WorldWideScience

Sample records for total community dna

  1. Phylogenetic and Functional Diversity of Total (DNA) and Expressed (RNA) Bacterial Communities in Urban Green Infrastructure Bioswale Soils.

    Science.gov (United States)

    Gill, Aman S; Lee, Angela; McGuire, Krista L

    2017-08-15

    New York City (NYC) is pioneering green infrastructure with the use of bioswales and other engineered soil-based habitats to provide stormwater infiltration and other ecosystem functions. In addition to avoiding the environmental and financial costs of expanding traditional built infrastructure, green infrastructure is thought to generate cobenefits in the form of diverse ecological processes performed by its plant and microbial communities. Yet, although plant communities in these habitats are closely managed, we lack basic knowledge about how engineered ecosystems impact the distribution and functioning of soil bacteria. We sequenced amplicons of the 16S ribosomal subunit, as well as seven genes associated with functional pathways, generated from both total (DNA-based) and expressed (RNA) soil communities in the Bronx, NYC, NY, in order to test whether bioswale soils host characteristic bacterial communities with evidence for enriched microbial functioning, compared to nonengineered soils in park lawns and tree pits. Bioswales had distinct, phylogenetically diverse bacterial communities, including taxa associated with nutrient cycling and metabolism of hydrocarbons and other pollutants. Bioswale soils also had a significantly greater diversity of genes involved in several functional pathways, including carbon fixation ( cbbL-R [ cbbL gene, red-like subunit] and apsA ), nitrogen cycling ( noxZ and amoA ), and contaminant degradation ( bphA ); conversely, no functional genes were significantly more abundant in nonengineered soils. These results provide preliminary evidence that urban land management can shape the diversity and activity of soil communities, with positive consequences for genetic resources underlying valuable ecological functions, including biogeochemical cycling and degradation of common urban pollutants. IMPORTANCE Management of urban soil biodiversity by favoring taxa associated with decontamination or other microbial metabolic processes is a

  2. Soil DNA extraction procedure influences protist 18S rRNA gene community profiling outcome

    DEFF Research Database (Denmark)

    Santos, Susana S.; Nunes, Ines Marques; Nielsen, Tue K.

    2017-01-01

    Advances in sequencing technologies allow deeper studies of the soil protist diversity and function. However, little attention has been given to the impact of the chosen soil DNA extraction procedure to the overall results. We examined the effect of three acknowledged DNA recovery methods, two...... manual methods (ISOm-11063, GnS-GII) and one commercial kit (MoBio), on soil protist community structures obtained from different sites with different land uses. Results from 18S rRNA gene amplicon sequencing suggest that DNA extraction method significantly affect the replicate homogeneity, the total...... number of operational taxonomic units (OTUs) recovered and the overall taxonomic structure and diversity of soil protist communities. However, DNA extraction effects did not overwhelm the natural variation among samples, as the community data still strongly grouped by geographical location...

  3. Comparison of two commercial DNA extraction kits for the analysis of nasopharyngeal bacterial communities

    Directory of Open Access Journals (Sweden)

    Keith A. Crandall

    2016-04-01

    Full Text Available Characterization of microbial communities via next-generation sequencing (NGS requires an extraction ofmicrobial DNA. Methodological differences in DNA extraction protocols may bias results and complicate inter-study comparisons. Here we compare the effect of two commonly used commercial kits (Norgen and Qiagenfor the extraction of total DNA on estimatingnasopharyngeal microbiome diversity. The nasopharynxis a reservoir for pathogens associated with respiratory illnesses and a key player in understandingairway microbial dynamics. Total DNA from nasal washes corresponding to 30 asthmatic children was extracted using theQiagenQIAamp DNA and NorgenRNA/DNA Purification kits and analyzed via IlluminaMiSeq16S rRNA V4 ampliconsequencing. The Norgen samples included more sequence reads and OTUs per sample than the Qiagen samples, but OTU counts per sample varied proportionallybetween groups (r = 0.732.Microbial profiles varied slightly between sample pairs, but alpha- and beta-diversity indices (PCoAand clustering showed highsimilarity between Norgen and Qiagenmicrobiomes. Moreover, no significant differences in community structure (PERMANOVA and adonis tests and taxa proportions (Kruskal-Wallis test were observed betweenkits. Finally, aProcrustes analysis also showed low dissimilarity (M2 = 0.173; P< 0.001 between the PCoAs of the two DNA extraction kits. Contrary to what has been observed in previous studies comparing DNA extraction methods, our 16S NGS analysis of nasopharyngeal washes did not reveal significant differences in community composition or structure between kits. Our findingssuggest congruence between column-based chromatography kits and supportthe comparison of microbiomeprofilesacross nasopharyngeal metataxonomic studies.

  4. DNA metabarcoding of microbial communities for healthcare

    Directory of Open Access Journals (Sweden)

    Zaets I. Ye.

    2016-02-01

    Full Text Available High-throughput sequencing allows obtaining DNA barcodes of multiple species of microorganisms from single environmental samples. Next Generation Sequencing (NGS-based profiling provides new opportunities to evaluate the human health effect of microbial community members affiliated to probiotics. The DNA metabarcoding may serve to a quality control of microbial communities, comprising complex probiotics and other fermented foods. A detailed inventory of complex communities is a pre-requisite of understanding their functionality as whole entities that makes it possible to design more effective bio-products by precise replacement of one community member by others. The present paper illustrates how the NGS-based DNA metabarcoding aims at the profiling of both wild and hybrid multi-microbial communities with the example of kombucha probiotic beverage fermented by yeast-bacterial partners.

  5. High-throughput sequencing of nematode communities from total soil DNA extractions

    DEFF Research Database (Denmark)

    Sapkota, Rumakanta; Nicolaisen, Mogens

    2015-01-01

    nematodes without the need for enrichment was developed. Using this strategy on DNA templates from a set of 22 agricultural soils, we obtained 64.4% sequences of nematode origin in total, whereas the remaining sequences were almost entirely from other metazoans. The nematode sequences were derived from...... in previous sequence-based studies are not nematode specific but also amplify other groups of organisms such as fungi and plantae, and thus require a nematode enrichment step that may introduce biases. Results: In this study an amplification strategy which selectively amplifies a fragment of the SSU from...... a broad taxonomic range and most sequences were from nematode taxa that have previously been found to be abundant in soil such as Tylenchida, Rhabditida, Dorylaimida, Triplonchida and Araeolaimida. Conclusions: Our amplification and sequencing strategy for assessing nematode diversity was able to collect...

  6. A CTAB Procedure Of Total Genomic DNA Extraction For Medicinal Mushrooms

    International Nuclear Information System (INIS)

    Azhar Mohamad; Muhammad Hussaini Mohd Mustafa; Muhammad Hanif Azhari Noor; Rosnani Abdul Rashid; Hasan Hamdani Hasan Mutaat; Meswan Meskom; Mat Rasol Awang

    2014-01-01

    Medicinal mushroom is defined as mushrooms used in medicine or medical research. Isolation of intact, high-molecular-mass genomic DNA is essential for many molecular biology applications including Polymerase Chain Reaction (PCR), endonuclease restriction digestion, Southern blot analysis, and genomic library construction. The most important and prerequisite towards reliable molecular biology work is the total genomic DNA of a sample must be in good quality. Five freshly samples of medicinal mushroom were used in this work known as Auriculariapolytricha, Lentinus edode, Pleurotus sayorcaju, Sczhizopyllum commune and Ganodermalucidum. 5 mg of each sample were used to extraction the DNA, prepared in 3 replications and repeated twice. PCR based technique by using ISSR markers were used in checking the amplification ability of the total genomic extraction. A standard Doyle and Doyle protocol for genomic DNA extraction was modified in optimizing the total genomic DNA from the medicinal mushroom.The modification parameters were percentage of CTAB, incubation period and temperature. The results reveal that each sample required a certain combinations of time and period of incubation. Besides, percentage of CTAB in the buffer was found significant in giving a high yielding of extracted total genomic DNA. The extracted total genomic DNA from the medicinal mushroom yielded from 39.7 ng/ μl to 919.1 ng/ μl. The different yield among the samples found to be corresponded to polysaccharide content in the medicinal mushrooms. The objective of this works is to optimize total genomic DNA extraction of medicinal mushrooms towards a high quality intact genomic DNA for molecular activities. (author)

  7. PMA-PhyloChip DNA Microarray to Elucidate Viable Microbial Community Structure

    Science.gov (United States)

    Venkateswaran, Kasthuri J.; Stam, Christina N.; Andersen, Gary L.; DeSantis, Todd

    2011-01-01

    in the dark. Thereafter, the sample is exposed to visible light for five minutes, so that the DNA from dead cells will be cross-linked. Following this PMA treatment step, the sample is concentrated by centrifugation and washed (to remove excessive PMA) before DNA is extracted. The 16S rRNA gene fragments will be amplified by PCR to screen the total microbial community using PhyloChip DNA microarray analysis. This approach will detect only the viable microbial community since the PMA intercalated DNA from dead cells would be unavailable for PCR amplification. The total detection time including PCR reaction for low biomass samples will be a few hours. Numerous markets may use this technology. The food industry uses spore detection to validate new alternative food processing technologies, sterility, and quality. Pharmaceutical and medical equipment companies also detect spores as a marker for sterility. This system can be used for validating sterilization processes, water treatment systems, and in various public health and homeland security applications.

  8. Drivers shaping the diversity and biogeography of total and active bacterial communities in the South China Sea

    Science.gov (United States)

    Zhang, Yao; Zhao, Zihao; Dai, Minhan; Jiao, Nianzhi; Herndl, Gerhard J

    2014-01-01

    To test the hypothesis that different drivers shape the diversity and biogeography of the total and active bacterial community, we examined the bacterial community composition along two transects, one from the inner Pearl River estuary to the open waters of the South China Sea (SCS) and the other from the Luzon Strait to the SCS basin, using 454 pyrosequencing of the 16S rRNA and 16S rRNA gene (V1-3 regions) and thereby characterizing the active and total bacterial community, respectively. The diversity and biogeographic patterns differed substantially between the active and total bacterial communities. Although the composition of both the total and active bacterial community was strongly correlated with environmental factors and weakly correlated with geographic distance, the active bacterial community displayed higher environmental sensitivity than the total community and particularly a greater distance effect largely caused by the active assemblage from deep waters. The 16S rRNA vs. rDNA relationships indicated that the active bacteria were low in relative abundance in the SCS. This might be due to a high competition between active bacterial taxa as indicated by our community network models. Based on these analyses, we speculate that high competition could cause some dispersal limitation of the active bacterial community resulting in a distinct distance-decay relationship. Altogether, our results indicated that the biogeographic distribution of bacteria in the SCS is the result of both environmental control and distance decay. PMID:24684298

  9. Diversity and dynamics of the DNA- and cDNA-derived compost fungal communities throughout the commercial cultivation process for Agaricus bisporus.

    Science.gov (United States)

    McGee, C F; Byrne, H; Irvine, A; Wilson, J

    2017-01-01

    Commercial cultivation of the button mushroom Agaricus bisporus is performed through the inoculation of a semipasteurized composted material. Pasteurization of the compost material prior to inoculation results in a substrate with a fungal community that becomes dominated by A. bisporus. However, little is known about the composition and activity in the wider fungal community beyond the presence of A. bisporus in compost throughout the mushroom cropping process. In this study, the fungal cropping compost community was characterized by sequencing nuc rDNA ITS1-5.8S-ITS2 amplified from extractable DNA and RNA. The fungal community generated from DNA extracts identified a diverse community containing 211 unique species, although only 51 were identified from cDNA. Agaricus bisporus was found to dominate in the DNA-derived fungal community for the duration of the cropping process. However, analysis of cDNA extracts found A. bisporus to dominate only up to the first crop flush, after which activity decreased sharply and a much broader fungal community became active. This study has highlighted the diverse fungal community that is present in mushroom compost during cropping.

  10. Evaluation of the ISO standard 11063 DNA extraction procedure for assessing soil microbial abundance and community structure.

    Directory of Open Access Journals (Sweden)

    Pierre Plassart

    Full Text Available Soil DNA extraction has become a critical step in describing microbial biodiversity. Historically, ascertaining overarching microbial ecological theories has been hindered as independent studies have used numerous custom and commercial DNA extraction procedures. For that reason, a standardized soil DNA extraction method (ISO-11063 was previously published. However, although this ISO method is suited for molecular tools such as quantitative PCR and community fingerprinting techniques, it has only been optimized for examining soil bacteria. Therefore, the aim of this study was to assess an appropriate soil DNA extraction procedure for examining bacterial, archaeal and fungal diversity in soils of contrasting land-use and physico-chemical properties. Three different procedures were tested: the ISO-11063 standard; a custom procedure (GnS-GII; and a modified ISO procedure (ISOm which includes a different mechanical lysis step (a FastPrep ®-24 lysis step instead of the recommended bead-beating. The efficacy of each method was first assessed by estimating microbial biomass through total DNA quantification. Then, the abundances and community structure of bacteria, archaea and fungi were determined using real-time PCR and terminal restriction fragment length polymorphism approaches. Results showed that DNA yield was improved with the GnS-GII and ISOm procedures, and fungal community patterns were found to be strongly dependent on the extraction method. The main methodological factor responsible for differences between extraction procedure efficiencies was found to be the soil homogenization step. For integrative studies which aim to examine bacteria, archaea and fungi simultaneously, the ISOm procedure results in higher DNA recovery and better represents microbial communities.

  11. Back to Basics – The Influence of DNA Extraction and Primer Choice on Phylogenetic Analysis of Activated Sludge Communities

    DEFF Research Database (Denmark)

    Albertsen, Mads; Karst, Søren Michael; Ziegler, Anja Sloth

    2015-01-01

    the impact of a number of parameters on the observed microbial community: bead beating intensity, primer choice, extracellular DNA removal, and various PCR settings. In total, 176 samples were subjected to 16S rRNA amplicon sequencing, and selected samples were investigated throughmetagenomics...... and metatranscriptomics. Quantitative fluorescence in situ hybridization was used as a DNA extraction-independent method for qualitative comparison. In general, an effect on the observed community was found on all parameters tested, although bead beating and primer choice had the largest effect. The effect of bead...

  12. Integrated and Total HIV-1 DNA Predict Ex Vivo Viral Outgrowth.

    Directory of Open Access Journals (Sweden)

    Maja Kiselinova

    2016-03-01

    Full Text Available The persistence of a reservoir of latently infected CD4 T cells remains one of the major obstacles to cure HIV. Numerous strategies are being explored to eliminate this reservoir. To translate these efforts into clinical trials, there is a strong need for validated biomarkers that can monitor the reservoir over time in vivo. A comprehensive study was designed to evaluate and compare potential HIV-1 reservoir biomarkers. A cohort of 25 patients, treated with suppressive antiretroviral therapy was sampled at three time points, with median of 2.5 years (IQR: 2.4-2.6 between time point 1 and 2; and median of 31 days (IQR: 28-36 between time point 2 and 3. Patients were median of 6 years (IQR: 3-12 on ART, and plasma viral load (<50 copies/ml was suppressed for median of 4 years (IQR: 2-8. Total HIV-1 DNA, unspliced (us and multiply spliced HIV-1 RNA, and 2LTR circles were quantified by digital PCR in peripheral blood, at 3 time points. At the second time point, a viral outgrowth assay (VOA was performed, and integrated HIV-1 DNA and relative mRNA expression levels of HIV-1 restriction factors were quantified. No significant change was found for long- and short-term dynamics of all HIV-1 markers tested in peripheral blood. Integrated HIV-1 DNA was associated with total HIV-1 DNA (p<0.001, R² = 0.85, us HIV-1 RNA (p = 0.029, R² = 0.40, and VOA (p = 0.041, R2 = 0.44. Replication-competent virus was detected in 80% of patients by the VOA and it correlated with total HIV-1 DNA (p = 0.039, R² = 0.54. The mean quantification difference between Alu-PCR and VOA was 2.88 log10, and 2.23 log10 between total HIV-1 DNA and VOA. The levels of usHIV-1 RNA were inversely correlated with mRNA levels of several HIV-1 restriction factors (TRIM5α, SAMHD1, MX2, SLFN11, pSIP1. Our study reveals important correlations between the viral outgrowth and total and integrated HIV-1 DNA measures, suggesting that the total pool of HIV-1 DNA may predict the size of the

  13. Protocols for 16S rDNA Array Analyses of Microbial Communities by Sequence-Specific Labeling of DNA Probes

    Directory of Open Access Journals (Sweden)

    Knut Rudi

    2003-01-01

    Full Text Available Analyses of complex microbial communities are becoming increasingly important. Bottlenecks in these analyses, however, are the tools to actually describe the biodiversity. Novel protocols for DNA array-based analyses of microbial communities are presented. In these protocols, the specificity obtained by sequence-specific labeling of DNA probes is combined with the possibility of detecting several different probes simultaneously by DNA array hybridization. The gene encoding 16S ribosomal RNA was chosen as the target in these analyses. This gene contains both universally conserved regions and regions with relatively high variability. The universally conserved regions are used for PCR amplification primers, while the variable regions are used for the specific probes. Protocols are presented for DNA purification, probe construction, probe labeling, and DNA array hybridizations.

  14. Tracking fungal community responses to maize plants by DNA- and RNA-based pyrosequencing.

    Directory of Open Access Journals (Sweden)

    Eiko E Kuramae

    Full Text Available We assessed soil fungal diversity and community structure at two sampling times (t1 = 47 days and t2 = 104 days of plant age in pots associated with four maize cultivars, including two genetically modified (GM cultivars by high-throughput pyrosequencing of the 18S rRNA gene using DNA and RNA templates. We detected no significant differences in soil fungal diversity and community structure associated with different plant cultivars. However, DNA-based analyses yielded lower fungal OTU richness as compared to RNA-based analyses. Clear differences in fungal community structure were also observed in relation to sampling time and the nucleic acid pool targeted (DNA versus RNA. The most abundant soil fungi, as recovered by DNA-based methods, did not necessary represent the most "active" fungi (as recovered via RNA. Interestingly, RNA-derived community compositions at t1 were highly similar to DNA-derived communities at t2, based on presence/absence measures of OTUs. We recovered large proportions of fungal sequences belonging to arbuscular mycorrhizal fungi and Basidiomycota, especially at the RNA level, suggesting that these important and potentially beneficial fungi are not affected by the plant cultivars nor by GM traits (Bt toxin production. Our results suggest that even though DNA- and RNA-derived soil fungal communities can be very different at a given time, RNA composition may have a predictive power of fungal community development through time.

  15. DNA-based stable isotope probing: a link between community structure and function

    International Nuclear Information System (INIS)

    Uhlik, Ondrej; Jecna, Katerina; Leigh, Mary Beth; Mackova, Martina; Macek, Tomas

    2009-01-01

    DNA-based molecular techniques permit the comprehensive determination of microbial diversity but generally do not reveal the relationship between the identity and the function of microorganisms. The first direct molecular technique to enable the linkage of phylogeny with function is DNA-based stable isotope probing (DNA-SIP). Applying this method first helped describe the utilization of simple compounds, such as methane, methanol or glucose and has since been used to detect microbial communities active in the utilization of a wide variety of compounds, including various xenobiotics. The principle of the method lies in providing 13C-labeled substrate to a microbial community and subsequent analyses of the 13C-DNA isolated from the community. Isopycnic centrifugation permits separating 13C-labeled DNA of organisms that utilized the substrate from 12C-DNA of the inactive majority. As the whole metagenome of active populations is isolated, its follow-up analysis provides successful taxonomic identification as well as the potential for functional gene analyses. Because of its power, DNA-SIP has become one of the leading techniques of microbial ecology research. But from other point of view, it is a labor-intensive method that requires careful attention to detail during each experimental step in order to avoid misinterpretation of results.

  16. Extraction of Total DNA and RNA from Marine Filter Samples and Generation of a cDNA as Universal Template for Marker Gene Studies.

    Science.gov (United States)

    Schneider, Dominik; Wemheuer, Franziska; Pfeiffer, Birgit; Wemheuer, Bernd

    2017-01-01

    Microbial communities play an important role in marine ecosystem processes. Although the number of studies targeting marker genes such as the 16S rRNA gene has been increased in the last few years, the vast majority of marine diversity is rather unexplored. Moreover, most studies focused on the entire bacterial community and thus disregarded active microbial community players. Here, we describe a detailed protocol for the simultaneous extraction of DNA and RNA from marine water samples and for the generation of cDNA from the isolated RNA which can be used as a universal template in various marker gene studies.

  17. Comparison of DNA extraction protocols for microbial communities from soil treated with biochar

    Science.gov (United States)

    Leite, D.C.A.; Balieiro, F.C.; Pires, C.A.; Madari, B.E.; Rosado, A.S.; Coutinho, H.L.C.; Peixoto, R.S.

    2014-01-01

    Many studies have evaluated the effects of biochar application on soil structure and plant growth. However, there are very few studies describing the effect of biochar on native soil microbial communities. Microbial analysis of environmental samples requires accurate and reproducible methods for the extraction of DNA from samples. Because of the variety among microbial species and the strong adsorption of the phosphate backbone of the DNA molecule to biochar, extracting and purifying high quality microbial DNA from biochar-amended soil is not a trivial process and can be considerably more difficult than the extraction of DNA from other environmental samples. The aim of this study was to compare the relative efficacies of three commercial DNA extraction kits, the FastDNA® SPIN Kit for Soil (FD kit), the PowerSoil® DNA Isolation Kit (PS kit) and the ZR Soil Microbe DNA Kit Miniprep™ (ZR kit), for extracting microbial genomic DNA from sand treated with different types of biochar. The methods were evaluated by comparing the DNA yields and purity and by analysing the bacterial and fungal community profiles generated by PCR-DGGE. Our results showed that the PCR-DGGE profiles for bacterial and fungal communities were highly affected by the purity and yield of the different DNA extracts. Among the tested kits, the PS kit was the most efficient with respect to the amount and purity of recovered DNA and considering the complexity of the generated DGGE microbial fingerprint from the sand-biochar samples. PMID:24948928

  18. Effects of temperature and fertilization on total vs. active bacterial communities exposed to crude and diesel oil pollution in NW Mediterranean Sea

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Blanco, Arturo; Antoine, Virginie [UPMC Univ Paris 06, UMR 7621, Laboratoire ARAGO, Avenue Fontaule, BP44, F-66650 Banyuls-sur-Mer (France); CNRS, UMR 7621, Laboratoire d' Oceanographie Biologique de Banyuls, Avenue Fontaule, BP44, F-66650 Banyuls-sur-Mer (France); Pelletier, Emilien [Institut des Sciences de la Mer de Rimouski (ISMER), Universite du Quebec a Rimouski, 310 allee des Ursulines, Rimouski, Canada G5L 3A1 (Canada); Delille, Daniel [UPMC Univ Paris 06, UMR 7621, Laboratoire ARAGO, Avenue Fontaule, BP44, F-66650 Banyuls-sur-Mer (France); CNRS, UMR 7621, Laboratoire d' Oceanographie Biologique de Banyuls, Avenue Fontaule, BP44, F-66650 Banyuls-sur-Mer (France); Ghiglione, Jean-Francois, E-mail: ghiglione@obs-banyuls.f [UPMC Univ Paris 06, UMR 7621, Laboratoire ARAGO, Avenue Fontaule, BP44, F-66650 Banyuls-sur-Mer (France); CNRS, UMR 7621, Laboratoire d' Oceanographie Biologique de Banyuls, Avenue Fontaule, BP44, F-66650 Banyuls-sur-Mer (France)

    2010-03-15

    The dynamics of total and active microbial communities were studied in seawater microcosms amended with crude or diesel oil at different temperatures (25, 10 and 4 deg. C) in the presence/absence of organic fertilization (Inipol EAP 22). Total and hydrocarbon-degrading microbes were enumerated by fluorescence microscopy and Most Probable Number (MPN) method, respectively. Total (16S rDNA-based) vs. active (16S rRNA) bacterial community structure was monitored by Capillary-Electrophoresis Single Strand Conformation Polymorphism (CE-SSCP) fingerprinting. Hydrocarbons were analyzed after 12 weeks of incubation by gas chromatography-mass spectrometry. Total and hydrocarbon-degrading microbial counts were highly influenced by fertilization while no important differences were observed between temperatures. Higher biodegradation levels were observed in fertilized microcosms. Temperature and fertilization induced changes in structure of total bacterial communities. However, fertilization showed a more important effect on active bacterial structure. The calculation of Simpson's diversity index showed similar trends among temperatures whereas fertilization reduced diversity index of both total and active bacterial communities. - Nutrient availability was the most important factor influencing microbial oil biodegradation in coastal waters of the North-western Mediterranean Sea.

  19. Comparison of DNA extraction protocols for microbial communities from soil treated with biochar

    Directory of Open Access Journals (Sweden)

    D.C.A. Leite

    2014-01-01

    Full Text Available Many studies have evaluated the effects of biochar application on soil structure and plant growth. However, there are very few studies describing the effect of biochar on native soil microbial communities. Microbial analysis of environmental samples requires accurate and reproducible methods for the extraction of DNA from samples. Because of the variety among microbial species and the strong adsorption of the phosphate backbone of the DNA molecule to biochar, extracting and purifying high quality microbial DNA from biochar-amended soil is not a trivial process and can be considerably more difficult than the extraction of DNA from other environmental samples. The aim of this study was to compare the relative efficacies of three commercial DNA extraction kits, the FastDNA® SPIN Kit for Soil (FD kit, the PowerSoil® DNA Isolation Kit (PS kit and the ZR Soil Microbe DNA Kit MiniprepTM (ZR kit, for extracting microbial genomic DNA from sand treated with different types of biochar. The methods were evaluated by comparing the DNA yields and purity and by analysing the bacterial and fungal community profiles generated by PCR-DGGE. Our results showed that the PCR-DGGE profiles for bacterial and fungal communities were highly affected by the purity and yield of the different DNA extracts. Among the tested kits, the PS kit was the most efficient with respect to the amount and purity of recovered DNA and considering the complexity of the generated DGGE microbial fingerprint from the sand-biochar samples.

  20. Not all are free-living: high-throughput DNA metabarcoding reveals a diverse community of protists parasitizing soil metazoa.

    Science.gov (United States)

    Geisen, S; Laros, I; Vizcaíno, A; Bonkowski, M; de Groot, G A

    2015-09-01

    Protists, the most diverse eukaryotes, are largely considered to be free-living bacterivores, but vast numbers of taxa are known to parasitize plants or animals. High-throughput sequencing (HTS) approaches now commonly replace cultivation-based approaches in studying soil protists, but insights into common biases associated with this method are limited to aquatic taxa and samples. We created a mock community of common free-living soil protists (amoebae, flagellates, ciliates), extracted DNA and amplified it in the presence of metazoan DNA using 454 HTS. We aimed at evaluating whether HTS quantitatively reveals true relative abundances of soil protists and at investigating whether the expected protist community structure is altered by the co-amplification of metazoan-associated protist taxa. Indeed, HTS revealed fundamentally different protist communities from those expected. Ciliate sequences were highly over-represented, while those of most amoebae and flagellates were under-represented or totally absent. These results underpin the biases introduced by HTS that prevent reliable quantitative estimations of free-living protist communities. Furthermore, we detected a wide range of nonadded protist taxa probably introduced along with metazoan DNA, which altered the protist community structure. Among those, 20 taxa most closely resembled parasitic, often pathogenic taxa. Therewith, we provide the first HTS data in support of classical observational studies that showed that potential protist parasites are hosted by soil metazoa. Taken together, profound differences in amplification success between protist taxa and an inevitable co-extraction of protist taxa parasitizing soil metazoa obscure the true diversity of free-living soil protist communities. © 2015 John Wiley & Sons Ltd.

  1. Icecolors '93: Beginnings of an antarctic phytoplankton and bacterial DNA library from southern ocean natural communities exposed to ultraviolet-B

    International Nuclear Information System (INIS)

    Jovine, R.V.M.; Prezelin, B.

    1994-01-01

    Springtime ozone depletion and the resultant increase in ultraviolet-B (UV-B) radiation [280-320 nanometers (nm)] have deleterious effects on primary productivity. To assess damage to cellular components other than the photosynthetic apparatus, we isolated total community DNA from samples in the field before, during, and after the 1993 springtime depletion in stratospheric ozone. The effort was motivated by the concern that the ozone-dependent increases in UV-B radiation may increase DNA damage within primary producers. This increase in damage could result in changes of species composition as well as hereditary changes within species that can influence the competitiveness of these organisms in their natural community. Previous studies have focused on DNA damage in isolated cultures of antarctic phytoplankton that were irradiated with UV-B under lab conditions. These studies clearly indicate variable species sensitivities to the increase in UV-B flux. These studies, however, did not resolve the question of whether such damage occurred in field samples collected from actively mixing, polyphyletic phytoplankton communities. Potential species composition changes and the resultant changes in the trophic dynamics cannot be interpreted in terms of DNA damage unless this damage can be documented in samples isolated under these dynamic natural conditions. 7 refs., 2 figs

  2. Assessing the bias linked to DNA recovery from biofiltration woodchips for microbial community investigation by fingerprinting.

    Science.gov (United States)

    Cabrol, Léa; Malhautier, Luc; Poly, Franck; Lepeuple, Anne-Sophie; Fanlo, Jean-Louis

    2010-01-01

    In this study, we explored methodological aspects of nucleic acid recovery from microbial communities involved in a gas biofilter filled with pine bark woodchips. DNA was recovered indirectly in two steps, comparing different methods: cell dispersion (crushing, shaking, and sonication) and DNA extraction (three commercial kits and a laboratory protocol). The objectives were (a) to optimize cell desorption from the packing material and (b) to compare the 12 combinations of desorption and extraction methods, according to three relevant criteria: DNA yield, DNA purity, and community structure representation by denaturing gradient gel electrophoresis (DGGE). Cell dispersion was not influenced by the operational parameters tested for shaking and blending, while it increased with time for sonication. DNA extraction by the laboratory protocol provided the highest DNA yields, whereas the best DNA purity was obtained by a commercial kit designed for DNA extraction from soil. After successful PCR amplification, the 12 methods did not generate the same bias in microbial community representation. Eight combinations led to high diversity estimation, independently of the experimental procedure. Among them, six provided highly similar DGGE profiles. Two protocols generated a significantly dissimilar community profile, with less diversity. This study highlighted the crucial importance of DNA recovery bias evaluation.

  3. An Estimate of the Total DNA in the Biosphere.

    Science.gov (United States)

    Landenmark, Hanna K E; Forgan, Duncan H; Cockell, Charles S

    2015-06-01

    Modern whole-organism genome analysis, in combination with biomass estimates, allows us to estimate a lower bound on the total information content in the biosphere: 5.3 × 1031 (±3.6 × 1031) megabases (Mb) of DNA. Given conservative estimates regarding DNA transcription rates, this information content suggests biosphere processing speeds exceeding yottaNOPS values (1024 Nucleotide Operations Per Second). Although prokaryotes evolved at least 3 billion years before plants and animals, we find that the information content of prokaryotes is similar to plants and animals at the present day. This information-based approach offers a new way to quantify anthropogenic and natural processes in the biosphere and its information diversity over time.

  4. Diversity of ribosomal 16S DNA- and RNA-based bacterial community in an office building drinking water system.

    Science.gov (United States)

    Inkinen, J; Jayaprakash, B; Santo Domingo, J W; Keinänen-Toivola, M M; Ryu, H; Pitkänen, T

    2016-06-01

    Next-generation sequencing of 16S ribosomal RNA genes (rDNA) and ribosomal RNA (rRNA) was used to characterize water and biofilm microbiome collected from a drinking water distribution system of an office building after its first year of operation. The total bacterial community (rDNA) and active bacterial members (rRNA) sequencing databases were generated by Illumina MiSeq PE250 platform. As estimated by Chao1 index, species richness in cold water system was lower (180-260) in biofilms (Sphingomonas spp., Methylobacterium spp., Limnohabitans spp., Rhizobiales order) than in waters (250-580), (also Methylotenera spp.) (P = 0·005, n = 20). Similarly species richness (Chao1) was slightly higher (210-580) in rDNA libraries compared to rRNA libraries (150-400; P = 0·054, n = 24). Active Mycobacterium spp. was found in cross-linked polyethylene (PEX), but not in corresponding copper pipeline biofilm. Nonpathogenic Legionella spp. was found in rDNA libraries but not in rRNA libraries. Microbial communities differed between water and biofilms, between cold and hot water systems, locations in the building and between water rRNA and rDNA libraries, as shown by clear clusters in principal component analysis (PcoA). By using the rRNA method, we found that not all bacterial community members were active (e.g. Legionella spp.), whereas other members showed increased activity in some locations; for example, Pseudomonas spp. in hot water circulations' biofilm and order Rhizobiales and Limnohabitans spp. in stagnated locations' water and biofilm. rRNA-based methods may be better than rDNA-based methods for evaluating human health implications as rRNA methods can be used to describe the active bacterial fraction. This study indicates that copper as a pipeline material might have an adverse impact on the occurrence of Mycobacterium spp. The activity of Legionella spp. maybe questionable when detected solely by using DNA-based methods. © 2016 The Society for Applied

  5. Establishing a community-wide DNA barcode library as a new tool for arctic research

    DEFF Research Database (Denmark)

    Wirta, H.; Várkonyi, G.; Rasmussen, C.

    2016-01-01

    DNA sequences offer powerful tools for describing the members and interactions of natural communities. In this study, we establish the to-date most comprehensive library of DNA barcodes for a terrestrial site, including all known macroscopic animals and vascular plants of an intensively studied...... area of the High Arctic, the Zackenberg Valley in Northeast Greenland. To demonstrate its utility, we apply the library to identify nearly 20 000 arthropod individuals from two Malaise traps, each operated for two summers. Drawing on this material, we estimate the coverage of previous morphology...... ongoing shifts in arctic communities and ecosystems. The DNA barcode library now established for Zackenberg offers new scope for such explorations, and for the detailed dissection of interspecific interactions throughout the community....

  6. Hepatitis B virus DNA quantification with the three-in-one (3io) method allows accurate single-step differentiation of total HBV DNA and cccDNA in biopsy-size liver samples.

    Science.gov (United States)

    Taranta, Andrzej; Tien Sy, Bui; Zacher, Behrend Johan; Rogalska-Taranta, Magdalena; Manns, Michael Peter; Bock, Claus Thomas; Wursthorn, Karsten

    2014-08-01

    Hepatitis B virus (HBV) replicates via reverse transcription converting its partially double stranded genome into the covalently closed circular DNA (cccDNA). The long-lasting cccDNA serves as a replication intermediate in the nuclei of hepatocytes. It is an excellent, though evasive, parameter for monitoring the course of liver disease and treatment efficiency. To develop and test a new approach for HBV DNA quantification in serum and small-size liver samples. The p3io plasmid contains an HBV fragment and human β-actin gene (hACTB) as a standard. Respective TaqMan probes were labeled with different fluorescent dyes. A triplex real-time PCR for simultaneous quantification of total HBV DNA, cccDNA and hACTB could be established. Three-in-one method allows simultaneous analysis of 3 targets with a lower limit of quantification of 48 copies per 20 μl PCR reaction and a wide range of linearity (R(2)>0.99, pDNA samples from HBV infected patients. Total HBV DNA and cccDNA could be quantified in 32 and 22 of 33 FFPE preserved liver specimens, respectively. Total HBV DNA concentrations quantified by the 3io method remained comparable with Cobas TaqMan HBV Test v2.0. The three-in-one protocol allows the single step quantification of viral DNA in samples from different sources. Therefore lower sample input, faster data acquisition, a lowered error and significantly lower costs are the advantages of the method. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. A simple and efficient total genomic DNA extraction method for individual zooplankton.

    Science.gov (United States)

    Fazhan, Hanafiah; Waiho, Khor; Shahreza, Md Sheriff

    2016-01-01

    Molecular approaches are widely applied in species identification and taxonomic studies of minute zooplankton. One of the most focused zooplankton nowadays is from Subclass Copepoda. Accurate species identification of all life stages of the generally small sized copepods through molecular analysis is important, especially in taxonomic and systematic assessment of harpacticoid copepod populations and to understand their dynamics within the marine community. However, total genomic DNA (TGDNA) extraction from individual harpacticoid copepods can be problematic due to their small size and epibenthic behavior. In this research, six TGDNA extraction methods done on individual harpacticoid copepods were compared. The first new simple, feasible, efficient and consistent TGDNA extraction method was designed and compared with the commercial kit and modified available TGDNA extraction methods. The newly described TGDNA extraction method, "Incubation in PCR buffer" method, yielded good and consistent results based on the high success rate of PCR amplification (82%) compared to other methods. Coupled with its relatively consistent and economical method the "Incubation in PCR buffer" method is highly recommended in the TGDNA extraction of other minute zooplankton species.

  8. An investigation of total bacterial communities, culturable antibiotic-resistant bacterial communities and integrons in the river water environments of Taipei city.

    Science.gov (United States)

    Yang, Chu-Wen; Chang, Yi-Tang; Chao, Wei-Liang; Shiung, Iau-Iun; Lin, Han-Sheng; Chen, Hsuan; Ho, Szu-Han; Lu, Min-Jheng; Lee, Pin-Hsuan; Fan, Shao-Ning

    2014-07-30

    The intensive use of antibiotics may accelerate the development of antibiotic-resistant bacteria (ARB). The global geographical distribution of environmental ARB has been indicated by many studies. However, the ARB in the water environments of Taiwan has not been extensively investigated. The objective of this study was to investigate the communities of ARB in Huanghsi Stream, which presents a natural acidic (pH 4) water environment. Waishuanghsi Stream provides a neutral (pH 7) water environment and was thus also monitored to allow comparison. The plate counts of culturable bacteria in eight antibiotics indicate that the numbers of culturable carbenicillin- and vancomycin-resistant bacteria in both Huanghsi and Waishuanghsi Streams are greater than the numbers of culturable bacteria resistant to the other antibiotics tested. Using a 16S rDNA sequencing approach, both the antibiotic-resistant bacterial communities (culture-based) and the total bacterial communities (metagenome-based) in Waishuanghsi Stream exhibit a higher diversity than those in Huanghsi Stream were observed. Of the three classes of integron, only class I integrons were identified in Waishuanghsi Stream. Our results suggest that an acidic (pH 4) water environment may not only affect the community composition of antibiotic-resistant bacteria but also the horizontal gene transfer mediated by integrons. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. The study of genomic DNA adsorption and subsequent interactions using total internal reflection ellipsometry.

    Science.gov (United States)

    Nabok, Alexei; Tsargorodskaya, Anna; Davis, Frank; Higson, Séamus P J

    2007-10-31

    The adsorption of genomic DNA and subsequent interactions between adsorbed and solvated DNA was studied using a novel sensitive optical method of total internal reflection ellipsometry (TIRE), which combines spectroscopic ellipsometry with surface plasmon resonance (SPR). Single strands of DNA of two species of fish (herring and salmon) were electrostatically adsorbed on top of polyethylenimine films deposited upon gold coated glass slides. The ellipsometric spectra were recorded and data fitting utilized to extract optical parameters (thickness and refractive index) of adsorbed DNA layers. The further adsorption of single stranded DNA from an identical source, i.e. herring ss-DNA on herring ss-DNA or salmon ss-DNA on salmon ss-DNA, on the surface was observed to give rise to substantial film thickness increases at the surface of about 20-21 nm. Conversely adsorption of DNA from alternate species, i.e. salmon ss-DNA on herring ss-DNA or herring ss-DNA on salmon ss-DNA, yielded much smaller changes in thickness of 3-5 nm. AFM studies of the surface roughness of adsorbed layers were in line with the TIRE data.

  10. Comparison of DNA preservation methods for environmental bacterial community samples.

    Science.gov (United States)

    Gray, Michael A; Pratte, Zoe A; Kellogg, Christina A

    2013-02-01

    Field collections of environmental samples, for example corals, for molecular microbial analyses present distinct challenges. The lack of laboratory facilities in remote locations is common, and preservation of microbial community DNA for later study is critical. A particular challenge is keeping samples frozen in transit. Five nucleic acid preservation methods that do not require cold storage were compared for effectiveness over time and ease of use. Mixed microbial communities of known composition were created and preserved by DNAgard(™), RNAlater(®), DMSO-EDTA-salt (DESS), FTA(®) cards, and FTA Elute(®) cards. Automated ribosomal intergenic spacer analysis and clone libraries were used to detect specific changes in the faux communities over weeks and months of storage. A previously known bias in FTA(®) cards that results in lower recovery of pure cultures of Gram-positive bacteria was also detected in mixed community samples. There appears to be a uniform bias across all five preservation methods against microorganisms with high G + C DNA. Overall, the liquid-based preservatives (DNAgard(™), RNAlater(®), and DESS) outperformed the card-based methods. No single liquid method clearly outperformed the others, leaving method choice to be based on experimental design, field facilities, shipping constraints, and allowable cost. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  11. Effect of DNA extraction methods and sampling techniques on the apparent structure of cow and sheep rumen microbial communities.

    Directory of Open Access Journals (Sweden)

    Gemma Henderson

    Full Text Available Molecular microbial ecology techniques are widely used to study the composition of the rumen microbiota and to increase understanding of the roles they play. Therefore, sampling and DNA extraction methods that result in adequate yields of microbial DNA that also accurately represents the microbial community are crucial. Fifteen different methods were used to extract DNA from cow and sheep rumen samples. The DNA yield and quality, and its suitability for downstream PCR amplifications varied considerably, depending on the DNA extraction method used. DNA extracts from nine extraction methods that passed these first quality criteria were evaluated further by quantitative PCR enumeration of microbial marker loci. Absolute microbial numbers, determined on the same rumen samples, differed by more than 100-fold, depending on the DNA extraction method used. The apparent compositions of the archaeal, bacterial, ciliate protozoal, and fungal communities in identical rumen samples were assessed using 454 Titanium pyrosequencing. Significant differences in microbial community composition were observed between extraction methods, for example in the relative abundances of members of the phyla Bacteroidetes and Firmicutes. Microbial communities in parallel samples collected from cows by oral stomach-tubing or through a rumen fistula, and in liquid and solid rumen digesta fractions, were compared using one of the DNA extraction methods. Community representations were generally similar, regardless of the rumen sampling technique used, but significant differences in the abundances of some microbial taxa such as the Clostridiales and the Methanobrevibacter ruminantium clade were observed. The apparent microbial community composition differed between rumen sample fractions, and Prevotellaceae were most abundant in the liquid fraction. DNA extraction methods that involved phenol-chloroform extraction and mechanical lysis steps tended to be more comparable. However

  12. RAPD analysis of Arabidopsis thaliana transferred with total DNA of cabbage by ion beam

    International Nuclear Information System (INIS)

    Bian Po; Yu Zengliang; Qin Guangyong; Huo Yuping; Wang Yan

    2003-01-01

    Two mutants were found among the Arabidopsis thaliana transferred with total DNA of cabbage. Variation of genome of T6 and its offspring were analyzed by RAPD-PCR with 40 random primers. The result from S168 primer was different from the CK, indicating that variation of genome can be made by total DNA transferring by use of ion beam, and this variation is hereditary. It is found that S 168-1850 is included within the gene of ABC transporter by aligning with genome of Arabidopsis thaliana in TAIT

  13. Isolation of Microarray-Grade Total RNA, MicroRNA, and DNA from a Single PAXgene Blood RNA Tube

    DEFF Research Database (Denmark)

    Kruhøffer, Mogens; Andersen, Lars Dyrskjøt; Voss, Thorsten

    2007-01-01

    We have developed a procedure for isolation of microRNA and genomic DNA in addition to total RNA from whole blood stabilized in PAXgene Blood RNA tubes. The procedure is based on automatic extraction on a BioRobot MDx and includes isolation of DNA from a fraction of the stabilized blood...... and recovery of small RNA species that are otherwise lost. The procedure presented here is suitable for large-scale experiments and is amenable to further automation. Procured total RNA and DNA was tested using Affymetrix Expression and single-nucleotide polymorphism GeneChips, respectively, and isolated micro......RNA was tested using spotted locked nucleic acid-based microarrays. We conclude that the yield and quality of total RNA, microRNA, and DNA from a single PAXgene blood RNA tube is sufficient for downstream microarray analysis....

  14. Quantification of total phosphorothioate in bacterial DNA by a bromoimane-based fluorescent method.

    Science.gov (United States)

    Xiao, Lu; Xiang, Yu

    2016-06-01

    The discovery of phosphorothioate (PT) modifications in bacterial DNA has challenged our understanding of conserved phosphodiester backbone structure of cellular DNA. This exclusive DNA modification in bacteria is not found in animal cells yet, and its biological function in bacteria is still poorly understood. Quantitative information about the bacterial PT modifications is thus important for the investigation of their possible biological functions. In this study, we have developed a simple fluorescence method for selective quantification of total PTs in bacterial DNA, based on fluorescent labeling of PTs and subsequent release of the labeled fluorophores for absolute quantification. The method was highly selective to PTs and not interfered by the presence of reactive small molecules or proteins. The quantification of PTs in an E. coli DNA sample was successfully achieved using our method and gave a result of about 455 PTs per million DNA nucleotides, while almost no detectable PTs were found in a mammalian calf thymus DNA. With this new method, the content of phosphorothioate in bacterial DNA could be successfully quantified, serving as a simple method suitable for routine use in biological phosphorothioate related studies. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Analysis of Active Methylotrophic Communities: When DNA-SIP Meets High-Throughput Technologies.

    Science.gov (United States)

    Taubert, Martin; Grob, Carolina; Howat, Alexandra M; Burns, Oliver J; Chen, Yin; Neufeld, Josh D; Murrell, J Colin

    2016-01-01

    Methylotrophs are microorganisms ubiquitous in the environment that can metabolize one-carbon (C1) compounds as carbon and/or energy sources. The activity of these prokaryotes impacts biogeochemical cycles within their respective habitats and can determine whether these habitats act as sources or sinks of C1 compounds. Due to the high importance of C1 compounds, not only in biogeochemical cycles, but also for climatic processes, it is vital to understand the contributions of these microorganisms to carbon cycling in different environments. One of the most challenging questions when investigating methylotrophs, but also in environmental microbiology in general, is which species contribute to the environmental processes of interest, or "who does what, where and when?" Metabolic labeling with C1 compounds substituted with (13)C, a technique called stable isotope probing, is a key method to trace carbon fluxes within methylotrophic communities. The incorporation of (13)C into the biomass of active methylotrophs leads to an increase in the molecular mass of their biomolecules. For DNA-based stable isotope probing (DNA-SIP), labeled and unlabeled DNA is separated by isopycnic ultracentrifugation. The ability to specifically analyze DNA of active methylotrophs from a complex background community by high-throughput sequencing techniques, i.e. targeted metagenomics, is the hallmark strength of DNA-SIP for elucidating ecosystem functioning, and a protocol is detailed in this chapter.

  16. Establishing a community-wide DNA barcode library as a new tool for arctic research.

    Science.gov (United States)

    Wirta, H; Várkonyi, G; Rasmussen, C; Kaartinen, R; Schmidt, N M; Hebert, P D N; Barták, M; Blagoev, G; Disney, H; Ertl, S; Gjelstrup, P; Gwiazdowicz, D J; Huldén, L; Ilmonen, J; Jakovlev, J; Jaschhof, M; Kahanpää, J; Kankaanpää, T; Krogh, P H; Labbee, R; Lettner, C; Michelsen, V; Nielsen, S A; Nielsen, T R; Paasivirta, L; Pedersen, S; Pohjoismäki, J; Salmela, J; Vilkamaa, P; Väre, H; von Tschirnhaus, M; Roslin, T

    2016-05-01

    DNA sequences offer powerful tools for describing the members and interactions of natural communities. In this study, we establish the to-date most comprehensive library of DNA barcodes for a terrestrial site, including all known macroscopic animals and vascular plants of an intensively studied area of the High Arctic, the Zackenberg Valley in Northeast Greenland. To demonstrate its utility, we apply the library to identify nearly 20 000 arthropod individuals from two Malaise traps, each operated for two summers. Drawing on this material, we estimate the coverage of previous morphology-based species inventories, derive a snapshot of faunal turnover in space and time and describe the abundance and phenology of species in the rapidly changing arctic environment. Overall, 403 terrestrial animal and 160 vascular plant species were recorded by morphology-based techniques. DNA barcodes (CO1) offered high resolution in discriminating among the local animal taxa, with 92% of morphologically distinguishable taxa assigned to unique Barcode Index Numbers (BINs) and 93% to monophyletic clusters. For vascular plants, resolution was lower, with 54% of species forming monophyletic clusters based on barcode regions rbcLa and ITS2. Malaise catches revealed 122 BINs not detected by previous sampling and DNA barcoding. The insect community was dominated by a few highly abundant taxa. Even closely related taxa differed in phenology, emphasizing the need for species-level resolution when describing ongoing shifts in arctic communities and ecosystems. The DNA barcode library now established for Zackenberg offers new scope for such explorations, and for the detailed dissection of interspecific interactions throughout the community. © 2015 John Wiley & Sons Ltd.

  17. Intracommunity relationships, dispersal pattern and paternity success in a wild living community of Bonobos (Pan paniscus) determined from DNA analysis of faecal samples.

    Science.gov (United States)

    Gerloff, U; Hartung, B; Fruth, B; Hohmann, G; Tautz, D

    1999-06-07

    Differences in social relationships among community members are often explained by differences in genetic relationships. The current techniques of DNA analysis allow explicit testing of such a hypothesis. Here, we have analysed the genetic relationships for a community of wild bonobos (Pan paniscus) using nuclear and mitochondrial DNA markers extracted from faecal samples. Bonobos show an opportunistic and promiscuous mating behaviour, even with mates from outside the community. Nonetheless, we find that most infants were sired by resident males and that two dominant males together attained the highest paternity success. Intriguingly, the latter males are the sons of high-ranking females, suggesting an important influence of mothers on the paternity success of their sons. The molecular data support previous inferences on female dispersal and male philopatry. We find a total of five different mitochondrial haplotypes among 15 adult females, suggesting a frequent migration of females. Moreover, for most adult and subadult males in the group we find a matching mother, while this is not the case for most females, indicating that these leave the community during adolescence. Our study demonstrates that faecal samples can be a useful source for the determination of kinship in a whole community.

  18. The effect of DNA degradation bias in passive sampling devices on metabarcoding studies of arthropod communities and their associated microbiota.

    Science.gov (United States)

    Krehenwinkel, Henrik; Fong, Marisa; Kennedy, Susan; Huang, Edward Greg; Noriyuki, Suzuki; Cayetano, Luis; Gillespie, Rosemary

    2018-01-01

    PCR amplification bias is a well-known problem in metagenomic analysis of arthropod communities. In contrast, variation of DNA degradation rates is a largely neglected source of bias. Differential degradation of DNA molecules could cause underrepresentation of taxa in a community sequencing sample. Arthropods are often collected by passive sampling devices, like malaise traps. Specimens in such a trap are exposed to varying periods of suboptimal storage and possibly different rates of DNA degradation. Degradation bias could thus be a significant issue, skewing diversity estimates. Here, we estimate the effect of differential DNA degradation on the recovery of community diversity of Hawaiian arthropods and their associated microbiota. We use a simple DNA size selection protocol to test for degradation bias in mock communities, as well as passively collected samples from actual Malaise traps. We compare the effect of DNA degradation to that of varying PCR conditions, including primer choice, annealing temperature and cycle number. Our results show that DNA degradation does indeed bias community analyses. However, the effect of this bias is of minor importance compared to that induced by changes in PCR conditions. Analyses of the macro and microbiome from passively collected arthropod samples are thus well worth pursuing.

  19. High-throughput sequencing of three Lemnoideae (duckweeds chloroplast genomes from total DNA.

    Directory of Open Access Journals (Sweden)

    Wenqin Wang

    Full Text Available BACKGROUND: Chloroplast genomes provide a wealth of information for evolutionary and population genetic studies. Chloroplasts play a particularly important role in the adaption for aquatic plants because they float on water and their major surface is exposed continuously to sunlight. The subfamily of Lemnoideae represents such a collection of aquatic species that because of photosynthesis represents one of the fastest growing plant species on earth. METHODS: We sequenced the chloroplast genomes from three different genera of Lemnoideae, Spirodela polyrhiza, Wolffiella lingulata and Wolffia australiana by high-throughput DNA sequencing of genomic DNA using the SOLiD platform. Unfractionated total DNA contains high copies of plastid DNA so that sequences from the nucleus and mitochondria can easily be filtered computationally. Remaining sequence reads were assembled into contiguous sequences (contigs using SOLiD software tools. Contigs were mapped to a reference genome of Lemna minor and gaps, selected by PCR, were sequenced on the ABI3730xl platform. CONCLUSIONS: This combinatorial approach yielded whole genomic contiguous sequences in a cost-effective manner. Over 1,000-time coverage of chloroplast from total DNA were reached by the SOLiD platform in a single spot on a quadrant slide without purification. Comparative analysis indicated that the chloroplast genome was conserved in gene number and organization with respect to the reference genome of L. minor. However, higher nucleotide substitution, abundant deletions and insertions occurred in non-coding regions of these genomes, indicating a greater genomic dynamics than expected from the comparison of other related species in the Pooideae. Noticeably, there was no transition bias over transversion in Lemnoideae. The data should have immediate applications in evolutionary biology and plant taxonomy with increased resolution and statistical power.

  20. Profiling nematode communities in unmanaged flowerbed and agricultural field soils in Japan by DNA barcode sequencing.

    Directory of Open Access Journals (Sweden)

    Hisashi Morise

    Full Text Available Soil nematodes play crucial roles in the soil food web and are a suitable indicator for assessing soil environments and ecosystems. Previous nematode community analyses based on nematode morphology classification have been shown to be useful for assessing various soil environments. Here we have conducted DNA barcode analysis for soil nematode community analyses in Japanese soils. We isolated nematodes from two different environmental soils of an unmanaged flowerbed and an agricultural field using the improved flotation-sieving method. Small subunit (SSU rDNA fragments were directly amplified from each of 68 (flowerbed samples and 48 (field samples isolated nematodes to determine the nucleotide sequence. Sixteen and thirteen operational taxonomic units (OTUs were obtained by multiple sequence alignment from the flowerbed and agricultural field nematodes, respectively. All 29 SSU rDNA-derived OTUs (rOTUs were further mapped onto a phylogenetic tree with 107 known nematode species. Interestingly, the two nematode communities examined were clearly distinct from each other in terms of trophic groups: Animal predators and plant feeders were markedly abundant in the flowerbed soils, in contrast, bacterial feeders were dominantly observed in the agricultural field soils. The data from the flowerbed nematodes suggests a possible food web among two different trophic nematode groups and plants (weeds in the closed soil environment. Finally, DNA sequences derived from the mitochondrial cytochrome oxidase c subunit 1 (COI gene were determined as a DNA barcode from 43 agricultural field soil nematodes. These nematodes were assigned to 13 rDNA-derived OTUs, but in the COI gene analysis were assigned to 23 COI gene-derived OTUs (cOTUs, indicating that COI gene-based barcoding may provide higher taxonomic resolution than conventional SSU rDNA-barcoding in soil nematode community analysis.

  1. Profiling Nematode Communities in Unmanaged Flowerbed and Agricultural Field Soils in Japan by DNA Barcode Sequencing

    Science.gov (United States)

    Morise, Hisashi; Miyazaki, Erika; Yoshimitsu, Shoko; Eki, Toshihiko

    2012-01-01

    Soil nematodes play crucial roles in the soil food web and are a suitable indicator for assessing soil environments and ecosystems. Previous nematode community analyses based on nematode morphology classification have been shown to be useful for assessing various soil environments. Here we have conducted DNA barcode analysis for soil nematode community analyses in Japanese soils. We isolated nematodes from two different environmental soils of an unmanaged flowerbed and an agricultural field using the improved flotation-sieving method. Small subunit (SSU) rDNA fragments were directly amplified from each of 68 (flowerbed samples) and 48 (field samples) isolated nematodes to determine the nucleotide sequence. Sixteen and thirteen operational taxonomic units (OTUs) were obtained by multiple sequence alignment from the flowerbed and agricultural field nematodes, respectively. All 29 SSU rDNA-derived OTUs (rOTUs) were further mapped onto a phylogenetic tree with 107 known nematode species. Interestingly, the two nematode communities examined were clearly distinct from each other in terms of trophic groups: Animal predators and plant feeders were markedly abundant in the flowerbed soils, in contrast, bacterial feeders were dominantly observed in the agricultural field soils. The data from the flowerbed nematodes suggests a possible food web among two different trophic nematode groups and plants (weeds) in the closed soil environment. Finally, DNA sequences derived from the mitochondrial cytochrome oxidase c subunit 1 (COI) gene were determined as a DNA barcode from 43 agricultural field soil nematodes. These nematodes were assigned to 13 rDNA-derived OTUs, but in the COI gene analysis were assigned to 23 COI gene-derived OTUs (cOTUs), indicating that COI gene-based barcoding may provide higher taxonomic resolution than conventional SSU rDNA-barcoding in soil nematode community analysis. PMID:23284767

  2. Assessment of community led total sanitation uptake in rural Kenya ...

    African Journals Online (AJOL)

    Background: Community Led Total Sanitation (CLTS) is an innovative community led drive to set up pit latrines in rural Kenya with an aim of promoting sustainable sanitation through behaviour change. It's a behaviour change approach based on social capital that triggers households to build pit latrines without subsidy.

  3. Comparison of DNA extraction methods for human gut microbial community profiling.

    Science.gov (United States)

    Lim, Mi Young; Song, Eun-Ji; Kim, Sang Ho; Lee, Jangwon; Nam, Young-Do

    2018-03-01

    The human gut harbors a vast range of microbes that have significant impact on health and disease. Therefore, gut microbiome profiling holds promise for use in early diagnosis and precision medicine development. Accurate profiling of the highly complex gut microbiome requires DNA extraction methods that provide sufficient coverage of the original community as well as adequate quality and quantity. We tested nine different DNA extraction methods using three commercial kits (TianLong Stool DNA/RNA Extraction Kit (TS), QIAamp DNA Stool Mini Kit (QS), and QIAamp PowerFecal DNA Kit (QP)) with or without additional bead-beating step using manual or automated methods and compared them in terms of DNA extraction ability from human fecal sample. All methods produced DNA in sufficient concentration and quality for use in sequencing, and the samples were clustered according to the DNA extraction method. Inclusion of bead-beating step especially resulted in higher degrees of microbial diversity and had the greatest effect on gut microbiome composition. Among the samples subjected to bead-beating method, TS kit samples were more similar to QP kit samples than QS kit samples. Our results emphasize the importance of mechanical disruption step for a more comprehensive profiling of the human gut microbiome. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  4. Direct comparisons of Illumina vs. Roche 454 sequencing technologies on the same microbial community DNA sample.

    Science.gov (United States)

    Luo, Chengwei; Tsementzi, Despina; Kyrpides, Nikos; Read, Timothy; Konstantinidis, Konstantinos T

    2012-01-01

    Next-generation sequencing (NGS) is commonly used in metagenomic studies of complex microbial communities but whether or not different NGS platforms recover the same diversity from a sample and their assembled sequences are of comparable quality remain unclear. We compared the two most frequently used platforms, the Roche 454 FLX Titanium and the Illumina Genome Analyzer (GA) II, on the same DNA sample obtained from a complex freshwater planktonic community. Despite the substantial differences in read length and sequencing protocols, the platforms provided a comparable view of the community sampled. For instance, derived assemblies overlapped in ~90% of their total sequences and in situ abundances of genes and genotypes (estimated based on sequence coverage) correlated highly between the two platforms (R(2)>0.9). Evaluation of base-call error, frameshift frequency, and contig length suggested that Illumina offered equivalent, if not better, assemblies than Roche 454. The results from metagenomic samples were further validated against DNA samples of eighteen isolate genomes, which showed a range of genome sizes and G+C% content. We also provide quantitative estimates of the errors in gene and contig sequences assembled from datasets characterized by different levels of complexity and G+C% content. For instance, we noted that homopolymer-associated, single-base errors affected ~1% of the protein sequences recovered in Illumina contigs of 10× coverage and 50% G+C; this frequency increased to ~3% when non-homopolymer errors were also considered. Collectively, our results should serve as a useful practical guide for choosing proper sampling strategies and data possessing protocols for future metagenomic studies.

  5. Targeting Unknowns Just Underfoot: Microbial Ecology and Community Genomics of C Cycling in Soil Informed and Enabled with DNA-SIP

    Science.gov (United States)

    Pepe-Ranney, C. P.; Campbell, A.; Buckley, D. H.

    2015-12-01

    Microorganisms drive biogeochemical cycles and because soil is a large global carbon (C) reservoir (soil contains more C than plants and the atmosphere combined), soil microorganisms are important players in the global C-cycle. Frustratingly, however, many soil microorganisms resist cultivation and soil communities are astoundingly complex. This makes soil microbiology difficult to study and without a solid understanding of soil microbial ecology, models of soil C feedbacks to climate change are under-informed. Stable isotope probing (SIP) is a useful approach for establishing identity-function connections in microbial communities but has been challenging to employ in soil due to the inadequate resolution of microbial community fingerprinting techniques. High throughput DNA sequencing improves SIP resolving power transforming it into a powerful tool for studying the soil C cycle. We conducted a DNA-SIP experiment to track flow of xylose-C, a labile component of plant biomass, and cellulose-C, the most abundant global biopolymer, through a soil microbial community. We could track 13C into microbial DNA even when added 13C amounted to less than 5% of native C and found Spartobacteria, Chloroflexi, and Planctomycetes taxa were among those that assimilated 13C cellulose. These lineages are cosmopolitan in soil but little is known of their ecophysiology. By profiling SSU rRNA genes across entire DNA-SIP density gradients, we assessed relative DNA atom % 13C per taxon in 13C treatments and found cellulose degraders exhibited signal consistent with a specialist lifestyle with respect to C preference. Further, DNA-SIP enriches DNA of targeted microorganisms (Verrucomicrobia cellulose degraders were enriched by nearly two orders of magnitude) and this enriched DNA can serve as template for community genomics. We produced draft genomes from soil cellulose degraders including microorganisms belonging to Verrucomicrobia, Chloroflexi, and Planctomycetes from SIP enriched DNA

  6. Characterization of soil nematode communities in three cropping systems through morphological and DNA metabarcoding approaches

    Science.gov (United States)

    Communities of soil nematodes impact ecosystem functions, including plant growth, decomposition, and nutrient cycling, all of which are vital processes in agriculture. We used complementary morphological and DNA metabarcoding analyses to characterize soil nematode communities in three cropping syste...

  7. Identification of the autotrophic denitrifying community in nitrate removal reactors by DNA-stable isotope probing.

    Science.gov (United States)

    Xing, Wei; Li, Jinlong; Cong, Yuan; Gao, Wei; Jia, Zhongjun; Li, Desheng

    2017-04-01

    Autotrophic denitrification has attracted increasing attention for wastewater with insufficient organic carbon sources. Nevertheless, in situ identification of autotrophic denitrifying communities in reactors remains challenging. Here, a process combining micro-electrolysis and autotrophic denitrification with high nitrate removal efficiency was presented. Two batch reactors were fed organic-free nitrate influent, with H 13 CO 3 - and H 12 CO 3 - as inorganic carbon sources. DNA-based stable-isotope probing (DNA-SIP) was used to obtain molecular evidence for autotrophic denitrifying communities. The results showed that the nirS gene was strongly labeled by H 13 CO 3 - , demonstrating that the inorganic carbon source was assimilated by autotrophic denitrifiers. High-throughput sequencing and clone library analysis identified Thiobacillus-like bacteria as the most dominant autotrophic denitrifiers. However, 88% of nirS genes cloned from the 13 C-labeled "heavy" DNA fraction showed low similarity with all culturable denitrifiers. These findings provided functional and taxonomical identification of autotrophic denitrifying communities, facilitating application of autotrophic denitrification process for wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Effects of two different high-fidelity DNA polymerases on genetic analysis of the cyanobacterial community structure in a subtropical deep freshwater reservoir

    DEFF Research Database (Denmark)

    Zhen, Zhuo; Liu, Jingwen; Rensing, Christopher Günther T

    2017-01-01

    and diversity analysis. In this study, two clone libraries were constructed with two different DNA polymerases, Q5 high-fidelity DNA polymerase and exTaq polymerase, to compare the differences in their capability to accurately reflect the cyanobacterial community structure and diversity in a subtropical deep......-fidelity DNA polymerase. It is noteworthy that so far Q5 high-fidelity DNA polymerase was the first time to be employed in the genetic analysis of cyanobacterial community. And it is for the first time that the cyanobacterial community structure in Dongzhen reservoir was analyzed using molecular methods...

  9. Analysis of bacterial core communities in the central Baltic by comparative RNA-DNA-based fingerprinting provides links to structure-function relationships.

    Science.gov (United States)

    Brettar, Ingrid; Christen, Richard; Höfle, Manfred G

    2012-01-01

    Understanding structure-function links of microbial communities is a central theme of microbial ecology since its beginning. To this end, we studied the spatial variability of the bacterioplankton community structure and composition across the central Baltic Sea at four stations, which were up to 450 km apart and at a depth profile representative for the central part (Gotland Deep, 235 m). Bacterial community structure was followed by 16S ribosomal RNA (rRNA)- and 16S rRNA gene-based fingerprints using single-strand conformation polymorphism (SSCP) electrophoresis. Species composition was determined by sequence analysis of SSCP bands. High similarities of the bacterioplankton communities across several hundred kilometers were observed in the surface water using RNA- and DNA-based fingerprints. In these surface communities, the RNA- and DNA-based fingerprints resulted in very different pattern, presumably indicating large difference between the active members of the community as represented by RNA-based fingerprints and the present members represented by the DNA-based fingerprints. This large discrepancy changed gradually over depth, resulting in highly similar RNA- and DNA-based fingerprints in the anoxic part of the water column below 130 m depth. A conceivable mechanism explaining this high similarity could be the reduced oxidative stress in the anoxic zone. The stable communities on the surface and in the anoxic zone indicate the strong influence of the hydrography on the bacterioplankton community structure. Comparative analysis of RNA- and DNA-based community structure provided criteria for the identification of the core community, its key members and their links to biogeochemical functions.

  10. Searching for the Optimal Sampling Solution: Variation in Invertebrate Communities, Sample Condition and DNA Quality.

    Directory of Open Access Journals (Sweden)

    Martin M Gossner

    Full Text Available There is a great demand for standardising biodiversity assessments in order to allow optimal comparison across research groups. For invertebrates, pitfall or flight-interception traps are commonly used, but sampling solution differs widely between studies, which could influence the communities collected and affect sample processing (morphological or genetic. We assessed arthropod communities with flight-interception traps using three commonly used sampling solutions across two forest types and two vertical strata. We first considered the effect of sampling solution and its interaction with forest type, vertical stratum, and position of sampling jar at the trap on sample condition and community composition. We found that samples collected in copper sulphate were more mouldy and fragmented relative to other solutions which might impair morphological identification, but condition depended on forest type, trap type and the position of the jar. Community composition, based on order-level identification, did not differ across sampling solutions and only varied with forest type and vertical stratum. Species richness and species-level community composition, however, differed greatly among sampling solutions. Renner solution was highly attractant for beetles and repellent for true bugs. Secondly, we tested whether sampling solution affects subsequent molecular analyses and found that DNA barcoding success was species-specific. Samples from copper sulphate produced the fewest successful DNA sequences for genetic identification, and since DNA yield or quality was not particularly reduced in these samples additional interactions between the solution and DNA must also be occurring. Our results show that the choice of sampling solution should be an important consideration in biodiversity studies. Due to the potential bias towards or against certain species by Ethanol-containing sampling solution we suggest ethylene glycol as a suitable sampling solution when

  11. Protection of radiation induced DNA and membrane damages by total triterpenes isolated from Ganoderma lucidum (Fr.) P. Karst.

    Science.gov (United States)

    Smina, T P; Maurya, D K; Devasagayam, T P A; Janardhanan, K K

    2015-05-25

    The total triterpenes isolated from the fruiting bodies of Ganoderma lucidum was examined for its potential to prevent γ-radiation induced membrane damage in rat liver mitochondria and microsomes. The effects of total triterpenes on γ-radiation-induced DNA strand breaks in pBR 322 plasmid DNA in vitro and human peripheral blood lymphocytes ex vivo were evaluated. The protective effect of total triterpenes against γ-radiation-induced micronuclei formations in mice bone marrow cells in vivo were also evaluated. The results indicated the significant effectiveness of Ganoderma triterpenes in protecting the DNA and membrane damages consequent to the hazardous effects of radiation. The findings suggest the potential use of Ganoderma triterpenes in radio therapy. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Direct comparisons of Illumina vs. Roche 454 sequencing technologies on the same microbial community DNA sample.

    Directory of Open Access Journals (Sweden)

    Chengwei Luo

    Full Text Available Next-generation sequencing (NGS is commonly used in metagenomic studies of complex microbial communities but whether or not different NGS platforms recover the same diversity from a sample and their assembled sequences are of comparable quality remain unclear. We compared the two most frequently used platforms, the Roche 454 FLX Titanium and the Illumina Genome Analyzer (GA II, on the same DNA sample obtained from a complex freshwater planktonic community. Despite the substantial differences in read length and sequencing protocols, the platforms provided a comparable view of the community sampled. For instance, derived assemblies overlapped in ~90% of their total sequences and in situ abundances of genes and genotypes (estimated based on sequence coverage correlated highly between the two platforms (R(2>0.9. Evaluation of base-call error, frameshift frequency, and contig length suggested that Illumina offered equivalent, if not better, assemblies than Roche 454. The results from metagenomic samples were further validated against DNA samples of eighteen isolate genomes, which showed a range of genome sizes and G+C% content. We also provide quantitative estimates of the errors in gene and contig sequences assembled from datasets characterized by different levels of complexity and G+C% content. For instance, we noted that homopolymer-associated, single-base errors affected ~1% of the protein sequences recovered in Illumina contigs of 10× coverage and 50% G+C; this frequency increased to ~3% when non-homopolymer errors were also considered. Collectively, our results should serve as a useful practical guide for choosing proper sampling strategies and data possessing protocols for future metagenomic studies.

  13. The objective of this program is to develop innovative DNA detection technologies to achieve fast microbial community assessment. The specific approaches are (1) to develop inexpensive and reliable sequence-proof hybridization DNA detection technology (2) to develop quantitative DNA hybridization technology for microbial community assessment and (3) to study the microbes which have demonstrated the potential to have nuclear waste bioremediation

    International Nuclear Information System (INIS)

    Chen, Chung H.

    2004-01-01

    The objective of this program is to develop innovative DNA detection technologies to achieve fast microbial community assessment. The specific approaches are (1) to develop inexpensive and reliable sequence-proof hybridization DNA detection technology (2) to develop quantitative DNA hybridization technology for microbial community assessment and (3) to study the microbes which have demonstrated the potential to have nuclear waste bioremediation

  14. Characterization of Growing Soil Bacterial Communities across a pH gradient Using H218O DNA-Stable Isotope Probing

    Science.gov (United States)

    Welty-Bernard, A. T.; Schwartz, E.

    2014-12-01

    Recent studies have established consistent relationships between pH and bacterial diversity and community structure in soils from site-specific to landscape scales. However, these studies rely on DNA or PLFA extraction techniques from bulk soils that encompass metabolically active and inactive, or dormant, communities, and loose DNA. Dormant cells may comprise up to 80% of total live cells. If dormant cells dominate a particular environment, it is possible that previous interpretations of the soil variables assumed to drive communities could be profoundly affected. We used H218O stable isotope probing and bar-coded illumina sequencing of 16S rRNA genes to monitor the response of actively growing communities to changes in soil pH in a soil microcosm over 14 days. This substrate-independent approach has several advantages over 13C or 15N-labelled molecules in that all growing bacteria should be able to make use of water, allowing characterization of whole communities. We hypothesized that Acidobacteria would increasingly dominate the growing community and that Actinobacteria and Bacteroidetes would decline, given previously established responses by these taxa to soil pH. Instead, we observed the reverse. Actinobacteria abundance increased three-fold from 26 to 76% of the overall community as soil pH fell from pH 5.6 to pH 4.6. Shifts in community structure and decreases in diversity with declining soil pH were essentially driven by two families, Streptomyceaca and Microbacteracea, which collectively increased from 2 to 40% of the entire community. In contrast, Acidobacteria as a whole declined although numbers of subdivision 1 remained stable across all soil pH levels. We suggest that the brief incubation period in this SIP study selected for growth of acid-tolerant Actinobacteria over Acidobacteria. Taxa within Actinomycetales have been readily cultured over short time frames, suggesting rapid growth patterns. Conversely, taxa within Acidobacteria have been

  15. Plant assemblage composition and soil P concentration differentially affect communities of AM and total fungi in a semi-arid grassland.

    Science.gov (United States)

    Klabi, Rim; Bell, Terrence H; Hamel, Chantal; Iwaasa, Alan; Schellenberg, Mike; Raies, Aly; St-Arnaud, Marc

    2015-01-01

    Adding inorganic P- and N-fixing legumes to semi-arid grasslands can increase forage yield, but soil nutrient concentrations and plant cover may also interact to modify soil fungal populations, impacting short- and long-term forage production. We tested the effect of plant assemblage (seven native grasses, seven native grasses + the domesticated N-fixing legume Medicago sativa, seven native grasses + the native N-fixing legume Dalea purpurea or the introduced grass Bromus biebersteinii + M. sativa) and soil P concentration (addition of 0 or 200 P2O5 kg ha(-1) at sowing) on the diversity and community structure of arbuscular mycorrhizal (AM) fungi and total fungi over two consecutive years, using 454-pyrosequencing of 18S rDNA and ITS amplicons. Treatment effects were stronger in the wet year (2008) than the dry year (2009). The presence of an N-fixing legume with native grasses generally increased AM fungal diversity, while the interaction between soil P concentration and plant assemblage modified total fungal community structure in 2008. Excluding interannual variations, which are likely driven by moisture and plant productivity, AM fungal communities in semi-arid grasslands appear to be primarily affected by plant assemblage composition, while the composition of other fungi is more closely linked to soil P. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. The Effect of DNA Extraction Methods on Observed Microbial Communities from Fibrous and Liquid Rumen Fractions of Dairy Cows.

    Science.gov (United States)

    Vaidya, Jueeli D; van den Bogert, Bartholomeus; Edwards, Joan E; Boekhorst, Jos; van Gastelen, Sanne; Saccenti, Edoardo; Plugge, Caroline M; Smidt, Hauke

    2018-01-01

    DNA based methods have been widely used to study the complexity of the rumen microbiota, and it is well known that the method of DNA extraction is a critical step in enabling accurate assessment of this complexity. Rumen fluid (RF) and fibrous content (FC) fractions differ substantially in terms of their physical nature and associated microorganisms. The aim of this study was therefore to assess the effect of four DNA extraction methods (RBB, PBB, FDSS, PQIAmini) differing in cell lysis and/or DNA recovery methods on the observed microbial diversity in RF and FC fractions using samples from four rumen cannulated dairy cows fed 100% grass silage (GS100), 67% GS and 33% maize silage (GS67MS33), 33% GS and 67% MS (GS33MS67), or 100% MS (MS100). An ANOVA statistical test was applied on DNA quality and yield measurements, and it was found that the DNA yield was significantly affected by extraction method ( p anaerobic fungal communities using quantitative PCR and pyrosequencing of relevant taxonomic markers. Redundancy analysis (RDA) of bacterial 16S rRNA gene sequence data at the family level showed that there was a significant effect of rumen fraction ( p = 0.012), and that PBB ( p = 0.012) and FDSS ( p = 0.024) also significantly contributed to explaining the observed variation in bacterial community composition. Whilst the DNA extraction method affected the apparent bacterial community composition, no single extraction method could be concluded to be ineffective. No obvious effect of DNA extraction method on the anaerobic fungi or archaea was observed, although fraction effects were evident for both. In summary, the comprehensive assessment of observed communities of bacteria, archaea and anaerobic fungi described here provides insight into a rational basis for selecting an optimal methodology to obtain a representative picture of the rumen microbiota.

  17. Distinct summer and winter bacterial communities in the active layer of Svalbard permafrost revealed by DNA- and RNA-based analyses

    DEFF Research Database (Denmark)

    Schostag, Morten; Stibal, Marek; Jacobsen, Carsten S.

    2015-01-01

    organic matter on the bacterial communities. The copy number of 16S rRNA genes and transcripts revealed no distinct seasonal changes indicating potential bacterial activity during winter despite soil temperatures well below -10ºC. Multivariate statistical analysis of the bacterial diversity data (DNA......The active layer of soil overlaying permafrost in the Arctic is subjected to dramatic annual changes in temperature and soil chemistry, which likely affect bacterial activity and community structure. We studied seasonal variations in the bacterial community of active layer soil from Svalbard (78º......N) by co-extracting DNA and RNA from 12 soil cores collected monthly over a year. PCR amplicons of 16S rRNA genes (DNA) and reverse transcribed transcripts (cDNA) were quantified and sequenced to test for the effect of low winter temperature and seasonal variation in concentration of easily degradable...

  18. DGGE and 16S rDNA sequencing analysis of bacterial communities in colon content and feces of pigs fed whole crop rice.

    Science.gov (United States)

    Wang, Hai-Feng; Zhu, Wei-Yun; Yao, Wen; Liu, Jian-Xin

    2007-01-01

    The effect of feeding whole crop rice (WCR) to growing-finishing pigs at three levels 0 (Control), 10% and 20% on bacterial communities in colon content and feces was analyzed using 16S rDNA-based techniques. Amplicons of the V6-V8 variable regions of bacterial 16S rDNA were analyzed by denaturing gradient gel electrophoresis (DGGE), cloning and sequencing. The total number of DGGE bands and Shannon index of diversity for feces samples were higher in the pigs fed WCR-containing diets compared with the control, while a decrease trend was observed in these two parameters for colon content samples with the inclusion of WCR in the diets, although statistical differences were not significant. In general, the intestinal bacterial communities were prone to form the cluster for pig fed the same diet. Feeding of WCR induced the presence of special DGGE band with the sequence showing 99% similarity to that of Lactobacillus reuteri (DSM 20016T). The sequences of seven amplicons in total nine clones showed less than 97% similarity with those of previously identified or unidentified bacteria, suggesting that most bacteria in gastrointestinal tracts have not been cultured or identified. The results suggest that the diet containing WCR did not affect the major groups of bacteria, but stimulated the growth of L. reuteri-like species.

  19. An improved high throughput sequencing method for studying oomycete communities

    DEFF Research Database (Denmark)

    Sapkota, Rumakanta; Nicolaisen, Mogens

    2015-01-01

    the usefulness of the method not only in soil DNA but also in a plant DNA background. In conclusion, we demonstrate a successful approach for pyrosequencing of oomycete communities using ITS1 as the barcode sequence with well-known primers for oomycete DNA amplification....... communities. Thewell-known primer sets ITS4, ITS6 and ITS7were used in the study in a semi-nested PCR approach to target the internal transcribed spacer (ITS) 1 of ribosomal DNA in a next generation sequencing protocol. These primers have been used in similar studies before, butwith limited success.......Wewere able to increase the proportion of retrieved oomycete sequences dramaticallymainly by increasing the annealing temperature during PCR. The optimized protocol was validated using three mock communities and the method was further evaluated using total DNA from 26 soil samples collected from different...

  20. Differential sensitivity of total and active soil microbial communities to drought and forest management.

    Science.gov (United States)

    Bastida, Felipe; Torres, Irene F; Andrés-Abellán, Manuela; Baldrian, Petr; López-Mondéjar, Rubén; Větrovský, Tomáš; Richnow, Hans H; Starke, Robert; Ondoño, Sara; García, Carlos; López-Serrano, Francisco R; Jehmlich, Nico

    2017-10-01

    Climate change will affect semiarid ecosystems through severe droughts that increase the competition for resources in plant and microbial communities. In these habitats, adaptations to climate change may consist of thinning-that reduces competition for resources through a decrease in tree density and the promotion of plant survival. We deciphered the functional and phylogenetic responses of the microbial community to 6 years of drought induced by rainfall exclusion and how forest management affects its resistance to drought, in a semiarid forest ecosystem dominated by Pinus halepensis Mill. A multiOMIC approach was applied to reveal novel, community-based strategies in the face of climate change. The diversity and the composition of the total and active soil microbiome were evaluated by 16S rRNA gene (bacteria) and ITS (fungal) sequencing, and by metaproteomics. The microbial biomass was analyzed by phospholipid fatty acids (PLFAs), and the microbially mediated ecosystem multifunctionality was studied by the integration of soil enzyme activities related to the cycles of C, N, and P. The microbial biomass and ecosystem multifunctionality decreased in drought-plots, as a consequence of the lower soil moisture and poorer plant development, but this decrease was more notable in unthinned plots. The structure and diversity of the total bacterial community was unaffected by drought at phylum and order level, but did so at genus level, and was influenced by seasonality. However, the total fungal community and the active microbial community were more sensitive to drought and were related to ecosystem multifunctionality. Thinning in plots without drought increased the active diversity while the total diversity was not affected. Thinning promoted the resistance of ecosystem multifunctionality to drought through changes in the active microbial community. The integration of total and active microbiome analyses avoids misinterpretations of the links between the soil microbial

  1. Back to basics – the influence of DNA extraction and primer choice on phylogenetic analysis in activated sludge communities

    DEFF Research Database (Denmark)

    Albertsen, Mads; Karst, Søren Michael; Ziegler, Anja Sloth

    intensity and primer choice on the observed community using 16S rDNA amplicon sequencing. Quantitative fluorescence in situ hybridization (qFISH) was used as a DNA extraction independent method to evaluate the results. The bead beating intensity correlated with cell-wall strength and showed...... that the manufacture recommended settings were insufficient to retrieve a large part of the community. In addition, the in silico “best” primer set was found to greatly underestimate a number of important phyla when compared to qFISH results. The findings underline the need for sample specific and DNA extraction...

  2. Distinct summer and winter bacterial communities in the active layer of Svalbard permafrost revealed by DNA- and RNA-based analyses

    Science.gov (United States)

    Schostag, Morten; Stibal, Marek; Jacobsen, Carsten S.; Bælum, Jacob; Taş, Neslihan; Elberling, Bo; Jansson, Janet K.; Semenchuk, Philipp; Priemé, Anders

    2015-01-01

    The active layer of soil overlaying permafrost in the Arctic is subjected to dramatic annual changes in temperature and soil chemistry, which likely affect bacterial activity and community structure. We studied seasonal variations in the bacterial community of active layer soil from Svalbard (78°N) by co-extracting DNA and RNA from 12 soil cores collected monthly over a year. PCR amplicons of 16S rRNA genes (DNA) and reverse transcribed transcripts (cDNA) were quantified and sequenced to test for the effect of low winter temperature and seasonal variation in concentration of easily degradable organic matter on the bacterial communities. The copy number of 16S rRNA genes and transcripts revealed no distinct seasonal changes indicating potential bacterial activity during winter despite soil temperatures well below −10°C. Multivariate statistical analysis of the bacterial diversity data (DNA and cDNA libraries) revealed a season-based clustering of the samples, and, e.g., the relative abundance of potentially active Cyanobacteria peaked in June and Alphaproteobacteria increased over the summer and then declined from October to November. The structure of the bulk (DNA-based) community was significantly correlated with pH and dissolved organic carbon, while the potentially active (RNA-based) community structure was not significantly correlated with any of the measured soil parameters. A large fraction of the 16S rRNA transcripts was assigned to nitrogen-fixing bacteria (up to 24% in June) and phototrophic organisms (up to 48% in June) illustrating the potential importance of nitrogen fixation in otherwise nitrogen poor Arctic ecosystems and of phototrophic bacterial activity on the soil surface. PMID:25983731

  3. COMPETITIVE METAGENOMIC DNA HYBRIDIZATION IDENTIFIES HOST-SPECIFIC GENETIC MARKERS IN HUMAN FECAL MICROBIAL COMMUNITIES

    Science.gov (United States)

    Although recent technological advances in DNA sequencing and computational biology now allow scientists to compare entire microbial genomes, the use of these approaches to discern key genomic differences between natural microbial communities remains prohibitively expensive for mo...

  4. Community Phylogenetics: Assessing Tree Reconstruction Methods and the Utility of DNA Barcodes

    Science.gov (United States)

    Boyle, Elizabeth E.; Adamowicz, Sarah J.

    2015-01-01

    Studies examining phylogenetic community structure have become increasingly prevalent, yet little attention has been given to the influence of the input phylogeny on metrics that describe phylogenetic patterns of co-occurrence. Here, we examine the influence of branch length, tree reconstruction method, and amount of sequence data on measures of phylogenetic community structure, as well as the phylogenetic signal (Pagel’s λ) in morphological traits, using Trichoptera larval communities from Churchill, Manitoba, Canada. We find that model-based tree reconstruction methods and the use of a backbone family-level phylogeny improve estimations of phylogenetic community structure. In addition, trees built using the barcode region of cytochrome c oxidase subunit I (COI) alone accurately predict metrics of phylogenetic community structure obtained from a multi-gene phylogeny. Input tree did not alter overall conclusions drawn for phylogenetic signal, as significant phylogenetic structure was detected in two body size traits across input trees. As the discipline of community phylogenetics continues to expand, it is important to investigate the best approaches to accurately estimate patterns. Our results suggest that emerging large datasets of DNA barcode sequences provide a vast resource for studying the structure of biological communities. PMID:26110886

  5. Integrating a DNA barcoding project with an ecological survey: a case study on temperate intertidal polychaete communities in Qingdao, China

    Science.gov (United States)

    Zhou, Hong; Zhang, Zhinan; Chen, Haiyan; Sun, Renhua; Wang, Hui; Guo, Lei; Pan, Haijian

    2010-07-01

    In this study, we integrated a DNA barcoding project with an ecological survey on intertidal polychaete communities and investigated the utility of CO1 gene sequence as a DNA barcode for the classification of the intertidal polychaetes. Using 16S rDNA as a complementary marker and combining morphological and ecological characterization, some of dominant and common polychaete species from Chinese coasts were assessed for their taxonomic status. We obtained 22 haplotype gene sequences of 13 taxa, including 10 CO1 sequences and 12 16S rDNA sequences. Based on intra- and inter-specific distances, we built phylogenetic trees using the neighbor-joining method. Our study suggested that the mitochondrial CO1 gene was a valid DNA barcoding marker for species identification in polychaetes, but other genes, such as 16S rDNA, could be used as a complementary genetic marker. For more accurate species identification and effective testing of species hypothesis, DNA barcoding should be incorporated with morphological, ecological, biogeographical, and phylogenetic information. The application of DNA barcoding and molecular identification in the ecological survey on the intertidal polychaete communities demonstrated the feasibility of integrating DNA taxonomy and ecology.

  6. Influence of PAHs among other coastal environmental variables on total and PAH-degrading bacterial communities.

    Science.gov (United States)

    Sauret, Caroline; Tedetti, Marc; Guigue, Catherine; Dumas, Chloé; Lami, Raphaël; Pujo-Pay, Mireille; Conan, Pascal; Goutx, Madeleine; Ghiglione, Jean-François

    2016-03-01

    We evaluated the relative impact of anthropogenic polycyclic aromatic hydrocarbons (PAHs) among biogeochemical variables on total, metabolically active, and PAH bacterial communities in summer and winter in surface microlayer (SML) and subsurface seawaters (SSW) across short transects along the NW Mediterranean coast from three harbors, one wastewater effluent, and one nearshore observatory reference site. At both seasons, significant correlations were found between dissolved total PAH concentrations and PAH-degrading bacteria that formed a gradient from the shore to nearshore waters. Accumulation of PAH degraders was particularly high in the SML, where PAHs accumulated. Harbors and wastewater outfalls influenced drastically and in a different way the total and active bacterial community structure, but they only impacted the communities from the nearshore zone (PAH concentrations on the spatial and temporal dynamic of total and active communities in this area, but this effect was putted in perspective by the importance of other biogeochemical variables.

  7. The Effect of DNA Extraction Methods on Observed Microbial Communities from Fibrous and Liquid Rumen Fractions of Dairy Cows

    Directory of Open Access Journals (Sweden)

    Jueeli D. Vaidya

    2018-01-01

    Full Text Available DNA based methods have been widely used to study the complexity of the rumen microbiota, and it is well known that the method of DNA extraction is a critical step in enabling accurate assessment of this complexity. Rumen fluid (RF and fibrous content (FC fractions differ substantially in terms of their physical nature and associated microorganisms. The aim of this study was therefore to assess the effect of four DNA extraction methods (RBB, PBB, FDSS, PQIAmini differing in cell lysis and/or DNA recovery methods on the observed microbial diversity in RF and FC fractions using samples from four rumen cannulated dairy cows fed 100% grass silage (GS100, 67% GS and 33% maize silage (GS67MS33, 33% GS and 67% MS (GS33MS67, or 100% MS (MS100. An ANOVA statistical test was applied on DNA quality and yield measurements, and it was found that the DNA yield was significantly affected by extraction method (p < 0.001 and fraction (p < 0.001. The 260/280 ratio was not affected by extraction (p = 0.08 but was affected by fraction (p = 0.03. On the other hand, the 260/230 ratio was affected by extraction method (p < 0.001 but not affected by fraction (p = 0.8. However, all four extraction procedures yielded DNA suitable for further analysis of bacterial, archaeal and anaerobic fungal communities using quantitative PCR and pyrosequencing of relevant taxonomic markers. Redundancy analysis (RDA of bacterial 16S rRNA gene sequence data at the family level showed that there was a significant effect of rumen fraction (p = 0.012, and that PBB (p = 0.012 and FDSS (p = 0.024 also significantly contributed to explaining the observed variation in bacterial community composition. Whilst the DNA extraction method affected the apparent bacterial community composition, no single extraction method could be concluded to be ineffective. No obvious effect of DNA extraction method on the anaerobic fungi or archaea was observed, although fraction effects were evident for both. In

  8. Overlapping communities from dense disjoint and high total degree clusters

    Science.gov (United States)

    Zhang, Hongli; Gao, Yang; Zhang, Yue

    2018-04-01

    Community plays an important role in the field of sociology, biology and especially in domains of computer science, where systems are often represented as networks. And community detection is of great importance in the domains. A community is a dense subgraph of the whole graph with more links between its members than between its members to the outside nodes, and nodes in the same community probably share common properties or play similar roles in the graph. Communities overlap when nodes in a graph belong to multiple communities. A vast variety of overlapping community detection methods have been proposed in the literature, and the local expansion method is one of the most successful techniques dealing with large networks. The paper presents a density-based seeding method, in which dense disjoint local clusters are searched and selected as seeds. The proposed method selects a seed by the total degree and density of local clusters utilizing merely local structures of the network. Furthermore, this paper proposes a novel community refining phase via minimizing the conductance of each community, through which the quality of identified communities is largely improved in linear time. Experimental results in synthetic networks show that the proposed seeding method outperforms other seeding methods in the state of the art and the proposed refining method largely enhances the quality of the identified communities. Experimental results in real graphs with ground-truth communities show that the proposed approach outperforms other state of the art overlapping community detection algorithms, in particular, it is more than two orders of magnitude faster than the existing global algorithms with higher quality, and it obtains much more accurate community structure than the current local algorithms without any priori information.

  9. Testing potential effects of maize expressing the Bacillus thuringiensis Cry1Ab endotoxin (Bt maize) on mycorrhizal fungal communities via DNA- and RNA-based pyrosequencing and molecular fingerprinting.

    Science.gov (United States)

    Verbruggen, Erik; Kuramae, Eiko E; Hillekens, Remy; de Hollander, Mattias; Kiers, E Toby; Röling, Wilfred F M; Kowalchuk, George A; van der Heijden, Marcel G A

    2012-10-01

    The cultivation of genetically modified (GM) crops has increased significantly over the last decades. However, concerns have been raised that some GM traits may negatively affect beneficial soil biota, such as arbuscular mycorrhizal fungi (AMF), potentially leading to alterations in soil functioning. Here, we test two maize varieties expressing the Bacillus thuringiensis Cry1Ab endotoxin (Bt maize) for their effects on soil AM fungal communities. We target both fungal DNA and RNA, which is new for AM fungi, and we use two strategies as an inclusive and robust way of detecting community differences: (i) 454 pyrosequencing using general fungal rRNA gene-directed primers and (ii) terminal restriction fragment length polymorphism (T-RFLP) profiling using AM fungus-specific markers. Potential GM-induced effects were compared to the normal natural variation of AM fungal communities across 15 different agricultural fields. AM fungi were found to be abundant in the experiment, accounting for 8% and 21% of total recovered DNA- and RNA-derived fungal sequences, respectively, after 104 days of plant growth. RNA- and DNA-based sequence analyses yielded most of the same AM fungal lineages. Our research yielded three major conclusions. First, no consistent differences were detected between AM fungal communities associated with GM plants and non-GM plants. Second, temporal variation in AMF community composition (between two measured time points) was bigger than GM trait-induced variation. Third, natural variation of AMF communities across 15 agricultural fields in The Netherlands, as well as within-field temporal variation, was much higher than GM-induced variation. In conclusion, we found no indication that Bt maize cultivation poses a risk for AMF.

  10. A Real Time PCR Platform for the Simultaneous Quantification of Total and Extrachromosomal HIV DNA Forms in Blood of HIV-1 Infected Patients

    Science.gov (United States)

    Canovari, Benedetta; Scotti, Maddalena; Acetoso, Marcello; Valentini, Massimo; Petrelli, Enzo; Magnani, Mauro

    2014-01-01

    Background The quantitative measurement of various HIV-1 DNA forms including total, unintegrated and integrated provirus play an increasingly important role in HIV-1 infection monitoring and treatment-related research. We report the development and validation of a SYBR Green real time PCR (TotUFsys platform) for the simultaneous quantification of total and extrachromosomal HIV-1 DNA forms in patients. This innovative technique makes it possible to obtain both measurements in a single PCR run starting from frozen blood employing the same primers and standard curve. Moreover, due to identical amplification efficiency, it allows indirect estimation of integrated level. To specifically detect 2-LTR a qPCR method was also developed. Methodology/Findings Primers used for total HIV-1 DNA quantification spanning a highly conserved region were selected and found to detect all HIV-1 clades of group M and the unintegrated forms of the same. A total of 195 samples from HIV-1 patients in a wide range of clinical conditions were analyzed with a 100% success rate, even in patients with suppressed plasma viremia, regardless of CD4+ or therapy. No significant correlation was observed between the two current prognostic markers, CD4+ and plasma viremia, while a moderate or high inverse correlation was found between CD4+ and total HIV DNA, with strong values for unintegrated HIV DNA. Conclusions/Significance Taken together, the results support the use of HIV DNA as another tool, in addition to traditional assays, which can be used to estimate the state of viral infection, the risk of disease progression and to monitor the effects of ART. The TotUFsys platform allowed us to obtain a final result, expressed as the total and unintegrated HIV DNA copy number per microgram of DNA or 104 CD4+, for 12 patients within two working days. PMID:25364909

  11. Molecular Analysis of Endolithic Microbial Communities in Volcanic Glasses

    Science.gov (United States)

    di Meo, C. A.; Giovannoni, S.; Fisk, M.

    2002-12-01

    Terrestrial and marine volcanic glasses become mineralogically and chemically altered, and in many cases this alteration has been attributed to microbial activity. We have used molecular techniques to study the resident microbial communities from three different volcanic environments that may be responsible for this crustal alteration. Total microbial DNA was extracted from rhyolite glass of the 7 million year old Rattlesnake Tuff in eastern Oregon. The DNA was amplified using the polymerase chain reaction (PCR) with bacterial primers targeting the 16S rRNA gene. This 16S rDNA was cloned and screened with restriction fragment length polymorphism (RFLP). Out of 89 total clones screened, 46 belonged to 13 different clone families containing two or more members, while 43 clones were unique. Sequences of eight clones representing the most dominant clone families in the library were 92 to 97% similar to soil bacterial species. In a separate study, young pillow basalts (rock- and seawater-associated archaea. The six rock community profiles were quite similar to each other, and the background water communities were also similar, respectively. Both the rock and water communities shared the same dominant peak. To identify the T-RFLP peaks corresponding to the individual members of the rock and seawater communities, clone libraries of the archaeal 16S rDNA for one basalt sample (Dive 3718) and its corresponding background water sample were constructed. The most abundant archaeal genes were closely related to uncultured Group I marine Crenarchaeota that have been previously identified from similar deep-sea habitats. These archaeal genes collectively correspond to the dominant T-RFLP peak present in both the rock and water samples. In a third study, we investigated the microbial community residing in a Hawaiian Scientific Drilling Program core collected near Hilo, Hawaii. Total microbial DNA was extracted from a depth of 1351 m in the drill core (ambient temperature in the

  12. Comparison between cultivated and total bacterial communities associated with Cucurbita pepo using cultivation-dependent techniques and 454 pyrosequencing.

    Science.gov (United States)

    Eevers, N; Beckers, B; Op de Beeck, M; White, J C; Vangronsveld, J; Weyens, N

    2016-02-01

    Endophytic bacteria often have beneficial effects on their host plants that can be exploited for bioremediation applications but, according to the literature, only 0.001-1% of all endophytic microbes should be cultivable. This study compared the cultivated endophytic communities of the roots and shoots of Cucurbita pepo with the total endophytic communities as determined by cultivation-dependent techniques and 454 pyrosequencing. The ten most abundant taxa of the total communities aligned well with the cultivated taxa; however, the abundance of these taxa in the two communities differed greatly. Enterobacter showed very low presence in the total communities, whereas they were dominantly present in the cultivated communities. Although Rhizobium dominated in total root and shoot communities, it was poorly cultivable and even then only in growth media containing plant extract. Since endophytes likely contribute to plant-growth promotion, cultivated bacterial strains were tested for their plant-growth promoting capabilities, and the results were correlated with their abundance in the total community. Bacillus and Pseudomonas showed promising results when considering cultivability, abundance in the total community and plant-growth promoting capability. This study demonstrated that, although a limited number of bacterial genera were cultivable, current cultivation-dependent techniques may be sufficient for further isolation and inoculation experiments that aim to improve phytoremediation efficiency. Copyright © 2015 Elsevier GmbH. All rights reserved.

  13. Unscheduled DNA synthesis in spleen cells of mice exposed to low doses of total body irradiation

    International Nuclear Information System (INIS)

    Tuschl, H.; Kovac, R.; Hruby, E.

    1983-07-01

    Unscheduled DNA synthesis was induced by UV irradiation of spleen cells obtained from C 57 Bl mice after repeated total body irradiation of 0.05 Gy 60 Co (0.00125 Gy/mice) and determined autoradiographically. An enhancement in the ability for repair of UV induced DNA lesions was observed in cells of gamma irradiated animals. While the amount of 3 H-thymidine incorporated per cell was increased, the percentage of labeled cells remained unchanged. The present results are compared with previous data on low dose radiation exposure in men. (Author) [de

  14. Microbial community structures in high rate algae ponds for bioconversion of agricultural wastes from livestock industry for feed production.

    Science.gov (United States)

    Mark Ibekwe, A; Murinda, Shelton E; Murry, Marcia A; Schwartz, Gregory; Lundquist, Trygve

    2017-02-15

    Dynamics of seasonal microbial community compositions in algae cultivation ponds are complex. However, there is very limited knowledge on bacterial communities that may play significant roles with algae in the bioconversion of manure nutrients to animal feed. In this study, water samples were collected during winter, spring, summer, and fall from the dairy lagoon effluent (DLE), high rate algae ponds (HRAP) that were fed with diluted DLE, and municipal waste water treatment plant (WWTP) effluent which was included as a comparison system for the analysis of total bacteria, Cyanobacteria, and microalgae communities using MiSeq Illumina sequencing targeting the 16S V4 rDNA region. The main objective was to examine dynamics in microbial community composition in the HRAP used for the production of algal biomass. DNA was extracted from the different sample types using three commercially available DNA extraction kits; MoBio Power water extraction kit, Zymo fungi/bacterial extraction kit, and MP Biomedicals FastDNA SPIN Kit. Permutational analysis of variance (PERMANOVA) using distance matrices on each variable showed significant differences (P=0.001) in beta-diversity based on sample source. Environmental variables such as hydraulic retention time (HRT; P<0.031), total N (P<0.002), total inorganic N (P<0.002), total P (P<0.002), alkalinity (P<0.002), pH (P<0.022), total suspended solid (TSS; P<0.003), and volatile suspended solids (VSS; P<0.002) significantly affected microbial communities in DLE, HRAP, and WWTP. Of the operational taxonomic units (OTUs) identified to phyla level, the dominant classes of bacteria identified were: Cyanobacteria, Alpha-, Beta-, Gamma-, Epsilon-, and Delta-proteobacteria, Bacteroidetes, Firmicutes, and Planctomycetes. Our data suggest that microbial communities were significantly affected in HRAP by different environmental variables, and care must be taken in extraction procedures when evaluating specific groups of microbial communities for

  15. Bacterial community composition in different sediments from the Eastern Mediterranean Sea: a comparison of four 16S ribosomal DNA clone libraries.

    Science.gov (United States)

    Polymenakou, Paraskevi N; Bertilsson, Stefan; Tselepides, Anastasios; Stephanou, Euripides G

    2005-10-01

    The regional variability of sediment bacterial community composition and diversity was studied by comparative analysis of four large 16S ribosomal DNA (rDNA) clone libraries from sediments in different regions of the Eastern Mediterranean Sea (Thermaikos Gulf, Cretan Sea, and South lonian Sea). Amplified rDNA restriction analysis of 664 clones from the libraries indicate that the rDNA richness and evenness was high: for example, a near-1:1 relationship among screened clones and number of unique restriction patterns when up to 190 clones were screened for each library. Phylogenetic analysis of 207 bacterial 16S rDNA sequences from the sediment libraries demonstrated that Gamma-, Delta-, and Alphaproteobacteria, Holophaga/Acidobacteria, Planctomycetales, Actinobacteria, Bacteroidetes, and Verrucomicrobia were represented in all four libraries. A few clones also grouped with the Betaproteobacteria, Nitrospirae, Spirochaetales, Chlamydiae, Firmicutes, and candidate division OPl 1. The abundance of sequences affiliated with Gammaproteobacteria was higher in libraries from shallow sediments in the Thermaikos Gulf (30 m) and the Cretan Sea (100 m) compared to the deeper South Ionian station (2790 m). Most sequences in the four sediment libraries clustered with uncultured 16S rDNA phylotypes from marine habitats, and many of the closest matches were clones from hydrocarbon seeps, benzene-mineralizing consortia, sulfate reducers, sulk oxidizers, and ammonia oxidizers. LIBSHUFF statistics of 16S rDNA gene sequences from the four libraries revealed major differences, indicating either a very high richness in the sediment bacterial communities or considerable variability in bacterial community composition among regions, or both.

  16. Plant DNA barcodes and assessment of phylogenetic community structure of a tropical mixed dipterocarp forest in Brunei Darussalam (Borneo)

    Science.gov (United States)

    Abu Salim, Kamariah; Chase, Mark W.; Dexter, Kyle G.; Pennington, R. Toby; Tan, Sylvester; Kaye, Maria Ellen; Samuel, Rosabelle

    2017-01-01

    DNA barcoding is a fast and reliable tool to assess and monitor biodiversity and, via community phylogenetics, to investigate ecological and evolutionary processes that may be responsible for the community structure of forests. In this study, DNA barcodes for the two widely used plastid coding regions rbcL and matK are used to contribute to identification of morphologically undetermined individuals, as well as to investigate phylogenetic structure of tree communities in 70 subplots (10 × 10m) of a 25-ha forest-dynamics plot in Brunei (Borneo, Southeast Asia). The combined matrix (rbcL + matK) comprised 555 haplotypes (from ≥154 genera, 68 families and 25 orders sensu APG, Angiosperm Phylogeny Group, 2016), making a substantial contribution to tree barcode sequences from Southeast Asia. Barcode sequences were used to reconstruct phylogenetic relationships using maximum likelihood, both with and without constraining the topology of taxonomic orders to match that proposed by the Angiosperm Phylogeny Group. A third phylogenetic tree was reconstructed using the program Phylomatic to investigate the influence of phylogenetic resolution on results. Detection of non-random patterns of community assembly was determined by net relatedness index (NRI) and nearest taxon index (NTI). In most cases, community assembly was either random or phylogenetically clustered, which likely indicates the importance to community structure of habitat filtering based on phylogenetically correlated traits in determining community structure. Different phylogenetic trees gave similar overall results, but the Phylomatic tree produced greater variation across plots for NRI and NTI values, presumably due to noise introduced by using an unresolved phylogenetic tree. Our results suggest that using a DNA barcode tree has benefits over the traditionally used Phylomatic approach by increasing precision and accuracy and allowing the incorporation of taxonomically unidentified individuals into analyses

  17. Plant DNA barcodes and assessment of phylogenetic community structure of a tropical mixed dipterocarp forest in Brunei Darussalam (Borneo.

    Directory of Open Access Journals (Sweden)

    Jacqueline Heckenhauer

    Full Text Available DNA barcoding is a fast and reliable tool to assess and monitor biodiversity and, via community phylogenetics, to investigate ecological and evolutionary processes that may be responsible for the community structure of forests. In this study, DNA barcodes for the two widely used plastid coding regions rbcL and matK are used to contribute to identification of morphologically undetermined individuals, as well as to investigate phylogenetic structure of tree communities in 70 subplots (10 × 10m of a 25-ha forest-dynamics plot in Brunei (Borneo, Southeast Asia. The combined matrix (rbcL + matK comprised 555 haplotypes (from ≥154 genera, 68 families and 25 orders sensu APG, Angiosperm Phylogeny Group, 2016, making a substantial contribution to tree barcode sequences from Southeast Asia. Barcode sequences were used to reconstruct phylogenetic relationships using maximum likelihood, both with and without constraining the topology of taxonomic orders to match that proposed by the Angiosperm Phylogeny Group. A third phylogenetic tree was reconstructed using the program Phylomatic to investigate the influence of phylogenetic resolution on results. Detection of non-random patterns of community assembly was determined by net relatedness index (NRI and nearest taxon index (NTI. In most cases, community assembly was either random or phylogenetically clustered, which likely indicates the importance to community structure of habitat filtering based on phylogenetically correlated traits in determining community structure. Different phylogenetic trees gave similar overall results, but the Phylomatic tree produced greater variation across plots for NRI and NTI values, presumably due to noise introduced by using an unresolved phylogenetic tree. Our results suggest that using a DNA barcode tree has benefits over the traditionally used Phylomatic approach by increasing precision and accuracy and allowing the incorporation of taxonomically unidentified individuals

  18. Epigenomics of Total Acute Sleep Deprivation in Relation to Genome-Wide DNA Methylation Profiles and RNA Expression.

    Science.gov (United States)

    Nilsson, Emil K; Boström, Adrian E; Mwinyi, Jessica; Schiöth, Helgi B

    2016-06-01

    Despite an established link between sleep deprivation and epigenetic processes in humans, it remains unclear to what extent sleep deprivation modulates DNA methylation. We performed a within-subject randomized blinded study with 16 healthy subjects to examine the effect of one night of total sleep deprivation (TSD) on the genome-wide methylation profile in blood compared with that in normal sleep. Genome-wide differences in methylation between both conditions were assessed by applying a paired regression model that corrected for monocyte subpopulations. In addition, the correlations between the methylation of genes detected to be modulated by TSD and gene expression were examined in a separate, publicly available cohort of 10 healthy male donors (E-GEOD-49065). Sleep deprivation significantly affected the DNA methylation profile both independently and in dependency of shifts in monocyte composition. Our study detected differential methylation of 269 probes. Notably, one CpG site was located 69 bp upstream of ING5, which has been shown to be differentially expressed after sleep deprivation. Gene set enrichment analysis detected the Notch and Wnt signaling pathways to be enriched among the differentially methylated genes. These results provide evidence that total acute sleep deprivation alters the methylation profile in healthy human subjects. This is, to our knowledge, the first study that systematically investigated the impact of total acute sleep deprivation on genome-wide DNA methylation profiles in blood and related the epigenomic findings to the expression data.

  19. Optimisation of 16S rDNA amplicon sequencing protocols for microbial community profiling of anaerobic digesters

    DEFF Research Database (Denmark)

    Kirkegaard, Rasmus Hansen; McIlroy, Simon Jon; Larsen, Poul

    A reliable and reproducible method for identification and quantification of the microorganisms involved in biogas production is important for the study and understanding of the microbial communities responsible for the function of anaerobic digester systems. DNA based identification using 16S rRN...

  20. Community Sewage Sensors towards Evaluation of Drug Use Trends: Detection of Cocaine in Wastewater with DNA-Directed Immobilization Aptamer Sensors

    Science.gov (United States)

    Yang, Zhugen; Castrignanò, Erika; Estrela, Pedro; Frost, Christopher G.; Kasprzyk-Hordern, Barbara

    2016-02-01

    Illicit drug use has a global concern and effective monitoring and interventions are highly required to combat drug abuse. Wastewater-based epidemiology (WBE) is an innovative and cost-effective approach to evaluate community-wide drug use trends, compared to traditional population surveys. Here we report for the first time, a novel quantitative community sewage sensor (namely DNA-directed immobilization of aptamer sensors, DDIAS) for rapid and cost-effective estimation of cocaine use trends via WBE. Thiolated single-stranded DNA (ssDNA) probe was hybridized with aptamer ssDNA in solution, followed by co-immobilization with 6-mercapto-hexane onto the gold electrodes to control the surface density to effectively bind with cocaine. DDIAS was optimized to detect cocaine at as low as 10 nM with a dynamic range from 10 nM to 5 μM, which were further employed for the quantification of cocaine in wastewater samples collected from a wastewater treatment plant in seven consecutive days. The concentration pattern of the sampling week is comparable with that from mass spectrometry. Our results demonstrate that the developed DDIAS can be used as community sewage sensors for rapid and cost-effective evaluation of drug use trends, and potentially implemented as a powerful tool for on-site and real-time monitoring of wastewater by un-skilled personnel.

  1. ITS all right mama: investigating the formation of chimeric sequences in the ITS2 region by DNA metabarcoding analyses of fungal mock communities of different complexities.

    Science.gov (United States)

    Bjørnsgaard Aas, Anders; Davey, Marie Louise; Kauserud, Håvard

    2017-07-01

    The formation of chimeric sequences can create significant methodological bias in PCR-based DNA metabarcoding analyses. During mixed-template amplification of barcoding regions, chimera formation is frequent and well documented. However, profiling of fungal communities typically uses the more variable rDNA region ITS. Due to a larger research community, tools for chimera detection have been developed mainly for the 16S/18S markers. However, these tools are widely applied to the ITS region without verification of their performance. We examined the rate of chimera formation during amplification and 454 sequencing of the ITS2 region from fungal mock communities of different complexities. We evaluated the chimera detecting ability of two common chimera-checking algorithms: perseus and uchime. Large proportions of the chimeras reported were false positives. No false negatives were found in the data set. Verified chimeras accounted for only 0.2% of the total ITS2 reads, which is considerably less than what is typically reported in 16S and 18S metabarcoding analyses. Verified chimeric 'parent sequences' had significantly higher per cent identity to one another than to random members of the mock communities. Community complexity increased the rate of chimera formation. GC content was higher around the verified chimeric break points, potentially facilitating chimera formation through base pair mismatching in the neighbouring regions of high similarity in the chimeric region. We conclude that the hypervariable nature of the ITS region seems to buffer the rate of chimera formation in comparison with other, less variable barcoding regions, due to shorter regions of high sequence similarity. © 2016 John Wiley & Sons Ltd.

  2. Community reintegration following a total joint replacement: a pilot study.

    Science.gov (United States)

    Stergiou-Kita, Mary; Grigorovich, Alisa

    2014-06-01

    To examine community reintegration following a hip or knee total joint replacement (TJR) from the perspective of rehabilitation clients. A phenomenological frame of reference guided the present study. Ten participants who received inpatient rehabilitation completed semi-structured qualitative interviews to explore their experiences with reintegrating back into their chosen communities and the meanings that they ascribed to their reintegration. Interview data were analysed using thematic analysis. Demographic data, and information regarding participants' living situation and supports were extracted from existing databases and used to characterize the sample. Participants revealed that reintegration after a TJR encompassed two key elements of meaning: i) engagement in meaningful activities; and ii) satisfaction levels. Additionally, the following five factors were identified as facilitators or barriers to community reintegration following a TJR: i) ongoing preparation and education; ii) confounding health issues; iii) driving and transportation; iv) personal facilitators; v) access to supports from professionals, family and friends, and community programmes. The present study highlights the significance of engaging in meaningful activities and being satisfied in one's level of engagement to achieving a sense of community reintegration following a TJR. This suggests that reintegration post-TJR has broader meanings than just improvements in functional abilities. Practitioners are encouraged to inquire about patients' meaningful activities, support their preparedness throughout the rehabilitation process, to identify confounding health issues that may limit reintegration, consider patients' fears and anxieties and establish supports to enhance their feelings of self-efficacy and abilities to cope following a TJR. © 2014 John Wiley & Sons, Ltd.

  3. Soil Fungal Community Associated with Peat in Sarawak Identified Using 18S rDNA Marker

    International Nuclear Information System (INIS)

    Siti Ramlah Ahmad Ali; Sakinah Safari; Mohd Shawal Thakib; Shamsilawani Ahamed Bakeri; Nur Aziemah Ab Ghani

    2016-01-01

    Fungi are principal decomposing microorganisms in acidic environment of peat lands. A useful tool for molecular screening of soil fungal communities using the 18S ribosomal DNA primer has been proven capable of identifying a broad range of fungi species within Ascomycota, Basidiomycota, Zygomycota and Chytridiomycota. Currently, very little information is available on fungal communities in deep peat of Sarawak, Malaysia. In this study, we have isolated the fungi from soil samples taken in deep peat forests and oil palm cultivated areas. The fungal identity was undertaken using 18S ribosomal DNA primer which is EF4-F/ fung5-R. The microscopic structures were conducted to confirm the identity of the isolates. Based on this study, the fungal division most commonly found in deep peat is the Ascomycota. Aspergillus fumigatus was the most common species and more dominant in oil palm cultivated areas and logged-over forest than in primary forest. In the primary forest, the dominant species was the A. flavus, while Hypocrea atroviridis was commonly associated with oil palm cultivated areas and logged-over forest. Other species of fungi isolated in peat primary forests were Penicillium chrysogenum, Trichoderma sp., Phanerochaete sp., Mortierella chlamydospora, A. niger, A. alliaceus, etc. The in-depth difference in the fungal communities for the different sites will be further investigated using the next generation sequencing technology. (author)

  4. Effects of zinc pyrithione and copper pyrithione on microbial community function and structure in sediments

    DEFF Research Database (Denmark)

    Petersen, DG; Dahllof, I.; Nielsen, LP

    2004-01-01

    incorporation) were used, whereas molecular fingerprinting methods (polymerase chain reaction/ denaturing gradient gel electrophoresis) were used to describe the bacterial community structure. The lowest-observed-effect concentration (LOEC) for ZPT was 0.001 nmol/g dry sediment for the phosphate flux and total...... DNA content, whereas the LOEC for CPT was 0.1 nmol/g dry sediment for the nitrate flux and total DNA content. Nitrate fluxes increased significantly following additions of both ZPT and CPT, whereas ammonium fluxes decreased significantly after ZPT addition, suggesting changes in the nitrification...... and denitrification processes. The total DNA content decreased significantly following addition of both ZPT and CPT, but at the highest addition of ZPT (10 nmol ZPT/g dry sediment), an increase in total DNA content was found. Increased protein synthesis and bacterial diversity were also observed at this concentration...

  5. Effects of zinc pyrithione and copper pyrithione on microbial community function and structure in sediments

    DEFF Research Database (Denmark)

    Petersen, DG; Dahllof, I.; Nielsen, LP

    2004-01-01

    The effects of the new antifouling biocides, zinc pyrithione (ZPT) and copper pyrithione (CPT), on microbial communities in estuarine sediments were studied in microcosms. As functional endpoints, fluxes of nutrients (NO3-, NH4+, HPO42-, Si(OH)(4)) and protein synthesis ([C-14] leucine incorporat......The effects of the new antifouling biocides, zinc pyrithione (ZPT) and copper pyrithione (CPT), on microbial communities in estuarine sediments were studied in microcosms. As functional endpoints, fluxes of nutrients (NO3-, NH4+, HPO42-, Si(OH)(4)) and protein synthesis ([C-14] leucine...... DNA content, whereas the LOEC for CPT was 0.1 nmol/g dry sediment for the nitrate flux and total DNA content. Nitrate fluxes increased significantly following additions of both ZPT and CPT, whereas ammonium fluxes decreased significantly after ZPT addition, suggesting changes in the nitrification...... and denitrification processes. The total DNA content decreased significantly following addition of both ZPT and CPT, but at the highest addition of ZPT (10 nmol ZPT/g dry sediment), an increase in total DNA content was found. Increased protein synthesis and bacterial diversity were also observed at this concentration...

  6. History, applications, methodological issues and perspectives for the use of environmental DNA (eDNA) in marine and freshwater environments.

    Science.gov (United States)

    Díaz-Ferguson, Edgardo E; Moyer, Gregory R

    2014-12-01

    Genetic material (short DNA fragments) left behind by species in nonliving components of the environment (e.g. soil, sediment, or water) is defined as environmental DNA (eDNA). This DNA has been previously described as particulate DNA and has been used to detect and describe microbial communities in marine sediments since the mid-1980's and phytoplankton communities in the water column since the early-1990's. More recently, eDNA has been used to monitor invasive or endangered vertebrate and invertebrate species. While there is a steady increase in the applicability of eDNA as a monitoring tool, a variety of eDNA applications are emerging in fields such as forensics, population and community ecology, and taxonomy. This review provides scientist with an understanding of the methods underlying eDNA detection as well as applications, key methodological considerations, and emerging areas of interest for its use in ecology and conservation of freshwater and marine environments.

  7. Membrane biofouling characterization: effects of sample preparation procedures on biofilm structure and the microbial community

    KAUST Repository

    Xue, Zheng

    2014-07-15

    Ensuring the quality and reproducibility of results from biofilm structure and microbial community analysis is essential to membrane biofouling studies. This study evaluated the impacts of three sample preparation factors (ie number of buffer rinses, storage time at 4°C, and DNA extraction method) on the downstream analysis of nitrifying biofilms grown on ultrafiltration membranes. Both rinse and storage affected biofilm structure, as suggested by their strong correlation with total biovolume, biofilm thickness, roughness and the spatial distribution of EPS. Significant variations in DNA yields and microbial community diversity were also observed among samples treated by different rinses, storage and DNA extraction methods. For the tested biofilms, two rinses, no storage and DNA extraction with both mechanical and chemical cell lysis from attached biofilm were the optimal sample preparation procedures for obtaining accurate information about biofilm structure, EPS distribution and the microbial community. © 2014 © 2014 Taylor & Francis.

  8. COMMUNITY SCALE STREAM TAXA SENSITIVITIES TO DIFFERENT COMPOSITIONS OF EXCESS TOTAL DISSOLVED SOLIDS

    Science.gov (United States)

    Model stream chronic dosing studies (42 d) were conducted with three total dissolved solids (TDS) recipes. The recipes differed in composition of major ions. Community scale emergence was compared with single-species responses conducted simultaneously using the whole effluent tox...

  9. DNA stable-isotope probing (DNA-SIP).

    Science.gov (United States)

    Dunford, Eric A; Neufeld, Josh D

    2010-08-02

    DNA stable-isotope probing (DNA-SIP) is a powerful technique for identifying active microorganisms that assimilate particular carbon substrates and nutrients into cellular biomass. As such, this cultivation-independent technique has been an important methodology for assigning metabolic function to the diverse communities inhabiting a wide range of terrestrial and aquatic environments. Following the incubation of an environmental sample with stable-isotope labelled compounds, extracted nucleic acid is subjected to density gradient ultracentrifugation and subsequent gradient fractionation to separate nucleic acids of differing densities. Purification of DNA from cesium chloride retrieves labelled and unlabelled DNA for subsequent molecular characterization (e.g. fingerprinting, microarrays, clone libraries, metagenomics). This JoVE video protocol provides visual step-by-step explanations of the protocol for density gradient ultracentrifugation, gradient fractionation and recovery of labelled DNA. The protocol also includes sample SIP data and highlights important tips and cautions that must be considered to ensure a successful DNA-SIP analysis.

  10. Development and evaluation of a 16S ribosomal DNA array-based approach for describing complex microbial communities in ready-to-eat vegetable salads packed in a modified atmosphere.

    Science.gov (United States)

    Rudi, Knut; Flateland, Signe L; Hanssen, Jon Fredrik; Bengtsson, Gunnar; Nissen, Hilde

    2002-03-01

    There is a clear need for new approaches in the field of microbial community analyses, since the methods used can be severely biased. We have developed a DNA array-based method that targets 16S ribosomal DNA (rDNA), enabling the direct detection and quantification of microorganisms from complex communities without cultivation. The approach is based on the construction of specific probes from the 16S rDNA sequence data retrieved directly from the communities. The specificity of the assay is obtained through a combination of DNA array hybridization and enzymatic labeling of the constructed probes. Cultivation-dependent assays (enrichment and plating) and cultivation-independent assays (direct fluorescence microscopy and scanning electron microscopy) were used as reference methods in the development and evaluation of the method. The description of microbial communities in ready-to-eat vegetable salads in a modified atmosphere was used as the experimental model. Comparisons were made with respect to the effect of storage at different temperatures for up to 12 days and with respect to the geographic origin of the crisphead lettuce (Spanish or Norwegian), the main salad component. The conclusion drawn from the method comparison was that the DNA array-based method gave an accurate description of the microbial communities. Pseudomonas spp. dominated both of the salad batches, containing either Norwegian or Spanish lettuce, before storage and after storage at 4 degrees C. The Pseudomonas population also dominated the batch containing Norwegian lettuce after storage at 10 degrees C. On the contrary, Enterobacteriaceae and lactic acid bacteria dominated the microbial community of the batch containing Spanish lettuce after storage at 10 degrees C. In that batch, the Enterobacteriaceae also were abundant after storage at 4 degrees C as well as before storage. The practical implications of these results are that microbial communities in ready-to-eat vegetable salads can be

  11. Profiling soil microbial communities with next-generation sequencing: the influence of DNA kit selection and technician technical expertise.

    Science.gov (United States)

    Soliman, Taha; Yang, Sung-Yin; Yamazaki, Tomoko; Jenke-Kodama, Holger

    2017-01-01

    Structure and diversity of microbial communities are an important research topic in biology, since microbes play essential roles in the ecology of various environments. Different DNA isolation protocols can lead to data bias and can affect results of next-generation sequencing. To evaluate the impact of protocols for DNA isolation from soil samples and also the influence of individual handling of samples, we compared results obtained by two researchers (R and T) using two different DNA extraction kits: (1) MO BIO PowerSoil ® DNA Isolation kit (MO_R and MO_T) and (2) NucleoSpin ® Soil kit (MN_R and MN_T). Samples were collected from six different sites on Okinawa Island, Japan. For all sites, differences in the results of microbial composition analyses (bacteria, archaea, fungi, and other eukaryotes), obtained by the two researchers using the two kits, were analyzed. For both researchers, the MN kit gave significantly higher yields of genomic DNA at all sites compared to the MO kit (ANOVA; P  technicians for thorough microbial analyses and to obtain accurate estimates of microbial diversity.

  12. Evaluation of five methods for total DNA extraction from western corn rootworm beetles.

    Directory of Open Access Journals (Sweden)

    Hong Chen

    Full Text Available BACKGROUND: DNA extraction is a routine step in many insect molecular studies. A variety of methods have been used to isolate DNA molecules from insects, and many commercial kits are available. Extraction methods need to be evaluated for their efficiency, cost, and side effects such as DNA degradation during extraction. METHODOLOGY/PRINCIPAL FINDINGS: From individual western corn rootworm beetles, Diabrotica virgifera virgifera, DNA extractions by the SDS method, CTAB method, DNAzol reagent, Puregene solutions and DNeasy column were compared in terms of DNA quantity and quality, cost of materials, and time consumed. Although all five methods resulted in acceptable DNA concentrations and absorbance ratios, the SDS and CTAB methods resulted in higher DNA yield (ng DNA vs. mg tissue at much lower cost and less degradation as revealed on agarose gels. The DNeasy kit was most time-efficient but was the costliest among the methods tested. The effects of ethanol volume, temperature and incubation time on precipitation of DNA were also investigated. The DNA samples obtained by the five methods were tested in PCR for six microsatellites located in various positions of the beetle's genome, and all samples showed successful amplifications. CONCLUSION/SIGNIFICANCE: These evaluations provide a guide for choosing methods of DNA extraction from western corn rootworm beetles based on expected DNA yield and quality, extraction time, cost, and waste control. The extraction conditions for this mid-size insect were optimized. The DNA extracted by the five methods was suitable for further molecular applications such as PCR and sequencing by synthesis.

  13. Effects of copper amendment on the bacterial community in agricultural soil analyzed by the T-RFLP technique

    DEFF Research Database (Denmark)

    Tom-Petersen, Andreas; Leser, Thomas D.; Marsh, Terence L.

    2003-01-01

    The impact of copper amendment on the bacterial community in agricultural soil was investigated by a 2-year field experiment complemented by short-term microcosm studies. In the field, the amendments led to total copper contents that were close to the safety limits laid down by European authorities....... In parallel, bioavailable copper was determined with a copper-specific bioluminescent Pseudomonas reporter strain. The amounts of total Cu as well as of bioavailable Cu in the field declined throughout the experiment. Bacterial community structure was examined by terminal restriction fragment length...... polymorphism (T-RFLP) analysis of community DNA amplified with primers specific for 16S rDNA from the Bacteria domain, the Rhizobium-Agrobacterium group and the Cytophaga group. Similarity analysis of T-RFLP profiles from field samples demonstrated an impact of copper at the domain level and within...

  14. Malaria prevalence defined by microscopy, antigen detection, DNA amplification and total nucleic acid amplification in a malaria-endemic region during the peak malaria transmission season.

    Science.gov (United States)

    Waitumbi, John N; Gerlach, Jay; Afonina, Irina; Anyona, Samuel B; Koros, Joseph N; Siangla, Joram; Ankoudinova, Irina; Singhal, Mitra; Watts, Kate; Polhemus, Mark E; Vermeulen, Nicolaas M; Mahoney, Walt; Steele, Matt; Domingo, Gonzalo J

    2011-07-01

    To determine the malaria prevalence by microscopy, antigen detection and nucleic acid detection in a defined subpopulation in a Plasmodium falciparum-endemic region during the peak transmission season. Blood specimens were collected in a cross-sectional study involving children aged 5-10 years (n = 195) presenting with acute fever to two clinics in Western Kenya. All specimens underwent microscopy, HRP2 and aldolase antigen detection by enzyme immunoassay (EIA), parasite-specific DNA and total nucleic acid (RNA and DNA) by real-time PCR (qPCR) and reverse-transcriptase PCR (qRT-PCR). Microscopy detected 65/195 cases of malaria infection [95% confidence interval (CI) 52-78]. HRP2 and aldolase EIA had similar sensitivity levels detecting antigen in 65/195 (95% CI, 52-78) and 57/195 (95% CI, 45-70) cases. Discordants in antigen detection vs. microscopy occurred at Detection of total nucleic acid allowed a 3 log lower limit of detection than just DNA detection by real-time PCR in vitro. In clinical specimens, 114/195 (95% CI, 100-127) were qPCR positive (DNA), and 187/195 (95% CI, 179-191) were qRT-PCR positive (DNA plus RNA). The prevalence of submicroscopic malaria infection was significantly higher when detecting total nucleic acid than just DNA in this outpatient population during the high transmission season. Defining standards for submicroscopic infection will be important for control programmes, diagnostics development efforts and molecular epidemiology studies. © 2011 Blackwell Publishing Ltd.

  15. Total DNA of Glycyrrhiza uralensis transformed into Hansenula anomala by ion implantation:Preparing Glycyrrhizic acid in recombined yeasts

    International Nuclear Information System (INIS)

    Jin Xiang; Mao Peihong; Lu Jie; Ma Yuan

    2010-01-01

    Glycyrrhizic acid (GA) in Glycyrrhiza uralensis (G. uralensis) is physiologically active. In this study, the total DNA of wild G. uralensis was randomly transformed into Hansenula anomaly by implantation of low-energy Ar + and N + , to produce five recombinant yeast strains relating to biological synthesis of the GA or Glycyrrhetinic acid (GAs). After culturing in liquid medium for 96 h, the resultant GA, 18α-GAs and 18β-Gas were determined by reversed-phase high performance liquid chromatography (RP-HPLC), and the corresponding concentrations were 114.49, 0.56, and 0.81 mg·L -1 . After one hundred primers were analyzed with random amplified polymorphic DNA (RAPD), the seven different DNA fragments were produced by the N7059 strain of recombined yeasts, and, the polymerase chain reaction (PCR) verified that one of them came from the genome of G. uralensis, indicating a successful transfer of genetic information by ion implantation. (authors)

  16. PCR-based cDNA library construction: general cDNA libraries at the level of a few cells.

    OpenAIRE

    Belyavsky, A; Vinogradova, T; Rajewsky, K

    1989-01-01

    A procedure for the construction of general cDNA libraries is described which is based on the amplification of total cDNA in vitro. The first cDNA strand is synthesized from total RNA using an oligo(dT)-containing primer. After oligo(dG) tailing the total cDNA is amplified by PCR using two primers complementary to oligo(dA) and oligo(dG) ends of the cDNA. For insertion of the cDNA into a vector a controlled trimming of the 3' ends of the cDNA by Klenow enzyme was used. Starting from 10 J558L ...

  17. Post-cardiac arrest level of free-plasma DNA and DNA-histone complexes

    DEFF Research Database (Denmark)

    Jeppesen, A N; Hvas, A-M; Grejs, A M

    2017-01-01

    Background Plasma DNA-histone complexes and total free-plasma DNA have the potential to quantify the ischaemia-reperfusion damages occurring after cardiac arrest. Furthermore, DNA-histone complexes may have the potential of being a target for future treatment. The aim was to examine if plasma DNA-histone...... after 22, 46 and 70 h. Samples for DNA-histone complexes were quantified by Cell Death Detection ELISAplus. The total free-plasma DNA analyses were quantified with qPCR by analysing the Beta-2 microglobulin gene. The control group comprised 40 healthy individuals. Results We found no difference...... in the level of DNA-histone complexes between the 22-h sample and healthy individuals (P = 0.10). In the 46-h sample, there was an increased level of DNA-histone complexes in non-survivors compared with survivors 30 days after the cardiac arrest (P

  18. Characterization of mtDNA haplogroups in 14 Mexican indigenous populations.

    Science.gov (United States)

    Peñaloza-Espinosa, Rosenda I; Arenas-Aranda, Diego; Cerda-Flores, Ricardo M; Buentello-Malo, Leonor; González-Valencia, Gerardo; Torres, Javier; Alvarez, Berenice; Mendoza, Irma; Flores, Mario; Sandoval, Lucila; Loeza, Francisco; Ramos, Irma; Muñoz, Leopoldo; Salamanca, Fabio

    2007-06-01

    In this descriptive study we investigated the genetic structure of 513 Mexican indigenous subjects grouped in 14 populations (Mixteca-Alta, Mixteca-Baja, Otomi, Purépecha, Tzeltal, Tarahumara, Huichol, Nahua-Atocpan, Nahua-Xochimilco, Nahua-Zitlala, Nahua-Chilacachapa, Nahua-Ixhuatlancillo, Nahua-Necoxtla, and Nahua-Coyolillo) based on mtDNA haplogroups. These communities are geographically and culturally isolated; parents and grandparents were born in the community. Our data show that 98.6% of the mtDNA was distributed in haplogroups A1, A2, B1, B2, C1, C2, D1, and D2. Haplotype X6 was present in the Tarahumara (1/53) and Huichol (3/15), and haplotype L was present in the Nahua-Coyolillo (3/38). The first two principal components accounted for 95.9% of the total variation in the sample. The mtDNA haplogroup frequencies in the Purépecha and Zitlala were intermediate to cluster 1 (Otomi, Nahua-Ixhuatlancillo, Nahua-Xochimilco, Mixteca-Baja, and Tzeltal) and cluster 2 (Nahua-Necoxtla, Nahua-Atocpan, and Nahua-Chilacachapa). The Huichol, Tarahumara, Mixteca-Alta, and Nahua-Coyolillo were separated from the rest of the populations. According to these findings, the distribution of mtDNA haplogroups found in Mexican indigenous groups is similar to other Amerindian haplogroups, except for the African haplogroup found in one population.

  19. Epigenomics of Total Acute Sleep Deprivation in Relation to Genome-Wide DNA Methylation Profiles and RNA Expression

    OpenAIRE

    Nilsson, Emil K.; Bostr?m, Adrian E.; Mwinyi, Jessica; Schi?th, Helgi B.

    2016-01-01

    Abstract Despite an established link between sleep deprivation and epigenetic processes in humans, it remains unclear to what extent sleep deprivation modulates DNA methylation. We performed a within-subject randomized blinded study with 16 healthy subjects to examine the effect of one night of total sleep deprivation (TSD) on the genome-wide methylation profile in blood compared with that in normal sleep. Genome-wide differences in methylation between both conditions were assessed by applyin...

  20. Measuring total mercury due to small-scale gold mining activities to determine community vulnerability in Cihonje, Central Java, Indonesia.

    Science.gov (United States)

    Sari, Mega M; Inoue, Takanobu; Matsumoto, Yoshitaka; Yokota, Kuriko

    2016-01-01

    This research is comparative study of gold mining and non-gold mining areas, using four community vulnerability indicators. Vulnerability indicators are exposure degree, contamination rate, chronic, and acute toxicity. Each indicator used different samples, such as wastewater from gold mining process, river water from Tajum river, human hair samples, and health questionnaire. This research used cold vapor atomic absorption spectrometry to determine total mercury concentration. The result showed that concentration of total mercury was 2,420 times than the maximum content of mercury permitted in wastewater based on the Indonesian regulation. Moreover, the mercury concentration in river water reached 685 ng/l, exceeding the quality threshold standards of the World Health Organization (WHO). The mercury concentration in hair samples obtained from the people living in the research location was considered to identify the health quality level of the people or as a chronic toxicity indicator. The highest mercury concentration--i.e. 17 ng/mg, was found in the gold mining respondents. Therefore, based on the total mercury concentration in the four indicators, the community in the gold mining area were more vulnerable to mercury than communities in non-gold mining areas. It was concluded that the community in gold mining area was more vulnerable to mercury contamination than the community in non-gold mining area.

  1. Use of LH-PCR as a DNA fingerprint technique to trace sediment-associated microbial communities from various land uses

    Science.gov (United States)

    Joe-Strack, J. A.; Petticrew, E. L.

    2012-04-01

    The search for new techniques to effectively and efficiently trace sediment from its source along catchment pathways continues, with a range of new methods being developed and tested annually. A relatively recent approach marries genetic techniques to sediment analysis in order to characterize and differentiate the bacterial populations associated with soil and/or sediment originating from specific locations. Here we present the preliminary results of DNA fingerprint profiles of soil and sediment-associated bacterial communities in and around two different industrial land uses in the central interior of British Columbia, a feedlot and a copper/gold mining site. We assessed the naturally varying 16S rDNA gene using amplicon length heterogeneity-polymerase chain reaction (LH-PCR). Statistical differences between bacterial community profiles were investigated using a suite of methods of which non-metric multidimensional scaling (NMS) and indicator species analysis (ISA) were the most useful. Stronger statistical results were observed for the feedlot data set with spatial differences observed from the source location and within the adjacent creek. Results from the mine site were more difficult to assess although responses were detected in downstream waterways. While bacterial DNA fingerprinting of soil and sediment appears to be a promising tracing technique issues of scale and transferability may limit its use. Lessons learned from this preliminary study will be presented.

  2. Bacterial community in ancient permafrost alluvium at the Mammoth Mountain (Eastern Siberia).

    Science.gov (United States)

    Brouchkov, Anatoli; Kabilov, Marsel; Filippova, Svetlana; Baturina, Olga; Rogov, Victor; Galchenko, Valery; Mulyukin, Andrey; Fursova, Oksana; Pogorelko, Gennady

    2017-12-15

    Permanently frozen (approx. 3.5Ma) alluvial Neogene sediments exposed in the Aldan river valley at the Mammoth Mountain (Eastern Siberia) are unique, ancient, and poorly studied permafrost environments. So far, the structure of the indigenous bacterial community has remained unknown. Use of 16S metagenomic analysis with total DNA isolation using DNA Spin Kit for Soil (MO-Bio) and QIAamp DNA Stool Mini Kit (Qiagen) has revealed the major and minor bacterial lineages in the permafrost alluvium sediments. In sum, 61 Operational Taxonomic Units (OTUs) with 31,239 reads (Qiagen kit) and 15,404 reads (Mo-Bio kit) could be assigned to the known taxa. Only three phyla, Bacteroidetes, Proteobacteria and Firmicutes, comprised >5% of the OTUs abundance and accounted for 99% of the total reads. OTUs pertaining to the top families (Chitinophagaceae, Caulobacteraceae, Sphingomonadaceae, Bradyrhizobiaceae, Halomonadaceae) held >90% of reads. The abundance of Actinobacteria was less (0.7%), whereas members of other phyla (Deinococcus-Thermus, Cyanobacteria/Chloroplast, Fusobacteria, and Acidobacteria) constituted a minor fraction of reads. The bacterial community in the studied ancient alluvium differs from other permafrost sediments, mainly by predominance of Bacteroidetes (>52%). The diversity of this preserved bacterial community has the potential to cause effects unknown if prompted to thaw and spread with changing climate. Therefore, this study elicits further reason to study how reintroduction of these ancient bacteria could affect the surrounding ecosystem, including current bacterial species. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Determination Of Uncultured Endo phytic Bacterial Community From Rice Root

    International Nuclear Information System (INIS)

    Ying, P.L.W.; Jong, B.C.

    2013-01-01

    Culture-independent approaches were developed for rapid analysis of microbial community diversity in various environments. Direct analysis based on 16S rDNA as the phylogenetic markers is the most ordinary, conventional and suitable methods for bacterial diversity analysis. The objective of this study is to investigate the microbial diversity from the rice root tissues using culture-independent approach by 16S rDNA library construction. The 16S rDNAs were directly extracted from a total genomic DNA by polymerase chain reaction (PCR) amplification using with the bacteria-specific primer set. The 16S rDNAs were subsequently analysed by cloning and restriction digestion. The amplified ribosomal DNA restriction analysis (ARDRA) clustered the 16S rDNAs into eight majority patterns. These predominant patterns were analysed by DNA sequencing. A better understanding at microbial diversity level is critical to potentiate the endophyte as plant growth promoters. (author)

  4. Effects of mercury contamination on the culturable heterotrophic, functional and genetic diversity of the bacterial community in soil

    DEFF Research Database (Denmark)

    Rasmussen, Lasse Dam; Sørensen, S. J.

    2001-01-01

    This study investigates the effect of mercury contamination on the culturable heterotrophic, functional and genetic diversity of the bacterial community in soil. The changes in diversity were monitored in soil microcosms, enriched with 25 mug Hg(II) g(-1) soil, over a period of 3 months...... by purification of total soil DNA and amplification of bacterial 16S rDNA fragments by polymerase chain reaction. Concentrations of bioavailable and total mercury were measured throughout the experiment. The effect on the culturable heterotrophic and genetic diversity was very similar, showing an immediate...... decrease after mercury addition but then slowly increasing throughout the entire experimental period. Pre-exposure levels were not reached within the time span of this investigation. The DGGE band pattern indicated that a shift in the community structure was responsible for recovered diversity. When...

  5. Cattle impact on composition of archaeal, bacterial, and fungal communities by comparative fingerprinting of total and extracellular DNA

    Czech Academy of Sciences Publication Activity Database

    Chroňáková, Alica; Ascher, J.; Jirout, Jiří; Ceccherini, M.T.; Elhottová, Dana; Pietramellara, G.; Šimek, Miloslav

    2013-01-01

    Roč. 49, č. 3 (2013), s. 351-361 ISSN 0178-2762 R&D Projects: GA ČR GA526/09/1570; GA ČR GAP504/10/2077; GA MŠk LC06066 Institutional support: RVO:60077344 Keywords : SSU rRNA gene-DGGE * soil microbial community * cattle impact Subject RIV: EE - Microbiology, Virology Impact factor: 3.396, year: 2013

  6. Comparison of commercially-available preservatives for maintaining the integrity of bacterial DNA in human milk.

    Science.gov (United States)

    Lackey, Kimberly A; Williams, Janet E; Price, William J; Carrothers, Janae M; Brooker, Sarah L; Shafii, Bahman; McGuire, Mark A; McGuire, Michelle K

    2017-10-01

    Inhibiting changes to bacteria in human milk between sample collection and analysis is necessary for unbiased characterization of the milk microbiome. Although cold storage is considered optimal, alternative preservation is sometimes necessary. The objective of this study was to compare the effectiveness of several commercially-available preservatives with regard to maintaining bacterial DNA in human milk for delayed microbiome analysis. Specifically, we compared Life Technologies' RNAlater® stabilization solution, Biomatrica's DNAgard® Saliva, Advanced Instruments' Broad Spectrum Microtabs II™, and Norgen Biotek Corporation's Milk DNA Preservation and Isolation Kit. Aliquots of 8 pools of human milk were treated with each preservative. DNA was extracted immediately and at 1, 2, 4, and 6wk, during which time milk was held at 37°C. The V1-V3 region of the bacterial 16S rRNA gene was amplified and sequenced. Changes in bacterial community structure and diversity over time were evaluated. Comparable to other studies, the most abundant genera were Streptococcus (33.3%), Staphylococcus (14.0%), Dyella (6.3%), Pseudomonas (3.0%), Veillonella (2.5%), Hafnia (2.0%), Prevotella (1.7%), Rhodococcus (1.6%), and Granulicatella (1.4%). Overall, use of Norgen's Milk DNA Preservation and Isolation Kit best maintained the consistency of the bacterial community structure. Total DNA, diversity, and evenness metrics were also highest in samples preserved with this method. When collecting human milk for bacterial community analysis in field conditions where cold storage is not available, our results suggest that Norgen's Milk DNA Preservation and Isolation Kit may be a useful method, at least for a period of 2weeks. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Community-Led Total Sanitation, Open Defecation Free Status, and Ebola Virus Disease in Lofa County, Liberia.

    Science.gov (United States)

    Capps, Jean Meyer; Njiru, Haron; deVries, Pieter

    2017-01-01

    The Ebola virus disease (EVD) epidemic entered Liberia through Lofa County in February 2014 and spread to two health districts where the nongovernmental organization Global Communities had been implementing community-led total sanitation (CLTS) since 2012. By December 2014 the county had 928 Ebola cases (422 of them confirmed) and 648 deaths. Before the epidemic, CLTS was triggered in 155 communities, and 98 communities were certified as Open Defecation Free (ODF). Using mixed quantitative and qualitative methods, we determined that no cases of EVD were found in ODF communities and in only one CLTS community that had not reached ODF status. No differences were found between EVD and non-EVD communities in tribe, religion, ethnic group, or major sources of Ebola information. Radio was the most common source of information for all communities, but health workers were the most trusted information sources. CLTS ODF communities attributed their avoidance of EVD to Water, Sanitation, and Hygiene behaviors, especially hand washing with soap and disposal of feces that they learned from CLTS prior to the epidemic. Communities that got EVD blamed their strong initial resistance to Ebola response messages on their distrust that Ebola was real and their reliance on friends and family for advice. A strong inverse correlation between EVD and CLTS with or without ODF emerged from the regression analysis (R = -.6).

  8. Population genetics of ecological communities with DNA barcodes: An example from New Guinea Lepidoptera

    Czech Academy of Sciences Publication Activity Database

    Craft, K. J.; Pauls, S. U.; Darrow, K.; Miller, S. E.; Hebert, P. D. N.; Helgen, L. E.; Novotný, Vojtěch; Weiblen, G. D.

    2010-01-01

    Roč. 107, č. 11 (2010), s. 5041-5046 ISSN 0027-8424 R&D Projects: GA ČR GA206/09/0115; GA ČR GD206/08/H044; GA AV ČR IAA600960712; GA MŠk LC06073 Grant - others: National Science Foundation(US) DEB 9628840; National Science Foundation(US) DEB 9707928; National Science Foundation(US) DEB 0211591; National Science Foundation(US) DEB 0515678; German Academy of Sciences Leopoldina(DE) BMBF-LPD 9901/8-169 Institutional research plan: CEZ:AV0Z50070508 Keywords : community ecology * DNA barcoding * phylogeography Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 9.771, year: 2010

  9. Towards quantitative viromics for both double-stranded and single-stranded DNA viruses

    Directory of Open Access Journals (Sweden)

    Simon Roux

    2016-12-01

    Full Text Available Background Viruses strongly influence microbial population dynamics and ecosystem functions. However, our ability to quantitatively evaluate those viral impacts is limited to the few cultivated viruses and double-stranded DNA (dsDNA viral genomes captured in quantitative viral metagenomes (viromes. This leaves the ecology of non-dsDNA viruses nearly unknown, including single-stranded DNA (ssDNA viruses that have been frequently observed in viromes, but not quantified due to amplification biases in sequencing library preparations (Multiple Displacement Amplification, Linker Amplification or Tagmentation. Methods Here we designed mock viral communities including both ssDNA and dsDNA viruses to evaluate the capability of a sequencing library preparation approach including an Adaptase step prior to Linker Amplification for quantitative amplification of both dsDNA and ssDNA templates. We then surveyed aquatic samples to provide first estimates of the abundance of ssDNA viruses. Results Mock community experiments confirmed the biased nature of existing library preparation methods for ssDNA templates (either largely enriched or selected against and showed that the protocol using Adaptase plus Linker Amplification yielded viromes that were ±1.8-fold quantitative for ssDNA and dsDNA viruses. Application of this protocol to community virus DNA from three freshwater and three marine samples revealed that ssDNA viruses as a whole represent only a minor fraction (<5% of DNA virus communities, though individual ssDNA genomes, both eukaryote-infecting Circular Rep-Encoding Single-Stranded DNA (CRESS-DNA viruses and bacteriophages from the Microviridae family, can be among the most abundant viral genomes in a sample. Discussion Together these findings provide empirical data for a new virome library preparation protocol, and a first estimate of ssDNA virus abundance in aquatic systems.

  10. Resilience of Soil Microbial Communities to Metals and Additional Stressors: DNA-Based Approaches for Assessing “Stress-on-Stress” Responses

    Directory of Open Access Journals (Sweden)

    Hamed Azarbad

    2016-06-01

    Full Text Available Many microbial ecology studies have demonstrated profound changes in community composition caused by environmental pollution, as well as adaptation processes allowing survival of microbes in polluted ecosystems. Soil microbial communities in polluted areas with a long-term history of contamination have been shown to maintain their function by developing metal-tolerance mechanisms. In the present work, we review recent experiments, with specific emphasis on studies that have been conducted in polluted areas with a long-term history of contamination that also applied DNA-based approaches. We evaluate how the “costs” of adaptation to metals affect the responses of metal-tolerant communities to other stress factors (“stress-on-stress”. We discuss recent studies on the stability of microbial communities, in terms of resistance and resilience to additional stressors, focusing on metal pollution as the initial stress, and discuss possible factors influencing the functional and structural stability of microbial communities towards secondary stressors. There is increasing evidence that the history of environmental conditions and disturbance regimes play central roles in responses of microbial communities towards secondary stressors.

  11. Photochemistry of psoralen-DNA adducts, biological effects of psoralen-DNA adducts, applications of psoralen-DNA photochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yun-bo

    1988-03-01

    This thesis consists of three main parts and totally eight chapters. In Part I, The author will present studies on the photochemistry of psoralen-DNA adducts, specifically, the wavelength dependencies for the photoreversals of thymidine-HMT (4'-hydroxymethyl-4, 5', 8-trimenthylpsoralen) monoadducts and diadduct and the same adducts incorporated in DNA helices and the wavelength dependecies for the photocrossslinking of thymidine-HMT monoadducts in double-stranded helices. In Part II, The author will report some biological effects of psoralen-DNA adducts, i.e., the effects on double-stranded DNA stability, DNA structure, and transcription by E. coli and T7 RNA polymerases. Finally, The author will focus on the applications of psoralen-DNA photochemistry to investigation of protein-DNA interaction during transcription, which includes the interaction of E. coli and T7 RNA polymerases with DNA in elongation complexes arrested at specific psoralen-DNA adduct sites as revealed by DNase I footprinting experiments. 123 refs., 52 figs., 12 tabs.

  12. Photochemistry of psoralen-DNA adducts, biological effects of psoralen-DNA adducts, applications of psoralen-DNA photochemistry

    International Nuclear Information System (INIS)

    Shi, Yun-bo.

    1988-03-01

    This thesis consists of three main parts and totally eight chapters. In Part I, The author will present studies on the photochemistry of psoralen-DNA adducts, specifically, the wavelength dependencies for the photoreversals of thymidine-HMT (4'-hydroxymethyl-4, 5', 8-trimenthylpsoralen) monoadducts and diadduct and the same adducts incorporated in DNA helices and the wavelength dependecies for the photocrossslinking of thymidine-HMT monoadducts in double-stranded helices. In Part II, The author will report some biological effects of psoralen-DNA adducts, i.e., the effects on double-stranded DNA stability, DNA structure, and transcription by E. coli and T7 RNA polymerases. Finally, The author will focus on the applications of psoralen-DNA photochemistry to investigation of protein-DNA interaction during transcription, which includes the interaction of E. coli and T7 RNA polymerases with DNA in elongation complexes arrested at specific psoralen-DNA adduct sites as revealed by DNase I footprinting experiments. 123 refs., 52 figs., 12 tabs

  13. DNA Extraction and Primer Selection

    DEFF Research Database (Denmark)

    Karst, Søren Michael; Nielsen, Per Halkjær; Albertsen, Mads

    Talk regarding pitfalls in DNA extraction and 16S amplicon primer choice when performing community analysis of complex microbial communities. The talk was a part of Workshop 2 "Principles, Potential, and Limitations of Novel Molecular Methods in Water Engineering; from Amplicon Sequencing to -omics...

  14. Advances in the use of DNA barcodes to build a community phylogeny for tropical trees in a Puerto Rican forest dynamics plot.

    Directory of Open Access Journals (Sweden)

    W John Kress

    2010-11-01

    Full Text Available Species number, functional traits, and phylogenetic history all contribute to characterizing the biological diversity in plant communities. The phylogenetic component of diversity has been particularly difficult to quantify in species-rich tropical tree assemblages. The compilation of previously published (and often incomplete data on evolutionary relationships of species into a composite phylogeny of the taxa in a forest, through such programs as Phylomatic, has proven useful in building community phylogenies although often of limited resolution. Recently, DNA barcodes have been used to construct a robust community phylogeny for nearly 300 tree species in a forest dynamics plot in Panama using a supermatrix method. In that study sequence data from three barcode loci were used to generate a well-resolved species-level phylogeny.Here we expand upon this earlier investigation and present results on the use of a phylogenetic constraint tree to generate a community phylogeny for a diverse, tropical forest dynamics plot in Puerto Rico. This enhanced method of phylogenetic reconstruction insures the congruence of the barcode phylogeny with broadly accepted hypotheses on the phylogeny of flowering plants (i.e., APG III regardless of the number and taxonomic breadth of the taxa sampled. We also compare maximum parsimony versus maximum likelihood estimates of community phylogenetic relationships as well as evaluate the effectiveness of one- versus two- versus three-gene barcodes in resolving community evolutionary history.As first demonstrated in the Panamanian forest dynamics plot, the results for the Puerto Rican plot illustrate that highly resolved phylogenies derived from DNA barcode sequence data combined with a constraint tree based on APG III are particularly useful in comparative analysis of phylogenetic diversity and will enhance research on the interface between community ecology and evolution.

  15. Supraglacial bacterial community structures vary across the Greenland ice sheet

    DEFF Research Database (Denmark)

    Cameron, Karen A.; Stibal, Marek; Zarsky, Jakub D.

    2016-01-01

    The composition and spatial variability of microbial communities that reside within the extensive (>200 000 km(2)) biologically active area encompassing the Greenland ice sheet (GrIS) is hypothesized to be variable. We examined bacterial communities from cryoconite debris and surface ice across...... the GrIS, using sequence analysis and quantitative PCR of 16S rRNA genes from co-extracted DNA and RNA. Communities were found to differ across the ice sheet, with 82.8% of the total calculated variation attributed to spatial distribution on a scale of tens of kilometers separation. Amplicons related...... to Sphingobacteriaceae, Pseudanabaenaceae and WPS-2 accounted for the greatest portion of calculated dissimilarities. The bacterial communities of ice and cryoconite were moderately similar (global R = 0.360, P = 0.002) and the sampled surface type (ice versus cryoconite) did not contribute heavily towards community...

  16. Profiling soil microbial communities with next-generation sequencing: the influence of DNA kit selection and technician technical expertise

    Directory of Open Access Journals (Sweden)

    Taha Soliman

    2017-12-01

    Full Text Available Structure and diversity of microbial communities are an important research topic in biology, since microbes play essential roles in the ecology of various environments. Different DNA isolation protocols can lead to data bias and can affect results of next-generation sequencing. To evaluate the impact of protocols for DNA isolation from soil samples and also the influence of individual handling of samples, we compared results obtained by two researchers (R and T using two different DNA extraction kits: (1 MO BIO PowerSoil® DNA Isolation kit (MO_R and MO_T and (2 NucleoSpin® Soil kit (MN_R and MN_T. Samples were collected from six different sites on Okinawa Island, Japan. For all sites, differences in the results of microbial composition analyses (bacteria, archaea, fungi, and other eukaryotes, obtained by the two researchers using the two kits, were analyzed. For both researchers, the MN kit gave significantly higher yields of genomic DNA at all sites compared to the MO kit (ANOVA; P < 0.006. In addition, operational taxonomic units for some phyla and classes were missed in some cases: Micrarchaea were detected only in the MN_T and MO_R analyses; the bacterial phylum Armatimonadetes was detected only in MO_R and MO_T; and WIM5 of the phylum Amoebozoa of eukaryotes was found only in the MO_T analysis. Our results suggest the possibility of handling bias; therefore, it is crucial that replicated DNA extraction be performed by at least two technicians for thorough microbial analyses and to obtain accurate estimates of microbial diversity.

  17. Analysis of behavioral change techniques in community-led total sanitation programs.

    Science.gov (United States)

    Sigler, Rachel; Mahmoudi, Lyana; Graham, Jay Paul

    2015-03-01

    The lack of sanitation facilitates the spread of diarrheal diseases-a leading cause of child deaths worldwide. As of 2012, an estimated 1 billion people still practiced open defecation (OD). To address this issue, one behavioral change approach used is community-led total sanitation (CLTS). It is now applied in an estimated 66 countries worldwide, and many countries have adopted this approach as their main strategy for scaling up rural sanitation coverage. While it appears that many of the activities used in CLTS-that target community-level changes in sanitation behaviors instead of household-level changes-have evolved out of existing behavior change frameworks and techniques, it is less clear how these activities are adapted by different organizations and applied in different country contexts. The aims of this study are to (i) show which behavior change frameworks and techniques are the most common in CLTS interventions; (ii) describe how activities are implemented in CLTS interventions by region and context; and (3) determine which activities program implementers considered the most valuable in achieving open defecation free (ODF) status and sustaining it. The results indicate that a wide range of activities are conducted across the different programs and often go beyond standard CLTS activities. CLTS practitioners ranked follow-up and monitoring activities as the most important activities for achieving an ODF community, yet only 1 of 10 organizations conducted monitoring and follow-up throughout their project. Empirical studies are needed to determine which specific behavioral change activities are most effective at ending OD and sustaining it. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. The effect of tides on nearshore environmental DNA.

    Science.gov (United States)

    Kelly, Ryan P; Gallego, Ramón; Jacobs-Palmer, Emily

    2018-01-01

    We can recover genetic information from organisms of all kinds using environmental sampling. In recent years, sequencing this environmental DNA (eDNA) has become a tractable means of surveying many species using water, air, or soil samples. The technique is beginning to become a core tool for ecologists, environmental scientists, and biologists of many kinds, but the temporal resolution of eDNA sampling is often unclear, limiting the ecological interpretations of the resulting datasets. Here, in a temporally and spatially replicated field study using ca. 313 bp of eukaryotic COI mtDNA as a marker, we find that nearshore organismal communities are largely consistent across tides. Our findings suggest that nearshore eDNA from both benthic and planktonic taxa tends to be endogenous to the site and water mass sampled, rather than changing with each tidal cycle. However, where physiochemical water mass characteristics change, we find that the relative contributions of a broad range of organisms to eDNA communities shift in concert.

  19. Genetic Constructor: An Online DNA Design Platform.

    Science.gov (United States)

    Bates, Maxwell; Lachoff, Joe; Meech, Duncan; Zulkower, Valentin; Moisy, Anaïs; Luo, Yisha; Tekotte, Hille; Franziska Scheitz, Cornelia Johanna; Khilari, Rupal; Mazzoldi, Florencio; Chandran, Deepak; Groban, Eli

    2017-12-15

    Genetic Constructor is a cloud Computer Aided Design (CAD) application developed to support synthetic biologists from design intent through DNA fabrication and experiment iteration. The platform allows users to design, manage, and navigate complex DNA constructs and libraries, using a new visual language that focuses on functional parts abstracted from sequence. Features like combinatorial libraries and automated primer design allow the user to separate design from construction by focusing on functional intent, and design constraints aid iterative refinement of designs. A plugin architecture enables contributions from scientists and coders to leverage existing powerful software and connect to DNA foundries. The software is easily accessible and platform agnostic, free for academics, and available in an open-source community edition. Genetic Constructor seeks to democratize DNA design, manufacture, and access to tools and services from the synthetic biology community.

  20. A rapid and inexpensive method for isolation of total DNA from Trichoderma spp (Hypocreaceae).

    Science.gov (United States)

    Vazquez-Angulo, J C; Mendez-Trujillo, V; González-Mendoza, D; Morales-Trejo, A; Grimaldo-Juarez, O; Cervantes-Díaz, L

    2012-05-15

    Extraction of high-quality genomic DNA for PCR amplification from filamentous fungi is difficult because of the complex cell wall and the high concentrations of polysaccharides and other secondary metabolites that bind to or co-precipitate with nucleic acids. We developed a modified sodium dodecyl sulfate/phenol protocol, without maceration in liquid nitrogen and without a final ethanol precipitation step. The A(260/280) absorbance ratios of isolated DNA were approximately 1.7-1.9, demonstrating that the DNA fraction is pure and can be used for analysis. Additionally, the A(260/230) values were higher than 1.6, demonstrating negligible contamination by polysaccharides. The DNA isolated by this protocol is of sufficient quality for molecular applications; this technique could be applied to other organisms that have similar substances that hinder DNA extraction. The main advantages of the method are that the mycelium is directly recovered from culture medium and it does not require the use of expensive and specialized equipment.

  1. The influence of selenium status on body composition, oxidative DNA damage and total antioxidant capacity in newly diagnosed type 2 diabetes mellitus: A case-control study.

    Science.gov (United States)

    Othman, Fatimah Binti; Mohamed, Hamid Jan Bin Jan; Sirajudeen, K N S; Noh, Mohd Fairulnizal B Md; Rajab, Nor Fadilah

    2017-09-01

    Selenium is involved in the complex system of defense against oxidative stress in diabetes through its biological function of selenoproteins and the antioxidant enzyme. A case-control study was carried out to determine the association of plasma selenium with oxidative stress and body composition status presented in Type 2 Diabetes Mellitus (T2DM) patient and healthy control. This study involved 82 newly diagnosed T2DM patients and 82 healthy controls. Plasma selenium status was determined with Graphite Furnace Atomic Absorption Spectrometry. Body Mass Index, total body fat and visceral fat was assessed for body composition using Body Composition Analyzer (TANITA). Oxidative DNA damage and total antioxidant capacity were determined for oxidative stress biomarker status. In age, gender and BMI adjustment, no significant difference of plasma selenium level between T2DM and healthy controls was observed. There was as a significant difference of Oxidative DNA damage and total antioxidant capacity between T2DM patients and healthy controls with tail DNA% 20.62 [95% CI: 19.71,21.49] (T2DM), 17.67 [95% CI: 16.87,18.56] (control); log tail moment 0.41[95% CI: 0.30,0.52] (T2DM), 0.41[95% CI: 0.30,0.52] (control); total antioxidant capacity 0.56 [95% CI: 0.54,0.58] (T2DM), 0.60 [95% CI: 0.57,0.62] (control). Waist circumference, BMI, visceral fat, body fat and oxidative DNA damage in the T2DM group were significantly lower in the first plasma selenium tertile (38.65-80.90μg/L) compared to the second (80.91-98.20μg/L) and the third selenium tertiles (98.21-158.20μg/L). A similar trend, but not statistically significant, was observed in the control group. Copyright © 2016 Elsevier GmbH. All rights reserved.

  2. Isolation and analysis of high quality nuclear DNA with reduced organellar DNA for plant genome sequencing and resequencing

    Directory of Open Access Journals (Sweden)

    Zdepski Anna

    2011-05-01

    Full Text Available Abstract Background High throughput sequencing (HTS technologies have revolutionized the field of genomics by drastically reducing the cost of sequencing, making it feasible for individual labs to sequence or resequence plant genomes. Obtaining high quality, high molecular weight DNA from plants poses significant challenges due to the high copy number of chloroplast and mitochondrial DNA, as well as high levels of phenolic compounds and polysaccharides. Multiple methods have been used to isolate DNA from plants; the CTAB method is commonly used to isolate total cellular DNA from plants that contain nuclear DNA, as well as chloroplast and mitochondrial DNA. Alternatively, DNA can be isolated from nuclei to minimize chloroplast and mitochondrial DNA contamination. Results We describe optimized protocols for isolation of nuclear DNA from eight different plant species encompassing both monocot and eudicot species. These protocols use nuclei isolation to minimize chloroplast and mitochondrial DNA contamination. We also developed a protocol to determine the number of chloroplast and mitochondrial DNA copies relative to the nuclear DNA using quantitative real time PCR (qPCR. We compared DNA isolated from nuclei to total cellular DNA isolated with the CTAB method. As expected, DNA isolated from nuclei consistently yielded nuclear DNA with fewer chloroplast and mitochondrial DNA copies, as compared to the total cellular DNA prepared with the CTAB method. This protocol will allow for analysis of the quality and quantity of nuclear DNA before starting a plant whole genome sequencing or resequencing experiment. Conclusions Extracting high quality, high molecular weight nuclear DNA in plants has the potential to be a bottleneck in the era of whole genome sequencing and resequencing. The methods that are described here provide a framework for researchers to extract and quantify nuclear DNA in multiple types of plants.

  3. Evaluation of methods for the extraction and purification of DNA from the human microbiome.

    Directory of Open Access Journals (Sweden)

    Sanqing Yuan

    Full Text Available DNA extraction is an essential step in all cultivation-independent approaches to characterize microbial diversity, including that associated with the human body. A fundamental challenge in using these approaches has been to isolate DNA that is representative of the microbial community sampled.In this study, we statistically evaluated six commonly used DNA extraction procedures using eleven human-associated bacterial species and a mock community that contained equal numbers of those eleven species. These methods were compared on the basis of DNA yield, DNA shearing, reproducibility, and most importantly representation of microbial diversity. The analysis of 16S rRNA gene sequences from a mock community showed that the observed species abundances were significantly different from the expected species abundances for all six DNA extraction methods used.Protocols that included bead beating and/or mutanolysin produced significantly better bacterial community structure representation than methods without both of them. The reproducibility of all six methods was similar, and results from different experimenters and different times were in good agreement. Based on the evaluations done it appears that DNA extraction procedures for bacterial community analysis of human associated samples should include bead beating and/or mutanolysin to effectively lyse cells.

  4. Monitoring the bacterial community dynamics in a petroleum refinery wastewater membrane bioreactor fed with a high phenolic load.

    Science.gov (United States)

    Silva, Cynthia C; Viero, Aline F; Dias, Ana Carolina F; Andreote, Fernando D; Jesus, Ederson C; De Paula, Sergio O; Torres, Ana Paula R; Santiago, Vania M J; Oliveira, Valeria M

    2010-01-01

    The phenolic compounds are a major contaminant class often found in industrial wastewaters and the biological treatment is an alternative tool commonly employed for their removal. In this sense, monitoring microbial community dynamics is crucial for a successful wastewater treatment. This work aimed to monitor the structure and activity of the bacterial community during the operation of a laboratory-scale continuous submerged membrane bioreactor (SMBR), using PCR and RT-PCR followed by Denaturing Gradient Gel Electrophoresis (DGGE) and 16S rRNA libraries. Multivariate analyses carried out using DGGE profiles showed significant changes in the total and metabolically active dominant community members during the 4-week treatment period, explained mainly by phenol and ammonium input. Gene libraries were assembled using 16S rDNA and 16S rRNA PCR products from the fourth week of treatment. Sequencing and phylogenetic analyses of clones from 16S rDNA library revealed a high diversity of taxa for the total bacterial community, with predominance of Thauera genus (ca. 50%). On the other hand, a lower diversity was found for metabolically active bacteria, which were mostly represented by members of Betaproteobacteria (Thauera and Comamonas), suggesting that these groups have a relevant role in the phenol degradation during the final phase of the SMBR operation.

  5. Exploring the Leaf Beetle Fauna (Coleoptera: Chrysomelidae of an Ecuadorian Mountain Forest Using DNA Barcoding.

    Directory of Open Access Journals (Sweden)

    Birthe Thormann

    Full Text Available Tropical mountain forests are hotspots of biodiversity hosting a huge but little known diversity of insects that is endangered by habitat destruction and climate change. Therefore, rapid assessment approaches of insect diversity are urgently needed to complement slower traditional taxonomic approaches. We empirically compare different DNA-based species delimitation approaches for a rapid biodiversity assessment of hyperdiverse leaf beetle assemblages along an elevational gradient in southern Ecuador and explore their effect on species richness estimates.Based on a COI barcode data set of 674 leaf beetle specimens (Coleoptera: Chrysomelidae of 266 morphospecies from three sample sites in the Podocarpus National Park, we employed statistical parsimony analysis, distance-based clustering, GMYC- and PTP-modelling to delimit species-like units and compared them to morphology-based (parataxonomic species identifications. The four different approaches for DNA-based species delimitation revealed highly similar numbers of molecular operational taxonomic units (MOTUs (n = 284-289. Estimated total species richness was considerably higher than the sampled amount, 414 for morphospecies (Chao2 and 469-481 for the different MOTU types. Assemblages at different elevational levels (1000 vs. 2000 m had similar species numbers but a very distinct species composition for all delimitation methods. Most species were found only at one elevation while this turnover pattern was even more pronounced for DNA-based delimitation.Given the high congruence of DNA-based delimitation results, probably due to the sampling structure, our study suggests that when applied to species communities on a regionally limited level with high amount of rare species (i.e. ~50% singletons, the choice of species delimitation method can be of minor relevance for assessing species numbers and turnover in tropical insect communities. Therefore, DNA-based species delimitation is confirmed as a

  6. Código de barras de DNA para a taxonomia de animais do solo

    OpenAIRE

    Rougerie, Rodolphe; Decaëns, Thibaud; Deharveng, Louis; Porco, David; James, Sam W.; Chang, Chih-Han; Richard, Benoit; Potapov, Mikhail; Suhardjono, Yayuk; Hebert, Paul D.N.

    2009-01-01

    The biodiversity of soil communities remains very poorly known and understood. Soil biological sciences are strongly affected by the taxonomic crisis, and most groups of animals in that biota suffer from a strong taxonomic impediment. The objective of this work was to investigate how DNA barcoding - a novel method using a microgenomic tag for species identification and discrimination - permits better evaluation of the taxonomy of soil biota. A total of 1,152 barcode sequences were analyzed fo...

  7. RNA-Based Assessment of Diversity and Composition of Active Archaeal Communities in the German Bight

    Directory of Open Access Journals (Sweden)

    Bernd Wemheuer

    2012-01-01

    Full Text Available Archaea play an important role in various biogeochemical cycles. They are known extremophiles inhabiting environments such as thermal springs or hydrothermal vents. Recent studies have revealed a significant abundance of Archaea in moderate environments, for example, temperate sea water. Nevertheless, the composition and ecosystem function of these marine archaeal communities is largely unknown. To assess diversity and composition of active archaeal communities in the German Bight, seven marine water samples were taken and studied by RNA-based analysis of ribosomal 16S rRNA. For this purpose, total RNA was extracted from the samples and converted to cDNA. Archaeal community structures were investigated by pyrosequencing-based analysis of 16S rRNA amplicons generated from cDNA. To our knowledge, this is the first study combining next-generation sequencing and metatranscriptomics to study archaeal communities in marine habitats. The pyrosequencing-derived dataset comprised 62,045 archaeal 16S rRNA sequences. We identified Halobacteria as the predominant archaeal group across all samples with increased abundance in algal blooms. Thermoplasmatales (Euryarchaeota and the Marine Group I (Thaumarchaeota were identified in minor abundances. It is indicated that archaeal community patterns were influenced by environmental conditions.

  8. Metabarcoding monitoring analysis: the pros and cons of using co-extracted environmental DNA and RNA data to assess offshore oil production impacts on benthic communities

    Directory of Open Access Journals (Sweden)

    Olivier Laroche

    2017-05-01

    Full Text Available Sequencing environmental DNA (eDNA is increasingly being used as an alternative to traditional morphological-based identification to characterize biological assemblages and monitor anthropogenic impacts in marine environments. Most studies only assess eDNA which, compared to eRNA, can persist longer in the environment after cell death. Therefore, eRNA may provide a more immediate census of the environment due to its relatively weaker stability, leading some researchers to advocate for the use of eRNA as an additional, or perhaps superior proxy for portraying ecological changes. A variety of pre-treatment techniques for screening eDNA and eRNA derived operational taxonomic units (OTUs have been employed prior to statistical analyses, including removing singleton taxa (i.e., OTUs found only once and discarding those not present in both eDNA and eRNA datasets. In this study, we used bacterial (16S ribosomal RNA gene and eukaryotic (18S ribosomal RNA gene eDNA- and eRNA-derived data from benthic communities collected at increasing distances along a transect from an oil production platform (Taranaki, New Zealand. Macro-infauna (visual classification of benthic invertebrates and physico-chemical data were analyzed in parallel. We tested the effect of removing singleton taxa, and removing taxa not present in the eDNA and eRNA libraries from the same environmental sample (trimmed by shared OTUs, by comparing the impact of the oil production platform on alpha- and beta-diversity of the eDNA/eRNA-based biological assemblages, and by correlating these to the morphologically identified macro-faunal communities and the physico-chemical data. When trimmed by singletons, presence/absence information from eRNA data represented the best proxy to detect changes on species diversity for both bacteria and eukaryotes. However, assessment of quantitative beta-diversity from read abundance information of bacteria eRNA did not, contrary to eDNA, reveal any impact from

  9. Metabarcoding monitoring analysis: the pros and cons of using co-extracted environmental DNA and RNA data to assess offshore oil production impacts on benthic communities

    KAUST Repository

    Laroche, Olivier

    2017-05-17

    Sequencing environmental DNA (eDNA) is increasingly being used as an alternative to traditional morphological-based identification to characterize biological assemblages and monitor anthropogenic impacts in marine environments. Most studies only assess eDNA which, compared to eRNA, can persist longer in the environment after cell death. Therefore, eRNA may provide a more immediate census of the environment due to its relatively weaker stability, leading some researchers to advocate for the use of eRNA as an additional, or perhaps superior proxy for portraying ecological changes. A variety of pre-treatment techniques for screening eDNA and eRNA derived operational taxonomic units (OTUs) have been employed prior to statistical analyses, including removing singleton taxa (i.e., OTUs found only once) and discarding those not present in both eDNA and eRNA datasets. In this study, we used bacterial (16S ribosomal RNA gene) and eukaryotic (18S ribosomal RNA gene) eDNA- and eRNA-derived data from benthic communities collected at increasing distances along a transect from an oil production platform (Taranaki, New Zealand). Macro-infauna (visual classification of benthic invertebrates) and physico-chemical data were analyzed in parallel. We tested the effect of removing singleton taxa, and removing taxa not present in the eDNA and eRNA libraries from the same environmental sample (trimmed by shared OTUs), by comparing the impact of the oil production platform on alpha- and beta-diversity of the eDNA/eRNA-based biological assemblages, and by correlating these to the morphologically identified macro-faunal communities and the physico-chemical data. When trimmed by singletons, presence/absence information from eRNA data represented the best proxy to detect changes on species diversity for both bacteria and eukaryotes. However, assessment of quantitative beta-diversity from read abundance information of bacteria eRNA did not, contrary to eDNA, reveal any impact from the oil

  10. Metabarcoding monitoring analysis: the pros and cons of using co-extracted environmental DNA and RNA data to assess offshore oil production impacts on benthic communities.

    Science.gov (United States)

    Laroche, Olivier; Wood, Susanna A; Tremblay, Louis A; Lear, Gavin; Ellis, Joanne I; Pochon, Xavier

    2017-01-01

    Sequencing environmental DNA (eDNA) is increasingly being used as an alternative to traditional morphological-based identification to characterize biological assemblages and monitor anthropogenic impacts in marine environments. Most studies only assess eDNA which, compared to eRNA, can persist longer in the environment after cell death. Therefore, eRNA may provide a more immediate census of the environment due to its relatively weaker stability, leading some researchers to advocate for the use of eRNA as an additional, or perhaps superior proxy for portraying ecological changes. A variety of pre-treatment techniques for screening eDNA and eRNA derived operational taxonomic units (OTUs) have been employed prior to statistical analyses, including removing singleton taxa (i.e., OTUs found only once) and discarding those not present in both eDNA and eRNA datasets. In this study, we used bacterial (16S ribosomal RNA gene) and eukaryotic (18S ribosomal RNA gene) eDNA- and eRNA-derived data from benthic communities collected at increasing distances along a transect from an oil production platform (Taranaki, New Zealand). Macro-infauna (visual classification of benthic invertebrates) and physico-chemical data were analyzed in parallel. We tested the effect of removing singleton taxa, and removing taxa not present in the eDNA and eRNA libraries from the same environmental sample (trimmed by shared OTUs), by comparing the impact of the oil production platform on alpha- and beta-diversity of the eDNA/eRNA-based biological assemblages, and by correlating these to the morphologically identified macro-faunal communities and the physico-chemical data. When trimmed by singletons, presence/absence information from eRNA data represented the best proxy to detect changes on species diversity for both bacteria and eukaryotes. However, assessment of quantitative beta-diversity from read abundance information of bacteria eRNA did not, contrary to eDNA, reveal any impact from the oil

  11. Developing DNA nanotechnology using single-molecule fluorescence.

    Science.gov (United States)

    Tsukanov, Roman; Tomov, Toma E; Liber, Miran; Berger, Yaron; Nir, Eyal

    2014-06-17

    CONSPECTUS: An important effort in the DNA nanotechnology field is focused on the rational design and manufacture of molecular structures and dynamic devices made of DNA. As is the case for other technologies that deal with manipulation of matter, rational development requires high quality and informative feedback on the building blocks and final products. For DNA nanotechnology such feedback is typically provided by gel electrophoresis, atomic force microscopy (AFM), and transmission electron microscopy (TEM). These analytical tools provide excellent structural information; however, usually they do not provide high-resolution dynamic information. For the development of DNA-made dynamic devices such as machines, motors, robots, and computers this constitutes a major problem. Bulk-fluorescence techniques are capable of providing dynamic information, but because only ensemble averaged information is obtained, the technique may not adequately describe the dynamics in the context of complex DNA devices. The single-molecule fluorescence (SMF) technique offers a unique combination of capabilities that make it an excellent tool for guiding the development of DNA-made devices. The technique has been increasingly used in DNA nanotechnology, especially for the analysis of structure, dynamics, integrity, and operation of DNA-made devices; however, its capabilities are not yet sufficiently familiar to the community. The purpose of this Account is to demonstrate how different SMF tools can be utilized for the development of DNA devices and for structural dynamic investigation of biomolecules in general and DNA molecules in particular. Single-molecule diffusion-based Förster resonance energy transfer and alternating laser excitation (sm-FRET/ALEX) and immobilization-based total internal reflection fluorescence (TIRF) techniques are briefly described and demonstrated. To illustrate the many applications of SMF to DNA nanotechnology, examples of SMF studies of DNA hairpins and

  12. Mining lipolytic enzymes in community DNA from high Andean soils using a targeted approach.

    Science.gov (United States)

    Borda-Molina, Daniel; Montaña, José Salvador; Zambrano, María Mercedes; Baena, Sandra

    2017-08-01

    Microbial enrichments cultures are a useful strategy to speed up the search for enzymes that can be employed in industrial processes. Lipases have gained special attention because they show unique properties such as: broad substrate specificity, enantio- and regio-selectivity and stability in organic solvents. A major goal is to identify novel lipolytic enzymes from microorganisms living in cold extreme environments such as high Andean soils, of relevance to our study being their capability be used in industrial processes. Paramo and glacier soils from the Nevados National Park in Colombia were sampled and microbial communities enriched through a fed-batch fermentation using olive oil as an inductor substrate. After 15 days of enrichment under aerobic conditions, total DNA was extracted. Subsequently, metagenomic libraries were constructed in the cosmid vector pWEB-TNC™. After functional screening, twenty and eighteen lipolytic clones were obtained from Paramo and Glacier soil enrichments, respectively. Based on lipid hydrolysis halo dimensions, the clone (Gla1) from a glacier enrichment was selected. A gene related to lipolytic activity was subcloned to evaluate enzyme properties. Phylogenetic analysis of the identified gene showed that the encoded lipase belongs to the family GDSL from a Ralstonia-like species. Interestingly, the secreted enzyme exhibited stability at high temperature and alkaline conditions, specifically the preferred conditions at 80 °C and pH 9.0. Thus, with the identification of an enzyme with non-expected properties, in this study is shown the potential of extreme cold environments to be explored for new catalytic molecules, using current molecular biology techniques, with applications in industrial processes, which demand stability under harsh conditions.

  13. Blood extracellular DNA after irradiation

    International Nuclear Information System (INIS)

    Vladimirov, V.G.; Tishchenko, L.I.; Surkova, E.A.; Vasil'eva, I.N.

    1993-01-01

    It has been shown that blood extracellular DNA of irradiated rats largely consists of the low-molecular DNA and its oligomers. Molecular masses of oligomers are multiple to molecular mass of monomer fragment with nucleosome size. The low-molecular DNA has linear form. The average content of GC-pairs in low-molecular DNA is higher than in total rat's DNA (48.5% against 41.5%). The low-molecular DNA is a part of complex containing RNA, acidic proteins and lipids. It is assumed that the formation of low-molecular DNA is a result of Ca/Mg - dependent nuclear endonuclease action

  14. UV-B induces DNA damage and DNA synthesis delay in the marine diatom Cyclotella sp

    NARCIS (Netherlands)

    Buma, A.G.J.; Van Hannen, E.J.; Veldhuis, M.; Gieskes, W.W.C.

    1996-01-01

    The effect of UV-B on the occurrence of DNA damage and consequences for the cell cycle were studied in the marine diatom Cyclotella sp. DNA damage was quantified by immunofluorescent detection of thymine dimers in nuclear DNA of single cells using flow cytometry. A total UV-B dose (biologically

  15. UV-B induces DNA damage and DNA synthesis delay in the marine diatom Cyclotella sp.

    NARCIS (Netherlands)

    Buma, A.G.J.; van Hannen, E.J; Veldhuis, M.J W; Gieskes, W.W C

    The effect of UV-B on the occurrence of DNA damage and consequences for the cell cycle were studied in the marine diatom Cyclotella sp. DNA damage was quantified by immunofluorescent detection of thymine dimers in nuclear DNA of single cells using flow cytometry. A total UV-B dose (biologically

  16. Bacterial community changes in copper and PEX drinking water pipeline biofilms under extra disinfection and magnetic water treatment.

    Science.gov (United States)

    Inkinen, J; Jayaprakash, B; Ahonen, M; Pitkänen, T; Mäkinen, R; Pursiainen, A; Santo Domingo, J W; Salonen, H; Elk, M; Keinänen-Toivola, M M

    2018-02-01

    To study the stability of biofilms and water quality in pilot scale drinking water copper and PEX pipes in changing conditions (extra disinfection, magnetic water treatment, MWT). Next-generation sequencing (NGS) of 16S ribosomal RNA genes (rDNA) to describe total bacterial community and ribosomal RNA (rRNA) to describe active bacterial members in addition to traditional microbiological methods were applied. Biofilms from control copper and PEX pipes shared same most abundant bacteria (Methylobacterium spp., Sphingomonas spp., Zymomonas spp.) and average species diversities (Shannon 3·8-4·2) in rDNA and rRNA libraries, whereas few of the taxa differed by their abundance such as lower total Mycobacterium spp. occurrence in copper (disinfection (total chlorine increase from c. 0·5 to 1 mg l -1 ) affected total and active population in biofilms seen as decrease in many bacterial species and diversity (Shannon 2·7, P disinfected copper and PEX samples formed separate clusters in unweighted non-metric multidimensional scaling plot (rRNA) similarly to MWT-treated biofilms of copper (but not PEX) pipes that instead showed higher species diversity (Shannon 4·8, P < 0·05 interaction). Minor chlorine dose addition increased selection pressure and many species were sensitive to chlorination. Pipe material seemed to affect mycobacteria occurrence, and bacterial communities with MWT in copper but not in PEX pipes. This study using rRNA showed that chlorination affects especially active fraction of bacterial communities. Copper and PEX differed by the occurrence of some bacterial members despite similar community profiles. © 2017 The Society for Applied Microbiology.

  17. Counting DNA: estimating the complexity of a test tube of DNA.

    Science.gov (United States)

    Faulhammer, D; Lipton, R J; Landweber, L F

    1999-10-01

    We consider the problem of estimation of the 'complexity' of a test tube of DNA. The complexity of a test tube is the number of different kinds of strands of DNA in the test tube. It is quite easy to estimate the number of total strands in a test tube, especially if the strands are all the same length. Estimation of the complexity is much less clear. We propose a simple kind of DNA computation that can estimate the complexity.

  18. Bacterial community structure and variation in a full-scale seawater desalination plant for drinking water production

    KAUST Repository

    Belila, Abdelaziz

    2016-02-18

    Microbial processes inevitably play a role in membrane-based desalination plants, mainly recognized as membrane biofouling. We assessed the bacterial community structure and diversity during different treatment steps in a full-scale seawater desalination plant producing 40,000 m3/d of drinking water. Water samples were taken over the full treatment train consisting of chlorination, spruce media and cartridge filters, de-chlorination, first and second pass reverse osmosis (RO) membranes and final chlorine dosage for drinking water distribution. The water samples were analyzed for water quality parameters (total bacterial cell number, total organic carbon, conductivity, pH, etc.) and microbial community composition by 16S rRNA gene pyrosequencing. The planktonic microbial community was dominated by Proteobacteria (48.6%) followed by Bacteroidetes (15%), Firmicutes (9.3%) and Cyanobacteria (4.9%). During the pretreatment step, the spruce media filter did not impact the bacterial community composition dominated by Proteobacteria. In contrast, the RO and final chlorination treatment steps reduced the Proteobacterial relative abundance in the produced water where Firmicutes constituted the most dominant bacterial group. Shannon and Chao1 diversity indices showed that bacterial species richness and diversity decreased during the seawater desalination process. The two-stage RO filtration strongly reduced the water conductivity (>99%), TOC concentration (98.5%) and total bacterial cell number (>99%), albeit some bacterial DNA was found in the water after RO filtration. About 0.25% of the total bacterial operational taxonomic units (OTUs) were present in all stages of the desalination plant: the seawater, the RO permeates and the chlorinated drinking water, suggesting that these bacterial strains can survive in different environments such as high/low salt concentration and with/without residual disinfectant. These bacterial strains were not caused by contamination during

  19. The Geographic Origins of Ethnic Groups in the Indian Subcontinent: Exploring Ancient Footprints with Y-DNA Haplogroups

    Directory of Open Access Journals (Sweden)

    David G. Mahal

    2018-01-01

    Full Text Available Several studies have evaluated the movements of large populations to the Indian subcontinent; however, the ancient geographic origins of smaller ethnic communities are not clear. Although historians have attempted to identify the origins of some ethnic groups, the evidence is typically anecdotal and based upon what others have written before. In this study, recent developments in DNA science were assessed to provide a contemporary perspective by analyzing the Y chromosome haplogroups of some key ethnic groups and tracing their ancient geographical origins from genetic markers on the Y-DNA haplogroup tree. A total of 2,504 Y-DNA haplotypes, representing 50 different ethnic groups in the Indian subcontinent, were analyzed. The results identified 14 different haplogroups with 14 geographic origins for these people. Moreover, every ethnic group had representation in more than one haplogroup, indicating multiple geographic origins for these communities. The results also showed that despite their varied languages and cultural differences, most ethnic groups shared some common ancestors because of admixture in the past. These findings provide new insights into the ancient geographic origins of ethnic groups in the Indian subcontinent. With about 2,000 other ethnic groups and tribes in the region, it is expected that more scientific discoveries will follow, providing insights into how, from where, and when the ancestors of these people arrived in the subcontinent to create so many different communities.

  20. Microbial community structure across a wastewater-impacted riparian buffer zone in the southeastern coastal plain.

    Science.gov (United States)

    Ducey, T F; Johnson, P R; Shriner, A D; Matheny, T A; Hunt, P G

    2013-01-01

    Riparian buffer zones are important for both natural and developed ecosystems throughout the world because of their ability to retain nutrients, prevent soil erosion, protect aquatic environments from excessive sedimentation, and filter pollutants. Despite their importance, the microbial community structures of riparian buffer zones remains poorly defined. Our objectives for this study were twofold: first, to characterize the microbial populations found in riparian buffer zone soils; and second, to determine if microbial community structure could be linked to denitrification enzyme activity (DEA). To achieve these objectives, we investigated the microbial populations of a riparian buffer zone located downslope of a pasture irrigated with swine lagoon effluent, utilizing DNA sequencing of the 16S rDNA, DEA, and quantitative PCR (qPCR) of the denitrification genes nirK, nirS, and nosZ. Clone libraries of the 16S rDNA gene were generated from each of twelve sites across the riparian buffer with a total of 986 partial sequences grouped into 654 operational taxonomic units (OTUs). The Proteobacteria were the dominant group (49.8% of all OTUs), with the Acidobacteria also well represented (19.57% of all OTUs). Analysis of qPCR results identified spatial relationships between soil series, site location, and gene abundance, which could be used to infer both incomplete and total DEA rates.

  1. Estimating intraspecific genetic diversity from community DNA metabarcoding data

    Directory of Open Access Journals (Sweden)

    Vasco Elbrecht

    2018-04-01

    Full Text Available Background DNA metabarcoding is used to generate species composition data for entire communities. However, sequencing errors in high-throughput sequencing instruments are fairly common, usually requiring reads to be clustered into operational taxonomic units (OTUs, losing information on intraspecific diversity in the process. While Cytochrome c oxidase subunit I (COI haplotype information is limited in resolving intraspecific diversity it is nevertheless often useful e.g. in a phylogeographic context, helping to formulate hypotheses on taxon distribution and dispersal. Methods This study combines sequence denoising strategies, normally applied in microbial research, with additional abundance-based filtering to extract haplotype information from freshwater macroinvertebrate metabarcoding datasets. This novel approach was added to the R package “JAMP” and can be applied to COI amplicon datasets. We tested our haplotyping method by sequencing (i a single-species mock community composed of 31 individuals with 15 different haplotypes spanning three orders of magnitude in biomass and (ii 18 monitoring samples each amplified with four different primer sets and two PCR replicates. Results We detected all 15 haplotypes of the single specimens in the mock community with relaxed filtering and denoising settings. However, up to 480 additional unexpected haplotypes remained in both replicates. Rigorous filtering removes most unexpected haplotypes, but also can discard expected haplotypes mainly from the small specimens. In the monitoring samples, the different primer sets detected 177–200 OTUs, each containing an average of 2.40–3.30 haplotypes per OTU. The derived intraspecific diversity data showed population structures that were consistent between replicates and similar between primer pairs but resolution depended on the primer length. A closer look at abundant taxa in the dataset revealed various population genetic patterns, e.g. the stonefly

  2. Effects of coordination of diammineplatinum(II) with DNA on the activities of Escherichia coli DNA polymerase I

    International Nuclear Information System (INIS)

    Bernges, F.; Holler, E.

    1988-01-01

    The effects of the reaction of cis- and trans-diamminedichloroplatinum(II) with DNA have been measured with regard to DNA synthesis, 3'-5' exonuclease (proofreading), and 5'-3' exonuclease (repair) activities of Escherichia coli DNA polymerase I. Both isomers inhibit DNA synthetic activity of the polymerase through an increase in K/sub m/ values and a decrease in V/sub max/ values for platinated DNA but not for the nucleoside 5'-triphosphates as the varied substrates. The inhibition is a consequence of lowered binding affinity between platinated DNA and DNA polymerase, and of a platination-induced separation of template and primer strands. Strand separation enhances initial rates of 3'-5' excision of [ 3 H]dCMP from platinated DNA (proofreading), while total excision levels of nucleotides are decreased. In contrast to proofreading activity, the 5'-3' exonuclease activity (repair) discriminates between DNA which had reacted with cis- and with trans-diamminedichloroplatinum(II). While both initial rates and total excision are inhibited for the cis isomer, they are almost not affected for the trans isomer. This differential effect could explain why bacterial growth inhibition requires much higher concentrations of trans- than cis-diamminedichloroplatinum(II)

  3. Phenotypic characterization and 16S rDNA identification of culturable non-obligate halophilic bacterial communities from a hypersaline lake, La Sal del Rey, in extreme South Texas (USA).

    Science.gov (United States)

    Phillips, Kristen; Zaidan, Frederic; Elizondo, Omar R; Lowe, Kristine L

    2012-02-02

    La Sal del Rey ("the King's Salt") is one of several naturally-occurring salt lakes in Hidalgo County, Texas and is part of the Lower Rio Grande Valley National Wildlife Refuge. The research objective was to isolate and characterize halophilic microorganisms from La Sal del Rey. Water samples were collected from the lake and a small creek that feeds into the lake. Soil samples were collected from land adjacent to the water sample locations. Sample salinity was determined using a refractometer. Samples were diluted and cultured on a synthetic saline medium to grow halophilic bacteria. The density of halophiles was estimated by viable plate counts. A collection of isolates was selected, gram-stained, tested for catalase, and characterized using API 20E® test strips. Isolates were putatively identified by sequencing the 16S rDNA. Carbon source utilization by the microbial community from each sample site was examined using EcoPlate™ assays and the carbon utilization total activity of the community was determined. Results showed that salinity ranged from 4 parts per thousand (ppt) at the lake water source to 420 ppt in water samples taken just along the lake shore. The density of halophilic bacteria in water samples ranged from 1.2 × 102 - 5.2 × 103 colony forming units per ml (cfu ml-1) whereas the density in soil samples ranged from 4.0 × 105 - 2.5 × 106 colony forming units per gram (cfu g-1). In general, as salinity increased the density of the bacterial community decreased. Microbial communities from water and soil samples were able to utilize 12 - 31 carbon substrates. The greatest number of substrates utilized was by water-borne communities compared to soil-based communities, especially at lower salinities. The majority of bacteria isolated were gram-negative, catalase-positive, rods. Biochemical profiles constructed from API 20E® test strips showed that bacterial isolates from low-salinity water samples (4 ppt) showed the greatest phenotypic diversity

  4. Pyrosequencing analysis of the protist communities in a High Arctic meromictic lake: DNA preservation and change

    Directory of Open Access Journals (Sweden)

    Sophie eCharvet

    2012-12-01

    Full Text Available High Arctic meromictic lakes are extreme environments characterized by cold temperatures, low nutrient inputs from their polar desert catchments and prolonged periods of low irradiance and darkness. These lakes are permanently stratified with an oxygenated freshwater layer (mixolimnion overlying a saline, anoxic water column (monimolimnion. The physical and chemical properties of the deepest known lake of this type in the circumpolar Arctic, Lake A, on the far northern coast of Ellesmere Island, Canada, have been studied over the last 15 years, but little is known about the lake’s biological communities. We applied high-throughput sequencing of the V4 region of the 18S ribosomal RNA gene to investigate the protist communities down the water column at three sampling times: under the ice at the end of winter in 2008, during an unusual period of warming and ice-out the same year, and again under the ice in mid-summer 2009. Sequences of many protist taxa occurred throughout the water column at all sampling times, including in the deep anoxic layer where growth is highly unlikely. Furthermore, there were sequences for taxonomic groups including diatoms and marine taxa, which have never been observed in Lake A by microscopic analysis. However the sequences of other taxa such as ciliates, chrysophytes, Cercozoa and Telonema varied with depth, between years and during the transition to ice-free conditions. These results imply that there are seasonally active taxa in the surface waters of the lake that are sensitive to depth and change with time. DNA from these taxa is superimposed upon background DNA from multiple internal and external sources that is preserved in the deep, cold, largely anoxic water column.

  5. Association of total daily physical activity with disability in community-dwelling older persons: a prospective cohort study

    Directory of Open Access Journals (Sweden)

    Shah Raj C

    2012-10-01

    Full Text Available Abstract Background Based on findings primarily using self-report measures, physical activity has been recommended to reduce disability in old age. Collecting objective measures of total daily physical activity in community-dwelling older adults is uncommon, but might enhance the understanding of the relationship of physical activity and disability. We examined whether greater total daily physical activity was associated with less report of disability in the elderly. Methods Data were from the Rush Memory and Aging Project, a longitudinal prospective cohort study of common, age-related, chronic conditions. Total daily physical activity was measured in community-dwelling participants with an average age of 82 using actigraphy for approximately 9 days. Disability was measured via self-reported basic activities of daily living (ADL. The odds ratio and 95% Confidence Interval (CI were determined for the baseline association of total daily physical activity and ADL disability using a logistic regression model adjusted for age, education level, gender and self-report physical activity. In participants without initial report of ADL disability, the hazard ratio and 95% CI were determined for the relationship of baseline total daily physical activity and the development of ADL disability using a discrete time Cox proportional hazard model adjusted for demographics and self-report physical activity. Results In 870 participants, the mean total daily physical activity was 2. 9 × 105 counts/day (range in 105 counts/day = 0.16, 13. 6 and the mean hours/week of self-reported physical activity was 3.2 (SD = 3.6. At baseline, 718 (82.5% participants reported being independent in all ADLs. At baseline, total daily physical activity was protective against disability (OR per 105 counts/day difference = 0.55; 95% CI = 0.47, 0.65. Of the participants without baseline disability, 584 were followed for 3.4 years on average. Each 105 counts/day additional total

  6. On the effect of small radiation doses: Desoxyribonucleic acid (DNA) synthesis and DNA repair of thymus, spleen, and bone marrow cells in the rat after fractionated total body X-ray irradiation. Zur Wirkung kleiner Strahlendosen: Desoxyribonukleinsaeure-(DNA-)Synthese und DNA-Reparatur von Thymus-, Milz- und Knochenmarkszellen der Ratte nach fraktionierter Ganzkoerperroentgenbestrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Tempel, K.; Ehling, G. (Muenchen Univ. (Germany, F.R.). Inst. fuer Pharmakologie, Toxikologie und Pharmazie)

    1989-09-01

    After three to seven days following to fractionated total body X-ray irradiation (TBI) (four expositions with doses of 0.3 to 5.0 cGy per fraction at intervals of 24 hours), a maximum 50 percent stimulation of the semiconservative DNA synthesis (SDS) of spleen cells was measured in vitro. This was not dependent of the fact if an acute high-dose (400 and/or 800 cGy) unique irradiation was applied after the fractionated TBI at the moment of stimulation. A significant increase of {sup 3}H-thymidine incorporation into the DNA of bone marrow and thymus cells was only found when doses of 1.25 cGy per fraction had been used. After fractionated TBI with doses of {ge}5 cGy per fraction, an increase of DNA synthesis resistant to hydroxyurea ('unprogrammed' DNA synthesis, UDS) was demonstrated in spleen cells. The UV-simulated UDS decreased proportionately. The sedimentation of thymus, spleen, and bone marrow nucleoids in a neutral saccharose gradient gave no evidence of an increased DNA repair capacity after fractionated TBI. Whereas the SDS stimulation by fractionated TBI with small doses can be explained by a modified proliferation behavior of exposed cells, the UDS behavior of spleen cells after considerably higher radiation doses suggests regenerative processes correlated with an increased number of cells resistant to hydroxyurea and cells presenting an UV repair deficiency. These findings can be considered to be a further proof of the assumed immune-stimulating effect of small radiation doses. (orig.).

  7. Environmental DNA (eDNA metabarcoding assays to detect invasive invertebrate species in the Great Lakes.

    Directory of Open Access Journals (Sweden)

    Katy E Klymus

    Full Text Available Describing and monitoring biodiversity comprise integral parts of ecosystem management. Recent research coupling metabarcoding and environmental DNA (eDNA demonstrate that these methods can serve as important tools for surveying biodiversity, while significantly decreasing the time, expense and resources spent on traditional survey methods. The literature emphasizes the importance of genetic marker development, as the markers dictate the applicability, sensitivity and resolution ability of an eDNA assay. The present study developed two metabarcoding eDNA assays using the mtDNA 16S RNA gene with Illumina MiSeq platform to detect invertebrate fauna in the Laurentian Great Lakes and surrounding waterways, with a focus for use on invasive bivalve and gastropod species monitoring. We employed careful primer design and in vitro testing with mock communities to assess ability of the markers to amplify and sequence targeted species DNA, while retaining rank abundance information. In our mock communities, read abundances reflected the initial input abundance, with regressions having significant slopes (p<0.05 and high coefficients of determination (R2 for all comparisons. Tests on field environmental samples revealed similar ability of our markers to measure relative abundance. Due to the limited reference sequence data available for these invertebrate species, care must be taken when analyzing results and identifying sequence reads to species level. These markers extend eDNA metabarcoding research for molluscs and appear relevant to other invertebrate taxa, such as rotifers and bryozoans. Furthermore, the sphaeriid mussel assay is group-specific, exclusively amplifying bivalves in the Sphaeridae family and providing species-level identification. Our assays provide useful tools for managers and conservation scientists, facilitating early detection of invasive species as well as improving resolution of mollusc diversity.

  8. Non-destructive sampling of rock-dwelling microbial communities using sterile adhesive tape.

    Science.gov (United States)

    Cutler, Nick A; Oliver, Anna E; Viles, Heather A; Whiteley, Andrew S

    2012-12-01

    Building stone provides a habitat for an array of microorganisms, many of which have been demonstrated to have a deleterious effect on the appearance and/or structural integrity of stone masonry. It is essential to understand the composition and structure of stone-dwelling (lithobiontic) microbial communities if successful stone conservation strategies are to be applied, particularly in the face of global environmental change. Ideally, the techniques used to sample such assemblages should be non-destructive due to the sensitive conservation status of many stone buildings. This paper quantitatively assesses the performance of sterile adhesive tape as a non-destructive sampling technique and compares the results of tape sampling with an alternative, destructive, sampling method. We used DNA fingerprinting (TRFLP) to characterise the algal, fungal and bacterial communities living on a stone slab. Our results demonstrate that tape sampling may be used to collect viable quantities of microbial DNA from environmental samples. This technique is ideally suited to the sampling of microbial biofilms, particularly when these communities are dominated by green algae. It provides a good approximation of total community diversity (i.e. the aggregate diversity of epilithic and endolithic communities). Tape sampling is straightforward, rapid and cost effective. When combined with molecular analytical techniques, this sampling method has the potential to make a major contribution to efforts to understand the structure of lithobiontic microbial communities and our ability to predict the response of such communities to future environmental change. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Field assessment of bacterial communities and total trihalomethanes: Implications for drinking water networks.

    Science.gov (United States)

    Montoya-Pachongo, Carolina; Douterelo, Isabel; Noakes, Catherine; Camargo-Valero, Miller Alonso; Sleigh, Andrew; Escobar-Rivera, Juan-Carlos; Torres-Lozada, Patricia

    2018-03-01

    Operation and maintenance (O&M) of drinking water distribution networks (DWDNs) in tropical countries simultaneously face the control of acute and chronic risks due to the presence of microorganisms and disinfection by-products, respectively. In this study, results from a detailed field characterization of microbiological, chemical and infrastructural parameters of a tropical-climate DWDN are presented. Water physicochemical parameters and the characteristics of the network were assessed to evaluate the relationship between abiotic and microbiological factors and their association with the presence of total trihalomethanes (TTHMs). Illumina sequencing of the bacterial 16s rRNA gene revealed significant differences in the composition of biofilm and planktonic communities. The highly diverse biofilm communities showed the presence of methylotrophic bacteria, which suggest the presence of methyl radicals such as THMs within this habitat. Microbiological parameters correlated with water age, pH, temperature and free residual chlorine. The results from this study are necessary to increase the awareness of O&M practices in DWDNs required to reduce biofilm formation and maintain appropriate microbiological and chemical water quality, in relation to biofilm detachment and DBP formation. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Intra-familial comparison of supragingival dental plaque microflora using the checkerboard DNA-DNA hybridisation technique.

    Science.gov (United States)

    Mannaa, Alaa; Carlén, Anette; Dahlén, Gunnar; Lingström, Peter

    2012-12-01

    The aims of the present study were to correlate the quantified supragingival plaque bacteria between mothers and their children and identify possible microbial associations. A total of 86 mothers and their 4- to 6-year-old and 12- to 16-year-old children participated. Pooled supragingival plaque samples were obtained from interproximal sites between teeth 16/15, 25/26, 35/36 and 46/45 in mothers and older children and teeth 55/54, 64/65, 74/75 and 85/84 in younger children. All the samples were individually analysed for their content of 18 bacterial strains using checkerboard DNA-DNA hybridisation (whole genomic probes). Microbial associations were sought using cluster analysis (dendrogram) for all three age groups together, while community ordination techniques were used for each of the three groups separately. Three complexes were formed from the dendrogram in addition to associations between these complexes and remaining bacterial strains. Principal component analysis results were similar in all three groups. The correlation analyses of bacterial counts between mothers and their children showed a significant association for most of the bacterial strains (pplaque microbiota are correlated between mothers and their children. In addition, similar supragingival plaque microbial associations are present in family members.. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. DNA Source Selection for Downstream Applications Based on DNA Quality Indicators Analysis

    Science.gov (United States)

    Lucena-Aguilar, Gema; Sánchez-López, Ana María; Barberán-Aceituno, Cristina; Carrillo-Ávila, José Antonio; López-Guerrero, José Antonio

    2016-01-01

    High-quality human DNA samples and associated information of individuals are necessary for biomedical research. Biobanks act as a support infrastructure for the scientific community by providing a large number of high-quality biological samples for specific downstream applications. For this purpose, biobank methods for sample preparation must ensure the usefulness and long-term functionality of the products obtained. Quality indicators are the tool to measure these parameters, the purity and integrity determination being those specifically used for DNA. This study analyzes the quality indicators in DNA samples derived from 118 frozen human tissues in optimal cutting temperature (OCT) reactive, 68 formalin-fixed paraffin-embedded (FFPE) tissues, 119 frozen blood samples, and 26 saliva samples. The results obtained for DNA quality are discussed in association with the usefulness for downstream applications and availability of the DNA source in the target study. In brief, if any material is valid, blood is the most approachable option of prospective collection of samples providing high-quality DNA. However, if diseased tissue is a requisite or samples are available, the recommended source of DNA would be frozen tissue. These conclusions will determine the best source of DNA, according to the planned downstream application. Furthermore our results support the conclusion that a complete procedure of DNA quantification and qualification is necessary to guarantee the appropriate management of the samples, avoiding low confidence results, high costs, and a waste of samples. PMID:27158753

  12. Biomonitoring of marine vertebrates in Monterey Bay using eDNA metabarcoding.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Andruszkiewicz

    Full Text Available Molecular analysis of environmental DNA (eDNA can be used to assess vertebrate biodiversity in aquatic systems, but limited work has applied eDNA technologies to marine waters. Further, there is limited understanding of the spatial distribution of vertebrate eDNA in marine waters. Here, we use an eDNA metabarcoding approach to target and amplify a hypervariable region of the mitochondrial 12S rRNA gene to characterize vertebrate communities at 10 oceanographic stations spanning 45 km within the Monterey Bay National Marine Sanctuary (MBNMS. In this study, we collected three biological replicates of small volume water samples (1 L at 2 depths at each of the 10 stations. We amplified fish mitochondrial DNA using a universal primer set. We obtained 5,644,299 high quality Illumina sequence reads from the environmental samples. The sequence reads were annotated to the lowest taxonomic assignment using a bioinformatics pipeline. The eDNA survey identified, to the lowest taxonomic rank, 7 families, 3 subfamilies, 10 genera, and 72 species of vertebrates at the study sites. These 92 distinct taxa come from 33 unique marine vertebrate families. We observed significantly different vertebrate community composition between sampling depths (0 m and 20/40 m deep across all stations and significantly different communities at stations located on the continental shelf (200 m bottom depth. All but 1 family identified using eDNA metabarcoding is known to occur in MBNMS. The study informs the implementation of eDNA metabarcoding for vertebrate biomonitoring.

  13. Comparison of the active and resident community of a coastal microbial mat

    OpenAIRE

    Cardoso, Daniela Clara; Sandionigi, Anna; Cretoiu, Mariana Silvia; Casiraghi, Maurizio; Stal, Lucas; Bolhuis, Henk

    2017-01-01

    Coastal microbial mats form a nearly closed micro-scale ecosystem harboring a complex microbial community. Previous DNA based analysis did not necessarily provide information about the active fraction of the microbial community because it includes dormant, inactive cells as well as a potential stable pool of extracellular DNA. Here we focused on the active microbial community by comparing 16S rRNA sequences obtained from the ribosomal RNA pool with gene sequences obtained from the DNA fractio...

  14. DNA damage, homology-directed repair, and DNA methylation.

    Directory of Open Access Journals (Sweden)

    Concetta Cuozzo

    2007-07-01

    Full Text Available To explore the link between DNA damage and gene silencing, we induced a DNA double-strand break in the genome of Hela or mouse embryonic stem (ES cells using I-SceI restriction endonuclease. The I-SceI site lies within one copy of two inactivated tandem repeated green fluorescent protein (GFP genes (DR-GFP. A total of 2%-4% of the cells generated a functional GFP by homology-directed repair (HR and gene conversion. However, approximately 50% of these recombinants expressed GFP poorly. Silencing was rapid and associated with HR and DNA methylation of the recombinant gene, since it was prevented in Hela cells by 5-aza-2'-deoxycytidine. ES cells deficient in DNA methyl transferase 1 yielded as many recombinants as wild-type cells, but most of these recombinants expressed GFP robustly. Half of the HR DNA molecules were de novo methylated, principally downstream to the double-strand break, and half were undermethylated relative to the uncut DNA. Methylation of the repaired gene was independent of the methylation status of the converting template. The methylation pattern of recombinant molecules derived from pools of cells carrying DR-GFP at different loci, or from an individual clone carrying DR-GFP at a single locus, was comparable. ClustalW analysis of the sequenced GFP molecules in Hela and ES cells distinguished recombinant and nonrecombinant DNA solely on the basis of their methylation profile and indicated that HR superimposed novel methylation profiles on top of the old patterns. Chromatin immunoprecipitation and RNA analysis revealed that DNA methyl transferase 1 was bound specifically to HR GFP DNA and that methylation of the repaired segment contributed to the silencing of GFP expression. Taken together, our data support a mechanistic link between HR and DNA methylation and suggest that DNA methylation in eukaryotes marks homologous recombined segments.

  15. Short-term hypertension management in community is associated with long-term risk of stroke and total death in China: A community controlled trial.

    Science.gov (United States)

    Wang, Zengwu; Hao, Guang; Wang, Xin; Wang, Wen; Chen, Weiwei; Zhu, Manlu

    2016-11-01

    It is not fully clear whether the effect of short-term management in community can reduce the long-term risk of stroke OBJECTIVES:: To evaluate whether short-term hypertension management is associated with long-term incidence of stroke and total death in community health centers in China. Community controlled trail. Six community health centers (4 active, 2 control) in China, patients with hypertension. Patients were treated with normally therapy method. Patients were treated oriented by the Guideline for hypertension management. Two centers (Hebei and Zhejiang) from the Hypertension Control in Community (HCC) Project, which was conducted from 2005 to 2008, were randomly selected for this study. Four thousand hypertensive patients from these centers, who were under management for one year in the baseline, were followed up in 2013. The electronic health record system (2005-2008) was used to identify 2000 hypertensive patients, who were not included in HCC but lived in comparable community health center in the same province, as the control group. All baseline and follow-up data were collected using standardized questionnaires for stroke outcomes. Stroke. Of the 6000 participants, 3787 (63.1%) were eligible for analysis. At the time of follow-up, the average BP was kept in the lower level than that in baseline, and the control rate was 59.3%. After propensity-score matching, 110 strokes (2.0% vs 4.6%) and 141 deaths (1.4% vs 3.8%) were noted in the matched intervention and control groups (1078 pairs), respectively. Patients in the intervention group were less likely to experience a stroke or die than those in the control group (hazard ratio [HR] = 0.40, 95% confidence interval [CI]: 0.26-0.62, P stroke in hypertensive patients.

  16. DNA repair: a changing geography? (1964-2008).

    Science.gov (United States)

    Maisonobe, Marion; Giglia-Mari, Giuseppina; Eckert, Denis

    2013-07-01

    This article aims to explain the current state of DNA Repair studies' global geography by focusing on the genesis of the community. Bibliometric data is used to localize scientific activities related to DNA Repair at the city level. The keyword "DNA Repair" was introduced first by American scientists. It started to spread after 1964 that is to say, after P. Howard-Flanders (Yale University), P. Hanawalt (Stanford University) and R. Setlow (Oak Ridge Laboratories) found evidence for Excision Repair mechanisms. It was the first stage in the emergence of an autonomous scientific community. In this article, we will try to assess to what extent the geo-history of this scientific field is determinant in understanding its current geography. In order to do so, we will localize the places where the first "DNA Repair" publications were signed fifty years ago and the following spatial diffusion process, which led to the current geography of the field. Then, we will focus on the evolution of the research activity of "early entrants" in relation to the activity of "latecomers". This article is an opportunity to share with DNA Repair scientists some research results of a dynamic field in Science studies: spatial scientometrics. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. DNA-PK dependent targeting of DNA-ends to a protein complex assembled on matrix attachment region DNA sequences

    International Nuclear Information System (INIS)

    Mauldin, S.K.; Getts, R.C.; Perez, M.L.; DiRienzo, S.; Stamato, T.D.

    2003-01-01

    Full text: We find that nuclear protein extracts from mammalian cells contain an activity that allows DNA ends to associate with circular pUC18 plasmid DNA. This activity requires the catalytic subunit of DNA-PK (DNA-PKcs) and Ku since it was not observed in mutants lacking Ku or DNA-PKcs but was observed when purified Ku/DNA-PKcs was added to these mutant extracts. Competition experiments between pUC18 and pUC18 plasmids containing various nuclear matrix attachment region (MAR) sequences suggest that DNA ends preferentially associate with plasmids containing MAR DNA sequences. At a 1:5 mass ratio of MAR to pUC18, approximately equal amounts of DNA end binding to the two plasmids were observed, while at a 1:1 ratio no pUC18 end-binding was observed. Calculation of relative binding activities indicates that DNA-end binding activities to MAR sequences was 7 to 21 fold higher than pUC18. Western analysis of proteins bound to pUC18 and MAR plasmids indicates that XRCC4, DNA ligase IV, scaffold attachment factor A, topoisomerase II, and poly(ADP-ribose) polymerase preferentially associate with the MAR plasmid in the absence or presence of DNA ends. In contrast, Ku and DNA-PKcs were found on the MAR plasmid only in the presence of DNA ends. After electroporation of a 32P-labeled DNA probe into human cells and cell fractionation, 87% of the total intercellular radioactivity remained in nuclei after a 0.5M NaCl extraction suggesting the probe was strongly bound in the nucleus. The above observations raise the possibility that DNA-PK targets DNA-ends to a repair and/or DNA damage signaling complex which is assembled on MAR sites in the nucleus

  18. Comparison of DNA strand-break simulated with different DNA models

    International Nuclear Information System (INIS)

    Xie, Wenzhang; Li, Junli; Qiu, Rui; Yan, Congchong; Zeng, Zhi; Li, Chunyan

    2013-01-01

    Full text of the publication follows. In Monte Carlo simulation of DNA damage, the geometric model of DNA is of great importance. To study the influence of DNA model on the simulation of DNA damage, three DNA models were created in this paper. They were a volume model and two atomic models with different parameters. Direct DNA strand-break induced by low-energy electrons were simulated respectively with the three models. The results show that most of the energy depositions in the DNA segments do not lead to strand-breaks. The simple single strand-break (SSB) tends to be the predominant damage type, and the contribution of complex double strand-break (DSB) to the total DSB cannot be neglected. Among the yields of all the three DNA target models applied here, the yields of the volume model are the highest, the yields of the atomic model with double van der Waals radii (r) take the second place, whereas the yields of the atomic model with single r come last. On average, the ratios of SSB yields are approximately equivalent to the corresponding ratios of the models' volume. However, there seems to be no clear relationship between the DSB yields and the models' volume. (authors)

  19. Human DNA quantification and sample quality assessment: Developmental validation of the PowerQuant(®) system.

    Science.gov (United States)

    Ewing, Margaret M; Thompson, Jonelle M; McLaren, Robert S; Purpero, Vincent M; Thomas, Kelli J; Dobrowski, Patricia A; DeGroot, Gretchen A; Romsos, Erica L; Storts, Douglas R

    2016-07-01

    Quantification of the total amount of human DNA isolated from a forensic evidence item is crucial for DNA normalization prior to short tandem repeat (STR) DNA analysis and a federal quality assurance standard requirement. Previous commercial quantification methods determine the total human DNA and total human male DNA concentrations, but provide limited information about the condition of the DNA sample. The PowerQuant(®) System includes targets for quantification of total human and total human male DNA as well as targets for evaluating whether the human DNA is degraded and/or PCR inhibitors are present in the sample. A developmental validation of the PowerQuant(®) System was completed, following SWGDAM Validation Guidelines, to evaluate the assay's specificity, sensitivity, precision and accuracy, as well as the ability to detect degraded DNA or PCR inhibitors. In addition to the total human DNA and total human male DNA concentrations in a sample, data from the degradation target and internal PCR control (IPC) provide a forensic DNA analyst meaningful information about the quality of the isolated human DNA and the presence of PCR inhibitors in the sample that can be used to determine the most effective workflow and assist downstream interpretation. Copyright © 2016 The Author(s). Published by Elsevier Ireland Ltd.. All rights reserved.

  20. Respiration-to-DNA ratio reflects physiological state of microorganisms in root-free and rhizosphere soil

    Science.gov (United States)

    Blagodatskaya, E.; Blagodatsky, S.; Kuzyakov, Y.

    2009-04-01

    The double-stranded DNA (dsDNA) content in soil can serve as a measure of microbial biomass under near steady-state conditions and quantitatively reflect the exponential microbial growth initiated by substrate addition. The yield of respired CO2 per microbial biomass unit (expressed as DNA content) could be a valuable physiological indicator reflecting state of soil microbial community. Therefore, investigations combining both analyses of DNA content and respiration of soil microorganisms under steady-state and during periods of rapid growth are needed. We studied the relationship between CO2 evolution and microbial dsDNA content in native and glucose-amended samples of root-free and rhizosphere soil under Beta vulgaris (Cambisol, loamy sand from the field experiment of the Institute of Agroecology FAL, Braunschweig, Germany). Quantity of dsDNA was determined by direct DNA isolation from soil with mechanic and enzymatic disruption of microbial cell walls with following spectrofluorimetric detection with PicoGreen (Blagodatskaya et al., 2003). Microbial biomass and the kinetic parameters of microbial growth were estimated by dynamics of the CO2 emission from soil amended with glucose and nutrients (Blagodatsky et al., 2000). The CO2 production rate was measured hourly at 22оС using an automated infrared-gas analyzer system. The overall increase in microbial biomass, DNA content, maximal specific growth rate and therefore, in the fraction of microorganisms with r-strategy were observed in rhizosphere as compared to bulk soil. The rhizosphere effect for microbial respiration, biomass and specific growth rate was more pronounced for plots with half-rate of N fertilizer compared to full N addition. The DNA content was significantly lower in bulk compared to rhizosphere soil both before and during microbial growth initiated by glucose amendment. Addition of glucose to the soil strongly increased the amount of CO2 respired per DNA unit. Without substrate addition the

  1. DNA repair and DNA synthesis in leukemic and virus infected cells

    International Nuclear Information System (INIS)

    Tuschl, H.; Altmann, H.; Kovac, R.; Topaloglou, A.; Stacher, A.; Fanta, D.

    1978-09-01

    Autoradiographic determinations of unscheduled DNA synthesis in peripheral lymphocytes of leukemic patients showed strongly different results according to various types of disease of different forms of therapy, respectively. Similar investigations performed with lymphocytes of Herpes simplex infected persons during symptom-free intervals revealed imbalances of the repair system caused by virus infection. BND cellulose chromatography and measurement of 3 H-thymidine incorporation into single- and double stranded DNA fractions showed an increase in velocity of the rejoining process, but a decrease in total incorporation. Because of these results and the demonstration of the supercoiled structure of DNA it is suggested that virusinfections cause a faster rejoining of gaps, but at the same time leave a number of failures within DNA unrecognized. (author)

  2. Fungal communities in soils along a vegetative ecotone.

    Science.gov (United States)

    Karst, Justine; Piculell, Bridget; Brigham, Christy; Booth, Michael; Hoeksema, Jason D

    2013-01-01

    We investigated the community composition and diversity of soil fungi along a sharp vegetative ecotone between coastal sage scrub (CSS) and nonnative annual grassland habitat at two sites in coastal California. USA- We pooled soil samples across 29 m transects on either side of the ecotone at each of the two sites, and. using clone libraries of fungal ribosomal DNA, we identified 280 operational taxonomic units (OTUs) from a total 40 g soil. We combined information from partial LSU and ITS sequences and found that the majority of OTUs belonged to the phylum Ascomycota, followed by Basidiomycota. Within the Ascomycota. a quarter of OTUs were Sordariomycetes. 17% were Leotiomycet.es, 16% were Dothideomycetes and the remaining OTUs were distributed among the classes Eurotiomycetes, Pezizomycetes, Lecanoromycetes, Orbiliomycetes and Arthoniomycetes. Within the Basidiomycota. all OTUs but one belonged to the subphylum Agaricomycotina. We also sampled plant communities at the same sites to offer a point of comparison for patterns in richness of fungal communities. Fungal communities had higher alpha and beta diversity than plant communities; fungal communities were approximately 20 times as rich as plant communities and the majority of OTUs were found in single soil samples. Soils harbored a unique mycoflora that did not reveal vegetative boundaries or site differences. High alpha and beta diversity and possible sampling artifacts necessitate extensive sampling to reveal differentiation in these fungal communities.

  3. From a Moment of Totality to a Lasting Community

    Science.gov (United States)

    Gay, Pamela; Murph, Susan; Astronomy Cast

    2018-01-01

    The 2017 Great American Eclipse provided a reason for people from around the world to come together in one place and share their passion for astronomy. The Astronomy Cast podcast provided an opportunity and organizational structure for 100 people from more than 10 nations to come together for 3 days. These people are all listeners of the Astronomy Cast podcast, or family members of listeners. The majority of attendees did not know one another prior to this event. In this poster, we look at what organizational structure was provided to attendees before, during, and after this event, and how important different factors have been in building a lasting community from this group of attendees.The primary goals in hosting the Astronomy Cast event was to build a lasting community of people willing to attend real-world learning opportunities, and to facilitate the formation of social relationships between attendees that would encourage continued engagement. In order to meet these goals, we needed to construct an event that both met attendee expectations for science lectures and events, and also facilitated communications between attendees. We recognized that attendees would largely be introverts, and that this would present challenges to community building. Our strategy for success included: building a Facebook group well in advance of the event and using regular communications to build excitement; providing a space for community building as well as food and board games to communicate around; and following up the event with opportunities for participants to share the photos, experiences, and ways to connect.This work includes analysis of attendee surveys and commentaries that are used to study which aspects of this program were most (and least successful), and to see what self-maintaining community has been created.

  4. The Detection of Spotted Fever Group Rickettsia DNA in Tick Samples From Pastoral Communities in Kenya.

    Science.gov (United States)

    Koka, Hellen; Sang, Rosemary; Kutima, Helen Lydia; Musila, Lillian

    2017-05-01

    In this study, ticks from pastoral communities in Kenya were tested for Rickettsia spp. infections in geographical regions where the presence of tick-borne arboviruses had previously been reported. Rickettsial and arbovirus infections have similar clinical features which makes differential diagnosis challenging when both diseases occur. The tick samples were tested for Rickettsia spp. by conventional PCR using three primer sets targeting the gltA, ompA, and ompB genes followed by amplicon sequencing. Of the tick pools screened, 25% (95/380) were positive for Rickettsia spp. DNA using the gltA primer set. Of the tick-positive pools, 60% were ticks collected from camels. Rickettsia aeschlimannii and R. africae were the main Rickettsia spp. detected in the tick pools sequenced. The findings of this study indicate that multiple Rickettsia species are circulating in ticks from pastoral communities in Kenya and could contribute to the etiology of febrile illness in these areas. Diagnosis and treatment of rickettsial infections should be a public health priority in these regions. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Effects of field-grown genetically modified Zoysia grass on bacterial community structure.

    Science.gov (United States)

    Lee, Yong-Eok; Yang, Sang-Hwan; Bae, Tae-Woong; Kang, Hong-Gyu; Lim, Pyung-Ok; Lee, Hyo-Yeon

    2011-04-01

    Herbicide-tolerant Zoysia grass has been previously developed through Agrobacterium-mediated transformation. We investigated the effects of genetically modified (GM) Zoysia grass and the associated herbicide application on bacterial community structure by using culture-independent approaches. To assess the possible horizontal gene transfer (HGT) of transgenic DNA to soil microorganisms, total soil DNAs were amplified by PCR with two primer sets for the bar and hpt genes, which were introduced into the GM Zoysia grass by a callus-type transformation. The transgenic genes were not detected from the total genomic DNAs extracted from 1.5 g of each rhizosphere soils of GM and non-GM Zoysia grasses. The structures and diversities of the bacterial communities in rhizosphere soils of GM and non-GM Zoysia grasses were investigated by constructing 16S rDNA clone libraries. Classifier, provided in the RDP II, assigned 100 clones in the 16S rRNA gene sequences library into 11 bacterial phyla. The most abundant phyla in both clone libraries were Acidobacteria and Proteobacteria. The bacterial diversity of the GM clone library was lower than that of the non- GM library. The former contained four phyla, whereas the latter had seven phyla. Phylogenetic trees were constructed to confirm these results. Phylogenetic analyses of the two clone libraries revealed considerable difference from each other. The significance of difference between clone libraries was examined with LIBSHUFF statistics. LIBSHUFF analysis revealed that the two clone libraries differed significantly (P〈0.025), suggesting alterations in the composition of the microbial community associated with GM Zoysia grass.

  6. Choosing and Using a Plant DNA Barcode

    Science.gov (United States)

    Hollingsworth, Peter M.; Graham, Sean W.; Little, Damon P.

    2011-01-01

    The main aim of DNA barcoding is to establish a shared community resource of DNA sequences that can be used for organismal identification and taxonomic clarification. This approach was successfully pioneered in animals using a portion of the cytochrome oxidase 1 (CO1) mitochondrial gene. In plants, establishing a standardized DNA barcoding system has been more challenging. In this paper, we review the process of selecting and refining a plant barcode; evaluate the factors which influence the discriminatory power of the approach; describe some early applications of plant barcoding and summarise major emerging projects; and outline tool development that will be necessary for plant DNA barcoding to advance. PMID:21637336

  7. Choosing and using a plant DNA barcode.

    Directory of Open Access Journals (Sweden)

    Peter M Hollingsworth

    Full Text Available The main aim of DNA barcoding is to establish a shared community resource of DNA sequences that can be used for organismal identification and taxonomic clarification. This approach was successfully pioneered in animals using a portion of the cytochrome oxidase 1 (CO1 mitochondrial gene. In plants, establishing a standardized DNA barcoding system has been more challenging. In this paper, we review the process of selecting and refining a plant barcode; evaluate the factors which influence the discriminatory power of the approach; describe some early applications of plant barcoding and summarise major emerging projects; and outline tool development that will be necessary for plant DNA barcoding to advance.

  8. DNA binding and aggregation by carbon nanoparticles

    International Nuclear Information System (INIS)

    An, Hongjie; Liu, Qingdai; Ji, Qiaoli; Jin, Bo

    2010-01-01

    Significant environmental and health risks due to the increasing applications of engineered nanoparticles in medical and industrial activities have been concerned by many communities. The interactions between nanomaterials and genomes have been poorly studied so far. This study examined interactions of DNA with carbon nanoparticles (CNP) using atomic force microscopy (AFM). We experimentally assessed how CNP affect DNA molecule and bacterial growth of Escherichia coli. We found that CNP were bound to the DNA molecules during the DNA replication in vivo. The results revealed that the interaction of DNA with CNP resulted in DNA molecule binding and aggregation both in vivo and in vitro in a dose-dependent manner, and consequently inhabiting the E. coli growth. While this was a preliminary study, our results showed that this nanoparticle may have a significant impact on genomic activities.

  9. Structural and functional diversity of microbial communities from a lake sediment contaminated with trenbolone, an endocrine-disrupting chemical

    International Nuclear Information System (INIS)

    Radl, Viviane; Pritsch, Karin; Munch, Jean Charles; Schloter, Michael

    2005-01-01

    Effects of trenbolone (TBOH), a hormone used in cattle production, on the structure and function of microbial communities in a fresh water sediment from a lake in Southern Germany were studied in a microcosm experiment. The microbial community structure and the total gene pool of the sediment, assessed by 16S rRNA/rDNA and RAPD fingerprint analysis, respectively, were not significantly affected by TBOH. In contrast, the N-acetyl-glucosaminidase activity was almost 50% lower in TBOH treated samples (P<0.05). Also, the substrate utilization potential, measured using the BIOLOG[reg] system, was reduced after TBOH treatment. Interestingly, this potential did not recover at the end of the experiment, i.e. 19 days after the addition of the chemical. Repeated application of TBOH did not lead to an additional reduction in the substrate utilization potential. Overall results indicate that microbial community function was more sensitive to TBOH treatment than the community structure and the total gene pool. - The steroid hormone trenbolone affects microbial community function in a lake sediment

  10. Structural and functional diversity of microbial communities from a lake sediment contaminated with trenbolone, an endocrine-disrupting chemical

    Energy Technology Data Exchange (ETDEWEB)

    Radl, Viviane [GSF National Research Center for Environment and Health, Institute of Soil Ecology, PO Box 1129, D-85764, Neuherberg (Germany)]. E-mail: barbosa@gsf.de; Pritsch, Karin [GSF National Research Center for Environment and Health, Institute of Soil Ecology, PO Box 1129, D-85764, Neuherberg (Germany); Munch, Jean Charles [GSF National Research Center for Environment and Health, Institute of Soil Ecology, PO Box 1129, D-85764, Neuherberg (Germany); Schloter, Michael [GSF National Research Center for Environment and Health, Institute of Soil Ecology, PO Box 1129, D-85764, Neuherberg (Germany)

    2005-09-15

    Effects of trenbolone (TBOH), a hormone used in cattle production, on the structure and function of microbial communities in a fresh water sediment from a lake in Southern Germany were studied in a microcosm experiment. The microbial community structure and the total gene pool of the sediment, assessed by 16S rRNA/rDNA and RAPD fingerprint analysis, respectively, were not significantly affected by TBOH. In contrast, the N-acetyl-glucosaminidase activity was almost 50% lower in TBOH treated samples (P<0.05). Also, the substrate utilization potential, measured using the BIOLOG[reg] system, was reduced after TBOH treatment. Interestingly, this potential did not recover at the end of the experiment, i.e. 19 days after the addition of the chemical. Repeated application of TBOH did not lead to an additional reduction in the substrate utilization potential. Overall results indicate that microbial community function was more sensitive to TBOH treatment than the community structure and the total gene pool. - The steroid hormone trenbolone affects microbial community function in a lake sediment.

  11. Phylogenetic characterization of a biogas plant microbial community integrating clone library 16S-rDNA sequences and metagenome sequence data obtained by 454-pyrosequencing.

    Science.gov (United States)

    Kröber, Magdalena; Bekel, Thomas; Diaz, Naryttza N; Goesmann, Alexander; Jaenicke, Sebastian; Krause, Lutz; Miller, Dimitri; Runte, Kai J; Viehöver, Prisca; Pühler, Alfred; Schlüter, Andreas

    2009-06-01

    The phylogenetic structure of the microbial community residing in a fermentation sample from a production-scale biogas plant fed with maize silage, green rye and liquid manure was analysed by an integrated approach using clone library sequences and metagenome sequence data obtained by 454-pyrosequencing. Sequencing of 109 clones from a bacterial and an archaeal 16S-rDNA amplicon library revealed that the obtained nucleotide sequences are similar but not identical to 16S-rDNA database sequences derived from different anaerobic environments including digestors and bioreactors. Most of the bacterial 16S-rDNA sequences could be assigned to the phylum Firmicutes with the most abundant class Clostridia and to the class Bacteroidetes, whereas most archaeal 16S-rDNA sequences cluster close to the methanogen Methanoculleus bourgensis. Further sequences of the archaeal library most probably represent so far non-characterised species within the genus Methanoculleus. A similar result derived from phylogenetic analysis of mcrA clone sequences. The mcrA gene product encodes the alpha-subunit of methyl-coenzyme-M reductase involved in the final step of methanogenesis. BLASTn analysis applying stringent settings resulted in assignment of 16S-rDNA metagenome sequence reads to 62 16S-rDNA amplicon sequences thus enabling frequency of abundance estimations for 16S-rDNA clone library sequences. Ribosomal Database Project (RDP) Classifier processing of metagenome 16S-rDNA reads revealed abundance of the phyla Firmicutes, Bacteroidetes and Euryarchaeota and the orders Clostridiales, Bacteroidales and Methanomicrobiales. Moreover, a large fraction of 16S-rDNA metagenome reads could not be assigned to lower taxonomic ranks, demonstrating that numerous microorganisms in the analysed fermentation sample of the biogas plant are still unclassified or unknown.

  12. Scaffolded DNA origami of a DNA tetrahedron molecular container.

    Science.gov (United States)

    Ke, Yonggang; Sharma, Jaswinder; Liu, Minghui; Jahn, Kasper; Liu, Yan; Yan, Hao

    2009-06-01

    We describe a strategy of scaffolded DNA origami to design and construct 3D molecular cages of tetrahedron geometry with inside volume closed by triangular faces. Each edge of the triangular face is approximately 54 nm in dimension. The estimated total external volume and the internal cavity of the triangular pyramid are about 1.8 x 10(-23) and 1.5 x 10(-23) m(3), respectively. Correct formation of the tetrahedron DNA cage was verified by gel electrophoresis, atomic force microscopy, transmission electron microscopy, and dynamic light scattering techniques.

  13. Scaffolded DNA Origami of a DNA Tetrahedron Molecular Container

    DEFF Research Database (Denmark)

    Ke, Yongang; Sharma, Jaswinder; Liu, Minghui

    2009-01-01

    We describe a strategy of scaffolded DNA origami to design and construct 3D molecular cages of tetrahedron geometry with inside volume closed by triangular faces. Each edge of the triangular face is ∼54 nm in dimension. The estimated total external volume and the internal cavity of the triangular...... pyramid are about 1.8 × 10-23 and 1.5 × 10-23 m3, respectively. Correct formation of the tetrahedron DNA cage was verified by gel electrophoresis, atomic force microscopy, transmission electron microscopy, and dynamic light scattering techniques....

  14. Using environmental DNA to census marine fishes in a large mesocosm.

    Directory of Open Access Journals (Sweden)

    Ryan P Kelly

    Full Text Available The ocean is a soup of its resident species' genetic material, cast off in the forms of metabolic waste, shed skin cells, or damaged tissue. Sampling this environmental DNA (eDNA is a potentially powerful means of assessing whole biological communities, a significant advance over the manual methods of environmental sampling that have historically dominated marine ecology and related fields. Here, we estimate the vertebrate fauna in a 4.5-million-liter mesocosm aquarium tank at the Monterey Bay Aquarium of known species composition by sequencing the eDNA from its constituent seawater. We find that it is generally possible to detect mitochondrial DNA of bony fishes sufficient to identify organisms to taxonomic family- or genus-level using a 106 bp fragment of the 12S ribosomal gene. Within bony fishes, we observe a low false-negative detection rate, although we did not detect the cartilaginous fishes or sea turtles present with this fragment. We find that the rank abundance of recovered eDNA sequences correlates with the abundance of corresponding species' biomass in the mesocosm, but the data in hand do not allow us to develop a quantitative relationship between biomass and eDNA abundance. Finally, we find a low false-positive rate for detection of exogenous eDNA, and we were able to diagnose non-native species' tissue in the food used to maintain the mesocosm, underscoring the sensitivity of eDNA as a technique for community-level ecological surveys. We conclude that eDNA has substantial potential to become a core tool for environmental monitoring, but that a variety of challenges remain before reliable quantitative assessments of ecological communities in the field become possible.

  15. Inhibitory and toxic effects of extracellular self-DNA in litter: a mechanism for negative plant-soil feedbacks?

    Science.gov (United States)

    Mazzoleni, Stefano; Bonanomi, Giuliano; Incerti, Guido; Chiusano, Maria Luisa; Termolino, Pasquale; Mingo, Antonio; Senatore, Mauro; Giannino, Francesco; Cartenì, Fabrizio; Rietkerk, Max; Lanzotti, Virginia

    2015-02-01

    Plant-soil negative feedback (NF) is recognized as an important factor affecting plant communities. The objectives of this work were to assess the effects of litter phytotoxicity and autotoxicity on root proliferation, and to test the hypothesis that DNA is a driver of litter autotoxicity and plant-soil NF. The inhibitory effect of decomposed litter was studied in different bioassays. Litter biochemical changes were evaluated with nuclear magnetic resonance (NMR) spectroscopy. DNA accumulation in litter and soil was measured and DNA toxicity was assessed in laboratory experiments. Undecomposed litter caused nonspecific inhibition of root growth, while autotoxicity was produced by aged litter. The addition of activated carbon (AC) removed phytotoxicity, but was ineffective against autotoxicity. Phytotoxicity was related to known labile allelopathic compounds. Restricted (13) C NMR signals related to nucleic acids were the only ones negatively correlated with root growth on conspecific substrates. DNA accumulation was observed in both litter decomposition and soil history experiments. Extracted total DNA showed evident species-specific toxicity. Results indicate a general occurrence of litter autotoxicity related to the exposure to fragmented self-DNA. The evidence also suggests the involvement of accumulated extracellular DNA in plant-soil NF. Further studies are needed to further investigate this unexpected function of extracellular DNA at the ecosystem level and related cellular and molecular mechanisms. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  16. Differential Immuno-Reactivity to Genomic DNA, RNA and Mitochondrial DNA is Associated with Auto-Immunity

    Directory of Open Access Journals (Sweden)

    Vilena V. Ivanova

    2014-12-01

    Full Text Available Background: Circulating auto-reactive antibodies are hallmark features of auto-immune diseases, however little is known with respect to the specificity of such bio-markers. In the present study, we investigated the specificity of anti-nucleic acid antibodies in the blood of subjects with systemic lupus erythematosus (SLE and healthy controls. Methods: Sera from 12 SLE cases and 8 controls were evaluated for immuno-reactivity to purified RNA, DNA and mitochondrial DNA (mtDNA by enzyme-linked immuno-sorbent assay (ELISA. Results: As expected, immuno-reactivity to total nucleic acids was significantly higher in subjects with SLE when compared to healthy controls, however a clear distinction was observed among the various nucleic acid sub-types, with sera from SLE subjects displaying the greatest immuno-reactivity to RNA followed by mtDNA and then total DNA. Conclusion: The identification of auto-reactive antibodies can serve as highly sensitive biomarkers, although their specificity may not always allow diagnostic certainty. The knowledge that auto-antibodies in subjects with SLE display differential immuno-reactivity may help to improve existing diagnostics and may lead to a better understanding of the pathogenesis of auto-immune disorders.

  17. Influence of an oyster reef on development of the microbial heterotrophic community of an estuarine biofilm.

    Science.gov (United States)

    Nocker, Andreas; Lepo, Joe E; Snyder, Richard A

    2004-11-01

    We characterized microbial biofilm communities developed over two very closely located but distinct benthic habitats in the Pensacola Bay estuary using two complementary cultivation-independent molecular techniques. Biofilms were grown for 7 days on glass slides held in racks 10 to 15 cm over an oyster reef and an adjacent muddy sand bottom. Total biomass and optical densities of dried biofilms showed dramatic differences for oyster reef versus non-oyster reef biofilms. This study assessed whether the observed spatial variation was reflected in the heterotrophic prokaryotic species composition. Genomic biofilm DNA from both locations was isolated and served as a template to amplify 16S rRNA genes with universal eubacterial primers. Fluorescently labeled PCR products were analyzed by terminal restriction fragment length polymorphism, creating a genetic fingerprint of the composition of the microbial communities. Unlabeled PCR products were cloned in order to construct a clone library of 16S rRNA genes. Amplified ribosomal DNA restriction analysis was used to screen and define ribotypes. Partial sequences from unique ribotypes were compared with existing database entries to identify species and to construct phylogenetic trees representative of community structures. A pronounced difference in species richness and evenness was observed at the two sites. The biofilm community structure from the oyster reef setting had greater evenness and species richness than the one from the muddy sand bottom. The vast majority of the bacteria in the oyster reef biofilm were related to members of the gamma- and delta-subdivisions of Proteobacteria, the Cytophaga-Flavobacterium -Bacteroides cluster, and the phyla Planctomyces and Holophaga-Acidobacterium. The same groups were also present in the biofilm harvested at the muddy sand bottom, with the difference that nearly half of the community consisted of representatives of the Planctomyces phylum. Total species richness was estimated

  18. Bacterial Preferences for Specific Soil Particle Size Fractions Revealed by Community Analyses

    DEFF Research Database (Denmark)

    Hemkemeyer, Michael; Dohrmann, Anja B.; Christensen, Bent Tolstrup

    2018-01-01

    Genetic fingerprinting demonstrated in previous studies that differently sized soil particle fractions (PSFs; clay, silt, and sand with particulate organic matter (POM)) harbor microbial communities that differ in structure, functional potentials and sensitivity to environmental conditions....... To elucidate whether specific bacterial or archaeal taxa exhibit preference for specific PSFs, we examined the diversity of PCR-amplified 16S rRNA genes by high-throughput sequencing using total DNA extracted from three long-term fertilization variants (unfertilized, fertilized with minerals, and fertilized...

  19. Community Composition and Transcriptional Activity of Ammonia-Oxidizing Prokaryotes of Seagrass Thalassia hemprichii in Coral Reef Ecosystems

    Directory of Open Access Journals (Sweden)

    Juan Ling

    2018-01-01

    Full Text Available Seagrasses in coral reef ecosystems play important ecological roles by enhancing coral reef resilience under ocean acidification. However, seagrass primary productivity is typically constrained by limited nitrogen availability. Ammonia oxidation is an important process conducted by ammonia-oxidizing archaea (AOA and bacteria (AOB, yet little information is available concerning the community structure and potential activity of seagrass AOA and AOB. Therefore, this study investigated the variations in the abundance, diversity and transcriptional activity of AOA and AOB at the DNA and transcript level from four sample types: the leaf, root, rhizosphere sediment and bulk sediment of seagrass Thalassia hemprichii in three coral reef ecosystems. DNA and complementary DNA (cDNA were used to prepare clone libraries and DNA and cDNA quantitative PCR (qPCR assays, targeting the ammonia monooxygenase-subunit (amoA genes as biomarkers. Our results indicated that the closest relatives of the obtained archaeal and bacterial amoA gene sequences recovered from DNA and cDNA libraries mainly originated from the marine environment. Moreover, all the obtained AOB sequences belong to the Nitrosomonadales cluster. Nearly all the AOA communities exhibited higher diversity than the AOB communities at the DNA level, but the qPCR data demonstrated that the abundances of AOB communities were higher than that of AOA communities based on both DNA and RNA transcripts. Collectively, most of the samples shared greater community composition similarity with samples from the same location rather than sample type. Furthermore, the abundance of archaeal amoA gene in rhizosphere sediments showed significant relationships with the ammonium concentration of sediments and the nitrogen content of plant tissue (leaf and root at the DNA level (P < 0.05. Conversely, no such relationships were found for the AOB communities. This work provides new insight into the nitrogen cycle

  20. COMPARISON OF MEMBRANE FILTER, MULTIPLE-FERMENTATION-TUBE, AND PRESENCE-ABSENCE TECHNIQUES FOR DETECTING TOTAL COLIFORMS IN SMALL COMMUNITY WATER SYSTEMS

    Science.gov (United States)

    Methods for detecting total coliform bacteria in drinking water were compared using 1483 different drinking water samples from 15 small community water systems in Vermont and New Hampshire. The methods included the membrane filter (MF) technique, a ten tube fermentation tube tech...

  1. Soil bacterial community shifts associated with sugarcane straw removal

    Science.gov (United States)

    Pimentel, Laisa; Gumiere, Thiago; Andreote, Fernando; Cerri, Carlos

    2017-04-01

    In Brazil, the adoption of the mechanical unburned sugarcane harvest potentially increase the quantity of residue left in the field after harvesting. Economically, this material has a high potential for second generation ethanol (2G) production. However, crop residues have an essential role in diverse properties and processes in the soil. The greater part of the uncertainties about straw removal for 2G ethanol production is based on its effects in soil microbial community. In this sense, it is important to identify the main impacts of sugarcane straw removal on soil microbial community. Therefore, we conducted a field study, during one year, in Valparaíso (São Paulo state - Brazil) to evaluate the effects of straw decomposition on soil bacterial community. Specifically, we wanted: i) to compare the rates of straw removal and ii) to evaluate the effects of straw decomposition on soil bacterial groups over one year. The experiment was in a randomized block design with treatments arranged in strip plot. The treatments are different rates of sugarcane straw removal, namely: no removal, 50, 75 and 100% of straw removal. Soil sampling was carried out at 0, 4, 8 and 12 months after the sugarcane harvest (August 2015). Total DNA was extracted from soil using the PowersoilTM DNA Isolation kit. And the abundance of bacterial in each soil sample was estimated via quantification of 16S rRNA gene. The composition of the bacterial communities was estimated via terminal restriction fragment length polymorphism (T-RFLP) analysis, and the T-RF sizes were performed on a 3500 Genetic Analyzer. Finally, the results were examined with GeneMapper 4.1 software. There was bacterial community shifts through the time and among the rates of sugarcane straw removal. Bacterial community was firstly determined by the time scale, which explained 29.16% of total variation. Rates of straw removal explained 11.55% of shifts on bacterial community. Distribution through the time is an important

  2. Use of pyrosequencing and DNA barcodes to monitor variations in Firmicutes and Bacteroidetes communities in the gut microbiota of obese humans

    Directory of Open Access Journals (Sweden)

    Raoult Didier

    2008-12-01

    Full Text Available Abstract Background Recent studies of 16S rRNA genes in the mammalian gut microbiota distinguished a higher Firmicutes/Bacteroidetes ratio in obese individuals compared to lean individuals. This ratio was estimated using a clonal Sanger sequencing approach which is time-consuming and requires laborious data analysis. In contrast, new high-throughput pyrosequencing technology offers an inexpensive alternative to clonal Sanger sequencing and would significantly advance our understanding of obesity via the development of a clinical diagnostic method. Here we present a cost-effective method that combines 16S rRNA pyrosequencing and DNA barcodes of the Firmicutes and Bacteroidetes 16S rRNA genes to determine the Firmicutes/Bacteroidetes ratio in the gut microbiota of obese humans. Results The main result was the identification of DNA barcodes targeting the Firmicutes and Bacteroidetes phyla. These barcodes were validated using previously published 16S rRNA gut microbiota clone libraries. In addition, an accurate F/B ratio was found when the DNA barcodes were applied to short pyrosequencing reads of published gut metagenomes. Finally, the barcodes were utilized to define the F/B ratio of 16S rRNA pyrosequencing data generated from brain abscess pus and cystic fibrosis sputum. Conclusion Using DNA barcodes of Bacteroidetes and Firmicutes 16S rRNA genes combined with pyrosequencing is a cost-effective method for monitoring relevant changes in the relative abundance of Firmicutes and Bacteroidetes bacterial communities in microbial ecosystems.

  3. Molecular profiling of microbial communities from contaminated sources: Use of subtractive cloning methods and rDNA spacer sequences. 1998 annual progress report

    International Nuclear Information System (INIS)

    Robb, F.T.

    1998-01-01

    'The major objective of the research is to provide appropriate sequences and to assemble a high-density DNA array of oligonucleotides that can be used for rapid profiling of microbial populations from polluted areas. The sequences to be assigned to the DNA array are chosen from from cloned genomic DNA sequences (the ribosomal operon, described below) from groundwater at DOE sites containing organic solvents. The sites, Hanford Nuclear Plant and Lawrence Livermore Site 300, have well characterized pollutant histories, which have been provided by the collaborators. At this mid-point of the project, over 60 unique sequence classes of intergenic spacer region have been identified from the first sample site. The use of these sequences as hybridization probes, and their frequency of occurrence, allow a clear distinction between bacterial communities before and after remediation by acetate/nitrate pumping. The authors have developed the hybridization conditions for identifying PCR products in a 96 well format, a versatile alignment and visualization program (acronym: MALIGN) developed by Dr. Dennis Maeder, has been used to align the ISRs, which are variable in length and sometimes in position of the tRNAs. Finally, in collaboration with Dr. W. Chen and Dr. J. Zhou at ORNL, they have significant evidence that mass spectrometer analysis can be used to determine the lengths of PCR amplified intergenic spacer DNA.'

  4. Influence of DNA isolation on Q-PCR-based quantification of methanogenic Archaea in biogas fermenters.

    Science.gov (United States)

    Bergmann, I; Mundt, K; Sontag, M; Baumstark, I; Nettmann, E; Klocke, M

    2010-03-01

    Quantitative real-time PCR (Q-PCR) is commonly applied for the detection of certain microorganisms in environmental samples. However, some environments, like biomass-degrading biogas fermenters, are enriched with PCR-interfering substances. To study the impact of the DNA extraction protocol on the results of Q-PCR-based analysis of the methane-producing archaeal community in biogas fermenters, nine different protocols with varying cell disruption and DNA purification approaches were tested. Differences in the quantities of the isolated DNA and the purity parameters were found, with the best cell lysis efficiencies being obtained by a combined lysozyme/SDS-based lysis. When DNA was purified by sephacryl columns, the amount of DNA decreased by one log cycle but PCR inhibitors were eliminated sufficiently. In the case of detection of methanogenic Archaea, the chosen DNA isolation protocol strongly influenced the Q-PCR-based determination of 16S rDNA copy numbers. For example, with protocols including mechanical cell disruption, the 16S rDNA of Methanobacteriales were predominantly amplified (81-90% of the total 16S rDNA copy numbers), followed by the 16S rDNA of Methanomicrobiales (9-18%). In contrast, when a lysozyme/SDS-based cell lysis was applied, the 16S rDNA copy numbers determined for these two orders were the opposite (Methanomicrobiales 82-95%, Methanobacteriales 4-18%). In extreme cases, the DNA isolation method led to discrimination of some groups of methanogens (e.g. members of the Methanosaetaceae). In conclusion, for extraction of high amounts of microbial DNA with high purity from samples of biogas plants, a combined lysozyme/SDS-based cell lysis followed by a purification step with sephacryl columns is recommended. Copyright 2010 Elsevier GmbH. All rights reserved.

  5. The activity and community structure of total bacteria and denitrifying bacteria across soil depths and biological gradients in estuary ecosystem.

    Science.gov (United States)

    Lee, Seung-Hoon; Kang, Hojeong

    2016-02-01

    The distribution of soil microorganisms often shows variations along soil depth, and even in the same soil layer, each microbial group has a specific niche. In particular, the estuary soil is intermittently flooded, and the characteristics of the surface soil layer are different from those of other terrestrial soils. We investigated the microbial community structure and activity across soil depths and biological gradients composed of invasive and native plants in the shallow surface layer of an estuary ecosystem by using molecular approaches. Our results showed that the total and denitrifying bacterial community structures of the estuarine wetland soil differed according to the short depth gradient. In growing season, gene copy number of 16S rRNA were 1.52(±0.23) × 10(11), 1.10(±0.06) × 10(11), and 4.33(±0.16) × 10(10) g(-1) soil; nirS were 5.41(±1.25) × 10(8), 4.93(±0.94) × 10(8), and 2.61(±0.28) × 10(8) g(-1) soil; and nirK were 9.67(±2.37) × 10(6), 3.42(±0.55) × 10(6), and 2.12(±0.19) × 10(6) g(-1) soil in 0 cm, 5 cm, and 10 cm depth layer, respectively. The depth-based difference was distinct in the vegetated sample and in the growing season, evidencing the important role of plants in structuring the microbial community. In comparison with other studies, we observed differences in the microbial community and functions even across very short depth gradients. In conclusion, our results suggested that (i) in the estuary ecosystem, the denitrifying bacterial community could maintain its abundance and function within shallow surface soil layers through facultative anaerobiosis, while the total bacterial community would be both quantitatively and qualitatively affected by the soil depth, (ii) the nirS gene community, rather than the nirK one, should be the first candidate used as an indicator of the microbial denitrification process in the estuary system, and (iii) as the microbial community is distributed and plays a certain niche role according to

  6. Microbial community diversity of the eastern Atlantic Ocean reveals geographic differences

    Science.gov (United States)

    Friedline, C. J.; Franklin, R. B.; McCallister, S. L.; Rivera, M. C.

    2012-01-01

    Prokaryotic communities are recognized as major drivers of the biogeochemical processes in the oceans. However, the genetic diversity and composition of those communities is poorly understood. The aim of this study was to investigate the eubacterial communities in three different water layers: surface (2-20 m), deep chlorophyll maximum (DCM; 28-90 m), and deep (100-4600 m) at nine stations along the eastern Atlantic Ocean from 42.8° N to 23.7° S. In order to describe the dynamics of the eubacterial assemblages in relation to depth, associated environmental properties, and Longhurstian ecological provinces community DNA was extracted from 16 samples, from which the V6 region of 16s rDNA was PCR-amplified with eubacteria-specific primers, and the PCR amplicons were pyrosequenced. A total of 352 029 sequences were generated; after quality filtering and processing, 257 260 sequences were clustered into 2871 normalized Operational Taxonomic Units (OTU) using a definition of 97% sequence identity. Comparisons of the phylogenetic affiliation of those 2871 OTUs show more than 54% of them were assigned to the Proteobacteria, with the Alphaproteobacteria representing 4% of the total Proteobacteria OTUs, and the Gammaproteobacteria representing 22%. Within the Alphaproteobacteria-affiliated OTUs, 44% of the OTUs were associated with the ubiquitous SAR11 clade. The phylum Cyanobacteria represent 10% of the reads, with the majority of those reads among the GpIIa family including Prochlorococcus and Synechococcus. Among the Gammaproteobacteria, a single OTU affiliated to Alteromonas comprises ~3% of the abundance. The phyla Bacteroidetes, Verrucomicrobia, Actinobacteria, and Firmicutes represent approximately 7%, 0.8%, 2%, and 0.05% of the read abundance, respectively. Community ecology statistical analyses and a novel implementation of Bayesian inference suggests that eastern Atlantic Ocean eubacterial assemblages are vertically stratified and associated with water layers

  7. Protist communities in a marine oxygen minimum zone off Costa Rica by 454 pyrosequencing

    Science.gov (United States)

    Jing, H.; Rocke, E.; Kong, L.; Xia, X.; Liu, H.; Landry, M. R.

    2015-08-01

    Marine planktonic protists, including microalgae and protistan grazers, are an important contributor to global primary production and carbon and mineral cycles, however, little is known about their population shifts along the oxic-anoxic gradient in the water column. We used 454 pyrosequencing of the 18S rRNA gene and gene transcripts to study the community composition of whole and active protists throughout a water column in the Costa Rica Dome, where a stable oxygen minimum zone (OMZ) exists at a depth of 400~700 m. A clear shift of protist composition from photosynthetic Dinoflagellates in the surface to potential parasitic Dinoflagellates and Ciliates in the deeper water was revealed along the vertical profile at both rRNA and rDNA levels. Those protist groups recovered only at the rDNA level represent either lysed aggregates sinking from the upper waters or potential hosts for parasitic groups. UPGMA clustering demonstrated that total and active protists in the anoxic core of OMZ (550 m) were distinct from those in other water depths. The reduced community diversity and presence of a parasitic/symbiotic trophic lifestyle in the OMZ, especially the anoxic core, suggests that OMZs can exert a selective pressure on protist communities. Such changes in community structure and a shift in trophic lifestyle could result in a modulation of the microbial loop and associated biogeochemical cycling.

  8. Combined analyses of bacterial, fungal and nematode communities in andosolic agricultural soils in Japan.

    Science.gov (United States)

    Bao, Zhihua; Ikunaga, Yoko; Matsushita, Yuko; Morimoto, Sho; Takada-Hoshino, Yuko; Okada, Hiroaki; Oba, Hirosuke; Takemoto, Shuhei; Niwa, Shigeru; Ohigashi, Kentaro; Suzuki, Chika; Nagaoka, Kazunari; Takenaka, Makoto; Urashima, Yasufumi; Sekiguchi, Hiroyuki; Kushida, Atsuhiko; Toyota, Koki; Saito, Masanori; Tsushima, Seiya

    2012-01-01

    We simultaneously examined the bacteria, fungi and nematode communities in Andosols from four agro-geographical sites in Japan using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and statistical analyses to test the effects of environmental factors including soil properties on these communities depending on geographical sites. Statistical analyses such as Principal component analysis (PCA) and Redundancy analysis (RDA) revealed that the compositions of the three soil biota communities were strongly affected by geographical sites, which were in turn strongly associated with soil characteristics such as total C (TC), total N (TN), C/N ratio and annual mean soil temperature (ST). In particular, the TC, TN and C/N ratio had stronger effects on bacterial and fungal communities than on the nematode community. Additionally, two-way cluster analysis using the combined DGGE profile also indicated that all soil samples were classified into four clusters corresponding to the four sites, showing high site specificity of soil samples, and all DNA bands were classified into four clusters, showing the coexistence of specific DGGE bands of bacteria, fungi and nematodes in Andosol fields. The results of this study suggest that geography relative to soil properties has a simultaneous impact on soil microbial and nematode community compositions. This is the first combined profile analysis of bacteria, fungi and nematodes at different sites with agricultural Andosols.

  9. Evaluating variation in human gut microbiota profiles due to DNA extraction method and inter-subject differences.

    Science.gov (United States)

    Wagner Mackenzie, Brett; Waite, David W; Taylor, Michael W

    2015-01-01

    The human gut contains dense and diverse microbial communities which have profound influences on human health. Gaining meaningful insights into these communities requires provision of high quality microbial nucleic acids from human fecal samples, as well as an understanding of the sources of variation and their impacts on the experimental model. We present here a systematic analysis of commonly used microbial DNA extraction methods, and identify significant sources of variation. Five extraction methods (Human Microbiome Project protocol, MoBio PowerSoil DNA Isolation Kit, QIAamp DNA Stool Mini Kit, ZR Fecal DNA MiniPrep, phenol:chloroform-based DNA isolation) were evaluated based on the following criteria: DNA yield, quality and integrity, and microbial community structure based on Illumina amplicon sequencing of the V4 region of bacterial and archaeal 16S rRNA genes. Our results indicate that the largest portion of variation within the model was attributed to differences between subjects (biological variation), with a smaller proportion of variation associated with DNA extraction method (technical variation) and intra-subject variation. A comprehensive understanding of the potential impact of technical variation on the human gut microbiota will help limit preventable bias, enabling more accurate diversity estimates.

  10. Evaluating variation in human gut microbiota profiles due to DNA extraction method and inter-subject differences

    Directory of Open Access Journals (Sweden)

    Brett eWagner Mackenzie

    2015-02-01

    Full Text Available The human gut contains dense and diverse microbial communities which have profound influences on human health. Gaining meaningful insights into these communities requires provision of high quality microbial nucleic acids from human fecal samples, as well as an understanding of the sources of variation and their impacts on the experimental model. We present here a systematic analysis of commonly used microbial DNA extraction methods, and identify significant sources of variation. Five extraction methods (Human Microbiome Project protocol, MoBio PowerSoil DNA Isolation Kit, QIAamp DNA Stool Mini Kit, ZR Fecal DNA MiniPrep, phenol:chloroform-based DNA isolation were evaluated based on the following criteria: DNA yield, quality and integrity, and microbial community structure based on Illumina amplicon sequencing of the V4 region of bacterial and archaeal 16S rRNA genes. Our results indicate that the largest portion of variation within the model was attributed to differences between subjects (biological variation, with a smaller proportion of variation associated with DNA extraction method (technical variation and intra-subject variation. A comprehensive understanding of the potential impact of technical variation on the human gut microbiota will help limit preventable bias, enabling more accurate diversity estimates.

  11. A DNA barcode for land plants.

    Science.gov (United States)

    2009-08-04

    DNA barcoding involves sequencing a standard region of DNA as a tool for species identification. However, there has been no agreement on which region(s) should be used for barcoding land plants. To provide a community recommendation on a standard plant barcode, we have compared the performance of 7 leading candidate plastid DNA regions (atpF-atpH spacer, matK gene, rbcL gene, rpoB gene, rpoC1 gene, psbK-psbI spacer, and trnH-psbA spacer). Based on assessments of recoverability, sequence quality, and levels of species discrimination, we recommend the 2-locus combination of rbcL+matK as the plant barcode. This core 2-locus barcode will provide a universal framework for the routine use of DNA sequence data to identify specimens and contribute toward the discovery of overlooked species of land plants.

  12. Changes in the Total Fecal Bacterial Population in Individual Horses Maintained on a Restricted Diet Over 6 Weeks

    Directory of Open Access Journals (Sweden)

    Kirsty Dougal

    2017-08-01

    Full Text Available Twelve mature (aged 5–16 years horses and ponies of mixed breed and type were fed restricted (1.25% BM Dry matter quantities of one of two fiber based diets formulated to be iso-caloric. Diet 1 comprised of 0.8% body mass (BM of chaff based complete feed plus 0.45% BM low energy grass hay (the same hay used for both diets. Diet 2 comprised 0.1% BM of a nutrient balancer plus 1.15% BM grass hay. Fecal samples were collected at week 10 and week 16. DNA was extracted and the V1-V2 regions of 16SrDNA were 454-pyrosequenced to investigate the bacterial microbiome of the horse. The two most abundant phyla found in both diets and sampling periods were the Firmicutes and Bacteroidetes. There was a clear reduction in Bacteroidetes with a concordant increase in Firmicutes over time. There was a limited degree of stability within the bacterial community of the hindgut of horses, with 65% of bacteria retained, over a 6 week period whilst on a uniform diet. The presence of a core community defined by being present in all samples (each animal/diet combination included in the study and being present at 0.1% relative abundance (or greater was identified. In total 65 operational taxonomic units (OTUs were identified that fit the definition of core making up 21–28% of the total sequences recovered. As with total population the most abundant phyla were the Bacteroidetes followed by the Firmicutes, however there was no obvious shift in phyla due to period. Indeed, when the relative abundance of OTUs was examined across diets and periods there was no significant effect of diet or period alone or in combination on the relative abundance of the core OTUs.

  13. The effect of as long-term Mars simulation on a microbial permafrost soil community and macromolecules such as DNA, polypeptides and cell wall components.

    Science.gov (United States)

    Finster, K.; Hansen, A.; Liengaard, L.; Kristoffersen, T.; Mikkelsen, K.; Merrison, J.; Lomstein, B.

    Ten freeze-dried and homogenized samples of a 2300 years old Spitsbergen permafrost soil containing a complex microbial community were aseptically transferred to inert glass tubes and subjected to a 30 days Martian simulation experiment. During this period the samples received an UV dose equivalent to 80 Martian Sol. Data loggers in 4 out the ten samples monitored the temperature 0-2 mm below the surface of the sample. After removal from the simulation chamber, the samples were sliced in 1.5 to 6 mm thick horizons (H1, 0-1.5 mm; H2, 1.5-3 mm; H3, 3-6 mm; H4, 6-9 mm; H5, 9-15 mm; H6, 15-21 mm; H7, 21-27 mm and H8, 27-33 mm), resulting in 10 subsamples from each soil horizon. The subsamples from each horizon were pooled and used for the following investigations: 1. Determination of the bacterial number after staining with SYBR-gold, 2. Determination of the number of dead and living bacteria using the BacLight kit, 3. Determination of the total amount of extractable DNA, 4. Determination of the number of culturable aerobic and anaerobic bacteria, 5. Determination of the concentration of the total hydrolysable amino acids and D and L enantiomers, 6. Determination of the muramic acid contentration. The results of the experiments will be presented and discussed in our communication

  14. DNA preservation in silk.

    Science.gov (United States)

    Liu, Yawen; Zheng, Zhaozhu; Gong, He; Liu, Meng; Guo, Shaozhe; Li, Gang; Wang, Xiaoqin; Kaplan, David L

    2017-06-27

    The structure of DNA is susceptible to alterations at high temperature and on changing pH, irradiation and exposure to DNase. Options to protect and preserve DNA during storage are important for applications in genetic diagnosis, identity authentication, drug development and bioresearch. In the present study, the stability of total DNA purified from human dermal fibroblast cells, as well as that of plasmid DNA, was studied in silk protein materials. The DNA/silk mixtures were stabilized on filter paper (silk/DNA + filter) or filter paper pre-coated with silk and treated with methanol (silk/DNA + PT-filter) as a route to practical utility. After air-drying and water extraction, 50-70% of the DNA and silk could be retrieved and showed a single band on electrophoretic gels. 6% silk/DNA + PT-filter samples provided improved stability in comparison with 3% silk/DNA + filter samples and DNA + filter samples for DNA preservation, with ∼40% of the band intensity remaining at 37 °C after 40 days and ∼10% after exposure to UV light for 10 hours. Quantitative analysis using the PicoGreen assay confirmed the results. The use of Tris/borate/EDTA (TBE) buffer enhanced the preservation and/or extraction of the DNA. The DNA extracted after storage maintained integrity and function based on serving as a functional template for PCR amplification of the gene for zinc finger protein 750 (ZNF750) and for transgene expression of red fluorescence protein (dsRed) in HEK293 cells. The high molecular weight and high content of a crystalline beta-sheet structure formed on the coated surfaces likely accounted for the preservation effects observed for the silk/DNA + PT-filter samples. Although similar preservation effects were also obtained for lyophilized silk/DNA samples, the rapid and simple processing available with the silk-DNA-filter membrane system makes it appealing for future applications.

  15. Analysis of DNA polymerase activity in Petunia protoplasts treated with clastogenic agents

    International Nuclear Information System (INIS)

    Benediktsson, I.; Spampinato, C.P.; Andreo, C.S.; Schieder, O.

    1994-01-01

    Clastogenic agents, i.e. agents that can induce chromosome or DNA breakage, have been shown to enhance the role of direct gene transfer to protoplasts. The effect was analysed at the enzymatic level using protoplast homogenates as well as intact protoplasts. For that purpose existing procedures were modified to enable measurement of DNA polymerase in vivo. In the system used, external DNA was able to enter the cells without the addition of membrane-permeabilizing compounds. When comparing total DNA polymerase activity of protoplasts irradiated with X-rays or UV-light with that of untreated cells we did not observe significant differences. Incubation of protoplasts with high doses of bleomycin affected total DNA polymerase activity negatively. but dideoxythymidine triphosphate-sensitive activity was not influenced. We conclude that the DNA strand-breaks induced by low doses of X-rays. UV-light or bleomycin do not increase the total or the repair-DNA polymerase activity and. therefore. that the increase in the transformation rates after DNA strand-breaking is not preceded by enhanced DNA polymerase activity. (author)

  16. Bacterial community analysis of activated sludge: an evaluation of four commonly used DNA extraction methods

    NARCIS (Netherlands)

    Vanysacker, L.; Declerck, S.A.J.; Hellemans, B.; De Meester, L.; Vankelecom, I.; Declerck, P.

    2010-01-01

    The effectiveness of three commercially available direct DNA isolation kits (Mobio, Fast, Qiagen) and one published direct DNA extraction protocol (Bead) for extracting bacterial DNA from different types of activated sludge was investigated and mutually compared. The DNA quantity and purity were

  17. Effect of specific enzyme inhibitors on replication, total genome DNA repair and on gene-specific DNA repair after UV irradiation in CHO cells

    Energy Technology Data Exchange (ETDEWEB)

    Jones, J.C.; Stevsner, Tinna; Bohr, Vilhelm A. (National Cancer Institute, NIH, Bethesda, MD (USA). Division of Cancer Treatment, Laboratory of Molecular Pharmacology); Mattern, M.R. (Smith Kline Beecham Pharmaceuticals, King of Prussia, PA (USA). Department of Biomolecular Discovery)

    1991-09-01

    The effects were studied of some specific enzyme inhibitors on DNA repair and replication after UV damage in Chinese hamster ovary cells. The DNA repair was studied at the level of the average, overall genome and also in the active dihydrofolate reductase gene. Replication was measured in the overall genome. The inhibitors were tested of DNA poly-merase {alpha} and {delta} (aphidicolin), of poly(ADPr) polymerase (3-aminobenzamide), of ribonucleotide reductase (hydroxyurea), of topo-isomerase I (camptothecin), and of topoisomerase II (merbarone, VP-16). In addition, the effects were tested of the potential topoisomerase I activator, {beta}-lapachone. All of these compounds inhibited genome replication and all topoisomerase inhibitors affected the overall genome repair; {beta}-lapachone stimulated it. None of these compounds had any effect on the gene-specific repair. (author). 36 refs.; 3 figs.; 2 tabs.

  18. The impact of shrimp farming effluent on bacterial communities in mangrove waters, Ceará, Brazil.

    Science.gov (United States)

    Sousa, O V; Macrae, A; Menezes, F G R; Gomes, N C M; Vieira, R H S F; Mendonça-Hagler, L C S

    2006-12-01

    The effects of shrimp farm effluents on bacterial communities in mangroves have been infrequently reported. Classic and molecular biology methods were used to survey bacterial communities from four mangroves systems. Water temperature, salinity, pH, total heterotrophic bacteria and maximum probable numbers of Vibrio spp. were investigated. Genetic profiles of bacterial communities were also characterized by polymerase chain reaction (PCR) amplification of eubacterial and Vibrio 16S rDNA using denaturing gradient gel electrophoresis (DGGE). Highest heterotrophic counts were registered in the mangrove not directly polluted by shrimp farming. The Enterobacteriaceae and Chryseomonas luteola dominated the heterotrophic isolates. Vibrio spp. pathogenic to humans and shrimps were identified. Eubacterial genetic profiles suggest a shared community structure independent of mangrove system. Vibrio genetic profiles were mangrove specific. Neither microbial counts nor genetic profiling revealed a significant decrease in species richness associated with shrimp farm effluent. The complex nature of mangrove ecosystems and their microbial communities is discussed.

  19. Bacterial community diversity of the deep-sea octocoral Paramuricea placomus

    Directory of Open Access Journals (Sweden)

    Christina A. Kellogg

    2016-09-01

    Full Text Available Compared to tropical corals, much less is known about deep-sea coral biology and ecology. Although the microbial communities of some deep-sea corals have been described, this is the first study to characterize the bacterial community associated with the deep-sea octocoral, Paramuricea placomus. Samples from five colonies of P. placomus were collected from Baltimore Canyon (379–382 m depth in the Atlantic Ocean off the east coast of the United States of America. DNA was extracted from the coral samples and 16S rRNA gene amplicons were pyrosequenced using V4-V5 primers. Three samples sequenced deeply (>4,000 sequences each and were further analyzed. The dominant microbial phylum was Proteobacteria, but other major phyla included Firmicutes and Planctomycetes. A conserved community of bacterial taxa held in common across the three P. placomus colonies was identified, comprising 68–90% of the total bacterial community depending on the coral individual. The bacterial community of P. placomus does not appear to include the genus Endozoicomonas, which has been found previously to be the dominant bacterial associate in several temperate and tropical gorgonians. Inferred functionality suggests the possibility of nitrogen cycling by the core bacterial community.

  20. Methods for High-throughput Characterisation of Environmental DNA

    DEFF Research Database (Denmark)

    Andersen, Kenneth

    This PhD thesis examines the potential of describing biodiversity of green plants (Viridiplantae), birds (Aves) and mammals (Mammalia), in the context of next-generation sequencing, from the DNA that all organisms segregate into the environment (eDNA). The research is based on case studies...... of species assemblages described by eDNA recovered from contemporary surface soil and Holocene sediment sequences, to assess the accuracy and limitations of the approach. Biodiversity incorporates two aspects of ecological communities, including both the taxonomic richness and abundance of individual taxa...... inhibition. In chapter four, alternative DNA extraction protocols and pipelines for characterising plant eDNA are tested on samples from contrasting environments including modern, Holocene and Pleistocene sediment samples. These results are compared to pollen and macrofossil records described from earlier...

  1. Community Composition of Nitrous Oxide Consuming Bacteria in the Oxygen Minimum Zone of the Eastern Tropical South Pacific

    Directory of Open Access Journals (Sweden)

    Xin Sun

    2017-06-01

    Full Text Available The ozone-depleting and greenhouse gas, nitrous oxide (N2O, is mainly consumed by the microbially mediated anaerobic process, denitrification. N2O consumption is the last step in canonical denitrification, and is also the least O2 tolerant step. Community composition of total and active N2O consuming bacteria was analyzed based on total (DNA and transcriptionally active (RNA nitrous oxide reductase (nosZ genes using a functional gene microarray. The total and active nosZ communities were dominated by a limited number of nosZ archetypes, affiliated with bacteria from marine, soil and marsh environments. In addition to nosZ genes related to those of known marine denitrifiers, atypical nosZ genes, related to those of soil bacteria that do not possess a complete denitrification pathway, were also detected, especially in surface waters. The community composition of the total nosZ assemblage was significantly different from the active assemblage. The community composition of the total nosZ assemblage was significantly different between coastal and off-shore stations. The low oxygen assemblages from both stations were similar to each other, while the higher oxygen assemblages were more variable. Community composition of the active nosZ assemblage was also significantly different between stations, and varied with N2O concentration but not O2. Notably, nosZ assemblages were not only present but also active in oxygenated seawater: the abundance of total and active nosZ bacteria from oxygenated surface water (indicated by nosZ gene copy number was similar to or even larger than in anoxic waters, implying the potential for N2O consumption even in the oxygenated surface water.

  2. Community Composition of Nitrous Oxide Consuming Bacteria in the Oxygen Minimum Zone of the Eastern Tropical South Pacific

    Science.gov (United States)

    Sun, Xin; Jayakumar, Amal; Ward, Bess B.

    2017-01-01

    The ozone-depleting and greenhouse gas, nitrous oxide (N2O), is mainly consumed by the microbially mediated anaerobic process, denitrification. N2O consumption is the last step in canonical denitrification, and is also the least O2 tolerant step. Community composition of total and active N2O consuming bacteria was analyzed based on total (DNA) and transcriptionally active (RNA) nitrous oxide reductase (nosZ) genes using a functional gene microarray. The total and active nosZ communities were dominated by a limited number of nosZ archetypes, affiliated with bacteria from marine, soil and marsh environments. In addition to nosZ genes related to those of known marine denitrifiers, atypical nosZ genes, related to those of soil bacteria that do not possess a complete denitrification pathway, were also detected, especially in surface waters. The community composition of the total nosZ assemblage was significantly different from the active assemblage. The community composition of the total nosZ assemblage was significantly different between coastal and off-shore stations. The low oxygen assemblages from both stations were similar to each other, while the higher oxygen assemblages were more variable. Community composition of the active nosZ assemblage was also significantly different between stations, and varied with N2O concentration but not O2. Notably, nosZ assemblages were not only present but also active in oxygenated seawater: the abundance of total and active nosZ bacteria from oxygenated surface water (indicated by nosZ gene copy number) was similar to or even larger than in anoxic waters, implying the potential for N2O consumption even in the oxygenated surface water. PMID:28702012

  3. How conserved are the bacterial communities associated with aphids? A detailed assessment of the Brevicoryne brassicae (Hemiptera: Aphididae) using 16S rDNA.

    Science.gov (United States)

    Clark, E L; Daniell, T J; Wishart, J; Hubbard, S F; Karley, A J

    2012-12-01

    Aphids harbor a community of bacteria that include obligate and facultative endosymbionts belonging to the Enterobacteriaceae along with opportunistic, commensal, or pathogenic bacteria. This study represents the first detailed analysis of the identity and diversity of the bacterial community associated with the cabbage aphid, Brevicoryne brassicae (L.). 16S rDNA sequence analysis revealed that the community of bacteria associated with B. brassicae was diverse, with at least four different bacterial community types detected among aphid lines, collected from widely dispersed sites in Northern Britain. The bacterial sequence types isolated from B. brassicae showed little similarity to any bacterial endosymbionts characterized in insects; instead, they were closely related to free-living extracellular bacterial species that have been isolated from the aphid gut or that are known to be present in the environment, suggesting that they are opportunistic bacteria transmitted between the aphid gut and the environment. To quantify variation in bacterial community between aphid lines, which was driven largely by differences in the proportions of two dominant bacterial orders, the Pseudomonales and the Enterobacteriales, we developed a novel real-time (Taqman) qPCR assay. By improving our knowledge of aphid microbial ecology, and providing novel molecular tools to examine the presence and function of the microbial community, this study forms the basis of further research to explore the influence of the extracellular bacterial community on aphid fitness, pest status, and susceptibility to control by natural enemies.

  4. Systematic evaluation of bias in microbial community profiles induced by whole genome amplification.

    Science.gov (United States)

    Direito, Susana O L; Zaura, Egija; Little, Miranda; Ehrenfreund, Pascale; Röling, Wilfred F M

    2014-03-01

    Whole genome amplification methods facilitate the detection and characterization of microbial communities in low biomass environments. We examined the extent to which the actual community structure is reliably revealed and factors contributing to bias. One widely used [multiple displacement amplification (MDA)] and one new primer-free method [primase-based whole genome amplification (pWGA)] were compared using a polymerase chain reaction (PCR)-based method as control. Pyrosequencing of an environmental sample and principal component analysis revealed that MDA impacted community profiles more strongly than pWGA and indicated that this related to species GC content, although an influence of DNA integrity could not be excluded. Subsequently, biases by species GC content, DNA integrity and fragment size were separately analysed using defined mixtures of DNA from various species. We found significantly less amplification of species with the highest GC content for MDA-based templates and, to a lesser extent, for pWGA. DNA fragmentation also interfered severely: species with more fragmented DNA were less amplified with MDA and pWGA. pWGA was unable to amplify low molecular weight DNA (microbial communities in low-biomass environments and for currently planned astrobiological missions to Mars. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  5. Phototherapy causes DNA damage in peripheral mononuclear leukocytes in term infants.

    Science.gov (United States)

    Aycicek, Ali; Kocyigit, Abdurrahim; Erel, Ozcan; Senturk, Hakan

    2008-01-01

    Our aim was to determine whether endogenous mononuclear leukocyte DNA strand is a target of phototherapy. The study included 65 term infants aged between 3-10 days that had been exposed to intensive (n = 23) or conventional (n = 23) phototherapy for at least 48 hours due to neonatal jaundice, and a control group (n = 19). DNA damage was assayed by single-cell alkaline gel electrophoresis (comet assay). Plasma total antioxidant capacity and total oxidant status levels were also measured, and correlation between DNA damage and oxidative stress was investigated. Mean values of DNA damage scores in both the intensive and conventional phototherapy groups were significantly higher than those in the control group (p Total oxidant status levels in both the intensive and conventional phototherapy groups were significantly higher than those in the control group (p = 0.005). Mean (standard deviation) values were 18.1 (4.2), 16.9 (4.4), 13.5 (4.2) micromol H2O2 equivalent/L, respectively. Similarly, oxidative stress index levels in both the intensive and conventional phototherapy groups were significantly higher than those in the control group (p = 0.041). Plasma total antioxidant capacity and total bilirubin levels did not differ between the groups (p > 0.05). There were no significant correlations between DNA damage scores and bilirubin, total oxidant status and oxidative stress levels in either phototherapy group (p > 0.05). Both conventional phototherapy and intensive phototherapy cause endogenous mononuclear leukocyte DNA damage in jaundiced term infants.

  6. A DNA barcode for land plants

    Science.gov (United States)

    Hollingsworth, Peter M.; Forrest, Laura L.; Spouge, John L.; Hajibabaei, Mehrdad; Ratnasingham, Sujeevan; van der Bank, Michelle; Chase, Mark W.; Cowan, Robyn S.; Erickson, David L.; Fazekas, Aron J.; Graham, Sean W.; James, Karen E.; Kim, Ki-Joong; Kress, W. John; Schneider, Harald; van AlphenStahl, Jonathan; Barrett, Spencer C.H.; van den Berg, Cassio; Bogarin, Diego; Burgess, Kevin S.; Cameron, Kenneth M.; Carine, Mark; Chacón, Juliana; Clark, Alexandra; Clarkson, James J.; Conrad, Ferozah; Devey, Dion S.; Ford, Caroline S.; Hedderson, Terry A.J.; Hollingsworth, Michelle L.; Husband, Brian C.; Kelly, Laura J.; Kesanakurti, Prasad R.; Kim, Jung Sung; Kim, Young-Dong; Lahaye, Renaud; Lee, Hae-Lim; Long, David G.; Madriñán, Santiago; Maurin, Olivier; Meusnier, Isabelle; Newmaster, Steven G.; Park, Chong-Wook; Percy, Diana M.; Petersen, Gitte; Richardson, James E.; Salazar, Gerardo A.; Savolainen, Vincent; Seberg, Ole; Wilkinson, Michael J.; Yi, Dong-Keun; Little, Damon P.

    2009-01-01

    DNA barcoding involves sequencing a standard region of DNA as a tool for species identification. However, there has been no agreement on which region(s) should be used for barcoding land plants. To provide a community recommendation on a standard plant barcode, we have compared the performance of 7 leading candidate plastid DNA regions (atpF–atpH spacer, matK gene, rbcL gene, rpoB gene, rpoC1 gene, psbK–psbI spacer, and trnH–psbA spacer). Based on assessments of recoverability, sequence quality, and levels of species discrimination, we recommend the 2-locus combination of rbcL+matK as the plant barcode. This core 2-locus barcode will provide a universal framework for the routine use of DNA sequence data to identify specimens and contribute toward the discovery of overlooked species of land plants. PMID:19666622

  7. RNA preservation agents and nucleic acid extraction method bias perceived bacterial community composition.

    Directory of Open Access Journals (Sweden)

    Ann McCarthy

    Full Text Available Bias is a pervasive problem when characterizing microbial communities. An important source is the difference in lysis efficiencies of different populations, which vary depending on the extraction protocol used. To avoid such biases impacting comparisons between gene and transcript abundances in the environment, the use of one protocol that simultaneously extracts both types of nucleic acids from microbial community samples has gained popularity. However, knowledge regarding tradeoffs to combined nucleic acid extraction protocols is limited, particularly regarding yield and biases in the observed community composition. Here, we evaluated a commercially available protocol for simultaneous extraction of DNA and RNA, which we adapted for freshwater microbial community samples that were collected on filters. DNA and RNA yields were comparable to other commonly used, but independent DNA and RNA extraction protocols. RNA protection agents benefited RNA quality, but decreased DNA yields significantly. Choice of extraction protocol influenced the perceived bacterial community composition, with strong method-dependent biases observed for specific phyla such as the Verrucomicrobia. The combined DNA/RNA extraction protocol detected significantly higher levels of Verrucomicrobia than the other protocols, and those higher numbers were confirmed by microscopic analysis. Use of RNA protection agents as well as independent sequencing runs caused a significant shift in community composition as well, albeit smaller than the shift caused by using different extraction protocols. Despite methodological biases, sample origin was the strongest determinant of community composition. However, when the abundance of specific phylogenetic groups is of interest, researchers need to be aware of the biases their methods introduce. This is particularly relevant if different methods are used for DNA and RNA extraction, in addition to using RNA protection agents only for RNA

  8. Application of ion torrent sequencing to the assessment of the effect of alkali ballast water treatment on microbial community diversity.

    Directory of Open Access Journals (Sweden)

    Masanori Fujimoto

    Full Text Available The impact of NaOH as a ballast water treatment (BWT on microbial community diversity was assessed using the 16S rRNA gene based Ion Torrent sequencing with its new 400 base chemistry. Ballast water samples from a Great Lakes ship were collected from the intake and discharge of both control and NaOH (pH 12 treated tanks and were analyzed in duplicates. One set of duplicates was treated with the membrane-impermeable DNA cross-linking reagent propidium mono-azide (PMA prior to PCR amplification to differentiate between live and dead microorganisms. Ion Torrent sequencing generated nearly 580,000 reads for 31 bar-coded samples and revealed alterations of the microbial community structure in ballast water that had been treated with NaOH. Rarefaction analysis of the Ion Torrent sequencing data showed that BWT using NaOH significantly decreased microbial community diversity relative to control discharge (p<0.001. UniFrac distance based principal coordinate analysis (PCoA plots and UPGMA tree analysis revealed that NaOH-treated ballast water microbial communities differed from both intake communities and control discharge communities. After NaOH treatment, bacteria from the genus Alishewanella became dominant in the NaOH-treated samples, accounting for <0.5% of the total reads in intake samples but more than 50% of the reads in the treated discharge samples. The only apparent difference in microbial community structure between PMA-processed and non-PMA samples occurred in intake water samples, which exhibited a significantly higher amount of PMA-sensitive cyanobacteria/chloroplast 16S rRNA than their corresponding non-PMA total DNA samples. The community assembly obtained using Ion Torrent sequencing was comparable to that obtained from a subset of samples that were also subjected to 454 pyrosequencing. This study showed the efficacy of alkali ballast water treatment in reducing ballast water microbial diversity and demonstrated the application of new

  9. Specific amplification of bacterial DNA by optimized so-called universal bacterial primers in samples rich of plant DNA.

    Science.gov (United States)

    Dorn-In, Samart; Bassitta, Rupert; Schwaiger, Karin; Bauer, Johann; Hölzel, Christina S

    2015-06-01

    Universal primers targeting the bacterial 16S-rRNA-gene allow quantification of the total bacterial load in variable sample types by qPCR. However, many universal primer pairs also amplify DNA of plants or even of archaea and other eukaryotic cells. By using these primers, the total bacterial load might be misevaluated, whenever samples contain high amounts of non-target DNA. Thus, this study aimed to provide primer pairs which are suitable for quantification and identification of bacterial DNA in samples such as feed, spices and sample material from digesters. For 42 primers, mismatches to the sequence of chloroplasts and mitochondria of plants were evaluated. Six primer pairs were further analyzed with regard to the question whether they anneal to DNA of archaea, animal tissue and fungi. Subsequently they were tested with sample matrix such as plants, feed, feces, soil and environmental samples. To this purpose, the target DNA in the samples was quantified by qPCR. The PCR products of plant and feed samples were further processed for the Single Strand Conformation Polymorphism method followed by sequence analysis. The sequencing results revealed that primer pair 335F/769R amplified only bacterial DNA in samples such as plants and animal feed, in which the DNA of plants prevailed. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Synthesis, Characterization and DNA Cleavage of Copper(II ...

    African Journals Online (AJOL)

    Keywords: DNA shearing, Copper(II) complex, Dithiothreitol, Attenuated total reflectance-Fourier transform .... confirm the fragmentation of DNA by the newly .... sperm. Biochem Biophys Acta 1986; 884: 124-134. 7. Cornell NW, Crivaro KE.

  11. Quantification of intrahepatic total HBV DNA in liver biopsies of HBV-infected patients by a modified version of COBAS® Ampliprep/COBAS®TaqMan HBV test v2.0.

    Science.gov (United States)

    Salpini, Romina; Piermatteo, Lorenzo; Gill, Upkar; Battisti, Arianna; Stazi, Francesca; Guenci, Tania; Giannella, Sara; Serafini, Valentina; Kennedy, Patrick T F; Perno, Carlo Federico; Svicher, Valentina; Ciotti, Marco

    2017-08-01

    Intrahepatic total HBV DNA (it-HBV DNA) level might reflect the size of virus reservoir and correlate with the histological status of the liver. To quantitate it-HBV DNA in a series of 70 liver biopsies obtained from hepatitis B chronic patients, a modified version of the COBAS ® Ampliprep/COBAS ® TaqMan HBV test v2.0 was used for this purpose. The linearity and reproducibility of the modified protocol was tested by quantifying serial dilutions of a full-length HBV containing plasmid and it-HBV DNA from a reference patient. A good linear trend between the expected values and those generated by the assay was observed at different concentrations of both plasmid and reference patient (R 2  = 0.994 and 0.962, respectively). Differences between the values obtained in two independent runs were ≤0.3 log IU for the plasmid and ≤0.6 log IU/mg for the reference patient, showing a high inter-run reproducibility. In the 70 liver biopsies, it-HBV DNA level ranged from 1.4 to 5.4 log IU/mg, with a good linearity and reproducibility between the values obtained in two runs [R 2  = 0.981; median (IQR) difference of it-HBV DNA 0.05 (0.02-0.09) IU/mg]. The modified COBAS ® Ampliprep/COBAS ® TaqMan HBV test v2.0 allows an accurate quantitation of it-HBV DNA. Its determination may have prognostic value and may be a useful tool for the new therapeutic strategies aimed at eradicating the HBV infection.

  12. Autonomous assembly of synthetic oligonucleotides built from an expanded DNA alphabet. Total synthesis of a gene encoding kanamycin resistance

    Directory of Open Access Journals (Sweden)

    Kristen K. Merritt

    2014-10-01

    Full Text Available Background: Many synthetic biologists seek to increase the degree of autonomy in the assembly of long DNA (L-DNA constructs from short synthetic DNA fragments, which are today quite inexpensive because of automated solid-phase synthesis. However, the low information density of DNA built from just four nucleotide “letters”, the presence of strong (G:C and weak (A:T nucleobase pairs, the non-canonical folded structures that compete with Watson–Crick pairing, and other features intrinsic to natural DNA, generally prevent the autonomous assembly of short single-stranded oligonucleotides greater than a dozen or so.Results: We describe a new strategy to autonomously assemble L-DNA constructs from fragments of synthetic single-stranded DNA. This strategy uses an artificially expanded genetic information system (AEGIS that adds nucleotides to the four (G, A, C, and T found in standard DNA by shuffling hydrogen-bonding units on the nucleobases, all while retaining the overall Watson–Crick base-pairing geometry. The added information density allows larger numbers of synthetic fragments to self-assemble without off-target hybridization, hairpin formation, and non-canonical folding interactions. The AEGIS pairs are then converted into standard pairs to produce a fully natural L-DNA product. Here, we report the autonomous assembly of a gene encoding kanamycin resistance using this strategy. Synthetic fragments were built from a six-letter alphabet having two AEGIS components, 5-methyl-2’-deoxyisocytidine and 2’-deoxyisoguanosine (respectively S and B, at their overlapping ends. Gaps in the overlapped assembly were then filled in using DNA polymerases, and the nicks were sealed by ligase. The S:B pairs in the ligated construct were then converted to T:A pairs during PCR amplification. When cloned into a plasmid, the product was shown to make Escherichia coli resistant to kanamycin. A parallel study that attempted to assemble similarly sized genes

  13. A simple, rapid and efficient method of isolating DNA from ...

    African Journals Online (AJOL)

    Total DNA of Chokanan mango (Mangifera indica L.) was extracted from the leaf for the construction of total genomic library. However, the quality of the extracted DNA was often compromised by the presence of secondary metabolites, thus interfering with the analytical applications. Improvement on the quality of the ...

  14. Temporal dynamics of soil microbial communities under different moisture regimes: high-throughput sequencing and bioinformatics analysis

    Science.gov (United States)

    Semenov, Mikhail; Zhuravleva, Anna; Semenov, Vyacheslav; Yevdokimov, Ilya; Larionova, Alla

    2017-04-01

    Recent climate scenarios predict not only continued global warming but also an increased frequency and intensity of extreme climatic events such as strong changes in temperature and precipitation regimes. Microorganisms are well known to be more sensitive to changes in environmental conditions than to other soil chemical and physical parameters. In this study, we determined the shifts in soil microbial community structure as well as indicative taxa in soils under three moisture regimes using high-throughput Illumina sequencing and range of bioinformatics approaches for the assessment of sequence data. Incubation experiments were performed in soil-filled (Greyic Phaeozems Albic) rhizoboxes with maize and without plants. Three contrasting moisture regimes were being simulated: 1) optimal wetting (OW), a watering 2-3 times per week to maintain soil moisture of 20-25% by weight; 2) periodic wetting (PW), with alternating periods of wetting and drought; and 3) constant insufficient wetting (IW), while soil moisture of 12% by weight was permanently maintained. Sampled fresh soils were homogenized, and the total DNA of three replicates was extracted using the FastDNA® SPIN kit for Soil. DNA replicates were combined in a pooled sample and the DNA was used for PCR with specific primers for the 16S V3 and V4 regions. In order to compare variability between different samples and replicates within a single sample, some DNA replicates treated separately. The products were purified and submitted to Illumina MiSeq sequencing. Sequence data were evaluated by alpha-diversity (Chao1 and Shannon H' diversity indexes), beta-diversity (UniFrac and Bray-Curtis dissimilarity), heatmap, tagcloud, and plot-bar analyses using the MiSeq Reporter Metagenomics Workflow and R packages (phyloseq, vegan, tagcloud). Shannon index varied in a rather narrow range (4.4-4.9) with the lowest values for microbial communities under PW treatment. Chao1 index varied from 385 to 480, being a more flexible

  15. Chromosome-specific DNA Repeat Probes

    Energy Technology Data Exchange (ETDEWEB)

    Baumgartner, Adolf; Weier, Jingly Fung; Weier, Heinz-Ulrich G.

    2006-03-16

    In research as well as in clinical applications, fluorescence in situ hybridization (FISH) has gained increasing popularity as a highly sensitive technique to study cytogenetic changes. Today, hundreds of commercially available DNA probes serve the basic needs of the biomedical research community. Widespread applications, however, are often limited by the lack of appropriately labeled, specific nucleic acid probes. We describe two approaches for an expeditious preparation of chromosome-specific DNAs and the subsequent probe labeling with reporter molecules of choice. The described techniques allow the preparation of highly specific DNA repeat probes suitable for enumeration of chromosomes in interphase cell nuclei or tissue sections. In addition, there is no need for chromosome enrichment by flow cytometry and sorting or molecular cloning. Our PCR-based method uses either bacterial artificial chromosomes or human genomic DNA as templates with {alpha}-satellite-specific primers. Here we demonstrate the production of fluorochrome-labeled DNA repeat probes specific for human chromosomes 17 and 18 in just a few days without the need for highly specialized equipment and without the limitation to only a few fluorochrome labels.

  16. DNA Profiles from Fingerprint Lifts-Enhancing the Evidential Value of Fingermarks Through Successful DNA Typing.

    Science.gov (United States)

    Subhani, Zuhaib; Daniel, Barbara; Frascione, Nunzianda

    2018-05-25

    This study evaluated the compatibility of the most common enhancement methods and lifting techniques with DNA profiling. Emphasis is placed on modern lifting techniques (i.e., gelatin lifters and Isomark™) and historical fingerprint lifts for which limited research has been previously conducted. A total of 180 fingerprints were deposited on a glass surface, enhanced, lifted, and processed for DNA typing. DNA could be extracted and profiled for all the powders and lifts tested and from both groomed fingerprints and natural prints with no significant difference in the percentage of profile recovered. DNA profiles could also be obtained from historical fingerprint lifts (79.2% of 72 lifts) with one or more alleles detected. These results demonstrate the compatibility between different powder/lift combinations and DNA profiling therefore augmenting the evidential value of fingerprints in forensic casework. © 2018 American Academy of Forensic Sciences.

  17. Skewed matrilineal genetic composition in a small wild chimpanzee community.

    Science.gov (United States)

    Shimada, Makoto K; Hayakawa, Sachiko; Fujita, Shiho; Sugiyama, Yukimaru; Saitou, Naruya

    2009-01-01

    Maternal kinship is important in primate societies because it affects individual behaviour as well as the sustainability of populations. All members of the Bossou chimpanzee community are descended from 8 individuals (herein referred to as original adults) who were already adults or subadults when field observations were initiated in 1976 and whose genetic relationships were unknown. Sequencing of the control region on the maternally inherited mtDNA revealed that 4 (1 male and 3 females) of the 8 original adults shared an identical haplotype. We investigated the effects of the skewed distribution of mtDNA haplotypes on the following two outcomes. First, we demonstrated that the probability of mtDNA haplotype extinction would be increased under such a skewed composition in a small community. Second, the ratio of potential mating candidates to competitors is likely to decrease if chimpanzees become aware of maternal kinship and avoid incest. We estimated that the magnitude of the decrease in the ratio is 10 times greater in males than in females. Here we demonstrate a scenario in which this matrilineal skewness in a small community accelerates extinction of mtDNA haplotype, which will make it more difficult to find a suitable mate within the community. 2008 S. Karger AG, Basel.

  18. Metabarcoding of the kombucha microbial community grown in different microenvironments.

    Science.gov (United States)

    Reva, Oleg N; Zaets, Iryna E; Ovcharenko, Leonid P; Kukharenko, Olga E; Shpylova, Switlana P; Podolich, Olga V; de Vera, Jean-Pierre; Kozyrovska, Natalia O

    2015-12-01

    Introducing of the DNA metabarcoding analysis of probiotic microbial communities allowed getting insight into their functioning and establishing a better control on safety and efficacy of the probiotic communities. In this work the kombucha poly-microbial probiotic community was analysed to study its flexibility under different growth conditions. Environmental DNA sequencing revealed a complex and flexible composition of the kombucha microbial culture (KMC) constituting more bacterial and fungal organisms in addition to those found by cultural method. The community comprised bacterial and yeast components including cultured and uncultivable microorganisms. Culturing the KMC under different conditions revealed the core part of the community which included acetobacteria of two genera Komagataeibacter (former Gluconacetobacter) and Gluconobacter, and representatives of several yeast genera among which Brettanomyces/Dekkera and Pichia (including former Issatchenkia) were dominant. Herbaspirillum spp. and Halomonas spp., which previously had not been described in KMC, were found to be minor but permanent members of the community. The community composition was dependent on the growth conditions. The bacterial component of KMC was relatively stable, but may include additional member-lactobacilli. The yeast species composition was significantly variable. High-throughput sequencing showed complexity and variability of KMC that may affect the quality of the probiotic drink. It was hypothesized that the kombucha core community might recruit some environmental bacteria, particularly lactobacilli, which potentially may contribute to the fermentative capacity of the probiotic drink. As many KMC-associated microorganisms cannot be cultured out of the community, a robust control for community composition should be provided by using DNA metabarcoding.

  19. DNA barcodes for ecology, evolution, and conservation.

    Science.gov (United States)

    Kress, W John; García-Robledo, Carlos; Uriarte, Maria; Erickson, David L

    2015-01-01

    The use of DNA barcodes, which are short gene sequences taken from a standardized portion of the genome and used to identify species, is entering a new phase of application as more and more investigations employ these genetic markers to address questions relating to the ecology and evolution of natural systems. The suite of DNA barcode markers now applied to specific taxonomic groups of organisms are proving invaluable for understanding species boundaries, community ecology, functional trait evolution, trophic interactions, and the conservation of biodiversity. The application of next-generation sequencing (NGS) technology will greatly expand the versatility of DNA barcodes across the Tree of Life, habitats, and geographies as new methodologies are explored and developed. Published by Elsevier Ltd.

  20. Ancient mtDNA genetic variants modulate mtDNA transcription and replication.

    Directory of Open Access Journals (Sweden)

    Sarit Suissa

    2009-05-01

    Full Text Available Although the functional consequences of mitochondrial DNA (mtDNA genetic backgrounds (haplotypes, haplogroups have been demonstrated by both disease association studies and cell culture experiments, it is not clear which of the mutations within the haplogroup carry functional implications and which are "evolutionary silent hitchhikers". We set forth to study the functionality of haplogroup-defining mutations within the mtDNA transcription/replication regulatory region by in vitro transcription, hypothesizing that haplogroup-defining mutations occurring within regulatory motifs of mtDNA could affect these processes. We thus screened >2500 complete human mtDNAs representing all major populations worldwide for natural variation in experimentally established protein binding sites and regulatory regions comprising a total of 241 bp in each mtDNA. Our screen revealed 77/241 sites showing point mutations that could be divided into non-fixed (57/77, 74% and haplogroup/sub-haplogroup-defining changes (i.e., population fixed changes, 20/77, 26%. The variant defining Caucasian haplogroup J (C295T increased the binding of TFAM (Electro Mobility Shift Assay and the capacity of in vitro L-strand transcription, especially of a shorter transcript that maps immediately upstream of conserved sequence block 1 (CSB1, a region associated with RNA priming of mtDNA replication. Consistent with this finding, cybrids (i.e., cells sharing the same nuclear genetic background but differing in their mtDNA backgrounds harboring haplogroup J mtDNA had a >2 fold increase in mtDNA copy number, as compared to cybrids containing haplogroup H, with no apparent differences in steady state levels of mtDNA-encoded transcripts. Hence, a haplogroup J regulatory region mutation affects mtDNA replication or stability, which may partially account for the phenotypic impact of this haplogroup. Our analysis thus demonstrates, for the first time, the functional impact of particular mtDNA

  1. [Effect of total glucosides of peony on expression and DNA methylation status of ITGAL gene in CD4(+) T cells of systemic lupus erythematosus].

    Science.gov (United States)

    Zhao, Ming; Liang, Gongping; Luo, Shuangyan; Lu, Qianjin

    2012-05-01

    To investigate the effect of total glucosides of peony (TGP) on expression and DNA methylation status of ITGAL gene (CD11a) in CD4(+) T cells from patients with systemic lupus erythematosus (SLE). CD4(+) T cells were isolated by positive selection using CD4 beads. CD4(+) T cells were treated by TGP at 0, 62.5, 312.5 and 1562.5 mg/L for 48 h. The MTT method was used to assess cell viability; mRNA expression level was measured by realtime-PCR; protein level of CD11a was measured by flow cytometric analysis; DNA methylation status was assayed by bisulfite sequencing. No significant change in cell viability was found in CD4(+) T cells among the different concentration groups (P>0.05). Compared with control, the mRNA and protein levels of ITGAL were down-regulated significantly in SLE CD4(+) T cells treated with TGP (1562.5 mg/L) (PTGP (1562.5 mg/L) treated CD4(+) T cells compared with control group (PTGP can repress CD11a gene expression through enhancing DNA methylation of ITGAL promoter in CD4(+) T cells from patients with SLE. This observation represents a preliminary step in understanding the mechanism of TGP in SLE therapy.

  2. Bacterial communities in the gut and reproductive organs of Bactrocera minax (Diptera: Tephritidae) based on 454 pyrosequencing.

    Science.gov (United States)

    Wang, Ailin; Yao, Zhichao; Zheng, Weiwei; Zhang, Hongyu

    2014-01-01

    The citrus fruit fly Bactrocera minax is associated with diverse bacterial communities. We used a 454 pyrosequencing technology to study in depth the microbial communities associated with gut and reproductive organs of Bactrocera minax. Our dataset consisted of 100,749 reads with an average length of 400 bp. The saturated rarefaction curves and species richness indices indicate that the sampling was comprehensive. We found highly diverse bacterial communities, with individual sample containing approximately 361 microbial operational taxonomic units (OTUs). A total of 17 bacterial phyla were obtained from the flies. A phylogenetic analysis of 16S rDNA revealed that Proteobacteria was dominant in all samples (75%-95%). Actinobacteria and Firmicutes were also commonly found in the total clones. Klebsiella, Citrobacter, Enterobacter, and Serratia were the major genera. However, bacterial diversity (Chao1, Shannon and Simpson indices) and community structure (PCA analysis) varied across samples. Female ovary has the most diverse bacteria, followed by male testis, and the bacteria diversity of reproductive organs is richer than that of the gut. The observed variation can be caused by sex and tissue, possibly to meet the host's physiological demands.

  3. Bacterial communities in the gut and reproductive organs of Bactrocera minax (Diptera: Tephritidae based on 454 pyrosequencing.

    Directory of Open Access Journals (Sweden)

    Ailin Wang

    Full Text Available The citrus fruit fly Bactrocera minax is associated with diverse bacterial communities. We used a 454 pyrosequencing technology to study in depth the microbial communities associated with gut and reproductive organs of Bactrocera minax. Our dataset consisted of 100,749 reads with an average length of 400 bp. The saturated rarefaction curves and species richness indices indicate that the sampling was comprehensive. We found highly diverse bacterial communities, with individual sample containing approximately 361 microbial operational taxonomic units (OTUs. A total of 17 bacterial phyla were obtained from the flies. A phylogenetic analysis of 16S rDNA revealed that Proteobacteria was dominant in all samples (75%-95%. Actinobacteria and Firmicutes were also commonly found in the total clones. Klebsiella, Citrobacter, Enterobacter, and Serratia were the major genera. However, bacterial diversity (Chao1, Shannon and Simpson indices and community structure (PCA analysis varied across samples. Female ovary has the most diverse bacteria, followed by male testis, and the bacteria diversity of reproductive organs is richer than that of the gut. The observed variation can be caused by sex and tissue, possibly to meet the host's physiological demands.

  4. DNA barcodes for soil animal taxonomy Código de barras de DNA para a taxonomia de animais do solo

    Directory of Open Access Journals (Sweden)

    Rodolphe Rougerie

    2009-08-01

    Full Text Available The biodiversity of soil communities remains very poorly known and understood. Soil biological sciences are strongly affected by the taxonomic crisis, and most groups of animals in that biota suffer from a strong taxonomic impediment. The objective of this work was to investigate how DNA barcoding - a novel method using a microgenomic tag for species identification and discrimination - permits better evaluation of the taxonomy of soil biota. A total of 1,152 barcode sequences were analyzed for two major groups of animals, collembolans and earthworms, which presented broad taxonomic and geographic sampling. Besides strongly reflecting the taxonomic impediment for both groups, with a large number of species-level divergent lineages remaining unnamed so far, the results also highlight a high level (15% of cryptic diversity within known species of both earthworms and collembolans. These results are supportive of recent local studies using a similar approach. Within an impeded taxonomic system for soil animals, DNA-assisted identification tools can facilitate and improve biodiversity exploration and description. DNA-barcoding campaigns are rapidly developing in soil animals and the community of soil biologists is urged to embrace these methods.A biodiversidade das comunidades do solo continua muito pouco conhecida e entendida. A biologia do solo é fortemente afetada pela crise taxonômica, e a maior parte dos grupos de animais dessa biota sofre forte impedimento taxonômico. O objetivo deste trabalho foi determinar como o código de barras de DNA - um método novo que usa uma etiqueta microgenômica para identificação e discriminação de espécies - permite uma melhor avaliação da taxonomia da biota edáfica. Foram analisadas 1.152 sequências de códigos de barras de dois grupos principais de animais, colêmbolos e minhocas, que apresentaram ampla amostragem taxonômica e geográfica. Além de refletir fortemente o impedimento taxonômico de

  5. DNA barcoding via counterstaining with AT/GC sensitive ligands in injection-molded all-polymer nanochannel devices

    DEFF Research Database (Denmark)

    Østergaard, Peter Friis; Matteucci, Marco; Reisner, Walter

    2013-01-01

    Nanochannel technology, coupled with a suitable DNA labeling chemistry, is a powerful approach for performing high-throughput single-molecule mapping of genomes. Yet so far nanochannel technology has remained inaccessible to the broader research community due to high fabrication cost and/or requi......Nanochannel technology, coupled with a suitable DNA labeling chemistry, is a powerful approach for performing high-throughput single-molecule mapping of genomes. Yet so far nanochannel technology has remained inaccessible to the broader research community due to high fabrication cost and...... AT and GC variation along DNA sequences....

  6. eDNA-based bioassessment of coastal sediments impacted by an oil spill.

    Science.gov (United States)

    Xie, Yuwei; Zhang, Xiaowei; Yang, Jianghua; Kim, Seonjin; Hong, Seongjin; Giesy, John P; Yim, Un Hyuk; Shim, Won Joon; Yu, Hongxia; Khim, Jong Seong

    2018-07-01

    Oil spills offshore can cause long-term ecological effects on coastal marine ecosystems. Despite their important ecological roles in the cycling of energy and nutrients in food webs, effects on bacteria, protists or arthropods are often neglected. Environmental DNA (eDNA) metabarcoding was applied to characterize changes in the structure of micro- and macro-biota communities of surface sediments over a 7-year period since the occurrence of Hebei Spirit oil spill on December 7, 2007. Alterations in diversities and structures of micro- and macro-biota were observed in the contaminated area where concentrations of polycyclic aromatic hydrocarbons were greater. Successions of bacterial, protists and metazoan communities revealed long-term ecological effects of residual oil. Residual oil dominated the largest cluster of the community-environment association network. Presence of bacterial families (Aerococcaceae and Carnobacteriaceae) and the protozoan family (Platyophryidae) might have conferred sensitivity of communities to oil pollution. Hydrocarbon-degrading bacterial families (Anaerolinaceae, Desulfobacteraceae, Helicobacteraceae and Piscirickettsiaceae) and algal family (Araphid pennate) were resistant to adverse effects of spilt oil. The protistan family (Subulatomonas) and arthropod families (Folsomia, Sarcophagidae Opomyzoidea, and Anomura) appeared to be positively associated with residual oil pollution. eDNA metabarcoding can provide a powerful tool for assessing effects of anthropogenic pollution, such as oil spills on sediment communities and its long-term trends in coastal marine environments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Amplification of a transcriptionally active DNA sequence in the human brain

    International Nuclear Information System (INIS)

    Yakovlev, A.G.; Sazonov, A.E.; Spunde, A.Ya.; Gindilis, V.M.

    1986-01-01

    The authors present their findings of tissue-specific amplification of a DNA fragment actively transcribed in the human brain. This genome fragment was found in the library complement of cDNA of the human brain and evidently belongs to a new class of moderate repetitions of DNA with an unstable copying capacity in the human genome. The authors isolated total cell RNA from various human tissues (brain, placenta), and rat tissues (brain, liver), by the method of hot phenol extraction with guanidine thiocynate. The poly(A + ) RNA fraction was isolated by chromatography. Synthesis of cDNA was done on a matrix of poly(A + ) RNA of human brain. The cDNA obtained was cloned in plasmid pBR322 for the PstI site using (dC/dG) sequences synthesized on the 3' ends of the vector molecule and cDNA respectively. In cloning 75 ng cDNA, the authors obtained approximately 10 5 recombinant. This library was analyzed by the hybridization method on columns with two radioactive ( 32 P) probes: the total cDNA preparation and the total nuclear DNA from the human brain. The number of copies of the cloned DNA fragment in the genome was determined by dot hybridization. Restricting fragments of human and rat DNA genomes homologous to the cloned cDNA were identified on radio-autographs. In each case, 10 micrograms of EcoRI DNA hydrolyzate was fractionated in 1% agarose gel. The probe was also readied with RNA samples fractionated in agarose gel with formaldehyde and transferred to a nitrocellulose filter under weak vacuum. The filter was hybridized with 0.1 micrograms DNA pAG 02, labeled with ( 32 P) to a specific activity of 0.5-1 x 10 9 counts/min x microgram. The autograph was exposed with amplifying screens at -70 0 C for 2 days

  8. Minisequencing mitochondrial DNA pathogenic mutations

    Directory of Open Access Journals (Sweden)

    Carracedo Ángel

    2008-04-01

    Full Text Available Abstract Background There are a number of well-known mutations responsible of common mitochondrial DNA (mtDNA diseases. In order to overcome technical problems related to the analysis of complete mtDNA genomes, a variety of different techniques have been proposed that allow the screening of coding region pathogenic mutations. Methods We here propose a minisequencing assay for the analysis of mtDNA mutations. In a single reaction, we interrogate a total of 25 pathogenic mutations distributed all around the whole mtDNA genome in a sample of patients suspected for mtDNA disease. Results We have detected 11 causal homoplasmic mutations in patients suspected for Leber disease, which were further confirmed by standard automatic sequencing. Mutations m.11778G>A and m.14484T>C occur at higher frequency than expected by change in the Galician (northwest Spain patients carrying haplogroup J lineages (Fisher's Exact test, P-value Conclusion We here developed a minisequencing genotyping method for the screening of the most common pathogenic mtDNA mutations which is simple, fast, and low-cost. The technique is robust and reproducible and can easily be implemented in standard clinical laboratories.

  9. An alternative method for cDNA cloning from surrogate eukaryotic cells transfected with the corresponding genomic DNA.

    Science.gov (United States)

    Hu, Lin-Yong; Cui, Chen-Chen; Song, Yu-Jie; Wang, Xiang-Guo; Jin, Ya-Ping; Wang, Ai-Hua; Zhang, Yong

    2012-07-01

    cDNA is widely used in gene function elucidation and/or transgenics research but often suitable tissues or cells from which to isolate mRNA for reverse transcription are unavailable. Here, an alternative method for cDNA cloning is described and tested by cloning the cDNA of human LALBA (human alpha-lactalbumin) from genomic DNA. First, genomic DNA containing all of the coding exons was cloned from human peripheral blood and inserted into a eukaryotic expression vector. Next, by delivering the plasmids into either 293T or fibroblast cells, surrogate cells were constructed. Finally, the total RNA was extracted from the surrogate cells and cDNA was obtained by RT-PCR. The human LALBA cDNA that was obtained was compared with the corresponding mRNA published in GenBank. The comparison showed that the two sequences were identical. The novel method for cDNA cloning from surrogate eukaryotic cells described here uses well-established techniques that are feasible and simple to use. We anticipate that this alternative method will have widespread applications.

  10. Spatial changes in the prokaryotic community structure across a soil catena

    Science.gov (United States)

    Semenov, Mikhail; Zhuravleva, Anna; Tkhakakhova, Azida

    2017-04-01

    Mesorelief is a complex biogeochemical factor regulating hydrothermal regimes of the surface soil layer, the type of plant cover, etc., and, therefore, influences on soil microbial community structure. A natural model of soil sequence across the slope is a soil catena. Soils forming on various mesorelief positions significantly differ in physicochemical and biological properties, leading to the changes in spatial distribution of various bacterial and archaeal taxa across the soil catena. The aim of this study was to determine soil microbial community structure of different ecosystems corresponding to three mesorelief positions within the soil catena. The catena was located at the right bank of the Oka River (Moscow region, Russian Federation). Soil samples were taken at depths of 0-20 cm, 20-40 cm, and 40-60 cm from three sites within the transect of 960 m with elevation of 80 m, corresponding to the autonomous (AU), transitional (TR) (both Luvisols), and accumulative (AC) (Fluvisol Umbric) positions of the landscape. The dominant vegetation of studied sites were rootstock- and loose bunchgrasses of the fallow ecosystem (AU), a secondary small-leaved forest of the forest ecosystem (TR), and a meadow-bog association of the meadow-bog ecosystem (AC). The distances between the sites were 680 m (AU and TR), and 280 m (TR and AC). The soil samples were homogenized, and the total community DNA of three replicates was extracted using the FastDNA® SPIN kit for Soil. All DNA replicates were combined in a pooled sample and the DNA was used for PCR with specific primers for the 16S V3 and V4 regions. The products were purified and submitted to Illumina MiSeq sequencing. Obtained sequence data were evaluated using the MiSeq Reporter Metagenomics Workflow and QIIME. Quantification of the bacterial and archaeal metabolically active cells was quantified by the FISH-method. Verrucomicrobia, Proteobacteria, Firmictutes and Actinobacteria were the major phyla in autonomous site

  11. Hide and seek: How do DNA glycosylases locate oxidatively damaged DNA bases amidst a sea of undamaged bases?

    Science.gov (United States)

    Lee, Andrea J; Wallace, Susan S

    2017-06-01

    The first step of the base excision repair (BER) pathway responsible for removing oxidative DNA damage utilizes DNA glycosylases to find and remove the damaged DNA base. How glycosylases find the damaged base amidst a sea of undamaged bases has long been a question in the BER field. Single molecule total internal reflection fluorescence microscopy (SM TIRFM) experiments have allowed for an exciting look into this search mechanism and have found that DNA glycosylases scan along the DNA backbone in a bidirectional and random fashion. By comparing the search behavior of bacterial glycosylases from different structural families and with varying substrate specificities, it was found that glycosylases search for damage by periodically inserting a wedge residue into the DNA stack as they redundantly search tracks of DNA that are 450-600bp in length. These studies open up a wealth of possibilities for further study in real time of the interactions of DNA glycosylases and other BER enzymes with various DNA substrates. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Two distinct microbial communities revealed in the sponge Cinachyrella

    Directory of Open Access Journals (Sweden)

    Marie Laure Cuvelier

    2014-11-01

    Full Text Available Marine sponges are vital components of benthic and coral reef ecosystems, providing shelter and nutrition for many organisms. In addition, sponges act as an essential carbon and nutrient link between the pelagic and benthic environment by filtering large quantities of seawater. Many sponge species harbor a diverse microbial community (including Archaea, Bacteria and Eukaryotes, which can constitute up to 50% of the sponge biomass. Sponges of the genus Cinachyrella are common in Caribbean and Floridian reefs and their archaeal and bacterial microbiomes were explored here using 16S rDNA tag pyrosequencing. Cinachyrella specimens and seawater samples were collected from the same South Florida reef at two different times of year. In total, 639 OTUs (12 archaeal and 627 bacterial belonging to 2 archaeal and 21 bacterial phyla were detected in the sponges. Based on their microbiomes, the six sponge samples formed two distinct groups, namely sponge group 1 (SG1 with low diversity (Shannon-Weiner index: 3.73 ± 0.22 and SG2 with higher diversity (Shannon-Weiner index: 5.95 ± 0.25. Hosts’ 28S rDNA sequences further confirmed that the sponge specimens were composed of two taxa closely related to Cinachyrella kuekenthalli. Both sponge groups were dominated by Proteobacteria, but Alphaproteobacteria were significantly more abundant in SG1. SG2 harbored many bacterial phyla (>1% of sequences present in low abundance or below detection limits (<0.07% in SG1 including: Acidobacteria, Chloroflexi, Gemmatimonadetes, Nitrospirae, PAUC34f, Poribacteria and Verrucomicrobia. Furthermore, SG1 and SG2 only had 95 OTUs in common, representing 30.5% and 22.4% of SG1 and SG2’s total OTUs, respectively. These results suggest that the sponge host may exert a pivotal influence on the nature and structure of the microbial community and may only be marginally affected by external environment parameters.

  13. DNA recovery from wild chimpanzee tools.

    Directory of Open Access Journals (Sweden)

    Fiona A Stewart

    Full Text Available Most of our knowledge of wild chimpanzee behaviour stems from fewer than 10 long-term field sites. This bias limits studies to a potentially unrepresentative set of communities known to show great behavioural diversity on small geographic scales. Here, we introduce a new genetic approach to bridge the gap between behavioural material evidence in unhabituated chimpanzees and genetic advances in the field of primatology. The use of DNA analyses has revolutionised archaeological and primatological fields, whereby extraction of DNA from non-invasively collected samples allows researchers to reconstruct behaviour without ever directly observing individuals. We used commercially available forensic DNA kits to show that termite-fishing by wild chimpanzees (Pan troglodytes schweinfurthii leaves behind detectable chimpanzee DNA evidence on tools. We then quantified the recovered DNA, compared the yield to that from faecal samples, and performed an initial assessment of mitochondrial and microsatellite markers to identify individuals. From 49 termite-fishing tools from the Issa Valley research site in western Tanzania, we recovered an average of 52 pg/μl chimpanzee DNA, compared to 376.2 pg/μl in faecal DNA extracts. Mitochondrial DNA haplotypes could be assigned to 41 of 49 tools (84%. Twenty-six tool DNA extracts yielded >25 pg/μl DNA and were selected for microsatellite analyses; genotypes were determined with confidence for 18 tools. These tools were used by a minimum of 11 individuals across the study period and termite mounds. These results demonstrate the utility of bio-molecular techniques and a primate archaeology approach in non-invasive monitoring and behavioural reconstruction of unhabituated primate populations.

  14. RAPD analysis of alfalfa DNA mutation via N+ implantation

    International Nuclear Information System (INIS)

    Li Yufeng; Huang Qunce; Yu Zengliang; Liang Yunzhang

    2003-01-01

    Germination capacity of alfalfa seeds under low energy N + implantation manifests oscillations going down with dose strength. From analyzing alfalfa genome DNA under low energy N + implantation by RAPD (Random Amplified Polymorphous DNA), it is recommended that 30 polymorphic DNA fragments be amplified with 8 primers in total 100 primers, and fluorescence intensity of the identical DNA fragment amplified by RAPD is different between CK and treatments. Number of different polymorphic DNA fragments between treatment and CK via N + implantation manifests going up with dose strength

  15. Distinct co-evolution patterns of genes associated to DNA polymerase III DnaE and PolC

    Directory of Open Access Journals (Sweden)

    Engelen Stefan

    2012-02-01

    Full Text Available Abstract Background Bacterial genomes displaying a strong bias between the leading and the lagging strand of DNA replication encode two DNA polymerases III, DnaE and PolC, rather than a single one. Replication is a highly unsymmetrical process, and the presence of two polymerases is therefore not unexpected. Using comparative genomics, we explored whether other processes have evolved in parallel with each polymerase. Results Extending previous in silico heuristics for the analysis of gene co-evolution, we analyzed the function of genes clustering with dnaE and polC. Clusters were highly informative. DnaE co-evolves with the ribosome, the transcription machinery, the core of intermediary metabolism enzymes. It is also connected to the energy-saving enzyme necessary for RNA degradation, polynucleotide phosphorylase. Most of the proteins of this co-evolving set belong to the persistent set in bacterial proteomes, that is fairly ubiquitously distributed. In contrast, PolC co-evolves with RNA degradation enzymes that are present only in the A+T-rich Firmicutes clade, suggesting at least two origins for the degradosome. Conclusion DNA replication involves two machineries, DnaE and PolC. DnaE co-evolves with the core functions of bacterial life. In contrast PolC co-evolves with a set of RNA degradation enzymes that does not derive from the degradosome identified in gamma-Proteobacteria. This suggests that at least two independent RNA degradation pathways existed in the progenote community at the end of the RNA genome world.

  16. PAH-DNA adducts in environmentally exposed population in relation to metabolic and DNA repair gene polymorphisms

    Energy Technology Data Exchange (ETDEWEB)

    Binkova, Blanka [Laboratory of Genetic Ecotoxicology, Institute of Experimental Medicine AS CR and Health Institute of Central Bohemia, Videnska 1083, 14220 Prague (Czech Republic); Chvatalova, Irena [Laboratory of Genetic Ecotoxicology, Institute of Experimental Medicine AS CR and Health Institute of Central Bohemia, Videnska 1083, 14220 Prague (Czech Republic); Lnenickova, Zdena [Laboratory of Genetic Ecotoxicology, Institute of Experimental Medicine AS CR and Health Institute of Central Bohemia, Videnska 1083, 14220 Prague (Czech Republic); Milcova, Alena [Laboratory of Genetic Ecotoxicology, Institute of Experimental Medicine AS CR and Health Institute of Central Bohemia, Videnska 1083, 14220 Prague (Czech Republic); Tulupova, Elena [Laboratory of Genetic Ecotoxicology, Institute of Experimental Medicine AS CR and Health Institute of Central Bohemia, Videnska 1083, 14220 Prague (Czech Republic); Cancer Biomarkers and Prevention Group, Biocentre, University of Leicester (United Kingdom); Farmer, Peter B. [Cancer Biomarkers and Prevention Group, Biocentre, University of Leicester (United Kingdom); Sram, Radim J. [Laboratory of Genetic Ecotoxicology, Institute of Experimental Medicine AS CR and Health Institute of Central Bohemia, Videnska 1083, 14220 Prague (Czech Republic)]. E-mail: sram@biomed.cas.cz

    2007-07-01

    Epidemiologic studies indicate that prolonged exposure to particulate air pollution may be associated with increased risk of cardiovascular diseases and cancer in general population. These effects may be attributable to polycyclic aromatic hydrocarbons (PAHs) adsorbed to respirable air particles. It is expected that metabolic and DNA repair gene polymorphisms may modulate individual susceptibility to PAH exposure. This study investigates relationships between exposure to PAHs, polymorphisms of these genes and DNA adducts in group of occupationally exposed policemen (EXP, N = 53, males, aged 22-50 years) working outdoors in the downtown area of Prague and in matched 'unexposed' controls (CON, N = 52). Personal exposure to eight carcinogenic PAHs (c-PAHs) was evaluated by personal samplers during working shift prior to collection of biological samples. Bulky-aromatic DNA adducts were analyzed in lymphocytes by {sup 32}P-postlabeling assay. Polymorphisms of metabolizing (GSTM1, GSTP1, GSTT1, EPHX1, CYP1A1-MspI) and DNA repair (XRCC1, XPD) genes were determined by PCR-based RFLP assays. As potential modifiers and/or cofounders, urinary cotinine levels were analyzed by radioimmunoassay, plasma levels of vitamins A, C, E and folates by HPLC, cholesterol and triglycerides using commercial kits. During the sampling period ambient particulate air pollution was as follows: PM10 32-55 {mu}g/m{sup 3}, PM2.5 27-38 {mu}g/m{sup 3}, c-PAHs 18-22 ng/m{sup 3}; personal exposure to c-PAHs: 9.7 ng/m{sup 3} versus 5.8 ng/m{sup 3} (P < 0.01) for EXP and CON groups, respectively. The total DNA adduct levels did not significantly differ between EXP and CON groups (0.92 {+-} 0.28 adducts/10{sup 8} nucleotides versus 0.82 {+-} 0.23 adducts/10{sup 8} nucleotides, P = 0.065), whereas the level of the B[a]P-'like' adduct was significantly higher in exposed group (0.122 {+-} 0.036 adducts/10{sup 8} nucleotides versus 0.099 {+-} 0.035 adducts/10{sup 8} nucleotides, P = 0

  17. Forensic utilization of familial searches in DNA databases.

    Science.gov (United States)

    Gershaw, Cassandra J; Schweighardt, Andrew J; Rourke, Linda C; Wallace, Margaret M

    2011-01-01

    DNA evidence is widely recognized as an invaluable tool in the process of investigation and identification, as well as one of the most sought after types of evidence for presentation to a jury. In the United States, the development of state and federal DNA databases has greatly impacted the forensic community by creating an efficient, searchable system that can be used to eliminate or include suspects in an investigation based on matching DNA profiles - the profile already in the database to the profile of the unknown sample in evidence. Recent changes in legislation have begun to allow for the possibility to expand the parameters of DNA database searches, taking into account the possibility of familial searches. This article discusses prospective positive outcomes of utilizing familial DNA searches and acknowledges potential negative outcomes, thereby presenting both sides of this very complicated, rapidly evolving situation. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  18. Diversity and Composition of Sulfate-Reducing Microbial Communities Based on Genomic DNA and RNA Transcription in Production Water of High Temperature and Corrosive Oil Reservoir

    Directory of Open Access Journals (Sweden)

    Xiao-Xiao Li

    2017-06-01

    Full Text Available Deep subsurface petroleum reservoir ecosystems harbor a high diversity of microorganisms, and microbial influenced corrosion is a major problem for the petroleum industry. Here, we used high-throughput sequencing to explore the microbial communities based on genomic 16S rDNA and metabolically active 16S rRNA analyses of production water samples with different extents of corrosion from a high-temperature oil reservoir. Results showed that Desulfotignum and Roseovarius were the most abundant genera in both genomic and active bacterial communities of all the samples. Both genomic and active archaeal communities were mainly composed of Archaeoglobus and Methanolobus. Within both bacteria and archaea, the active and genomic communities were compositionally distinct from one another across the different oil wells (bacteria p = 0.002; archaea p = 0.01. In addition, the sulfate-reducing microorganisms (SRMs were specifically assessed by Sanger sequencing of functional genes aprA and dsrA encoding the enzymes adenosine-5′-phosphosulfate reductase and dissimilatory sulfite reductase, respectively. Functional gene analysis indicated that potentially active Archaeoglobus, Desulfotignum, Desulfovibrio, and Thermodesulforhabdus were frequently detected, with Archaeoglobus as the most abundant and active sulfate-reducing group. Canonical correspondence analysis revealed that the SRM communities in petroleum reservoir system were closely related to pH of the production water and sulfate concentration. This study highlights the importance of distinguishing the metabolically active microorganisms from the genomic community and extends our knowledge on the active SRM communities in corrosive petroleum reservoirs.

  19. Diversity and Composition of Sulfate-Reducing Microbial Communities Based on Genomic DNA and RNA Transcription in Production Water of High Temperature and Corrosive Oil Reservoir

    Science.gov (United States)

    Li, Xiao-Xiao; Liu, Jin-Feng; Zhou, Lei; Mbadinga, Serge M.; Yang, Shi-Zhong; Gu, Ji-Dong; Mu, Bo-Zhong

    2017-01-01

    Deep subsurface petroleum reservoir ecosystems harbor a high diversity of microorganisms, and microbial influenced corrosion is a major problem for the petroleum industry. Here, we used high-throughput sequencing to explore the microbial communities based on genomic 16S rDNA and metabolically active 16S rRNA analyses of production water samples with different extents of corrosion from a high-temperature oil reservoir. Results showed that Desulfotignum and Roseovarius were the most abundant genera in both genomic and active bacterial communities of all the samples. Both genomic and active archaeal communities were mainly composed of Archaeoglobus and Methanolobus. Within both bacteria and archaea, the active and genomic communities were compositionally distinct from one another across the different oil wells (bacteria p = 0.002; archaea p = 0.01). In addition, the sulfate-reducing microorganisms (SRMs) were specifically assessed by Sanger sequencing of functional genes aprA and dsrA encoding the enzymes adenosine-5′-phosphosulfate reductase and dissimilatory sulfite reductase, respectively. Functional gene analysis indicated that potentially active Archaeoglobus, Desulfotignum, Desulfovibrio, and Thermodesulforhabdus were frequently detected, with Archaeoglobus as the most abundant and active sulfate-reducing group. Canonical correspondence analysis revealed that the SRM communities in petroleum reservoir system were closely related to pH of the production water and sulfate concentration. This study highlights the importance of distinguishing the metabolically active microorganisms from the genomic community and extends our knowledge on the active SRM communities in corrosive petroleum reservoirs. PMID:28638372

  20. Analysis of bacterial and fungal community structure in replant ...

    African Journals Online (AJOL)

    High quality DNA is the basis of analyzing bacterial and fungal community structure in replant strawberry rhizosphere soil with the method of denaturing gradient gel electrophoresis (DGGE). DNA of soil microorganisms was extracted from the rhizosphere soil of strawberries planted in different replanted years (0, two, ...

  1. Using occupancy modeling to compare traditional versus DNA metabarcoding methods for characterizing zooplankton biodiversity

    Science.gov (United States)

    DNA metabarcoding tools could increase our ability to detect changes in zooplankton communities and to detect invasive zooplankton taxa while they are still rare. Nonetheless, the use of DNA-metabarcoding for characterizing zooplankton biodiversity in the Great Lakes has not bee...

  2. UVB DNA dosimeters analyzed by polymerase chain reactors

    International Nuclear Information System (INIS)

    Yoshida, Hiroko; Regan, J.D.; Florida Inst. of Tech., Melbourne, FL

    1997-01-01

    Purified bacteriophage λ DNA was dried on a UV-transparent polymer film and served as a UVB dosimeter for personal and ecological applications. Bacteriophage λ DNA was chosen because it is commercially available and inexpensive, and its entire sequence is known. Each dosimeter contained two sets of DNA sandwiched between UV-transparent polymer films, one exposed to solar radiation (experimental) and another protected from UV radiation by black paper (control). The DNA dosimeter was then analyzed by a polymerase chain reaction (PCR) that amplifies a 500 base pair specific region of λ DNA. Photoinduced damage in DNA blocks polymerase from synthesizing a new strand; therefore, the amount of amplified product in UV-exposed DNA was reduced from that found in control DNA. The dried λ DNA dosimeter is compact, robust, safe and transportable, stable over long storage times and provides the total UVB dose integrated over the exposure time. (author)

  3. Yields of clustered DNA damage induced by charged-particle radiations of similar kinetic energy per nucleon: LET dependence in different DNA microenvironments

    International Nuclear Information System (INIS)

    Keszenman, D.J.; Sutherland, B.M.

    2010-01-01

    To determine the linear energy transfer (LET) dependence of the biological effects of densely ionizing radiation in relation to changes in the ionization density along the track, we measured the yields and spectrum of clustered DNA damages induced by charged particles of different atomic number but similar kinetic energy per nucleon in different DNA microenvironments. Yeast DNA embedded in agarose in solutions of different free radical scavenging capacity was irradiated with 1 GeV protons, 1 GeV/nucleon oxygen ions, 980 MeV/nucleon titanium ions or 968 MeV/nucleon iron ions. The frequencies of double-strand breaks (DSBs), abasic sites and oxypurine clusters were quantified. The total DNA damage yields per absorbed dose induced in non-radioquenching solution decreased with LET, with minor variations in radioquenching conditions being detected. However, the total damage yields per particle fluence increased with LET in both conditions, indicating a higher efficiency per particle to induce clustered DNA damages. The yields of DSBs and non-DSB clusters as well as the damage spectra varied with LET and DNA milieu, suggesting the involvement of more than one mechanism in the formation of the different types of clustered damages.

  4. Beliefs, Behaviors, and Perceptions of Community-Led Total Sanitation and Their Relation to Improved Sanitation in Rural Zambia

    Science.gov (United States)

    Joseph Lawrence, J.; Yeboah-Antwi, Kojo; Biemba, Godfrey; Ram, Pavani K.; Osbert, Nicolas; Sabin, Lora L.; Hamer, Davidson H.

    2016-01-01

    Inadequate hygiene and sanitation remain leading global contributors to morbidity and mortality in children and adults. One strategy for improving sanitation access is community-led total sanitation (CLTS), in which participants are guided into self-realization of the importance of sanitation through activities called “triggering.” This qualitative study explored community members' and stakeholders' sanitation, knowledge, perceptions, and behaviors during early CLTS implementation in Zambia. We conducted 67 in-depth interviews and 24 focus group discussions in six districts in Zambia 12–18 months after CLTS implementation. Triggering activities elicited strong emotions, including shame, disgust, and peer pressure, which persuaded individuals and families to build and use latrines and handwashing stations. New sanitation behaviors were also encouraged by the hierarchical influences of traditional leaders and sanitation action groups and by children's opinions. Poor soil conditions were identified as barriers to latrine construction. Taboos, including prohibition of different generations of family members, in-laws, and opposite genders from using the same toilet, were barriers for using sanitation facilities. CLTS, through community empowerment and ownership, produced powerful responses that encouraged construction and use of latrines and handwashing practices. These qualitative data suggest that CLTS is effective for improving sanitation beliefs and behaviors in Zambia. PMID:26787149

  5. Comparison of Suitability of the Most Common Ancient DNA Quantification Methods.

    Science.gov (United States)

    Brzobohatá, Kristýna; Drozdová, Eva; Smutný, Jiří; Zeman, Tomáš; Beňuš, Radoslav

    2017-04-01

    Ancient DNA (aDNA) extracted from historical bones is damaged and fragmented into short segments, present in low quantity, and usually copurified with microbial DNA. A wide range of DNA quantification methods are available. The aim of this study was to compare the five most common DNA quantification methods for aDNA. Quantification methods were tested on DNA extracted from skeletal material originating from an early medieval burial site. The tested methods included ultraviolet (UV) absorbance, real-time quantitative polymerase chain reaction (qPCR) based on SYBR ® green detection, real-time qPCR based on a forensic kit, quantification via fluorescent dyes bonded to DNA, and fragmentary analysis. Differences between groups were tested using a paired t-test. Methods that measure total DNA present in the sample (NanoDrop ™ UV spectrophotometer and Qubit ® fluorometer) showed the highest concentrations. Methods based on real-time qPCR underestimated the quantity of aDNA. The most accurate method of aDNA quantification was fragmentary analysis, which also allows DNA quantification of the desired length and is not affected by PCR inhibitors. Methods based on the quantification of the total amount of DNA in samples are unsuitable for ancient samples as they overestimate the amount of DNA presumably due to the presence of microbial DNA. Real-time qPCR methods give undervalued results due to DNA damage and the presence of PCR inhibitors. DNA quantification methods based on fragment analysis show not only the quantity of DNA but also fragment length.

  6. Communication: Electron ionization of DNA bases

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, M. A.; Krishnakumar, E., E-mail: ekkumar@tifr.res.in

    2016-04-28

    No reliable experimental data exist for the partial and total electron ionization cross sections for DNA bases, which are very crucial for modeling radiation damage in genetic material of living cell. We have measured a complete set of absolute partial electron ionization cross sections up to 500 eV for DNA bases for the first time by using the relative flow technique. These partial cross sections are summed to obtain total ion cross sections for all the four bases and are compared with the existing theoretical calculations and the only set of measured absolute cross sections. Our measurements clearly resolve the existing discrepancy between the theoretical and experimental results, thereby providing for the first time reliable numbers for partial and total ion cross sections for these molecules. The results on fragmentation analysis of adenine supports the theory of its formation in space.

  7. Release of 3-methyladenine from linker and core DNA of chromatin by a purified DNA glycosylase

    International Nuclear Information System (INIS)

    Heller, E.P.; Goldthwait, D.A.

    1983-01-01

    Oligonucleosomes were isolated from [ 14 C]thymidine-labeled HeLa cells by digestion of the nuclei with micrococcal nuclease and were then alkylated with [ 3 H]methylnitrosourea. Nucleosome core particles were also prepared by further digestion of the oligonucleosomes. The distribution of 3 H-labeled methyl groups in the linker versus the core DNA was established by a determination of 3 H: 14 C ratios in oligonucleosome and core DNA. The ratios in the core DNA of 145 and 165 base pair DNA fragments were 5.2 and 5.4, respectively, while the ratio in the oligonucleosomal DNA was 8.2. Assuming an equal mixture (as determined) of 145 and 165 base pair fragments of DNA in the 185 base pair repeat, the relative concentration of 3 H methyl groups in the linker versus the core DNA was 4.2. Thus, 45% of the 3 H methyl groups were in the linker DNA, and 55% were in the core DNA. Some shielding of the DNA was evident during alkylation. The concentrations of alkyl groups on the linker and core DNA were 67 and 12% of that found on free DNA alkylated under comparable conditions. No evidence for preferential shielding of the major or minor groove was observed. The purified 3-methyladenine DNA glycosylase I of Escherichia coli released approximately 37% of the 3-methyladenine from the linker DNA and 13% from the core DNA. The limited enzymatic removal of 3-methyladenine in vitro compared to the efficient removal in vivo suggests that conformational changes of the oligonucleosome and core structure must occur for total repair

  8. Diet Quality Associated with Total Sodium Intake among US Adults Aged ≥18 Years-National Health and Nutrition Examination Survey, 2009-2012.

    Science.gov (United States)

    Mercado, Carla I; Cogswell, Mary E; Perrine, Cria G; Gillespie, Cathleen

    2017-10-25

    Diet quality or macronutrient composition of total daily sodium intake (dNa) <2300 mg/day in the United States (US) is unknown. Using data from 2011-2014 NHANES (National Health and Nutrition Examination Survey), we examined 24-h dietary recalls ( n = 10,142) from adults aged ≥18 years and investigated how diet composition and quality are associated with dNa. Diet quality was assessed using components of macronutrients and Healthy Eating Index 2010 (HEI-2010). Associations were tested using linear regression analysis adjusted for total energy (kcal), age, gender, and race/ethnicity. One-day dNa in the lower quartiles were more likely reported among women, older adults (≥65 years old), and lower quartiles of total energy (kcal) ( p -values ≤ 0.001). With increasing dNa, there was an increase in the mean protein, fiber, and total fat densities, while total carbohydrates densities decreased. As dNa increased, meat protein, refined grains, dairy, and total vegetables, greens and beans densities increased; while total fruit and whole fruit densities decreased. Modified HEI-2010 total score (total score without sodium component) increased as dNa increased (adjusted coefficient: 0.11, 95% confidence interval = 0.07, 0.15). Although diet quality, based on modified HEI-2010 total score, increased on days with greater dNa, there is much room for improvement with mean diet quality of about half of the optimal level.

  9. Influence of long-term repeated prescribed burning on mycelial communities of ectomycorrhizal fungi.

    Science.gov (United States)

    Bastias, Brigitte A; Xu, Zhihong; Cairney, John W G

    2006-01-01

    To demonstrate the efficacy of direct DNA extraction from hyphal ingrowth bags for community profiling of ectomycorrhizal (ECM) mycelia in soil, we applied the method to investigate the influence of long-term repeated prescribed burning on an ECM fungal community. DNA was extracted from hyphal ingrowth bags buried in forest plots that received different prescribed burning treatments for 30 yr, and denaturing gradient gel electrophoresis (DGGE) profiles of partial fungal rDNA internal transcribed spacer (ITS) regions were compared. Restriction fragment length polymorphism (RFLP) and sequence analyses were also used to compare clone assemblages between the treatments. The majority of sequences derived from the ingrowth bags were apparently those of ECM fungi. DGGE profiles for biennially burned plots were significantly different from those of quadrennially burned and unburned control plots. Analysis of clone assemblages indicated that this reflected altered ECM fungal community composition. The results indicate that hyphal ingrowth bags represent a useful method for investigation of ECM mycelial communities, and that frequent long-term prescribed burning can influence below-ground ECM fungal communities.

  10. Plant DNA Detection from Grasshopper Guts: A Step-by-Step Protocol, from Tissue Preparation to Obtaining Plant DNA Sequences

    Directory of Open Access Journals (Sweden)

    Alina Avanesyan

    2014-02-01

    Full Text Available Premise of the study: A PCR-based method of identifying ingested plant DNA in gut contents of Melanoplus grasshoppers was developed. Although previous investigations have focused on a variety of insects, there are no protocols available for plant DNA detection developed for grasshoppers, agricultural pests that significantly influence plant community composition. Methods and Results: The developed protocol successfully used the noncoding region of the chloroplast trnL (UAA gene and was tested in several feeding experiments. Plant DNA was obtained at seven time points post-ingestion from whole guts and separate gut sections, and was detectable up to 12 h post-ingestion in nymphs and 22 h post-ingestion in adult grasshoppers. Conclusions: The proposed protocol is an effective, relatively quick, and low-cost method of detecting plant DNA from the grasshopper gut and its different sections. This has important applications, from exploring plant “movement” during food consumption, to detecting plant–insect interactions.

  11. Fototerapia causa danos ao DNA de leucócitos mononucleares periféricos em recém-nascidos a termo Phototherapy causes DNA damage in peripheral mononuclear leukocytes in term infants

    Directory of Open Access Journals (Sweden)

    Ali Aycicek

    2008-04-01

    Full Text Available OBJETIVO: Determinar se a fita de DNA de leucócitos mononucleares endógenos é alvo de fototerapia. MÉTODOS: O estudo incluiu 65 recém-nascidos a termo com idades entre 3 e 10 dias que haviam sido expostos a fototerapia intensiva (n = 23 ou convencional (n = 23 por pelo menos 48 horas devido à icterícia neonatal, além de um grupo controle (n = 19. Dano ao DNA foi avaliado por eletroforese alcalina em gel de célula única (ensaio cometa. A capacidade antioxidante total plasmática e os níveis de estado oxidativo total também foram medidos, e a correlação entre danos ao DNA e estresse oxidativo foi investigada. RESULTADOS: Os valores médios de escores de danos ao DNA nos grupos de fototerapia intensiva e convencional foram significativamente maiores do que os do grupo controle (p 0,05. Não houve correlações significativas entre escores de danos ao DNA e bilirrubina, estado oxidante total e níveis de estresse oxidativo entre os grupos de fototerapia (p > 0,05. CONCLUSÕES: Tanto a fototerapia intensiva quanto a convencional causam danos ao DNA dos leucócitos mononucleares endógenos em recém-nascidos a termo com icterícia.OBJECTIVE: Our aim was to determine whether endogenous mononuclear leukocyte DNA strand is a target of phototherapy. METHODS: The study included 65 term infants aged between 3-10 days that had been exposed to intensive (n = 23 or conventional (n = 23 phototherapy for at least 48 hours due to neonatal jaundice, and a control group (n = 19. DNA damage was assayed by single-cell alkaline gel electrophoresis (comet assay. Plasma total antioxidant capacity and total oxidant status levels were also measured, and correlation between DNA damage and oxidative stress was investigated. RESULTS: Mean values of DNA damage scores in both the intensive and conventional phototherapy groups were significantly higher than those in the control group (p 0.05. There were no significant correlations between DNA damage scores and

  12. Importance of the efficiency of double-stranded DNA formation in cDNA synthesis for the imprecision of microarray expression analysis.

    Science.gov (United States)

    Thormar, Hans G; Gudmundsson, Bjarki; Eiriksdottir, Freyja; Kil, Siyoen; Gunnarsson, Gudmundur H; Magnusson, Magnus Karl; Hsu, Jason C; Jonsson, Jon J

    2013-04-01

    The causes of imprecision in microarray expression analysis are poorly understood, limiting the use of this technology in molecular diagnostics. Two-dimensional strandness-dependent electrophoresis (2D-SDE) separates nucleic acid molecules on the basis of length and strandness, i.e., double-stranded DNA (dsDNA), single-stranded DNA (ssDNA), and RNA·DNA hybrids. We used 2D-SDE to measure the efficiency of cDNA synthesis and its importance for the imprecision of an in vitro transcription-based microarray expression analysis. The relative amount of double-stranded cDNA formed in replicate experiments that used the same RNA sample template was highly variable, ranging between 0% and 72% of the total DNA. Microarray experiments showed an inverse relationship between the difference between sample pairs in probe variance and the relative amount of dsDNA. Approximately 15% of probes showed between-sample variation (P cDNA synthesized can be an important component of the imprecision in T7 RNA polymerase-based microarray expression analysis. © 2013 American Association for Clinical Chemistry

  13. Designing a SCAR molecular marker for monitoring Trichoderma cf. harzianum in experimental communities* #

    Science.gov (United States)

    Pérez, Gabriel; Verdejo, Valentina; Gondim-Porto, Clarissa; Orlando, Julieta; Carú, Margarita

    2014-01-01

    Several species of the fungal genus Trichoderma establish biological interactions with various micro- and macro-organisms. Some of these interactions are relevant in ecological terms and in biotechnological applications, such as biocontrol, where Trichoderma could be considered as an invasive species that colonizes a recipient community. The success of this invasion depends on multiple factors, which can be assayed using experimental communities as study models. Therefore, the aim of this work is to develop a species-specific sequence-characterized amplified region (SCAR) marker to monitor the colonization and growth of T. cf. harzianum when it invades experimental communities. For this study, 16 randomly amplified polymorphic DNA (RAPD) primers of 10-mer were used to generate polymorphic patterns, one of which generated a band present only in strains of T. cf. harzianum. This band was cloned, sequenced, and five primers of 20–23 mer were designed. Primer pairs 2F2/2R2 and 2F2/2R3 successfully and specifically amplified fragments of 278 and 448 bp from the T. cf. harzianum BpT10a strain DNA, respectively. Both primer pairs were also tested against the DNA from 14 strains of T. cf. harzianum and several strains of different fungal genera as specificity controls. Only the DNA from the strains of T. cf. harzianum was successfully amplified. Moreover, primer pair 2F2/2R2 was assessed by quantitative real-time polymerase chain reaction (PCR) using fungal DNA mixtures and DNA extracted from fungal experimental communities as templates. T. cf. harzianum was detectable even when as few as 100 copies of the SCAR marker were available or even when its population represented only 0.1% of the whole community. PMID:25367789

  14. Designing a SCAR molecular marker for monitoring Trichoderma cf. harzianum in experimental communities.

    Science.gov (United States)

    Pérez, Gabriel; Verdejo, Valentina; Gondim-Porto, Clarissa; Orlando, Julieta; Carú, Margarita

    2014-11-01

    Several species of the fungal genus Trichoderma establish biological interactions with various micro- and macro-organisms. Some of these interactions are relevant in ecological terms and in biotechnological applications, such as biocontrol, where Trichoderma could be considered as an invasive species that colonizes a recipient community. The success of this invasion depends on multiple factors, which can be assayed using experimental communities as study models. Therefore, the aim of this work is to develop a species-specific sequence-characterized amplified region (SCAR) marker to monitor the colonization and growth of T. cf. harzianum when it invades experimental communities. For this study, 16 randomly amplified polymorphic DNA (RAPD) primers of 10-mer were used to generate polymorphic patterns, one of which generated a band present only in strains of T. cf. harzianum. This band was cloned, sequenced, and five primers of 20-23 mer were designed. Primer pairs 2F2/2R2 and 2F2/2R3 successfully and specifically amplified fragments of 278 and 448 bp from the T. cf. harzianum BpT10a strain DNA, respectively. Both primer pairs were also tested against the DNA from 14 strains of T. cf. harzianum and several strains of different fungal genera as specificity controls. Only the DNA from the strains of T. cf. harzianum was successfully amplified. Moreover, primer pair 2F2/2R2 was assessed by quantitative real-time polymerase chain reaction (PCR) using fungal DNA mixtures and DNA extracted from fungal experimental communities as templates. T. cf. harzianum was detectable even when as few as 100 copies of the SCAR marker were available or even when its population represented only 0.1% of the whole community.

  15. The human skin double-stranded DNA virome: topographical and temporal diversity, genetic enrichment, and dynamic associations with the host microbiome.

    Science.gov (United States)

    Hannigan, Geoffrey D; Meisel, Jacquelyn S; Tyldsley, Amanda S; Zheng, Qi; Hodkinson, Brendan P; SanMiguel, Adam J; Minot, Samuel; Bushman, Frederic D; Grice, Elizabeth A

    2015-10-20

    Viruses make up a major component of the human microbiota but are poorly understood in the skin, our primary barrier to the external environment. Viral communities have the potential to modulate states of cutaneous health and disease. Bacteriophages are known to influence the structure and function of microbial communities through predation and genetic exchange. Human viruses are associated with skin cancers and a multitude of cutaneous manifestations. Despite these important roles, little is known regarding the human skin virome and its interactions with the host microbiome. Here we evaluated the human cutaneous double-stranded DNA virome by metagenomic sequencing of DNA from purified virus-like particles (VLPs). In parallel, we employed metagenomic sequencing of the total skin microbiome to assess covariation and infer interactions with the virome. Samples were collected from 16 subjects at eight body sites over 1 month. In addition to the microenviroment, which is known to partition the bacterial and fungal microbiota, natural skin occlusion was strongly associated with skin virome community composition. Viral contigs were enriched for genes indicative of a temperate phage replication style and also maintained genes encoding potential antibiotic resistance and virulence factors. CRISPR spacers identified in the bacterial DNA sequences provided a record of phage predation and suggest a mechanism to explain spatial partitioning of skin phage communities. Finally, we modeled the structure of bacterial and phage communities together to reveal a complex microbial environment with a Corynebacterium hub. These results reveal the previously underappreciated diversity, encoded functions, and viral-microbial dynamic unique to the human skin virome. To date, most cutaneous microbiome studies have focused on bacterial and fungal communities. Skin viral communities and their relationships with their hosts remain poorly understood despite their potential to modulate states

  16. Assessing the impact of fungicide enostroburin application on bacterial community in wheat phyllosphere.

    Science.gov (United States)

    Gu, Likun; Bai, Zhihui; Jin, Bo; Hu, Qing; Wang, Huili; Zhuang, Guoqiang; Zhang, Hongxun

    2010-01-01

    Fungicides have been used extensively for controlling fungal pathogens of plants. However, little is known regarding the effects that fungicides upon the indigenous bacterial communities within the plant phyllosphere. The aims of this study were to assess the impact of fungicide enostroburin upon bacterial communities in wheat phyllosphere. Culture-independent methodologies of 16S rDNA clone library and 16S rDNA directed polymerase chain reaction with denaturing gradient gel electrophoresis (PCR-DGGE) were used for monitoring the change of bacterial community. The 16S rDNA clone library and PCR-DGGE analysis both confirmed the microbial community of wheat plant phyllosphere were predominantly of the gamma-Proteobacteria phyla. Results from PCR-DGGE analysis indicated a significant change in bacterial community structure within the phyllosphere following fungicide enostroburin application. Bands sequenced within control cultures were predominantly of Pseudomonas genus, but those bands sequenced in the treated samples were predominantly strains of Pantoea genus and Pseudomonas genus. Of interest was the appearance of two DGGE bands following fungicide treatment, one of which had sequence similarities (98%) to Pantoea sp. which might be a competitor of plant pathogens. This study revealed the wheat phyllosphere bacterial community composition and a shift in the bacterial community following fungicide enostroburin application.

  17. Fate of exogenously supplied bacterial DNA in soybean

    Energy Technology Data Exchange (ETDEWEB)

    Ndiku, Luyindula [Commissariat des Sciences Nucleaires, Kinshasa (Zaire). Centre Regional d' Etudes Nucleaires

    1980-01-01

    The fate of exogenously supplied radiolabelled DNA from agrobacterium tumefaciens and micrococcus lysodeikticus was investigated in soybean tissues growing under various physiological conditions. The following observations are made: (a) Rapid degradation and reutilization of the donor DNA was observed in callus tissue culture. (b) Germinating seeds and five-day old seedlings were shown to degrade DNA in the incubation medium and to ultilize these degradation products for their own DNA synthesis. Reutilization could be almost totally suppressed the addition of unlabelled thymidine as a competitor. This allowed a detection of significant amounts of residuel donor closely but transiently associated with the plant tissues. (c) In soybean shoots dipped into a solution of donor DNA, partly this DNA was found to first migrate to the leaves where mostly labelled endogenous DNA was later found. Very large amounts of polymerized exogenous DNA were found in the regenerated roots after 12 days of culture.

  18. DNA extraction from coral reef sediment bacteria for the polymerase chain reaction.

    Science.gov (United States)

    Guthrie, J N; Moriarty, D J; Blackall, L L

    2000-12-15

    A rapid and effective method for the direct extraction of high molecular weight amplifiable DNA from two coral reef sediments was developed. DNA was amplified by the polymerase chain reaction (PCR) using 16S rDNA specific primers. The amplicons were digested with HaeIII, HinP1I and MspI and separated using polyacrylamide gel electrophoresis and silver staining. The resulting amplified ribosomal DNA restriction analysis (ARDRA) patterns were used as a fingerprint to discern differences between the coral reef sediment samples. Results indicated that ARDRA is an effective method for determining differences within the bacterial community amongst different environmental samples.

  19. Diversity and survivability of microbial community in ancient permafrost sediment of northeast Siberia

    Science.gov (United States)

    Liang, R.; Lau, M.; Vishnivetskaya, T. A.; Lloyd, K. G.; Pfiffner, S. M.; Rivkina, E.; Onstott, T. C.

    2017-12-01

    The prevalence of microorganisms in frozen permafrost has been well documented in ancient sediment up to several million years old. However, the long term survivability and metabolic activity of microbes over geological timespans remain underexplored. Siberian permafrost sediment was collected at various depths (1.4m, 11.8 m and 24.8m) to represent a wide range of geological time from thousands to millions of years. Extracellular (eDNA) and intracellular DNA (iDNA) was simultaneously recovered for sequencing to characterize the potentially extinct and extant microbial community. Additionally, aspartic acid racemization assay (D/L Asp) was used to infer the metabolic activity of microbes in ancient permafrost. As compared with the young sample (1.4m), DNA yield and content of aspartic acid dramatically decreased in old samples (11.8m and 24.8m). However, D/L Asp and eDNA/iDNA significantly increased with the geological age. Such findings suggested that ancient microbiomes might be subjected to racemization or even DNA/proteins degradation at subzero temperature over the wide geological time scale. Preliminary characterization of microbial community indicated that the majority of sequences in old samples were identified as bacteria and only a small fraction was identified as archaea from the iDNA pool. While the eDNA and iDNA fractions shared similar dominant taxa at phylum level, the relative abundance of Proteobacteria in eDNA library was much higher than iDNA. By contrast, the phylum affiliated with Firmicutes was more numerically abundant in the iDNA fraction. More dramatic differences were observed between eDNA and iDNA library at lower taxonomic levels. Particularly, the microbial lineages affiliated with the genera Methanoregula, Desulfosporosinus and Syntrophomonas were only detected in the iDNA library. Such taxonomic difference between the relic eDNA and iDNA suggested that numerous species become locally "extinct" whereas many other taxa might survive in

  20. Roaming of dogs in remote Indigenous communities in northern Australia and potential interaction between community and wild dogs.

    Science.gov (United States)

    Bombara, C; Dürr, S; Gongora, J; Ward, M P

    2017-06-01

    To investigate the roaming of Indigenous community dogs and potential interaction with wild dogs and dingoes. Cross-sectional survey and longitudinal follow-up study. Six remote Indigenous communities in Cape York Peninsula and Arnhem Land in northern Australia were selected. Hair samples were collected from community dogs and microsatellite DNA analyses were used to determine hybrid (>10% dingo DNA) status. Dogs were fitted with GPS collars and home range (ha) was estimated during monitoring periods of up to 3 days. In Cape York Peninsula, 6% of the 35 dogs sampled were dingo hybrids, whereas in Arnhem Land 41% of the 29 dogs sampled were hybrids. The median extended home range was estimated to be 4.54 ha (interquartile range, 3.40 - 7.71). Seven community dogs were identified with an estimated home range > 20 ha and home ranges included the bushland surrounding communities. No significant difference in home ranges was detected between hybrid and non-hybrid dogs. Study results provide some evidence (dingo hybridisation, bushland forays) of the potential interaction between domestic and wild dogs in northern Australia. The nature of this interaction needs further investigation to determine its role in disease transmission; for example, in the case of a rabies incursion in this region. © 2017 Australian Veterinary Association.

  1. Phylogenetic diversity of lactic acid bacteria associated with paddy rice silage as determined by 16S ribosomal DNA analysis.

    Science.gov (United States)

    Ennahar, Saïd; Cai, Yimin; Fujita, Yasuhito

    2003-01-01

    A total of 161 low-G+C-content gram-positive bacteria isolated from whole-crop paddy rice silage were classified and subjected to phenotypic and genetic analyses. Based on morphological and biochemical characters, these presumptive lactic acid bacterium (LAB) isolates were divided into 10 groups that included members of the genera Enterococcus, Lactobacillus, Lactococcus, Leuconostoc, Pediococcus, and WEISSELLA: Analysis of the 16S ribosomal DNA (rDNA) was used to confirm the presence of the predominant groups indicated by phenotypic analysis and to determine the phylogenetic affiliation of representative strains. The virtually complete 16S rRNA gene was PCR amplified and sequenced. The sequences from the various LAB isolates showed high degrees of similarity to those of the GenBank reference strains (between 98.7 and 99.8%). Phylogenetic trees based on the 16S rDNA sequence displayed high consistency, with nodes supported by high bootstrap values. With the exception of one species, the genetic data was in agreement with the phenotypic identification. The prevalent LAB, predominantly homofermentative (66%), consisted of Lactobacillus plantarum (24%), Lactococcus lactis (22%), Leuconostoc pseudomesenteroides (20%), Pediococcus acidilactici (11%), Lactobacillus brevis (11%), Enterococcus faecalis (7%), Weissella kimchii (3%), and Pediococcus pentosaceus (2%). The present study, the first to fully document rice-associated LAB, showed a very diverse community of LAB with a relatively high number of species involved in the fermentation process of paddy rice silage. The comprehensive 16S rDNA-based approach to describing LAB community structure was valuable in revealing the large diversity of bacteria inhabiting paddy rice silage and enabling the future design of appropriate inoculants aimed at improving its fermentation quality.

  2. DNA replication and the repair of DNA strand breaks in nuclei of Physarum polycephalum. Terminal report, August 1, 1978-March 31, 1980

    International Nuclear Information System (INIS)

    Brewer, E.N.; Evans, T.E.

    1980-01-01

    Nuclei isolated from Physarum are able to replicate approximately 15% of the total genome in a manner which is qualitatively similar to the DNA replication process occurring in the intact organism. Such nuclei, however, are defective in the joining of Okazaki intermediates in vitro. Two DNA polymerase species, isolated from nuclei or intact plasmodia of this organism, can be separated by sucrose density gradient centrifugation. Total DNA polymerase activity is low in nuclei isolated during mitosis. A heat-stable glycoprotein material present in aqueous nuclear extracts stimulates DNA synthesis in well-washed nuclei. A sub-nuclear preparation active in DNA synthesis in vitro has been obtained from isolated nuclei of Physarum. Radiation-induced DNA double-strand breaks are rejoined in intact plasmodia and isolated nuclei of Physarum in a cell cycle-dependent manner. This phenomenon does not appear to be due to an intrinsic difference in nuclear DNA endonuclease activity at different times of the mitotic cycle. DNA strand breaks and repair induced by the carcinogen 4-nitroquinoline-1-oxide is similar in several respects to that resulting from exposure of the organism to ionizing radiation. Temperature sensitive strains of Physarum have been constructed and preliminary genetical and biochemical characterizations have been carried out. Two of the strains appear to be conditionally defective in DNA metabolism. An isogenic ploidal series of amoebae has been prepared and characterized as to uv and ionizing radiation sensitivity (in terms of cell survival). There is a direct relationship between ploidy and resistance to uv whereas ploidal change does not appear to affect the response to ionizing radiation

  3. Optimization of DNA recovery and amplification from non-carbonized archaeobotanical remains

    DEFF Research Database (Denmark)

    Wales, Nathan; Andersen, Kenneth; Cappellini, Enrico

    2014-01-01

    Ancient DNA (aDNA) recovered from archaeobotanical remains can provide key insights into many prominent archaeological research questions, including processes of domestication, past subsistence strategies, and human interactions with the environment. However, it is often difficult to isolate a...... extracted from non-charred ancient plant remains. Based upon the criteria of resistance to enzymatic inhibition, behavior in quantitative real-time PCR, replication fidelity, and compatibility with aDNA damage, we conclude these polymerases have nuanced properties, requiring researchers to make educated...... on the interactions between humans and past plant communities....

  4. Sterile paper points as a bacterial DNA-contamination source in microbiome profiles of clinical samples

    NARCIS (Netherlands)

    van der Horst, J.; Buijs, M.J.; Laine, M.L.; Wismeijer, D.; Loos, B.G.; Crielaard, W.; Zaura, E.

    2013-01-01

    Objectives High throughput sequencing of bacterial DNA from clinical samples provides untargeted, open-ended information on the entire microbial community. The downside of this approach is the vulnerability to DNA contamination from other sources than the clinical sample. Here we describe

  5. Metagenomic Sequencing of an In Vitro-Simulated Microbial Community

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, Jenna L.; Darling, Aaron E.; Eisen, Jonathan A.

    2009-12-01

    Background: Microbial life dominates the earth, but many species are difficult or even impossible to study under laboratory conditions. Sequencing DNA directly from the environment, a technique commonly referred to as metagenomics, is an important tool for cataloging microbial life. This culture-independent approach involves collecting samples that include microbes in them, extracting DNA from the samples, and sequencing the DNA. A sample may contain many different microorganisms, macroorganisms, and even free-floating environmental DNA. A fundamental challenge in metagenomics has been estimating the abundance of organisms in a sample based on the frequency with which the organism's DNA was observed in reads generated via DNA sequencing. Methodology/Principal Findings: We created mixtures of ten microbial species for which genome sequences are known. Each mixture contained an equal number of cells of each species. We then extracted DNA from the mixtures, sequenced the DNA, and measured the frequency with which genomic regions from each organism was observed in the sequenced DNA. We found that the observed frequency of reads mapping to each organism did not reflect the equal numbers of cells that were known to be included in each mixture. The relative organism abundances varied significantly depending on the DNA extraction and sequencing protocol utilized. Conclusions/Significance: We describe a new data resource for measuring the accuracy of metagenomic binning methods, created by in vitro-simulation of a metagenomic community. Our in vitro simulation can be used to complement previous in silico benchmark studies. In constructing a synthetic community and sequencing its metagenome, we encountered several sources of observation bias that likely affect most metagenomic experiments to date and present challenges for comparative metagenomic studies. DNA preparation methods have a particularly profound effect in our study, implying that samples prepared with

  6. Diet Quality Associated with Total Sodium Intake among US Adults Aged ≥18 Years—National Health and Nutrition Examination Survey, 2009–2012

    Directory of Open Access Journals (Sweden)

    Carla I. Mercado

    2017-10-01

    Full Text Available Diet quality or macronutrient composition of total daily sodium intake (dNa <2300 mg/day in the United States (US is unknown. Using data from 2011–2014 NHANES (National Health and Nutrition Examination Survey, we examined 24-h dietary recalls (n = 10,142 from adults aged ≥18 years and investigated how diet composition and quality are associated with dNa. Diet quality was assessed using components of macronutrients and Healthy Eating Index 2010 (HEI-2010. Associations were tested using linear regression analysis adjusted for total energy (kcal, age, gender, and race/ethnicity. One-day dNa in the lower quartiles were more likely reported among women, older adults (≥65 years old, and lower quartiles of total energy (kcal (p-values ≤ 0.001. With increasing dNa, there was an increase in the mean protein, fiber, and total fat densities, while total carbohydrates densities decreased. As dNa increased, meat protein, refined grains, dairy, and total vegetables, greens and beans densities increased; while total fruit and whole fruit densities decreased. Modified HEI-2010 total score (total score without sodium component increased as dNa increased (adjusted coefficient: 0.11, 95% confidence interval = 0.07, 0.15. Although diet quality, based on modified HEI-2010 total score, increased on days with greater dNa, there is much room for improvement with mean diet quality of about half of the optimal level.

  7. Plant DNA detection from grasshopper guts: A step-by-step protocol, from tissue preparation to obtaining plant DNA sequences1

    Science.gov (United States)

    Avanesyan, Alina

    2014-01-01

    • Premise of the study: A PCR-based method of identifying ingested plant DNA in gut contents of Melanoplus grasshoppers was developed. Although previous investigations have focused on a variety of insects, there are no protocols available for plant DNA detection developed for grasshoppers, agricultural pests that significantly influence plant community composition. • Methods and Results: The developed protocol successfully used the noncoding region of the chloroplast trnL (UAA) gene and was tested in several feeding experiments. Plant DNA was obtained at seven time points post-ingestion from whole guts and separate gut sections, and was detectable up to 12 h post-ingestion in nymphs and 22 h post-ingestion in adult grasshoppers. • Conclusions: The proposed protocol is an effective, relatively quick, and low-cost method of detecting plant DNA from the grasshopper gut and its different sections. This has important applications, from exploring plant “movement” during food consumption, to detecting plant–insect interactions. PMID:25202604

  8. S - and N-alkylating agents diminish the fluorescence of fluorescent dye-stained DNA.

    Science.gov (United States)

    Giesche, Robert; John, Harald; Kehe, Kai; Schmidt, Annette; Popp, Tanja; Balzuweit, Frank; Thiermann, Horst; Gudermann, Thomas; Steinritz, Dirk

    2017-01-25

    Sulfur mustard (SM), a chemical warfare agent, causes DNA alkylation, which is believed to be the main cause of its toxicity. SM DNA adducts are commonly used to verify exposure to this vesicant. However, the required analytical state-of-the-art mass-spectrometry methods are complex, use delicate instruments, are not mobile, and require laboratory infrastructure that is most likely not available in conflict zones. Attempts have thus been made to develop rapid detection methods that can be used in the field. The analysis of SM DNA adducts (HETE-G) by immunodetection is a convenient and suitable method. For a diagnostic assessment, HETE-G levels must be determined in relation to the total DNA in the sample. Total DNA can be easily visualized by the use of fluorescent DNA dyes. This study examines whether SM and related compounds affect total DNA staining, an issue that has not been investigated before. After pure DNA was extracted from human keratinocytes (HaCaT cells), DNA was exposed to different S- and N-alkylating agents. Our experiments revealed a significant, dose-dependent decrease in the fluorescence signal of fluorescent dye-stained DNA after exposure to alkylating agents. After mass spectrometry and additional fluorescence measurements ruled out covalent modifications of ethidium bromide (EthBr) by SM, we assumed that DNA crosslinks caused DNA condensation and thereby impaired access of the fluorescent dyes to the DNA. DNA digestion by restriction enzymes restored fluorescence, a fact that strengthened our hypothesis. However, monofunctional agents, which are unable to crosslink DNA, also decreased the fluorescence signal. In subsequent experiments, we demonstrated that protons produced during DNA alkylation caused a pH decrease that was found responsible for the reduction in fluorescence. The use of an appropriate buffer system eliminated the adverse effect of alkylating agents on DNA staining with fluorescent dyes. An appropriate buffer system is thus

  9. Rhizosphere microbial community structure in relation to root location and plant iron nutritional status.

    Science.gov (United States)

    Yang, C H; Crowley, D E

    2000-01-01

    Root exudate composition and quantity vary in relation to plant nutritional status, but the impact of the differences on rhizosphere microbial communities is not known. To examine this question, we performed an experiment with barley (Hordeum vulgare) plants under iron-limiting and iron-sufficient growth conditions. Plants were grown in an iron-limiting soil in root box microcosms. One-half of the plants were treated with foliar iron every day to inhibit phytosiderophore production and to alter root exudate composition. After 30 days, the bacterial communities associated with different root zones, including the primary root tips, nonelongating secondary root tips, sites of lateral root emergence, and older roots distal from the tip, were characterized by using 16S ribosomal DNA (rDNA) fingerprints generated by PCR-denaturing gradient gel electrophoresis (DGGE). Our results showed that the microbial communities associated with the different root locations produced many common 16S rDNA bands but that the communities could be distinguished by using correspondence analysis. Approximately 40% of the variation between communities could be attributed to plant iron nutritional status. A sequence analysis of clones generated from a single 16S rDNA band obtained at all of the root locations revealed that there were taxonomically different species in the same band, suggesting that the resolving power of DGGE for characterization of community structure at the species level is limited. Our results suggest that the bacterial communities in the rhizosphere are substantially different in different root zones and that a rhizosphere community may be altered by changes in root exudate composition caused by changes in plant iron nutritional status.

  10. Modes of DNA repair and replication

    International Nuclear Information System (INIS)

    Hanawalt, P.; Kondo, S.

    1979-01-01

    Modes of DNA repair and replication require close coordination as well as some overlap of enzyme functions. Some classes of recovery deficient mutants may have defects in replication rather than repair modes. Lesions such as the pyrimidine dimers produced by ultraviolet light irradiation are the blocks to normal DNA replication in vivo and in vitro. The DNA synthesis by the DNA polymerase 1 of E. coli is blocked at one nucleotide away from the dimerized pyrimidines in template strands. Thus, some DNA polymerases seem to be unable to incorporate nucleotides opposite to the non-pairing lesions in template DNA strands. The lesions in template DNA strands may block the sequential addition of nucleotides in the synthesis of daughter strands. Normal replication utilizes a constitutive ''error-free'' mode that copies DNA templates with high fidelity, but which may be totally blocked at a lesion that obscures the appropriate base pairing specificity. It might be expected that modified replication system exhibits generally high error frequency. The error rate of DNA polymerases may be controlled by the degree of phosphorylation of the enzyme. Inducible SOS system is controlled by recA genes that also control the pathways for recombination. It is possible that SOS system involves some process other than the modification of a blocked replication apparatus to permit error-prone transdimer synthesis. (Yamashita, S.)

  11. A Novel Low Temperature PCR Assured High-Fidelity DNA Amplification

    Directory of Open Access Journals (Sweden)

    Shaoxia Zhou

    2013-06-01

    Full Text Available As previously reported, a novel low temperature (LoTemp polymerase chain reaction (PCR catalyzed by a moderately heat-resistant (MHR DNA polymerase with a chemical-assisted denaturation temperature set at 85 °C instead of the conventional 94–96 °C can achieve high-fidelity DNA amplification of a target DNA, even after up to 120 PCR thermal cycles. Furthermore, such accurate amplification is not achievable with conventional PCR. Now, using a well-recognized L1 gene segment of the human papillomavirus (HPV type 52 (HPV-52 as the template for experiments, we demonstrate that the LoTemp high-fidelity DNA amplification is attributed to an unusually high processivity and stability of the MHR DNA polymerase whose high fidelity in template-directed DNA synthesis is independent of non-existent 3'–5' exonuclease activity. Further studies and understanding of the characteristics of the LoTemp PCR technology may facilitate implementation of DNA sequencing-based diagnostics at the point of care in community hospital laboratories.

  12. Molecular monitoring of succession of bacterial communities in human neonates

    NARCIS (Netherlands)

    Favier, C.; Vaughan, E.E.; Vos, de W.M.; Akkermans, A.D.L.

    2002-01-01

    The establishment of bacterial communities in two healthy babies was examined for more than the first 10 months of life by monitoring 16S ribosomal DNA (rDNA) diversity in fecal samples by PCR and denaturing gradient gel electrophoresis (DGGE) and by analyzing the sequences of the major ribotypes.

  13. Application of ion torrent sequencing to the assessment of the effect of alkali ballast water treatment on microbial community diversity.

    Science.gov (United States)

    Fujimoto, Masanori; Moyerbrailean, Gregory A; Noman, Sifat; Gizicki, Jason P; Ram, Michal L; Green, Phyllis A; Ram, Jeffrey L

    2014-01-01

    The impact of NaOH as a ballast water treatment (BWT) on microbial community diversity was assessed using the 16S rRNA gene based Ion Torrent sequencing with its new 400 base chemistry. Ballast water samples from a Great Lakes ship were collected from the intake and discharge of both control and NaOH (pH 12) treated tanks and were analyzed in duplicates. One set of duplicates was treated with the membrane-impermeable DNA cross-linking reagent propidium mono-azide (PMA) prior to PCR amplification to differentiate between live and dead microorganisms. Ion Torrent sequencing generated nearly 580,000 reads for 31 bar-coded samples and revealed alterations of the microbial community structure in ballast water that had been treated with NaOH. Rarefaction analysis of the Ion Torrent sequencing data showed that BWT using NaOH significantly decreased microbial community diversity relative to control discharge (pPCoA) plots and UPGMA tree analysis revealed that NaOH-treated ballast water microbial communities differed from both intake communities and control discharge communities. After NaOH treatment, bacteria from the genus Alishewanella became dominant in the NaOH-treated samples, accounting for microbial community structure between PMA-processed and non-PMA samples occurred in intake water samples, which exhibited a significantly higher amount of PMA-sensitive cyanobacteria/chloroplast 16S rRNA than their corresponding non-PMA total DNA samples. The community assembly obtained using Ion Torrent sequencing was comparable to that obtained from a subset of samples that were also subjected to 454 pyrosequencing. This study showed the efficacy of alkali ballast water treatment in reducing ballast water microbial diversity and demonstrated the application of new Ion Torrent sequencing techniques to microbial community studies.

  14. Preliminary evaluation of Community-Led Total Sanitation for the control of Taenia solium cysticercosis in Katete District of Zambia.

    Science.gov (United States)

    Bulaya, Carol; Mwape, Kabemba E; Michelo, Charles; Sikasunge, Chummy S; Makungu, Chitwambi; Gabriel, Sarah; Dorny, Pierre; Phiri, Isaac K

    2015-01-30

    Taenia solium taeniasis/cysticercosis is a zoonotic disease endemic in sub-Saharan Africa. It is associated with poor sanitary practices, free-range pig husbandry and lack of disease awareness in endemic communities. A comparative research was conducted with pre and post-intervention assessments in nine villages to evaluate Community-Led Total Sanitation (CLTS) as an intervention measure for the control of porcine cysticercosis in Katete District in the Eastern Province of Zambia. Blood samples were collected from pigs for circulating antigen detection and a questionnaire focused on the household was administered to a total of 153 respondents whose pigs were examined (64 pre-intervention, 89 post-intervention), in order to obtain information on general demographic characteristics, pig husbandry practices, sanitation practices and associated knowledge and awareness of T. solium infections. The first sampling was conducted prior to the implementation of the CLTS and second sampling eight months after triggering of CLTS in the selected villages. A total of 379 pig serum samples were examined using the B158/B60 Ag-ELISA to detect T. solium cysticercosis, 104 pre-intervention and 275 post-intervention, of which 14 (13.5%) and 45 (16.4%) were positive, respectively. Wald test p-values were computed to assess significant differences in the variables of interest mentioned above for the pre and post CLTS. The research revealed that CLTS as a control measure did not significantly improve T. solium infections in pigs. The research also revealed that the sanitation practices and awareness of cysticercosis did not change. It is recommended that a longer term evaluation be undertaken when the villages have been declared open defaecation free. In addition, the research recommends that health education, mass drug treatment and pig vaccination be incorporated, as an essential component of prevention and control programmes for T. solium infections. Copyright © 2014 Elsevier B

  15. Land-total and Ocean-total Precipitation and Evaporation from a Community Atmosphere Model version 5 Perturbed Parameter Ensemble

    Energy Technology Data Exchange (ETDEWEB)

    Covey, Curt [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lucas, Donald D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Trenberth, Kevin E. [National Center for Atmospheric Research, Boulder, CO (United States)

    2016-03-02

    This document presents the large scale water budget statistics of a perturbed input-parameter ensemble of atmospheric model runs. The model is Version 5.1.02 of the Community Atmosphere Model (CAM). These runs are the “C-Ensemble” described by Qian et al., “Parametric Sensitivity Analysis of Precipitation at Global and Local Scales in the Community Atmosphere Model CAM5” (Journal of Advances in Modeling the Earth System, 2015). As noted by Qian et al., the simulations are “AMIP type” with temperature and sea ice boundary conditions chosen to match surface observations for the five year period 2000-2004. There are 1100 ensemble members in addition to one run with default inputparameter values.

  16. Cell-free DNA, inflammation, and the initiation of spontaneous term labor.

    Science.gov (United States)

    Herrera, Christina A; Stoerker, Jay; Carlquist, John; Stoddard, Gregory J; Jackson, Marc; Esplin, Sean; Rose, Nancy C

    2017-11-01

    Hypomethylated cell-free DNA from senescent placental trophoblasts may be involved in the activation of the inflammatory cascade to initiate labor. To determine the changes in cell-free DNA concentrations, the methylation ratio, and inflammatory markers between women in labor at term vs women without labor. In this prospective cohort study, eligible participants carried a nonanomalous singleton fetus. Women with major medical comorbidity, preterm labor, progesterone use, aneuploidy, infectious disease, vaginal bleeding, abdominal trauma, or invasive procedures during the pregnancy were excluded. Maternal blood samples were collected at 28 weeks, 36 weeks, and at admission for delivery. Total cell-free DNA concentration, methylation ratio, and interleukin-6 were analyzed. The primary outcome was the difference in methylation ratio in women with labor vs without labor. Secondary outcomes included the longitudinal changes in these biomarkers corresponding to labor status. A total of 55 women were included; 20 presented in labor on admission and 35 presented without labor. Women in labor had significantly greater methylation ratio (P = .001) and interleukin-6 (P < .001) on admission for delivery than women without labor. After we controlled for body mass index and maternal age, methylation ratio (adjusted relative risk, 1.38; 95% confidence interval, 1.13 to 1.68) and interleukin-6 (adjusted relative risk, 1.12, 95% confidence interval, 1.07 to 1.17) remained greater in women presenting in labor. Total cell-free DNA was not significantly different in women with labor compared with women without. Longitudinally, total cell-free DNA (P < .001 in labor, P = .002 without labor) and interleukin-6 (P < .001 in labor, P = .01 without labor) increased significantly across gestation in both groups. The methylation ratio increased significantly in women with labor from 36 weeks to delivery (P = .02). Spontaneous labor at term is associated with a greater cell-free DNA

  17. DNA accumulation on ventilation system filters in university buildings in Singapore.

    Science.gov (United States)

    Luhung, Irvan; Wu, Yan; Xu, Siyu; Yamamoto, Naomichi; Chang, Victor Wei-Chung; Nazaroff, William W

    2017-01-01

    Biological particles deposit on air handling system filters as they process air. This study reports and interprets abundance and diversity information regarding biomass accumulation on ordinarily used filters acquired from several locations in a university environment. DNA-based analysis was applied both to quantify (via DNA fluorometry and qPCR) and to characterize (via high-throughput sequencing) the microbial material on filters, which mainly processed recirculated indoor air. Results were interpreted in relation to building occupancy and ventilation system operational parameters. Based on accumulated biomass, average DNA concentrations per AHU filter surface area across nine indoor locations after twelve weeks of filter use were in the respective ranges 1.1 to 41 ng per cm2 for total DNA, 0.02 to 3.3 ng per cm2 for bacterial DNA and 0.2 to 2.0 ng DNA per cm2 for fungal DNA. The most abundant genera detected on the AHU filter samples were Clostridium, Streptophyta, Bacillus, Acinetobacter and Ktedonobacter for bacteria and Aspergillus, Cladosporium, Nigrospora, Rigidoporus and Lentinus for fungi. Conditional indoor airborne DNA concentrations (median (range)) were estimated to be 13 (2.6-107) pg/m3 for total DNA, 0.4 (0.05-8.4) pg/m3 for bacterial DNA and 2.3 (1.0-5.1) pg/m3 for fungal DNA. Conditional airborne concentrations and the relative abundances of selected groups of genera correlate well with occupancy level. Bacterial DNA was found to be more responsive than fungal DNA to differences in occupancy level and indoor environmental conditions.

  18. Alpha-phellandrene-induced DNA damage and affect DNA repair protein expression in WEHI-3 murine leukemia cells in vitro.

    Science.gov (United States)

    Lin, Jen-Jyh; Wu, Chih-Chung; Hsu, Shu-Chun; Weng, Shu-Wen; Ma, Yi-Shih; Huang, Yi-Ping; Lin, Jaung-Geng; Chung, Jing-Gung

    2015-11-01

    Although there are few reports regarding α-phellandrene (α-PA), a natural compound from Schinus molle L. essential oil, there is no report to show that α-PA induced DNA damage and affected DNA repair associated protein expression. Herein, we investigated the effects of α-PA on DNA damage and repair associated protein expression in murine leukemia cells. Flow cytometric assay was used to measure the effects of α-PA on total cell viability and the results indicated that α-PA induced cell death. Comet assay and 4,6-diamidino-2-phenylindole dihydrochloride staining were used for measuring DNA damage and condensation, respectively, and the results indicated that α-PA induced DNA damage and condensation in a concentration-dependent manner. DNA gel electrophoresis was used to examine the DNA damage and the results showed that α-PA induced DNA damage in WEHI-3 cells. Western blotting assay was used to measure the changes of DNA damage and repair associated protein expression and the results indicated that α-PA increased p-p53, p-H2A.X, 14-3-3-σ, and MDC1 protein expression but inhibited the protein of p53, MGMT, DNA-PK, and BRCA-1. © 2014 Wiley Periodicals, Inc.

  19. Cell-Free DNA in Metastatic Colorectal Cancer: A Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Spindler, Karen-Lise G; Boysen, Anders K; Pallisgård, Niels; Johansen, Julia S; Tabernero, Josep; Sørensen, Morten M; Jensen, Benny V; Hansen, Torben F; Sefrioui, David; Andersen, Rikke F; Brandslund, Ivan; Jakobsen, Anders

    2017-09-01

    Circulating DNA can be detected and quantified in the blood of cancer patients and used for detection of tumor-specific genetic alterations. The clinical utility has been intensively investigated for the past 10 years. The majority of reports focus on analyzing the clinical potential of tumor-specific mutations, whereas the use of total cell-free DNA (cfDNA) quantification is somehow controversial and sparsely described in the literature, but holds important clinical information in itself. The purpose of the present report was to present a systematic review and meta-analysis of the prognostic value of total cfDNA in patients with metastatic colorectal cancer (mCRC) treated with chemotherapy. In addition, we report on the overall performance of cfDNA as source for KRAS mutation detection. A systematic literature search of PubMed and Embase was performed by two independent investigators. Eligibility criteria were (a) total cfDNA analysis, (b) mCRC, and (c) prognostic value during palliative treatment. The preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines were followed, and meta-analysis applied on both aggregate data extraction and individual patients' data. Ten eligible cohorts were identified, including a total of 1,076 patients. Seven studies used quantitative polymerase chain reaction methods, two BEAMing [beads, emulsification, amplification, and magnetics] technology, and one study digital droplet polymerase chain reaction. The baseline levels of cfDNA was similar in the presented studies, and all studies reported a clear prognostic value in favor of patients with lowest levels of baseline cfDNA. A meta-analysis revealed a combined estimate of favorable overall survival hazard ratio (HR) in patients with levels below the median cfDNA (HR = 2.39, 95% confidence interval 2.03-2.82, p  meta-analysis. Reliable prognostic markers could help to guide patients and treating physicians regarding the relevance and choice of

  20. Fungal DNA in hotel rooms in Europe and Asia--associations with latitude, precipitation, building data, room characteristics and hotel ranking.

    Science.gov (United States)

    Norbäck, Dan; Cai, Gui-Hong

    2011-10-01

    There is little information on the indoor environment in hotels. Analysis of fungal DNA by quantitative PCR (qPCR) is a new method which can detect general and specific sequences. Dust was collected through swab sampling of door frames in 69 hotel rooms in 20 countries in Europe and Asia (2007-2009). Five sequences were detected by qPCR: total fungal DNA, Aspergillus and Penicillium DNA (Asp/Pen DNA), Aspergillus versicolor (A. versicolor DNA), Stachybotrys chartarum (S. chartarum DNA) and Streptomyces spp. (Streptomyces DNA). Associations were analysed by multiple linear regression. Total fungal DNA (GM = 1.08 × 10(8) cell equivalents m(-2); GSD = 6.36) and Asp/Pen DNA (GM = 1.79 × 10(7) cell equivalents m(-2); GSD = 10.12) were detected in all rooms. A. versicolor DNA, S. chartarum DNA and Streptomyces DNA were detected in 84%, 28% and 47% of the samples. In total, 20% of the rooms had observed dampness/mould, and 30% had odour. Low latitude (range 1.5-64.2 degrees) was a predictor of Asp/Pen DNA. Seaside location, lack of mechanical ventilation, and dampness or mould were other predictors of total fungal DNA and Asp/Pen DNA. Hotel ranking (Trip Advisor) or self-rated quality of the interior of the hotel room was a predictor of total fungal DNA, A. versicolor DNA and Streptomyces DNA. Odour was a predictor of S. chartarum DNA. In conclusion, fungal DNA in swab samples from hotel rooms was related to latitude, seaside location, ventilation, visible dampness and indoor mould growth. Hotels in tropical areas may have 10-100 times higher levels of common moulds such as Aspergillus and Penicillium species, as compared to a temperate climate zone.

  1. Genetic diversity of sago palm in Indonesia based on chloroplast DNA (cpDNA markers

    Directory of Open Access Journals (Sweden)

    MEMEN SURAHMAN

    2010-07-01

    Full Text Available Abbas B, Renwarin Y, Bintoro MH, Sudarsono, Surahman M, Ehara H (2010 Genetic diversity of sago palm in Indonesia based on chloroplast DNA (cpDNA markers. Biodiversitas 11: 112-117. Sago palm (Metroxylon sagu Rottb. was believed capable to accumulate high carbohydrate content in its trunk. The capability of sago palm producing high carbohydrate should be an appropriate criterion for defining alternative crops in anticipating food crisis. The objective of this research was to study genetic diversity of sago palm in Indonesia based on cpDNA markers. Total genome extraction was done following the Qiagen DNA isolation protocols 2003. Single Nucleotide Fragments (SNF analyses were performed by using ABI Prism GeneScanR 3.7. SNF analyses detected polymorphism revealing eleven alleles and ten haplotypes from total 97 individual samples of sago palm. Specific haplotypes were found in the population from Papua, Sulawesi, and Kalimantan. Therefore, the three islands will be considered as origin of sago palm diversities in Indonesia. The highest haplotype numbers and the highest specific haplotypes were found in the population from Papua suggesting this islands as the centre and the origin of sago palm diversities in Indonesia. The research had however no sufficient data yet to conclude the Papua origin of sago palm. Genetic hierarchies and differentiations of sago palm samples were observed significantly different within populations (P=0.04574, among populations (P=0.04772, and among populations within the island (P=0.03366, but among islands no significant differentiations were observed (P= 0.63069.

  2. Prokaryotic diversity, composition structure, and phylogenetic analysis of microbial communities in leachate sediment ecosystems.

    Science.gov (United States)

    Liu, Jingjing; Wu, Weixiang; Chen, Chongjun; Sun, Faqian; Chen, Yingxu

    2011-09-01

    In order to obtain insight into the prokaryotic diversity and community in leachate sediment, a culture-independent DNA-based molecular phylogenetic approach was performed with archaeal and bacterial 16S rRNA gene clone libraries derived from leachate sediment of an aged landfill. A total of 59 archaeal and 283 bacterial rDNA phylotypes were identified in 425 archaeal and 375 bacterial analyzed clones. All archaeal clones distributed within two archaeal phyla of the Euryarchaeota and Crenarchaeota, and well-defined methanogen lineages, especially Methanosaeta spp., are the most numerically dominant species of the archaeal community. Phylogenetic analysis of the bacterial library revealed a variety of pollutant-degrading and biotransforming microorganisms, including 18 distinct phyla. A substantial fraction of bacterial clones showed low levels of similarity with any previously documented sequences and thus might be taxonomically new. Chemical characteristics and phylogenetic inferences indicated that (1) ammonium-utilizing bacteria might form consortia to alleviate or avoid the negative influence of high ammonium concentration on other microorganisms, and (2) members of the Crenarchaeota found in the sediment might be involved in ammonium oxidation. This study is the first to report the composition of the microbial assemblages and phylogenetic characteristics of prokaryotic populations extant in leachate sediment. Additional work on microbial activity and contaminant biodegradation remains to be explored.

  3. Study on a hidden protein-DNA binding in salmon sperm DNA sample by dynamic kinetic capillary isoelectric focusing

    International Nuclear Information System (INIS)

    Liang Liang; Dou Peng; Dong Mingming; Ke Xiaokang; Bian Ningsheng; Liu Zhen

    2009-01-01

    Nuclease P1 is an important enzyme that hydrolyzes RNA or single-stranded DNA into nucleotides, and complete digestion is an essential basis for assays based on this enzyme. To digest a doubled-stranded DNA, the enzyme is usually combined with heat denaturing, which breaks doubled-stranded DNA into single strands. This paper presents an un-expected phenomenon that nuclease P1, in combination with heat denaturing, fails to completely digest a DNA sample extracted from salmon sperm. Under the experimental conditions used, at which nuclease P1 can completely digest calf thymus DNA, the digestion yield of salmon sperm DNA was only 89.5%. Spectrometric measurement indicated that a total protein of 4.7% is present in the DNA sample. To explain the reason for this phenomenon, the dynamic kinetic capillary isoelectric focusing (DK-CIEF) approach proposed previously, which allows for the discrimination of different types of protein-DNA interactions and the measurement of the individual dissociation rate constants, was modified and applied to examine possible protein-DNA interactions involved. It was found that a non-specific DNA-protein binding occurs in the sample, the dissociation rate constant for which was measured to be 7.05 ± 0.83 x 10 -3 s -1 . The formation of DNA-protein complex was suggested to be the main reason for the incomplete digestion of the DNA sample. The modified DK-CIEF approach can be applied as general DNA samples, with the advantages of fast speed and low sample consumption.

  4. Cell-Free DNA in Metastatic Colorectal Cancer

    DEFF Research Database (Denmark)

    Spindler, Karen-Lise G.; Boysen, Anders K.; Pallisgard, Niels

    2017-01-01

    -analysis of the prognostic value of total cfDNA in patients with metastatic colorectal cancer (mCRC) treated with chemotherapy. In addition, we report on the overall performance of cfDNA as source for KRAS mutation detection. MATERIALS AND METHODS: A systematic literature search of PubMed and Embase was performed by two......BACKGROUND: Circulating DNA can be detected and quantified in the blood of cancer patients and used for detection of tumor-specific genetic alterations. The clinical utility has been intensively investigated for the past 10 years. The majority of reports focus on analyzing the clinical potential...

  5. Radiation effects on DNA methylation in mice

    International Nuclear Information System (INIS)

    Komura, J.; Kurishita, A.; Miyamura, Y.; Ono, T.; Tawa, R.; Sakurai, H.

    1992-01-01

    Effects of ionizing radiation on DNA methylation in liver, brain and spleen were examined by high performance liquid chromatography (HPLC). The total methylated cytosine level in the genome was reduced within 8 hours after 3.8 Gy of irradiation in liver of adult mice. But no appreciable effect was observed in brain and spleen. When mice were irradiated at newborn, liver DNA revealed no change in methylated cytosine level. Even though slight effects of radiation were detected in he methylation of the c-myc and c-fos genes, they were only temporary and no long-term effects were observed. These data suggest that the effect of radiation on DNA methylation in vivo is not prevailing a DNA damage, but rather influenced much through biological parameters. (author)

  6. 454 pyrosequencing to describe microbial eukaryotic community composition, diversity and relative abundance: a test for marine haptophytes.

    Directory of Open Access Journals (Sweden)

    Elianne Egge

    Full Text Available Next generation sequencing of ribosomal DNA is increasingly used to assess the diversity and structure of microbial communities. Here we test the ability of 454 pyrosequencing to detect the number of species present, and assess the relative abundance in terms of cell numbers and biomass of protists in the phylum Haptophyta. We used a mock community consisting of equal number of cells of 11 haptophyte species and compared targeting DNA and RNA/cDNA, and two different V4 SSU rDNA haptophyte-biased primer pairs. Further, we tested four different bioinformatic filtering methods to reduce errors in the resulting sequence dataset. With sequencing depth of 11000-20000 reads and targeting cDNA with Haptophyta specific primers Hap454 we detected all 11 species. A rarefaction analysis of expected number of species recovered as a function of sampling depth suggested that minimum 1400 reads were required here to recover all species in the mock community. Relative read abundance did not correlate to relative cell numbers. Although the species represented with the largest biomass was also proportionally most abundant among the reads, there was generally a weak correlation between proportional read abundance and proportional biomass of the different species, both with DNA and cDNA as template. The 454 sequencing generated considerable spurious diversity, and more with cDNA than DNA as template. With initial filtering based only on match with barcode and primer we observed 100-fold more operational taxonomic units (OTUs at 99% similarity than the number of species present in the mock community. Filtering based on quality scores, or denoising with PyroNoise resulted in ten times more OTU99% than the number of species. Denoising with AmpliconNoise reduced the number of OTU99% to match the number of species present in the mock community. Based on our analyses, we propose a strategy to more accurately depict haptophyte diversity using 454 pyrosequencing.

  7. Construction and applications of DNA probes for detection of polychlorinated biphenyl-degrading genotypes in toxic organic-contaminated soil environments

    International Nuclear Information System (INIS)

    Walia, S.; Khan, A.; Rosenthal, N.

    1990-01-01

    Several DNA probes for polychlorinated biphenyl (PCB)-degrading genotypes were constructed from PCB-degrading bacteria. These laboratory-engineered DNA probes were used for the detection, enumeration, and isolation of specific bacteria degrading PCBs. Dot blot analysis of purified DNA from toxic organic chemical-contaminated soil bacterial communities showed positive DNA-DNA hybridization with a 32P-labeled DNA probe (pAW6194, cbpABCD). Less than 1% of bacterial colonies isolated from garden topsoil and greater than 80% of bacteria isolated from PCB-contaminated soils showed DNA homologies with 32P-labeled DNA probes. Some of the PCB-degrading bacterial isolates detected by the DNA probe method did not show biphenyl clearance. The DNA probe method was found to detect additional organisms with greater genetic potential to degrade PCBs than the biphenyl clearance method did. Results from this study demonstrate the usefulness of DNA probes in detecting specific PCB-degrading bacteria, abundance of PCB-degrading genotypes, and genotypic diversity among PCB-degrading bacteria in toxic chemical-polluted soil environments. We suggest that the DNA probe should be used with caution for accurate assessment of PCB-degradative capacity within soils and further recommend that a combination of DNA probe and biodegradation assay be used to determine the abundance of PCB-degrading bacteria in the soil bacterial community

  8. Endogenous melatonin and oxidatively damaged guanine in DNA

    Directory of Open Access Journals (Sweden)

    Poulsen Henrik E

    2009-10-01

    Full Text Available Abstract Background A significant body of literature indicates that melatonin, a hormone primarily produced nocturnally by the pineal gland, is an important scavenger of hydroxyl radicals and other reactive oxygen species. Melatonin may also lower the rate of DNA base damage resulting from hydroxyl radical attack and increase the rate of repair of that damage. This paper reports the results of a study relating the level of overnight melatonin production to the overnight excretion of the two primary urinary metabolites of the repair of oxidatively damaged guanine in DNA. Methods Mother-father-daughter(s families (n = 55 were recruited and provided complete overnight urine samples. Total overnight creatinine-adjusted 6-sulphatoxymelatonin (aMT6s/Cr has been shown to be highly correlated with total overnight melatonin production. Urinary 8-oxo-7,8-dihydro-guanine (8-oxoGua results from the repair of DNA or RNA guanine via the nucleobase excision repair pathway, while urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG may possibly result from the repair of DNA guanine via the nucleotide excision repair pathway. Total overnight urinary levels of 8-oxodG and 8-oxoGua are therefore a measure of total overnight guanine DNA damage. 8-oxodG and 8-oxoGua were measured using a high-performance liquid chromatography-electrospray ionization tandem mass spectrometry assay. The mother, father, and oldest sampled daughter were used for these analyses. Comparisons between the mothers, fathers, and daughters were calculated for aMT6s/Cr, 8-oxodG, and 8-oxoGua. Regression analyses of 8-oxodG and 8-oxoGua on aMT6s/Cr were conducted for mothers, fathers, and daughters separately, adjusting for age and BMI (or weight. Results Among the mothers, age range 42-80, lower melatonin production (as measured by aMT6s/CR was associated with significantly higher levels of 8-oxodG (p Conclusion Low levels of endogenous melatonin production among older individuals may lead to

  9. Extraction and phylogenetic survey of extracellular and intracellular DNA in marine sediments

    DEFF Research Database (Denmark)

    Torti, Andrea

    indeed inflate richness estimates of sediments microbial communities, and point to a role of bioturbation in shaping the prokaryotic diversity of the eDNA pool at the investigated site. Analysis of 18S RNA gene sequences revealed a diverse collection of eukaryotic taxa throughout the sediment column......DNA, and validated for minimal cell lysis during the eDNA extraction process. The optimized method was applied to investigate and compare the bacterial, archaeal, and eukaryotic diversity within iDNA and eDNA pools, in the context of differing geochemical and lithological zones in the Holocene sediment column...... of Aarhus Bay (Demark). Using high-throughput sequencing technologies, I first explored whether, and to what extent, prokaryotic eDNA parallels the phylogenetic composition of the local microbiome. Phylogenetic analyses revealed that, in near-surface sediments influenced by faunal activities, 50% of all...

  10. PAH-DNA adducts in environmentally exposed population in relation to metabolic and DNA repair gene polymorphisms

    International Nuclear Information System (INIS)

    Binkova, Blanka; Chvatalova, Irena; Lnenickova, Zdena; Milcova, Alena; Tulupova, Elena; Farmer, Peter B.; Sram, Radim J.

    2007-01-01

    Epidemiologic studies indicate that prolonged exposure to particulate air pollution may be associated with increased risk of cardiovascular diseases and cancer in general population. These effects may be attributable to polycyclic aromatic hydrocarbons (PAHs) adsorbed to respirable air particles. It is expected that metabolic and DNA repair gene polymorphisms may modulate individual susceptibility to PAH exposure. This study investigates relationships between exposure to PAHs, polymorphisms of these genes and DNA adducts in group of occupationally exposed policemen (EXP, N = 53, males, aged 22-50 years) working outdoors in the downtown area of Prague and in matched 'unexposed' controls (CON, N = 52). Personal exposure to eight carcinogenic PAHs (c-PAHs) was evaluated by personal samplers during working shift prior to collection of biological samples. Bulky-aromatic DNA adducts were analyzed in lymphocytes by 32 P-postlabeling assay. Polymorphisms of metabolizing (GSTM1, GSTP1, GSTT1, EPHX1, CYP1A1-MspI) and DNA repair (XRCC1, XPD) genes were determined by PCR-based RFLP assays. As potential modifiers and/or cofounders, urinary cotinine levels were analyzed by radioimmunoassay, plasma levels of vitamins A, C, E and folates by HPLC, cholesterol and triglycerides using commercial kits. During the sampling period ambient particulate air pollution was as follows: PM10 32-55 μg/m 3 , PM2.5 27-38 μg/m 3 , c-PAHs 18-22 ng/m 3 ; personal exposure to c-PAHs: 9.7 ng/m 3 versus 5.8 ng/m 3 (P 8 nucleotides versus 0.82 ± 0.23 adducts/10 8 nucleotides, P = 0.065), whereas the level of the B[a]P-'like' adduct was significantly higher in exposed group (0.122 ± 0.036 adducts/10 8 nucleotides versus 0.099 ± 0.035 adducts/10 8 nucleotides, P = 0.003). A significant difference in both the total (P < 0.05) and the B[a]P-'like' DNA adducts (P < 0.01) between smokers and nonsmokers within both groups was observed. A significant positive association between DNA adduct and cotinine

  11. Patchiness of Ciliate Communities Sampled at Varying Spatial Scales along the New England Shelf.

    Directory of Open Access Journals (Sweden)

    Jean-David Grattepanche

    Full Text Available Although protists (microbial eukaryotes provide an important link between bacteria and Metazoa in food webs, we do not yet have a clear understanding of the spatial scales on which protist diversity varies. Here, we use a combination of DNA fingerprinting (denaturant gradient gel electrophoresis or DGGE and high-throughput sequencing (HTS to assess the ciliate community in the class Spirotrichea at varying scales of 1-3 km sampled in three locations separated by at least 25 km-offshore, midshelf and inshore-along the New England shelf. Analyses of both abundant community (DGGE and the total community (HTS members reveal that: 1 ciliate communities are patchily distributed inshore (i.e. the middle station of a transect is distinct from its two neighboring stations, whereas communities are more homogeneous among samples within the midshelf and offshore stations; 2 a ciliate closely related to Pelagostrobilidium paraepacrum 'blooms' inshore and; 3 environmental factors may differentially impact the distributions of individual ciliates (i.e. OTUs rather than the community as a whole as OTUs tend to show distinct biogeographies (e.g. some OTUs are restricted to the offshore locations, some to the surface, etc.. Together, these data show the complexity underlying the spatial distributions of marine protists, and suggest that biogeography may be a property of ciliate species rather than communities.

  12. Responses of microbial community from tropical pristine coastal soil to crude oil contamination

    Directory of Open Access Journals (Sweden)

    Daniel Morais

    2016-02-01

    Full Text Available Brazilian offshore crude oil exploration has increased after the discovery of new reservoirs in the region known as pré-sal, in a depth of 7.000 m under the water surface. Oceanic islands near these areas represent sensitive environments, where changes in microbial communities due oil contamination could stand for the loss of metabolic functions, with catastrophic effects to the soil services provided from these locations. This work aimed to evaluate the effect of petroleum contamination on microbial community shifts (Archaea, Bacteria and Fungi from Trindade Island coastal soils. Microcosms were assembled and divided in two treatments, control and contaminated (weathered crude oil at the concentration of 30 g kg−1, in triplicate. Soils were incubated for 38 days, with CO2 measurements every four hours. After incubation, the total DNA was extracted, purified and submitted for target sequencing of 16S rDNA, for Bacteria and Archaea domains and Fungal ITS1 region, using the Illumina MiSeq platform. Three days after contamination, the CO2 emission rate peaked at more than 20 × the control and the emissions remained higher during the whole incubation period. Microbial alpha-diversity was reduced for contaminated-samples. Fungal relative abundance of contaminated samples was reduced to almost 40% of the total observed species. Taxonomy comparisons showed rise of the Actinobacteria phylum, shifts in several Proteobacteria classes and reduction of the Archaea class Nitrososphaerales. This is the first effort in acquiring knowledge concerning the effect of crude oil contamination in soils of a Brazilian oceanic island. This information is important to guide any future bioremediation strategy that can be required.

  13. Long-Term Effects of Multiwalled Carbon Nanotubes and Graphene on Microbial Communities in Dry Soil.

    Science.gov (United States)

    Ge, Yuan; Priester, John H; Mortimer, Monika; Chang, Chong Hyun; Ji, Zhaoxia; Schimel, Joshua P; Holden, Patricia A

    2016-04-05

    Little is known about the long-term effects of engineered carbonaceous nanomaterials (ECNMs) on soil microbial communities, especially when compared to possible effects of natural or industrial carbonaceous materials. To address these issues, we exposed dry grassland soil for 1 year to 1 mg g(-1) of either natural nanostructured material (biochar), industrial carbon black, three types of multiwalled carbon nanotubes (MWCNTs), or graphene. Soil microbial biomass was assessed by substrate induced respiration and by extractable DNA. Bacterial and fungal communities were examined by terminal restriction fragment length polymorphism (T-RFLP). Microbial activity was assessed by soil basal respiration. At day 0, there was no treatment effect on soil DNA or T-RFLP profiles, indicating negligible interference between the amended materials and the methods for DNA extraction, quantification, and community analysis. After a 1-year exposure, compared to the no amendment control, some treatments reduced soil DNA (e.g., biochar, all three MWCNT types, and graphene; P graphene); however, there were no significant differences across the amended treatments. These findings suggest that ECNMs may moderately affect dry soil microbial communities but that the effects are similar to those from natural and industrial carbonaceous materials, even after 1-year exposure.

  14. Rapid detection of DNA-interstrand and DNA-protein cross-links in mammalian cells by gravity-flow alkaline elution

    International Nuclear Information System (INIS)

    Hincks, J.R.; Coulombe, R.A. Jr.

    1989-01-01

    Alkaline elution is a sensitive and commonly used technique to detect cellular DNA damage in the form of DNA strand breaks and DNA cross-links. Conventional alkaline elution procedures have extensive equipment requirements and are tedious to perform. Our laboratory recently presented a rapid, simplified, and sensitive modification of the alkaline elution technique to detect carcinogen-induced DNA strand breaks. In the present study, we have further modified this technique to enable the rapid characterization of chemically induced DNA-interstrand and DNA-protein associated cross-links in cultured epithelial cells. Cells were exposed to three known DNA cross-linking agents, nitrogen mustard (HN 2 ), mitomycin C (MMC), or ultraviolet irradiation (UV). One hour exposures of HN 2 at 0.25, 1.0, and 4.0 microM or of MMC at 20, 40, and 60 microM produced a dose-dependent induction of total DNA cross-links by these agents. Digestion with proteinase K revealed that HN 2 and MMC induced both DNA-protein cross-links and DNA-interstrand cross-links. Ultraviolet irradiation induced both DNA cross-links and DNA strand breaks, the latter of which were either protein and nonprotein associated. The results demonstrate that gravity-flow alkaline elution is a sensitive and accurate method to characterize the molecular events of DNA cross-linking. Using this procedure, elution of DNA from treated cells is completed in 1 hr, and only three fractions per sample are analyzed. This method may be useful as a rapid screening assay for genotoxicity and/or as an adjunct to other predictive assays for potential mutagenic or carcinogenic agents

  15. Lymphocyte DNA damage and oxidative stress in patients with iron deficiency anemia.

    Science.gov (United States)

    Aslan, Mehmet; Horoz, Mehmet; Kocyigit, Abdurrahim; Ozgonül, Saadet; Celik, Hakim; Celik, Metin; Erel, Ozcan

    2006-10-10

    Oxidant stress has been shown to play an important role in the pathogenesis of iron deficiency anemia. The aim of this study was to investigate the association between lymphocyte DNA damage, total antioxidant capacity and the degree of anemia in patients with iron deficiency anemia. Twenty-two female with iron deficiency anemia and 22 healthy females were enrolled in the study. Peripheral DNA damage was assessed using alkaline comet assay and plasma total antioxidant capacity was determined using an automated measurement method. Lymphocyte DNA damage of patients with iron deficiency anemia was significantly higher than controls (ptotal antioxidant capacity was significantly lower (ptotal antioxidant capacity and hemoglobin levels (r=0.706, ptotal antioxidant capacity and hemoglobin levels were negatively correlated with DNA damage (r=-0.330, p<0.05 and r=-0.323, p<0.05, respectively). In conclusion, both oxidative stress and DNA damage are increased in IDA patients. Increased oxidative stress seems as an important factor that inducing DNA damage in those IDA patients. The relationships of oxidative stress and DNA damage with the severity of anemia suggest that both oxidative stress and DNA damage may, in part, have a role in the pathogenesis of IDA.

  16. Impact of enzymatic digestion on bacterial community composition in CF airway samples.

    Science.gov (United States)

    Williamson, Kayla M; Wagner, Brandie D; Robertson, Charles E; Johnson, Emily J; Zemanick, Edith T; Harris, J Kirk

    2017-01-01

    Previous studies have demonstrated the importance of DNA extraction methods for molecular detection of Staphylococcus, an important bacterial group in cystic fibrosis (CF). We sought to evaluate the effect of enzymatic digestion (EnzD) prior to DNA extraction on bacterial communities identified in sputum and oropharyngeal swab (OP) samples from patients with CF. DNA from 81 samples (39 sputum and 42 OP) collected from 63 patients with CF was extracted in duplicate with and without EnzD. Bacterial communities were determined by rRNA gene sequencing, and measures of alpha and beta diversity were calculated. Principal Coordinate Analysis (PCoA) was used to assess differences at the community level and Wilcoxon Signed Rank tests were used to compare relative abundance (RA) of individual genera for paired samples with and without EnzD. Shannon Diversity Index (alpha-diversity) decreased in sputum and OP samples with the use of EnzD. Larger shifts in community composition were observed for OP samples (beta-diversity, measured by Morisita-Horn), whereas less change in communities was observed for sputum samples. The use of EnzD with OP swabs resulted in significant increase in RA for the genera Gemella ( p  microbial community composition. We show that the application of EnzD to CF airway samples, particularly OP swabs, results in differences in microbial communities detected by sequencing. Use of EnzD can result in large changes in bacterial community composition, and is particularly useful for detection of Staphylococcus in CF OP samples. The enhanced identification of Staphylococcus aureus is a strong indication to utilize EnzD in studies that use OP swabs to monitor CF airway communities.

  17. Beringian paleoecology inferred from permafrost-preserved fungal DNA

    DEFF Research Database (Denmark)

    Lydolph, Magnus C; Jacobsen, Jonas; Arctander, Peter

    2005-01-01

    of eukaryotic DNA sequences that were 510 bp long, including sequences of various fungi, plants, and invertebrates, could be obtained reproducibly from samples that were up to 300,000 to 400,000 years old. The sequences revealed that ancient fungal communities included a diversity of cold-adapted yeasts, dark......-pigmented fungi, plant-parasitic fungi, and lichen mycobionts. DNA traces of tree-associated macrofungi in a modern tundra sample indicated that there was a shift in fungal diversity following the last ice age and supported recent results showing that there was a severe change in the plant composition...

  18. Microbial food safety: Potential of DNA extraction methods for use in diagnostic metagenomics

    DEFF Research Database (Denmark)

    Josefsen, Mathilde Hasseldam; Andersen, Sandra Christine; Christensen, Julia

    2015-01-01

    ) yielding protocols. The PowerLyzer PowerSoil DNA Isolation Kit performed significantly better than all other protocols tested. Selected protocols were modified, i.e., extended heating and homogenization, resulting in increased yields of total DNA. For QIAamp Fast DNA Stool Mini Kit (Qiagen) a 7-fold...... of the protocols to extract DNA was observed. The highest DNA yield was obtained with the PowerLyzer PowerSoil DNA Isolation Kit, whereas the FastDNA SPIN Kit for Feces (MP Biomedicals) resulted in the highest amount of PCR-amplifiable C. jejuni DNA....

  19. Recombinant DNA in Cambridge: lessons for nuclear energy

    International Nuclear Information System (INIS)

    Federow, H.

    1977-09-01

    The 1976 experience of Cambridge, Massachusetts, in settling the recombinant DNA research issue is unique in recent history as the first instance of essentially lay panels judging the conduct of scientific research. Furthermore, because the panel was composed of citizens who would be affected by the research, the experience suggests a model for conflict resolution in other areas of public controversy. With one of these, nuclear energy, the controversy has two important points in common: although the primary burden of any accident would be borne by the local community, benefits of the DNA research or reactor operation accrue to a much broader range of people; and in both issues there is a need to resolve the question, ''How safe is safe enough.'' It is therefore proposed that a panel similar to the Cambridge one could be established to deal with the controversy surrounding a proposed nuclear plant. In any community where there was such controversy, a panel could be convened to assess whether the plant was acceptable to that community. Such a panel would be composed of members of the community who were not affected directly by the plant. It would also have to have a restricted range of inquiry, oriented toward the specifics of the proposed plant. Such a plant review panel, under properly designed procedures, could change the licensing process to one concerned solely with safety and provide an appropriate forum for issues concerning the acceptability of nuclear power

  20. Identifying the bacterial community on the surface of Intralox belting in a meat boning room by culture-dependent and culture-independent 16S rDNA sequence analysis.

    Science.gov (United States)

    Brightwell, Gale; Boerema, Jackie; Mills, John; Mowat, Eilidh; Pulford, David

    2006-05-25

    We examined the bacterial community present on an Intralox conveyor belt system in an operating lamb boning room by sequencing the 16S ribosomal DNA (rDNA) of bacteria extracted in the presence or absence of cultivation. RFLP patterns for 16S rDNA clone library and cultures were generated using HaeIII and MspI restriction endonucleases. 16S rDNA amplicons produced 8 distinct RFLP pattern groups. RFLP groups I-IV were represented in the clone library and RFLP groups I and V-VIII were represented amongst the cultured isolates. Partial DNA sequences from each RFLP group revealed that all group I, II and VIII representatives were Pseudomonas spp., group III were Sphingomonas spp., group IV clones were most similar to an uncultured alpha proteobacterium, group V was similar to a Serratia spp., group VI with an Alcaligenes spp., and group VII with Microbacterium spp. Sphingomonads were numerically dominant in the culture-independent clone library and along with the group IV alpha proteobacterium were not represented amongst the cultured isolates. Serratia, Alcaligenes and Microbacterium spp. were only represented with cultured isolates. Pseudomonads were detected by both culture-dependent (84% of isolates) and culture-independent (12.5% of clones) methods and their presence at high frequency does pose the risk of product spoilage if transferred onto meat stored under aerobic conditions. The detection of sphingomonads in large numbers by the culture-independent method demands further analysis because sphingomonads may represent a new source of meat spoilage that has not been previously recognised in the meat processing environment. The 16S rDNA collections generated by both methods were important at representing the diversity of the bacterial population associated with an Intralox conveyor belt system.

  1. Nitrogen Deposition Reduces Decomposition Rates Through Shifts in Microbial Community Composition and Function

    Science.gov (United States)

    Waldrop, M.; Zak, D.; Sinsabaugh, R.

    2002-12-01

    Atmospheric nitrogen (N) deposition may alter soil biological activity in northern hardwood forests by repressing phenol oxidase enzyme activity and altering microbial community composition, thereby slowing decomposition and increasing the export of phenolic compounds. We tested this hypothesis by adding 13C-labelled cellobiose, vanillin, and catechol to control and N fertilized soils (30 and 80 kg ha-1) collected from three forests; two dominated by Acer Saccharum and one dominated by Quercus Alba and Quercus Velutina. While N deposition increased total microbial respiration, it decreased soil oxidative enzyme activities, resulting in slower degradation rates of all compounds, and larger DOC pools. This effect was larger in the oak forest, where fungi dominate C-cycling processes. DNA and 13C-phospolipid analyses showed that N addition altered the fungal community and reduced the activity of fungal and bacterial populations in soil, potentially explaining reduced soil enzyme activities and incomplete decomposition.

  2. Influence of technological treatments on bacterial communities in ...

    African Journals Online (AJOL)

    Influence of technological treatments on bacterial communities in tilapia ( Oreochromis niloticus ) as determined by 16S rDNA fingerprinting using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE)

  3. Characterization and identification of microbial communities in bovine necrotic vulvovaginitis.

    Science.gov (United States)

    Shpigel, N Y; Adler-Ashkenazy, L; Scheinin, S; Goshen, T; Arazi, A; Pasternak, Z; Gottlieb, Y

    2017-01-01

    Bovine necrotic vulvovaginitis (BNVV) is a severe and potentially fatal disease of post-partum cows that emerged in Israel after large dairy herds were merged. While post-partum cows are commonly affected by mild vulvovaginitis (BVV), in BNVV these benign mucosal abrasions develop into progressive deep necrotic lesions leading to sepsis and death if untreated. The etiology of BNVV is still unknown and a single pathogenic agent has not been found. We hypothesized that BNVV is a polymicrobial disease where the normally benign vaginal microbiome is remodeled and affects the local immune response. To this end, we compared the histopathological changes and the microbial communities using 16S rDNA metagenetic technique in biopsies taken from vaginal lesions in post-partum cows affected by BVV and BNVV. The hallmark of BNVV was the formation of complex polymicrobial communities in the submucosal fascia and abrogation of neutrophil recruitment in these lesions. Additionally, there was a marked difference in the composition of bacterial communities in the BNVV lesions in comparison to the benign BVV lesions. This difference was characterized by the abundance of Bacteroidetes and lower total community membership in BNVV. Indicator taxa for BNVV were Parvimonas, Porphyromonas, unclassified Veillonellaceae, Mycoplasma and Bacteroidetes, whereas unclassified Clostridiales was an indicator for BVV. The results support a polymicrobial etiology for BNVV. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. A Rapid and Cost-Effective Method for DNA Extraction from Archival Herbarium Specimens.

    Science.gov (United States)

    Krinitsina, A A; Sizova, T V; Zaika, M A; Speranskaya, A S; Sukhorukov, A P

    2015-11-01

    Here we report a rapid and cost-effective method for the extraction of total DNA from herbarium specimens up to 50-90-year-old. The method takes about 2 h, uses AMPure XP magnetic beads diluted by PEG-8000- containing buffer, and does not require use of traditional volatile components like chloroform, phenol, and liquid nitrogen. It yields up to 4 µg of total nucleic acid with high purity from about 30 mg of dry material. The quality of the extracted DNA was tested by PCR amplification of 5S rRNA and rbcL genes (nuclear and chloroplast DNA markers) and compared against the traditional chloroform/isoamyl alcohol method. Our results demonstrate that the use of the magnetic beads is crucial for extraction of DNA suitable for subsequent PCR from herbarium samples due to the decreasing inhibitor concentrations, reducing short fragments of degraded DNA, and increasing median DNA fragment sizes.

  5. [Effect of Long-Term Application of Agrotechnical Techniques and Crops on Soil Microbial Communities].

    Science.gov (United States)

    Korvigo, I O; Pershina, E V; Ivanova, E A; Matyuk, N S; Savos'kina, O A; Chirak, E L; Provorov, N A; Andronov, E E

    2016-01-01

    Effects of long-term application ofvarious fertilizers and crops on soil microbiomes an a long-term field experiment were investigated using the library of the 16S rRNA gene sequences obtained by high-throughput sequencing of the total DNA. The communities exhibited high diversity, with 655 microbial genera belonging to 34 phyla detected (31 bacterial and 3 archaeal ones). For analysis of the effect of the studied factors on community structure, a linear model was developed in order to simplify interpretation of the data of high-throughput sequencing and to obtain biologically important information. Liming was shown to modulate the effect of mineral fertilizers on the structure of microbial populations. The differences in the structure and alpha-diversity of microbial communities were shown to depend more on the crops and liming, rather than on the fertilizers applied. Interaction between the crop factor and liming expressed as an ambiguous effect of liming on the microbiome in the presence of different plants was reliably demonstrated. Thus, in the case of barley and clover, liming resulted in increased taxonomic diversity of the community, while in the case of potato and flax it had an opposite effect.

  6. DNA extraction from sea anemone (Cnidaria: Actiniaria tissues for molecular analyses

    Directory of Open Access Journals (Sweden)

    Pinto S.M.

    2000-01-01

    Full Text Available A specific DNA extraction method for sea anemones is described in which extraction of total DNA from eight species of sea anemones and one species of corallimorpharian was achieved by changing the standard extraction protocols. DNA extraction from sea anemone tissue is made more difficult both by the tissue consistency and the presence of symbiotic zooxanthellae. The technique described here is an efficient way to avoid problems of DNA contamination and obtain large amounts of purified and integral DNA which can be used in different kinds of molecular analyses.

  7. Discovery of cyanophage genomes which contain mitochondrial DNA polymerase.

    Science.gov (United States)

    Chan, Yi-Wah; Mohr, Remus; Millard, Andrew D; Holmes, Antony B; Larkum, Anthony W; Whitworth, Anna L; Mann, Nicholas H; Scanlan, David J; Hess, Wolfgang R; Clokie, Martha R J

    2011-08-01

    DNA polymerase γ is a family A DNA polymerase responsible for the replication of mitochondrial DNA in eukaryotes. The origins of DNA polymerase γ have remained elusive because it is not present in any known bacterium, though it has been hypothesized that mitochondria may have inherited the enzyme by phage-mediated nonorthologous displacement. Here, we present an analysis of two full-length homologues of this gene, which were found in the genomes of two bacteriophages, which infect the chlorophyll-d containing cyanobacterium Acaryochloris marina. Phylogenetic analyses of these phage DNA polymerase γ proteins show that they branch deeply within the DNA polymerase γ clade and therefore share a common origin with their eukaryotic homologues. We also found homologues of these phage polymerases in the environmental Community Cyberinfrastructure for Advanced Microbial Ecology Research and Analysis (CAMERA) database, which fell in the same clade. An analysis of the CAMERA assemblies containing the environmental homologues together with the filter fraction metadata indicated some of these assemblies may be of bacterial origin. We also show that the phage-encoded DNA polymerase γ is highly transcribed as the phage genomes are replicated. These findings provide data that may assist in reconstructing the evolution of mitochondria.

  8. Kinetics of [32P]orthophosphate and [3H]thymidine incorporation into newly replicating DNA in vivo

    International Nuclear Information System (INIS)

    Panzeter, P.; Ringer, D.

    1986-01-01

    Nuclear DNA can be empirically subdivided into three populations: (1) bulk DNA or low salt-soluble DNA (75%), (2) high salt-soluble DNA (23%), and (3) matrix DNA which remains tightly bound to the nuclear matrix (2%). Newly replicating DNA is associated with the nuclear matrix in regenerating rat liver. To study the incorporation of DNA precursors into replicating DNA via the salvage vs the de novo pathway, 100μCi [ 3 H]thymidine ( 3 H-Thd) and 5mCi [ 32 P]orthophosphate ( 32 P/sub i/) were injected into the hepatic portal vein of partially hepatectomized rats. Increasing time of 3 H-Thd incorporation showed the label is chased from matrix DNA to bulk DNA. After a 10 min pulse, 13% of the total specific activity is associated with bulk DNA and 57% with matrix DNA. After 30 min, 32% and 36% of the total specific activity remain associated with bulk and matrix DNA, respectively, indicating that most of the 3 H has been chased from the matrix DNA. In contrast, after injection of 32 P/sub i/, the amount of label in matrix DNA increases to a maximum at 30 min and only then begins to decrease. At 10 min the specific activity/total specific activity of bulk DNA is 7% and of matrix DNA is 66% vs 8% and 82% after 30 min. The kinetic pattern of 32 P/sub i/ incorporation differs dramatically from that of 3 H-Thd suggesting (a) the incorporation of de novo precursors lags significantly behind that of precursors entering through the salvage pathway, or (b) there may be two distinct classes of replication forks

  9. Commentary on community-led total sanitation and human rights: should the right to community-wide health be won at the cost of individual rights?

    Science.gov (United States)

    Bartram, Jamie; Charles, Katrina; Evans, Barbara; O'Hanlon, Lucinda; Pedley, Steve

    2012-12-01

    The Millennium Development Goals (MDGs) set out to halve the proportion of the population without access to basic sanitation between 1990 and 2015. The slow pace of progress has lead to a search for innovative responses, including social motivation approaches. One example of this type of approach is 'Community-led Total Sanitation' (CLTS). CLTS represents a major shift for sanitation projects and programmes in recognising the value of stopping open-defecation across the whole community, even when the individual toilets built are not necessarily wholly hygienic. However, recent publications on CLTS document a number of examples of practices which fail to meet basic ethical criteria and infringe human rights. There is a general theme in the CLTS literature encouraging the use of 'shame' or 'social stigma' as a tool for promoting behaviours. There are reported cases where monetary benefits to which individuals are otherwise entitled or the means to practice a livelihood are withheld to create pressures to conform. At the very extreme end of the scale, the investigation and punishment of violence has reportedly been denied if the crime occurred while defecating in the open, violating rights to a remedy and related access to justice. While social mobilisation in general, and CLTS in particular, have drastically and positively changed the way we think about sanitation, they neither need nor benefit from an association with any infringements of human rights.

  10. Isolation of high-quality total RNA from leaves of Myrciaria dubia "CAMU CAMU".

    Science.gov (United States)

    Gómez, Juan Carlos Castro; Reátegui, Alina Del Carmen Egoavil; Flores, Julián Torres; Saavedra, Roberson Ramírez; Ruiz, Marianela Cobos; Correa, Sixto Alfredo Imán

    2013-01-01

    Myrciaria dubia is a main source of vitamin C for people in the Amazon region. Molecular studies of M. dubia require high-quality total RNA from different tissues. So far, no protocols have been reported for total RNA isolation from leaves of this species. The objective of this research was to develop protocols for extracting high-quality total RNA from leaves of M. dubia. Total RNA was purified following two modified protocols developed for leaves of other species (by Zeng and Yang, and by Reid et al.) and one modified protocol developed for fruits of the studied species (by Silva). Quantity and quality of purified total RNA were assessed by spectrophotometric and electrophoretic analysis. Additionally, quality of total RNA was evaluated with reverse-transcription polymerase chain reaction (RT-PCR). With these three modified protocols we were able to isolate high-quality RNA (A260nm/A280nm >1.9 and A260nm/A230nm >2.0). Highest yield was produced with the Zeng and Yang modified protocol (384±46µg ARN/g fresh weight). Furthermore, electrophoretic analysis showed the integrity of isolated RNA and the absence of DNA. Another proof of the high quality of our purified RNA was the successful cDNA synthesis and amplification of a segment of the M. dubia actin 1 gene. We report three modified protocols for isolation total RNA from leaves of M. dubia. The modified protocols are easy, rapid, low in cost, and effective for high-quality and quantity total RNA isolation suitable for cDNA synthesis and polymerase chain reaction.

  11. Culture-Dependent and -Independent Methods Capture Different Microbial Community Fractions in Hydrocarbon-Contaminated Soils.

    Directory of Open Access Journals (Sweden)

    Franck O P Stefani

    Full Text Available Bioremediation is a cost-effective and sustainable approach for treating polluted soils, but our ability to improve on current bioremediation strategies depends on our ability to isolate microorganisms from these soils. Although culturing is widely used in bioremediation research and applications, it is unknown whether the composition of cultured isolates closely mirrors the indigenous microbial community from contaminated soils. To assess this, we paired culture-independent (454-pyrosequencing of total soil DNA with culture-dependent (isolation using seven different growth media techniques to analyse the bacterial and fungal communities from hydrocarbon-contaminated soils. Although bacterial and fungal rarefaction curves were saturated for both methods, only 2.4% and 8.2% of the bacterial and fungal OTUs, respectively, were shared between datasets. Isolated taxa increased the total recovered species richness by only 2% for bacteria and 5% for fungi. Interestingly, none of the bacteria that we isolated were representative of the major bacterial OTUs recovered by 454-pyrosequencing. Isolation of fungi was moderately more effective at capturing the dominant OTUs observed by culture-independent analysis, as 3 of 31 cultured fungal strains ranked among the 20 most abundant fungal OTUs in the 454-pyrosequencing dataset. This study is one of the most comprehensive comparisons of microbial communities from hydrocarbon-contaminated soils using both isolation and high-throughput sequencing methods.

  12. Culture-Dependent and -Independent Methods Capture Different Microbial Community Fractions in Hydrocarbon-Contaminated Soils.

    Science.gov (United States)

    Stefani, Franck O P; Bell, Terrence H; Marchand, Charlotte; de la Providencia, Ivan E; El Yassimi, Abdel; St-Arnaud, Marc; Hijri, Mohamed

    2015-01-01

    Bioremediation is a cost-effective and sustainable approach for treating polluted soils, but our ability to improve on current bioremediation strategies depends on our ability to isolate microorganisms from these soils. Although culturing is widely used in bioremediation research and applications, it is unknown whether the composition of cultured isolates closely mirrors the indigenous microbial community from contaminated soils. To assess this, we paired culture-independent (454-pyrosequencing of total soil DNA) with culture-dependent (isolation using seven different growth media) techniques to analyse the bacterial and fungal communities from hydrocarbon-contaminated soils. Although bacterial and fungal rarefaction curves were saturated for both methods, only 2.4% and 8.2% of the bacterial and fungal OTUs, respectively, were shared between datasets. Isolated taxa increased the total recovered species richness by only 2% for bacteria and 5% for fungi. Interestingly, none of the bacteria that we isolated were representative of the major bacterial OTUs recovered by 454-pyrosequencing. Isolation of fungi was moderately more effective at capturing the dominant OTUs observed by culture-independent analysis, as 3 of 31 cultured fungal strains ranked among the 20 most abundant fungal OTUs in the 454-pyrosequencing dataset. This study is one of the most comprehensive comparisons of microbial communities from hydrocarbon-contaminated soils using both isolation and high-throughput sequencing methods.

  13. Chimeric proteins for detection and quantitation of DNA mutations, DNA sequence variations, DNA damage and DNA mismatches

    Science.gov (United States)

    McCutchen-Maloney, Sandra L.

    2002-01-01

    Chimeric proteins having both DNA mutation binding activity and nuclease activity are synthesized by recombinant technology. The proteins are of the general formula A-L-B and B-L-A where A is a peptide having DNA mutation binding activity, L is a linker and B is a peptide having nuclease activity. The chimeric proteins are useful for detection and identification of DNA sequence variations including DNA mutations (including DNA damage and mismatches) by binding to the DNA mutation and cutting the DNA once the DNA mutation is detected.

  14. Influence of Heavy Metal Stress on Antioxidant Status and DNA Damage in Urtica dioica

    Directory of Open Access Journals (Sweden)

    Darinka Gjorgieva

    2013-01-01

    Full Text Available Heavy metals have the potential to interact and induce several stress responses in the plants; thus, effects of heavy metal stress on DNA damages and total antioxidants level in Urtica dioica leaves and stems were investigated. The samples are sampled from areas with different metal exposition. Metal content was analyzed by Inductively Coupled Plasma-Atomic Emission Spectrometer (ICP-AES, for total antioxidants level assessment the Ferric-Reducing Antioxidant Power (FRAP assay was used, and genomic DNA isolation from frozen plant samples was performed to obtain DNA fingerprints of investigated plant. It was found that heavy metal contents in stems generally changed synchronously with those in leaves of the plant, and extraneous metals led to imbalance of mineral nutrient elements. DNA damages were investigated by Random Amplified Polymorphic DNA (RAPD technique, and the results demonstrated that the samples exposed to metals yielded a large number of new fragments (total 12 in comparison with the control sample. This study showed that DNA stability is highly affected by metal pollution which was identified by RAPD markers. Results suggested that heavy metal stress influences antioxidant status and also induces DNA damages in U. dioica which may help to understand the mechanisms of metals genotoxicity.

  15. Influence of heavy metal stress on antioxidant status and DNA damage in Urtica dioica.

    Science.gov (United States)

    Gjorgieva, Darinka; Kadifkova Panovska, Tatjana; Ruskovska, Tatjana; Bačeva, Katerina; Stafilov, Trajče

    2013-01-01

    Heavy metals have the potential to interact and induce several stress responses in the plants; thus, effects of heavy metal stress on DNA damages and total antioxidants level in Urtica dioica leaves and stems were investigated. The samples are sampled from areas with different metal exposition. Metal content was analyzed by Inductively Coupled Plasma-Atomic Emission Spectrometer (ICP-AES), for total antioxidants level assessment the Ferric-Reducing Antioxidant Power (FRAP) assay was used, and genomic DNA isolation from frozen plant samples was performed to obtain DNA fingerprints of investigated plant. It was found that heavy metal contents in stems generally changed synchronously with those in leaves of the plant, and extraneous metals led to imbalance of mineral nutrient elements. DNA damages were investigated by Random Amplified Polymorphic DNA (RAPD) technique, and the results demonstrated that the samples exposed to metals yielded a large number of new fragments (total 12) in comparison with the control sample. This study showed that DNA stability is highly affected by metal pollution which was identified by RAPD markers. Results suggested that heavy metal stress influences antioxidant status and also induces DNA damages in U. dioica which may help to understand the mechanisms of metals genotoxicity.

  16. Effect of phenylurea herbicides on soil microbial communities estimated by analysis of 16S rRNA gene fingerprints and community-level physiological profiles.

    Science.gov (United States)

    el Fantroussi, S; Verschuere, L; Verstraete, W; Top, E M

    1999-03-01

    The effect of three phenyl urea herbicides (diuron, linuron, and chlorotoluron) on soil microbial communities was studied by using soil samples with a 10-year history of treatment. Denaturing gradient gel electrophoresis (DGGE) was used for the analysis of 16S rRNA genes (16S rDNA). The degree of similarity between the 16S rDNA profiles of the communities was quantified by numerically analysing the DGGE band patterns. Similarity dendrograms showed that the microbial community structures of the herbicide-treated and nontreated soils were significantly different. Moreover, the bacterial diversity seemed to decrease in soils treated with urea herbicides, and sequence determination of several DGGE fragments showed that the most affected species in the soils treated with diuron and linuron belonged to an uncultivated bacterial group. As well as the 16S rDNA fingerprints, the substrate utilization patterns of the microbial communities were compared. Principal-component analysis performed on BIOLOG data showed that the functional abilities of the soil microbial communities were altered by the application of the herbicides. In addition, enrichment cultures of the different soils in medium with the urea herbicides as the sole carbon and nitrogen source showed that there was no difference between treated and nontreated soil in the rate of transformation of diuron and chlorotoluron but that there was a strong difference in the case of linuron. In the enrichment cultures with linuron-treated soil, linuron disappeared completely after 1 week whereas no significant transformation was observed in cultures inoculated with nontreated soil even after 4 weeks. In conclusion, this study showed that both the structure and metabolic potential of soil microbial communities were clearly affected by a long-term application of urea herbicides.

  17. Acclimation of subsurface microbial communities to mercury

    DEFF Research Database (Denmark)

    de Lipthay, Julia R; Rasmussen, Lasse D; Øregaard, Gunnar

    2008-01-01

    of mercury tolerance and functional versatility of bacterial communities in contaminated soils initially were higher for surface soil, compared with the deeper soils. However, following new mercury exposure, no differences between bacterial communities were observed, which indicates a high adaptive potential......We studied the acclimation to mercury of bacterial communities of different depths from contaminated and noncontaminated floodplain soils. The level of mercury tolerance of the bacterial communities from the contaminated site was higher than those of the reference site. Furthermore, the level...... of the subsurface communities, possibly due to differences in the availability of mercury. IncP-1 trfA genes were detected in extracted community DNA from all soil depths of the contaminated site, and this finding was correlated to the isolation of four different mercury-resistance plasmids, all belonging...

  18. Fluorescence correlation spectroscopy analysis for accurate determination of proportion of doubly labeled DNA in fluorescent DNA pool for quantitative biochemical assays.

    Science.gov (United States)

    Hou, Sen; Sun, Lili; Wieczorek, Stefan A; Kalwarczyk, Tomasz; Kaminski, Tomasz S; Holyst, Robert

    2014-01-15

    Fluorescent double-stranded DNA (dsDNA) molecules labeled at both ends are commonly produced by annealing of complementary single-stranded DNA (ssDNA) molecules, labeled with fluorescent dyes at the same (3' or 5') end. Because the labeling efficiency of ssDNA is smaller than 100%, the resulting dsDNA have two, one or are without a dye. Existing methods are insufficient to measure the percentage of the doubly-labeled dsDNA component in the fluorescent DNA sample and it is even difficult to distinguish the doubly-labeled DNA component from the singly-labeled component. Accurate measurement of the percentage of such doubly labeled dsDNA component is a critical prerequisite for quantitative biochemical measurements, which has puzzled scientists for decades. We established a fluorescence correlation spectroscopy (FCS) system to measure the percentage of doubly labeled dsDNA (PDL) in the total fluorescent dsDNA pool. The method is based on comparative analysis of the given sample and a reference dsDNA sample prepared by adding certain amount of unlabeled ssDNA into the original ssDNA solution. From FCS autocorrelation functions, we obtain the number of fluorescent dsDNA molecules in the focal volume of the confocal microscope and PDL. We also calculate the labeling efficiency of ssDNA. The method requires minimal amount of material. The samples have the concentration of DNA in the nano-molar/L range and the volume of tens of microliters. We verify our method by using restriction enzyme Hind III to cleave the fluorescent dsDNA. The kinetics of the reaction depends strongly on PDL, a critical parameter for quantitative biochemical measurements. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Use of real-time qPCR to quantify members of the unculturable heterotrophic bacterial community in a deep sea marine sponge, Vetulina sp.

    Science.gov (United States)

    Cassler, M; Peterson, C L; Ledger, A; Pomponi, S A; Wright, A E; Winegar, R; McCarthy, P J; Lopez, J V

    2008-04-01

    In this report, real-time quantitative PCR (TaqMan qPCR) of the small subunit (SSU) 16S-like rRNA molecule, a universal phylogenetic marker, was used to quantify the relative abundance of individual bacterial members of a diverse, yet mostly unculturable, microbial community from a marine sponge. Molecular phylogenetic analyses of bacterial communities derived from Caribbean Lithistid sponges have shown a wide diversity of microbes that included at least six major subdivisions; however, very little overlap was observed between the culturable and unculturable microbial communities. Based on sequence data of three culture-independent Lithistid-derived representative bacteria, we designed probe/primer sets for TaqMan qPCR to quantitatively characterize selected microbial residents in a Lithistid sponge, Vetulina, metagenome. TaqMan assays included specificity testing, DNA limit of detection analysis, and quantification of specific microbial rRNA sequences such as Nitrospira-like microbes and Actinobacteria up to 172 million copies per microgram per Lithistid sponge metagenome. By contrast, qPCR amplification with probes designed for common previously cultured sponge-associated bacteria in the genera Rheinheimera and Marinomonas and a representative of the CFB group resulted in only minimal detection of the Rheiheimera in total DNA extracted from the sponge. These data verify that a large portion of the microbial community within Lithistid sponges may consist of currently unculturable microorganisms.

  20. Inspecting Targeted Deep Sequencing of Whole Genome Amplified DNA Versus Fresh DNA for Somatic Mutation Detection: A Genetic Study in Myelodysplastic Syndrome Patients.

    Science.gov (United States)

    Palomo, Laura; Fuster-Tormo, Francisco; Alvira, Daniel; Ademà, Vera; Armengol, María Pilar; Gómez-Marzo, Paula; de Haro, Nuri; Mallo, Mar; Xicoy, Blanca; Zamora, Lurdes; Solé, Francesc

    2017-08-01

    Whole genome amplification (WGA) has become an invaluable method for preserving limited samples of precious stock material and has been used during the past years as an alternative tool to increase the amount of DNA before library preparation for next-generation sequencing. Myelodysplastic syndromes (MDS) are a group of clonal hematopoietic stem cell disorders characterized by presenting somatic mutations in several myeloid-related genes. In this work, targeted deep sequencing has been performed on four paired fresh DNA and WGA DNA samples from bone marrow of MDS patients, to assess the feasibility of using WGA DNA for detecting somatic mutations. The results of this study highlighted that, in general, the sequencing and alignment statistics of fresh DNA and WGA DNA samples were similar. However, after variant calling and when considering variants detected at all frequencies, there was a high level of discordance between fresh DNA and WGA DNA (overall, a higher number of variants was detected in WGA DNA). After proper filtering, a total of three somatic mutations were detected in the cohort. All somatic mutations detected in fresh DNA were also identified in WGA DNA and validated by whole exome sequencing.

  1. TEMPORAL MODELING OF DNA DEGRADATION IN BONE REMAINS

    Directory of Open Access Journals (Sweden)

    Andrei Stefan

    2012-06-01

    Full Text Available The aim of this study is to follow the changes that occur, in time, at DNA level and to establish an efficient and reliable protocol for ancestral DNA extraction from bones found in archaeological sites. To test whether the protocol is efficient and capable of yielding good quality DNA, extraction was first performed on fresh bones. The material consists of fresh pig (Sus scrofa and cow (Bos taurus bones that were grounded by using a drill operating at low speed. The bone powder was then incubated in lysis buffer in the presence of proteinase K. DNA isolation and purification were done by using the phenol:chloroform protocol and DNA was precipitated with absolute ethanol stored at -20oC. The extractions were carried out once every month for a total of four extractions

  2. Changing serum levels of quantitative hepatitis B surface antigen and hepatitis B virus DNA in hepatitis B virus surface antigen carriers: A follow-up study of an elderly cohort

    Directory of Open Access Journals (Sweden)

    Yuan-Hung Kuo

    2015-02-01

    Full Text Available This study was to elucidate longitudinally quantitative changes of hepatitis B virus (HBV surface antigen (HBsAg and HBV DNA in elder HBsAg carriers in a community. Among 1002 residents screened for HBsAg in 2005, 405 responded to this follow-up study in 2010. Fifty-nine (14.6% were HBsAg carriers in 2005; HBsAg quantification and HBV DNA were measured. HBsAg quantification (cutoff 1600 IU/mL and HBV DNA (cutoff 2000 IU/mL were combined to stratify the participants between two screens. A total of 30 men and 29 women with a mean age of 63.9 ± 7.9 years were enrolled. Quantitative levels of HBsAg and HBV DNA were significantly correlated in 2005 (r = 0.509, p < 0.001 and 2010 (r = 0.777, p < 0.001. Concentrations of HBsAg (IU/mL significantly decreased from 2.2 ± 1.0 log in 2005 to 1.7 ± 1.5 log in 2010 (p < 0.001. The level of HBsAg was decreased in 48 (81.4% individuals and HBsAg was undetectable in eight (13.6%. The annual incidence of HBsAg clearance was 2.7%. These 59 HBsAg carriers in 2005 were divided into four groups: low HBsAg low HBV DNA (n = 32, high HBsAg low HBV DNA (n = 5, low HBsAg high HBV DNA (n = 12 and high HBsAg high HBV DNA (n = 10. All 32 individuals in the low HBsAg low HBV DNA group were still in that group in 2010, whereas only two of the high HBsAg high HBV DNA group became inactive. As with a younger cohort in hospital, HBsAg quantification was still well correlated with HBV DNA in elderly HBsAg carriers in the community. Lower levels of both HBsAg and HBV DNA might represent an inactive HBV infection.

  3. Association of Tissue-Specific DNA Methylation Alterations with α-Thalassemia Southeast Asian Deletion

    Directory of Open Access Journals (Sweden)

    Tanapat Pangeson

    2017-11-01

    Full Text Available In the wild-type allele, DNA methylation levels of 10 consecutive CpG sites adjacent to the upstream 5′-breakpoint of α-thalassemia Southeast Asian (SEA deletion are not different between placenta and leukocytes. However, no previous study has reported the map of DNA methylation in the SEA allele. This report aims to show that the SEA mutation is associated with DNA methylation changes, resulting in differential methylation between placenta and leukocytes. Methylation-sensitive high-resolution analysis was used to compare DNA methylation among placenta, leukocytes, and unmethylated control DNA. The result indicates that the DNA methylation between placenta and leukocyte DNA is different and shows that the CpG status of both is not fully unmethylated. Mapping of individual CpG sites was performed by targeted bisulfite sequencing. The DNA methylation level of the 10 consecutive CpG sites was different between placenta and leukocyte DNA. When the 10th CpG of the mutation allele was considered as a hallmark for comparing DNA methylation level, it was totally different from the unmethylated 10th CpG of the wild-type allele. Finally, the distinct DNA methylation patterns between both DNA were extracted. In total, 24 patterns were found in leukocyte samples and 9 patterns were found in placenta samples. This report shows that the large deletion is associated with DNA methylation change. In further studies for clinical application, the distinct DNA methylation pattern might be a potential marker for detecting cell-free fetal DNA.

  4. In vitro recombination of bacteriophage T7 DNA damaged by uv radiation

    International Nuclear Information System (INIS)

    Masker, W.E.; Kuemmerle, N.B.

    1980-01-01

    A system capable of in vitro packaging of exogenous bacteriophage T7 DNA has been used to monitor the biological activity of DNA replicated in vitro. This system has been used to follow the effects of uv radiation on in vitro replication and recombination. During the in vitro replication process, a considerable exchange of genetic information occurs between T7 DNA molecules present in the reaction mixture. This in vitro recombination is reflected in the genotype of the T7 phage produced after in vitro encapsulation; depending on the genetic markers selected, recombinants can comprise nearly 20% of the total phage production. When uv-irradiated DNA is incubated in this system, the amount of in vitro synthesis is reduced and the total amount of viable phage produced after in vitro packaging is diminished. In vitro recombination rates are also lower when the participating DNA molecules have been exposed to uv. However, biochemical and genetic measurements confirmed that there is little or no transfer of pyrimidine dimers from irradiated DNA into undamaged molecules

  5. Apple Flavonoids Suppress Carcinogen-Induced DNA Damage in Normal Human Bronchial Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Vazhappilly Cijo George

    2017-01-01

    Full Text Available Scope. Human neoplastic transformation due to DNA damage poses an increasing global healthcare concern. Maintaining genomic integrity is crucial for avoiding tumor initiation and progression. The present study aimed to investigate the efficacy of an apple flavonoid fraction (AF4 against various carcinogen-induced toxicity in normal human bronchial epithelial cells and its mechanism of DNA damage response and repair processes. Methods and Results. AF4-pretreated cells were exposed to nicotine-derived nitrosamine ketones (NNK, NNK acetate (NNK-Ae, methotrexate (MTX, and cisplatin to validate cytotoxicity, total reactive oxygen species, intracellular antioxidants, DNA fragmentation, and DNA tail damage. Furthermore, phosphorylated histone (γ-H2AX and proteins involved in DNA damage (ATM/ATR, Chk1, Chk2, and p53 and repair (DNA-PKcs and Ku80 mechanisms were evaluated by immunofluorescence and western blotting, respectively. The results revealed that AF4-pretreated cells showed lower cytotoxicity, total ROS generation, and DNA fragmentation along with consequent inhibition of DNA tail moment. An increased level of γ-H2AX and DNA damage proteins was observed in carcinogen-treated cells and that was significantly (p≤0.05 inhibited in AF4-pretreated cells, in an ATR-dependent manner. AF4 pretreatment also facilitated the phosphorylation of DNA-PKcs and thus initiation of repair mechanisms. Conclusion. Apple flavonoids can protect in vitro oxidative DNA damage and facilitate repair mechanisms.

  6. The impact of selective-logging and forest clearance for oil palm on fungal communities in Borneo.

    Science.gov (United States)

    Kerfahi, Dorsaf; Tripathi, Binu M; Lee, Junghoon; Edwards, David P; Adams, Jonathan M

    2014-01-01

    Tropical forests are being rapidly altered by logging, and cleared for agriculture. Understanding the effects of these land use changes on soil fungi, which play vital roles in the soil ecosystem functioning and services, is a major conservation frontier. Using 454-pyrosequencing of the ITS1 region of extracted soil DNA, we compared communities of soil fungi between unlogged, once-logged, and twice-logged rainforest, and areas cleared for oil palm, in Sabah, Malaysia. Overall fungal community composition differed significantly between forest and oil palm plantation. The OTU richness and Chao 1 were higher in forest, compared to oil palm plantation. As a proportion of total reads, Basidiomycota were more abundant in forest soil, compared to oil palm plantation soil. The turnover of fungal OTUs across space, true β-diversity, was also higher in forest than oil palm plantation. Ectomycorrhizal (EcM) fungal abundance was significantly different between land uses, with highest relative abundance (out of total fungal reads) observed in unlogged forest soil, lower abundance in logged forest, and lowest in oil palm. In their entirety, these results indicate a pervasive effect of conversion to oil palm on fungal community structure. Such wholesale changes in fungal communities might impact the long-term sustainability of oil palm agriculture. Logging also has more subtle long term effects, on relative abundance of EcM fungi, which might affect tree recruitment and nutrient cycling. However, in general the logged forest retains most of the diversity and community composition of unlogged forest.

  7. Metagenomic analysis of microbial communities and beyond

    DEFF Research Database (Denmark)

    Schreiber, Lars

    2014-01-01

    From small clone libraries to large next-generation sequencing datasets – the field of community genomics or metagenomics has developed tremendously within the last years. This chapter will summarize some of these developments and will also highlight pitfalls of current metagenomic analyses...... heterologous expression of metagenomic DNA fragments to discover novel metabolic functions. Lastly, the chapter will shortly discuss the meta-analysis of gene expression of microbial communities, more precisely metatranscriptomics and metaproteomics....

  8. Polycyclic aromatic hydrocarbons and PAH-related DNA adducts.

    Science.gov (United States)

    Ewa, Błaszczyk; Danuta, Mielżyńska-Švach

    2017-08-01

    Investigations on the impact of chemicals on the environment and human health have led to the development of an exposome concept. The exposome refers to the totality of exposures received by a person during life, including exposures to life-style factors, from the prenatal period to death. The exposure to genotoxic chemicals and their reactive metabolites can induce chemical modifications of DNA, such as, for example, DNA adducts, which have been extensively studied and which play a key role in chemically induced carcinogenesis. Development of different methods for the identification of DNA adducts has led to adopting DNA adductomic approaches. The ability to simultaneously detect multiple PAH-derived DNA adducts may allow for the improved assessment of exposure, and offer a mechanistic insight into the carcinogenic process following exposure to PAH mixtures. The major advantage of measuring chemical-specific DNA adducts is the assessment of a biologically effective dose. This review provides information about the occurrence of the polycyclic aromatic hydrocarbons (PAHs) and their influence on human exposure and biological effects, including PAH-derived DNA adduct formation and repair processes. Selected methods used for determination of DNA adducts have been presented.

  9. Effort versus Reward: Preparing Samples for Fungal Community Characterization in High-Throughput Sequencing Surveys of Soils.

    Directory of Open Access Journals (Sweden)

    Zewei Song

    Full Text Available Next generation fungal amplicon sequencing is being used with increasing frequency to study fungal diversity in various ecosystems; however, the influence of sample preparation on the characterization of fungal community is poorly understood. We investigated the effects of four procedural modifications to library preparation for high-throughput sequencing (HTS. The following treatments were considered: 1 the amount of soil used in DNA extraction, 2 the inclusion of additional steps (freeze/thaw cycles, sonication, or hot water bath incubation in the extraction procedure, 3 the amount of DNA template used in PCR, and 4 the effect of sample pooling, either physically or computationally. Soils from two different ecosystems in Minnesota, USA, one prairie and one forest site, were used to assess the generality of our results. The first three treatments did not significantly influence observed fungal OTU richness or community structure at either site. Physical pooling captured more OTU richness compared to individual samples, but total OTU richness at each site was highest when individual samples were computationally combined. We conclude that standard extraction kit protocols are well optimized for fungal HTS surveys, but because sample pooling can significantly influence OTU richness estimates, it is important to carefully consider the study aims when planning sampling procedures.

  10. Evaluating droplet digital PCR for the quantification of human genomic DNA: converting copies per nanoliter to nanograms nuclear DNA per microliter.

    Science.gov (United States)

    Duewer, David L; Kline, Margaret C; Romsos, Erica L; Toman, Blaza

    2018-05-01

    The highly multiplexed polymerase chain reaction (PCR) assays used for forensic human identification perform best when used with an accurately determined quantity of input DNA. To help ensure the reliable performance of these assays, we are developing a certified reference material (CRM) for calibrating human genomic DNA working standards. To enable sharing information over time and place, CRMs must provide accurate and stable values that are metrologically traceable to a common reference. We have shown that droplet digital PCR (ddPCR) limiting dilution end-point measurements of the concentration of DNA copies per volume of sample can be traceably linked to the International System of Units (SI). Unlike values assigned using conventional relationships between ultraviolet absorbance and DNA mass concentration, entity-based ddPCR measurements are expected to be stable over time. However, the forensic community expects DNA quantity to be stated in terms of mass concentration rather than entity concentration. The transformation can be accomplished given SI-traceable values and uncertainties for the number of nucleotide bases per human haploid genome equivalent (HHGE) and the average molar mass of a nucleotide monomer in the DNA polymer. This report presents the considerations required to establish the metrological traceability of ddPCR-based mass concentration estimates of human nuclear DNA. Graphical abstract The roots of metrological traceability for human nuclear DNA mass concentration results. Values for the factors in blue must be established experimentally. Values for the factors in red have been established from authoritative source materials. HHGE stands for "haploid human genome equivalent"; there are two HHGE per diploid human genome.

  11. Non liquid nitrogen-based-method for isolation of DNA from ...

    African Journals Online (AJOL)

    A simple, efficient, reliable and cost-effective method for isolation of total genomic DNA from fungi, suitable for polymerase chain reaction (PCR) amplification and other molecular applications was described. The main advantages of the method are: (1) does not require the use of liquid nitrogen for preparation of fungi DNA; ...

  12. Detecção de DNA de Leishmania braziliensis em pacientes de leishmaniose tegumentar americana Detección de DNA de Leishmania braziliensis en pacientes de leishmaniose tegumentaria americana Detection of Leishmania braziliensis DNA in American tegumentary leishmaniasis patients

    Directory of Open Access Journals (Sweden)

    Leila Martins

    2010-06-01

    Full Text Available Foi realizado diagnóstico para leishmaniose tegumentar americana a partir de sangue de pacientes residentes em dois municípios endêmicos do estado de Pernambuco. O DNA de 119 amostras de sangue foi extraído e submetido a reação em cadeia da polimerase. Utilizaram-se primers do minicírculo do DNA do cinetoplasto (kDNA de Leishmania braziliensis, circulante em Pernambuco, cuja seqüência-alvo gera um fragmento de 750 pares de bases. No total 58 (48,7% indivíduos apresentaram amplificação positiva e 61 (51,3% negativa. Das amostras positivas para a PCR, 37 (≅ 64% pertenciam a indivíduos tratados e sem lesão. Conclui-se que a técnica de PCR é eficaz para identificar o DNA de leishmânia em material de biópsias e em sangue venoso.Fue realizado diagnóstico para leishmaniosis tegumentaria americana a partir de sangre de pacientes residentes en dos municipios endémicos del estado de Pernambuco (Noreste de Brasil. El DNA de 119 muestras de sangre fue extraído y sometido a la reacción en cadena de la polimerasa. Se utilizaron primers del minicírculo del DNA del cinetoplasto (kDNA de Leishmania braziliensis, circulante en Pernambuco, cuya secuencia blanco genera un fragmento de 750 pares de bases. En total 58 (48,7% individuos presentaron amplificación positiva y 61 (51,3% negativa. De las muestras positivas para la PCR, 37 (≅64% pertenecían a individuos tratados y sin lesión. Se concluyó que la técnica de la PCR es eficaz para identificar el DNA de Leishmania en material de biopsias y en sangre venosa.Diagnostic tests for American tegumentary leishmaniasis were performed on blood samples of patients living in two endemic municipalities in the state of Pernambuco, Northeastern Brazil. DNA was extracted from 119 samples and used as template for polymerase chain reaction (PCR analysis. The tests used primers specific for the kinetoplast mini-circle DNA (kDNA of Leishmania braziliensis, a species circulating in Pernambuco, which

  13. {sup 32}P-postlabeling determination of DNA adducts in the earthworm Lumbricus terrestris exposed to PAH-contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, P. [Laval Univ. Research Center, Quebec (Canada)]|[Ministere de l`Environnement et de la Faune du Quebec (Canada); El Adlouni, C.; Mukhopadhyay, M.J.; Nadeau, D.; Poirier, G.G. [Laval Univ. Research Center, Quebec (Canada); Viel, G. [CreaLab., Quebec (Canada)

    1995-05-01

    The importance of the search for reliable biomarkers of DNA damage in environmental health assessment is well recognized by the scientific community and regulatory agencies. Among the major biomarkers of DNA damage is the measurement of DNA adducts in target cells or tissues. Up to now, DNA adduct determinations have been directed mostly toward human exposure to toxic substances from the workplace and environment. Moreover, techniques for measuring DNA adducts, and in particular the {sup 32}P-postlabelling technique, presented also the possibility of determining DNA adduct levels in endogenous animal populations exposed to polluted environments as early warning monitors of ecotoxicity. Soil contamination is becoming a major environmental issue. Therefore, numerous contaminated sites must now be remediated to protect human health and to permit new uses of these sites as agricultural, residential, or industrial areas. Fulfillment of this task requires standardized and sensitive bioassays to carry out site evaluations and to establish scientifically defensible soil quality criteria. To that effect, the earthworm appears to be one of the best organisms for use in soil toxicity evaluation. Earthworms are probably the most relevant soil species, representing 60 to 80% of the total animal biomass in soil. Present soil bioassays focus mostly on plant species with end points like seed germination, root elongation, seedling growth and seedling emergence, and on acute toxicity evaluation (re: LC 50) on the earthworm Eisenia fetida. As yet, a standardized soil invertebrate test for teratogenic or mutagenic end points has not been developed. In this paper, we report the feasibility of DNA adduct determination by {sup 32}P-postlabelling in the earthworm Lumbricus terrestris as a way to detect the presence of genotoxic substances in soils. 20 refs., 1 fig., 1 tab.

  14. DNA commission of the International Society for Forensic Genetics

    DEFF Research Database (Denmark)

    Gill, P; Brenner, C H; Buckleton, J S

    2006-01-01

    The DNA commission of the International Society of Forensic Genetics (ISFG) was convened at the 21st congress of the International Society for Forensic Genetics held between 13 and 17 September in the Azores, Portugal. The purpose of the group was to agree on guidelines to encourage best practice...... a consensus from experts but to be practical we do not claim to have conveyed a clear vision in every respect in this difficult subject. For this reason, we propose to allow a period of time for feedback and reflection by the scientific community. Then the DNA commission will meet again to consider further...

  15. SENSITIVITY AND SPECIFICITY OF INDIVIDUAL BERG BALANCE ITEMS COMPARED WITH THE TOTAL SCORE TO PREDICT FALLS IN COMMUNITY DWELLING ELDERLY INDIVIDUALS

    Directory of Open Access Journals (Sweden)

    Hazel Denzil Dias

    2014-09-01

    Full Text Available Background: Falls are a major problem in the elderly leading to increased morbidity and mortality in this population. Scores from objective clinical measures of balance have frequently been associated with falls in older adults. The Berg Balance Score (BBS which is a frequently used scale to test balance impairments in the elderly ,takes time to perform and has been found to have scoring inconsistencies. The purpose was to determine if individual items or a group of BBS items would have better accuracy than the total BBS in classifying community dwelling elderly individuals according to fall history. Method: 60 community dwelling elderly individuals were chosen based on a history of falls in this cross sectional study. Each BBS item was dichotomized at three points along the scoring scale of 0 – 4: between scores of 1 and 2, 2 and 3, and 3 and 4. Sensitivity (Sn, specificity (Sp, and positive (+LR and negative (-LR likelihood ratios were calculated for all items for each scoring dichotomy based on their accuracy in classifying subjects with a history of multiple falls. These findings were compared with the total BBS score where the cut-off score was derived from receiver operating characteristic curve analysis. Results: On analysing a combination of BBS items, B9 and B11 were found to have the best sensitivity and specificity when considered together. However the area under the curve of these items was 0.799 which did not match that of the total score (AUC= 0.837. A, combination of 4 BBS items - B9 B11 B12 and B13 also had good Sn and Sp but the AUC was 0.815. The combination with the AUC closest to that of the total score was a combination items B11 and B13. (AUC= 0.824. hence these two items can be used as the best predictor of falls with a cut off of 6.5 The ROC curve of the Total Berg balance Scale scores revealed a cut off score of 48.5. Conclusion: This study showed that combination of items B11 and B13 may be best predictors of falls in

  16. SENSITIVITY AND SPECIFICITY OF INDIVIDUAL BERG BALANCE ITEMS COMPARED WITH THE TOTAL SCORE TO PREDICT FALLS IN COMMUNITY DWELLING ELDERLY INDIVIDUALS

    Directory of Open Access Journals (Sweden)

    Hazel Denzil Dias

    2014-06-01

    Full Text Available Background: Falls are a major problem in the elderly leading to increased morbidity and mortality in this population. Scores from objective clinical measures of balance have frequently been associated with falls in older adults. The Berg Balance Score (BBS which is a frequently used scale to test balance impairments in the elderly ,takes time to perform and has been found to have scoring inconsistencies. The purpose was to determine if individual items or a group of BBS items would have better accuracy than the total BBS in classifying community dwelling elderly individuals according to fall history. Method: 60 community dwelling elderly individuals were chosen based on a history of falls in this cross sectional study. Each BBS item was dichotomized at three points along the scoring scale of 0 – 4: between scores of 1 and 2, 2 and 3, and 3 and 4. Sensitivity (Sn, specificity (Sp, and positive (+LR and negative (-LR likelihood ratios were calculated for all items for each scoring dichotomy based on their accuracy in classifying subjects with a history of multiple falls. These findings were compared with the total BBS score where the cut-off score was derived from receiver operating characteristic curve analysis. Results: On analysing a combination of BBS items, B9 and B11 were found to have the best sensitivity and specificity when considered together. However the area under the curve of these items was 0.799 which did not match that of the total score (AUC= 0.837. A, combination of 4 BBS items - B9 B11 B12 and B13 also had good Sn and Sp but the AUC was 0.815. The combination with the AUC closest to that of the total score was a combination items B11 and B13. (AUC= 0.824. hence these two items can be used as the best predictor of falls with a cut off of 6.5 The ROC curve of the Total Berg balance Scale scores revealed a cut off score of 48.5. Conclusion: This study showed that combination of items B11 and B13 may be best predictors of falls in

  17. Seasonal variability in the persistence of dissolved environmental DNA (eDNA in a marine system: The role of microbial nutrient limitation.

    Directory of Open Access Journals (Sweden)

    Ian Salter

    be linked to the metabolic response of microbial communities to nutrient limitation. Future studies should consider the effect of natural environmental gradients on the seasonal persistence of eDNA, which will be of particular relevance for time-series biomonitoring programs.

  18. Identification of the Bacterial Community Responsible for ...

    African Journals Online (AJOL)

    Identification of bacteria community responsible for decontaminating Eleme petrochemical industrial effluent using 16S PCR denaturing gradient gel electrophoresis (DGGE) was determined. Gene profiles were determined by extracting DNA from bacterial isolates and amplified by polymerase chain reaction (PCR) using ...

  19. DNA expressions - A formal notation for DNA

    NARCIS (Netherlands)

    Vliet, Rudy van

    2015-01-01

    We describe a formal notation for DNA molecules that may contain nicks and gaps. The resulting DNA expressions denote formal DNA molecules. Different DNA expressions may denote the same molecule. Such DNA expressions are called equivalent. We examine which DNA expressions are minimal, which

  20. Assessing the utility of eDNA as a tool to survey reef-fish communities in the Red Sea

    KAUST Repository

    DiBattista, Joseph; Coker, Darren James; Sinclair-Taylor, Tane; Stat, Michael; Berumen, Michael L.; Bunce, Michael

    2017-01-01

    Relatively small volumes of water may contain sufficient environmental DNA (eDNA) to detect target aquatic organisms via genetic sequencing. We therefore assessed the utility of eDNA to document the diversity of coral reef fishes in the central Red Sea. DNA from seawater samples was extracted, amplified using fish-specific 16S mitochondrial DNA primers, and sequenced using a metabarcoding workflow. DNA sequences were assigned to taxa using available genetic repositories or custom genetic databases generated from reference fishes. Our approach revealed a diversity of conspicuous, cryptobenthic, and commercially relevant reef fish at the genus level, with select genera in the family Labridae over-represented. Our approach, however, failed to capture a significant fraction of the fish fauna known to inhabit the Red Sea, which we attribute to limited spatial sampling, amplification stochasticity, and an apparent lack of sequencing depth. Given an increase in fish species descriptions, completeness of taxonomic checklists, and improvement in species-level assignment with custom genetic databases as shown here, we suggest that the Red Sea region may be ideal for further testing of the eDNA approach.

  1. Assessing the utility of eDNA as a tool to survey reef-fish communities in the Red Sea

    Science.gov (United States)

    DiBattista, Joseph D.; Coker, Darren J.; Sinclair-Taylor, Tane H.; Stat, Michael; Berumen, Michael L.; Bunce, Michael

    2017-12-01

    Relatively small volumes of water may contain sufficient environmental DNA (eDNA) to detect target aquatic organisms via genetic sequencing. We therefore assessed the utility of eDNA to document the diversity of coral reef fishes in the central Red Sea. DNA from seawater samples was extracted, amplified using fish-specific 16S mitochondrial DNA primers, and sequenced using a metabarcoding workflow. DNA sequences were assigned to taxa using available genetic repositories or custom genetic databases generated from reference fishes. Our approach revealed a diversity of conspicuous, cryptobenthic, and commercially relevant reef fish at the genus level, with select genera in the family Labridae over-represented. Our approach, however, failed to capture a significant fraction of the fish fauna known to inhabit the Red Sea, which we attribute to limited spatial sampling, amplification stochasticity, and an apparent lack of sequencing depth. Given an increase in fish species descriptions, completeness of taxonomic checklists, and improvement in species-level assignment with custom genetic databases as shown here, we suggest that the Red Sea region may be ideal for further testing of the eDNA approach.

  2. Assessing the utility of eDNA as a tool to survey reef-fish communities in the Red Sea

    KAUST Repository

    DiBattista, Joseph D.

    2017-08-23

    Relatively small volumes of water may contain sufficient environmental DNA (eDNA) to detect target aquatic organisms via genetic sequencing. We therefore assessed the utility of eDNA to document the diversity of coral reef fishes in the central Red Sea. DNA from seawater samples was extracted, amplified using fish-specific 16S mitochondrial DNA primers, and sequenced using a metabarcoding workflow. DNA sequences were assigned to taxa using available genetic repositories or custom genetic databases generated from reference fishes. Our approach revealed a diversity of conspicuous, cryptobenthic, and commercially relevant reef fish at the genus level, with select genera in the family Labridae over-represented. Our approach, however, failed to capture a significant fraction of the fish fauna known to inhabit the Red Sea, which we attribute to limited spatial sampling, amplification stochasticity, and an apparent lack of sequencing depth. Given an increase in fish species descriptions, completeness of taxonomic checklists, and improvement in species-level assignment with custom genetic databases as shown here, we suggest that the Red Sea region may be ideal for further testing of the eDNA approach.

  3. Transient changes in milk production efficiency and bacterial community composition resulting from near-total exchange of ruminal contents between high- and low-efficiency Holstein cows

    Science.gov (United States)

    The objectives of this study were to determine if milk production efficiency (MPE) is altered by near-total exchange of ruminal contents between high- (HE) and low-MPE (LE) cows and to characterize ruminal bacterial community composition (BCC) prior to exchange and over time post-exchange. Three pai...

  4. Methylation patterns of repetitive DNA sequences in germ cells of Mus musculus.

    OpenAIRE

    Sanford, J; Forrester, L; Chapman, V; Chandley, A; Hastie, N

    1984-01-01

    The major and the minor satellite sequences of Mus musculus were undermethylated in both sperm and oocyte DNAs relative to the amount of undermethylation observed in adult somatic tissue DNA. This hypomethylation was specific for satellite sequences in sperm DNA. Dispersed repetitive and low copy sequences show a high degree of methylation in sperm DNA; however, a dispersed repetitive sequence was undermethylated in oocyte DNA. This finding suggests a difference in the amount of total genomic...

  5. Exploring the Impacts of Anthropogenic Disturbance on Seawater and Sediment Microbial Communities in Korean Coastal Waters Using Metagenomics Analysis

    Directory of Open Access Journals (Sweden)

    Nam-Il Won

    2017-01-01

    Full Text Available The coastal ecosystems are considered as one of the most dynamic and vulnerable environments under various anthropogenic developments and the effects of climate change. Variations in the composition and diversity of microbial communities may be a good indicator for determining whether the marine ecosystems are affected by complex forcing stressors. DNA sequence-based metagenomics has recently emerged as a promising tool for analyzing the structure and diversity of microbial communities based on environmental DNA (eDNA. However, few studies have so far been performed using this approach to assess the impacts of human activities on the microbial communities in marine systems. In this study, using metagenomic DNA sequencing (16S ribosomal RNA gene, we analyzed and compared seawater and sediment communities between sand mining and control (natural sites in southern coastal waters of Korea to assess whether anthropogenic activities have significantly affected the microbial communities. The sand mining sites harbored considerably lower levels of microbial diversities in the surface seawater community during spring compared with control sites. Moreover, the sand mining areas had distinct microbial taxonomic group compositions, particularly during spring season. The microbial groups detected solely in the sediment load/dredging areas (e.g., Marinobacter, Alcanivorax, Novosphingobium are known to be involved in degradation of toxic chemicals such as hydrocarbon, oil, and aromatic compounds, and they also contain potential pathogens. This study highlights the versatility of metagenomics in monitoring and diagnosing the impacts of human disturbance on the environmental health of marine ecosystems from eDNA.

  6. On the fate of exogenously supplied bacterial DNA in soybean

    International Nuclear Information System (INIS)

    Luyindula Ndiku

    1980-01-01

    The fate of exogenously supplied radiolabelled DNA from agrobacterium tumefaciens and micrococcus lysodeikticus was investigated in soybean tissues growing under various physiological conditions. The following observations are made: a) Rapid degradation and reutilization of the donor DNA was observed in callus tissue culture. b) Germinating seeds and five-day old seedlings were shown to degrade DNA in the incubation medium and to ultilize these degradation products for their own DNA synthesis. Reutilization could be almost totally suppressed the addition of unlabelled thymidine as a competitor. This allowed a detection of significant amounts of residuel donor closely but transiently associated with the plant tissues. c) In soybean shoots dipped into a solution of donor DNA, partly this DNA was found to first migrate to the leaves where mostly labelled endogenous DNA was later found. Very large amounts of polymerized exogenous DNA were found in the regenerated roots after 12 days of culture. (author)

  7. Effect of UV-irradiation on DNA-membrane complex of Bacillus subtilis

    International Nuclear Information System (INIS)

    Chefranova, O.A.; Gaziev, A.I.

    1979-01-01

    The UV radiation effect on DNA membrane complex of Bacillus subtilis has been studied. Increase of DNA content in the DNA membrane complex in two strains of 168 and recA - and its decrease in the polA - strain are shown. The above effect in the first two stamms is suppressed with caffeine and correlates with the change in protein content in the DNA membrane complex, determined by a radioactive label, but not lipids in other words, fixation of DNA and membrane goes through proteins. Capability of DNA content increase in the DNA membrane complex after UV irradiation and subsequent bacteria incubation in a total medium correlates with the relative sensitivity of stamm UV sensitivity. It is suggested, that the reparation synthesis goes in cells on the membrane and that binding of DNA and the membrane is necessary for the normal DNA reparation process

  8. Evidence for nuclear internalization of exogenous DNA into mammalian sperm cells

    International Nuclear Information System (INIS)

    Francolini, M.; Lavitrano, M.; Lamia, C.L.; French, D.; Frati, L.; Cotelli, F.; Spadafora, C.

    1993-01-01

    Mature sperm cells have the spontaneous capacity to take up exogenous DNA. Such DNA specifically interacts with the subacrosomal segment of the sperm head corresponding to the nuclear area. Part of the sperm-bound foreign DNA is further internalized into nuclei. Using end-labelled plasmid DNA we have found that 15-22% of the total sperm bound DNA is associated with nuclei as determined on isolated nuclei. On the basis of autoradiographic analysis, nuclear permeability to exogenous DNA seems to be a wide phenomenon involving the majority of the sperm nuclei. In fact, the foreign DNA, incubated with sperm cells for different lengths of time, is found in 45% (10 min) to 65% (2 hr) of the sperm nuclei. Ultrastructural autoradiography on thin sections of mammalian spermatozoa, preincubated with end-labelled plasmid DNA, shows that the exogenous DNA is internalized into the nucleus. This conclusion is further supported by ultrastructural autoradiographic analysis on thin sections of nuclei isolated from spermatozoa preincubated with end-labelled DNA

  9. Using high-throughput DNA sequencing, genetic fingerprinting, and quantitative PCR as tools for monitoring bloom-forming and toxigenic cyanobacteria in Upper Klamath Lake, Oregon, 2013 and 2014

    Science.gov (United States)

    Caldwell Eldridge, Sara L.; Driscoll, Conner; Dreher, Theo W.

    2017-06-05

    Monitoring the community structure and metabolic activities of cyanobacterial blooms in Upper Klamath Lake, Oregon, is critical to lake management because these blooms degrade water quality and produce toxic microcystins that are harmful to humans, domestic animals, and wildlife. Genetic tools, such as DNA fingerprinting by terminal restriction fragment length polymorphism (T-RFLP) analysis, high-throughput DNA sequencing (HTS), and real-time, quantitative polymerase chain reaction (qPCR), provide more sensitive and rapid assessments of bloom ecology than traditional techniques. The objectives of this study were (1) to characterize the microbial community at one site in Upper Klamath Lake and determine changes in the cyanobacterial community through time using T-RFLP and HTS in comparison with traditional light microscopy; (2) to determine relative abundances and changes in abundance over time of toxigenic Microcystis using qPCR; and (3) to determine relative abundances and changes in abundance over time of Aphanizomenon, Microcystis, and total cyanobacteria using qPCR. T-RFLP analysis of total cyanobacteria showed a dominance of only one or two distinct genotypes in samples from 2013, but results of HTS in 2013 and 2014 showed more variations in the bloom cycle that fit with the previous understanding of bloom dynamics in Upper Klamath Lake and indicated that potentially toxigenic Microcystis was more prevalent in 2014 than in years prior. The qPCR-estimated copy numbers of all target genes were higher in 2014 than in 2013, when microcystin concentrations also were higher. Total Microcystis density was shown with qPCR to be a better predictor of late-season increases in microcystin concentrations than the relative proportions of potentially toxigenic cells. In addition, qPCR targeting Aphanizomenon at one site in Upper Klamath Lake indicated a moderate bloom of this species (corresponding to chlorophyll a concentrations between approximately 75 and 200 micrograms

  10. The effect of chronic alcohol consumption on mitochondrial DNA mutagenesis in human blood

    Energy Technology Data Exchange (ETDEWEB)

    Wurmb-Schwark, N. von [Institute of Legal Medicine, Christian Albrecht University of Kiel, Arnold-Heller-Str. 12, 24105 Kiel (Germany)], E-mail: nvonwurmb@rechtsmedizin.uni-kiel.de; Ringleb, A.; Schwark, T. [Institute of Legal Medicine, Christian Albrecht University of Kiel, Arnold-Heller-Str. 12, 24105 Kiel (Germany); Broese, T.; Weirich, S.; Schlaefke, D. [Clinic of Psychiatry and Psychotherapy, University of Rostock, Gehlsheimer Str. 20, Rostock (Germany); Wegener, R. [Institute of Legal Medicine, St-Georg-Str. 108, University of Rostock, 18055 Rostock (Germany); Oehmichen, M. [Institute of Legal Medicine, Christian Albrecht University of Kiel, Arnold-Heller-Str. 12, 24105 Kiel (Germany)

    2008-01-01

    The 4977 bp deletion of mitochondrial DNA (mtDNA) is known to accumulate with increasing age in post mitotic tissues. Recently, studies came out detecting this specific alteration also in fast replicating cells, e.g. in blood or skin tissue, often in correlation to specific diseases or - specifically in skin - external stressors such as UV radiation. In this study, we investigated mitochondrial mutagenesis in 69 patients with a chronic alcoholic disease and 46 age matched controls with a moderate drinking behavior. Two different fragments, specific for total and for deleted mtDNA (dmtDNA) were amplified in a duplex-PCR. A subsequent fragment analysis was performed and for relative quantification, the quotient of the peak areas of amplification products specific for deleted and total mtDNA was determined. Additionally, a real time PCR was performed to quantify mtDNA copy number. The relative amount of 4977 bp deleted mtDNA in alcoholics was significantly increased compared to controls. On the other hand, no difference regarding the mtDNA/nuclear DNA ratio in both investigated groups was detected. Additionally, no age dependence could be found nor in alcoholics, neither in the control group. These findings indicate that mtDNA mutagenesis in blood can be influenced by stressors such as alcohol. Ethanol seems to be a significant factor to alter mitochondrial DNA in blood and might be an additional contributor for the cellular aging process.

  11. The effect of chronic alcohol consumption on mitochondrial DNA mutagenesis in human blood

    International Nuclear Information System (INIS)

    Wurmb-Schwark, N. von; Ringleb, A.; Schwark, T.; Broese, T.; Weirich, S.; Schlaefke, D.; Wegener, R.; Oehmichen, M.

    2008-01-01

    The 4977 bp deletion of mitochondrial DNA (mtDNA) is known to accumulate with increasing age in post mitotic tissues. Recently, studies came out detecting this specific alteration also in fast replicating cells, e.g. in blood or skin tissue, often in correlation to specific diseases or - specifically in skin - external stressors such as UV radiation. In this study, we investigated mitochondrial mutagenesis in 69 patients with a chronic alcoholic disease and 46 age matched controls with a moderate drinking behavior. Two different fragments, specific for total and for deleted mtDNA (dmtDNA) were amplified in a duplex-PCR. A subsequent fragment analysis was performed and for relative quantification, the quotient of the peak areas of amplification products specific for deleted and total mtDNA was determined. Additionally, a real time PCR was performed to quantify mtDNA copy number. The relative amount of 4977 bp deleted mtDNA in alcoholics was significantly increased compared to controls. On the other hand, no difference regarding the mtDNA/nuclear DNA ratio in both investigated groups was detected. Additionally, no age dependence could be found nor in alcoholics, neither in the control group. These findings indicate that mtDNA mutagenesis in blood can be influenced by stressors such as alcohol. Ethanol seems to be a significant factor to alter mitochondrial DNA in blood and might be an additional contributor for the cellular aging process

  12. Tracing carbon fixation in phytoplankton—compound specific and total

    NARCIS (Netherlands)

    Grosse, J.; Van Breugel, P.; Boschker, H.T.S.

    2015-01-01

    Measurement of total primary production using 13C incorporation is a widely established tool. However, these bulk measurements lack information about the fate of fixed carbon: the production of major cellular compounds (carbohydrates, amino acids, fatty acids, and DNA/RNA) is affected by for

  13. The Barcode of Life Data Portal: Bridging the Biodiversity Informatics Divide for DNA Barcoding

    Science.gov (United States)

    Sarkar, Indra Neil; Trizna, Michael

    2011-01-01

    With the volume of molecular sequence data that is systematically being generated globally, there is a need for centralized resources for data exploration and analytics. DNA Barcode initiatives are on track to generate a compendium of molecular sequence–based signatures for identifying animals and plants. To date, the range of available data exploration and analytic tools to explore these data have only been available in a boutique form—often representing a frustrating hurdle for many researchers that may not necessarily have resources to install or implement algorithms described by the analytic community. The Barcode of Life Data Portal (BDP) is a first step towards integrating the latest biodiversity informatics innovations with molecular sequence data from DNA barcoding. Through establishment of community driven standards, based on discussion with the Data Analysis Working Group (DAWG) of the Consortium for the Barcode of Life (CBOL), the BDP provides an infrastructure for incorporation of existing and next-generation DNA barcode analytic applications in an open forum. PMID:21818249

  14. Wolbachia and DNA barcoding insects: patterns, potential, and problems.

    Science.gov (United States)

    Smith, M Alex; Bertrand, Claudia; Crosby, Kate; Eveleigh, Eldon S; Fernandez-Triana, Jose; Fisher, Brian L; Gibbs, Jason; Hajibabaei, Mehrdad; Hallwachs, Winnie; Hind, Katharine; Hrcek, Jan; Huang, Da-Wei; Janda, Milan; Janzen, Daniel H; Li, Yanwei; Miller, Scott E; Packer, Laurence; Quicke, Donald; Ratnasingham, Sujeevan; Rodriguez, Josephine; Rougerie, Rodolphe; Shaw, Mark R; Sheffield, Cory; Stahlhut, Julie K; Steinke, Dirk; Whitfield, James; Wood, Monty; Zhou, Xin

    2012-01-01

    Wolbachia is a genus of bacterial endosymbionts that impacts the breeding systems of their hosts. Wolbachia can confuse the patterns of mitochondrial variation, including DNA barcodes, because it influences the pathways through which mitochondria are inherited. We examined the extent to which these endosymbionts are detected in routine DNA barcoding, assessed their impact upon the insect sequence divergence and identification accuracy, and considered the variation present in Wolbachia COI. Using both standard PCR assays (Wolbachia surface coding protein--wsp), and bacterial COI fragments we found evidence of Wolbachia in insect total genomic extracts created for DNA barcoding library construction. When >2 million insect COI trace files were examined on the Barcode of Life Datasystem (BOLD) Wolbachia COI was present in 0.16% of the cases. It is possible to generate Wolbachia COI using standard insect primers; however, that amplicon was never confused with the COI of the host. Wolbachia alleles recovered were predominantly Supergroup A and were broadly distributed geographically and phylogenetically. We conclude that the presence of the Wolbachia DNA in total genomic extracts made from insects is unlikely to compromise the accuracy of the DNA barcode library; in fact, the ability to query this DNA library (the database and the extracts) for endosymbionts is one of the ancillary benefits of such a large scale endeavor--which we provide several examples. It is our conclusion that regular assays for Wolbachia presence and type can, and should, be adopted by large scale insect barcoding initiatives. While COI is one of the five multi-locus sequence typing (MLST) genes used for categorizing Wolbachia, there is limited overlap with the eukaryotic DNA barcode region.

  15. High Avidity dsDNA Autoantibodies in Brazilian Women with Systemic Lupus Erythematosus: Correlation with Active Disease and Renal Dysfunction

    Directory of Open Access Journals (Sweden)

    Rodrigo C. Oliveira

    2015-01-01

    Full Text Available We investigated in Brazilian women with SLE the prevalence and levels of high avidity (HA dsDNA antibodies and tested their correlation with lupus activity and biomarkers of renal disease. We also compared these correlations to those observed with total dsDNA antibodies and antibodies against nucleosome (ANuA. Autoantibodies were detected by ELISA, while C3 and C4 levels were determined by nephelometry. Urine protein/creatinine ratio was determined, and lupus activity was measured by SLEDAI-2K. The prevalence of total and HA dsDNA antibodies was similar to but lower than that verified for ANuA. The levels of the three types of antibodies were correlated, but the correlation was more significant between HA dsDNA antibodies and ANuA. High avidity dsDNA antibodies correlated positively with ESR and SLEDAI and inversely with C3 and C4. Similar correlations were observed for ANuA levels, whereas total dsDNA antibodies only correlated with SLEDAI and C3. The levels of HA dsDNA antibodies were higher in patients with proteinuria, but their levels of total dsDNA antibodies and ANuA were unaltered. High avidity dsDNA antibodies can be found in high prevalence in Brazilian women with SLE and are important biomarkers of active disease and kidney dysfunction.

  16. Aberrant community architecture and attenuated persistence of uropathogenic Escherichia coli in the absence of individual IHF subunits.

    Directory of Open Access Journals (Sweden)

    Sheryl S Justice

    Full Text Available Uropathogenic Escherichia coli (UPEC utilizes a complex community-based developmental pathway for growth within superficial epithelial cells of the bladder during cystitis. Extracellular DNA (eDNA is a common matrix component of organized bacterial communities. Integration host factor (IHF is a heterodimeric protein that binds to double-stranded DNA and produces a hairpin bend. IHF-dependent DNA architectural changes act both intrabacterially and extrabacterially to regulate gene expression and community stability, respectively. We demonstrate that both IHF subunits are required for efficient colonization of the bladder, but are dispensable for early colonization of the kidney. The community architecture of the intracellular bacterial communities (IBCs is quantitatively different in the absence of either IhfA or IhfB in the murine model for human urinary tract infection (UTI. Restoration of Type 1 pili by ectopic production does not restore colonization in the absence of IhfA, but partially compensates in the absence of IhfB. Furthermore, we describe a binding site for IHF that is upstream of the operon that encodes for the P-pilus. Taken together, these data suggest that both IHF and its constituent subunits (independent of the heterodimer, are able to participate in multiple aspects of the UPEC pathogenic lifestyle, and may have utility as a target for treatment of bacterial cystitis.

  17. An Improved Method for High Quality Metagenomics DNA Extraction from Human and Environmental Samples

    DEFF Research Database (Denmark)

    Bag, Satyabrata; Saha, Bipasa; Mehta, Ojasvi

    2016-01-01

    and human origin samples. We introduced a combination of physical, chemical and mechanical lysis methods for proper lysis of microbial inhabitants. The community microbial DNA was precipitated by using salt and organic solvent. Both the quality and quantity of isolated DNA was compared with the existing...... methodologies and the supremacy of our method was confirmed. Maximum recovery of genomic DNA in the absence of substantial amount of impurities made the method convenient for nucleic acid extraction. The nucleic acids obtained using this method are suitable for different downstream applications. This improved...

  18. Ten helical twist angles of B-DNA

    Energy Technology Data Exchange (ETDEWEB)

    Kabsch, W; Sander, C; Trifonov, E N

    1982-01-01

    On the assumption that the twist angles between adjacent base-pairs in the DNA molecule are additive a linear system of 40 equations was derived from experimental measurements of the total twist angles for different pieces of DNA of known sequences. This system of equations is found to be statistically consistent providing a solution for all ten possible twist angles of B-DNA by a least squares fitting procedure. Four of the calculated twist angles were not known before. The other six twist angles calculated are very close to the experimentally measured ones. The data used were obtained by the electrophoretic band-shift method, crystallography and nuclease digestion of DNA adsorbed to mica or Ca-phosphate surface. The validity of the principle of additivity of the twist angles implies that the angle between any particular two base-pairs is a function of only these base-pairs, independent of nearest neighbors.

  19. Quantification of cell-free DNA in blood plasma and DNA damage degree in lymphocytes to evaluate dysregulation of apoptosis in schizophrenia patients.

    Science.gov (United States)

    Ershova, E S; Jestkova, E M; Chestkov, I V; Porokhovnik, L N; Izevskaya, V L; Kutsev, S I; Veiko, N N; Shmarina, G; Dolgikh, O; Kostyuk, S V

    2017-04-01

    Oxidative DNA damage has been proposed as one of the causes of schizophrenia (SZ), and post mortem data indicate a dysregulation of apoptosis in SZ patients. To evaluate apoptosis in vivo we quantified the concentration of plasma cell-free DNA (cfDNA index, determined using fluorescence), the levels of 8-oxodG in cfDNA (immunoassay) and lymphocytes (FL1-8-oxodG index, flow cytometry) of male patients with acute psychotic disorders: paranoid SZ (total N = 58), schizophreniform (N = 11) and alcohol-induced (N = 14) psychotic disorder, and 30 healthy males. CfDNA in SZ (N = 58) does not change compared with controls. In SZ patients. Elevated levels of 8-oxodG were found in cfDNA (N = 58) and lymphocytes (n = 45). The main sources of cfDNA are dying cells with oxidized DNA. Thus, the cfDNA/FL1-8-oxodG ratio shows the level of apoptosis in damaged cells. Two subgroups were identified among the SZ patients (n = 45). For SZ-1 (31%) and SZ-2 (69%) median values of cfDNA/FL1-8-oxodG index are related as 1:6 (p DNA in the patient's body tissues and may be a contributing cause of acute psychotic disorder. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Microbial communities associated with the larval gut and eggs of the Western corn rootworm.

    Directory of Open Access Journals (Sweden)

    Flavia Dematheis

    Full Text Available BACKGROUND: The western corn rootworm (WCR is one of the economically most important pests of maize. A better understanding of microbial communities associated with guts and eggs of the WCR is required in order to develop new pest control strategies, and to assess the potential role of the WCR in the dissemination of microorganisms, e.g., mycotoxin-producing fungi. METHODOLOGY/PRINCIPAL FINDINGS: Total community (TC DNA was extracted from maize rhizosphere, WCR eggs, and guts of larvae feeding on maize roots grown in three different soil types. Denaturing gradient gel electrophoresis (DGGE and sequencing of 16S rRNA gene and ITS fragments, PCR-amplified from TC DNA, were used to investigate the fungal and bacterial communities, respectively. Microorganisms in the WCR gut were not influenced by the soil type. Dominant fungal populations in the gut were affiliated to Fusarium spp., while Wolbachia was the most abundant bacterial genus. Identical ribosomal sequences from gut and egg samples confirmed a transovarial transmission of Wolbachia sp. Betaproteobacterial DGGE indicated a stable association of Herbaspirillum sp. with the WCR gut. Dominant egg-associated microorganisms were the bacterium Wolbachia sp. and the fungus Mortierella gamsii. CONCLUSION/SIGNIFICANCE: The soil type-independent composition of the microbial communities in the WCR gut and the dominance of only a few microbial populations suggested either a highly selective environment in the gut lumen or a high abundance of intracellular microorganisms in the gut epithelium. The dominance of Fusarium species in the guts indicated WCR larvae as vectors of mycotoxin-producing fungi. The stable association of Herbaspirillum sp. with WCR gut systems and the absence of corresponding sequences in WCR eggs suggested that this bacterium was postnatally acquired from the environment. The present study provided new insights into the microbial communities associated with larval guts and eggs of

  1. Soil mineral assemblage influences on microbial communities and carbon cycling under fresh organic matter input

    Science.gov (United States)

    Finley, B. K.; Schwartz, E.; Koch, B.; Dijkstra, P.; Hungate, B. A.

    2017-12-01

    The interactions between soil mineral assemblages and microbial communities are important drivers of soil organic carbon (SOC) cycling and storage, although the mechanisms driving these interactions remain unclear. There is increasing evidence supporting the importance of associations with poorly crystalline, short-range order (SRO) minerals in protection of SOC from microbial utilization. However, how the microbial processing of SRO-associated SOC may be influenced by fresh organic matter inputs (priming) remains poorly understood. The influence on SRO minerals on soil microbial community dynamics is uncertain as well. Therefore, we conducted a priming incubation by adding either a simulated root exudate mixture or conifer needle litter to three soils from a mixed-conifer ecosystem. The parent material of the soils were andesite, basalt, and granite and decreased in SRO mineral content, respectively. We also conducted a parallel quantitative stable isotope probing incubation by adding 18O-labelled water to the soils to isotopically label microbial DNA in situ. This allowed us to characterize and identify the active bacterial and archaeal community and taxon-specific growth under fresh organic matter input. While the granite soil (lowest SRO content), had the largest total mineralization, the least priming occurred. The andesite and basalt soils (greater SRO content) had lower total respiration, but greater priming. Across all treatments, the granite soil, while having the lowest species richness of the entire community (249 taxa, both active and inactive), had a larger active community (90%) in response to new SOC input. The andesite and basalt soils, while having greater total species richness of the entire community at 333 and 325 taxa, respectively, had fewer active taxa in response to new C compared to the granite soil (30% and 49% taxa, respectively). These findings suggest that the soil mineral assemblage is an important driver on SOC cycling under fresh

  2. Viral recombination blurs taxonomic lines: examination of single-stranded DNA viruses in a wastewater treatment plant

    Directory of Open Access Journals (Sweden)

    Victoria M. Pearson

    2016-10-01

    Full Text Available Understanding the structure and dynamics of microbial communities, especially those of economic concern, is of paramount importance to maintaining healthy and efficient microbial communities at agricultural sites and large industrial cultures, including bioprocessors. Wastewater treatment plants are large bioprocessors which receive water from multiple sources, becoming reservoirs for the collection of many viral families that infect a broad range of hosts. To examine this complex collection of viruses, full-length genomes of circular ssDNA viruses were isolated from a wastewater treatment facility using a combination of sucrose-gradient size selection and rolling-circle amplification and sequenced on an Illumina MiSeq. Single-stranded DNA viruses are among the least understood groups of microbial pathogens due to genomic biases and culturing difficulties, particularly compared to the larger, more often studied dsDNA viruses. However, the group contains several notable well-studied examples, including agricultural pathogens which infect both livestock and crops (Circoviridae and Geminiviridae, and model organisms for genetics and evolution studies (Microviridae. Examination of the collected viral DNA provided evidence for 83 unique genotypic groupings, which were genetically dissimilar to known viral types and exhibited broad diversity within the community. Furthermore, although these genomes express similarities to known viral families, such as Circoviridae, Geminiviridae, and Microviridae, many are so divergent that they may represent new taxonomic groups. This study demonstrated the efficacy of the protocol for separating bacteria and large viruses from the sought after ssDNA viruses and the ability to use this protocol to obtain an in-depth analysis of the diversity within this group.

  3. Chemo-mechanical pushing of proteins along single-stranded DNA.

    Science.gov (United States)

    Sokoloski, Joshua E; Kozlov, Alexander G; Galletto, Roberto; Lohman, Timothy M

    2016-05-31

    Single-stranded (ss)DNA binding (SSB) proteins bind with high affinity to ssDNA generated during DNA replication, recombination, and repair; however, these SSBs must eventually be displaced from or reorganized along the ssDNA. One potential mechanism for reorganization is for an ssDNA translocase (ATP-dependent motor) to push the SSB along ssDNA. Here we use single molecule total internal reflection fluorescence microscopy to detect such pushing events. When Cy5-labeled Escherichia coli (Ec) SSB is bound to surface-immobilized 3'-Cy3-labeled ssDNA, a fluctuating FRET signal is observed, consistent with random diffusion of SSB along the ssDNA. Addition of Saccharomyces cerevisiae Pif1, a 5' to 3' ssDNA translocase, results in the appearance of isolated, irregularly spaced saw-tooth FRET spikes only in the presence of ATP. These FRET spikes result from translocase-induced directional (5' to 3') pushing of the SSB toward the 3' ssDNA end, followed by displacement of the SSB from the DNA end. Similar ATP-dependent pushing events, but in the opposite (3' to 5') direction, are observed with EcRep and EcUvrD (both 3' to 5' ssDNA translocases). Simulations indicate that these events reflect active pushing by the translocase. The ability of translocases to chemo-mechanically push heterologous SSB proteins along ssDNA provides a potential mechanism for reorganization and clearance of tightly bound SSBs from ssDNA.

  4. Nested PCR Biases in Interpreting Microbial Community Structure in 16S rRNA Gene Sequence Datasets.

    Science.gov (United States)

    Yu, Guoqin; Fadrosh, Doug; Goedert, James J; Ravel, Jacques; Goldstein, Alisa M

    2015-01-01

    Sequencing of the PCR-amplified 16S rRNA gene has become a common approach to microbial community investigations in the fields of human health and environmental sciences. This approach, however, is difficult when the amount of DNA is too low to be amplified by standard PCR. Nested PCR can be employed as it can amplify samples with DNA concentration several-fold lower than standard PCR. However, potential biases with nested PCRs that could affect measurement of community structure have received little attention. In this study, we used 17 DNAs extracted from vaginal swabs and 12 DNAs extracted from stool samples to study the influence of nested PCR amplification of the 16S rRNA gene on the estimation of microbial community structure using Illumina MiSeq sequencing. Nested and standard PCR methods were compared on alpha- and beta-diversity metrics and relative abundances of bacterial genera. The effects of number of cycles in the first round of PCR (10 vs. 20) and microbial diversity (relatively low in vagina vs. high in stool) were also investigated. Vaginal swab samples showed no significant difference in alpha diversity or community structure between nested PCR and standard PCR (one round of 40 cycles). Stool samples showed significant differences in alpha diversity (except Shannon's index) and relative abundance of 13 genera between nested PCR with 20 cycles in the first round and standard PCR (Pnested PCR with 10 cycles in the first round and standard PCR. Operational taxonomic units (OTUs) that had low relative abundance (sum of relative abundance 27% of total OTUs in stool). Nested PCR introduced bias in estimated diversity and community structure. The bias was more significant for communities with relatively higher diversity and when more cycles were applied in the first round of PCR. We conclude that nested PCR could be used when standard PCR does not work. However, rare taxa detected by nested PCR should be validated by other technologies.

  5. Regulating DNA Self-assembly by DNA-Surface Interactions.

    Science.gov (United States)

    Liu, Longfei; Li, Yulin; Wang, Yong; Zheng, Jianwei; Mao, Chengde

    2017-12-14

    DNA self-assembly provides a powerful approach for preparation of nanostructures. It is often studied in bulk solution and involves only DNA-DNA interactions. When confined to surfaces, DNA-surface interactions become an additional, important factor to DNA self-assembly. However, the way in which DNA-surface interactions influence DNA self-assembly is not well studied. In this study, we showed that weak DNA-DNA interactions could be stabilized by DNA-surface interactions to allow large DNA nanostructures to form. In addition, the assembly can be conducted isothermally at room temperature in as little as 5 seconds. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Simultaneous identification of DNA and RNA viruses present in pig faeces using process-controlled deep sequencing.

    Directory of Open Access Journals (Sweden)

    Jana Sachsenröder

    Full Text Available BACKGROUND: Animal faeces comprise a community of many different microorganisms including bacteria and viruses. Only scarce information is available about the diversity of viruses present in the faeces of pigs. Here we describe a protocol, which was optimized for the purification of the total fraction of viral particles from pig faeces. The genomes of the purified DNA and RNA viruses were simultaneously amplified by PCR and subjected to deep sequencing followed by bioinformatic analyses. The efficiency of the method was monitored using a process control consisting of three bacteriophages (T4, M13 and MS2 with different morphology and genome types. Defined amounts of the bacteriophages were added to the sample and their abundance was assessed by quantitative PCR during the preparation procedure. RESULTS: The procedure was applied to a pooled faecal sample of five pigs. From this sample, 69,613 sequence reads were generated. All of the added bacteriophages were identified by sequence analysis of the reads. In total, 7.7% of the reads showed significant sequence identities with published viral sequences. They mainly originated from bacteriophages (73.9% and mammalian viruses (23.9%; 0.8% of the sequences showed identities to plant viruses. The most abundant detected porcine viruses were kobuvirus, rotavirus C, astrovirus, enterovirus B, sapovirus and picobirnavirus. In addition, sequences with identities to the chimpanzee stool-associated circular ssDNA virus were identified. Whole genome analysis indicates that this virus, tentatively designated as pig stool-associated circular ssDNA virus (PigSCV, represents a novel pig virus. CONCLUSION: The established protocol enables the simultaneous detection of DNA and RNA viruses in pig faeces including the identification of so far unknown viruses. It may be applied in studies investigating aetiology, epidemiology and ecology of diseases. The implemented process control serves as quality control, ensures

  7. Changes in the bacterial community in the fermentation process of kôso, a Japanese sugar-vegetable fermented beverage.

    Science.gov (United States)

    Chiou, Tai-Ying; Suda, Wataru; Oshima, Kenshiro; Hattori, Masahira; Takahashi, Tomoya

    2017-02-01

    Kôso is a Japanese fermented beverage made with over 20 kinds of vegetables, mushrooms, and sugars. The changes in the bacterial population of kôso during fermentation at 25 °C over a period of 10 days were studied using 454 pyrosequencing of the 16S rRNA gene. The analysis detected 224 operational taxonomic units (OTUs) clustered from 8 DNA samples collected on days 0, 3, 7, and 10 from two fermentation batches. Proteobacteria were the dominant phylum in the starting community, but were replaced by Firmicutes within three days. Seventy-eight genera were identified from the 224 OTUs, in which Bifidobacterium, Leuconostoc, Lactococcus, and Lactobacillus dominated, accounting for over 96% of the total bacterial population after three days' fermentation. UniFrac-Principal Coordinate Analysis of longitudinal fermented samples revealed dramatic changes in the bacterial community in kôso, resulting in significantly low diversity at the end of fermentation as compared with the complex starting community.

  8. Microarray of DNA probes on carboxylate functional beads surface

    Institute of Scientific and Technical Information of China (English)

    黄承志; 李原芳; 黄新华; 范美坤

    2000-01-01

    The microarray of DNA probes with 5’ -NH2 and 5’ -Tex/3’ -NH2 modified terminus on 10 um carboxylate functional beads surface in the presence of 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) is characterized in the preseni paper. it was found that the microarray capacity of DNA probes on the beads surface depends on the pH of the aqueous solution, the concentra-tion of DNA probe and the total surface area of the beads. On optimal conditions, the minimum distance of 20 mer single-stranded DNA probe microarrayed on beads surface is about 14 nm, while that of 20 mer double-stranded DNA probes is about 27 nm. If the probe length increases from 20 mer to 35 mer, its microarray density decreases correspondingly. Mechanism study shows that the binding mode of DNA probes on the beads surface is nearly parallel to the beads surface.

  9. Microarray of DNA probes on carboxylate functional beads surface

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The microarray of DNA probes with 5′-NH2 and 5′-Tex/3′-NH2 modified terminus on 10 m m carboxylate functional beads surface in the presence of 1-ethyl-3-(3-dimethylaminopropyl)- carbodiimide (EDC) is characterized in the present paper. It was found that the microarray capacity of DNA probes on the beads surface depends on the pH of the aqueous solution, the concentration of DNA probe and the total surface area of the beads. On optimal conditions, the minimum distance of 20 mer single-stranded DNA probe microarrayed on beads surface is about 14 nm, while that of 20 mer double-stranded DNA probes is about 27 nm. If the probe length increases from 20 mer to 35 mer, its microarray density decreases correspondingly. Mechanism study shows that the binding mode of DNA probes on the beads surface is nearly parallel to the beads surface.

  10. Urinary Cell-Free DNA Quantification as Non-Invasive Biomarker in Patients with Bladder Cancer.

    Science.gov (United States)

    Brisuda, Antonin; Pazourkova, Eva; Soukup, Viktor; Horinek, Ales; Hrbáček, Jan; Capoun, Otakar; Svobodova, Iveta; Pospisilova, Sarka; Korabecna, Marie; Mares, Jaroslav; Hanuš, Tomáš; Babjuk, Marek

    2016-01-01

    Concentration of urinary cell-free DNA (ucfDNA) belongs to potential bladder cancer markers, but the reported results are inconsistent due to the use of various non-standardised methodologies. The aim of the study was to standardise the methodology for ucfDNA quantification as a potential non-invasive tumour biomarker. In total, 66 patients and 34 controls were enrolled into the study. Volumes of each urine portion (V) were recorded and ucfDNA concentrations (c) were measured using real-time PCR. Total amounts (TA) of ucfDNA were calculated and compared between patients and controls. Diagnostic accuracy of the TA of ucfDNA was determined. The calculation of TA of ucfDNA in the second urine portion was the most appropriate approach to ucfDNA quantification, as there was logarithmic dependence between the volume and the concentration of a urine portion (p = 0.0001). Using this methodology, we were able to discriminate between bladder cancer patients and subjects without bladder tumours (p = 0.0002) with area under the ROC curve of 0.725. Positive and negative predictive value of the test was 90 and 45%, respectively. Quantification of ucf DNA according to our modified method could provide a potential non-invasive biomarker for diagnosis of patients with bladder cancer. © 2015 S. Karger AG, Basel.

  11. ERIC-PCR fingerprinting-based community DNA hybridization to pinpoint genome-specific fragments as molecular markers to identify and track populations common to healthy human guts.

    Science.gov (United States)

    Wei, Guifang; Pan, Li; Du, Huimin; Chen, Junyi; Zhao, Liping

    2004-10-01

    Bacterial populations common to healthy human guts may play important roles in human health. A new strategy for discovering genomic sequences as markers for these bacteria was developed using Enterobacterial Repetitive Intergenic Consensus (ERIC)-PCR fingerprinting. Structural features within microbial communities are compared with ERIC-PCR followed by DNA hybridization to identify genomic fragments shared by samples from healthy human individuals. ERIC-PCR profiles of fecal samples from 12 diseased or healthy human and piglet subjects demonstrated stable, unique banding patterns for each individual tested. Sequence homology of DNA fragments in bands of identical size was examined between samples by hybridization under high stringency conditions with DIG-labeled ERIC-PCR products derived from the fecal sample of one healthy child. Comparative analysis of the hybridization profiles with the original agarose fingerprints identified three predominant bands as signatures for populations associated with healthy human guts with sizes of 500, 800 and 1000 bp. Clone library profiling of the three bands produced 17 genome fragments, three of which showed high similarity only with regions of the Bacteroides thetaiotaomicron genome, while the remainder were orphan sequences. Association of these sequences with healthy guts was validated by sequence-selective PCR experiments, which showed that a single fragment was present in all 32 healthy humans and 13 healthy piglets tested. Two fragments were present in the healthy human group and in 18 children with non-infectious diarrhea but not in eight children with infectious diarrhea. Genome fragments identified with this novel strategy may be used as genome-specific markers for dynamic monitoring and sequence-guided isolation of functionally important bacterial populations in complex communities such as human gut microflora.

  12. Corn silage in dairy cow diets to reduce ruminal methanogenesis: effects on the rumen metabolically active microbial communities.

    Science.gov (United States)

    Lettat, A; Hassanat, F; Benchaar, C

    2013-08-01

    Methane produced by the methanogenic Archaea that inhabit the rumen is a potent greenhouse gas and represents an energy loss for the animal. Although several strategies have been proposed to mitigate enteric CH4 production, little is known about the effects of dietary changes on the microbial consortia involved in ruminal methanogenesis. Thus, the current study aimed to examine how the metabolically active microbes are affected when dairy cows were fed diets with increasing proportions of corn silage (CS). For this purpose, 9 ruminally cannulated lactating dairy cows were used in a replicated 3 × 3 Latin square design and fed a total mixed ration (60:40 forage:concentrate ratio on a dry matter basis) with the forage portion being either alfalfa silage (0% CS), corn silage (100% CS), or a 50:50 mixture (50% CS). Enteric CH4 production was determined using respiration chambers and total rumen content was sampled for the determination of fermentation characteristics and molecular biology analyses (cDNA-based length heterogeneity PCR, quantitative PCR). The cDNA-based length heterogeneity PCR targeting active microbes revealed similar bacterial communities in cows fed 0% CS and 50% CS diets, whereas important differences were observed between 0% CS and 100% CS diets, including a reduction in the bacterial richness and diversity in cows fed 100% CS diet. As revealed by quantitative PCR, feeding the 100% CS diet increased the number of total bacteria, Prevotella spp., Archaea, and methanogenic activity, though it reduced protozoal number. Meanwhile, increasing the CS proportion in the diet increased propionate concentration but decreased ruminal pH, CH4 production (L/kg of dry matter intake), and concentrations of acetate and butyrate. Based on these microbial and fermentation changes, and because CH4 production was reduced by feeding 100% CS diet, this study shows that the use of cDNA-based quantitative PCR to estimate archaeal growth and activity is not reliable

  13. Flooding greatly affects the diversity of arbuscular mycorrhizal fungi communities in the roots of wetland plants.

    Directory of Open Access Journals (Sweden)

    Yutao Wang

    Full Text Available The communities of arbuscular mycorrhizal fungi (AMF colonizing the roots of three mangrove species were characterized along a tidal gradient in a mangrove swamp. A fragment, designated SSU-ITS-LSU, including part of the small subunit (SSU, the entire internal transcribed spacer (ITS and part of the large subunit (LSU of rDNA from samples of AMF-colonized roots was amplified, cloned and sequenced using AMF-specific primers. Similar levels of AMF diversity to those observed in terrestrial ecosystems were detected in the roots, indicating that the communities of AMF in wetland ecosystems are not necessarily low in diversity. In total, 761 Glomeromycota sequences were obtained, which grouped, according to phylogenetic analysis using the SSU-ITS-LSU fragment, into 23 phylotypes, 22 of which belonged to Glomeraceae and one to Acaulosporaceae. The results indicate that flooding plays an important role in AMF diversity, and its effects appear to depend on the degree (duration of flooding. Both host species and tide level affected community structure of AMF, indicating the presence of habitat and host species preferences.

  14. Comunidade bacteriana como indicadora do efeito de feijoeiro geneticamente modificado sobre organismos não alvo Bacterial community as an indicator of genetically modified common bean effect on nontarget organisms

    Directory of Open Access Journals (Sweden)

    Adriano Moreira Knupp

    2009-12-01

    Full Text Available O objetivo deste trabalho foi avaliar o efeito do feijoeiro geneticamente modificado quanto à resistência ao Bean Golden Mosaic Vírus, BGMV (Olathe M1-4, sobre organismos não alvo. De um experimento implantado no campo, em delineamento inteiramente casualizado, com dois tratamentos (Olathe Pinto e evento elite Olathe M1-4, dois períodos amostrais (estádio V4 e R6 e dez repetições, obtiveram-se células bacterianas cultivadas e não cultivadas da rizosfera e do solo não rizosférico, para as quais se procedeu à extração de DNA total. A região V6-V8 do 16S rDNA foi amplificada para a comunidade bacteriana total, e também realizou-se amplificação com iniciadores específicos para o subgrupo alfa (α do filo Proteobacteria a partir de células não cultivadas. Foram obtidos dendrogramas comparativos entre a variedade Olathe Pinto (convencional e o evento elite Olathe M1-4 (geneticamente modificado utilizando-se o coeficiente de Jaccard e o método UPGMA (Unweighted pair-group method with arithmetic mean. Os agrupamentos obtidos dos perfis de 16S rDNA PCR-DGGE indicam alterações na comunidade bacteriana da rizosfera em função da transformação das plantas são mais notáveis nos perfis obtidos para alfa-proteobacteria. A origem das amostras e o estágio de desenvolvimento das plantas afetam a comunidade bacteriana.The objective of this work was to evaluate the effect of genetically modified common bean for Bean Golden Mosaic Virus, BGMV, resistance (Olathe M1-4 on nontarget organisms. In a field experiment established in a completely randomized design with two treatments (Olathe Pinto cultivar and M1-4 Olathe elite event, two sampling periods (V4 and R6 stages and ten replicates, cultivated and non-cultivated bacterial cells from rhizosphere soil and bulk soil were obtained, and their total DNA was extracted. The V6-V8 region of 16S rDNA was amplified for the whole bacterial community, and primers specific for the alpha (

  15. A Viable Microbial Community in a Subglacial Volcanic Crater Lake, Iceland

    Science.gov (United States)

    Gaidos, Eric; Lanoil, Brian; Thorsteinsson, Thorsteinn; Graham, Andrew; Skidmore, Mark; Han, Suk-Kyun; Rust, Terri; Popp, Brian

    2004-09-01

    We describe a viable microbial community in a subglacial lake within the Grímsvötn volcanic caldera, Iceland. We used a hot water drill to penetrate the 300-m ice shelf and retrieved lake water and volcanic tephra sediments. We also acquired samples of borehole water before and after penetration to the lake, overlying glacial ice and snow, and water from a nearby subaerial geothermal lake for comparative analyses. Lake water is at the freezing point and fresh (total dissolved solids = 260 mg L-1). Detectable numbers of cells were found in samples of the lake water column and tephra sediments: 2 × 104 ml-1 and 4 × 107 g-1, respectively. Plate counts document abundant cold-adapted cultivable organisms in the lake water, but not in the borehole (before penetration) or glacial ice. Denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene fragments amplified from genomic DNA extracted from Gr??msv??tn samples indicates that the lake community is distinct from the assemblages of organisms in borehole water (before penetration) and the overlying ice and snow. Sequencing of selected DGGE bands revealed that many sequences are highly similar to known psychrophilic organisms or cloned DNA from other cold environments. Significant uptake of 14C-labeled bicarbonate occurred in dark, low-temperature incubations of lake water samples, indicating the presence of autotrophs. Acetylene reduction assays under similar incubation conditions showed no significant nitrogen fixation potential by lake water samples. This may be a consequence of the inhibition of diazotrophy by nitrogen in the lake.

  16. Advances in forensic DNA quantification: a review.

    Science.gov (United States)

    Lee, Steven B; McCord, Bruce; Buel, Eric

    2014-11-01

    This review focuses upon a critical step in forensic biology: detection and quantification of human DNA from biological samples. Determination of the quantity and quality of human DNA extracted from biological evidence is important for several reasons. Firstly, depending on the source and extraction method, the quality (purity and length), and quantity of the resultant DNA extract can vary greatly. This affects the downstream method as the quantity of input DNA and its relative length can determine which genotyping procedure to use-standard short-tandem repeat (STR) typing, mini-STR typing or mitochondrial DNA sequencing. Secondly, because it is important in forensic analysis to preserve as much of the evidence as possible for retesting, it is important to determine the total DNA amount available prior to utilizing any destructive analytical method. Lastly, results from initial quantitative and qualitative evaluations permit a more informed interpretation of downstream analytical results. Newer quantitative techniques involving real-time PCR can reveal the presence of degraded DNA and PCR inhibitors, that provide potential reasons for poor genotyping results and may indicate methods to use for downstream typing success. In general, the more information available, the easier it is to interpret and process the sample resulting in a higher likelihood of successful DNA typing. The history of the development of quantitative methods has involved two main goals-improving precision of the analysis and increasing the information content of the result. This review covers advances in forensic DNA quantification methods and recent developments in RNA quantification. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Research Article: Effects of long-term simulated Martian conditions on a freeze-dried and homogenized bacterial permafrost community

    DEFF Research Database (Denmark)

    Hansen, Aviaja Anna; Jensen, Lars Liengård; Kristoffersen, Tommy

    2009-01-01

    Indigenous bacteria and biomolecules (DNA and proteins) in a freeze-dried and homogenized Arctic permafrost were exposed to simulated martian conditions that correspond to about 80 days on the surface of Mars with respect to the accumulated UV dose. The simulation conditions included UV radiation......, freeze-thaw cycles, the atmospheric gas composition, and pressure. The homogenized permafrost cores were subjected to repeated cycles of UV radiation for 3 h followed by 27 h without irradiation. The effects of the simulation conditions on the concentrations of biomolecules; numbers of viable, dead......, and cultured bacteria; as well as the community structure were determined. Simulated martian conditions resulted in a significant reduction of the concentrations of DNA and amino acids in the uppermost 1.5 mm of the soil core. The total number of bacterial cells was reduced in the upper 9 mm of the soil core...

  18. Development and assessment of microarray-based DNA fingerprinting in Eucalyptus grandis.

    Science.gov (United States)

    Lezar, Sabine; Myburg, A A; Berger, D K; Wingfield, M J; Wingfield, B D

    2004-11-01

    Development of improved Eucalyptus genotypes involves the routine identification of breeding stock and superior clones. Currently, microsatellites and random amplified polymorphic DNA markers are the most widely used DNA-based techniques for fingerprinting of these trees. While these techniques have provided rapid and powerful fingerprinting assays, they are constrained by their reliance on gel or capillary electrophoresis, and therefore, relatively low throughput of fragment analysis. In contrast, recently developed microarray technology holds the promise of parallel analysis of thousands of markers in plant genomes. The aim of this study was to develop a DNA fingerprinting chip for Eucalyptus grandis and to investigate its usefulness for fingerprinting of eucalypt trees. A prototype chip was prepared using a partial genomic library from total genomic DNA of 23 E. grandis trees, of which 22 were full siblings. A total of 384 cloned genomic fragments were individually amplified and arrayed onto glass slides. DNA fingerprints were obtained for 17 individuals by hybridizing labeled genome representations of the individual trees to the 384-element chip. Polymorphic DNA fragments were identified by evaluating the binary distribution of their background-corrected signal intensities across full-sib individuals. Among 384 DNA fragments on the chip, 104 (27%) were found to be polymorphic. Hybridization of these polymorphic fragments was highly repeatable (R2>0.91) within the E. grandis individuals, and they allowed us to identify all 17 full-sib individuals. Our results suggest that DNA microarrays can be used to effectively fingerprint large numbers of closely related Eucalyptus trees.

  19. Effects of ultrasonic pretreatment on quantity and composition of bacterial DNA recovered from granular activated carbon used for drinking water treatment.

    Science.gov (United States)

    Kim, Tae Gwan; Kim, Sun-Hye; Cho, Kyung-Suk

    2014-01-01

    Effects of ultrasonic pretreatment on bacterial DNA recovery from granular activated carbon (GAC) were investigated. GAC (Calgon F400), biologically activated, was sampled from an actual drinking water plant. Different ultrasonic energy densities (0-400 J·cm(-3)) were applied with agitation (250 rpm for 30 min), and recovered bacterial DNA was quantified using quantitative PCR. Energy density was linearly correlated with the concentration of carbon fines produced from GAC during ultrasonication. Ultrasonication alone had no effect on DNA recovery at ≤60 J·cm(-3), but a strongly adverse effect at >67 J·cm(-3) due to the produced carbon fines. Agitation along with ultrasonication strongly enhanced the bacterial DNA recovery when ≤40 J·cm(-3) was applied, although it did not affect the production of carbon fines. Ribosomal tag pyrosequencing was used to compare recovered bacterial communities (0, 20 and 30 J·cm(-3) with or without agitation). Ultrasonication allowed for obtaining a more diverse and richer bacterial community from GAC, compared with the control. Agitation did not show a positive effect on community organization (richness and diversity). Consistently, canonical correspondence analysis indicated that the energy density was associated with the relative abundances of particular bacterial members (P carbon fines as a by-product by ultrasonication interfere with the DNA recovery.

  20. DNA-DNA hybridization determined in micro-wells using covalent attachment of DNA

    DEFF Research Database (Denmark)

    Christensen, H.; Angen, Øystein; Mutters, R.

    2000-01-01

    The present study was aimed at reducing the time and labour used to perform DNA-DNA hybridizations for classification of bacteria at the species level. A micro-well-format DNA hybridization method was developed and validated. DNA extractions were performed by a small-scale method and DNA...... was sheared mechanically into fragments of between 400 and 700 bases. The hybridization conditions were calibrated according to DNA similarities obtained by the spectrophotometric method using strains within the family Pasteurellaceae, Optimal conditions were obtained with 300 ng DNA added per well and bound...... by covalent attachment to NucleoLink. Hybridization was performed with 500 ng DNA, 5% (w/w) of which was labelled with photo-activatable biotin (competitive hybridization) for 2.5 h at 65 degrees C in 2 x SSC followed by stringent washing with 2 x SSC at the same temperature. The criteria for acceptance...

  1. Methylation patterns of repetitive DNA sequences in germ cells of Mus musculus.

    Science.gov (United States)

    Sanford, J; Forrester, L; Chapman, V; Chandley, A; Hastie, N

    1984-03-26

    The major and the minor satellite sequences of Mus musculus were undermethylated in both sperm and oocyte DNAs relative to the amount of undermethylation observed in adult somatic tissue DNA. This hypomethylation was specific for satellite sequences in sperm DNA. Dispersed repetitive and low copy sequences show a high degree of methylation in sperm DNA; however, a dispersed repetitive sequence was undermethylated in oocyte DNA. This finding suggests a difference in the amount of total genomic DNA methylation between sperm and oocyte DNA. The methylation levels of the minor satellite sequences did not change during spermiogenesis, and were not associated with the onset of meiosis or a specific stage in sperm development.

  2. Human β satellite DNA: Genomic organization and sequence definition of a class of highly repetitive tandem DNA

    International Nuclear Information System (INIS)

    Waye, J.S.; Willard, H.F.

    1989-01-01

    The authors describe a class of human repetitive DNA, called β satellite, that, at a most fundamental level, exists as tandem arrays of diverged ∼68-base-pair monomer repeat units. The monomer units are organized as distinct subsets, each characterized by a multimeric higher-order repeat unit that is tandemly reiterated and represents a recent unit of amplification. They have cloned, characterized, and determined the sequence of two β satellite higher-order repeat units: one located on chromosome 9, the other on the acrocentric chromosomes (13, 14, 15, 21, and 22) and perhaps other sites in the genome. Analysis by pulsed-field gel electrophoresis reveals that these tandem arrays are localized in large domains that are marked by restriction fragment length polymorphisms. In total, β-satellite sequences comprise several million base pairs of DNA in the human genome. Analysis of this DNA family should permit insights into the nature of chromosome-specific and nonspecific modes of satellite DNA evolution and provide useful tools for probing the molecular organization and concerted evolution of the acrocentric chromosomes

  3. Adenovirus 36 DNA in human adipose tissue.

    Science.gov (United States)

    Ponterio, E; Cangemi, R; Mariani, S; Casella, G; De Cesare, A; Trovato, F M; Garozzo, A; Gnessi, L

    2015-12-01

    Recent studies have suggested a possible correlation between obesity and adenovirus 36 (Adv36) infection in humans. As information on adenoviral DNA presence in human adipose tissue are limited, we evaluated the presence of Adv36 DNA in adipose tissue of 21 adult overweight or obese patients. Total DNA was extracted from adipose tissue biopsies. Virus detection was performed using PCR protocols with primers against specific Adv36 fiber protein and the viral oncogenic E4orf1 protein nucleotide sequences. Sequences were aligned with the NCBI database and phylogenetic analyses were carried out with MEGA6 software. Adv36 DNA was found in four samples (19%). This study indicates that some individuals carry Adv36 in the visceral adipose tissue. Further studies are needed to determine the specific effect of Adv36 infection on adipocytes, the prevalence of Adv36 infection and its relationship with obesity in the perspective of developing a vaccine that could potentially prevent or mitigate infection.

  4. Influence of Tween 80 on DNA repair in E.Coli B/rT- after gamma irradiation

    International Nuclear Information System (INIS)

    Turanitz, K.; Stehlik, G.; Hammerschmid, F.; Delac, M.

    1974-01-01

    Escherichia coli B/rT - was used to study the effect of Tween 80 (2 hours incubation in 0,002 per cent solution) on the total DNA-repair process after exposure to γ-rays. The mutant E.coli B/rT - was able to repair DNA damages after 2,5 krad ( 60 Co) within 25 minutes in such a way, that this DNA showed no difference in its gradient ultracentrifugation pattern as compared with the control DNA; DNA damages after 23 krad were repaired only to about 80% as compared to the control sample. It was found that even at this low concentration sample Tween 80 reduces the velocity as well as the total amount DNA-repair. After irradiation with 30 krad 60 Co and a repair period of 25 minutes (37 - C, in darkness) radiation damaged DNA in phosphate buffer (M9) was repaired to only 50% in samples preincubated with 0,002 percent Tween 80, as compared to irradiated control samples without Tween 80. (author)

  5. Comparison of bacterial DNA profiles of footwear insoles and soles of feet for the forensic discrimination of footwear owners.

    Science.gov (United States)

    Goga, Haruhisa

    2012-09-01

    It is crucial to identify the owner of unattended footwear left at a crime scene. However, retrieving enough DNA for DNA profiling from the owner's foot skin (plantar skin) cells from inside the footwear is often unsuccessful. This is sometimes because footwear that is used on a daily basis contains an abundance of bacteria that degrade DNA. Further, numerous other factors related to the inside of the shoe, such as high humidity and temperature, can encourage bacterial growth inside the footwear and enhance DNA degradation. This project sought to determine if bacteria from inside footwear could be used for footwear trace evidence. The plantar skins and insoles of shoes of volunteers were swabbed for bacteria, and their bacterial community profiles were compared using bacterial 16S rRNA terminal restriction fragment length polymorphism analysis. Sufficient bacteria were recovered from both footwear insoles and the plantar skins of the volunteers. The profiling identified that each volunteer's plantar skins harbored unique bacterial communities, as did the individuals' footwear insoles. In most cases, a significant similarity in the bacterial community was identified for the matched foot/insole swabs from each volunteer, as compared with those profiles from different volunteers. These observations indicate the probability to discriminate the owner of footwear by comparing the microbial DNA fingerprint from inside footwear with that of the skin from the soles of the feet of the suspected owner. This novel strategy will offer auxiliary forensic footwear evidence for human DNA identification, although further investigations into this technique are required.

  6. A comparative study of microbial diversity and community structure in marine sediments using poly(A tailing and reverse transcription PCR

    Directory of Open Access Journals (Sweden)

    Tatsuhiko eHoshino

    2013-06-01

    Full Text Available To obtain a better understanding of metabolically active microbial communities, we tested a molecular ecological approach using poly(A tailing of environmental 16S rRNA, followed by full-length complementary DNA (cDNA synthesis and sequencing to eliminate potential biases caused by mismatching of PCR primer sequences. The RNA pool tested was extracted from marine sediments of the Yonaguni Knoll IV hydrothermal field in the southern Okinawa Trough. The sequences obtained using the ploy(A tailing method were compared statistically and phylogenetically with those obtained using conventional reverse transcription-polymerase chain reaction (RT-PCR with published domain-specific primers. Both methods indicated that Deltaproteobacteria are predominant in sediment (>85% of the total sequence read. The poly(A tailing method indicated that Desulfobacterales were the predominant deltaproteobacteria, while most of the sequences in libraries constructed using RT-PCR were derived from Desulfuromonadales. This discrepancy may have been due to low coverage of Desulfobacterales by the primers used. A comparison of library diversity indices indicated that the poly(A tailing method retrieves more phylogenetically diverse sequences from the environment. The four archaeal 16S rRNA sequences that were obtained using the poly(A tailing method formed deeply branching lineages that were related to Candidatus Parvarchaeum and the Ancient Archaeal Group. These results clearly demonstrate that poly(A tailing followed by cDNA sequencing is a powerful and less biased molecular ecological approach for the study of metabolically active microbial communities.

  7. Extracellular DNA facilitates the formation of functional amyloids in Staphylococcus aureus biofilms.

    Science.gov (United States)

    Schwartz, Kelly; Ganesan, Mahesh; Payne, David E; Solomon, Michael J; Boles, Blaise R

    2016-01-01

    Persistent staphylococcal infections often involve surface-associated communities called biofilms. Staphylococcus aureus biofilm development is mediated by the co-ordinated production of the biofilm matrix, which can be composed of polysaccharides, extracellular DNA (eDNA) and proteins including amyloid fibers. The nature of the interactions between matrix components, and how these interactions contribute to the formation of matrix, remain unclear. Here we show that the presence of eDNA in S. aureus biofilms promotes the formation of amyloid fibers. Conditions or mutants that do not generate eDNA result in lack of amyloids during biofilm growth despite the amyloidogeneic subunits, phenol soluble modulin peptides, being produced. In vitro studies revealed that the presence of DNA promotes amyloid formation by PSM peptides. Thus, this work exposes a previously unacknowledged interaction between biofilm matrix components that furthers our understanding of functional amyloid formation and S. aureus biofilm biology. © 2015 The Authors. Molecular Microbiology published by John Wiley & Sons Ltd.

  8. Combining bleach and mild predigestion improves ancient DNA recovery from bones

    DEFF Research Database (Denmark)

    Boessenkool, Sanne; Hanghøj, Kristian Ebbesen; Nistelberger, Heidi M.

    2017-01-01

    library characteristics, such as DNA damage profiles or the composition of microbial communities, are little affected by the pre-extraction protocols. Application of the combined protocol presented in this study will facilitate the genetic analysis of an increasing number of ancient remains...... aimed to improve ancient DNA recovery before library amplification have recently been developed. Here, we test the effects of combining two of such protocols, a bleach wash and a predigestion step, on 12 bone samples of Atlantic cod and domestic horse aged 750-1350 cal. years before present. Using high...

  9. Adelie penguin population diet monitoring by analysis of food DNA in scats.

    Directory of Open Access Journals (Sweden)

    Simon N Jarman

    Full Text Available The Adélie penguin is the most important animal currently used for ecosystem monitoring in the Southern Ocean. The diet of this species is generally studied by visual analysis of stomach contents; or ratios of isotopes of carbon and nitrogen incorporated into the penguin from its food. There are significant limitations to the information that can be gained from these methods. We evaluated population diet assessment by analysis of food DNA in scats as an alternative method for ecosystem monitoring with Adélie penguins as an indicator species. Scats were collected at four locations, three phases of the breeding cycle, and in four different years. A novel molecular diet assay and bioinformatics pipeline based on nuclear small subunit ribosomal RNA gene (SSU rDNA sequencing was used to identify prey DNA in 389 scats. Analysis of the twelve population sample sets identified spatial and temporal dietary change in Adélie penguin population diet. Prey diversity was found to be greater than previously thought. Krill, fish, copepods and amphipods were the most important food groups, in general agreement with other Adélie penguin dietary studies based on hard part or stable isotope analysis. However, our DNA analysis estimated that a substantial portion of the diet was gelatinous groups such as jellyfish and comb jellies. A range of other prey not previously identified in the diet of this species were also discovered. The diverse prey identified by this DNA-based scat analysis confirms that the generalist feeding of Adélie penguins makes them a useful indicator species for prey community composition in the coastal zone of the Southern Ocean. Scat collection is a simple and non-invasive field sampling method that allows DNA-based estimation of prey community differences at many temporal and spatial scales and provides significant advantages over alternative diet analysis approaches.

  10. Mitochondrial DNA differentiates Alzheimer's disease from Creutzfeldt-Jakob disease.

    Science.gov (United States)

    Podlesniy, Petar; Llorens, Franc; Golanska, Ewa; Sikorska, Beata; Liberski, Pawel; Zerr, Inga; Trullas, Ramon

    2016-05-01

    Low content of cell-free mitochondrial DNA (mtDNA) in cerebrospinal fluid (CSF) is a biomarker of early stage Alzheimer's disease (AD), but whether mtDNA is altered in a rapid neurodegenerative dementia such as Creutzfeldt-Jakob disease is unknown. CSF mtDNA was measured using digital polymerase chain reaction (dPCR) in two independent cohorts comprising a total of 112 patients diagnosed with sporadic Creutzfeldt-Jakob disease (sCJD), probable AD, or non-Alzheimer's type dementia. Patients with AD exhibit low mtDNA content in CSF compared with patients diagnosed with sCJD or with non-Alzheimer's type dementias. The CSF concentration of mtDNA does not correlate with Aβ, t-tau, p-tau, and 14-3-3 protein levels in CSF. Low-CSF mtDNA is not a consequence of brain damage and allows the differential diagnosis of AD from sCJD and other dementias. These results support the hypothesis that mtDNA in CSF is a pathophysiological biomarker of AD. Copyright © 2015 Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  11. Recent research in DNA repair, mutation and recombination: a report of the DNA Repair Network meeting, held at City University, London on 18 December 1995.

    Science.gov (United States)

    Jones, N J; Strike, P

    1996-09-02

    The now traditional one day Christmas DNA Repair meeting was held at City University, London for the third year in succession. With over 130 participants and a programme consisting of a total of 24 pre-offered presentations the meeting reached record dimensions. Attendees were from 24 institutions throughout the United Kingdom, and with several distinct research groups contained within the large contingents from the ICRF Clare Hall Laboratories and the MRC Cell Mutation Unit in Brighton, this indicates the increasing interest and depth of UK research in DNA repair. One slight disappointment of the meeting was the fall in the numbers of non-UK participants. Although the meeting in 1994 (Strike, 1995) saw an increase in presentations from Continental Europe (six countries including France, Germany. The Netherlands and Switzerland), the trend did not continue this year, with only Denmark being represented. The 24 contributors consisted of approximately equal numbers of postgraduate students, postdoctoral researchers and more "established' scientists reflecting the continuing policy of encouraging younger members of the repair community to present their work. The mix of presenters was particularly well illustrated by two excellent and consecutive talks by Professor Bryn Bridges (MRC Cell Mutation Unit) and Alison Mitchell, a postgraduate student in Stephen West's laboratory (ICRF, Clare Hall). The organisms under study were as equally disparate and included Archaebacteria, Escherichia coli. Saccharomyces cerevisiae, Schizosaccharomyces pombe, Aspergillus, mice and men. The range of topics was also varied and included bacterial mutagenesis, NMR studies of Ada protein, preferential DNA repair, cell cycle checkpoint genes, reconstitution of nucleotide excision repair and V(D)J recombination in vitro, creation of repair deficient transgenic mice and mismatch defects in human cells. The result was a very successful meeting which was characterized by the consistently high

  12. Mitochondrial DNA mutation screening of male patients with obstructive sleep apnea-hypopnea syndrome.

    Science.gov (United States)

    Huang, Xiao-Ying; Li, Hong; Xu, Xiao-Mei; Wang, Liang-Xing

    2014-08-01

    The aim of the present study was to analyze the differences between the genes of the mitochondrial DNA (mtDNA) displacement loop (D-loop) region and the Cambridge Reference sequence, in order to screen the mutation sites and investigate the correlation between mutations, clinical parameters and complications associated with obstructive sleep apnea-hypopnea syndrome (OSAHS). mtDNA was obtained from male patients with OSAHS in the Zhejiang Province. In total, 60 male patients with OSAHS and 102 healthy adults were assessed to determine the levels of fasting blood glucose, total cholesterol, triglyceride (TG) and high-density and low-density lipoproteins (LDL). Furthermore, peripheral mtDNA was extracted and bidirectional sequencing was conducted to enable mutation screening. In the mtDNA D-loop region, 178 mutation sites were identified, of which 115 sites were present in the two groups. The number of non-common sites in the OSAHS group was significantly higher compared with the control group (P0.05). A total of 21 cases in the severe OSAHS group exhibited mutation rates of >10%. In the control group, there were 24 cases where the np73A-G and np263A-G mutations were predominant. The np303-np315 region was identified to be the highly variable region and various mutation forms were observed. Statistically significant differences were observed in the neck perimeter, TG and LDL levels among the OSAHS-no-mutation subgroups (P<0.05) and LDL was shown to be associated with an mtDNA mutation in the OSAHS group. Numerous polymorphic mutation sites were identified in the mtDNA D-loop region of the OSAHS group. Therefore, mtDNA mutation sites may be closely associated with the clinical manifestations and complications of OSAHS.

  13. Open-source, community-driven microfluidics with Metafluidics.

    Science.gov (United States)

    Kong, David S; Thorsen, Todd A; Babb, Jonathan; Wick, Scott T; Gam, Jeremy J; Weiss, Ron; Carr, Peter A

    2017-06-07

    Microfluidic devices have the potential to automate and miniaturize biological experiments, but open-source sharing of device designs has lagged behind sharing of other resources such as software. Synthetic biologists have used microfluidics for DNA assembly, cell-free expression, and cell culture, but a combination of expense, device complexity, and reliance on custom set-ups hampers their widespread adoption. We present Metafluidics, an open-source, community-driven repository that hosts digital design files, assembly specifications, and open-source software to enable users to build, configure, and operate a microfluidic device. We use Metafluidics to share designs and fabrication instructions for both a microfluidic ring-mixer device and a 32-channel tabletop microfluidic controller. This device and controller are applied to build genetic circuits using standard DNA assembly methods including ligation, Gateway, Gibson, and Golden Gate. Metafluidics is intended to enable a broad community of engineers, DIY enthusiasts, and other nontraditional participants with limited fabrication skills to contribute to microfluidic research.

  14. Freezing fecal samples prior to DNA extraction affects the Firmicutes to Bacteroidetes ratio determined by downstream quantitative PCR analysis

    DEFF Research Database (Denmark)

    Bahl, Martin Iain; Bergström, Anders; Licht, Tine Rask

    2012-01-01

    Freezing stool samples prior to DNA extraction and downstream analysis is widely used in metagenomic studies of the human microbiota but may affect the inferred community composition. In this study, DNA was extracted either directly or following freeze storage of three homogenized human fecal...

  15. Freezing fecal samples prior to DNA extraction affects the Firmicutes to Bacteroidetes ratio determined by downstream quantitative PCR analysis

    DEFF Research Database (Denmark)

    Bahl, Martin Iain; Bergström, Anders; Licht, Tine Rask

    Freezing stool samples prior to DNA extraction and downstream analysis is widely used in metagenomic studies of the human microbiota but may affect the inferred community composition. In this study DNA was extracted either directly or following freeze storage of three homogenized human fecal...

  16. Incidence of genome structure, DNA asymmetry, and cell physiology on T-DNA integration in chromosomes of the phytopathogenic fungus Leptosphaeria maculans.

    Science.gov (United States)

    Bourras, Salim; Meyer, Michel; Grandaubert, Jonathan; Lapalu, Nicolas; Fudal, Isabelle; Linglin, Juliette; Ollivier, Benedicte; Blaise, Françoise; Balesdent, Marie-Hélène; Rouxel, Thierry

    2012-08-01

    The ever-increasing generation of sequence data is accompanied by unsatisfactory functional annotation, and complex genomes, such as those of plants and filamentous fungi, show a large number of genes with no predicted or known function. For functional annotation of unknown or hypothetical genes, the production of collections of mutants using Agrobacterium tumefaciens-mediated transformation (ATMT) associated with genotyping and phenotyping has gained wide acceptance. ATMT is also widely used to identify pathogenicity determinants in pathogenic fungi. A systematic analysis of T-DNA borders was performed in an ATMT-mutagenized collection of the phytopathogenic fungus Leptosphaeria maculans to evaluate the features of T-DNA integration in its particular transposable element-rich compartmentalized genome. A total of 318 T-DNA tags were recovered and analyzed for biases in chromosome and genic compartments, existence of CG/AT skews at the insertion site, and occurrence of microhomologies between the T-DNA left border (LB) and the target sequence. Functional annotation of targeted genes was done using the Gene Ontology annotation. The T-DNA integration mainly targeted gene-rich, transcriptionally active regions, and it favored biological processes consistent with the physiological status of a germinating spore. T-DNA integration was strongly biased toward regulatory regions, and mainly promoters. Consistent with the T-DNA intranuclear-targeting model, the density of T-DNA insertion correlated with CG skew near the transcription initiation site. The existence of microhomologies between promoter sequences and the T-DNA LB flanking sequence was also consistent with T-DNA integration to host DNA mediated by homologous recombination based on the microhomology-mediated end-joining pathway.

  17. A comparison of stable-isotope probing of DNA and phospholipid fatty acids to study prokaryotic functional diversity in sulfate-reducing marine sediment enrichment slurries.

    Science.gov (United States)

    Webster, Gordon; Watt, Lynsey C; Rinna, Joachim; Fry, John C; Evershed, Richard P; Parkes, R John; Weightman, Andrew J

    2006-09-01

    Marine sediment slurries enriched for anaerobic, sulfate-reducing prokaryotic communities utilizing glucose and acetate were used to provide the first comparison between stable-isotope probing (SIP) of phospholipid fatty acids (PLFA) and DNA (16S rRNA and dsrA genes) biomarkers. Different 13C-labelled substrates (glucose, acetate and pyruvate) at low concentrations (100 microM) were used over a 7-day incubation to follow and identify carbon flow into different members of the community. Limited changes in total PLFA and bacterial 16S rRNA gene DGGE profiles over 7 days suggested the presence of a stable bacterial community. A broad range of PLFA were rapidly labelled (within 12 h) in the 13C-glucose slurry but this changed with time, suggesting the presence of an active glucose-utilizing population and later development of another population able to utilize glucose metabolites. The identity of the major glucose-utilizers was unclear as 13C-enriched PLFA were common (16:0, 16:1, 18:1omega7, highest incorporation) and there was little difference between 12C- and 13C-DNA 16S rRNA gene denaturing gradient gel electrophoresis (DGGE) profiles. Seemingly glucose, a readily utilizable substrate, resulted in widespread incorporation consistent with the higher extent of 13C-incorporation (approximately 10 times) into PLFA compared with 13C-acetate or 13C-pyruvate. 13C-PLFA in the 13C-acetate and 13C-pyruvate slurries were similar to each other and to those that developed in the 13C-glucose slurry after 4 days. These were more diagnostic, with branched odd-chain fatty acids (i15:0, a15:0 and 15:1omega6) possibly indicating the presence of Desulfococcus or Desulfosarcina sulfate-reducing bacteria (SRB) and sequences related to these SRB were in the 13C-acetate-DNA dsrA gene library. The 13C-acetate-DNA 16S rRNA gene library also contained sequences closely related to SRB, but these were the acetate-utilizing Desulfobacter sp., as well as a broad range of uncultured Bacteria. In

  18. Boom clay pore water, home of a diverse microbial community

    International Nuclear Information System (INIS)

    Wouters, Katinka; Moors, Hugo; Leys, Natalie

    2012-01-01

    Document available in extended abstract form only. Boom Clay pore water (BCPW) has been studied in the framework of geological disposal of nuclear waste for over two decades, thereby mainly addressing its geochemical properties. A reference composition for synthetic clay water has been derived earlier by modelling and spatial calibration efforts, mainly based on interstitial water sampled from different layers within the Boom clay. However, since microbial activity is found in a range of extreme circumstances, the possibility of microbes interacting with future radioactive waste in a host formation like Boom Clay, cannot be ignored. In this respect, BCPW was sampled from different Boom Clay layers using the Morpheus piezometer and subsequently analysed by a complementary set of microbiological and molecular techniques, in search for overall shared and abundant microorganisms. Similar to the previous characterization of the 'average' BCPW chemical composition, the primary aim of this microbiological study is to determine a representative BCPW microbial community which can be used in laboratory studies. Secondly, the in situ activity and the metabolic properties of members of this community were addressed, aiming to assess their survival and proliferation chances in repository conditions. In a first approach, total microbial DNA of the community was extracted from the BCPW samples. This molecular approach allows a broad insight in the total microbial ecology of the BCPW samples. By polymerase chain reaction (PCR) on the highly conserved 16S rRNA genes in this DNA pool and subsequent sequencing and bio-informatics analysis, operational taxonomic units (OTUs) could be assigned to the microbial community. The bacterial community was found to be quite diverse, with OTUs belonging to 8 different phyla (Proteobacteria, Actinobacteria, Firmicutes, Bacteroidetes, Chlorobi, Spirochetes, Chloroflexi and Deinococcus-Thermus). These results provide an overall view of the

  19. Boom clay pore water, home of a diverse microbial community

    Energy Technology Data Exchange (ETDEWEB)

    Wouters, Katinka; Moors, Hugo; Leys, Natalie [SCK.CEN, Environment, Health and Safety Institute, B-2400 Mol (Belgium)

    2012-10-15

    Document available in extended abstract form only. Boom Clay pore water (BCPW) has been studied in the framework of geological disposal of nuclear waste for over two decades, thereby mainly addressing its geochemical properties. A reference composition for synthetic clay water has been derived earlier by modelling and spatial calibration efforts, mainly based on interstitial water sampled from different layers within the Boom clay. However, since microbial activity is found in a range of extreme circumstances, the possibility of microbes interacting with future radioactive waste in a host formation like Boom Clay, cannot be ignored. In this respect, BCPW was sampled from different Boom Clay layers using the Morpheus piezometer and subsequently analysed by a complementary set of microbiological and molecular techniques, in search for overall shared and abundant microorganisms. Similar to the previous characterization of the 'average' BCPW chemical composition, the primary aim of this microbiological study is to determine a representative BCPW microbial community which can be used in laboratory studies. Secondly, the in situ activity and the metabolic properties of members of this community were addressed, aiming to assess their survival and proliferation chances in repository conditions. In a first approach, total microbial DNA of the community was extracted from the BCPW samples. This molecular approach allows a broad insight in the total microbial ecology of the BCPW samples. By polymerase chain reaction (PCR) on the highly conserved 16S rRNA genes in this DNA pool and subsequent sequencing and bio-informatics analysis, operational taxonomic units (OTUs) could be assigned to the microbial community. The bacterial community was found to be quite diverse, with OTUs belonging to 8 different phyla (Proteobacteria, Actinobacteria, Firmicutes, Bacteroidetes, Chlorobi, Spirochetes, Chloroflexi and Deinococcus-Thermus). These results provide an overall view of the

  20. Beyond DNA repair: DNA-PK function in cancer

    OpenAIRE

    Goodwin, Jonathan F.; Knudsen, Karen E.

    2014-01-01

    The DNA-dependent protein kinase (DNA-PK) is a pivotal component of the DNA repair machinery that governs the response to DNA damage, serving to maintain genome integrity. However, the DNA-PK kinase component was initially isolated with transcriptional complexes, and recent findings have illuminated the impact of DNA-PK-mediated transcriptional regulation on tumor progression and therapeutic response. DNA-PK expression has also been correlated with poor outcome in selected tumor types, furthe...

  1. DNA replication stress restricts ribosomal DNA copy number.

    Science.gov (United States)

    Salim, Devika; Bradford, William D; Freeland, Amy; Cady, Gillian; Wang, Jianmin; Pruitt, Steven C; Gerton, Jennifer L

    2017-09-01

    Ribosomal RNAs (rRNAs) in budding yeast are encoded by ~100-200 repeats of a 9.1kb sequence arranged in tandem on chromosome XII, the ribosomal DNA (rDNA) locus. Copy number of rDNA repeat units in eukaryotic cells is maintained far in excess of the requirement for ribosome biogenesis. Despite the importance of the repeats for both ribosomal and non-ribosomal functions, it is currently not known how "normal" copy number is determined or maintained. To identify essential genes involved in the maintenance of rDNA copy number, we developed a droplet digital PCR based assay to measure rDNA copy number in yeast and used it to screen a yeast conditional temperature-sensitive mutant collection of essential genes. Our screen revealed that low rDNA copy number is associated with compromised DNA replication. Further, subculturing yeast under two separate conditions of DNA replication stress selected for a contraction of the rDNA array independent of the replication fork blocking protein, Fob1. Interestingly, cells with a contracted array grew better than their counterparts with normal copy number under conditions of DNA replication stress. Our data indicate that DNA replication stresses select for a smaller rDNA array. We speculate that this liberates scarce replication factors for use by the rest of the genome, which in turn helps cells complete DNA replication and continue to propagate. Interestingly, tumors from mini chromosome maintenance 2 (MCM2)-deficient mice also show a loss of rDNA repeats. Our data suggest that a reduction in rDNA copy number may indicate a history of DNA replication stress, and that rDNA array size could serve as a diagnostic marker for replication stress. Taken together, these data begin to suggest the selective pressures that combine to yield a "normal" rDNA copy number.

  2. DNA replication stress restricts ribosomal DNA copy number

    Science.gov (United States)

    Salim, Devika; Bradford, William D.; Freeland, Amy; Cady, Gillian; Wang, Jianmin

    2017-01-01

    Ribosomal RNAs (rRNAs) in budding yeast are encoded by ~100–200 repeats of a 9.1kb sequence arranged in tandem on chromosome XII, the ribosomal DNA (rDNA) locus. Copy number of rDNA repeat units in eukaryotic cells is maintained far in excess of the requirement for ribosome biogenesis. Despite the importance of the repeats for both ribosomal and non-ribosomal functions, it is currently not known how “normal” copy number is determined or maintained. To identify essential genes involved in the maintenance of rDNA copy number, we developed a droplet digital PCR based assay to measure rDNA copy number in yeast and used it to screen a yeast conditional temperature-sensitive mutant collection of essential genes. Our screen revealed that low rDNA copy number is associated with compromised DNA replication. Further, subculturing yeast under two separate conditions of DNA replication stress selected for a contraction of the rDNA array independent of the replication fork blocking protein, Fob1. Interestingly, cells with a contracted array grew better than their counterparts with normal copy number under conditions of DNA replication stress. Our data indicate that DNA replication stresses select for a smaller rDNA array. We speculate that this liberates scarce replication factors for use by the rest of the genome, which in turn helps cells complete DNA replication and continue to propagate. Interestingly, tumors from mini chromosome maintenance 2 (MCM2)-deficient mice also show a loss of rDNA repeats. Our data suggest that a reduction in rDNA copy number may indicate a history of DNA replication stress, and that rDNA array size could serve as a diagnostic marker for replication stress. Taken together, these data begin to suggest the selective pressures that combine to yield a “normal” rDNA copy number. PMID:28915237

  3. DNA replication stress restricts ribosomal DNA copy number.

    Directory of Open Access Journals (Sweden)

    Devika Salim

    2017-09-01

    Full Text Available Ribosomal RNAs (rRNAs in budding yeast are encoded by ~100-200 repeats of a 9.1kb sequence arranged in tandem on chromosome XII, the ribosomal DNA (rDNA locus. Copy number of rDNA repeat units in eukaryotic cells is maintained far in excess of the requirement for ribosome biogenesis. Despite the importance of the repeats for both ribosomal and non-ribosomal functions, it is currently not known how "normal" copy number is determined or maintained. To identify essential genes involved in the maintenance of rDNA copy number, we developed a droplet digital PCR based assay to measure rDNA copy number in yeast and used it to screen a yeast conditional temperature-sensitive mutant collection of essential genes. Our screen revealed that low rDNA copy number is associated with compromised DNA replication. Further, subculturing yeast under two separate conditions of DNA replication stress selected for a contraction of the rDNA array independent of the replication fork blocking protein, Fob1. Interestingly, cells with a contracted array grew better than their counterparts with normal copy number under conditions of DNA replication stress. Our data indicate that DNA replication stresses select for a smaller rDNA array. We speculate that this liberates scarce replication factors for use by the rest of the genome, which in turn helps cells complete DNA replication and continue to propagate. Interestingly, tumors from mini chromosome maintenance 2 (MCM2-deficient mice also show a loss of rDNA repeats. Our data suggest that a reduction in rDNA copy number may indicate a history of DNA replication stress, and that rDNA array size could serve as a diagnostic marker for replication stress. Taken together, these data begin to suggest the selective pressures that combine to yield a "normal" rDNA copy number.

  4. DNA-based stable isotope probing: a link between community structure and function

    Czech Academy of Sciences Publication Activity Database

    Uhlík, Ondřej; Ječná, K.; Leigh, M. B.; Macková, Martina; Macek, Tomáš

    2009-01-01

    Roč. 407, č. 12 (2009), s. 3611-3619 ISSN 0048-9697 Grant - others:GA MŠk(CZ) 2B08031 Program:2B Institutional research plan: CEZ:AV0Z40550506 Keywords : DNA-based stable isotope probing * microbial diversity * bioremediation Subject RIV: EI - Biotechnology ; Bionics Impact factor: 2.905, year: 2009

  5. DNA analysis of hair and scat collected along snow tracks to document the presence of Canada Lynx.

    Science.gov (United States)

    Kevin S. McKelvey; Jeffrey von Kienast; Keith B. Aubry; Gary M. Koehler; Bejamin T. Maletzke; John R. Squires; Edward L. Lindquist; Steve Loch; Michael K. Schwartz

    2006-01-01

    Snow tracking is often used to inventory carnivore communities, but species identification using this method can produce ambiguous and misleading results. DNA can be extracted from hair and scat samples collected from tracks made in snow. Using DNA analysis could allow positive track identification across a broad range of snow conditions, thus increasing survey...

  6. DNA Origami-Graphene Hybrid Nanopore for DNA Detection.

    Science.gov (United States)

    Barati Farimani, Amir; Dibaeinia, Payam; Aluru, Narayana R

    2017-01-11

    DNA origami nanostructures can be used to functionalize solid-state nanopores for single molecule studies. In this study, we characterized a nanopore in a DNA origami-graphene heterostructure for DNA detection. The DNA origami nanopore is functionalized with a specific nucleotide type at the edge of the pore. Using extensive molecular dynamics (MD) simulations, we computed and analyzed the ionic conductivity of nanopores in heterostructures carpeted with one or two layers of DNA origami on graphene. We demonstrate that a nanopore in DNA origami-graphene gives rise to distinguishable dwell times for the four DNA base types, whereas for a nanopore in bare graphene, the dwell time is almost the same for all types of bases. The specific interactions (hydrogen bonds) between DNA origami and the translocating DNA strand yield different residence times and ionic currents. We also conclude that the speed of DNA translocation decreases due to the friction between the dangling bases at the pore mouth and the sequencing DNA strands.

  7. Planktonic foraminifera-derived environmental DNA extracted from abyssal sediments preserves patterns of plankton macroecology

    Directory of Open Access Journals (Sweden)

    R. Morard

    2017-06-01

    Full Text Available Deep-sea sediments constitute a unique archive of ocean change, fueled by a permanent rain of mineral and organic remains from the surface ocean. Until now, paleo-ecological analyses of this archive have been mostly based on information from taxa leaving fossils. In theory, environmental DNA (eDNA in the sediment has the potential to provide information on non-fossilized taxa, allowing more comprehensive interpretations of the fossil record. Yet, the process controlling the transport and deposition of eDNA onto the sediment and the extent to which it preserves the features of past oceanic biota remains unknown. Planktonic foraminifera are the ideal taxa to allow an assessment of the eDNA signal modification during deposition because their fossils are well preserved in the sediment and their morphological taxonomy is documented by DNA barcodes. Specifically, we re-analyze foraminiferal-specific metabarcodes from 31 deep-sea sediment samples, which were shown to contain a small fraction of sequences from planktonic foraminifera. We confirm that the largest portion of the metabarcode originates from benthic bottom-dwelling foraminifera, representing the in situ community, but a small portion (< 10 % of the metabarcodes can be unambiguously assigned to planktonic taxa. These organisms live exclusively in the surface ocean and the recovered barcodes thus represent an allochthonous component deposited with the rain of organic remains from the surface ocean. We take advantage of the planktonic foraminifera portion of the metabarcodes to establish to what extent the structure of the surface ocean biota is preserved in sedimentary eDNA. We show that planktonic foraminifera DNA is preserved in a range of marine sediment types, the composition of the recovered eDNA metabarcode is replicable and that both the similarity structure and the diversity pattern are preserved. Our results suggest that sedimentary eDNA could preserve the ecological structure of

  8. Construction of full-length cDNA library of white flower Salvia ...

    African Journals Online (AJOL)

    In order to screen and isolate secondary metabolite biosynthesis related gene, we construct a cDNA library of white flower Salvia miltiorrhiza bge. f.alba. High quality of total RNA was successfully isolated from roots of white flower S. miltiorrhiza using modified CTAB method. Double strand cDNA was cloned into pDNR-LIB ...

  9. Microbial Community Dynamics from Permafrost Across the Pleistocene-Holocene Boundary and Response to Abrupt Climate Change

    Science.gov (United States)

    Hammad, A.; Mahony, M.; Froese, D. G.; Lanoil, B. D.

    2014-12-01

    Earth is currently undergoing rapid warming similar to that observed about 10,000 years ago at the end of the Pleistocene. We know a considerable amount about the adaptations and extinctions of mammals and plants at the Pleistocene/Holocene (P/H) boundary, but relatively little about changes at the microbial level. Due to permafrost soils' freezing anoxic conditions, they act as microbial diversity archives allowing us to determine how microbial communities adapted to the abrupt warming at the end of P. Since microbial community composition only helps differentiate viable and extant microorganisms in frozen permafrost, microbial activity in thawing permafrost must be investigated to provide a clear understanding of microbial response to climate change. Current increased temperatures will result in warming and potential thaw of permafrost and release of stored organic carbon, freeing it for microbial utilization; turning permafrost into a carbon source. Studying permafrost viable microbial communities' diversity and activity will provide a better understanding of how these microorganisms respond to soil edaphic variability due to climate change across the P/H boundary, providing insight into the changes that the soil community is currently undergoing in this modern era of rapid climate change. Modern soil, H and P permafrost cores were collected from Lucky Lady II site outside Dawson City, Yukon. 16S rRNA high throughput sequencing of permafrost DNA showed the same trends for total and viable community richness and diversity with both decreasing with permafrost depth and only the richness increasing in mid and early P. The modern, H and P soils had 50.9, 33.9, and 27.3% unique viable species and only 14% of the total number of viable species were shared by all soils. Gas flux measurements of thawed permafrost showed metabolic activity in modern and permafrost soils, aerobic CH­­4 consumption in modern, some H and P soils, and anaerobic CH­­4 production in one H

  10. A “Rosetta Stone” for metazoan zooplankton: DNA barcode analysis of species diversity of the Sargasso Sea (Northwest Atlantic Ocean)

    Science.gov (United States)

    Bucklin, Ann; Ortman, Brian D.; Jennings, Robert M.; Nigro, Lisa M.; Sweetman, Christopher J.; Copley, Nancy J.; Sutton, Tracey; Wiebe, Peter H.

    2010-12-01

    Species diversity of the metazoan holozooplankton assemblage of the Sargasso Sea, Northwest Atlantic Ocean, was examined through coordinated morphological taxonomic identification of species and DNA sequencing of a ˜650 base-pair region of mitochondrial cytochrome oxidase I (mtCOI) as a DNA barcode (i.e., short sequence for species recognition and discrimination). Zooplankton collections were made from the surface to 5,000 meters during April, 2006 on the R/V R.H. Brown. Samples were examined by a ship-board team of morphological taxonomists; DNA barcoding was carried out in both ship-board and land-based DNA sequencing laboratories. DNA barcodes were determined for a total of 297 individuals of 175 holozooplankton species in four phyla, including: Cnidaria (Hydromedusae, 4 species; Siphonophora, 47); Arthropoda (Amphipoda, 10; Copepoda, 34; Decapoda, 9; Euphausiacea, 10; Mysidacea, 1; Ostracoda, 27); and Mollusca (Cephalopoda, 8; Heteropoda, 6; Pteropoda, 15); and Chaetognatha (4). Thirty species of fish (Teleostei) were also barcoded. For all seven zooplankton groups for which sufficient data were available, Kimura-2-Parameter genetic distances were significantly lower between individuals of the same species (mean=0.0114; S.D. 0.0117) than between individuals of different species within the same group (mean=0.3166; S.D. 0.0378). This difference, known as the barcode gap, ensures that mtCOI sequences are reliable characters for species identification for the oceanic holozooplankton assemblage. In addition, DNA barcodes allow recognition of new or undescribed species, reveal cryptic species within known taxa, and inform phylogeographic and population genetic studies of geographic variation. The growing database of "gold standard" DNA barcodes serves as a Rosetta Stone for marine zooplankton, providing the key for decoding species diversity by linking species names, morphology, and DNA sequence variation. In light of the pivotal position of zooplankton in ocean

  11. Is there a similarity between DNA damage in adults with chronic alcoholism and community-dwelling healthy older adults?

    Science.gov (United States)

    Retana-Ugalde, Raquel; Altamirano-Lozano, Mario; Mendoza-Núñez, Víctor Manuel

    2007-01-01

    Daily alcohol consumption and ageing have been linked with DNA damage, leading to the hypothesis that chronic alcoholism causes DNA damage similar to that which occurs with ageing. Likewise, it has been suggested that chronic alcoholism is the cause of accelerated or premature ageing. The objective of this study was to evaluate the frequency and magnitude of DNA damage among adults with chronic alcoholism and healthy older adults residing in Mexico City. A cross-sectional and comparative study was carried out in a sample of 53 chronic alcoholics of 25-44 years of age (without alcohol ingestion in the past 30 days) without additional diseases, 26 healthy subjects >or=60 years of age, and 25 healthy adults of 25-44 years of age without alcohol addiction, all residents of Mexico City during the past 10 years. DNA damage was evaluated by single-cell gel electrophoresis technique (Comet assay). Our results showed a similar percentage of DNA damage between healthy elderly subjects and chronic alcoholics (62 vs 55%, P >0.05), although average DNA migration was greater in alcoholics than in the elderly (78.1 +/- 33.2 vs 58.6 +/- 26.2, P = 0.09). However, the percentage of subjects with more than six damaged cells was higher in the older adults subjects group than in the group chronic alcoholics (19 vs 35%, P = 0.16). Data suggest that DNA damage is not similar in young subjects with chronic alcoholism that which occurs with ageing.

  12. Detection of anthrax lef with DNA-based photonic crystal sensors

    Science.gov (United States)

    Zhang, Bailin; Dallo, Shatha; Peterson, Ralph; Hussain, Syed; Weitao, Tao; Ye, Jing Yong

    2011-12-01

    Bacillus anthracis has posed a threat of becoming biological weapons of mass destruction due to its virulence factors encoded by the plasmid-borne genes, such as lef for lethal factor. We report the development of a fast and sensitive anthrax DNA biosensor based on a photonic crystal structure used in a total-internal-reflection configuration. For the detection of the lef gene, a single-stranded DNA lef probe was biotinylated and immobilized onto the sensor via biotin-streptavidin interactions. A positive control, lef-com, was the complementary strand of the probe, while a negative control was an unrelated single-stranded DNA fragment from the 16S rRNA gene of Acinetobacter baumannii. After addition of the biotinylated lef probe onto the sensor, significant changes in the resonance wavelength of the sensor were observed, resulting from binding of the probe to streptavidin on the sensor. The addition of lef-com led to another significant increase as a result of hybridization between the two DNA strands. The detection sensitivity for the target DNA reached as low as 0.1 nM. In contrast, adding the unrelated DNAs did not cause an obvious shift in the resonant wavelength. These results demonstrate that detection of the anthrax lef by the photonic crystal structure in a total-internal-reflection sensor is highly specific and sensitive.

  13. Time related total lactic acid bacteria population diversity and ...

    African Journals Online (AJOL)

    The total lactic acid bacterial community involved in the spontaneous fermentation of malted cowpea fortified cereal weaning food was investigated by phenotypically and cultivation independent method. A total of 74 out of the isolated 178 strains were Lactobacillus plantarum, 32 were Pediococcus acidilactici and over 60% ...

  14. Viable suspensions of maize (Zea mays L.) pollen with exogenous DNA

    Energy Technology Data Exchange (ETDEWEB)

    Broglia, M. [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dip. Innovazione

    1996-12-01

    A viable suspension of maize pollen in aqueous medium containing exogenous DNA would be a suitable tool in attempting maize genetic transformation via pollen grains by different techniques. In this work the effects of addition of DNA to hypertonic aqueous media able to preserve maize pollen viability were investigated. An almost total loss of viability was found when pollen was incubated with native DNA in water or sucrose medium due to the immediate sticking of DNA on the pollen wall. Calcium in the incubation medium avoided DNA sticking preserving pollen fertilization ability. Pre-washing of pollen in hypertonic sucrose solution was proved to remove DNA binding components from the pollen wall. PEG 20%, that is known to inhibit pollen, and silk nucleases, was also used instead of sucrose, without any reduction in the seed-set yields.

  15. Evaluation of Sample Stability and Automated DNA Extraction for Fetal Sex Determination Using Cell-Free Fetal DNA in Maternal Plasma

    Directory of Open Access Journals (Sweden)

    Elena Ordoñez

    2013-01-01

    Full Text Available Objective. The detection of paternally inherited sequences in maternal plasma, such as the SRY gene for fetal sexing or RHD for fetal blood group genotyping, is becoming part of daily routine in diagnostic laboratories. Due to the low percentage of fetal DNA, it is crucial to ensure sample stability and the efficiency of DNA extraction. We evaluated blood stability at 4°C for at least 24 hours and automated DNA extraction, for fetal sex determination in maternal plasma. Methods. A total of 158 blood samples were collected, using EDTA-K tubes, from women in their 1st trimester of pregnancy. Samples were kept at 4°C for at least 24 hours before processing. An automated DNA extraction was evaluated, and its efficiency was compared with a standard manual procedure. The SRY marker was used to quantify cfDNA by real-time PCR. Results. Although lower cfDNA amounts were obtained by automated DNA extraction (mean 107,35 GE/mL versus 259,43 GE/mL, the SRY sequence was successfully detected in all 108 samples from pregnancies with male fetuses. Conclusion. We successfully evaluated the suitability of standard blood tubes for the collection of maternal blood and assessed samples to be suitable for analysis at least 24 hours later. This would allow shipping to a central reference laboratory almost from anywhere in Europe.

  16. Genetic alterations of hepatocellular carcinoma by random amplified polymorphic DNA analysis and cloning sequencing of tumor differential DNA fragment

    Science.gov (United States)

    Xian, Zhi-Hong; Cong, Wen-Ming; Zhang, Shu-Hui; Wu, Meng-Chao

    2005-01-01

    AIM: To study the genetic alterations and their association with clinicopathological characteristics of hepatocellular carcinoma (HCC), and to find the tumor related DNA fragments. METHODS: DNA isolated from tumors and corresponding noncancerous liver tissues of 56 HCC patients was amplified by random amplified polymorphic DNA (RAPD) with 10 random 10-mer arbitrary primers. The RAPD bands showing obvious differences in tumor tissue DNA corresponding to that of normal tissue were separated, purified, cloned and sequenced. DNA sequences were analyzed and compared with GenBank data. RESULTS: A total of 56 cases of HCC were demonstrated to have genetic alterations, which were detected by at least one primer. The detestability of genetic alterations ranged from 20% to 70% in each case, and 17.9% to 50% in each primer. Serum HBV infection, tumor size, histological grade, tumor capsule, as well as tumor intrahepatic metastasis, might be correlated with genetic alterations on certain primers. A band with a higher intensity of 480 bp or so amplified fragments in tumor DNA relative to normal DNA could be seen in 27 of 56 tumor samples using primer 4. Sequence analysis of these fragments showed 91% homology with Homo sapiens double homeobox protein DUX10 gene. CONCLUSION: Genetic alterations are a frequent event in HCC, and tumor related DNA fragments have been found in this study, which may be associated with hepatocarcin-ogenesis. RAPD is an effective method for the identification and analysis of genetic alterations in HCC, and may provide new information for further evaluating the molecular mechanism of hepatocarcinogenesis. PMID:15996039

  17. Bacterial diversity in a soil sample from Uranium mining waste pile as estimated via a culture-independent 16S rDNA approach

    International Nuclear Information System (INIS)

    Satchanska, G.; Golovinsky, E.; Selenska-Pobell, S.

    2004-01-01

    Bacterial diversity was studied in a soil sample collected from a uranium mining waste pile situated near the town of Johanngeorgenstadt, Germany. As estimated by ICP-MS analysis the studied sample was highly contaminated with Fe, Al, Mn, Zn, As, Pb and U. The 16S rDNA retrieval, applied in this study, demonstrated that more than the half of the clones of the constructed 16S rDNA library were represented by individual RFLP profiles. This indicates that the composition of the bacterial community in the sample was very complex. However, several 16S rDNA RFLP groups were found to be predominant and they were subjected to a sequence analysis. The most predominant group, which represented about 13% of the clones of the 16S rDNA library, was affiliated with the Holophaga/Acidobacterium phylum. Significant was also the number of the proteobacterial sequences which were distributed in one predominant α-proteobacterial cluster representing 11% of the total number of clones and in two equal-sized β- and γ-proteobacterial clusters representing each 6% of the clones. Two smaller groups representing both 2% of the clones were affiliated with Nitrospira and with the novel division WS3. Three of the analysed sequences were evaluated as a novel, not yet described lineage and one as a putative chimera. (authors)

  18. Analysis of DNA methylation in various swine tissues.

    Directory of Open Access Journals (Sweden)

    Chun Yang

    Full Text Available DNA methylation is known to play an important role in regulating gene expression during biological development and tissue differentiation in eukaryotes. In this study, we used the fluorescence-labeled methylation-sensitive amplified polymorphism (F-MSAP method to assess the extent and pattern of cytosine methylation in muscle, heart, liver, spleen, lung, kidney and stomach from the swine strain Laiwu, and we also examined specific methylation patterns in the seven tissues. In total, 96,371 fragments, each representing a recognition site cleaved by either or both EcoRI + HpaII and EcoRI + MspI, the HpaII and MspI are isoschizomeric enzymes, were amplified using 16 pairs of selective primers. A total of 50,094 sites were found to be methylated at cytosines in seven tissues. The incidence of DNA methylation was approximately 53.99% in muscle, 51.24% in the heart, 50.18% in the liver, 53.31% in the spleen, 51.97% in the lung, 51.15% in the kidney and 53.39% in the stomach, as revealed by the incidence of differential digestion. Additionally, differences in DNA methylation levels imply that such variations may be related to specific gene expression during tissue differentiation, growth and development. Three types of bands were generated in the F-MSAP profile, the total numbers of these three types of bands in the seven tissues were 46,277, 24,801 and 25,293, respectively.In addition, different methylation patterns were observed in seven tissues from pig, and almost all of the methylation patterns detected by F-MSAP could be confirmed by Southern analysis using the isolated amplified fragments as probes. The results clearly demonstrated that the F-MSAP technique can be adapted for use in large-scale DNA methylation detection in the pig genome.

  19. Bacterial biomass and DNA diversity in an alluvial meadow soil upon long-term fertilization

    NARCIS (Netherlands)

    Naumova, N.B.; Kuikman, P.J.

    2001-01-01

    The denaturing gradient gel-electrophoresis of bacterial DNA fragments and the assessment of bacterial biomass revealed changes in the diversity of the bacterial community in a meadow alluvial soil upon long-term fertilization.

  20. Dynamics of bacterial communities in two unpolluted soils after spiking with phenanthrene: soil type specific and common responders

    Directory of Open Access Journals (Sweden)

    Guo-Chun eDing

    2012-08-01

    Full Text Available Considering their key role for ecosystem processes, it is important to understand the response of microbial communities in unpolluted soils to pollution with polycyclic aromatic hydrocarbons (PAH. Phenanthrene, a model compound for PAH, was spiked to a Cambisol and a Luvisol soil. Total community DNA from phenanthrene-spiked and control soils collected on days 0, 21 and 63 were analyzed based on PCR-amplified 16S rRNA genefragments. Denaturing gradient gel electrophoresis (DGGE fingerprints of bacterial communities increasingly deviated with time between spiked and control soils. In taxon specific DGGE, significant responses of Alphaproteobacteria and Actinobacteria became only detectable after 63 days, while significant effects on Betaproteobacteria were detectable in both soils after 21 days. Comparison of the taxonomic distribution of bacteria in spiked and control soils on day 63 as revealed by pyrosequencing indicated soil type specific negative effects of phenanthrene on several taxa, many of them belonging to the Gamma-, Beta- or Deltaproteobacteria. Bacterial richness and evenness decreased in spiked soils. Despite the significant differences in the bacterial community structure between both soils on day 0, similar genera increased in relative abundance after PAH spiking, especially Sphingomonas and Polaromonas. However, this did not result in an increased overall similarity of the bacterial communities in both soils.

  1. Characterization of Olkiluoto bacterial and archaeal communities by 454 pyrosequencing

    Energy Technology Data Exchange (ETDEWEB)

    Bomberg, M.; Nyyssoenen, M.; Itaevaara, M. [VTT Technical Research Centre of Finland, Espoo (Finland)

    2012-06-15

    Recent advancement in sequencing technologies, 'Next Generation Sequencing', such as FLX 454 pyrosequencing has made it possible to obtain large amounts of sequence data where previously only few sequences could be obtained. This technique is especially useful for the study of community composition of uncultured microbial populations in environmental samples. In this project, the FLX 454 pyrosequencing technique was used to obtain up to 20 000 16S rRNA sequences or 10 000 mRNA sequences from each sample for identification of the microbial species composition as well as for comparison of the microbial communities between different samples. This project focused on the characterization of active microbial communities in the groundwater at the final disposal site of high radioactive wastes in Olkiluoto by FLX 454 pyrosequencing of the bacterial and archaeal ribosomal RNA as well as of the mRNA transcripts of the dsrB gene and mcrA gene of sulphate reducing bacteria and methanogenic archaea, respectively. Specific emphasis was put on studying the relationship of active and latent sulphate reducers and methanogens by qPCR due to their important roles in deep geobiochemical processes connected to copper corrosion. Seven packered boreholes were sampled anaerobically in Olkiluoto during 2009-2010. Groundwater was pumped from specific depths and the microbial cells werecollected by filtration on a membrane. Active microbial communities were studied based on RNA extracted from the membranes and translated to copy DNA, followed by sequencing by 454 Tag pyrosequencing. A total of 27 different bacterial and 17 archaeal taxonomic groups were detected.

  2. Characterization of Olkiluoto bacterial and archaeal communities by 454 pyrosequencing

    Energy Technology Data Exchange (ETDEWEB)

    Bomberg, M; Nyyssoenen, M; Itaevaara, M [VTT Technical Research Centre of Finland, Espoo (Finland)

    2012-06-15

    Recent advancement in sequencing technologies, 'Next Generation Sequencing', such as FLX 454 pyrosequencing has made it possible to obtain large amounts of sequence data where previously only few sequences could be obtained. This technique is especially useful for the study of community composition of uncultured microbial populations in environmental samples. In this project, the FLX 454 pyrosequencing technique was used to obtain up to 20 000 16S rRNA sequences or 10 000 mRNA sequences from each sample for identification of the microbial species composition as well as for comparison of the microbial communities between different samples. This project focused on the characterization of active microbial communities in the groundwater at the final disposal site of high radioactive wastes in Olkiluoto by FLX 454 pyrosequencing of the bacterial and archaeal ribosomal RNA as well as of the mRNA transcripts of the dsrB gene and mcrA gene of sulphate reducing bacteria and methanogenic archaea, respectively. Specific emphasis was put on studying the relationship of active and latent sulphate reducers and methanogens by qPCR due to their important roles in deep geobiochemical processes connected to copper corrosion. Seven packered boreholes were sampled anaerobically in Olkiluoto during 2009-2010. Groundwater was pumped from specific depths and the microbial cells werecollected by filtration on a membrane. Active microbial communities were studied based on RNA extracted from the membranes and translated to copy DNA, followed by sequencing by 454 Tag pyrosequencing. A total of 27 different bacterial and 17 archaeal taxonomic groups were detected.

  3. Characterization of Olkiluoto bacterial and archaeal communities by 454 pyrosequencing

    International Nuclear Information System (INIS)

    Bomberg, M.; Nyyssoenen, M.; Itaevaara, M.

    2012-06-01

    Recent advancement in sequencing technologies, 'Next Generation Sequencing', such as FLX 454 pyrosequencing has made it possible to obtain large amounts of sequence data where previously only few sequences could be obtained. This technique is especially useful for the study of community composition of uncultured microbial populations in environmental samples. In this project, the FLX 454 pyrosequencing technique was used to obtain up to 20 000 16S rRNA sequences or 10 000 mRNA sequences from each sample for identification of the microbial species composition as well as for comparison of the microbial communities between different samples. This project focused on the characterization of active microbial communities in the groundwater at the final disposal site of high radioactive wastes in Olkiluoto by FLX 454 pyrosequencing of the bacterial and archaeal ribosomal RNA as well as of the mRNA transcripts of the dsrB gene and mcrA gene of sulphate reducing bacteria and methanogenic archaea, respectively. Specific emphasis was put on studying the relationship of active and latent sulphate reducers and methanogens by qPCR due to their important roles in deep geobiochemical processes connected to copper corrosion. Seven packered boreholes were sampled anaerobically in Olkiluoto during 2009-2010. Groundwater was pumped from specific depths and the microbial cells werecollected by filtration on a membrane. Active microbial communities were studied based on RNA extracted from the membranes and translated to copy DNA, followed by sequencing by 454 Tag pyrosequencing. A total of 27 different bacterial and 17 archaeal taxonomic groups were detected

  4. Land use intensity controls actinobacterial community structure

    Czech Academy of Sciences Publication Activity Database

    Hill, P.; Krištůfek, Václav; Dijkhuizen, L.; Boddy, Ch.; Kroetsch, D.; van Elsas, J.D.

    2011-01-01

    Roč. 61, č. 2 (2011), s. 286-302 ISSN 0095-3628 R&D Projects: GA MŠk LC06066; GA MŠk 2B06154 Institutional research plan: CEZ:AV0Z60660521 Keywords : actinobacterial community structure * DNA * soils Subject RIV: EH - Ecology, Behaviour Impact factor: 2.912, year: 2011

  5. Retroviral DNA Sequences as a Means for Determining Ancient Diets.

    Directory of Open Access Journals (Sweden)

    Jessica I Rivera-Perez

    Full Text Available For ages, specialists from varying fields have studied the diets of the primeval inhabitants of our planet, detecting diet remains in archaeological specimens using a range of morphological and biochemical methods. As of recent, metagenomic ancient DNA studies have allowed for the comparison of the fecal and gut microbiomes associated to archaeological specimens from various regions of the world; however the complex dynamics represented in those microbial communities still remain unclear. Theoretically, similar to eukaryote DNA the presence of genes from key microbes or enzymes, as well as the presence of DNA from viruses specific to key organisms, may suggest the ingestion of specific diet components. In this study we demonstrate that ancient virus DNA obtained from coprolites also provides information reconstructing the host's diet, as inferred from sequences obtained from pre-Columbian coprolites. This depicts a novel and reliable approach to determine new components as well as validate the previously suggested diets of extinct cultures and animals. Furthermore, to our knowledge this represents the first description of the eukaryotic viral diversity found in paleofaeces belonging to pre-Columbian cultures.

  6. Whole community genome amplification (WCGA) leads to compositional bias in methane oxidizing communities as assessed by pmoA based microarray analyses and QPCR

    NARCIS (Netherlands)

    Bodelier, P.L.E.; Kamst, M.; Meima-Franke, M.; Stralis-Pavese, N.; Bodrossy, L.

    2009-01-01

    Whole-genome amplification (WGA) using multiple displacement amplification (MDA) has recently been introduced to the field of environmental microbiology. The amplification of single-cell genomes or whole-community metagenomes decreases the minimum amount of DNA needed for subsequent molecular

  7. Binning of shallowly sampled metagenomic sequence fragments reveals that low abundance bacteria play important roles in sulfur cycling and degradation of complex organic polymers in an acid mine drainage community

    Science.gov (United States)

    Dick, G. J.; Andersson, A.; Banfield, J. F.

    2007-12-01

    Our understanding of environmental microbiology has been greatly enhanced by community genome sequencing of DNA recovered directly the environment. Community genomics provides insights into the diversity, community structure, metabolic function, and evolution of natural populations of uncultivated microbes, thereby revealing dynamics of how microorganisms interact with each other and their environment. Recent studies have demonstrated the potential for reconstructing near-complete genomes from natural environments while highlighting the challenges of analyzing community genomic sequence, especially from diverse environments. A major challenge of shotgun community genome sequencing is identification of DNA fragments from minor community members for which only low coverage of genomic sequence is present. We analyzed community genome sequence retrieved from biofilms in an acid mine drainage (AMD) system in the Richmond Mine at Iron Mountain, CA, with an emphasis on identification and assembly of DNA fragments from low-abundance community members. The Richmond mine hosts an extensive, relatively low diversity subterranean chemolithoautotrophic community that is sustained entirely by oxidative dissolution of pyrite. The activity of these microorganisms greatly accelerates the generation of AMD. Previous and ongoing work in our laboratory has focused on reconstrucing genomes of dominant community members, including several bacteria and archaea. We binned contigs from several samples (including one new sample and two that had been previously analyzed) by tetranucleotide frequency with clustering by Self-Organizing Maps (SOM). The binning, evaluated by comparison with information from the manually curated assembly of the dominant organisms, was found to be very effective: fragments were correctly assigned with 95% accuracy. Improperly assigned fragments often contained sequences that are either evolutionarily constrained (e.g. 16S rRNA genes) or mobile elements that are

  8. New environmental metabarcodes for analysing soil DNA

    DEFF Research Database (Denmark)

    Epp, Laura S.; Boessenkool, Sanne; Bellemain, Eva P.

    2012-01-01

    was systematically evaluated by (i) in silico PCRs using all standard sequences in the EMBL public database as templates, (ii) in vitro PCRs of DNA extracts from surface soil samples from a site in Varanger, northern Norway and (iii) in vitro PCRs of DNA extracts from permanently frozen sediment samples of late......Metabarcoding approaches use total and typically degraded DNA from environmental samples to analyse biotic assemblages and can potentially be carried out for any kinds of organisms in an ecosystem. These analyses rely on specific markers, here called metabarcodes, which should be optimized...... for taxonomic resolution, minimal bias in amplification of the target organism group and short sequence length. Using bioinformatic tools, we developed metabarcodes for several groups of organisms: fungi, bryophytes, enchytraeids, beetles and birds. The ability of these metabarcodes to amplify the target groups...

  9. Loss of maintenance DNA methylation results in abnormal DNA origin firing during DNA replication

    Energy Technology Data Exchange (ETDEWEB)

    Haruta, Mayumi [Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Shimada, Midori, E-mail: midorism@med.nagoya-cu.ac.jp [Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Nishiyama, Atsuya; Johmura, Yoshikazu [Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Le Tallec, Benoît; Debatisse, Michelle [Institut Curie, Centre de Recherche, 26 rue d’Ulm, CNRS UMR 3244, 75248 ParisCedex 05 (France); Nakanishi, Makoto, E-mail: mkt-naka@med.nagoya-cu.ac.jp [Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan)

    2016-01-22

    The mammalian maintenance methyltransferase DNMT1 [DNA (cytosine-5-)-methyltransferase 1] mediates the inheritance of the DNA methylation pattern during replication. Previous studies have shown that depletion of DNMT1 causes a severe growth defect and apoptosis in differentiated cells. However, the detailed mechanisms behind this phenomenon remain poorly understood. Here we show that conditional ablation of Dnmt1 in murine embryonic fibroblasts (MEFs) resulted in an aberrant DNA replication program showing an accumulation of late-S phase replication and causing severely defective growth. Furthermore, we found that the catalytic activity and replication focus targeting sequence of DNMT1 are required for a proper DNA replication program. Taken together, our findings suggest that the maintenance of DNA methylation by DNMT1 plays a critical role in proper regulation of DNA replication in mammalian cells. - Highlights: • DNMT1 depletion results in an abnormal DNA replication program. • Aberrant DNA replication is independent of the DNA damage checkpoint in DNMT1cKO. • DNMT1 catalytic activity and RFT domain are required for proper DNA replication. • DNMT1 catalytic activity and RFT domain are required for cell proliferation.

  10. Loss of maintenance DNA methylation results in abnormal DNA origin firing during DNA replication

    International Nuclear Information System (INIS)

    Haruta, Mayumi; Shimada, Midori; Nishiyama, Atsuya; Johmura, Yoshikazu; Le Tallec, Benoît; Debatisse, Michelle; Nakanishi, Makoto

    2016-01-01

    The mammalian maintenance methyltransferase DNMT1 [DNA (cytosine-5-)-methyltransferase 1] mediates the inheritance of the DNA methylation pattern during replication. Previous studies have shown that depletion of DNMT1 causes a severe growth defect and apoptosis in differentiated cells. However, the detailed mechanisms behind this phenomenon remain poorly understood. Here we show that conditional ablation of Dnmt1 in murine embryonic fibroblasts (MEFs) resulted in an aberrant DNA replication program showing an accumulation of late-S phase replication and causing severely defective growth. Furthermore, we found that the catalytic activity and replication focus targeting sequence of DNMT1 are required for a proper DNA replication program. Taken together, our findings suggest that the maintenance of DNA methylation by DNMT1 plays a critical role in proper regulation of DNA replication in mammalian cells. - Highlights: • DNMT1 depletion results in an abnormal DNA replication program. • Aberrant DNA replication is independent of the DNA damage checkpoint in DNMT1cKO. • DNMT1 catalytic activity and RFT domain are required for proper DNA replication. • DNMT1 catalytic activity and RFT domain are required for cell proliferation.

  11. Correlation of HBV DNA PCR and HBeAg in hepatitis carriers

    International Nuclear Information System (INIS)

    Hussain, A.B.; Karamat, K.A.; Kazmi, S.Y.; Anwar, M.; Tariq, W.Z.

    2004-01-01

    Objective: To correlate hepatitis B HBV DNA polymerase chain reaction (PCR) results with HBeAg and serum ala- nine transferase (ALT) in carriers. Materials and Methods: Fifty hepatitis B carriers, with known HBsAg positive serostatus, raised serum ALT and detectable HBV DNA, were selected out of the patients reporting at AFIP for their blood test for HBV DNA. HBV DNA testing in these cases was carried out using PCR kit of Accugen-USA. After confirmation of their carrier status and raised serum ALT levels, the sera were tested for HBeAg and results of HBeAg testing were correlated with those of HBV DNA testing. Results: Out of the total 50 HBV DNA PCR positive hepatitis B carriers, 48 samples were positive for HBeAg. All the 50 HBV DNA positive cases had raised serum ALT levels. Conclusion: In case of non-availability of facility for HBV PCR, detectable HBeAg should be taken as a surrogate marker for HBV DNA in hepatitis B carriers with raised serum ALT. (author)

  12. Environmental DNA from seawater samples correlate with trawl catches of Subarctic, deepwater fishes

    DEFF Research Database (Denmark)

    Thomsen, Philip Francis; Møller, Peter Rask; Sigsgaard, Eva Egelyng

    2016-01-01

    depths in Southwest Greenland. We collected seawater samples at depths of 188-918 m and compared seawater eDNA to catch data from trawling. We used Illumina sequencing of PCR products to demonstrate that eDNA reads show equivalence to fishing catch data obtained from trawling. Twenty-six families were......Remote polar and deepwater fish faunas are under pressure from ongoing climate change and increasing fishing effort. However, these fish communities are difficult to monitor for logistic and financial reasons. Currently, monitoring of marine fishes largely relies on invasive techniques...... such as bottom trawling, and on official reporting of global catches, which can be unreliable. Thus, there is need for alternative and non-invasive techniques for qualitative and quantitative oceanic fish surveys. Here we report environmental DNA (eDNA) metabarcoding of seawater samples from continental slope...

  13. Spatial variations of prokaryotic communities in surface water from India Ocean to Chinese marginal seas and their underlining environmental determinants

    Directory of Open Access Journals (Sweden)

    Xiaowei eZheng

    2016-02-01

    Full Text Available To illustrate the biogeographic patterns of prokaryotic communities in surface sea water, 24 samples were systematically collected across a large distance from Indian Ocean to Chinese marginal seas, with an average distance of 453 km between two adjacent stations. A total of 841,364 quality reads was produced by the high throughput DNA sequencing of the 16S rRNA genes. Phylogenetic analysis showed that Proteobacteria were predominant in all samples, with Alphaproteobacteria and Gammaproteobacteria being the two most abundant components. Cyanobacteria represented the second largest fraction of the total quality reads, and mainly included Prochlorococcus and Synechococcus. The semi-closed marginal seas, including South China Sea (SCS and nearby regions, exhibited a transition in community composition between oceanic and coastal seas, based on the distribution patterns of Prochlorococcus and Synechococcus as well as a non-metric multidimensional scaling (NMDS analysis. Distinct clusters of prokaryotes from coastal and open seas, and from different water masses in Indian Ocean were obtained by Bray-Curtis dissimilarity analysis at the OTU level, revealing a clear spatial heterogeneity. The major environmental factors correlated with the community variation in this broad scale were identified as salinity, temperature and geographic distance. Community comparison among regions shows that anthropogenic contamination is another dominant factor in shaping the biogeographic patterns of the microorganisms. These results suggest that environmental factors involved in complex interactions between land and sea act synergistically in driving spatial variations in coastal areas.

  14. The impact of different DNA extraction kits and laboratories upon the assessment of human gut microbiota composition by 16S rRNA gene sequencing.

    Science.gov (United States)

    Kennedy, Nicholas A; Walker, Alan W; Berry, Susan H; Duncan, Sylvia H; Farquarson, Freda M; Louis, Petra; Thomson, John M; Satsangi, Jack; Flint, Harry J; Parkhill, Julian; Lees, Charlie W; Hold, Georgina L

    2014-01-01

    Determining bacterial community structure in fecal samples through DNA sequencing is an important facet of intestinal health research. The impact of different commercially available DNA extraction kits upon bacterial community structures has received relatively little attention. The aim of this study was to analyze bacterial communities in volunteer and inflammatory bowel disease (IBD) patient fecal samples extracted using widely used DNA extraction kits in established gastrointestinal research laboratories. Fecal samples from two healthy volunteers (H3 and H4) and two relapsing IBD patients (I1 and I2) were investigated. DNA extraction was undertaken using MoBio Powersoil and MP Biomedicals FastDNA SPIN Kit for Soil DNA extraction kits. PCR amplification for pyrosequencing of bacterial 16S rRNA genes was performed in both laboratories on all samples. Hierarchical clustering of sequencing data was done using the Yue and Clayton similarity coefficient. DNA extracted using the FastDNA kit and the MoBio kit gave median DNA concentrations of 475 (interquartile range 228-561) and 22 (IQR 9-36) ng/µL respectively (p<0.0001). Hierarchical clustering of sequence data by Yue and Clayton coefficient revealed four clusters. Samples from individuals H3 and I2 clustered by patient; however, samples from patient I1 extracted with the MoBio kit clustered with samples from patient H4 rather than the other I1 samples. Linear modelling on relative abundance of common bacterial families revealed significant differences between kits; samples extracted with MoBio Powersoil showed significantly increased Bacteroidaceae, Ruminococcaceae and Porphyromonadaceae, and lower Enterobacteriaceae, Lachnospiraceae, Clostridiaceae, and Erysipelotrichaceae (p<0.05). This study demonstrates significant differences in DNA yield and bacterial DNA composition when comparing DNA extracted from the same fecal sample with different extraction kits. This highlights the importance of ensuring that samples

  15. DNA Compass: a secure, client-side site for navigating personal genetic information.

    Science.gov (United States)

    Curnin, Charles; Gordon, Assaf; Erlich, Yaniv

    2017-07-15

    Millions of individuals have access to raw genomic data using direct-to-consumer companies. The advent of large-scale sequencing projects, such as the Precision Medicine Initiative, will further increase the number of individuals with access to their own genomic information. However, querying genomic data requires a computer terminal and computational skill to analyze the data-an impediment for the general public. DNA Compass is a website designed to empower the public by enabling simple navigation of personal genomic data. Users can query the status of their genomic variants for over 1658 markers or tens of millions of documented single nucleotide polymorphisms (SNPs). DNA Compass presents the relevant genotypes of the user side-by-side with explanatory scientific resources. The genotype data never leaves the user's computer, a feature that provides improved security and performance. More than 12 000 unique users, mainly from the general genetic genealogy community, have already used DNA Compass, demonstrating its utility. DNA Compass is freely available on https://compass.dna.land . yaniv@cs.columbia.edu. © The Author(s) 2017. Published by Oxford University Press.

  16. Detection of environmental carcinogens-DNA

    International Nuclear Information System (INIS)

    Pfohl-Leszkowicz, A.; Guillemaut, G.; Rether, B.; Masfaraud, J.F.; Haguenoer, J.M.

    1995-01-01

    It has been estimated that majority of human cancer is due to environmental factors including pollutants in air, soil, water and food, work places exposure and personal habits such as smoking. After penetration in organism, xenobiotics could be directly excreted or are bio transformed by oxidation or reduction in more hydrophilic compounds which could be conjugate and then eliminated in urine. But in some case, the biotransformation leads to electrophilic compounds which interact with macromolecules such as DNA, forming addition products named adduct. The 32 P post-labelling method, inspired by recent developments in the methodology for sequencing nucleic acids, is an extremely sensitive method for assessing and quantifying DNA adducts and is applicable to structurally diverse classes of chemicals. In the first study, we have analysed hepatic DNA from fish living in the River Rhone downstream and upstream from a polychlorinated biphenyl incineration plant. Our results suggest that fish are exposed to genotoxic chemicals. In another study, leave DNA from healthy and declining hop were analysed. The total adduct level is 3 time higher in declining hop. A comparison between DNA adducts from several vegetal cells cultured in presence of heptachlor and DNA adduct in declining hop, confirmed the implication of heptachlor. In these examples, our data indicate the usefulness of the 32 P-post labelling method to assess the contamination of the environment by genotoxic pollutants. Epidemiological data suggested that increasing exposure to airborne PAH contributes to increase risk cancer in this population. Exposure-dependent adducts were detected in while blood cells in coke oven workers. The adduct levels is function of the level of pollutant. In the last example we have analysed lung tissue from patient with cancer. We observed many adducts in peritumoral tissue, while few adducts could be detected in tumoral tissues. (author)

  17. Genetic variability of cultivated cowpea in Benin assessed by random amplified polymorphic DNA

    NARCIS (Netherlands)

    Zannou, A.; Kossou, D.K.; Ahanchédé, A.; Zoundjihékpon, J.; Agbicodo, E.; Struik, P.C.; Sanni, A.

    2008-01-01

    Characterization of genetic diversity among cultivated cowpea [Vigna unguiculata (L.) Walp.] varieties is important to optimize the use of available genetic resources by farmers, local communities, researchers and breeders. Random amplified polymorphic DNA (RAPD) markers were used to evaluate the

  18. The dynamic interplay between DNA topoisomerases and DNA topology.

    Science.gov (United States)

    Seol, Yeonee; Neuman, Keir C

    2016-11-01

    Topological properties of DNA influence its structure and biochemical interactions. Within the cell, DNA topology is constantly in flux. Transcription and other essential processes, including DNA replication and repair, not only alter the topology of the genome but also introduce additional complications associated with DNA knotting and catenation. These topological perturbations are counteracted by the action of topoisomerases, a specialized class of highly conserved and essential enzymes that actively regulate the topological state of the genome. This dynamic interplay among DNA topology, DNA processing enzymes, and DNA topoisomerases is a pervasive factor that influences DNA metabolism in vivo. Building on the extensive structural and biochemical characterization over the past four decades that has established the fundamental mechanistic basis of topoisomerase activity, scientists have begun to explore the unique roles played by DNA topology in modulating and influencing the activity of topoisomerases. In this review we survey established and emerging DNA topology-dependent protein-DNA interactions with a focus on in vitro measurements of the dynamic interplay between DNA topology and topoisomerase activity.

  19. Ancient DNA

    DEFF Research Database (Denmark)

    Willerslev, Eske; Cooper, Alan

    2004-01-01

    ancient DNA, palaeontology, palaeoecology, archaeology, population genetics, DNA damage and repair......ancient DNA, palaeontology, palaeoecology, archaeology, population genetics, DNA damage and repair...

  20. Impact of enzymatic digestion on bacterial community composition in CF airway samples

    Directory of Open Access Journals (Sweden)

    Kayla M. Williamson

    2017-05-01

    Full Text Available Background Previous studies have demonstrated the importance of DNA extraction methods for molecular detection of Staphylococcus, an important bacterial group in cystic fibrosis (CF. We sought to evaluate the effect of enzymatic digestion (EnzD prior to DNA extraction on bacterial communities identified in sputum and oropharyngeal swab (OP samples from patients with CF. Methods DNA from 81 samples (39 sputum and 42 OP collected from 63 patients with CF was extracted in duplicate with and without EnzD. Bacterial communities were determined by rRNA gene sequencing, and measures of alpha and beta diversity were calculated. Principal Coordinate Analysis (PCoA was used to assess differences at the community level and Wilcoxon Signed Rank tests were used to compare relative abundance (RA of individual genera for paired samples with and without EnzD. Results Shannon Diversity Index (alpha-diversity decreased in sputum and OP samples with the use of EnzD. Larger shifts in community composition were observed for OP samples (beta-diversity, measured by Morisita-Horn, whereas less change in communities was observed for sputum samples. The use of EnzD with OP swabs resulted in significant increase in RA for the genera Gemella (p < 0.01, Streptococcus (p < 0.01, and Rothia (p < 0.01. Staphylococcus (p < 0.01 was the only genus with a significant increase in RA from sputum, whereas the following genera decreased in RA with EnzD: Veillonella (p < 0.01, Granulicatella (p < 0.01, Prevotella (p < 0.01, and Gemella (p = 0.02. In OP samples, higher RA of Gram-positive taxa was associated with larger changes in microbial community composition. Discussion We show that the application of EnzD to CF airway samples, particularly OP swabs, results in differences in microbial communities detected by sequencing. Use of EnzD can result in large changes in bacterial community composition, and is particularly useful for detection of Staphylococcus in CF OP

  1. Isolation and characterization of the human uracil DNA glycosylase gene

    International Nuclear Information System (INIS)

    Vollberg, T.M.; Siegler, K.M.; Cool, B.L.; Sirover, M.A.

    1989-01-01

    A series of anti-human placental uracil DNA glycosylase monoclonal antibodies was used to screen a human placental cDNA library in phage λgt11. Twenty-seven immunopositive plaques were detected and purified. One clone containing a 1.2-kilobase (kb) human cDNA insert was chosen for further study by insertion into pUC8. The resultant recombinant plasmid selected by hybridization a human placental mRNA that encoded a 37-kDa polypeptide. This protein was immunoprecipitated specifically by an anti-human placenta uracil DNA glycosylase monoclonal antibody. RNA blot-hybridization (Northern) analysis using placental poly(A) + RNA or total RNA from four different human fibroblast cell strains revealed a single 1.6-kb transcript. Genomic blots using DNA from each cell strain digested with either EcoRI or PstI revealed a complex pattern of cDNA-hydridizing restriction fragments. The genomic analysis for each enzyme was highly similar in all four human cell strains. In contrast, a single band was observed when genomic analysis was performed with the identical DNA digests with an actin gene probe. During cell proliferation there was an increase in the level of glycosylase mRNA that paralleled the increase in uracil DNA glycosylase enzyme activity. The isolation of the human uracil DNA glycosylase gene permits an examination of the structure, organization, and expression of a human DNA repair gene

  2. Extracellular DNA as matrix component in microbial biofilms

    DEFF Research Database (Denmark)

    Chiang, Wen-Chi; Tolker-Nielsen, Tim

    2010-01-01

    Bacteria in nature primarily live in surface-associated communities commonly known as biofilms. Because bacteria in biofilms, in many cases, display tolerance to host immune systems, antibiotics, and biocides, they are often difficult or impossible to eradicate. Biofilm formation, therefore, leads...... to various persistent infections in humans and animals, and to a variety of complications in industry, where solid–water interfaces occur. Knowledge about the molecular mechanisms involved in biofilm formation is necessary for creating strategies to control biofilms. Recent studies have shown...... that extracellular DNA is an important component of the extracellular matrix of microbial biofilms. The present chapter is focussed on extracellular DNA as matrix component in biofilms formed by Pseudomonas aeruginosa as an example from the Gram-negative bacteria, and Streptococcus and Staphylococcus as examples...

  3. Repulsive DNA-DNA interactions accelerate viral DNA packaging in phage Phi29.

    Science.gov (United States)

    Keller, Nicholas; delToro, Damian; Grimes, Shelley; Jardine, Paul J; Smith, Douglas E

    2014-06-20

    We use optical tweezers to study the effect of attractive versus repulsive DNA-DNA interactions on motor-driven viral packaging. Screening of repulsive interactions accelerates packaging, but induction of attractive interactions by spermidine(3+) causes heterogeneous dynamics. Acceleration is observed in a fraction of complexes, but most exhibit slowing and stalling, suggesting that attractive interactions promote nonequilibrium DNA conformations that impede the motor. Thus, repulsive interactions facilitate packaging despite increasing the energy of the theoretical optimum spooled DNA conformation.

  4. Ten years of barcoding at the African Centre for DNA Barcoding.

    Science.gov (United States)

    Bezeng, B S; Davies, T J; Daru, B H; Kabongo, R M; Maurin, O; Yessoufou, K; van der Bank, H; van der Bank, M

    2017-07-01

    The African Centre for DNA Barcoding (ACDB) was established in 2005 as part of a global initiative to accurately and rapidly survey biodiversity using short DNA sequences. The mitochondrial cytochrome c oxidase 1 gene (CO1) was rapidly adopted as the de facto barcode for animals. Following the evaluation of several candidate loci for plants, the Plant Working Group of the Consortium for the Barcoding of Life in 2009 recommended that two plastid genes, rbcLa and matK, be adopted as core DNA barcodes for terrestrial plants. To date, numerous studies continue to test the discriminatory power of these markers across various plant lineages. Over the past decade, we at the ACDB have used these core DNA barcodes to generate a barcode library for southern Africa. To date, the ACDB has contributed more than 21 000 plant barcodes and over 3000 CO1 barcodes for animals to the Barcode of Life Database (BOLD). Building upon this effort, we at the ACDB have addressed questions related to community assembly, biogeography, phylogenetic diversification, and invasion biology. Collectively, our work demonstrates the diverse applications of DNA barcoding in ecology, systematics, evolutionary biology, and conservation.

  5. Colony-PCR Is a Rapid Method for DNA Amplification of Hyphomycetes

    Directory of Open Access Journals (Sweden)

    Georg Walch

    2016-04-01

    Full Text Available Fungal pure cultures identified with both classical morphological methods and through barcoding sequences are a basic requirement for reliable reference sequences in public databases. Improved techniques for an accelerated DNA barcode reference library construction will result in considerably improved sequence databases covering a wider taxonomic range. Fast, cheap, and reliable methods for obtaining DNA sequences from fungal isolates are, therefore, a valuable tool for the scientific community. Direct colony PCR was already successfully established for yeasts, but has not been evaluated for a wide range of anamorphic soil fungi up to now, and a direct amplification protocol for hyphomycetes without tissue pre-treatment has not been published so far. Here, we present a colony PCR technique directly from fungal hyphae without previous DNA extraction or other prior manipulation. Seven hundred eighty-eight fungal strains from 48 genera were tested with a success rate of 86%. PCR success varied considerably: DNA of fungi belonging to the genera Cladosporium, Geomyces, Fusarium, and Mortierella could be amplified with high success. DNA of soil-borne yeasts was always successfully amplified. Absidia, Mucor, Trichoderma, and Penicillium isolates had noticeably lower PCR success.

  6. Automated DNA extraction platforms offer solutions to challenges of assessing microbial biofouling in oil production facilities.

    Science.gov (United States)

    Oldham, Athenia L; Drilling, Heather S; Stamps, Blake W; Stevenson, Bradley S; Duncan, Kathleen E

    2012-11-20

    The analysis of microbial assemblages in industrial, marine, and medical systems can inform decisions regarding quality control or mitigation. Modern molecular approaches to detect, characterize, and quantify microorganisms provide rapid and thorough measures unbiased by the need for cultivation. The requirement of timely extraction of high quality nucleic acids for molecular analysis is faced with specific challenges when used to study the influence of microorganisms on oil production. Production facilities are often ill equipped for nucleic acid extraction techniques, making the preservation and transportation of samples off-site a priority. As a potential solution, the possibility of extracting nucleic acids on-site using automated platforms was tested. The performance of two such platforms, the Fujifilm QuickGene-Mini80™ and Promega Maxwell®16 was compared to a widely used manual extraction kit, MOBIO PowerBiofilm™ DNA Isolation Kit, in terms of ease of operation, DNA quality, and microbial community composition. Three pipeline biofilm samples were chosen for these comparisons; two contained crude oil and corrosion products and the third transported seawater. Overall, the two more automated extraction platforms produced higher DNA yields than the manual approach. DNA quality was evaluated for amplification by quantitative PCR (qPCR) and end-point PCR to generate 454 pyrosequencing libraries for 16S rRNA microbial community analysis. Microbial community structure, as assessed by DGGE analysis and pyrosequencing, was comparable among the three extraction methods. Therefore, the use of automated extraction platforms should enhance the feasibility of rapidly evaluating microbial biofouling at remote locations or those with limited resources.

  7. Association of genetic variations in the mitochondrial DNA control region with presbycusis.

    Science.gov (United States)

    Falah, Masoumeh; Farhadi, Mohammad; Kamrava, Seyed Kamran; Mahmoudian, Saeid; Daneshi, Ahmad; Balali, Maryam; Asghari, Alimohamad; Houshmand, Massoud

    2017-01-01

    The prominent role of mitochondria in the generation of reactive oxygen species, cell death, and energy production contributes to the importance of this organelle in the intracellular mechanism underlying the progression of the common sensory disorder of the elderly, presbycusis. Reduced mitochondrial DNA (mtDNA) gene expression and coding region variation have frequently been reported as being associated with the development of presbycusis. The mtDNA control region regulates gene expression and replication of the genome of this organelle. To comprehensively understand of the role of mitochondria in the progression of presbycusis, we compared variations in the mtDNA control region between subjects with presbycusis and controls. A total of 58 presbycusis patients and 220 control subjects were enrolled in the study after examination by the otolaryngologist and audiology tests. Variations in the mtDNA control region were investigated by polymerase chain reaction and Sanger sequencing. A total of 113 sequence variants were observed in mtDNA, and variants were detected in 100% of patients, with 84% located in hypervariable regions. The frequencies of the variants, 16,223 C>T, 16,311 T>C, 16,249 T>C, and 15,954 A>C, were significantly different between presbycusis and control subjects. The statistically significant difference in the frequencies of four nucleotide variants in the mtDNA control region of presbycusis patients and controls is in agreement with previous experimental evidence and supports the role of mitochondria in the intracellular mechanism underlying presbycusis development. Moreover, these variants have potential as diagnostic markers for individuals at a high risk of developing presbycusis. The data also suggest the possible presence of changes in the mtDNA control region in presbycusis, which could alter regulatory factor binding sites and influence mtDNA gene expression and copy number.

  8. Reduced DNA methylation of FKBP5 in Cushing's syndrome.

    Science.gov (United States)

    Resmini, Eugenia; Santos, Alicia; Aulinas, Anna; Webb, Susan M; Vives-Gilabert, Yolanda; Cox, Olivia; Wand, Gary; Lee, Richard S

    2016-12-01

    FKBP5 encodes a co-chaperone of HSP90 protein that regulates intracellular glucocorticoid receptor sensitivity. When it is bound to the glucocorticoid receptor complex, cortisol binds with lower affinity to glucocorticoid receptor. Cushing's syndrome is associated with memory deficits, smaller hippocampal volumes, and wide range of cognitive impairments. We aimed at evaluating blood DNA methylation of FKBP5 and its relationship with memory and hippocampal volumes in Cushing's syndrome patients. Polymorphism rs1360780 in FKBP5 has also been assessed to determine whether genetic variations can also govern CpG methylation. Thirty-two Cushing's syndrome patients and 32 matched controls underwent memory tests, 3-Tesla MRI of the brain, and DNA extraction from total leukocytes. DNA samples were bisulfite treated, PCR amplified, and pyrosequenced to assess a total of 41CpG-dinucleotides in the introns 1, 2, 5, and 7 of FKBP5. Significantly lower intronic FKBP5 DNA methylation in CS patients compared to controls was observed in ten CpG-dinucleotides. DNA methylation at these CpGs correlated with left and right HV (Intron-2-Region-2-CpG-3: LHV, r = 0.73, p = 0.02; RHV, r = 0.58, p = 0.03). Cured and active CS patients showed both lower methylation of intron 2 (92.37, 91.8, and 93.34 %, respectively, p = 0.03 for both) and of intron 7 (77.08, 73.74, and 79.71 %, respectively, p = 0.02 and p < 0.01) than controls. Twenty-two subjects had the CC genotype, 34 had the TC genotype, and eight had the TT genotype. Lower average DNA methylation in intron 7 was observed in the TT subjects compared to CC (72.5vs. 79.5 %, p = 0.02) and to TC (72.5 vs. 79.0 %, p = 0.03). Our data demonstrate, for the first time, a reduction of intronic DNA methylation of FKBP5 in CS patients.

  9. Spatial variation of bacterial community composition near the Luzon ...

    African Journals Online (AJOL)

    Spatial variation of bacterial community composition near the Luzon strait assessed by polymerase chain reaction-denaturing gradient gel electrophoresis ... chain reaction (PCR)-amplified bacterial 16S ribosomal deoxyribonucleic acid (DNA) gene fragments and interpreted the results; its relationship with physical and ...

  10. Efficient Sleeping Beauty DNA Transposition From DNA Minicircles

    Directory of Open Access Journals (Sweden)

    Nynne Sharma

    2013-01-01

    Full Text Available DNA transposon-based vectors have emerged as new potential delivery tools in therapeutic gene transfer. Such vectors are now showing promise in hematopoietic stem cells and primary human T cells, and clinical trials with transposon-engineered cells are on the way. However, the use of plasmid DNA as a carrier of the vector raises safety concerns due to the undesirable administration of bacterial sequences. To optimize vectors based on the Sleeping Beauty (SB DNA transposon for clinical use, we examine here SB transposition from DNA minicircles (MCs devoid of the bacterial plasmid backbone. Potent DNA transposition, directed by the hyperactive SB100X transposase, is demonstrated from MC donors, and the stable transfection rate is significantly enhanced by expressing the SB100X transposase from MCs. The stable transfection rate is inversely related to the size of circular donor, suggesting that a MC-based SB transposition system benefits primarily from an increased cellular uptake and/or enhanced expression which can be observed with DNA MCs. DNA transposon and transposase MCs are easily produced, are favorable in size, do not carry irrelevant DNA, and are robust substrates for DNA transposition. In accordance, DNA MCs should become a standard source of DNA transposons not only in therapeutic settings but also in the daily use of the SB system.

  11. Direct quantification of cell-free, circulating DNA from unpurified plasma.

    Science.gov (United States)

    Breitbach, Sarah; Tug, Suzan; Helmig, Susanne; Zahn, Daniela; Kubiak, Thomas; Michal, Matthias; Gori, Tommaso; Ehlert, Tobias; Beiter, Thomas; Simon, Perikles

    2014-01-01

    Cell-free DNA (cfDNA) in body tissues or fluids is extensively investigated in clinical medicine and other research fields. In this article we provide a direct quantitative real-time PCR (qPCR) as a sensitive tool for the measurement of cfDNA from plasma without previous DNA extraction, which is known to be accompanied by a reduction of DNA yield. The primer sets were designed to amplify a 90 and 222 bp multi-locus L1PA2 sequence. In the first module, cfDNA concentrations in unpurified plasma were compared to cfDNA concentrations in the eluate and the flow-through of the QIAamp DNA Blood Mini Kit and in the eluate of a phenol-chloroform isoamyl (PCI) based DNA extraction, to elucidate the DNA losses during extraction. The analyses revealed 2.79-fold higher cfDNA concentrations in unpurified plasma compared to the eluate of the QIAamp DNA Blood Mini Kit, while 36.7% of the total cfDNA were found in the flow-through. The PCI procedure only performed well on samples with high cfDNA concentrations, showing 87.4% of the concentrations measured in plasma. The DNA integrity strongly depended on the sample treatment. Further qualitative analyses indicated differing fractions of cfDNA fragment lengths in the eluate of both extraction methods. In the second module, cfDNA concentrations in the plasma of 74 coronary heart disease patients were compared to cfDNA concentrations of 74 healthy controls, using the direct L1PA2 qPCR for cfDNA quantification. The patient collective showed significantly higher cfDNA levels (mean (SD) 20.1 (23.8) ng/ml; range 5.1-183.0 ng/ml) compared to the healthy controls (9.7 (4.2) ng/ml; range 1.6-23.7 ng/ml). With our direct qPCR, we recommend a simple, economic and sensitive procedure for the quantification of cfDNA concentrations from plasma that might find broad applicability, if cfDNA became an established marker in the assessment of pathophysiological conditions.

  12. A unique DNA found in post-mitochondrial fraction from Ehrlich ascites tumor cells

    International Nuclear Information System (INIS)

    Guimaraes, R.C.; Bloch, D.P.

    1982-01-01

    A DNA found in post-mitochondrial fractions from Ehrlich ascites cells, comprising 0.2% of the total cellular DNA, is partially characterized. It appears in cytoplasmic homogenates as a 14.6 S molecule, and is eluted from hydroxyapatite with 0.24 M sodium phosphate buffer. Its Cs 2 SO 4 buoyant density is lower than Erlich ascites tumor nuclear DNA and it has low dG+dC content, as determined by chromatography of hydrolysates of 32 P-labelled DNA. It is enriched in sequences which reassociate rapidly in the presence of excess nuclear DNA. It can be used as promoter for DNA synthesis by an endogenous DNA-dependent DNA polymerase found in association with the post-mitochondrial preparations. It is found to be associated with newly incorporated radioactivity following incubation in vitro with labelled UTP. Its localization in situ has not yet been attempled. It is thought to represent viral A-type particle associated, or plasma membrane associated DNA. (author) [pt

  13. Estimating DNA coverage and abundance in metagenomes using a gamma approximation

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, Sean D; Dalevi, Daniel; Pati, Amrita; Mavromatis, Konstantinos; Ivanova, Natalia N; Kyrpides, Nikos C

    2010-01-01

    Shotgun sequencing generates large numbers of short DNA reads from either an isolated organism or, in the case of metagenomics projects, from the aggregate genome of a microbial community. These reads are then assembled based on overlapping sequences into larger, contiguous sequences (contigs). The feasibility of assembly and the coverage achieved (reads per nucleotide or distinct sequence of nucleotides) depend on several factors: the number of reads sequenced, the read length and the relative abundances of their source genomes in the microbial community. A low coverage suggests that most of the genomic DNA in the sample has not been sequenced, but it is often difficult to estimate either the extent of the uncaptured diversity or the amount of additional sequencing that would be most efficacious. In this work, we regard a metagenome as a population of DNA fragments (bins), each of which may be covered by one or more reads. We employ a gamma distribution to model this bin population due to its flexibility and ease of use. When a gamma approximation can be found that adequately fits the data, we may estimate the number of bins that were not sequenced and that could potentially be revealed by additional sequencing. We evaluated the performance of this model using simulated metagenomes and demonstrate its applicability on three recent metagenomic datasets.

  14. DNA profiling of trace DNA recovered from bedding.

    Science.gov (United States)

    Petricevic, Susan F; Bright, Jo-Anne; Cockerton, Sarah L

    2006-05-25

    Trace DNA is often detected on handled items and worn clothing examined in forensic laboratories. In this study, the potential transfer of trace DNA to bedding by normal contact, when an individual sleeps in a bed, is examined. Volunteers slept one night on a new, lower bed sheet in their own bed and one night in a bed foreign to them. Samples from the sheets were collected and analysed by DNA profiling. The results indicate that the DNA profile of an individual can be obtained from bedding after one night of sleeping in a bed. The DNA profile of the owner of the bed could also be detected in the foreign bed experiments. Since mixed DNA profiles can be obtained from trace DNA on bedding, caution should be exercised when drawing conclusions from DNA profiling results obtained from such samples. This transfer may have important repercussions in sexual assault investigations.

  15. Impact of Plasma Epstein-Barr Virus-DNA and Tumor Volume on Prognosis of Locally Advanced Nasopharyngeal Carcinoma

    Directory of Open Access Journals (Sweden)

    Meng Chen

    2015-01-01

    Full Text Available This retrospective study aims to examine the association of plasma Epstein-Barr virus- (EBV- DNA levels with the tumor volume and prognosis in patients with locally advanced nasopharyngeal carcinoma (NPC. A total of 165 patients with newly diagnosed locally advanced NPC were identified from September 2011 to July 2012. EBV-DNA was detected using fluorescence quantitative polymerase chain reaction (PCR amplification. The tumor volume was calculated by the systematic summation method of computer software. The median copy number of plasma EBV-DNA before treatment was 3790 copies/mL. The median gross tumor volume of the primary nasopharyngeal tumor (GTVnx, the lymph node lesions (GTVnd, and the total GTV before treatment were 72.46, 23.26, and 106.25 cm3, respectively; the EBV-DNA levels were significantly correlated with the GTVnd and the total GTV (P<0.01. The 2-year overall survival (OS rates in patients with positive and negative pretreatment plasma EBV-DNA were 100% and 98.4% (P=1.000, and the disease-free survival (DFS rates were 94.4% and 80.8% (P=0.044, respectively. These results indicate that high pretreatment plasma EBV-DNA levels in patients with locally advanced NPC are associated with the degree of lymph node metastasis, tumor burden, and poor prognosis.

  16. Pyrosequencing Reveals Fungal Communities in the Rhizosphere of Xinjiang Jujube

    Directory of Open Access Journals (Sweden)

    Peng Liu

    2015-01-01

    Full Text Available Fungi are important soil components as both decomposers and plant symbionts and play a major role in ecological and biogeochemical processes. However, little is known about the richness and structure of fungal communities. DNA sequencing technologies allow for the direct estimation of microbial community diversity, avoiding culture-based biases. We therefore used 454 pyrosequencing to investigate the fungal communities in the rhizosphere of Xinjiang jujube. We obtained no less than 40,488 internal transcribed spacer (ITS rDNA reads, the number of each sample was 6943, 6647, 6584, 6550, 6860, and 6904, and we used bioinformatics and multivariate statistics to analyze the results. The index of diversity showed greater richness in the rhizosphere fungal community of a 3-year-old jujube than in that of an 8-year-old jujube. Most operational taxonomic units belonged to Ascomycota, and taxonomic analyses identified Hypocreales as the dominant fungal order. Our results demonstrated that the fungal orders are present in different proportions in different sampling areas. Redundancy analysis (RDA revealed a significant correlation between soil properties and the abundance of fungal phyla. Our results indicated lower fungal diversity in the rhizosphere of Xinjiang jujube than that reported in other studies, and we hope our findings provide a reference for future research.

  17. DNA2—An Important Player in DNA Damage Response or Just Another DNA Maintenance Protein?

    Directory of Open Access Journals (Sweden)

    Elzbieta Pawłowska

    2017-07-01

    Full Text Available The human DNA2 (DNA replication helicase/nuclease 2 protein is expressed in both the nucleus and mitochondria, where it displays ATPase-dependent nuclease and helicase activities. DNA2 plays an important role in the removing of long flaps in DNA replication and long-patch base excision repair (LP-BER, interacting with the replication protein A (RPA and the flap endonuclease 1 (FEN1. DNA2 can promote the restart of arrested replication fork along with Werner syndrome ATP-dependent helicase (WRN and Bloom syndrome protein (BLM. In mitochondria, DNA2 can facilitate primer removal during strand-displacement replication. DNA2 is involved in DNA double strand (DSB repair, in which it is complexed with BLM, RPA and MRN for DNA strand resection required for homologous recombination repair. DNA2 can be a major protein involved in the repair of complex DNA damage containing a DSB and a 5′ adduct resulting from a chemical group bound to DNA 5′ ends, created by ionizing radiation and several anticancer drugs, including etoposide, mitoxantrone and some anthracyclines. The role of DNA2 in telomere end maintenance and cell cycle regulation suggests its more general role in keeping genomic stability, which is impaired in cancer. Therefore DNA2 can be an attractive target in cancer therapy. This is supported by enhanced expression of DNA2 in many cancer cell lines with oncogene activation and premalignant cells. Therefore, DNA2 can be considered as a potential marker, useful in cancer therapy. DNA2, along with PARP1 inhibition, may be considered as a potential target for inducing synthetic lethality, a concept of killing tumor cells by targeting two essential genes.

  18. Increasing global participation in genetics research through DNA barcoding.

    Science.gov (United States)

    Adamowicz, Sarah J; Steinke, Dirk

    2015-12-01

    DNA barcoding--the sequencing of short, standardized DNA regions for specimen identification and species discovery--has promised to facilitate rapid access to biodiversity knowledge by diverse users. Here, we advance our opinion that increased global participation in genetics research is beneficial, both to scientists and for science, and explore the premise that DNA barcoding can help to democratize participation in genetics research. We examine publication patterns (2003-2014) in the DNA barcoding literature and compare trends with those in the broader, related domain of genomics. While genomics is the older and much larger field, the number of nations contributing to the published literature is similar between disciplines. Meanwhile, DNA barcoding exhibits a higher pace of growth in the number of publications as well as greater evenness among nations in their proportional contribution to total authorships. This exploration revealed DNA barcoding to be a highly international discipline, with growing participation by researchers in especially biodiverse nations. We briefly consider several of the challenges that may hinder further participation in genetics research, including access to training and molecular facilities as well as policy relating to the movement of genetic resources.

  19. Radiation-induced depression of DNA synthesis in cultured mammalian cells

    International Nuclear Information System (INIS)

    Povirk, L.F.

    1977-01-01

    A 313-nm light source was constructed in order to study the mechanisms by which ultraviolet and ionizing radiations inhibit DNA synthesis. It was found that in CHO, MDBK and HeLa cells, grown for one generation in the DNA sensitizer bromodeoxyuridine (BrdUrd), 313-nm light inhibited DNA synthesis with a pattern similar to that of the effect of x-rays on normal cells. A biphasic dose response curve for inhibition of total synthesis was observed, with a sensitive component representing depression of initiation of new replicons and a resistant component representing interference with elongation of replicons already growing at the time of irradiation. Since the BrdUrd plus 313-nm light treatment produces DNA lesions similar to those produced by x-rays (base damage, strand breaks, crosslinks) these results suggest that the effect of x-rays on DNA synthesis is mediated by DNA damage. In experiments with synchronized cells, it was found that in cells in which about half the chromosomes had incorporated BrdUrd, 313-nm light inhibited replication of the BrdUrd-containing DNA, but had no effect on the replication of the unsubstituted DNA in the same cell. Thus the information that DNA is damaged appears to be propagated along the DNA molecule from the sites of damage to the replication initiation sites as some kind of conformational change, possibly a relaxation of superhelical tension. Target theory calculations suggest that a single DNA lesion prevents the initiation of several adjacent replicons

  20. Scientific publications about DNA structure-function and PCR technique in Costa Rica: a historic view (1953-2003).

    Science.gov (United States)

    Albertazzi, Federico J

    2004-09-01

    The spreading of knowledge depends on the access to the information and its immediate use. Models are useful to explain specific phenomena. The scientific community accepts some models in Biology after a period of time, once it has evidence to support it. The model of the structure and function of the DNA proposed by Watson & Crick (1953) was not the exception, since a few years later the DNA model was finally accepted. In Costa Rica, DNA function was first mentioned in 1970, in the magazine Biologia Tropical (Tropical Biology Magazine), more than 15 years after its first publication in a scientific journal. An opposite situation occurs with technical innovations. If the efficiency of a new scientific technique is proved in a compelling way, then the acceptance by the community comes swiftly. This was the case of the polymerase chain reaction, or PCR. The first PCR machine in Costa Rica arrived in 1991, only three years after its publication.

  1. Persistence of marine fish environmental DNA and the influence of sunlight.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Andruszkiewicz

    Full Text Available Harnessing information encoded in environmental DNA (eDNA in marine waters has the potential to revolutionize marine biomonitoring. Whether using organism-specific quantitative PCR assays or metabarcoding in conjunction with amplicon sequencing, scientists have illustrated that realistic organism censuses can be inferred from eDNA. The next step is establishing ways to link information obtained from eDNA analyses to actual organism abundance. This is only possible by understanding the processes that control eDNA concentrations. The present study uses mesocosm experiments to study the persistence of eDNA in marine waters and explore the role of sunlight in modulating eDNA persistence. We seeded solute-permeable dialysis bags with water containing indigenous eDNA and suspended them in a large tank containing seawater. Bags were subjected to two treatments: half the bags were suspended near the water surface where they received high doses of sunlight, and half at depth where they received lower doses of sunlight. Bags were destructively sampled over the course of 87 hours. eDNA was extracted from water samples and used as template for a Scomber japonicus qPCR assay and a marine fish-specific 12S rRNA PCR assay. The latter was subsequently sequenced using a metabarcoding approach. S. japonicus eDNA, as measured by qPCR, exhibited first order decay with a rate constant ~0.01 hr -1 with no difference in decay rate constants between the two experimental treatments. eDNA metabarcoding identified 190 organizational taxonomic units (OTUs assigned to varying taxonomic ranks. There was no difference in marine fish communities as measured by eDNA metabarcoding between the two experimental treatments, but there was an effect of time. Given the differences in UVA and UVB fluence received by the two experimental treatments, we conclude that sunlight is not the main driver of fish eDNA decay in the experiments. However, there are clearly temporal effects that

  2. DNA-based identification of aquatic invertebrates useful in the South African context?

    Directory of Open Access Journals (Sweden)

    Hermoine J. Venter

    2016-05-01

    Full Text Available The concept of using specific regions of DNA to identify organisms processes such as DNA barcoding is not new to South African biologists. The African Centre for DNA Barcoding reports that 12 548 plant species and 1493 animal species had been barcoded in South Africa by July 2013, while the Barcode of Life Database (BOLD contains 62 926 records for South Africa, 11 392 of which had species names (representing 4541 species. In light of this, it is surprising that aquatic macroinvertebrates of South Africa have not received much attention as potential barcoding projects thus fa barcoding of aquatic species has tended to focus on invasive species and fishes. Perusal of the BOLD records for South Africa indicates a noticeable absence of aquatic macroinvertebrates, including families used for biomonitoring strategies such as the South African Scoring System. Meanwhile, the approach of collecting specimens and isolating their DNA individually in order to identify them (as in the case of DNA barcoding, has been shifting towards making use of the DNA which organisms naturally shed into their environments (eDNA. Coupling environmental and bulk sample DNA with high-throughput sequencing technology has given rise to metabarcoding, which has the potential to characterise the whole community of organisms present in an environment. Harnessing barcoding and metabarcoding approaches with environmental DNA (eDNA potentially offers a non-invasive means of measuring the biodiversity in an environment and has great potential for biomonitoring. Aquatic ecosystems are well suited to these approaches but could they be useful in a South African context?

  3. The Association between Total Protein and Vegetable Protein Intake and Low Muscle Mass among the Community-Dwelling Elderly Population in Northern Taiwan

    Directory of Open Access Journals (Sweden)

    Ru-Yi Huang

    2016-06-01

    Full Text Available Sarcopenia, highly linked with fall, frailty, and disease burden, is an emerging problem in aging society. Higher protein intake has been suggested to maintain nitrogen balance. Our objective was to investigate whether pre-sarcopenia status was associated with lower protein intake. A total of 327 community-dwelling elderly people were recruited for a cross-sectional study. We adopted the multivariate nutrient density model to identify associations between low muscle mass and dietary protein intake. The general linear regression models were applied to estimate skeletal muscle mass index across the quartiles of total protein and vegetable protein density. Participants with diets in the lowest quartile of total protein density (<13.2% were at a higher risk for low muscle mass (odds ratio (OR 3.03, 95% confidence interval (CI 1.37–6.72 than those with diets in the highest quartile (≥17.2%. Similarly, participants with diets in the lowest quartile of vegetable protein density (<5.8% were at a higher risk for low muscle mass (OR 2.34, 95% CI 1.14–4.83 than those with diets in the highest quartile (≥9.4%. Furthermore, the estimated skeletal muscle mass index increased significantly across the quartiles of total protein density (p = 0.023 and vegetable protein density (p = 0.025. Increasing daily intakes of total protein and vegetable protein densities appears to confer protection against pre-sarcopenia status.

  4. Fungal palaeodiversity revealed using high-throughput metabarcoding of ancient DNA from arctic permafrost

    DEFF Research Database (Denmark)

    Bellemain, Eva; Davey, Marie L.; Kauserud, Håvard

    2013-01-01

    The taxonomic and ecological diversity of ancient fungal communities was assessed by combining next generation sequencing and metabarcoding of DNA preserved in permafrost. Twenty-six sediment samples dated 16000-32000 radiocarbon years old from two localities in Siberia were analysed for fungal ITS...

  5. Ancient microbes from halite fluid inclusions: optimized surface sterilization and DNA extraction.

    Directory of Open Access Journals (Sweden)

    Krithivasan Sankaranarayanan

    Full Text Available Fluid inclusions in evaporite minerals (halite, gypsum, etc. potentially preserve genetic records of microbial diversity and changing environmental conditions of Earth's hydrosphere for nearly one billion years. Here we describe a robust protocol for surface sterilization and retrieval of DNA from fluid inclusions in halite that, unlike previously published methods, guarantees removal of potentially contaminating surface-bound DNA. The protocol involves microscopic visualization of cell structures, deliberate surface contamination followed by surface sterilization with acid and bleach washes, and DNA extraction using Amicon centrifugal filters. Methods were verified on halite crystals of four different ages from Saline Valley, California (modern, 36 ka, 64 ka, and 150 ka, with retrieval of algal and archaeal DNA, and characterization of the algal community using ITS1 sequences. The protocol we developed opens up new avenues for study of ancient microbial ecosystems in fluid inclusions, understanding microbial evolution across geological time, and investigating the antiquity of life on earth and other parts of the solar system.

  6. Ancient microbes from halite fluid inclusions: optimized surface sterilization and DNA extraction.

    Science.gov (United States)

    Sankaranarayanan, Krithivasan; Timofeeff, Michael N; Spathis, Rita; Lowenstein, Tim K; Lum, J Koji

    2011-01-01

    Fluid inclusions in evaporite minerals (halite, gypsum, etc.) potentially preserve genetic records of microbial diversity and changing environmental conditions of Earth's hydrosphere for nearly one billion years. Here we describe a robust protocol for surface sterilization and retrieval of DNA from fluid inclusions in halite that, unlike previously published methods, guarantees removal of potentially contaminating surface-bound DNA. The protocol involves microscopic visualization of cell structures, deliberate surface contamination followed by surface sterilization with acid and bleach washes, and DNA extraction using Amicon centrifugal filters. Methods were verified on halite crystals of four different ages from Saline Valley, California (modern, 36 ka, 64 ka, and 150 ka), with retrieval of algal and archaeal DNA, and characterization of the algal community using ITS1 sequences. The protocol we developed opens up new avenues for study of ancient microbial ecosystems in fluid inclusions, understanding microbial evolution across geological time, and investigating the antiquity of life on earth and other parts of the solar system.

  7. Aberrant DNA Methylation: Implications in Racial Health Disparity.

    Directory of Open Access Journals (Sweden)

    Xuefeng Wang

    Full Text Available Incidence and mortality rates of colorectal carcinoma (CRC are higher in African Americans (AAs than in Caucasian Americans (CAs. Deficient micronutrient intake due to dietary restrictions in racial/ethnic populations can alter genetic and molecular profiles leading to dysregulated methylation patterns and the inheritance of somatic to germline mutations.Total DNA and RNA samples of paired tumor and adjacent normal colon tissues were prepared from AA and CA CRC specimens. Reduced Representation Bisulfite Sequencing (RRBS and RNA sequencing were employed to evaluate total genome methylation of 5'-regulatory regions and dysregulation of gene expression, respectively. Robust analysis was conducted using a trimming-and-retrieving scheme for RRBS library mapping in conjunction with the BStool toolkit.DNA from the tumor of AA CRC patients, compared to adjacent normal tissues, contained 1,588 hypermethylated and 100 hypomethylated differentially methylated regions (DMRs. Whereas, 109 hypermethylated and 4 hypomethylated DMRs were observed in DNA from the tumor of CA CRC patients; representing a 14.6-fold and 25-fold change, respectively. Specifically; CHL1, 4 anti-inflammatory genes (i.e., NELL1, GDF1, ARHGEF4, and ITGA4, and 7 miRNAs (of which miR-9-3p and miR-124-3p have been implicated in CRC were hypermethylated in DNA samples from AA patients with CRC. From the same sample set, RNAseq analysis revealed 108 downregulated genes (including 14 ribosomal proteins and 34 upregulated genes (including POLR2B and CYP1B1 [targets of miR-124-3p] in AA patients with CRC versus CA patients.DNA methylation profile and/or products of its downstream targets could serve as biomarker(s addressing racial health disparity.

  8. Quantification of transcription factor-DNA binding affinity in a living cell.

    Science.gov (United States)

    Belikov, Sergey; Berg, Otto G; Wrange, Örjan

    2016-04-20

    The apparent dissociation constant (Kd) for specific binding of glucocorticoid receptor (GR) and androgen receptor (AR) to DNA was determined in vivo in Xenopus oocytes. The total nuclear receptor concentration was quantified as specifically retained [(3)H]-hormone in manually isolated oocyte nuclei. DNA was introduced by nuclear microinjection of single stranded phagemid DNA, chromatin is then formed during second strand synthesis. The fraction of DNA sites occupied by the expressed receptor was determined by dimethylsulphate in vivo footprinting and used for calculation of the receptor-DNA binding affinity. The forkhead transcription factor FoxA1 enhanced the DNA binding by GR with an apparent Kd of ∼1 μM and dramatically stimulated DNA binding by AR with an apparent Kd of ∼0.13 μM at a composite androgen responsive DNA element containing one FoxA1 binding site and one palindromic hormone receptor binding site known to bind one receptor homodimer. FoxA1 exerted a weak constitutive- and strongly cooperative DNA binding together with AR but had a less prominent effect with GR, the difference reflecting the licensing function of FoxA1 at this androgen responsive DNA element. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Single Nucleotide Polymorphisms in Noncoding Regions of Rad51C Do Not Change the Risk of Unselected Breast Cancer but They Modulate the Level of Oxidative Stress and the DNA Damage Characteristics

    DEFF Research Database (Denmark)

    Gresner, Peter; Gromadzinska, Jolanta; Jablonska, Ewa

    2014-01-01

    affect the unselected BrC risk. Contrary to this, carriers of rs12946522, rs16943176, rs12946397 and rs17222691 rare-alleles were found to present significantly increased level of blood plasma TBARS compared to respective wild-type homozygotes (p... decreased fraction of oxidatively generated DNA damage (34% of total damaged DNA) in favor of DNA strand breakage, with no effect on total DNA damage, unlike respective wild-types, among which more evenly distributed proportions between oxidatively damaged DNA (48% of total DNA damage) and DNA strand...

  10. Structure of DNA toroids and electrostatic attraction of DNA duplexes

    International Nuclear Information System (INIS)

    Cherstvy, A G

    2005-01-01

    DNA-DNA electrostatic attraction is considered as the driving force for the formation of DNA toroids in the presence of DNA condensing cations. This attraction comes from the DNA helical charge distribution and favours hexagonal toroidal cross-sections. The latter is in agreement with recent cryo-electron microscopy studies on DNA condensed with cobalt hexammine. We treat the DNA-DNA interactions within the modern theory of electrostatic interaction between helical macromolecules. The size and thickness of the toroids is calculated within a simple model; other models of stability of DNA toroids are discussed and compared

  11. Oxidative Stress, DNA Damage and DNA Repair in Female Patients with Diabetes Mellitus Type 2.

    Directory of Open Access Journals (Sweden)

    Annemarie Grindel

    Full Text Available Diabetes mellitus type 2 (T2DM is associated with oxidative stress which in turn can lead to DNA damage. The aim of the present study was to analyze oxidative stress, DNA damage and DNA repair in regard to hyperglycemic state and diabetes duration.Female T2DM patients (n = 146 were enrolled in the MIKRODIAB study and allocated in two groups regarding their glycated hemoglobin (HbA1c level (HbA1c≤7.5%, n = 74; HbA1c>7.5%, n = 72. In addition, tertiles according to diabetes duration (DD were created (DDI = 6.94±3.1 y, n = 49; DDII = 13.35±1.1 y, n = 48; DDIII = 22.90±7.3 y, n = 49. Oxidative stress parameters, including ferric reducing ability potential, malondialdehyde, oxidized and reduced glutathione, reduced thiols, oxidized LDL and F2-Isoprostane as well as the activity of antioxidant enzymes superoxide dismutase, catalase and glutathione peroxidase were measured. Damage to DNA was analyzed in peripheral blood mononuclear cells and whole blood with single cell gel electrophoresis. DNA base excision repair capacity was tested with the modified comet repair assay. Additionally, mRNA expressions of nine genes related to base excision repair were analyzed in a subset of 46 matched individuals.No significant differences in oxidative stress parameters, antioxidant enzyme activities, damage to DNA and base excision repair capacity, neither between a HbA1c cut off />7.5%, nor between diabetes duration was found. A significant up-regulation in mRNA expression was found for APEX1, LIG3 and XRCC1 in patients with >7.5% HbA1c. Additionally, we observed higher total cholesterol, LDL-cholesterol, LDL/HDL-cholesterol, triglycerides, Framingham risk score, systolic blood pressure, BMI and lower HDL-cholesterol in the hyperglycemic group.BMI, blood pressure and blood lipid status were worse in hyperglycemic individuals. However, no major disparities regarding oxidative stress, damage to DNA and DNA repair were present which might be due to good medical

  12. Immobilization/hybridization of amino-modified DNA on plasma-polymerized allyl chloride

    International Nuclear Information System (INIS)

    Zhang Zhihong; Feng Chuanliang

    2007-01-01

    The present work describes the fabrication and characterization of chloride-derivatized polymer coatings prepared by continuous wave (cw) plasma polymerization as adhesion layers in DNA immobilization/hybridization. The stability of plasma-polymerized allyl chloride (ppAC) in H 2 O was characterized by variation of the thickness of polymer films and its wettability was examined by water contact angle technique. Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) were used to study polymer matrix properties and oligonucleotide/DNA binding interaction. With the same carrier gas rate and process pressure, plasma polymers deposited at different input powers show various comparable immobilization properties; nevertheless, low input power plasma-polymerized films gives a lower sensitivity toward DNA binding than that from high input power plasma-deposited films. The following DNA immobilization on chloride-functionalized surfaces was found dependence on the macromolecular architecture of the plasma films. The hybridization between probe DNA and total mismatch target DNA shows no non-specific adsorption between target and ppAC

  13. Oxidative DNA as related to cancer and aging

    International Nuclear Information System (INIS)

    Ames, B.N.

    1987-01-01

    DNA damage in man can result from a variety of endogenous processes. Of particular importance as endogenous processes may be metabolic pathways that generate oxygen radicals and other reactive oxygen species. Oxygen radicals have been shown to produce DNA base damage and strand breaks. Two products that are formed in DNA in vitro by chemical oxidation or ionizing radiation (and oxidative mutagen) are thymine glycol and hydroxymethyl-uracil, both oxidation products of thymine. Specific mammalian DNA repair systems are known to excise these lesions from DNA in vitro. The authors' laboratory has recently reported the identification, in both human and rat urine, of thymine glycol, thymidine glycol, and hydroxymethyluracil. They now have considerable evidence that these products are derived from the repair of oxidized DNA. The total output of these three compounds represents the formation of about 1,000 oxidized thymine residues per cell per day in man. Since these products are only three of a considerable number of types of oxidative DNA damage products described by radiobiologists, there are likely to be several thousand oxidative DNA hits per cell per day in man. Rats, which have a higher specific metabolic rate and a shorter life span, excrete about 15 times more thymine glycol, thymidine glycol, and hydroxymethyluracil per kilogram body weight. The authors also describe new methods for measuring the levels, which are considerable, of hydrogen peroxide and lipid hydroperoxides in normal plasma and tissues. These non-invasive assays of DNA and other oxidation products may allow the direct testing of current theories that relate oxidative metabolism to the processes of cancer and aging in man

  14. Flavonoids in Helichrysum pamphylicum inhibit mammalian type I DNA topoisomerase.

    Science.gov (United States)

    Topcu, Zeki; Ozturk, Bintug; Kucukoglu, Ozlem; Kilinc, Emrah

    2008-01-01

    DNA topoisomerases are important targets for cancer chemotherapy. We investigated the effects of a methanolic extract of Helichrysum pamphylicum on mammalian DNA topoisomerase I via in vitro plasmid supercoil relaxation assays. The extracts manifested a considerable inhibition of the enzyme's activity in a dose-dependent manner. We also performed a HPLC analysis to identify the flavonoid content of the H. pamphylicum extract and tested the identified flavonoids; luteolin, luteolin-4-glucoside, naringenin, helichrysinA and isoquercitrin, on DNA topoisomerase I activity. The measurement of the total antioxidant capacity of the flavonoid standards suggested that the topoisomerase inhibition might be correlated with the antioxidant capacity of the plant.

  15. DNA barcoding in the media: does coverage of cool science reflect its social context?

    Science.gov (United States)

    Geary, Janis; Camicioli, Emma; Bubela, Tania

    2016-09-01

    Paul Hebert and colleagues first described DNA barcoding in 2003, which led to international efforts to promote and coordinate its use. Since its inception, DNA barcoding has generated considerable media coverage. We analysed whether this coverage reflected both the scientific and social mandates of international barcoding organizations. We searched newspaper databases to identify 900 English-language articles from 2003 to 2013. Coverage of the science of DNA barcoding was highly positive but lacked context for key topics. Coverage omissions pose challenges for public understanding of the science and applications of DNA barcoding; these included coverage of governance structures and issues related to the sharing of genetic resources across national borders. Our analysis provided insight into how barcoding communication efforts have translated into media coverage; more targeted communication efforts may focus media attention on previously omitted, but important topics. Our analysis is timely as the DNA barcoding community works to establish the International Society for the Barcode of Life.

  16. RNA:DNA Ratio and Other Nucleic Acid Derived Indices in Marine Ecology

    Directory of Open Access Journals (Sweden)

    Luis Chícharo

    2008-08-01

    Full Text Available Some of most used indicators in marine ecology are nucleic acid-derived indices. They can be divided by target levels in three groups: 1 at the organism level as ecophysiologic indicators, indicators such as RNA:DNA ratios, DNA:dry weight and RNA:protein, 2 at the population level, indicators such as growth rate, starvation incidence or fisheries impact indicators, and 3 at the community level, indicators such as trophic interactions, exergy indices and prey identification. The nucleic acids derived indices, especially RNA:DNA ratio, have been applied with success as indicators of nutritional condition, well been and growth in marine organisms. They are also useful as indicators of natural or anthropogenic impacts in marine population and communities, such as upwelling or dredge fisheries, respectively. They can help in understanding important issues of marine ecology such as trophic interactions in marine environment, fish and invertebrate recruitment failure and biodiversity changes, without laborious work of counting, measuring and identification of small marine organisms. Besides the objective of integrate nucleic acid derived indices across levels of organization, the paper will also include a general characterization of most used nucleic acid derived indices in marine ecology and also advantages and limitations of them. We can conclude that using indicators, such RNA:DNA ratios and other nucleic acids derived indices concomitantly with organism and ecosystems measures of responses to climate change (distribution, abundance, activity, metabolic rate, survival will allow for the development of more rigorous and realistic predictions of the effects of anthropogenic climate change on marine systems.

  17. Improving Griffith's protocol for co-extraction of microbial DNA and RNA in adsorptive soils

    DEFF Research Database (Denmark)

    Paulin, Mélanie Marie; Nicolaisen, Mette Haubjerg; Jacobsen, Carsten Suhr

    2013-01-01

    Quantification of microbial gene expression is increasingly being used to study key functions in soil microbial communities, yet major limitations still exist for efficient extraction of nucleic acids, especially RNA for transcript analysis, from this complex matrix. We present an improved......-time PCR on both the RNA (after conversion to cDNA) and the DNA fraction of the extracts. Non-adsorptive soils were characterized by low clay content and/or high phosphate content, whereas adsorptive soils had clay contents above 20% and/or a strong presence of divalent Ca in combination with high p......H. Modifications to the co-extraction protocol improved nucleic acid extraction efficiency from all adsorptive soils and were successfully validated by DGGE analysis of the indigenous community based on 16S rRNA gene and transcripts in soils representing low biomass and/or high clay content. This new approach...

  18. The sensitivity of active and inactive chromatin to ionizing radiation-induced DNA strand breakage

    International Nuclear Information System (INIS)

    Chiu, S.-M.; Oleinick, N.L.

    1982-01-01

    The sensitivity of DNA in actively transcribing and inactive states has been compared with regard to γ-radiation-induced single-strand break (SSB) induction. The results indicate that chromatin organization is important in the determination of the sensitivity of cellular DNA toward γ-radiation: Not only the yield but also the rate of repair of SSB is greater in the actively transcribing genes than in the total nuclear DNA. (author)

  19. Adélie penguin population diet monitoring by analysis of food DNA in scats.

    Science.gov (United States)

    Jarman, Simon N; McInnes, Julie C; Faux, Cassandra; Polanowski, Andrea M; Marthick, James; Deagle, Bruce E; Southwell, Colin; Emmerson, Louise

    2013-01-01

    The Adélie penguin is the most important animal currently used for ecosystem monitoring in the Southern Ocean. The diet of this species is generally studied by visual analysis of stomach contents; or ratios of isotopes of carbon and nitrogen incorporated into the penguin from its food. There are significant limitations to the information that can be gained from these methods. We evaluated population diet assessment by analysis of food DNA in scats as an alternative method for ecosystem monitoring with Adélie penguins as an indicator species. Scats were collected at four locations, three phases of the breeding cycle, and in four different years. A novel molecular diet assay and bioinformatics pipeline based on nuclear small subunit ribosomal RNA gene (SSU rDNA) sequencing was used to identify prey DNA in 389 scats. Analysis of the twelve population sample sets identified spatial and temporal dietary change in Adélie penguin population diet. Prey diversity was found to be greater than previously thought. Krill, fish, copepods and amphipods were the most important food groups, in general agreement with other Adélie penguin dietary studies based on hard part or stable isotope analysis. However, our DNA analysis estimated that a substantial portion of the diet was gelatinous groups such as jellyfish and comb jellies. A range of other prey not previously identified in the diet of this species were also discovered. The diverse prey identified by this DNA-based scat analysis confirms that the generalist feeding of Adélie penguins makes them a useful indicator species for prey community composition in the coastal zone of the Southern Ocean. Scat collection is a simple and non-invasive field sampling method that allows DNA-based estimation of prey community differences at many temporal and spatial scales and provides significant advantages over alternative diet analysis approaches.

  20. Genetic and DNA methylation changes in cotton (Gossypium genotypes and tissues.

    Directory of Open Access Journals (Sweden)

    Kenji Osabe

    Full Text Available In plants, epigenetic regulation is important in normal development and in modulating some agronomic traits. The potential contribution of DNA methylation mediated gene regulation to phenotypic diversity and development in cotton was investigated between cotton genotypes and various tissues. DNA methylation diversity, genetic diversity, and changes in methylation context were investigated using methylation-sensitive amplified polymorphism (MSAP assays including a methylation insensitive enzyme (BsiSI, and the total DNA methylation level was measured by high-performance liquid chromatography (HPLC. DNA methylation diversity was greater than the genetic diversity in the selected cotton genotypes and significantly different levels of DNA methylation were identified between tissues, including fibre. The higher DNA methylation diversity (CHG methylation being more diverse than CG methylation in cotton genotypes suggest epigenetic regulation may be important for cotton, and the change in DNA methylation between fibre and other tissues hints that some genes may be epigenetically regulated for fibre development. The novel approach using BsiSI allowed direct comparison between genetic and epigenetic diversity, and also measured CC methylation level that cannot be detected by conventional MSAP.

  1. Genetic and DNA methylation changes in cotton (Gossypium) genotypes and tissues.

    Science.gov (United States)

    Osabe, Kenji; Clement, Jenny D; Bedon, Frank; Pettolino, Filomena A; Ziolkowski, Lisa; Llewellyn, Danny J; Finnegan, E Jean; Wilson, Iain W

    2014-01-01

    In plants, epigenetic regulation is important in normal development and in modulating some agronomic traits. The potential contribution of DNA methylation mediated gene regulation to phenotypic diversity and development in cotton was investigated between cotton genotypes and various tissues. DNA methylation diversity, genetic diversity, and changes in methylation context were investigated using methylation-sensitive amplified polymorphism (MSAP) assays including a methylation insensitive enzyme (BsiSI), and the total DNA methylation level was measured by high-performance liquid chromatography (HPLC). DNA methylation diversity was greater than the genetic diversity in the selected cotton genotypes and significantly different levels of DNA methylation were identified between tissues, including fibre. The higher DNA methylation diversity (CHG methylation being more diverse than CG methylation) in cotton genotypes suggest epigenetic regulation may be important for cotton, and the change in DNA methylation between fibre and other tissues hints that some genes may be epigenetically regulated for fibre development. The novel approach using BsiSI allowed direct comparison between genetic and epigenetic diversity, and also measured CC methylation level that cannot be detected by conventional MSAP.

  2. Antimicrobial activity, cytotoxicity and DNA binding studies of carbon dots

    Science.gov (United States)

    Jhonsi, Mariadoss Asha; Ananth, Devanesan Arul; Nambirajan, Gayathri; Sivasudha, Thilagar; Yamini, Rekha; Bera, Soumen; Kathiravan, Arunkumar

    2018-05-01

    In recent years, quantum dots (QDs) are one of the most promising nanomaterials in life sciences community due to their unexploited potential in biomedical applications; particularly in bio-labeling and sensing. In the advanced nanomaterials, carbon dots (CDs) have shown promise in next generation bioimaging and drug delivery studies. Therefore the knowledge of the exact nature of interaction with biomolecules is of great interest to designing better biosensors. In this study, the interaction between CDs derived from tamarind and calf thymus DNA (ct-DNA) has been studied by vital spectroscopic techniques, which revealed that the CDs could interact with DNA via intercalation. The apparent association constant has been deduced from the absorption spectral changes of ct-DNA-CDs using the Benesi-Hildebrand equation. From the DNA induced emission quenching experiments the apparent DNA binding constant of the CDs (Kapp) have also been evaluated. Furthermore, we have analyzed the antibacterial and antifungal activity of CDs using disc diffusion assay method which exhibited excellent activity against E. coli and C. albicans with inhibition zone in the range of 7-12 mm. The biocompatible nature of CDs was confirmed by an in vitro cytotoxicity test on L6 normal rat myoblast cells by using MTT assay. The cell viability is not affected till the high dosage of CDs (200 μg/mL) for >48 h. As a consequence of the work, future development of CDs for microbial control and DNA sensing among the various biomolecules is possible in view of emerging biofields.

  3. Impact of cultivation on characterisation of species composition of soil bacterial communities.

    Science.gov (United States)

    McCaig, A E.; Grayston, S J.; Prosser, J I.; Glover, L A.

    2001-03-01

    The species composition of culturable bacteria in Scottish grassland soils was investigated using a combination of Biolog and 16S rDNA analysis for characterisation of isolates. The inclusion of a molecular approach allowed direct comparison of sequences from culturable bacteria with sequences obtained during analysis of DNA extracted directly from the same soil samples. Bacterial strains were isolated on Pseudomonas isolation agar (PIA), a selective medium, and on tryptone soya agar (TSA), a general laboratory medium. In total, 12 and 21 morphologically different bacterial cultures were isolated on PIA and TSA, respectively. Biolog and sequencing placed PIA isolates in the same taxonomic groups, the majority of cultures belonging to the Pseudomonas (sensu stricto) group. However, analysis of 16S rDNA sequences proved more efficient than Biolog for characterising TSA isolates due to limitations of the Microlog database for identifying environmental bacteria. In general, 16S rDNA sequences from TSA isolates showed high similarities to cultured species represented in sequence databases, although TSA-8 showed only 92.5% similarity to the nearest relative, Bacillus insolitus. In general, there was very little overlap between the culturable and uncultured bacterial communities, although two sequences, PIA-2 and TSA-13, showed >99% similarity to soil clones. A cloning step was included prior to sequence analysis of two isolates, TSA-5 and TSA-14, and analysis of several clones confirmed that these cultures comprised at least four and three sequence types, respectively. All isolate clones were most closely related to uncultured bacteria, with clone TSA-5.1 showing 99.8% similarity to a sequence amplified directly from the same soil sample. Interestingly, one clone, TSA-5.4, clustered within a novel group comprising only uncultured sequences. This group, which is associated with the novel, deep-branching Acidobacterium capsulatum lineage, also included clones isolated

  4. The tilt-dependent potential of mean force of a pair of DNA oligomers from all-atom molecular dynamics simulations

    International Nuclear Information System (INIS)

    Cortini, Ruggero; Cheng, Xiaolin

    2017-01-01

    Electrostatic interactions between DNA molecules have been extensively studied experimentally and theoretically, but several aspects (e.g. its role in determining the pitch of the cholesteric DNA phase) still remain unclear. Here, we performed large-scale all-atom molecular dynamics simulations in explicit water and 150 mM sodium chloride, to reconstruct the potential of mean force (PMF) of two DNA oligomers 24 base pairs long as a function of their interaxial angle and intermolecular distance. We find that the potential of mean force is dominated by total DNA charge, and not by the helical geometry of its charged groups. The theory of homogeneously charged cylinders fits well all our simulation data, and the fit yields the optimal value of the total compensated charge on DNA to ≈65% of its total fixed charge (arising from the phosphorous atoms), close to the value expected from Manning's theory of ion condensation. The PMF calculated from our simulations does not show a significant dependence on the handedness of the angle between the two DNA molecules, or its size is on the order of 1k B T. Thermal noise for molecules of the studied length seems to mask the effect of detailed helical charge patterns of DNA. The fact that in monovalent salt the effective interaction between two DNA molecules is independent on the handedness of the tilt may suggest that alternative mechanisms are required to understand the cholesteric phase of DNA.

  5. Komparasi Metode Isolasi DNA Patogen Antraknosa dan Bulai untuk Deteksi PCR

    Directory of Open Access Journals (Sweden)

    Ade Syahputra

    2016-11-01

    Full Text Available Polymerase chain reaction (PCR is an important tool for detection, identification and monitoring of quarantine pests in Indonesia. DNA isolation method from target organism is an important step to provide adequate DNA template for performing PCR. Objective of the research was to compare conventional, commercial kit, FTA-card and its modification methods of DNA isolation to be used in PCR detection for Colletotrichum acutatum and Peronosclerospora sorghi from chili and maize, respectively. DNA obtained from various isolation methods were measured using UV-vis nanodrop-spectrophotometry.  DNA amplification was performed using DNA concentration of 15 ng µL-1 from each isolation method with gradual primer concentrations of 0.4; 0.6; 0.8; and 1.0 mM. The highest concentration of DNA was achieved with conventional methods for C. acutatum from pure culture and P. sorghi from maize leaf. Best DNA purity was obtained from isolation method using commercial kit for C. acutatum from infected fruit (1.94 and from conventional method for C. acutatum from pure culture (1.91. The highest total yield of isolated DNA was achieved by modified FTA-card for C. acutatum from pure culture. In general DNA amplification using various primer concentration gave positive results although DNA bands intensity was varied from faint to very bright.  Furthermore PCR optimization using the best primer concentration from previous reaction showed that all DNA templates resulted in thick and bright DNA bands.

  6. DNA repair synthesis in human fibroblasts requires DNA polymerase delta

    International Nuclear Information System (INIS)

    Nishida, C.; Reinhard, P.; Linn, S.

    1988-01-01

    When UV-irradiated cultured diploid human fibroblasts were permeabilized with Brij-58 then separated from soluble material by centrifugation, conservative DNA repair synthesis could be restored by a soluble factor obtained from the supernatant of similarly treated HeLa cells. Extensive purification of this factor yielded a 10.2 S, 220,000-dalton polypeptide with the DNA polymerase and 3'- to 5'-exonuclease activities reported for DNA polymerase delta II. Monoclonal antibody to KB cell DNA polymerase alpha, while binding to HeLa DNA polymerase alpha, did not bind to the HeLa DNA polymerase delta. Moreover, at micromolar concentrations N2-(p-n-butylphenyl)-2'-deoxyguanosine 5'-triphosphate (BuPdGTP) and 2-(p-n-butylanilino)-2'-deoxyadenosine 5'-triphosphate (BuAdATP) were potent inhibitors of DNA polymerase alpha, but did not inhibit the DNA polymerase delta. Neither purified DNA polymerase alpha nor beta could promote repair DNA synthesis in the permeabilized cells. Furthermore, under conditions which inhibited purified DNA polymerase alpha by greater than 90%, neither monoclonal antibodies to DNA polymerase alpha, BuPdGTP, nor BuAdATP was able to inhibit significantly the DNA repair synthesis mediated by the DNA polymerase delta. Thus, it appears that a major portion of DNA repair synthesis induced by UV irradiation might be catalyzed by DNA polymerase delta. When xeroderma pigmentosum human diploid fibroblasts were utilized, DNA repair synthesis dependent upon ultraviolet light could be restored by addition of both T4 endonuclease V and DNA polymerase delta, but not by addition of either one alone

  7. mtDNA sequence diversity of Hazara ethnic group from Pakistan.

    Science.gov (United States)

    Rakha, Allah; Fatima; Peng, Min-Sheng; Adan, Atif; Bi, Rui; Yasmin, Memona; Yao, Yong-Gang

    2017-09-01

    The present study was undertaken to investigate mitochondrial DNA (mtDNA) control region sequences of Hazaras from Pakistan, so as to generate mtDNA reference database for forensic casework in Pakistan and to analyze phylogenetic relationship of this particular ethnic group with geographically proximal populations. Complete mtDNA control region (nt 16024-576) sequences were generated through Sanger Sequencing for 319 Hazara individuals from Quetta, Baluchistan. The population sample set showed a total of 189 distinct haplotypes, belonging mainly to West Eurasian (51.72%), East & Southeast Asian (29.78%) and South Asian (18.50%) haplogroups. Compared with other populations from Pakistan, the Hazara population had a relatively high haplotype diversity (0.9945) and a lower random match probability (0.0085). The dataset has been incorporated into EMPOP database under accession number EMP00680. The data herein comprises the largest, and likely most thoroughly examined, control region mtDNA dataset from Hazaras of Pakistan. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. DNA translocation by human uracil DNA glycosylase: the case of single-stranded DNA and clustered uracils.

    Science.gov (United States)

    Schonhoft, Joseph D; Stivers, James T

    2013-04-16

    Human uracil DNA glycosylase (hUNG) plays a central role in DNA repair and programmed mutagenesis of Ig genes, requiring it to act on sparsely or densely spaced uracil bases located in a variety of contexts, including U/A and U/G base pairs, and potentially uracils within single-stranded DNA (ssDNA). An interesting question is whether the facilitated search mode of hUNG, which includes both DNA sliding and hopping, changes in these different contexts. Here we find that hUNG uses an enhanced local search mode when it acts on uracils in ssDNA, and also, in a context where uracils are densely clustered in duplex DNA. In the context of ssDNA, hUNG performs an enhanced local search by sliding with a mean sliding length larger than that of double-stranded DNA (dsDNA). In the context of duplex DNA, insertion of high-affinity abasic product sites between two uracil lesions serves to significantly extend the apparent sliding length on dsDNA from 4 to 20 bp and, in some cases, leads to directionally biased 3' → 5' sliding. The presence of intervening abasic product sites mimics the situation where hUNG acts iteratively on densely spaced uracils. The findings suggest that intervening product sites serve to increase the amount of time the enzyme remains associated with DNA as compared to nonspecific DNA, which in turn increases the likelihood of sliding as opposed to falling off the DNA. These findings illustrate how the search mechanism of hUNG is not predetermined but, instead, depends on the context in which the uracils are located.

  9. Comparative Study of Seven Commercial Kits for Human DNA Extraction from Urine Samples Suitable for DNA Biomarker-Based Public Health Studies

    Science.gov (United States)

    El Bali, Latifa; Diman, Aurélie; Bernard, Alfred; Roosens, Nancy H. C.; De Keersmaecker, Sigrid C. J.

    2014-01-01

    Human genomic DNA extracted from urine could be an interesting tool for large-scale public health studies involving characterization of genetic variations or DNA biomarkers as a result of the simple and noninvasive collection method. These studies, involving many samples, require a rapid, easy, and standardized extraction protocol. Moreover, for practicability, there is a necessity to collect urine at a moment different from the first void and to store it appropriately until analysis. The present study compared seven commercial kits to select the most appropriate urinary human DNA extraction procedure for epidemiological studies. DNA yield has been determined using different quantification methods: two classical, i.e., NanoDrop and PicoGreen, and two species-specific real-time quantitative (q)PCR assays, as DNA extracted from urine contains, besides human, microbial DNA also, which largely contributes to the total DNA yield. In addition, the kits giving a good yield were also tested for the presence of PCR inhibitors. Further comparisons were performed regarding the sampling time and the storage conditions. Finally, as a proof-of-concept, an important gene related to smoking has been genotyped using the developed tools. We could select one well-performing kit for the human DNA extraction from urine suitable for molecular diagnostic real-time qPCR-based assays targeting genetic variations, applicable to large-scale studies. In addition, successful genotyping was possible using DNA extracted from urine stored at −20°C for several months, and an acceptable yield could also be obtained from urine collected at different moments during the day, which is particularly important for public health studies. PMID:25365790

  10. Comparative study of seven commercial kits for human DNA extraction from urine samples suitable for DNA biomarker-based public health studies.

    Science.gov (United States)

    El Bali, Latifa; Diman, Aurélie; Bernard, Alfred; Roosens, Nancy H C; De Keersmaecker, Sigrid C J

    2014-12-01

    Human genomic DNA extracted from urine could be an interesting tool for large-scale public health studies involving characterization of genetic variations or DNA biomarkers as a result of the simple and noninvasive collection method. These studies, involving many samples, require a rapid, easy, and standardized extraction protocol. Moreover, for practicability, there is a necessity to collect urine at a moment different from the first void and to store it appropriately until analysis. The present study compared seven commercial kits to select the most appropriate urinary human DNA extraction procedure for epidemiological studies. DNA yield has been determined using different quantification methods: two classical, i.e., NanoDrop and PicoGreen, and two species-specific real-time quantitative (q)PCR assays, as DNA extracted from urine contains, besides human, microbial DNA also, which largely contributes to the total DNA yield. In addition, the kits giving a good yield were also tested for the presence of PCR inhibitors. Further comparisons were performed regarding the sampling time and the storage conditions. Finally, as a proof-of-concept, an important gene related to smoking has been genotyped using the developed tools. We could select one well-performing kit for the human DNA extraction from urine suitable for molecular diagnostic real-time qPCR-based assays targeting genetic variations, applicable to large-scale studies. In addition, successful genotyping was possible using DNA extracted from urine stored at -20°C for several months, and an acceptable yield could also be obtained from urine collected at different moments during the day, which is particularly important for public health studies.

  11. Dynamics of Panax ginseng Rhizospheric Soil Microbial Community and Their Metabolic Function

    Directory of Open Access Journals (Sweden)

    Yong Li

    2014-01-01

    Full Text Available The bacterial communities of 1- to 6-year ginseng rhizosphere soils were characterized by culture-independent approaches, random amplified polymorphic DNA (RAPD, and amplified ribosomal DNA restriction analysis (ARDRA. Culture-dependent method (Biolog was used to investigate the metabolic function variance of microbe living in rhizosphere soil. Results showed that significant genetic and metabolic function variance were detected among soils, and, with the increasing of cultivating years, genetic diversity of bacterial communities in ginseng rhizosphere soil tended to be decreased. Also we found that Verrucomicrobia, Acidobacteria, and Proteobacteria were the dominants in rhizosphere soils, but, with the increasing of cultivating years, plant disease prevention or plant growth promoting bacteria, such as Pseudomonas, Burkholderia, and Bacillus, tended to be rare.

  12. Mapping and determinism of soil microbial community distribution across an agricultural landscape.

    Science.gov (United States)

    Constancias, Florentin; Terrat, Sébastien; Saby, Nicolas P A; Horrigue, Walid; Villerd, Jean; Guillemin, Jean-Philippe; Biju-Duval, Luc; Nowak, Virginie; Dequiedt, Samuel; Ranjard, Lionel; Chemidlin Prévost-Bouré, Nicolas

    2015-06-01

    Despite the relevance of landscape, regarding the spatial patterning of microbial communities and the relative influence of environmental parameters versus human activities, few investigations have been conducted at this scale. Here, we used a systematic grid to characterize the distribution of soil microbial communities at 278 sites across a monitored agricultural landscape of 13 km². Molecular microbial biomass was estimated by soil DNA recovery and bacterial diversity by 16S rRNA gene pyrosequencing. Geostatistics provided the first maps of microbial community at this scale and revealed a heterogeneous but spatially structured distribution of microbial biomass and diversity with patches of several hundreds of meters. Variance partitioning revealed that both microbial abundance and bacterial diversity distribution were highly dependent of soil properties and land use (total variance explained ranged between 55% and 78%). Microbial biomass and bacterial richness distributions were mainly explained by soil pH and texture whereas bacterial evenness distribution was mainly related to land management. Bacterial diversity (richness, evenness, and Shannon index) was positively influenced by cropping intensity and especially by soil tillage, resulting in spots of low microbial diversity in soils under forest management. Spatial descriptors also explained a small but significant portion of the microbial distribution suggesting that landscape configuration also shapes microbial biomass and bacterial diversity. © 2015 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  13. DNA methylome profiling of maternal peripheral blood and placentas reveal potential fetal DNA markers for non-invasive prenatal testing.

    Science.gov (United States)

    Xiang, Yuqian; Zhang, Junyu; Li, Qiaoli; Zhou, Xinyao; Wang, Teng; Xu, Mingqing; Xia, Shihui; Xing, Qinghe; Wang, Lei; He, Lin; Zhao, Xinzhi

    2014-09-01

    Utilizing epigenetic (DNA methylation) differences to differentiate between maternal peripheral blood (PBL) and fetal (placental) DNA has been a promising strategy for non-invasive prenatal testing (NIPT). However, the differentially methylated regions (DMRs) have yet to be fully ascertained. In the present study, we performed genome-wide comparative methylome analysis between maternal PBL and placental DNA from pregnancies of first trimester by methylated DNA immunoprecipitation-sequencing (MeDIP-Seq) and Infinium HumanMethylation450 BeadChip assays. A total of 36 931 DMRs and 45 804 differentially methylated sites (DMSs) covering the whole genome, exclusive of the Y chromosome, were identified via MeDIP-Seq and Infinium 450k array, respectively, of which 3759 sites in 2188 regions were confirmed by both methods. Not only did we find the previously reported potential fetal DNA markers in our identified DMRs/DMSs but also we verified fully the identified DMRs/DMSs in the validation round by MassARRAY EpiTYPER. The screened potential fetal DNA markers may be used for NIPT on aneuploidies and other chromosomal diseases, such as cri du chat syndrome and velo-cardio-facial syndrome. In addition, these potential markers may have application in the early diagnosis of placental dysfunction, such as pre-eclampsia. © The Author 2014. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Microbial community analysis of shallow subsurface samples with PCR-DGGE

    Energy Technology Data Exchange (ETDEWEB)

    Itaevaara, M.; Suihko, M. -L.; Kapanen, A.; Piskonen, R.; Juvonen, R. [VTT Biotechnology, Espoo (Finland)

    2005-11-15

    This work is part of the site investigations for the disposal of spent nuclear fuel in Olkiluoto bedrock. The purpose of the research was to study the suitability of PCR-DGGE (polymerase chain reaction - denaturing gradient gel electrophoresis) method for monitoring of hydrogeomicrobiology of Olkiluoto repository site. PCR-DGGE method has been applied for monitoring microbial processes in several applications. The benefit of the method is that microorganisms are not cultivated but the presence of microbial communities can be monitored by direct DNA extractions from the environmental samples. Partial 16SrDNA gene sequence is specifically amplified by PCR (polymerase chain reaction) which detect bacteria as a group. The gene sequences are separated in DGGE, and the nucleotide bands are then cut out, extracted, sequenced and identified by the genelibraries by e.g. Blast program. PCR-DGGE method can be used to detect microorganisms which are present abundantly in the microbial communities because small quantities of genes cannot be separated reliably. However, generally the microorganisms involved in several environmental processes are naturally enriched and present as major population. This makes it possible to utilize PCRDGGE as a monitoring method. In this study, we studied the structure of microbial communities in ten ground water samples originating from Olkiluoto. Two universal bacterial primer sets were compared which amplified two different regions of the 16SrDNA gene. The longer sequence amplified resulted in fewer bands in DGGE, in addition there were problems with purification of the sequences after DGGE. The shorter sequence gave more bands in DGGE and more clear results without any amplification problems. Comparison of the sequences from the gene-libraries resulted in the detection of the same species by both primer sets, in addition some different species were detected. Several species were anaerobic bacteria, such as acetogenic and sulphate reducing

  15. Microbial community analysis of shallow subsurface samples with PCR-DGGE

    International Nuclear Information System (INIS)

    Itaevaara, M.; Suihko, M.-L.; Kapanen, A.; Piskonen, R.; Juvonen, R.

    2005-11-01

    This work is part of the site investigations for the disposal of spent nuclear fuel in Olkiluoto bedrock. The purpose of the research was to study the suitability of PCR-DGGE (polymerase chain reaction - denaturing gradient gel electrophoresis) method for monitoring of hydrogeomicrobiology of Olkiluoto repository site. PCR-DGGE method has been applied for monitoring microbial processes in several applications. The benefit of the method is that microorganisms are not cultivated but the presence of microbial communities can be monitored by direct DNA extractions from the environmental samples. Partial 16SrDNA gene sequence is specifically amplified by PCR (polymerase chain reaction) which detect bacteria as a group. The gene sequences are separated in DGGE, and the nucleotide bands are then cut out, extracted, sequenced and identified by the genelibraries by e.g. Blast program. PCR-DGGE method can be used to detect microorganisms which are present abundantly in the microbial communities because small quantities of genes cannot be separated reliably. However, generally the microorganisms involved in several environmental processes are naturally enriched and present as major population. This makes it possible to utilize PCRDGGE as a monitoring method. In this study, we studied the structure of microbial communities in ten ground water samples originating from Olkiluoto. Two universal bacterial primer sets were compared which amplified two different regions of the 16SrDNA gene. The longer sequence amplified resulted in fewer bands in DGGE, in addition there were problems with purification of the sequences after DGGE. The shorter sequence gave more bands in DGGE and more clear results without any amplification problems. Comparison of the sequences from the gene-libraries resulted in the detection of the same species by both primer sets, in addition some different species were detected. Several species were anaerobic bacteria, such as acetogenic and sulphate reducing

  16. Insight in the PCB-degrading functional community in long-term contaminated soil under bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Petric, Ines; Hrsak, Dubravka; Udikovic-Kolic, Nikolina [Ruder Boskovic Inst., Division for Marine and Environmental Research, Zagreb (Croatia); Fingler, Sanja [Inst. for Medical Research and Occupational Health, Zagreb (Croatia); Bru, David; Martin-Laurent, Fabrice [INRA, Univ. der Bourgogne, Soil and Environmental Microbiology, Dijon (France)

    2011-02-15

    A small-scale bioremediation assay was developed in order to get insight into the functioning of a polychlorinated biphenyl (PCB) degrading community during the time course of bioremediation treatment of a contaminated soil. The study was conducted with the aim to better understand the key mechanisms involved in PCB-removal from soils. Materials and methods Two bioremediation strategies were applied in the assay: (a) biostimulation (addition of carvone as inducer of biphenyl pathway, soya lecithin for improving PCB bioavailability, and xylose as supplemental carbon source) and (b) bioaugmentation with selected seed cultures TSZ7 or Rhodococcus sp. Z6 originating from the transformer station soil and showing substantial PCB-degrading activity. Functional PCB-degrading community was investigated by using molecular-based approaches (sequencing, qPCR) targeting bphA and bphC genes, coding key enzymes of the upper biphenyl pathway, in soil DNA extracts. In addition, kinetics of PCBs removal during the bioremediation treatment was determined using gas chromatography mass spectrometry analyses. Results and discussion bphA-based phylogeny revealed that bioremediation affected the structure of the PCB-degrading community in soils, with Rhodococcus-like bacterial populations developing as dominant members. Tracking of this population further indicated that applied bioremediation treatments led to its enrichment within the PCB-degrading community. The abundance of the PCB-degrading community, estimated by quantifying the copy number of bphA and bphC genes, revealed that it represented up to 0.3% of the total bacterial community. All bioremediation treatments were shown to enhance PCB reduction in soils, with approximately 40% of total PCBs being removed during a 1-year period. The faster PCB reduction achieved in bioaugmented soils suggested an important role of the seed cultures in bioremediation processes. Conclusions The PCBs degrading community was modified in response to

  17. A well-resolved phylogeny of the trees of Puerto Rico based on DNA barcode sequence data.

    Science.gov (United States)

    Muscarella, Robert; Uriarte, María; Erickson, David L; Swenson, Nathan G; Zimmerman, Jess K; Kress, W John

    2014-01-01

    The use of phylogenetic information in community ecology and conservation has grown in recent years. Two key issues for community phylogenetics studies, however, are (i) low terminal phylogenetic resolution and (ii) arbitrarily defined species pools. We used three DNA barcodes (plastid DNA regions rbcL, matK, and trnH-psbA) to infer a phylogeny for 527 native and naturalized trees of Puerto Rico, representing the vast majority of the entire tree flora of the island (89%). We used a maximum likelihood (ML) approach with and without a constraint tree that enforced monophyly of recognized plant orders. Based on 50% consensus trees, the ML analyses improved phylogenetic resolution relative to a comparable phylogeny generated with Phylomatic (proportion of internal nodes resolved: constrained ML = 74%, unconstrained ML = 68%, Phylomatic = 52%). We quantified the phylogenetic composition of 15 protected forests in Puerto Rico using the constrained ML and Phylomatic phylogenies. We found some evidence that tree communities in areas of high water stress were relatively phylogenetically clustered. Reducing the scale at which the species pool was defined (from island to soil types) changed some of our results depending on which phylogeny (ML vs. Phylomatic) was used. Overall, the increased terminal resolution provided by the ML phylogeny revealed additional patterns that were not observed with a less-resolved phylogeny. With the DNA barcode phylogeny presented here (based on an island-wide species pool), we show that a more fully resolved phylogeny increases power to detect nonrandom patterns of community composition in several Puerto Rican tree communities. Especially if combined with additional information on species functional traits and geographic distributions, this phylogeny will (i) facilitate stronger inferences about the role of historical processes in governing the assembly and composition of Puerto Rican forests, (ii) provide insight into Caribbean

  18. Secreted single‐stranded DNA is involved in the initial phase of biofilm formation by Neisseria gonorrhoeae

    DEFF Research Database (Denmark)

    Zweig, Maria; Schork, Sabine; Koerdt, Andrea

    2014-01-01

    plays an important role in biofilm formation. Many clinical isolates contain a gonococcal genetic island that encodes a type IV secretion system (T4SS). The T4SS of N. gonorrhoeae strain MS11 secretes ssDNA directly into the medium. Biofilm formation, studied in continuous flow‐chamber systems...... was developed in which thermostable fluorescently labelled ssDNA‐ and ss/dsDNA‐binding proteins were used to visualize ssDNA and total DNA in biofilms and planktonic cultures. Remarkably, mainly dsDNA was detected in biofilms of the ssDNA secreting strain. We conclude that the secreted ssDNA facilitates initial...

  19. Impact of Oil on Bacterial Community Structure in Bioturbated Sediments

    Science.gov (United States)

    Stauffert, Magalie; Cravo-Laureau, Cristiana; Jézéquel, Ronan; Barantal, Sandra; Cuny, Philippe; Gilbert, Franck; Cagnon, Christine; Militon, Cécile; Amouroux, David; Mahdaoui, Fatima; Bouyssiere, Brice; Stora, Georges; Merlin, François-Xavier; Duran, Robert

    2013-01-01

    Oil spills threaten coastlines where biological processes supply essential ecosystem services. Therefore, it is crucial to understand how oil influences the microbial communities in sediments that play key roles in ecosystem functioning. Ecosystems such as sediments are characterized by intensive bioturbation due to burrowing macrofauna that may modify the microbial metabolisms. It is thus essential to consider the bioturbation when determining the impact of oil on microbial communities. In this study, an experimental laboratory device maintaining pristine collected mudflat sediments in microcosms closer to true environmental conditions – with tidal cycles and natural seawater – was used to simulate an oil spill under bioturbation conditions. Different conditions were applied to the microcosms including an addition of: standardized oil (Blend Arabian Light crude oil, 25.6 mg.g−1 wet sediment), the common burrowing organism Hediste (Nereis) diversicolor and both the oil and H. diversicolor. The addition of H. diversicolor and its associated bioturbation did not affect the removal of petroleum hydrocarbons. After 270 days, 60% of hydrocarbons had been removed in all microcosms irrespective of the H. diversicolor addition. However, 16S-rRNA gene and 16S-cDNA T-RFLP and RT-PCR-amplicon libraries analysis showed an effect of the condition on the bacterial community structure, composition, and dynamics, supported by PerMANOVA analysis. The 16S-cDNA libraries from microcosms where H. diversicolor was added (oiled and un-oiled) showed a marked dominance of sequences related to Gammaproteobacteria. However, in the oiled-library sequences associated to Deltaproteobacteria and Bacteroidetes were also highly represented. The 16S-cDNA libraries from oiled-microcosms (with and without H. diversicolor addition) revealed two distinct microbial communities characterized by different phylotypes associated to known hydrocarbonoclastic bacteria and dominated by

  20. Impact of oil on bacterial community structure in bioturbated sediments.

    Directory of Open Access Journals (Sweden)

    Magalie Stauffert

    Full Text Available Oil spills threaten coastlines where biological processes supply essential ecosystem services. Therefore, it is crucial to understand how oil influences the microbial communities in sediments that play key roles in ecosystem functioning. Ecosystems such as sediments are characterized by intensive bioturbation due to burrowing macrofauna that may modify the microbial metabolisms. It is thus essential to consider the bioturbation when determining the impact of oil on microbial communities. In this study, an experimental laboratory device maintaining pristine collected mudflat sediments in microcosms closer to true environmental conditions--with tidal cycles and natural seawater--was used to simulate an oil spill under bioturbation conditions. Different conditions were applied to the microcosms including an addition of: standardized oil (Blend Arabian Light crude oil, 25.6 mg.g⁻¹ wet sediment, the common burrowing organism Hediste (Nereis diversicolor and both the oil and H. diversicolor. The addition of H. diversicolor and its associated bioturbation did not affect the removal of petroleum hydrocarbons. After 270 days, 60% of hydrocarbons had been removed in all microcosms irrespective of the H. diversicolor addition. However, 16S-rRNA gene and 16S-cDNA T-RFLP and RT-PCR-amplicon libraries analysis showed an effect of the condition on the bacterial community structure, composition, and dynamics, supported by PerMANOVA analysis. The 16S-cDNA libraries from microcosms where H. diversicolor was added (oiled and un-oiled showed a marked dominance of sequences related to Gammaproteobacteria. However, in the oiled-library sequences associated to Deltaproteobacteria and Bacteroidetes were also highly represented. The 16S-cDNA libraries from oiled-microcosms (with and without H. diversicolor addition revealed two distinct microbial communities characterized by different phylotypes associated to known hydrocarbonoclastic bacteria and dominated by