO_1509, SKO_1604 from 2003-12-06 to 2016-04-01 (NCEI Accession 0154380)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains surface measurements of dissolved inorganic carbon, total alkalinity, pH in the North Atlantic Ocean. Increasing amounts of...

  4. Release of dissolved phosphorus from riparian wetlands: Evidence for complex interactions among hydroclimate variability, topography and soil properties.

    Science.gov (United States)

    Gu, Sen; Gruau, Gérard; Dupas, Rémi; Rumpel, Cornélia; Crème, Alexandra; Fovet, Ophélie; Gascuel-Odoux, Chantal; Jeanneau, Laurent; Humbert, Guillaume; Petitjean, Patrice

    2017-11-15

    In agricultural landscapes, establishment of vegetated buffer zones in riparian wetlands (RWs) is promoted to decrease phosphorus (P) emissions because RWs can trap particulate P from upslope fields. However, long-term accumulation of P risks the release of dissolved P, since the unstable hydrological conditions in these zones may mobilize accumulated particulate P by transforming it into a mobile dissolved P species. This study evaluates how hydroclimate variability, topography and soil properties interact and influence this mobilization, using a three-year dataset of molybdate-reactive dissolved P (MRDP) and total dissolved P (TDP) concentrations in soil water from two RWs located in an agricultural catchment in western France (Kervidy-Naizin), along with stream P concentrations. Two main drivers of seasonal dissolved P release were identified: i) soil rewetting during water-table rise after dry periods and ii) reductive dissolution of soil Fe (hydr)oxides during prolonged water saturation periods. These mechanisms were shown to vary greatly in space (according to topography) and time (according to intra- and interannual hydroclimate variability). The concentration and speciation of the released dissolved P also varied spatially depending on soil chemistry and local topography. Comparison of sites revealed a similar correlation between soil P speciation (percentage of organic P ranging from 35-70%) and the concentration and speciation of the released P (MRDP from topography and soil chemistry must be considered to decrease the risk of remobilizing legacy soil P when establishing riparian buffer zones in agricultural landscapes. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Seasonal changes in Fe along a glaciated Greenlandic fjord.

    Directory of Open Access Journals (Sweden)

    Mark James Hopwood

    2016-03-01

    Full Text Available Greenland’s ice sheet is the second largest on Earth, and is under threat from a warming Arctic climate. An increase in freshwater discharge from Greenland has the potential to strongly influence the composition of adjacent water masses with the largest impact on marine ecosystems likely to be found within the glaciated fjords. Here we demonstrate that physical and chemical estuarine processes within a large Greenlandic fjord are critical factors in determining the fate of meltwater derived nutrients and particles, especially for non-conservative elements such as Fe. Concentrations of Fe and macronutrients in surface waters along Godthåbsfjord, a southwest Greenlandic fjord with freshwater input from 6 glaciers, changed markedly between the onset and peak of the meltwater season due to the development of a thin (<10 m, outflowing, low-salinity surface layer. Dissolved (<0.2 µm Fe concentrations in meltwater entering Godthåbsfjord (200 nM, in freshly melted glacial ice (mean 38 nM and in surface waters close to a land terminating glacial system (80 nM all indicated high Fe inputs into the fjord in summer. Total dissolvable (unfiltered at pH <2.0 Fe was similarly high with concentrations always in excess of 100 nM throughout the fjord and reaching up to 5.0 µM close to glacial outflows in summer. Yet, despite the large seasonal freshwater influx into the fjord, Fe concentrations near the fjord mouth in the out-flowing surface layer were similar in summer to those measured before the meltwater season. Furthermore, turbidity profiles indicated that sub-glacial particulate Fe inputs may not actually mix into the outflowing surface layer of this fjord. Emphasis has previously been placed on the possibility of increased Fe export from Greenland as meltwater fluxes increase. Here we suggest that in-fjord processes may be effective at removing Fe from surface waters before it can be exported to coastal seas.

  6. Fe(II) oxidation kinetics and Fe hydroxyphosphate precipitation upon aeration of anaerobic (ground)water

    NARCIS (Netherlands)

    van der Grift, B.; Griffioen, J.; Behrends, T.; Wassen, M.J.; Schot, P.P.; Osté, Leonard

    2015-01-01

    Exfiltration of anaerobic Fe-rich groundwater into surface water plays an important role in controlling the transport of phosphate (P) from agricultural areas to the sea. Previous laboratory and field studies showed that Fe(II) oxidation upon aeration leads to effective immobilization of dissolved P

  7. Photochemical Reactivity of Dissolved Organic Matter in Boreal Lakes

    Science.gov (United States)

    Gu, Y.; Vuorio, K.; Tiirola, M.; Perämäki, S.; Vahatalo, A.

    2016-12-01

    Boreal lakes are rich in dissolved organic matter (DOM) that terrestrially derived from forest soil and wetland, yet little is known about potential for photochemical transformation of aquatic DOM in boreal lakes. Transformation of chromophoric dissolved organic matter (CDOM) can decrease water color and enhance microbial mineralization, affecting primary production and respiration, which both affect the CO2 balance of the lakes. We used laboratory solar radiation exposure experiments with lake water samples collected from 54 lakes located in Finland and Sweden, representing different catchment composition and watershed location to assess photochemical reactivity of DOM. The pH of water samples ranged from 5.4 to 8.3, and the concentrations of dissolved iron (Fe) were between samples received simulated solar radiation corresponding to a daily dose of sunlight, and photomineralization of dissolved organic carbon (DOC) to dissolved inorganic carbon (DIC) was measured for determination of spectral apparent quantum yields (AQY). During irradiation, photobleaching decreased the absorption coefficients of CDOM at 330 nm between 4.9 and 79 m-1 by 0.5 to 11 m-1. Irradiation generated DIC from 2.8 to 79 μmol C L-1. The AQY at 330 nm ranged between 31 and 273 ×10-6 mol C mol photons-1 h-1, which was correlated positively with concentration of dissolved Fe, and negatively with pH. Further statistical analyze indicated that the interaction between pH and Fe may explain much of the photochemical reactivity of DOM in the examined lakes, and land cover concerns main catchment areas also can have impact on the photoreaction process. This study may suggest how environmental conditions regulate DOM photomineralization in boreal lakes.

  8. Bacteria attenuation by iron electrocoagulation governed by interactions between bacterial phosphate groups and Fe(III) precipitates

    NARCIS (Netherlands)

    Delaire, Caroline; van Genuchten, Case M.; Amrose, Susan E.; Gadgil, Ashok J.

    2016-01-01

    Iron electrocoagulation (Fe-EC) is a low-cost process in which Fe(II) generated from an Fe(0) anode reacts with dissolved O2 to form (1) Fe(III) precipitates with an affinity for bacterial cell walls and (2) bactericidal reactive oxidants. Previous work suggests that Fe-EC is a promising treatment

  9. In Situ Bioreduction of Uranium (VI) to Submicromolar Levels and Reoxidation by Dissolved Oxygen

    International Nuclear Information System (INIS)

    Wu, Weimin; Carley, Jack M.; Luo, Jian; Ginder-Vogel, Matthew A.; Cardenas, Erick; Leigh, Mary Beth; Hwang, Chaichi; Kelly, Shelly D.; Ruan, Chuanmin; Wu, Liyou; Van Nostrand, Joy; Gentry, Terry J.; Lowe, Kenneth Alan; Mehlhorn, Tonia L.; Carroll, Sue L.; Luo, Wensui; Fields, Matthew Wayne; Gu, Baohua; Watson, David B.; Kemner, Kenneth M.; Marsh, Terence; Tiedje, James; Zhou, Jizhong; Fendorf, Scott; Kitanidis, Peter K.; Jardine, Philip M.; Criddle, Craig

    2007-01-01

    Groundwater within Area 3 of the U.S. Department of Energy (DOE) Environmental Remediation Sciences Program (ERSP) Field Research Center at Oak Ridge, TN (ORFRC) contains up to 135 (micro)M uranium as U(VI). Through a series of experiments at a pilot scale test facility, we explored the lower limits of groundwater U(VI) that can be achieved by in-situ biostimulation and the effects of dissolved oxygen on immobilized uranium. Weekly 2 day additions of ethanol over a 2-year period stimulated growth of denitrifying, Fe(III)-reducing, and sulfate-reducing bacteria, and immobilization of uranium as U(IV), with dissolved uranium concentrations decreasing to low levels. Following sulfite addition to remove dissolved oxygen, aqueous U(VI) concentrations fell below the U.S. Environmental Protection Agency maximum contaminant limit (MCL) for drinking water ( -1 or 0.126 (micro)M). Under anaerobic conditions, these low concentrations were stable, even in the absence of added ethanol. However, when sulfite additions stopped, and dissolved oxygen (4.0-5.5 mg L -1 ) entered the injection well, spatially variable changes in aqueous U(VI) occurred over a 60 day period, with concentrations increasing rapidly from <0.13 to 2.0 (micro)M at a multilevel sampling (MLS) well located close to the injection well, but changing little at an MLS well located further away. Resumption of ethanol addition restored reduction of Fe(III), sulfate, and U(VI) within 36 h. After 2 years of ethanol addition, X-ray absorption near-edge structure spectroscopy (XANES) analyses indicated that U(IV) comprised 60-80% of the total uranium in sediment samples. At the completion of the project (day 1260), U concentrations in MLS wells were less than 0.1 (micro)M. The microbial community at MLS wells with low U(VI) contained bacteria that are known to reduce uranium, including Desulfovibrio spp. and Geobacter spp., in both sediment and groundwater. The dominant Fe(III)-reducing species were Geothrix spp

  10. Anoxic nitrate reduction coupled with iron oxidation and attenuation of dissolved arsenic and phosphate in a sand and gravel aquifer

    Science.gov (United States)

    Smith, Richard L.; Kent, Douglas B.; Repert, Deborah A.; Böhlke, J.K.

    2017-01-01

    Nitrate has become an increasingly abundant potential electron acceptor for Fe(II) oxidation in groundwater, but this redox couple has not been well characterized within aquifer settings. To investigate this reaction and some of its implications for redox-sensitive groundwater contaminants, we conducted an in situ field study in a wastewater-contaminated aquifer on Cape Cod. Long-term (15 year) geochemical monitoring within the contaminant plume indicated interacting zones with variable nitrate-, Fe(II)-, phosphate-, As(V)-, and As(III)-containing groundwater. Nitrate and phosphate were derived predominantly from wastewater disposal, whereas Fe(II), As(III), and As(V) were mobilized from the aquifer sediments. Multiple natural gradient, anoxic tracer tests were conducted in which nitrate and bromide were injected into nitrate-free, Fe(II)-containing groundwater. Prior to injection, aqueous Fe(II) concentrations were approximately 175 μM, but sorbed Fe(II) accounted for greater than 90% of the total reactive Fe(II) in the aquifer. Nitrate reduction was stimulated within 1 m of transport for 100 μM and 1000 μM nitrate additions, initially producing stoichiometric quantities of nitrous oxide (>300 μM N). In subsequent injections at the same site, nitrate was reduced even more rapidly and produced less nitrous oxide, especially over longer transport distances. Fe(II) and nitrate concentrations decreased together and were accompanied by Fe(III) oxyhydroxide precipitation and decreases in dissolved phosphate, As(III), and As(V) concentrations. Nitrate N and O isotope fractionation effects during nitrate reduction were approximately equal (ε15N/ε18O = 1.11) and were similar to those reported for laboratory studies of biological nitrate reduction, including denitrification, but unlike some reported effects on nitrate by denitrification in aquifers. All constituents affected by the in situ tracer experiments returned to pre-injection levels after several

  11. Influences of iron, manganese, and dissolved organic carbon on the hypolimnetic cycling of amended mercury

    International Nuclear Information System (INIS)

    Chadwick, Shawn P.; Babiarz, Chris L.; Hurley, James P.; Armstrong, David E.

    2006-01-01

    The biogeochemical cycling of iron, manganese, sulfide, and dissolved organic carbon were investigated to provide information on the transport and removal processes that control the bioavailability of isotopic mercury amended to a lake. Lake profiles showed a similar trend of hypolimnetic enrichment of Fe, Mn, DOC, sulfide, and the lake spike ( 202 Hg, purity 90.8%) and ambient of pools of total mercury (HgT) and methylmercury (MeHg). Hypolimnetic enrichment of Fe and Mn indicated that reductive mobilization occurred primarily at the sediment-water interface and that Fe and Mn oxides were abundant within the sediments prior to the onset of anoxia. A strong relationship (r 2 = 0.986, n = 15, p 2 = 0.966, n = 15, p 2 = 0.964, n = 15, p 2 = 0.920, n = 27, p 2 = 0.967, n = 23, p 2 = 0.406, n = 27, p 2 = 0.314, n = 15, p = 0.002) suggest a role of organic matter in Hg transport and cycling. However, a weak relationship between the ambient and lake spike pools of MeHg to DOC indicated that other processes have a major role in controlling the abundance and distribution of MeHg. Our results suggest that Fe and Mn play important roles in the transport and cycling of ambient and spike HgT and MeHg in the hypolimnion, in part through processes linked to the formation and dissolution of organic matter-containing Fe and Mn hydrous oxides particles

  12. Characterization of Urban Runoff Pollution between Dissolved and Particulate Phases

    Science.gov (United States)

    Wei, Zhang; Simin, Li; Fengbing, Tang

    2013-01-01

    To develop urban stormwater management effectively, characterization of urban runoff pollution between dissolved and particulate phases was studied by 12 rainfall events monitored for five typical urban catchments. The average event mean concentration (AEMC) of runoff pollutants in different phases was evaluated. The AEMC values of runoff pollutants in different phases from urban roads were higher than the ones from urban roofs. The proportions of total dissolved solids, total dissolved nitrogen, and total dissolved phosphorus in total ones for all the catchments were 26.19%–30.91%, 83.29%–90.51%, and 61.54–68.09%, respectively. During rainfall events, the pollutant concentration at the initial stage of rainfall was high and then sharply decreased to a low value. Affected by catchments characterization and rainfall distribution, the highest concentration of road pollutants might appear in the later period of rainfall. Strong correlations were also found among runoffs pollutants in different phases. Total suspended solid could be considered as a surrogate for particulate matters in both road and roof runoff, while dissolved chemical oxygen demand could be regarded as a surrogate for dissolved matters in roof runoff. PMID:23935444

  13. Characterization of urban runoff pollution between dissolved and particulate phases.

    Science.gov (United States)

    Wei, Zhang; Simin, Li; Fengbing, Tang

    2013-01-01

    To develop urban stormwater management effectively, characterization of urban runoff pollution between dissolved and particulate phases was studied by 12 rainfall events monitored for five typical urban catchments. The average event mean concentration (AEMC) of runoff pollutants in different phases was evaluated. The AEMC values of runoff pollutants in different phases from urban roads were higher than the ones from urban roofs. The proportions of total dissolved solids, total dissolved nitrogen, and total dissolved phosphorus in total ones for all the catchments were 26.19%-30.91%, 83.29%-90.51%, and 61.54-68.09%, respectively. During rainfall events, the pollutant concentration at the initial stage of rainfall was high and then sharply decreased to a low value. Affected by catchments characterization and rainfall distribution, the highest concentration of road pollutants might appear in the later period of rainfall. Strong correlations were also found among runoffs pollutants in different phases. Total suspended solid could be considered as a surrogate for particulate matters in both road and roof runoff, while dissolved chemical oxygen demand could be regarded as a surrogate for dissolved matters in roof runoff.

  14. Electrical resistivity surface for FeO-Fe2O3-P2O5 glasses

    Science.gov (United States)

    Vaughan, J. G.; Kinser, D. L.

    1975-01-01

    The dc electrical properties and microstructure of x(FeO-Fe2O3)-(100-x)P2O5 glasses were investigated up to a maximum of x = 75 mol %. Results indicate that, in general, the minimum resistivity of the glass does not occur at equal Fe(2+) and Fe(3+) concentrations, although for the special case where x = 55 mol % the minimum does occur at Fe(2+)/Fe total = 0.5, as reported by other investigators. Evidence presented shows that the position of the minimum resistivity is a function of total iron content. The minimum shifts to glasses richer in Fe(2+) at higher total iron concentrations.

  15. an approach to estimate total dissolved solids in groundwater using

    African Journals Online (AJOL)

    resistivities of the aquifer delineated were subsequently used to estimate TDS in groundwater which was correlated with those ... the concentrations of these chemical constituents in the ..... TDS determined by water analysis varied between 17.

  16. Effects of electrolyte total dissolved solids (TDS) on performance ...

    African Journals Online (AJOL)

    use

    2011-10-24

    Oct 24, 2011 ... microbial desalination cells; rRNA, ribosomal ribonucleic acid;. NCBI, national center for biotechnology information. microbial fuel cells (MFC) technology provides a new way to saline wastewater treatment. MFCs are bio-electro- chemical reactors which are different from traditional anaerobic biological ...

  17. Estuarine modification of dissolved and particulate trace metals in major rivers of East-Hainan, China

    Science.gov (United States)

    Fu, Jun; Tang, Xiao-Liang; Zhang, Jing; Balzer, Wolfgang

    2013-04-01

    Dissolved and particulate cadmium, copper, iron, lead, cobalt and nickel were analyzed in surface waters of the Wanquan River estuary and the Wenchang/Wenjiao River estuary in East-Hainan Island during the dry season (December 2006) and two wet seasons (August 2007 and July/August 2008). A major difference to other Chinese rivers was the very low concentration of suspended particles in these tropical Hainan estuaries. In the dissolved phase, a positive deviation from the theoretical dilution line was observed for Cd during different expeditions. Dissolved Cu and Ni essentially behaved conservatively, while Fe, Pb and partly also Co correlated in their negative deviation from simple mixing. Strong seasonal variability was observed only for dissolved Fe, Pb and Cd: sorption by the much higher loading with suspended particles during the dry season lead to a strong lowering of dissolved Fe and Pb, while the opposite was observed for dissolved Cd. In both estuaries all six metals in particulate form showed almost constant values with a tendency for slight decreases along the salinity profile. The normalization to particulate Al revealed some specific particle properties during the different expeditions. The dynamics of Fe chemistry dominated the distribution of Pb in all forms. The distribution coefficients KD showed a general decrease in the order Fe>Pb>Co>Ni>Cu≈Cd. There was no "particle concentration effect"; rather the KD's of Fe and Pb exhibited slightly positive correlations with the suspended particle loadings. Elevated concentrations levels in the Wenchang/Wenjiao river estuary, especially during the wet season 2008, were ascribed to diffuse inputs from aquaculture ponds which girdle the upper estuary. In comparison to major Chinese rivers, the tropical Hainan estuaries (S>0) showed similar levels for Cd, Cu, Pb, Co and Ni in particles and solution, while Fe was enriched in both matrices. On a global scale, neither in the Wanquan river estuary nor in the

  18. Santa Fe County Blocks, Total Population (2010)

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The once-a-decade decennial census was conducted in April 2010 by the U.S. Census Bureau. This count of every resident in the United States was mandated by Article...

  19. Fe speciation and Fe/Al ratio in the sediments of southeastern Arabian Sea as an indicator of climate change

    Digital Repository Service at National Institute of Oceanography (India)

    Pattan, J.N.; Parthiban, G.; Gupta, S.M.; Mir, I.A.

    the delivery of dissolved Fe into the Arabian Sea. Some part of the dissolved iron in the continental shelf has been 8 used in the formation of authigenic verdine and glaucony mineral grains (Rao et al., 1993; Thamban and Rao, 2000). The remaining part...

  20. Method of dissolving metal ruthenium

    International Nuclear Information System (INIS)

    Tsuno, Masao; Soda, Yasuhiko; Kuroda, Sadaomi; Koga, Tadaaki.

    1988-01-01

    Purpose: To dissolve and clean metal ruthenium deposited to the inner surface of a dissolving vessel for spent fuel rods. Method: Metal ruthenium is dissolved in a solution of an alkali metal hydroxide to which potassium permanganate is added. As the alkali metal hydroxide used herein there can be mentioned potassium hydroxide, sodium hydroxide and lithium hydroxide can be mentioned, which is used as an aqueous solution from 5 to 20 % concentration in view of the solubility of metal ruthenium and economical merit. Further, potassium permanganate is used by adding to the solution of alkali metal hydroxide at a concentration of 1 to 5 %. (Yoshihara, H.)

  1. Temporal variability of dissolved iron species in the mesopelagic zone at Ocean Station PAPA

    Science.gov (United States)

    Schallenberg, Christina; Ross, Andrew R. S.; Davidson, Ashley B.; Stewart, Gillian M.; Cullen, Jay T.

    2017-08-01

    Deposition of atmospheric aerosols to the surface ocean is considered an important mechanism for the supply of iron (Fe) to remote ocean regions, but direct observations of the oceanic response to aerosol deposition are sparse. In the high nutrient, low chlorophyll (HNLC) subarctic Pacific Ocean we observed a dissolved Fe and Fe(II) anomaly at depth that is best explained as the result of aerosol deposition from Siberian forest fires in May 2012. Interestingly, there was no evidence of enhanced dFe concentrations in surface waters, nor was there a detectable phytoplankton bloom in response to the suspected aerosol deposition. Dissolved Fe (dFe) and Fe(II) showed the strongest enhancement in the subsurface oxygen deficient zone (ODZ), where oxygen concentrations <50 μmol kg-1 are prevalent. In the upper 200 m, dFe concentrations were at or below historic background levels, consistent with a short residence time of aerosol particles in surface waters and possible scavenging loss of dFe. Aerosol toxicity and/or dominance of particle scavenging over dissolution of Fe in the upper water column may have contributed to the lack of a strong phytoplankton response.

  2. A hybrid treatment of ozonation with limestone adsorption processes for the removal of Fe2+ in groundwater: Fixed bed column study

    Science.gov (United States)

    Akbar, Nor Azliza; Aziz, Hamidi Abdul; Adlan, Mohd Nordin

    2017-10-01

    During pumping of groundwater to the surface, the reaction between dissolved iron (Fe2+) and oxygen causes oxidation to ferric iron (Fe3+), thereby increasing the concentration of Fe2+. In this research, the potential application of ozonation with limestone adsorption to remove Fe2+ from groundwater was investigated through batch ozonation and fixed-bed-column studies. Groundwater samples were collected from a University Science Malaysia tube well (initial concentration of Fe2+, Co=1.563 mg/L). The effect of varying ozone dosages (10, 12.5, 15, 17.5, 20, 22.5, and 25 g/Nm3) was analyzed to determine the optimum ozone dosage for treatment. The characteristics of the column data and breakthrough curve were analyzed and predicted using mathematical models, such as Adam Bohart, Thomas, and Yoon-Nelson models. The data fitted well to the Thomas and Yoon-Nelson models, with correlation coefficient r2>0.93, but not to the Adam Bohart (r2=0.47). The total Fe2+ removed was 72% (final concentration of Fe2+, Ct=0.426 mg/L) at the maximum dosage of 25 g/Nm3 through ozonation only. However, the efficiency of Fe2+ removal was increased up to 99.5% (Ct=0.008 mg/L) when the hybrid treatment of ozonation with limestone adsorption was applied in this study. Thus, this integrated treatment was considerably more effective in removing Fe2+ than single ozonation treatment.

  3. Contrasted response of colloidal, organic and inorganic dissolved phosphorus forms during rewetting of dried riparian soils

    Science.gov (United States)

    Gu, Sen; Gruau, Gérard; Malique, François; Dupas, Rémi; Gascuel-Odoux, Chantal; Petitjean, Patrice; Bouhnik-Le Coz, Martine

    2017-04-01

    Riparian vegetated buffer strip (RVBS) are currently used to protect surface waters from phosphorus (P) emissions because of their ability to retain P-enriched soil particles. However, this protection role may be counterbalanced by the development in these zones of conditions able to trigger the release of highly mobile dissolved or colloidal P forms. Rewetting after drying is one of these conditions. So far, the potential sources of P mobilized during rewetting after drying are not clearly identified, nor are clearly identified the chemical nature of the released dissolved P species, or the role of the soil P speciation on these forms. In this study, two riparian soils (G and K) showing contrasting soil P speciation (65% of inorganic P species in soil G, as against 70% of organic P) were submitted to three successive dry/wet cycles in the laboratory. Conventional colorimetric determination of P concentrations combined with ultrafiltration, and measurements of iron (Fe) and aluminum (Al) and dissolved organic carbon (DOC) contents using ICP-MS and TOC analyzers, respectively, were used to study the response of the different P forms to rewetting after drying and also their release kinetics during soil leaching. For both soils, marked P release peaks were observed at the beginning of each wet cycles, with the organic-rich K soils giving, however, larger peaks than the inorganic one (G soil). For both soils also, concentrations in molybdate reactive P (MRP) remained quite constant throughout each leaching episode, contrary to the molybdate unreactive P (MUP) concentrations which were high immediately after rewetting and then decreased rapidly during leaching. A speciation change was observed from the beginning to the end of all leaching cycles. Colloidal P was found to be a major fraction of the total P immediately after rewetting (up to 50-70%) and then decreased to the end of each wet cycle where most of the eluted P was true dissolved inorganic P. Colloidal

  4. METHOD OF DISSOLVING URANIUM METAL

    Science.gov (United States)

    Slotin, L.A.

    1958-02-18

    This patent relates to an economicai means of dissolving metallic uranium. It has been found that the addition of a small amount of perchloric acid to the concentrated nitric acid in which the uranium is being dissolved greatly shortens the time necessary for dissolution of the metal. Thus the use of about 1 or 2 percent of perchioric acid based on the weight of the nitric acid used, reduces the time of dissolution of uranium by a factor of about 100.

  5. A record of deep-ocean dissolved O2 from the oxidation state of iron in submarine basalts

    Science.gov (United States)

    Stolper, Daniel A.; Keller, C. Brenhin

    2018-01-01

    The oxygenation of the deep ocean in the geological past has been associated with a rise in the partial pressure of atmospheric molecular oxygen (O2) to near-present levels and the emergence of modern marine biogeochemical cycles. It has also been linked to the origination and diversification of early animals. It is generally thought that the deep ocean was largely anoxic from about 2,500 to 800 million years ago, with estimates of the occurrence of deep-ocean oxygenation and the linked increase in the partial pressure of atmospheric oxygen to levels sufficient for this oxygenation ranging from about 800 to 400 million years ago. Deep-ocean dissolved oxygen concentrations over this interval are typically estimated using geochemical signatures preserved in ancient continental shelf or slope sediments, which only indirectly reflect the geochemical state of the deep ocean. Here we present a record that more directly reflects deep-ocean oxygen concentrations, based on the ratio of Fe3+ to total Fe in hydrothermally altered basalts formed in ocean basins. Our data allow for quantitative estimates of deep-ocean dissolved oxygen concentrations from 3.5 billion years ago to 14 million years ago and suggest that deep-ocean oxygenation occurred in the Phanerozoic (541 million years ago to the present) and potentially not until the late Palaeozoic (less than 420 million years ago).

  6. A record of deep-ocean dissolved O2 from the oxidation state of iron in submarine basalts.

    Science.gov (United States)

    Stolper, Daniel A; Keller, C Brenhin

    2018-01-18

    The oxygenation of the deep ocean in the geological past has been associated with a rise in the partial pressure of atmospheric molecular oxygen (O 2 ) to near-present levels and the emergence of modern marine biogeochemical cycles. It has also been linked to the origination and diversification of early animals. It is generally thought that the deep ocean was largely anoxic from about 2,500 to 800 million years ago, with estimates of the occurrence of deep-ocean oxygenation and the linked increase in the partial pressure of atmospheric oxygen to levels sufficient for this oxygenation ranging from about 800 to 400 million years ago. Deep-ocean dissolved oxygen concentrations over this interval are typically estimated using geochemical signatures preserved in ancient continental shelf or slope sediments, which only indirectly reflect the geochemical state of the deep ocean. Here we present a record that more directly reflects deep-ocean oxygen concentrations, based on the ratio of Fe 3+ to total Fe in hydrothermally altered basalts formed in ocean basins. Our data allow for quantitative estimates of deep-ocean dissolved oxygen concentrations from 3.5 billion years ago to 14 million years ago and suggest that deep-ocean oxygenation occurred in the Phanerozoic (541 million years ago to the present) and potentially not until the late Palaeozoic (less than 420 million years ago).

  7. The Distribution between the Dissolved and the Particulate Forms of 49 Metals across the Tigris River, Baghdad, Iraq

    Directory of Open Access Journals (Sweden)

    Samera Hussein Hamad

    2012-01-01

    Full Text Available The distribution of dissolved and particulate forms of 49 elements was investigated along transect of the Tigris River (one of the major rivers of the world within Baghdad city and in its major tributary (Diyala River from 11 to 28 July 2011. SF-ICP-MS was used to measure total and filterable elements at 17 locations along the Tigris River transect, two samples from the Diyala River, and in one sample from the confluence of the two rivers. The calculated particulate forms were used to determine the particle-partition coefficients of the metals. No major changes in the elements concentrations down the river transect. Dissolved phases dominated the physical speciation of many metals (e.g., As, Mo, and Pt in the Tigris River, while Al, Fe, Pb, Th, and Ti were exhibiting high particulate fractions, with a trend of particle partition coefficients of [Ti(40 > Th(35 > Fe(15 > Al(13 > Pb(4.5] * 106 L/kg. Particulate forms of all metals exhibited high concentrations in the Diyala River, though the partition coefficients were low due to high TSS (~270 mg/L. A comparison of Tigris with the major rivers of the world showed that Tigris quality in Baghdad is comparable to Seine River quality in Paris.

  8. Nitrate removal by Fe0/Pd/Cu nano-composite in groundwater.

    Science.gov (United States)

    Liu, Hongyuan; Guo, Min; Zhang, Yan

    2014-01-01

    Nitrate pollution in groundwater shows a great threat to the safety of drinking water. Chemical reduction by zero-valent iron is being considered as a promising technique for nitrate removal from contaminated groundwater. In this paper, Fe0/Pd/Cu nano-composites were prepared by the liquid-phase reduction method, and batch experiments of nitrate reduction by the prepared Fe0/Pd/Cu nano-composites under various operating conditions were carried out. It has been found that nano-Fe0/Pd/Cu composites processed dual functions: catalytic reduction and chemical reduction. The introduction of Pd and Cu not only improved nitrate removal rate, but also reduced the generation of ammonia. Nitrate removal rate was affected by the amount of Fe0/Pd/Cu, initial nitrate concentration, solution pH, dissolved oxygen (DO), reaction temperature, the presence of anions, and organic pollutant. Moreover, nitrate reduction by Fe0/Pd/Cu composites followed the pseudo-first-order reaction kinetics. The removal rate of nitrate and total nitrogen were about 85% and 40.8%, respectively, under the reaction condition of Fe-6.0%Pd-3.0%Cu amount of 0.25 g/L, pH value of 7.1, DO of 0.42 mg/L, and initial nitrate concentration of 100 mg/L. Compared with the previous studies with Fe0 alone or Fe-Cu, nano-Fe-6%Pd-3%Cu composites showed a better selectivity to N2.

  9. Influences of iron, manganese, and dissolved organic carbon on the hypolimnetic cycling of amended mercury

    Energy Technology Data Exchange (ETDEWEB)

    Chadwick, Shawn P. [University of Wisconsin-Madison, Environmental Chemistry and Technology Program, 660 North Park Street, Madison, WI 53706-1481 (United States)]. E-mail: spchadwick@wisc.edu; Babiarz, Chris L. [University of Wisconsin-Madison, Environmental Chemistry and Technology Program, 660 North Park Street, Madison, WI 53706-1481 (United States); Hurley, James P. [University of Wisconsin-Madison, Environmental Chemistry and Technology Program, 660 North Park Street, Madison, WI 53706-1481 (United States); University of Wisconsin Aquatic Sciences Center, 1975 Willow Drive Madison, WI 53706-1177 (United States); Armstrong, David E. [University of Wisconsin-Madison, Environmental Chemistry and Technology Program, 660 North Park Street, Madison, WI 53706-1481 (United States)

    2006-09-01

    The biogeochemical cycling of iron, manganese, sulfide, and dissolved organic carbon were investigated to provide information on the transport and removal processes that control the bioavailability of isotopic mercury amended to a lake. Lake profiles showed a similar trend of hypolimnetic enrichment of Fe, Mn, DOC, sulfide, and the lake spike ({sup 202}Hg, purity 90.8%) and ambient of pools of total mercury (HgT) and methylmercury (MeHg). Hypolimnetic enrichment of Fe and Mn indicated that reductive mobilization occurred primarily at the sediment-water interface and that Fe and Mn oxides were abundant within the sediments prior to the onset of anoxia. A strong relationship (r {sup 2} = 0.986, n = 15, p < 0.001) between filterable Fe and Mn indicated that reduction of Fe and Mn hydrous oxides in the sediments is a common in-lake source of Fe(II) and Mn(II) to the hypolimnion and that a consistent Mn : Fe mass ratio of 0.05 exists in the lake. A strong linear relationship of both the filterable [Fe] (r {sup 2} = 0.966, n = 15, p < 0.001) and [Mn] (r {sup 2} = 0.964, n = 15, p < 0.001) to [DOC] indicated a close linkage of the cycles of Fe and Mn to DOC. Persistence of iron oxides in anoxic environments suggested that DOC was being co-precipitated with Fe oxide and released into solution by the reductive dissolution of the oxide. The relationship between ambient and lake spike HgT (r {sup 2} = 0.920, n = 27, p < 0.001) and MeHg (r {sup 2} = 0.967, n = 23, p < 0.001) indicated that similar biogeochemical processes control the temporal and spatial distribution in the water column. The larger fraction of MeHg in the lake spike compared to the ambient pool in the hypolimnion suggests that lake spike may be more available for methylation. A linear relationship of DOC to both filterable ambient HgT (r {sup 2} = 0.406, n = 27, p < 0.001) and lake spike HgT (r {sup 2} = 0.314, n = 15, p = 0.002) suggest a role of organic matter in Hg transport and cycling. However, a weak

  10. Removal of C and SiC from Si and FeSi during ladle refining and solidification

    Energy Technology Data Exchange (ETDEWEB)

    Klevan, Ole Svein

    1997-12-31

    The utilization of solar energy by means of solar cells requires the Si to be very pure. The purity of Si is important for other applications as well. This thesis mainly studies the total removal of carbon from silicon and ferrosilicon. The decarburization includes removal of SiC particles by stirring and during casting in addition to reduction of dissolved carbon by gas purging. It was found that for three commercial qualities of FeSi75, Refined, Gransil, and Standard lumpy, the refined quality is lowest in carbon, followed by Gransil and Standard. A decarburization model was developed that shows the carbon removal by oxidation of dissolved carbon to be a slow process at atmospheric pressure. Gas stirring experiments have shown that silicon carbide particles are removed by transfer to the ladle wall. The casting method of ferrosilicon has a strong influence on the final total carbon content in the commercial alloy. Shipped refined FeSi contains about 100 ppm total carbon, while the molten alloy contains roughly 200 ppm. The total carbon out of the FeSi-furnace is about 1000 ppm. It is suggested that low values of carbon could be obtained on an industrial scale by injection of silica combined with the use of vacuum. Also, the casting system could be designed to give low carbon in part of the product. 122 refs., 50 figs., 24 tabs.

  11. THECAMOEBIANS (TESTACEOUS RHIZOPODS FROM A TROPICAL LAKE: LA FE RESERVOIR, ANTIOQUIA, COLOMBIA

    Directory of Open Access Journals (Sweden)

    ESCOBAR JAIME

    2005-12-01

    Full Text Available This research describes thecamoebians and explores their utility as environmental bioindicators on La Fe Reservoir, Antioquia, Colombia. Nineteen dredge samples were collected at the sediment-water interface, with a cylindrical dredge in March and October 2001. Temperature, pH, conductivity and total dissolved solids were recorded in situ both at depth and at surface for each sample locality. Counting of thecamoebians was done in the >63μm size fraction until 200 thecamoebians per sample were identified. A total of 6 genera, 14 species and 25 sub-species were found at La Fe Reservoir. Arcella vulgaris and Centropyxis aculeata dominate most of the samples. This study opens the possibility for additional research with thecamoebians as bioindicators of limnological physical parameters in tropical water bodies and calls for a further explanation for the occurrence of A. vulgaris and C. aculeata as the dominating species on this tropical reservoir.

  12. An intercomparison of dissolved iron speciation at the Bermuda Atlantic Time-series Study (BATS site: Results from GEOTRACES Crossover Station A

    Directory of Open Access Journals (Sweden)

    Kristen Nicolle Buck

    2016-12-01

    Full Text Available The organic complexation of dissolved iron (Fe was determined in depth profile samples collected from GEOTRACES Crossover Station A, the Bermuda Atlantic Time-series Study (BATS site, as part of the Dutch and U.S. GEOTRACES North Atlantic programs in June 2010 and November 2011, respectively. The two groups employed distinct competitive ligand exchange-adsorptive cathodic stripping voltammetry (CLE-AdCSV methods, and resulting ligand concentrations and conditional stability constants from each profile were compared. Excellent agreement was found between the total ligand concentrations determined in June 2010 and the strongest, L1-type, ligand concentrations determined in November 2011. Yet a primary distinction between the datasets was the number of ligand classes observed: a single ligand class was characterized in the June 2010 profile while two ligand classes were observed in the November 2011 profile. To assess the role of differing interpretation approaches in determining final results, analysts exchanged titration data and accompanying parameters from the profiles for reinterpretation. The reinterpretation exercises highlighted the considerable influence of the sensitivity (S parameter applied on interpretation results, consistent with recent intercalibration work on interpretation of copper speciation titrations. The potential role of titration data structure, humic-type substances, differing dissolved Fe concentrations, and seasonality are also discussed as possible drivers of the one versus two ligand class determinations between the two profiles, leading to recommendations for future studies of Fe-binding ligand cycling in the oceans.

  13. Monitoring dissolved radioactive cesium in Abukuma River in Fukushima Prefecture

    International Nuclear Information System (INIS)

    Yasutaka, Tetsuo; Kawabe, Yoshishige; Kurosawa, Akihiko; Komai, Takeshi

    2013-01-01

    Radioactive materials were released into the atmosphere and deposited over wide areas of farmland, forests, and cities; elevated levels of "1"3"1I, "1"3"4Cs, and "1"3"7Cs have been detected in these areas due to the accident at the Tokyo Power Fukushima Daiichi Nuclear Power Plant caused by the April 2011 earthquake and tsunami in eastern Japan. Radioactive Cs deposited on farmland and forests gradually leaches into water bodies such as mountain streams and rivers adsorbed onto particles or in a dissolved state. It is important to calrify the level of dissolved and total radioactive Cs in environmental water for forecasting the of discharge of radioactive Cs from forest and watersheds, assessing on the effect of dissolved and total radioactive Cs on not only irrigation water but also rice and other crops, and evaluating the transport of radioactive Cs from rivers to costal areas. Therefore, it is important to monitor their levels in Fukushima Prefecture over time. In this research, we monitored the levels of dissolved and total radioactive Cs in Abukuma River using a conventional evaporative concentration method. By monitoring the river waters since September 2012, it was estimated that the levels of dissolved radioactive Cs were less than 0.128 Bq/L and those of total radioactive Cs were less than 0.274 Bq/L in the main stream and branches of Abukuma River in the low suspended solid condition. (author)

  14. Iron persistence in a distal hydrothermal plume supported by dissolved-particulate exchange

    Science.gov (United States)

    Fitzsimmons, Jessica N.; John, Seth G.; Marsay, Christopher M.; Hoffman, Colleen L.; Nicholas, Sarah L.; Toner, Brandy M.; German, Christopher R.; Sherrell, Robert M.

    2017-02-01

    Hydrothermally sourced dissolved metals have been recorded in all ocean basins. In the oceans' largest known hydrothermal plume, extending westwards across the Pacific from the Southern East Pacific Rise, dissolved iron and manganese were shown by the GEOTRACES program to be transported halfway across the Pacific. Here, we report that particulate iron and manganese in the same plume also exceed background concentrations, even 4,000 km from the vent source. Both dissolved and particulate iron deepen by more than 350 m relative to 3He--a non-reactive tracer of hydrothermal input--crossing isopycnals. Manganese shows no similar descent. Individual plume particle analyses indicate that particulate iron occurs within low-density organic matrices, consistent with its slow sinking rate of 5-10 m yr-1. Chemical speciation and isotopic composition analyses reveal that particulate iron consists of Fe(III) oxyhydroxides, whereas dissolved iron consists of nanoparticulate Fe(III) oxyhydroxides and an organically complexed iron phase. The descent of plume-dissolved iron is best explained by reversible exchange onto slowly sinking particles, probably mediated by organic compounds binding iron. We suggest that in ocean regimes with high particulate iron loadings, dissolved iron fluxes may depend on the balance between stabilization in the dissolved phase and the reversibility of exchange onto sinking particles.

  15. Reducing emissions from uranium dissolving

    International Nuclear Information System (INIS)

    Griffith, W.L.; Compere, A.L.; Huxtable, W.P.; Googin, J.M.

    1992-10-01

    This study was designed to assess the feasibility of decreasing NO x emissions from the current uranium alloy scrap tray dissolving facility. In the current process, uranium scrap is dissolved in boiling nitric acid in shallow stainless-steel trays. As scrap dissolves, more metal and more nitric acid are added to the tray by operating personnel. Safe geometry is assured by keeping liquid level at or below 5 cm, the depth of a safe infinite slab. The accountability batch control system provides additional protection against criticality. Both uranium and uranium alloys are dissolved. Nitric acid is recovered from the vapors for reuse. Metal nitrates are sent to uranium recovery. Brown NO x fumes evolved during dissolving have occasionally resulted in a visible plume from the trays. The fuming is most noticeable during startup and after addition of fresh acid to a tray. Present environmental regulations are expected to require control of brown NO x emissions. A detailed review of the literature, indicated the feasibility of slightly altering process chemistry to favor the production of NO 2 which can be scrubbed and recycled as nitric acid. Methods for controlling the process to manage offgas product distribution and to minimize chemical reaction hazards were also considered

  16. ICPP custom dissolver explosion recovery

    International Nuclear Information System (INIS)

    Demmer, R.; Hawk, R.

    1992-01-01

    This paper discusses the recovery from the February 9, 1991, small scale explosion in a custom processing dissolver at the Idaho Chemical Processing Plant (ICPP) a Department of Energy facility at the Idaho National Engineering Laboratory. The custom processing facility is a limited production area designed to recover unirradiated uranium fuel. A small amount of the nuclear material received and stored at the ICPP is unique and incompatible with the major head end dissolution processes. Custom processing is a small scale dissolution facility for processing these materials in an economical fashion in the CPP-627 hot chemistry laboratory. Two glass dissolvers were contained in a large walk in hood area. Utilities for dissolution and connections to the major ICPP uranium separation facility were provided. The fuel processing operations during this campaign involved dissolving uranium metal, uranium oxides, and uranium/fissium alloy in nitric acid

  17. Effectiveness of FeEDDHA, FeEDDHMA, and FeHBED in Preventing Iron-Deficiency Chlorosis in Soybean.

    Science.gov (United States)

    Bin, Levi M; Weng, Liping; Bugter, Marcel H J

    2016-11-09

    The performance of FeHBED in preventing Fe deficiency chlorosis in soybean (Glycine max (L.) Merr.) in comparison to FeEDDHA and FeEDDHMA was studied, as well as the importance of the ortho-ortho and ortho-para/rest isomers in defining the performance. To this end, chlorophyll production (SPAD), plant dry matter yield, and the mass fractions of important mineral elements in the plant were quantified in a greenhouse pot experiment. All three Fe chelates increased SPAD index and dry matter yield compared to the control. The effect of FeHBED on chlorophyll production was visible over a longer time span than that of FeEDDHA and FeEDDHMA. Additionally, FeHBED did not suppress Mn uptake as much as the other Fe chelates. Compared to the other Fe chelates, total Fe content in the young leaves was lower in the FeHBED treatment; however, total Fe content was not directly related to chlorophyll production and biomass yield. For each chelate, the ortho-ortho isomer was found to be more effective than the other isomers evaluated.

  18. ICPP custom dissolver explosion recovery

    International Nuclear Information System (INIS)

    Demmer, R.; Hawk, R.

    1992-01-01

    This report discusses the recovery from the February 9, 1991 small scale explosion in a custom processing dissolver at the Idaho Chemical Processing Plant. Custom processing is a small scale dissolution facility which processes nuclear material in an economical fashion. The material dissolved in this facility was uranium metal, uranium oxides, and uranium/fissium alloy in nitric acid. The paper explained the release of fission material, and the decontamination and recovery of the fuel material. The safety and protection procedures were also discussed. Also described was the chemical analysis which was used to speculate the most probable cause of the explosion. (MB)

  19. Method for dissolving ceramic beryllia

    International Nuclear Information System (INIS)

    Sands, A.E.

    1975-01-01

    A process is described for dissolving a nuclear fuel composition consisting of a sintered mass containing beryllia, a nuclear fuel selected from uranium and plutonium and a stabilizing agent, sintered at a temperature of at least 1500 0 C to a density of about 2.7 gs/cc. The process comprises contacting said sintered mass with a stoichiometric excess of lithium oxide dissolved or dispersed in a carrier selected from lithium hydroxide, sodium hydroxide or sodium nitrate at a temperature in the range 750--850 0 C to convert the beryllia to lithium beryllate and thereafter recovering the nuclear fuel content of said mass. (U.S.)

  20. CADDIS Volume 2. Sources, Stressors and Responses: Dissolved Oxygen

    Science.gov (United States)

    Introduction to the dissolved oxygen module, when to list dissolved oxygen as a candidate cause, ways to measure dissolved oxygen, simple and detailed conceptual model diagrams for dissolved oxygen, references for the dissolved oxygen module.

  1. Estimation of Freely-Dissolved Concentrations of Polychlorinated Biphenyls, 2,3,7,8-Substituted Congeners and Homologs of Polychlorinated dibenzo-p-dioxins and Dibenzofurans in Water for Development of Total Maximum Daily Loadings for the Bluestone River Watershed, Virginia and West Virginia

    Science.gov (United States)

    Gale, Robert W.

    2007-01-01

    The Commonwealth of Virginia Department of Environmental Quality, working closely with the State of West Virginia Department of Environmental Protection and the U.S. Environmental Protection Agency is undertaking a polychlorinated biphenyl source assessment study for the Bluestone River watershed. The study area extends from the Bluefield area of Virginia and West Virginia, targets the Bluestone River and tributaries suspected of contributing to polychlorinated biphenyl, polychlorinated dibenzo-p-dioxin and dibenzofuran contamination, and includes sites near confluences of Big Branch, Brush Fork, and Beaver Pond Creek. The objectives of this study were to gather information about the concentrations, patterns, and distribution of these contaminants at specific study sites to expand current knowledge about polychlorinated biphenyl impacts and to identify potential new sources of contamination. Semipermeable membrane devices were used to integratively accumulate the dissolved fraction of the contaminants at each site. Performance reference compounds were added prior to deployment and used to determine site-specific sampling rates, enabling estimations of time-weighted average water concentrations during the deployed period. Minimum estimated concentrations of polychlorinated biphenyl congeners in water were about 1 picogram per liter per congener, and total concentrations at study sites ranged from 130 to 18,000 picograms per liter. The lowest concentration was 130 picograms per liter, about threefold greater than total hypothetical concentrations from background levels in field blanks. Polychlorinated biphenyl concentrations in water fell into three groups of sites: low (130-350 picogram per liter); medium (640-3,500 picogram per liter; and high (11,000-18,000 picogram per liter). Concentrations at the high sites, Beacon Cave and Beaverpond Branch at the Resurgence, were about four- to sixfold higher than concentrations estimated for the medium group of sites

  2. High-precision determination of the isotopic composition of dissolved iron in iron depleted seawater by double spike multicollector-ICPMS.

    Science.gov (United States)

    Lacan, Francois; Radic, Amandine; Labatut, Marie; Jeandel, Catherine; Poitrasson, Franck; Sarthou, Geraldine; Pradoux, Catherine; Chmeleff, Jerome; Freydier, Remi

    2010-09-01

    This work demonstrates the feasibility of the measurement of the isotopic composition of dissolved iron in seawater for an iron concentration range, 0.05-1 nmol L(-1), allowing measurements in most oceanic waters, including Fe depleted waters of high nutrient low chlorophyll areas. It presents a detailed description of our previously published protocol, with significant improvements on detection limit and blank contribution. Iron is preconcentrated using a nitriloacetic acid superflow resin and purified using an AG 1-x4 anion exchange resin. The isotopic ratios are measured with a multicollector-inductively coupled plasma mass spectrometer (MC-ICPMS) Neptune, coupled with a desolvator (Aridus II or Apex-Q), using a (57)Fe-(58)Fe double spike mass bias correction. A Monte Carlo test shows that optimum precision is obtained for a double spike composed of approximately 50% (57)Fe and 50% (58)Fe and a sample to double spike quantity ratio of approximately 1. Total procedural yield is 91 +/- 25% (2SD, n = 55) for sample sizes from 20 to 2 L. The procedural blank ranges from 1.4 to 1.1 ng, for sample sizes ranging from 20 to 2 L, respectively, which, converted into Fe concentrations, corresponds to blank contributions of 0.001 and 0.010 nmol L(-1), respectively. Measurement precision determined from replicate measurements of seawater samples and standard solutions is 0.08 per thousand (delta(56)Fe, 2SD). The precision is sufficient to clearly detect and quantify isotopic variations in the oceans, which so far have been observed to span 2.5 per thousand and thus opens new perspectives to elucidate the oceanic iron cycle.

  3. Dissolved iron in the Arctic Ocean : Important role of hydrothermal sources, shelf input and scavenging removal

    NARCIS (Netherlands)

    Klunder, M. B.; Laan, P.; Middag, R.; de Baar, H. J. W.; Bakker, K.

    2012-01-01

    Arctic Ocean waters exchange with the North Atlantic, and thus dissolved iron (DFe) in the Arctic has implications for the global Fe cycle. We present deep water (>250 m) DFe concentrations of the Central Arctic Ocean (Nansen, Amundsen and Makarov Basins). The DFe concentration in the deep waters

  4. Determination of ferrous and total iron in refractory spinels

    Energy Technology Data Exchange (ETDEWEB)

    Amonette, J.E. [Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Matyáš, J. [Material Science Department, Pacific Northwest National Laboratory, Richland, WA 99352 (United States)

    2016-03-03

    Accurate and precise determination of the redox state of iron (Fe) in spinels presents a significant challenge due to their refractory nature. The resultant extreme conditions needed to obtain complete dissolution generally oxidize some of the Fe(II) initially present and thus prevent the use of colorimetric methods for Fe(II) measurements. To overcome this challenge we developed a hybrid oxidimetric/colorimetric approach, using Ag(I) as the oxidimetric reagent for determination of Fe(II) and 1,10-phenanthroline as the colorimetric reagent for determination of total Fe. This approach, which allows determination of Fe(II) and total Fe on the same sample, was tested on a series of four geochemical reference materials and then applied to the analysis of Fe(Ni) spinel crystals isolated from simulated high-level-waste (HLW) glass and of several reagent magnetites. Results for the reference materials were in excellent agreement with recommended values, with the exception of USGS BIR-1, for which higher Fe(II) values and lower total Fe values were obtained. The Fe(Ni) spinels showed Fe(II) values at the detection limit (ca. 0.03 wt% Fe) and total Fe values higher than obtained by ICP-AES analysis after decomposition by lithium metaborate/tetraborate fusion. For the magnetite samples, total Fe values were in agreement with reference results, but a wide range in Fe(II) values was obtained indicating various degrees of conversion to maghemite. Formal comparisons of accuracy and precision were made with 13 existing methods. Accuracy for Fe(II) and total Fe was at or near the top of the group. Precision varied with the parameter used to measure it but was generally in the middle to upper part of the group for Fe(II) while that for total Fe ranged from the bottom of the group to near the top. - Highlights: • Refractory samples, such as spinels, are the most difficult for Fe redox analysis. • Oxidimetric(Ag{sup +})/colorimetric (phen) method allows analysis of a single

  5. Optimizing dissolved air flotation design system

    Directory of Open Access Journals (Sweden)

    L.A. Féris

    2000-12-01

    Full Text Available Dissolved Air (Pressure Flotation-DAF, is a well-established separation process that employs micro-bubbles as a carrier phase. This work shows results concerning bubble generation at low working pressures in modified DAF-units to improve the collection of fragile coagula by bubbles. DAF of Fe (OH3 (as model was studied as a function of saturation pressure in the absence and presence of surfactants in the saturator. DAF was possible at 2 atm by lowering the air/water surface tension. This fact, which leads to substantial energy savings, was explained in terms of decreasing the "minimum" energy required for bubble nucleation and cavity in the nozzle. More, bubbles-fragile coagula attachment was improved by dividing the recycling water into two: 1 the inclined inlet to the cell (traditional and 2 inside the separation tank through a water flow inlet situated below the floating bed using a "mushroom" type diffuser. Because of the reduction observed in the degree of turbulence in the conventional collection zone, DAF performance improved yielding high precipitate recoveries.

  6. Uranium dioxide in Fe(III)-containing ionic liquids with DMSO: Dissolution, separation, and structural characterization

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Aining; Chu, Taiwei, E-mail: twchu@pku.edu.cn

    2016-11-15

    UO{sub 2} can be successfully dissolved in imidazolium-based Fe(III)-containing ionic liquids (ILs) with the help of DMSO. Spectroscopic studies and X-ray diffraction show that UO{sub 2}Cl{sub 4}{sup 2−} is the principal product. The dissolved uranyl species can be easily separated from the ILs via a combination of crystallization and solvent extraction. Moreover, even if 15.2 wt% of the rare-earth elements of Sm, Eu, and Gd, compared with the total amount of uranium and the rare-earth elements, exist in the IL, only uranium-containing crystals would be selectively formed and separated from the system. The solvents of acetone and acetonitrile could be used to separate the rare-earth elements from uranium in the IL with the help of imidazolium chloride. Considering the complete process from the dissolution of UO{sub 2} and some rare-earth oxides to the separation of uranium and rare-earth elements in the IL, the facile approach is promising for the spent nuclear fuel reprocessing. - Graphical abstract: UO{sub 2} can be successfully dissolved in Fe-containing ILs with the help of DMSO to form UO{sub 2}Cl{sub 4}{sup 2−}. The rare earth elements of Sm, Eu, and Gd can be separated from uranium in the IL, and meanwhile, the recovery of dissolved uranyl species and Fe-containing IL can also be achieved. - Highlights: • Dissolution of UO{sub 2} can be successfully achieved in imidazolium-based Fe-containing ILs with the help of DMSO without additional oxidants. • Compared with the total amount of uranium and the rare-earth elements, even if 15.2 wt% of the rare-earth elements of Sm, Eu, and Gd exist in the IL, only uranium-containing crystals would be selectively formed and separated from the system. • The separation of the rare-earth elements from uranium has also been achieved via a combination of crystallization and solvent extraction.

  7. Uranium dioxide in Fe(III)-containing ionic liquids with DMSO: Dissolution, separation, and structural characterization

    International Nuclear Information System (INIS)

    Yao, Aining; Chu, Taiwei

    2016-01-01

    UO_2 can be successfully dissolved in imidazolium-based Fe(III)-containing ionic liquids (ILs) with the help of DMSO. Spectroscopic studies and X-ray diffraction show that UO_2Cl_4"2"− is the principal product. The dissolved uranyl species can be easily separated from the ILs via a combination of crystallization and solvent extraction. Moreover, even if 15.2 wt% of the rare-earth elements of Sm, Eu, and Gd, compared with the total amount of uranium and the rare-earth elements, exist in the IL, only uranium-containing crystals would be selectively formed and separated from the system. The solvents of acetone and acetonitrile could be used to separate the rare-earth elements from uranium in the IL with the help of imidazolium chloride. Considering the complete process from the dissolution of UO_2 and some rare-earth oxides to the separation of uranium and rare-earth elements in the IL, the facile approach is promising for the spent nuclear fuel reprocessing. - Graphical abstract: UO_2 can be successfully dissolved in Fe-containing ILs with the help of DMSO to form UO_2Cl_4"2"−. The rare earth elements of Sm, Eu, and Gd can be separated from uranium in the IL, and meanwhile, the recovery of dissolved uranyl species and Fe-containing IL can also be achieved. - Highlights: • Dissolution of UO_2 can be successfully achieved in imidazolium-based Fe-containing ILs with the help of DMSO without additional oxidants. • Compared with the total amount of uranium and the rare-earth elements, even if 15.2 wt% of the rare-earth elements of Sm, Eu, and Gd exist in the IL, only uranium-containing crystals would be selectively formed and separated from the system. • The separation of the rare-earth elements from uranium has also been achieved via a combination of crystallization and solvent extraction.

  8. The role of alluvial aquifer sediments in attenuating a dissolved arsenic plume.

    Science.gov (United States)

    Ziegler, Brady A; Schreiber, Madeline E; Cozzarelli, Isabelle M

    2017-09-01

    In a crude-oil-contaminated sandy aquifer at the Bemidji site in northern Minnesota, biodegradation of petroleum hydrocarbons has resulted in release of naturally occurring As to groundwater under Fe-reducing conditions. This study used chemical extractions of aquifer sediments collected in 1993 and 2011-2014 to evaluate the relationship between Fe and As in different redox zones (oxic, methanogenic, Fe-reducing, anoxic-suboxic transition) of the contaminated aquifer over a twenty-year period. Results show that 1) the aquifer has the capacity to naturally attenuate the plume of dissolved As, primarily through sorption; 2) Fe and As are linearly correlated in sediment across all redox zones, and a regression analysis between Fe and As reasonably predicted As concentrations in sediment from 1993 using only Fe concentrations; 3) an As-rich "iron curtain," associated with the anoxic-suboxic transition zone, migrated 30m downgradient between 1993 and 2013 as a result of the hydrocarbon plume evolution; and 4) silt lenses in the aquifer preferentially sequester dissolved As, though As is remobilized into groundwater from sediment after reducing conditions are established. Using results of this study coupled with historical data, we develop a conceptual model which summarizes the natural attenuation of As and Fe over time and space that can be applied to other sites that experience As mobilization due to an influx of bioavailable organic matter. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. The role of alluvial aquifer sediments in attenuating a dissolved arsenic plume

    Science.gov (United States)

    Ziegler, Brady A.; Schreiber, Madeline E.; Cozzarelli, Isabelle M.

    2017-01-01

    In a crude-oil-contaminated sandy aquifer at the Bemidji site in northern Minnesota, biodegradation of petroleum hydrocarbons has resulted in release of naturally occurring As to groundwater under Fe-reducing conditions. This study used chemical extractions of aquifer sediments collected in 1993 and 2011–2014 to evaluate the relationship between Fe and As in different redox zones (oxic, methanogenic, Fe-reducing, anoxic-suboxic transition) of the contaminated aquifer over a twenty-year period. Results show that 1) the aquifer has the capacity to naturally attenuate the plume of dissolved As, primarily through sorption; 2) Fe and As are linearly correlated in sediment across all redox zones, and a regression analysis between Fe and As reasonably predicted As concentrations in sediment from 1993 using only Fe concentrations; 3) an As-rich “iron curtain,” associated with the anoxic-suboxic transition zone, migrated 30 m downgradient between 1993 and 2013 as a result of the hydrocarbon plume evolution; and 4) silt lenses in the aquifer preferentially sequester dissolved As, though As is remobilized into groundwater from sediment after reducing conditions are established. Using results of this study coupled with historical data, we develop a conceptual model which summarizes the natural attenuation of As and Fe over time and space that can be applied to other sites that experience As mobilization due to an influx of bioavailable organic matter.

  10. DISSOLVED CONCENTRATION LIMITS OF RADIOACTIVE ELEMENTS

    Energy Technology Data Exchange (ETDEWEB)

    NA

    2004-11-22

    The purpose of this study is to evaluate dissolved concentration limits (also referred to as solubility limits) of elements with radioactive isotopes under probable repository conditions, based on geochemical modeling calculations using geochemical modeling tools, thermodynamic databases, field measurements, and laboratory experiments. The scope of this modeling activity is to predict dissolved concentrations or solubility limits for 14 elements with radioactive isotopes (actinium, americium, carbon, cesium, iodine, lead, neptunium, plutonium, protactinium, radium, strontium, technetium, thorium, and uranium) important to calculated dose. Model outputs for uranium, plutonium, neptunium, thorium, americium, and protactinium are in the form of tabulated functions with pH and log (line integral) CO{sub 2} as independent variables, plus one or more uncertainty terms. The solubility limits for the remaining elements are either in the form of distributions or single values. The output data from this report are fundamental inputs for Total System Performance Assessment for the License Application (TSPA-LA) to determine the estimated release of these elements from waste packages and the engineered barrier system. Consistent modeling approaches and environmental conditions were used to develop solubility models for all of the actinides. These models cover broad ranges of environmental conditions so that they are applicable to both waste packages and the invert. Uncertainties from thermodynamic data, water chemistry, temperature variation, and activity coefficients have been quantified or otherwise addressed.

  11. Stability of the high pressure phase Fe3S2 up to Earth's core pressures in the Fe-S-O and the Fe-S-Si systems

    Science.gov (United States)

    Zurkowski, C. C.; Chidester, B.; Davis, A.; Brauser, N.; Greenberg, E.; Prakapenka, V. B.; Campbell, A.

    2017-12-01

    Earth's core is comprised of an iron-nickel alloy that contains 5-15% of a light element component. The abundance and alloying capability of sulfur, silicon and oxygen in the bulk Earth make them important core alloy candidates; therefore, the high-pressure phase equilibria of the Fe-S-O and Fe-S-Si systems are relevant for understanding the possible chemistry of Earth's core. Previously, a Fe3S2 phase was recognized as a low-pressure intermediate phase in the Fe-FeS system that is stable from 14-21 GPa, but the structure of this phase has not been resolved. We report in-situ XRD and chemical analysis of recovered samples to further examine the stability and structure of Fe3S2 as it coexists with other phases in the Fe-S-O and Fe-S-Si systems. In situ high P-T synchrotron XRD experiments were conducted in the laser-heated diamond anvil cell to determine the equilibrium phases in Fe75S7O18 and Fe80S5Si15 compositions between 30 and 174 GPa and up to 3000 K. In the S,O-rich samples, an orthorhombic Fe3S2 phase coexists with hcp-Fe, Fe3S and FeO and undergoes two monoclinic distortions between 60 and 174 GPa. In the S,Si-rich samples, the orthorhombic Fe3S2 phase was observed up to 115 GPa. With increasing pressure, the Fe3S2 phase becomes stable to higher temperatures in both compositions, suggesting possible Fe3(S,O)2 or Fe3(S,Si)2 solid solutions. SEM analysis of a laser heated Fe75S7O18 sample recovered from 40 GPa and 1450 K confirms a Fe3(S,O)2 phase with O dissolved into the structure. Based on the current melting data in the Fe-S-O and Fe-S-Si systems, the Fe3(S,O)2 stability field intersects the solidus in the outer core and could be a possible liquidus phase in Fe,S,O-rich planetary cores, whereas Fe3S is the stable sulfide at outer core pressures in Fe,S,Si-rich systems.

  12. Determination of the Fate of Dissolved Organic Nitrogen in the Three Wastewater Treatment Plants, Jordan

    Science.gov (United States)

    Wedyan, Mohammed; Al Harahsheh, Ahmed; Qnaisb, Esam

    2016-01-01

    This research aimed to assess the composition of total dissolved nitrogen (TDN) species, particularly dissolved organic nitrogen (DON), over the traditional wastewater treatment operations in three biological nutrient removal (BNR) wastewater treatment plants (WWTPs) in Jordan. It had been found that the DON percentage was up to 30% of TDN within…

  13. Total protein

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003483.htm Total protein To use the sharing features on this page, please enable JavaScript. The total protein test measures the total amount of two classes ...

  14. The Re-Fe-S system at 1200, 1100, 1000 and 900 degree C

    DEFF Research Database (Denmark)

    Karup-Møller, Sven; Makovicky, E.

    1999-01-01

    Phase relations in the dry condensed phase system Fe-Re-S from 1200oC down to 900oC involve S-poor Fe-S melt with up to 0.2 at.% dissolved Re, S-rich melt with 0.3-0.4 at.% dissolved Re at 1200oC, Fe1-xS with Re contents growing from nil for troilite to 0.2 at.% for S-richer compositions, gFe wit...

  15. Sulfide phase in the Fe-Ti-S and Fe-C-Ti-S alloys

    International Nuclear Information System (INIS)

    Malinochka, Ya.N.; Balakina, N.A.; Shmelev, Yu.S.

    1976-01-01

    The nature of the sulfide phases in Fe-Ti-S and Fe-C-Ti-S alloys was studied. The carbide and the sulfide phase were identified the aid of X-ray spectral microanalysis. It was established that for a small content of titanium and sulfur in ternary Fe-Ti-S alloys the solidification of the γ-solution on the boundaries of dendritic branches is accompanied, along with the precipitation of a sulfide rich in iron of the (Fe, Ti) S type where a small quantity of titanium is dissolved, by the formation of a titanium-bearing sulfide eutectic γ + TiS. The amount of the sulfide eutectic increases with the contents of titanium and sulfur until a purely eutectic alloy is formed. Both carbides and sulfides may be formed in the solidification of quaternary alloys Fe-C-Ti-S

  16. Dissolved Concentration Limits of Radioactive Elements

    International Nuclear Information System (INIS)

    Y. Chen; E.R. Thomas; F.J. Pearson; P.L. Cloke; T.L. Steinborn; P.V. Brady

    2003-01-01

    The purpose of this study is to evaluate dissolved concentration limits (also referred to as solubility limits) of radioactive elements under possible repository conditions, based on geochemical modeling calculations using geochemical modeling tools, thermodynamic databases, and measurements made in laboratory experiments and field work. The scope of this modeling activity is to predict dissolved concentrations or solubility limits for 14 radioactive elements (actinium, americium, carbon, cesium, iodine, lead, neptunium, plutonium, protactinium, radium, strontium, technetium, thorium, and uranium), which are important to calculated dose. Model outputs are mainly in the form of look-up tables plus one or more uncertainty terms. The rest are either in the form of distributions or single values. The results of this analysis are fundamental inputs for total system performance assessment to constrain the release of these elements from waste packages and the engineered barrier system. Solubilities of plutonium, neptunium, uranium, americium, actinium, thorium, protactinium, lead, and radium have been re-evaluated using the newly updated thermodynamic database (Data0.ymp.R2). For all of the actinides, identical modeling approaches and consistent environmental conditions were used to develop solubility models in this revision. These models cover broad ranges of environmental conditions so that they are applicable to both waste packages and the invert. Uncertainties from thermodynamic data, water chemistry, temperature variation, activity coefficients, and selection of solubility controlling phase have been quantified or otherwise addressed. Moreover, a new blended plutonium solubility model has been developed in this revision, which gives a mean solubility that is three orders of magnitude lower than the plutonium solubility model used for the Total System Performance Assessment for the Site Recommendation. Two alternative neptunium solubility models have also been

  17. Dissolved Concentration Limits of Radioactive Elements

    Energy Technology Data Exchange (ETDEWEB)

    Y. Chen; E.R. Thomas; F.J. Pearson; P.L. Cloke; T.L. Steinborn; P.V. Brady

    2003-06-20

    The purpose of this study is to evaluate dissolved concentration limits (also referred to as solubility limits) of radioactive elements under possible repository conditions, based on geochemical modeling calculations using geochemical modeling tools, thermodynamic databases, and measurements made in laboratory experiments and field work. The scope of this modeling activity is to predict dissolved concentrations or solubility limits for 14 radioactive elements (actinium, americium, carbon, cesium, iodine, lead, neptunium, plutonium, protactinium, radium, strontium, technetium, thorium, and uranium), which are important to calculated dose. Model outputs are mainly in the form of look-up tables plus one or more uncertainty terms. The rest are either in the form of distributions or single values. The results of this analysis are fundamental inputs for total system performance assessment to constrain the release of these elements from waste packages and the engineered barrier system. Solubilities of plutonium, neptunium, uranium, americium, actinium, thorium, protactinium, lead, and radium have been re-evaluated using the newly updated thermodynamic database (Data0.ymp.R2). For all of the actinides, identical modeling approaches and consistent environmental conditions were used to develop solubility models in this revision. These models cover broad ranges of environmental conditions so that they are applicable to both waste packages and the invert. Uncertainties from thermodynamic data, water chemistry, temperature variation, activity coefficients, and selection of solubility controlling phase have been quantified or otherwise addressed. Moreover, a new blended plutonium solubility model has been developed in this revision, which gives a mean solubility that is three orders of magnitude lower than the plutonium solubility model used for the Total System Performance Assessment for the Site Recommendation. Two alternative neptunium solubility models have also been

  18. Molecular magnetism of a linear Fe(III)-Mn(II)-Fe(III) complex. Influence of long-range exchange interaction

    International Nuclear Information System (INIS)

    Lengen, M.; Chaudhuri, P.

    1994-01-01

    The magnetic properties of [L-Fe(III)-dmg 3 Mn(II)-Fe(III)-L] (ClO 4 ) 2 have been characterized by magnetic susceptibility, EPR, and Moessbauer studies. L represents 1,4,7-trimethyl-,1,4,7-triazacyclononane and dmg represents dimethylglyoxime. X-ray diffraction measurements yield that the arrangement of the three metal centers is strictly linear with atomic distances d Fe-Mn 0.35 nm and d Fe-Fe = 0.7 nm. Magnetic susceptibility measurements (3-295 K) were analyzed in the framework of the spin-Hamiltonian formalism considering Heisenberg exchange and Zeeman interaction: H = J Fe-Mn (S Fe1 + S Fe2 )S Mn + J Fe-Fe S Fe1 S Fe2 + gμ B S total B. The spins S Fe1 = S Fe2 = S Mn = 5/2 of the complex are antiferromagnetically coupled, yielding a total spin of S total = 5/2 with exchange coupling constants F Fe-Mn = 13.4 cm -1 and J Fe-Fe = 4.5 cm -1 . Magnetically split Moessbauer spectra were recorded at 1.5 K under various applied fields (20 mT, 170 mT, 4 T). The spin-Hamiltonian analysis of these spectra yields isotropic magnetic hyperfine coupling with A total /(g N μ N ) = -18.5 T. The corresponding local component A Fe is related to A total via spin-projection: A total = (6/7)A Fe . The resulting A Fe /(g N μ N ) -21.6 T is in agreement with standard values of ferric high-spin complexes. Spin-Hamiltonian parameters as obtained from Moessbauer studies and exchange coupling constants as derived from susceptibility measurements are corroborated by temperature-dependent EPR studies. (orig.)

  19. PROCESS OF DISSOLVING ZIRCONIUM ALLOYS

    Science.gov (United States)

    Shor, R.S.; Vogler, S.

    1958-01-21

    A process is described for dissolving binary zirconium-uranium alloys where the uranium content is about 2%. In prior dissolution procedures for these alloys, an oxidizing agent was added to prevent the precipitation of uranium tetrafluoride. In the present method complete dissolution is accomplished without the use of the oxidizing agent by using only the stoichiometric amount or slight excess of HF required by the zirconium. The concentration of the acid may range from 2M to 10M and the dissolution is advatageously carried out at a temperature of 80 deg C.

  20. Mechanisms for Fe(III) oxide reduction in sedimentary environments

    Science.gov (United States)

    Nevin, Kelly P.; Lovely, Derek R.

    2002-01-01

    Although it was previously considered that Fe(III)-reducing microorganisms must come into direct contact with Fe(III) oxides in order to reduce them, recent studies have suggested that electron-shuttling compounds and/or Fe(III) chelators, either naturally present or produced by the Fe(III)-reducing microorganisms themselves, may alleviate the need for the Fe(III) reducers to establish direct contact with Fe(III) oxides. Studies with Shewanella alga strain BrY and Fe(III) oxides sequestered within microporous beads demonstrated for the first time that this organism releases a compound(s) that permits electron transfer to Fe(III) oxides which the organism cannot directly contact. Furthermore, as much as 450 w M dissolved Fe(III) was detected in cultures of S. alga growing in Fe(III) oxide medium, suggesting that this organism releases compounds that can solublize Fe(III) from Fe(III) oxide. These results contrast with previous studies, which demonstrated that Geobacter metallireducens does not produce electron-shuttles or Fe(III) chelators. Some freshwater aquatic sediments and groundwaters contained compounds, which could act as electron shuttles by accepting electrons from G. metallireducens and then transferring the electrons to Fe(III). However, other samples lacked significant electron-shuttling capacity. Spectroscopic studies indicated that the electron-shuttling capacity of the waters was not only associated with the presence of humic substances, but water extracts of walnut, oak, and maple leaves contained electron-shuttling compounds did not appear to be humic substances. Porewater from a freshwater aquatic sediment and groundwater from a petroleum-contaminated aquifer contained dissolved Fe(III) (4-16 w M), suggesting that soluble Fe(III) may be available as an electron acceptor in some sedimentary environments. These results demonstrate that in order to accurately model the mechanisms for Fe(III) reduction in sedimentary environments it will be necessary

  1. Effect of dissolved hydrogen on corrosion of 316NG stainless steel in high temperature water

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Lijin [Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, 62 Wencui Road, Shenyang City 110016 (China); Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang City 110819 (China); Peng, Qunjia, E-mail: qunjiapeng@imr.ac.cn [Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, 62 Wencui Road, Shenyang City 110016 (China); Zhang, Zhiming [Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, 62 Wencui Road, Shenyang City 110016 (China); Shoji, Tetsuo [Frontier Research Initiative, New Industry Creation Hatchery Center, Tohoku University, 6-6-10, Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Han, En-Hou; Ke, Wei [Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, 62 Wencui Road, Shenyang City 110016 (China); Wang, Lei [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang City 110819 (China)

    2015-12-15

    Highlights: • Dissolved hydrogen (DH) effect on corrosion of stainless steel in high temperature water. • Increasing DH caused decrease of Cr- but increase of Fe-concentrations in the inner oxide layer. • Concentration gradient of Cr and Fe in the inner oxide layer. • DH effect was attributed to the accelerated diffusion of Fe ion in the inner oxide layer. - Abstract: Characterizations of oxide films formed on 316 stainless steel in high temperature, hydrogenated water were conducted. The results show the oxide film consists of an outer layer with oxide particles of Fe–Ni spinel and hematite, and an inner continuous layer of Fe–Cr–Ni spinel. Increasing dissolved hydrogen (DH) concentrations causes decrease of Cr- and increase of Fe-concentrations in the inner layer. A continuous decrease of Cr- and increase of Fe-concentrations was observed from the surface of the inner layer to the oxide/substrate interface. The DH effect is attributed to the enhanced diffusion of Fe ions in the oxide film by hydrogen.

  2. Effects of Aeration, Vegetation, and Iron Input on Total P Removal in a Lacustrine Wetland Receiving Agricultural Drainage

    Directory of Open Access Journals (Sweden)

    Yuanchun Zou

    2018-01-01

    Full Text Available Utilizing natural wetlands to remove phosphorus (P from agricultural drainage is a feasible approach of protecting receiving waterways from eutrophication. However, few studies have been carried out about how these wetlands, which act as buffer zones of pollutant sinks, can be operated to achieve optimal pollutant removal and cost efficiency. In this study, cores of sediments and water were collected from a lacustrine wetland of Lake Xiaoxingkai region in Northeastern China, to produce a number of lab-scale wetland columns. Ex situ experiments, in a controlled environment, were conducted to study the effects of aeration, vegetation, and iron (Fe input on the removal of total P (TP and values of dissolved oxygen (DO and pH of the water in these columns. The results demonstrated the links between Fe, P and DO levels. The planting of Glyceria spiculosa in the wetland columns was found to increase DO and pH values, whereas the Fe:P ratio was found to inversely correlate to the pH values. The TP removal was the highest in aerobic and planted columns. The pattern of temporal variation of TP removals matched first-order exponential growth model, except for under aerobic condition and with Fe:P ratio of 10:1. It was concluded that Fe introduced into a wetland by either surface runoff or agricultural drainage is beneficial for TP removal from the overlying water, especially during the growth season of wetland vegetation.

  3. Total algorithms

    NARCIS (Netherlands)

    Tel, G.

    We define the notion of total algorithms for networks of processes. A total algorithm enforces that a "decision" is taken by a subset of the processes, and that participation of all processes is required to reach this decision. Total algorithms are an important building block in the design of

  4. Dissolved Air Flotation of arsenic adsorbent particles

    Directory of Open Access Journals (Sweden)

    Mario Enrique Santander Muñoz

    2015-01-01

    Full Text Available The removal of arsenic from synthetic effluent was studied using the adsorbent particle flotation technique (APF and dissolved air flotation (DAF. A sample of an iron mineral was used as adsorbent particles of arsenic, ferric chloride as coagulant, cationic poly-acrylamide (NALCO 9808 as flocculants, and sodium oleate as collector. Adsorption studies to determine the pH influence, contact time, and adsorbent particles concentration on the adsorption of arsenic were carried out along with flotation studies to determine the removal efficiency of adsorbents particles. The results achieved indicate that the adsorption kinetic of arsenic is very rapid and that in range of pH’s from 2 to 7 the adsorption percentages remain constant. The equilibrium conditions were achieved in 60 minutes and about 95% of arsenic was adsorbed when used an adsorbent concentration of 2 g/L and pH 6.3. The maximum adsorption capacity of adsorbent particles was 4.96 mg/g. The mean free energy of adsorption (E was found to be 2.63 kJ/mol, which suggests physisorption. The results of the flotation studies demonstrated that when synthetic effluents with 8.9 mg/L of arsenic were treated under the following experimental conditions; 2 g/L of adsorbent particles, 120 mg/L of Fe(III, 2 mg/L of Nalco 9808, 20 mg/L of sodium oleate, and 40% of recycle ratio in the DAF, it was possible to reach 98% of arsenic removal and 6.3 NTU of residual turbidity in clarified synthetic effluent.

  5. DISSOLVED CONCENTRATION LIMITS OF RADIOACTIVE ELEMENTS

    International Nuclear Information System (INIS)

    P. Bernot

    2005-01-01

    The purpose of this study is to evaluate dissolved concentration limits (also referred to as solubility limits) of elements with radioactive isotopes under probable repository conditions, based on geochemical modeling calculations using geochemical modeling tools, thermodynamic databases, field measurements, and laboratory experiments. The scope of this activity is to predict dissolved concentrations or solubility limits for elements with radioactive isotopes (actinium, americium, carbon, cesium, iodine, lead, neptunium, plutonium, protactinium, radium, strontium, technetium, thorium, and uranium) relevant to calculated dose. Model outputs for uranium, plutonium, neptunium, thorium, americium, and protactinium are provided in the form of tabulated functions with pH and log fCO 2 as independent variables, plus one or more uncertainty terms. The solubility limits for the remaining elements are either in the form of distributions or single values. Even though selection of an appropriate set of radionuclides documented in Radionuclide Screening (BSC 2002 [DIRS 160059]) includes actinium, transport of Ac is not modeled in the total system performance assessment for the license application (TSPA-LA) model because of its extremely short half-life. Actinium dose is calculated in the TSPA-LA by assuming secular equilibrium with 231 Pa (Section 6.10); therefore, Ac is not analyzed in this report. The output data from this report are fundamental inputs for TSPA-LA used to determine the estimated release of these elements from waste packages and the engineered barrier system. Consistent modeling approaches and environmental conditions were used to develop solubility models for the actinides discussed in this report. These models cover broad ranges of environmental conditions so they are applicable to both waste packages and the invert. Uncertainties from thermodynamic data, water chemistry, temperature variation, and activity coefficients have been quantified or otherwise

  6. DISSOLVED CONCENTRATION LIMITS OF RADIOACTIVE ELEMENTS

    Energy Technology Data Exchange (ETDEWEB)

    P. Bernot

    2005-07-13

    The purpose of this study is to evaluate dissolved concentration limits (also referred to as solubility limits) of elements with radioactive isotopes under probable repository conditions, based on geochemical modeling calculations using geochemical modeling tools, thermodynamic databases, field measurements, and laboratory experiments. The scope of this activity is to predict dissolved concentrations or solubility limits for elements with radioactive isotopes (actinium, americium, carbon, cesium, iodine, lead, neptunium, plutonium, protactinium, radium, strontium, technetium, thorium, and uranium) relevant to calculated dose. Model outputs for uranium, plutonium, neptunium, thorium, americium, and protactinium are provided in the form of tabulated functions with pH and log fCO{sub 2} as independent variables, plus one or more uncertainty terms. The solubility limits for the remaining elements are either in the form of distributions or single values. Even though selection of an appropriate set of radionuclides documented in Radionuclide Screening (BSC 2002 [DIRS 160059]) includes actinium, transport of Ac is not modeled in the total system performance assessment for the license application (TSPA-LA) model because of its extremely short half-life. Actinium dose is calculated in the TSPA-LA by assuming secular equilibrium with {sup 231}Pa (Section 6.10); therefore, Ac is not analyzed in this report. The output data from this report are fundamental inputs for TSPA-LA used to determine the estimated release of these elements from waste packages and the engineered barrier system. Consistent modeling approaches and environmental conditions were used to develop solubility models for the actinides discussed in this report. These models cover broad ranges of environmental conditions so they are applicable to both waste packages and the invert. Uncertainties from thermodynamic data, water chemistry, temperature variation, and activity coefficients have been quantified or

  7. Oxidation of Fe(II) in rainwater.

    Science.gov (United States)

    Willey, J D; Whitehead, R F; Kieber, R J; Hardison, D R

    2005-04-15

    Photochemically produced Fe(II) is oxidized within hours under environmentally realistic conditions in rainwater. The diurnal variation between photochemical production and reoxidation of Fe(II) observed in our laboratory accurately mimics the behavior of ferrous iron observed in field studies where the highest concentrations of dissolved Fe(ll) occur in afternoon rain during the period of maximum sunlight intensity followed by gradually decreasing concentrations eventually returning to early morning pre-light values. The experimental work presented here, along with the results of kinetics studies done by others, suggests thatthe primary process responsible for the decline in photochemically produced Fe(II) concentrations is oxidation by hydrogen peroxide. This reaction is first order with respect to both the concentrations of Fe(II) and H2O2. The second-order rate constant determined for six different authentic rain samples varied over an order of magnitude and was always less than or equal to the rate constant determined for this reaction in simple acidic solutions. Oxidation of photochemically produced ferrous iron by other oxidants including molecular oxygen, ozone, hydroxyl radical, hydroperoxyl/superoxide radical, and hexavalent chromium were found to be insignificant under the conditions present in rainwater. This study shows that Fe(II) occurs as at least two different chemical species in rain; photochemically produced Fe(II) that is oxidized over time periods of hours, and a background Fe(II) that is protected against oxidation, perhaps by organic complexation, and is stable against oxidation for days. Because the rate of oxidation of photochemically produced Fe(II) does not increase with increasing rainwater pH, the speciation of this more labile form of Fe(II) is also not controlled by simple hydrolysis reactions.

  8. Spatiotemporal Characterization of Chromophoric Dissolved Organic Matter (CDOM and CDOM-DOC Relationships for Highly Polluted Rivers

    Directory of Open Access Journals (Sweden)

    Sijia Li

    2016-09-01

    Full Text Available Spectral characteristics of CDOM (Chromophoric dissolved organic matter in water columns are a key parameter for bio-optical modeling. Knowledge of CDOM optical properties and spatial discrepancy based on the relationship between water quality and spectral parameters in the Yinma River watershed with in situ data collected from highly polluted waters are exhibited in this study. Based on the comprehensive index method, the riverine waters showed serious contamination; especially the chemical oxygen demand (COD, iron (Fe, manganese (Mn, mercury (Hg and dissolved oxygen (DO were out of range of the contamination warning. Dissolved organic carbon (DOC and total suspended matter (TSM with prominent non-homogenizing were significantly high in the riverine waters, but chlorophyll-a (Chl-a was the opposite. The ternary phase diagram showed that non-algal particle absorption played an important role in total non-water light absorption (>50% in most sampling locations, and mean contributions of CDOM were 13% and 22% in the summer and autumn, respectively. The analysis of the ratio of absorption at 250–365 nm (E250:365 and the spectral slope (S275–295 indicated that CDOM had higher aromaticity and molecular weight in autumn than in summer, which is consistent with the results of water quality and the CDOM relative contribution rate. Redundancy analysis (RDA indicated that the environmental variables OSM (Organic suspended matter had a strong correlation with CDOM absorption, followed by heavy metals, e.g., Mn, Hg and Cr6+. However, for the specific UV absorbance (SUVA254, the seasonal values showed opposite results compared with the reported literature. The potential reasons were that more UDOM (uncolored dissolved organic matter from human sources (wastewater effluent existed in the waters. Terrigenous inputs simultaneously are in relation to the aCDOM(440-DOC relationship with the correlation coefficient of 0.90 in the summer (two-tailed, p < 0

  9. Totally James

    Science.gov (United States)

    Owens, Tom

    2006-01-01

    This article presents an interview with James Howe, author of "The Misfits" and "Totally Joe". In this interview, Howe discusses tolerance, diversity and the parallels between his own life and his literature. Howe's four books in addition to "The Misfits" and "Totally Joe" and his list of recommended books with lesbian, gay, bisexual, transgender,…

  10. Magnetic Properties and Microstructure of FeOx/Fe/FePt and FeOx/FePt Films

    Directory of Open Access Journals (Sweden)

    Jai-Lin Tsai

    2013-01-01

    Full Text Available The Fe(6 nm/FePt film with perpendicular magnetization was deposited on the glass substrate. To study the oxygen diffusion effect on the coupling of Fe/FePt bilayer, the plasma oxidation with 0.5~7% oxygen flow ratio was performed during sputtered part of Fe layer and formed the FeOx(3 nm/Fe(3 nm/FePt trilayer. Two-step magnetic hysteresis loops were found in trilayer with oxygen flow ratio above 1%. The magnetization in FeOx and Fe/FePt layers was decoupled. The moments in FeOx layer were first reversed and followed by coupled Fe/FePt bilayer. The trilayer was annealed again at 500°C and 800°C for 3 minutes. When the FeOx(3 nm/Fe(3 nm/FePt trilayer was annealed at 500°C, the layers structure was changed to FeOx(6 nm/FePt bilayer due to oxygen diffusion. The hard-magnetic FeOx(6 nm/FePt film was coupled with single switching field. The FeOx/(disordered FePt layer structure was observed with further annealing at 800°C and presented soft-magnetic loop. In summary, the coupling between soft-magnetic Fe, FeOx layer, and hard-magnetic L10 FePt layer can be controlled by the oxygen diffusion behavior, and the oxidation of Fe layer was tuned by the annealing temperature. The ordered L10 FePt layer was deteriorated by oxygen and became disordered FePt when the annealed temperature was up to 800°C.

  11. Very high coercivities of top-layer diffusion Au/FePt thin films

    International Nuclear Information System (INIS)

    Yuan, F.T.; Chen, S.K.; Liao, W.M.; Hsu, C.W.; Hsiao, S.N.; Chang, W.C.

    2006-01-01

    The Au/FePt samples were prepared by depositing a gold cap layer at room temperature onto a fully ordered FePt layer, followed by an annealing at 800 deg. C for the purpose of interlayer diffusion. After the deposition of the gold layer and the high-temperature annealing, the gold atoms do not dissolve into the FePt Ll 0 lattice. Compared with the continuous FePt film, the TEM photos of the bilayer Au(60 nm)/FePt(60 nm) show a granular structure with FePt particles embedded in Au matrix. The coercivity of Au(60 nm)/FePt(60 nm) sample is 23.5 kOe, which is 85% larger than that of the FePt film without Au top layer. The enhancement in coercivity can be attributed to the formation of isolated structure of FePt ordered phase

  12. Formation and stability of Fe-rich precipitates in dilute Zr(Fe) single-crystal alloys

    International Nuclear Information System (INIS)

    Zou, H.; Hood, G.M.; Roy, J.A.; Schultz, R.J.

    1993-02-01

    The formation and stability of Fe-rich precipitates in two α-Zr(Fe) single-crystal alloys with nominal compositions (I, 50 ppma Fe, and II, 650 ppma Fe) have been investigated (the maximum solid solubility of Fe in α-Zr is 180 ppma - 800 C). Optical microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) have been used to examine the characteristics of Fe-rich precipitates. SEM and TEM micrographs show that in as-grown alloy II, Zr 2 Fe precipitates are located at 'stringers'. Precipitates were not observed in as-grown alloy I. During annealing, below the solvus, Fe diffuses to the surfaces to form Zr 3 Fe precipitates in both alloys. The precipitates on the surfaces of alloy I tend to be star-like (0001) or pyramidal (1010), and their distribution is heterogeneous. Dissolution of Zr 3 Fe surface precipitates of alloy I (annealing above the solvus) leaves precipitate-like features on the surfaces. Zr 2 Fe precipitates in as-grown alloy II can be dissolved only by β-phase annealing. (Author) 8 figs., 18 refs

  13. Sedimentary and mineral dust sources of dissolved iron to the world ocean

    Directory of Open Access Journals (Sweden)

    J. K. Moore

    2008-05-01

    Full Text Available Analysis of a global compilation of dissolved-iron observations provides insights into the processes controlling iron distributions and some constraints for ocean biogeochemical models. The distribution of dissolved iron appears consistent with the conceptual model developed for Th isotopes, whereby particle scavenging is a two-step process of scavenging mainly by colloidal and small particulates, followed by aggregation and removal on larger sinking particles. Much of the dissolved iron (<0.4 μm is present as small colloids (>~0.02 μm and, thus, is subject to aggregation and scavenging removal. This implies distinct scavenging regimes for dissolved iron consistent with the observations: 1 a high scavenging regime – where dissolved-iron concentrations exceed the concentrations of strongly binding organic ligands; and 2 a moderate scavenging regime – where dissolved iron is bound to both colloidal and soluble ligands. Within the moderate scavenging regime, biological uptake and particle scavenging decrease surface iron concentrations to low levels (<0.2 nM over a wide range of low to moderate iron input levels. Removal rates are also highly nonlinear in areas with higher iron inputs. Thus, observed surface-iron concentrations exhibit a bi-modal distribution and are a poor proxy for iron input rates. Our results suggest that there is substantial removal of dissolved iron from subsurface waters (where iron concentrations are often well below 0.6 nM, most likely due to aggregation and removal on sinking particles of Fe bound to organic colloids.

    We use the observational database to improve simulation of the iron cycle within a global-scale, Biogeochemical Elemental Cycling (BEC ocean model. Modifications to the model include: 1 an improved particle scavenging parameterization, based on the sinking mass flux of particulate organic material, biogenic silica, calcium carbonate, and mineral dust particles; 2 desorption of dissolved iron

  14. Comparison of three persulfate digestion methods for total phosphorus analysis and estimation of suspended sediments

    International Nuclear Information System (INIS)

    Dayton, Elizabeth Ann; Whitacre, Shane; Holloman, Christopher

    2017-01-01

    As a result of impairments to fresh surface water quality due to phosphorus enrichment, substantial research effort has been put forth to quantify agricultural runoff phosphorus as related to on-field practices. While the analysis of runoff dissolved phosphorus is well prescribed and leaves little room for variability in methodology, there are several methods and variations of sample preparation reagents as well as analysis procedures for determining runoff total phosphorus. Due to the variation in methodology for determination of total phosphorus and an additional laboratory procedure required to measure suspended solids, the objectives of the current study are to i. compare the performance of three persulfate digestion methods (Acid Persulfate, USGS, and Alkaline Persulfate) for total phosphorus percent recovery across a wide range of suspended sediments (SS), and ii. evaluate the ability of using Al and/or Fe in digestion solution to predict SS as a surrogate to the traditional gravimetric method. Percent recovery of total phosphorus was determined using suspensions prepared from soils collected from 21 agricultural fields in Ohio. The Acid Persulfate method was most effective, with an average total phosphorus percent recovery of 96.6%. The second most effective method was the USGS with an average total phosphorus recovery of 76.1%. However, the Alkaline Persulfate method performed poorly with an average 24.5% total phosphorus recovery. As a result application of Alkaline Persulfate digestion to edge of field monitoring may drastically underestimated runoff total phosphorus. In addition to excellent recovery of total phosphorus, the Acid Persulfate method combined with analysis of Al and Fe by inductively coupled plasma atomic emission spectrometry provides a robust estimate of total SS. Due to the large quantity of samples that can result from water quality monitoring, an indirect measure of total SS could be very valuable when time and budget constraints limit

  15. Cycling downwards - dissolved organic matter in soils

    NARCIS (Netherlands)

    Kaiser, K.; Kalbitz, K.

    2012-01-01

    Dissolved organic matter has been recognized as mobile, thus crucial to translocation of metals, pollutants but also of nutrients in soil. We present a conceptual model of the vertical movement of dissolved organic matter with soil water, which deviates from the view of a chromatographic stripping

  16. Dissolving method for nuclear fuel oxide

    International Nuclear Information System (INIS)

    Tomiyasu, Hiroshi; Kataoka, Makoto; Asano, Yuichiro; Hasegawa, Shin-ichi; Takashima, Yoichi; Ikeda, Yasuhisa.

    1996-01-01

    In a method of dissolving oxides of nuclear fuels in an aqueous acid solution, the oxides of the nuclear fuels are dissolved in a state where an oxidizing agent other than the acid is present together in the aqueous acid solution. If chlorate ions (ClO 3 - ) are present together in the aqueous acid solution, the chlorate ions act as a strong oxidizing agent and dissolve nuclear fuels such as UO 2 by oxidation. In addition, a Ce compound which generates Ce(IV) by oxidation is added to the aqueous acid solution, and an ozone (O 3 ) gas is blown thereto to dissolve the oxides of nuclear fuels. Further, the oxides of nuclear fuels are oxidized in a state where ClO 2 is present together in the aqueous acid solution to dissolve the oxides of nuclear fuels. Since oxides of the nuclear fuels are dissolved in a state where the oxidizing agent is present together as described above, the oxides of nuclear fuels can be dissolved even at a room temperature, thereby enabling to use a material such as polytetrafluoroethylene and to dissolve the oxides of nuclear fuels at a reduced cost for dissolution. (T.M.)

  17. Phase relations in the metal-rich portions of the phase system Pt-Ir-Fe-S at 1000 degrees C and 1100 degrees C

    DEFF Research Database (Denmark)

    Makovicky, E.; Karup-Møller, Sven

    2000-01-01

    Phase relations in the S-poor portions of the dry condensed Pt-Ir-Fe-S system were determined at 1000 degrees and 1100 degreesC with a particular emphasis on delineation of the solid solubility fields of the Pt-Ir-Fe alloys. At both temperatures, a broad field of gamma (Ir,Fe,Pt) alloy coexists...... with gamma-(Pt,Fe), Pt3Fe and PtFe which dissolve respectively at least 5.1, 29.3 and 24.0 at.% Ir at 1100 degreesC (2.2, 23.6 and less than or equal to 17.2 at.% Ir at 1000 degreesC). Gaps between the nearly Ir-free Pt-Fe alloys gamma (Pt,Fe), Pt3Fe s.s., PtFe s.s. and gamma (Fe,Pt) were estimated as 20......-23 at.%, 40-42 at.% and 54.2-similar to 57 at.% Fe at 1100 degreesC (18-23, 39.5-42.5 and 59-62 at.% Fe at 1000 degreesC). The first gap agrees with data from natural phases by Cabri et ni. (1996). The Fe-rich sulphide melt dissolves only traces of Pt and Ir; Fe1-xS dissolves up to 5.8 at.% Ir at 1100...

  18. Multielement determination in river-water of Sepetiba Bay tributaries (Brazil) by total reflection X-ray fluorescence using synchrotron radiation

    International Nuclear Information System (INIS)

    Costa, A.C.M.; Castro, C.R.F.; Lopes, R.T.; Anjos, M.J.; Rio de Janeiro State Univ.

    2006-01-01

    Trace elements were determined in the surface waters of tributaries of the Sepetiba Bay, Brazil (Piraque, Ita, Sao Francisco, Guarda, Guandu Mirim, Vala do Sangue and Engenho Novo rivers) by total reflection X-ray fluorescence using synchrotron radiation (SRTXRF). Eighteen trace elements could be determined in the dissolved and the suspended particulate phases: Al, Si, P, S, Cl, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, Br, Rb, Sr and Pb. The elemental concentration values were compared to the values recommended by the Brazilian legislation. (author)

  19. Dissolved air flotation and me.

    Science.gov (United States)

    Edzwald, James K

    2010-04-01

    This paper is mainly a critical review of the literature and an assessment of what we know about dissolved air flotation (DAF). A few remarks are made at the outset about the author's personal journey in DAF research, his start and its progression. DAF has been used for several decades in drinking water treatment as an alternative clarification method to sedimentation. DAF is particularly effective in treating reservoir water supplies; those supplies containing algae, natural color or natural organic matter; and those with low mineral turbidity. It is more efficient than sedimentation in removing turbidity and particles for these type supplies. Furthermore, it is more efficient in removing Giardia cysts and Cryptosporidium oocysts. In the last 20 years, fundamental models were developed that provide a basis for understanding the process, optimizing it, and integrating it into water treatment plants. The theories were tested through laboratory and pilot-plant studies. Consequently, there have been trends in which DAF pretreatment has been optimized resulting in better coagulation and a decrease in the size of flocculation tanks. In addition, the hydraulic loading rates have increased reducing the size of DAF processes. While DAF has been used mainly in conventional type water plants, there is now interest in the technology as a pretreatment step in ultrafiltration membrane plants and in desalination reverse osmosis plants. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  20. Dissolution of Fe(III)(hydr)oxides by an Aerobic Bacterium

    International Nuclear Information System (INIS)

    Maurice, P.

    2004-01-01

    This project investigated the effects of an aerobic Pseudomonas mendocina bacterium on the dissolution of Fe(III)(hydr)oxides. The research is important because metals and radionuclides that adsorb to Fe(III)(hydr)oxides could potentially be remobilized by dissolving bacteria. We showed that P. mendocina is capable of dissolving Fe-bearing minerals by a variety of mechanisms, including production of siderophores, pH changes, and formation of reductants. The production of siderophores by P. mendocina was quantified under a variety of growth conditions. Finally, we demonstrated that microbial siderophores may adsorb to and enhance dissolution of clay minerals

  1. Silicon induced Fe deficiency affects Fe, Mn, Cu and Zn distribution in rice (Oryza sativa L.) growth in calcareous conditions.

    Science.gov (United States)

    Carrasco-Gil, Sandra; Rodríguez-Menéndez, Sara; Fernández, Beatriz; Pereiro, Rosario; de la Fuente, Vicenta; Hernandez-Apaolaza, Lourdes

    2018-04-01

    A protective effect by silicon in the amelioration of iron chlorosis has recently been proved for Strategy 1 species, at acidic pH. However in calcareous conditions, the Si effect on Fe acquisition and distribution is still unknown. In this work, the effect of Si on Fe, Mn, Cu and Zn distribution was studied in rice (Strategy 2 species) under Fe sufficiency and deficiency. Plants (+Si or-Si) were grown initially with Fe, and then Fe was removed from the nutrient solution. The plants were then analysed using a combined approach including LA-ICP-MS images for each element of interest, the analysis of the Fe and Si concentration at different cell layers of root and leaf cross sections by SEM-EDX, and determining the apoplastic Fe, total micronutrient concentration and oxidative stress indexes. A different Si effect was observed depending on plant Fe status. Under Fe sufficiency, Si supply increased Fe root plaque formation, decreasing Fe concentration inside the root and increasing the oxidative stress in the plants. Therefore, Fe acquisition strategies were activated, and Fe translocation rate to the aerial parts was increased, even under an optimal Fe supply. Under Fe deficiency, +Si plants absorbed Fe from the plaque more rapidly than -Si plants, due to the previous activation of Fe deficiency strategies during the growing period (+Fe + Si). Higher Fe plaque formation due to Si supply during the growing period reduced Fe uptake and could activate Fe deficiency strategies in rice, making it more efficient against Fe chlorosis alterations. Silicon influenced Mn and Cu distribution in root. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  2. A method for determination of [Fe3+]/[Fe2+] ratio in superparamagnetic iron oxide

    Science.gov (United States)

    Jiang, Changzhao; Yang, Siyu; Gan, Neng; Pan, Hongchun; Liu, Hong

    2017-10-01

    Superparamagnetic iron oxide nanoparticles (SPION), as a kind of nanophase materials, are widely used in biomedical application, such as magnetic resonance imaging (MRI), drug delivery, and magnetic field assisted therapy. The magnetic property of SPION has close connection with its crystal structure, namely it is related to the ratio of Fe3+ and Fe2+ which form the SPION. So a simple way to determine the content of the Fe3+ and Fe2+ is important for researching the property of SPION. This review covers a method for determination of the Fe3+ and Fe2+ ratio in SPION by UV-vis spectrophotometry based the reaction of Fe2+ and 1,10-phenanthroline. The standard curve of Fe with R2 = 0.9999 is used for determination the content of Fe2+ and total iron with 2.5 mL 0.01% (w/v) SPION digested by HCl, pH = 4.30 HOAc-NaAc buffer 10 mL, 0.01% (w/v) 1,10-phenanthroline 5 mL and 10% (w/v) ascorbic acid 1 mL for total iron determine independently. But the presence of Fe3+ interfere with obtaining the actual value of Fe2+ (the error close to 9%). We designed a calibration curve to eliminate the error by devising a series of solution of different ratio of [Fe3+]/[Fe2+], and obtain the calibration curve. Through the calibration curve, the error between the measured value and the actual value can be reduced to 0.4%. The R2 of linearity of the method is 0.99441 and 0.99929 for Fe2+ and total iron respectively. The error of accuracy of recovery and precision of inter-day and intra-day are both lower than 2%, which can prove the reliability of the determination method.

  3. Mechanical properties and electronic structures of Fe-Al intermetallic

    Energy Technology Data Exchange (ETDEWEB)

    Liu, YaHui; Chong, XiaoYu; Jiang, YeHua, E-mail: jiangyehua@kmust.edu.cn; Zhou, Rong; Feng, Jing, E-mail: jingfeng@kmust.edu.cn

    2017-02-01

    Using the first-principles calculations, the elastic properties, anisotropy properties, electronic structures, Debye temperature and stability of Fe-Al (Fe{sub 3}Al, FeAl, FeAl{sub 2}, Fe{sub 2}Al{sub 5} and FeAl{sub 3}) binary compounds were calculated. The formation enthalpy and cohesive energy of these Fe-Al compounds are negative, and show they are thermodynamically stable structures. Fe{sub 2}Al{sub 5} has the lowest formation enthalpy, which shows the Fe{sub 2}Al{sub 5} is the most stable of Fe-Al binary compounds. These Fe-Al compounds display disparate anisotropy due to the calculated different shape of the 3D curved surface of the Young’s modulus and anisotropic index. Fe{sub 3}Al has the biggest bulk modulus with the value 233.2 GPa. FeAl has the biggest Yong’s modulus and shear modulus with the value 296.2 GPa and 119.8 GPa, respectively. The partial density of states, total density of states and electron density distribution maps of the binary Fe-Al binary compounds are analyzed. The bonding characteristics of these Fe-Al binary compounds are mainly combination by covalent bond and metallic bonds. Meanwhile, also exist anti-bond effect. Moreover, the Debye temperatures and sound velocity of these Fe-Al compounds are explored.

  4. Carbonate component reduces o,oEDDHA/Fe sorption on two-line ferrihydrite

    Science.gov (United States)

    Yunta, F.; Lucena, J. J.; Smolders, E.

    2012-04-01

    The o,oEDDHA/Fe is the most common and effective iron chelate used as fertilizer in calcareous soils. Several authors have reported that the anionic o,oEDDHA/Fe complex is adsorbed to soil components such as ferrihydrite. The bicarbonate anion may be a competing ion for this sorption, however no studies have yet identified the extent and mechanism of this interaction. The aim of this work was to study the carbonate (bicarbonate + carbonate) effect on EDDHA/Fe adsorption on two-line ferrihydrite. Two-line ferrihydrite was synthetized adding NaOH on a nitrate iron (III) solution up to a final pH to be 8.0 and allowing to age for 22 hours at 20°C. Dialyzed ferrihydrite was characterized by determining specific parameters such as Fe/OH ratio, BET surface, point zero of charge and x-ray diffraction. The sorption was performed at three pH levels (5, 7.5 and 9.5) and three initial carbonate concentrations (from 0 to 2 mM). Initial EDDHA/Fe, ferrihydrite and ionic strength concentrations were adjusted to 0.18 mM, 10 g L-1 and 5 mM respectively. Total dissolved FeEDDHA concentrations were quantified at 480 nm. The o,oEDDHA/Fe isomers (rac-o,oEDDHA/Fe and meso-o,oEDDHA/Fe) were separated and quantified by High Performance Liquid Chromatography (HPLC) fitting a photodiode array detector (PDA). Distribution factor (KD) and sorbed o,oEDDHA/Fe concentration were determined. Actual carbonate concentration was determined using a multi N/C analyzer. Ferrihydrite samples showed a typical XRD pattern of two-line ferrihydrite, two broad peaks at about 35 and 62° respectively. The BET surfaces (two replicates) were 259.2 ± 3.1 m2/g and 256.0 ± 2.5 m2/g. The Point Zero of Salt Effect (PZSE) was 7.9 ± 0.2 as bibliographically supported for all fresh and thus not rigorously de-carbonated ferrihydrite samples. The KD of the o,oEDDHA/Fe increased from 27.4 ± 0.6 to 304 ± 6 l/kg by decreasing pH from 9.5 and 5.0 when no carbonate was added. Increasing equilibrium carbonate

  5. Dissolved trace and minor elements in cryoconite holes and supraglacial streams, Canada Glacier, Antarctica

    Science.gov (United States)

    Fortner, Sarah K.; Lyons, W. Berry

    2018-04-01

    Here we present a synthesis of the trace element chemistry in melt on the surface Canada Glacier, Taylor Valley, McMurdo Dry Valleys (MDV), Antarctica ( 78°S). The MDV is largely ice-free. Low accumulation rates, strong winds, and proximity to the valley floor make these glaciers dusty in comparison to their inland counterparts. This study examines both supraglacial melt streams and cryoconite holes. Supraglacial streams on the lower Canada Glacier have median dissolved (<0.4 µm) concentrations of Fe, Mn, As, Cu, and V of 71.5, 75.5, 3.7, 4.6, and 4.3 nM. All dissolved Cd concentrations and the vast majority of Pb values are below our analytical detection (i.e. 0.4 and 0.06 nM). Chemical behavior did not follow similar trends for eastern and western draining waters. Heterogeneity likely reflects distinctions eolian deposition, rock:water ratios, and hydrologic connectivity. Future increases in wind-delivered sediment will likely drive dynamic responses in melt chemistry. For elements above detection limits, dissolved concentrations in glacier surface melt are within an order of magnitude of concentrations observed in proglacial streams (i.e. flowing on the valley floor). This suggests that glacier surfaces are an important source of downstream chemistry. The Fe enrichment of cryoconite water relative to N, P, or Si exceeds enrichment observed in marine phytoplankton. This suggests that the glacier surface is an important source of Fe to downstream ecosystems.

  6. Effect of TCE concentration and dissolved groundwater solutes on NZVI-promoted TCE dechlorination and H2 evolution.

    Science.gov (United States)

    Liu, Yueqiang; Phenrat, Tanapon; Lowry, Gregory V

    2007-11-15

    Nanoscale zero-valent iron (NZVI) is used to remediate contaminated groundwater plumes and contaminant source zones. The target contaminant concentration and groundwater solutes (NO3-, Cl-, HCO3-, SO4(2-), and HPO4(2-)) should affect the NZVI longevity and reactivity with target contaminants, but these effects are not well understood. This study evaluates the effect of trichloroethylene (TCE) concentration and common dissolved groundwater solutes on the rates of NZVI-promoted TCE dechlorination and H2 evolution in batch reactors. Both model systems and real groundwater are evaluated. The TCE reaction rate constant was unaffected by TCE concentration for [TCE] TCE concentration up to water saturation (8.4 mM). For [TCE] > or = 0.46 mM, acetylene formation increased, and the total amount of H2 evolved at the end of the particle reactive lifetime decreased with increasing [TCE], indicating a higher Fe0 utilization efficiency for TCE dechlorination. Common groundwater anions (5mN) had a minor effect on H2 evolution but inhibited TCE reduction up to 7-fold in increasing order of Cl- TCE reduction but increased acetylene production and decreased H2 evolution. NO3- present at > 3 mM slowed TCE dechlorination due to surface passivation. NO3- present at 5 mM stopped TCE dechlorination and H2 evolution after 3 days. Dissolved solutes accounted for the observed decrease of NZVI reactivity for TCE dechlorination in natural groundwater when the total organic content was small (< 1 mg/L).

  7. Factors influencing the dissolved iron input by river water to the open ocean

    Directory of Open Access Journals (Sweden)

    R. Krachler

    2005-01-01

    Full Text Available The influence of natural metal chelators on the bio-available iron input to the ocean by river water was studied. Ferrous and ferric ions present as suspended colloidal particles maintaining the semblance of a dissolved load are coagulated and settled as their freshwater carrier is mixed with seawater at the continental boundary. However, we might argue that different iron-binding colloids become sequentially destabilized in meeting progressively increasing salinities. By use of a 59Fe tracer method, the partitioning of the iron load from the suspended and dissolved mobile fraction to storage in the sediments was measured with high accuracy in mixtures of natural river water with artificial sea water. The results show a characteristic sequence of sedimentation. Various colloids of different stability are removed from a water of increasing salinity, such as it is the case in the transition from a river water to the open sea. However, the iron transport capacities of the investigated river waters differed greatly. A mountainous river in the Austrian Alps would add only about 5% of its dissolved Fe load, that is about 2.0 µg L-1 Fe, to coastal waters. A small tributary draining a sphagnum peat-bog, which acts as a source of refractory low-molecular-weight fulvic acids to the river water, would add approximately 20% of its original Fe load, that is up to 480 µg L-1 Fe to the ocean's bio-available iron pool. This points to a natural mechanism of ocean iron fertilization by terrigenous fulvic-iron complexes originating from weathering processes occurring in the soils upstream.

  8. Factors influencing the dissolved iron input by river water to the open ocean

    Science.gov (United States)

    Krachler, R.; Jirsa, F.; Ayromlou, S.

    2005-05-01

    The influence of natural metal chelators on the bio-available iron input to the ocean by river water was studied. Ferrous and ferric ions present as suspended colloidal particles maintaining the semblance of a dissolved load are coagulated and settled as their freshwater carrier is mixed with seawater at the continental boundary. However, we might argue that different iron-binding colloids become sequentially destabilized in meeting progressively increasing salinities. By use of a 59Fe tracer method, the partitioning of the iron load from the suspended and dissolved mobile fraction to storage in the sediments was measured with high accuracy in mixtures of natural river water with artificial sea water. The results show a characteristic sequence of sedimentation. Various colloids of different stability are removed from a water of increasing salinity, such as it is the case in the transition from a river water to the open sea. However, the iron transport capacities of the investigated river waters differed greatly. A mountainous river in the Austrian Alps would add only about 5% of its dissolved Fe load, that is about 2.0 µg L-1 Fe, to coastal waters. A small tributary draining a sphagnum peat-bog, which acts as a source of refractory low-molecular-weight fulvic acids to the river water, would add approximately 20% of its original Fe load, that is up to 480 µg L-1 Fe to the ocean's bio-available iron pool. This points to a natural mechanism of ocean iron fertilization by terrigenous fulvic-iron complexes originating from weathering processes occurring in the soils upstream.

  9. The Dissolution of Uranium Oxides in HB-Line Phase 1 Dissolvers

    International Nuclear Information System (INIS)

    Gray, J.H.

    2003-01-01

    A series of characterization and dissolution studies has been performed to define flowsheet conditions for the dissolution of uranium oxide materials in dissolvers. The samples selected for analysis were uranium oxide materials. The selection of these uranium oxide materials for characterization and dissolution studies was based on high enriched uranium content and trace levels of plutonium. Test results from the characterization study identified ferric oxide (Fe2O3) and iron/chromium/nickel (Fe/Cr/Ni) particles as impurities along with the tri-uranium oxide (U3O8) and uranium trioxide (UO3). The weight percent uranium in this material was found to vary depending on the impurity content. The trace impurity plutonium appears to be associated with the Fe/Cr/Ni particles. A small amount of absorbed moisture and waters of hydration is present. Most of the uranium oxides easily dissolved in low-molar nitric acid solutions without fluoride within one to two hours at solution temperature s between 60-80 degrees C. A small amount of residue remained following this dissolution step. To assure complete dissolution of uranium from these oxide materials, an additional dissolution step at 90 degrees C to boiling for at least one to two hours has been suggested. Only trace amounts of iron associated with Fe2O3 and Fe/Cr/Ni particles will dissolve during the dissolution steps. Neither hydrogen nor heat will be generated during the dissolution of these uranium oxide materials in nitric acid solutions. Some brown nitrogen dioxide (NO2) fumes will be generated during the dissolution of U3O8

  10. Dissolved and colloidal trace elements in the Mississippi River Delta outflow after Hurricanes Katrina and Rita

    Science.gov (United States)

    Shim, Moo-Joon; Swarzenski, Peter W.; Shiller, Alan M.

    2012-01-01

    The Mississippi River delta outflow region is periodically disturbed by tropical weather systems including major hurricanes, which can terminate seasonal bottom water hypoxia and cause the resuspension of shelf bottom sediments which could result in the injection of trace elements into the water column. In the summer of 2005, Hurricanes Katrina and Rita passed over the Louisiana Shelf within a month of each other. Three weeks after Rita, we collected water samples in the Mississippi River delta outflow, examining the distributions of trace elements to study the effect of Hurricanes Katrina and Rita. We observed limited stratification on the shelf and bottom waters that were no longer hypoxic. This resulted, for instance, in bottom water dissolved Mn being lower than is typically observed during hypoxia, but with concentrations still compatible with Mn–O2 trends previously reported. Interestingly, for no element were we able to identify an obvious effect of sediment resuspension on its distribution. In general, elemental distributions were compatible with previous observations in the Mississippi outflow system. Co and Re, which have not been reported for this system previously, showed behavior consistent with other systems: input for Co likely from desorption and conservative mixing for Re. For Cs, an element for which there is little information regarding its estuarine behavior, conservative mixing was also observed. Our filtration method, which allowed us to distinguish the dissolved (<0.02 μm) from colloidal (0.02–0.45 μm) phase, revealed significant colloidal fractions for Fe and Zn, only. For Fe, the colloidal phase was the dominant fraction and was rapidly removed at low salinity. Dissolved Fe, in contrast, persisted out to mid-salinities, being removed in a similar fashion to nitrate. This ability to distinguish the smaller Fe (likely dominantly organically complexed) from larger colloidal suspensates may be useful in better interpreting the

  11. Dissolved and colloidal trace elements in the Mississippi River delta outflow after Hurricanes Katrina and Rita

    Science.gov (United States)

    Shim, Moo-Joon; Swarzenski, Peter W.; Shiller, Alan M.

    2012-07-01

    The Mississippi River delta outflow region is periodically disturbed by tropical weather systems including major hurricanes, which can terminate seasonal bottom water hypoxia and cause the resuspension of shelf bottom sediments which could result in the injection of trace elements into the water column. In the summer of 2005, Hurricanes Katrina and Rita passed over the Louisiana Shelf within a month of each other. Three weeks after Rita, we collected water samples in the Mississippi River delta outflow, examining the distributions of trace elements to study the effect of Hurricanes Katrina and Rita. We observed limited stratification on the shelf and bottom waters that were no longer hypoxic. This resulted, for instance, in bottom water dissolved Mn being lower than is typically observed during hypoxia, but with concentrations still compatible with Mn-O2 trends previously reported. Interestingly, for no element were we able to identify an obvious effect of sediment resuspension on its distribution. In general, elemental distributions were compatible with previous observations in the Mississippi outflow system. Co and Re, which have not been reported for this system previously, showed behavior consistent with other systems: input for Co likely from desorption and conservative mixing for Re. For Cs, an element for which there is little information regarding its estuarine behavior, conservative mixing was also observed. Our filtration method, which allowed us to distinguish the dissolved (<0.02 μm) from colloidal (0.02-0.45 μm) phase, revealed significant colloidal fractions for Fe and Zn, only. For Fe, the colloidal phase was the dominant fraction and was rapidly removed at low salinity. Dissolved Fe, in contrast, persisted out to mid-salinities, being removed in a similar fashion to nitrate. This ability to distinguish the smaller Fe (likely dominantly organically complexed) from larger colloidal suspensates may be useful in better interpreting the bioavailablity

  12. Surface distribution of dissolved trace metals in the oligotrophic ocean and their influence on phytoplankton biomass and productivity

    KAUST Repository

    Pinedo-González, Paulina

    2015-10-25

    The distribution of bioactive trace metals has the potential to enhance or limit primary productivity and carbon export in some regions of the world ocean. To study these connections, the concentrations of Cd, Co, Cu, Fe, Mo, Ni, and V were determined for 110 surface water samples collected during the Malaspina 2010 Circumnavigation Expedition (MCE). Total dissolved Cd, Co, Cu, Fe, Mo, Ni, and V concentrations averaged 19.0 ± 5.4 pM, 21.4 ± 12 pM, 0.91 ± 0.4 nM, 0.66 ± 0.3 nM, 88.8 ± 12 nM, 1.72 ± 0.4 nM, and 23.4 ± 4.4 nM, respectively, with the lowest values detected in the Central Pacific and increased values at the extremes of all transects near coastal zones. Trace metal concentrations measured in surface waters of the Atlantic Ocean during the MCE were compared to previously published data for the same region. The comparison revealed little temporal changes in the distribution of Cd, Co, Cu, Fe, and Ni over the last 30 years. We utilized a multivariable linear regression model to describe potential relationships between primary productivity and the hydrological, biological, trace nutrient and macronutrient data collected during the MCE. Our statistical analysis shows that primary productivity in the Indian Ocean is best described by chlorophyll a, NO3, Ni, temperature, SiO4, and Cd. In the Atlantic Ocean, primary productivity is correlated with chlorophyll a, NO3, PO4, mixed layer depth, Co, Fe, Cd, Cu, V, and Mo. The variables salinity, temperature, SiO4, NO3, PO4, Fe, Cd, and V were found to best predict primary productivity in the Pacific Ocean. These results suggest that some of the lesser studied trace elements (e.g., Ni, V, Mo, and Cd) may play a more important role in regulating oceanic primary productivity than previously thought and point to the need for future experiments to verify their potential biological functions.

  13. Surface distribution of dissolved trace metals in the oligotrophic ocean and their influence on phytoplankton biomass and productivity

    KAUST Repository

    Pinedo-Gonzá lez, Paulina; West, A. Joshua; Tovar-Sá nchez, Antonio; Duarte, Carlos M.; Marañ ó n, Emilio; Cermeñ o, Pedro; Gonzá lez, Natalia; Sobrino, Cristina; Huete-Ortega, Marí a; Ferná ndez, Ana; Ló pez-Sandoval, Daffne C.; Vidal, Montserrat; Blasco, Dolors; Estrada, Marta; Sañ udo-Wilhelmy, Sergio A.

    2015-01-01

    The distribution of bioactive trace metals has the potential to enhance or limit primary productivity and carbon export in some regions of the world ocean. To study these connections, the concentrations of Cd, Co, Cu, Fe, Mo, Ni, and V were determined for 110 surface water samples collected during the Malaspina 2010 Circumnavigation Expedition (MCE). Total dissolved Cd, Co, Cu, Fe, Mo, Ni, and V concentrations averaged 19.0 ± 5.4 pM, 21.4 ± 12 pM, 0.91 ± 0.4 nM, 0.66 ± 0.3 nM, 88.8 ± 12 nM, 1.72 ± 0.4 nM, and 23.4 ± 4.4 nM, respectively, with the lowest values detected in the Central Pacific and increased values at the extremes of all transects near coastal zones. Trace metal concentrations measured in surface waters of the Atlantic Ocean during the MCE were compared to previously published data for the same region. The comparison revealed little temporal changes in the distribution of Cd, Co, Cu, Fe, and Ni over the last 30 years. We utilized a multivariable linear regression model to describe potential relationships between primary productivity and the hydrological, biological, trace nutrient and macronutrient data collected during the MCE. Our statistical analysis shows that primary productivity in the Indian Ocean is best described by chlorophyll a, NO3, Ni, temperature, SiO4, and Cd. In the Atlantic Ocean, primary productivity is correlated with chlorophyll a, NO3, PO4, mixed layer depth, Co, Fe, Cd, Cu, V, and Mo. The variables salinity, temperature, SiO4, NO3, PO4, Fe, Cd, and V were found to best predict primary productivity in the Pacific Ocean. These results suggest that some of the lesser studied trace elements (e.g., Ni, V, Mo, and Cd) may play a more important role in regulating oceanic primary productivity than previously thought and point to the need for future experiments to verify their potential biological functions.

  14. Millstone 3 condensate dissolved gas monitoring

    International Nuclear Information System (INIS)

    Burns, T.F.; Grondahl, E.E.; Snyder, D.T.

    1988-01-01

    Condensate dissolved oxygen problems at Millstone Point Unit 3 (MP3) were investigated using the Dissolved Gas Monitoring System developed by Radiological and Chemical Technology, Inc. under EPRI sponsorship. Argon was injected into the turbine exhaust basket tips to perform a dissolved gas transport analysis and determine steam jet air ejector gas removal efficiency. The operating configuration of the steam jet air ejector system was varied to determine the effect on gas removal efficiency. Following circulating water chlorination, the gas removal efficiency was determined to evaluate the effect of condenser tube fouling on steam jet air ejector performance

  15. Fe-Impregnated Mineral Colloids for Peroxide Activation: Effects of Mineral Substrate and Fe Precursor.

    Science.gov (United States)

    Li, Yue; Machala, Libor; Yan, Weile

    2016-02-02

    Heterogeneous iron species at the mineral/water interface are important catalysts for the generation of reactive oxygen species at circumneutral pH. One significant pathway leading to the formation of such species arises from deposition of dissolved iron onto mineral colloids due to changes in redox conditions. This study investigates the catalytic properties of Fe impregnated on silica, alumina, and titania nanoparticles (as prototypical mineral colloids). Fe impregnation was carried out by immersing the mineral nanoparticles in dilute Fe(II) or Fe(III) solutions at pH 6 and 3, respectively, in an aerobic environment. The uptake of iron per unit surface area follows the order of nTiO2 > nAl2O3 > nSiO2 for both types of Fe precursors. Impregnation of mineral particles in Fe(II) solutions results in predominantly Fe(III) species due to efficient surface-mediated oxidation. The catalytic activity of the impregnated solids to produce hydroxyl radical (·OH) from H2O2 decomposition was evaluated using benzoic acid as a probe compound under dark conditions. Invariably, the rates of benzoic acid oxidation with different Fe-laden particles increase with the surface density of Fe until a critical density above which the catalytic activity approaches a plateau, suggesting active Fe species are formed predominantly at low surface loadings. The critical surface density of Fe varies with the mineral substrate as well as the aqueous Fe precursor. Fe impregnated on TiO2 exhibits markedly higher activity than its Al2O3 and SiO2 counterparts. The speciation of interfacial Fe is analyzed with diffuse reflectance UV-vis analysis and interpretation of the data in the context of benzoic oxidation rates suggests that the surface activity of the solids for ·OH generation correlates strongly with the isolated (i.e., mononuclear) Fe species. Therefore, iron dispersed on mineral colloids is a significant form of reactive iron surfaces in the aquatic environment.

  16. Colorimeter determination of Fe(II)/Fe(III) ratio in glass

    International Nuclear Information System (INIS)

    Baumann, E.W.; Coleman, C.J.; Karraker, D.G.; Scott, W.H.

    1987-01-01

    A colorimetric method has been developed to determine the Fe(II)/Fe(III) ratio in glass containing nuclear waste. Fe(II) is stabilized with pentavalent vanadium during dissolution in sulfuric and hydrofluoric acids. The chromogen is FerroZine (Hach Chemical Company), which forms a magenta complex with Fe(II). The two-step color development consists of determining the Fe(II) by adding FerroZine, followed by determining total Fe after the Fe(III) present is reduced with ascorbic acid. The method was validated by analyzing mixtures of ferrous/ferric solutions and nonferrous glass frit, and by comparison with Moessbauer spectroscopy. The effect of gamma radiation was established. The procedure is generally applicable to nonradioactive materials such as minerals and other glasses

  17. The Absorption of Light in Lakes: Negative Impact of Dissolved Organic Carbon on Primary Productivity

    OpenAIRE

    Thrane, Jan-Erik; Hessen, Dag O.; Andersen, Tom

    2014-01-01

    Colored dissolved organic matter (CDOM) absorbs a substantial fraction of photosynthetically active radiation (PAR) in boreal lakes. However, few studies have systematically estimated how this light absorption influences pelagic primary productivity. In this study, 75 boreal lakes spanning wide and orthogonal gradients in dissolved organic carbon (DOC) and total phosphorus (TP) were sampled during a synoptic survey. We measured absorption spectra of phytoplankton pigments, CDOM, and non-algal...

  18. Comparison of ultrafiltration and dissolved air flotation efficiencies in industrial units during the papermaking process

    OpenAIRE

    Monte Lara, Concepción; Ordóñez Sanz, Ruth; Hermosilla Redondo, Daphne; Sánchez González, Mónica; Blanco Suárez, Ángeles

    2011-01-01

    The efficiency of an ultrafiltration unit has been studied and compared with a dissolved air flotation system to get water with a suited quality to be reused in the process. The study was done at a paper mill producing light weight coated paper and newsprint paper from 100% recovered paper. Efficiency was analysed by removal of turbidity, cationic demand, total and dissolved chemical oxygen demand, hardness, sulphates and microstickies. Moreover, the performance of the ultrafiltration unit an...

  19. The system Fe-Os-S at 1180°, 1100°and 900°C

    DEFF Research Database (Denmark)

    Karup-Møller, Sven; Makovicky, E.

    2002-01-01

    Phase relations in the condensed system Fe-Os-S were investigated by means of dry syntheses from the elements at 1180degrees, 1100degrees and 900degreesC. The Fe-rich sulfide melt dissolves only traces of Os. Fe1-xS dissolves up to 0.7 at.% Os at 1180degreesC; Os solubility decreases to 0.3 at...... partition coefficients for Os. The three-phase association alloy-FeS1-xS-OsS2 involves alloys with less than 1 at.% Fe. The solubility of Fe in OsS2 increases with decreasing temperature and increasing fugacity of sulfur, possibly making analyses of erlichmanite for trace quantities of Fe important....

  20. The role of baseflow in dissolved solids delivery to streams in the Upper Colorado River Basin

    Science.gov (United States)

    Rumsey, C.; Miller, M. P.; Schwarz, G. E.; Susong, D.

    2017-12-01

    Salinity has a major effect on water users in the Colorado River Basin, estimated to cause almost $300 million per year in economic damages. The Colorado River Basin Salinity Control Program implements and manages projects to reduce salinity (dissolved solids) loads, investing millions of dollars per year in irrigation upgrades, canal projects, and other mitigation strategies. To inform and improve mitigation efforts, there is a need to better understand sources of salinity to streams and how salinity has changed over time. This study explores salinity in baseflow, or groundwater discharge to streams, to assess whether groundwater is a significant contributor of dissolved solids to streams in the Upper Colorado River Basin (UCRB). Chemical hydrograph separation was used to estimate long-term mean annual baseflow discharge and baseflow dissolved solids loads at stream gages (n=69) across the UCRB. On average, it is estimated that 89% of dissolved solids loads originate from the baseflow fraction of streamflow. Additionally, a statistical trend analysis using weighted regressions on time, discharge, and season was used to evaluate changes in baseflow dissolved solids loads in streams with data from 1987 to 2011 (n=29). About two-thirds (62%) of these streams showed statistically significant decreasing trends in baseflow dissolved solids loads. At the two most downstream sites, Green River at Green River, UT and Colorado River at Cisco, UT, baseflow dissolved solids loads decreased by a combined 780,000 metric tons, which is approximately 65% of the estimated basin-scale decrease in total dissolved solids loads in the UCRB attributed to salinity control efforts. Results indicate that groundwater discharged to streams, and therefore subsurface transport processes, play a large role in delivering dissolved solids to streams in the UCRB. Decreasing trends in baseflow dissolved solids loads suggest that salinity mitigation projects, changes in land use, and/or climate are

  1. Uptake and Release of Cerium During Fe-Oxide Formation and Transformation in Fe(II) Solutions

    DEFF Research Database (Denmark)

    Nedel, Sorin; Dideriksen, Knud; Christiansen, Bo C.

    2010-01-01

    Fe-oxides are ubiquitous in soils and sediments and form during Fe(0) corrosion. Depending on redox conditions and solution composition, Fe-oxides such as ferrihydrite, goethite, magnetite, and green rust (GR) may form. These phases typically have high surface area and large affinity for adsorption......(III) release. X-ray photoelectron spectroscopy revealed Ce(III) adsorbed on magnetite. When Fe-oxides were synthesized by air oxidation of Fe(II) solutions at pH 7, GR(Na,SO4) played a catalytic role in the oxidation of Ce(III) to Ce(IV) by O-2, removing more than 90% of the dissolved Ce. Transmission electron...

  2. Dissolved trace metals in the water column of Reloncaví Fjord, Chile Metales trazas disueltos en la columna de agua en el fiordo Reloncaví, Chile

    Directory of Open Access Journals (Sweden)

    Ramón Ahumada

    2011-11-01

    Full Text Available We analyzed the concentration of dissolved trace metals (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb in the water column of Reloncaví Fjord. Sampling was performed during the CIMAR 12 Fiordos cruise in 2006. A total of 36 passive samplers or DGTs (diffusion gradient in thin films were anchored at four stations along the longitudinal axis of the fjord. The DGTs were deployed at three depths per station and left there for 48 h. The metal contents on each thin film were analyzed using inductively coupled plasma atomic emission spectroscopy. Concentrations were highest in the surface layer at the head of the estuary, which is directly influenced by Petrohué River. Characteristic sequences of the studied metals were defined in the area with the greatest continental influence (Z(5-25m = Cu >Mn> Fe > Ni >Pb> Cr > Cd > Co and in the area with a marine or coastal influence (Z(5-25m = Fe > Cu>Mn> Ni >Pb> Cr > Cd > Co. A similar metal sequence was found in the deepest layer: Z(40-m = Fe >Mn> Cu >Pb> Ni > Cd > Cr > Co. The passive sampling technique using DGTs to determine dissolved trace metals in the sea water provided robust information on the concentrations of the ten metals analyzed.Se analiza la concentración de metales trazas disueltos (Cd, Co, Cr, Cu, Fe, Mn, Ni y Pb, en la columna de agua del fiordo Reloncaví. El muestreo se realizó durante la campaña CIMAR 12 Fiordos, 2006. Para ello se fondeó en cuatro estaciones y en tres profundidades, un total de 36 muestreadores pasivos o DGT (láminas de gradiente de difusión a lo largo del eje longitudinal del fiordo, durante 48 h. El contenido de metales en cada lámina fue analizado mediante espectroscopía de emisión atómica con acoplamiento inductivo de plasma. Las mayores concentraciones se observaron en la superficie de la columna de agua, en la cabeza del estuario, directamente influenciada por el río Petrohué. Se definió para el área una secuencia de los metales estudiados característica, para la

  3. Dissolving microneedle patches for dermal vaccination

    OpenAIRE

    Leone, M.; Monkare, J.T.; Bouwstra, J.A.; Kersten, G.F.A.

    2017-01-01

    The dermal route is an attractive route for vaccine delivery due to the easy skin accessibility and a dense network of immune cells in the skin. The development of microneedles is crucial to take advantage of the skin immunization and simultaneously to overcome problems related to vaccination by conventional needles (e.g. pain, needle-stick injuries or needle re-use). This review focuses on dissolving microneedles that after penetration into the skin dissolve releasing the encapsulated antige...

  4. Sources and transformations of dissolved lignin phenols and chromophoric dissolved organic matter in Otsuchi Bay, Japan

    Directory of Open Access Journals (Sweden)

    Chia-Jung eLu

    2016-06-01

    Full Text Available Dissolved lignin phenols and optical properties of dissolved organic matter (DOM were measured to investigate the sources and transformations of terrigenous DOM (tDOM in Otsuchi Bay, Japan. Three rivers discharge into the bay, and relatively high values of syringyl:vanillyl phenols (0.73 ± 0.07 and cinnamyl:vanillyl phenols (0.33 ± 0.10 indicated large contributions of non-woody angiosperm tissues to lignin and tDOM. The physical mixing of river and seawater played an important role in controlling the concentrations and distributions of lignin phenols and chromophoric DOM (CDOM optical properties in the bay. Lignin phenol concentrations and the CDOM absorption coefficient at 350 nm, a(350, were strongly correlated in river and bay waters. Measurements of lignin phenols and CDOM in bay waters indicated a variety of photochemical and biological transformations of tDOM, including oxidation reactions, photobleaching and a decrease in molecular weight. Photodegradation and biodegradation of lignin and CDOM were investigated in decomposition experiments with river water and native microbial assemblages exposed to natural sunlight or kept in the dark. There was a rapid and substantial removal of lignin phenols and CDOM during the first few days in the light treatment, indicating transformations of tDOM and CDOM can occur soon after discharge of buoyant river water into the bay. The removal of lignin phenols was slightly greater in the dark (34% than in the light (30% during the remaining 59 days of the incubation. Comparison of the light and dark treatments indicated biodegradation was responsible for 67% of total lignin phenol removal during the 62-day incubation exposed to natural sunlight, indicating biodegradation is a dominant removal process in Otsuchi Bay.

  5. Fe K-EDGE X-RAY ABSORPTION SPECTROSCOPY OF SILICATE MINERALS AND GLASSES

    OpenAIRE

    Binsted , N.; Greaves , G.; Henderson , C.

    1986-01-01

    Structural parameters determined for crystalline iron, fayalite and aegirine agree closely with X-ray crystallograhic data. A glass of NaFeSi2O6 composition has Fe predominantly present as Fe3+ in tetrahedral coordination i.e. as a network former. CaFeSiO4 and CaFeSi2O6 glasses have about 1/3 of the total Fe in octahedral coordination i.e. as a network modifier.

  6. Ground state magnetic properties of Fe nanoislands on Cu(111)

    International Nuclear Information System (INIS)

    Kishi, Tomoya; David, Melanie; Nakanishi, Hiroshi; Kasai, Hideaki; Dino, Wilson Agerico; Komori, Fumio

    2005-01-01

    We investigate magnetic properties of Fe nanoislands on Cu(111) in the relaxed structure within the density functional theory. We observe that the nanoislands exhibit the ferromagnetic properties with large magnetic moment. We find that the change in the magnetic moment of each Fe atom is induced by deposition on Cu(111) and structure relaxation of Fe nanoislands. Moreover, we examine the stability of ferromagnetic states of Fe nanoislands by performing the total energy calculations. (author)

  7. Seasonal changes in Fe species and soluble Fe concentration in the atmosphere in the Northwest Pacific region based on the analysis of aerosols collected in Tsukuba, Japan

    Directory of Open Access Journals (Sweden)

    Y. Takahashi

    2013-08-01

    Full Text Available Atmospheric iron (Fe can be a significant source of nutrition for phytoplankton inhabiting remote oceans, which in turn has a large influence on the Earth's climate. The bioavailability of Fe in aerosols depends mainly on the fraction of soluble Fe (= [FeSol]/[FeTotal], where [FeSol] and [FeTotal] are the atmospheric concentrations of soluble and total Fe, respectively. However, the numerous factors affecting the soluble Fe fraction have not been fully understood. In this study, the Fe species, chemical composition, and soluble Fe concentrations in aerosols collected in Tsukuba, Japan were investigated over a year (nine samples from December 2002 to October 2003 to identify the factors affecting the amount of soluble Fe supplied into the ocean. The soluble Fe concentration in aerosols is correlated with those of sulfate and oxalate originated from anthropogenic sources, suggesting that soluble Fe is mainly derived from anthropogenic sources. Moreover, the soluble Fe concentration is also correlated with the enrichment factors of vanadium and nickel emitted by fossil fuel combustion. These results suggest that the degree of Fe dissolution is influenced by the magnitude of anthropogenic activity, such as fossil fuel combustion. X-ray absorption fine structure (XAFS spectroscopy was performed in order to identify the Fe species in aerosols. Fitting of XAFS spectra coupled with micro X-ray fluorescence analysis (μ-XRF showed the main Fe species in aerosols in Tsukuba to be illite, ferrihydrite, hornblende, and Fe(III sulfate. Moreover, the soluble Fe fraction in each sample measured by leaching experiments is closely correlated with the Fe(III sulfate fraction determined by the XAFS spectrum fitting, suggesting that Fe(III sulfate is the main soluble Fe in the ocean. Another possible factor that can control the amount of soluble Fe supplied into the ocean is the total Fe(III concentration in the atmosphere, which was high in spring due to the high

  8. Hydrologically mediated iron reduction/oxidation fluctuations and dissolved organic carbon exports in tidal wetlands

    Science.gov (United States)

    Guimond, J. A.; Seyfferth, A.; Michael, H. A.

    2017-12-01

    Salt marshes are biogeochemical hotspots where large quantities of carbon are processed and stored. High primary productivity and deposition of carbon-laden sediment enable salt marsh soils to accumulate and store organic carbon. Conversely, salt marshes can laterally export carbon from the marsh platform to the tidal channel and eventually the ocean via tidal pumping. However, carbon export studies largely focus on tidal channels, missing key physical and biogeochemical mechanisms driving the mobilization of dissolved organic carbon (DOC) within the marsh platform and limiting our understanding of and ability to predict coastal carbon dynamics. We hypothesize that iron redox dynamics mediate the mobilization/immobilization of DOC in the top 30 cm of salt marsh sediment near tidal channels. The mobilized DOC can then diffuse into the flooded surface water or be advected to tidal channels. To elucidate DOC dynamics driven by iron redox cycles, we measured porewater DOC, Fe(II), total iron, total sulfate, pH, redox potential, and electrical conductivity (EC) beside the creek, at the marsh levee, and in the marsh interior in a mid-latitude tidal salt marsh in Dover, Delaware. Samples were collected at multiple tide stages during a spring and neap tide at depths of 5-75cm. Samples were also collected from the tidal channel. Continuous Eh measurements were made using in-situ electrodes. A prior study shows that DOC and Fe(II) concentrations vary spatially across the marsh. Redox conditions near the creek are affected by tidal oscillations. High tides saturate the soil and decrease redox potential, whereas at low tide, oxygen enters the sediment and increases the Eh. This pattern is always seen in the top 7-10cm of sediment, with more constant low Eh at depth. However, during neap tides, this signal penetrates deeper. Thus, between the creek and marsh levee, hydrology mediates redox conditions. Based on porewater chemistry, if DOC mobilization can be linked to redox

  9. Selective extraction by dissolvable (nitriloacetic acid-nickel)-layered double hydroxide coupled with reaction with potassium thiocyanate for sensitive detection of iron(III).

    Science.gov (United States)

    Tang, Sheng; Chang, Yuepeng; Shen, Wei; Lee, Hian Kee

    2016-07-01

    A highly selective method has been proposed for the determination of iron cation (Fe(3+)). (Nitriloacetic acid-nickel)-layered double hydroxide ((NTA-Ni)-LDH) was successfully synthesized and used as dissolvable sorbent in dispersive solid-phase extraction to pre-concentrate and separate Fe(3+) from aqueous phase. Since Fe(3+) has a larger formation constant with NTA compared to Ni(2+), subsequently ion exchange occurred when (NTA-Ni)-LDH was added to the sample solution. The resultant (NTA-Fe)-LDH sol was isolated and transferred in an acidic medium containing potassium thiocyanate (KSCN). Since (NTA-Fe)-LDH could be dissolved in acidic conditions, Fe(3+)was released and reacted with SCN(-) to form an Fe-SCN complex. The resulting product was measured by ultraviolet-visible spectrometry for quantitative detection of Fe(3+). Extraction factors, including sample pH, reaction pH, extraction temperature, extraction time, reaction time and concentration of KSCN were optimized. This method achieved a low limit of detection of 15.2nM and a good linear range from 0.05 to 50μM (r(2)=0.9937). A nearly 18-fold enhancement of signal intensity was achieved after selective extraction. The optimized conditions were validated by applying the method to determine Fe(3+) in seawater samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Total Thyroidectomy

    Directory of Open Access Journals (Sweden)

    Lopez Moris E

    2016-06-01

    Full Text Available Total thyroidectomy is a surgery that removes all the thyroid tissue from the patient. The suspect of cancer in a thyroid nodule is the most frequent indication and it is presume when previous fine needle puncture is positive or a goiter has significant volume increase or symptomes. Less frequent indications are hyperthyroidism when it is refractory to treatment with Iodine 131 or it is contraindicated, and in cases of symptomatic thyroiditis. The thyroid gland has an important anatomic relation whith the inferior laryngeal nerve and the parathyroid glands, for this reason it is imperative to perform extremely meticulous dissection to recognize each one of these elements and ensure their preservation. It is also essential to maintain strict hemostasis, in order to avoid any postoperative bleeding that could lead to a suffocating neck hematoma, feared complication that represents a surgical emergency and endangers the patient’s life.It is essential to run a formal technique, without skipping steps, and maintain prudence and patience that should rule any surgical act.

  11. Summary of Dissolved Concentration Limits

    International Nuclear Information System (INIS)

    Yueting Chen

    2001-01-01

    According to the Technical Work Plan titled Technical Work Plan for Waste Form Degradation Process Model Report for SR (CRWMS M and O 2000a), the purpose of this study is to perform abstractions on solubility limits of radioactive elements based on the process-level information and thermodynamic databases provided by Natural Environment Program Operations (NEPO) and Waste Package Operations (WPO). The scope of this analysis is to produce solubility limits as functions, distributions, or constants for all transported radioactive elements identified by the Performance Assessment Operations (PAO) radioisotope screening. Results from an expert elicitation for solubility limits of most radioactive elements were used in the previous Total System Performance Assessments (TSPAs). However, the elicitation conducted in 1993 does not meet the criteria set forth by the U.S. Nuclear Regulatory Commission (NRC) due to lack of documentation and traceability (Kotra et al. 1996, Section 3). Therefore, at the Waste Form Abstraction Workshop held on February 2-4, 1999, at Albuquerque, New Mexico, the Yucca Mountain Site Characterization Project (YMP) decided to develop geochemical models to study solubility for the proposed Monitored Geologic Repository. WPO/NEPO is to develop process-level solubility models, including review and compilation of relevant thermodynamic data. PAO's responsibility is to perform abstractions based on the process models and chemical conditions and to produce solubility distributions or response surfaces applicable to the proposed repository. The results of this analysis and conceptual model will feed the performance assessment for Total System Performance Assessment--Site Recommendation (TSPA-SR) and Total System Performance Assessment--License Application (TSPA-LA), and to the Waste Form Degradation Process Model Report section on concentration limits

  12. Summary of Dissolved Concentration Limits

    Energy Technology Data Exchange (ETDEWEB)

    Yueting Chen

    2001-06-11

    According to the Technical Work Plan titled Technical Work Plan for Waste Form Degradation Process Model Report for SR (CRWMS M&O 2000a), the purpose of this study is to perform abstractions on solubility limits of radioactive elements based on the process-level information and thermodynamic databases provided by Natural Environment Program Operations (NEPO) and Waste Package Operations (WPO). The scope of this analysis is to produce solubility limits as functions, distributions, or constants for all transported radioactive elements identified by the Performance Assessment Operations (PAO) radioisotope screening. Results from an expert elicitation for solubility limits of most radioactive elements were used in the previous Total System Performance Assessments (TSPAs). However, the elicitation conducted in 1993 does not meet the criteria set forth by the U.S. Nuclear Regulatory Commission (NRC) due to lack of documentation and traceability (Kotra et al. 1996, Section 3). Therefore, at the Waste Form Abstraction Workshop held on February 2-4, 1999, at Albuquerque, New Mexico, the Yucca Mountain Site Characterization Project (YMP) decided to develop geochemical models to study solubility for the proposed Monitored Geologic Repository. WPO/NEPO is to develop process-level solubility models, including review and compilation of relevant thermodynamic data. PAO's responsibility is to perform abstractions based on the process models and chemical conditions and to produce solubility distributions or response surfaces applicable to the proposed repository. The results of this analysis and conceptual model will feed the performance assessment for Total System Performance Assessment--Site Recommendation (TSPA-SR) and Total System Performance Assessment--License Application (TSPA-LA), and to the Waste Form Degradation Process Model Report section on concentration limits.

  13. [Sources of dissolved organic carbon and the bioavailability of dissolved carbohydrates in the tributaries of Lake Taihu].

    Science.gov (United States)

    Ye, Lin-Lin; Wu, Xiao-Dong; Kong, Fan-Xiang; Liu, Bo; Yan, De-Zhi

    2015-03-01

    Surface water samples of Yincungang and Chendonggang Rivers were collected from September 2012 to August 2013 in Lake Taihu. Water temperature, Chlorophyll a and bacterial abundance were analyzed, as well as dissolved organic carbon (DOC) concentrations, stable carbon isotope of DOC (Δ13C(DOC)), specific UV absorbance (SUVA254 ) and dissolved carbohydrates concentrations. Δ13C(DOC) ranged from -27.03% per thousand ± 0.30% per thousand to -23.38%per thousand ± 0.20% per thousand, indicating a terrestrial source. Both the autochthonous and allochthonous sources contributed to the carbohydrates pool in the tributaries. Significant differences in PCHO (polysaccharides) and MCHO (monosaccharides) concentrations were observed between spring-summer and autumn-winter (P carbohydrates. PCHO contributed a major fraction to TCHO (total dissolved carbohydrates) in autumn and winter, which could be explained by the accumulation of undegradable PCHO limited by the low water temperature; MCHO contributed a major fraction to TCHO in spring and summer, which might be caused by the transformation from PCHO by microbes at high water temperature.

  14. Removal of Dissolved Salts and Particulate Contaminants from Seawater: Village Marine Tec., Expeditionary Unit Water Purifier, Generation 1

    Science.gov (United States)

    The EUWP was developed to treat challenging water sources with variable turbidity, chemical contamination, and very high total dissolved solids (TDS), including seawater, during emergency situations when other water treatment facilities are incapacitated. The EUWP components incl...

  15. Study of the reaction of astrophysical interest 60Fe(n,γ)61Fe via (d,pγ) transfer reaction

    International Nuclear Information System (INIS)

    Giron, S.

    2011-12-01

    60 Fe is of special interest in nuclear astrophysics. Indeed the recent observations of 60 Fe characteristic gamma-ray lines by the RHESSI and INTEGRAL spacecrafts allowed to measure the total flux of 60 Fe over the Galaxy. Moreover the observation in presolar grains of an excess of the daughter-nuclei of 60 Fe, 60 Ni, gives constraints on the conditions of formation of the early solar system. However, the cross-sections of some reactions involved in 60 Fe nucleosynthesis and included to stellar models are still uncertain. The destruction reaction of 60 Fe, 60 Fe(n, γ) 61 Fe, is one of them. The total cross-section can be separate into two contributions: the direct one, involving states below the neutron separation threshold of 61 Fe, and the resonant one.We improved 61 Fe spectroscopy in order to evaluate the direct capture part of the 60 Fe(n, γ) 61 Fe reaction cross-section. 60 Fe(n, γ) 61 Fe was thus studied via d( 60 Fe, pγ) 61 Fe transfer reaction with the CATS/MUST2/EXOGAM setup at LISE-GANIL. DWBA analysis of experimental proton differential cross-sections allowed to extract orbital angular momentum and spectroscopic factors of different populated states identified below the neutron threshold. A comparison of experimental results for 61 Fe with experimental results for similar nuclei and with shell-model calculations was also performed. (author) [fr

  16. Analysis of a slow-dissolving medicine by EPMA

    International Nuclear Information System (INIS)

    Sasayama, Tetsuaki; Kohara, Kiyohiro; Araki, Takeshi

    1995-01-01

    Along with a dissolution test of a slow-dissolving medicine, the change in distribution of the drug in solution can be observed by using EPMA, and the structual factors and dissolution mechanism which determine the bioavailability of medicine can be clarified. In the evaluation of physical, chemical and pharmaceutical qualities, it is concluded that EPMA is very effective in elemental and state analyses with observation of microscopic areas on the micrometer order. Especially, the color mapping method clarifies the distribution of a drug in the total image field and enables us to analyze the mechanism of a dissolution medicine. (author)

  17. Quantitative analysis of O-2 and Fe2+ profiles in gradient tubes for cultivation of microaerophilic Iron(II)-oxidizing bacteria

    DEFF Research Database (Denmark)

    Lueder, U.; Druschel, G.; Emerson, D.

    2018-01-01

    The classical approach for the cultivation of neutrophilic microaerophilic Fe(II)-oxidizing bacteria is agar-based gradient tubes where these bacteria find optimal growth conditions in opposing gradients of oxygen (O-2) and dissolved Fe(II) (Fe2+). The goals of this study were to quantify...... imply that transfer of cultures to fresh tubes within 48-72 h is crucial to provide optimal growth conditions for microaerophilic Fe(II)-oxidizers, particularly for the isolation of new strains....

  18. Dissolving Microneedle Patches for Dermal Vaccination.

    Science.gov (United States)

    Leone, M; Mönkäre, J; Bouwstra, J A; Kersten, G

    2017-11-01

    The dermal route is an attractive route for vaccine delivery due to the easy skin accessibility and a dense network of immune cells in the skin. The development of microneedles is crucial to take advantage of the skin immunization and simultaneously to overcome problems related to vaccination by conventional needles (e.g. pain, needle-stick injuries or needle re-use). This review focuses on dissolving microneedles that after penetration into the skin dissolve releasing the encapsulated antigen. The microneedle patch fabrication techniques and their challenges are discussed as well as the microneedle characterization methods and antigen stability aspects. The immunogenicity of antigens formulated in dissolving microneedles are addressed. Finally, the early clinical development is discussed.

  19. Structural investigation of Fe(Cu)ZrB amorphous alloy

    Energy Technology Data Exchange (ETDEWEB)

    Duhaj, P. [Slovenska Akademia Vied, Bratislava (Slovakia). Fyzikalny Ustav; Matko, I. [Slovenska Akademia Vied, Bratislava (Slovakia). Fyzikalny Ustav; Svec, P. [Slovenska Akademia Vied, Bratislava (Slovakia). Fyzikalny Ustav; Sitek, J. [Department of Nuclear Physics and Technology, Slovak Technical University, 81219 Bratislava (Slovakia); Janickovic, D. [Slovenska Akademia Vied, Bratislava (Slovakia). Fyzikalny Ustav

    1996-07-01

    The crystallization process in Fe{sub 86}(Cu{sub 1})Zr{sub 7}B{sub 6} and Fe{sub 87}Zr{sub 7}B{sub 6} is investigated using the methods of transmission electron microscopy, electron and X-ray diffraction and resistometry. Two crystallization reactions take place during thermal annealing of amorphous Fe{sub 86}(Cu{sub 1})Zr{sub 7}B{sub 6} and Fe{sub 87}Zr{sub 7}B{sub 6} alloys. In both alloys the first crystallization begins with the formation of nanocrystalline {alpha}-Fe at temperature to approximately 800 K. The second crystallization starts above 1000 K; the nanocrystalline phase dissolves and together with the remaining amorphous matrix form rough grains of {alpha}-Fe and dispersed Fe{sub 23}Zr{sub 6} phases. From Moessbauer spectroscopy it seems that there exist two neighbourhoods of Fe atoms in the amorphous structure. One of them is characterized by low Zr content and is responsible for the high-field component of the hyperfine field distribution p(H). The second one is rich in Zr and B and is responsible for the low-field component of p(H). This is in accord with the observation of two crystallization steps separated by a large interval of temperatures due to the existence of two chemically different regions or clusters. (orig.)

  20. Structural investigation of Fe(Cu)ZrB amorphous alloy

    International Nuclear Information System (INIS)

    Duhaj, P.; Janickovic, D.

    1996-01-01

    The crystallization process in Fe 86 (Cu 1 )Zr 7 B 6 and Fe 87 Zr 7 B 6 is investigated using the methods of transmission electron microscopy, electron and X-ray diffraction and resistometry. Two crystallization reactions take place during thermal annealing of amorphous Fe 86 (Cu 1 )Zr 7 B 6 and Fe 87 Zr 7 B 6 alloys. In both alloys the first crystallization begins with the formation of nanocrystalline α-Fe at temperature to approximately 800 K. The second crystallization starts above 1000 K; the nanocrystalline phase dissolves and together with the remaining amorphous matrix form rough grains of α-Fe and dispersed Fe 23 Zr 6 phases. From Moessbauer spectroscopy it seems that there exist two neighbourhoods of Fe atoms in the amorphous structure. One of them is characterized by low Zr content and is responsible for the high-field component of the hyperfine field distribution p(H). The second one is rich in Zr and B and is responsible for the low-field component of p(H). This is in accord with the observation of two crystallization steps separated by a large interval of temperatures due to the existence of two chemically different regions or clusters. (orig.)

  1. Performance and microbial community analysis of bio-electrocoagulation on simultaneous nitrification and denitrification in submerged membrane bioreactor at limited dissolved oxygen.

    Science.gov (United States)

    Li, Liang; Dong, Yihua; Qian, Guangsheng; Hu, Xiaomin; Ye, Linlin

    2018-06-01

    A pair of Fe-C electrodes was installed in a traditional submerged membrane bioreactor (MBR, Rc), and a novel asynchronous periodic reversal bio-electrocoagulation system (Re) was developed. The simultaneous nitrification and denitrification (SND) performance was discussed under limited dissolved oxygen (DO). Results showed that electrocoagulation enhanced total nitrogen (TN) removal from 59.48% to 75.09% at 1.2 mg/L DO. Additionally, Fe electrode could increase sludge concentration, particle size, and enzyme activities related to nitrogen removal. The enzyme activities of Hydroxylamine oxidoreductase (HAO), Nitrate Reductase (NAR), nitric oxide reductase NOR and nitrous oxide reductase (N 2 OR) in Re were 38.35%, 21.59%, 89.96% and 38.64% higher than Rc, respectively. Moreover, electrocoagulation was advantageous for nitrite accumulation, indicating partial nitrification and denitrification were more easily achieved in Re. Besides, results from high throughput sequencing analysis revealed that electrocoagulation increased the relative abundance of most genera related to nitrogen removal, including Nitrosomonas, Comamonadaceae_unclassified, Haliangium and Denitratisoma. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Total evaporation in thermal ionization mass spectrometry

    International Nuclear Information System (INIS)

    Callis, E.L.; Cappis, J.H.

    1996-01-01

    Experiments were conducted to assess the effects of impurities on the total evaporation method for mass spectrometric measurement of the isotope ratio of uranium. Standard samples were spiked with Na, Ca, Fe, Zr and Ba. The results indicated that only Fe, and possible Na, displayed any interference, and then only at high concentrations. One problem limiting the accuracy of the method is the determination of the relative efficiency of the collectors in the multicollector system. 3 refs., 1 tab

  3. Clarifying roughness and atomic diffusion contributions to the interface broadening in exchange-biased NiFe/FeMn/NiFe heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, V.P., E-mail: valberpn@yahoo.com.br [Departamento de Física, Universidade Federal do Espírito Santo, 29075-910 Vitória (Brazil); Merino, I.L.C.; Passamani, E.C. [Departamento de Física, Universidade Federal do Espírito Santo, 29075-910 Vitória (Brazil); Alayo, W. [Departamento de Física, Universidade de Pelotas, 96010-610 Pelotas (Brazil); Tafur, M. [Instituto de Ciências Exatas, Universidade Federal de Itajubá, 37500-903 Itajubá (Brazil); Pelegrini, F. [Instituto de Física, Universidade Federal de Goiás, 74001-970 Goiânia (Brazil); Magalhães-Paniago, R. [Universidade Federal de Minas Gerais, Belo Horizonte (Brazil); Alvarenga, A.D. [Instituto Nacional de Metrologia, 25250-020 Xerém (Brazil); Saitovitch, E.B. [Coordenação de Física Experimental e Baixas Energias, Centro Brasileiro de Pesquisas Físicas, 22290-180 Rio de Janeiro (Brazil)

    2013-09-02

    NiFe(30 nm)/FeMn(13 nm)/NiFe(10 nm) heterostructures prepared by magnetron sputtering at different argon working pressures (0.27, 0.67 and 1.33 Pa) were systematically investigated by using specular and off-specular diffuse X-ray scattering experiments, combined with ferromagnetic resonance technique, in order to distinguish the contribution from roughness and atomic diffusion to the total structural disorder at NiFe/FeMn interfaces. It was shown that an increase in the working gas pressure from 0.27 to 1.33 Pa causes an enhancement of the atomic diffusion at the NiFe/FeMn interfaces, an effect more pronounced at the top FeMn/NiFe interface. In particular, this atomic diffusion provokes a formation of non-uniform magnetic dead-layers at the NiFe/FeMn interfaces (NiFeMn regions with paramagnetic or weak antiferromagnetic properties); that are responsible for the substantial reduction of the exchange bias field in the NiFe/FeMn system. Thus, this work generically helps to understand the discrepancies found in the literature regarding the influence of the interface broadening on the exchange bias properties (e.g., exchange bias field) of the NiFe/FeMn system. - Highlights: • Roughness and atomic diffusion contributions to the interface broadening • Clarification of the exchange bias field dependence on the interface disorder • Ferromagnetic, paramagnetic and antiferromagnetic phases at the magnetic interface • Magnetic dead layers formed by increasing the argon work pressure • Atomic diffusion in heterostructures prepared at higher argon pressure.

  4. CADDIS Volume 2. Sources, Stressors and Responses: Dissolved Oxygen - Detailed Conceptual Diagram

    Science.gov (United States)

    Introduction to the dissolved oxygen module, when to list dissolved oxygen as a candidate cause, ways to measure dissolved oxygen, simple and detailed conceptual model diagrams for dissolved oxygen, references for the dissolved oxygen module.

  5. CADDIS Volume 2. Sources, Stressors and Responses: Dissolved Oxygen - Simple Conceptual Diagram

    Science.gov (United States)

    Introduction to the dissolved oxygen module, when to list dissolved oxygen as a candidate cause, ways to measure dissolved oxygen, simple and detailed conceptual model diagrams for dissolved oxygen, references for the dissolved oxygen module.

  6. A subsurface Fe-silicate weathering microbiome

    Science.gov (United States)

    Napieralski, S. A.; Buss, H. L.; Roden, E. E.

    2017-12-01

    Traditional models of microbially mediated weathering of primary Fe-bearing minerals often invoke organic ligands (e.g. siderophores) used for nutrient acquisition. However, it is well known that the oxidation of Fe(II) governs the overall rate of Fe-silicate mineral dissolution. Recent work has demonstrated the ability of lithtrophic iron oxidizing bacteria (FeOB) to grow via the oxidation of structural Fe(II) in biotite as a source of metabolic energy with evidence suggesting a direct enzymatic attack on the mineral surface. This process necessitates the involvement of dedicated outer membrane proteins that interact with insoluble mineral phases in a process known as extracellular electron transfer (EET). To investigate the potential role FeOB in a terrestrial subsurface weathering system, samples were obtained from the bedrock-saprolite interface (785 cm depth) within the Rio Icacos Watershed of the Luquillo Mountains in Puerto Rico. Prior geochemical evidence suggests the flux of Fe(II) from the weathering bedrock supports a robust lithotrophic microbial community at depth. Current work confirms the activity of microorganism in situ, with a marked increase in ATP near the bedrock-saprolite interface. Regolith recovered from the interface was used as inoculum to establish enrichment cultures with powderized Fe(II)-bearing minerals serving as the sole energy source. Monitoring of the Fe(II)/Fe(total) ratio and ATP generation suggests growth of microorganisms coupled to the oxidation of mineral bound Fe(II). Analysis of 16S rRNA gene and shotgun metagenomic libraries from in situ and enrichment culture samples lends further support to FeOB involvement in the weathering process. Multiple metagenomic bins related to known FeOB, including Betaproteobacteria genera, contain homologs to model EET systems, including Cyc2 and MtoAB. Our approach combining geochemistry and metagenomics with ongoing microbiological and genomic characterization of novel isolates obtained

  7. The toxicity of zinc oxide nanoparticles to Lemna minor (L.) is predominantly caused by dissolved Zn.

    Science.gov (United States)

    Chen, Xiaolin; O'Halloran, John; Jansen, Marcel A K

    2016-05-01

    Nano-ZnO particles have been reported to be toxic to many aquatic organisms, although it is debated whether this is caused by nanoparticles per sé, or rather dissolved Zn. This study investigated the role of dissolved Zn in nano-ZnO toxicity to Lemna minor. The technical approach was based on modulating nano-ZnO dissolution by either modifying the pH of the growth medium and/or surface coating of nano-ZnO, and measuring resulting impacts on L. minor growth and physiology. Results show rapid and total dissolution of nano-ZnO in the medium (pH 4.5). Quantitatively similar toxic effects were found when L. minor was exposed to nano-ZnO or the "dissolved Zn equivalent of dissolved nano-ZnO". The conclusion that nano-ZnO toxicity is primarily caused by dissolved Zn was further supported by the observation that phytotoxicity was absent on medium with higher pH-values (>7), where dissolution of nano-ZnO almost ceased. Similarly, the reduced toxicity of coated nano-ZnO, which displays a slower Zn dissolution, is also consistent with a major role for dissolved Zn in nano-ZnO toxicity. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Modeling thermodynamics of Fe-N phases; characterisation of e-Fe2N1-z

    DEFF Research Database (Denmark)

    Pekelharing, M.I.; Böttger, A.; Somers, Marcel A.J.

    1999-01-01

    In order to arrive at modeling the thermodynamics of Fe-N phases, including long-range (LRO) and short-range ordering (SRO) of the N atoms, it is important to understand the role of N interstitially dissolved in an Fe-host lattice. The crystal structure of -Fe2N1-z consists of an h.c.p. iron...... sublattice and a hexagonal nitrogen sublattice formed by octahedral interstices of the Fe sublattice [1]. Two ground-state structures have been proposed for the ordered arrangement of the N atoms on their own sublattice [1], which were shown to be thermodynamically favourable [2]: configuration A for Fe2N1...... investigated with X-ray diffraction (XRD) and Mössbauer spectroscopy. A thermodynamic model accounting for the two configurations of LRO of the N atoms [2,3] was fitted to the N-absorption isotherm at 723 K and resulted in the occupancies of the sites of the nitrogen sublattice. A miscibility gap between...

  9. Dissolved petroleum hydrocarbons in the Andaman Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Topgi, R.S.; Noronha, R.J.; Fondekar, S.P.

    Mean dissolved petroleum hydrocarbons, measured using UV-spectrophotometry, at 0 and 10m were 51 plus or minus 1 and 55 plus or minus 1.2 mu g/litre respectively; range of variation being between 28 and 83 mu g/litre. Very little difference...

  10. Dissolved carbohydrate in the central Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Dhople, V.M.; Bhosle, N.B.

    with chlorophyll a (P 0.001) and phaeopigments (P 0.001) suggesting its release from the former and zooplankton grazing in the latter. Inverse correlations with dissolved oxygen, phosphate and nitrate indicated the possibility of the release of carbohydrate from...

  11. Modeling Fish Growth in Low Dissolved Oxygen

    Science.gov (United States)

    Neilan, Rachael Miller

    2013-01-01

    This article describes a computational project designed for undergraduate students as an introduction to mathematical modeling. Students use an ordinary differential equation to describe fish weight and assume the instantaneous growth rate depends on the concentration of dissolved oxygen. Published laboratory experiments suggest that continuous…

  12. Release of dissolved 85Kr by standing

    International Nuclear Information System (INIS)

    Ootsuka, Norikatsu; Yamamoto, Tadatoshi; Tsukui, Kohei

    1986-01-01

    The experiments on the release of dissolved 85 Kr by standing at room temperature were carried out to examine the influence of liquid level in a sampler and properties of solvent on the release efficiency. Six kinds of organic solvents as well as water were taken as solvents. The half-life period in case of the decrease in concentration of the dissolved 85 Kr which was used as an index of release efficiency, was proportional to the liquid level in the sampler and was inversely proportional to the diffusion coefficient of Kr gas in solvent. For organic solvents belonging to homologous series, the half-life period became longer with increasing the carbon number of solvent molecule. From the relationship between the half-life period and the carbon number, the release efficiency in the dissolved 85 Kr can be predicted for any commonly used solvent as a practical application. This method was found to be an effective means of removing the dissolved 85 Kr of low level though it takes rather long time. (author)

  13. Subcooled boiling effect on dissolved gases behaviour

    International Nuclear Information System (INIS)

    Zmitko, M.; Sinkule, J.; Linek, V.

    1999-01-01

    A model describing dissolved gasses (hydrogen, nitrogen) and ammonia behaviour in subcooled boiling conditions of WWERs was developed. Main objective of the study was to analyse conditions and mechanisms leading to formation of a zone with different concentration of dissolved gases, eg. a zone depleted in dissolved hydrogen in relation to the bulk of coolant. Both, an equilibrium and dynamic approaches were used to describe a depletion of the liquid surrounding a steam bubble in the gas components. The obtained results show that locally different water chemistry conditions can be met in the subcooled boiling conditions, especially, in the developed subcooled boiling regime. For example, a 70% hydrogen depletion in relation to the bulk of coolant takes about 1 ms and concerns a liquid layer of 1 μn surrounding the steam bubble. The locally different concentration of dissolved gases can influence physic-chemical and radiolytic processes in the reactor system, eg. Zr cladding corrosion, radioactivity transport and determination of the critical hydrogen concentration. (author)

  14. Radiocarbon in marine dissolved organic carbon (DOC)

    NARCIS (Netherlands)

    Clercq, M. le; Plicht, J. van der; Meijer, H.A.J.; Baar, H.J.W. de

    Dissolved Organic Carbon (DOC) plays an important role in the ecology and carbon cycle in the ocean. Analytical problems with concentration and isotope ratio measurements have hindered its study. We have constructed a new analytical method based on supercritical oxidation for the determination of

  15. Spectrophotometric speciation of Fe(II) and Fe(III) using hydrazone-micelle systems and flow injections

    International Nuclear Information System (INIS)

    Khojali, Inas Osman

    1999-04-01

    Two hydrazones were synthesised, namely salicylhyrazone (SH) and trihydroxyacetophenone (THAPH) were synthesised with the objective of developing a method for determining of Fe(II) and Fe(III) in the presence of each other and hence the total iron.those hydrazones were selected so as to combine the ability of phenolic compounds to complex Fe(III) ions and the complexing characteristics of hydrazones. The complexes of Fe(II) S H and Fe(III) S H as well those of Fe(II)-THAPH and Fe(III)-THAPH had shown maximum absorbance at λ=412 nm which was not not modified by presence of micelles i.e. sodium n-dodecyl sulphate (SDS) and n-hexa dodecyl pyridinium bromide. The maximum absorbance for all complexes takes place around a neutral pH. Generally, in addition, of n-hexa dodecylpyridinium bromide to fe(II)-SH and Fe(III)-SH absorbance of the complexes increases with increasing the concentration of the micelle. The effects of the addition of sodium n-dodecyle sulphate (SDS) to Fe(III)-SH is also studied. Generally, increasing the concentration of the micelle decrease the absorbance of the complexes. To study the effect of the presence of Fe(II) and Fe(III) on the determination of each other,mixtures of Fe(II)-SH and Fe(III)-SH are studied. However, the use of ascorbic acid as a reducing reagent for Fe(III) did not produce the needed results but non reducible results, which may be due to the masking effect of ascorbic acid and thus making the metal not available to the ligand. However, conversion of Fe(II) to Fe(III) prior to the determination was avoided as this requires the use of oxidant, which will oxidise the ligand as well. To establish the condition for the maximum absorbance of THAPH complexes, the effect of the base was investigated by using sodium and ammonium hydroxide. Generally, increasing the concentration of the base decreases the abosrbance. as expected, ammonium hydroxide produced positive results than sodium hydroxide. After establishing the optimum Fi

  16. Solubility of nickel ferrite (NiFe2O4) from 100 to 200 deg. C

    International Nuclear Information System (INIS)

    Bellefleur, Alexandre; Bachet, Martin; Benezeth, Pascale; Schott, Jacques

    2012-09-01

    The solubility of nickel ferrite was measured in a Hydrogen-Electrode Concentration Cell (HECC) at temperatures of 100 deg. C, 150 deg. C and 200 deg. C and pH between 4 and 5.25. The experimental solution was composed of HCl and NaCl (0.1 mol.L -1 ). Based on other studies ([1,2]), pure nickel ferrite was experimentally synthesized by calcination of a mixture of hematite Fe 2 O 3 and bunsenite NiO in molten salts at 1000 deg. C for 15 hours in air. The so obtained powder was fully characterized. The Hydrogen-Electrode Concentration cell has been described in [3]. It allowed us to run solubility experiments up to 250 deg. C with an in-situ pH measurement. To avoid reduction of the solid phase to metallic nickel, a hydrogen/argon mixture was used instead of pure hydrogen. Consequently, the equilibration time for the electrodes was longer than with pure hydrogen. Eight samples were taken on a 70 days period. After the experiments, the powder showed no significant XRD evidence of Ni (II) reduction. Nickel concentration was measured by atomic absorption spectroscopy and iron concentration was measured by UV spectroscopy. The protocol has been designed to be able to measure both dissolved Fe (II) and total iron. The nickel solubility of nickel ferrite was slightly lower than the solubility of nickel oxide in close experimental conditions [3]. Dissolved iron was mainly ferrous and the solution was under-saturated relative to both hematite and magnetite. The nickel/iron ratio indicated a non-stoichiometric dissolution. The solubility measurements were compared with equilibrium calculations using the MULTEQ database. [1] Hayashi et al (1980) J. Materials Sci. 15, 1491-1497. [2] Ziemniak et al (2007) J. Physics and Chem. of Solids. 68,10-21. [3] EPRI Report 1003155 (2002). (authors)

  17. Strengthening mechanisms of Fe nanoparticles for single crystal Cu–Fe alloy

    International Nuclear Information System (INIS)

    Shi, Guodong; Chen, Xiaohua; Jiang, Han; Wang, Zidong; Tang, Hao; Fan, Yongquan

    2015-01-01

    A single crystal Cu–Fe alloy with finely dispersed precipitate Fe nanoparticles was fabricated in this study. The interface relationship of iron nanoparticle and copper matrix was analyzed with a high-resolution transmission electron microscope (HRTEM), and the effect of Fe nanoparticles on mechanical properties of single crystal Cu–Fe alloy was discussed. Results show that, the finely dispersed Fe nanoparticles can be obtained under the directional solidification condition, with the size of 5–50 nm and the coherent interface between the iron nanoparticle and the copper matrix. Single crystal Cu–Fe alloy possesses improved tensile strength of 194.64 MPa, and total elongation of 44.72%, respectively, at room temperature, in contrast to pure Cu sample. Nanoparticles which have coherent interface with matrix can improve the dislocation motion state. Some dislocations can slip through the nanoparticle along the coherent interface and some dislocations can enter into the nanoparticles. Thus to improve the tensile strength of single crystal Cu–Fe alloy without sacrificing the ductility simultaneously. Based on the above analyses, strengthening mechanisms of Fe nanoparticles for single crystal Cu–Fe alloy was described

  18. Degradation of organic dyes by a new heterogeneous Fenton reagent - Fe2GeS4 nanoparticle.

    Science.gov (United States)

    Shi, Xiaoguo; Tian, Ang; You, Junhua; Yang, He; Wang, Yuzheng; Xue, Xiangxin

    2018-07-05

    The heterogeneous Fenton system has become the hotspot in the decontamination field due to its effective degradation performance with a wide pH range. Based on the unstable chemical properties of pyrite, in this article, Fe 2 GeS 4 nanoparticles with better thermodynamic stability were prepared by vacuum sintering and high energy ball milling and its potential as Fenton reagent was investigated for the first time. Three determinants of the heterogeneous Fenton system including the iron source, hydrogen peroxide, pH and the degradation mechanism were investigated. The catalyst dosage of 0.3 g/L, initial H 2 O 2 concentration in the Fenton system of 50 m mol/L and pH of 7 were chosen as the best operational conditions. An almost complete degradation was achieved within 5 min for methylene blue and rhodamine b while 10 min for methyl orange. The total organic carbon removal efficiencies of Fe 2 GeS 4 heterogeneous Fenton system for methylene blue, methyl orange and rhodamine b in 10 min were 56.3%, 66.2% and 74.2%, respectively. It's found that the degradation ability could be attributed to a heterogeneous catalysis occurring at the Fe 2 GeS 4 surface together with a homogeneous catalysis in the aqueous phase by the dissolved iron ions. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Santa Fe County Block Groups, Total Population (2010)

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The once-a-decade decennial census was conducted in April 2010 by the U.S. Census Bureau. This count of every resident in the United States was mandated by Article...

  20. Redox properties of structural Fe in clay minerals: 3. Relationships between smectite redox and structural properties.

    Science.gov (United States)

    Gorski, Christopher A; Klüpfel, Laura E; Voegelin, Andreas; Sander, Michael; Hofstetter, Thomas B

    2013-01-01

    Structural Fe in clay minerals is an important redox-active species in many pristine and contaminated environments as well as in engineered systems. Understanding the extent and kinetics of redox reactions involving Fe-bearing clay minerals has been challenging due to the inability to relate structural Fe(2+)/Fe(total) fractions to fundamental redox properties, such as reduction potentials (EH). Here, we overcame this challenge by using mediated electrochemical reduction (MER) and oxidation (MEO) to characterize the fraction of redox-active structural Fe (Fe(2+)/Fe(total)) in smectites over a wide range of applied EH-values (-0.6 V to +0.6 V). We examined Fe(2+)/Fe(total )- EH relationships of four natural Fe-bearing smectites (SWy-2, SWa-1, NAu-1, NAu-2) in their native, reduced, and reoxidized states and compared our measurements with spectroscopic observations and a suite of mineralogical properties. All smectites exhibited unique Fe(2+)/Fe(total) - EH relationships, were redox active over wide EH ranges, and underwent irreversible electron transfer induced structural changes that were observable with X-ray absorption spectroscopy. Variations among the smectite Fe(2+)/Fe(total) - EH relationships correlated well with both bulk and molecular-scale properties, including Fe(total) content, layer charge, and quadrupole splitting values, suggesting that multiple structural parameters determined the redox properties of smectites. The Fe(2+)/Fe(total) - EH relationships developed for these four commonly studied clay minerals may be applied to future studies interested in relating the extent of structural Fe reduction or oxidation to EH-values.

  1. Cation-induced coagulation of aquatic plant-derived dissolved organic matter: Investigation by EEM-PARAFAC and FT-IR spectroscopy

    Science.gov (United States)

    Interaction and coagulation of plant-derived dissolved organic matter (DOM) by metal cations are important biogeochemical processes of organic matter in lake systems. Thus, coagulation and fractionation of plant-derived DOM by di- and tri-valent Ca, Al, and Fe ions were investigated. Metal ion-induc...

  2. Movement of 59Fe in Egyptian soils as affected by chelated agents

    International Nuclear Information System (INIS)

    Massoud, M.A.; Omar, M.A.; Abd-El-Sapour, M.F.

    1983-01-01

    An investigation was undertaken to study the mobility of Fe from different Fe carries; i.e. Fe 2 (So 4 ) 3 , Fe-EDDHA and Fe-DTPA, the results revealed that almost the total mobilization of Fe 2 (So 4 ) 3 beyond the top layer (1-2 cm) ranged from 35.3, 10.4 and 1.9% of added 59Fe to three investigated soils, i.e. Anshas, Sakha and Burg El-Arab. The corresponding values for Fe-EDDHA ranged from 29.9, 20.4 and 14.9%, while for Fe-DTPA it ranged from 46.9, 16.5 and 11.1 when Fe was added as EDDHA and DTPA. It was noticed that the immobilization of Fe was higher in the calcareous than in the alluvial and sandy soils

  3. Movement of /sup 59/Fe in Egyptian soils as affected by chelated agents

    Energy Technology Data Exchange (ETDEWEB)

    Massoud, M.A.; Omar, M.A.; Abd-El-Sapour, M.F. (Agriculture Department for Soil and Water, Nuclear Research Centre, A.E.A., Cairo (Egypt))

    1983-01-01

    An investigation was undertaken to study the mobility of Fe from different Fe carries; i.e. Fe/sub 2/(So/sub 4/)/sub 3/, Fe-EDDHA and Fe-DTPA, the results revealed that almost the total mobilization of Fe/sub 2/(So/sub 4/)/sub 3/ beyond the top layer (1-2 cm) ranged from 35.3, 10.4 and 1.9% of added 59Fe to three investigated soils, i.e. Anshas, Sakha and Burg El-Arab. The corresponding values for Fe-EDDHA ranged from 29.9, 20.4 and 14.9%, while for Fe-DTPA it ranged from 46.9, 16.5 and 11.1 when Fe was added as EDDHA and DTPA. It was noticed that the immobilization of Fe was higher in the calcareous than in the alluvial and sandy soils.

  4. Emissions of Fe(II) and its kinetic of oxidation at Tagoro submarine volcano, El Hierro (Canary Islands)

    Science.gov (United States)

    González-Dávila, M.; Santana-González, C.; Santana-Casiano, J. M.

    2017-12-01

    The eruptive process that took place in October 2011 in the submarine volcano Tagoro off the Island of El Hierro (Canary Island) and the subsequent degasification stage, five months later, have increased the concentration of TdFe(II) (Total dissolved iron(II)) in the waters nearest to the volcanic edifice. In order to detect any variation in concentrations of TdFe(II) due to hydrothermal emissions, three cruises were carried out two years after the eruptive process in October 2013, March 2014, May 2015, March 2016 and November 2016. The results from these cruises confirmed important positive anomalies in TdFe(II), which coincided with negatives anomalies in pHF,is (pH in free scale, at in situ conditions) located in the proximity of the main cone. Maximum values in TdFe(II) both at the surface, associated to chlorophyll a maximum, and at the sea bottom, were also observed, showing the important influence of organic complexation and particle re-suspension processes. Temporal variability studies were carried out over periods ranging from hours to days in the stations located over the main and two secondary cones in the volcanic edifice with positive anomalies in TdFe(II) concentrations and negative anomalies in pHF,is values. Observations showed an important variability in both pHF,is and TdFe(II) concentrations, which indicated the volcanic area was affected by a degasification process that remained in the volcano after the eruptive phase had ceased. Fe(II) oxidation kinetic studies were also undertaken in order to analyze the effects of the seawater properties in the proximities of the volcano on the oxidation rate constants and t1/2 (half-life time) of ferrous iron. The increased TdFe(II) concentrations and the low associated pHF,is values acted as an important fertilization event in the seawater around the Tagoro volcano at the Island of El Hierro providing optimal conditions for the regeneration of the area.

  5. Effects of Al substitution in Nd2Fe17 studied by first-principles calculations

    International Nuclear Information System (INIS)

    Huang, M.; Ching, W.Y.

    1994-01-01

    We have studied the effect of Al substitution in Nd 2 Fe 17 compound by means of first-principles calculations. We first obtain the site-decomposed potentials for Fe from self-consistent calculation on Y 2 Fe 17 and the atomiclike potentials in the crystalline environment for Al and Nd. Calculations are carried out for a single Al substituting one Fe at four different Fe sites (6c), (9d), (18f ), and (18h), two Al substituting two Fe (18h), and four Al substituting three Fe (18h) and one Fe (18f ). Our results show that the Al moment is oppositely polarized to Fe. The average moment per Fe atom actually increases for Al substituting Fe (18h) and Fe (18f ) is about the same for Al substituting Fe (6c), and is drastically reduced when replacing Fe (9d). Experimentally, Al is shown to be excluded from the (9d) sites because of the small Wigner--Seitz volume. When two Fe atoms are replaced by two Al atoms, the total moment is only slightly less than when only one Fe atom is replaced, and the M s per Fe site actually increases, in agreement with the Moessbauer data. These results are analyzed in terms of the local atomic geometry and the charge transfer effect from the neighboring Fe to Al

  6. Dissolved gaseous mercury formation and mercury volatilization in intertidal sediments.

    Science.gov (United States)

    Cesário, Rute; Poissant, Laurier; Pilote, Martin; O'Driscoll, Nelson J; Mota, Ana M; Canário, João

    2017-12-15

    Intertidal sediments of Tagus estuary regularly experiences complex redistribution due to tidal forcing, which affects the cycling of mercury (Hg) between sediments and the water column. This study quantifies total mercury (Hg) and methylmercury (MMHg) concentrations and fluxes in a flooded mudflat as well as the effects on water-level fluctuations on the air-surface exchange of mercury. A fast increase in dissolved Hg and MMHg concentrations was observed in overlying water in the first 10min of inundation and corresponded to a decrease in pore waters, suggesting a rapid export of Hg and MMHg from sediments to the water column. Estimations of daily advective transport exceeded the predicted diffusive fluxes by 5 orders of magnitude. A fast increase in dissolved gaseous mercury (DGM) concentration was also observed in the first 20-30min of inundation (maximum of 40pg L -1 ). Suspended particulate matter (SPM) concentrations were inversely correlated with DGM concentrations. Dissolved Hg variation suggested that biotic DGM production in pore waters is a significant factor in addition to the photochemical reduction of Hg. Mercury volatilization (ranged from 1.1 to 3.3ngm -2 h -1 ; average of 2.1ngm -2 h -1 ) and DGM production exhibited the same pattern with no significant time-lag suggesting a fast release of the produced DGM. These results indicate that Hg sediment/water exchanges in the physical dominated estuaries can be underestimated when the tidal effect is not considered. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Toxicity of dissolved and precipitated aluminium to marine diatoms.

    Science.gov (United States)

    Gillmore, Megan L; Golding, Lisa A; Angel, Brad M; Adams, Merrin S; Jolley, Dianne F

    2016-05-01

    Localised aluminium contamination can lead to high concentrations in coastal waters, which have the potential for adverse effects on aquatic organisms. This research investigated the toxicity of 72-h exposures of aluminium to three marine diatoms (Ceratoneis closterium (formerly Nitzschia closterium), Minutocellus polymorphus and Phaeodactylum tricornutum) by measuring population growth rate inhibition and cell membrane damage (SYTOX Green) as endpoints. Toxicity was correlated to the time-averaged concentrations of different aluminium size-fractions, operationally defined as aluminium exposure varied between diatom species. C. closterium was the most sensitive species (10% inhibition of growth rate (72-h IC10) of 80 (55-100)μg Al/L (95% confidence limits)) while M. polymorphus (540 (460-600)μg Al/L) and P. tricornutum (2100 (2000-2200)μg Al/L) were less sensitive (based on measured total aluminium). Dissolved aluminium was the primary contributor to toxicity in C. closterium, while a combination of dissolved and precipitated aluminium forms contributed to toxicity in M. polymorphus. In contrast, aluminium toxicity to the most tolerant diatom P. tricornutum was due predominantly to precipitated aluminium. Preliminary investigations revealed the sensitivity of C. closterium and M. polymorphus to aluminium was influenced by initial cell density with aluminium toxicity significantly (paluminium toxicity to diatoms do not involve compromising the plasma membrane. These results indicate that marine diatoms have a broad range in sensitivity to aluminium with toxic mechanisms related to both dissolved and precipitated aluminium. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Effects of long-term land use change on dissolved carbon characteristics in the permafrost streams of northeast China.

    Science.gov (United States)

    Guo, Yuedong; Song, Changchun; Wan, Zhongmei; Tan, Wenwen; Lu, Yongzheng; Qiao, Tianhua

    2014-11-01

    Permafrost soils act as large sinks of organic carbon but are highly sensitive to interference such as changes in land use, which can greatly influence dissolved carbon loads in streams. This study examines the effects of long-term land reclamation on seasonal concentrations of dissolved carbons in the upper reaches of the Nenjiang River, northeast China. A comparison of streams in natural and agricultural systems shows that the dissolved organic carbon (DOC) concentration is much lower in the agricultural stream (AG) than in the two natural streams (WAF, wetland dominated; FR, forest dominated), suggesting that land use change is associated with reduced DOC exporting capacity. Moreover, the fluorescence indexes and the ratio of dissolved carbon to nitrogen also differ greatly between the natural and agricultural streams, indicating that the chemical characteristics and the origin of the DOC released from the whole reaches are also altered to some extent. Importantly, the exporting concentration of dissolved inorganic carbon (DIC) and its proportion of total dissolved carbon (TDC) substantially increase following land reclamation, which would largely alter the carbon cycling processes in the downstream fluvial system. Although the strong association between the stream discharge and the DOC concentration was unchanged, the reduction in total soil organic carbon following land reclamation led to remarkable decline of the total flux and exporting coefficient of the dissolved carbons. The results suggest that dissolved carbons in permafrost streams have been greatly affected by changes in land use since the 1970s, and the changes in the concentration and chemical characteristics of dissolved carbons will last until the alteration in both the traditional agriculture pattern and the persistent reclamation activities.

  9. Characterizing Dissolved Gases in Cryogenic Liquid Fuels

    Science.gov (United States)

    Richardson, Ian A.

    Pressure-Density-Temperature-Composition (PrhoT-x) measurements of cryogenic fuel mixtures are a historical challenge due to the difficulties of maintaining cryogenic temperatures and precision isolation of a mixture sample. For decades NASA has used helium to pressurize liquid hydrogen propellant tanks to maintain tank pressure and reduce boil off. This process causes helium gas to dissolve into liquid hydrogen creating a cryogenic mixture with thermodynamic properties that vary from pure liquid hydrogen. This can lead to inefficiencies in fuel storage and instabilities in fluid flow. As NASA plans for longer missions to Mars and beyond, small inefficiencies such as dissolved helium in liquid propellant become significant. Traditional NASA models are unable to account for dissolved helium due to a lack of fundamental property measurements necessary for the development of a mixture Equation Of State (EOS). The first PrhoT-x measurements of helium-hydrogen mixtures using a retrofitted single-sinker densimeter, magnetic suspension microbalance, and calibrated gas chromatograph are presented in this research. These measurements were used to develop the first multi-phase EOS for helium-hydrogen mixtures which was implemented into NASA's Generalized Fluid System Simulation Program (GFSSP) to determine the significance of mixture non-idealities. It was revealed that having dissolved helium in the propellant does not have a significant effect on the tank pressurization rate but does affect the rate at which the propellant temperature rises. PrhoT-x measurements are conducted on methane-ethane mixtures with dissolved nitrogen gas to simulate the conditions of the hydrocarbon seas of Saturn's moon Titan. Titan is the only known celestial body in the solar system besides Earth with stable liquid seas accessible on the surface. The PrhoT-x measurements are used to develop solubility models to aid in the design of the Titan Submarine. NASA is currently designing the submarine

  10. Dissolved organic nutrients and phytoplankton production in the Mandovi estuary and coastal waters of Goa

    Digital Repository Service at National Institute of Oceanography (India)

    Verlecar, X.N.

    Total organic nitrogen (TON) and dissolved organic phosphorus (DOP) in the coastal and estuarine waters of Goa, India varied from 0.6 to 47.1 mu g-at N 1-1 and 0.12 to 3.49 mu g-at P l-1 respectively. The chlorophyll content of these waters...

  11. The phase system Fe-Ir-S at 1100, 1000 and 800 degree C

    DEFF Research Database (Denmark)

    Makovicky, Emil; Karup-Møller, Sven

    1999-01-01

    Phase relations in the dry condensed Fe-Ir-S system were determined at 1100, 1000 and 800 degrees C. Orientational runs were performed at 500 degrees C. Between 1100 and 800 degrees C, the system comprises five sulphides and an uninterrupted field of gamma(Fe, Ir). Fe1-xS dissolves 5.8 at.% Ir...... at 1100 degrees C, 3.4 at.% Ir at 1000 degrees C and 1.0 at.% Ir at 800 degrees C. The solubility of Fe in Ir2S3, IrS2 and IrSsimilar to 3 increases with decreasing temperature, reaching 2.5 at.% in the latter two sulphides at 800 degrees C. Thiospinel 'FeIr2S4' is nonstoichiometric, from Fe22.3Ir19.8S58...

  12. Dissolved oxygen detection by galvanic displacement-induced

    Indian Academy of Sciences (India)

    Dissolved oxygen detection by galvanic displacement-induced graphene/silver nanocomposite ... dissolved oxygen (DO) detection based on a galvanic displacement synthesized reduced graphene oxide–silver nanoparticles ... Current Issue

  13. Effect of Greenhouse Gases Dissolved in Seawater.

    Science.gov (United States)

    Matsunaga, Shigeki

    2015-12-30

    A molecular dynamics simulation has been performed on the greenhouse gases carbon dioxide and methane dissolved in a sodium chloride aqueous solution, as a simple model of seawater. A carbon dioxide molecule is also treated as a hydrogen carbonate ion. The structure, coordination number, diffusion coefficient, shear viscosity, specific heat, and thermal conductivity of the solutions have been discussed. The anomalous behaviors of these properties, especially the negative pressure dependence of thermal conductivity, have been observed in the higher-pressure region.

  14. Dissolved and particulate trace metal micronutrients under the McMurdo Sound seasonal sea ice: basal sea ice communities as a capacitor for iron

    Science.gov (United States)

    Noble, Abigail E.; Moran, Dawn M.; Allen, Andrew E.; Saito, Mak A.

    2013-01-01

    Dissolved and particulate metal concentrations are reported from three sites beneath and at the base of the McMurdo Sound seasonal sea ice in the Ross Sea of Antarctica. This dataset provided insight into Co and Mn biogeochemistry, supporting a previous hypothesis for water column mixing occurring faster than scavenging. Three observations support this: first, Mn-containing particles with Mn/Al ratios in excess of the sediment were present in the water column, implying the presence of bacterial Mn-oxidation processes. Second, dissolved and labile Co were uniform with depth beneath the sea ice after the winter season. Third, dissolved Co:PO3−4 ratios were consistent with previously observed Ross Sea stoichiometry, implying that over-winter scavenging was slow relative to mixing. Abundant dissolved Fe and Mn were consistent with a winter reserve concept, and particulate Al, Fe, Mn, and Co covaried, implying that these metals behaved similarly. Elevated particulate metals were observed in proximity to the nearby Islands, with particulate Fe/Al ratios similar to that of nearby sediment, consistent with a sediment resuspension source. Dissolved and particulate metals were elevated at the shallowest depths (particularly Fe) with elevated particulate P/Al and Fe/Al ratios in excess of sediments, demonstrating a sea ice biomass source. The sea ice biomass was extremely dense (chl a >9500 μg/L) and contained high abundances of particulate metals with elevated metal/Al ratios. A hypothesis for seasonal accumulation of bioactive metals at the base of the McMurdo Sound sea ice by the basal algal community is presented, analogous to a capacitor that accumulates iron during the spring and early summer. The release and transport of particulate metals accumulated at the base of the sea ice by sloughing is discussed as a potentially important mechanism in providing iron nutrition during polynya phytoplankton bloom formation and could be examined in future oceanographic

  15. Dissolvable microneedle fabrication using piezoelectric dispensing technology.

    Science.gov (United States)

    Allen, Evin A; O'Mahony, Conor; Cronin, Michael; O'Mahony, Thomas; Moore, Anne C; Crean, Abina M

    2016-03-16

    Dissolvable microneedle (DMN) patches are novel dosage forms for the percutaneous delivery of vaccines. DMN are routinely fabricated by dispensing liquid formulations into microneedle-shaped moulds. The liquid formulation within the mould is then dried to create dissolvable vaccine-loaded microneedles. The precision of the dispensing process is critical to the control of formulation volume loaded into each dissolvable microneedle structure. The dispensing process employed must maintain vaccine integrity. Wetting of mould surfaces by the dispensed formulation is also an important consideration for the fabrication of sharp-tipped DMN. Sharp-tipped DMN are essential for ease of percutaneous administration. In this paper, we demonstrate the ability of a piezoelectric dispensing system to dispense picolitre formulation volumes into PDMS moulds enabling the fabrication of bilayer DMN. The influence of formulation components (trehalose and polyvinyl alcohol (PVA) content) and piezoelectric actuation parameters (voltage, frequency and back pressure) on drop formation is described. The biological integrity of a seasonal influenza vaccine following dispensing was investigated and maintained voltage settings of 30 V but undermined at higher settings, 50 and 80 V. The results demonstrate the capability of piezoelectric dispensing technology to precisely fabricate bilayer DMN. They also highlight the importance of identifying formulation and actuation parameters to ensure controlled droplet formulation and vaccine stabilisation. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Rare earth elements (REE) and yttrium in stream waters, stream sediments, and Fe Mn oxyhydroxides: Fractionation, speciation, and controls over REE + Y patterns in the surface environment

    Science.gov (United States)

    Leybourne, Matthew I.; Johannesson, Karen H.

    2008-12-01

    We have collected ˜500 stream waters and associated bed-load sediments over an ˜400 km 2 region of Eastern Canada and analyzed these samples for Fe, Mn, and the rare earth elements (REE + Y). In addition to analyzing the stream sediments by total digestion (multi-acid dissolution with metaborate fusion), we also leached the sediments with 0.25 M hydroxylamine hydrochloride (in 0.05 M HCl), to determine the REE + Y associated with amorphous Fe- and Mn-oxyhydroxide phases. We are thus able to partition the REE into "dissolved" (primary sources, the host lithologies (i.e., mechanical dispersion) and hydromorphically transported (the labile fraction). Furthermore, Eu appears to be more mobile than the other REE, whereas Ce is preferentially removed from solution and accumulates in the stream sediments in a less labile form than the other REEs + Y. Despite poor statistical correlations between the REEs + Y and Mn in either the total sediment or partial extractions, based on apparent distribution coefficients and the pH of the stream waters, we suggest that either sediment organic matter and/or possibly δ-MnO 2/FeOOH are likely the predominant sinks for Ce, and to a lesser extent the other REE, in the stream sediments.

  17. Anisotropic magnetization of Fe8 molecular nanomagnet

    International Nuclear Information System (INIS)

    Ueda, Miki; Maegawa, Satoru

    2002-01-01

    The magnetization of the single crystal of a molecular magnet [(C 6 H 15 N 3 ) 6 Fe 8 O 2 (OH) 12 ] Br 7 (H 2 O) Br·8H 2 O, Fe8, has been measured in the temperature down to 1.8 K and the field up to 5 T. The molecule Fe8 consists of eight Fe 3+ ions with spins s=5/2. The magnetization at low temperatures shows large anisotropy depending on the orientation of the external magnetic field. The temperature and magnetic field dependences of the magnetization are well explained by the Hamiltonian for the isolated molecules with total spins S=10. The anisotropies of D and E are estimated to be -0.276 K and -0.035 K, respectively. (author)

  18. Mathematical modeling of dissolved oxygen in fish ponds ...

    African Journals Online (AJOL)

    Mathematical modeling of dissolved oxygen in fish ponds. WJS Mwegoha, ME Kaseva, SMM Sabai. Abstract. A mathematical model was developed to predict the effects of wind speed, light, pH, Temperature, dissolved carbon dioxide and chemical oxygen demand (COD) on Dissolved Oxygen (DO) in fish ponds. The effects ...

  19. Effects of V and Cr on Laser Cladded Fe-Based Coatings

    Directory of Open Access Journals (Sweden)

    Haiyang Wang

    2018-03-01

    Full Text Available Fe-based coatings with high V and Cr content were obtained by laser cladding using Fe-based powder with different Cr3C2 and FeV50 content. The results showed that Fe-based coatings were uniform and dense. The constituent phases were mainly composed of α-Fe solid solution with the increase of Cr3C2 and FeV50, γ-Fe and V8C7 phases were achieved. The microstructure of the coatings exhibited a typical dendrite structure. The concentration of C, V and Cr were saturated in dendritic areas, and the other alloying elements were mainly dissolved in the interdendritic areas. The hardness and wear resistance of Fe-based coatings were enhanced with the Cr3C2 and FeV50 addition. The specimen with 15% Cr3C2 and 16% FeV50 had the highest hardness of 66.1 ± 0.6 HRC, which was 1.05 times higher than the sample with 4.5% Cr3C2 and 5% FeV50, and the wear resistance of the former was three times greater than the latter.

  20. Dissolved strontium and calcium levels in the tropical Indian Ocean

    Science.gov (United States)

    Steiner, Zvi; Sarkar, Amit; Turchyn, Alexandra

    2017-04-01

    Measurements of seawater alkalinity and dissolved calcium concentrations along oceanic transects are often used to calculate calcium carbonate precipitation and dissolution rates. Given that the distribution coefficient of strontium in CaCO3 varies greatly between different groups of organisms, adding precise measurements of dissolved strontium concentrations provides opportunities to also track relative contributions of these different groups to the regional CaCO3 cycle. However, there are several obstacles to this approach. These obstacles include unresolved systematic discrepancies between seawater calcium and alkalinity data, very large analytical noise around the calcium concentration measurements and the unconstrained role of acantharia (radiolarian precipitating SrSO4 skeletons) in the marine strontium cycle. During the first cruise of the second International Indian Ocean Expedition (IIOE-2) water samples were collected along 67°E from 9°N to 5°S to explore the dissolution rate of calcium carbonate in the water. The dissolution rate can be calculated by combining measurements of water column potential alkalinity with calcium and strontium concentrations measured by ICP-OES and calcium concentration measurements using isotope dilution thermal ionization mass spectrometry (ID-TIMS). CaCO3 mineral saturation state calculated using pH and total alkalinity suggests that along 67°E, the aragonite saturation horizon lays at depth of 500 m on both sides of the equator. Across the cruise transect, dissolved strontium concentrations increase by 2-3% along the thermocline suggesting rapid recycling of strontium rich phases. This is particularly evident just below the thermocline at 8-9°N and below 1000 m water depth, south of the equator. The deep, southern enrichment in strontium does not involve a change in the Sr/Ca ratio, suggesting that this strontium enrichment is related to CaCO3 dissolution. In contrast, in the intermediate waters of the northern part of

  1. Distributions and seasonal variations of dissolved carbohydrates in the Jiaozhou Bay, China

    Science.gov (United States)

    Yang, Gui-Peng; Zhang, Yan-Ping; Lu, Xiao-Lan; Ding, Hai-Bing

    2010-06-01

    Surface seawater samples were collected in the Jiaozhou Bay, a typical semi-closed basin located at the western part of the Shandong Peninsula, China, during four cruises. Concentrations of monosaccharides (MCHO), polysaccharides (PCHO) and total dissolved carbohydrates (TCHO) were measured with the 2,4,6-tripyridyl- s-triazine spectroscopic method. Concentrations of TCHO varied from 10.8 to 276.1 μM C for all samples and the ratios of TCHO to dissolved organic carbon (DOC) ranged from 1.1 to 67.9% with an average of 10.1%. This result indicated that dissolved carbohydrates were an important constituent of DOC in the surface seawater of the Jiaozhou Bay. In all samples, the concentrations of MCHO ranged from 2.9 to 65.9 μM C, comprising 46.1 ± 16.6% of TCHO on average, while PCHO ranged from 0.3 to 210.2 μM C, comprising 53.9 ± 16.6% of TCHO on average. As a major part of dissolved carbohydrates, the concentrations of PCHO were higher than those of MCHO. MCHO and PCHO accumulated in January and July, with minimum average concentration in April. The seasonal variation in the ratios of TCHO to DOC was related to water temperature, with high values in January and low values in July and October. The concentrations of dissolved carbohydrates displayed a decreasing trend from the coastal to the central areas. Negative correlations between concentrations of TCHO and salinity in July suggested that riverine input around the Jiaozhou Bay had an important effect on the concentrations of dissolved carbohydrates in surface seawater. The pattern of distributions of MCHO and PCHO reported in this study added to the global picture of dissolved carbohydrates distribution.

  2. Simultaneous absorption of NO and SO{sub 2} into Fe-II-EDTA solution coupled with the Fe-II-EDTA regeneration catalyzed by activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, H.S.; Mao, Y.P.; Yang, X.J.; Chen, Y.; Long, X.L.; Yuan, W.K. [East China University of Science & Technology, Shanghai (China)

    2010-07-30

    The simultaneous removal of NO and SO{sub 2} from flue gases can be realized with Fe(II)-ethylenediamineteraacetate (EDTA) solution. Activated carbon is used to catalyze the reduction of Fe-III-EDTA to Fe-II-EDTA to maintain the capability of removing NO of the Fe-EDTA solution. The reductant is the sulfite/bisulfite ions produced by SO{sub 2} dissolving into the aqueous solution. Experiments have been performed to determine the effects of activated carbon of coconut shell, Fe-II-EDTA concentration, Fe/EDTA molar ratio, SO{sub 2} partial pressure, NO partial pressure and SO{sub 4}{sup 2-} concentration on the combined elimination of NO and SO{sub 2} with Fe-II-EDTA solution coupled with the Fe-II-EDTA regeneration catalyzed by activated carbon. According to the experimental results, activated carbon not only catalyzes the reduction of Fe-III-EDTA by sulfite/bisulfite greatly but also avoids the release of N{sub 2}O. The NO removal efficiency increases with the initial Fe-II-EDTA concentration and SO{sub 2} partial pressure. The ratio of Fe/EDTA and the SO{sub 4}{sup 2-} concentration has little effect on the catalytic reduction of Fe-III-EDTA. The optimal initial NO concentration range is from 600 ppm to 900 ppm. The experimental results manifest that the Fe-II-EDTA solution coupled with catalytic regeneration of Fe-II-EDTA can maintain high nitric oxide removal efficiency for a long period of time.

  3. Substrate matters: Magnetic tuning of the Fe monolayer

    Energy Technology Data Exchange (ETDEWEB)

    Ramanathan, A.A.; Khalifeh, J.M.

    2017-03-15

    The effect of substrate on the magnetism of the Fe monolayer (ML) is investigated using the total energy DFT calculations with the local spin density approximation (LSDA). The results show an in plane ferromagnetic coupling (FM) and a magnetic moment of 1.78 µ{sub B} for the relaxed Fe ML in the presence of the vanadium substrate. In comparison, the surface Fe(001) magnetic moment ranges between 2.97–3.01 µ{sub B}. This difference in the Fe surface moment of more than 1 µ{sub B} in the presence or absence of Vanadium allows tuning of the Fe magnetic moment and has great potential as a magnetic switch and in spintronic devices. The surface magnetic quenching of Fe with V is much more pronounced than with other transition metal substrates like Molybdenum or Tungsten. We have a reduction of 40.5% of the Fe (001) surface moment which is more than double the reduction obtained with the Fe/Mo(001) or the Fe/W(001) systems. The magnetic quenching is due to the strong hybridization between the Fe and V d bands. This is supported by the observed charge density redistribution and large inward relaxation of 18.37% for the Fe surface upon structural relaxation. The Fe ML is antiferromagnetically (AF) coupled with the V interfacial layer, which has an appreciable induced magnetic moment of 0.48 µ{sub B}. - Highlights: • We report the magnetic quenching of a Fe ML on V(001) substrate. • Almost double as compared to Mo and W substrates. • The Fe surface ML on V(001) shows FM ordering as opposed to AF ordering for Fe ML on Mo(001) and W(001) substrates.

  4. Oxidation by UV and ozone of organic contaminants dissolved in deionized and raw mains water

    International Nuclear Information System (INIS)

    Francis, P.D.

    1987-01-01

    Organic contaminants dissolved in deionized pretreated and raw mains water were reacted with ultraviolet light and ozone. Ozone first was used for partial oxidation followed by ozone combined with ultraviolet radiation to produce total oxidation. The reduction of total organic carbon (TOC) level and direct oxidation of halogenated compounds were measured throughout the treatment process. The rate of TOC reduction was compared for ozone injected upstream and inside the reactor

  5. Estimation of Particle Material And Dissolved Flows During Floods In The Inaouene Watershed. (Northeast Of Morocco)

    Science.gov (United States)

    Sibari, Hayat; Haida, Souad; Foutlane, Mohamed

    2018-05-01

    This work aims to estimate the contributions of the Inaouene River during the floods. It is in this context that the dissolved and particulate matter flows were measured during the flood periods followed by the 1996/97 study year at the two hydrological stations Bab Marzouka (upstream) and El Kouchat (downstream). The specific flows of dissolved materials calculated upstream and downstream of the Inaouene watershed correspond respectively to 257 t/ km2/year and 117 t/ km2/year. Chlorides represent 30% and 41% respectively of the total dissolved transport upstream and downstream. The potential mechanical degradation affecting the Inaouene watershed can deliver a solid load estimated at 6.106 t/year corresponding to a specific flow of 2142 t/km2/year.

  6. Linking CDOM spectral absorption to dissolved organic carbon concentrations and loadings in boreal estuaries

    DEFF Research Database (Denmark)

    Asmala, Eero; Stedmon, Colin A.; Thomas, David N.

    2012-01-01

    concentrations across the salinity gradient and ranged from 1.67 to 33.4 m−1. The link between DOC and CDOM was studied using a range of wavelengths and algorithms. Wavelengths between 250 and 270 nm gave the best predictions with single linear regression. Total dissolved iron was found to influence......The quantity of chromophoric dissolved organic matter (CDOM) and dissolved organic carbon (DOC) in three Finnish estuaries (Karjaanjoki, Kyrönjoki and Kiiminkijoki) was investigated, with respect to predicting DOC concentrations and loadings from spectral CDOM absorption measurements. Altogether 87...... the prediction in wavelengths above 520nm. Despite significant seasonal and spatial differences in DOC–CDOM models, a universal relationship was tested with an independent data set and found to be robust. DOC and CDOM yields (loading/catchment area) from the catchments ranged from 1.98 to 5.44gCm−2yr−1, and 1...

  7. HB-Line Dissolver Dilution Flows and Dissolution Capability with Dissolver Charge Chute Cover Off

    International Nuclear Information System (INIS)

    Hallman, D.F.

    2003-01-01

    A flow test was performed in Scrap Recovery of HB-Line to document the flow available for hydrogen dilution in the dissolvers when the charge chute covers are removed. Air flow through the dissolver charge chutes, with the covers off, was measured. A conservative estimate of experimental uncertainty was subtracted from the results. After subtraction, the test showed that there is 20 cubic feet per minute (cfm) air flow through the dissolvers during dissolution with a glovebox exhaust fan operating, even with the scrubber not operating. This test also showed there is 6.6 cfm air flow through the dissolvers, after subtraction of experimental uncertainty if the scrubber and the glovebox exhaust fans are not operating. Three H-Canyon exhaust fans provide sufficient motive force to give this 6.6 cfm flow. Material charged to the dissolver will be limited to chemical hydrogen generation rates that will be greater than or equal to 25 percent of the Lower Flammability Limit (LFL) during normal operations. The H-Canyon fans will maintain hydrogen below LFL if electrical power is lost. No modifications are needed in HB-Line Scrap Recovery to ensure hydrogen is maintained less that LFL if the scrubber and glovebox exhaust fans are not operating

  8. Influence of Oxygen and Nitrate on Fe (Hydr)oxide Mineral Transformation and Soil Microbial Communities during Redox Cycling.

    Science.gov (United States)

    Mejia, Jacqueline; Roden, Eric E; Ginder-Vogel, Matthew

    2016-04-05

    Oscillations between reducing and oxidizing conditions are observed at the interface of anaerobic/oxic and anaerobic/anoxic environments, and are often stimulated by an alternating flux of electron donors (e.g., organic carbon) and electron acceptors (e.g., O2 and NO3(-)). In iron (Fe) rich soils and sediments, these oscillations may stimulate the growth of both Fe-reducing bacteria (FeRB) and Fe-oxidizing bacteria (FeOB), and their metabolism may induce cycling between Fe(II) and Fe(III), promoting the transformation of Fe (hydr)oxide minerals. Here, we examine the mineralogical evolution of lepidocrocite and ferrihydrite, and the adaptation of a natural microbial community to alternating Fe-reducing (anaerobic with addition of glucose) and Fe-oxidizing (with addition of nitrate or air) conditions. The growth of FeRB (e.g., Geobacter) is stimulated under anaerobic conditions in the presence of glucose. However, the abundance of these organisms depends on the availability of Fe(III) (hydr)oxides. Redox cycling with nitrate results in decreased Fe(II) oxidation thereby decreasing the availability of Fe(III) for FeRB. Additionally, magnetite is detected as the main product of both lepidocrocite and ferrihydrite reduction. In contrast, introduction of air results in increased Fe(II) oxidation, increasing the availability of Fe(III) and the abundance of Geobacter. In the lepidocrocite reactors, Fe(II) oxidation by dissolved O2 promotes the formation of ferrihydrite and lepidocrocite, whereas in the ferrihydrite reactors we observe a decrease in magnetite stoichiometry (e.g., oxidation). Understanding Fe (hydr)oxide transformation under environmentally relevant redox cycling conditions provides insight into nutrient availability and transport, contaminant mobility, and microbial metabolism in soils and sediments.

  9. Identification of dissolved-constituent sources in mine-site ground water using batch mixing

    Science.gov (United States)

    Clark, Gregory M.; Williams, Robert S.

    1991-01-01

    Batch-mixing experiments were used to help identify lithologic and mineralogic sources of increased concentrations of dissolved solids in water affected by surface coal mining in northwestern Colorado. Ten overburden core samples were analyzed for mineral composition and mixed with distilled water for 90 days until mineral-water equilibrium was reached. Between one day and 90 days after initial contact, specific conductance in the sample mixtures had a median increase of 306 percent. Dissolved-solids concentrations ranged from 200 to 8,700 mg/L in water samples extracted from the mixtures after 90 days. Mass-balance simulations were conducted using the geochemical models BALANCE and WATEQF to quantify mineral-water interactions occurring in five selected sample mixtures and in water collected from a spring at a reclaimed mine site. The spring water is affected by mineral-water interactions occurring in all of the lithologic units comprising the overburden. Results of the simulations indicate that oxidation of pyrite, dissolution of dolomite, gypsum, and epsomite, and cation-exchange reactions are the primary mineral-water interactions occurring in the overburden. Three lithologic units in the overburden (a coal, a sandstone, and a shale) probably contribute most of the dissolved solids to the spring water. Water sample extracts from mixtures using core from these three units accounted for 85 percent of the total dissolved solids in the 10 sample extracts. Other lithologic units in the over-burden probably contribute smaller quantities of dissolved solids to the spring water.

  10. Identification of dissolved-constituent sources in mine-site ground water using batch mixing

    International Nuclear Information System (INIS)

    Clark, G.M.; Williams, R.S. Jr.

    1991-01-01

    Batch-mixing experiments were used to help identify lithologic mineralogic sources of increased concentrations of dissolved solids in water affected by surface coal mining in northwestern Colorado. Ten overburden core samples were analyzed for mineral composition and mixed with distilled water for 90 days until mineral-water equilibrium was reached. Dissolved-solids concentrations ranged from 200 to 8,700 mg/L in water samples extracted from the mixtures after 90 days. Mass-balance simulations were conducted using the geochemical models BALANCE and WATEQF to quantify mineral-water interactions occurring in five selected sample mixtures and in water collected from a spring at a reclaimed mine site. The spring water is affected by mineral-water interactions occurring in all of lithologic units comprising the overburden. Results of the simulations indicate that oxidation of pyrite, dissolution of dolomite, gypsum, and epsomite, and cation-exchange reactions are the primary mineral-water interactions occurring in the overburden. Three lithologic units in the overburden probably contribute most of the dissolved solids to the spring water. Water sample extracts from mixtures using core from these three units accounted for 85 percent of the total dissolved solids in the 10 sample extracts. Other lithologic units in the overburden probably contribute smaller quantities of dissolved solids to the spring water

  11. Inner filter correction of dissolved organic matter fluorescence

    DEFF Research Database (Denmark)

    Kothawala, D.N.,; Murphy, K.R.; Stedmon, Colin

    2013-01-01

    The fluorescence of dissolved organic matter (DOM) is suppressed by a phenomenon of self-quenching known as the inner filter effect (IFE). Despite widespread use of fluorescence to characterize DOM in surface waters, the advantages and constraints of IFE correction are poorly defined. We assessed...... the effectiveness of a commonly used absorbance-based approach (ABA), and a recently proposed controlled dilution approach (CDA) to correct for IFE. Linearity between corrected fluorescence and total absorbance (ATotal; the sum of absorbance at excitation and emission wavelengths) across the full excitation......-emission matrix (EEM) in dilution series of four samples indicated both ABA and CDA were effective to an absorbance of at least 1.5 in a 1 cm cell, regardless of wavelength positioning. In regions of the EEMs where signal to background noise (S/N) was low, CDA correction resulted in more variability than ABA...

  12. No effect of H2O degassing on the oxidation state of hydrous rhyolite magmas: a comparison of pre- and post-eruptive Fe2+ concentrations in six obsidian samples from the Mexican and Cascade arcs

    Science.gov (United States)

    Waters, L.; Lange, R. A.

    2011-12-01

    The extent to which degassing affects the oxidation state of arc magmas is widely debated. Several researchers have examined how degassing of mixed H-C-O-S-Cl fluids may change the Fe3+/FeT ratio of magmas, and it has been proposed that degassing may induce either oxidation or reduction depending on the initial oxidation state. A commonly proposed oxidation reaction is related to H2O degassing: H2O (melt) + 2FeO (melt) = H2 (fluid) + Fe2O3 (melt). Another mechanism by which H2O degassing can affect the iron redox state is if dissolved water affects the activity of ferrous and/or ferric iron in the melt. Although Moore et al. (1995) presented experiments showing no evidence of an affect of dissolved water on the activity of the ferric-ferrous ratio in silicate melts, other experimental results (e.g., Baker and Rutherford, 1996; Gaillard et al., 2001; 2003) indicate that there may be such an effect in rhyolite liquids. It has long been understood that rhyolites, owing to their low total iron concentrations, are more sensitive than other magma types to degassing-induced change in redox state. Therefore, a rigorous test of whether H2O degassing affects the redox state of arc magmas is best evaluated on rhyolites. In this study, a comparison is made between the pre-eruptive (pre-degassing) Fe2+ concentrations in six, phenocryst-poor (volatiles, as indicated by the low loss on ignition values (LOI ≤ 0.7 wt%). In order to test how much oxidation of ferrous iron occurred as a consequence of that degassing, we measured the ferrous iron concentration in the bulk samples by titration, using the Wilson (1960) method, which was successfully tested again three USGS and one Canadian Geological Survey standards. Our results indicate no detectable change within analytical error between pre- and post-eruptive FeO concentrations, with an average deviation of 0.09 wt% and a maximum deviation of 0.15 wt%. Our results show that H2O degassing has no effect on the redox state of

  13. Hydrothermal synthesis of NiFe2O4 nano-particles: structural ...

    Indian Academy of Sciences (India)

    2. Experimental. In order to synthesize NiFe2O4 nano-particles, Ni(NO3)2· ... Nickel and iron nitrates are dissolved in distilled ... are in good agreement with standard JCPDS: 86-2267. The ... in order to evaluate micro-strain (ε) and crystallite size (D) using the ..... Impedance spectroscopic studies are useful for investigating.

  14. Utilizing chromophoric dissolved organic matter measurements to derive export and reactivity of dissolved organic carbon exported to the Arctic Ocean: A case study of the Yukon River, Alaska

    Science.gov (United States)

    Spencer, R.G.M.; Aiken, G.R.; Butler, K.D.; Dornblaser, M.M.; Striegl, Robert G.; Hernes, P.J.

    2009-01-01

    The quality and quantity of dissolved organic matter (DOM) exported by Arctic rivers is known to vary with hydrology and this exported material plays a fundamental role in the biogeochemical cycling of carbon at high latitudes. We highlight the potential of optical measurements to examine DOM quality across the hydrograph in Arctic rivers. Furthermore, we establish chromophoric DOM (CDOM) relationships to dissolved organic carbon (DOC) and lignin phenols in the Yukon River and model DOC and lignin loads from CDOM measurements, the former in excellent agreement with long-term DOC monitoring data. Intensive sampling across the historically under-sampled spring flush period highlights the importance of this time for total export of DOC and particularly lignin. Calculated riverine DOC loads to the Arctic Ocean show an increase from previous estimates, especially when new higher discharge data are incorporated. Increased DOC loads indicate decreased residence times for terrigenous DOM in the Arctic Ocean with important implications for the reactivity and export of this material to the Atlantic Ocean. Citation: Spencer, R. G. M., G. R. Aiken, K. D. Butler, M. M. Dornblaser, R. G. Striegl, and P. J. Hernes (2009), Utilizing chromophoric dissolved organic matter measurements to derive export and reactivity of dissolved organic carbon exported to the Arctic Ocean: A case study of the Yukon River, Alaska, Geophys. Res. Lett., 36, L06401, doi:10.1029/ 2008GL036831. Copyright 2009 by the American Geophysical Union.

  15. Bioavailability of organically bound Fe to model phytoplankton of the Southern Ocean

    Directory of Open Access Journals (Sweden)

    C. S. Hassler

    2009-10-01

    Full Text Available Iron (Fe is known to be mostly bound to organic ligands and to limit primary productivity in the Southern Ocean. It is thus important to investigate the bioavailability of organically bound Fe. In this study, we used four phytoplankton species of the Southern Ocean (Phaeocystis sp., Chaetoceros sp., Fragilariopsis kerguelensis and Thalassiosira antarctica Comber to measure the influence of various organic ligands on Fe solubility and bioavailability. Short-term uptake Fe:C ratios were inversely related to the surface area to volume ratios of the phytoplankton. The ratio of extracellular to intracellular Fe is used to discuss the relative importance of diffusive supply and uptake to control Fe bioavailability. The effect of excess organic ligands on Fe bioavailability cannot be solely explained by their effect on Fe solubility. For most strains studied, the bioavailability of Fe can be enhanced relative to inorganic Fe in the presence of porphyrin, catecholate siderophore and saccharides whereas it was decreased in presence of hydroxamate siderophore and organic amine. For Thalassiosira, iron bioavailability was not affected by the presence of porphyrin, catecholate siderophore and saccharides. The enhancement of Fe bioavailability in presence of saccharides is presented as the result from both the formation of bioavailable (or chemically labile organic form of Fe and the stabilisation of Fe within the dissolved phase. Given the ubiquitous presence of saccharides in the ocean, these compounds might represent an important factor to control the basal level of soluble and bioavailable Fe. Results show that the use of model phytoplankton is promising to improve mechanistic understanding of Fe bioavailability and primary productivity in HNLC regions of the ocean.

  16. Acid-base properties of Baltic Sea dissolved organic matter

    Science.gov (United States)

    Hammer, Karoline; Schneider, Bernd; Kuliński, Karol; Schulz-Bull, Detlef E.

    2017-09-01

    Calculations related to the marine CO2 system that are based on alkalinity data may be strongly biased if the contributions of organic compounds are ignored. In coastal seas, concentrations of dissolved organic matter (DOM) are frequently high and alkalinity from inorganic compounds is low. In this study, based on measurements of total alkalinity, total CO2, and pH, we determined the organic alkalinity, Aorg, in water from the central Baltic Sea. The maximum Aorg measured in the surface mixed layer during the spring bloom was > 50 μmol/kg-SW but the Aorg decreased with depth and approached zero below the permanent halocline. This behavior could be attributed to the decreased pH of deeper water layers. The data were used to calculate the bulk dissociation constant, KDOM, for marine DOM and the fraction f of dissolved organic carbon (DOC) that acts as a carrier for acid-base functional groups. The p KDOM (7.27) agreed well with the value (7.34) previously estimated in a preliminary study of organic alkalinity in the Baltic Sea. The fraction of carbon atoms carrying acid-base groups was 17% and was somewhat higher than previously reported (12%). Spike experiments performed using artificial seawater and three different humic/fulvic substances tested whether the acid-base properties of these substances explain the results of our field study. Specifically, Aorg was determined at different concentrations (DOC) of the added humic/fulvic substances. The relationship between Aorg and the DOC concentrations indicated that humic/fulvic substances are more acidic (p KDOM < 6.5) than the bulk DOC natural occurring in the Baltic Sea.

  17. Water and dissolved gas geochemistry of the monomictic Paterno sinkhole (central Italy

    Directory of Open Access Journals (Sweden)

    Matteo Nocentini

    2012-07-01

    Full Text Available This paper describes the chemical and isotope features of water and dissolved gases from lake Paterno (max. depth 54 m, a sinkhole located in the NE sector of the S. Vittorino plain (Rieti, Central Italy, where evidences of past and present hydrothermal activity exists. In winter (February 2011 lake Paterno waters were almost completely mixed, whereas in summer time (July 2011 thermal and chemical stratifications established. During the stratification period, water and dissolved gas chemistry along the vertical water column were mainly controlled by biological processes, such as methanogenesis, sulfate-reduction, calcite precipitation, denitrification, and NH4 and H2 production. Reducing conditions at the interface between the bottom sediments and the anoxic waters are responsible for the relatively high concentrations of dissolved iron (Fe and manganese (Mn, likely present in their reduced oxidation state. Minerogenic and biogenic products were recognized at the lake bottom even during the winter sampling. At relatively shallow depth the distribution of CH4 and CO2 was controlled by methanotrophic bacteria and photosynthesis, respectively. The carbon isotope signature of CO2 indicates a significant contribution of deep-originated inorganic CO2 that is related to the hydrothermal system feeding the CO2-rich mineralized springs discharging in the surrounding areas of lake Paterno. The seasonal lake stratification likely controls the vertical and horizontal distribution of fish populations in the different periods of the year.

  18. Synthesis of BiFeO3 by carbonate precipitation

    Indian Academy of Sciences (India)

    tional ceramic synthesis approach of mixing and heating the oxides of Bi and Fe ... −1 . Phase identification was carried out by X-ray powder diffraction using a PAN analytic ... of the total Fe ions in the starting solution have entered the. Bi2CO5 ...

  19. Ecological consequences of elevated total dissolved solids associated with fossil fuel extraction in the United States

    Science.gov (United States)

    Fossil fuel burning is considered a major contributor to global climate change. The outlook for production and consumption of fossil fuels int he US indicates continued growth to support growing energy demands. For example, coal-generated electricity is projected ot increase from...

  20. Changes in nutrient, dissolved oxygen and total suspended matter during simulated placer mining

    Digital Repository Service at National Institute of Oceanography (India)

    Sijinkumar, A.V.; Naik, T.; Nath, B.N.; Sharma, R.

    In order to study the impact of placer mining on shallow coastal waters, a simulated sand mining experiment was carried out in Kalbadevi, Ratnagiri, west coast of India, which is recognized as one of the future sand mining sites. Water column...

  1. Dissolve energy obesity by energy diet

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Heum [Sunmoon University, Asan (Korea)

    2000-07-01

    Every organism takes needed materials or energy from outside and excretes unessential things to outside. This is called a metabolism or energy metabolism. Calculating the amount of energy consumed by human in the world by converting to the amount of metabolism of an animal to survive, the weight of a human being is corresponding to an animal with a weigh of 40 ton. Human beings can find a solution to dissolve energy obesity or can maintain a massive status by finding a new energy source in the universe.

  2. Effect of Greenhouse Gases Dissolved in Seawater

    Directory of Open Access Journals (Sweden)

    Shigeki Matsunaga

    2015-12-01

    Full Text Available A molecular dynamics simulation has been performed on the greenhouse gases carbon dioxide and methane dissolved in a sodium chloride aqueous solution, as a simple model of seawater. A carbon dioxide molecule is also treated as a hydrogen carbonate ion. The structure, coordination number, diffusion coefficient, shear viscosity, specific heat, and thermal conductivity of the solutions have been discussed. The anomalous behaviors of these properties, especially the negative pressure dependence of thermal conductivity, have been observed in the higher-pressure region.

  3. The Evolution of Deepwater Dissolved Oxygen in the Northern South China Sea During the Past 400 ka

    Science.gov (United States)

    Wang, N.; Huang, B.; Dong, Y.

    2016-12-01

    Reconstruction of dissolved oxygen in paleo-ocean contributes toward understanding the history of ocean circulation, climate, causes of extinctions, and the evolution of marine organisms. Based on analysis of benthic foraminifera oxygen index (BFOI), the redox-sensitive trace elements (Mo/Al), the percentage of epifaunal benthic foraminifera and infaunal/epifaunal ratio at core MD12-3432, we reconstruct the evolution of deep water dissolved oxygen in northern South China Sea (SCS) during the past 400 ka and discuss the mechanisms of variable dissolved oxygen. Both BFOI and Mo/Al are redox indicators. Similar trends confirm that they reflect the variation of dissolved oxygen in seawater since 400 ka accurately. BFOI and Mo/Al indicate that dissolved oxygen was high in MIS 11-MIS 7 and decreased gradually during MIS 6- MIS 2. The percentage of epifauna decreased and infaunal/epifaunal ratio increased with decreasing dissolved oxygen. By comparison of dissolved oxygen and productivity indexes such as phytoplankton total (PT) and species abundances, we found that when PT fluctuated in the average range of 1000-1500 ng/g, the abundances of Bulimina and Uvigerina which represent high productivity increased. However, when PT reached the range of 2500-3000 ng/g, the abundances of Bulimina and Uvigerina didn't increase, but the abundances of dysoxic species Chilostomella oolina and Globobulimina pacifica increased and the dissolved oxygen reached low value. The reasons may be that the decomposition of excessive organic matter consumed more dissolved oxygen. The low dissolved oxygen suppressed the growth of Bulimina and Uvigerina and accelerated the boom of C. oolina and G. oolina. The dissolved oxygen is not only associated with productivity, but also affected by the thermohaline circulation. Benthic foraminifera F. favus is the representative species in Pacific deep water. Its appearance at 194 ka, 205 ka, 325, the 328 ka in MD12-3432 indicate that the upper border of

  4. A model of Fe speciation and biogeochemistry at the Tropical Eastern North Atlantic Time-Series Observatory site

    Science.gov (United States)

    Ye, Y.; Völker, C.; Wolf-Gladrow, D. A.

    2009-10-01

    A one-dimensional model of Fe speciation and biogeochemistry, coupled with the General Ocean Turbulence Model (GOTM) and a NPZD-type ecosystem model, is applied for the Tropical Eastern North Atlantic Time-Series Observatory (TENATSO) site. Among diverse processes affecting Fe speciation, this study is focusing on investigating the role of dust particles in removing dissolved iron (DFe) by a more complex description of particle aggregation and sinking, and explaining the abundance of organic Fe-binding ligands by modelling their origin and fate. The vertical distribution of different particle classes in the model shows high sensitivity to changing aggregation rates. Using the aggregation rates from the sensitivity study in this work, modelled particle fluxes are close to observations, with dust particles dominating near the surface and aggregates deeper in the water column. POC export at 1000 m is a little higher than regional sediment trap measurements, suggesting further improvement of modelling particle aggregation, sinking or remineralisation. Modelled strong ligands have a high abundance near the surface and decline rapidly below the deep chlorophyll maximum, showing qualitative similarity to observations. Without production of strong ligands, phytoplankton concentration falls to 0 within the first 2 years in the model integration, caused by strong Fe-limitation. A nudging of total weak ligands towards a constant value is required for reproducing the observed nutrient-like profiles, assuming a decay time of 7 years for weak ligands. This indicates that weak ligands have a longer decay time and therefore cannot be modelled adequately in a one-dimensional model. The modelled DFe profile is strongly influenced by particle concentration and vertical distribution, because the most important removal of DFe in deeper waters is colloid formation and aggregation. Redissolution of particulate iron is required to reproduce an observed DFe profile at TENATSO site

  5. The Distribution of Dissolved Iron in the West Atlantic Ocean

    NARCIS (Netherlands)

    Rijkenberg, M.J.A.; Middag, R.; Laan, P.; Gerringa, L.J.A.; van Aken, H.M.; Schoemann, V.; de Jong, J.T.; de Baar, H.J.W.

    2014-01-01

    Iron (Fe) is an essential trace element for marine life. Extremely low Fe concentrations limit primary production and nitrogen fixation in large parts of the oceans and consequently influence ocean ecosystem functioning. The importance of Fe for ocean ecosystems makes Fe one of the core chemical

  6. Correlation of reactivity with structural factors in a series of Fe(II) substituted cobalt ferrites

    International Nuclear Information System (INIS)

    Sileo, Elsa E.; Garcia Rodenas, Luis; Paiva-Santos, Carlos O.; Stephens, Peter W.; Morando, Pedro J.; Blesa, Miguel A.

    2006-01-01

    A series of powdered cobalt ferrites, Co x Fe 3- x O 4 with 0.66≤x II , were synthesized by a mild procedure, and their Fe and Co site occupancies and structural characteristics were explored using X-ray anomalous scattering and the Rietveld refinement method. The dissolution kinetics, measured in 0.1 M oxalic acid aqueous solution at 70 deg. C, indicate in all cases the operation of a contracting volume rate law. The specific rates increased with the Fe II content following approximately a second-order polynomial expression. This result suggests that the transfer of Fe III controls the dissolution rate, and that the leaching of a first layer of ions Co II and Fe II leaves exposed a surface enriched in slower dissolving octahedral Fe III ions. Within this model, inner vicinal lattice Fe II accelerates the rate of Fe III transfer via internal electron hopping. A chain mechanism, involving successive electron transfers, fits the data very well. - Graphical abstract: The electron exchange between octahedral Fe II and Fe III ions has important consequences on the specific dissolution rates. Display Omitted

  7. Fe atom exchange between aqueous Fe2+ and magnetite.

    Science.gov (United States)

    Gorski, Christopher A; Handler, Robert M; Beard, Brian L; Pasakarnis, Timothy; Johnson, Clark M; Scherer, Michelle M

    2012-11-20

    The reaction between magnetite and aqueous Fe(2+) has been extensively studied due to its role in contaminant reduction, trace-metal sequestration, and microbial respiration. Previous work has demonstrated that the reaction of Fe(2+) with magnetite (Fe(3)O(4)) results in the structural incorporation of Fe(2+) and an increase in the bulk Fe(2+) content of magnetite. It is unclear, however, whether significant Fe atom exchange occurs between magnetite and aqueous Fe(2+), as has been observed for other Fe oxides. Here, we measured the extent of Fe atom exchange between aqueous Fe(2+) and magnetite by reacting isotopically "normal" magnetite with (57)Fe-enriched aqueous Fe(2+). The extent of Fe atom exchange between magnetite and aqueous Fe(2+) was significant (54-71%), and went well beyond the amount of Fe atoms found at the near surface. Mössbauer spectroscopy of magnetite reacted with (56)Fe(2+) indicate that no preferential exchange of octahedral or tetrahedral sites occurred. Exchange experiments conducted with Co-ferrite (Co(2+)Fe(2)(3+)O(4)) showed little impact of Co substitution on the rate or extent of atom exchange. Bulk electron conduction, as previously invoked to explain Fe atom exchange in goethite, is a possible mechanism, but if it is occurring, conduction does not appear to be the rate-limiting step. The lack of significant impact of Co substitution on the kinetics of Fe atom exchange, and the relatively high diffusion coefficients reported for magnetite suggest that for magnetite, unlike goethite, Fe atom diffusion is a plausible mechanism to explain the rapid rates of Fe atom exchange in magnetite.

  8. Spatiotemporal variation of dissolved carbohydrates and amino acids in Jiaozhou Bay, China

    Science.gov (United States)

    Shi, Di; Yang, Guipeng; Sun, Yan; Wu, Guanwei

    2017-03-01

    Surface seawater samples were collected from Jiaozhou Bay, China, during six cruises (March-May 2010, September-November 2010) to study the distribution of dissolved organic matter including dissolved organic carbon (DOC), total dissolved carbohydrates, namely monosaccharides (MCHO) and polysaccharides (PCHO) and total hydrolysable amino acids. These included dissolved free amino acids (DFAA) and combined amino acids (DCAA). The goal was to investigate possible relationships between these dissolved organic compounds and environmental parameters. During spring, the concentrations of MCHO and PCHO were 9.6 (2.8-22.6) and 11.0 (2.9-42.5) μmol C/L, respectively. In autumn, MCHO and PCHO were 9.1 (2.6-27.0) and 10.8 (2.4-25.6) μmol C/L, respectively. The spring concentrations of DFAA and DCAA were 1.7 (1.1-4.1) and 7.6 (1.1-31.0) μmol C/L, respectively, while in autumn, DFAA and DCAA were 2.3 (1.1-8.0) and 3.3 (0.6-7.2) μmol C/L, respectively. Among these compounds, the concentrations of PCHO were the highest, accounting for nearly a quarter of the DOC, followed by MCHO, DCAA and DFAA. The concentrations of the organic compounds exhibited a decreasing trend from the coastal to the central regions of the bay. A negative correlation between concentrations of DOC and salinity in each cruise suggested that riverine inputs around the bay have an important impact on the distribution of DOC in the surface water. A significant positive correlation was found between DOC and total bacteria count in spring and autumn, suggesting bacteria play an important role in the marine carbon cycle.

  9. Temperature dependence of photodegradation of dissolved organic matter to dissolved inorganic carbon and particulate organic carbon

    Czech Academy of Sciences Publication Activity Database

    Porcal, Petr; Dillon, P. J.; Molot, L. A.

    2015-01-01

    Roč. 10, č. 6 (2015), e0128884 E-ISSN 1932-6203 R&D Projects: GA ČR(CZ) GAP503/12/0781; GA ČR(CZ) GA15-09721S Institutional support: RVO:60077344 Keywords : dissolved organic carbon * particulate organic carbon * photodegradation * temperature Subject RIV: DA - Hydrology ; Limnology Impact factor: 3.057, year: 2015

  10. Dissolved air flotation of polishing wastewater from semiconductor manufacturer.

    Science.gov (United States)

    Liu, J C; Lien, C Y

    2006-01-01

    The feasibility of the dissolved air flotation (DAF) process in treating chemical mechanical polishing (CMP) wastewater was evaluated in this study. Wastewater from a local semiconductor manufacturer was sampled and characterised. Nano-sized silica (77.6 nm) with turbidity of 130 +/- 3 NTU was found in the slightly alkaline wastewater with traces of other pollutants. Experimental results indicated removal efficiency of particles, measured as suspended particle or turbidity, increased with increasing concentration of cationic collector cetyltrimethyl ammonium bromide (CTAB). When CTAB concentration was 30 mg/L, pH of 6.5 +/- 0.1 and recycle ratio of 30%, very effective removal of particles (> 98%) was observed in saturation pressure range of 4 to 6 kg/cm2, and the reaction proceeded faster under higher pressure. Similarly, the reaction was faster under the higher recycle ratio, while final removal efficiency improved slightly as the recycle ratio increased from 20 to 40%. An insignificant effect of pH on treatment efficiency was found as pH varied from 4.5 to 8.5. The presence of activator, Al3+ and Fe3+, enhanced the system performance. It is proposed that CTAB adsorbs on silica particles in polishing wastewater through electrostatic interaction and makes particles more hydrophobic. The increase in hydrophobicity results in more effective bubble-particle collisions. In addition, flocculation of silica particles through bridging effect of collector was found; it is believed that flocculation of particles also contributed to flotation. Better attachment between gas bubble and solid, higher buoyancy and higher air to solid ratio all lead to effective flotation.

  11. Determination of total solutes in synfuel wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, J.R.; Bonomo, F.S.

    1984-03-01

    Efforts to investigate both lyophilization and the measurement of colligative properties as an indication of total solute content are described. The objective of the work described is to develop a method for measuring total dissolved material in retort wastewaters which is simple and rugged enough to be performed in a field laboratory in support of pollution control tests. The analysis should also be rapid enough to provide timely and pertinent data to the pollution control plant operator. To be of most value, the technique developed also should be applicable to other synfuel wastewaters, most of which contain similar major components as oil shale retort waters. 4 references, 1 table.

  12. Episodes of low dissolved oxygen indicated by ostracodes and sediment geochemistry at Crystal Lake, Illinois, USA

    Science.gov (United States)

    Curry, B. Brandon; Filippelli, G.M.

    2010-01-01

    Low dissolved oxygen during the summer and early fall controls profundal continental ostracode distribution in Crystal Lake (McHenry County), Illinois, favoring Cypria ophthalmica and Physocypria globula at water depths from 6 to 13 m. These species also thrived in the lake's profundal zone from 14,165 to 9600 calendar year before present (cal yr b.p.) during the late Boiling, Allerod, and Younger Dryas chronozones, and early Holocene. Characterized by sand, cemented tubules, large aquatic gastropod shells, and littoral ostracode valves, thin (1-6 cm) tempestite deposits punctuate thicker deposits of organic gyttja from 16,080 to 11,900 cal yr b.p. The succeeding 2300 yr (11,900-9600 cal yr b.p.) lack tempestites, and reconstructed water depths were at their maximum. Deposition of marl under relatively well-oxygenated conditions occurred during the remainder of the Holocene until the arrival of Europeans, when the lake returned to a pattern of seasonally low dissolved oxygen. Such conditions are also indicated in the lake sediment by the speciation of phosphorus, high concentrations of organic carbon, and abundant iron and manganese occluded to mineral grains. Initial low dissolved oxygen was probably caused by the delivery of dissolved P and Fe in shallow groundwater, the chemistry of which was influenced by Spodosol pedogenesis under a spruce forest. The triggering may have been regionally warm and wet conditions associated with retreat of the Lake Michigan lobe (south-central Laurentide Ice Sheet). ?? 2010, by the American Society of Limnology and Oceanography Inc.

  13. SUSPENDED AND DISSOLVED MATTER FLUXES IN THE UPPER SELENGA RIVER BASIN

    Directory of Open Access Journals (Sweden)

    Sergey Chalov

    2012-01-01

    Full Text Available We synthesized recent field-based estimates of the dissolved ions (K+ Na+ Ca2+ Mg2+ Cl- SO42- HCO3-, biogens (NO3-, NO2-, PO43-(C, mg/l, heavy metal (Fesum, Mn, Pb and dissolved load (DL, kg/day, as far as suspended sediment concentration (SSC, mg/l and suspended load (SL, kg/day along upper Selenga river and its tributaries based on literature review and preliminary results of our 2011 field campaign. The crucial task of this paper is to provide full review of Russian, Mongolian and English-language literature which concern the matter fluxes in the upper part of Selenga river (within Mongolia. The exist estimates are compared with locations of 3 main matter sources within basin: mining and industry, river-bank erosion and slope wash. The heaviest increase of suspended and dissolved matter transport is indicated along Tuul-Orkhon river system (right tributary of the Selenga River where Mongolia capital Ulanbaatar, gold mine Zaamar and few other mines are located. In measurement campaigns conducted in 2005, 2006 and 2008 the increase directly after the Zaamar mining site was between 167 to 383 kg/day for Fe, between 15 and 5260 kg/day for Mn. Our field campaign indicated increase of suspended load along Tuul river from 4280 kg/day at the upstream point to 712000 kg/day below Ulaanbaatar and Zaamar. The results provide evidence on a potential connection between increased dissolved and suspended matter fluxes in transboundary rivers and zones of matter supply at industrial and mining centers, along eroded river banks and pastured lands. The gaps in the understanding of matter load fluxes within this basin are discussed with regards to determining further goals of hydrological and geochemical surveys.

  14. Comparative study on the reactivity of Fe/Cu bimetallic particles and zero valent iron (ZVI) under different conditions of N2, air or without aeration.

    Science.gov (United States)

    Xiong, Zhaokun; Lai, Bo; Yang, Ping; Zhou, Yuexi; Wang, Juling; Fang, Shuping

    2015-10-30

    In order to further compare the degradation capacity of Fe(0) and Fe/Cu bimetallic system under different aeration conditions, the mineralization of PNP under different aeration conditions has been investigated thoroughly. The results show that the removal of PNP by Fe(0) or Fe/Cu system followed the pseudo-first-order reaction kinetics. Under the optimal conditions, the COD removal efficiencies obtained through Fe(0) or Fe/Cu system under different aeration conditions followed the trend that Fe/Cu (air)>Fe/Cu (N2: 0-30 min, air: 30-120 min)>control-Fe (air)>Fe/Cu (without aeration)>Fe/Cu (N2)>control-Fe (N2). It revealed that dissolved oxygen (DO) could improve the mineralization of PNP, and Cu could enhance the reactivity of Fe(0). In addition, the degradation of PNP was further analyzed by using UV-vis, FTIR and GC/MS, and the results suggest that Fe/Cu bimetallic system with air aeration could completely break the benzene ring and NO2 structure of PNP and could generate the nontoxic and biodegradable intermediate products. Meanwhile, most of these intermediate products were further mineralized into CO2 and H2O, which brought about a high COD removal efficiency (83.8%). Therefore, Fe/Cu bimetallic system with air aeration would be a promising process for toxic refractory industry wastewater. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Comparison of Ab initio low-energy models for LaFePO, LaFeAsO, BaFe2As2, LiFeAs, FeSe, and FeTe. Electron correlation and covalency

    International Nuclear Information System (INIS)

    Miyake, Takashi; Nakamura, Kazuma; Arita, Ryotaro; Imada, Masatoshi

    2010-01-01

    Effective low-energy Hamiltonians for several different families of iron-based superconductors are compared after deriving them from the downfolding scheme based on first-principles calculations. Systematic dependences of the derived model parameters on the families are elucidated, many of which are understood from the systematic variation of the covalency between Fe-3d and pnictogen-/chalcogen-p orbitals. First, LaFePO, LaFeAsO (1111), BaFe 2 As 2 (122), LiFeAs (111), FeSe, and FeTe (11) have overall similar band structures near the Fermi level, where the total widths of 10-fold Fe-3d bands are mostly around 4.5 eV. However, the derived effective models of the 10-fold Fe-3d bands (d model) for FeSe and FeTe have substantially larger effective onsite Coulomb interactions U - 4.2 and 3.4 eV, respectively, after the screening by electrons on other bands and after averaging over orbitals, as compared to ∼2.5 eV for LaFeAsO. The difference is similar in the effective models containing p orbitals of As, Se or Te (dp or dpp model), where U ranges from ∼4 eV for the 1111 family to ∼7 eV for the 11 family. The exchange interaction J has a similar tendency. The family dependence of models indicates a wide variation ranging from weak correlation regime (LaFePO) to substantially strong correlation regime (FeSe). The origin of the larger effective interaction in the 11 family is ascribed to smaller spread of the Wannier orbitals generating larger bare interaction, and to fewer screening channels by the other bands. This variation is primarily derived from the distance h between the pnictogen/chalcogen position and the Fe layer: The longer h for the 11 family generates more ionic character of the bonding between iron and anion atoms, while the shorter h for the 1111 family leads to more covalent-bonding character, the larger spread of the Wannier orbitals, and more efficient screening by the anion p orbitals. The screened interaction of the d model is strongly orbital

  16. Impact of a Historical Fire Event on Pyrogenic Carbon Stocks and Dissolved Pyrogenic Carbon in Spodosols in Northern Michigan

    Directory of Open Access Journals (Sweden)

    Fernanda Santos

    2017-10-01

    Full Text Available Inventories of fire-derived (pyrogenic C (PyC stocks in soils remain incomplete for many parts of the world, yet are critical to reduce uncertainties in global PyC estimates. Additionally, PyC dynamics in soils remain poorly understood. For example, dissolved PyC (DPyC fluxes from soil horizons, as well as the influence of historical fire events on these fluxes and soil PyC stocks remain poorly quantified. In this study, we examined stock and concentration differences in soil PyC and leached DPyC, respectively, between two forest types in the Great Lakes region (USA: (1 a red pine (Pinus resinosa forest planted after the site had experienced post-logging slash burning in the late nineteenth century (100 year-burned site, and (2 a sugar maple (Acer saccharum forest that showed no evidence of burning in the past 250 years (unburned site. We hypothesized that the 100 year-burned site would have greater PyC stocks and concentrations of DPyC compared to the unburned site. We measured PyC in soil, as well as DPyC in soil water leaching from O and E horizons following a spring snowmelt event in both 100 year-burned and unburned sites. Additionally, we measured DPyC drained from B horizons in 100 year-burned site. In organic horizons, PyC stocks were 1.8 (Oi and 2.3 (Oe times greater in the 100 year-burned site than in the unburned site. Contrary to our initial hypothesis, DPyC concentrations did not differ between sites. On average, DPyC leached from all sites contributed 3.11 ± 0.27% of the total dissolved organic carbon pool. In the 100 year-burned site, a significant decline in concentrations of DPyC leaving the B horizon was attributed to the immobilization of this C pool in the Al and Fe oxides-rich subsoil. Even though PyC stock in O horizons was higher in 100 year-burned than in unburned site, our results did not support our initial hypothesis that the 100 year-burned site would have greater DPyC concentrations than the unburned site

  17. Protonation/reduction dynamics at the [4Fe-4S] cluster of the hydrogen-forming cofactor in [FeFe]-hydrogenases.

    Science.gov (United States)

    Senger, Moritz; Mebs, Stefan; Duan, Jifu; Shulenina, Olga; Laun, Konstantin; Kertess, Leonie; Wittkamp, Florian; Apfel, Ulf-Peter; Happe, Thomas; Winkler, Martin; Haumann, Michael; Stripp, Sven T

    2018-01-31

    The [FeFe]-hydrogenases of bacteria and algae are the most efficient hydrogen conversion catalysts in nature. Their active-site cofactor (H-cluster) comprises a [4Fe-4S] cluster linked to a unique diiron site that binds three carbon monoxide (CO) and two cyanide (CN - ) ligands. Understanding microbial hydrogen conversion requires elucidation of the interplay of proton and electron transfer events at the H-cluster. We performed real-time spectroscopy on [FeFe]-hydrogenase protein films under controlled variation of atmospheric gas composition, sample pH, and reductant concentration. Attenuated total reflection Fourier-transform infrared spectroscopy was used to monitor shifts of the CO/CN - vibrational bands in response to redox and protonation changes. Three different [FeFe]-hydrogenases and several protein and cofactor variants were compared, including element and isotopic exchange studies. A protonated equivalent (HoxH) of the oxidized state (Hox) was found, which preferentially accumulated at acidic pH and under reducing conditions. We show that the one-electron reduced state Hred' represents an intrinsically protonated species. Interestingly, the formation of HoxH and Hred' was independent of the established proton pathway to the diiron site. Quantum chemical calculations of the respective CO/CN - infrared band patterns favored a cysteine ligand of the [4Fe-4S] cluster as the protonation site in HoxH and Hred'. We propose that proton-coupled electron transfer facilitates reduction of the [4Fe-4S] cluster and prevents premature formation of a hydride at the catalytic diiron site. Our findings imply that protonation events both at the [4Fe-4S] cluster and at the diiron site of the H-cluster are important in the hydrogen conversion reaction of [FeFe]-hydrogenases.

  18. A pulse synthesis of beta-FeSi sub 2 layers on silicon implanted with Fe sup + ions

    CERN Document Server

    Batalov, R I; Terukov, E I; Kudoyarova, V K; Weiser, G; Kuehne, H

    2001-01-01

    The synthesis of thin beta-FeSi sub 2 films was performed by means of the Fe sup + ion implantation into Si (100) and the following nanosecond pulsed ion treatment of implanted layer. Using the beta-FeSi sub 2 beta-FeSi sub 2 e X-ray diffraction it is shown that the pulsed ion treatment results in the generation of the mixture of two phases: FeSi and beta-FeSi sub 2 with stressed crystal lattices. The following short-time annealing leads to the total transformation of the FeSi phase into the beta-FeSi sub 2 one. The Raman scattering data prove the generation of the beta-FeSi sub 2 at the high degree of the silicon crystallinity. The experimental results of the optical absorption testify to the formation of beta-FeSi sub 2 layers and precipitates with the straight-band structure. The photoluminescence signal at lambda approx = 1.56 mu m observes up to 210 K

  19. Thick CoFeB with perpendicular magnetic anisotropy in CoFeB-MgO based magnetic tunnel junction

    Directory of Open Access Journals (Sweden)

    V. B. Naik

    2012-12-01

    Full Text Available We have investigated the effect of an ultra-thin Ta insertion in the CoFeB (CoFeB/Ta/CoFeB free layer (FL on magnetic and tunneling magnetoresistance (TMR properties of a CoFeB-MgO system with perpendicular magnetic anisotropy (PMA. It is found that the critical thickness (tc to sustain PMA is doubled (tc = 2.6 nm in Ta-inserted CoFeB FL as compared to single CoFeB layer (tc = 1.3 nm. While the effective magnetic anisotropy is found to increase with Ta insertion, the saturation magnetization showed a slight reduction. As the CoFeB thickness increasing, the thermal stability of Ta inserted structure is significantly increased by a factor of 2.5 for total CoFeB thickness less than 2 nm. We have observed a reasonable value of TMR for a much thicker CoFeB FL (thickness = 2-2.6 nm with Ta insertion, and without significant increment in resistance-area product. Our results reveal that an ultra-thin Ta insertion in CoFeB might pay the way towards developing the high-density memory devices with enhanced thermal stability.

  20. Evolution of the chemistry of Fe bearing waters during CO2 degassing

    Science.gov (United States)

    Geroni, J.N.; Cravotta, C.A.; Sapsford, D.J.

    2012-01-01

    The rates of Fe(II) oxidation and precipitation from groundwater are highly pH dependent. Elevated levels of dissolved CO2 can depress pH and cause difficulty in removing dissolved Fe and associated metals during treatment of ferruginous water. This paper demonstrates interdependent changes in pH, dissolved inorganic C species, and Fe(II) oxidation rates that occur as a result of the removal (degassing) of CO2 during aeration of waters discharged from abandoned coal mines. The results of field monitoring of aeration cascades at a treatment facility as well as batchwise aeration experiments conducted using net alkaline and net acidic waters in the UK are combined with geochemical modelling to demonstrate the spatial and temporal evolution of the discharge water chemistry. The aeration cascades removed approximately 67% of the dissolved CO2 initially present but varying the design did not affect the concentration of Fe(II) leaving the treatment ponds. Continued removal of the residual CO2 by mechanical aeration increased pH by as much as 2 units and resulted in large increases in the rates of Fe(II) oxidation and precipitation. Effective exsolution of CO2 led to a reduction in the required lime dose for removal of remaining Fe(II), a very important factor with regard to increasing the sustainability of treatment practices. An important ancillary finding for passive treatment is that varying the design of the cascades had little impact on the rate of CO2 removal at the flow rates measured.

  1. Dissolved organic carbon and its potential predictors in eutrophic lakes.

    Science.gov (United States)

    Toming, Kaire; Kutser, Tiit; Tuvikene, Lea; Viik, Malle; Nõges, Tiina

    2016-10-01

    Understanding of the true role of lakes in the global carbon cycle requires reliable estimates of dissolved organic carbon (DOC) and there is a strong need to develop remote sensing methods for mapping lake carbon content at larger regional and global scales. Part of DOC is optically inactive. Therefore, lake DOC content cannot be mapped directly. The objectives of the current study were to estimate the relationships of DOC and other water and environmental variables in order to find the best proxy for remote sensing mapping of lake DOC. The Boosted Regression Trees approach was used to clarify in which relative proportions different water and environmental variables determine DOC. In a studied large and shallow eutrophic lake the concentrations of DOC and coloured dissolved organic matter (CDOM) were rather high while the seasonal and interannual variability of DOC concentrations was small. The relationships between DOC and other water and environmental variables varied seasonally and interannually and it was challenging to find proxies for describing seasonal cycle of DOC. Chlorophyll a (Chl a), total suspended matter and Secchi depth were correlated with DOC and therefore are possible proxies for remote sensing of seasonal changes of DOC in ice free period, while for long term interannual changes transparency-related variables are relevant as DOC proxies. CDOM did not appear to be a good predictor of the seasonality of DOC concentration in Lake Võrtsjärv since the CDOM-DOC coupling varied seasonally. However, combining the data from Võrtsjärv with the published data from six other eutrophic lakes in the world showed that CDOM was the most powerful predictor of DOC and can be used in remote sensing of DOC concentrations in eutrophic lakes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Anthropogenic inputs of dissolved organic matter in New York Harbor

    Science.gov (United States)

    Gardner, G. B.; Chen, R. F.; Olavasen, J.; Peri, F.

    2016-02-01

    The Hudson River flows into the Atlantic Ocean through a highly urbanized region which includes New York City to the east and Newark, New Jersey to the west. As a result, the export of Dissolved Organic Carbon (DOC) from the Hudson to the Atlantic Ocean includes a significant anthropogenic component. A series of high resolution studies of the DOC dynamics of this system were conducted between 2003 and 2010. These included both the Hudson and adjacent large waterways (East River, Newark Bay, Kill Van Kull and Arthur Kill) using coastal research vessels and smaller tributaries (Hackensack, Pasaic and Raritan rivers) using a 25' boat. In both cases measurements were made using towed instrument packages which could be cycled from near surface to near bottom depths with horizontal resolution of approximately 20 to 200 meters depending on depth and deployment strategy. Sensors on the instrument packages included a CTD to provide depth and salinity information and a chromophoric dissolved organic matter(CDOM) fluorometer to measure the fluorescent fraction of the DOC. Discrete samples allowed calibration of the fluorometer and the CDOM data to be related to DOC. The combined data set from these cruises identified multiple scales of source and transport processes for DOC within the Hudson River/New York Harbor region. The Hudson carries a substantial amount of natural DOC from its 230 km inland stretch. Additional sources exist in fringing salt marshes adjacent to the Hackensack and Raritan rivers. However the lower Hudson/New Harbor region receives a large input of DOC from multiple publically owned treatment works (POTW) discharges. The high resolution surveys allowed us to elucidate the distribution of these sources and the manner in which they are rapidly mixed to create the total export. We estimate that anthropogenic sources account for up to 2.5 times the DOC flux contributed by natural processes.

  3. Effect of dissolved oxygen on SCC of LP turbine steel

    International Nuclear Information System (INIS)

    Maeng, W. Y.; Lee, J. H.; Kim, W. C.

    2002-01-01

    Slow Strain Rate Tests (SSRT) were carried out to investigate the effect of dissolved oxygen on Stress Corrosion Cracking (SCC) susceptibility of 3.5NiCrMoV steels used in discs of Low-Pressure (LP) steam turbines in electric power generating plants. The influence of dissolved oxygen on cracking in water was studied; for this purpose, specimens were strained to fracture at 150 .deg. C in water environments with various amounts of dissolved oxygen. The maximum elongation of the turbine steel decreased with increasing dissolved oxygen. Dissolved oxygen significantly affected the SCC susceptibility of turbine steel in water. The increase of the SCC susceptibility of the turbine steel in a higher dissolved oxygen environment is due to the non protectiveness of the oxide layer of the turbine steel surface and the increase of corrosion current

  4. Chemical evaluation of HBED/Fe(3+) and the novel HJB/Fe(3+) chelates as fertilizers to alleviate iron chlorosis.

    Science.gov (United States)

    López-Rayo, Sandra; Hernández, Diana; Lucena, Juan J

    2009-09-23

    Iron chelates such as ethylenediamine-N,N'-bis(2-hydroxyphenylacetic) acid (o,o-EDDHA) and their analogues are the most efficient soil fertilizers to treat iron chlorosis in plants growing in calcareous soil. A new chelating agent, HJB (N,N'-bis(2-hydroxy-5-methylphenyl)ethylendiamine-N,N'-diacetic acid) may be an alternative to o,o-EDDHA since its synthesis yields a purer product, but its chemical behavior and efficiency as chlorosis corrector should be evaluated. In this research, a known analogous HBED (N,N'-bis(2-hydroxyphenyl)ethylendiamine-N,N'-diacetic acid) has also been considered. First, an ion-pair high performance liquid chromatography (HPLC) method has been tested for the HJB/Fe(3+) and HBED/Fe(3+) determination. The ability of HJB and HBED to maintain Fe in solution has been compared with respect to o,o-EDDHA. Theoretical modelization for HBED and HJB in agronomic conditions has been done after the determination of the protonation and Ca(II), Mg(II), Fe(III), and Cu(II) stability constants for HJB. Also, batch interaction experiments with soils and soil materials have been conducted. According to our results, HJB/Fe(3+) and HBED/Fe(3+) present high stability, even when competing cations (Cu(2+), Ca(2+)) are present, and have low reactivity with soils and soil components. The chelating agent HJB dissolves a higher amount of Fe than o,o-EDDHA, and it seems as effective as o,o-EDDHA in keeping Fe in solution. These results indicate that these chelates may be very efficient products to correct Fe chlorosis, and additional plant experiments should demonstrate plants' ability to assimilate Fe from HJB/Fe(3+) and HBED/Fe(3+).

  5. Fe-C-S systematics in Bengal Fan sediments

    Science.gov (United States)

    Volvoikar, S. P.; Mazumdar, A.; Goswami, H.; Pujari, S.; Peketi, A.

    2017-12-01

    Global biogeochemical cycles of iron, carbon and sulfur (Fe-C-S) are interrelated. Sulfate reduction in marine sediments is the major factor controlling the cycling and burial of carbon, sulfur and iron. Organoclastic sulfate reduction and anaerobic oxidation of methane (AOM) are the two main processes responsible for sulfate reduction in marine sediments. The amount and reactivity of organic matter, iron minerals and concentrations of dissolved sulfide in pore water control the burial of iron sulfide and organic bound sulfur in marine sediments. Here we investigate the sulfidization process in a sediment core from the western part of upper Bay of Bengal fan characterized by efficient burial of organic matter with siliclastic load. A 30 m long sediment core (MD 161/29, Lat. 170 18.04' N, Long. 870 22.56' E, water depth: 2434m) was collected onboard Marion Dufresne (May, 2007) and studied for Fe-S speciation and organic matter characterization. Buffered dithionite extractable iron (FeD) varies from 0.71 to 1.43 wt % (Avg. 0.79 wt %). FeD represents Fe oxides and oxyhydroxides mainly, ferrihydrite, lepidocrocite, goethite and hematite. Acid volatile sulfur (AVS) varies from 0.0015 to 0.63 wt % (avg: 0.058 wt %), while chromium reducible sulfur (CRS) varies from 0.00047 to 0.29 wt % (avg. 0.054 wt %). Based on the vertical distribution patterns of FeD, AVS and CRS, the core is divided into three zones, the lower (3000 to 1833 cm), middle (1833 to 398 cm) and upper (398 cm to surface) zones. FeD shows higher concentration in the lower zone. FeTR (FeOx + FeD + FeCRS + FeAVS) also exhibit higher concentration in this zone, suggesting higher availability of reactive iron for iron sulfide precipitation. AVS, elemental sulfur, spikes of CRS and gradual enrichment of δ34SAVS and δ34SCRS with sharp peaks in-between is noted in the lower zone. The gradual enrichment of δ34SAVS and δ34SCRS is the outcome of late diagenetic pyritization with higher availability of sulfide

  6. Magnetostriction of the polycrystalline Fe80Al20 alloy doped with boron

    International Nuclear Information System (INIS)

    Bormio-Nunes, Cristina; Teodoro dos Santos, Claudio; Botani de Souza Dias, Mateus; Doerr, Mathias; Granovsky, Sergey; Loewenhaupt, Michael

    2012-01-01

    Highlights: ► Fe 80 Al 20 polycrystalline alloy magnetostriction 40 ppm increased to 80 ppm due to 2% of B doping. ► B stabilizes α-FeAl phase and a coexistence of α-FeAl + Fe 3 Al improves magnetostriction. ► Presence of Fe 2 B phase causes domain rearrangement revealed by the decrease of the volume magnetostriction. - Abstract: The doping of Fe 80 Al 20 polycrystalline alloy with 2% of boron increased the total magnetostriction twofold compared to a sample without boron. A value close to 80 ppm was achieved at 300 K. The microstructures of the boron-doped alloys show a dendritically solidified matrix with interdendritic α-FeAl and/or Fe 3 Al and Fe 2 B eutectic between the grains. The XRD analysis reveals an increase in the volume fraction of α-FeAl and a correspondent decrease of the Fe 3 Al phase volume fraction as the boron content increases. The increase of the volume fraction of this tetragonal Fe 2 B phase in the samples doped with boron causes the decrease of the strong volume magnetostriction that was observed in the alloy without boron. There is some evidence that the improvement of the magnetostriction magnitude due to the addition of boron to the Fe 80 Al 20 alloy could reach the maximal magnetostriction if the 1:1 optimal ratio of the volume fractions of the α-FeAl and Fe 3 Al phases could be reached.

  7. Determination of total tin in silicate rocks by graphite furnace atomic absorption spectrometry

    Science.gov (United States)

    Elsheimer, H.N.; Fries, T.L.

    1990-01-01

    A method is described for the determination of total tin in silicate rocks utilizing a graphite furnace atomic absorption spectrometer with a stabilized-temperature platform furnace and Zeeman-effect background correction. The sample is decomposed by lithium metaborate fusion (3 + 1) in graphite crucibles with the melt being dissolved in 7.5% hydrochloric acid. Tin extractions (4 + 1 or 8 + 1) are executed on portions of the acid solutions using a 4% solution of tricotylphosphine oxide in methyl isobutyl ketone (MIBK). Ascorbic acid is added as a reducing agent prior to extraction. A solution of diammonium hydrogenphosphate and magnesium nitrate is used as a matrix modifier in the graphite furnace determination. The limit of detection is > 10 pg, equivalent to > 1 ??g l-1 of tin in the MIBK solution or 0.2-0.3 ??g g-61 in the rock. The concentration range is linear between 2.5 and 500 ??g l-1 tin in solution. The precision, measured as relative standard deviation, is < 20% at the 2.5 ??g l-1 level and < 7% at the 10-30 ??g l-1 level of tin. Excellent agreement with recommended literature values was found when the method was applied to the international silicate rock standards BCR-1, PCC-1, GSP-1, AGV-1, STM-1, JGb-1 and Mica-Fe. Application was made to the determination of tin in geological core samples with total tin concentrations of the order of 1 ??g g-1 or less.

  8. Radiation-chemical disinfection of dissolved impurities and environmental protection

    International Nuclear Information System (INIS)

    Petrukhin, N.V.; Putilov, A.V.

    1986-01-01

    Radiation-chemical neutralization of dissolved toxic impurities formed in the production processes of different materials, while modern plants being in use, is considered. For the first time the processes of deep industrial waste detoxication and due to this peculiarities of practically thorough neutralization of dissolved toxic impurities are considered. Attention is paid to devices and economic factors of neutralization of dissolved toxic impurities. The role of radiation-chemical detoxication for environment protection is considered

  9. Method to Estimate the Dissolved Air Content in Hydraulic Fluid

    Science.gov (United States)

    Hauser, Daniel M.

    2011-01-01

    In order to verify the air content in hydraulic fluid, an instrument was needed to measure the dissolved air content before the fluid was loaded into the system. The instrument also needed to measure the dissolved air content in situ and in real time during the de-aeration process. The current methods used to measure the dissolved air content require the fluid to be drawn from the hydraulic system, and additional offline laboratory processing time is involved. During laboratory processing, there is a potential for contamination to occur, especially when subsaturated fluid is to be analyzed. A new method measures the amount of dissolved air in hydraulic fluid through the use of a dissolved oxygen meter. The device measures the dissolved air content through an in situ, real-time process that requires no additional offline laboratory processing time. The method utilizes an instrument that measures the partial pressure of oxygen in the hydraulic fluid. By using a standardized calculation procedure that relates the oxygen partial pressure to the volume of dissolved air in solution, the dissolved air content is estimated. The technique employs luminescent quenching technology to determine the partial pressure of oxygen in the hydraulic fluid. An estimated Henry s law coefficient for oxygen and nitrogen in hydraulic fluid is calculated using a standard method to estimate the solubility of gases in lubricants. The amount of dissolved oxygen in the hydraulic fluid is estimated using the Henry s solubility coefficient and the measured partial pressure of oxygen in solution. The amount of dissolved nitrogen that is in solution is estimated by assuming that the ratio of dissolved nitrogen to dissolved oxygen is equal to the ratio of the gas solubility of nitrogen to oxygen at atmospheric pressure and temperature. The technique was performed at atmospheric pressure and room temperature. The technique could be theoretically carried out at higher pressures and elevated

  10. Study of structural, electronic and magnetic properties of CoFeIn and Co2FeIn Heusler alloys

    International Nuclear Information System (INIS)

    El Amine Monir, M.; Khenata, R.; Baltache, H.; Murtaza, G.; Abu-Jafar, M.S.; Bouhemadou, A.; Bin Omran, S.

    2015-01-01

    The structural, electronic and magnetic properties of half-Heusler CoFeIn and full-Heusler Co 2 FeIn alloys have been investigated by using the state of the art full-potential linearized augmented plane wave (FP-LAPW) method. The exchange-correlation potential was treated with the generalized gradient approximation (PBE-GGA) for the calculation of the structural properties, whereas the PBE-GGA+U approximation (where U is the Hubbard Coulomb energy term) is applied for the computation of the electronic and magnetic properties in order to treat the “d” electrons. The structural properties have been calculated in the paramagnetic and ferromagnetic phases where we have found that both the CoFeIn and Co 2 FeIn alloys have a stable ferromagnetic phase. The obtained results of the spin-polarized band structure and the density of states show that the CoFeIn alloy is a metal and the Co 2 FeIn alloy has a complete half-metallic nature. Through the obtained values of the total spin magnetic moment, we conclude that in general, the Co 2 FeIn alloy is half-metallic ferromagnet material whereas the CoFeIn alloy has a metallic nature. - Highlights: • Based on DFT calculations, CoFeIn and Co2FeIn Heusler alloys were investigated. • The magnetic phase stability was determined from the total energy calculations. • Electronic properties reveal the metallic (half-metallic) nature for CoFeIn (Co2FeIn)

  11. Diagnostic value of lipids, total antioxidants, and trace metals in ...

    African Journals Online (AJOL)

    Materials and Methods: Anthropometric characteristics, total prostate specific antigen (tPSA), serum lipids (total cholesterol, LDL cholesterol, HDL cholesterol, and triglycerides), Vit. E, total antioxidant status (TAS), and trace metals (Se, Cu, Fe, Zn, and Mn) were determined in 40 patients with histopathological diagnosis of ...

  12. The size distribution of dissolved uranium in natural waters

    International Nuclear Information System (INIS)

    Mann, D.K.; Wong, G.T.F.

    1987-01-01

    The size distribution of dissolved uranium in natural waters is poorly known. Some fraction of dissolved uranium is known to associate with organic matter which had a wide range of molecular weights. The presence of inorganic colloidal uranium has not been reported. Ultrafiltration has been used to quantify the size distribution of a number of elements, such as dissolved organic carbon, selenium, and some trace metals, in both the organic and/or the inorganic forms. The authors have applied this technique to dissolved uranium and the data are reported here

  13. Microstructures and mechanical properties of heat-treated Al–5.0Cu–0.5Fe squeeze cast alloys with different Mn/Fe ratio

    International Nuclear Information System (INIS)

    Zhang, Weiwen; Lin, Bo; Fan, Jianlei; Zhang, Datong; Li, Yuanyuan

    2013-01-01

    The Al–5.0 wt% Cu–0.5 wt% Fe alloys with different Mn/Fe ratio were prepared by squeeze casting. Various test techniques, including tensile test, image analysis, scanning electron microscope (SEM), X-ray diffraction (XRD), electron probe micro-analyzer (EPMA) and transmission electron microscopy (TEM) were used to examine the microstructures and mechanical properties of the alloys in T5 heat-treated condition. The results show that the β-Fe (Al 7 Cu 2 Fe) is stable and its needle-like morphology is maintained after T5 heat treatment. However, the Chinese script Al m Fe, α-Fe or Al 6 (FeMn) partially transform to a new Chinese script Cu-rich α(CuFe) (Al 7 Cu 2 Fe or Al 7 Cu 2 (FeMn)), which is harmful to the mechanical properties of the alloys due to the decrease of the Cu content in α(Al) matrix. The optimal Mn/Fe ratio is determined by the morphology of Fe-rich intermetallics, volume fraction of θ′ and T (Al 20 Cu 2 Mn 3 ), size of α(Al) dendrite and porosity. Excessive Mn/Fe ratio will deteriorate the mechanical properties of the alloys due to the increase of the total amount of porosity and the Fe-rich intermetallics. When the Mn/Fe ratio is 1.6 and 1.2 for the applied pressure of 0 MPa and 75 MPa, respectively, the needle-like β-Fe phase is completely converted to the Chinese script Fe-rich intermetallics. The ultimate tensile strength, yield strength and elongation of the T5 heat-treated alloy with the Mn/Fe ratio of 1.2 and applied pressure of 75 MPa reach 395 MPa, 335 MPa and 14%, respectively

  14. Dissolved Oxygen (DO) and Nutrients Analysis in the Río Piedras River, San Juan, Puerto Rico

    Science.gov (United States)

    Santiago, I.; Infante, G.

    2016-02-01

    The Río Piedras is the only River in the metropolitan area of Puerto Rico. This River was the first water supplier and is part of the ancient aqueduct, the first treatment plant of the San Juan urban area. Because of its cultural and historic importance the ancient aqueduct was cataloged as a National Treasure by the National Trust of History Preservation in 2014. Actually, is protected by Para La Naturaleza (before named in Spanish as the "Fideicomiso de Conservación de Puerto Rico"). The research objectives were to evaluate and measure the dissolved oxygen (DO), total phosphorus (TP) and the heavy metals (HM) concentrations of the River. Also, to examine if the DO, TP and HM (Cu, Fe, Pb, Mn, Al, and Zn) concentrations were in compliance with the Environmental Protection Agency (EPA) standards. Using DO bottles, water samples were collected on three points during six dates. DO concentrations were measured with the YSI Pro GBOD. TP concentrations were analyzed using the UV-Vis spectrophotometer "HACH" (DR 5000). Utilizing the ICP (Inductively Coupled Plasma) spectrophotometer emission technique and the EPA protocols HM concentrations were measured. Preliminary results show that the DO measurements were from 5.00 mg/L to 7.00 mg/L (p-value=0.282). HM concentrations findings were 0.456 (correlation coefficient=0.9997), 1.205 (correlation coefficient=0.9972) and 3.287 (correlation coefficient=0.9950) for Zn, Cu and Cr, respectively. We expected highest HM concentrations in our finals results due to the drought weather during each samples collection. Data analysis for DO, TP and HM concentrations will be presented. Finally, the results obtained and the project details will be explained during the poster presentation.

  15. Remote repair robots for dissolvers in nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Sugiyama, Sen; Hirose, Yasuo; Kawamura, Hironobu; Minato, Akira; Ozaki, Norihiko.

    1984-01-01

    In nuclear facilities, for the purpose of the reduction of radiation exposure of workers, the shortening of working time and the improvement of capacity ratio of the facilities, the technical development of various devices for remote maintenance and inspection has been advanced so far. This time, an occasion came to inspect and repair the pinhole defects occurred in spent fuel dissolving tanks in the reprocessing plant of Tokai Establishment, Power Reactor and Nuclear Fuel Development Corp. However, since the radiation environmental condition and the restricting condition due to the object of repair were extremely severe, it was impossible to cope with them using conventional robot techniques. Consequently, a repair robot withstanding high level radiation has been developed anew, which can work by totally remote operation in the space of about 270 mm inside diameter and about 6 m length. The repair robot comprises a periscope reflecting mirror system, a combined underwater and atmospheric use television, a grinder, a welder, a liquid penetrant tester and an ultrasonic flaw detector. The key points of the development were the parts withstanding high level radiation and the selection of materials, to make the mechanism small size and the realization of totally remote operation. (Kako, I.)

  16. Geochemistry of Dissolved Trace Metals in the Waters of Bahia Magdalena, Baja California Sur, Pacific Coast, Mexico

    Science.gov (United States)

    Suresh Babu, S.

    2016-12-01

    Forty two samples were acquired from the surface and bottom water profiles along 5 transects spread over Bahia Magdalena lagoon, Baja California Sur to assess the behavior of trace metals in a high influenced upwelling region on the Pacific coast. To elaborate the fate of metals, also the physico-chemical parameters (pH, temperature, salinity, conductivity, dissolved oxygen). Determination of the concentrations of trace metals (Fe, Mn, Cr, Cu, Co, Pb, Ni, Zn, Cd As, Hg) were measured using Atomic absorption spectrometry. The results demonstrated high values of As, Ni and Co which is attributed to the local geology and phosphate deposits. Low values of Fe and Mn are attested to the oxic conditions of the lagoon which are responsible for the oxidation of Fe and Mn. The region witnesses raised temperatures (28.92ºC) and salinities of 35.2 PSU for its arid climatic conditions and high rates of evaporation. In general, the region presented minor quantities of dissolved trace metals due to dispersion and high intense interaction with the open sea. The results were also compared with other studies to understand the enrichment pattern in this side of the pacific coast which experiences various geothermal activities and upwelling phenomenon.

  17. Anodic behavior of mechanically alloyed Cu–Ni–Fe and Cu–Ni–Fe–O electrodes for aluminum electrolysis in low-temperature KF-AlF3 electrolyte

    International Nuclear Information System (INIS)

    Goupil, G.; Helle, S.; Davis, B.; Guay, D.; Roué, L.

    2013-01-01

    A comparative study on the anodic behavior of Cu 65 Ni 20 Fe 15 and (Cu 65 Ni 20 Fe 15 ) 98.6 O 1.4 materials during the electrolysis of aluminum was conducted. Both materials were prepared in powder form by ball milling and subsequently consolidated to form dense pellets that were used as anodes. The electrochemical characterization was performed at 700 °C in a potassium cryolite-based electrolyte, and the composition-morphology of the oxide scales formed on both anodes were determined by scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffraction measurements. On Cu 65 Ni 20 Fe 15 , a thick (170 μm) and porous oxide scale is formed after 15 min of electrolysis that readily dissolves (or spalls) before a denser oxide layer is formed after a longer electrolysis time (1 and 5 h). In comparison, a thin (2 μm) and dense oxide layer mainly composed of NiFe 2 O 4 is observed on a (Cu 65 Ni 20 Fe 15 ) 98.6 O 1.4 electrode after 15 min of electrolysis. The thickness of this oxide layer increases to 10 and 30 μm after 1 h and 5 h of electrolysis. However, the outward diffusion of Cu to form CuO x at the surface of the electrode is not totally hampered by the presence of NiFe 2 O 4 and a porous Cu-depleted region is formed at the oxide/alloy interface. As a result, electrolyte penetration occurs in the scale, which favors the progressive formation of an iron fluoride layer at the oxide/alloy interface

  18. The 54Fe(d,t)53Fe reaction and the neutron configuration in 54Fe

    International Nuclear Information System (INIS)

    England, J.B.A.; Ophel, T.R.; Johnston, A.; Zeller, A.F.

    1980-07-01

    The 54 Fe(d,t) 53 Fe reaction has been used to study the levels populated in 54 Fe in an attempt to establish the neutron configuration in 54 Fe. The states observed show clear evidence for a 2p-4h admixture in 54 Fe. In particular, the strength of the first 3/2 - level relative to the 7/2 - ground state transition is 3-4 times that in neighbouring N = 28 nuclei

  19. Development of a SREX flowsheet for the separation of strontium from dissolved INEEL zirconium calcine

    International Nuclear Information System (INIS)

    Law, J.D.; Wood, D.J.; Todd, T.A.

    1999-01-01

    Laboratory experimentation has indicated that the SREX process is effective for partitioning 90 Sr from acidic radioactive waste solutions located at the Idaho Nuclear Technology and Engineering Center. These laboratory results were used to develop a flowsheet for countercurrent testing of the SREX process with dissolved pilot plant calcine. Testing was performed using 24 stages of 2-cm diameter centrifugal contactors which are installed in the Remote Analytical Laboratory hot cell. Dissolved Run No.64 pilot plant calcine spiked with 85 Sr was used as feed solution for the testing. The flowsheet tested consisted of an extraction section (0.15 M 4prime,4prime(5prime)-di-(tert-butylcyclohexo)-18-crown-6 and 1.5 M TBP in Isopar-L.), a 1.0 M NaNO 3 scrub section to remove extracted K from the SREX solvent, a 0.01 M HNO 3 strip section for the removal of Sr from the SREX solvent, a 0.25 M Na2CO 3 wash section to remove degradation products from the solvent, and a 0.1 M HNO 3 rinse section. The behavior of 85 Sr, Na, K, Al, B, Ca, Cr, Fe, Ni, and Zr was evaluated. The described flowsheet successfully extracted 85 Sr from the dissolved pilot plant calcine with a removal efficiency of 99.6%. Distribution coefficients for 85 Sr ranged from 3.6 to 4.5 in the extraction section. With these distribution coefficients a removal efficiency of approximately >99.99% was expected. It was determined that the lower than expected removal efficiency can be attributed to a stage efficiency of only 60% in the extraction section. Extracted K was effectively scrubbed from the SREX solvent with the 1.0 M NaNO 3 resulting in only 6.4% of the K in the HLW strip product. Sodium was not extracted from the dissolved calcine by the SREX solvent; however, the use of a 1.0 M NaNO 3 scrub solution resulted in a Na concentration of 70 mg/L (12.3% of the feed concentration) in the HLW strip product. Al, B, Ca, Cr, Fe, Ni, and Zr were determined to be essentially inextractable

  20. Removal of actinides from dissolved ORNL MVST sludge using the TRUEX process

    International Nuclear Information System (INIS)

    Spencer, B.B.; Egan, B.Z.; Chase, C.W.

    1997-07-01

    Experiments were conducted to evaluate the transuranium extraction process for partitioning actinides from actual dissolved high-level radioactive waste sludge. All tests were performed at ambient temperature. Time and budget constraints permitted only two experimental campaigns. Samples of sludge from Melton Valley Storage Tank W-25 were rinsed with mild caustic (0.2 M NaOH) to reduce the concentrations of nitrates and fission products associated with the interstitial liquid. In one campaign, the rinsed sludge was dissolved in nitric acid to produce a solution containing total metal concentrations of ca. 1.8 M with a nitric acid concentration of ca. 2.9 M. About 50% of the dry mass of the sludge was dissolved. In the other campaign, the sludge was neutralized with nitric acid to destroy the carbonates, then leached with ca. 2.6 M NaOH for ca. 6 h before rinsing with the mild caustic. The sludge was then dissolved in nitric acid to produce a solution containing total metal concentrations of ca. 0.6 M with a nitric acid concentration of ca. 1.7 M. About 80% of the sludge dissolved. The dissolved sludge solution form the first campaign began gelling immediately, and a visible gel layer was observed after 8 days. In the second campaign, the solution became hazy after ca. 8 days, indicating gel formation, but did not display separated gel layers after aging for 20 days. Batch liquid-liquid equilibrium tests of both the extraction and stripping operations were conducted. Chemical analyses of both phases were used to evaluate the process. Evaluation was based on two metrics: the fraction of TRU elements removed from the dissolved sludge and comparison of the results with predictions made with the Generic TRUEX Model (GTM). The fractions of Eu, Pu, Cm, Th, and U species removed from aqueous solution in only one extraction stage were > 95% and were close to the values predicted by the GTM. Mercury was also found to be strongly extracted, with a one-stage removal of > 92%

  1. Ice Harbor Spillway Dissolved Gas Field Studies: Before and After Spillway Deflectors

    Science.gov (United States)

    2016-07-01

    Steven C. Wilhelms Coastal And Hydraulics Laboratory U.S. Army Engineer Research and Development Center 3909 Halls Ferry Road Vicksburg, Mississippi...Harbor as a measure to reduce the total dissolved gas (TDG) production during spill operations. Three field studies were conducted at the Ice Harbor...significantly reduced for nearly all spill operations with deflectors in place. TDG near the stilling basin was reduced from approximately 150% to

  2. Nitrogen fixation in the activated sludge treatment of thermomechanical pulping wastewater: effect of dissolved oxygen.

    Science.gov (United States)

    Slade, A H; Anderson, S M; Evans, B G

    2003-01-01

    N-ViroTech, a novel technology which selects for nitrogen-fixing bacteria as the bacteria primarily responsible for carbon removal, has been developed to treat nutrient limited wastewaters to a high quality without the addition of nitrogen, and only minimal addition of phosphorus. Selection of the operating dissolved oxygen level to maximise nitrogen fixation forms a key component of the technology. Pilot scale activated sludge treatment of a thermomechanical pulping wastewater was carried out in nitrogen-fixing mode over a 15 month period. The effect of dissolved oxygen was studied at three levels: 14% (Phase 1), 5% (Phase 2) and 30% (Phase 3). The plant was operated at an organic loading of 0.7-1.1 kg BOD5/m3/d, a solids retention time of approximately 10 d, a hydraulic retention time of 1.4 d and a F:M ratio of 0.17-0.23 mg BOD5/mg VSS/d. Treatment performance was very stable over the three dissolved oxygen operating levels. The plant achieved 94-96% BOD removal, 82-87% total COD removal, 79-87% soluble COD removal, and >99% total extractives removal. The lowest organic carbon removals were observed during operation at 30% DO but were more likely to be due to phosphorus limitation than operation at high dissolved oxygen, as there was a significant decrease in phosphorus entering the plant during Phase 3. Discharge of dissolved nitrogen, ammonium and oxidised nitrogen were consistently low (1.1-1.6 mg/L DKN, 0.1-0.2 mg/L NH4+-N and 0.0 mg/L oxidised nitrogen). Discharge of dissolved phosphorus was 2.8 mg/L, 0.1 mg/L and 0.6 mg/L DRP in Phases 1, 2 and 3 respectively. It was postulated that a population of polyphosphate accumulating bacteria developed during Phase 1. Operation at low dissolved oxygen during Phase 2 appeared to promote biological phosphorus uptake which may have been affected by raising the dissolved oxygen to 30% in Phase 3. Total nitrogen and phosphorus discharge was dependent on efficient secondary clarification, and improved over the course of

  3. [Spectral characteristics of dissolved organic matter released during the metabolic process of small medusa].

    Science.gov (United States)

    Guo, Dong-Hui; Yi, Yue-Yuan; Zhao, Lei; Guo, Wei-Dong

    2012-06-01

    The metabolic processes of jellyfish can produce dissolved organic matter (DOM) which will influence the functioning of the aquatic ecosystems, yet the optical properties of DOM released by jellyfish are unknown. Here we report the absorption and fluorescence properties of DOM released by a medusa species Black fordia virginica during a 24 h incubation experiment. Compared with the control group, an obvious increase in the concentrations of dissolved organic carbon (DOC), absorption coefficient (a280) and total dissolved nitrogen (TDN) was observed in incubation group. This clearly demonstrated the release of DOM, chromophoric DOM (CDOM) and dissolved nutrients by B. virginica which feed on enough of Artemia sp. before the experiment. The increase in spectral slope ratio (SR) and decrease in humification index (HIX) indicated that the released DOM was less-humified and had relatively lower molecular weight. Parallel factor analysis (PARAFAC) decomposed the fluorescence matrices of DOM into three humic-like components (C1-C3) and one protein-like component (C4). The Fmax of two components (C2: 400 nm showed little changes. Thus, we suggested a zooplankton index (ZIX) to trace and characterize the DOM excreted by metabolic activity of zooplankton, which is calculated as the ratio of the sum of Fmax of all fluorescence components with the emission wavelength 400 nm.

  4. Dissolved inorganic nutrients and chlorophyll on the narrow continental shelf of Eastern Brazil

    Directory of Open Access Journals (Sweden)

    Gilmara Fernandes Eça

    2014-03-01

    Full Text Available The eastern Brazilian continental shelf is narrow and subject to the influence of a western boundary current system, presenting lower biological productivity than other regions. In this study, the distribution of water masses, dissolved inorganic nutrients, chlorophyll-a and total suspended solids (TSS on the inner shelf (< 35 m depth, between Itacaré and Canavieiras, eastern Brazil, is presented. Sampling surveys were carried out in March and August 2006 and March 2007. Tropical water (TW prevailed during March 2006 and August 2007 with the lower salinity waters (< 36 found in most samples taken in March 2007, reflecting the influence of continental outflow and rain in coastal waters. Low concentrations of dissolved inorganic nutrients and Chl-a found were typical of TW and results suggested that the inner shelf waters were depleted in dissolved inorganic nitrogen in August 2006 and March 2007, and in phosphate in March 2006, potentially affecting phytoplankton growth. Stratification of the water column was observed due to differences in dissolved nutrient concentrations, chlorophyll-a and TSS when comparing surface and bottom samples, possibly the result of a colder water intrusion and mixing on the bottom shelf and a deep chlorophyll maximum and/or sediment resuspension effect. Despite this stratification, oceanographic processes such as lateral mixing driven by the Brazil Current as well as a northward alongshore drift driven by winds and tides transporting Coastal Water can lead to an enhanced mixing of these waters promoting some heterogeneity in this oligotrophic environment.

  5. Spatiotemporal variation characteristics and related affecting factors of dissolved carbohydrates in the East China Sea

    Science.gov (United States)

    He, Zhen; Wang, Qi; Yang, Gui-Peng; Gao, Xian-Chi; Wu, Guan-Wei

    2015-10-01

    Carbohydrates are the largest identified fraction of dissolved organic carbon and play an important role in biogeochemical cycling in the ocean. Seawater samples were collected from the East China Sea (ECS) during June and October 2012 to study the spatiotemporal distributions of total dissolved carbohydrates (TCHOs) constituents, including dissolved monosaccharides (MCHOs) and polysaccharides (PCHOs). The concentrations of TCHOs, MCHOs and PCHOs showed significant differences between summer and autumn 2012, and exhibited an evident diurnal variation, with high values occurring in the daytime. Phytoplankton biomass was identified as the primary factor responsible for seasonal and diurnal variations of dissolved carbohydrates in the ECS. The TCHOs, MCHOs and PCHOs distributions in the study area displayed similar distribution patterns, with high concentrations appearing in the coastal water. The influences of chlorophyll-a, salinity and nutrients on the distributions of these carbohydrates were examined. A carbohydrate enrichment in the near-bottom water was found at some stations, implying that there might be an important source of carbohydrate in the deep water or bottom sediment.

  6. Comparison of the Performance of Poly Aluminum Chloride (PACl, Ferric Chloride (FeCl3, in Turbidity and Organic Matter Removal; from Water Source, Case-Study: Karaj River, in Tehran Water Treatment Plant No. 2

    Directory of Open Access Journals (Sweden)

    Mohammad Abdolah zadeh

    2009-06-01

    Full Text Available Coagulation and flocculation are the principal units in water treatment processes. In this study, the Jar test was used to investigate the effects of the pH and TOC on FeCl3 and PACl coagulants for further removal of turbidity, organic matter, aluminum, total organic carbon (TOC, dissolved organic carbon (DOC, organic Aadsorption at a wavelength of 254 nm (UV254 nm , alkalinity, residual aluminum and ferric, total trihalomethans (TTHMs in the Karaj River in the year 2007- 2008. These experiments were conducted through a bench scale study using conventional coagulation in the influent to Tehran Water Treatment Plant No. 2 (TWTP2.With normal pH levels, PACl demonstrated more efficiency than FeCl3 in removing turbidity, TOC, UV254 nm, and TTHMs. The lower coagulant consumption, high floc size, lower floc detention time, lower sludge production, lack of the need for pH adjustment in turbidity of 25 NTU and the lower alum consumption were the advantages of PACl application instead of FeCl3 as a coagulant. Also, PACl application was efficient at low turbidity (2 NTU, average turbidity (6 NTU, and high turbidity (100 NTU in TOC, turbidity, UV254 nm , and DOC removal. Thus, PACl is an economical alternative as a coagulant in TWTP2.

  7. Importance of Ekman transport and gyre circulation change on seasonal variation of surface dissolved iron in the western subarctic North Pacific

    Science.gov (United States)

    Nakanowatari, Takuya; Nakamura, Tomohiro; Uchimoto, Keisuke; Nishioka, Jun; Mitsudera, Humio; Wakatsuchi, Masaaki

    2017-05-01

    Iron (Fe) is an essential nutrient for marine phytoplankton and it constitutes an important element in the marine carbon cycle in the ocean. This study examined the mechanisms controlling seasonal variation of dissolved Fe (dFe) in the western subarctic North Pacific (WSNP), using an ocean general circulation model coupled with a simple biogeochemical model incorporating a dFe cycle fed by two major sources (atmospheric dust and continental shelf sediment). The model reproduced the seasonal cycle of observed concentrations of dFe and macronutrients at the surface in the Oyashio region with maxima in winter (February-March) and minima in summer (July-September), although the simulated seasonal amplitudes are a half of the observed values. Analysis of the mixed-layer dFe budget indicated that both local vertical entrainment and lateral advection are primary contributors to the wintertime increase in dFe concentration. In early winter, strengthened northwesterly winds excite southward Ekman transport and Ekman upwelling over the western subarctic gyre, transporting dFe-rich water southward. In mid to late winter, the southward western boundary current of the subarctic gyre and the outflow from the Sea of Okhotsk also bring dFe-rich water to the Oyashio region. The contribution of atmospheric dust to the dFe budget is several times smaller than these ocean transport processes in winter. These results suggest that the westerly wind-induced Ekman transport and gyre circulation systematically influence the seasonal cycle of WSNP surface dFe concentration.

  8. Titanium distribution in swimming pool water is dominated by dissolved species

    International Nuclear Information System (INIS)

    David Holbrook, R.; Motabar, Donna; Quiñones, Oscar; Stanford, Benjamin; Vanderford, Brett; Moss, Donna

    2013-01-01

    The increased use of titanium dioxide nanoparticles (nano-TiO 2 ) in consumer products such as sunscreen has raised concerns about their possible risk to human and environmental health. In this work, we report the occurrence, size fractionation and behavior of titanium (Ti) in a children's swimming pool. Size-fractionated samples were analyzed for Ti using ICP-MS. Total titanium concentrations ([Ti]) in the pool water ranged between 21 μg/L and 60 μg/L and increased throughout the 101-day sampling period while [Ti] in tap water remained relatively constant. The majority of [Ti] was found in the dissolved phase (<1 kDa), with only a minor fraction of total [Ti] being considered either particulate or microparticulate. Simple models suggest that evaporation may account for the observed variation in [Ti], while sunscreen may be a relevant source of particulate and microparticule Ti. Compared to diet, incidental ingestion of nano-Ti from swimming pool water is minimal. -- Highlights: •Total titanium concentrations in unfiltered swimming pool water ranged between 21 and 60 μg/L. •Evaporation of the swimming pool water is suspected of causing a temporal increase in [Ti]. •The vast majority of Ti is found in the dissolved phase (<1 kD). •Swimming pools are not a significant Ti source for human exposure via ingestion. -- In children's swimming pool water, the majority of titanium is found in the dissolved phase

  9. AES study of the reaction between a thin Fe-film and β-SiC (100) surface

    International Nuclear Information System (INIS)

    Mizokawa, Yusuke; Nakanishi, Shigemitsu; Miyase, Sunao

    1989-01-01

    The solid state reaction between thin Fe-films and β-SiC(100) in UHV has been studied using AES. Even at room temperature, the reaction between the thin Fe-film and SiC occurred and formed Fe-silicide and graphite with a minor product of Fe-carbide (Fe 3 C). The reaction proceeded with an increase of Fe-coverage to some extent. With annealing of 15 A-Fe-film/SiC below 540degC, the Fe-silicide formation was accelerated, but because the amount of available Fe was small, the dissolved carbon atoms were forced to form not the Fe-carbide but the graphite phase. Above 640degC, the Fe-silicide started to decompose and the carbon atoms diffused to the surface and formed surface graphite layers. With annealing at 1080degC, the free-Si segregats at the surface and formed Si-Si bonds, as well as the Si-C bonds consuming the surface graphite phase. (author)

  10. Recovery of krypton-85 from dissolver off-gas streams

    International Nuclear Information System (INIS)

    Law, J.P.; Lamb, K.M.

    1988-01-01

    The Rare Gas Plant at the Idaho Chemical Processing Plant Recovers fission product krypton and xenon from dissolver off gas streams. Recently the system was upgraded to allow processing of hydrogen rich dissolver off-gas streams. A trickle bed hydrogen recombiner was installed and tested. The Rare Gas Plant can now safely process gas streams containing up to 80% hydrogen

  11. The dependence on temperature and salinity of dissolved

    NARCIS (Netherlands)

    Bakker, Dorothee C.E.; Baar, Hein J.W. de; Jong, Edwin de

    1999-01-01

    Recurring latitudinal patterns of the dissolved inorganic carbon (DIC) content and the fugacity of CO2 (fCO2) were observed in East Atlantic surface waters with strong gradients at hydrographic fronts. The dissolved inorganic carbon chemistry clearly displayed the effects of oceanic circulation and

  12. Formulation of Fast-Dissolving Tablets of Promethazine Theoclate ...

    African Journals Online (AJOL)

    Purpose: To optimize and formulate promethazine theoclate fast-dissolving tablets that offer a suitable approach to the treatment of nausea and vomiting. Method: The solubility of promethazine theoclate was increased by formulating it as a fast-dissolving tablet containing β-cyclodextrin, crospovidone, and camphor, using ...

  13. Fast Dissolving Tablets of Aloe Vera Gel | Madan | Tropical Journal ...

    African Journals Online (AJOL)

    Purpose: The objective of this work was to prepare and evaluate fast dissolving tablets of the nutraceutical, freeze dried Aloe vera gel. Methods: Fast dissolving tablets of the nutraceutical, freeze-dried Aloe vera gel, were prepared by dry granulation method. The tablets were evaluated for crushing strength, disintegration ...

  14. Accumulating the hydride state in the catalytic cycle of [FeFe]-hydrogenases

    Science.gov (United States)

    Winkler, Martin; Senger, Moritz; Duan, Jifu; Esselborn, Julian; Wittkamp, Florian; Hofmann, Eckhard; Apfel, Ulf-Peter; Stripp, Sven Timo; Happe, Thomas

    2017-07-01

    H2 turnover at the [FeFe]-hydrogenase cofactor (H-cluster) is assumed to follow a reversible heterolytic mechanism, first yielding a proton and a hydrido-species which again is double-oxidized to release another proton. Three of the four presumed catalytic intermediates (Hox, Hred/Hred and Hsred) were characterized, using various spectroscopic techniques. However, in catalytically active enzyme, the state containing the hydrido-species, which is eponymous for the proposed heterolytic mechanism, has yet only been speculated about. We use different strategies to trap and spectroscopically characterize this transient hydride state (Hhyd) for three wild-type [FeFe]-hydrogenases. Applying a novel set-up for real-time attenuated total-reflection Fourier-transform infrared spectroscopy, we monitor compositional changes in the state-specific infrared signatures of [FeFe]-hydrogenases, varying buffer pH and gas composition. We selectively enrich the equilibrium concentration of Hhyd, applying Le Chatelier's principle by simultaneously increasing substrate and product concentrations (H2/H+). Site-directed manipulation, targeting either the proton-transfer pathway or the adt ligand, significantly enhances Hhyd accumulation independent of pH.

  15. Towards accounting for dissolved iron speciation in global ocean models

    Directory of Open Access Journals (Sweden)

    A. Tagliabue

    2011-10-01

    Full Text Available The trace metal iron (Fe is now routinely included in state-of-the-art ocean general circulation and biogeochemistry models (OGCBMs because of its key role as a limiting nutrient in regions of the world ocean important for carbon cycling and air-sea CO2 exchange. However, the complexities of the seawater Fe cycle, which impact its speciation and bioavailability, are simplified in such OGCBMs due to gaps in understanding and to avoid high computational costs. In a similar fashion to inorganic carbon speciation, we outline a means by which the complex speciation of Fe can be included in global OGCBMs in a reasonably cost-effective manner. We construct an Fe speciation model based on hypothesised relationships between rate constants and environmental variables (temperature, light, oxygen, pH, salinity and assumptions regarding the binding strengths of Fe complexing organic ligands and test hypotheses regarding their distributions. As a result, we find that the global distribution of different Fe species is tightly controlled by spatio-temporal environmental variability and the distribution of Fe binding ligands. Impacts on bioavailable Fe are highly sensitive to assumptions regarding which Fe species are bioavailable and how those species vary in space and time. When forced by representations of future ocean circulation and climate we find large changes to the speciation of Fe governed by pH mediated changes to redox kinetics. We speculate that these changes may exert selective pressure on phytoplankton Fe uptake strategies in the future ocean. In future work, more information on the sources and sinks of ocean Fe ligands, their bioavailability, the cycling of colloidal Fe species and kinetics of Fe-surface coordination reactions would be invaluable. We hope our modeling approach can provide a means by which new observations of Fe speciation can be tested against hypotheses of the processes present in governing the ocean Fe cycle in an

  16. Impact of Fe(III)-OM complexes and Fe(III) polymerization on SOM pools reactivity under different land uses

    Science.gov (United States)

    Giannetta, B.; Plaza, C.; Zaccone, C.; Siebecker, M. G.; Rovira, P.; Vischetti, C.; Sparks, D. L.

    2017-12-01

    Soil organic matter (SOM) protection and long-term accumulation are controlled by adsorption to mineral surfaces in different ways, depending on its molecular structure and pedo-climatic conditions. Iron (Fe) oxides are known to be key regulators of the soil carbon (C) cycle, and Fe speciation in soils is highly dependent on environmental conditions and chemical interactions with SOM. However, the molecular structure and hydrolysis of Fe species formed in association with SOM is still poorly described. We hypothesize the existence of two pools of Fe which interact with SOM: mononuclear Fe(III)-SOM complexes and precipitated Fe(III) hydroxides. To verify our hypothesis, we investigated the interactions between Fe(III) and physically isolated soil fractions by means of batch experiments at pH 7. Specifically, we examined the fine silt plus clay (FSi+C) fraction, obtained by ultrasonic dispersion and wet sieving. The soil samples spanned several land uses, including coniferous forest (CFS), grassland (GS), technosols (TS) and agricultural (AS) soils. Solid phase products and supernatants were analyzed for C and Fe content. X-ray diffraction (XRD) and Brunauer-Emmett-Teller (BET) analysis were also performed. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) was used to assess the main C functional groups involved in C complexation and desorption experiments. Preliminary linear combination fitting (LCF) of Fe K-edge extended X-ray absorption fine structure (EXAFS) spectra suggested the formation of ferrihydrite-like polymeric Fe(III) oxides in reacted CFS and GS samples, with higher C and Fe concentration. Conversely, mononuclear Fe(III) OM complexes dominated the speciation for TS and AS samples, characterized by lower C and Fe concentration, inhibiting the hydrolysis and polymerization of Fe (III). This approach will help revealing the mechanisms by which SOM pools can control Fe(III) speciation, and will elucidate how both Fe

  17. Phase analysis of Fe-nanowires encapsulated into multi-walled carbon nanotubes via 57Fe Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Ruskov, T.; Spirov, I.; Ritschel, M.; Mueller, C.; Leonhardt, A.; Ruskov, R.

    2007-01-01

    We have performed morphological analysis of samples of Fe-nanowires encapsulated into aligned multi-walled carbon nanotubes (Fe-MWCNT) via 57 Fe Moessbauer spectroscopy. The aligned Fe-MWCNTs were obtained by pyrolysis of ferrocene onto an oxidized Si substrate. Transmission Moessbauer spectroscopy (TMS) and back scattered conversion electron Moessbauer spectroscopy (CEMS) were applied in order to distinguish different Fe-phases and their spatial distribution within the whole sample and along the tubes' height. A characterization (on a large spatial scale) of the aligned CNT samples were performed by obtaining TMS spectra for selected spots positioned at different locations of the sample. While the total Fe content changes considerably from one location to another, the γ-Fe/α-Fe phase ratio is constant onto a relatively large area. Using TMS and CEMS for all aligned Fe-MWCNTs samples it is also shown that along the CNT axes, going to the top of the nanotube the relative content of the γ-Fe phase increases. Going to the opposite direction, i.e. towards the silicon substrate, the relative content of the Fe 3 C phase increases, that is in agreement with our previous works. The results of an additional Moessbauer spectroscopy experiment in TMS and CEMS modes performed on a non-aligned sample support the conclusion that in our case the iron phases in the channels of carbon nanotubes are spatially separated as individual nanoparticles. The relative intensity ratio of the α-Fe phase Moessbauer sextets show good magnetic texture along nanotubes axis for one of the aligned samples and the lack of such orientation for the others. (authors)

  18. Microbial degradation of dissolved proteins in seawater

    International Nuclear Information System (INIS)

    Hollibaugh, J.T.; Azam, F.

    1983-01-01

    An experimental protocol using radiolabeled proteins was developed to investigate the rates and mechanisms whereby dissolved proteins are degraded in natural marine plankton communities. The results of field observations and laboratory experiments indicate that proteins are degraded by a particle-bound, thermolabile system, presumably bacteria-associated enzymes, with an apparent half-saturation constant of ca. 25 μg bovine serum albumin (BSA) per liter. Gel permeation chromatography indicated that peptides of chain length intermediate between BSA and the final products of degradation (MW<700) do not accumulate in the medium. Competition experiments indicate that the system is relatively nonspecific. Turnover rates for the protein pool in samples collected in the Southern California Bight were of the same order of magnitude as the turnover rate of the L-leucine pool and were correlated with primary productivity, chlorophyll a concentrations, bacterial abundance and biomass, and L-leucine turnover rate. These data suggest that amino acids derived from proteins are utilized preferentially and do not completely mix with the amino acids in the bulk phase

  19. Methanex, Hoechst Celanese dissolve methanol partnership

    International Nuclear Information System (INIS)

    Morris, G.D.L.

    1993-01-01

    One of the many joint venture alliances recently announced in the petrochemical sector is ending in divorce. Hoechst Celanese Chemical (Dallas) and Methanex Corp. (Vancouver) are in the process of dissolving the partnership they had formed to restart Hoechst Celanese's methanol plant at Clear Lake, TX. Hoechst Celanese says it is actively seeking replacement partners and has several likely prospects, while Methanex is concentrating on its other ventures. Those include its just-completed acquisition of Fletcher Challenge's (Auckland, NZ) methanol business and a joint venture with American Cyanamid to convert an ammonia plant at Fortier, LA to methanol. Methanex will still be the world's largest producer of methanol. Officially, the negotiations between Methanex and Hoechst Celanese 'just broke down over the last month or so,' says Steve Yurich, operations manager for the Clear Lake plant. Market sources, however, say that Methanex found itself 'with too many irons in the fire' and pulled out before it ran into financial or perhaps even antitrust difficulties

  20. Dynamics of chromophoric dissolved organic matter in Mandovi and Zuari estuaries — A study through in situ and satellite data

    Digital Repository Service at National Institute of Oceanography (India)

    Menon, H.B.; Sangekar, N.P.; Lotliker, A.A.; Vethamony, P.

    in the lower zone of Mandovi. In their observations on CDOM dispersion over the Florida shelf, Del Castillo et al. (2000) had indicated the role of mixing in the distribution of CDOM. The above discussion has clearly revealed that the spatial and temporal... of Geophysical Research 108, 4764, doi:10.1029/2003JD004044 Del Castillo, C.E., Gilbes, F., Coble, P.G., Muller-Karger, F.E., 2000. On the dispersal of riverine colored dissolved organic matter over the West Florida Shelf. Limnology and Oceanography 45...

  1. Biotic and a-biotic Mn and Fe cycling in deep sediments across a gradient of sulfate reduction rates along the California margin

    Science.gov (United States)

    Schneider-Mor, A.; Steefel, C.; Maher, K.

    2011-12-01

    The coupling between the biological and a-biotic processes controlling trace metals in deep marine sediments are not well understood, although the fluxes of elements and trace metals across the sediment-water interface can be a major contribution to ocean water. Four marine sediment profiles (ODP leg 167 sites 1011, 1017, 1018 and 1020)were examined to evaluate and quantify the biotic and abiotic reaction networks and fluxes that occur in deep marine sediments. We compared biogeochemical processes across a gradient of sulfate reduction (SR) rates with the objective of studying the processes that control these rates and how they affect major elements as well as trace metal redistribution. The rates of sulfate reduction, methanogenesis and anaerobic methane oxidation (AMO) were constrained using a multicomponent reactive transport model (CrunchFlow). Constraints for the model include: sediment and pore water concentrations, as well as %CaCO3, %biogenic silica, wt% carbon and δ13C of total organic carbon (TOC), particulate organic matter (POC) and mineral associated carbon (MAC). The sites are distinguished by the depth of AMO: a shallow zone is observed at sites 1018 (9 to 19 meters composite depth (mcd)) and 1017 (19 to 30 mcd), while deeper zones occur at sites 1011 (56 to 76 mcd) and 1020 (101 to 116 mcd). Sulfate reduction rates at the shallow AMO sites are on the order 1x10-16 mol/L/yr, much faster than rates in the deeper zone sulfate reduction (1-3x10-17 mol/L/yr), as expected. The dissolved metal ion concentrations varied between the sites, with Fe (0.01-7 μM) and Mn (0.01-57 μM) concentrations highest at Site 1020 and lowest at site 1017. The highest Fe and Mn concentrations occurred at various depths, and were not directly correlated with the rates of sulfate reduction and the maximum alkalinity values. The main processes that control cycling of Fe are the production of sulfide from sulfate reduction and the distribution of Fe-oxides. The Mn distribution

  2. Santa Fe Accelerator Conference

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    The 10th USA National Particle Accelerator Conference was hosted this year by the Los Alamos National Laboratory in Santa Fe from 21-23 March. It was a resounding success in emphasizing the ferment of activity in the accelerator field. About 900 people registered and about 500 papers were presented in invited and contributed talks and poster sessions

  3. Santa Fe Linac Conference

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    The 1981 Linear Accelerator Conference, organized by Los Alamos National Laboratory, was held from 19-23 October in Santa Fe, New Mexico. The surroundings were superb and helped to ensure a successful meeting. There were more than two hundred and twenty participants, with good representation from Japan and Western Europe

  4. Diel production and microheterotrophic utilization of dissolved free amino acids in waters off southern California

    International Nuclear Information System (INIS)

    Carlucci, A.F.; Craven, D.B.; Henrichs, S.M.

    1984-01-01

    Diel patterns of dissolved free amino acid (DFAA) concentration and microheterotrophic utilization were examined in the spring and fall of 1981 in euphotic waters from the base of the mixed layer off the southern California coast. The average depths of the isotherms sampled were 19.2 m for spring and 9.0 for fall. Total DFAA levels were generally higher in the spring than in the fall, 18 to 66 nM and 14 to 20 nM, respectively. Two daily concentration maxima and minima were observed for total DFAAs as well as for most individual DFAAs. Maxima were usually measured in the mid-dark period and in the early afternoon; minima were typically observed in early morning and late afternoon. Bacterial cell numbers reached maximal values near midnight in both seasons. The increases coincided with one of the total DFAA maxima. The second total DFAA maximum occurred in early to midafternoon, during the time of maximum photosynthetic carbon production and rapid dissolved amino acid utilization. Microbial metabolism (incorporation plus respiration) of selected 3 H-amino acids was 2.7 to 4.1 times greater during the daylight hours. DFAA turnover times, based on these metabolic measurements, ranged between 11 and 36 h for the amino acids tested, and rates were 1.7 to 3.7 times faster in the daylight hours than at night. DFAA distributions were related to primary production and chlorophyll a concentrations. Amino acids were estimated to represent 9 to 45% of the total phytoplankton exudate. Microheterotrophic utilization or production of total protein amino acids was estimated as 3.6 μg of C liter -1 day -1 in spring and 1.9 μg of C liter -1 day -1 in the fall. Assimilation efficiency for dissolved amino acids averaged 65% for marine microheterotrophs

  5. The release of dissolved nutrients and metals from coastal sediments due to resuspension

    Science.gov (United States)

    Kalnejais, Linda H.; Martin, William R.; Bothner, Michael H.

    2010-01-01

    Coastal sediments in many regions are impacted by high levels of contaminants. Due to a combination of shallow water depths, waves, and currents, these sediments are subject to regular episodes of sediment resuspension. However, the influence of such disturbances on sediment chemistry and the release of solutes is poorly understood. The aim of this study is to quantify the release of dissolved metals (iron, manganese, silver, copper, and lead) and nutrients due to resuspension in Boston Harbor, Massachusetts, USA. Using a laboratory-based erosion chamber, a range of typical shear stresses was applied to fine-grained Harbor sediments and the solute concentration at each shear stress was measured. At low shear stress, below the erosion threshold, limited solutes were released. Beyond the erosion threshold, a release of all solutes, except lead, was observed and the concentrations increased with shear stress. The release was greater than could be accounted for by conservative mixing of porewaters into the overlying water, suggesting that sediment resuspension enhances the release of nutrients and metals to the dissolved phase. To address the long-term fate of resuspended particles, samples from the erosion chamber were maintained in suspension for 90. h. Over this time, 5-7% of the particulate copper and silver was released to the dissolved phase, while manganese was removed from solution. Thus resuspension releases solutes both during erosion events and over a longer timescale due to reactions of suspended particles in the water column. The magnitude of the annual solute release during erosion events was estimated by coupling the erosion chamber results with a record of bottom shear stresses simulated by a hydrodynamic model. The release of dissolved copper, lead, and phosphate due to resuspension is between 2% and 10% of the total (dissolved plus particulate phase) known inputs to Boston Harbor. Sediment resuspension is responsible for transferring a significant

  6. Molecular composition and bioavailability of dissolved organic nitrogen in a lake flow-influenced river in south Florida, USA

    Science.gov (United States)

    Dissolved organic nitrogen (DON) represents a large percentage of the total nitrogen in rivers and estuaries, and can contribute to coastal eutrophication and hypoxia. This study reports on the composition and bioavailability of DON along the Caloosahatchee River (Florida), a heavily managed system ...

  7. Comparison of dissolved and particulate arsenic distributions in shallow aquifers of Chakdaha, India, and Araihazar, Bangladesh

    Directory of Open Access Journals (Sweden)

    Ahmed Kazi M

    2008-01-01

    Full Text Available Abstract Background The origin of the spatial variability of dissolved As concentrations in shallow aquifers of the Bengal Basin remains poorly understood. To address this, we compare here transects of simultaneously-collected groundwater and aquifer solids perpendicular to the banks of the Hooghly River in Chakdaha, India, and the Old Brahmaputra River in Araihazar, Bangladesh. Results Variations in surface geomorphology mapped by electromagnetic conductivity indicate that permeable sandy soils are associated with underlying aquifers that are moderately reducing to a depth of 10–30 m, as indicated by acid-leachable Fe(II/Fe ratios 5 mg L-1. More reducing aquifers are typically capped with finer-grained soils. The patterns suggest that vertical recharge through permeable soils is associated with a flux of oxidants on the banks of the Hooghly River and, further inland, in both Chakdaha and Araihazar. Moderately reducing conditions maintained by local recharge are generally associated with low As concentrations in Araihazar, but not systematically so in Chakdaha. Unlike Araihazar, there is also little correspondence in Chakdaha between dissolved As concentrations in groundwater and the P-extractable As content of aquifer particles, averaging 191 ± 122 ug As/L, 1.1 ± 1.5 mg As kg-1 (n = 43 and 108 ± 31 ug As/L, 3.1 ± 6.5 mg As kg-1 (n = 60, respectively. We tentatively attribute these differences to a combination of younger floodplain sediments, and therefore possibly more than one mechanism of As release, as well as less reducing conditions in Chakdaha compared to Araihazar. Conclusion Systematic dating of groundwater and sediment, combined with detailed mapping of the composition of aquifer solids and groundwater, will be needed to identify the various mechanisms underlying the complex distribution of As in aquifers of the Bengal Basin.

  8. The influence of dissolved phosphorus molecular form on recalcitrance and bioavailability

    International Nuclear Information System (INIS)

    Li, Bo; Brett, Michael T.

    2013-01-01

    Several studies have shown Soluble Reactive Phosphorus (SRP) analyses provide a poor index of dissolved phosphorus (P) bioavailability in natural systems. We tested 21 inorganic and organic P containing compounds with series of nutrient uptake and bioavailability bioassay experiments and chemical characterizations. Our results show that in 81% of cases, these compounds did not fit the classic assumption that SRP approximately equals Bioavailable P (BAP). Many organic compounds were classified as non-reactive, but had very rapid uptake kinetics and were nearly entirely bioavailable (e.g., several nucleic acids, ATP, RNA, DNA and phosphatidylcholine). Several inorganic compounds also classified as non-reactive but had high bioavailability (i.e., sodium tripolyphosphate and phosphorus pentoxide). Conversely, apatite was operationally classified as reactive, but had low bioavailability. Due to their tendency to alias as SRP, but recalcitrance and very low bioavailability, humic-(Al/Fe)-phosphorus complexes may play an especially important role in the dissolved phosphorus dynamics of natural systems. Highlights: •We tested 21 P containing compounds with bioassay and chemical speciation. •The acid molybdate method does not consistently predict the bioavailability of P compounds. •The P in humic substances was bounded with Al/Fe and could not be taken up by algal. •A new classification scheme divided P species based on bioavailability and chemical speciation. -- SRP is a poor indicator of the bioavailability of many of P containing compounds and much of what is classified as SRP in nature could be associated with humic-metal complexes with low bioavailability

  9. Thermodynamical properties of 56Fe

    International Nuclear Information System (INIS)

    Tavukcu, E.; Becker, J. A.; Bernstein, L. A.; Garrett, P. E.; Younes, W.; Guttormsen, M.; Rekstad, J.; Siem, S.; Mitchell, G. E.; Schiller, A.; Voinov, A.

    2003-01-01

    Average nuclear level densities close to the nuclear binding energy in 56Fe and 57Fe are extracted from primary γ-ray spectra. A step structure is observed in the level density for both isotopes, and is interpreted as breaking of Cooper pairs. Thermal properties of 56Fe are studied within the statistical canonical ensemble. The experimental heat capacity in 56Fe is compared with the theoretical heat capacity calculated within the shell model Monte Carlo approach

  10. Electronic structure of FeTiSb using relativistic and scalar-relativistic approaches

    Energy Technology Data Exchange (ETDEWEB)

    Sahariya, Jagrati [Department of Physics, Manipal University Jaipur, Jaipur-303007, Rajasthan (India); Mund, H. S., E-mail: hmoond@gmail.com [Department of Physics, M. L. Sukhadia University, Udaipur-313001, Rajasthan (India)

    2016-05-06

    Electronic and magnetic properties of FeTiSb have been reported. The calculations are performed using spin polarized relativistic Korringa-Kohn-Rostoker scheme based on Green’s function method. Within SPR-KKR a fully relativistic and scalar-relativistic approaches have been used to investigate electronic structure of FeTiSb. Energy bands, total and partial density of states, atom specific magnetic moment along with total moment of FeTiSb alloys are presented.

  11. Effects of acid mine drainage on dissolved inorganic carbon and stable carbon isotopes in receiving streams

    International Nuclear Information System (INIS)

    Fonyuy, Ernest W.; Atekwana, Eliot A.

    2008-01-01

    Dissolved inorganic carbon (DIC) constitutes a significant fraction of a stream's carbon budget, yet the role of acid mine drainage (AMD) in DIC dynamics in receiving streams remains poorly understood. The objective of this study was to evaluate spatial and temporal effects of AMD and its chemical evolution on DIC and stable isotope ratio of DIC (δ 13 C DIC ) in receiving streams. We examined spatial and seasonal variations in physical and chemical parameters, DIC, and δ 13 C DIC in a stream receiving AMD. In addition, we mixed different proportions of AMD and tap water in a laboratory experiment to investigate AMD dilution and variable bicarbonate concentrations to simulate downstream and seasonal hydrologic conditions in the stream. Field and laboratory samples showed variable pH, overall decreases in Fe 2+ , alkalinity, and DIC, and variable increase in δ 13 C DIC . We attribute the decrease in alkalinity, DIC loss, and enrichment of 13 C of DIC in stream water to protons produced from oxidation of Fe 2+ followed by Fe 3+ hydrolysis and precipitation of Fe(OH) 3(s) . The extent of DIC decrease and 13 C enrichment of DIC was related to the amount of HCO 3 - dehydrated by protons. The laboratory experiment showed that lower 13 C enrichment occurred in unmixed AMD (2.7 per mille ) when the amount of protons produced was in excess of HCO 3 - or in tap water (3.2 per mille ) where no protons were produced from Fe 3+ hydrolysis for HCO 3 - dehydration. The 13 C enrichment increased and was highest for AMD-tap water mixture (8.0 per mille ) where Fe 2+ was proportional to HCO 3 - concentration. Thus, the variable downstream and seasonal 13 C enrichment in stream water was due in part to: (1) variations in the volume of stream water initially mixed with AMD and (2) to HCO 3 - input from groundwater and seepage in the downstream direction. Protons produced during the chemical evolution of AMD caused seasonal losses of 50 to >98% of stream water DIC. This loss of DIC

  12. Dissolved organic carbon and chromophoric dissolved organic matter properties of rivers in the USA

    Science.gov (United States)

    Spencer, Robert G. M.; Butler, Kenna D.; Aiken, George R.

    2012-09-01

    Dissolved organic carbon (DOC) concentration and chromophoric dissolved organic matter (CDOM) parameters were measured over a range of discharge in 30 U.S. rivers, covering a diverse assortment of fluvial ecosystems in terms of watershed size and landscape drained. Relationships between CDOM absorption at a range of wavelengths (a254, a350, a440) and DOC in the 30 watersheds were found to correlate strongly and positively for the majority of U.S. rivers. However, four rivers (Colorado, Colombia, Rio Grande and St. Lawrence) exhibited statistically weak relationships between CDOM absorption and DOC. These four rivers are atypical, as they either drain from the Great Lakes or experience significant impoundment of water within their watersheds, and they exhibited values for dissolved organic matter (DOM) parameters indicative of autochthonous or anthropogenic sources or photochemically degraded allochthonous DOM and thus a decoupling between CDOM and DOC. CDOM quality parameters in the 30 rivers were found to be strongly correlated to DOM compositional metrics derived via XAD fractionation, highlighting the potential for examining DOM biochemical quality from CDOM measurements. This study establishes the ability to derive DOC concentration from CDOM absorption for the majority of U.S. rivers, describes characteristics of riverine systems where such an approach is not valid, and emphasizes the possibility of examining DOM composition and thus biogeochemical function via CDOM parameters. Therefore, the usefulness of CDOM measurements, both laboratory-based analyses and in situ instrumentation, for improving spatial and temporal resolution of DOC fluxes and DOM dynamics in future studies is considerable in a range of biogeochemical studies.

  13. Dissolved organic carbon and chromophoric dissolved organic matter properties of rivers in the USA

    Science.gov (United States)

    Spencer, Robert G.M.; Butler, Kenna D.; Aiken, George R.

    2012-01-01

    Dissolved organic carbon (DOC) concentration and chromophoric dissolved organic matter (CDOM) parameters were measured over a range of discharge in 30 U.S. rivers, covering a diverse assortment of fluvial ecosystems in terms of watershed size and landscape drained. Relationships between CDOM absorption at a range of wavelengths (a254, a350, a440) and DOC in the 30 watersheds were found to correlate strongly and positively for the majority of U.S. rivers. However, four rivers (Colorado, Colombia, Rio Grande and St. Lawrence) exhibited statistically weak relationships between CDOM absorption and DOC. These four rivers are atypical, as they either drain from the Great Lakes or experience significant impoundment of water within their watersheds, and they exhibited values for dissolved organic matter (DOM) parameters indicative of autochthonous or anthropogenic sources or photochemically degraded allochthonous DOM and thus a decoupling between CDOM and DOC. CDOM quality parameters in the 30 rivers were found to be strongly correlated to DOM compositional metrics derived via XAD fractionation, highlighting the potential for examining DOM biochemical quality from CDOM measurements. This study establishes the ability to derive DOC concentration from CDOM absorption for the majority of U.S. rivers, describes characteristics of riverine systems where such an approach is not valid, and emphasizes the possibility of examining DOM composition and thus biogeochemical function via CDOM parameters. Therefore, the usefulness of CDOM measurements, both laboratory-based analyses and in situ instrumentation, for improving spatial and temporal resolution of DOC fluxes and DOM dynamics in future studies is considerable in a range of biogeochemical studies.

  14. Climate Variability, Dissolved Organic Carbon, UV Exposure, and Amphibian Decline

    Science.gov (United States)

    Brooks, P. D.; O'Reilly, C. M.; Diamond, S.; Corn, S.; Muths, E.; Tonnessen, K.; Campbell, D. H.

    2001-12-01

    Increasing levels of UV radiation represent a potential threat to aquatic organisms in a wide range of environments, yet controls on in situ variability on UV exposure are relatively unknown. The primary control on the penetration of UV radiation in surface water environments is the amount of photoreactive dissolved organic carbon (DOC). Consequently, biogeochemical processes that control the cycling of DOC also affect the exposure of aquatic organisms to UV radiation. Three years of monitoring UV extinction and DOC composition in Rocky Mountain, Glacier, Sequoia/ Kings Canyon, and Olympic National Parks demonstrate that the amount of fulvic acid DOC is much more important than the total DOC pool in controlling UV attenuation. This photoreactive component of DOC originates primarily in soil, and is subject both to biogeochemical controls (e.g. temperature, moisture, vegetation, soil type) on production, and hydrologic controls on transport to surface water and consequently UV exposure to aquatic organisms. Both of these controls are positively related to precipitation with greater production and transport associated with higher precipitation amounts. For example, an approximately 20 percent reduction in precipitation from 1999 to 2000 resulted in a 27% - 59% reduction in the amount of photoreactive DOC at three sites in Rocky Mountain National Park. These differences in the amount of hydrophobic DOC result in an increase in UV exposure in the aquatic environment by a factor of 2 or more. Implications of these findings for observed patterns of amphibian decline will be discussed.

  15. Biochemical responses to Fe deficiency in Pisum sativum L., cv. Sparkle and dgl mutant: Is the PM H+-ATPase the sole activity involved in H+ extrusion?

    Science.gov (United States)

    The study of processes regulating Fe acquisition by plants provides useful knowledge for breeding programs aimed to obtain Fe-efficient and/or biofortified varieties. In fact, total Fe uptake is an important, though not sufficient prerequisite to increase Fe density in plant tissues. Like the majori...

  16. A study on the photocatalytic decomposition reactions of organics dissolved in water (II)

    International Nuclear Information System (INIS)

    Sung, K. W.; Na, J. W.; Cho, Y. H.; Chung, H. H.

    2001-01-01

    Experiments on aqueous TiO 2 photocatalytic reaction characteristics of 4 nitrogen-containing and 12 aromatic organic compounds were carried out. Based on the values calculated for the distribution of ionic species and atomic charge, the characteristics of their photocatalytic decomposition were estimated. It was shown that the dependence of decomposition of the N-containing compounds were linearly proportional to their nitrogen atomic charge values, while that of the aromatic compounds were inversely proportional. The effects of aqueous pH, oxygen content and concentration on the TiO 2 photocatalytic characteristics of EDTA-Cu(II) and EDTA-Fe(III) were experimentally investigated. All EDTA systems were decomposed better in the pH range of 2.5∼3.0 and with more dissolved oxygen. These results could be applied to a unit process for removal of organic impurities dissolved in a source water of the system water, and for treatment of EDTA-containing liquid waste produced by chemical cleaning process in the domestic NPPs

  17. A study on the photo catalytic decomposition reactions of organics dissolved in water (II)

    International Nuclear Information System (INIS)

    Sung, K.W.; Na, J. W.; Cho, Y. H.; Chung, H. H.

    2000-01-01

    Experiments on aqueous TiO 2 photo catalytic reaction of nitrogen containing organic compounds such as ethylamine, phenylhydrazine, pyridine, urea and EDTA were carried out. Based on the values calculated for the distribution of ionic species and atomic charge, the characteristics of their photo catalytic decomposition were estimated. It was shown that the decomposition characteristics was linearly proportional to nitrogen atomic charge value. On the other hand, the effects of aqueous pH, oxygen content and concentration on the TiO 2 photo catalytic characteristics of EDTA, EDTA-Cu(II) and EDTA-Fe(III) were experimentally investigated. All EDTA systems were decomposed better in the pH range of 2.5-3.0 and with more dissolved oxygen. These results could be applied to construction of a process for removal of organic impurities dissolved in a source of system water, or for treatment of EDTA-containing liquid waste produced by a chemical cleaning in the domestic NPPs. (author)

  18. A study on the photo catalytic decomposition reactions of organics dissolved in water (II)

    Energy Technology Data Exchange (ETDEWEB)

    Sung, K.W.; Na, J. W.; Cho, Y. H.; Chung, H. H

    2000-01-01

    Experiments on aqueous TiO{sub 2} photo catalytic reaction of nitrogen containing organic compounds such as ethylamine, phenylhydrazine, pyridine, urea and EDTA were carried out. Based on the values calculated for the distribution of ionic species and atomic charge, the characteristics of their photo catalytic decomposition were estimated. It was shown that the decomposition characteristics was linearly proportional to nitrogen atomic charge value. On the other hand, the effects of aqueous pH, oxygen content and concentration on the TiO{sub 2} photo catalytic characteristics of EDTA, EDTA-Cu(II) and EDTA-Fe(III) were experimentally investigated. All EDTA systems were decomposed better in the pH range of 2.5-3.0 and with more dissolved oxygen. These results could be applied to construction of a process for removal of organic impurities dissolved in a source of system water, or for treatment of EDTA-containing liquid waste produced by a chemical cleaning in the domestic NPPs. (author)

  19. A study on the photocatalytic decomposition reactions of organics dissolved in water (II)

    Energy Technology Data Exchange (ETDEWEB)

    Sung, K. W.; Na, J. W.; Cho, Y. H.; Chung, H. H

    2001-01-01

    Experiments on aqueous TiO{sup 2} photocatalytic reaction characteristics of 4 nitrogen-containing and 12 aromatic organic compounds were carried out. Based on the values calculated for the distribution of ionic species and atomic charge, the characteristics of their photocatalytic decomposition were estimated. It was shown that the dependence of decomposition of the N-containing compounds were linearly proportional to their nitrogen atomic charge values, while that of the aromatic compounds were inversely proportional. The effects of aqueous pH, oxygen content and concentration on the TiO{sup 2} photocatalytic characteristics of EDTA-Cu(II) and EDTA-Fe(III) were experimentally investigated. All EDTA systems were decomposed better in the pH range of 2.5{approx}3.0 and with more dissolved oxygen. These results could be applied to a unit process for removal of organic impurities dissolved in a source water of the system water, and for treatment of EDTA-containing liquid waste produced by chemical cleaning process in the domestic NPPs.

  20. Diffusion of Nb in Fe and in some Fe alloys

    International Nuclear Information System (INIS)

    Kurokawa, S.; Ruzzante, J.E.; Hey, A.M.; Dyment, F.

    1981-01-01

    Diffusion data of microalloying elements such as Nb, V, Ti, are required when analysing the transformation and recrystallization behaviour of HSLA steels in order to optimize grain refinement and precipitation hardening. The diffusion behaviour of Nb in pure Fe, Fe 1.5 Mn, Fe 0.6 Si and Fe 1.5 Mn 0.6 Si has been measured between 1080 and 1200 0 C. Results indicate that Si increases Nb diffusivity while Mn decreases it. The sequence of diffusion coeficients values is: D sup(Nb) sub(Fe 1.5 Mn) [pt

  1. Thermodynamical Properties of 56Fe

    International Nuclear Information System (INIS)

    Tavukcu, E.; Becker, J.A.; Bernstein, L.A.; Garrett, P.E.; Guttormsen, M.; Mitchell, G.E.; Rekstad, J.; Schiller, A.; Siem, S.; Voinov, A.; Younes, W.

    2002-01-01

    Average nuclear level densities close to the nuclear binding energy in 56 Fe and 57 Fe are extracted from primary γ-ray spectra. Thermal properties of 56 Fe are studied within the statistical canonical ensemble. The experimental heat capacity is compared with the theoretical heat capacity calculated within the shell model Monte Carlo approach

  2. Organic matter iron and nutrient transport and nature of dissolved organic matter in the drainage basin of a boreal humic river in northern Finland

    International Nuclear Information System (INIS)

    Heikkinen, K.

    1994-01-01

    Organic carbon and iron transport into the Gulf of Bothnia and the seasonal changes in the nature of dissolved organic matter (DOM) were studied in 1983 and 1984 at the mouth of the River Kiiminkijoki, which crosses an area of minerotrophic mires in northern Finland. Organic and inorganic transport within the drainage basin was studied in the summer and autumn of 1985 and 1986. The results indicate that the dissolved organic carbon (DOC) is mainly of terrestrial origin, leaching mostly from peatlands. The DOC concentrations decrease under low flow conditions. The proportion of drifting algae as a particulate organic carbon (POC) source seems to increase in summer. The changes in the ratio of Fe/DOC, the colour of the DOM and the ratio of Fe/DOC, the colour of the DOM and the ratio of fluorescence to DOC with discharge give indications of the origin, formation, nature and fate of the DOM in the river water. Temperature-dependent microbiological processes in the formation and sedimentation of Fe-organic colloids seem to be important. Estimates are given for the amounts and transport rates of organic carbon and Fe discharged into the Gulf of Bothnia by river. High apparent molecular weight (HAMW) organic colloids are important for the organic, Fe and P transport in the basin. The DOM in the water consists mainly of fulvic acids, although humic acids are also important. The results indicate an increase in the mobilization of HAMW Fe-organic colloids in the peatlands following drainage and peat mining. The transport of inorganic nitrogen from the peatlands in the area and in the river is increasing due to peat mining. The changes in the transport of organic matter, Fe and P are less marked

  3. Convective mass transfer around a dissolving bubble

    Science.gov (United States)

    Duplat, Jerome; Grandemange, Mathieu; Poulain, Cedric

    2017-11-01

    Heat or mass transfer around an evaporating drop or condensing vapor bubble is a complex issue due to the interplay between the substrate properties, diffusion- and convection-driven mass transfer, and Marangoni effects, to mention but a few. In order to disentangle these mechanisms, we focus here mainly on the convective mass transfer contribution in an isothermal mass transfer problem. For this, we study the case of a millimetric carbon dioxide bubble which is suspended under a substrate and dissolved into pure liquid water. The high solubility of CO2 in water makes the liquid denser and promotes a buoyant-driven flow at a high (solutal) Rayleigh number (Ra˜104 ). The alteration of p H allows the concentration field in the liquid to be imaged by laser fluorescence enabling us to measure both the global mass flux (bubble volume, contact angle) and local mass flux around the bubble along time. After a short period of mass diffusion, where the boundary layer thickens like the square root of time, convection starts and the CO2 is carried by a plume falling at constant velocity. The boundary layer thickness then reaches a plateau which depends on the bubble cross section. Meanwhile the plume velocity scales like (dV /d t )1 /2 with V being the volume of the bubble. As for the rate of volume loss, we recover a constant mass flux in the diffusion-driven regime followed by a decrease in the volume V like V2 /3 after convection has started. We present a model which agrees well with the bubble dynamics and discuss our results in the context of droplet evaporation, as well as high Rayleigh convection.

  4. Electrical characteristic of spin coated Fe-Porphyrin on Cu substrates

    Energy Technology Data Exchange (ETDEWEB)

    Utari, E-mail: utari@ugm.ac.id [Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Jl. Ir. Sutami 36A Kentingan Surakarta 57126 (Indonesia); Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Bulaksumur BLS 21 Yogyakarta 55281 (Indonesia); Kusumandari,; Purnama, Budi, E-mail: bpurnama@mipa.uns.ac.id [Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Jl. Ir. Sutami 36A Kentingan Surakarta 57126 (Indonesia); Mudasir [Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Bulaksumur BLS 21 Yogyakarta 55281 (Indonesia); Abraha, Kamsul [Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Bulaksumur BLS 21 Yogyakarta 55281 (Indonesia)

    2016-06-17

    This paper describes the electrical-characteristics of Fe-Porphyrin thin films on Cu substrates. The thin layer samples used were deposited by spin coating methods on Cu-substrates at room temperature with and without induced magnetic field in the plane direction of the surface films. Fe-porphyrin was dissolved in chloroform and mixed with a magnetic stirrer for 60 min at a rotational speed of 200 rpm. The experimental results show that the mobility carrier charge of the Fe-Porphyrin layer with induced magnetic field during deposition has lower value than that without induced magnetic field case. The decrease of the mobility can be attribute to the change of the surface morphology in Fe-porphyrin films by means of increase in the nano-granular/nano-molecular size caused by the induce magnetic field.

  5. Influence of the composition of the aqueous phase on the behavior of the system FeCl3-HCl-DPE

    International Nuclear Information System (INIS)

    Ramirez, F. de M.; Jimenez-Reyes, M.

    1981-07-01

    We studied the influence of the aqueous phase composition upon an extraction system in which, at room temperature (20 0 C +- 3 0 C) using the dissolvents FeCl 3 -HCl-di-isopropyl ether the third phase phenomena is present after one minute of agitation. Our results showed that principally the hydrochloric acid dissolvent produced each of the three phases at given concentration levels as well as determined the nature of the chemical composition in each phase. (author)

  6. Colored dissolved organic matter in Tampa Bay, Florida

    Science.gov (United States)

    Chen, Z.; Hu, C.; Conmy, R.N.; Muller-Karger, F.; Swarzenski, P.

    2007-01-01

    Absorption and fluorescence of colored dissolved organic matter (CDOM) and concentrations of dissolved organic carbon (DOC), chlorophyll and total suspended solids in Tampa Bay and its adjacent rivers were examined in June and October of 2004. Except in Old Tampa Bay (OTB), the spatial distribution of CDOM showed a conservative relationship with salinity in June, 2004 (aCDOM(400) = − 0.19 × salinity + 6.78, R2 = 0.98, n = 17, salinity range = 1.1–32.5) with little variations in absorption spectral slope and fluorescence efficiency. This indicates that CDOM distribution was dominated by mixing. In October, 2004, CDOM distribution was nonconservative with an average absorption coefficient (aCDOM(400), ∼ 7.76 m-1) about seven times higher than that in June (∼ 1.11 m-1). The nonconservative behavior was caused largely by CDOM removal at intermediate salinities (e.g., aCDOM(400) removal > 15% at salinity ∼ 13.0), which likely resulted from photobleaching due to stronger stratification. The spatial and seasonal distributions of CDOM in Tampa Bay showed that the two largest rivers, the Alafia River (AR) and Hillsborough River (HR) were dominant CDOM sources to most of the bay. In OTB, however, CDOM showed distinctive differences: lower absorption coefficient, higher absorption spectral slopes, and lower ratios of CDOM absorption to DOC and higher fluorescence efficiency. These differences may have stemmed from (1) changes in CDOM composition by more intensive photobleaching due to the longer residence time of water mass in OTB; (2) other sources of CDOM than the HR/AR inputs, such as local creeks, streams, groundwater, and/or bottom re-suspension. Average CDOM absorption in Tampa Bay at 443 nm, aCDOM(443), was about five times higher in June and about ten times higher in October than phytoplankton pigment absorption, aph(443), indicating that blue light attenuation in the water column was dominated by CDOM rather than by phytoplankton absorption throughout the

  7. Mangroves, a major source of dissolved organic carbon to the oceans

    Science.gov (United States)

    Dittmar, Thorsten; Hertkorn, Norbert; Kattner, Gerhard; Lara, RubéN. J.

    2006-03-01

    Organic matter, which is dissolved in low concentrations in the vast waters of the oceans, contains a total amount of carbon similar to atmospheric carbon dioxide. To understand global biogeochemical cycles, it is crucial to quantify the sources of marine dissolved organic carbon (DOC). We investigated the impact of mangroves, the dominant intertidal vegetation of the tropics, on marine DOC inventories. Stable carbon isotopes and proton nuclear magnetic resonance spectroscopy showed that mangroves are the main source of terrigenous DOC in the open ocean off northern Brazil. Sunlight efficiently destroyed aromatic molecules during transport offshore, removing about one third of mangrove-derived DOC. The remainder was refractory and may thus be distributed over the oceans. On a global scale, we estimate that mangroves account for >10% of the terrestrially derived, refractory DOC transported to the ocean, while they cover only <0.1% of the continents' surface.

  8. New approaches to improve the removal of dissolved organic matter and nitrogen in aquaculture

    DEFF Research Database (Denmark)

    von Ahnen, Mathis

    further due to the lack of cost-effective and easy applicable treatment methods for removing dissolved N and OM. The purpose of this PhD thesis was to assess the problem of removing dissolved N and OM in the context of the large differences in system intensity between farms, and to devise new, simple...... at increasing long-term waste loadings. The second part examined the potential of using anoxic denitrifying woodchip bioreactors for removal of nitrate from aquaculture effluent (Paper III-V). Investigations within the first part showed that the effectiveness of biofilters, as determined by their areal removal......-term biofilter loading up to a certain threshold. The latter indicated that the removal capacity of biofilters operated at lower loadings is easily exceeded, and that they may not respond very well to sudden increases in total ammonia nitrogen (TAN) concentrations. In the second part of the thesis, a field study...

  9. Amount, composition and seasonality of dissolved organic carbon and nitrogen export from agriculture in contrasting climates

    DEFF Research Database (Denmark)

    Graeber, Daniel; Meerhof, Mariana; Zwirnmann, Elke

    2014-01-01

    Agricultural catchments are potentially important but often neglected sources of dissolved organic matter (DOM), of which a large part is dissolved organic carbon (DOC) and nitrogen (DON). DOC is an important source of aquatic microbial respiration and DON may be an important source of nitrogen...... to aquatic ecosystems. However, there is still a lack of comprehensive studies on the amount, composition and seasonality of DOM export from agricultural catchments in different climates. The aim of our study was to assess the amount, composition and seasonality of DOM in a total of four streams in the wet......-temperate and subtropical climate of Denmark and Uruguay, respectively. In each climate, we investigated one stream with extensive agriculture (mostly pasture) and one stream with intensive agriculture (mostly intensively used arable land) in the catchment. We sampled each stream taking grab samples fortnightly for two...

  10. Dissolved inorganic carbon, total alkalinity, nutrients, and other variables collected from profile and discrete observations using CTD, Niskin bottle, and other instruments from R/V New Horizon and R/V Robert Gordon Sproul in the U.S. West Coast for calibration and validation of California Current Ecosystem (CCE) Moorings from 2009-12-15 to 2015-04-29 (NCEI Accession 0146024)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archive accession contains inorganic carbon, total alkalinity, nutrients, and other data collected from ships during servicing cruises to the California Current...

  11. Incorporation of Mg and Ca into nanostructured Fe2O3 improves Fe solubility in dilute acid and sensory characteristics in foods.

    Science.gov (United States)

    Hilty, Florentine M; Knijnenburg, Jesper T N; Teleki, Alexandra; Krumeich, Frank; Hurrell, Richard F; Pratsinis, Sotiris E; Zimmermann, Michael B

    2011-01-01

    Iron deficiency is one of the most common micronutrient deficiencies worldwide. Food fortification can be an effective and sustainable strategy to reduce Fe deficiency but selection of iron fortificants remains a challenge. Water-soluble compounds, for example, FeSO(4), usually demonstrate high bioavailability but they often cause unacceptable sensory changes in foods. On the other hand, poorly acid-soluble Fe compounds, for example FePO(4), may cause fewer adverse sensory changes in foods but are usually not well bioavailable since they need to be dissolved in the stomach prior to absorption. The solubility and the bioavailability of poorly acid-soluble Fe compounds can be improved by decreasing their primary particle size and thereby increasing their specific surface area. Here, Fe oxide-based nanostructured compounds with added Mg or Ca were produced by scalable flame aerosol technology. The compounds were characterized by nitrogen adsorption, X-ray diffraction, transmission electron microscopy, and Fe solubility in dilute acid. Sensory properties of the Fe-based compounds were tested in 2 highly reactive, polyphenol-rich food matrices: chocolate milk and fruit yoghurt. The Fe solubility of nanostructured Fe(2)O(3) doped with Mg or Ca was higher than that of pure Fe(2)O(3). Since good solubility in dilute acid was obtained despite the inhomogeneity of the powders, inexpensive precursors, for example Fe- and Ca-nitrates, can be used for their manufacture. Adding Mg or Ca lightened powder color, while sensory changes when added to foods were less pronounced than for FeSO(4). The combination of high Fe solubility and low reactivity in foods makes these flame-made nanostructured compounds promising for food fortification. Practical Application: The nanostructured iron-containing compounds presented here may prove useful for iron fortification of certain foods; they are highly soluble in dilute acid and likely to be well absorbed in the gut but cause less severe

  12. Geochemical characteristics of dissolved rare earth elements in acid mine drainage from abandoned high-As coal mining area, southwestern China.

    Science.gov (United States)

    Li, Xuexian; Wu, Pan

    2017-09-01

    Acid mine drainage (AMD) represents a major source of water pollution in the small watershed of Xingren coalfield in southwestern Guizhou Province. A detailed geochemical study was performed to investigate the origin, distribution, and migration of REEs by determining the concentrations of REEs and major solutes in AMD samples, concentrations of REEs in coal, bedrocks, and sediment samples, and modeling REEs aqueous species. The results highlighted that all water samples collected in the mining area are identified as low pH, high concentrations of Fe, Al, SO 4 2- and distinctive As and REEs. The spatial distributions of REEs showed a peak in where it is nearby the location of discharging of AMD, and then decrease significantly with distance away from the mining areas. Lots of labile REEs have an origin of coal and bedrocks, whereas the acid produced by the oxidation of pyrite is a prerequisite to cause the dissolution of coal and bedrocks, and then promoting REEs release in AMD. The North American Shale Composite (NASC)-normalized REE patterns of coal and bedrocks are enriched in light REEs (LREEs) and middle REEs (MREEs) relative to heavy REEs (HREEs). Contrary to these solid samples, AMD samples showed slightly enrichment of MREEs compared with LREEs and HREEs. This behavior implied that REEs probably fractionate during acid leaching, dissolution of bedrocks, and subsequent transport, so that the MREEs is primarily enriched in AMD samples. Calculation of REEs inorganic species for AMD demonstrated that sulfate complexes (Ln(SO 4 ) + and Ln(SO 4 ) 2 - ) predominate in these species, accounting for most of proportions for the total REEs species. The high concentrations of dissolved SO 4 2- and low pH play a decisive role in controlling the presence of REEs in AMD, as these conditions are necessary for formation of stable REEs-sulfate complexes in current study. The migration and transportation of REEs in AMD are more likely constrained by adsorption and co

  13. Change in lattice parameter of tantalum due to dissolved hydrogen

    Directory of Open Access Journals (Sweden)

    Gyanendra P. Tiwari

    2012-06-01

    Full Text Available The volume expansion of tantalum due to the dissolved hydrogen has been determined using Bragg equation. The hydrogen was dissolved in the pure tantalum metal at constant temperature (360 °C and constant pressure (132 mbar by varying the duration of hydrogen charging. The amount of dissolved hydrogen was within the solid solubility limit. The samples with different hydrogen concentration were analyzed by X-ray diffraction technique. Slight peak shifts as well as peak broadening were observed. The relative changes of lattice parameters plotted against the hydrogen concentration revealed that the lattice parameters varied linearly with the hydrogen concentration.

  14. Evaluation of water quality by chlorophyll and dissolved oxygen

    International Nuclear Information System (INIS)

    Latif, Z.; Tasneem, M.A.; Javed, T.; Butt, S.; Fazil, M.; Ali, M.; Sajjad, M.I.

    2002-01-01

    This paper focuses on the impact of Chlorophyll and dissolved Oxygen on water quality. Kalar Kahar and Rawal lakes were selected for this research. A Spectrophotometer was used for determination of Chlorophyll a, Chlorophyll b, Chlorophyll c and Pheophytin pigment. Dissolved Oxygen was measured in situ, using dissolved oxygen meter. The gamma O/sup 18/ of dissolved Oxygen, like concentration, is affected primarily by three processes: air water gas exchange, respiration and photosynthesis; gamma O/sup 18/ is analyzed on isotopic ratio mass spectrometer, after extraction of dissolved Oxygen from water samples, followed by purification and conversion into CO/sub 2/. Rawal lake receives most of the water from precipitation during monsoon period and supplemented by light rains in December and January. This water is used throughout the year for drinking purposes in Rawalpindi city. The water samples were collected from 5, 7.5, and 10 meters of depth for seasonal studies of physiochemical and isotopic parameters of water and dissolved Oxygen. Optimum experimental conditions for delta O/sup 18/ analysis of dissolved Oxygen from aqueous samples were determined. Stratification of dissolved Oxygen was observed in Rawal Lake before rainy season in summer. The water quality deteriorates with depth, because the respiration exceeds the photosynthesis and gas exchange. The concentration and delta O/sup 18/ of dissolved Oxygen show no variation with depth in 1998 winter sampling. Kalar Kahar lake gets water from springs, which are recharged by local rains on the nearby mountains. It is a big lake, with shallow and uniform depth of nearly 1.5 meters. A lot of vegetation can be seen on the periphery of the lake. Algae have grown on the floor of the lake Water samples were collected from the corner with large amount of vegetation and from the center of the lake for dissolved Oxygen and Chlorophyll measurements. Chlorophyll result shows that Kalar Kahar Lake falls in Eutrophic category

  15. Environmental degradation of NdFeB magnets

    Energy Technology Data Exchange (ETDEWEB)

    Yan Gaolin [Wuhan University, School of Physics and Technology, Wuhan 430072 (China)], E-mail: gaolinyan@whu.edu.cn; McGuiness, P.J. [Jozef Stefan Institute (Slovenia); Farr, J.P.G.; Harris, I.R. [School of Metallurgy and Materials, University of Birmingham, Elms Road, Edgbaston, Birmingham B15 2TT (United Kingdom)

    2009-06-10

    A mechanism for pitting of NdFeB magnet because of differential-aeration beneath a water droplet is proposed and observations of the localised corrosions are presented. NdFeB magnets exhibit general corrosion along the grain boundaries when etched in Viella's reagent. However, localised corrosion of these magnets results in a crater-like feature when corrosion is produced in an environmental chamber, e.g. when Nd{sub 16}Fe{sub 76}B{sub 8} magnets are corroded in the environmental chamber at 85 deg. C, relative humidity (RH): 80%. This is attributed to the condensation of water droplets on the surface of samples and the concentration gradient of oxygen dissolved in the droplets then influencing the corrosion process. It is thought that during the process of pitting, the high concentration of H{sup +} in the center of the pit accelerates the pit development; meanwhile, the cathodic Nd{sub 2}Fe{sub 14}B matrix phase absorbs the nascent hydrogen atoms. It is believed that pits start at the Nd-rich phase and then propagate along the grain boundaries.

  16. Dissolved pesticides, dissolved organic carbon, and water-quality characteristics in selected Idaho streams, April--December 2010

    Science.gov (United States)

    Reilly, Timothy J.; Smalling, Kelly L.; Wilson, Emma R.; Battaglin, William A.

    2012-01-01

    Water-quality samples were collected from April through December 2010 from four streams in Idaho and analyzed for a suite of pesticides, including fungicides, by the U.S. Geological Survey. Water samples were collected from two agricultural and two nonagricultural (control) streams approximately biweekly from the beginning of the growing season (April) through the end of the calendar year (December). Samples were analyzed for 90 pesticides using gas chromatography/mass spectrometry. Twenty-three pesticides, including 8 fungicides, 10 herbicides, 3 insecticides, and 2 pesticide degradates, were detected in 45 water samples. The most frequently detected compounds in the two agricultural streams and their detection frequencies were metolachlor, 96 percent; azoxystrobin, 79 percent; boscalid, 79 percent; atrazine, 46 percent; pendimethalin, 33 percent; and trifluralin, 33 percent. Dissolved-pesticide concentrations ranged from below instrumental limits of detection (0.5-1.0 nanograms per liter) to 771 nanograms per liter (hexazinone). The total number of pesticides detected in any given water sample ranged from 0 to 11. Only three pesticides (atrazine, fipronil, and simazine) were detected in samples from the control streams during the sampling period.

  17. Sulfurization of Dissolved Organic Matter Increases Hg-Sulfide-Dissolved Organic Matter Bioavailability to a Hg-Methylating Bacterium.

    Science.gov (United States)

    Graham, Andrew M; Cameron-Burr, Keaton T; Hajic, Hayley A; Lee, Connie; Msekela, Deborah; Gilmour, Cynthia C

    2017-08-15

    Reactions of dissolved organic matter (DOM) with aqueous sulfide (termed sulfurization) in anoxic environments can substantially increase DOM's reduced sulfur functional group content. Sulfurization may affect DOM-trace metal interactions, including complexation and metal-containing particle precipitation, aggregation, and dissolution. Using a diverse suite of DOM samples, we found that susceptibility to additional sulfur incorporation via reaction with aqueous sulfide increased with increasing DOM aromatic-, carbonyl-, and carboxyl-C content. The role of DOM sulfurization in enhancing Hg bioavailability for microbial methylation was evaluated under conditions typical of Hg methylation environments (μM sulfide concentrations and low Hg-to-DOM molar ratios). Under the conditions of predicted metacinnabar supersaturation, microbial Hg methylation increased with increasing DOM sulfurization, likely reflecting either effective inhibition of metacinnabar growth and aggregation or the formation of Hg(II)-DOM thiol complexes with high bioavailability. Remarkably, Hg methylation efficiencies with the most sulfurized DOM samples were similar (>85% of total Hg methylated) to that observed in the presence of l-cysteine, a ligand facilitating rapid Hg(II) biouptake and methylation. This suggests that complexes of Hg(II) with DOM thiols have similar bioavailability to Hg(II) complexes with low-molecular-weight thiols. Overall, our results are a demonstration of the importance of DOM sulfurization to trace metal and metalloid (especially mercury) fate in the environment. DOM sulfurization likely represents another link between anthropogenic sulfate enrichment and MeHg production in the environment.

  18. Effect of Dunaliella tertiolecta organic exudates on the Fe(II) oxidation kinetics in seawater.

    Science.gov (United States)

    González, A G; Santana-Casiano, J M; González-Dávila, M; Pérez-Almeida, N; Suárez de Tangil, M

    2014-07-15

    The role played by the natural organic ligands excreted by the green algae Dunaliella tertiolecta on the Fe(II) oxidation rate constants was studied at different stages of growth. The concentration of dissolved organic carbon increased from 2.1 to 7.1 mg L(-1) over time of culture. The oxidation kinetics of Fe(II) was studied at nanomolar levels and under different physicochemical conditions of pH (7.2-8.2), temperature (5-35 °C), salinity (10-37), and dissolved organic carbon produced by cells (2.1-7.1 mg L(-1)). The experimental rate always decreased in the presence of organic exudates with respect to that in the control seawater. The Fe(II) oxidation rate constant was also studied in the context of Marcus theory, where ΔG° was 39.31-51.48 kJ mol(-1). A kinetic modeling approach was applied for computing the equilibrium and rate constants for Fe(II) and exudates present in solution, the Fe(II) speciation, and the contribution of each Fe(II) species to the overall oxidation rate constant. The best fit model took into account two acidity equilibrium constants for the Fe(II) complexing ligands with pKa,1=9.45 and pKa,2=4.9. The Fe(II) complexing constants were KFe(II)-LH=3×10(10) and KFe(II)-L=10(7), and the corresponding computed oxidation rates were 68±2 and 36±8 M(-1) min(-1), respectively.

  19. Thermodynamic properties of liquid alloys systems Fe - Ni - O - Me - Si

    Directory of Open Access Journals (Sweden)

    Н.О. Шаркіна

    2008-01-01

    Full Text Available  In the isoperabelic calorimeter at 1870 are determined partial and integral enthalpies of mixture of liquid alloys of systems Fe – Ni – O - Me and Fe – Ni – O – Me – Si, where Me – IVb-, Vb-, VIb-metals. The basis of alloy was served invars with the contents of oxygen by 0,06 %. Established, that the melts of systems Fe – Ni – O – IVb- (Vb--metals are characterized by strong interparticle interplay. The components of the maiden portions IVb- (Vb--metals in Fe – Ni – O melts are accompanied by very large exothermal effects (from – 400 up to – 1000 kJ/mol, which one considerably surpass those in double melts Fe(Ni – Me. The subsequent portions IVb- (Vb--metals caused smaller allocation of a heat (in limits from – 100 up to – 30 kJ/mol, that is conditioned by a decrease of the contents of dissolved oxygen. The partial enthalpies of mixture of molybdenum and tungsten in melts Fe – Ni – O are close to those in a nickel, and for a chromium exceed them. Is rotined, that D` HSi in liquid alloys Fe – Ni – O – Mo (– 450 kJ/mol considerably surpass that are characteristic for a nickel (– 50 kJ/mol. It is explained by interplay of silicon with the stayed dissolved oxygen in initial melts of a system Fe – Ni – O – Mo.

  20. First evidence for the two-proton of 45Fe

    International Nuclear Information System (INIS)

    Pfuetzner, M.; Bingham, C.

    2002-06-01

    Decays of five 45 Fe atoms have been observed at the Fragment Separator of GSI. Whereas one event is consistent with β decay of 45 Fe accompanied by the emission of a 10 MeV proton, four decays are consistent with the emission of particle(s) of total energy of 1.1 ± 0.1 MeV. This observation represents the first evidence for two-proton ground state radioactivity, a decay mode predicted for 45 Fe. The time distribution of the observed decay events corresponds to a half-life of 3.2 -1.0 +2.6 ms. (orig.)

  1. MFM study of NdFeB and NdFeB/Fe/NdFeB thin films

    International Nuclear Information System (INIS)

    Gouteff, P.C.; Folks, L.; Street, R.

    1998-01-01

    Domain structures of NdFeB thin films, ranging in thickness between 1500 and 29 nm, have been studied qualitatively by magnetic force microscopy (MFM). Samples were prepared using a range of sputtering conditions resulting in differences in properties such as texture, coercivity and magnetic saturation. MFM images of all the films showed extensive interaction domain structures, similar to those observed in nanocrystalline bulk NdFeB. An exchange-coupled NdFeB/Fe/NdFeB trilayer with layer thicknesses 18 nm/15 nm/18 nm, respectively, was also examined using MFM. (orig.)

  2. Experimental investigation and modeling of dissolved organic carbon removal by coagulation from seawater.

    Science.gov (United States)

    Jeong, Sanghyun; Sathasivan, Arumugam; Kastl, George; Shim, Wang Geun; Vigneswaran, Saravanamuthu

    2014-01-01

    Coagulation removes colloidal matters and dissolved organic carbon (DOC) which can cause irreversible membrane fouling. However, how DOC is removed by coagulant is not well-known. Jar test was used to study the removal of hydrophobic and hydrophilic DOC fractions at various doses (0.5-8.0 mg-Fe(+3) L(-1)) of ferric chloride (FeCl3) and pH (5.0-9.0). Natural organic matter (NOM) in seawater and treated seawater were fractionated by liquid chromatography-organic carbon detector (LC-OCD). Compared to surface water, the removal of DOC in seawater by coagulation was remarkably different. Majority of DOC could be easily removed with very low coagulant dose (fraction (HB) was better removed at high pH while hydrophilic fraction (HF) was better removed at low pH. A modified model of Kastl et al. (2004) which assumed that the removal occurred by adsorption of un-dissociated compounds onto ferric hydroxide was formulated and successfully validated against the jar test data. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Global effects of agriculture on fluvial dissolved organic matter

    DEFF Research Database (Denmark)

    Graeber, Daniel; Boëchat, Iola; Encina, Francisco

    2015-01-01

    Agricultural land covers approximately 40% of Earth’s land surface and affects hydromorphological, biogeochemical and ecological characteristics of fluvial networks. In the northern temperate region, agriculture also strongly affects the amount and molecular composition of dissolved organic matter...

  4. Remote repair of the dissolvers in Tokai reprocessing plant

    International Nuclear Information System (INIS)

    Otani, Yosikuni

    1985-01-01

    In the Tokai fuel reprocessing plant, there occurred failures (pinholes) in two dissolver tanks successively in 1982 and 1983. These dissolvers are set under high radiation field, not permitting access of the personnel. So, repair works were carried out after development of the remotely operated repair system. For repair of the failed dissolver tanks, after tests and studies, the means was employed of grinding off the wall surface to small depth and then forming over it a corrosion resistant sealing layer by padding welding. The repair system which enabled the repair and the inspection in the cell by remote operation consisted of six devices including polishing, welding, dye penetration test, etc. Repair works on the dissolvers took two months and a half from September 1983. (Mori, K.)

  5. Formulation of Fast-Dissolving Tablets of Promethazine Theoclate

    African Journals Online (AJOL)

    Erah

    tablet containing β-cyclodextrin, crospovidone, and camphor, using direct compression method. A 33 full factorial design ... fast dissolving tablets (FDT) is the use of ... All the raw materials were passed ..... delivery systems: critical review in.

  6. DGT measurement of dissolved aluminum species in waters

    DEFF Research Database (Denmark)

    Panther, Jared G.; Bennett, William W.; Teasdale, Peter R.

    2012-01-01

    Aluminum is acutely toxic, and elevated concentrations of dissolved Al can have detrimental effects on both terrestrial and aquatic ecosystems. Robust analytical methods that can determine environmentally relevant Al fractions accurately and efficiently are required by the environmental monitoring...

  7. Dissolved oxygen (DO) is essential for respiration in aquatic fauna ...

    African Journals Online (AJOL)

    spamer

    more, thermal and salinity stratification inhibits ex- change of ... 2000) and larval densities (Harris and. Cyrus 1999) ...... dissolved oxygen and effects of short-term oxygen stress ... in the shrimp Crangon crangon exposed to hypoxia, anoxia.

  8. Dissolved helium and TDS in groundwater from Bhavnagar in Gujarat

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    2003-01-02

    Jan 2, 2003 ... by enhanced pumping of old groundwater with relatively higher concentration of dissolved helium and salt .... solubility changes due to these (Weiss 1971) can- ... aquifers and relatively low helium concentra- .... permeability.

  9. In-situ measurement of the dissolved S2- in seafloor diffuse flow system: sensor preparation and calibration

    Institute of Scientific and Technical Information of China (English)

    Ying YE; Xia HUANG; Yi-wen PAN; Chen-hua HAN; Wei ZHAO

    2008-01-01

    The preparation approach and calibration result of an improved type of ion selective electrode (ISE), which is used to measure the total dissolved S2-, are introduced in this paper. The improved Ag/Ag2S electrode uses silver wire as the substrate, which is surrounded by electric polymer containing superfine silver powder. After the stabilization of the epoxy-resin, Ag2ES layer was formed by chemical reaction with 0.2 mol/L (NH4)2S solution for 5 min. With Ag/AgCl as reference electrode, the Ag/Ag2S electrode can be used to measure dissolved S2-. The correlation between the measured potentials and the logarithm of dissolved S2- is found to be linear, within range of the concentration of dissolved S2- from 10-2~10-7 mol/L. The slope of the regression line between measured potential and logarithm of dissolved S2- is about -27.7, which agrees well with the theoretical Nernst value -29.6. Furthermore, the performance of the improved Ag/Ag2S electrode, such as the response time, sensitivity and stability, greatly outweighs the conventional Ag/Ag2S electrode.

  10. Removal of both dissolved and particulate iron from groundwater

    OpenAIRE

    H. van Dijk; H. Leijssen; L. Rietveld; A. Abrahamse; K. Teunissen

    2008-01-01

    Iron is the primary source for discolouration problems in the drinking water distribution system. The removal of iron from groundwater is a common treatment step in the production of drinking water. Even when clear water meets the drinking water standards, the water quality in the distribution system can deteriorate due to settling of iron (hydroxide) particles or post-treatment flocculation of dissolved iron. Therefore it is important to remove dissolved and particulate iron to a large exten...

  11. Monte Carlo criticality analysis for dissolvers with neutron poison

    International Nuclear Information System (INIS)

    Yu, Deshun; Dong, Xiufang; Pu, Fuxiang.

    1987-01-01

    Criticality analysis for dissolvers with neutron poison is given on the basis of Monte Carlo method. In Monte Carlo calculations of thermal neutron group parameters for fuel pieces, neutron transport length is determined in terms of maximum cross section approach. A set of related effective multiplication factors (K eff ) are calculated by Monte Carlo method for the three cases. Related numerical results are quite useful for the design and operation of this kind of dissolver in the criticality safety analysis. (author)

  12. Nitrous oxide emissions and dissolved oxygen profiling in a full-scale nitrifying activated sludge treatment plant.

    Science.gov (United States)

    Aboobakar, Amina; Cartmell, Elise; Stephenson, Tom; Jones, Mark; Vale, Peter; Dotro, Gabriela

    2013-02-01

    This paper reports findings from online, continuous monitoring of dissolved and gaseous nitrous oxide (N₂O), combined with dissolved oxygen (DO) and ammonia loading, in a full-scale nitrifying activated sludge plant. The study was conducted over eight weeks, at a 210,000 population equivalent sewage treatment works in the UK. Results showed diurnal variability in the gaseous and dissolved N₂O emissions, with hourly averages ranging from 0 to 0.00009 kgN₂O-N/h for dissolved and 0.00077-0.0027 kgN₂O-N/h for gaseous nitrous oxide emissions respectively, per ammonia loading, depending on the time of day. Similarly, the spatial variability was high, with the highest emissions recorded immediately after the anoxic zone and in the final pass of the aeration lane, where ammonia concentrations were typically below 0.5 mg/L. Emissions were shown to be negatively correlated to dissolved oxygen, which fluctuated between 0.5 and 2.5 mgO₂/L, at the control set point of 1.5 mgO₂/L. The resulting dynamic DO conditions are known to favour N₂O production, both by autotrophic and heterotrophic processes in mixed cultures. Average mass emissions from the lane were greater in the gaseous (0.036% of the influent total nitrogen) than in the dissolved (0.01% of the influent total nitrogen) phase, and followed the same diurnal and spatial patterns. Nitrous oxide emissions corresponded to over 34,000 carbon dioxide equivalents/year, adding 13% to the carbon footprint associated with the energy requirements of the monitored lane. A clearer understanding of emissions obtained from real-time data can help towards finding the right balance between improving operational efficiency and saving energy, without increasing N₂O emissions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Utilizing Colored Dissolved Organic Matter to Derive Dissolved Black Carbon Export by Arctic Rivers

    Science.gov (United States)

    Stubbins, Aron; Spencer, Robert; Mann, Paul; Holmes, R.; McClelland, James; Niggemann, Jutta; Dittmar, Thorsten

    2015-10-01

    Wildfires have produced black carbon (BC) since land plants emerged. Condensed aromatic compounds, a form of BC, have accumulated to become a major component of the soil carbon pool. Condensed aromatics leach from soils into rivers, where they are termed dissolved black carbon (DBC). The transport of DBC by rivers to the sea is a major term in the global carbon and BC cycles. To estimate Arctic river DBC export, 25 samples collected from the six largest Arctic rivers (Kolyma, Lena, Mackenzie, Ob’, Yenisey and Yukon) were analyzed for dissolved organic carbon (DOC), colored dissolved organic matter (CDOM), and DBC. A simple, linear regression between DOC and DBC indicated that DBC accounted for 8.9 ± 0.3% DOC exported by Arctic rivers. To improve upon this estimate, an optical proxy for DBC was developed based upon the linear correlation between DBC concentrations and CDOM light absorption coefficients at 254 nm (a254). Relatively easy to measure a254 values were determined for 410 Arctic river samples between 2004 and 2010. Each of these a254 values was converted to a DBC concentration based upon the linear correlation, providing an extended record of DBC concentration. The extended DBC record was coupled with daily discharge data from the six rivers to estimate riverine DBC loads using the LOADEST modeling program. The six rivers studied cover 53% of the pan-Arctic watershed and exported 1.5 ± 0.1 million tons of DBC per year. Scaling up to the full area of the pan-Arctic watershed, we estimate that Arctic rivers carry 2.8 ± 0.3 million tons of DBC from land to the Arctic Ocean each year. This equates to ~8% of Arctic river DOC export, slightly less than indicated by the simpler DBC vs DOC correlation-based estimate. Riverine discharge is predicted to increase in a warmer Arctic. DBC export was positively correlated with river runoff, suggesting that the export of soil BC to the Arctic Ocean is likely to increase as the Arctic warms.

  14. Utilizing Colored Dissolved Organic Matter to Derive Dissolved Black Carbon Export by Arctic Rivers

    Directory of Open Access Journals (Sweden)

    Aron eStubbins

    2015-10-01

    Full Text Available Wildfires have produced black carbon (BC since land plants emerged. Condensed aromatic compounds, a form of BC, have accumulated to become a major component of the soil carbon pool. Condensed aromatics leach from soils into rivers, where they are termed dissolved black carbon (DBC. The transport of DBC by rivers to the sea is a major term in the global carbon and BC cycles. To estimate Arctic river DBC export, 25 samples collected from the six largest Arctic rivers (Kolyma, Lena, Mackenzie, Ob’, Yenisey and Yukon were analyzed for dissolved organic carbon (DOC, colored dissolved organic matter (CDOM, and DBC. A simple, linear regression between DOC and DBC indicated that DBC accounted for 8.9 ± 0.3% DOC exported by Arctic rivers. To improve upon this estimate, an optical proxy for DBC was developed based upon the linear correlation between DBC concentrations and CDOM light absorption coefficients at 254 nm (a254. Relatively easy to measure a254 values were determined for 410 Arctic river samples between 2004 and 2010. Each of these a254 values was converted to a DBC concentration based upon the linear correlation, providing an extended record of DBC concentration. The extended DBC record was coupled with daily discharge data from the six rivers to estimate riverine DBC loads using the LOADEST modeling program. The six rivers studied cover 53% of the pan-Arctic watershed and exported 1.5 ± 0.1 million tons of DBC per year. Scaling up to the full area of the pan-Arctic watershed, we estimate that Arctic rivers carry 2.8 ± 0.3 million tons of DBC from land to the Arctic Ocean each year. This equates to ~8% of Arctic river DOC export, slightly less than indicated by the simpler DBC vs DOC correlation-based estimate. Riverine discharge is predicted to increase in a warmer Arctic. DBC export was positively correlated with river runoff, suggesting that the export of soil BC to the Arctic Ocean is likely to increase as the Arctic warms.

  15. Dissolved Vanillin as Tracer for Estuarine Lignin Conversion

    Science.gov (United States)

    Edelkraut, F.

    1996-12-01

    Lignin is produced only by vascular plants and therefore can be used as a tracer for terrestrial organic carbon input to the estuarine and marine environments. Lignin measurements have been done by analyses of the oxidation products such as vanillin or 4-hydroxybenzaldehyde. In the Elbe Estuary, free dissolved vanillin was analysed in order to test whether such measurements yield information on terrestrial carbon inputs into the Estuary and on the vanillin derived from lignin oxidation. In the period 1990-1992, concentrations of dissolved vanillin in the Elbe ranged from 0 to 60 μ g l -1(mean: 8 μg l -1). Higher values were found in areas of increased microbial activity such as the turbidity zone and the river mouth where the water chemistry is influenced by large tidal flats. No correlation was found between dissolved vanillin and suspended matter concentrations, although lignin is normally associated with suspended particulate matter, nor was a covariance seen between dissolved vanillin and the terrestrial carbon inputs into the Estuary. Apparently, biological conversion of lignin was faster than the transport processes, and local sources were more dominant for the vanillin concentration than riverine sources. The dissolved vanillin turnover was fast and, consequently, a significant amount of lignin may be converted within an estuary. In sediments from the Estuary, the concentrations of dissolved vanillin were similar to those found in the water phase and showed no clear vertical profile. The sediment is unlikely to be the source for vanillin.

  16. Clarification of dissolved irradiated light-water-reactor fuel

    International Nuclear Information System (INIS)

    Rodrigues, G.C.

    1983-02-01

    Bench-scale studies with actual dissolved irradiated light water reactor (LWR) fuels showed that continuous centrifugation is a practical clarification method for reprocessing. Dissolved irradiated LWR fuel was satisfactorily clarified in a bench-scale, continuous-flow bowl centrifuge. The solids separated were successfully reslurried in water. When the reslurried solids were mixed with clarified centrate, the resulting suspension behaved similar to the original dissolver solution during centrifugation. Settling rates for solids in actual irradiated fuel solutions were measured in a bottle centrifuge. The results indicate that dissolver solutions may be clarified under conditions achievable by available plant-scale centrifuge technology. The effective particle diameter of residual solids was calculated to be 0.064 microns for Oconee-1 fuel and 0.138 microns for Dresden-1 fuel. Filtration was shown unsuitable for clarification of LWR fuel solutions. Conventional filtration with filter aid would unacceptably complicate remote canyon operation and maintenance, might introduce dissolved silica from filter aids, and might irreversibly plug the filter with dissolver solids. Inertial filtration exhibited irreversible pluggage with nonradioactive stand-in suspensions under all conditions tested

  17. On the losses of dissolved CO(2) during champagne serving.

    Science.gov (United States)

    Liger-Belair, Gérard; Bourget, Marielle; Villaume, Sandra; Jeandet, Philippe; Pron, Hervé; Polidori, Guillaume

    2010-08-11

    Pouring champagne into a glass is far from being consequenceless with regard to its dissolved CO(2) concentration. Measurements of losses of dissolved CO(2) during champagne serving were done from a bottled Champagne wine initially holding 11.4 +/- 0.1 g L(-1) of dissolved CO(2). Measurements were done at three champagne temperatures (i.e., 4, 12, and 18 degrees C) and for two different ways of serving (i.e., a champagne-like and a beer-like way of serving). The beer-like way of serving champagne was found to impact its concentration of dissolved CO(2) significantly less. Moreover, the higher the champagne temperature is, the higher its loss of dissolved CO(2) during the pouring process, which finally constitutes the first analytical proof that low temperatures prolong the drink's chill and helps it to retain its effervescence during the pouring process. The diffusion coefficient of CO(2) molecules in champagne and champagne viscosity (both strongly temperature-dependent) are suspected to be the two main parameters responsible for such differences. Besides, a recently developed dynamic-tracking technique using IR thermography was also used in order to visualize the cloud of gaseous CO(2) which flows down from champagne during the pouring process, thus visually confirming the strong influence of champagne temperature on its loss of dissolved CO(2).

  18. Organic carbon and reducing conditions lead to cadmium immobilization by secondary Fe mineral formation in a pH-neutral soil.

    Science.gov (United States)

    Muehe, E Marie; Adaktylou, Irini J; Obst, Martin; Zeitvogel, Fabian; Behrens, Sebastian; Planer-Friedrich, Britta; Kraemer, Ute; Kappler, Andreas

    2013-01-01

    Cadmium (Cd) is of environmental relevance as it enters soils via Cd-containing phosphate fertilizers and endangers human health when taken up by crops. Cd is known to associate with Fe(III) (oxyhydr)oxides in pH-neutral to slightly acidic soils, though it is not well understood how the interrelation of Fe and Cd changes under Fe(III)-reducing conditions. Therefore, we investigated how the mobility of Cd changes when a Cd-bearing soil is faced with organic carbon input and reducing conditions. Using fatty acid profiles and quantitative PCR, we found that both fermenting and Fe(III)-reducing bacteria were stimulated by organic carbon-rich conditions, leading to significant Fe(III) reduction. The reduction of Fe(III) minerals was accompanied by increasing soil pH, increasing dissolved inorganic carbon, and decreasing Cd mobility. SEM-EDX mapping of soil particles showed that a minor fraction of Cd was transferred to Ca- and S-bearing minerals, probably carbonates and sulfides. Most of the Cd, however, correlated with a secondary iron mineral phase that was formed during microbial Fe(III) mineral reduction and contained mostly Fe, suggesting an iron oxide mineral such as magnetite (Fe3O4). Our data thus provide evidence that secondary Fe(II) and Fe(II)/Fe(III) mixed minerals could be a sink for Cd in soils under reducing conditions, thus decreasing the mobility of Cd in the soil.

  19. Total parenteral nutrition - infants

    Science.gov (United States)

    ... medlineplus.gov/ency/article/007239.htm Total parenteral nutrition - infants To use the sharing features on this page, please enable JavaScript. Total parenteral nutrition (TPN) is a method of feeding that bypasses ...

  20. Total parenteral nutrition

    Science.gov (United States)

    ... medlineplus.gov/ency/patientinstructions/000177.htm Total parenteral nutrition To use the sharing features on this page, please enable JavaScript. Total parenteral nutrition (TPN) is a method of feeding that bypasses ...

  1. Technique of total thyroidectomy

    International Nuclear Information System (INIS)

    Rao, R.S.

    1999-01-01

    It is essential to define the various surgical procedures that are carried out for carcinoma of the thyroid gland. They are thyroid gland, subtotal lobectomy, total thyroidectomy and near total thyroidectomy

  2. Total iron binding capacity

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003489.htm Total iron binding capacity To use the sharing features on this page, please enable JavaScript. Total iron binding capacity (TIBC) is a blood test to ...

  3. A glassy carbon electrode modified with an iron N4-macrocycle and reduced graphene oxide for voltammetric sensing of dissolved oxygen

    International Nuclear Information System (INIS)

    Silva, Saimon M.; Aguiar, Lucas F.; Carvalho, Rita M. S.; Tanaka, Auro A.; Damos, Flavio S.; Luz, Rita C. S.

    2016-01-01

    The authors describe a platform for the electrochemical reduction of oxygen. It is based on the use of a glassy carbon electrode (GCE) that was modified in a single-step microwave assisted reaction with a N4-macrocycle containing iron(III) (FeN4) and with reduced graphene oxide. The FeN4/rGO composite was characterized by cyclic voltammetry, differential pulse voltammetry, and scanning electrochemical microscopy (SECM). Cyclic voltammetry showed the composite to enable efficient reduction of O_2 at a very low overpotential (−0.05 V vs. Ag/AgCl). SECM measurements were carried out to map (in the redox competition mode) the activity of a GCE microelectrode modified with FeN4/rGO. Under optimized conditions, the response to dissolved O_2 ranges from 0.8 up to 25 mg⋅L"-"1, and the limit of detection is 0.2 mg⋅L"-"1. (author)

  4. Evaluation of leachate dissolved organic nitrogen discharge effect on wastewater effluent quality.

    Science.gov (United States)

    Bolyard, Stephanie C; Reinhart, Debra R

    2017-07-01

    Nitrogen is limited more and more frequently in wastewater treatment plant (WWTP) effluents because of the concern of causing eutrophication in discharge waters. Twelve leachates from eight landfills in Florida and California were characterized for total nitrogen (TN) and dissolved organic nitrogen (DON). The average concentration of TN and DON in leachate was approximately 1146mg/L and 40mg/L, respectively. Solid-phase extraction was used to fractionate the DON based on hydrophobic (recalcitrant fraction) and hydrophilic (bioavailable fraction) chemical properties. The average leachate concentrations of bioavailable (bDON) and recalcitrant (rDON) DON were 16.5mg/L and 18.4mg/L, respectively. The rDON fraction was positively correlated, but with a low R 2 , with total leachate apparent color dissolved UV 254 , chemical oxygen demand (COD), and humic acid (R 2 equals 0.38, 0.49, and 0.40, respectively). The hydrophobic fraction of DON (rDON) was highly colored. This fraction was also associated with over 60% of the total leachate COD. Multiple leachate and wastewater co-treatment simulations were carried out to assess the effects of leachate on total nitrogen wastewater effluent quality using removals for four WWTPs under different scenarios. The calculated pass through of DON suggests that leachate could contribute to significant amounts of nitrogen discharged to aquatic systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Total well dominated trees

    DEFF Research Database (Denmark)

    Finbow, Arthur; Frendrup, Allan; Vestergaard, Preben D.

    cardinality then G is a total well dominated graph. In this paper we study composition and decomposition of total well dominated trees. By a reversible process we prove that any total well dominated tree can both be reduced to and constructed from a family of three small trees....

  6. Sediment-water interactions affecting dissolved-mercury distributions in Camp Far West Reservoir, California

    Science.gov (United States)

    Kuwabara, James S.; Alpers, Charles N.; Marvin-DiPasquale, Mark; Topping, Brent R.; Carter, James L.; Stewart, A. Robin; Fend, Steven V.; Parcheso, Francis; Moon, Gerald E.; Krabbenhoft, David P.

    2003-01-01

    Field and laboratory studies were conducted in April and November 2002 to provide the first direct measurements of the benthic flux of dissolved (0.2-micrometer filtered) mercury species (total and methylated forms) between the bottom sediment and water column at three sampling locations within Camp Far West Reservoir, California: one near the Bear River inlet to the reservoir, a second at a mid-reservoir site of comparable depth to the inlet site, and the third at the deepest position in the reservoir near the dam (herein referred to as the inlet, midreservoir and near-dam sites, respectively; Background, Fig. 1). Because of interest in the effects of historic hydraulic mining and ore processing in the Sierra Nevada foothills just upstream of the reservoir, dissolved-mercury species and predominant ligands that often control the mercury speciation (represented by dissolved organic carbon, and sulfides) were the solutes of primary interest. Benthic flux, sometimes referred to as internal recycling, represents the transport of dissolved chemical species between the water column and the underlying sediment. Because of the affinity of mercury to adsorb onto particle surfaces and to form insoluble precipitates (particularly with sulfides), the mass transport of mercury in mining-affected watersheds is typically particle dominated. As these enriched particles accumulate at depositional sites such as reservoirs, benthic processes facilitate the repartitioning, transformation, and transport of mercury in dissolved, biologically reactive forms (dissolved methylmercury being the most bioavailable for trophic transfer). These are the forms of mercury examined in this study. In contrast to typical scientific manuscripts, this report is formatted in a pyramid-like structure to serve the needs of diverse groups who may be interested in reviewing or acquiring information at various levels of technical detail (Appendix 1). The report enables quick transitions between the initial

  7. How oxygen attacks [FeFe] hydrogenases from photosynthetic organisms

    Science.gov (United States)

    Stripp, Sven T.; Goldet, Gabrielle; Brandmayr, Caterina; Sanganas, Oliver; Vincent, Kylie A.; Haumann, Michael; Armstrong, Fraser A.; Happe, Thomas

    2009-01-01

    Green algae such as Chlamydomonas reinhardtii synthesize an [FeFe] hydrogenase that is highly active in hydrogen evolution. However, the extreme sensitivity of [FeFe] hydrogenases to oxygen presents a major challenge for exploiting these organisms to achieve sustainable photosynthetic hydrogen production. In this study, the mechanism of oxygen inactivation of the [FeFe] hydrogenase CrHydA1 from C. reinhardtii has been investigated. X-ray absorption spectroscopy shows that reaction with oxygen results in destruction of the [4Fe-4S] domain of the active site H-cluster while leaving the di-iron domain (2FeH) essentially intact. By protein film electrochemistry we were able to determine the order of events leading up to this destruction. Carbon monoxide, a competitive inhibitor of CrHydA1 which binds to an Fe atom of the 2FeH domain and is otherwise not known to attack FeS clusters in proteins, reacts nearly two orders of magnitude faster than oxygen and protects the enzyme against oxygen damage. These results therefore show that destruction of the [4Fe-4S] cluster is initiated by binding and reduction of oxygen at the di-iron domain—a key step that is blocked by carbon monoxide. The relatively slow attack by oxygen compared to carbon monoxide suggests that a very high level of discrimination can be achieved by subtle factors such as electronic effects (specific orbital overlap requirements) and steric constraints at the active site. PMID:19805068

  8. Diel cycles in dissolved barium, lead, iron, vanadium, and nitrite in a stream draining a former zinc smelter site near Hegeler, Illinois

    Science.gov (United States)

    Kay, R.T.; Groschen, G.E.; Cygan, G.; Dupre, David H.

    2011-01-01

    Diel variations in the concentrations of a number of constituents have the potential to substantially affect the appropriate sampling regimen in acidic streams. Samples taken once during the course of the day cannot adequately reflect diel variations in water quality and may result in an inaccurate understanding of biogeochemical processes, ecological conditions, and of the threat posed by the water to human health and the associated wildlife. Surface water and groundwater affected by acid drainage were sampled every 60 to 90. min over a 48-hour period at a former zinc smelter known as the Hegeler Zinc Superfund Site, near Hegeler, Illinois. Diel variations related to water quality in the aquifer were not observed in groundwater. Diel variations were observed in the temperature, pH, and concentration of dissolved oxygen, nitrite, barium, iron, lead, vanadium, and possibly uranium in surface water. Temperature, dissolved oxygen, nitrite, barium, lead, and uranium generally attained maximum values during the afternoon and minimum values during the night. Iron, vanadium, and pH generally attained minimum values during the afternoon and maximum values during the night. Concentrations of dissolved oxygen were affected by the intensity of photosynthetic activity and respiration, which are dependent upon insolation. Nitrite, an intermediary in many nitrogen reactions, may have been formed by the oxidation of ammonium by dissolved oxygen and converted to other nitrogen species as part of the decomposition of organic matter. The timing of the pH cycles was distinctly different from the cycles found in Midwestern alkaline streams and likely was the result of the photoreduction of Fe3+ to Fe 2+ and variations in the intensity of precipitation of hydrous ferric oxide minerals. Diel cycles of iron and vanadium also were primarily the result of variations in the intensity of precipitation of hydrous ferric oxide minerals. The diel variation in the concentrations of lead, uranium

  9. Absorption features of chromophoric dissolved organic matter (CDOM) and tracing implication for dissolved organic carbon (DOC) in Changjiang Estuary, China

    OpenAIRE

    Zhang, X. Y.; Chen, X.; Deng, H.; Du, Y.; Jin, H. Y.

    2013-01-01

    Chromophoric dissolved organic matter (CDOM) represents the light absorbing fraction of dissolved organic carbon (DOC). Studies have shown that the optical properties of CDOM can be used to infer the distribution and diffusion characteristics of DOC in the estuary and coastal zone. The inversion of DOC concentrations from remote sensing has been implemented in certain regions. In this study we investigate the potential of tracing DOC from CDOM by the measure...

  10. Relationships between colored dissolved organic matter and dissolved organic carbon in different coastal gradients of the Baltic Sea

    OpenAIRE

    Harvey, E. Therese; Kratzer, Susanne; Andersson, Agneta

    2015-01-01

    Due to high terrestrial runoff, the Baltic Sea is rich in dissolved organic carbon (DOC), the light-absorbing fraction of which is referred to as colored dissolved organic matter (CDOM). Inputs of DOC and CDOM are predicted to increase with climate change, affecting coastal ecosystems. We found that the relationships between DOC, CDOM, salinity, and Secchi depth all differed between the two coastal areas studied; the W Gulf of Bothnia with high terrestrial input and the NW Baltic Proper with ...

  11. Seasonal variations in C:N:Si:Ca:P:Mg:S:K:Fe relationships of seston from Norwegian coastal water: Impact of extreme offshore forcing during winter-spring 2010.

    Science.gov (United States)

    Erga, Svein Rune; Haugen, Stig Bjarte; Bratbak, Gunnar; Egge, Jorun Karin; Heldal, Mikal; Mork, Kjell Arne; Norland, Svein

    2017-11-20

    The aim of this study was to reveal the relative content of C, N, Ca, Si, P, Mg, K, S and Fe in seston particles in Norwegian coastal water (NCW), and how it relates to biological and hydrographic processes during seasonal cycles from October 2009-March 2012. The following over all stoichiometric relationship for the time series was obtained: C 66 N 11 Si 3.4 Ca 2.3 P 1 Mg 0.73 S 0.37 K 0.35 Fe 0.30 , which is novel for marine waters. A record-breaking (187-year record) negative North Atlantic Oscillation (NAO) index caused extreme physical forcing on the Norwegian Coastal Current Water (NCCW) during the winter 2009-2010, and the inflow and upwelling of saline Atlantic water (AW) in the fjord was thus extraordinary during late spring-early summer in 2010. The element concentrations in fjord seston particles responded strongly to this convection, revealed by maximum values of all elements, except Fe, exceeding average values with 10.8 × for Ca, 9.3 for K, 5.3 for S, 5.1 for Mg, 4.6 for Si, 4.0 for P, 3.8 for C, and 3.3 for N and Fe. This indicates that the signature of the Atlantic inflow was roughly two times stronger for Ca and K than for the others, probably connected with peaks in coccolithophorids and diatoms. There is, however, 1.5 × more of Si than Ca contained in the seston, which could be due to a stronger dominance of diatoms than coccolithophorids, confirming their environmental fitness. In total our data do not indicate any severe nutrient limitation with respect to N, P and Fe, but accumulation of iron by Fe-sequestering bacteria might at times reduce the availability of the dissolved Fe-fraction. There is a high correlation between most of the measured elements, except for Ca, which together with Fe only weakly correlated with the other elements. It is to be expected that environmental alterations in NCW related to climate change will influence the seston elemental composition, but the full effect of this will be strongly dependent on the future

  12. 2-Nitrophenol reduction promoted by S. putrefaciens 200 and biogenic ferrous iron: The role of different size-fractions of dissolved organic matter

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zhenke [Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650 (China); Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Tao, Liang, E-mail: taoliang@soil.gd.cn [Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650 (China); Li, Fangbai, E-mail: cefbli@soil.gd.cn [Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650 (China)

    2014-08-30

    Graphical abstract: - Highlights: • Dissolved organic matter (DOM) act as electron shuttle in redox reactions. • Different molecular weight DOM fractions have different electron transfer capacity. • A higher electron transfer capacities value indicates a higher reduction rate. • DOM transfer electron from S. putrefaciens 200 to 2-nitrophenol (2-NP) and Fe(III). • DOM and biogenic Fe(II) synergistically enhanced the 2-NP reductive transformation. - Abstract: The reduction of nitroaromatic compounds (listed as a priority pollutant) in natural subsurface environments typically coexists with dissimilatory reduction of iron oxides effected by dissolved organic matter (DOM). Investigating the impact of the DOM that influences those reduction processes is crucial for understanding and predicting the geochemical fate of these environmental species. This study investigated the impact of different molecular weight DOM fractions (DMWDs) on the 2-nitrophenol (2-NP) reduction by S. putrefaciens 200 (SP200) and α-Fe{sub 2}O{sub 3} with lactate (excluding electron donor interference). Kinetic measurements demonstrated that 2-NP reduction rates were affected by the redox reactivity of active species under DMWDs (denoted as L-DOM, M-DOM, and H-DOM). The enhanced reduction rates are consistent with the negative shifts in peak oxidation potential values, the increases in HA-like/FA-like values, aromaticity index values and electron transfer capacity values. L-DOM acted mainly as ligands to complex Fe(II), whereas the significant role of H-DOM in reductive reactions should be acting as an electron shuttle, transferring electrons from SP200 to Fe(III) and 2-NP and from biogenic Fe(II) to 2-NP, further accelerating the 2-NP reductions. Those observations provide valuable insights into the role of DOM in the biogeochemical redox processes and the remediation of contaminated soil in a natural environment.

  13. Dissolved organic matter (DOM) in microalgal photobioreactors: a potential loss in solar energy conversion?

    Science.gov (United States)

    Hulatt, Chris J; Thomas, David N

    2010-11-01

    Microalgae are considered to be a potential alternative to terrestrial crops for bio-energy production due to their relatively high productivity per unit area of land. In this work we examined the amount of dissolved organic matter exuded by algal cells cultured in photobioreactors, to examine whether a significant fraction of the photoassimilated biomass could potentially be lost from the harvestable biomass. We found that the mean maximum amount of dissolved organic carbon (DOC) released measured 6.4% and 17.3% of the total organic carbon in cultures of Chlorellavulgaris and Dunaliella tertiolecta, respectively. This DOM in turn supported a significant growth of bacterial biomass, representing a further loss of the algal assimilated carbon. The release of these levels of DOC indicates that a significant fraction of the photosynthetically fixed organic matter could be lost into the surrounding water, suggesting that the actual biomass yield per hectare for industrial purposes could be somewhat less than expected. A simple and inexpensive optical technique, based on chromophoric dissolved organic matter (CDOM) measurements, to monitor such losses in commercial PBRs is discussed.

  14. Linking CDOM spectral absorption to dissolved organic carbon concentrations and loadings in boreal estuaries

    Science.gov (United States)

    Asmala, Eero; Stedmon, Colin A.; Thomas, David N.

    2012-10-01

    The quantity of chromophoric dissolved organic matter (CDOM) and dissolved organic carbon (DOC) in three Finnish estuaries (Karjaanjoki, Kyrönjoki and Kiiminkijoki) was investigated, with respect to predicting DOC concentrations and loadings from spectral CDOM absorption measurements. Altogether 87 samples were collected from three estuarine transects which were studied in three seasons, covering a salinity range between 0 and 6.8, and DOC concentrations from 1572 μmol l-1 in freshwater to 222 μmol l-1 in coastal waters. CDOM absorption coefficient, aCDOM(375) values followed the trend in DOC concentrations across the salinity gradient and ranged from 1.67 to 33.4 m-1. The link between DOC and CDOM was studied using a range of wavelengths and algorithms. Wavelengths between 250 and 270 nm gave the best predictions with single linear regression. Total dissolved iron was found to influence the prediction in wavelengths above 520 nm. Despite significant seasonal and spatial differences in DOC-CDOM models, a universal relationship was tested with an independent data set and found to be robust. DOC and CDOM yields (loading/catchment area) from the catchments ranged from 1.98 to 5.44 g C m-2 yr-1, and 1.67 to 11.5 aCDOM(375) yr-1, respectively.

  15. Mercury and Dissolved Organic Matter Dynamics During Snowmelt in the Upper Provo River, Utah, USA

    Science.gov (United States)

    Packer, B. N.; Carling, G. T.; Nelson, S.; Aanderud, Z.; Shepherd Barkdull, N.; Gabor, R. S.

    2017-12-01

    Mercury (Hg) is deposited to mountains by atmospheric deposition and mobilized during snowmelt runoff, leading to Hg contamination in otherwise pristine watersheds. Mercury is typically transported with dissolved organic matter (DOM) from soils to streams and lakes. This study focused on Hg and DOM dynamics in the snowmelt-dominated upper Provo River watershed, northern Utah, USA. We sampled Hg, dissolved organic carbon (DOC) concentrations, and DOM fluorescence in river water, snowpack, and ephemeral streams over four years from 2014-2017 to investigate Hg transport mechanisms. During the snowmelt season (April through June), Hg concentrations typically increased from 1 to 8 ng/L showing a strong positive correlation with DOC. The dissolved Hg fraction was dominant in the river, averaging 75% of total Hg concentrations, suggesting that DOC is more important for transport than suspended particulate matter. Ephemeral channels, which represent shallow flow paths with strong interactions with soils, had the highest Hg (>10 ng/L) and DOC (>10 mg/L) concentrations, suggesting a soil water source of Hg and organic matter. Fluorescence spectroscopy results showed important changes in DOM type and quality during the snowmelt season and the soil water flow paths are activated. Changes in DOM characteristics during snowmelt improve the understanding of Hg dynamics with organic matter and elucidate transport pathways from the soil surface, ephemeral channels and groundwater to the Provo River. This study has implications for understanding Hg sources and transport mechanisms in mountain watersheds.

  16. Removal of dissolved organic carbon in pilot wetlands of subsuperficial and superficial flows

    Directory of Open Access Journals (Sweden)

    Ruth M. Agudelo C

    2010-04-01

    Full Text Available Objective: to compare removal of dissolved organic carbon (d o c obtained with pilot wetlands of subsuperficial flow (p h s s and superficial flow (p h s, with Phragmites australis as treatment alternatives for domestic residual waters of small communities and rural areas. Methodology: an exploratory and experimental study was carried out adding 100,12 mg/L of dissolved organic carbon to synthetic water contaminated with Chlorpyrifos in order to feed the wetlands. A total amount of 20 samples were done, 16 of them in four experiments and the other ones in the intervals with no use of pesticides. Samples were taken on days 1, 4, 8, and 11 in the six wetlands, three of them subsuperficial, and three of them superficial. The main variable answer was dissolved organic carbon, measured in the organic carbon analyzer. Results: a high efficiency in the removal of d o c was obtained with the two types of wetlands: 92,3% with subsuperficial flow and 95,6% with superficial flow. Such a high removal was due to the interaction between plants, gravel and microorganisms. Conclusion: although in both types of wetlands the removal was high and similar, it is recommended to use those of subsuperficial flow because in the superficial ones algae and gelatinous bio-films are developed, which becomes favorable to the development of important epidemiologic vectors in terms of public health.

  17. Fate of dissolved organic nitrogen in two stage trickling filter process.

    Science.gov (United States)

    Simsek, Halis; Kasi, Murthy; Wadhawan, Tanush; Bye, Christopher; Blonigen, Mark; Khan, Eakalak

    2012-10-15

    Dissolved organic nitrogen (DON) represents a significant portion of nitrogen in the final effluent of wastewater treatment plants (WWTPs). Biodegradable portion of DON (BDON) can support algal growth and/or consume dissolved oxygen in the receiving waters. The fate of DON and BDON has not been studied for trickling filter WWTPs. DON and BDON data were collected along the treatment train of a WWTP with a two-stage trickling filter process. DON concentrations in the influent and effluent were 27% and 14% of total dissolved nitrogen (TDN). The plant removed about 62% and 72% of the influent DON and BDON mainly by the trickling filters. The final effluent BDON values averaged 1.8 mg/L. BDON was found to be between 51% and 69% of the DON in raw wastewater and after various treatment units. The fate of DON and BDON through the two-stage trickling filter treatment plant was modeled. The BioWin v3.1 model was successfully applied to simulate ammonia, nitrite, nitrate, TDN, DON and BDON concentrations along the treatment train. The maximum growth rates for ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria, and AOB half saturation constant influenced ammonia and nitrate output results. Hydrolysis and ammonification rates influenced all of the nitrogen species in the model output, including BDON. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Hydrographic parameters and distribution of dissolved Cu, Ni, Zn and nutrients near Jeddah desalination plant

    Directory of Open Access Journals (Sweden)

    Fallatah Mohammad M.

    2018-04-01

    Full Text Available The development of safe desalination plants with low environmental impact is as important an issue as the supply of drinking water. The desalination plant in Jeddah (Saudi Arabia, Red Sea coast produces freshwater from seawater by multi-stage flash distillation (MSFD and reverse osmosis (RO. The process produces brine as by-product, which is dumped into the sea. The aim of this study was to assess the impact of Jeddah desalination plant on the coastal water in the nearby of the plant. Total concentrations of dissolved Cu, Ni, Zn and nutrients in several locations around the plant were analyzed by cathodic stripping voltammetry. The average levels of dissolved Cu, Ni, and Zn on surface in the sampling locations were 15.02, 11.02, and 68.03 nM respectively, whereas the levels at the seafloor near the discharging point were much higher. Distribution of temperature, salinity, nutrients and dissolved oxygen were quite normal both on surface and in depth.

  19. Fe de Erratas

    Directory of Open Access Journals (Sweden)

    Perspectiva Geográfica

    2014-01-01

    Full Text Available La Magíster Sonia Jimena Murillo Munar, autora del artículo titulado “Transporte urbano sostenible: medidas desde la administración y transporte público como alternativa en Bogotá”, publicado en el Volumen No. 13 correspondiente al año 2008, solicita la inclusión de la siguiente FE DE ERRATAS con la enmienda de un error de exclusiva responsabilidad del Equipo Editorial de la Revista.

  20. Structure and magnetism in Co/X, Fe/Si, and Fe/(FeSi) multilayers

    Science.gov (United States)

    Franklin, Michael Ray

    Previous studies have shown that magnetic behavior in multilayers formed by repeating a bilayer unit comprised of a ferromagnetic layer and a non-magnetic spacer layer can be affected by small structural differences. For example, a macroscopic property such as giant magnetoresistance (GMR) is believed to depend significantly upon interfacial roughness. In this study, several complimentary structural probes were used to carefully characterize the structure of several sputtered multilayer systems-Co/Ag, Co/Cu, Co/Mo, Fe/Si, and Fe//[FeSi/]. X-ray diffraction (XRD) studies were used to examine the long-range structural order of the multilayers perpendicular to the plane of the layers. Transmission electron diffraction (TED) studies were used to probe the long-range order parallel to the layer plane. X-ray Absorption Fine Structure (XAFS) studies were used to determine the average local structural environment of the ferromagnetic atoms. For the Co/X systems, a simple correlation between crystal structure and saturation magnetization is discovered for the Co/Mo system. For the Fe/X systems, direct evidence of an Fe-silicide is found for the /[FeSi/] spacer layer but not for the Si spacer layer. Additionally, differences were observed in the magnetic behavior between the Fe in the nominally pure Fe layer and the Fe contained in the /[FeSi/] spacer layers.

  1. Photocatalytic behaviors and structural characterization of nanocrystalline Fe-doped TiO2 synthesized by mechanical alloying

    International Nuclear Information System (INIS)

    Kim, Dong Hyun; Hong, Hyun Seon; Kim, Sun Jae; Song, Jae Sung; Lee, Kyung Sub

    2004-01-01

    Nanocrystalline Fe-doped TiO 2 powders were synthesized by mechanical alloying (MA) with varying Fe contents from 0 up to 4.8 wt.% to shift the absorption threshold into the visible light region. The photocatalytic feasibility of the Fe-doped TiO 2 powder was evaluated by quantifying the visible light absorption capacity using ultraviolet and visible (UV-Vis) spectroscopy and photoluminescence spectroscopy. Effects of Fe additions on the crystal structures and the morphologies of the Fe-doped powders were also investigated as a function of the doping content using transmission electron microscopy-electron diffraction pattern (TEM-EDP), X-ray diffraction (XRD) and energy dispersive X-ray (EDAX) and X-ray photoelectron spectroscopy (XPS). The UV-Vis study showed that the UV absorption for the Fe-doped powder moved to a longer wavelength (red shift) and the photoefficiency was enhanced. Based on the analysis of the photoluminescence spectra, the red shift was believed to be induced by localizing the dopant level near the valence band of TiO 2 . The UV-Vis absorption depended on the Fe concentration. TEM-EDP and XRD investigations showed that the Fe-doped powder had a rutile phase in which the added Fe atoms were dissolved. The rutile phase was composed of spherical particles and chestnut bur shaped particles, resulting in a larger surface area than the spherical P-25 powder

  2. Synergistic operation of photocatalytic degradation and Fenton process by magnetic Fe3O4 loaded TiO2

    Science.gov (United States)

    Sun, Qiong; Hong, Yong; Liu, Qiuhong; Dong, Lifeng

    2018-02-01

    The magnetic Fe3O4 loaded anatase TiO2 photocatalysts with different mass ratios were successfully synthesized by a one-step convenient calcining method. The morphology and structure analysis revealed that Fe3O4 was formed in TiO2 with very fine-grained particles. After a small amount of Fe3O4 loaded onto TiO2, the photocatalytic property enhanced obviously for the degradation of organic dye. Furthermore, the photo-Fenton-like catalysis of the iron-containing samples could also be induced after the addition of hydrogen peroxide. The apparent kinetic constant of the reaction that catalyzed by Fe-TiO2 was about 5.3 and 8.3 times of that catalyzed by TiO2 or Fe3O4 only, respectively, proving an effective synergistic contribution of the photocatalysis and Fenton reaction in the composite. Compared with Fe3O4 or free Fe3+ ions, only 13% of iron in TiO2 dissolved into acidic solution (25% for Fe3O4 and 100% for Fe3+) after the reaction, which confirmed the iron had been well immobilized onto TiO2. In addition, the extremely stable photocatalytic activity in cycling experiments proved the immobilized iron had been tightly attached onto TiO2, indicating the great potential of the catalyst for practical applications.

  3. Dissolved organic carbon and nitrogen release from boreal Holocene permafrost and seasonally frozen soils of Alaska

    Science.gov (United States)

    Wickland, Kimberly P.; Waldrop, Mark P.; Aiken, George R.; Koch, Joshua C.; Torre Jorgenson, M.; Striegl, Robert G.

    2018-06-01

    Permafrost (perennially frozen) soils store vast amounts of organic carbon (C) and nitrogen (N) that are vulnerable to mobilization as dissolved organic carbon (DOC) and dissolved organic and inorganic nitrogen (DON, DIN) upon thaw. Such releases will affect the biogeochemistry of permafrost regions, yet little is known about the chemical composition and source variability of active-layer (seasonally frozen) and permafrost soil DOC, DON and DIN. We quantified DOC, total dissolved N (TDN), DON, and DIN leachate yields from deep active-layer and near-surface boreal Holocene permafrost soils in interior Alaska varying in soil C and N content and radiocarbon age to determine potential release upon thaw. Soil cores were collected at three sites distributed across the Alaska boreal region in late winter, cut in 15 cm thick sections, and deep active-layer and shallow permafrost sections were thawed and leached. Leachates were analyzed for DOC, TDN, nitrate (NO3 ‑), and ammonium (NH4 +) concentrations, dissolved organic matter optical properties, and DOC biodegradability. Soils were analyzed for C, N, and radiocarbon (14C) content. Soil DOC, TDN, DON, and DIN yields increased linearly with soil C and N content, and decreased with increasing radiocarbon age. These relationships were significantly different for active-layer and permafrost soils such that for a given soil C or N content, or radiocarbon age, permafrost soils released more DOC and TDN (mostly as DON) per gram soil than active-layer soils. Permafrost soil DOC biodegradability was significantly correlated with soil Δ14C and DOM optical properties. Our results demonstrate that near-surface Holocene permafrost soils preserve greater relative potential DOC and TDN yields than overlying seasonally frozen soils that are exposed to annual leaching and decomposition. While many factors control the fate of DOC and TDN, the greater relative yields from newly thawed Holocene permafrost soils will have the largest

  4. Determination of the partition coefficient between dissolved organic carbon and seawater using differential equilibrium kinetics.

    Science.gov (United States)

    Kim, Du Yung; Kwon, Jung-Hwan

    2018-05-04

    Because the freely dissolved fraction of highly hydrophobic organic chemicals is bioavailable, knowing the partition coefficient between dissolved organic carbon and water (K DOCw ) is crucial to estimate the freely dissolved fraction from the total concentration. A kinetic method was developed to obtain K DOCw that required a shorter experimental time than equilibrium methods. The equilibrium partition coefficients of four polychlorinated biphenyls (PCBs) (2,4,4'-trichlorobiphenyl (PCB 28), 2,2',3,5'-tetrachlorobiphenyl (PCB 44), 2,2',4,5,5'-pentachlorobiphenyl (PCB 101), and 2,2',4,4',5,5'-hexachlorobiphenyl (PCB 153)) between dissolved organic carbon and seawater (K DOCsw ) were determined using seawater samples from the Korean coast. The log K DOCsw values of PCB 28 were measured by equilibrating PCB 28, the least hydrophobic congener, with seawater samples, and the values ranged from 6.60 to 7.20. For the more hydrophobic PCBs (PCB 44, PCB 101, and PCB 153), kinetic experiments were conducted to determine the sorption rate constants (k 2 ) and their log K DOCsw values were obtained by comparing their k 2 with that of PCB 28. The calculated log K DOCsw values were 6.57-7.35 for PCB 44, 6.23-7.44 for PCB 101, and 6.35-7.73 for PCB 153. The validity of the proposed method was further confirmed using three less hydrophobic polycyclic aromatic hydrocarbons. This kinetic method shortened the experimental time to obtain the K DOCsw values of the more hydrophobic PCBs, which did not reach phase equilibrium. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Relative importance of dissolved and food pathways for lead contamination in shrimp

    International Nuclear Information System (INIS)

    Boisson, F.; Cotret, O.; Teyssie, J.-L.; El-Baradeie, M.; Fowler, S.W.

    2003-01-01

    The relative importance of dissolved and food pathways and the influence of food type in the bioaccumulation and retention of lead in the shrimp Palaemonetes varians were examined using a radiotracer method. Shrimp were exposed to 210 Pb-labelled seawater or fed two types of 210 Pb-labelled food, viz. mussels or worms. The amount of radiotracer accumulated by shrimp was examined over a 7-day period, followed by a 1-month and a 7-day depuration period for the dissolved and food source, respectively. Steady state in the uptake was reached after 2 days exposure to dissolved lead, with a resultant estimated concentration factor of 98 ± 3. Transfer factors following ingestion of contaminated mussels and worms were lower than unity for both food types, with lead transfer from worms being significantly higher than that from mussels. Accumulation of dissolved Pb by shrimp was found to occur mainly through adsorption on the exoskeleton with a minor accumulation in the internal tissues probably resulting from the intake of seawater for osmoregulation. In contrast, lead taken up from contaminated food was readily absorbed and bound in the internal tissues of P. varians. Although the transfer of lead to P. varians through the ingestion of contaminated food was low (TF < 1%), it still represented 4 to 8% of the lead content in the prey which is a significant additional contribution of lead to the shrimp body burden. Independent of food type, following ingestion of contaminated food, approximately 23-27% of total lead accumulated in shrimp was located in the edible parts (e.g. muscle). Therefore, the food pathway is suggested to be a significant contributor to the lead transfer to humans through ingestion of contaminated shrimp. After exposure to contaminated food, lead loss kinetics were described by a two-component model, whereas Pb loss following direct uptake from seawater was best described by a three-component model. The additional compartment representing 64% of total Pb

  6. Relative importance of dissolved and food pathways for lead contamination in shrimp

    Energy Technology Data Exchange (ETDEWEB)

    Boisson, F.; Cotret, O.; Teyssie, J.-L.; El-Baradeie, M.; Fowler, S.W

    2003-12-01

    The relative importance of dissolved and food pathways and the influence of food type in the bioaccumulation and retention of lead in the shrimp Palaemonetes varians were examined using a radiotracer method. Shrimp were exposed to {sup 210}Pb-labelled seawater or fed two types of {sup 210}Pb-labelled food, viz. mussels or worms. The amount of radiotracer accumulated by shrimp was examined over a 7-day period, followed by a 1-month and a 7-day depuration period for the dissolved and food source, respectively. Steady state in the uptake was reached after 2 days exposure to dissolved lead, with a resultant estimated concentration factor of 98 {+-} 3. Transfer factors following ingestion of contaminated mussels and worms were lower than unity for both food types, with lead transfer from worms being significantly higher than that from mussels. Accumulation of dissolved Pb by shrimp was found to occur mainly through adsorption on the exoskeleton with a minor accumulation in the internal tissues probably resulting from the intake of seawater for osmoregulation. In contrast, lead taken up from contaminated food was readily absorbed and bound in the internal tissues of P. varians. Although the transfer of lead to P. varians through the ingestion of contaminated food was low (TF < 1%), it still represented 4 to 8% of the lead content in the prey which is a significant additional contribution of lead to the shrimp body burden. Independent of food type, following ingestion of contaminated food, approximately 23-27% of total lead accumulated in shrimp was located in the edible parts (e.g. muscle). Therefore, the food pathway is suggested to be a significant contributor to the lead transfer to humans through ingestion of contaminated shrimp. After exposure to contaminated food, lead loss kinetics were described by a two-component model, whereas Pb loss following direct uptake from seawater was best described by a three-component model. The additional compartment representing 64

  7. Study the Polyol Process of Preparing the ru Doped FePt Nanoparticles

    Science.gov (United States)

    Lee, Chih-Hao; Hsu, Jen-Ho; Su, Hui-Chia; Huang, Tzu Wen

    The structure of Ru doped FePt nanoparticles using polyol process was studied. The particle size grown is around 5 nm, and a shell structure might be formed. By selecting the time and temperature of adding the Ru precursors into solution, three different processes to synthesize the FePtRu particles were studied resulting in different growing mechanics. The possible models during the reaction process are also discussed. The phase transition temperature for the as-grown FCC FePt nanoparticle to transform into L10 FePt nanoparticle is about 823 K which is about the same as the one without doping Ru atoms. From the XAS study of each element, the possible scenario is that: although Ru atoms with the size close to the Pt, they do not totally replace the Pt sites in the FePt alloy. Instead, most of Ru formed a shell outside the FePt nanoparticles and Fe atoms are replaced.

  8. Search for half-metallic magnets with large half-metallic gaps in the quaternary Heusler alloys CoFeTiZ and CoFeVZ (Z=Al, Ga, Si, Ge, As, Sb)

    International Nuclear Information System (INIS)

    Xiong, Lun; Yi, Lin; Gao, G.Y.

    2014-01-01

    We investigate the electronic structure and magnetic properties of the twelve quaternary Heusler alloys CoFeTiZ and CoFeVZ (Z=Al, Ga, Si, Ge, As, Sb) by using the first-principles calculations. It is shown that only CoFeTiSi, CoFeTiAs and CoFeVSb are half-metallic ferromagnets with considerable half-metallic gaps of 0.31, 0.18 and 0.17 eV, respectively. CoFeTiAl and CoFeTiGa are conventional semiconductors, and other alloys exhibit nearly half-metallicity or their half-metallic gaps are almost zero eV. We also find that the half-metallicities of CoFeTiSi, CoFeTiAs and CoFeVSb can be preserved under appropriate uniform and in-plane strains. The considerable half-metallic gaps and the robust half-metallicities under uniform and in-plane strains make CoFeTiSi, CoFeTiAs and CoFeVSb promising candidates for spintronic applications. - Highlights: • CoFeTiSi, CoFeTiAs and CoFeVSb have considerable half-metallic gaps. • Total magnetic moments obey the Slater–Pauling behavior of quaternary Heusler half-metals. • CoFeTiSi, CoFeTiAs and CoFeVSb retain half-metallicity under uniform and in-plane strains

  9. Toxicological responses of the hard clam Meretrix meretrix exposed to excess dissolved iron or challenged by Vibrio parahaemolyticus

    International Nuclear Information System (INIS)

    Zhou, Qing; Zhang, Yong; Peng, Hui-Fang; Ke, Cai-Huan; Huang, He-Qing

    2014-01-01

    Highlights: • Fe accumulated in hepatopancreas tissues after iron-enriched exposure. • Ferritin expression was positively correlated with iron concentration in seawater. • Ferritin appears to be involved in iron homeostasis and immune defense mechanism of M. meretrix. • mRNAs of cytokine genes responded faster than antioxidant enzyme genes in immune defense mechanism. • The study gives a new potential biomarker for monitoring iron levels in seawater. - Abstract: The responses of genes encoding defense components such as ferritin, the lipopolysaccharide-induced tumor necrosis factor-alpha factor (LITAF), the inhibitor of nuclear factor-κB (IκB), metallothionein, and glutathione peroxidase were assessed at the transcriptional level in order to investigate the toxicological and immune mechanism of the hard clam Meretrix meretrix (HCMM) following challenge with iron or a bacterium (Vibrio parahaemolyticus). Fe dissolved in natural seawater led to an increase of Fe content in both the hepatopancreas and gill tissue of HCMM between 4 and 15 days of exposure. The ferritin gene responded both transcriptionally as indicated by real-time quantitative PCR and translationally as shown by western blotting results to iron exposure and both transcriptional and translational ferritin expression in the hepatopancreas had a positive correlation with the concentration of dissolved iron in seawater. Both iron and V. parahaemolyticus exposure triggered immune responses with similar trends in clam tissues. There was a significant post-challenge mRNA expression of LITAF and IκB at 3 h, ferritin at 24 h, and metallothionein and glutathione peroxidase at 48 h. This behavior might be linked to their specific functions in physiological processes. These results suggested that similar signaling pathways were triggered during both iron and V. parahaemolyticus challenges. Here, we indicated that the ferritin of Meretrix meretrix was an intermediate in the pathway of iron homeostasis

  10. Toxicological responses of the hard clam Meretrix meretrix exposed to excess dissolved iron or challenged by Vibrio parahaemolyticus

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Qing [State Key Laboratory of Stress Cell Biology, School of Life Science, Xiamen University, Xiamen 361102 (China); State Key Laboratory of Marine Environmental Science, School of Ocean and Earth Science, Xiamen University, Xiamen 361102 (China); Zhang, Yong [Department of Chemistry, College of Chemistry and Chemical Engineering, and the Key Laboratory of Chemical Biology of Fujian Province, Xiamen University, Xiamen 361102 (China); Peng, Hui-Fang [State Key Laboratory of Stress Cell Biology, School of Life Science, Xiamen University, Xiamen 361102 (China); Ke, Cai-Huan, E-mail: chke@xmu.edu.cn [State Key Laboratory of Marine Environmental Science, School of Ocean and Earth Science, Xiamen University, Xiamen 361102 (China); Huang, He-Qing, E-mail: hqhuang@xmu.edu.cn [State Key Laboratory of Stress Cell Biology, School of Life Science, Xiamen University, Xiamen 361102 (China); State Key Laboratory of Marine Environmental Science, School of Ocean and Earth Science, Xiamen University, Xiamen 361102 (China); Department of Chemistry, College of Chemistry and Chemical Engineering, and the Key Laboratory of Chemical Biology of Fujian Province, Xiamen University, Xiamen 361102 (China)

    2014-11-15

    Highlights: • Fe accumulated in hepatopancreas tissues after iron-enriched exposure. • Ferritin expression was positively correlated with iron concentration in seawater. • Ferritin appears to be involved in iron homeostasis and immune defense mechanism of M. meretrix. • mRNAs of cytokine genes responded faster than antioxidant enzyme genes in immune defense mechanism. • The study gives a new potential biomarker for monitoring iron levels in seawater. - Abstract: The responses of genes encoding defense components such as ferritin, the lipopolysaccharide-induced tumor necrosis factor-alpha factor (LITAF), the inhibitor of nuclear factor-κB (IκB), metallothionein, and glutathione peroxidase were assessed at the transcriptional level in order to investigate the toxicological and immune mechanism of the hard clam Meretrix meretrix (HCMM) following challenge with iron or a bacterium (Vibrio parahaemolyticus). Fe dissolved in natural seawater led to an increase of Fe content in both the hepatopancreas and gill tissue of HCMM between 4 and 15 days of exposure. The ferritin gene responded both transcriptionally as indicated by real-time quantitative PCR and translationally as shown by western blotting results to iron exposure and both transcriptional and translational ferritin expression in the hepatopancreas had a positive correlation with the concentration of dissolved iron in seawater. Both iron and V. parahaemolyticus exposure triggered immune responses with similar trends in clam tissues. There was a significant post-challenge mRNA expression of LITAF and IκB at 3 h, ferritin at 24 h, and metallothionein and glutathione peroxidase at 48 h. This behavior might be linked to their specific functions in physiological processes. These results suggested that similar signaling pathways were triggered during both iron and V. parahaemolyticus challenges. Here, we indicated that the ferritin of Meretrix meretrix was an intermediate in the pathway of iron homeostasis

  11. Measuring the pollutant transport capacity of dissolved organic matter in complex matrixes

    DEFF Research Database (Denmark)

    Persson, L.; Alsberg, T.; Odham, G.

    2003-01-01

    Dissolved organic matter (DOM) facilitated transport in contaminated groundwater was investigated through the measurement of the binding capacity of landfill leachate DOM (Vejen, Denmark) towards two model pollutants (pyrene and phenanthrene). Three different methods for measuring binding capacity....... It was further concluded that DOM facilitated transport should be taken into account for non-ionic PAHs with lg K OW above 5, at DOM concentrations above 250 mg C/L. The total DOM concentration was found to be more important for the potential of facilitated transport than differences in the DOM binding capacity....

  12. Studies in the dissolver off-gas system for a spent FBR fuel reprocessing plant

    International Nuclear Information System (INIS)

    Heinrich, E.; Huefner, R.; Weirich, F.

    1982-01-01

    Investigations of possible modifications of the process steps of a dissolver off-gas (DOG) system for a spent FBR fuel reprocessing plant are reported. The following operations are discussed: iodine removal from the fuel solution; behaviour of NOsub(x) and iodine in nitric acid off-gas scrubbers at different temperatures and nitric acid concentrations; iodine desorption from the scrub acid; selective absorption of noble gases in refrigerant-12; cold traps. The combination of suitable procedures to produce a total DOG system is described. (U.K.)

  13. Fe65-PTB2 Dimerization Mimics Fe65-APP Interaction

    Directory of Open Access Journals (Sweden)

    Lukas P. Feilen

    2017-05-01

    Full Text Available Physiological function and pathology of the Alzheimer’s disease causing amyloid precursor protein (APP are correlated with its cytosolic adaptor Fe65 encompassing a WW and two phosphotyrosine-binding domains (PTBs. The C-terminal Fe65-PTB2 binds a large portion of the APP intracellular domain (AICD including the GYENPTY internalization sequence fingerprint. AICD binding to Fe65-PTB2 opens an intra-molecular interaction causing a structural change and altering Fe65 activity. Here we show that in the absence of the AICD, Fe65-PTB2 forms a homodimer in solution and determine its crystal structure at 2.6 Å resolution. Dimerization involves the unwinding of a C-terminal α-helix that mimics binding of the AICD internalization sequence, thus shielding the hydrophobic binding pocket. Specific dimer formation is validated by nuclear magnetic resonance (NMR techniques and cell-based analyses reveal that Fe65-PTB2 together with the WW domain are necessary and sufficient for dimerization. Together, our data demonstrate that Fe65 dimerizes via its APP interaction site, suggesting that besides intra- also intermolecular interactions between Fe65 molecules contribute to homeostatic regulation of APP mediated signaling.

  14. Fe65-PTB2 Dimerization Mimics Fe65-APP Interaction.

    Science.gov (United States)

    Feilen, Lukas P; Haubrich, Kevin; Strecker, Paul; Probst, Sabine; Eggert, Simone; Stier, Gunter; Sinning, Irmgard; Konietzko, Uwe; Kins, Stefan; Simon, Bernd; Wild, Klemens

    2017-01-01

    Physiological function and pathology of the Alzheimer's disease causing amyloid precursor protein (APP) are correlated with its cytosolic adaptor Fe65 encompassing a WW and two phosphotyrosine-binding domains (PTBs). The C-terminal Fe65-PTB2 binds a large portion of the APP intracellular domain (AICD) including the GYENPTY internalization sequence fingerprint. AICD binding to Fe65-PTB2 opens an intra-molecular interaction causing a structural change and altering Fe65 activity. Here we show that in the absence of the AICD, Fe65-PTB2 forms a homodimer in solution and determine its crystal structure at 2.6 Å resolution. Dimerization involves the unwinding of a C-terminal α-helix that mimics binding of the AICD internalization sequence, thus shielding the hydrophobic binding pocket. Specific dimer formation is validated by nuclear magnetic resonance (NMR) techniques and cell-based analyses reveal that Fe65-PTB2 together with the WW domain are necessary and sufficient for dimerization. Together, our data demonstrate that Fe65 dimerizes via its APP interaction site, suggesting that besides intra- also intermolecular interactions between Fe65 molecules contribute to homeostatic regulation of APP mediated signaling.

  15. Magnetic structure of molecular magnet Fe[Fe(CN) 6

    Indian Academy of Sciences (India)

    We have studied the magnetic structure of Fe[Fe(CN)6]·4H2O, prepared by precipitation method, using neutron diffraction technique. Temperature dependent DC magnetization study down to 4.2 K shows that the compound undergoes from a high temperature disordered (paramagnetic) to an ordered magnetic phase ...

  16. Leaching of dissolved phosphorus from tile-drained agricultural areas.

    Science.gov (United States)

    Andersen, H E; Windolf, J; Kronvang, B

    2016-01-01

    We investigated leaching of dissolved phosphorus (P) from 45 tile-drains representing animal husbandry farms in all regions of Denmark. Leaching of P via tile-drains exhibits a high degree of spatial heterogeneity with a low concentration in the majority of tile-drains and few tile-drains (15% in our investigation) having high to very high concentration of dissolved P. The share of dissolved organic P (DOP) was high (up to 96%). Leaching of DOP has hitherto been a somewhat overlooked P loss pathway in Danish soils and the mechanisms of mobilization and transport of DOP needs more investigation. We found a high correlation between Olsen-P and water extractable P. Water extractable P is regarded as an indicator of risk of loss of dissolved P. Our findings indicate that Olsen-P, which is measured routinely in Danish agricultural soils, may be a useful proxy for the P leaching potential of soils. However, we found no straight-forward correlation between leaching potential of the top soil layer (expressed as either degree of P saturation, Olsen-P or water extractable P) and the measured concentration of dissolved P in the tile-drain. This underlines that not only the source of P but also the P loss pathway must be taken into account when evaluating the risk of P loss.

  17. Dissolving Microneedle Patch for Transdermal Delivery of Human Growth Hormone

    Science.gov (United States)

    Lee, Jeong Woo; Choi, Seong-O; Felner, Eric I.

    2014-01-01

    Clinical impact of biotechnology has been constrained by the limitations of traditional hypodermic injection of biopharmaceuticals. Microneedle patches have been proposed as a minimally invasive alternative. In this study, we assess the translation of a dissolving microneedle patch designed for simple, painless self-administration of biopharmacetucials that generates no sharp biohazardous waste. To study pharmacokinetics and safety of this approach, human growth hormone (hGH) was encapsulated in 600 μm long dissolving microneedles composed of carboxymethylcellulose and trehalose using an aqueous, moderate-temperature process that maintained complete hGH activity after encapsulation and retained most activity after storage for up to 15 months at room temperature and humidity. After manual insertion into the skin of hairless rats, hGH pharmacokinetics were similar to conventional subcutaneous injection. After patch removal, the microneedles had almost completely dissolved, leaving behind only blunt stubs. The dissolving microneedle patch was well tolerated, causing only slight, transient erythema. This study suggests that a dissolving microneedle patch can deliver hGH and other biopharmaceuticals in a manner suitable for self-administration without sharp biohazardous waste. PMID:21360810

  18. Composition of dissolved organic nitrogen in rivers associated with wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Akira, E-mail: akiraw@agr.nagoya-u.ac.jp [Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601 (Japan); Tsutsuki, Kiyoshi [Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555 (Japan); Inoue, Yudzuru [Graduate School of Science and Engineering, Saitama University, Sakura, Saitama 338-8570 (Japan); Maie, Nagamitsu [School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628 (Japan); Melling, Lulie [Tropical Peat Research Laboratory Unit, Chief Minister' s Department, Jalan Badruddin 93400, Kuching, Sarawak (Malaysia); Jaffé, Rudolf [Southeast Environmental Research Center, Florida International University, 3000 NE 151 Str., Marine Sciences Building, North Miami, FL 33181 (United States); Department of Chemistry and Biochemistry, Florida International University, 3000 NE 151 Str., Marine Sciences Building, North Miami, FL 33181 (United States)

    2014-09-15

    As basic information for assessing reactivity and functionality of wetland-associated dissolved organic matter (DOM) based on their composition and structural properties, chemical characteristics of N in ultrafiltered DOM (UDON; > 1 kD) isolated from wetland-associated rivers in three climates (cool-temperate, Hokkaido, Japan; sub-tropical, Florida, USA; tropical, Sarawak, Malaysia) were investigated. The UDON was isolated during dry and wet seasons, or during spring, summer, and autumn. The proportion of UDON present as humic substances, which was estimated as the DAX-8 adsorbed fraction, ranged from 47 to 91%, with larger values in the Sarawak than at the other sites. The yield of hydrolyzable amino acid N ranged 1.24 to 7.01mg g{sup −1}, which correlated positively to the total N content of UDOM and tended to be larger in the order of Florida > Hokkaido > Sarawak samples. X-ray photoelectron N1s spectra of UDON showed a strong negative correlation between the relative abundances of amide/peptide N and primary amine N. The relative abundances of amide/peptide N and primary amine N in the Sarawak samples were smaller (70–76%) and larger (20–23%) respectively compared to those (80–88% and 4–9%) in the Florida and Hokkaido samples. Assuming terminal amino groups and amide N of peptides as major constituents of primary amine N and amide/peptide N, respectively, the average molecular weight of peptides was smaller in the Sarawak samples than that in the Florida and Hokkaido samples. Seasonal variations in UDON composition were scarce in the Sarawak and Florida samples, whereas the distribution of humic substance-N and nonhumic substance-N and compositions of amino acids and N functional groups showed a clear seasonality in the Hokkaido samples. While aromatic N increased from spring to autumn, contributions from fresh proteinaceous materials were also enhanced during autumn, resulting in the highest N content of UDOM for this season. - Highlights: • DON in

  19. Composition of dissolved organic nitrogen in rivers associated with wetlands

    International Nuclear Information System (INIS)

    Watanabe, Akira; Tsutsuki, Kiyoshi; Inoue, Yudzuru; Maie, Nagamitsu; Melling, Lulie; Jaffé, Rudolf

    2014-01-01

    As basic information for assessing reactivity and functionality of wetland-associated dissolved organic matter (DOM) based on their composition and structural properties, chemical characteristics of N in ultrafiltered DOM (UDON; > 1 kD) isolated from wetland-associated rivers in three climates (cool-temperate, Hokkaido, Japan; sub-tropical, Florida, USA; tropical, Sarawak, Malaysia) were investigated. The UDON was isolated during dry and wet seasons, or during spring, summer, and autumn. The proportion of UDON present as humic substances, which was estimated as the DAX-8 adsorbed fraction, ranged from 47 to 91%, with larger values in the Sarawak than at the other sites. The yield of hydrolyzable amino acid N ranged 1.24 to 7.01mg g −1 , which correlated positively to the total N content of UDOM and tended to be larger in the order of Florida > Hokkaido > Sarawak samples. X-ray photoelectron N1s spectra of UDON showed a strong negative correlation between the relative abundances of amide/peptide N and primary amine N. The relative abundances of amide/peptide N and primary amine N in the Sarawak samples were smaller (70–76%) and larger (20–23%) respectively compared to those (80–88% and 4–9%) in the Florida and Hokkaido samples. Assuming terminal amino groups and amide N of peptides as major constituents of primary amine N and amide/peptide N, respectively, the average molecular weight of peptides was smaller in the Sarawak samples than that in the Florida and Hokkaido samples. Seasonal variations in UDON composition were scarce in the Sarawak and Florida samples, whereas the distribution of humic substance-N and nonhumic substance-N and compositions of amino acids and N functional groups showed a clear seasonality in the Hokkaido samples. While aromatic N increased from spring to autumn, contributions from fresh proteinaceous materials were also enhanced during autumn, resulting in the highest N content of UDOM for this season. - Highlights: • DON in

  20. Solid and suspended/dissolved waste (N, P, O) from rainbow trout (Oncorynchus mykiss)

    DEFF Research Database (Denmark)

    Dalsgaard, Anne Johanne Tang; Pedersen, Per Bovbjerg

    2011-01-01

    differences between the dietary treatment groups in the waste produced. On average, 48% of the ingestedNwas recovered in thewater (TANconstituting 64–79%of this)and7% inthesolids. In comparison, 1% of the ingested P was recovered in the water and 43% in the solids. A breakpoint value of 5.6 g standardized......Quantifying aquaculture waste into different waste fractions will make it possible to design different treatment setups for obtaining specific cleaning objectives. The aim of this study was therefore to measure “all” solid and suspended/dissolved (i.e. unsedimented) waste from juvenile rainbow...... trout (Oncorynchus mykiss) fed three commonly applied commercial diets, “all” waste referring to: total nitrogen (N), total ammonia nitrogen (TAN=NH3-N+NH4-N), total phosphorus (P), and organicmatter characterized by the chemical oxygen demand (COD) and the biological oxygen demand after 5 days (BOD5...

  1. Total Quality Leadership

    Science.gov (United States)

    1991-01-01

    More than 750 NASA, government, contractor, and academic representatives attended the Seventh Annual NASA/Contractors Conference on Quality and Productivity. The panel presentations and Keynote speeches revolving around the theme of total quality leadership provided a solid base of understanding of the importance, benefits, and principles of total quality management (TQM). The presentations from the conference are summarized.

  2. Genoptraening efter total knaealloplastik

    DEFF Research Database (Denmark)

    Holm, Bente; Kehlet, Henrik

    2009-01-01

    The short- and long-term benefits of post-discharge physiotherapy regimens after total knee arthroplasty are debatable. A national survey including hospitals in Denmark that perform total knee arthroplasty showed a large variability in indication and regimen for post-knee arthroplasty...

  3. Isotopic Evidence of Unaccounted for Fe and Cu Erythropoietic Pathways

    Science.gov (United States)

    Albarede, F.; Telouk, P.; Lamboux, A.; Jaouen, K.; Balter, V.

    2011-12-01

    Despite its potential importance for understanding perturbations in the Fe-Cu homeostatic pathways, the natural isotopic variability of these metals in the human body remains unexplored. We measured the Fe, Cu, and Zn isotope compositions of total blood, serum, and red blood cells of ~50 young blood donors by multiple-collector ICP-MS after separation and purification by anion exchange chromatography. Zn is on average 0.2 permil heavier in erythrocytes (δ 66Zn=0.44±0.33 permil) with respect to serum but shows much less overall isotopic variability than Fe and Cu, which indicates that isotope fractionation depends more on redox conditions than on ligand coordination. On average, Fe in erythrocytes (δ 56Fe=-2.59±0.47 permil) is isotopically light by 1-2 permil with respect to serum, whereas Cu in erythrocytes (δ 65Cu=0.56±0.50 permil) is 0.8 percent heavier. Fe and Cu isotope compositions clearly separate erythrocytes of men and women. Fe and Cu from B-type men erythrocytes are visibly more fractionated than all the other blood types. Isotope compositions provide an original method for evaluating metal mass balance and homeostasis. Natural isotope variability shows that the current models of Fe and Cu erythropoiesis, which assume that erythropoiesis is restricted to bone marrow, violate mass balance requirements. It unveils unsuspected major pathways for Fe, with erythropoietic production of isotopically heavy ferritin and hemosiderin, and for Cu, with isotopically light Cu being largely channeled into blood and lymphatic circulation rather than into superoxide dismutase-laden erythrocytes. Iron isotopes provide an intrinsic measuring rod of the erythropoietic yield, while Cu isotopes seem to gauge the relative activity of erythropoiesis and lymphatics.

  4. Cold Dissolved Saltcake Waste Simulant Development, Preparation, and Analysis

    International Nuclear Information System (INIS)

    Rassat, Scot D.; Mahoney, Lenna A.; Russell, Renee L.; Bryan, Samuel A.; Sell, Rachel L.

    2003-01-01

    CH2M HILL Hanford Group, Inc. is identifying and developing supplemental process technologies to accelerate the Hanford tank waste cleanup mission. Bulk vitrification, containerized grout, and steam reforming are three technologies under consideration for treatment of the radioactive saltcake wastes in 68 single-shell tanks. To support development and testing of these technologies, Pacific Northwest National Laboratory (PNNL) was tasked with developing a cold dissolved saltcake simulant formulation to be representative of an actual saltcake waste stream, preparing 25- and 100-L batches of the simulant, and analyzing the composition of the batches to ensure conformance to formulation targets. Lacking a defined composition for dissolved actual saltcake waste, PNNL used available tank waste composition information and an equilibrium chemistry model (Environmental Simulation Program [ESP(trademark)]) to predict the concentrations of analytes in solution. Observations of insoluble solids in initial laboratory preparations for the model-predicted formulation prompted reductions in the concentration of phosphate and silicon in the final simulant formulation. The analytical results for the 25- and 100-L simulant batches, prepared by an outside vendor to PNNL specifications, agree within the expected measurement accuracy (∼10%) of the target concentrations and are highly consistent for replicate measurements, with a few minor exceptions. In parallel with the production of the 2nd simulant batch (100-L), a 1-L laboratory control sample of the same formulation was carefully prepared at PNNL to serve as an analytical standard. The instrumental analyses indicate that the vendor prepared batches of solution adequately reflect the as-formulated simulant composition. In parallel with the simulant development effort, a nominal 5-M (molar) sodium actual waste solution was prepared at the Hanford Site from a limited number of tank waste samples. Because this actual waste solution w

  5. Dissolved organic carbon and dissolved organic nitrogen data collected using bottle in a world wide distribution from 02 September 1998 to 02 November 2003 (NODC Accession 0002403)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Dissolved organic carbon (DOC) and