Sample records for total column co2

  1. Global CO2 fluxes estimated from GOSAT retrievals of total column CO2

    Directory of Open Access Journals (Sweden)

    S. Basu


    Full Text Available We present one of the first estimates of the global distribution of CO2 surface fluxes using total column CO2 measurements retrieved by the SRON-KIT RemoTeC algorithm from the Greenhouse gases Observing SATellite (GOSAT. We derive optimized fluxes from June 2009 to December 2010. We estimate fluxes from surface CO2 measurements to use as baselines for comparing GOSAT data-derived fluxes. Assimilating only GOSAT data, we can reproduce the observed CO2 time series at surface and TCCON sites in the tropics and the northern extra-tropics. In contrast, in the southern extra-tropics GOSAT XCO2 leads to enhanced seasonal cycle amplitudes compared to independent measurements, and we identify it as the result of a land–sea bias in our GOSAT XCO2 retrievals. A bias correction in the form of a global offset between GOSAT land and sea pixels in a joint inversion of satellite and surface measurements of CO2 yields plausible global flux estimates which are more tightly constrained than in an inversion using surface CO2 data alone. We show that assimilating the bias-corrected GOSAT data on top of surface CO2 data (a reduces the estimated global land sink of CO2, and (b shifts the terrestrial net uptake of carbon from the tropics to the extra-tropics. It is concluded that while GOSAT total column CO2 provide useful constraints for source–sink inversions, small spatiotemporal biases – beyond what can be detected using current validation techniques – have serious consequences for optimized fluxes, even aggregated over continental scales.

  2. Inverse modeling of GOSAT-retrieved ratios of total column CH4 and CO2 for 2009 and 2010

    Directory of Open Access Journals (Sweden)

    S. Pandey


    Full Text Available This study investigates the constraint provided by greenhouse gas measurements from space on surface fluxes. Imperfect knowledge of the light path through the atmosphere, arising from scattering by clouds and aerosols, can create biases in column measurements retrieved from space. To minimize the impact of such biases, ratios of total column retrieved CH4 and CO2 (Xratio have been used. We apply the ratio inversion method described in Pandey et al. (2015 to retrievals from the Greenhouse Gases Observing SATellite (GOSAT. The ratio inversion method uses the measured Xratio as a weak constraint on CO2 fluxes. In contrast, the more common approach of inverting proxy CH4 retrievals (Frankenberg et al., 2005 prescribes atmospheric CO2 fields and optimizes only CH4 fluxes. The TM5–4DVAR (Tracer Transport Model version 5–variational data assimilation system inverse modeling system is used to simultaneously optimize the fluxes of CH4 and CO2 for 2009 and 2010. The results are compared to proxy inversions using model-derived CO2 mixing ratios (XCO2model from CarbonTracker and the Monitoring Atmospheric Composition and Climate (MACC Reanalysis CO2 product. The performance of the inverse models is evaluated using measurements from three aircraft measurement projects. Xratio and XCO2model are compared with TCCON retrievals to quantify the relative importance of errors in these components of the proxy XCH4 retrieval (XCH4proxy. We find that the retrieval errors in Xratio (mean  =  0.61 % are generally larger than the errors in XCO2model (mean  =  0.24 and 0.01 % for CarbonTracker and MACC, respectively. On the annual timescale, the CH4 fluxes from the different satellite inversions are generally in agreement with each other, suggesting that errors in XCO2model do not limit the overall accuracy of the CH4 flux estimates. On the seasonal timescale, however, larger differences are found due to uncertainties in XCO2model, particularly

  3. The arctic seasonal cycle of total column CO2 and CH4 from ground-based solar and lunar FTIR absorption spectrometry

    Directory of Open Access Journals (Sweden)

    M. Buschmann


    Full Text Available Solar absorption spectroscopy in the near infrared has been performed in Ny-Ålesund (78.9° N, 11.9° E since 2002; however, due to the high latitude of the site, the sun is below the horizon from October to March (polar night and no solar absorption measurements are possible. Here we present a novel method of retrieving the total column dry-air mole fractions (DMFs of CO2 and CH4 using moonlight in winter. Measurements have been taken during the polar nights from 2012 to 2016 and are validated with TCCON (Total Carbon Column Observing Network measurements by solar and lunar absorption measurements on consecutive days and nights during spring and autumn. The complete seasonal cycle of the DMFs of CO2 and CH4 is presented and a precision of up to 0.5 % is achieved. A comparison of solar and lunar measurements on consecutive days during day and night in March 2013 yields non-significant biases of 0. 66 ± 4. 56 ppm for xCO2 and −1. 94 ± 20. 63 ppb for xCH4. Additionally a model comparison has been performed with data from various reanalysis models.

  4. The total column of CO2 and CH4 measured with a compact Fourier transform spectrometer at NASA Armstrong Flight Research Center and Railroad Valley, Nevada, USA (United States)

    Kawakami, S.; Shiomi, K.; Suto, H.; Kuze, A.; Hillyard, P. W.; Tanaka, T.; Podolske, J. R.; Iraci, L. T.; Albertson, R. T.


    The total columns of carbon dioxide (XCO2) and methane (XCH4) were measured with a compact Fourier transform spectrometer (FTS) at NASA Armstrong Flight Research Center (AFRC) and Railroad Valley, Nevada, USA (RRV) during a vicarious calibration campaign in June 2014. The campaign was performed to estimate changes in the radiometric response of the Thermal and Near Infrared Sensor for carbon Observations Fourier Transform Spectrometer (TANSO-FTS) and the Cloud and Aerosol Imager (TANSO-CAI) aboard Greenhouse gases Observing SATellite (GOSAT). TANSO-FTS measures spectra of radiance scattered by the Earth surface with high- and medium-gain depending on the surface reflectance. At high reflectance areas, such as deserts over north Africa and Australia, TANSO-FTS collects spectra with medium-gain. There was differences on atmospheric pressure and XCO2 retrieved from spectra obtained between high-gain and medium-gain. Because the retrieved products are useful for evaluating the difference of spectral qualities between high- and medium-gain, this work is an attempt to collect validation data for spectra with medium-gain of TANSO-FTS at remote and desert area with a compact and medium-spectral resolution instrument. As a compact FTS, EM27/SUN was used. It was manufactured and newly released on April 1, 2014 by Bruker. It is robust and operable in a high temperature environment. It was housed in a steel box to protect from dust and rain and powered by Solar panels. It can be operated by such a remote and desert area, like a RRV. Over AFRC and RRV, vertical profiles of CO2 and CH4 were measured using the Alpha Jet research aircraft as part of the Alpha Jet Atmospheric eXperiment (AJAX) of ARC, NASA. The values were calibrated to standard gases. To make the results comparable to WMO (World Meteorological Organization) standards, the retrieved XCO2 and XCH4 values are divided by a calibration factor. This values were determined by comparisons with in situ profiles measured by

  5. On the use of satellite-derived CH4 : CO2 columns in a joint inversion of CH4 and CO2 fluxes

    NARCIS (Netherlands)

    Pandey, S.


    We present a method for assimilating total column CH4 : CO2 ratio measurements from satellites for inverse modeling of CH4 and CO2 fluxes using the variational approach. Unlike conventional approaches, in which retrieved CH4 : CO2 are multiplied by model-derived total column CO2 and only the

  6. Comparison of Surface and Column Variations of CO2 Over Urban Areas for Future Active Remote CO2 Sensors (United States)

    Choi, Yonghoon; Yang, Melissa; Kooi, Susan; Browell, Edward


    High resolution in-situ CO2 measurements were recorded onboard the NASA P-3B during the DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) Field Campaign, to investigate the ability of space-based observations to accurately assess near surface conditions related to air quality. This campaign includes, Washington DC/Baltimore, MD (July 2011), San Joaquin Valley, CA (January - February 2013), Houston, TX (September 2013), and Denver, CO (July-August 2014). Each of these campaigns consisted of missed approaches and approximately two hundred vertical soundings of CO2 within the lower troposphere (surface to about 5 km). In this study, surface (0 - 1 km) and column-averaged (0 - 3.5 km) CO2 mixing ratio values from the vertical soundings in the four geographically different urban areas are used to investigate the temporal and spatial variability of CO2 within the different urban atmospheric emission environments. Tracers such as CO, CH2O, NOx, and NMHCs are used to identify the source of CO2 variations in the urban sites. Additionally, we apply nominal CO2 column weighting functions for potential future active remote CO2 sensors operating in the 1.57-microns and 2.05-microns measurement regions to convert the in situ CO2 vertical mixing ratio profiles to variations in CO2 column optical depths, which is what the active remote sensors actually measure. Using statistics calculated from the optical depths at each urban site measured during the DISCOVER-AQ field campaign and for each nominal weighting function, we investigate the natural variability of CO2 columns in the lower troposphere; relate the CO2 column variability to the urban surface emissions; and show the measurement requirements for the future ASCENDS (Active Sensing of CO2 Emissions over Nights, Days, and Seasons) in the continental U.S. urban areas.

  7. Airborne 2-Micron Double-Pulsed Integrated Path Differential Absorption Lidar for Column CO2 Measurement (United States)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Refaat, Tamer F.; Remus, Ruben G.; Fay, James J.; Reithmaier, Karl


    Double-pulse 2-micron lasers have been demonstrated with energy as high as 600 millijouls and up to 10 Hz repetition rate. The two laser pulses are separated by 200 microseconds and can be tuned and locked separately. Applying double-pulse laser in DIAL system enhances the CO2 measurement capability by increasing the overlap of the sampled volume between the on-line and off-line. To avoid detection complicity, integrated path differential absorption (IPDA) lidar provides higher signal-to-noise ratio measurement compared to conventional range-resolved DIAL. Rather than weak atmospheric scattering returns, IPDA rely on the much stronger hard target returns that is best suited for airborne platforms. In addition, the IPDA technique measures the total integrated column content from the instrument to the hard target but with weighting that can be tuned by the transmitter. Therefore, the transmitter could be tuned to weight the column measurement to the surface for optimum CO2 interaction studies or up to the free troposphere for optimum transport studies. Currently, NASA LaRC is developing and integrating a double-Pulsed 2-micron direct detection IPDA lidar for CO2 column measurement from an airborne platform. The presentation will describe the development of the 2-micron IPDA lidar system and present the airborne measurement of column CO2 and will compare to in-situ measurement for various ground target of different reflectivity.

  8. A Broad Bank Lidar for Precise Atmospheric CO2 Column Absorption Measurement from Space (United States)

    Georgieva, E. M.; Heaps, W. S.; Huang, W.


    Accurate global measurement of carbon dioxide column with the aim of discovering and quantifying unknown sources and sinks has been a high priority for the last decade. In order to uncover the "missing sink" that is responsible for the large discrepancies in the budget the critical precision for a measurement from space needs to be on the order of 1 ppm. To better understand the CO2 budget and to evaluate its impact on global warming the National Research Council (NRC) in its recent decadal survey report (NACP) to NASA recommended a laser based total CO2 mapping mission in the near future. That's the goal of Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission - to significantly enhance the understanding of the role of CO2 in the global carbon cycle. Our current goal is to develop an ultra precise, inexpensive new lidar system for column measurements of CO2 changes in the lower atmosphere that uses a Fabry-Perot interferometer based system as the detector portion of the instrument and replaces the narrow band laser commonly used in lidars with a high power broadband source. This approach reduces the number of individual lasers used in the system and considerably reduces the risk of failure. It also tremendously reduces the requirement for wavelength stability in the source putting this responsibility instead on the Fabry- Perot subsystem.

  9. Miniaturized Laser Heterodyne Radiometer for Measurements of CO2 in the Atmospheric Column (United States)

    Wilson, E. L.; Mclinden, M. L.; Miller, J. H.; Allan, G. R.; Lott, L. E.; Melroy, H. R.; Clarke, G. B.


    We have developed a low-cost, miniaturized laser heterodyne radiometer for highly sensitive measurements of carbon dioxide (CO2) in the atmospheric column. In this passive design, sunlight that has undergone absorption by CO2 in the atmosphere is collected and mixed with continuous wave laser light that is step-scanned across the absorption feature centered at 1,573.6 nm. The resulting radio frequency beat signal is collected as a function of laser wavelength, from which the total column mole fraction can be de-convolved. We are expanding this technique to include methane (CH4) and carbon monoxide (CO), and with minor modifications, this technique can be expanded to include species such as water vapor (H2O) and nitrous oxide (N2O).

  10. Precision Column CO2 Measurement from Space Using Broad Band LIDAR (United States)

    Heaps, William S.


    In order to better understand the budget of carbon dioxide in the Earth's atmosphere it is necessary to develop a global high precision understanding of the carbon dioxide column. To uncover the missing sink" that is responsible for the large discrepancies in the budget as we presently understand it, calculation has indicated that measurement accuracy of 1 ppm is necessary. Because typical column average CO2 has now reached 380 ppm this represents a precision on the order of 0.25% for these column measurements. No species has ever been measured from space at such a precision. In recognition of the importance of understanding the CO2 budget to evaluate its impact on global warming the National Research Council in its decadal survey report to NASA recommended planning for a laser based total CO2 mapping mission in the near future. The extreme measurement accuracy requirements on this mission places very strong constraints on the laser system used for the measurement. This work presents an overview of the characteristics necessary in a laser system used to make this measurement. Consideration is given to the temperature dependence, pressure broadening, and pressure shift of the CO2 lines themselves and how these impact the laser system characteristics. We are examining the possibility of making precise measurements of atmospheric carbon dioxide using a broad band source of radiation. This means that many of the difficulties in wavelength control can be treated in the detector portion of the system rather than the laser source. It also greatly reduces the number of individual lasers required to make a measurement. Simplifications such as these are extremely desirable for systems designed to operate from space.

  11. CO2 Absorption from Biogas by Glycerol: Conducted in Semi-Batch Bubble Column (United States)

    puji lestari, Pratiwi; Mindaryani, Aswati; Wirawan, S. K.


    Biogas is a renewable energy source that has been developed recently. The main contents of Biogas itself are Methane and carbon dioxide (CO2) where Methane is the main component of biogas with CO2 as the highest impurities. The quality of biogas depends on the CO2 content, the lower CO2 levels, the higher biogas quality. Absorption is one of the methods to reduce CO2 level. The selections of absorbent and appropriate operating parameters are important factors in the CO2 absorption from biogas. This study aimed to find out the design parameters for CO2 absorption using glycerol that represented by the overall mass transfer coefficient (KLa) and Henry’s constant (H). This study was conducted in semi-batch bubble column. Mixed gas was contacted with glycerol in a bubble column. The concentration of CO2 in the feed gas inlet and outlet columns were analysed by Gas Chromatograph. The variables observed in this study were superficial gas velocity and temperatures. The results showed that higher superficial gas velocity and lower temperature increased the rate of absorption process and the amount of CO2 absorbed.

  12. Measurements of CO2 Column Abundance in the Low Atmosphere Using Ground Based 1.6 μm CO2 DIAL (United States)

    Abo, M.; Shibata, Y.; Nagasawa, C.


    Changes in atmospheric carbon dioxide (CO2) concentration are believed to produce the largest radiative forcing for the current climate system. Accurate predictions of atmospheric CO2 concentration rely on the knowledge of its sinks and sources, transports, and its variability with time. Although this knowledge is currently unsatisfactory, numerical models use it as a way in simulating CO2 fluxes. Validating and improving the global atmospheric transport model, therefore, requires precise measurement of the CO2 concentration profile. There are two further variations on Lidar: the differential absorption Lidar (DIAL) and the integrated path differential absorption (IPDA) Lidar. DIAL/IPDA are basically for profile/total column measurement, respectively. IPDA is a special case of DIAL and can measure the total column-averaged mixing ratio of trace gases using return signals from the Earth's surface or from thick clouds based on an airborne or a satellite. We have developed a ground based 1.6 μm DIAL to measure vertical CO2 mixing ratio profiles from 0.4 to 2.5 km altitude. The goals of the CO2 DIAL are to produce atmospheric CO2 mixing ratio measurements with much smaller seasonal and diurnal biases from the ground surface. But, in the ground based lidar, return signals from around ground surface are usually suppressed in order to handle the large dynamic range. To receive the return signals as near as possible from ground surface, namely, the field of view (FOV) of the telescope must be wide enough to reduce the blind range of the lidar. While the return signals from the far distance are very weak, to enhance the sensitivity and heighten the detecting distance, the FOV must be narrow enough to suppress the sky background light, especially during the daytime measurements. To solve this problem, we propose a total column measurement method from the ground surface to 0.4 km altitude. Instead of strong signals from thick clouds such as the IPDA, the proposed method uses

  13. Relationship between synoptic scale weather systems and column averaged atmospheric CO2 (United States)

    Naja, M.; Yaremchuk, A.; Onishi, R.; Maksyutov, S.; Inoue, G.


    Analysis of the atmospheric CO2 observations with transport models contributes to the understanding of the geographical distributions of CO2 sources and sinks. Space-borne sensors could be advantageous for CO2 measurements as they can provide wider spatial and temporal coverage. Inversion studies have suggested requirement of better than 1% precision for the space-borne observations. Since sources and sinks are inferred from spatial and temporal gradients in CO2, the space-borne observations must have no significant geographically varying biases. To study the dynamical biases in column CO2 due to possible correlation between clouds and atmospheric CO2 at synoptic scale, we have made simulations of CO2 (1988-2003) using NIES tracer transport model. Model resolution is 2.5o x 2.5o in horizontal and it has 15 vertical sigma-layers. Fluxes for (1) fossil fuels, (2) terrestrial biosphere (CASA NEP), (3) the oceans, and (4) inverse model derived monthly regional fluxes from 11 land and 11 ocean regions are used. SVD truncation is used to filter out noise in the inverse model flux time series. Model reproduces fairly well CO2 global trend and observed time series at monitoring sites around the globe. Lower column CO2 concentration is simulated inside cyclonic systems in summer over North hemispheric continental areas. Surface pressure is used as a proxy for dynamics and it is demonstrated that anomalies in column averaged CO2 has fairly good correlation with the anomalies in surface pressure. Positive correlation, as high as 0.7, has been estimated over parts of Siberia and N. America in summer time. Our explanation is based on that the low-pressure system is associated the upward motion, which leads to lower column CO2 values over these regions due to lifting of CO2-depleted summertime PBL air, and higher column CO2 over source areas. A sensitivity study without inverse model fluxes shows same correlation. The low-pressure systems' induced negative biases are 0

  14. CO2-laser--produced plasma columns in a solenoidal magnetic field

    International Nuclear Information System (INIS)

    Offenberger, A.A.; Cervenan, M.R.; Smy, P.R.


    A 1-GW CO 2 laser pulse has been used to produce extended column breakdown of hydrogen at low pressure in a 20-cm-long solenoid. Magnetic fields of up to 110 kG were used to inhibit radial losses of the plasma column. A differential pumping scheme was devised to prevent formation of an opaque absorption wave travelling out of the solenoid back toward the focusing lens. Target burns give direct evidence for trapped laser beam propagation along the plasma column

  15. Advanced intensity-modulation continuous-wave lidar techniques for ASCENDS CO2 column measurements (United States)

    Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.; Harrison, F. W.; Obland, Michael D.; Meadows, Byron


    Global atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity- Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud contamination. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating the need to correct for sidelobe bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These results are extended to include Richardson-Lucy deconvolution techniques to extend the resolution of the lidar beyond that implied by limit of the bandwidth of the modulation, where it is shown useful for making tree canopy measurements.

  16. Intensity Modulation Techniques for Continuous-Wave Lidar for Column CO2 Measurements (United States)

    Campbell, J. F.; Lin, B.; Obland, M. D.; Kooi, S. A.; Fan, T. F.; Meadows, B.; Browell, E. V.; Erxleben, W. H.; McGregor, D.; Dobler, J. T.; Pal, S.; O'Dell, C.


    Global and regional atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission and the Atmospheric Carbon and Transport (ACT) - America project are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity-Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space and airborne platforms to meet the ASCENDS and ACT-America science measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) and Linear Swept Frequency modulations to uniquely discriminate surface lidar returns from intermediate aerosol and cloud returns. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that take advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques and provides very high (at sub-meter level) range resolution. We compare BPSK to linear swept frequency and introduce a new technique to eliminate sidelobes in situations from linear swept frequency where the SNR is high with results that rival BPSK. We also investigate the effects of non-linear modulators, which can in some circumstances degrade the orthogonality of the waveforms, and show how to avoid this. These techniques are used in a new data processing architecture written in

  17. Modeling of intensity-modulated continuous-wave laser absorption spectrometer systems for atmospheric CO(2) column measurements. (United States)

    Lin, Bing; Ismail, Syed; Wallace Harrison, F; Browell, Edward V; Nehrir, Amin R; Dobler, Jeremy; Moore, Berrien; Refaat, Tamer; Kooi, Susan A


    The focus of this study is to model and validate the performance of intensity-modulated continuous-wave (IM-CW) CO(2) laser absorption spectrometer (LAS) systems and their CO(2) column measurements from airborne and satellite platforms. The model accounts for all fundamental physics of the instruments and their related CO(2) measurement environments, and the modeling results are presented statistically from simulation ensembles that include noise sources and uncertainties related to the LAS instruments and the measurement environments. The characteristics of simulated LAS systems are based on existing technologies and their implementation in existing systems. The modeled instruments are specifically assumed to be IM-CW LAS systems such as the Exelis' airborne multifunctional fiber laser lidar (MFLL) operating in the 1.57 μm CO(2) absorption band. Atmospheric effects due to variations in CO(2), solar radiation, and thin clouds, are also included in the model. Model results are shown to agree well with LAS atmospheric CO(2) measurement performance. For example, the relative bias errors of both MFLL simulated and measured CO(2) differential optical depths were found to agree to within a few tenths of a percent when compared to the in situ observations from the flight of 3 August 2011 over Railroad Valley (RRV), Nevada, during the summer 2011 flight campaign. In addition, the horizontal variations in the model CO(2) differential optical depths were also found to be consistent with those from MFLL measurements. In general, the modeled and measured signal-to-noise ratios (SNRs) of the CO(2) column differential optical depths (τd) agreed to within about 30%. Model simulations of a spaceborne IM-CW LAS system in a 390 km dawn/dusk orbit for CO(2) column measurements showed that with a total of 42 W of transmitted power for one offline and two different sideline channels (placed at different locations on the side of the CO(2) absorption line), the accuracy of the

  18. Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for Column CO2 Measurements (United States)

    Campbell, J. F.; Lin, B.; Obland, M. D.; Liu, Z.; Kooi, S. A.; Fan, T. F.; Nehrir, A. R.; Meadows, B.; Browell, E. V.


    Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for Column CO2 MeasurementsJoel F. Campbell1, Bing Lin1, Michael D. Obland1, Zhaoyan Liu1, Susan Kooi2, Tai-Fang Fan2, Amin R. Nehrir1, Byron Meadows1, Edward V. Browell31NASA Langley Research Center, Hampton, VA 23681 2SSAI, NASA Langley Research Center, Hampton, VA 23681 3STARSS-II Affiliate, NASA Langley Research Center, Hampton, VA 23681 AbstractGlobal and regional atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission and the Atmospheric Carbon and Transport (ACT) - America project are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity-Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space and airborne platforms to meet the ASCENDS and ACT-America science measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud returns. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby minimizing bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new sub-meter hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. These techniques are used in a new data processing

  19. Comparison of atmospheric CO2 columns at high latitudes from ground-based and satellite-based methods (United States)

    Jacobs, N.; Simpson, W. R.; Parker, H. A.; Tu, Q.; Blumenstock, T.; Dubey, M. K.; Hase, F.; Osterman, G. B.


    Total column measurements of carbon-dioxide (CO2) from the Orbiting Carbon Observatory-2 (OCO-2) satellite have been validated at mid-latitudes by comparison to the Total Carbon Column Observing Network (TCCON), but there are still a limited number of sites providing high-latitude validation data for satellite observations of CO2, and no TCCON sites in Alaska. To understand the global distribution of CO2 sources and sinks, it is essential that we increase the abundance of validation sites, particularly in the climate-sensitive high-latitude Boreal forest. Therefore, we began the Arctic Mobile Infrared Greenhouse Gas Observations (AMIGGO) campaign in the Boreal Forest region around Fairbanks, Alaska with the goal of satellite validation and measurement of natural ecosystem fluxes. In this campaign, we used the EM27/SUN mobile solar-viewing Fourier-transform infrared spectrometer (EM27/SUN FTS) to retrieve the total CO2 column and column-averaged dry-air mole fraction of CO2 (XCO2) with the GGG2014 algorithm. The EM27/SUN FTS was developed by the Karlsruhe Institute of Technology (KIT) in collaboration with Bruker optics (Gisi et al., 2012, doi:10.5194/amt-5-2969-2012) and has been deployed in urban areas to measure anthropogenic fluxes of CO2 and CH4. To evaluate the EM27/SUN performance, co-located observations were made with two EM27/SUN spectrometers, and we found that XCO2 differences between spectrometers were small (0.24ppm on average) and very stable over time. In this presentation, we report on 14 OCO-2 targeted overpasses that occurred from August 2016 through July 2017, along with additional targets obtained during ongoing observations in 2017. We investigate underlying reasons for observed differences between OCO-2 and ground-based XCO2 using methods developed by Wunch et al. (2017, doi:10.5194/amt-10-2209-2017). As an additional point of comparison, coincident aircraft observations by NOAA Earth System Research Laboratory (ESRL) Global Monitoring

  20. Column CO2 Measurement From an Airborne Solid-State Double-Pulsed 2-Micron Integrated Path Differential Absorption Lidar (United States)

    Singh, U. N.; Yu, J.; Petros, M.; Refaat, T. F.; Remus, R.; Fay, J.; Reithmaier, K.


    NASA LaRC is developing and integrating a double-Pulsed 2-micron direct detection IPDA lidar for CO2 column measurement from an airborne platform. The presentation will describe the development of the 2-micrometers IPDA lidar system and present the airborne measurement of column CO2 and will compare to in-situ measurement for various ground target of different reflectivity.

  1. Assessment of MFLL column CO2 measurements obtained during the ACT-America field campaigns (United States)

    Lin, B.; Browell, E. V.; Kooi, S. A.; Dobler, J. T.; Campbell, J.; Fan, T. F.; Pal, S.; O'Dell, C. W.; Obland, M. D.; Erxleben, W. H.; McGregor, D.; Kochanov, R. V.; DiGangi, J. P.; Davis, K. J.; Choi, Y.


    Accurate observations of atmospheric CO2 with airborne and space-based lidar systems such as those used during the Atmospheric Carbon and Transport - America (ACT-America) field campaigns and proposed for the NASA ASCENDS mission would improve our knowledge of CO2 distributions and variations on both regional and global scales, reduce the uncertainties in atmospheric CO2 transport and fluxes, and increase confidence in predictions of future climate changes. To reach these scientific goals, atmospheric column CO2 (XCO2) measurements of the Harris Corporation's Multifunctional Fiber Laser Lidar (MFLL) obtained during the first two ACT-America flight campaigns have been thoroughly investigated by the ACT-America lidar measurement group. MFLL is an intensity-modulated continuous-wave lidar operating in the 1.57-mm CO2 absorption band. Atmospheric XCO2 amounts are retrieved based on the integrated path differential absorption of the lidar signals at online and offline wavelengths between the aircraft and the ground. NASA Langley Research Center and Harris have been collaborating in the development and evaluation of this CO2 lidar approach for a number of years. To gain insights into the lidar performance, the measurement group has collected all possible lidar measurements with corresponding in-situ atmospheric profile information from the first two ACT-America field campaigns, including the data from several flight legs dedicated to lidar calibration. Initially large differences (-1 to 2 %) were found between lidar measured CO2 optical depths and those derived from in-situ observations and spectroscopy from HITRAN2008. When an improved spectroscopic model (Pre-HITRAN2016) was applied, the large systematic errors were much more consistent leading to the development of an empirical linear correction of measured optical depth based on the calibration flight data. This correction accounts for remaining uncertainties in spectroscopic models, environmental conditions, such as

  2. Tidal variability of CO2 and CH4 emissions from the water column within a Rhizophora mangrove forest (New Caledonia). (United States)

    Jacotot, Adrien; Marchand, Cyril; Allenbach, Michel


    We performed a preliminary study to quantify CO 2 and CH 4 emissions from the water column within a Rhizophora spp. mangrove forest. Mean CO 2 and CH 4 emissions during the studied period were 3.35±3.62mmolCm -2 h -1 and 18.30±27.72μmolCm -2 h -1 , respectively. CO 2 and CH 4 emissions were highly variable and mainly driven by tides (flow/ebb, water column thickness, neap/spring). Indeed, an inverse relationship between the magnitude of the emissions and the thickness of the water column above the mangrove soil was observed. δ 13 CO 2 values ranged from -26.88‰ to -8.6‰, suggesting a mixing between CO 2 -enriched pore waters and lagoon incoming waters. In addition, CO 2 and CH 4 emissions were significantly higher during ebb tides, mainly due to the progressive enrichment of the water column by diffusive fluxes as its residence time over the forest floor increased. Eventually, we observed higher CO 2 and CH 4 emissions during spring tides than during neap tides, combined to depleted δ 13 CO 2 values, suggesting a higher contribution of soil-produced gases to the emissions. These higher emissions may result from higher renewable of the electron acceptor and enhanced exchange surface between the soil and the water column. This study shows that CO 2 and CH 4 emissions from the water column were not negligible and must be considered in future carbon budgets in mangroves. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Measurement of atmospheric CO2 column concentrations to cloud tops with a pulsed multi-wavelength airborne lidar (United States)

    Mao, Jianping; Ramanathan, Anand; Abshire, James B.; Kawa, Stephan R.; Riris, Haris; Allan, Graham R.; Rodriguez, Michael; Hasselbrack, William E.; Sun, Xiaoli; Numata, Kenji; Chen, Jeff; Choi, Yonghoon; Yang, Mei Ying Melissa


    We have measured the column-averaged atmospheric CO2 mixing ratio to a variety of cloud tops by using an airborne pulsed multi-wavelength integrated-path differential absorption (IPDA) lidar. Airborne measurements were made at altitudes up to 13 km during the 2011, 2013 and 2014 NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) science campaigns flown in the United States West and Midwest and were compared to those from an in situ sensor. Analysis of the lidar backscatter profiles shows the average cloud top reflectance was ˜ 5 % for the CO2 measurement at 1572.335 nm except to cirrus clouds, which had lower reflectance. The energies for 1 µs wide laser pulses reflected from cloud tops were sufficient to allow clear identification of CO2 absorption line shape and then to allow retrievals of atmospheric column CO2 from the aircraft to cloud tops more than 90 % of the time. Retrievals from the CO2 measurements to cloud tops had minimal bias but larger standard deviations when compared to those made to the ground, depending on cloud top roughness and reflectance. The measurements show this new capability helps resolve CO2 horizontal and vertical gradients in the atmosphere. When used with nearby full-column measurements to ground, the CO2 measurements to cloud tops can be used to estimate the partial-column CO2 concentration below clouds, which should lead to better estimates of surface carbon sources and sinks. This additional capability of the range-resolved CO2 IPDA lidar technique provides a new benefit for studying the carbon cycle in future airborne and space-based CO2 missions.

  4. Measurement of Atmospheric CO2 Column Concentrations to Cloud Tops With a Pulsed Multi-Wavelength Airborne Lidar (United States)

    Mao, Jianping; Ramanathan, Anand; Abshire, James B.; Kawa, Stephan R.; Riris, Haris; Allan, Graham R.; Rodriguez, Michael R.; Hasselbrack, William E.; Sun, Xiaoli; Numata, Kenji; hide


    We have measured the column-averaged atmospheric CO2 mixing ratio to a variety of cloud tops by using an airborne pulsed multi-wavelength integrated-path differential absorption (IPDA) lidar. Airborne measurements were made at altitudes up to 13 km during the 2011, 2013 and 2014 NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) science campaigns flown in the United States West and Midwest and were compared to those from an in situ sensor. Analysis of the lidar backscatter profiles shows the average cloud top reflectance was approx. 5% for the CO2 measurement at 1572.335 nm except to cirrus clouds, which had lower reflectance. The energies for 1 micro-s wide laser pulses reflected from cloud tops were sufficient to allow clear identification of CO2 absorption line shape and then to allow retrievals of atmospheric column CO2 from the aircraft to cloud tops more than 90% of the time. Retrievals from the CO2 measurements to cloud tops had minimal bias but larger standard deviations when compared to those made to the ground, depending on cloud top roughness and reflectance. The measurements show this new capability helps resolve CO2 horizontal and vertical gradients in the atmosphere. When used with nearby full-column measurements to ground, the CO2 measurements to cloud tops can be used to estimate the partial-column CO2 concentration below clouds, which should lead to better estimates of surface carbon sources and sinks. This additional capability of the range-resolved CO2 IPDA lidar technique provides a new benefit for studying the carbon cycle in future airborne and space-based CO2 missions.

  5. Measurement of atmospheric CO2 column concentrations to cloud tops with a pulsed multi-wavelength airborne lidar

    Directory of Open Access Journals (Sweden)

    J. Mao


    Full Text Available We have measured the column-averaged atmospheric CO2 mixing ratio to a variety of cloud tops by using an airborne pulsed multi-wavelength integrated-path differential absorption (IPDA lidar. Airborne measurements were made at altitudes up to 13 km during the 2011, 2013 and 2014 NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS science campaigns flown in the United States West and Midwest and were compared to those from an in situ sensor. Analysis of the lidar backscatter profiles shows the average cloud top reflectance was ∼ 5 % for the CO2 measurement at 1572.335 nm except to cirrus clouds, which had lower reflectance. The energies for 1 µs wide laser pulses reflected from cloud tops were sufficient to allow clear identification of CO2 absorption line shape and then to allow retrievals of atmospheric column CO2 from the aircraft to cloud tops more than 90 % of the time. Retrievals from the CO2 measurements to cloud tops had minimal bias but larger standard deviations when compared to those made to the ground, depending on cloud top roughness and reflectance. The measurements show this new capability helps resolve CO2 horizontal and vertical gradients in the atmosphere. When used with nearby full-column measurements to ground, the CO2 measurements to cloud tops can be used to estimate the partial-column CO2 concentration below clouds, which should lead to better estimates of surface carbon sources and sinks. This additional capability of the range-resolved CO2 IPDA lidar technique provides a new benefit for studying the carbon cycle in future airborne and space-based CO2 missions.

  6. Remotely operable compact instruments for measuring atmospheric CO2 and CH4 column densities at surface monitoring sites

    Directory of Open Access Journals (Sweden)

    I. Morino


    Full Text Available Remotely operable compact instruments for measuring atmospheric CO2 and CH4 column densities were developed in two independent systems: one utilizing a grating-based desktop optical spectrum analyzer (OSA with a resolution enough to resolve rotational lines of CO2 and CH4 in the regions of 1565–1585 and 1674–1682 nm, respectively; the other is an application of an optical fiber Fabry-Perot interferometer (FFPI to obtain the CO2 column density. Direct sunlight was collimated via a small telescope installed on a portable sun tracker and then transmitted through an optical fiber into the OSA or the FFPI for optical analysis. The near infrared spectra of the OSA were retrieved by a least squares spectral fitting algorithm. The CO2 and CH4 column densities deduced were in excellent agreement with those measured by a Fourier transform spectrometer with high resolution. The rovibronic lines in the wavelength region of 1570–1575 nm were analyzed by the FFPI. The I0 and I values in the Beer-Lambert law equation to obtain CO2 column density were deduced by modulating temperature of the FFPI, which offered column CO2 with the statistical error less than 0.2% for six hours measurement.

  7. A Novel Triple-Pulsed 2-micrometer Lidar for Simultaneous and Independent CO2 and H2O Column Measurement (United States)

    Yu, Jirong; Singh, Upendra; Petros, Mulugeta; Refaat, Tamer


    The study of global warming needs precisely and accurately measuring greenhouse gases concentrations in the atmosphere. CO2 and H2O are important greenhouse gases that significantly contribute to the carbon cycle and global radiation budget on Earth. NRC Decadal Survey recommends a mission for Active Sensing of Carbon Dioxide (CO2) over Nights, Days and Seasons (ASCENDS). 2 micron laser is a viable IPDA transmitter to measure CO2 and H2O column density from space. The objective is to demonstrate a first airborne direct detection 2 micron IPDA lidar for CO2 and H2O measurements.

  8. Comparative methane estimation from cattle based on total CO2 production using different techniques

    Directory of Open Access Journals (Sweden)

    Md N. Haque


    Full Text Available The objective of this study was to compare the precision of CH4 estimates using calculated CO2 (HP by the CO2 method (CO2T and measured CO2 in the respiration chamber (CO2R. The CO2R and CO2T study was conducted as a 3 × 3 Latin square design where 3 Dexter heifers were allocated to metabolic cages for 3 periods. Each period consisted of 2 weeks of adaptation followed by 1 week of measurement with the CO2R and CO2T. The average body weight of the heifer was 226 ± 11 kg (means ± SD. They were fed a total mixed ration, twice daily, with 1 of 3 supplements: wheat (W, molasses (M, or molasses mixed with sodium bicarbonate (Mbic. The dry mater intake (DMI; kg/day was significantly greater (P < 0.001 in the metabolic cage compared with that in the respiration chamber. The daily CH4 (L/day emission was strongly correlated (r = 0.78 between CO2T and CO2R. The daily CH4 (L/kg DMI emission by the CO2T was in the same magnitude as by the CO2R. The measured CO2 (L/day production in the respiration chamber was not different (P = 0.39 from the calculated CO2 production using the CO2T. This result concludes a reasonable accuracy and precision of CH4 estimation by the CO2T compared with the CO2R.

  9. Airborne Measurements of CO2 Column Concentration and Range Using a Pulsed Direct-Detection IPDA Lidar (United States)

    Abshire, James B.; Ramanathan, Anand; Riris, Haris; Mao, Jianping; Allan, Graham R.; Hasselbrack, William E.; Weaver, Clark J.; Browell, Edward V.


    We have previously demonstrated a pulsed direct detection IPDA lidar to measure range and the column concentration of atmospheric CO2. The lidar measures the atmospheric backscatter profiles and samples the shape of the 1,572.33 nm CO2 absorption line. We participated in the ASCENDS science flights on the NASA DC-8 aircraft during August 2011 and report here lidar measurements made on four flights over a variety of surface and cloud conditions near the US. These included over a stratus cloud deck over the Pacific Ocean, to a dry lake bed surrounded by mountains in Nevada, to a desert area with a coal-fired power plant, and from the Rocky Mountains to Iowa, with segments with both cumulus and cirrus clouds. Most flights were to altitudes >12 km and had 5-6 altitude steps. Analyses show the retrievals of lidar range, CO2 column absorption, and CO2 mixing ratio worked well when measuring over topography with rapidly changing height and reflectivity, through thin clouds, between cumulus clouds, and to stratus cloud tops. The retrievals shows the decrease in column CO2 due to growing vegetation when flying over Iowa cropland as well as a sudden increase in CO2 concentration near a coal-fired power plant. For regions where the CO2 concentration was relatively constant, the measured CO2 absorption lineshape (averaged for 50 s) matched the predicted shapes to better than 1% RMS error. For 10 s averaging, the scatter in the retrievals was typically 2-3 ppm and was limited by the received signal photon count. Retrievals were made using atmospheric parameters from both an atmospheric model and from in situ temperature and pressure from the aircraft. The retrievals had no free parameters and did not use empirical adjustments, and >70% of the measurements passed screening and were used in analysis. The differences between the lidar-measured retrievals and in situ measured average CO2 column concentrations were 6 km.

  10. An analysis of the global spatial variability of column-averaged CO2 from SCIAMACHY and its implications for CO2 sources and sinks (United States)

    Zhang, Zhen; Jiang, Hong; Liu, Jinxun; Zhang, Xiuying; Huang, Chunlin; Lu, Xuehe; Jin, Jiaxin; Zhou, Guomo


    Satellite observations of carbon dioxide (CO2) are important because of their potential for improving the scientific understanding of global carbon cycle processes and budgets. We present an analysis of the column-averaged dry air mole fractions of CO2 (denoted XCO2) of the Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY) retrievals, which were derived from a satellite instrument with relatively long-term records (2003–2009) and with measurements sensitive to the near surface. The spatial-temporal distributions of remotely sensed XCO2 have significant spatial heterogeneity with about 6–8% variations (367–397 ppm) during 2003–2009, challenging the traditional view that the spatial heterogeneity of atmospheric CO2 is not significant enough (2 and surface CO2 were found for major ecosystems, with the exception of tropical forest. In addition, when compared with a simulated terrestrial carbon uptake from the Integrated Biosphere Simulator (IBIS) and the Emissions Database for Global Atmospheric Research (EDGAR) carbon emission inventory, the latitudinal gradient of XCO2 seasonal amplitude was influenced by the combined effect of terrestrial carbon uptake, carbon emission, and atmospheric transport, suggesting no direct implications for terrestrial carbon sinks. From the investigation of the growth rate of XCO2 we found that the increase of CO2 concentration was dominated by temperature in the northern hemisphere (20–90°N) and by precipitation in the southern hemisphere (20–90°S), with the major contribution to global average occurring in the northern hemisphere. These findings indicated that the satellite measurements of atmospheric CO2 improve not only the estimations of atmospheric inversion, but also the understanding of the terrestrial ecosystem carbon dynamics and its feedback to atmospheric CO2.

  11. Plasma column development in the CO2 laser-heated solenoid

    International Nuclear Information System (INIS)

    Tighe, W.; Offenberger, A.A.; Capjack, C.E.


    Axial and radial plasma dynamics in the CO 2 laser-heated solenoid have been studied experimentally and numerically. The axial behavior is found to be well described by a self-regulated bleaching wave model. The radial expansion is found to be strongly dependent on the focusing ratio of the input laser beam. With a fast focus ( f/5), the early radial expansion rate is twice that found with a slower focusing arrangement ( f/15). The faster focusing ratio also results in a significantly wider plasma column. On the other hand, no significant dependence of f/number on the axial propagation was found. A finite ionization time and the rapid formation of a density minimum on axis are observed and verify earlier experimental results. Detailed comparisons are made with a 2-D magnetohydrodynamic (MHD) and laser propagation code. The axial and radial plasma behavior and, in particular, the dependence of the radial behavior on the focal ratio of the laser are reasonably well supported by the simulation results. Computational results are also in good agreement with experimental measurements of temperature and density using stimulated scattering (Brillouin, Raman) and interferometry diagnostic techniques

  12. Seasonal & Daily Amazon Column CO2 & CO Observations from Ground & Space Used to Evaluate Tropical Ecosystem Models (United States)

    Dubey, M. K.; Parker, H. A.; Wennberg, P. O.; Wunch, D.; Jacobson, A. R.; Kawa, S. R.; Keppel-Aleks, G.; Basu, S.; O'Dell, C.; Frankenberg, C.; Michalak, A. M.; Baker, D. F.; Christofferson, B.; Restrepo-Coupe, N.; Saleska, S. R.; De Araujo, A. C.; Miller, J. B.


    The Amazon basin stores 150-200 PgC, exchanges 18 PgC with the atmosphere every year and has taken up 0.42-0.65 PgC/y over the past two decades. Despite its global significance, the response of the tropical carbon cycle to climate variability and change is ill constrained as evidenced by the large negative and positive feedbacks in future climate simulations. The complex interplay of radiation, water and ecosystem phenology remains unresolved in current tropical ecosystem models. We use high frequency regional scale TCCON observations of column CO2, CO and CH4 near Manaus, Brazil that began in October 2014 to understand the aforementioned interplay of processes in regulating biosphere-atmosphere exchange. We observe a robust daily column CO2 uptake of about 2 ppm (4 ppm to 0.5 ppm) over 8 hours and evaluate how it changes as we transition to the dry season. Back-trajectory calculations show that the daily CO2 uptake footprint is terrestrial and influenced by the heterogeneity of the Amazon rain forests. The column CO falls from above 120 ppb to below 80 ppb as we transition from the biomass burning to wet seasons. The daily mean column CO2 rises by 3 ppm from October through June. Removal of biomass burning, secular CO2 increase and variations from transport (by Carbon tracker simulations) implies an increase of 2.3 ppm results from tropical biospheric processes (respiration and photosynthesis). This is consistent with ground-based remote sensing and eddy flux observations that indicate that leaf development and demography drives the tropical carbon cycle in regions that are not water limited and is not considered in current models. We compare our observations with output from 7 CO2 inversion transport models with assimilated meteorology and find that while 5 models reproduce the CO2 seasonal cycle all of them under predict the daily drawdown of CO2 by a factor of 3. This indicates that the CO2 flux partitioning between photosynthesis and respiration is incorrect

  13. Compact Solar Spectrometer Column CO2, and CH4 Observations: Performance Evaluation at Multiple North American TCCON Sites (United States)

    Parker, H. A.; Hedelius, J.; Viatte, C.; Wunch, D.; Wennberg, P. O.; Chen, J.; Wofsy, S.; Jones, T.; Franklin, J.; Dubey, M. K.; Roehl, C. M.; Podolske, J. R.; Hillyard, P. W.; Iraci, L. T.


    Measurement, reporting and verification (MRV) of anthropogenic emissions and natural sources and sinks of carbon dioxide (CO2) and methane (CH4) are crucial to predict climate change and develop transparent accounting policies to contain climate forcing. Remote sensing technologies are monitoring column averaged dry air mole fractions of CO2 and CH4 (XCO2 & XCH4) from ground and space (OCO-2 and GOSAT) with solar spectroscopy enabling direct MRV. However, current ground based coverage is sparse due to the need for large and expensive high-resolution spectrometers that are part of the Total Column Carbon Observing Network (TCCON, Bruker 125HR). This limits our MRV and satellite validation abilities, both regionally and globally. There are striking monitoring gaps in Asia, South America and Africa where the CO2 emissions are growing and there is a large uncertainty in fluxes from land use change, biomass burning and rainforest vulnerability. To fill this gap we evaluate the precision, accuracy and stability of compact, affordable and easy to use low-resolution spectrometers (Bruker EM27/SUN) by comparing with XCO2 and XCH4 retrieved from much larger high-resolution TCCON instruments. As these instruments will be used in a variety of locations, we evaluate their performance by comparing with 2 previous and 4 current United States TCCON sites in different regions up to 2700 km apart. These sites range from polluted to unpolluted, latitudes of 32 to 46°N, and altitudes of 230 to 2241 masl. Comparisons with some of these sites cover multiple years allowing assessment of the EM27/SUN performance not only in various regions, but also over an extended period of time and with different seasonal influences. Results show that our 2 EM27/SUN instruments capture the diurnal variability of the aforementioned constituents very well, but with offsets from TCCON and long-term variability which may be due in part to the extensive movement these spectrometers were subjected to. These

  14. Development of Double and Triple-Pulsed 2-micron IPDA Lidars for Column CO2 Measurements (United States)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Refaat, Tamer F.; Remus, Ruben G.; Reithmaier, Karl


    Carbon dioxide (CO2) is an important greenhouse gas that significantly contributes to the carbon cycle and globalradiation budget on Earth. CO2 role on Earth’s climate is complicated due to different interactions with various climatecomponents that include the atmosphere, the biosphere and the hydrosphere. Although extensive worldwide efforts formonitoring atmospheric CO2 through various techniques, including in-situ and passive sensors, are taking place highuncertainties exist in quantifying CO2 sources and sinks. These uncertainties are mainly due to insufficient spatial andtemporal mapping of the gas. Therefore it is required to have more rapid and accurate CO2 monitoring with higheruniform coverage and higher resolution. CO2 DIAL operating in the 2-µm band offer better near-surface CO2measurement sensitivity due to the intrinsically stronger absorption lines. For more than 15 years, NASA LangleyResearch Center (LaRC) contributed in developing several 2-?m CO2 DIAL systems and technologies. This paperfocuses on the current development of the airborne double-pulsed and triple-pulsed 2-?m CO2 integrated pathdifferential absorption (IPDA) lidar system at NASA LaRC. This includes the IPDA system development andintegration. Results from ground and airborne CO2 IPDA testing will be presented. The potential of scaling suchtechnology to a space mission will be addressed.

  15. Pulsed Lidar Measurements of Atmospheric CO2 Column Absorption and Range During the ASCENDS 2009-2011 Airborne Campaigns (United States)

    Abshire, J. B.; Weaver, C. J.; Riris, H.; Mao, J.; Sun, X.; Allan, G. R.; Hasselbrack, W. E.; Browell, E. V.


    We have developed a pulsed lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's ASCENDS mission and have demonstrated the CO2 and O2 measurements from aircraft. Our technique uses two pulsed lasers allowing simultaneous measurement of a single CO2 absorption line near 1572 nm, O2 extinction in the Oxygen A-band, surface height and backscatter profile. The lasers are stepped in wavelength across the CO2 line and an O2 line doublet during the measurement. The column densities for the CO2 and O2 are estimated from the differential optical depths (DOD) of the scanned absorption lines via the IPDA technique. For the 2009 ASCENDS campaign we flew the CO2 lidar only on a Lear-25 aircraft, and measured the absorption line shapes of the CO2 line using 20 wavelength samples per scan. Measurements were made at stepped altitudes from 3 to 12.6 km over the Lamont OK, central Illinois, North Carolina, and over the Virginia Eastern Shore. Although the received signal energies were weaker than expected for ASCENDS, clear C02 line shapes were observed at all altitudes. Most flights had 5-6 altitude steps with 200-300 seconds of recorded measurements per step. We averaged every 10 seconds of measurements and used a cross-correlation approach to estimate the range to the scattering surface and the echo pulse energy at each wavelength. We then solved for the best-fit CO2 absorption line shape, and calculated the DOD of the fitted CO2 line, and computed its statistics at the various altitude steps. We compared them to CO2 optical depths calculated from spectroscopy based on HITRAN 2008 and the column number densities calculated from the airborne in-situ readings. The 2009 measurements have been analyzed in detail and they were similar on all flights. The results show clear CO2 line shape and absorption signals, which follow the expected changes with aircraft altitude from 3 to 13 km. They showed the expected nearly the linear dependence of DOD vs

  16. A Comparison of Potential IM-CW Lidar Modulation Techniques for ASCENDS CO2 Column Measurements From Space (United States)

    Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.; Harrison, F. Wallace; Obland, Michael D.; Ismail, Syed


    Global atmospheric carbon dioxide (CO2) measurements through the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) Decadal Survey recommended space mission are critical for improving our understanding of CO2 sources and sinks. IM-CW (Intensity Modulated Continuous Wave) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS science requirements. In previous laboratory and flight experiments we have successfully used linear swept frequency modulation to discriminate surface lidar returns from intermediate aerosol and cloud contamination. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate clouds, which is a requirement for the inversion of the CO2 column-mixing ratio from the instrument optical depth measurements, has been demonstrated with the linear swept frequency modulation technique. We are concurrently investigating advanced techniques to help improve the auto-correlation properties of the transmitted waveform implemented through physical hardware to make cloud rejection more robust in special restricted scenarios. Several different carrier based modulation techniques are compared including orthogonal linear swept, orthogonal non-linear swept, and Binary Phase Shift Keying (BPSK). Techniques are investigated that reduce or eliminate sidelobes. These techniques have excellent auto-correlation properties while possessing a finite bandwidth (by way of a new cyclic digital filter), which will reduce bias error in the presence of multiple scatterers. Our analyses show that the studied modulation techniques can increase the accuracy of CO2 column measurements from space. A comparison of various properties such as signal to noise ratio (SNR) and time-bandwidth product are discussed.

  17. Estimate of total CO2 output from desertified sandy land in China

    International Nuclear Information System (INIS)

    Duan Zhenghu; Lanzhou University; Xiao Honglang; Dong Zhibao; He Xingdong; Wang Gang


    Soil is an important factor in regional and global carbon budgets because it serves as a reservoir of large amount of organic carbon. In our study, using remote sensing data of different periods we analyzed the development and reversion of desertification in China, calculated the variations of organic carbon contents of the desertified lands in China. The results showed that the total storage of organic carbon in 0-50cm soil layer of the desertified lands is 855Mt. In recent 40yr, the total CO 2 amount released by land desertification processes to the atmosphere was 150Mt, while the CO 2 amount sequestered by desertification reversing processes corresponded to 59MtC. Hence, the net CO 2 amount released from desertified lands of China corresponded to 91MtC, about 68.42% of the 133MtC of annual CO 2 release in the global temperate and frigid zones. Simultaneously, it indicated that CO 2 amount sequestered by desertification reversing processes in desertified land had greater potential than the other soils. (Author)

  18. Simultaneous removal of CO2 and H2S using MEA solution in a packed column absorber for biogas upgrading

    Directory of Open Access Journals (Sweden)

    Preecha Kasikamphaiboon


    Full Text Available Biogas production and utilization is an emerging alternative energy technology that has gained importance since the price of oil and gas has increased steadily over the last two decades. Biogas primarily consists of methane (CH4 and carbon dioxide (CO2 with smaller amounts of hydrogen sulfide (H2S and ammonia (NH3. For many applications the quality of biogas has to be improved. The main parameters that may require removal in upgrading systems are CO2 and H2S. This work presents the study of simultaneous absorption of CO2 and H2S by Monoethanolamine (MEA solution in a packed column. Simulated biogas containing 40% CO2 and 60% N2 and biogas generated from an anaerobic digestion plant were used as feed gas streams. The effects of gas flow rate, L/G ratio and absorbent concentration were investigated. The performance of the system was found to vary with process parameters. Increasing L/G ratio and MEA concentration causes the system efficiency to increase whereas increasing gas flow rate results in lower efficiency. An operating condition of L/G ratio of 83.3 ml/L, gas flow rate of 3 L/min and MEA concentration of 3 mol/L was found to remove more than 99.5% of CO2 and H2S from biogas. The volumetric overall mass-transfer coefficient (KGav for CO2 removal initially increases with increasing gas flow rate up to a certain value beyond which the coefficient becomes essentially constant. The KGav also increases with increasing L/G ratio throughout the range tested in this study.

  19. Airborne Measurements of CO2 Column Absorption and Range Using a Pulsed Direct-Detection Integrated Path Differential Absorption Lidar (United States)

    Abshire, James B.; Riris, Haris; Weaver, Clark J.; Mao, Jianping; Allan, Graham R.; Hasselbrack, William E.; Browell, Edward V.


    We report on airborne CO2 column absorption measurements made in 2009 with a pulsed direct-detection lidar operating at 1572.33 nm and utilizing the integrated path differential absorption technique. We demonstrated these at different altitudes from an aircraft in July and August in flights over four locations in the central and eastern United States. The results show clear CO2 line shape and absorption signals, which follow the expected changes with aircraft altitude from 3 to 13 km. The lidar measurement statistics were also calculated for each flight as a function of altitude. The optical depth varied nearly linearly with altitude, consistent with calculations based on atmospheric models. The scatter in the optical depth measurements varied with aircraft altitude as expected, and the median measurement precisions for the column varied from 0.9 to 1.2 ppm. The altitude range with the lowest scatter was 810 km, and the majority of measurements for the column within it had precisions between 0.2 and 0.9 ppm.

  20. Energy optimization and comparative study of pre- and post-fractionator extractive dividing wall column for the CO2–ethane azeotropic process

    International Nuclear Information System (INIS)

    Tavan, Yadollah; Riazi, Seiied Hadi; Nozohouri, Mostafa


    Graphical abstract: - Highlights: • Two arrangements is proposed for extractive DWC based on pre- and post- fractionator. • Operating parameters are optimized to minimize energy demand. • The pre-fractionator design showed the best performance in comparison to others. - Abstract: Two possible extractive dividing-wall column (DWC) arrangements are explored to find the potential benefits derived from thermally coupled distillations in separation of a mixture including the CO 2 –ethane azeotrope with a low boiling point. It is shown that the process including pre-fractionator in the DWC design in its optimized state leads to 51.6% reduction in total duties in comparison with the conventional process. Furthermore, a comparison between conventional extractive distillation columns and the new DWC process is made in terms of cost estimation, CO 2 removal efficiency and CO 2 emission reduction. Remarkable, the results clearly show that DWC process is interesting/feasible and the novel proposed DWC alternative reduces the steam requirements by 41% and the equipment costs by 31%

  1. Airborne Lidar for Simultaneous Measurement of Column CO2 and Water Vapor in the Atmosphere (United States)

    Singh, Upendra N.; Petros, Mulugeta; Refaat, Tamer F.; Antill, Charles W.; Remus, Ruben; Yu, Jirong


    The 2-micron wavelength region is suitable for atmospheric carbon dioxide (CO2) measurements due to the existence of distinct absorption feathers for the gas at this particular wavelength. For more than 20 years, researchers at NASA Langley Research Center (LaRC) have developed several high-energy and high repetition rate 2-micron pulsed lasers. This paper will provide status and details of an airborne 2-micron triple-pulse integrated path differential absorption (IPDA) lidar. The development of this active optical remote sensing IPDA instrument is targeted for measuring both CO2 and water vapor (H2O) in the atmosphere from an airborne platform. This presentation will focus on the advancement of the 2-micron triple-pulse IPDA lidar development. Updates on the state-of-the-art triple-pulse laser transmitter will be presented including the status of seed laser locking, wavelength control, receiver telescope, detection system and data acquisition. Future plans for the IPDA lidar system for ground integration, testing and flight validation will also be presented.

  2. Measurements of the total CO2 concentration and partial pressure of CO2 in seawater during WOCE expeditions in the South Pacific Ocean

    International Nuclear Information System (INIS)

    Takahashi, T.; Goddard, J.G.; Chipman, D.W.; Rubin, S.I.


    During the first year of the grant, we participated in three WOCE expeditions (a total of 152 days at sea) in the South Pacific Ocean, and the field phase of the proposed investigation has been successfully completed. The total CO 2 concentration and pCO 2 were determined at sea in 4419 water samples collected at 422 stations. On the basis of the shipboard analyses of SIO Reference Solutions for CO, and a comparison with the results of previous expeditions, the overall precision of our total CO 2 determinations is estimated to be about ±2 uM/kg. The deep water data indicate that there is a CO 2 maximum centered about 2600 meters deep. This appears to represent a southward return flow from the North Pacific. The magnitude and distribution of the CO, maximum observed along the 135.0 degrees W meridian differ from those observed along the 150.5 degrees W meridian due to Tuamotu Archipelago, a topographic high which interferes with the southward return flow. The surface water pCO 2 data indicate that the South Pacific sub-tropical gyre water located between about 15 degrees S and 50 degrees S is a sink for atmospheric CO 2

  3. Performance of a geostationary mission, geoCARB, to measure CO2, CH4 and CO column-averaged concentrations

    Directory of Open Access Journals (Sweden)

    I. N. Polonsky


    Full Text Available GeoCARB is a proposed instrument to measure column averaged concentrations of CO2, CH4 and CO from geostationary orbit using reflected sunlight in near-infrared absorption bands of the gases. The scanning options, spectral channels and noise characteristics of geoCARB and two descope options are described. The accuracy of concentrations from geoCARB data is investigated using end-to-end retrievals; spectra at the top of the atmosphere in the geoCARB bands are simulated with realistic trace gas profiles, meteorology, aerosol, cloud and surface properties, and then the concentrations of CO2, CH4 and CO are estimated from the spectra after addition of noise characteristic of geoCARB. The sensitivity of the algorithm to aerosol, the prior distributions assumed for the gases and the meteorology are investigated. The contiguous spatial sampling and fine temporal resolution of geoCARB open the possibility of monitoring localised sources such as power plants. Simulations of emissions from a power plant with a Gaussian plume are conducted to assess the accuracy with which the emission strength may be recovered from geoCARB spectra. Scenarios for "clean" and "dirty" power plants are examined. It is found that a reliable estimate of the emission rate is possible, especially for power plants that have particulate filters, by averaging emission rates estimated from multiple snapshots of the CO2 field surrounding the plant. The result holds even in the presence of partial cloud cover.

  4. The Assessment of Biofuel Utilization Policy on the Total Output and CO2 Emissions in Thailand

    Directory of Open Access Journals (Sweden)

    Suthathip Suanmali


    Full Text Available The transport sector is the largest energy-consuming sector in Thailand. Its primary energy supply is heavily depended on imported oil. Since 2005, world crude oil price has been rising and had reached a record of 147 $/barrel. Therefore the policy on promotion of biofuel utilization was initiated in 2005 by the Ministry of Energy; however, the economy-wide impacts have been rarely assessed. This paper presents the energy Input-Output Analysis (IO of the economy-wide impacts on the promotion policy, in particular, the change in Greenhouse Gas (GHG emissions. In order to measure the total GHG emission from different economic sectors, the contribution of emissions has to be considered. In this paper, the focus is placed on CO2 emissions. To calculate the amount of CO2 emissions, the emission amount of various final consumptions in the economy evaluated by the IO must be applied. The direct CO2 emissions in final energy consumptions in Thailand are evaluated by using conversion factors from Guidelines to Defra's GHG conversion factors, Annexes updated in June 2007. The CO2 emissions in various economic sectors will be calculated and compared with the figures in 2015 when the policy is fully implemented.

  5. Effect of Promoter Concentration on CO2 Separation Using K2CO3 With Reactive Absorption Method in Reactor Packed Column

    Directory of Open Access Journals (Sweden)

    Monde Junety


    Full Text Available The presence of carbon dioxide (CO2 in the gas is not expected because CO2 can reduce heating value and CO2 is the major emission contributor into the atmosphere. Various separation technologies can be used to reduce CO2 content and improve quality of gas. Chemical or reactive absorption is most widely used because it provides higher removal rate. This paper will study the effect of the addition di ethanolamine (DEA concentration into aqueous 30wt.% potassium carbonate(K2CO3 with reactive absorption method in a reactor packed column at temperature from 40°C to 80°C, DEA concentration range of (1% - 3% and absorbent flow rate (0.5, 0.75 and 1 L. min1. Contacting the gas and absorbent are countercurrent flow in packed column with 1.5 m high and 50 mm in diameter. The absorption column was randomly packed with a packing material raschig rings 5 mm in diameter. The CO2 loading in the liquid samples was determined by titration. It is found that the best result of CO2 loading is 0.065594 mole/mole K2CO3 and CO2 removal 28%. The result show that the loading capacity (mole CO2/mole K2CO3 and CO2 removal increased with the increase of DEA concentration.

  6. Measurements of Atmospheric CO2 Column in Cloudy Weather Conditions using An IM-CW Lidar at 1.57 Micron (United States)

    Lin, Bing; Obland, Michael; Harrison, F. Wallace; Nehrir, Amin; Browell, Edward; Campbell, Joel; Dobler, Jeremy; Meadows, Bryon; Fan, Tai-Fang; Kooi, Susan; hide


    This study evaluates the capability of atmospheric CO2 column measurements under cloudy conditions using an airborne intensity-modulated continuous-wave integrated-path-differential-absorption lidar operating in the 1.57-m CO2 absorption band. The atmospheric CO2 column amounts from the aircraft to the tops of optically thick cumulus clouds and to the surface in the presence of optically thin clouds are retrieved from lidar data obtained during the summer 2011 and spring 2013 flight campaigns, respectively.

  7. Evaluation of the CO2 sequestration capacity for coal fly ash using a flow-through column reactor under ambient conditions

    International Nuclear Information System (INIS)

    Jo, Ho Young; Ahn, Joon-Hoon; Jo, Hwanju


    Highlights: ► A conceptual in-situ mineral carbonation method using a coal ash pond is proposed. ► CO 2 uptake occurred by carbonation reaction of CO 2 with Ca 2+ ions from coal fly ash. ► The CO 2 sequestration capacity was affected by the solid dosage. ► Seawater can be used as a solvent for mineral carbonation of coal fly ash. - Abstract: An in-situ CO 2 sequestration method using coal ash ponds located in coastal regions is proposed. The CO 2 sequestration capacity of coal fly ash (CFA) by mineral carbonation was evaluated in a flow-through column reactor under various conditions (solid dosage: 100–330 g/L, CO 2 flow rate: 20–80 mL/min, solvent type: deionized (DI) water, 1 M NH 4 Cl solution, and seawater). The CO 2 sequestration tests were conducted on CFA slurries using flow-through column reactors to simulate more realistic flow-through conditions. The CO 2 sequestration capacity increased when the solid dosage was increased, whereas it was affected insignificantly by the CO 2 flow rate. A 1 M NH 4 Cl solution was the most effective solvent, but it was not significantly different from DI water or seawater. The CO 2 sequestration capacity of CFA under the flow-through conditions was approximately 0.019 g CO 2 /g CFA under the test conditions (solid dosage: 333 g/L, CO 2 flow rate: 40 mL/min, and solvent: seawater).

  8. Atmospheric CO2 Column Measurements with an Airborne Intensity-Modulated Continuous-Wave 1.57-micron Fiber Laser Lidar (United States)

    Dobler, Jeremy T.; Harrison, F. Wallace; Browell, Edward V.; Lin, Bing; McGregor, Doug; Kooi, Susan; Choi, Yonghoon; Ismail, Syed


    The 2007 National Research Council (NRC) Decadal Survey on Earth Science and Applications from Space recommended Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) as a mid-term, Tier II, NASA space mission. ITT Exelis, formerly ITT Corp., and NASA Langley Research Center have been working together since 2004 to develop and demonstrate a prototype Laser Absorption Spectrometer for making high-precision, column CO2 mixing ratio measurements needed for the ASCENDS mission. This instrument, called the Multifunctional Fiber Laser Lidar (MFLL), operates in an intensity-modulated, continuous-wave mode in the 1.57- micron CO2 absorption band. Flight experiments have been conducted with the MFLL on a Lear-25, UC-12, and DC-8 aircraft over a variety of different surfaces and under a wide range of atmospheric conditions. Very high-precision CO2 column measurements resulting from high signal-to-noise (great than 1300) column optical depth measurements for a 10-s (approximately 1 km) averaging interval have been achieved. In situ measurements of atmospheric CO2 profiles were used to derive the expected CO2 column values, and when compared to the MFLL measurements over desert and vegetated surfaces, the MFLL measurements were found to agree with the in situ-derived CO2 columns to within an average of 0.17% or approximately 0.65 ppmv with a standard deviation of 0.44% or approximately 1.7 ppmv. Initial results demonstrating ranging capability using a swept modulation technique are also presented.

  9. Total (fumarolic?+?diffuse soil) CO2 output from Furnas volcano


    Pedone, M.; Viveiros, F.; Aiuppa, A.; Giudice, G.; Grassa, F.; Gagliano, A. L.; Francofonte, V.; Ferreira, T.


    Furnas volcano, in S?o Miguel island (Azores), being the surface expression of rising hydrothermal steam, is the site of intense carbon dioxide (CO2) release by diffuse degassing and fumaroles. While the diffusive CO2 output has long (since the early 1990s) been characterized by soil CO2 surveys, no information is presently available on the fumarolic CO2 output. Here, we performed (in August 2014) a study in which soil CO2 degassing survey was combined for the first time with the measurement ...

  10. Study of total column atmospheric aerosol optical depth, ozone and ...

    Indian Academy of Sciences (India)

    Extensive observations of the columnar aerosol optical depth (AOD), total column ozone (TCO) and precipitable water content (PWC) have been carried out using the on-line, multi-band solar radiometers onboard ORV Sagar Kanya (Cruise#SK 147B) over Bay of Bengal during 11th-28th August 1999. Aerosol optical and ...

  11. A new fully automated FTIR system for total column measurements of greenhouse gases (United States)

    Geibel, M. C.; Gerbig, C.; Feist, D. G.


    This article introduces a new fully automated FTIR system that is part of the Total Carbon Column Observing Network (TCCON). It will provide continuous ground-based measurements of column-averaged volume mixing ratio for CO2, CH4 and several other greenhouse gases in the tropics. Housed in a 20-foot shipping container it was developed as a transportable system that could be deployed almost anywhere in the world. We describe the automation concept which relies on three autonomous subsystems and their interaction. Crucial components like a sturdy and reliable solar tracker dome are described in detail. The automation software employs a new approach relying on multiple processes, database logging and web-based remote control. First results of total column measurements at Jena, Germany show that the instrument works well and can provide parts of the diurnal as well as seasonal cycle for CO2. Instrument line shape measurements with an HCl cell suggest that the instrument stays well-aligned over several months. After a short test campaign for side by side intercomaprison with an existing TCCON instrument in Australia, the system will be transported to its final destination Ascension Island.

  12. The footprint of CO2 leakage in the water-column: Insights from numerical modeling based on a North Sea gas release experiment (United States)

    Vielstädte, L.; Linke, P.; Schmidt, M.; Sommer, S.; Wallmann, K.; McGinnis, D. F.; Haeckel, M.


    Assessing the environmental impact of potential CO2 leakage from offshore carbon dioxide storage sites necessitates the investigation of the corresponding pH change in the water-column. Numerical models have been developed to simulate the buoyant rise and dissolution of CO2 bubbles in the water-column and the subsequent near-field dispersion of dissolved CO2 in seawater under ocean current and tidal forcing. In order to test and improve numerical models a gas release experiment has been conducted at 80 m water-depth within the Sleipner area (North Sea). CO2 and Kr (used as inert tracer gas) were released on top of a benthic lander at varying gas flows (impact of such leakage rates is limited to the near-field bottom waters, due to the rapid dissolution of CO2 bubbles in seawater (CO2 is being stripped within the first two to five meters of bubble rise). In particular, small bubbles, which will dissolve close to the seafloor, may cause a dangerous low-pH environment for the marine benthos. However, on the larger scale, the advective transport by e.g. tidal currents, dominates the CO2 dispersal in the North Sea and dilutes the CO2 peak quickly. The model results show that at the small scales (impact on the marine environment, thereby reducing pH substantially (by 0.4 units) within a diameter of less than 50 m around the release spot (depending on the duration of leakage and the current velocities). Strong currents and tidal cycles significantly reduce the spreading of low-pH water masses into the far-field by efficiently diluting the amount of CO2 in ambient seawater.

  13. Simulation and modeling CO2 absorption in biogas with DEA promoted K2CO3 solution in packed column (United States)

    Nurkhamidah, Siti; Altway, Ali; Airlangga, Bramantyo; Emilia, Dwi Putri


    Absorption of carbon dioxide (CO2) using potassium carbonate (K2CO3) is one of biogas purification method. However, K2CO3 have slow mass transfer in liquid phase. So it is necessary to eliminate the disadvantage of CO2 absorption using K2CO3 by adding promotor (activator). Diethanol amine (DEA) is one of promotor which can increase its reaction rate. Simulation and modeling research of the CO2 absorption from biogas with DEA promoted K2CO3 solution has not been conducted. Thus, the main goal of this research is create model and simulation for the CO2 absorption from biogas with DEA promoted K2CO3 solution, then observe the influence of promoter concentration. DEA concentration varies between 1-5 %wt. From the simulation, we concluded that the CO2 removal rise with the increasing of promoter concentration. The highest CO2 removal is 54.5318 % at 5 % wt DEA concentration.

  14. Microbial community changes at a terrestrial volcanic CO2 vent induced by soil acidification and anaerobic microhabitats within the soil column. (United States)

    Frerichs, Janin; Oppermann, Birte I; Gwosdz, Simone; Möller, Ingo; Herrmann, Martina; Krüger, Martin


    CO2 capture and storage (CCS) in deep geological formations is one option currently evaluated to reduce greenhouse gas emissions. Consequently, the impact of a possible CO2 leakage from a storage site into surface environments has to be evaluated. During such a hypothetical leakage event, the CO2 migrates upwards along fractures entering surface soils, a scenario similar to naturally occurring CO2 vents. Therefore, such a natural analogue site at the Laacher See was chosen for an ecosystem study on the effects of high CO2 concentrations on soil chemistry and microbiology. The microbial activities revealed differences in their spatial distribution and temporal variability for CO2 -rich and reference soils. Furthermore, the abundance of several functional and group-specific gene markers revealed further differences, for example, a decrease in Geobacteraceae and an increase in sulphate-reducing prokaryotes in the vent centre. Molecular-biological fingerprinting of the microbial communities with DGGE indicated a shift in the environmental conditions within the Laacher See soil column leading to anaerobic and potentially acidic microenvironments. Furthermore, the distribution and phylogenetic affiliation of the archaeal 16S rRNA genes, the presence of ammonia-oxidizing Archaea and the biomarker analysis revealed a predominance of Thaumarchaeota as possible indicator organisms for elevated CO2 concentrations in soils. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  15. Thermoelectric properties of Ba3Co2O6(CO3)0.7 containing one-dimensional CoO6 octahedral columns


    Iwasaki, Kouta; Yamamoto, Teruhisa; Yamane, Hisanori; Takeda, Takashi; Arai, Shigeo; Miyazaki, Hidetoshi; Tatsumi, Kazuyoshi; Yoshino, Masahito; Ito, Tsuyoshi; Arita, Yuji; Muto, Shunsuke; Nagasaki, Takanori; Matsui, Tsuneo


    The thermoelectric properties of Ba3Co2O6(CO3)0.7 have been investigated using prismatic single crystals elongated along the c axis. Ba3Co2O6(CO3)0.7 has a pseudo-one-dimensional structure similar to that of 2H perovskite-type BaCoO3 and contains CoO6 octahedral columns running parallel to the c axis. The prismatic crystals are grown by a flux method using a K2CO3–BaCl2 flux. The electrical conductivity(σ) along the columns (c axis) exhibits a metallic behavior (670–320 S cm−1 in the temperat...

  16. Evaluation through column leaching tests of metal release from contaminated estuarine sediment subject to CO2 leakages from Carbon Capture and Storage sites

    International Nuclear Information System (INIS)

    Payán, M. Cruz; Galan, Berta; Coz, Alberto; Vandecasteele, Carlo; Viguri, Javier R.


    The pH change and the release of organic matter and metals from sediment, due to the potential CO 2 acidified seawater leakages from a CCS (Carbon Capture and Storage) site are presented. Column leaching test is used to simulate a scenario where a flow of acidified seawater is in contact with recent contaminated sediment. The behavior of pH, dissolved organic carbon (DOC) and metals As, Cd, Cr, Cu, Ni, Pb, Zn, with liquid to solid (L/S) ratio and pH is analyzed. A stepwise strategy using empirical expressions and a geochemical model was conducted to fit experimental release concentrations. Despite the neutralization capacity of the seawater-carbonate rich sediment system, important acidification and releases are expected at local scale at lower pH. The obtained results would be relevant as a line of evidence input of CCS risk assessment, in an International context where strategies to mitigate the climate change would be applied. - Highlights: ► Tier structured approach for assessment of the release of metals from sediment. ► Standard column leaching test to simulate CO 2 acidified seawater CCS leakages. ► Metal and DOC release from marine sediment in contact to CO 2 acidified seawater. ► From empirical to geochemical modeling approaches of DOC and metals release in column tests. ► Contamination line of evidence input of CCS risk assessment. - Column metal release from CO 2 acidified seawater leakages in contact with estuarine contaminated sediment in CCS sites

  17. Synthesis and magnetic properties of a new borophosphate SrCo2BPO7 with a four-column ribbon structure. (United States)

    Gou, Wenbin; He, Zhangzhen; Yang, Ming; Zhang, Weilong; Cheng, Wendan


    A new borophosphate SrCo2BPO7 is synthesized by a conventional high-temperature solid-state reaction. The titled compound is found to crystallize in monoclinic system with space group P21/c, which displays a distorted four-column ribbon structure. Both BO3 triangles and PO4 tetrahedra are isolated, while irregular triangles built by Co(2+) ions are found to exist between the connecting ribbons. Magnetic behaviors are investigated by means of susceptibility, magnetization, and heat capacity measurements. The results confirm that SrCo2BPO7 possesses a three-dimensional antiferromagnetic ordering at 25 K. The possible spin arrangements in the system are also suggested.

  18. Estimation of Total Yearly CO2 Emissions by Wildfires in Mexico during the Period 1999–2010

    Directory of Open Access Journals (Sweden)

    Flor Bautista Vicente


    Full Text Available The phenomenon of wildfires became a global environmental problem which demands estimations of their CO2 emissions. Wildfires have deteriorated the air quality increasingly. Using available information on documented wildfires and a data set of satellite detected hot spots, total yearly emissions of CO2 in Mexico were estimated for the period 1999–2010. A map of the main vegetation groups was used to calculate total areas for every vegetation type. The yearly number of hot spots per vegetation type was calculated. Estimates of emitted CO2 in a wildfire were then accomplished by considering parameters such as: forest fuel load, vegetation type, burning efficiency, and mean burned area. The number of wildfires and total affected areas showed an annual variability. The yearly mean of affected area by a single wildfire varied between 0.2 and 0.3 km2. The total affected area during the period 1999 to 2010 was 86800 km2 which corresponds to 4.3% of the Mexican territory. Total CO2 emissions were approximately 112 Tg. The most affected vegetation types were forest and rainforest.

  19. Functional Response of Tumor Vasculature to PaCO2: Determination of Total and Microvascular Blood Volume by MRI

    Directory of Open Access Journals (Sweden)

    Scott D. Packard


    Full Text Available In order to identify differences in functional activity, we compared the reactivity of glioma vasculature and the native cerebral vasculature to both dilate and constrict in response to altered PaCO2. Gliomas were generated by unilateral implantation of U87MGdEGFR human glioma tumor cells into the striatum of adult female athymic rats. Relative changes in total and microvascular cerebral blood volume were determined by steady state contrast agent-enhanced magnetic resonance imaging for transitions from normocarbia to hypercarbia and hypocarbia. Although hypercarbia induced a significant increase in both total and microvascular blood volume in normal brain and glioma, reactivity of glioma vasculature was significantly blunted in comparison to normal striatum; glioma total CBV increased by 0.6±0.1%/mm Hg CO2 whereas normal striatum increased by 1.5±0.2%/mm Hg CO2, (P < .0001, group t-test. Reactivity of microvascular blood volume was also significantly blunted. In contrast, hypocarbia decreased both total and microvascular blood volumes more in glioma than in normal striatum. These results indicate that cerebral blood vessels derived by tumor-directed angiogenesis do retain reactivity to CO2. Furthermore, reduced reactivity of tumor vessels to a single physiological perturbation, such as hypercarbia, should not be construed as a generalized reduction of functional activity of the tumor vascular bed.

  20. High nitrate to phosphorus regime attenuates negative effects of rising pCO2 on total population carbon accumulation

    Directory of Open Access Journals (Sweden)

    S. A. Krug


    Full Text Available The ongoing rise in atmospheric pCO2 and consequent increase in ocean acidification have direct effects on marine calcifying phytoplankton, which potentially alters carbon export. To date it remains unclear, firstly, how nutrient regime, in particular by coccolithophores preferred phosphate limitation, interacts with pCO2 on particulate carbon accumulation; secondly, how direct physiological responses on the cellular level translate into total population response. In this study, cultures of Emiliania huxleyi were full-factorially exposed to two different N:P regimes and three different pCO2 levels. Cellular biovolume and PIC and POC content significantly declined in response to pCO2 in both nutrient regimes. Cellular PON content significantly increased in the Redfield treatment and decreased in the high N:P regime. Cell abundance significantly declined in the Redfield and remained constant in the high N:P regime. We hypothesise that in the high N:P regime severe phosphorous limitation could be compensated either by reduced inorganic phosphorous demand and/or by enzymatic uptake of organic phosphorous. In the Redfield regime we suggest that enzymatic phosphorous uptake to supplement enhanced phosphorous demand with pCO2 was not possible and thus cell abundance declined. These hypothesised different physiological responses of E. huxleyi among the nutrient regimes significantly altered population carrying capacities along the pCO2 gradient. This ultimately led to the attenuated total population response in POC and PIC content and biovolume to increased pCO2 in the high N:P regime. Our results point to the fact that the physiological (i.e. cellular PIC and POC response to ocean acidification cannot be linearly extrapolated to total population response and thus carbon export. It is therefore necessary to consider both effects of nutrient limitation on cell physiology and their consequences for population size when predicting the influence of

  1. The influences of CO2 fertilization and land use change on the total aboveground biomass in Amazonian tropical forest (United States)

    Castanho, A. D.; Zhang, K.; Coe, M. T.; Costa, M. H.; Moorcroft, P. R.


    Field observations from undisturbed old-growth Amazonian forest plots have recently reported on the temporal variation of many of the physical and chemical characteristics such as: physiological properties of leaves, above ground live biomass, above ground productivity, mortality and turnover rates. However, although this variation has been measured, it is still not well understood what mechanisms control the observed temporal variability. The observed changes in time are believed to be a result of a combination of increasing atmospheric CO2 concentration, climate variability, recovery from natural disturbance (drought, wind blow, flood), and increase of nutrient availability. The time and spatial variability of the fertilization effect of CO2 on above ground biomass will be explored in more detail in this work. A precise understanding of the CO2 effect on the vegetation is essential for an accurate prediction of the future response of the forest to climate change. To address this issue we simultaneously explore the effects of climate variability, historical CO2 and land-use change on total biomass and productivity using two different Dynamic Global Vegetation Models (DGVM). We use the Integrated Biosphere Simulator (IBIS) and the Ecosystem Demography Model 2.1 (ED2.1). Using land use changes database from 1700 - 2008 we reconstruct the total carbon balance in the Amazonian forest in space and time and present how the models predict the forest as carbon sink or source and explore why the model and field data diverge from each other. From 1970 to 2005 the Amazonian forest has been exposed to an increase of approximately 50 ppm in the atmospheric CO2 concentration. Preliminary analyses with the IBIS and ED2.1 dynamic vegetation model shows the CO2 fertilization effect could account for an increase in above ground biomass of 0.03 and 0.04 kg-C/m2/yr on average for the Amazon basin, respectively. The annual biomass change varies temporally and spatially from about 0

  2. A Low-Cost Miniaturized Laser Heterodyne Radiometer (Mini-LHR) for Near-ir Measurements of CO2 and CH4 in the Atmospheric Column (United States)

    Steel, Emily Wilson


    The miniaturized laser heterodyne radiometer (mini-LHR) is a ground-based passive variation of a laser heterodyne radiometer that uses sunlight to measure absorption of CO2 andCH4 in the infrared. Sunlight is collected using collimation optics mounted to an AERONET sun tracker, modulated with a fiber switch and mixed with infrared laser light in a fast photoreciever.The amplitude of the resultant RF (radio frequency) beat signal correlates with the concentration of the gas in the atmospheric column.

  3. Total cross sections for electron scattering by CO2 molecules in the energy range 400 endash 5000 eV

    International Nuclear Information System (INIS)

    Garcia, G.; Manero, F.


    Total cross sections for electron scattering by CO 2 molecules in the energy range 400 endash 5000 eV have been measured with experimental errors of ∼3%. The present results have been compared with available experimental and theoretical data. The dependence of the total cross sections on electron energy shows an asymptotic behavior with increasing energies, in agreement with the Born-Bethe approximation. In addition, an analytical formula is provided to extrapolate total cross sections to higher energies. copyright 1996 The American Physical Society

  4. Trends of total water vapor column above the Arctic from satellites observations (United States)

    Alraddawi, Dunya; Sarkissian, Alain; Keckhut, Philippe; Bock, Olivier; Claud, Chantal; Irbah, Abdenour


    Atmospheric water vapor (H2O) is the most important natural (as opposed to man-made) greenhouse gas, accounting for about two-thirds of the natural greenhouse effect. Despite this importance, its role in climate and its reaction to climate change are still difficult to assess. Many details of the hydrological cycle are poorly understood, such as the process of cloud formation and the transport and release of latent heat contained in the water vapor. In contrast to other important greenhouse gases like carbon dioxide (CO2) and methane, water vapor has a much higher temporal and spatial variability. Total precipitable water (TPW) or the total column of water vapor (TCWV) is the amount of liquid water that would result if all the water vapor in the atmospheric column of unit area were condensed. TCWV distribution contains valuable information on the vigor of the hydrological processes and moisture transport in the atmosphere. Measurement of TPW can be obtained based on atmospheric water vapor absorption or emission of radiation in the spectral range from UV to MW. TRENDS were found over the terrestrial Arctic by means of TCWV retrievals (using Moderate Resolution Imaging Spectro-radiometer (MODIS) near-infrared (2001-2015) records). More detailed approach was made for comparisons with ground based instruments over Sodankyla - Finland (TCWV from: SCIAMACHY 2003-2011, GOME-2A 2007-2011, SAOZ 2003-2011, GPS 2003-2011, MODIS 2003-2011)

  5. Probabilistic global maps of the CO2 column at daily and monthly scales from sparse satellite measurements (United States)

    Chevallier, Frédéric; Broquet, Grégoire; Pierangelo, Clémence; Crisp, David


    The column-average dry air-mole fraction of carbon dioxide in the atmosphere (XCO2) is measured by scattered satellite measurements like those from the Orbiting Carbon Observatory (OCO-2). We show that global continuous maps of XCO2 (corresponding to level 3 of the satellite data) at daily or coarser temporal resolution can be inferred from these data with a Kalman filter built on a model of persistence. Our application of this approach on 2 years of OCO-2 retrievals indicates that the filter provides better information than a climatology of XCO2 at both daily and monthly scales. Provided that the assigned observation uncertainty statistics are tuned in each grid cell of the XCO2 maps from an objective method (based on consistency diagnostics), the errors predicted by the filter at daily and monthly scales represent the true error statistics reasonably well, except for a bias in the high latitudes of the winter hemisphere and a lack of resolution (i.e., a too small discrimination skill) of the predicted error standard deviations. Due to the sparse satellite sampling, the broad-scale patterns of XCO2 described by the filter seem to lag behind the real signals by a few weeks. Finally, the filter offers interesting insights into the quality of the retrievals, both in terms of random and systematic errors.

  6. CO2 blood test (United States)

    Bicarbonate test; HCO3-; Carbon dioxide test; TCO2; Total CO2; CO2 test - serum; Acidosis - CO2; Alkalosis - CO2 ... Many medicines can interfere with blood test results. Your health ... need to stop taking any medicines before you have this test. DO ...

  7. Spatial Variability in Column CO2 Inferred from High Resolution GEOS-5 Global Model Simulations: Implications for Remote Sensing and Inversions (United States)

    Ott, L.; Putman, B.; Collatz, J.; Gregg, W.


    Column CO2 observations from current and future remote sensing missions represent a major advancement in our understanding of the carbon cycle and are expected to help constrain source and sink distributions. However, data assimilation and inversion methods are challenged by the difference in scale of models and observations. OCO-2 footprints represent an area of several square kilometers while NASA s future ASCENDS lidar mission is likely to have an even smaller footprint. In contrast, the resolution of models used in global inversions are typically hundreds of kilometers wide and often cover areas that include combinations of land, ocean and coastal areas and areas of significant topographic, land cover, and population density variations. To improve understanding of scales of atmospheric CO2 variability and representativeness of satellite observations, we will present results from a global, 10-km simulation of meteorology and atmospheric CO2 distributions performed using NASA s GEOS-5 general circulation model. This resolution, typical of mesoscale atmospheric models, represents an order of magnitude increase in resolution over typical global simulations of atmospheric composition allowing new insight into small scale CO2 variations across a wide range of surface flux and meteorological conditions. The simulation includes high resolution flux datasets provided by NASA s Carbon Monitoring System Flux Pilot Project at half degree resolution that have been down-scaled to 10-km using remote sensing datasets. Probability distribution functions are calculated over larger areas more typical of global models (100-400 km) to characterize subgrid-scale variability in these models. Particular emphasis is placed on coastal regions and regions containing megacities and fires to evaluate the ability of coarse resolution models to represent these small scale features. Additionally, model output are sampled using averaging kernels characteristic of OCO-2 and ASCENDS measurement

  8. A combined methodology using electrical resistivity tomography, ordinary kriging and porosimetry for quantifying total C trapped in carbonate formations associated with natural analogues for CO2 leakage (United States)

    Prado-Pérez, A. J.; Aracil, E.; Pérez del Villar, L.


    Currently, carbon deep geological storage is one of the most accepted methods for CO2 sequestration, being the long-term behaviour assessment of these artificial systems absolutely essential to guarantee the safety of the CO2 storage. In this sense, hydrogeochemical modelling is being used for evaluating any artificial CO2 deep geological storage as a potential CO2 sinkhole and to assess the leakage processes that are usually associated with these engineered systems. Carbonate precipitation, as travertines or speleothems, is a common feature in the CO2 leakage scenarios and, therefore, is of the utmost importance to quantify the total C content trapped as a stable mineral phase in these carbonate formations. A methodology combining three classical techniques such as: electrical resistivity tomography, geostatistical analysis and mercury porosimetry is described in this work, which was developed for calculating the total amount of C trapped as CaCO3 associated with the CO2 leakages in Alicún de las Torres natural analogue (Granada, Spain). The proposed methodology has allowed estimating the amount of C trapped as calcite, as more than 1.7 Mt. This last parameter, focussed on an artificial CO2 deep geological storage, is essential for hydrogeochemical modellers when evaluating whether CO2 storages constitute or not CO2 sinkholes. This finding is extremely important when assessing the long-term behaviour and safety of any artificial CO2 deep geological storage.

  9. Climatological Distributions of pH, pCO2, Total CO2, Alkalinity, and CaCO3 Saturation in the Global Surface Ocean (NCEI accession 01645680) (NCEI Accession 0164568) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Climatological mean monthly distributions of pH in the total H+ scale, total CO2 concentration (TCO2), and the degree of CaCO3 saturation for the global surface...

  10. Low-Cost Miniaturized Laser Heterodyne Radiometer for Highly Sensitive Detection of CO2 and CH4 in the Atmospheric Column (United States)

    Wilson, Emily L.; McLinden, Matthew L.; Miller, J. Houston


    We present a new passive ground-network instrument capable of measuring carbon dioxide (CO2) at 1.57 microns and methane (CH4) at 1.62 microns -- key for validation of OCO-2, ASCENDS, OCO-3, and GOSAT. Designed to piggy-back on an AERONET sun tracker (AERONET is a global network of more than 450 aerosol sensing instruments), this instrument could be rapidly deployed into the established AERONET network of ground sensors. Because aerosols induce a radiative effect that influences terrestrial carbon exchange, this simultaneous measure of aerosols and carbon cycle gases offers a uniquely comprehensive approach. This instrument is a variation of a laser heterodyne radiometer (LHR) that leverages recent advances in telecommunications lasers to miniaturize the instrument (the current version fits in a carry-on suitcase). In this technique, sunlight that has undergone absorption by the trace gas is mixed with laser light at a frequency matched to a trace gas absorption feature in the infrared (IR). Mixing results in a beat signal in the RF (radio frequency) region that can be related to the atmospheric concentration. By dividing this RF signal into a filter bank, concentrations at different altitudes can be resolved. For a one second integration, we estimate column sensitivities of 0.1 ppmv for CO2, and <1 ppbv for CH4.

  11. Application of CO2 Snow Jet Cleaning in Conjunction with Laboratory Based Total Reflection X-Ray Fluorescence (United States)

    Schmeling, M.; Burnett, D. S.; Allton, J. H.; Rodriquez, M.; Tripa, C. E.; Veryovkin, I. V.


    The Genesis mission was the first mission returning solar material to Earth since the Apollo program [1,2]. Unfortunately the return of the space craft on September 8, 2004 resulted in a crash landing, which shattered the samples into small fragments and exposed them to desert soil and other debris. Thus only small fragments of the original collectors are available, each having different degrees of surface contamination. Thorough surface cleaning is required to allow for subsequent analysis of solar wind material embedded within. An initial cleaning procedure was developed in coordination with Johnson Space Center which focused on removing larger sized particulates and a thin film organic contamination acquired during collection in space [3]. However, many of the samples have additional residues and more rigorous and/or innovative cleaning steps might be necessary. These cleaning steps must affect only the surface to avoid leaching and re-distribution of solar wind material from the bulk of the collectors. To aid in development and identification of the most appropriate cleaning procedures each sample has to be thoroughly inspected before and after each cleaning step. Laboratory based total reflection X-ray fluorescence (TXRF) spectrometry lends itself to this task as it is a non-destructive and surface sensitive analytical method permitting analysis of elements from aluminum onward present at and near the surface of a flat substrate [4]. The suitability of TXRF has been demonstrated for several Genesis solar wind samples before and after various cleaning methods including acid treatment, gas cluster ion beam, and CO2 snow jet [5 - 7]. The latter one is non-invasive and did show some promise on one sample [5]. To investigate the feasibility of CO2 snow jet cleaning further, several flown Genesis samples were selected to be characterized before and after CO2 snow application with sample 61052 being discussed below.

  12. Total soil C and N sequestration in a grassland following 10 years of free air CO2 enrichment

    NARCIS (Netherlands)

    Kessel, van C.; Boots, B.; Graaff, de M.A.; Harris, D.; Blum, H.; Six, J.


    Soil C sequestration may mitigate rising levels of atmospheric CO2. However, it has yet to be determined whether net soil C sequestration occurs in N-rich grasslands exposed to long-term elevated CO2. This study examined whether N-fertilized grasslands exposed to elevated CO2 sequestered additional

  13. Effects of elevated root zone CO2 and air temperature on photosynthetic gas exchange, nitrate uptake, and total reduced nitrogen content in aeroponically grown lettuce plants. (United States)

    He, Jie; Austin, Paul T; Lee, Sing Kong


    Effects of elevated root zone (RZ) CO(2) and air temperature on photosynthesis, productivity, nitrate (NO(3)(-)), and total reduced nitrogen (N) content in aeroponically grown lettuce plants were studied. Three weeks after transplanting, four different RZ [CO(2)] concentrations [ambient (360 ppm) and elevated concentrations of 2000, 10,000, and 50,000 ppm] were imposed on plants grown at two air temperature regimes of 28 degrees C/22 degrees C (day/night) and 36 degrees C/30 degrees C. Photosynthetic CO(2) assimilation (A) and stomatal conductance (g(s)) increased with increasing photosynthetically active radiation (PAR). When grown at 28 degrees C/22 degrees C, all plants accumulated more biomass than at 36 degrees C/30 degrees C. When measured under a PAR >or=600 micromol m(-2) s(-1), elevated RZ [CO(2)] resulted in significantly higher A, lower g(s), and higher midday leaf relative water content in all plants. Under elevated RZ [CO(2)], the increase of biomass was greater in roots than in shoots, causing a lower shoot/root ratio. The percentage increase in growth under elevated RZ [CO(2)] was greater at 36 degrees C/30 degrees C although the total biomass was higher at 28 degrees C/22 degrees C. NO(3)(-) and total reduced N concentrations of shoot and root were significantly higher in all plants under elevated RZ [CO(2)] than under ambient RZ [CO(2)] of 360 ppm at both temperature regimes. At each RZ [CO(2)], NO(3)(-) and total reduced N concentration of shoots were greater at 28 degrees C/22 degrees C than at 36 degrees C/30 degrees C. At all RZ [CO(2)], roots of plants at 36 degrees C/30 degrees C had significantly higher NO(3)(-) and total reduced N concentrations than at 28 degrees C/22 degrees C. Since increased RZ [CO(2)] caused partial stomatal closure, maximal A and maximal g(s) were negatively correlated, with a unique relationship for each air temperature. However, across all RZ [CO(2)] and temperature treatments, there was a close correlation between

  14. CO 2 Capture Capacity and Swelling Measurements of Liquid-like Nanoparticle Organic Hybrid Materials via Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy

    KAUST Repository

    Park, Youngjune; Shin, Dolly; Jang, Young Nam; Park, Ah-Hyung Alissa


    attenuated total reflectance (ATR) Fourier transform infrared (FT-IR) spectroscopy. Simultaneous measurements of CO 2 capture capacity and swelling behaviors of polyetheramine (Jeffamine M-2070) and its corresponding NOHMs (NOHM-I-PE2070) were reported

  15. Insights into Tikhonov regularization: application to trace gas column retrieval and the efficient calculation of total column averaging kernels

    Directory of Open Access Journals (Sweden)

    T. Borsdorff


    Full Text Available Insights are given into Tikhonov regularization and its application to the retrieval of vertical column densities of atmospheric trace gases from remote sensing measurements. The study builds upon the equivalence of the least-squares profile-scaling approach and Tikhonov regularization method of the first kind with an infinite regularization strength. Here, the vertical profile is expressed relative to a reference profile. On the basis of this, we propose a new algorithm as an extension of the least-squares profile scaling which permits the calculation of total column averaging kernels on arbitrary vertical grids using an analytic expression. Moreover, we discuss the effective null space of the retrieval, which comprises those parts of a vertical trace gas distribution which cannot be inferred from the measurements. Numerically the algorithm can be implemented in a robust and efficient manner. In particular for operational data processing with challenging demands on processing time, the proposed inversion method in combination with highly efficient forward models is an asset. For demonstration purposes, we apply the algorithm to CO column retrieval from simulated measurements in the 2.3 μm spectral region and to O3 column retrieval from the UV. These represent ideal measurements of a series of spaceborne spectrometers such as SCIAMACHY, TROPOMI, GOME, and GOME-2. For both spectral ranges, we consider clear-sky and cloudy scenes where clouds are modelled as an elevated Lambertian surface. Here, the smoothing error for the clear-sky and cloudy atmosphere is significant and reaches several percent, depending on the reference profile which is used for scaling. This underlines the importance of the column averaging kernel for a proper interpretation of retrieved column densities. Furthermore, we show that the smoothing due to regularization can be underestimated by calculating the column averaging kernel on a too coarse vertical grid. For both

  16. Have Market-oriented Reforms Decoupled China’s CO2 Emissions from Total Electricity Generation? An Empirical Analysis

    Directory of Open Access Journals (Sweden)

    Wei Shang


    Full Text Available Achieving the decoupling of electric CO2 emissions from total electricity generation is important in ensuring the sustainable socioeconomic development of China. To realize this, China implemented market-oriented reforms to its electric power industry at the beginning of 2003. This study used the Tapio decoupling index, the Laspeyres decomposition algorithm, and decoupling-related data from 1993 to 2012 to evaluate the effect of these reforms. Several conclusions can be drawn based on the empirical analysis. (1 The reforms changed the developmental trend of the decoupling index and facilitated its progress towards strong decoupling. (2 The results forecasted through fitting the curve to the decoupling index indicate that strong decoupling would be realized by 2030. (3 Limiting the manufacturing development and upgrading the generation equipment of the thermal power plants are essential for China to achieve strong decoupling at an early date. (4 China should enhance regulatory pressures and guidance for appropriate investment in thermal power plants to ensure the stable development of the decoupling index. (5 Transactions between multiple participants and electricity price bidding play active roles in the stable development of the decoupling index.

  17. 1979-1999 satellite total ozone column measurements over West Africa

    Directory of Open Access Journals (Sweden)

    P. Di Carlo


    Full Text Available Total Ozone Mapping Spectrometer (TOMS instruments have been flown on NASA/GSFC satellites for over 20 years. They provide near real-time ozone data for Atmospheric Science Research. As part of preliminary efforts aimed to develop a Lidar station in Nigeria for monitoring the atmospheric ozone and aerosol levels, the monthly mean TOMS total column ozone measurements between 1979 to 1999 have been analysed. The trends of the total column ozone showed a spatial and temporal variation with signs of the Quasi Biennial Oscillation (QBO during the 20-year study period. The values of the TOMS total ozone column, over Nigeria (4-14°N is within the range of 230-280 Dobson Units, this is consistent with total ozone column data, measured since April 1993 with a Dobson Spectrophotometer at Lagos (3°21¢E, 6°33¢N, Nigeria.

  18. Soil efflux and total emission rates of magmatic CO2 at the horseshoe lake tree kill, mammoth mountain, California, 1995-1999 (United States)

    Gerlach, T.M.; Doukas, M.P.; McGee, K.A.; Kessler, R.


    We report the results of eight soil CO2 efflux surveys by the closed circulation chamber method at the Horseshoe Lake tree kill (HLTK) - the largest tree kill on Mammoth Mountain. The surveys were undertaken from 1995 to 1999 to constrain total HLTK CO2 emissions and to evaluate occasional efflux surveys as a surveillance tool for the tree kills. HLTK effluxes range from 1 to > 10,000 g m -2 day -1 (grams CO2 per square meter per day); they are not normally distributed. Station efflux rates can vary by 7-35% during the course of the 8- to 16-h surveys. Disturbance of the upper 2 cm of ground surface causes effluxes to almost double. Semivariograms of efflux spatial covariance fit exponential or spherical models; they lack nugget effects. Efflux contour maps and total CO2 emission rates based on exponential, spherical, and linear kriging models of survey data are nearly identical; similar results are also obtained with triangulation models, suggesting that the kriging models are not seriously distorted by the lack of normal efflux distributions. In addition, model estimates of total CO2 emission rates are relatively insensitive to the measurement precision of the efflux rates and to the efflux value used to separate magmatic from forest soil sources of CO2. Surveys since 1997 indicate that, contrary to earlier speculations, a termination of elevated CO2 emissions at the HLTK is unlikely anytime soon. The HLTK CO2 efflux anomaly fluctuated greatly in size and intensity throughout the 1995-1999 surveys but maintained a N-S elongation, presumably reflecting fault control of CO2 transport from depth. Total CO2 emission rates also fluctuated greatly, ranging from 46 to 136 t day-1 (metric tons CO2 per day) and averaging 93 t day-1. The large inter-survey variations are caused primarily by external (meteorological) processes operating on time scales of hours to days. The externally caused variations can mask significant changes occurring at depth; a striking example is

  19. CO 2 Capture Capacity and Swelling Measurements of Liquid-like Nanoparticle Organic Hybrid Materials via Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy

    KAUST Repository

    Park, Youngjune


    Novel nanoparticle organic hybrid materials (NOHMs), which are comprised of organic oligomers or polymers tethered to an inorganic nanosized cores of various sizes, have been synthesized, and their solvating property for CO 2 was investigated using attenuated total reflectance (ATR) Fourier transform infrared (FT-IR) spectroscopy. Simultaneous measurements of CO 2 capture capacity and swelling behaviors of polyetheramine (Jeffamine M-2070) and its corresponding NOHMs (NOHM-I-PE2070) were reported at temperatures of (298, 308, 323 and 353) K and CO 2 pressure conditions ranging from (0 to 5.5) MPa. The polymeric canopy, or polymer bound to the nanoparticle surface, showed significantly less swelling behavior with enhanced or comparable CO 2 capture capacity compared to pure unbound polyetheramine. © 2011 American Chemical Society.

  20. Tropical intercontinental optical measurement network of aerosol, precipitable water and total column ozone (United States)

    Holben, B. N.; Tanre, D.; Reagan, J. A.; Eck, T. F.; Setzer, A.; Kaufman, Y. A.; Vermote, E.; Vassiliou, G. D.; Lavenu, F.


    A new generation of automatic sunphotometers is used to systematically monitor clear sky total column aerosol concentration and optical properties, precipitable water and total column ozone diurnally and annually in West Africa and South America. The instruments are designed to measure direct beam sun, solar aureole and sky radiances in nine narrow spectral bands from the UV to the near infrared on an hourly basis. The instrumentation and the algorithms required to reduce the data for subsequent analysis are described.

  1. Estimation of Insulin Resistance in Mexican Adults by the [13C]Glucose Breath Test Corrected for Endogenous Total CO2 Production

    Directory of Open Access Journals (Sweden)

    Erika Ibarra-Pastrana


    Full Text Available Objective. To evaluate the efficacy of the [13C]glucose breath test for measuring insulin resistance in Mexican adults with different glycemic states. Research Design and Methods. Fifty-eight adults underwent a [13C]glucose breath test with simultaneous measurement of total CO2 production by indirect calorimetry, at baseline and 90 minutes after the ingestion of 15 g of dextrose and 25 mg of [13C]glucose. HOMA was used as a marker of insulin resistance. Results. We found an inverse correlation between HOMA and the breath test δ13CO2 (‰, r=-0.41 (P=0.001. After adjusting for total CO2 production, correlations between HOMA and fasting glucose were less strong but remained significant. An ROC curve was constructed using δ13CO2 (‰ and HOMA values; the cut-off point was 9.99‰ δ13CO2, corresponding to a sensitivity of 80.0 (95% CI: 51.9, 95.7 and a specificity of 67.4 (95% CI: 51.5, 80.9. Conclusions. The [13C]glucose breath test is a simple noninvasive procedure but was not sufficiently robust for an accurate diagnosis of insulin resistance. Our findings suggest that the test might be helpful in identifying individuals who are not IR, which in turn may contribute to improved diabetes prevention.

  2. Multiscale observations of CO2, 13CO2, and pollutants at Four Corners for emission verification and attribution (United States)

    Lindenmaier, Rodica; Dubey, Manvendra K.; Henderson, Bradley G.; Butterfield, Zachary T.; Herman, Jay R.; Rahn, Thom; Lee, Sang-Hyun


    There is a pressing need to verify air pollutant and greenhouse gas emissions from anthropogenic fossil energy sources to enforce current and future regulations. We demonstrate the feasibility of using simultaneous remote sensing observations of column abundances of CO2, CO, and NO2 to inform and verify emission inventories. We report, to our knowledge, the first ever simultaneous column enhancements in CO2 (3–10 ppm) and NO2 (1–3 Dobson Units), and evidence of δ13CO2 depletion in an urban region with two large coal-fired power plants with distinct scrubbing technologies that have resulted in ∆NOx/∆CO2 emission ratios that differ by a factor of two. Ground-based total atmospheric column trace gas abundances change synchronously and correlate well with simultaneous in situ point measurements during plume interceptions. Emission ratios of ∆NOx/∆CO2 and ∆SO2/∆CO2 derived from in situ atmospheric observations agree with those reported by in-stack monitors. Forward simulations using in-stack emissions agree with remote column CO2 and NO2 plume observations after fine scale adjustments. Both observed and simulated column ∆NO2/∆CO2 ratios indicate that a large fraction (70–75%) of the region is polluted. We demonstrate that the column emission ratios of ∆NO2/∆CO2 can resolve changes from day-to-day variation in sources with distinct emission factors (clean and dirty power plants, urban, and fires). We apportion these sources by using NO2, SO2, and CO as signatures. Our high-frequency remote sensing observations of CO2 and coemitted pollutants offer promise for the verification of power plant emission factors and abatement technologies from ground and space. PMID:24843169

  3. Spatial regression analysis on 32 years of total column ozone data

    NARCIS (Netherlands)

    Knibbe, J.S.; van der A, J.R.; de Laat, A.T.J.


    Multiple-regression analyses have been performed on 32 years of total ozone column data that was spatially gridded with a 1 × 1.5° resolution. The total ozone data consist of the MSR (Multi Sensor Reanalysis; 1979-2008) and 2 years of assimilated SCIAMACHY (SCanning Imaging Absorption spectroMeter

  4. Equilibrium Total Pressure and CO2 Solubility in Binary and Ternary Aqueous Solutions of 2-(Diethylamino)ethanol (DEEA) and 3-(Methylamino)propylamine (MAPA)

    DEFF Research Database (Denmark)

    Waseem Arshad, Muhammad; Svendsen, Hallvard Fjøsne; Fosbøl, Philip Loldrup


    Equilibrium total pressures were measured and equilibrium CO2 partial pressures were calculated from the measured total pressure data in binary and ternary aqueous solutions of 2-(diethylamino)ethanol (DEEA) and 3-(methylamino)propylamine (MAPA). The measurements were carried out in a commercially...... available calorimeter used as an equilibrium cell. The examined systems were the binary aqueous solutions of 5 M DEEA, 2 M MAPA, and 1 M MAPA and the ternary aqueous mixtures of 5 M DEEA + 2 M MAPA (5D2M) and 5 M DEEA + 1 M MAPA (5D1M), which gave liquid–liquid phase split upon CO2 absorption. The total...... pressures were measured and the CO2 partial pressures were calculated as a function of CO2 loading at three different temperatures 40 °C, 80 °C, and 120 °C. All experiments were reproduced with good repeatability. The measurements were carried out for 30 mass % MEA solutions to validate the experimental...

  5. Determination of feasibility and advantages of using additional turbines to reduce energy consumption and CO2 emission of a distillation column

    Directory of Open Access Journals (Sweden)

    Svang-Ariyaskul Apichit


    Full Text Available Distillation is a process that consumes an extensive amount of energy and emits an enormous amount of CO2. It is attractive to reduce the energy consumption and CO2 emission for distillation. A new design of distillation is proposed by adding turbines in the vapor process streams before the condenser and after a reboiler to produce domestic electricity. As a result, this new design helps in reducing energy consumption and CO2 emission. The key variables are the distillate to feed ratio and the reflux ratio because they are the direct factors that control the vapor flowrates supplying the turbines. The distillation of an alkane mixture of C4 - C8 commonly found in a petroleum refinery was used as a test model to prove the process feasibility. The energy consumption and CO2 emission of the new process are reduced to 0.93 - 0.96 and 0.89 - 0.90 of the conventional process, respectively. This new design increases process efficiency in terms of second law efficiency by reducing the entropy generation from the conventional distillation at low distillate to feed ratios and reflux ratios. The distillation with additional turbines is promising to reduce energy consumption and CO2 emission and to increase process efficiency.

  6. AirCore-HR: a high-resolution column sampling to enhance the vertical description of CH4 and CO2

    Directory of Open Access Journals (Sweden)

    O. Membrive


    Full Text Available An original and innovative sampling system called AirCore was presented by NOAA in 2010 (Karion et al., 2010. It consists of a long (>  100 m and narrow (<  1 cm stainless steel tube that can retain a profile of atmospheric air. The captured air sample has then to be analyzed with a gas analyzer for trace mole fraction. In this study, we introduce a new AirCore aiming to improve resolution along the vertical with the objectives to (i better capture the vertical distribution of CO2 and CH4, (ii provide a tool to compare AirCores and validate the estimated vertical resolution achieved by AirCores. This (high-resolution AirCore-HR consists of a 300 m tube, combining 200 m of 0.125 in. (3.175 mm tube and a 100 m of 0.25 in. (6.35 mm tube. This new configuration allows us to achieve a vertical resolution of 300 m up to 15 km and better than 500 m up to 22 km (if analysis of the retained sample is performed within 3 h. The AirCore-HR was flown for the first time during the annual StratoScience campaign from CNES in August 2014 from Timmins (Ontario, Canada. High-resolution vertical profiles of CO2 and CH4 up to 25 km were successfully retrieved. These profiles revealed well-defined transport structures in the troposphere (also seen in CAMS-ECMWF high-resolution forecasts of CO2 and CH4 profiles and captured the decrease of CO2 and CH4 in the stratosphere. The multi-instrument gondola also carried two other low-resolution AirCore-GUF that allowed us to perform direct comparisons and study the underlying processing method used to convert the sample of air to greenhouse gases vertical profiles. In particular, degrading the AirCore-HR derived profiles to the low resolution of AirCore-GUF yields an excellent match between both sets of CH4 profiles and shows a good consistency in terms of vertical structures. This fully validates the theoretical vertical resolution achievable by AirCores. Concerning CO2 although a

  7. Measurements of Nitrogen Dioxide Total Column Amounts using a Brewer Double Spectrophotometer in Direct Sun Mode (United States)

    Cede, Alexander; Herman, Jay; Richter, Andreas; Krotkov, Nickolay; Burrows, John


    NO2 column amounts were measured for the past 2 years at Goddard Space Flight Center, Greenbelt, Maryland, using a Brewer spectrometer in direct Sun mode. A new bootstrap method to calibrate the instrument is introduced and described. This technique selects the cleanest days from the database to obtain the solar reference spectrum. The main advantage for direct Sun measurements is that the conversion uncertainty from slant column to vertical column is negligible compared to the standard scattered light observations where it is typically on the order of 100% (2sigma) at polluted sites. The total 2sigma errors of the direct Sun retrieved column amounts decrease with solar zenith angle and are estimated at 0.2 to 0.6 Dobson units (DU, 1 DU approx. equal to 2.7 10(exp 16) molecules cm(exp -2)), which is more accurate than scattered light measurements for high NO2 amounts. Measured NO2 column amounts, ranging from 0 to 3 DU with a mean of 0.7 DU, show a pronounced daily course and a strong variability from day to day. The NO2 concentration typically increases from sunrise to noon. In the afternoon it decreases in summer and stays constant in winter. As expected from the anthropogenic nature of its source, NO2 amounts on weekends are significantly reduced. The measurements were compared to satellite retrievals from Scanning Image Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY). Satellite data give the same average NO2 column and show a seasonal cycle that is similar to the ground data in the afternoon. We show that NO2 must be considered when retrieving aerosol absorption properties, especially for situations with low aerosol optical depth.

  8. Optimum pressure for total-reflux operated thermal diffusion column for isotope separation

    International Nuclear Information System (INIS)

    Yamamoto, Ichiro; Makino, Hitoshi; Kanagawa, Akira


    A formula for prediction of the optimum operating pressure P opt of the thermal diffusion columns at total reflux is derived based on the approximate formulae for the column constants which can be evaluated analytically. The formula is expressed explicitly in terms of (1) physical properties of gases to be separated, (2) ratio of radii between hot wire and cold wall of the column, and (3) the ratio of the temperature difference to the cold wall temperature. The result is compared with experimental data; (1) binary monatomic gas systems, (2) multicomponent monatomic gas systems, (3) isotopically substituted polyatomic systems, (4) systems of low atomic or molecular weight, and (5) mixtures of unlike gases; mainly obtained by Rutherford and coworkers. Although the formula is based on the rather rough approximation for the column constants, the optimum pressures predicted by the present formula are in successfully good agreement with the experimental data even for the systems of low atomic or molecular weight and that of mixtures of unlike gases. (author)

  9. A new fully automated FTIR system for total column measurements of greenhouse gases

    Directory of Open Access Journals (Sweden)

    M. C. Geibel


    Full Text Available This article introduces a new fully automated FTIR system that is part of the Total Carbon Column Observing Network (TCCON. It will provide continuous ground-based measurements of column-averaged volume mixing ratio for CO2, CH4 and several other greenhouse gases in the tropics.

    Housed in a 20-foot shipping container it was developed as a transportable system that could be deployed almost anywhere in the world. We describe the automation concept which relies on three autonomous subsystems and their interaction. Crucial components like a sturdy and reliable solar tracker dome are described in detail. The automation software employs a new approach relying on multiple processes, database logging and web-based remote control.

    First results of total column measurements at Jena, Germany show that the instrument works well and can provide parts of the diurnal as well as seasonal cycle for CO2. Instrument line shape measurements with an HCl cell suggest that the instrument stays well-aligned over several months.

    After a short test campaign for side by side intercomaprison with an existing TCCON instrument in Australia, the system will be transported to its final destination Ascension Island.

  10. Assessing systematic errors in GOSAT CO2 retrievals by comparing assimilated fields to independent CO2 data (United States)

    Baker, D. F.; Oda, T.; O'Dell, C.; Wunch, D.; Jacobson, A. R.; Yoshida, Y.; Partners, T.


    Measurements of column CO2 concentration from space are now being taken at a spatial and temporal density that permits regional CO2 sources and sinks to be estimated. Systematic errors in the satellite retrievals must be minimized for these estimates to be useful, however. CO2 retrievals from the TANSO instrument aboard the GOSAT satellite are compared to similar column retrievals from the Total Carbon Column Observing Network (TCCON) as the primary method of validation; while this is a powerful approach, it can only be done for overflights of 10-20 locations and has not, for example, permitted validation of GOSAT data over the oceans or deserts. Here we present a complementary approach that uses a global atmospheric transport model and flux inversion method to compare different types of CO2 measurements (GOSAT, TCCON, surface in situ, and aircraft) at different locations, at the cost of added transport error. The measurements from any single type of data are used in a variational carbon data assimilation method to optimize surface CO2 fluxes (with a CarbonTracker prior), then the corresponding optimized CO2 concentration fields are compared to those data types not inverted, using the appropriate vertical weighting. With this approach, we find that GOSAT column CO2 retrievals from the ACOS project (version 2.9 and 2.10) contain systematic errors that make the modeled fit to the independent data worse. However, we find that the differences between the GOSAT data and our prior model are correlated with certain physical variables (aerosol amount, surface albedo, correction to total column mass) that are likely driving errors in the retrievals, independent of CO2 concentration. If we correct the GOSAT data using a fit to these variables, then we find the GOSAT data to improve the fit to independent CO2 data, which suggests that the useful information in the measurements outweighs the negative impact of the remaining systematic errors. With this assurance, we compare

  11. Interfacing a one-dimensional lake model with a single-column atmospheric model: 2. Thermal response of the deep Lake Geneva, Switzerland under a 2 × CO2 global climate change (United States)

    Perroud, Marjorie; Goyette, StéPhane


    In the companion to the present paper, the one-dimensional k-ɛ lake model SIMSTRAT is coupled to a single-column atmospheric model, nicknamed FIZC, and an application of the coupled model to the deep Lake Geneva, Switzerland, is described. In this paper, the response of Lake Geneva to global warming caused by an increase in atmospheric carbon dioxide concentration (i.e., 2 × CO2) is investigated. Coupling the models allowed for feedbacks between the lake surface and the atmosphere and produced changes in atmospheric moisture and cloud cover that further modified the downward radiation fluxes. The time evolution of atmospheric variables as well as those of the lake's thermal profile could be reproduced realistically by devising a set of adjustable parameters. In a "control" 1 × CO2 climate experiment, the coupled FIZC-SIMSTRAT model demonstrated genuine skills in reproducing epilimnetic and hypolimnetic temperatures, with annual mean errors and standard deviations of 0.25°C ± 0.25°C and 0.3°C ± 0.15°C, respectively. Doubling the CO2 concentration induced an atmospheric warming that impacted the lake's thermal structure, increasing the stability of the water column and extending the stratified period by 3 weeks. Epilimnetic temperatures were seen to increase by 2.6°C to 4.2°C, while hypolimnion temperatures increased by 2.2°C. Climate change modified components of the surface energy budget through changes mainly in air temperature, moisture, and cloud cover. During summer, reduced cloud cover resulted in an increase in the annual net solar radiation budget. A larger water vapor deficit at the air-water interface induced a cooling effect in the lake.

  12. Relationship between surface, free tropospheric and total column ozone in 2 contrasting areas in South-Africa

    CSIR Research Space (South Africa)

    Combrink, J


    Full Text Available Measurements of surface ozone in two contrasting areas of South Africa are compared with free tropospheric and Total Ozone Mapping Spectrometer (TOMS) total column ozone data. Cape Point is representative of a background monitoring station which...

  13. The influence of instrumental line shape degradation on NDACC gas retrievals: total column and profile

    Directory of Open Access Journals (Sweden)

    Y. Sun


    Full Text Available We simulated instrumental line shape (ILS degradations with respect to typical types of misalignment, and compared their influence on each NDACC (Network for Detection of Atmospheric Composition Change gas. The sensitivities of the total column, the root mean square (rms of the fitting residual, the total random uncertainty, the total systematic uncertainty, the total uncertainty, degrees of freedom for signal (DOFs, and the profile with respect to different levels of ILS degradation for all current standard NDACC gases, i.e. O3, HNO3, HCl, HF, ClONO2, CH4, CO, N2O, C2H6, and HCN, were investigated. The influence of an imperfect ILS on NDACC gases' retrieval was assessed, and the consistency under different meteorological conditions and solar zenith angles (SZAs were examined. The study concluded that the influence of ILS degradation can be approximated by the linear sum of individual modulation efficiency (ME amplitude influence and phase error (PE influence. The PE influence is of secondary importance compared with the ME amplitude. Generally, the stratospheric gases are more sensitive to ILS degradation than the tropospheric gases, and the positive ME influence is larger than the negative ME. For a typical ILS degradation (10 %, the total columns of stratospheric gases O3, HNO3, HCl, HF, and ClONO2 changed by 1.9, 0.7, 4, 3, and 23 %, respectively, while the columns of tropospheric gases CH4, CO, N2O, C2H6, and HCN changed by 0.04, 2.1, 0.2, 1.1, and 0.75 %, respectively. In order to suppress the fractional difference in the total column for ClONO2 and other NDACC gases within 10 and 1 %, respectively, the maximum positive ME degradations for O3, HNO3, HCl, HF, ClONO2, CO, C2H6, and HCN should be less than 6, 15, 5, 5, 5, 5, 9, and 13 %, respectively; the maximum negative ME degradations for O3, HCl, and HF should be less than 6, 12, and 12 %, respectively; the influence of ILS degradation on CH4 and N2O can be regarded as being

  14. Reconciliation of Halogen-Induced Ozone Loss with the Total-Column Ozone Record (United States)

    Shepherd, T. G.; Plummer, D. A.; Scinocca, J. F.; Hegglin, M. I.; Fioletov, V. E.; Reader, M. C.; Remsberg, E.; von Clarmann, T.; Wang, H. J.


    The observed depletion of the ozone layer from the 1980s onwards is attributed to halogen source gases emitted by human activities. However, the precision of this attribution is complicated by year-to-year variations in meteorology, that is, dynamical variability, and by changes in tropospheric ozone concentrations. As such, key aspects of the total-column ozone record, which combines changes in both tropospheric and stratospheric ozone, remain unexplained, such as the apparent absence of a decline in total-column ozone levels before 1980, and of any long-term decline in total-column ozone levels in the tropics. Here we use a chemistry-climate model to estimate changes in halogen-induced ozone loss between 1960 and 2010; the model is constrained by observed meteorology to remove the eects of dynamical variability, and driven by emissions of tropospheric ozone precursors to separate out changes in tropospheric ozone. We show that halogen-induced ozone loss closely followed stratospheric halogen loading over the studied period. Pronounced enhancements in ozone loss were apparent in both hemispheres following the volcanic eruptions of El Chichon and, in particular, Mount Pinatubo, which significantly enhanced stratospheric aerosol loads. We further show that approximately 40% of the long-term non-volcanic ozone loss occurred before 1980, and that long-term ozone loss also occurred in the tropical stratosphere. Finally, we show that halogeninduced ozone loss has declined by over 10% since stratospheric halogen loading peaked in the late 1990s, indicating that the recovery of the ozone layer is well underway.

  15. Recovery of deuterium from H-D gas mixture by thermal diffusion in a multi-concentric-tube column device of fixed total sum of column heights with transverse sampling streams

    International Nuclear Information System (INIS)

    Yeh, H.-M.


    The effect of the increment in the number of concentric-tube thermal diffusion columns on the recovery of deuterium from H 2 -HD-D 2 system with fixed total sum of column heights, has been investigated. The equations for predicting the degrees of separation in single-column, double-column and triple-column devices have been derived. Considerable improvement in recovery can be achieved if a multi-column device with larger number of column is employed, instead of a single-column device with column height equal to the same total sum of column heights, especially for the case of higher flow-rate operation and larger total sum of column heights.

  16. Six years of total ozone column measurements from SCIAMACHY nadir observations (United States)

    Lerot, C.; van Roozendael, M.; van Geffen, J.; van Gent, J.; Fayt, C.; Spurr, R.; Lichtenberg, G.; von Bargen, A.


    Total O3 columns have been retrieved from six years of SCIAMACHY nadir UV radiance measurements using SDOAS, an adaptation of the GDOAS algorithm previously developed at BIRA-IASB for the GOME instrument. GDOAS and SDOAS have been implemented by the German Aerospace Center (DLR) in the version 4 of the GOME Data Processor (GDP) and in version 3 of the SCIAMACHY Ground Processor (SGP), respectively. The processors are being run at the DLR processing centre on behalf of the European Space Agency (ESA). We first focus on the description of the SDOAS algorithm with particular attention to the impact of uncertainties on the reference O3 absorption cross-sections. Second, the resulting SCIAMACHY total ozone data set is globally evaluated through large-scale comparisons with results from GOME and OMI as well as with ground-based correlative measurements. The various total ozone data sets are found to agree within 2% on average. However, a negative trend of 0.2-0.4%/year has been identified in the SCIAMACHY O3 columns; this probably originates from instrumental degradation effects that have not yet been fully characterized.

  17. Six years of total ozone column measurements from SCIAMACHY nadir observations

    Directory of Open Access Journals (Sweden)

    G. Lichtenberg


    Full Text Available Total O3 columns have been retrieved from six years of SCIAMACHY nadir UV radiance measurements using SDOAS, an adaptation of the GDOAS algorithm previously developed at BIRA-IASB for the GOME instrument. GDOAS and SDOAS have been implemented by the German Aerospace Center (DLR in the version 4 of the GOME Data Processor (GDP and in version 3 of the SCIAMACHY Ground Processor (SGP, respectively. The processors are being run at the DLR processing centre on behalf of the European Space Agency (ESA. We first focus on the description of the SDOAS algorithm with particular attention to the impact of uncertainties on the reference O3 absorption cross-sections. Second, the resulting SCIAMACHY total ozone data set is globally evaluated through large-scale comparisons with results from GOME and OMI as well as with ground-based correlative measurements. The various total ozone data sets are found to agree within 2% on average. However, a negative trend of 0.2–0.4%/year has been identified in the SCIAMACHY O3 columns; this probably originates from instrumental degradation effects that have not yet been fully characterized.

  18. Airborne measurements of CO2 column concentrations made with a pulsed IPDA lidar using a multiple-wavelength-locked laser and HgCdTe APD detector (United States)

    Abshire, James B.; Ramanathan, Anand K.; Riris, Haris; Allan, Graham R.; Sun, Xiaoli; Hasselbrack, William E.; Mao, Jianping; Wu, Stewart; Chen, Jeffrey; Numata, Kenji; Kawa, Stephan R.; Yang, Mei Ying Melissa; DiGangi, Joshua


    Here we report on measurements made with an improved CO2 Sounder lidar during the ASCENDS 2014 and 2016 airborne campaigns. The changes made to the 2011 version of the lidar included incorporating a rapidly wavelength-tunable, step-locked seed laser in the transmitter, using a much more sensitive HgCdTe APD detector and using an analog digitizer with faster readout time in the receiver. We also improved the lidar's calibration approach and the XCO2 retrieval algorithm. The 2014 and 2016 flights were made over several types of topographic surfaces from 3 to 12 km aircraft altitudes in the continental US. The results are compared to the XCO2 values computed from an airborne in situ sensor during spiral-down maneuvers. The 2014 results show significantly better performance and include measurement of horizontal gradients in XCO2 made over the Midwestern US that agree with chemistry transport models. The results from the 2016 airborne lidar retrievals show precisions of ˜ 0.7 parts per million (ppm) with 1 s averaging over desert surfaces, which is an improvement of about 8 times compared to similar measurements made in 2011. Measurements in 2016 were also made over fresh snow surfaces that have lower surface reflectance at the laser wavelengths. The results from both campaigns showed that the mean values of XCO2 retrieved from the lidar consistently agreed with those based on the in situ sensor to within 1 ppm. The improved precision and accuracy demonstrated in the 2014 and 2016 flights should benefit future airborne science campaigns and advance the technique's readiness for a space-based instrument.

  19. NOAA JPSS Ozone Mapping and Profiler Suite (OMPS) Nadir Total Column Sensor Data Record (SDR) from IDPS (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ozone Mapping and Profiler Suite (OMPS) onboard the Suomi NPP satellite monitors ozone from space. OMPS will collect total column and vertical profile ozone data...

  20. OMPS/NPP PCA SO2 Total Column 1-Orbit L2 Swath 50x50km NRT (United States)

    National Aeronautics and Space Administration — The OMPS-NPP L2 NM Sulfur Dioxide (SO2) Total and Tropospheric Column swath orbital collection 2 version 2.0 product contains the retrieved sulfur dioxide (SO2)...

  1. OMI/Aura Ozone (O3) Total Column 1-Orbit L2 Swath 13x24 km V003 (United States)

    National Aeronautics and Space Administration — The OMI/Aura Level-2 Total Column Ozone Data Product OMTO3 (Version 003) is made available ( from the NASA...

  2. OMI/Aura Ozone (O3) Total Column 1-Orbit L2 Swath 13x24 km V003 NRT (United States)

    National Aeronautics and Space Administration — The OMI/Aura Level-2 Total Column Ozone Data Product OMTO3 Near Real Time data is made available from the OMI SIPS NASA for the public access. The Ozone Monitoring...

  3. Effects of process parameters on supercritical CO2 extraction of total phenols from strawberry (Arbutus unedo L.) fruits: An optimization study. (United States)

    Akay, Seref; Alpak, Ilknur; Yesil-Celiktas, Ozlem


    The aim of this work was to optimize total phenolic yield of Arbutus unedo fruits using supercritical fluid extraction. A Box-Behnken statistical design was used to evaluate the effect of various values of pressure (50-300 bar), temperature (30-80°C) and concentration of ethanol as co-solvent (0-20%) by CO2 flow rate of 15 g/min for 60 min. The most effective variable was co-solvent ratio (p<0.005). Evaluative criteria for both dependent variables (total phenols and radical scavenging activity) in the model were assigned maximum. Optimum extraction conditions were elicited as 60 bar, 48°C and 19.7% yielding 25.72 mg gallic acid equivalent (GAE) total phenols/g extract and 99.9% radical scavenging capacity, which were higher than the values obtained by conventional water (24.89 mg/g; 83.8%) and ethanol (15.12 mg/g; 95.8%) extractions demonstrating challenges as a green separation process with improved product properties for industrial applications. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Distance and total column density to the periodic radio star LSI + 61 deg 303

    International Nuclear Information System (INIS)

    Frail, D.A.; Hjellming, R.M.


    New observations toward the periodic radio star LSI + 61 deg 303 in the lines of H I at 21 cm and CO-18 at 2.7 mm are reported. Using the kinematic method, H I observations are interpreted in terms of the two-armed spiral shock model of Roberts (1972) to derive a distance to LSI + 61 deg 303 of 2.0 + or - 0.2 kpc. The results clearly show the presence of the Perseus arm shock and locate LSI + 61 deg 303 between this shock and the more distant postshock gas. In addition, by using the H I and CO-18 data, the total neutral and molecular gas column density is derived along the line of sight toward LSI + 61 deg 303. 32 refs

  5. Observed and simulated time evolution of HCl, ClONO2, and HF total column abundances

    Directory of Open Access Journals (Sweden)

    B.-M. Sinnhuber


    Full Text Available Time series of total column abundances of hydrogen chloride (HCl, chlorine nitrate (ClONO2, and hydrogen fluoride (HF were determined from ground-based Fourier transform infrared (FTIR spectra recorded at 17 sites belonging to the Network for the Detection of Atmospheric Composition Change (NDACC and located between 80.05° N and 77.82° S. By providing such a near-global overview on ground-based measurements of the two major stratospheric chlorine reservoir species, HCl and ClONO2, the present study is able to confirm the decrease of the atmospheric inorganic chlorine abundance during the last few years. This decrease is expected following the 1987 Montreal Protocol and its amendments and adjustments, where restrictions and a subsequent phase-out of the prominent anthropogenic chlorine source gases (solvents, chlorofluorocarbons were agreed upon to enable a stabilisation and recovery of the stratospheric ozone layer. The atmospheric fluorine content is expected to be influenced by the Montreal Protocol, too, because most of the banned anthropogenic gases also represent important fluorine sources. But many of the substitutes to the banned gases also contain fluorine so that the HF total column abundance is expected to have continued to increase during the last few years. The measurements are compared with calculations from five different models: the two-dimensional Bremen model, the two chemistry-transport models KASIMA and SLIMCAT, and the two chemistry-climate models EMAC and SOCOL. Thereby, the ability of the models to reproduce the absolute total column amounts, the seasonal cycles, and the temporal evolution found in the FTIR measurements is investigated and inter-compared. This is especially interesting because the models have different architectures. The overall agreement between the measurements and models for the total column abundances and the seasonal cycles is good. Linear trends of HCl, ClONO2, and HF are calculated from both

  6. Observed and simulated time evolution of HCl, ClONO2, and HF total columns (United States)

    Ruhnke, Roland; Geomon, Ndacc Infrared, Modelling Working Group


    Institute of Technology (KIT), IMK-IFU, Garmisch-Partenkirchen, Germany, (16) University of Denver, Dept. of Physics and Astronomy, Denver, CO, USA, (17) National Center for Atmospheric Research (NCAR), Boulder, CO, USA, (18) NASA Langley Research Center, Hampton, VA, USA, (19) Karlsruhe Institute of Technology (KIT), Steinbuch Centre for Computing, Karlsruhe, Germany Total column abundances of HCl and ClONO2, the primary components of the stratospheric inorganic chlorine (Cly) budget, and of HF have been retrieved from ground-based, high-resolution infrared solar absorption spectra recorded at 17 sites of the Network for the Detection of Atmospheric Composition Change (NDACC) located at latitudes between 80.05°N and 77.82°S. These data extend over more than 20 years (through 2007) during a period when the growth in atmospheric halogen loading has slowed in response to the Montreal Protocol (and ammendments). These observed time series are interpreted with calculations performed with a 2-D model, the 3-D chemistry-transport models (CTMs) KASIMA and SLIMCAT, and the 3-D chemistry-climate models (CCMs) EMAC and SOCOLv2.0. The observed Cly and in particular HCl column abundances decreases significantely since the end of the nineties at all stations, which is consistent with the observed changes in the halocarbon source gases, with an increasing rate in the last years. In contrast to Cly, the trend values for total column HF at the different stations show a less consistent behaviour pointing to the fact that the time development of the HF columns is peaking. There is a good overall qualitative agreement regarding trends between models and data. With respect to the CTMs the agreement improves if simulation results for measurement days only are used in the trend analysis instead of simulation results for each day.

  7. Forecasting global atmospheric CO2

    International Nuclear Information System (INIS)

    Agusti-Panareda, A.; Massart, S.; Boussetta, S.; Balsamo, G.; Beljaars, A.; Engelen, R.; Jones, L.; Peuch, V.H.; Chevallier, F.; Ciais, P.; Paris, J.D.; Sherlock, V.


    A new global atmospheric carbon dioxide (CO 2 ) real-time forecast is now available as part of the preoperational Monitoring of Atmospheric Composition and Climate - Interim Implementation (MACC-II) service using the infrastructure of the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System (IFS). One of the strengths of the CO 2 forecasting system is that the land surface, including vegetation CO 2 fluxes, is modelled online within the IFS. Other CO 2 fluxes are prescribed from inventories and from off-line statistical and physical models. The CO 2 forecast also benefits from the transport modelling from a state-of-the-art numerical weather prediction (NWP) system initialized daily with a wealth of meteorological observations. This paper describes the capability of the forecast in modelling the variability of CO 2 on different temporal and spatial scales compared to observations. The modulation of the amplitude of the CO 2 diurnal cycle by near-surface winds and boundary layer height is generally well represented in the forecast. The CO 2 forecast also has high skill in simulating day-to-day synoptic variability. In the atmospheric boundary layer, this skill is significantly enhanced by modelling the day-to-day variability of the CO 2 fluxes from vegetation compared to using equivalent monthly mean fluxes with a diurnal cycle. However, biases in the modelled CO 2 fluxes also lead to accumulating errors in the CO 2 forecast. These biases vary with season with an underestimation of the amplitude of the seasonal cycle both for the CO 2 fluxes compared to total optimized fluxes and the atmospheric CO 2 compared to observations. The largest biases in the atmospheric CO 2 forecast are found in spring, corresponding to the onset of the growing season in the Northern Hemisphere. In the future, the forecast will be re-initialized regularly with atmospheric CO 2 analyses based on the assimilation of CO 2 products retrieved from satellite

  8. Anomalies of total column CO and O3 associated with great earthquakes in recent years

    Directory of Open Access Journals (Sweden)

    Y. Cui


    Full Text Available Variations of total column CO and O3 in the atmosphere over the epicenter areas of 35 great earthquakes that occurred throughout the world in recent years were studied based on the hyper-spectrum data from Atmospheric Infrared Sounder (AIRS. It was found that anomalous increases of CO and/or O3 concentrations occurred over the epicenter areas of 12 earthquakes among the 35 studied ones. However, increases in both CO and O3 concentrations were found for 6 earthquakes. The O3 anomalies appeared in the month when the earthquake occurred and lasted for a few months, whereas CO anomalies occurred irregularly. The duration of CO and O3 anomalies related to the earthquakes ranged from 1 to 6 months. The anomalies of CO concentration related to the earthquake can be mainly attributed to gas emission from the lithosphere and photochemical reaction, while the anomalous increases in O3 concentration can be mainly due to the transport of O3-enriched air and photochemical reaction. However, more work needs to be done in order to understand the mechanism of the CO and O3 anomalies further.

  9. A New Radiometric Calibration Paradigm for the OMPS Nadir Total Column and Profile Instruments (United States)

    Heath, Donald; Georgiew, Georgi


    A fused silica Mie Scattering Diffuser (MSD) has been developed at Ball Aerospace & Technology Corp. that has measured characteristics which could be used to increase the accuracy of the spectral albedo calibration of the Ozone Mapping and Profiler Suite (OMPS) Nadir ozone total column and profile instrument by almost an order of magnitude. Measurements have been made of the optical characteristics on both natural and synthetic forms of fused silica MSDs. Preliminary measurements suggest that MSDs are useable in the solar reflective wavelength region from 250 nm to 3.7 m. To date synthetic and natural MSDs have been irradiated for 60 hours of UV radiation from a solar simulator, and synthetic MSDs have been irradiated with increasing doses of Co-60 gamma rays at 30, 500 krads up to 1.5 Mrads, and 30 krads of 200 MeV protons. The principal effects have been small loses in transmittance at wavelengths < 350 nm. The high energy particle irradiation measurements were provided by Neal Nickles and Dean Spieth.

  10. High-Accuracy Measurements of Total Column Water Vapor From the Orbiting Carbon Observatory-2 (United States)

    Nelson, Robert R.; Crisp, David; Ott, Lesley E.; O'Dell, Christopher W.


    Accurate knowledge of the distribution of water vapor in Earth's atmosphere is of critical importance to both weather and climate studies. Here we report on measurements of total column water vapor (TCWV) from hyperspectral observations of near-infrared reflected sunlight over land and ocean surfaces from the Orbiting Carbon Observatory-2 (OCO-2). These measurements are an ancillary product of the retrieval algorithm used to measure atmospheric carbon dioxide concentrations, with information coming from three highly resolved spectral bands. Comparisons to high-accuracy validation data, including ground-based GPS and microwave radiometer data, demonstrate that OCO-2 TCWV measurements have maximum root-mean-square deviations of 0.9-1.3mm. Our results indicate that OCO-2 is the first space-based sensor to accurately and precisely measure the two most important greenhouse gases, water vapor and carbon dioxide, at high spatial resolution [1.3 x 2.3 km(exp. 2)] and that OCO-2 TCWV measurements may be useful in improving numerical weather predictions and reanalysis products.

  11. Measuring Total Column Water Vapor by Pointing an Infrared Thermometer at the Sky (United States)

    Mims, Forrest M., III; Chambers, Lin H.; Brooks, David R.


    A 2-year study affirms that the temperature (Tz) indicated by an inexpensive ($20 to $60) IR thermometer pointed at the cloud-free zenith sky provides an approximate indication of the total column water vapor (precipitable water or PW). PW was measured by a MICROTOPS II sun photometer. The coefficient of correlation (r2) of the PW and Tz was 0.90, and the rms difference was 3.2 mm. A comparison of the Tz data with the PW provided by a GPS site 31 km NNE yielded an r2 of 0.79, and an rms difference of 5.8 mm. An expanded study compared Tz from eight IR thermometers with PW at various times during the day and night from 17 May to 18 October 2010, mainly at the Texas site and 10 days at Hawaii's Mauna Loa Observatory (MLO). The best results of this comparison were provided by two IR thermometers models that yielded an r2 of 0.96 and an rms difference with the PW of 2.7 mm. The results of both the ongoing 2-year study and the 5-month instrument comparison show that IR thermometers can measure PW with an accuracy (rms difference/mean PW) approaching 10%, the accuracy typically ascribed to sun photometers.

  12. Total column water vapor estimation over land using radiometer data from SAC-D/Aquarius (United States)

    Epeloa, Javier; Meza, Amalia


    The aim of this study is retrieving atmospheric total column water vapor (CWV) over land surfaces using a microwave radiometer (MWR) onboard the Scientific Argentine Satellite (SAC-D/Aquarius). To research this goal, a statistical algorithm is used for the purpose of filtering the study region according to the climate type. A log-linear relationship between the brightness temperatures of the MWR and CWV obtained from Global Navigation Satellite System (GNSS) measurements was used. In this statistical algorithm, the retrieved CWV is derived from the Argentinian radiometer's brightness temperature which works at 23.8 GHz and 36.5 GHz, and taking into account CWVs observed from GNSS stations belonging to a region sharing the same climate type. We support this idea, having found a systematic effect when applying the algorithm; it was generated for one region using the previously mentioned criteria, however, it should be applied to additional regions, especially those with other climate types. The region we analyzed is in the Southeastern United States of America, where the climate type is Cfa (Köppen - Geiger classification); this climate type includes moist subtropical mid-latitude climates, with hot, muggy summers and frequent thunderstorms. However, MWR only contains measurements taken from over ocean surfaces; therefore the determination of water vapor over land is an important contribution to extend the use of the SAC-D/Aquarius radiometer measurements beyond the ocean surface. The CWVs computed by our algorithm are compared against radiosonde CWV observations and show a bias of about -0.6 mm, a root mean square (rms) of about 6 mm and a correlation of 0.89.

  13. Observed atmospheric total column ozone distribution from SCIAMACHY over Peninsular Malaysia

    International Nuclear Information System (INIS)

    Chooi, T K; San, L H; Jafri, M Z M


    The increase in atmospheric ozone has received great attention because it degrades air quality and brings hazard to human health and ecosystems. The aim of this study was to assess the seasonal variations of ozone concentrations in Peninsular Malaysia from January 2003 to December 2009 using Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY). Level-2 data of total column ozone WFMD version 1.0 with spatial resolution 1° × 1.25° were acquired through SCIAMACHY. Analysis for trend of five selected sites exhibit strong seasonal variation in atmospheric ozone concentrations, where there is a significant difference between northeast monsoon and southwest monsoon. The highest ozone values occurred over industrial and congested urban zones (280.97 DU) on August at Bayan Lepas. The lowest ozone values were observed during northeast monsoon on December at Subang (233.08 DU). In addition, the local meteorological factors also bring an impact on the atmospheric ozone. During northeast monsoon, with the higher rate of precipitation, higher relative humidity, low temperature, and less sunlight hours let to the lowest ozone concentrations. Inversely, the highest ozone concentrations observed during southwest monsoon, with the low precipitation rate, lower relative humidity, higher temperature, and more sunlight hours. Back trajectories analysis is carried out, in order to trace the path of the air parcels with high ozone concentration event, suggesting cluster of trajectory (from southwest of the study area) caused by the anthropogenic sources associated with biogenic emissions from large tropical forests, which can make important contribution to regional and global pollution

  14. CO2 sequestration

    International Nuclear Information System (INIS)

    Favre, E.; Jammes, L.; Guyot, F.; Prinzhofer, A.; Le Thiez, P.


    This document presents the summary of a conference-debate held at the Academie des Sciences (Paris, France) on the topic of CO 2 sequestration. Five papers are reviewed: problems and solutions for the CO 2 sequestration; observation and surveillance of reservoirs; genesis of carbonates and geological storage of CO 2 ; CO 2 sequestration in volcanic and ultra-basic rocks; CO 2 sequestration, transport and geological storage: scientific and economical perspectives

  15. Trend and recovery of the total ozone column in South America and Antarctica (United States)

    Toro A., Richard; Araya, Consuelo; Labra O., Felipe; Morales, Luis; Morales, Raúl G. E.; Leiva G., Manuel A.


    South America is one of the most vulnerable areas to stratospheric ozone depletion; consequently, an increased amount of UV radiation reaches the Earth's surface in this region. In this study, we analyzed the long-term trend in the total ozone column (TOC) over the southern part of the South American continent from 1980 to 2009. The database used was obtained by combining several satellite measurements of the TOC on a 1° (latitude) × 1.25° (longitude) grid. Analysis of the long-term trend was performed by applying the Theil-Sen estimator and the Mann-Kendall significance test to the deseasonalized time series. The long-term trend was also analyzed over several highly populated urban zones in the study area. Finally, multiple linear regression (MLR) modeling was used to identify and quantify the drivers of interannual variability in the TOC over the study area with a pixel-by-pixel approach. The results showed a decrease in the TOC ranging from -0.3 to -4% dec-1 from 1980 to 2009. On a decadal timescale, there is significant variability in this trend, and a decrease of more than -10% dec-1 was found at high latitudes (1980-1989). However, the trends obtained over much of the study area were not statistically significant. Considering the period from 1980 to 1995, we found a decrease in the TOC of -2.0 ± 0.6% dec-1 at latitudes below 40° S and -6.9 ± 2.0% dec-1 at latitudes above 40° S, for a 99.9% confidence level over most of the study area. Analysis of the period from 1996 to 2009 showed a statistically significant increase of 2.3 ± 0.1% dec-1 at high latitudes (> 60° S), confirming the initial TOC recovery in the Antarctic. Despite evidence for initial recovery of the TOC in some parts of the study area between 1996 and 2009, the long-term increase from September to November is not yet statistically significant. In addition, large parts of the study area and most of the urban areas continue to show a decreasing trend in the TOC. The MLR results show that

  16. Contrasting genotypes, soil amendments, and their interactive effects on short-term total soil CO2 efflux in a 3-year-old Pinus taeda L (United States)

    Michael C. Tyree; John R. Seiler; Chris A. Maier


    Intensively managed pine forests in the southeastern United States are considered an important C sink and may play a critical role in offsetting increased global CO2 emissions. The combination of improved silvicultural methods and the use of superior genotypes are estimated to result in future volume gains of up to 60 percent. However to date, no work has looked at...

  17. Screening of Six Medicinal Plant Extracts Obtained by Two Conventional Methods and Supercritical CO2 Extraction Targeted on Coumarin Content, 2,2-Diphenyl-1-picrylhydrazyl Radical Scavenging Capacity and Total Phenols Content

    Directory of Open Access Journals (Sweden)

    Maja Molnar


    Full Text Available Six medicinal plants Helichrysum italicum (Roth G. Don, Angelica archangelica L., Lavandula officinalis L., Salvia officinalis L., Melilotus officinalis L., and Ruta graveolens L. were used. The aim of the study was to compare their extracts obtained by Soxhlet (hexane extraction, maceration with ethanol (EtOH, and supercritical CO2 extraction (SC-CO2 targeted on coumarin content (by high performance liquid chromatography with ultraviolet detection, HPLC-UV, 2,2-diphenyl-1-picrylhydrazyl radical (DPPH scavenging capacity, and total phenols (TPs content (by Folin–Ciocalteu assay. The highest extraction yields were obtained by EtOH, followed by hexane and SC-CO2. The highest coumarin content (316.37 mg/100 g was found in M. officinalis EtOH extracts, but its SC-CO2 extraction yield was very low for further investigation. Coumarin was also found in SC-CO2 extracts of S. officinalis, R. graveolens, A. archangelica, and L. officinalis. EtOH extracts of all plants exhibited the highest DPPH scavenging capacity. SC-CO2 extracts exhibited antiradical capacity similar to hexane extracts, while S. officinalis SC-CO2 extracts were the most potent (95.7%. EtOH extracts contained the most TPs (up to 132.1 mg gallic acid equivalents (GAE/g from H. italicum in comparison to hexane or SC-CO2 extracts. TPs content was highly correlated to the DPPH scavenging capacity of the extracts. The results indicate that for comprehensive screening of different medicinal plants, various extraction techniques should be used in order to get a better insight into their components content or antiradical capacity.

  18. A statistical model to predict total column ozone in Peninsular Malaysia (United States)

    Tan, K. C.; Lim, H. S.; Mat Jafri, M. Z.


    This study aims to predict monthly columnar ozone in Peninsular Malaysia based on concentrations of several atmospheric gases. Data pertaining to five atmospheric gases (CO2, O3, CH4, NO2, and H2O vapor) were retrieved by satellite scanning imaging absorption spectrometry for atmospheric chartography from 2003 to 2008 and used to develop a model to predict columnar ozone in Peninsular Malaysia. Analyses of the northeast monsoon (NEM) and the southwest monsoon (SWM) seasons were conducted separately. Based on the Pearson correlation matrices, columnar ozone was negatively correlated with H2O vapor but positively correlated with CO2 and NO2 during both the NEM and SWM seasons from 2003 to 2008. This result was expected because NO2 is a precursor of ozone. Therefore, an increase in columnar ozone concentration is associated with an increase in NO2 but a decrease in H2O vapor. In the NEM season, columnar ozone was negatively correlated with H2O (-0.847), NO2 (0.754), and CO2 (0.477); columnar ozone was also negatively but weakly correlated with CH4 (-0.035). In the SWM season, columnar ozone was highly positively correlated with NO2 (0.855), CO2 (0.572), and CH4 (0.321) and also highly negatively correlated with H2O (-0.832). Both multiple regression and principal component analyses were used to predict the columnar ozone value in Peninsular Malaysia. We obtained the best-fitting regression equations for the columnar ozone data using four independent variables. Our results show approximately the same R value (≈ 0.83) for both the NEM and SWM seasons.

  19. CO2NNIE

    DEFF Research Database (Denmark)

    Krogh, Benjamin Bjerre; Andersen, Ove; Lewis-Kelham, Edwin


    We propose a system for calculating the personalized annual fuel consumption and CO2 emissions from transportation. The system, named CO2NNIE, estimates the fuel consumption on the fastest route between the frequent destinations of the user. The travel time and fuel consumption estimated are based......% of the actual fuel consumption (4.6% deviation on average). We conclude, that the system provides new detailed information on CO2 emissions and fuel consumption for any make and model....

  20. Geochemical monitoring for detection of CO_{2} leakage from subsea storage sites (United States)

    García-Ibáñez, Maribel I.; Omar, Abdirahman M.; Johannessen, Truls


    Carbon Capture and Storage (CCS) in subsea geological formations is a promising large-scale technology for mitigating the increases of carbon dioxide (CO2) in the atmosphere. However, detection and quantification of potential leakage of the stored CO2 remains as one of the main challenges of this technology. Geochemical monitoring of the water column is specially demanding because the leakage CO2 once in the seawater may be rapidly dispersed by dissolution, dilution and currents. In situ sensors capture CO2 leakage signal if they are deployed very close to the leakage point. For regions with vigorous mixing and/or deep water column, and for areas far away from the leakage point, a highly sensitive carbon tracer (Cseep tracer) was developed based on the back-calculation techniques used to estimate anthropogenic CO2 in the water column. Originally, the Cseep tracer was computed using accurate discrete measurements of total dissolved inorganic carbon (DIC) and total alkalinity (AT) in the Norwegian Sea to isolate the effect of natural submarine vents in the water column. In this work we assess the effect of measurement variables on the performance of the method by computing the Cseep tracer twice: first using DIC and AT, and second using partial pressure of CO2 (pCO2) and pH. The assessment was performed through the calculation of the signal to noise ratios (STNR). We found that the use of the Cseep tracer increases the STNR ten times compared to the raw measurement data, regardless of the variables used. Thus, while traditionally the pH-pCO2 pair generates the greatest uncertainties in the oceanic CO2 system, it seems that the Cseep technique is insensitive to that issue. On the contrary, the use of the pCO2-pH pair has the highest CO2 leakage detection and localization potential due to the fact that both pCO2 and pH can currently be measured at high frequency and in an autonomous mode.

  1. 14CO2 labeling: a reliable technique for rapid measurement of total root exudation capacity and vascular sap flow in crops

    International Nuclear Information System (INIS)

    Singh, Bhupinder; Ahuja, Sumedha; Pandey, Renu; Singhal, R.K.


    Ability of roots to release organic compounds in its rhizosphere is known to improve plant available nutrients and reduces heavy metal toxicity by immobilization. It is regarded as an important determinant of micro nutrient deficiency tolerance in plants. Uptake of nutrients and translocation of photoassimilates, on the other hand are governed by the strength of the transpiration stream and sink demand respectively. Measurement of vascular sap flow, thus, is critical for understanding of the translocation efficiency and consequently the sink demand that keeps changing during the crop growth cycle. Measurement of the root exudation capacity and the vascular sap flow is cumbersome and time consuming. Since, the exudates released by the roots and the photosynthates translocated between the source and the sink are essentially carbon compounds, use of labeled carbon as tag could potentially be exploited for a rapid and reliable measurement of exudation and vascular sap flow in crop plants. We report here the experimental results involving 14 C labeling of groundnut, a legume crop, as 14 CO 2 generated by acidification of sodium bicarbonate. An additional factor of seed gamma irradiation was used to generate variability in the root exudation and the sap flow. The 14 C release by the roots was compared against the 14 C transport in the vascular sap. An experimental hypothesis that a higher 14 C level in the vascular sap would indicate a higher root release of carbon by the roots into the rhizosphere was verified. (author)

  2. CO2-laser fusion

    International Nuclear Information System (INIS)

    Stark, E.E. Jr.


    The basic concept of laser fusion is described, with a set of requirements on the laser system. Systems and applications concepts are presented and discussed. The CO 2 laser's characteristics and advantages for laser fusion are described. Finally, technological issues in the development of CO 2 laser systems for fusion applications are discussed

  3. First intercalibration of column-averaged methane from the Total Carbon Column Observing Network and the Network for the Detection of Atmospheric Composition Change

    Directory of Open Access Journals (Sweden)

    R. Sussmann


    Full Text Available We present the first intercalibration of dry-air column-averaged mole fractions of methane (XCH4 retrieved from solar Fourier transform infrared (FTIR measurements of the Network for the Detection of Atmospheric Composition Change (NDACC in the mid-infrared (MIR versus near-infrared (NIR soundings from the Total Carbon Column Observing Network (TCCON. The study uses multi-annual quasi-coincident MIR and NIR measurements from the stations Garmisch, Germany (47.48° N, 11.06° E, 743 m a.s.l., and Wollongong, Australia (34.41° S, 150.88° E, 30 m a.s.l..

    Direct comparison of the retrieved MIR and NIR XCH4 time series for Garmisch shows a quasi-periodic seasonal bias leading to a standard deviation (stdv of the difference time series (NIR–MIR of 7.2 ppb. After reducing time-dependent a priori impact by using realistic site- and time-dependent ACTM-simulated profiles as a common prior, the seasonal bias is reduced (stdv = 5.2 ppb. A linear fit to the MIR/NIR scatter plot of monthly means based on same-day coincidences does not show a y-intercept that is statistically different from zero, and the MIR/NIR intercalibration factor is found to be close to ideal within 2-σ uncertainty, i.e. 0.9996(8. The difference time series (NIR–MIR do not show a significant trend. The same basic findings hold for Wollongong. In particular an overall MIR/NIR intercalibration factor close to the ideal 1 is found within 2-σ uncertainty. At Wollongong the seasonal cycle of methane is less pronounced and corresponding smoothing errors are not as significant, enabling standard MIR and NIR retrievals to be used directly, without correction to a common a priori.

    Our results suggest that it is possible to set up a harmonized NDACC and TCCON XCH4 data set which can be exploited for joint trend studies, satellite validation, or the inverse modeling of sources and sinks.

  4. Outsourcing CO2 Emissions (United States)

    Davis, S. J.; Caldeira, K. G.


    CO2 emissions from the burning of fossil fuels are the primary cause of global warming. Much attention has been focused on the CO2 directly emitted by each country, but relatively little attention has been paid to the amount of emissions associated with consumption of goods and services in each country. This consumption-based emissions inventory differs from the production-based inventory because of imports and exports of goods and services that, either directly or indirectly, involved CO2 emissions. Using the latest available data and reasonable assumptions regarding trans-shipment of embodied carbon through third-party countries, we developed a global consumption-based CO2 emissions inventory and have calculated associated consumption-based energy and carbon intensities. We find that, in 2004, 24% of CO2 emissions are effectively outsourced to other countries, with much of the developed world outsourcing CO2 emissions to emerging markets, principally China. Some wealthy countries, including Switzerland and Sweden, outsource over half of their consumption-based emissions, with many northern Europeans outsourcing more than three tons of emissions per person per year. The United States is both a big importer and exporter of emissions embodied in trade, outsourcing >2.6 tons of CO2 per person and at the same time as >2.0 tons of CO2 per person are outsourced to the United States. These large flows indicate that CO2 emissions embodied in trade must be taken into consideration when considering responsibility for increasing atmospheric greenhouse gas concentrations.

  5. Experimental Ion Mobility measurements in Ne-CO$_2$ and CO$_2$-N$_2$ mixtures

    CERN Document Server

    Encarnação, P.M.C.C.; Veenhof, R.; Neves, P.N.B.; Santos, F.P.; Trindade, A.M.F.; Borges, F.I.G.M.; Conde, C.A.N.


    In this paper we present the experimental results for the mobility, K0, of ions in neon-carbon dioxide (Ne-CO2) and carbon dioxide-nitrogen (CO2-N2) gaseous mixtures for total pressures ranging from 8–12 Torr, reduced electric fields in the 10–25 Td range, at room temperature. Regarding the Ne-CO2 mixture only one peak was observed for CO2 concentrations above 25%, which has been identified as an ion originated in CO2, while below 25% of CO2 a second-small peak appears at the left side of the main peak, which has been attributed to impurities. The mobility values for the main peak range between 3.51 ± 0.05 and 1.07 ± 0.01 cm2V−1s−1 in the 10%-99% interval of CO2, and from 4.61 ± 0.19 to 3.00 ± 0.09 cm2V−1s−1 for the second peak observed (10%–25% of CO2). For the CO2-N2, the time-of-arrival spectra displayed only one peak for CO2 concentrations above 10%, which was attributed to ions originated in CO2, namely CO2+(CO2), with a second peak appearing for CO2 concentrations below 10%. This secon...

  6. OMI/Aura Ozone(O3) Total Column 1-Orbit L2 Swath 13x24 km V003 (OMTO3) at GES DISC (United States)

    National Aeronautics and Space Administration — The Aura Ozone Monitoring Instrument (OMI) Level-2 Total Column Ozone Data Product OMTO3 (Version 003) is available from the NASA Goddard Earth Sciences Data and...

  7. A totally heat-integrated distillation column (THIDiC) - the effect of feed pre-heating by distillate

    Energy Technology Data Exchange (ETDEWEB)

    Huang Kejin [School of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029 (China)], E-mail:; Shan Lan; Zhu Qunxiong [School of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029 (China); Qian Jixin [School of Information Science and Technology, Zhejiang University, Zhejiang 300027 (China)


    An ideal heat-integrated distillation column (ideal HIDiC) is characterized by external zero-reflux and zero-reboil ratio operation. Since the distillate is a high-pressure vapor phase flow, it can be used to pre-heat the feed to be separated, thereby giving rise to a totally heat-integrated distillation column (THIDiC). Although the THIDiC is more thermodynamically efficient than the ideal HIDiC, it is found that the heat integration between the distillate and feed turns it into an open-loop integrating process and poses additional difficulties to process operation. Therefore, a careful decision must be made on the selection between the ideal HIDiC and the THIDiC during process development. In this paper, separation of a binary equimolar mixture of benzene and toluene is selected as an illustrative example. Both process design and operability analysis are conducted, with special emphasis focused on the characteristics of feed pre-heating with distillate. The results obtained show deep insight into the design and operation of the THIDiC.

  8. A totally heat-integrated distillation column (THIDiC) - the effect of feed pre-heating by distillate

    International Nuclear Information System (INIS)

    Huang Kejin; Shan Lan; Zhu Qunxiong; Qian Jixin


    An ideal heat-integrated distillation column (ideal HIDiC) is characterized by external zero-reflux and zero-reboil ratio operation. Since the distillate is a high-pressure vapor phase flow, it can be used to pre-heat the feed to be separated, thereby giving rise to a totally heat-integrated distillation column (THIDiC). Although the THIDiC is more thermodynamically efficient than the ideal HIDiC, it is found that the heat integration between the distillate and feed turns it into an open-loop integrating process and poses additional difficulties to process operation. Therefore, a careful decision must be made on the selection between the ideal HIDiC and the THIDiC during process development. In this paper, separation of a binary equimolar mixture of benzene and toluene is selected as an illustrative example. Both process design and operability analysis are conducted, with special emphasis focused on the characteristics of feed pre-heating with distillate. The results obtained show deep insight into the design and operation of the THIDiC

  9. CO2 chemical valorization

    International Nuclear Information System (INIS)

    Kerlero De Rosbo, Guillaume; Rakotojaona, Loic; Bucy, Jacques de; Clodic, Denis; Roger, Anne-Cecile; El Khamlichi, Aicha; Thybaud, Nathalie; Oeser, Christian; Forti, Laurent; Gimenez, Michel; Savary, David; Amouroux, Jacques


    Facing global warming, different technological solutions exist to tackle carbon dioxide (CO 2 ) emissions. Some inevitable short term emissions can be captured so as to avoid direct emissions into the atmosphere. This CO 2 must then be managed and geological storage seems to currently be the only way of dealing with the large volumes involved. However, this solution faces major economic profitability and societal acceptance challenges. In this context, alternative pathways consisting in using CO 2 instead of storing it do exist and are generating growing interest. This study ordered by the French Environment and Energy Management Agency (ADEME), aims at taking stock of the different technologies used for the chemical conversion of CO 2 in order to have a better understanding of their development potential by 2030, of the conditions in which they could be competitive and of the main actions to be implemented in France to foster their emergence. To do this, the study was broken down into two main areas of focus: The review and characterization of the main CO 2 chemical conversion routes for the synthesis of basic chemical products, energy products and inert materials. This review includes a presentation of the main principles underpinning the studied routes, a preliminary assessment of their performances, advantages and drawbacks, a list of the main R and D projects underway, a focus on emblematic projects as well as a brief analysis of the markets for the main products produced. Based on these elements, 3 routes were selected from among the most promising by 2030 for an in-depth modelling and assessment of their energy, environmental and economic performances. The study shows that the processes modelled do have favorable CO 2 balances (from 1 to 4 t-CO 2 /t-product) and effectively constitute solutions to reduce CO 2 emissions, despite limited volumes of CO 2 in question. Moreover, the profitability of certain solutions will remain difficult to reach, even with an

  10. Detailed modelling of hydrodynamics, mass transfer and chemical reactions in a bubble column using a discrete bubble model: Chemisorption of CO2 into NaOH solution, numerical and experimental study

    NARCIS (Netherlands)

    Darmana, D.; Henket, R.L.B.; Deen, N.G.; Kuipers, J.A.M.


    This paper describes simulations that were performed with an Euler–Lagrange model that takes into account mass transfer and chemical reaction reported by Darmana et al. (2005. Detailed modelling of hydrodynamics, mass transfer and chemical reactions in a bubble column using a discrete bubble model.

  11. CO2 cycle (United States)

    Titus, Timothy N.; Byrne, Shane; Colaprete, Anthony; Forget, Francois; Michaels, Timothy I.; Prettyman, Thomas H.


    This chapter discusses the use of models, observations, and laboratory experiments to understand the cycling of CO2 between the atmosphere and seasonal Martian polar caps. This cycle is primarily controlled by the polar heat budget, and thus the emphasis here is on its components, including solar and infrared radiation, the effect of clouds (water- and CO2-ice), atmospheric transport, and subsurface heat conduction. There is a discussion about cap properties including growth and regression rates, albedos and emissivities, grain sizes and dust and/or water-ice contamination, and curious features like cold gas jets and araneiform (spider-shaped) terrain. The nature of the residual south polar cap is discussed as well as its long-term stability and ability to buffer atmospheric pressures. There is also a discussion of the consequences of the CO2 cycle as revealed by the non-condensable gas enrichment observed by Odyssey and modeled by various groups.

  12. Remote sensing of water vapour profiles in the framework of the Total Carbon Column Observing Network (TCCON

    Directory of Open Access Journals (Sweden)

    M. Schneider


    Full Text Available We show that the near infrared solar absorption spectra recorded in the framework of the Total Carbon Column Observing Network (TCCON can be used to derive the vertical distribution of tropospheric water vapour. The resolution of the TCCON spectra of 0.02 cm−1 is sufficient for retrieving lower and middle/upper tropospheric water vapour concentrations with a vertical resolution of about 3 and 8 km, respectively. We document the good quality of the remotely-sensed profiles by comparisons with coincident in-situ Vaisala RS92 radiosonde measurements. Due to the high measurement frequency, the TCCON water vapour profile data offer novel opportunities for estimating the water vapour variability at different timescales and altitudes.


    International Nuclear Information System (INIS)

    Cook, A. M.; Whittet, D. C. B.; Shenoy, S. S.; Gerakines, P. A.; White, D. W.; Chiar, J. E.


    Archival data from the Infrared Spectrometer of the Spitzer Space Telescope are used to study the 15 μm absorption feature of solid CO 2 toward 28 young stellar objects (YSOs) of approximately solar mass. Fits to the absorption profile using laboratory spectra enable categorization according to the degree of thermal processing of the ice matrix that contains the CO 2 . The majority of YSOs in our sample (20 out of 28) are found to be consistent with a combination of polar (H 2 O-rich) and nonpolar (CO-rich) ices at low temperature; the remainder exhibit profile structure consistent with partial crystallization as the result of significant heating. Ice-phase column densities of CO 2 are determined and compared with those of other species. Lines of sight with crystallization signatures in their spectra are found to be systematically deficient in solid-phase CO, as expected if CO is being sublimated in regions where the ices are heated to crystallization temperatures. Significant variation is found in the CO 2 abundance with respect to both H 2 O (the dominant ice constituent) and total dust column (quantified by the extinction, A V ). YSOs in our sample display typically higher CO 2 concentrations (independent of evidence for thermal processing) in comparison to quiescent regions of the prototypical cold molecular cloud. This suggests that enhanced CO 2 production is driven by photochemical reactions in proximity to some YSOs, and that photoprocessing and thermal processing may occur independently.

  14. Spatio-temporal variations of nitric acid total columns from 9 years of IASI measurements - a driver study (United States)

    Ronsmans, Gaétane; Wespes, Catherine; Hurtmans, Daniel; Clerbaux, Cathy; Coheur, Pierre-François


    This study aims to understand the spatial and temporal variability of HNO3 total columns in terms of explanatory variables. To achieve this, multiple linear regressions are used to fit satellite-derived time series of HNO3 daily averaged total columns. First, an analysis of the IASI 9-year time series (2008-2016) is conducted based on various equivalent latitude bands. The strong and systematic denitrification of the southern polar stratosphere is observed very clearly. It is also possible to distinguish, within the polar vortex, three regions which are differently affected by the denitrification. Three exceptional denitrification episodes in 2011, 2014 and 2016 are also observed in the Northern Hemisphere, due to unusually low arctic temperatures. The time series are then fitted by multivariate regressions to identify what variables are responsible for HNO3 variability in global distributions and time series, and to quantify their respective influence. Out of an ensemble of proxies (annual cycle, solar flux, quasi-biennial oscillation, multivariate ENSO index, Arctic and Antarctic oscillations and volume of polar stratospheric clouds), only the those defined as significant (p value dominance of annual variability in all latitudinal bands, which is related to specific chemistry and dynamics depending on the latitudes. We find that the polar stratospheric clouds (PSCs) also have a major influence in the polar regions, and that their inclusion in the model improves the correlation coefficients and the residuals. However, there is still a relatively large portion of HNO3 variability that remains unexplained by the model, especially in the intertropical regions, where factors not included in the regression model (such as vegetation fires or lightning) may be at play.

  15. On the compatibility of Brewer total column ozone measurements in two adjacent valleys (Arosa and Davos in the Swiss Alps

    Directory of Open Access Journals (Sweden)

    R. Stübi


    Full Text Available The Arosa site is well known in the ozone community for its continuous total ozone column observations that have been recorded since 1926. Originally based on Dobson sun spectrophotometers, the site has been gradually complemented by three automatic Brewer instruments, in operation since 1998. To secure the long-term ozone monitoring in this Alpine region and to benefit from synergies with the World Radiation Center, the feasibility of moving this activity to the nearby site at Davos (aerial distance of 13 km has been explored. Concerns about a possible rupture of the 90-year-long record has motivated a careful comparison of the two sites, since great attention to the data continuity and quality has always been central to the operations of the observatory at Arosa. To this end, one element of the Arosa Brewer triad has been set up at the Davos site since November 2011 to realize a campaign of parallel measurements and to study the deviations between the three Brewer instruments. The analysis of the coincident measurement shows that the differences between Arosa and Davos remain within the range of the long-term stability of the Brewer instruments. A nonsignificant seasonal cycle is observed, which could possibly be induced by a stray-light bias and the altitude difference between the two sites. These differences are shown to be lower than the short-term variability of the time series and the overall uncertainty from individual Brewer instruments and therefore are not statistically significant. It is therefore concluded that the world's longest time series of the total ozone column obtained at Arosa site could be safely extended and continued with measurements taken from instruments located at the nearby Davos site without introducing a bias to this unique record.

  16. CO2 flux from Javanese mud volcanism. (United States)

    Queißer, M; Burton, M R; Arzilli, F; Chiarugi, A; Marliyani, G I; Anggara, F; Harijoko, A


    Studying the quantity and origin of CO 2 emitted by back-arc mud volcanoes is critical to correctly model fluid-dynamical, thermodynamical, and geochemical processes that drive their activity and to constrain their role in the global geochemical carbon cycle. We measured CO 2 fluxes of the Bledug Kuwu mud volcano on the Kendeng Fold and thrust belt in the back arc of Central Java, Indonesia, using scanning remote sensing absorption spectroscopy. The data show that the expelled gas is rich in CO 2 with a volume fraction of at least 16 vol %. A lower limit CO 2 flux of 1.4 kg s -1 (117 t d -1 ) was determined, in line with the CO 2 flux from the Javanese mud volcano LUSI. Extrapolating these results to mud volcanism from the whole of Java suggests an order of magnitude total CO 2 flux of 3 kt d -1 , comparable with the expected back-arc efflux of magmatic CO 2 . After discussing geochemical, geological, and geophysical evidence we conclude that the source of CO 2 observed at Bledug Kuwu is likely a mixture of thermogenic, biogenic, and magmatic CO 2 , with faulting controlling potential pathways for magmatic fluids. This study further demonstrates the merit of man-portable active remote sensing instruments for probing natural gas releases, enabling bottom-up quantification of CO 2 fluxes.

  17. CO2-strategier

    DEFF Research Database (Denmark)

    Jørgensen, Michael Søgaard


    I 2007 henvendte Lyngby-Taarbæk kommunens Agenda 21 koordinator sig til Videnskabsbutikken og spurgte om der var interesse for at samarbejde om CO2-strategier. Da Videnskabsbutikken DTU er en åben dør til DTU for borgerne og deres organisationer, foreslog Videnskabsbutikken DTU at Danmarks...

  18. CO2-neutral fuels

    Directory of Open Access Journals (Sweden)

    Goede A. P. H.


    Full Text Available The need for storage of renewable energy (RE generated by photovoltaic, concentrated solar and wind arises from the fact that supply and demand are ill-matched both geographically and temporarily. This already causes problems of overcapacity and grid congestion in countries where the fraction of RE exceeds the 20% level. A system approach is needed, which focusses not only on the energy source, but includes conversion, storage, transport, distribution, use and, last but not least, the recycling of waste. Furthermore, there is a need for more flexibility in the energy system, rather than relying on electrification, integration with other energy systems, for example the gas network, would yield a system less vulnerable to failure and better adapted to requirements. For example, long-term large-scale storage of electrical energy is limited by capacity, yet needed to cover weekly to seasonal demand. This limitation can be overcome by coupling the electricity net to the gas system, considering the fact that the Dutch gas network alone has a storage capacity of 552 TWh, sufficient to cover the entire EU energy demand for over a month. This lecture explores energy storage in chemicals bonds. The focus is on chemicals other than hydrogen, taking advantage of the higher volumetric energy density of hydrocarbons, in this case methane, which has an approximate 3.5 times higher volumetric energy density. More importantly, it allows the ready use of existing gas infrastructure for energy storage, transport and distribution. Intermittent wind electricity generated is converted into synthetic methane, the Power to Gas (P2G scheme, by splitting feedstock CO2 and H2O into synthesis gas, a mixture of CO and H2. Syngas plays a central role in the synthesis of a range of hydrocarbon products, including methane, diesel and dimethyl ether. The splitting is accomplished by innovative means; plasmolysis and high-temperature solid oxygen electrolysis. A CO2-neutral fuel

  19. Thermal infrared laser heterodyne spectroradiometry for solar occultation atmospheric CO2 measurements (United States)

    Hoffmann, Alex; Macleod, Neil A.; Huebner, Marko; Weidmann, Damien


    This technology demonstration paper reports on the development, demonstration, performance assessment, and initial data analysis of a benchtop prototype quantum cascade laser heterodyne spectroradiometer, operating within a narrow spectral window of ˜ 1 cm-1 around 953.1 cm-1 in transmission mode and coupled to a passive Sun tracker. The instrument has been specifically designed for accurate dry air total column, and potentially vertical profile, measurements of CO2. Data from over 8 months of operation in 2015 near Didcot, UK, confirm that atmospheric measurements with noise levels down to 4 times the shot noise limit can be achieved with the current instrument. Over the 8-month period, spectra with spectral resolutions of 60 MHz (0.002 cm-1) and 600 MHz (0.02 cm-1) have been acquired with median signal-to-noise ratios of 113 and 257, respectively, and a wavenumber calibration uncertainty of 0.0024 cm-1.Using the optimal estimation method and RFM as the radiative transfer forward model, prior analysis and theoretical benchmark modelling had been performed with an observation system simulator (OSS) to target an optimized spectral region of interest. The selected narrow spectral window includes both CO2 and H2O ro-vibrational transition lines to enable the measurement of dry air CO2 column from a single spectrum. The OSS and preliminary retrieval results yield roughly 8 degrees of freedom for signal (over the entire state vector) for an arbitrarily chosen a priori state with relatively high uncertainty ( ˜ 4 for CO2). Preliminary total column mixing ratios obtained are consistent with GOSAT monthly data. At a spectral resolution of 60 MHz with an acquisition time of 90 s, instrumental noise propagation yields an error of around 1.5 ppm on the dry air total column of CO2, exclusive of biases and geophysical parameters errors at this stage.

  20. A fast H2O total column density product from GOME – Validation with in-situ aircraft measurements

    Directory of Open Access Journals (Sweden)

    T. Wagner


    Full Text Available Atmospheric water vapour is the most important greenhouse gas which is responsible for about 2/3 of the natural greenhouse effect, therefore changes in atmospheric water vapour in a changing climate (the water vapour feedback is subject to intense debate. H2O is also involved in many important reaction cycles of atmospheric chemistry, e.g. in the production of the OH radical. Thus, long time series of global H2O data are highly required. Since 1995 the Global Ozone Monitoring Experiment (GOME continuously observes atmospheric trace gases. In particular it has been demonstrated that GOME as a nadir looking UV/vis-instrument is sensitive to many tropospheric trace gases. Here we present a new, fast H2O algorithm for the retrieval of vertical column densities from GOME measurements. In contrast to existing H2O retrieval algorithms it does not depend on additional information like e.g. the climatic zone, aerosol content or ground albedo. It includes an internal cloud-, aerosol-, and albedo correction which is based on simultaneous observations of the oxygen dimer O4. From sensitivity studies using atmospheric radiative modelling we conclude that our H2O retrieval overestimates the true atmospheric H2O vertical column density (VCD by about 4% for clear sky observations in the tropics and sub-tropics, while it can lead to an underestimation of up to -18% in polar regions. For measurements over (partly cloud covered ground pixels, however, the true atmospheric H2O VCD might be in general systematically underestimated. We compared the GOME H2O VCDs to ECMWF model data over one whole GOME orbit (extending from the Arctic to the Antarctic including also totally cloud covered measurements. The correlation of the GOME observations and the model data yield the following results: a slope of 0.96 (r2 = 0.86 and an average bias of 5%. Even for measurements with large cloud fractions between 50% and 100% an average underestimation of only -18% was found. This

  1. Modeling CO2 Storage in Fractured Reservoirs: Fracture-Matrix Interactions of Free-Phase and Dissolved CO2 (United States)

    Oldenburg, C. M.; Zhou, Q.; Birkholzer, J. T.


    The injection of supercritical CO2 (scCO2) in fractured reservoirs has been conducted at several storage sites. However, no site-specific dual-continuum modeling for fractured reservoirs has been reported and modeling studies have generally underestimated the fracture-matrix interactions. We developed a conceptual model for enhanced CO2 storage to take into account global scCO2 migration in the fracture continuum, local storage of scCO2 and dissolved CO2 (dsCO2) in the matrix continuum, and driving forces for scCO2 invasion and dsCO2 diffusion from fractures. High-resolution discrete fracture-matrix models were developed for a column of idealized matrix blocks bounded by vertical and horizontal fractures and for a km-scale fractured reservoir. The column-scale simulation results show that equilibrium storage efficiency strongly depends on matrix entry capillary pressure and matrix-matrix connectivity while the time scale to reach equilibrium is sensitive to fracture spacing and matrix flow properties. The reservoir-scale modeling results shows that the preferential migration of scCO2 through fractures is coupled with bulk storage in the rock matrix that in turn retards the fracture scCO2 plume. We also developed unified-form diffusive flux equations to account for dsCO2 storage in brine-filled matrix blocks and found solubility trapping is significant in fractured reservoirs with low-permeability matrix.

  2. Estimating CO2 Emission Reduction of Non-capture CO2 Utilization (NCCU) Technology

    International Nuclear Information System (INIS)

    Lee, Ji Hyun; Lee, Dong Woog; Gyu, Jang Se; Kwak, No-Sang; Lee, In Young; Jang, Kyung Ryoung; Shim, Jae-Goo; Choi, Jong Shin


    Estimating potential of CO 2 emission reduction of non-capture CO 2 utilization (NCCU) technology was evaluated. NCCU is sodium bicarbonate production technology through the carbonation reaction of CO 2 contained in the flue gas. For the estimating the CO 2 emission reduction, process simulation using process simulator (PRO/II) based on a chemical plant which could handle CO 2 of 100 tons per day was performed, Also for the estimation of the indirect CO 2 reduction, the solvay process which is a conventional technology for the production of sodium carbonate/sodium bicarbonate, was studied. The results of the analysis showed that in case of the solvay process, overall CO 2 emission was estimated as 48,862 ton per year based on the energy consumption for the production of NaHCO 3 (7.4 GJ/tNaHCO 3 ). While for the NCCU technology, the direct CO 2 reduction through the CO 2 carbonation was estimated as 36,500 ton per year and the indirect CO 2 reduction through the lower energy consumption was 46,885 ton per year which lead to 83,385 ton per year in total. From these results, it could be concluded that sodium bicarbonate production technology through the carbonation reaction of CO 2 contained in the flue was energy efficient and could be one of the promising technology for the low CO 2 emission technology.

  3. Precision requirements for space-based X(CO2) data

    International Nuclear Information System (INIS)

    Miller, C.E.; Crisp, D.; Miller, C.E.; Salawitch, J.; Sander, S.P.; Sen, B.; Toon, C.; DeCola, P.L.; Olsen, S.C.; Randerson, J.T.; Michalak, A.M.; Alkhaled, A.; Michalak, A.M.; Rayner, P.; Jacob, D.J.; Suntharalingam, P.; Wofsy, S.C.; Jacob, D.J.; Suntharalingam, P.; Wofsy, S.C.; Jones, D.B.A.; Denning, A.S.; Nicholls, M.E.; O'Brien, D.; Doney, S.C.; Pawson, S.; Pawson, S.; Connor, B.J.; Fung, I.Y.; Tans, P.; Wennberg, P.O.; Yung, Y.L.; Law, R.M.


    Precision requirements are determined for space-based column-averaged CO 2 dry air mole fraction X(CO 2 ) data. These requirements result from an assessment of spatial and temporal gradients in X(CO 2 ), the relationship between X(CO 2 ) precision and surface CO 2 flux uncertainties inferred from inversions of the X(CO 2 ) data, and the effects of X(CO 2 ) biases on the fidelity of CO 2 flux inversions. Observational system simulation experiments and synthesis inversion modeling demonstrate that the Orbiting Carbon Observatory mission design and sampling strategy provide the means to achieve these X(CO 2 ) data precision requirements. (authors)

  4. Adaption of an array spectroradiometer for total ozone column retrieval using direct solar irradiance measurements in the UV spectral range (United States)

    Zuber, Ralf; Sperfeld, Peter; Riechelmann, Stefan; Nevas, Saulius; Sildoja, Meelis; Seckmeyer, Gunther


    A compact array spectroradiometer that enables precise and robust measurements of solar UV spectral direct irradiance is presented. We show that this instrument can retrieve total ozone column (TOC) accurately. The internal stray light, which is often the limiting factor for measurements in the UV spectral range and increases the uncertainty for TOC analysis, is physically reduced so that no other stray-light reduction methods, such as mathematical corrections, are necessary. The instrument has been extensively characterised at the Physikalisch-Technische Bundesanstalt (PTB) in Germany. During an international total ozone measurement intercomparison at the Izaña Atmospheric Observatory in Tenerife, the high-quality applicability of the instrument was verified with measurements of the direct solar irradiance and subsequent TOC evaluations based on the spectral data measured between 12 and 30 September 2016. The results showed deviations of the TOC of less than 1.5 % from most other instruments in most situations and not exceeding 3 % from established TOC measurement systems such as Dobson or Brewer.

  5. CO2 flowrate calculator

    International Nuclear Information System (INIS)

    Carossi, Jean-Claude


    A CO 2 flowrate calculator has been designed for measuring and recording the gas flow in the loops of Pegase reactor. The analog calculator applies, at every moment, Bernoulli's formula to the values that characterize the carbon dioxide flow through a nozzle. The calculator electronics is described (it includes a sampling calculator and a two-variable function generator), with its amplifiers, triggers, interpolator, multiplier, etc. Calculator operation and setting are presented

  6. A Ground-based validation of GOSAT-observed atmospheric CO2 in Inner-Mongolian grasslands

    International Nuclear Information System (INIS)

    Qin, X; Lei, L; Zeng, Z; Kawasaki, M; Oohasi, M


    Atmospheric carbon dioxide (CO 2 ) is a long-lived greenhouse gas that significantly contributes to global warming. Long-term and continuous measurements of atmospheric CO 2 to investigate its global distribution and concentration variations are important for accurately understanding its potential climatic effects. Satellite measurements from space can offer atmospheric CO 2 data for climate change research. For that, ground-based measurements are required for validation and improving the precision of satellite-measured CO 2 . We implemented observation experiment of CO 2 column densities in the Xilinguole grasslands in Inner Mongolia, China, using a ground-based measurement system, which mainly consists of an optical spectrum analyzer (OSA), a sun tracker and a notebook controller. Measurements from our ground-based system were analyzed and compared with those from the Greenhouse gas Observation SATellite (GOSAT). The ground-based measurements had an average value of 389.46 ppm, which was 2.4 ppm larger than from GOSAT, with a standard deviation of 3.4 ppm. This result is slightly larger than the difference between GOSAT and the Total Carbon Column Observing Network (TCCON). This study highlights the usefulness of the ground-based OSA measurement system for analyzing atmospheric CO 2 column densities, which is expected to supplement the current TCCON network

  7. Total ozone column derived from GOME and SCIAMACHY using KNMI retrieval algorithms: Validation against Brewer measurements at the Iberian Peninsula (United States)

    Antón, M.; Kroon, M.; López, M.; Vilaplana, J. M.; Bañón, M.; van der A, R.; Veefkind, J. P.; Stammes, P.; Alados-Arboledas, L.


    This article focuses on the validation of the total ozone column (TOC) data set acquired by the Global Ozone Monitoring Experiment (GOME) and the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) satellite remote sensing instruments using the Total Ozone Retrieval Scheme for the GOME Instrument Based on the Ozone Monitoring Instrument (TOGOMI) and Total Ozone Retrieval Scheme for the SCIAMACHY Instrument Based on the Ozone Monitoring Instrument (TOSOMI) retrieval algorithms developed by the Royal Netherlands Meteorological Institute. In this analysis, spatially colocated, daily averaged ground-based observations performed by five well-calibrated Brewer spectrophotometers at the Iberian Peninsula are used. The period of study runs from January 2004 to December 2009. The agreement between satellite and ground-based TOC data is excellent (R2 higher than 0.94). Nevertheless, the TOC data derived from both satellite instruments underestimate the ground-based data. On average, this underestimation is 1.1% for GOME and 1.3% for SCIAMACHY. The SCIAMACHY-Brewer TOC differences show a significant solar zenith angle (SZA) dependence which causes a systematic seasonal dependence. By contrast, GOME-Brewer TOC differences show no significant SZA dependence and hence no seasonality although processed with exactly the same algorithm. The satellite-Brewer TOC differences for the two satellite instruments show a clear and similar dependence on the viewing zenith angle under cloudy conditions. In addition, both the GOME-Brewer and SCIAMACHY-Brewer TOC differences reveal a very similar behavior with respect to the satellite cloud properties, being cloud fraction and cloud top pressure, which originate from the same cloud algorithm (Fast Retrieval Scheme for Clouds from the Oxygen A-Band (FRESCO+)) in both the TOSOMI and TOGOMI retrieval algorithms.

  8. TOMS/Nimbus-7 Total Column Ozone Monthly L3 Global 1x1.25 deg Lat/Lon Grid V008 (United States)

    National Aeronautics and Space Administration — This data product contains TOMS/Nimbus-7 Total Column Ozone Monthly L3 Global 1x1.25 deg Lat/Lon Grid Version 8 data in ASCII format. The Total Ozone Mapping...

  9. TOMS/Nimbus-7 Total Column Ozone Daily L3 Global 1x1.25 deg Lat/Lon Grid V008 (United States)

    National Aeronautics and Space Administration — This data product contains TOMS/Nimbus-7 Total Column Ozone Daily L3 Global 1x1.25 deg Lat/Lon Grid Version 8 data in ASCII format. The Total Ozone Mapping...

  10. Remote sensing of tropospheric total column water vapor: Intercomparison of POLDER, AMSR-E and MODIS retrievals (United States)

    Riedi, J.; Mcharek, L.; Dubuisson, P.; Parol, F.; Thieuleux, F.


    Since December 2004, the CNES Parasol (Polarization and Anisotropy of Reflectances for Atmospheric Science coupled with Observations from a Lidar) mission has been flying in the A-train with Aqua (NASA) providing more than 5 years of temporally and spatially coincident observations from POLDER, MODIS and AMSRE which enable total column water vapor amount retrievals. We are providing here a temporal and statistical analysis of water vapor near-infrared retrievals from POLDER against MODIS and AMSR-E products derived from nearinfrared, thermal infrared and microwave observations over ocean. A temporal analysis of POLDER official product is conducted in view of AMSR-E and MODIS coincident retrievals over ocean. In a second step, an alternative approach based on the use of simple multilayer perceptron (MLP) neural network (NN) is developed to improve the mathematical parameterization used to retrieve water vapor amount from near-infrared observation. The retrievals are further improved when an estimate of the 910 nm surface reflectance is obtained through interpolation between PARASOL 865 nm and 1020 nm channels. This last improvement now allows for a unified land/ocean retrieval algorithm for PARASOL/POLDER.

  11. Feasibility of retrieving dust properties and total column water vapor from solar spectra measured using a lander camera on Mars (United States)

    Manago, Naohiro; Noguchi, Katsuyuki; Hashimoto, George L.; Senshu, Hiroki; Otobe, Naohito; Suzuki, Makoto; Kuze, Hiroaki


    Dust and water vapor are important constituents in the Martian atmosphere, exerting significant influence on the heat balance of the atmosphere and surface. We have developed a method to retrieve optical and physical properties of Martian dust from spectral intensities of direct and scattered solar radiation to be measured using a multi-wavelength environmental camera onboard a Mars lander. Martian dust is assumed to be composed of silicate-like substrate and hematite-like inclusion, having spheroidal shape with a monomodal gamma size distribution. Error analysis based on simulated data reveals that appropriate combinations of three bands centered at 450, 550, and 675 nm wavelengths and 4 scattering angles of 3°, 10°, 50°, and 120° lead to good retrieval of four dust parameters, namely, aerosol optical depth, effective radius and variance of size distribution, and volume mixing ratio of hematite. Retrieval error increases when some of the observational parameters such as color ratio or aureole are omitted from the retrieval. Also, the capability of retrieving total column water vapor is examined through observations of direct and scattered solar radiation intensities at 925, 935, and 972 nm. The simulation and error analysis presented here will be useful for designing an environmental camera that can elucidate the dust and water vapor properties in a future Mars lander mission.

  12. Water vapor total column measurements using the Elodie Archive at Observatoire de Haute Provence from 1994 to 2004

    Directory of Open Access Journals (Sweden)

    A. Sarkissian


    Full Text Available Water vapor total column measurements at Observatoire de Haute Provence (5°42´ E, +43°55´ N, south of France, were obtained using observations of astronomical objects made between July 1994 and December 2004 on the 193-cm telescope with the high-resolution spectrometer Elodie. Spectra of stars, nebulae, and other astronomical objects were taken regularly during 10 years. More than 18 000 spectra from 400 nm to 680 nm are available on-line in the Elodie Archive. This archive, usually explored by astronomers, contains information to study the atmosphere of the Earth. Water vapor absorption lines appear in the visible in delimited bands that astronomers often avoid for their spectral analysis. We used the Elodie Archive with two objectives: firstly, to retrieve seasonal variability and long-term trend of atmospheric water vapor, and secondly, to remove signatures in spectra for further astronomical or geophysical use. The tools presented here (the workflow, the interoperable Elodie Archive and the web service Tellodie are developed following, when possible, formats and standards recommended by the International Virtual Observatory Alliance.

  13. First Reprocessing of Southern Hemisphere ADditional OZonesondes Profile Records: 3. Uncertainty in Ozone Profile and Total Column (United States)

    Witte, Jacquelyn C.; Thompson, Anne M.; Smit, Herman G. J.; Vömel, Holger; Posny, Françoise; Stübi, Rene


    Reprocessed ozonesonde data from eight SHADOZ (Southern Hemisphere ADditional OZonesondes) sites have been used to derive the first analysis of uncertainty estimates for both profile and total column ozone (TCO). The ozone uncertainty is a composite of the uncertainties of the individual terms in the ozone partial pressure (PO3) equation, those being the ozone sensor current, background current, internal pump temperature, pump efficiency factors, conversion efficiency, and flow rate. Overall, PO3 uncertainties (ΔPO3) are within 15% and peak around the tropopause (15 ± 3 km) where ozone is a minimum and ΔPO3 approaches the measured signal. The uncertainty in the background and sensor currents dominates the overall ΔPO3 in the troposphere including the tropopause region, while the uncertainties in the conversion efficiency and flow rate dominate in the stratosphere. Seasonally, ΔPO3 is generally a maximum in the March-May, with the exception of SHADOZ sites in Asia, for which the highest ΔPO3 occurs in September-February. As a first approach, we calculate sonde TCO uncertainty (ΔTCO) by integrating the profile ΔPO3 and adding the ozone residual uncertainty, derived from the McPeters and Labow (2012, doi:10.1029/2011JD017006) 1σ ozone mixing ratios. Overall, ΔTCO are within ±15 Dobson units (DU), representing 5-6% of the TCO. Total Ozone Mapping Spectrometer and Ozone Monitoring Instrument (TOMS and OMI) satellite overpasses are generally within the sonde ΔTCO. However, there is a discontinuity between TOMS v8.6 (1998 to September 2004) and OMI (October 2004-2016) TCO on the order of 10 DU that accounts for the significant 16 DU overall difference observed between sonde and TOMS. By comparison, the sonde-OMI absolute difference for the eight stations is only 4 DU.

  14. CO2 Acquisition Membrane (CAM) (United States)

    Mason, Larry W.; Way, J. Douglas; Vlasse, Marcus


    The objective of CAM is to develop, test, and analyze thin film membrane materials for separation and purification of carbon dioxide (CO2) from mixtures of gases, such as those found in the Martian atmosphere. The membranes are targeted toward In Situ Resource Utilization (ISRU) applications that will operate in extraterrestrial environments and support future unmanned and human space missions. A primary application is the Sabatier Electrolysis process that uses Mars atmosphere CO2 as raw material for producing water, oxygen, and methane for rocket fuel and habitat support. Other applications include use as an inlet filter to collect and concentrate Mars atmospheric argon and nitrogen gases for habitat pressurization, and to remove CO2 from breathing gases in Closed Environment Life Support Systems (CELSS). CAM membrane materials include crystalline faujasite (FAU) zeolite and rubbery polymers such as silicone rubber (PDMS) that have been shown in the literature and via molecular simulation to favor adsorption and permeation of CO2 over nitrogen and argon. Pure gas permeation tests using commercial PDMS membranes have shown that both CO2 permeance and the separation factor relative to other gases increase as the temperature decreases, and low (Delta)P(Sub CO2) favors higher separation factors. The ideal CO2/N2 separation factor increases from 7.5 to 17.5 as temperature decreases from 22 C to -30 C. For gas mixtures containing CO2, N2, and Ar, plasticization decreased the separation factors from 4.5 to 6 over the same temperature range. We currently synthesize and test our own Na(+) FAU zeolite membranes using standard formulations and secondary growth methods on porous alumina. Preliminary tests with a Na(+) FAU membrane at 22 C show a He/SF6 ideal separation factor of 62, exceeding the Knudsen diffusion selectivity by an order of magnitude. This shows that the membrane is relatively free from large defects and associated non-selective (viscous flow) transport

  15. Biomass waste carbon materials as adsorbents for CO2 capture under post-combustion conditions

    Directory of Open Access Journals (Sweden)

    Elisa M Calvo-Muñoz


    Full Text Available A series of porous carbon materials obtained from biomass waste have been synthesized, with different morphologies and structural properties, and evaluated as potential adsorbents for CO2 capture in post-combustion conditions. These carbon materials present CO2 adsorption capacities, at 25 ºC and 101.3 kPa, comparable to those obtained by other complex carbon or inorganic materials. Furthermore, CO2 uptakes under these conditions can be well correlated to the narrow micropore volume, derived from the CO2 adsorption data at 0 ºC (VDRCO2. In contrast, CO2 adsorption capacities at 25 ºC and 15 kPa are more related to only pores of sizes lower than 0.7 nm. The capacity values obtained in column adsorption experiments were really promising. An activated carbon fiber obtained from Alcell lignin, FCL, presented a capacity value of 1.3 mmol/g (5.7 %wt. Moreover, the adsorption capacity of this carbon fiber was totally recovered in a very fast desorption cycle at the same operation temperature and total pressure and, therefore, without any additional energy requirement. Thus, these results suggest that the biomass waste used in this work could be successfully valorized as efficient CO2 adsorbent, under post-combustion conditions, showing excellent regeneration performance.

  16. CO2 laser development

    International Nuclear Information System (INIS)



    The research and development programs on high-energy, short-pulse CO 2 lasers were begun at LASL in 1969. Three large systems are now either operating or are being installed. The Single-Beam System (SBS), a four-stage prototype, was designed in 1971 and has been in operation since 1973 with an output energy of 250 J in a 1-ns pulse with an on-target intensity of 3.5 x 10 14 W/cm 2 . The Dual-Beam System (DBS), now in the final stages of electrical and optical checkout, will provide about ten times more power for two-beam target irradiation experiments. Four such dual-beam modules are being installed in the Laser-Fusion Laboratory to provide an Eight-Beam System (EBS) scheduled for operation at the 5- to 10-TW level in 1977. A fourth system, a 100- to 200-TW CO 2 laser, is being designed for the High-Energy Gas Laser Facility (HEGLF) program

  17. Atmospheric inversion of the surface CO2 flux with 13CO2 constraint (United States)

    Chen, J. M.; Mo, G.; Deng, F.


    Observations of 13CO2 at 73 sites compiled in the GLOBALVIEW database are used for an additional constraint in a global atmospheric inversion of the surface CO2 flux using CO2 observations at 210 sites for the 2002-2004 period for 39 land regions and 11 ocean regions. This constraint is implemented using the 13CO2/CO2 flux ratio modeled with a terrestrial ecosystem model and an ocean model. These models simulate 13CO2 discrimination rates of terrestrial photosynthesis and respiration and ocean-atmosphere diffusion processes. In both models, the 13CO2 disequilibrium between fluxes to and from the atmosphere is considered due to the historical change in atmospheric 13CO2 concentration. For the 2002-2004 period, the 13CO2 constraint on the inversion increases the total land carbon sink from 3.40 to 3.70 Pg C yr-1 and decreases the total oceanic carbon sink from 1.48 to 1.12 Pg C yr-1. The largest changes occur in tropical areas: a considerable decrease in the carbon source in the Amazon forest, and this decrease is mostly compensated by increases in the ocean region immediately west of the Amazon and the southeast Asian land region. Our further investigation through different treatments of the 13CO2/CO2 flux ratio used in the inversion suggests that variable spatial distributions of the 13CO2 isotopic discrimination rate simulated by the models over land and ocean have considerable impacts on the spatial distribution of the inverted CO2 flux over land and the inversion results are not sensitive to errors in the estimated disequilibria over land and ocean.

  18. How much CO2 is trapped in carbonate minerals of a natural CO2 occurrence? (United States)

    Király, Csilla; Szabó, Zsuzsanna; Szamosfalvi, Ágnes; Cseresznyés, Dóra; Király, Edit; Szabó, Csaba; Falus, György


    unexpectedly high proportion of total amount of CO2. Further results enlightened that other carbonates, ankerite, calcite and siderite have precipitated in two generations, the first before and the second after the CO2 flooding. Further laboratory analysis and geochemical models allow us to estimate the ratio of these two generations and also to understand how far the reservoir rock is in the CO2 mineral trapping process.

  19. NILU-UV multi-filter radiometer total ozone columns: Comparison with satellite observations over Thessaloniki, Greece. (United States)

    Zempila, Melina Maria; Taylor, Michael; Koukouli, Maria Elissavet; Lerot, Christophe; Fragkos, Konstantinos; Fountoulakis, Ilias; Bais, Alkiviadis; Balis, Dimitrios; van Roozendael, Michel


    This study aims to construct and validate a neural network (NN) model for the production of high frequency (~1min) ground-based estimates of total ozone column (TOC) at a mid-latitude UV and ozone monitoring station in the Laboratory of Atmospheric Physics of the Aristotle University of Thessaloniki (LAP/AUTh) for the years 2005-2014. In the first stage of model development, ~30,000 records of coincident solar UV spectral irradiance measurements from a Norsk Institutt for Luftforskning (NILU)-UV multi-filter radiometer and TOC measurements from a co-located Brewer spectroradiometer are used to train a NN to learn the nonlinear functional relation between the irradiances and TOC. The model is then subjected to sensitivity analysis and validation. Close agreement is obtained (R 2 =0.94, RMSE=8.21 DU and bias=-0.15 DU relative to the Brewer) for the training data in the correlation of NN estimates on Brewer derived TOC with 95% of the coincident data differing by less than 13 DU. In the second stage of development, a long time series (≥1 million records) of high frequency (~1min) NILU-UV ground-based measurements are presented as inputs to the NN model to generate high frequency TOC estimates. The advantage of the NN model is that it is not site dependent and is applicable to any NILU input data lying within the range of the training data. GOME/ERS-2, SCIAMACHY/Envisat, OMI/Aura and GOME2/MetOp-A TOC records are then used to perform a precise cross-validation analysis and comparison with the NILU TOC estimates over Thessaloniki. All 4 satellite TOC dataset are retrieved using the GOME Direct Fitting algorithm, version 3 (GODFIT_v3), for reasons of consistency. The NILU TOC estimates within ±30min of the overpass times agree well with the satellite TOC retrievals with coefficient of determination in the range 0.88≤R 2 ≤0.90 for all sky conditions and 0.95≤R 2 ≤0.96 for clear sky conditions. The mean fractional differences are found to be -0.67%±2.15%, -1

  20. Improvements in Total Column Ozone in GEOSCCM and Comparisons with a New Ozone-Depleting Substances Scenario (United States)

    Oman, Luke D.; Douglass, Anne R.


    The evolution of ozone is examined in the latest version of the Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM) using old and new ozone-depleting substances (ODS) scenarios. This version of GEOSCCM includes a representation of the quasi-biennial oscillation, a more realistic implementation of ozone chemistry at high solar zenith angles, an improved air/sea roughness parameterization, and an extra 5 parts per trillion of CH3Br to account for brominated very short-lived substances. Together these additions improve the representation of ozone compared to observations. This improved version of GEOSCCM was used to simulate the ozone evolution for the A1 2010 and the newStratosphere-troposphere Processes and their Role in Climate (SPARC) 2013 ODS scenario derived using the SPARC Lifetimes Report 2013. This new ODS scenario results in a maximum Cltot increase of 65 parts per trillion by volume (pptv), decreasing slightly to 60 pptv by 2100. Approximately 72% of the increase is due to the longer lifetime of CFC-11. The quasi-global (60degS-60degN) total column ozone difference is relatively small and less than 1Dobson unit on average and consistent with the 3-4% larger 2050-2080 average Cly in the new SPARC 2013 scenario. Over high latitudes, this small change in Cly compared to the relatively large natural variabilitymakes it not possible to discern a significant impact on ozone in the second half of the 21st century in a single set of simulations.

  1. CO2 Laser Market (United States)

    Simonsson, Samuel


    It gives me a great deal of pleasure to introduce our final speaker of this morning's session for two reasons: First of all, his company has been very much in the news not only in our own community but in the pages of Wall Street Journal and in the world economic press. And, secondly, we would like to welcome him to our shores. He is a temporary resident of the United States, for a few months, forsaking his home in Germany to come here and help with the start up of a new company which we believe, probably, ranks #1 as the world supplier of CO2 lasers now, through the combination of former Spectra Physics Industrial Laser Division and Rofin-Sinar GMBH. Samuel Simonsson is the Chairman of the Board of Rofin-Sinar, Inc., here in the U.S. and managing director of Rofin-Sinar GMBH. It is a pleasure to welcome him.

  2. Silvering substrates after CO2 snow cleaning (United States)

    Zito, Richard R.


    There have been some questions in the astronomical community concerning the quality of silver coatings deposited on substrates that have been cleaned with carbon dioxide snow. These questions center around the possible existence of carbonate ions left behind on the substrate by CO2. Such carbonate ions could react with deposited silver to produce insoluble silver carbonate, thereby reducing film adhesion and reflectivity. Carbonate ions could be produced from CO2 via the following mechanism. First, during CO2 snow cleaning, a small amount of moisture can condense on a surface. This is especially true if the jet of CO2 is allowed to dwell on one spot. CO2 gas can dissolve in this moisture, producing carbonic acid, which can undergo two acid dissociations to form carbonate ions. In reality, it is highly unlikely that charged carbonate ions will remain stable on a substrate for very long. As condensed water evaporates, Le Chatelier's principle will shift the equilibrium of the chain of reactions that produced carbonate back to CO2 gas. Furthermore, the hydration of CO2 reaction of CO2 with H20) is an extremely slow process, and the total dehydrogenation of carbonic acid is not favored. Living tissues that must carry out the equilibration of carbonic acid and CO2 use the enzyme carbonic anhydrase to speed up the reaction by a factor of one million. But no such enzymatic action is present on a clean mirror substrate. In short, the worst case analysis presented below shows that the ratio of silver atoms to carbonate radicals must be at least 500 million to one. The results of chemical tests presented here support this view. Furthermore, film lift-off tests, also presented in this report, show that silver film adhesion to fused silica substrates is actually enhanced by CO2 snow cleaning.

  3. TOMS/Earth Probe Total Column Ozone Daily L3 Global 1x1.25 deg Lat/Lon Grid V008 (United States)

    National Aeronautics and Space Administration — This data product contains TOMS/Earth Probe Total Column Ozone Daily L3 Global 1x1.25 deg Lat/Lon Grid Version 8 data in ASCII format. (The shortname for this...

  4. OMI/Aura Ozone (O3) DOAS Total Column Daily L2 Global 0.25 deg Lat/Lon Grid V003 (United States)

    National Aeronautics and Space Administration — The OMI/Aura Level-2G Total Column Ozone Data Product OMDOAO3G (Version 003) is now available ( ) from the...

  5. Estimating Surface NO2 and SO2 Mixing Ratios from Fast-Response Total Column Observations and Potential Application to Geostationary Missions (United States)

    Total-column nitrogen dioxide (NO2) data collected by a ground-based sun-tracking spectrometer system 21 (Pandora) and an photolytic-converter-based in-situ instrument collocated at NASA’s Langley Research Center in 22 Hampton, Virginia were analyzed to study the relationship bet...

  6. OMI/Aura Ozone (O3) Total Column Daily L2 Global 0.25 deg Lat/Lon Grid V003 (United States)

    National Aeronautics and Space Administration — The OMI/Aura Level-2G Total Column Ozone Data Product OMTO3G (Version 003) is made available ( ) from the NASA...

  7. Post-combustion CO2 capture with activated carbons using fixed bed adsorption (United States)

    Al Mesfer, Mohammed K.; Danish, Mohd; Fahmy, Yasser M.; Rashid, Md. Mamoon


    In the current work, the capturing of carbon dioxide from flue gases of post combustion emission using fixed bed adsorption has been carried out. Two grades of commercial activated carbon (sorbent-1 and sorbent-2) were used as adsorbent. Feed consisting of CO2 and N2 mixture was used for carrying out the adsorption. The influence of bed temperature, feed rate, equilibrium partial pressure and initial % CO2 in feed were considered for analyzing adsorption-desorption process. It was found that the total adsorption-desorption cycle time decreases with increased column temperature and feed rates. The time required to achieve the condition of bed saturation decreases with increased bed temperature and feed rates. The amount of CO2 adsorbed/Kg of the adsorbent declines with increased bed temperature with in studied range for sorbent-1 and sorbent-2. It was suggested that the adsorption capacity of the both the sorbents increases with increased partial pressure of the gas.

  8. Geological storage of CO2

    International Nuclear Information System (INIS)

    Czernichowski-Lauriol, I.


    The industrial storage of CO 2 is comprised of three steps: - capture of CO 2 where it is produced (power plants, cement plants, etc.); - transport (pipe lines or boats); - storage, mainly underground, called geological sequestration... Three types of reservoirs are considered: - salted deep aquifers - they offer the biggest storage capacity; - exhausted oil and gas fields; - non-exploited deep coal mine streams. The two latter storage types may allow the recovery of sellable products, which partially or totally offsets the storage costs. This process is largely used in the petroleum industry to improve the productivity of an oil field, and is called FOR (Enhanced Oil Recovery). A similar process is applied in the coal mining industry to recover the imprisoned gas, and is called ECBM (Enhanced Coal Bed methane). Two storage operations have been initiated in Norway and in Canada, as well as research programmes in Europe, North America, Australia and Japan. International organisations to stimulate this technology have been created such as the 'Carbon Sequestration Leadership Forum' and 'the Intergovernmental Group for Climate Change'. This technology will be taken into account in the instruments provided by the Tokyo Protocol. (author)

  9. Validation of GOME-2/MetOp-A total water vapour column using reference radiosonde data from GRUAN network (United States)

    Antón, M.; Loyola, D.; Román, R.; Vömel, H.


    The main goal of this article is to validate the total water vapour column (TWVC) measured by the Global Ozone Monitoring Experiment-2 (GOME-2) satellite sensor and generated using the GOME Data Processor (GDP) retrieval algorithm developed by the German Aerospace Center (DLR). For this purpose, spatially and temporally collocated TWVC data from highly accurate sounding measurements for the period January 2009-May 2014 at six sites are used. These balloon-borne data are provided by GCOS Reference Upper-Air Network (GRUAN). The correlation between GOME-2 and sounding TWVC data is reasonably good (determination coefficient (R2) of 0.89) when all available radiosondes (1400) are employed in the inter-comparison. When cloud-free cases (544) are selected by means of the satellite cloud fraction (CF), the correlation exhibits a remarkable improvement (R2 ~ 0.95). Nevertheless, analyzing the six datasets together, the relative differences between GOME-2 and GRUAN data shows mean values (in absolute term) of 19% for all-sky conditions and 14% for cloud-free cases, which evidences a notable bias in the satellite TWVC data against the reference balloon-borne measurements. The satellite-sounding TWVC differences show a strong solar zenith angle (SZA) dependence for values above 50° with a stable behaviour for values below this zenith angle. The smallest relative differences found in the inter-comparison (between -5 and +3%) are achieved for those cloud-free cases with SZA below 50°. Furthermore, the detailed analysis of the influence of cloud properties (CF, cloud top albedo (CTA) and cloud top pressure (CTP)) on the satellite-sounding differences reveals, as expected, a large effect of clouds in the GOME-2 TWVC data. For instance, the relative differences exhibit a large negative dependence on CTA, varying from +5 to -20% when CTA rises from 0.3 to 0.9. Finally, the satellite-sounding differences also show a negative dependence on the reference TWVC values, changing from

  10. Experimental Studies of CO2 Capturing from the Flue Gases

    Directory of Open Access Journals (Sweden)

    Ehsan Rahmandoost


    Full Text Available CO2 emissions from combustion flue gases have turned into a major factor in global warming. Post-combustion carbon capture (PCC from industrial utility flue gases by reactive absorption can substantially reduce the emissions of the greenhouse gas CO2. To test a new solvent (AIT600 for this purpose, a small pilot plant was used. This paper presents the results of studies on chemical methods of absorbing CO2 from flue gases with the new solvent, and evaluates the effects of operating conditions on CO2 absorption efficiency. CO2 removal rate of the AIT600 solvent was higher in comparison to the conventional monoethanolamine (MEA solvent. The optimized temperature of the absorber column was 60 °C for CO2 absorption in this pilot plant. The overall absorption rate (Φ and the volumetric overall mass transfer coefficient (KGaV were also investigated.

  11. Interannual variations in the zonal asymmetry of the subpolar latitudes total ozone column during the austral spring

    Directory of Open Access Journals (Sweden)

    Eduardo A. Agosta


    Full Text Available The Southern Hemisphere midlatitude Total Ozone Column (TOC shows a horseshoe like structure with a minimum which appears to have two preferential extreme positions during October: one, near southern South America, the other, near the Greenwich Meridian approximately. The interannual zonal ozone asymmetry exists independently of the variations induced by the 11-year solar cycle, the Quasi-Biennial Oscillation (QBO and planetary wave activity inducing the Brewer-Dobson circulation. The classification and climatological composition of these two extreme ozone-minimum positions allows for the observations of statistically significant patterns in geopotential height and zonal winds associated with the quasi-stationary wave 1, extending throughout lower stratosphere. The changes in the quasi-stationary wave 1 associated with the extreme TOC positions appear to have sinks and sources determining transient interactions between troposphere and the stratosphere. Thus, distinct climate states in the troposphere seem to be dynamically linked with the state of the stratosphere and ozone layer. The migration of the TOC trough from southern South America to the east during the 1990s can be related to changes in the troposphere/stratosphere coupling through changes in the Southern Annular Mode variability in spring.La Columna Total de Ozono (CTO de las latitudes medias del Hemisferio Sur muestra una estructura de herradura con un mínimo que muestra tener dos posiciones preferenciales extremas durante octubre: uno, en las cercanías del sur de Sudamérica, y el otro, cerca del meridiano de Greenwich. La asimetría zonal de ozono existe independientemente de las variaciones inducidas por el ciclo solar de 11 años, la Oscilación Cuasi-Bianual (QBO y la actividad de onda planetaria asociada a la circulación de Brewer-Dobson. La clasificación y composición climatológica de estas dos situaciones longitudinalmente extremas de mínimo de ozono permite observar

  12. Towards Verifying National CO2 Emissions (United States)

    Fung, I. Y.; Wuerth, S. M.; Anderson, J. L.


    With the Paris Agreement, nations around the world have pledged their voluntary reductions in future CO2 emissions. Satellite observations of atmospheric CO2 have the potential to verify self-reported emission statistics around the globe. We present a carbon-weather data assimilation system, wherein raw weather observations together with satellite observations of the mixing ratio of column CO2 from the Orbiting Carbon Observatory-2 are assimilated every 6 hours into the NCAR carbon-climate model CAM5 coupled to the Ensemble Kalman Filter of DART. In an OSSE, we reduced the fossil fuel emissions from a country, and estimated the emissions innovations demanded by the atmospheric CO2 observations. The uncertainties in the innovation are analyzed with respect to the uncertainties in the meteorology to determine the significance of the result. The work follows from "On the use of incomplete historical data to infer the present state of the atmosphere" (Charney et al. 1969), which maps the path for continuous data assimilation for weather forecasting and the five decades of progress since.

  13. Empirical analysis of aerosol and thin cloud optical depth effects on CO2 retrievals from GOSAT (United States)

    Saha, A.; O'Neill, N. T.; Strong, K.; Nakajima, T.; Uchino, O.; Shiobara, M.


    Ground-based sunphotometer observations of aerosol and cloud optical properties at AEROCAN / AERONET sites co-located with TCCON (Total Carbon Column Observing Network) high resolution Fourier Transform Spectrometers (FTS) were used to investigate the aerosol and cloud influence on column-averaged dry-air mole fraction of carbon dioxide (XCO2) retrieved from the TANSO-FTS (Thermal And Near-infrared Sensor for carbon Observation - FTS) of GOSAT (Greenhouse gases Observing SATellite). This instrument employs high resolution spectra measured in the Short-Wavelength InfraRed (SWIR) band to retrieve XCO2estimates. GOSAT XCO2 retrievals are nominally corrected for the contaminating backscatter influence of aerosols and thin clouds. However if the satellite-retrieved aerosol and thin cloud optical depths applied to the CO2 correction is biased then the correction and the retrieved CO2 values will be biased. We employed independent ground based estimates of both cloud screened and non cloud screened AOD (aerosol optical depth) in the CO2 SWIR channel and compared this with the GOSAT SWIR-channel OD retrievals to see if that bias was related to variations in the (generally negative) CO2 bias (ΔXCO2= XCO2(GOSAT) - XCO2(TCCON)). Results are presented for a number of TCCON validation sites.

  14. Exergoeconomic analysis of utilizing the transcritical CO_2 cycle and the ORC for a recompression supercritical CO_2 cycle waste heat recovery: A comparative study

    International Nuclear Information System (INIS)

    Wang, Xurong; Dai, Yiping


    Highlights: • An exergoeconomic analysis is performed for sCO_2/tCO_2 cycle. • Performance of the sCO_2/tCO_2 cycle and sCO_2/ORC cycle are presented and compared. • The sCO_2/tCO_2 cycle performs better than the sCO_2/ORC cycle at lower PRc. • The sCO_2/tCO_2 cycle has comparable total product unit cost with the sCO_2/ORC cycle. - Abstract: Two combined cogeneration cycles are examined in which the waste heat from a recompression supercritical CO_2 Brayton cycle (sCO_2) is recovered by either a transcritical CO_2 cycle (tCO_2) or an Organic Rankine Cycle (ORC) for generating electricity. An exergoeconomic analysis is performed for sCO_2/tCO_2 cycle performance and its comparison to the sCO_2/ORC cycle. The following organic fluids are considered as the working fluids in the ORC: R123, R245fa, toluene, isobutane, isopentane and cyclohexane. Thermodynamic and exergoeconomic models are developed for the cycles on the basis of mass and energy conservations, exergy balance and exergy cost equations. Parametric investigations are conducted to evaluate the influence of decision variables on the performance of sCO_2/tCO_2 and sCO_2/ORC cycles. The performance of these cycles is optimized and then compared. The results show that the sCO_2/tCO_2 cycle is preferable and performs better than the sCO_2/ORC cycle at lower PRc. When the sCO_2 cycle operates at a cycle maximum pressure of around 20 MPa (∼2.8 of PRc), the tCO_2 cycle is preferable to be integrated with the recompression sCO_2 cycle considering the off-design conditions. Moreover, contrary to the sCO_2/ORC system, a higher tCO_2 turbine inlet temperature improves exergoeconomic performance of the sCO_2/tCO_2 cycle. The thermodynamic optimization study reveals that the sCO_2/tCO_2 cycle has comparable second law efficiency with the sCO_2/ORC cycle. When the optimization is conducted based on the exergoeconomics, the total product unit cost of the sCO_2/ORC is slightly lower than that of the sCO_2/tCO_2

  15. Anthropogenic CO2 in the ocean

    Directory of Open Access Journals (Sweden)

    Tsung-Hung Peng


    Full Text Available The focus of this review article is on the anthropogenic CO2 taken up by the ocean. There are several methods of identifying the anthropogenic CO2 signal and quantifying its inventory in the ocean. The ?C* method is most frequently used to estimate the global distribution of anthropogenic CO2 in the ocean. Results based on analysis of the dataset obtained from the comprehensive surveys of inorganic carbon distribution in the world oceans in the 1990s are given. These surveys were jointly conducted during the World Ocean Circulation Experiment (WOCE and the Joint Global Ocean Flux Study (JGOFS. This data set consists of 9618 hydrographic stations from a total of 95 cruises, which represents the most accurate and comprehensive view of the distribution of inorganic carbon in the global ocean available today. The increase of anthropogenic CO2 in the ocean during the past few decades is also evaluated using direct comparison of results from repeat surveys and using statistical method of Multi-parameter Linear Regression (MLR. The impact of increasing oceanic anthropogenic CO2 on the calcium carbonate system in the ocean is reviewed briefly as well. Extensive studies of CaCO3 dissolution as a result of increasing anthropogenic CO2 in the ocean have revealed several distinct oceanic regions where the CaCO3 undersaturation zone has expanded.

  16. CO2 as a refrigerant

    CERN Document Server


    A first edition, the IIR guide “CO2 as a Refrigerant” highlights the application of carbon dioxide in supermarkets, industrial freezers, refrigerated transport, and cold stores as well as ice rinks, chillers, air conditioning systems, data centers and heat pumps. This guide is for design and development engineers needing instruction and inspiration as well as non-technical experts seeking background information on a specific topic. Written by Dr A.B. Pearson, a well-known expert in the field who has considerable experience in the use of CO2 as a refrigerant. Main topics: Thermophysical properties of CO2 – Exposure to CO2, safety precautions – CO2 Plant Design – CO2 applications – Future prospects – Standards and regulations – Bibliography.

  17. CO2 emissions vs. CO2 responsibility: An input-output approach for the Turkish economy

    International Nuclear Information System (INIS)

    Ipek Tunc, G.; Tueruet-Asik, Serap; Akbostanci, Elif


    Recently, global warming (greenhouse effect) and its effects have become one of the hottest topics in the world agenda. There have been several international attempts to reduce the negative effects of global warming. The Kyoto Protocol can be cited as the most important agreement which tries to limit the countries' emissions within a time horizon. For this reason, it becomes important to calculate the greenhouse gas emissions of countries. The aim of this study is to estimate the amount of CO 2 -the most important greenhouse gas-emissions, for the Turkish economy. An extended input-output model is estimated by using 1996 data in order to identify the sources of CO 2 emissions and to discuss the share of sectors in total emission. Besides, 'CO 2 responsibility', which takes into account the CO 2 content of imports, is estimated for the Turkish economy. The sectoral CO 2 emissions and CO 2 responsibilities are compared and these two notions are linked to foreign trade volume. One of the main conclusions is that the manufacturing industry has the first place in both of the rankings for CO 2 emissions and CO 2 responsibilities, while agriculture and husbandry has the last place

  18. CO2 Emission Factors for Coals

    Directory of Open Access Journals (Sweden)

    P. Orlović-Leko


    (calcite and siderite directly contribute CO2 when they decompose during coal combustion. Variations in the maceral content can also influence CO2 emissions; high inertinite contents increase CO2 emissions. Sulphur in coal reduces EF(CO2. Fuel analysis is very important when estimating greenhouse gas emissions and emission factors. In this preliminary study, based on the results of the fuel analysis, CO2 emission factors for coals and peat from Livno, B&H have been calculated. EF(CO2 is defined as the amount of carbon dioxide emission per unit net calorific values of the fuel. Net calorific value (the lower heating value corresponds to the heat produced by combustion where total water in the combustion products exists as water vapour. The EF(CO2 obtained for sub-bituminous coal, lignite and peat were: 98.7, 109.5, and 147.9 t TJ−1, respectively, which correspond to the following net calorific values: 20.6, 11.5 and 3.6 MJ kg−1. The heating value is generally known to increase with the increase in carbon content (this parameter is connected with the degree of coalification, coal age. The other indispensable parameters are hydrogen, which has a positive effect on the net calorific value, and oxygen and water which impact the net calorific value negatively. The differences in net calorific values can be explained in part by the difference of total moisture content among the different fuel types. The CO2 emission factors calculated in this study were compared with those of IPCC. A significant difference was observed for peat (39.5 %, followed by lignite (8.2 % and sub-bituminous coal (4.3 %.

  19. Diffuse CO2 fluxes from Santiago and Congro volcanic lakes (São Miguel, Azores archipelago) (United States)

    Andrade, César; Cruz, José; Viveiros, Fátima; Branco, Rafael


    Diffuse CO2 degassing occurring in Santiago and Congro lakes, both located in depressions associated to maars from São Miguel Island (Azores, Portugal), was studied through detailed flux measurements. Four sampling campaigns were developed between 2013 and 2016 in each water body, split by the cold and wet seasons. São Miguel has an area of 744.6 km2, being the largest island of the archipelago. The geology of the island is dominated by three quiescent central volcanoes (Sete Cidades, Fogo and Furnas), linked by volcanic fissural zones (Picos and Congro Fissural Volcanic systems). The oldest volcanic systems of the island are located in its eastern part (Povoação-Nordeste). Santiago lake, with a surface area of 0.26 km2 and a depth of 30.5 m, is located inside a maar crater in the Sete Cidades volcano at an altitude of 355 m. The watershed of the lake has an area of 0.97 km2 and a surface flow estimated as 1.54x10 m3/a. A total of 1612 CO2 flux measurements using the accumulation chamber method were made at Santiago lake, 253 in the first campaign (November 2013), and 462, 475 and 422 in the three other campaigns, respectively, in April 2014, September 2016 and December 2016. The total CO2 flux estimated for this lake varies between 0.4 t d-1 and 0.59 t d-1, for the surveys performed, respectively, in November 2013 and September 2016; higher CO2 outputs of 1.57 and 5.87 t d-1 were calculated for the surveys carried out in April 2014 and December 2016. These higher CO2 emissions were associated with a period without water column stratification. Similarly to Santiago lake, Congro lake is located inside a maar, in the Congro Fissural Volcanic system, and has a surface area of 0.04 km2 with 18.5 m depth and a storage of about 2.4x105 m3/a. The lake, located at an altitude of 420 m, is fed by a watershed with an area of 0.33 km2 and a runoff estimated as about 8x104 m3/a. In Congro lake a total of 713 CO2 flux measurements were performed during four surveys from

  20. A Study of CO2 Absorption Using Jet Bubble Column

    Directory of Open Access Journals (Sweden)

    Setiadi Setiadi


    Full Text Available The phenomenon of plunging jet gas-liquid contact occurs quite often in nature, it's momentum carries small air bubbles with it into the reactor medium. The momentum of the liquid stream can be sufficient to carry small bubbles completely to the bottom of the vessel. A stream of liquid falling toward a level surface of that liquid will pull the surrounding air along with it. It will indent the surface of the liquid to form a trumpet-like shape. If the velocity of the stream is high enough, air bubbles will be pulled down, i.e. entrained into the liquid. This happens for two main reasons: air that is trapped between the edge of the falling stream and the trumpet-shaped surface profile and is carried below the surface. This study investigates the potential of a vertical liquid plunging jet for a pollutant contained gas absorption technique. The absorber consists of liquid jet and gas bubble dispersed phase. The effects of operating variables such as liquid flowrate, nozzle diameter, separator pressure, etc. on gas entrainment and holdup were investigated. The mass transfer of the system is governed by the hydrodynamics of the system. Therefore a clear and precise understanding of the above is necessary : to characterize liquid and gas flow within the system, 2. Variation in velocity of the jet with the use of different nozzle diameters and flow rates, 3. Relationship between the liquid and entrained airflow rate, 4. Gas entrainment rate and gas void fraction.

  1. Absorber Model for CO2 Capture by Monoethanolamine

    DEFF Research Database (Denmark)

    Faramarzi, Leila; Kontogeorgis, Georgios; Michelsen, Michael Locht


    The rate-based steady-state model proposed by Gabrielsen et al. (Gabrielsen, J.; Michelsen, M. L.; Kontogeorgis, G. M.; Stenby, E. H. AIChE J. 2006, 52, 10, 3443-3451) for the design of the CO2-2-amino-2-methylpropanol absorbers is adopted and improved for the design of the CO2-monoethanolamine......, and their impact on the model's prediction is compared. The model has been successfully applied to CO2 absorber packed columns and validated against pilot plant data with good agreement....

  2. Atmospheric CO2 Variability Observed From ASCENDS Flight Campaigns (United States)

    Lin, Bing; Browell, Edward; Campbell, Joel; Choi, Yonghoon; Dobler, Jeremy; Fan, Tai-Fang; Harrison, F. Wallace; Kooi, Susan; Liu, Zhaoyan; Meadows, Byron; hide


    Significant atmospheric CO2 variations on various spatiotemporal scales were observed during ASCENDS flight campaigns. For example, around 10-ppm CO2 changes were found within free troposphere in a region of about 200x300 sq km over Iowa during a summer 2014 flight. Even over extended forests, about 2-ppm CO2 column variability was measured within about 500-km distance. For winter times, especially over snow covered ground, relatively less horizontal CO2 variability was observed, likely owing to minimal interactions between the atmosphere and land surface. Inter-annual variations of CO2 drawdown over cornfields in the Mid-West were found to be larger than 5 ppm due to slight differences in the corn growing phase and meteorological conditions even in the same time period of a year. Furthermore, considerable differences in atmospheric CO2 profiles were found during winter and summer campaigns. In the winter CO2 was found to decrease from about 400 ppm in the atmospheric boundary layer (ABL) to about 392 ppm above 10 km, while in the summer CO2 increased from 386 ppm in the ABL to about 396 ppm in free troposphere. These and other CO2 observations are discussed in this presentation.

  3. The sequestration of CO2

    International Nuclear Information System (INIS)

    Le Thiez, P.


    The reduction of greenhouse gas emissions, especially CO 2 , represents a major technological and societal challenge in the fight against climate change. Among the measures likely to reduce anthropic CO 2 emissions, capture and geological storage holds out promise for the future. (author)

  4. Hollow Fiber Membrane Contactors for CO2 Capture: Modeling and Up-Scaling to CO2 Capture for an 800 MWe Coal Power Station

    Directory of Open Access Journals (Sweden)

    Kimball Erin


    Full Text Available A techno-economic analysis was completed to compare the use of Hollow Fiber Membrane Modules (HFMM with the more conventional structured packing columns as the absorber in amine-based CO2 capture systems for power plants. In order to simulate the operation of industrial scale HFMM systems, a two-dimensional model was developed and validated based on results of a laboratory scale HFMM. After successful experiments and validation of the model, a pilot scale HFMM was constructed and simulated with the same model. The results of the simulations, from both sizes of HFMM, were used to assess the feasibility of further up-scaling to a HFMM system to capture the CO2 from an 800 MWe power plant. The system requirements – membrane fiber length, total contact surface area, and module volume – were determined from simulations and used for an economic comparison with structured packing columns. Results showed that a significant cost reduction of at least 50% is required to make HFMM competitive with structured packing columns. Several factors for the design of industrial scale HFMM require further investigation, such as the optimal aspect ratio (module length/diameter, membrane lifetime, and casing material and shape, in addition to the need to reduce the overall cost. However, HFMM were also shown to have the advantages of having a higher contact surface area per unit volume and modular scale-up, key factors for applications requiring limited footprints or flexibility in configuration.

  5. CO2 Sequestration short course

    Energy Technology Data Exchange (ETDEWEB)

    DePaolo, Donald J. [Lawrence Berkeley National Laboratory; Cole, David R [The Ohio State University; Navrotsky, Alexandra [University of California-Davis; Bourg, Ian C [Lawrence Berkeley National Laboratory


    Given the public’s interest and concern over the impact of atmospheric greenhouse gases (GHGs) on global warming and related climate change patterns, the course is a timely discussion of the underlying geochemical and mineralogical processes associated with gas-water-mineral-interactions encountered during geological sequestration of CO2. The geochemical and mineralogical processes encountered in the subsurface during storage of CO2 will play an important role in facilitating the isolation of anthropogenic CO2 in the subsurface for thousands of years, thus moderating rapid increases in concentrations of atmospheric CO2 and mitigating global warming. Successful implementation of a variety of geological sequestration scenarios will be dependent on our ability to accurately predict, monitor and verify the behavior of CO2 in the subsurface. The course was proposed to and accepted by the Mineralogical Society of America (MSA) and The Geochemical Society (GS).

  6. Enzymes in CO2 Capture

    DEFF Research Database (Denmark)

    Fosbøl, Philip Loldrup; Gladis, Arne; Thomsen, Kaj

    The enzyme Carbonic Anhydrase (CA) can accelerate the absorption rate of CO2 into aqueous solutions by several-fold. It exist in almost all living organisms and catalyses different important processes like CO2 transport, respiration and the acid-base balances. A new technology in the field...... of carbon capture is the application of enzymes for acceleration of typically slow ternary amines or inorganic carbonates. There is a hidden potential to revive currently infeasible amines which have an interesting low energy consumption for regeneration but too slow kinetics for viable CO2 capture. The aim...... of this work is to discuss the measurements of kinetic properties for CA promoted CO2 capture solvent systems. The development of a rate-based model for enzymes will be discussed showing the principles of implementation and the results on using a well-known ternary amine for CO2 capture. Conclusions...

  7. State of Energy Consumption and CO2 Emission in Bangladesh

    International Nuclear Information System (INIS)

    Azad, Abul K.; Nashreen, S.W.; Sultana, J.


    Carbon dioxide (CO 2 ) is one of the most important gases in the atmosphere, and is necessary for sustaining life on Earth. It is also considered to be a major greenhouse gas contributing to global warming and climate change. In this article, energy consumption in Bangladesh is analyzed and estimates are made of CO 2 emission from combustion of fossil fuel (coal, gas, petroleum products) for the period 1977 to 1995. International Panel for Climate Change guidelines for national greenhouse gas inventories were used in estimating CO 2 emission. An analysis of energy data shows that the consumption of fossil fuels in Bangladesh is growing by more than 5% per year. The proportion of natural gas in total energy consumption is increasing, while that of petroleum products and coal is decreasing. The estimated total CO 2 release from all primary fossil fuels used in Bangladesh amounted to 5,072 Gg in 1977, and 14,423 Gg in 1995. The total amounts of CO 2 released from petroleum products, natural gas, and coal in the period 1977-1995 were 83,026 Gg (50% of CO 2 emission), 72,541 Gg (44% of CO 2 emission), and 9,545 Gg (6% CO 2 emission), respectively. A trend in CO 2 emission with projections to 2070 is generated. In 2070, total estimated CO 2 emission will be 293,260 Gg with a current growth rate of 6.34%/y. CO 2 emission from fossil fuels is increasing. Petroleum products contribute the majority of CO 2 emission load, and although the use of natural gas is increasing rapidly, its contribution to CO 2 emission is less than that of petroleum products. The use of coal as well as CO 2 emission from coal is expected to gradually decrease

  8. Diffuse CO2 degassing at Vesuvio, Italy (United States)

    Frondini, Francesco; Chiodini, Giovanni; Caliro, Stefano; Cardellini, Carlo; Granieri, Domenico; Ventura, Guido


    At Vesuvio, a significant fraction of the rising hydrothermal-volcanic fluids is subjected to a condensation and separation process producing a CO2-rich gas phase, mainly expulsed through soil diffuse degassing from well defined areas called diffuse degassing structures (DDS), and a liquid phase that flows towards the outer part of the volcanic cone. A large amount of thermal energy is associated with the steam condensation process and subsequent cooling of the liquid phase. The total amount of volcanic-hydrothermal CO2 discharged through diffuse degassing has been computed through a sequential Gaussian simulation (sGs) approach based on several hundred accumulation chamber measurements and, at the time of the survey, amounted to 151 t d-1. The steam associated with the CO2 output, computed assuming that the original H2O/CO2 ratio of hydrothermal fluids is preserved in fumarolic effluents, is 553 t d-1, and the energy produced by the steam condensation and cooling of the liquid phase is 1.47×1012 J d-1 (17 MW). The location of the CO2 and temperature anomalies show that most of the gas is discharged from the inner part of the crater and suggests that crater morphology and local stratigraphy exert strong control on CO2 degassing and subsurface steam condensation. The amounts of gas and energy released by Vesuvio are comparable to those released by other volcanic degassing areas of the world and their estimates, through periodic surveys of soil CO2 flux, can constitute a useful tool to monitor volcanic activity.

  9. Extraction of stevia glycosides with CO2 + water, CO2 + ethanol, and CO2 + water + ethanol

    Directory of Open Access Journals (Sweden)

    A. Pasquel


    Full Text Available Stevia leaves are an important source of natural sugar substitute. There are some restrictions on the use of stevia extract because of its distinctive aftertaste. Some authors attribute this to soluble material other than the stevia glycosides, even though it is well known that stevia glycosides have to some extent a bitter taste. Therefore, the purpose of this work was to develop a process to obtain stevia extract of a better quality. The proposed process includes two steps: i Pretreatment of the leaves by SCFE; ii Extraction of the stevia glycosides by SCFE using CO2 as solvent and water and/or ethanol as cosolvent. The mean total yield for SCFE pretreatment was 3.0%. The yields for SCFE with cosolvent of stevia glycosides were below 0.50%, except at 120 bar, 16°C, and 9.5% (molar of water. Under this condition, total yield was 3.4%. The quality of the glycosidic fraction with respect to its capacity as sweetener was better for the SCFE extract as compared to extract obtained by the conventional process. The overall extraction curves were well described by the Lack extended model.

  10. CO2 pellet blasting studies

    International Nuclear Information System (INIS)

    Archibald, K.E.


    Initial tests with CO 2 pellet blasting as a decontamination technique were completed in 1993 at the Idaho Chemical Processing Plant (ICPP) at the Idaho National Engineering Laboratory (INEL). During 1996, a number of additional CO 2 pellet blasting studies with Alpheus Cleaning Technologies, Oak Ridge National Laboratory, and Pennsylvania State University were conducted. After the testing with Alpheus was complete, an SDI-5 shaved CO 2 blasting unit was purchased by the ICPP to test and determine its capabilities before using in ICPP decontamination efforts. Results of the 1996 testing will be presented in this report

  11. Determining CO2 storage potential during miscible CO2 enhanced oil recovery: Noble gas and stable isotope tracers (United States)

    Shelton, Jenna L.; McIntosh, Jennifer C.; Hunt, Andrew; Beebe, Thomas L; Parker, Andrew D; Warwick, Peter D.; Drake, Ronald; McCray, John E.


    Rising atmospheric carbon dioxide (CO2) concentrations are fueling anthropogenic climate change. Geologic sequestration of anthropogenic CO2 in depleted oil reservoirs is one option for reducing CO2 emissions to the atmosphere while enhancing oil recovery. In order to evaluate the feasibility of using enhanced oil recovery (EOR) sites in the United States for permanent CO2 storage, an active multi-stage miscible CO2flooding project in the Permian Basin (North Ward Estes Field, near Wickett, Texas) was investigated. In addition, two major natural CO2 reservoirs in the southeastern Paradox Basin (McElmo Dome and Doe Canyon) were also investigated as they provide CO2 for EOR operations in the Permian Basin. Produced gas and water were collected from three different CO2 flooding phases (with different start dates) within the North Ward Estes Field to evaluate possible CO2 storage mechanisms and amounts of total CO2retention. McElmo Dome and Doe Canyon were sampled for produced gas to determine the noble gas and stable isotope signature of the original injected EOR gas and to confirm the source of this naturally-occurring CO2. As expected, the natural CO2produced from McElmo Dome and Doe Canyon is a mix of mantle and crustal sources. When comparing CO2 injection and production rates for the CO2 floods in the North Ward Estes Field, it appears that CO2 retention in the reservoir decreased over the course of the three injections, retaining 39%, 49% and 61% of the injected CO2 for the 2008, 2010, and 2013 projects, respectively, characteristic of maturing CO2 miscible flood projects. Noble gas isotopic composition of the injected and produced gas for the flood projects suggest no active fractionation, while δ13CCO2 values suggest no active CO2dissolution into formation water, or mineralization. CO2 volumes capable of dissolving in residual formation fluids were also estimated along with the potential to store pure-phase supercritical CO2. Using a combination

  12. Life Cycle CO2 Assessment by Block Type Changes of Apartment Housing

    Directory of Open Access Journals (Sweden)

    Cheonghoon Baek


    Full Text Available The block type and structural systems in buildings affect the amount of building materials required as well as the CO2 emissions that occur throughout the building life cycle (LCCO2. The purpose of this study was to assess the life cycle CO2 emissions when an apartment housing with ‘flat-type’ blocks (the reference case was replaced with more sustainable ‘T-type’ blocks with fewer CO2 emissions (the alternative case maintaining the same total floor area. The quantity of building materials used and building energy simulations were analyzed for each block type using building information modeling techniques, and improvements in LCCO2 emission were calculated by considering high-strength concrete alternatives. By changing the bearing wall system of the ‘flat-type’ block to the ‘column and beam’ system of the ‘T-type’ block, LCCO2 emissions of the alternative case were 4299 kg-CO2/m2, of which 26% was at the construction stage, 73% was as the operational stage and 1% was at the dismantling and disposal stage. These total LCCO2 emissions were 30% less than the reference case.

  13. CO2: a worldwide myth

    International Nuclear Information System (INIS)

    Gerondeau, Ch.


    In this book, the author demonstrates the paradox that reducing CO 2 emissions leads to no CO 2 abatement at all. This assertion is based on an obvious statement. Everybody knows that oil resources are going to be exhausted in few decades. The oil that industrialized countries will not use will be consumed by emerging countries and the CO 2 emissions will remain the same. Who would believe that the oil, gas or coal still available will remain unused? The Kyoto protocol, the national policies, the European agreements of emissions abatement, the carbon taxes, the emissions abatement requests sent to the rest of the world, all these actions cost a lot and are useless. CO 2 concentration in the atmosphere will inescapably double during the 21. century but, according to the author, without any catastrophic consequence for the Earth. (J.S.)

  14. How well can we assess impacts of agricultural land management changes on the total greenhouse gas balance (CO2, CH4 and N2O) of tropical rice-cropping systems with biogeochemical models? (United States)

    Kraus, David; Weller, Sebastian; Janz, Baldur; Klatt, Steffen; Santabárbara, Ignacio; Haas, Edwin; Werner, Christian; Wassmann, Reiner; Kiese, Ralf; Butterbach-Bahl, Klaus


    Paddy rice cultivation is increasingly challenged by physical and economic irrigation water scarcity. This already results in the trend of converting paddy rice to upland crop cultivation (e.g., maize, aerobic rice) in large parts of South East Asia. Such land management change from flooded lowland systems to well-aerated upland systems drastically affects soil C and N cycling and related emissions of greenhouse gases. Emissions of methane (CH4) are expected to decrease, while emissions of nitrous oxide (N2O) will most likely increase. In addition to such fast evolving 'pollution swapping' it is expected that on longer time scales significant amounts of soil organic carbon (SOC) stocks will be lost in form of carbon dioxide (CO2). Within the DFG-funded research unit ICON (Introducing non-flooded crops in rice-dominated landscapes: Impact on carbon, nitrogen and water cycles), we investigated environmental impacts of land management change from historical paddy rice cultivation to the upland crops maize and aerobic rice at experimental sites at the International Rice Research Institute (IRRI), the Philippines. To present, more than three years of continuous measurement data of CH4 and N2O emissions under different fertilization regimes have been collected. In addition, measurements of SOC contents and bulk densities in different soil horizons allow for an overall very good characterization of the environmental impacts of mentioned land management change. In this contribution we will show how well mentioned land management change effects in tropical agricultural systems can be represented and thus better understood by the help of process-based biogeochemical models. Seasonal emissions of CH4 and N2O are simulated with r2 values of 0.85 and 0.78 and average underestimations of 15 and 14 %, respectively. These underestimations predominantly originate from treatments in which no fertilizer is applied (CH4) as well as uncertainties of soil hydrology (N2O). Long

  15. Connecting CO2. Feasibility study CO2 network Southwest Netherlands; Connecting CO2. Haalbaarheidsstudie CO2-netwerk Zuidwest-Nederland

    Energy Technology Data Exchange (ETDEWEB)

    Rutten, M.


    An overview is given of supply and demand of CO2 in the region Southwest Netherlands and the regions Antwerp and Gent in Belgium. Also attention is paid to possible connections between these regions [Dutch] Een inventarisatie wordt gegeven van vraag en aanbod van CO2 in de regio Zuidwest- Nederland en de regios Antwerpen en Gent in Belgie. Ook worden mogelijke koppelingen tussen de regios besproken.

  16. Foraminiferal calcification and CO2 (United States)

    Nooijer, L. D.; Toyofuku, T.; Reichart, G. J.


    Ongoing burning of fossil fuels increases atmospheric CO2, elevates marine dissolved CO2 and decreases pH and the saturation state with respect to calcium carbonate. Intuitively this should decrease the ability of CaCO3-producing organisms to build their skeletons and shells. Whereas on geological time scales weathering and carbonate deposition removes carbon from the geo-biosphere, on time scales up to thousands of years, carbonate precipitation increases pCO2 because of the associated shift in seawater carbon speciation. Hence reduced calcification provides a potentially important negative feedback on increased pCO2 levels. Here we show that foraminifera form their calcium carbonate by active proton pumping. This elevates the internal pH and acidifies the direct foraminiferal surrounding. This also creates a strong pCO2 gradient and facilitates the uptake of DIC in the form of carbon dioxide. This finding uncouples saturation state from calcification and predicts that the added carbon due to ocean acidification will promote calcification by these organisms. This unknown effect could add substantially to atmospheric pCO2 levels, and might need to be accounted for in future mitigation strategies.

  17. CO2 Capture and Reuse

    International Nuclear Information System (INIS)

    Thambimuthu, K.; Gupta, M.; Davison, J.


    CO2 capture and storage including its utilization or reuse presents an opportunity to achieve deep reductions in greenhouse gas emissions from fossil energy use. The development and deployment of this option could significantly assist in meeting a future goal of achieving stabilization of the presently rising atmospheric concentration of greenhouse gases. CO2 capture from process streams is an established concept that has achieved industrial practice. Examples of current applications include the use of primarily, solvent based capture technologies for the recovery of pure CO2 streams for chemical synthesis, for utilization as a food additive, for use as a miscible agent in enhanced oil recovery operations and removal of CO2 as an undesired contaminant from gaseous process streams for the production of fuel gases such as hydrogen and methane. In these applications, the technologies deployed for CO2 capture have focused on gas separation from high purity, high pressure streams and in reducing (or oxygen deficient) environments, where the energy penalties and cost for capture are moderately low. However, application of the same capture technologies for large scale abatement of greenhouse gas emissions from fossil fuel use poses significant challenges in achieving (at comparably low energy penalty and cost) gas separation in large volume, dilute concentration and/or low pressure flue gas streams. This paper will focus on a review of existing commercial methods of CO2 capture and the technology stretch, process integration and energy system pathways needed for their large scale deployment in fossil fueled processes. The assessment of potential capture technologies for the latter purpose will also be based on published literature data that are both 'transparent' and 'systematic' in their evaluation of the overall cost and energy penalties of CO2 capture. In view of the of the fact that many of the existing commercial processes for CO2 capture have seen applications in

  18. CO2 leakage monitoring and analysis to understand the variation of CO2 concentration in vadose zone by natural effects (United States)

    Joun, Won-Tak; Ha, Seung-Wook; Kim, Hyun Jung; Ju, YeoJin; Lee, Sung-Sun; Lee, Kang-Kun


    Controlled ex-situ experiments and continuous CO2 monitoring in the field are significant implications for detecting and monitoring potential leakage from CO2 sequestration reservoir. However, it is difficult to understand the observed parameters because the natural disturbance will fluctuate the signal of detections in given local system. To identify the original source leaking from sequestration reservoir and to distinguish the camouflaged signal of CO2 concentration, the artificial leakage test was conducted in shallow groundwater environment and long-term monitoring have been performed. The monitoring system included several parameters such as pH, temperature, groundwater level, CO2 gas concentration, wind speed and direction, atmospheric pressure, borehole pressure, and rainfall event etc. Especially in this study, focused on understanding a relationship among the CO2 concentration, wind speed, rainfall and pressure difference. The results represent that changes of CO2 concentration in vadose zone could be influenced by physical parameters and this reason is helpful in identifying the camouflaged signal of CO2 concentrations. The 1-D column laboratory experiment also was conducted to understand the sparking-peak as shown in observed data plot. The results showed a similar peak plot and could consider two assumptions why the sparking-peak was shown. First, the trapped CO2 gas was escaped when the water table was changed. Second, the pressure equivalence between CO2 gas and water was broken when the water table was changed. These field data analysis and laboratory experiment need to advance due to comprehensively quantify local long-term dynamics of the artificial CO2 leaking aquifer. Acknowledgement Financial support was provided by the "R&D Project on Environmental Management of Geologic CO2 Storage" from the KEITI (Project Number: 2014001810003)

  19. City density and CO_2 efficiency

    International Nuclear Information System (INIS)

    Gudipudi, Ramana; Fluschnik, Till; Ros, Anselmo García Cantú; Walther, Carsten; Kropp, Jürgen P.


    Cities play a vital role in the global climate change mitigation agenda. City population density is one of the key factors that influence urban energy consumption and the subsequent GHG emissions. However, previous research on the relationship between population density and GHG emissions led to contradictory results due to urban/rural definition conundrum and the varying methodologies for estimating GHG emissions. This work addresses these ambiguities by employing the City Clustering Algorithm (CCA) and utilizing the gridded CO_2 emissions data. Our results, derived from the analysis of all inhabited areas in the US, show a sub-linear relationship between population density and the total emissions (i.e. the sum of on-road and building emissions) on a per capita basis. Accordingly, we find that doubling the population density would entail a reduction in the total CO_2 emissions in buildings and on-road sectors typically by at least 42%. Moreover, we find that population density exerts a higher influence on on-road emissions than buildings emissions. From an energy consumption point of view, our results suggest that on-going urban sprawl will lead to an increase in on-road energy consumption in cities and therefore stresses the importance of developing adequate local policy measures to limit urban sprawl. - Highlights: •We use gridded population, land use and CO_2 emissions data. •We attribute building and on-road sectoral emissions to populated settlements. •We apply CCA to identify unique city extents and population densities. •Doubling the population density increases CO_2 efficiency typically by 42%. •Population density has more influence on-road CO_2 efficiency than buildings sector.

  20. Managing CO2 emissions in Nigeria

    International Nuclear Information System (INIS)

    Obioh, I.B.; Oluwole, A.F.; Akeredolu, F.A.


    The energy resources in Nigeria are nearly equally divided between fossil fuels and biofuels. The increasing pressure on them, following expected increased population growth, may lead to substantial emissions of carbon into the atmosphere. Additionally agricultural and forestry management practices in vogue are those related to savannah burning and rotational bush fallow systems, which have been clearly implicated as important sources of CO 2 and trace gases. An integrated model for the prediction of future CO 2 emissions based on fossil fuels and biomass fuels requirements, rates of deforestation and other land-use indices is presented. This is further based on trends in population and economic growth up to the year 2025, with a base year in 1988. A coupled carbon cycle-climate model based on the contribution of CO 2 and other trace gases is established from the proportions of integrated global warming effects for a 20-year averaging time using the product of global warming potential (GWP) and total emissions. An energy-technology inventory approach to optimal resources management is used as a tool for establishing the future scope of reducing the CO 2 emissions through improved fossil fuel energy efficiencies. Scenarios for reduction based on gradual to swift shifts from biomass to fossil and renewable fuels are presented together with expected policy options required to effect them

  1. Trends in total column ozone over Australia and New Zealand and its influence on clear-sky surface erythemal irradiance

    International Nuclear Information System (INIS)

    Bodeker, G. E.


    Australia and New Zealand are two of the countries closest to the Antarctic ozone depletion and may therefore be 'at risk' as a result of the associated increases in surface ultraviolet (UV) radiation. To investigate the possible impact of mid-latitude ozone decreases on surface erythemal irradiances, monthly mean total ozone has been calculated from daily total ozone mapping spectrometer data for 5 Australian cities (Canberra, Hobart, Melbourne, Perth and Sydney) and 3 New Zealand cities (Auckland, Christchurch and Wellington) from 1979 to 1992. These values have then been used as inputs to a single layer model to calculate noon clear-sky global UV irradiances and associated erythemal irradiances. In addition, the monthly mean ozone data have been modelled statistically for each location to reveal a long-term linear trend, an annual variation, a Quasi-Biennial Oscillation (QBO), a solar cycle component and a semi-annual (6 month) signal. Coefficients from these statistical models have been used to estimate monthly mean ozone and noon clear-sky erythemal irradiances to the year 2000 for each city. It is assumed that the rate of increase of stratospheric chlorine over the remainder of the century will remain constant. Given that there is some evidence that the rate of increase is decreasing, the results present here should be regarded as an upper limit. 33 refs., 7 tabs., 4 figs

  2. The CO2nnect activities (United States)

    Eugenia, Marcu


    Climate change is one of the biggest challenges we face today. A first step is the understanding the problem, more exactly what is the challenge and the differences people can make. Pupils need a wide competencies to meet the challenges of sustainable development - including climate change. The CO2nnect activities are designed to support learning which can provide pupils the abilities, skills, attitudes and awareness as well as knowledge and understanding of the issues. The project "Together for a clean and healthy world" is part of "The Global Educational Campaign CO2nnect- CO2 on the way to school" and it was held in our school in the period between February and October 2009. It contained a variety of curricular and extra-curricular activities, adapted to students aged from 11 to 15. These activities aimed to develop in students the necessary skills to understanding man's active role in improving the quality of the environment, putting an end to its degrading process and to reducing the effects of climate changes caused by the human intervention in nature, including transport- a source of CO2 pollution. The activity which I propose can be easily adapted to a wide range of age groups and linked to the curricula of many subjects: - Investigate CO2 emissions from travel to school -Share the findings using an international database -Compare and discuss CO2 emissions -Submit questions to a climate- and transport expert -Partner with other schools -Meet with people in your community to discuss emissions from transport Intended learning outcomes for pupils who participate in the CO2nnect campaign are: Understanding of the interconnected mobility- and climate change issue climate change, its causes and consequences greenhouse-gas emissions from transport and mobility the interlinking of social, environmental, cultural and economic aspects of the local transport system how individual choices and participation can contribute to creating a more sustainable development

  3. CO2 storage in Sweden

    International Nuclear Information System (INIS)

    Ekstroem, Clas; Andersson, Annika; Kling, Aasa; Bernstone, Christian; Carlsson, Anders; Liljemark, Stefan; Wall, Caroline; Erstedt, Thomas; Lindroth, Maria; Tengborg, Per; Edstroem, Mikael


    This study considers options, that could be feasible for Sweden, to transport and geologically store CO 2 , providing that technology for electricity production with CO 2 capture will be available in the future and also acceptable from cost- and reliability point of view. As a starting point, it is assumed that a new 600-1000 MW power plant, fired with coal or natural gas, will be constructed with CO 2 capture and localised to the Stockholm, Malmoe or Goeteborg areas. Of vital importance for storage of carbon dioxide in a reservoir is the possibility to monitor its distribution, i.e. its migration within the reservoir. It has been shown in the SACS-project that the distribution of carbon dioxide within the reservoir can be monitored successfully, mainly by seismic methods. Suitable geologic conditions and a large storage potential seems to exist mainly in South West Scania, where additional knowledge on geology/hydrogeology has been obtained since the year 2000 in connection to geothermal energy projects, and in the Eastern part of Denmark, bordering on South West Scania. Storage of carbon dioxide from the Stockholm area should not be excluded, but more studies are needed to clarify the storage options within this area. The possibilities to use CO 2 for enhanced oil recovery, EOR, in i.a. the North Sea should be investigated, in order to receive incomes from the CO 2 and shared costs for infrastructure, and by this also make the CO 2 regarded as a trading commodity, and thereby achieving a more favourable position concerning acceptance, legal issues and regulations. The dimensions of CO 2 -pipelines should be similar to those for natural natural gas, although regarding some aspects they have different design and construction prerequisites. To obtain cost efficiency, the transport distances should be kept short, and possibilities for co-ordinated networks with short distribution pipelines connected to common main pipelines, should be searched for. Also, synergies

  4. CO2 impulse response curves for GWP calculations

    International Nuclear Information System (INIS)

    Jain, A.K.; Wuebbles, D.J.


    The primary purpose of Global Warming Potential (GWP) is to compare the effectiveness of emission strategies for various greenhouse gases to those for CO 2 , GWPs are quite sensitive to the amount of CO 2 . Unlike all other gases emitted in the atmosphere, CO 2 does not have a chemical or photochemical sink within the atmosphere. Removal of CO 2 is therefore dependent on exchanges with other carbon reservoirs, namely, ocean and terrestrial biosphere. The climatic-induced changes in ocean circulation or marine biological productivity could significantly alter the atmospheric CO 2 lifetime. Moreover, continuing forest destruction, nutrient limitations or temperature induced increases of respiration could also dramatically change the lifetime of CO 2 in the atmosphere. Determination of the current CO 2 sinks, and how these sinks are likely to change with increasing CO 2 emissions, is crucial to the calculations of GWPs. It is interesting to note that the impulse response function is sensitive to the initial state of the ocean-atmosphere system into which CO 2 is emitted. This is due to the fact that in our model the CO 2 flux from the atmosphere to the mixed layer is a nonlinear function of ocean surface total carbon

  5. Ground-based remote sensing of volcanic CO2 and correlated SO2, HF, HCl, and BrO, in safe-distance from the crater (United States)

    Butz, Andre; Solvejg Dinger, Anna; Bobrowski, Nicole; Kostinek, Julian; Fieber, Lukas; Fischerkeller, Constanze; Giuffrida, Giovanni Bruno; Hase, Frank; Klappenbach, Friedrich; Kuhn, Jonas; Lübcke, Peter; Tirpitz, Lukas; Tu, Qiansi


    Remote sensing of CO2 enhancements in volcanic plumes can be a tool to estimate volcanic CO2 emissions and thereby, to gain insight into the geological carbon cycle and into volcano interior processes. However, remote sensing of the volcanic CO2 is challenged by the large atmospheric background concentrations masking the minute volcanic signal. Here, we report on a demonstrator study conducted in September 2015 at Mt. Etna on Sicily, where we deployed an EM27/SUN Fourier Transform Spectrometer together with a UV spectrometer on a mobile remote sensing platform. The spectrometers were operated in direct-sun viewing geometry collecting cross-sectional scans of solar absorption spectra through the volcanic plume by operating the platform in stop-and-go patterns in 5 to 10 kilometers distance from the crater region. We successfully detected correlated intra-plume enhancements of CO2 and volcanic SO2, HF, HCl, and BrO. The path-integrated volcanic CO2 enhancements amounted to about 0.5 ppm (on top of the ˜400 ppm background). Key to successful detection of volcanic CO2 was A) the simultaneous observation of the O2 total column which allowed for correcting changes in the CO2 column caused by changes in observer altitude and B) the simultaneous measurement of volcanic species co-emitted with CO2 which allowed for discriminating intra-plume and extra-plume observations. The latter were used for subtracting the atmospheric CO2 background. The field study suggests that our remote sensing observatory is a candidate technique for volcano monitoring in safe distance from the crater region.

  6. Episodical CO2 emission during shoulder seasons in the arctic

    DEFF Research Database (Denmark)

    Friborg, Thomas; Elberling, Bo; Hansen, Birger

    soils. Our knowledge about the exchanges of CO2 and other trace gas fluxes in the arctic region has been constrained by the limited availability of measurements during the long winter season. For that reason only a small number of sites have been able to produce annual budgets of C exchange...... and the driving processes behind winter time exchange of CO2 are not fully understood. Here we present two very different examples of CO2 exchange from shoulder seasons in the Arctic. In an example from NE Greenland, eddy covariance measurements show that the snow cover has a significant effect on the release...... of CO2 during spring. The other example, from a study during late autumn and winter from high arctic Svalbard we found that episodical emissions of CO2 accounted for a significant part of the total CO2 emission form the site. The emission pattern could be associated with temperature variations...

  7. Economic evaluation of CO2 pipeline transport in China

    International Nuclear Information System (INIS)

    Zhang Dongjie; Wang Zhe; Sun Jining; Zhang Lili; Li Zheng


    Highlights: ► We build a static hydrodynamic model of CO 2 pipeline for CCS application. ► We study the impact on pressure drop of pipeline by viscosity, density and elevation. ► We point out that density has a bigger impact on pressure drop than viscosity. ► We suggest dense phase transport is preferred than supercritical state. ► We present cost-optimal pipeline diameters for different flowrates and distances. - Abstract: Carbon capture and sequestration (CCS) is an important option for CO 2 mitigation and an optimized CO 2 pipeline transport system is necessary for large scale CCS implementation. In the present work, a hydrodynamic model for CO 2 pipeline transport was built up and the hydrodynamic performances of CO 2 pipeline as well as the impacts of multiple factors on pressure drop behavior along the pipeline were studied. Based on the model, an economic model was established to optimize the CO 2 pipeline transport system economically and to evaluate the unit transport cost of CO 2 pipeline in China. The hydrodynamic model results show that pipe diameter, soil temperature, and pipeline elevation change have significant influence on the pressure drop behavior of CO 2 in the pipeline. The design of pipeline system, including pipeline diameter and number of boosters etc., was optimized to achieve a lowest unit CO 2 transport cost. In regarding to the unit cost, when the transport flow rate and distance are between 1–5 MtCO 2 /year and 100–500 km, respectively, the unit CO 2 transport cost mainly lies between 0.1–0.6 RMB/(tCO 2 km) and electricity consumption cost of the pipeline inlet compressor was found to take more than 60% of the total cost. The present work provides reference for CO 2 transport pipeline design and for feasibility evaluation of potential CCS projects in China.

  8. On a CO2 ration

    International Nuclear Information System (INIS)

    De Wit, P.


    In 2 years all the large energy companies in the European Union will have a CO2 ration, including a system to trade a shortage or surplus of emission rights. A cost effective system to reduce emission, provided that the government does not auction the emission rights [nl

  9. Reducing cement's CO2 footprint (United States)

    van Oss, Hendrik G.


    The manufacturing process for Portland cement causes high levels of greenhouse gas emissions. However, environmental impacts can be reduced by using more energy-efficient kilns and replacing fossil energy with alternative fuels. Although carbon capture and new cements with less CO2 emission are still in the experimental phase, all these innovations can help develop a cleaner cement industry.

  10. Experimental study of the aqueous CO2-NH3 rate of reaction for temperatures from 15 °C to 35 °C, NH3 concentrations from 5% to 15% and CO2 loadings from 0.2 to 0.6

    DEFF Research Database (Denmark)

    Lillia, Stefano; Bonalumi, Davide; Fosbøl, Philip L.


    , and lastly CO2 loadings from 0.2 to 0.6. The resulting overall mass transfer coefficient of absorption measured follows the trends described by the modelling of the reactor and the equations used to describe the rate of the absorption reactions. Moreover, the overall mass transfer coefficient of absorption...... loading conditions. The kinetic model intercept the values found in literature in every range of concentration. Consequently, the model is valid in every conditions and the rate of the reaction between NH3 and CO2 in liquid phase is described with an Arrhenius constant with a pre-exponential factor of 1......The absorption reaction between aqueous NH3 and CO2 was studied using the Wetted Wall Column. A total of 27 different cases are investigated in the region defined by temperatures from 15 °C to 35 °C, NH3 concentrations from 5% to 15%, which are the typical solvent conditions in absorption columns...

  11. CO2 Capture Rate Sensitivity Versus Purchase of CO2 Quotas. Optimizing Investment Choice for Electricity Sector

    Directory of Open Access Journals (Sweden)

    Coussy Paula


    Full Text Available Carbon capture technology (and associated storage, applied to power plants, reduces atmospheric CO2 emissions. This article demonstrates that, in the particular case of the deployment phase of CO2 capture technology during which CO2 quota price may be low, capturing less than 90% of total CO2 emissions from power plants can be economically attractive. Indeed, for an electric power company capture technology is interesting, only if the discounted marginal cost of capture is lower than the discounted marginal cost of purchased quotas. When CO2 price is low, it is interesting to have flexibility and reduce the overall capture rate of the site, by stopping the capture system of one of the combustion trains if the site has multiple ones, or by adopting less than 90% CO2 capture rate.

  12. Reducing CO2 emissions and energy consumption of heat-integrated distillation systems. (United States)

    Gadalla, Mamdouh A; Olujic, Zarko; Jansens, Peter J; Jobson, Megan; Smith, Robin


    Distillation systems are energy and power intensive processes and contribute significantly to the greenhouse gases emissions (e.g. carbon dioxide). Reducing CO2 emissions is an absolute necessity and expensive challenge to the chemical process industries in orderto meetthe environmental targets as agreed in the Kyoto Protocol. A simple model for the calculation of CO2 emissions from heat-integrated distillation systems is introduced, considering typical process industry utility devices such as boilers, furnaces, and turbines. Furnaces and turbines consume large quantities of fuels to provide electricity and process heats. As a result, they produce considerable amounts of CO2 gas to the atmosphere. Boilers are necessary to supply steam for heating purposes; besides, they are also significant emissions contributors. The model is used in an optimization-based approach to optimize the process conditions of an existing crude oil atmospheric tower in order to reduce its CO2 emissions and energy demands. It is also applied to generate design options to reduce the emissions from a novel internally heat-integrated distillation column (HIDiC). A gas turbine can be integrated with these distillation systems for larger emissions reduction and further energy savings. Results show that existing crude oil installations can save up to 21% in energy and 22% in emissions, when the process conditions are optimized. Additionally, by integrating a gas turbine, the total emissions can be reduced further by 48%. Internal heat-integrated columns can be a good alternative to conventional heat pump and other energy intensive close boiling mixtures separations. Energy savings can reach up to 100% with respect to reboiler heat requirements. Emissions of these configurations are cut down by up to 83%, compared to conventional units, and by 36%, with respect to heat pump alternatives. Importantly, cost savings and more profit are gained in parallel to emissions minimization.

  13. Global energy / CO2 projections

    International Nuclear Information System (INIS)

    Sinyak, Y.


    Section headings are: (1) Social and economic problems of the 21 st century and the role of energy supply systems (2) Energy-environment interactions as a central point of energy research activities (3) New ways of technological progress and its impacts on energy demand and supply (4) Long-term global energy projections (5) Comparative analysis of global long-term energy / CO 2 studies (6) Conclusions. The author shows that, in order to alleviate the negative impacts of energy systems on the climate, it will be necessary to undertake tremendous efforts to improve the energy use efficiency, to drastically change the primary energy mix, and, at the same time, to take action to reduce greenhouse emissions from other sources and increase the CO 2 sink through enhanced reforestation. (Quittner)

  14. Fang CO2 med Aminosyrer

    DEFF Research Database (Denmark)

    Lerche, Benedicte Mai


    Med såkaldte “carbon capture-teknikker” er det muligt at rense røgen fra kulfyrede kraftværker, således at den er næsten helt fri for drivhusgassen CO2. Kunsten er at gøre processen tilstrækkeligt billig. Et lovende fangstredskab i denne proces er aminosyrer.......Med såkaldte “carbon capture-teknikker” er det muligt at rense røgen fra kulfyrede kraftværker, således at den er næsten helt fri for drivhusgassen CO2. Kunsten er at gøre processen tilstrækkeligt billig. Et lovende fangstredskab i denne proces er aminosyrer....

  15. CO2 reduction by dematerialization

    Energy Technology Data Exchange (ETDEWEB)

    Hekkert, M.P. [Department of Innovation Studies, Copernicus Institute, Utrecht University, Utrecht (Netherlands)


    Current policy for the reduction of greenhouse gases is mainly concerned with a number of types of solutions: energy saving, shifting to the use of low-carbon fuels and the implementation of sustainable energy technologies. Recent research has shown that a strategy directed at a more efficient use of materials could make a considerable contribution to reducing CO2 emissions. Moreover, the costs to society as a whole of such a measure appear to be very low.

  16. Outsourcing CO2 within China. (United States)

    Feng, Kuishuang; Davis, Steven J; Sun, Laixiang; Li, Xin; Guan, Dabo; Liu, Weidong; Liu, Zhu; Hubacek, Klaus


    Recent studies have shown that the high standard of living enjoyed by people in the richest countries often comes at the expense of CO2 emissions produced with technologies of low efficiency in less affluent, developing countries. Less apparent is that this relationship between developed and developing can exist within a single country's borders, with rich regions consuming and exporting high-value goods and services that depend upon production of low-cost and emission-intensive goods and services from poorer regions in the same country. As the world's largest emitter of CO2, China is a prominent and important example, struggling to balance rapid economic growth and environmental sustainability across provinces that are in very different stages of development. In this study, we track CO2 emissions embodied in products traded among Chinese provinces and internationally. We find that 57% of China's emissions are related to goods that are consumed outside of the province where they are produced. For instance, up to 80% of the emissions related to goods consumed in the highly developed coastal provinces are imported from less developed provinces in central and western China where many low-value-added but high-carbon-intensive goods are produced. Without policy attention to this sort of interprovincial carbon leakage, the less developed provinces will struggle to meet their emissions intensity targets, whereas the more developed provinces might achieve their own targets by further outsourcing. Consumption-based accounting of emissions can thus inform effective and equitable climate policy within China.

  17. A joint global carbon inversion system using both CO2 and 13CO2 atmospheric concentration data (United States)

    Chen, Jing M.; Mo, Gang; Deng, Feng


    Observations of 13CO2 at 73 sites compiled in the GLOBALVIEW database are used for an additional constraint in a global atmospheric inversion of the surface CO2 flux using CO2 observations at 210 sites (62 collocated with 13CO2 sites) for the 2002-2004 period for 39 land regions and 11 ocean regions. This constraint is implemented using prior CO2 fluxes estimated with a terrestrial ecosystem model and an ocean model. These models simulate 13CO2 discrimination rates of terrestrial photosynthesis and ocean-atmosphere diffusion processes. In both models, the 13CO2 disequilibrium between fluxes to and from the atmosphere is considered due to the historical change in atmospheric 13CO2 concentration. This joint inversion system using both13CO2 and CO2 observations is effectively a double deconvolution system with consideration of the spatial variations of isotopic discrimination and disequilibrium. Compared to the CO2-only inversion, this 13CO2 constraint on the inversion considerably reduces the total land carbon sink from 3.40 ± 0.84 to 2.53 ± 0.93 Pg C year-1 but increases the total oceanic carbon sink from 1.48 ± 0.40 to 2.36 ± 0.49 Pg C year-1. This constraint also changes the spatial distribution of the carbon sink. The largest sink increase occurs in the Amazon, while the largest source increases are in southern Africa, and Asia, where CO2 data are sparse. Through a case study, in which the spatial distribution of the annual 13CO2 discrimination rate over land is ignored by treating it as a constant at the global average of -14. 1 ‰, the spatial distribution of the inverted CO2 flux over land was found to be significantly modified (up to 15 % for some regions). The uncertainties in our disequilibrium flux estimation are 8.0 and 12.7 Pg C year-1 ‰ for land and ocean, respectively. These uncertainties induced the unpredictability of 0.47 and 0.54 Pg C year-1 in the inverted CO2 fluxes for land and ocean, respectively. Our joint inversion system is therefore

  18. High Precision, Absolute Total Column Ozone Measurements from the Pandora Spectrometer System: Comparisons with Data from a Brewer Double Monochromator and Aura OMI (United States)

    Tzortziou, Maria A.; Herman, Jay R.; Cede, Alexander; Abuhassan, Nader


    We present new, high precision, high temporal resolution measurements of total column ozone (TCO) amounts derived from ground-based direct-sun irradiance measurements using our recently deployed Pandora single-grating spectrometers. Pandora's small size and portability allow deployment at multiple sites within an urban air-shed and development of a ground-based monitoring network for studying small-scale atmospheric dynamics, spatial heterogeneities in trace gas distribution, local pollution conditions, photochemical processes and interdependencies of ozone and its major precursors. Results are shown for four mid- to high-latitude sites where different Pandora instruments were used. Comparisons with a well calibrated double-grating Brewer spectrometer over a period of more than a year in Greenbelt MD showed excellent agreement and a small bias of approximately 2 DU (or, 0.6%). This was constant with slant column ozone amount over the full range of observed solar zenith angles (15-80), indicating adequate Pandora stray light correction. A small (1-2%) seasonal difference was found, consistent with sensitivity studies showing that the Pandora spectral fitting TCO retrieval has a temperature dependence of 1% per 3K, with an underestimation in temperature (e.g., during summer) resulting in an underestimation of TCO. Pandora agreed well with Aura-OMI (Ozone Measuring Instrument) satellite data, with average residuals of <1% at the different sites when the OMI view was within 50 km from the Pandora location and OMI-measured cloud fraction was <0.2. The frequent and continuous measurements by Pandora revealed significant short-term (hourly) temporal changes in TCO, not possible to capture by sun-synchronous satellites, such as OMI, alone.

  19. CO2 Losses from Terrestrial Organic Matter through Photodegradation (United States)

    Rutledge, S.; Campbell, D. I.; Baldocchi, D. D.; Schipper, L. A.


    Net ecosystem exchange (NEE) is the sum of CO2 uptake by plants and CO2 losses from both living plants and dead organic matter. In all but a few ecosystem scale studies on terrestrial carbon cycling, losses of CO2 from dead organic matter are assumed to be the result of microbial respiration alone. Here we provide evidence for an alternative, previously largely underestimated mechanism for ecosystem-scale CO2 emissions. The process of photodegradation, the direct breakdown of organic matter by solar radiation, was found to contribute substantially to the ecosystem scale CO2 losses at both a bare peatland in New Zealand, and a summer-dead grassland in California. Comparisons of daytime eddy covariance (EC) data with data collected at the same time using an opaque chamber and the CO2 soil gradient technique, or with night-time EC data collected during similar moisture and temperature conditions were used to quantify the direct effect of exposure of organic matter to solar radiation. At a daily scale, photodegradation contributed up to 62% and 92% of summer mid-day CO2 fluxes at the de-vegetated peatland and at the grassland during the dry season, respectively. Irradiance-induced CO2 losses were estimated to be 19% of the total annual CO2 loss at the peatland, and almost 60% of the dry season CO2 loss at the grassland. Small-scale measurements using a transparent chamber confirmed that CO2 emissions from air-dried peat and grass occurred within seconds of exposure to light when microbial activity was inhibited. Our findings imply that photodegradation could be important for many ecosystems with exposed soil organic matter, litter and/or standing dead material. Potentially affected ecosystems include sparsely vegetated arid and semi-arid ecosystems (e.g. shrublands, savannahs and other grasslands), bare burnt areas, agricultural sites after harvest or cultivation (especially if crop residues are left on the surface), deciduous forests after leaf fall, or ecosystems

  20. Efficient electrochemical CO2 conversion powered by renewable energy. (United States)

    Kauffman, Douglas R; Thakkar, Jay; Siva, Rajan; Matranga, Christopher; Ohodnicki, Paul R; Zeng, Chenjie; Jin, Rongchao


    The catalytic conversion of CO2 into industrially relevant chemicals is one strategy for mitigating greenhouse gas emissions. Along these lines, electrochemical CO2 conversion technologies are attractive because they can operate with high reaction rates at ambient conditions. However, electrochemical systems require electricity, and CO2 conversion processes must integrate with carbon-free, renewable-energy sources to be viable on larger scales. We utilize Au25 nanoclusters as renewably powered CO2 conversion electrocatalysts with CO2 → CO reaction rates between 400 and 800 L of CO2 per gram of catalytic metal per hour and product selectivities between 80 and 95%. These performance metrics correspond to conversion rates approaching 0.8-1.6 kg of CO2 per gram of catalytic metal per hour. We also present data showing CO2 conversion rates and product selectivity strongly depend on catalyst loading. Optimized systems demonstrate stable operation and reaction turnover numbers (TONs) approaching 6 × 10(6) molCO2 molcatalyst(-1) during a multiday (36 h total hours) CO2 electrolysis experiment containing multiple start/stop cycles. TONs between 1 × 10(6) and 4 × 10(6) molCO2 molcatalyst(-1) were obtained when our system was powered by consumer-grade renewable-energy sources. Daytime photovoltaic-powered CO2 conversion was demonstrated for 12 h and we mimicked low-light or nighttime operation for 24 h with a solar-rechargeable battery. This proof-of-principle study provides some of the initial performance data necessary for assessing the scalability and technical viability of electrochemical CO2 conversion technologies. Specifically, we show the following: (1) all electrochemical CO2 conversion systems will produce a net increase in CO2 emissions if they do not integrate with renewable-energy sources, (2) catalyst loading vs activity trends can be used to tune process rates and product distributions, and (3) state-of-the-art renewable-energy technologies are sufficient

  1. Biogeochemical controls on microbial CH4 and CO2 production in Arctic polygon tundra (United States)

    Zheng, J.


    Accurately simulating methane (CH4) and carbon dioxide (CO2) emissions from high latitude soils is critically important for reducing uncertainties in soil carbon-climate feedback predictions. The signature polygonal ground of Arctic tundra generates high level of heterogeneity in soil thermal regime, hydrology and oxygen availability, which limits the application of current land surface models with simple moisture response functions. We synthesized CH4 and CO2 production measurements from soil microcosm experiments across a wet-to dry permafrost degradation gradient from low-centered (LCP) to flat-centered (FCP), and high-centered polygons (HCP) to evaluate the relative importance of biogeochemical processes and their response to warming. More degraded polygon (HCP) showed much less carbon loss as CO2 or CH4, while the total CO2 production from FCP is comparable to that from LCP. Maximum CH4 production from the active layer of LCP was nearly 10 times that of permafrost and FCP. Multivariate analyses identifies gravimetric water content and organic carbon content as key predictors for CH4 production, and iron reduction as a key regulator of pH. The synthesized data are used to validate the geochemical model PHREEQC with extended anaerobic organic substrate turnover, fermentation, iron reduction, and methanogenesis reactions. Sensitivity analyses demonstrate that better representations of anaerobic processes and their pH dependency could significantly improve estimates of CH4 and CO2 production. The synthesized data suggest local decreases in CH4 production along the polygon degradation gradient, which is consistent with previous surface flux measurements. Methane oxidation occurring through the soil column of degraded polygons contributes to their low CH4 emissions as well.

  2. Seasonal Variations of Atmospheric CO2 over Fire Affected Regions Based on GOSAT Observations (United States)

    Shi, Y.; Matsunaga, T.


    Abstract: The carbon dioxide (CO2) emissions released from biomass burning significantly affect the temporal variations of atmospheric CO2 concentrations. Based on a long-term (July 2009-June 2015) retrieved datasets by the Greenhouse Gases Observing Satellite (GOSAT), the seasonal cycle and interannual variations of column-averaged volume mixing ratios of atmospheric carbon dioxide (XCO2) in four fire affected continental regions were investigated. The results showed Northern Africa had the largest seasonal variations after removing its regional long-term trend of XCO2 with peak-to-peak amplitude of 6.2 ppm within the year, higher than central South America (2.4 ppm), Southern Africa (3.8 ppm) and Australia (1.7 ppm). The detrended regional XCO2 was found to be positively correlated with the fire CO2 emissions during fire activity period and negatively correlated with vegetation photosynthesis activity with different seasonal variabilities. Northern Africa recorded the largest change of seasonal variations of detrended XCO2 with a total of 12.8 ppm during fire seasons, higher than central South America, Southern Africa and Australia with 5.4 ppm, 6.7 ppm and 2.2 ppm, respectively. During fire episode, the positive detrended XCO2 was noticed during June-November in central South America, December-June in Northern Africa, May-November in Southern Africa. The Pearson correlation coefficients between the variations of detrended XCO2 and fire CO2 emissions from GFED4 (Global Fire Emissions Database v4) achieved best correlations in Southern Africa (R=0.77, p<0.05). Meanwhile, Southern Africa also experienced a significant negative relationship between the variations of detrended XCO2 and vegetation activity (R=-0.84, p<0.05). This study revealed that fire CO2 emissions and vegetation activity contributed greatly to the seasonal variations of GOSAT XCO2 dataset.

  3. Capture, transport and storage of CO2

    International Nuclear Information System (INIS)

    De Boer, B.


    The emission of greenhouse gas CO2 in industrial processes and electricity production can be reduced on a large scale. Available techniques include post-combustion, pre-combustion, the oxy-fuel process, CO2 fixation in industrial processes and CO2 mineralization. In the Netherlands, plans for CO2 capture are not developing rapidly (CCS - carbon capture and storage). [mk] [nl

  4. Framing Climate Goals in Terms of Cumulative CO2-Forcing-Equivalent Emissions (United States)

    Jenkins, S.; Millar, R. J.; Leach, N.; Allen, M. R.


    The relationship between cumulative CO2 emissions and CO2-induced warming is determined by the Transient Climate Response to Emissions (TCRE), but total anthropogenic warming also depends on non-CO2 forcing, complicating the interpretation of emissions budgets based on CO2 alone. An alternative is to frame emissions budgets in terms of CO2-forcing-equivalent (CO2-fe) emissions—the CO2 emissions that would yield a given total anthropogenic radiative forcing pathway. Unlike conventional "CO2-equivalent" emissions, these are directly related to warming by the TCRE and need to fall to zero to stabilize warming: hence, CO2-fe emissions generalize the concept of a cumulative carbon budget to multigas scenarios. Cumulative CO2-fe emissions from 1870 to 2015 inclusive are found to be 2,900 ± 600 GtCO2-fe, increasing at a rate of 67 ± 9.5 GtCO2-fe/yr. A TCRE range of 0.8-2.5°C per 1,000 GtC implies a total budget for 0.6°C of additional warming above the present decade of 880-2,750 GtCO2-fe, with 1,290 GtCO2-fe implied by the Coupled Model Intercomparison Project Phase 5 median response, corresponding to 19 years' CO2-fe emissions at the current rate.

  5. CO2 removals and CO2 and non-CO2 trace gas emissions affected by human activity in the forests in the Republic of macedonia

    International Nuclear Information System (INIS)

    Grupche, Ljupcho; Lozanovski, Risto; Markovska, Natasha


    During 2000 and 2001 inventories of CO 2 removals and emissions caused by changes in forest and other woody biomass stocks, as well as the inventories of CO 2 and non-CO 2 trace gas emissions caused by forest conversions (accidental burning) were carried out. According to the forest area in ha, and depending on the differences between the annual biomass increment and annual biomass consumption, about 30-50% of total annual carbon uptake increment is released through the biomass consumption from stocks. 50-70% of the net annual carbon uptake converted to CO 2 identify the annual removals of this gas, which is on average 1805 Gg/yr, ranging between 1485 and 2243 Gg/yr. From 1990 to 1998 on average 4700 ha forest area (min. 110 ha in 1991, max. 14420 ha in 1993) was burned. Proportionally to the burned area, there was a release on average of 18.62 kt C annually (min. 0.42 kt C, max. 57.11 kt), related to 136.07 kt CO 2 on average (min. 1.5 kt CO 2 , max. 209.22 kt CO 2 ). (Original)


    Directory of Open Access Journals (Sweden)

    Zofia LUBAŃSKA

    Full Text Available Z pojęciem ochrony środowiska wiąże się bardzo szeroko w ostatnim czasie omawiane zagadnienie dotyczące ograniczenia emisji CO2. Konsekwencją globalnych zmian klimatu wywołanego przez ludzi jest wzrost stężenia atmosferycznego gazów cieplarnianych, które powodują nasilający się efekt cieplarniany. Wzrasta na świecie liczba ludności, a co za tym idzie wzrasta konsumpcja na jednego mieszkańca, szczególnie w krajach szeroko rozwiniętych gospodarczo. Protokół z Kioto ściśle określa działania jakie należy podjąć w celu zmniejszenia stężenia dwutlenku węgla w atmosferze. Pomimo maksymalnej optymalizacji procesu spalania paliw kopalnianych wykorzystywanych do produkcji energii, zastosowania odnawialnych źródeł energii zmiana klimatu jest nieunikniona i konsekwentnie będzie postępować przez kolejne dekady. Prognozuje się, że duże znaczenie odegra nowoczesna technologia, która ma za zadanie wychwycenie CO2 a następnie składowanie go w odpowiednio wybranych formacjach geologicznych (CCS- Carbon Capture and Storage. Eksperci są zgodni, że ta technologia w niedalekiej przyszłości stanie się rozwiązaniem pozwalającym ograniczyć ogromną ilość emisji CO2 pochodzącą z procesów wytwarzania energii z paliw kopalnych. Z analiz Raportu IPCC wynika, iż technologia CSS może się przyczynić do ok. 20% redukcji emisji dwutlenku węgla przewidzianej do 2050 roku [3]. Zastosowanie jej napotyka na wiele barier, nie tylko technologicznych i ekonomicznych, ale także społecznych. Inną metodą dającą ujemne źródło emisji CO2 jest możliwość wykorzystania obszarów leśnych o odpowiedniej strukturze drzewostanu. Środkiem do tego celu, oprócz ograniczenia zużycia emisjogennych paliw kopalnych (przy zachowaniu zasad zrównoważonego rozwoju może być intensyfikacja zalesień. Zwiększanie lesistości i prawidłowa gospodarka leśna należy do najbardziej efektywnych sposobów kompensowania

  7. Dolomite decomposition under CO2

    International Nuclear Information System (INIS)

    Guerfa, F.; Bensouici, F.; Barama, S.E.; Harabi, A.; Achour, S.


    Full text.Dolomite (MgCa (CO 3 ) 2 is one of the most abundant mineral species on the surface of the planet, it occurs in sedimentary rocks. MgO, CaO and Doloma (Phase mixture of MgO and CaO, obtained from the mineral dolomite) based materials are attractive steel-making refractories because of their potential cost effectiveness and world wide abundance more recently, MgO is also used as protective layers in plasma screen manufacture ceel. The crystal structure of dolomite was determined as rhombohedral carbonates, they are layers of Mg +2 and layers of Ca +2 ions. It dissociates depending on the temperature variations according to the following reactions: MgCa (CO 3 ) 2 → MgO + CaO + 2CO 2 .....MgCa (CO 3 ) 2 → MgO + Ca + CaCO 3 + CO 2 .....This latter reaction may be considered as a first step for MgO production. Differential thermal analysis (DTA) are used to control dolomite decomposition and the X-Ray Diffraction (XRD) was used to elucidate thermal decomposition of dolomite according to the reaction. That required samples were heated to specific temperature and holding times. The average particle size of used dolomite powders is 0.3 mm, as where, the heating temperature was 700 degree celsius, using various holding times (90 and 120 minutes). Under CO 2 dolomite decomposed directly to CaCO 3 accompanied by the formation of MgO, no evidence was offered for the MgO formation of either CaO or MgCO 3 , under air, simultaneous formation of CaCO 3 , CaO and accompanied dolomite decomposition

  8. Outsourcing CO2 within China (United States)

    Feng, Kuishuang; Davis, Steven J.; Sun, Laixiang; Li, Xin; Guan, Dabo; Liu, Weidong; Liu, Zhu; Hubacek, Klaus


    Recent studies have shown that the high standard of living enjoyed by people in the richest countries often comes at the expense of CO2 emissions produced with technologies of low efficiency in less affluent, developing countries. Less apparent is that this relationship between developed and developing can exist within a single country’s borders, with rich regions consuming and exporting high-value goods and services that depend upon production of low-cost and emission-intensive goods and services from poorer regions in the same country. As the world’s largest emitter of CO2, China is a prominent and important example, struggling to balance rapid economic growth and environmental sustainability across provinces that are in very different stages of development. In this study, we track CO2 emissions embodied in products traded among Chinese provinces and internationally. We find that 57% of China’s emissions are related to goods that are consumed outside of the province where they are produced. For instance, up to 80% of the emissions related to goods consumed in the highly developed coastal provinces are imported from less developed provinces in central and western China where many low–value-added but high–carbon-intensive goods are produced. Without policy attention to this sort of interprovincial carbon leakage, the less developed provinces will struggle to meet their emissions intensity targets, whereas the more developed provinces might achieve their own targets by further outsourcing. Consumption-based accounting of emissions can thus inform effective and equitable climate policy within China. PMID:23754377

  9. Operational Use of the AIRS Total Column Ozone Retrievals Along with the RGB Air Mass Product as Part of the GOES-R Proving Ground (United States)

    Folmer, Michael; Zavodsky, Bradley; Molthan, Andrew


    The National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Prediction (NCEP) Hydrometeorological Prediction Center (HPC) and Ocean Prediction Center (OPC) provide short-term and medium-range forecast guidance of heavy precipitation, strong winds, and other features often associated with mid-latitude cyclones over both land and ocean. As a result, detection of factors that lead to rapid cyclogenesis and high wind events is key to improving forecast skill. One phenomenon that has been identified with these events is the stratospheric intrusion that occurs near tropopause folds. This allows for deep mixing near the top of the atmosphere where dry air high in ozone concentrations and potential vorticity descends (sometimes rapidly) deep into the mid-troposphere. Observations from satellites can aid in detection of these stratospheric air intrusions (SAI) regions. Specifically, multispectral composite imagery assign a variety of satellite spectral bands to the red, green, and blue (RGB) color components of imagery pixels and result in color combinations that can assist in the detection of dry stratospheric air associated with PV advection, which in turn may alert forecasters to the possibility of a rapidly strengthening storm system. Single channel or RGB satellite imagery lacks quantitative information about atmospheric moisture unless the sampled brightness temperatures or other data are converted to estimates of moisture via a retrieval process. Thus, complementary satellite observations are needed to capture a complete picture of a developing storm system. Here, total column ozone retrievals derived from a hyperspectral sounder are used to confirm the extent and magnitude of SAIs. Total ozone is a good proxy for defining locations and intensity of SAIs and has been used in studies evaluating that phenomenon (e.g. Tian et al. 2007, Knox and Schmidt 2005). Steep gradients in values of total ozone seen by satellites have been linked

  10. The oil market and international agreements on CO2 emissions

    International Nuclear Information System (INIS)

    Berger, K.; Fimreite, O.; Golombek, R.; Hoel, M.


    According to most scientists, greenhouse gas emissions must be reduced significantly relative to current trends to avoid dramatic adverse climatic changes during the next century. CO 2 is the most important greenhouse gas, so any international agreement will certainly cover CO 2 emissions. Any international agreement to reduce emissions of CO 2 is going to have a significant impact on the markets for fossil fuels. The analysis shows that it is not only the amount of CO 2 emissions permitted in an agreement which matters for fossil fuel prices, but also the type of agreement. Two obvious forms of agreements, which under certain assumptions both are cost efficient, are (a) tradeable emission permits, and (b) an international CO 2 tax. If the fossil fuel markets were perfectly competitive, these two types of agreements would have the same effect on the producer price of fossil fuels. However, fossil fuel markets are not completely competitive. It is shown that, under imperfect competition, direct regulation of the 'tradeable quotas' type tends to imply higher producer prices and a larger efficiency loss than an international CO 2 tax giving the same total CO 2 emissions. A numerical illustration of the oil market indicates that the difference in producer prices for the two types of CO 2 agreements is quite significant. 6 refs., 2 figs., 2 tabs

  11. The oil market and international agreements on CO2 emissions

    International Nuclear Information System (INIS)

    Berger, K.; Fimreite, Oe.; Golombek, R.; Hoel, M.


    In order to avoid a relatively large risk of dramatic adverse climatic changes during the next century, greenhouse gas emissions must be reduced significantly relative to present emissions. CO 2 is the most important greenhouse gas, so any international agreement will certainly cover CO 2 emissions. Any international agreement to reduce emissions of CO 2 is going to have a significant impact on the markets for fossil fuels. The analysis shows that is not only the amount of CO 2 emissions permitted in an agreement which matters for fossil fuel prices, but also the type of agreement. Two obvious forms of agreements, which under certain assumptions both are cost efficient, are (a) tradeable emission permits, and (b) an international CO 2 tax. If the fossil fuel markets were perfectly competitive, these two types of agreements would have the same effect on the producer price of fossil fuels. However, fossil fuel markets are not completely competitive. It is shown that, under imperfect competition, direct regulation of the ''tradeable quotas'' type tends to imply higher producer prices than an international CO 2 tax giving the same total CO 2 emissions. A numerical illustration of the oil market indicates that the difference in producer prices for the two types of CO 2 agreements is quite significant. 6 refs., 2 figs., 1 tab

  12. Trading CO2 emission; Verhandelbaarheid van CO2-emissies

    Energy Technology Data Exchange (ETDEWEB)

    De Waal, J.F.; Looijenga, A.; Moor, R.; Wissema, E.W.J. [Afdeling Energie, Ministerie van VROM, The Hague (Netherlands)


    Systems for CO2-emission trading can take many shapes as developments in Europe show. European developments for emission trading tend to comprehend cap and-trade systems for large emission sources. In the Netherlands a different policy is in preparation. A trading system for sheltered sectors with an option to buy reductions from exposed sectors will be further developed by a Commission, appointed by the minister of environment. Exposed sectors are committed to belong to the top of the world on the area of energy-efficiency. The authors point out that a cap on the distribution of energy carriers natural gas, electricity and fuel seems to be an interesting option to shape the trade scheme. A cap on the distribution of electricity is desirable, but not easy to implement. The possible success of the system depends partly on an experiment with emission reductions. 10 refs.

  13. CO2 and circulation in the deglacial North Pacific (United States)

    Taylor, B.; Rae, J. W. B.; Gray, W. R.; Rees-Owen, R. L.; Burke, A.


    The North Pacific is the largest carbon reservoir in the global ocean, but has not typically been thought to play an active role in deglacial CO2 rise based on its modern stratified state. Recent studies (Okazaki et al., 2010; Rae et al., 2014; Max et al., 2017), however, have suggested that a more dynamic circulation regime operated in the glacial and deglacial North Pacific and, as such, the role of the North Pacific in deglacial CO2 rise may have been underestimated. We present two new high-resolution boron isotope records of surface water pCO2 from the North West and North East Pacific spanning the last 22 kyrs. The two records show remarkable coherence over key intervals during the last deglaciation and highlight major changes over a number of abrupt climate events. At both sites, following the LGM, pCO2(sw) rises, coincident with a younging of North Pacific intermediate and deep waters. This suggests that increased local overturning mixed CO2-rich deep waters throughout the water column, likely contributing to CO2 outgassing during Heinrich Stadial 1 (HS1). Both records exhibit decreases in pCO2(sw) during the latter stages of HS1, which are immediately followed by a rapid increase in pCO2(sw) at the onset of the Bølling-Allerød (B/A). Radiocarbon and δ13C data indicate a collapse in North Pacific Intermediate Water formation at the onset of the B/A, which, combined with enhanced wind stress curl, would have allowed CO2-rich waters to mix into the surface ocean from intermediate-depths. The combination of high nutrient availability and a seasonally well-stratified mixed layer likely led to the abrupt increase in export productivity across the region; the excess surface water CO2 shows that alleviation of iron or light limitation could not have been its primary cause. Our new records highlight the importance of overturning circulation in the North Pacific in controlling productivity and CO2 release on glacial/interglacial timescales.

  14. Conditions for soft x-ray lasing action in a confined plasma column

    International Nuclear Information System (INIS)

    Suckewer, S.; Fishman, H.


    The idea of using a multi-Z (e.g., carbon, oxygen) thin plasma column as a medium for soft x-ray lasing action is presented. A plasma confined by a strong magnetic field is first heated by a CO 2 -laser, and then cools rapidly by radiation losses. This leads to a level population inversion of hydrogen-like carbon or oxygen ions. Two computational models are presented. One uses given electron temperature, T/sub e/(t), evolutions. The other uses T/sub e/(t) calculated from an energy balance equation ith CO 2 -laser beam power as a parameter. According to calculations, a total gain of G > 100 is expected for 3 → 2 and G > 10 for 4 → 2 transitions (lambda = 182 A and lambda = 135 A, respectively) for CVI ions using a CO 2 -laser beam with power approx. 5 x 10 10 W for plasma column heating

  15. Alberta industrial synergy CO2 programs initiative

    International Nuclear Information System (INIS)

    Yildirim, E.


    The various industrial sectors within Alberta produce about 350,000 tonnes of CO 2 per day. This presentation was concerned with how this large volume and high concentration of CO 2 can be used in industrial and agricultural applications, because every tonne of CO 2 used for such purposes is a tonne that does not end up in the atmosphere. There is a good potential for an industrial synergy between the producers and users of CO 2 . The Alberta Industrial Synergy CO 2 Programs Initiative was established to ultimately achieve a balance between the producers of CO 2 and the users of CO 2 by creating ways to use the massive quantities of CO 2 produced by Alberta's hydrocarbon-based economy. The Alberta CO 2 Research Steering Committee was created to initiate and support CO 2 programs such as: (1) CO 2 use in enhanced oil recovery, (2) creation of a CO 2 production inventory, (3) survey of CO 2 users and potential users, (4) investigation of process issues such as power generation, oil sands and cement manufacturing, and (5) biofixation by plants, (6) other disposal options (e.g. in depleted oil and gas reservoirs, in aquifers, in tailings ponds, in coal beds). The single most important challenge was identified as 'rationalizing the formation of the necessary infrastructure'. Failing to do that will greatly impede efforts directed towards CO 2 utilization

  16. Comparison of total column ozone obtained by the IASI-MetOp satellite with ground-based and OMI satellite observations in the southern tropics and subtropics

    Directory of Open Access Journals (Sweden)

    A. M. Toihir


    Full Text Available This paper presents comparison results of the total column ozone (TCO data product over 13 southern tropical and subtropical sites recorded from the Infrared Atmospheric Sounder Interferometer (IASI onboard the EUMETSAT (European organization for the exploitation of METeorological SATellite MetOp (Meteorological Operational satellite program satellite. TCO monthly averages obtained from IASI between June 2008 and December 2012 are compared with collocated TCO measurements from the Ozone Monitoring Instrument (OMI on the OMI/Aura satellite and the Dobson and SAOZ (Système d'Analyse par Observation Zénithale ground-based instruments. The results show that IASI displays a positive bias with an average less than 2 % with respect to OMI and Dobson observations, but exhibits a negative bias compared to SAOZ over Bauru with a bias around 2.63 %. There is a good agreement between IASI and the other instruments, especially from 15° S southward where a correlation coefficient higher than 0.87 is found. IASI exhibits a seasonal dependence, with an upward trend in autumn and a downward trend during spring, especially before September 2010. After September 2010, the autumn seasonal bias is considerably reduced due to changes made to the retrieval algorithm of the IASI level 2 (L2 product. The L2 product released after August (L2 O3 version 5 (v5 matches TCO from the other instruments better compared to version 4 (v4, which was released between June 2008 and August 2010. IASI bias error recorded from September 2010 is estimated to be at 1.5 % with respect to OMI and less than ±1 % with respect to the other ground-based instruments. Thus, the improvement made by O3 L2 version 5 (v5 product compared with version 4 (v4, allows IASI TCO products to be used with confidence to study the distribution and interannual variability of total ozone in the southern tropics and subtropics.

  17. Plant-wide control of coupled distillation columns with partial condensers

    International Nuclear Information System (INIS)

    Ebrahimzadeh, Edris; Baxter, Larry L.


    Highlights: • Extractive distillation system for CO_2–ethane azeotrope separation. • Control of distillation column systems that have interconnected partial condenser and total condenser columns. • Single-end temperature control of distillation columns. • Aspen Dynamics tools applied for rigorous steady-state and dynamic simulations. - Abstract: Conventional distillation control processes use vapor distillate flowrate to control column pressure and condenser heat removal to control the reflux drum level. These intuitive control systems work well for isolated columns or columns with total condensers. However, these controls are not effective when columns with partial condensers occur in series. The pressure and reflux drum level interact in such systems in ways that defeat conventional control systems, rendering them unable to maintain product purities in the presence of large feed flowrate and composition disturbances. This investigation documents a plant-wide control structure that can address this issue by controlling pressure through reflux heat removal rate and reflux drum level by reflux flow rate. This control system demonstrates its capability to handle large disturbances in throughput and feed composition through a series of Aspen simulations. This alternative system is no more complicated than the conventional system and should work on distillation columns of nearly all designs, not just the coupled partial condenser designs for which it is essential. Common natural gas processing provides a specific example of this alternative control system. Natural gas commonly includes high concentrations of CO_2 that must be removed prior to pipeline or LNG distribution. The existence of a minimum-boiling temperature azeotrope between ethane, virtually always present in natural gas, and carbon dioxide complicates the separation of CO_2 from the hydrocarbons. This separation commonly employs extractive distillation with high-molecular-weight hydrocarbons. Our

  18. Limitations to CO2-induced growth enhancement in pot studies. (United States)

    McConnaughay, K D M; Berntson, G M; Bazzaz, F A


    Recently, it has been suggested that small pots may reduce or eliminate plant responses to enriched CO 2 atmospheres due to root restriction. While smaller pot volumes provide less physical space available for root growth, they also provide less nutrients. Reduced nutrient availability alone may reduce growth enhancement under elevated CO 2 . To investigate the relative importance of limited physical rooting space separate from and in conjunction with soil nutrients, we grew plants at ambient and double-ambient CO 2 levels in growth containers of varied volume, shape, nutrient concentration, and total nutrient content. Two species (Abutilon theophrasti, a C 3 dicot with a deep tap root andSetaria faberii, a C 4 monocot with a shallow diffuse root system) were selected for their contrasting physiology and root architecture. Shoot demography was determined weekly and biomass was determined after eight and ten weeks of growth. Increasing total nutrients, either by increasing nutrient concentration or by increasing pot size, increased plant growth. Further, increasing pot size while maintaining equal total nutrients per pot resulted in increased total biomass for both species. CO 2 -induced growth and reproductive yield enhancements were greatest in pots with high nutrient concentrations, regardless of total nutrient content or pot size, and were also mediated by the shape of the pot. CO 2 -induced growth and reproductive yield enhancements were unaffected by pot size (growth) or were greater in small pots (reproductive yield), regardless of total nutrient content, contrary to predictions based on earlier studies. These results suggest that several aspects of growth conditions within pots may influence the CO 2 responses of plants; pot size, pot shape, the concentration and total amount of nutrient additions to pots may lead to over-or underestimates of the CO 2 responses of real-world plants.

  19. Preliminary estimate of CO2 budget discharged from Vulcano island


    Inguaggiato, S.; Mazot, A.; Diliberto, I. S.; Rowet, D.; Vita, F.; Capasso, G.; Bobrowski, N.; Inguaggiato, C.; Grassa, F.


    Total CO2 output from fumaroles, soil gases, bubbling and water dissolved gases were estimated at Vulcano Island, Italy. The fumaroles output has been estimated from SO2 plume flux, while soil flux emission has been carried out through 730 CO2 fluxes measured on the island surface, performed by means of accumulation chamber method. Vulcano Island, located in the Aeolian Archipelago, is an active volcano that has been in state of solphataric activity, since the last eruption (1888-1890). At p...

  20. ISLSCP II Globalview: Atmospheric CO2 Concentrations (United States)

    National Aeronautics and Space Administration — The GlobalView Carbon Dioxide (CO2) data product contains synchronized and smoothed time series of atmospheric CO2 concentrations at selected sites that were created...

  1. Bioelectrochemical conversion of CO2 to chemicals

    NARCIS (Netherlands)

    Bajracharya, Suman; Vanbroekhoven, Karolien; Buisman, Cees J.N.; Strik, David P.B.T.B.; Pant, Deepak


    The recent concept of microbial electrosynthesis (MES) has evolved as an electricity-driven production technology for chemicals from low-value carbon dioxide (CO2) using micro-organisms as biocatalysts. MES from CO2 comprises bioelectrochemical reduction of CO2 to multi-carbon organic compounds

  2. Preliminary estimation of Vulcano of CO2 budget and continuous monitoring of summit soil CO2 flux


    Inguaggiato, S.; Mazot, A.; Diliberto, I. S.; Rouwet, D.; Vita, F.; Capasso, G.; Bobrowski, N.; Inguaggiato, C.; Grassa, F.


    Total CO2 output from fumaroles, soil gases, bubbling and water dissolved gases were estimated at Vulcano Island, Italy. The fumaroles output has been estimated from SO2 plume flux, while soil flux emission has been carried out through 730 CO2 fluxes measured on the island surface, performed by means of accumulation chamber method. Vulcano Island, located in the Aeolian Archipelago, is an active volcano that has been in state of solphataric activity, since the last eru...

  3. Optimizing multiple sequence alignments using a genetic algorithm based on three objectives: structural information, non-gaps percentage and totally conserved columns. (United States)

    Ortuño, Francisco M; Valenzuela, Olga; Rojas, Fernando; Pomares, Hector; Florido, Javier P; Urquiza, Jose M; Rojas, Ignacio


    Multiple sequence alignments (MSAs) are widely used approaches in bioinformatics to carry out other tasks such as structure predictions, biological function analyses or phylogenetic modeling. However, current tools usually provide partially optimal alignments, as each one is focused on specific biological features. Thus, the same set of sequences can produce different alignments, above all when sequences are less similar. Consequently, researchers and biologists do not agree about which is the most suitable way to evaluate MSAs. Recent evaluations tend to use more complex scores including further biological features. Among them, 3D structures are increasingly being used to evaluate alignments. Because structures are more conserved in proteins than sequences, scores with structural information are better suited to evaluate more distant relationships between sequences. The proposed multiobjective algorithm, based on the non-dominated sorting genetic algorithm, aims to jointly optimize three objectives: STRIKE score, non-gaps percentage and totally conserved columns. It was significantly assessed on the BAliBASE benchmark according to the Kruskal-Wallis test (P algorithm also outperforms other aligners, such as ClustalW, Multiple Sequence Alignment Genetic Algorithm (MSA-GA), PRRP, DIALIGN, Hidden Markov Model Training (HMMT), Pattern-Induced Multi-sequence Alignment (PIMA), MULTIALIGN, Sequence Alignment Genetic Algorithm (SAGA), PILEUP, Rubber Band Technique Genetic Algorithm (RBT-GA) and Vertical Decomposition Genetic Algorithm (VDGA), according to the Wilcoxon signed-rank test (P 0.05) with the advantage of being able to use less structures. Structural information is included within the objective function to evaluate more accurately the obtained alignments. The source code is available at

  4. The CM SAF SSM/I-based total column water vapour climate data record: methods and evaluation against re-analyses and satellite

    Directory of Open Access Journals (Sweden)

    M. Schröder


    Full Text Available The European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF aims at the provision and sound validation of well documented Climate Data Records (CDRs in sustained and operational environments. In this study, a total column water vapour path (WVPA climatology from CM SAF is presented and inter-compared to water vapour data records from various data sources. Based on homogenised brightness temperatures from the Special Sensor Microwave Imager (SSM/I, a climatology of WVPA has been generated within the Hamburg Ocean–Atmosphere Fluxes and Parameters from Satellite (HOAPS framework. Within a research and operation transition activity the HOAPS data and operation capabilities have been successfully transferred to the CM SAF where the complete HOAPS data and processing schemes are hosted in an operational environment. An objective analysis for interpolation, namely kriging, has been applied to the swath-based WVPA retrievals from the HOAPS data set. The resulting climatology consists of daily and monthly mean fields of WVPA over the global ice-free ocean. The temporal coverage ranges from July 1987 to August 2006. After a comparison to the precursor product the CM SAF SSM/I-based climatology has been comprehensively compared to different types of meteorological analyses from the European Centre for Medium-Range Weather Forecasts (ECMWF-ERA40, ERA INTERIM and operational analyses and from the Japan Meteorological Agency (JMA–JRA. This inter-comparison shows an overall good agreement between the climatology and the analyses, with daily absolute biases generally smaller than 2 kg m−2. The absolute value of the bias to JRA and ERA INTERIM is typically smaller than 0.5 kg m−2. For the period 1991–2006, the root mean square error (RMSE for both reanalyses is approximately 2 kg m−2. As SSM/I WVPA and radiances are assimilated into JMA and all ECMWF analyses and

  5. Forest succession at elevated CO2; TOPICAL

    International Nuclear Information System (INIS)

    Clark, James S.; Schlesinger, William H.


    We tested hypotheses concerning the response of forest succession to elevated CO2 in the FACTS-1 site at the Duke Forest. We quantified growth and survival of naturally recruited seedlings, tree saplings, vines, and shrubs under ambient and elevated CO2. We planted seeds and seedlings to augment sample sites. We augmented CO2 treatments with estimates of shade tolerance and nutrient limitation while controlling for soil and light effects to place CO2 treatments within the context of natural variability at the site. Results are now being analyzed and used to parameterize forest models of CO2 response

  6. The 'compensation effect' in the graphite/CO2 reaction

    International Nuclear Information System (INIS)

    Stephen, W.J.


    The compensation effect is the often observed linear relationship between the activation energy and pre-exponential factor in the Arrhenius equations of a series of related reactions. Previously reported studies of the graphite/CO 2 reaction at different total pressures and CO 2 /CO ratios are used as an example of the compensation effect. The effect is shown in general to be an artefact produced by a strong correlation between the parameter estimates in the conventional Arrhenius plot. A transformation of the Arrhenius plot to minimise the overall correlation between estimates and thus enable detection of a true compensation effect is presented. The results of this transformation on the kinetic data for the graphite/CO 2 reaction are consistent with previous analyses of the reaction system. They show that there is only a limited compensation effect within this study and demonstrate the influence of the approach to equilibrium of the graphite/CO 2 reaction. (author)

  7. Energy consumption and CO2 emissions in Iran, 2025

    International Nuclear Information System (INIS)

    Mirzaei, Maryam; Bekri, Mahmoud


    Climate change and global warming as the key human societies' threats are essentially associated with energy consumption and CO 2 emissions. A system dynamic model was developed in this study to model the energy consumption and CO 2 emission trends for Iran over 2000–2025. Energy policy factors are considered in analyzing the impact of different energy consumption factors on environmental quality. The simulation results show that the total energy consumption is predicted to reach 2150 by 2025, while that value in 2010 is 1910, which increased by 4.3% yearly. Accordingly, the total CO 2 emissions in 2025 will reach 985 million tonnes, which shows about 5% increase yearly. Furthermore, we constructed policy scenarios based on energy intensity reduction. The analysis show that CO 2 emissions will decrease by 12.14% in 2025 compared to 2010 in the scenario of 5% energy intensity reduction, and 17.8% in the 10% energy intensity reduction scenario. The results obtained in this study provide substantial awareness regarding Irans future energy and CO 2 emission outlines. - Highlights: • Creation of an energy consumption model using system dynamics. • The effect of different policies on energy consumption and emission reductions. • An ascending trend for the environmental costs caused by CO 2 emissions is observed. • An urgent need for energy saving and emission reductions in Iran.

  8. Residual CO2 trapping in Indiana limestone. (United States)

    El-Maghraby, Rehab M; Blunt, Martin J


    We performed core flooding experiments on Indiana limestone using the porous plate method to measure the amount of trapped CO(2) at a temperature of 50 °C and two pressures: 4.2 and 9 MPa. Brine was mixed with CO(2) for equilibration, then the mixture was circulated through a sacrificial core. Porosity and permeability tests conducted before and after 884 h of continuous core flooding confirmed negligible dissolution. A trapping curve for supercritical (sc)CO(2) in Indiana showing the relationship between the initial and residual CO(2) saturations was measured and compared with that of gaseous CO(2). The results were also compared with scCO(2) trapping in Berea sandstone at the same conditions. A scCO(2) residual trapping end point of 23.7% was observed, indicating slightly less trapping of scCO(2) in Indiana carbonates than in Berea sandstone. There is less trapping for gaseous CO(2) (end point of 18.8%). The system appears to be more water-wet under scCO(2) conditions, which is different from the trend observed in Berea; we hypothesize that this is due to the greater concentration of Ca(2+) in brine at higher pressure. Our work indicates that capillary trapping could contribute to the immobilization of CO(2) in carbonate aquifers.

  9. CO2 clearance by membrane lungs. (United States)

    Sun, Liqun; Kaesler, Andreas; Fernando, Piyumindri; Thompson, Alex J; Toomasian, John M; Bartlett, Robert H


    Commercial membrane lungs are designed to transfer a specific amount of oxygen per unit of venous blood flow. Membrane lungs are much more efficient at removing CO 2 than adding oxygen, but the range of CO 2 transfer is rarely reported. Commercial membrane lungs were studied with the goal of evaluating CO 2 removal capacity. CO 2 removal was measured in 4 commercial membrane lungs under standardized conditions. CO 2 clearance can be greater than 4 times that of oxygen at a given blood flow when the gas to blood flow ratio is elevated to 4:1 or 8:1. The CO 2 clearance was less dependent on surface area and configuration than oxygen transfer. Any ECMO system can be used for selective CO 2 removal.

  10. PEAT-CO2. Assessment of CO2 emissions from drained peatlands in SE Asia

    International Nuclear Information System (INIS)

    Hooijer, A.; Silvius, M.; Woesten, H.; Page, S.


    Forested tropical peatlands in SE Asia store at least 42,000 Megatonnes of soil carbon. This carbon is increasingly released to the atmosphere due to drainage and fires associated with plantation development and logging. Peatlands make up 12% of the SE Asian land area but account for 25% of current deforestation. Out of 27 million hectares of peatland, 12 million hectares (45%) are currently deforested and mostly drained. One important crop in drained peatlands is palm oil, which is increasingly used as a biofuel in Europe. In the PEAT-CO2 project, present and future emissions from drained peatlands were quantified using the latest data on peat extent and depth, present and projected land use and water management practice, decomposition rates and fire emissions. It was found that current likely CO2 emissions caused by decomposition of drained peatlands amounts to 632 Mt/y (between 355 and 874 Mt/y). This emission will increase in coming decades unless land management practices and peatland development plans are changed, and will continue well beyond the 21st century. In addition, over 1997-2006 an estimated average of 1400 Mt/y in CO2 emissions was caused by peatland fires that are also associated with drainage and degradation. The current total peatland CO2 emission of 2000 Mt/y equals almost 8% of global emissions from fossil fuel burning. These emissions have been rapidly increasing since 1985 and will further increase unless action is taken. Over 90% of this emission originates from Indonesia, which puts the country in 3rd place (after the USA and China) in the global CO2 emission ranking. It is concluded that deforested and drained peatlands in SE Asia are a globally significant source of CO2 emissions and a major obstacle to meeting the aim of stabilizing greenhouse gas emissions, as expressed by the international community. It is therefore recommended that international action is taken to help SE Asian countries, especially Indonesia, to better conserve

  11. European Community Can Reduce CO2 Emissions by Sixty Percent : A Feasibility Study

    NARCIS (Netherlands)

    Mot, E.; Bartelds, H.; Esser, P.M.; Huurdeman, A.J.M.; Laak, P.J.A. van de; Michon, S.G.L.; Nielen, R.J.; Baar, H.J.W. de


    Carbon dioxide (CO2) emissions in the European Community (EC) can be reduced by roughly 60 percent. A great many measures need to be taken to reach this reduction, with a total annual cost of ECU 55 milliard. Fossil fuel use is the main cause of CO2 emissions into the atmosphere; CO2 emissions are

  12. Modeling experimental stable isotope results from CO2 adsorption and diffusion experiments (United States)

    Larson, T. E.


    Transport of carbon dioxide through porous media can be affected by diffusion, advection and adsorption processes. Developing new tools to understand which of these processes dominates migration of CO2 or other gases in the subsurface is important to a wide range of applications including CO2 storage. Whereas advection rates are not affected by isotope substitution in CO2, adsorption and diffusion constants are. For example, differences in the binary diffusion constant calculated between C12O2-He and C13O2-He results in a carbon isotope fractionation whereby the front of the chromatographic peak is enriched in carbon-12 and the tail of the peak is enriched in carbon-13. Interestingly, adsorption is shown to have an opposite, apparent inverse affect whereby the lighter isotopologues of CO2 are preferentially retained by the chromatographic column and the heavier isotopologues are eluted first. This apparent inverse chromatographic effect has been ascribed to Van der Waals dispersion forces. Smaller molar volumes of the heavier isotopologues resulting from increased bond strength (shorter bond length) effectively decreases Van der Waals forces in heavier isotopologues compared to lighter isotopologues. Here we discuss the possible application of stable isotope values measured across chromatographic peaks to differentiate diffusion-dominated from adsorption-dominated transport processes for CO2. Separate 1-dimensional flow-through columns were packed with quartz and illite, and one remained empty. Dry helium was used as a carrier gas. Constant flow rate, temperature and column pressure were maintained. After background CO2 concentrations were minimized and constant, a sustained pulse of CO2 was injected at the head of the column and the effluent was sampled at 4 minute intervals for CO2 concentration, and carbon and oxygen isotope ratios. The quartz-sand packed and empty columns resulted in similar trends in concentration and isotope ratios whereby CO2 concentrations

  13. Quality assessment of the Ozone_cci Climate Research Data Package (release 2017 – Part 1: Ground-based validation of total ozone column data products

    Directory of Open Access Journals (Sweden)

    K. Garane


    Full Text Available The GOME-type Total Ozone Essential Climate Variable (GTO-ECV is a level-3 data record, which combines individual sensor products into one single cohesive record covering the 22-year period from 1995 to 2016, generated in the frame of the European Space Agency's Climate Change Initiative Phase II. It is based on level-2 total ozone data produced by the GODFIT (GOME-type Direct FITting v4 algorithm as applied to the GOME/ERS-2, OMI/Aura, SCIAMACHY/Envisat and GOME-2/Metop-A and Metop-B observations. In this paper we examine whether GTO-ECV meets the specific requirements set by the international climate–chemistry modelling community for decadal stability long-term and short-term accuracy. In the following, we present the validation of the 2017 release of the Climate Research Data Package Total Ozone Column (CRDP TOC at both level 2 and level 3. The inter-sensor consistency of the individual level-2 data sets has mean differences generally within 0.5 % at moderate latitudes (±50°, whereas the level-3 data sets show mean differences with respect to the OMI reference data record that span between −0.2 ± 0.9 % (for GOME-2B and 1.0 ± 1.4 % (for SCIAMACHY. Very similar findings are reported for the level-2 validation against independent ground-based TOC observations reported by Brewer, Dobson and SAOZ instruments: the mean bias between GODFIT v4 satellite TOC and the ground instrument is well within 1.0 ± 1.0 % for all sensors, the drift per decade spans between −0.5 % and 1.0 ± 1.0 % depending on the sensor, and the peak-to-peak seasonality of the differences ranges from ∼ 1 % for GOME and OMI to  ∼ 2 % for SCIAMACHY. For the level-3 validation, our first goal was to show that the level-3 CRDP produces findings consistent with the level-2 individual sensor comparisons. We show a very good agreement with 0.5 to 2 % peak-to-peak amplitude for the monthly mean difference time series and a

  14. Quality assessment of the Ozone_cci Climate Research Data Package (release 2017) - Part 1: Ground-based validation of total ozone column data products (United States)

    Garane, Katerina; Lerot, Christophe; Coldewey-Egbers, Melanie; Verhoelst, Tijl; Elissavet Koukouli, Maria; Zyrichidou, Irene; Balis, Dimitris S.; Danckaert, Thomas; Goutail, Florence; Granville, Jose; Hubert, Daan; Keppens, Arno; Lambert, Jean-Christopher; Loyola, Diego; Pommereau, Jean-Pierre; Van Roozendael, Michel; Zehner, Claus


    The GOME-type Total Ozone Essential Climate Variable (GTO-ECV) is a level-3 data record, which combines individual sensor products into one single cohesive record covering the 22-year period from 1995 to 2016, generated in the frame of the European Space Agency's Climate Change Initiative Phase II. It is based on level-2 total ozone data produced by the GODFIT (GOME-type Direct FITting) v4 algorithm as applied to the GOME/ERS-2, OMI/Aura, SCIAMACHY/Envisat and GOME-2/Metop-A and Metop-B observations. In this paper we examine whether GTO-ECV meets the specific requirements set by the international climate-chemistry modelling community for decadal stability long-term and short-term accuracy. In the following, we present the validation of the 2017 release of the Climate Research Data Package Total Ozone Column (CRDP TOC) at both level 2 and level 3. The inter-sensor consistency of the individual level-2 data sets has mean differences generally within 0.5 % at moderate latitudes (±50°), whereas the level-3 data sets show mean differences with respect to the OMI reference data record that span between -0.2 ± 0.9 % (for GOME-2B) and 1.0 ± 1.4 % (for SCIAMACHY). Very similar findings are reported for the level-2 validation against independent ground-based TOC observations reported by Brewer, Dobson and SAOZ instruments: the mean bias between GODFIT v4 satellite TOC and the ground instrument is well within 1.0 ± 1.0 % for all sensors, the drift per decade spans between -0.5 % and 1.0 ± 1.0 % depending on the sensor, and the peak-to-peak seasonality of the differences ranges from ˜ 1 % for GOME and OMI to ˜ 2 % for SCIAMACHY. For the level-3 validation, our first goal was to show that the level-3 CRDP produces findings consistent with the level-2 individual sensor comparisons. We show a very good agreement with 0.5 to 2 % peak-to-peak amplitude for the monthly mean difference time series and a negligible drift per decade of the differences in the Northern Hemisphere

  15. Carbon balance of CO2-EOR for NCNO classification

    Energy Technology Data Exchange (ETDEWEB)

    Nunez-Lopez, Vanessa [The University of Texas at Austin; Gil-Egui, Ramon; Gonzalez-Nicolas, Ana; Hovorka, Susan D


    The question of whether carbon dioxide enhanced oil recovery (CO2-EOR) constitutes a valid alternative for greenhouse gas emission reduction has been frequently asked by the general public and environmental sectors. Through this technology, operational since 1972, oil production is enhanced by injecting CO2 into depleted oil reservoirs in order displace the residual oil toward production wells in a solvent/miscible process. For decades, the CO2 utilized for EOR has been most commonly sourced from natural CO2 accumulations. More recently, a few projects have emerged where anthropogenic CO2 (A-CO2) is captured at an industrial facility, transported to a depleted oil field, and utilized for EOR. If carbon geologic storage is one of the project objectives, all the CO2 injected into the oil field for EOR could technically be stored in the formation. Even though the CO2 is being prevented from entering the atmosphere, and permanently stored away in a secured geologic formation, a question arises as to whether the total CO2 volumes stored in order to produce the incremental oil through EOR are larger than the CO2 emitted throughout the entire CO2-EOR process, including the capture facility, the EOR site, and the refining and burning of the end product. We intend to answer some of these questions through a DOE-NETL funded study titled “Carbon Life Cycle Analysis of CO2-EOR for Net Carbon Negative Oil (NCNO) Classification”. NCNO is defined as oil whose carbon emissions to the atmosphere, when burned or otherwise used, are less than the amount of carbon permanently stored in the reservoir in order to produce the oil. In this paper, we focus on the EOR site in what is referred to as a gate-to-gate system, but are inclusive of the burning of the refined product, as this end member is explicitly stated in the definition of NCNO. Finally, we use Cranfield, Mississippi, as a case study and come to the conclusion that the incremental oil produced is net carbon negative.

  16. Retrieval of average CO2 fluxes by combining in situ CO2 measurements and backscatter lidar information (United States)

    Gibert, Fabien; Schmidt, Martina; Cuesta, Juan; Ciais, Philippe; Ramonet, Michel; Xueref, IrèNe; Larmanou, Eric; Flamant, Pierre Henri


    The present paper deals with a boundary layer budgeting method which makes use of observations from various in situ and remote sensing instruments to infer regional average net ecosystem exchange (NEE) of CO2. Measurements of CO2 within and above the atmospheric boundary layer (ABL) by in situ sensors, in conjunction with a precise knowledge of the change in ABL height by lidar and radiosoundings, enable to infer diurnal and seasonal NEE variations. Near-ground in situ CO measurements are used to discriminate natural and anthropogenic contributions of CO2 diurnal variations in the ABL. The method yields mean NEE that amounts to 5 μmol m-2 s-1 during the night and -20 μmol m-2 s-1 in the middle of the day between May and July. A good agreement is found with the expected NEE accounting for a mixed wheat field and forest area during winter season, representative of the mesoscale ecosystems in the Paris area according to the trajectory of an air column crossing the landscape. Daytime NEE is seen to follow the vegetation growth and the change in the ratio diffuse/direct radiation. The CO2 vertical mixing flux during the rise of the atmospheric boundary layer is also estimated and seems to be the main cause of the large decrease of CO2 mixing ratio in the morning. The outcomes on CO2 flux estimate are compared to eddy-covariance measurements on a barley field. The importance of various sources of error and uncertainty on the retrieval is discussed. These errors are estimated to be less than 15%; the main error resulted from anthropogenic emissions.

  17. Variability in soil CO2 production and surface CO2 efflux across riparian-hillslope transitions (United States)

    Vincent Jerald. Pacific


    The spatial and temporal controls on soil CO2 production and surface CO2 efflux have been identified as an outstanding gap in our understanding of carbon cycling. I investigated both the spatial and temporal variability of soil CO2 concentrations and surface CO2 efflux across eight topographically distinct riparian-hillslope transitions in the ~300 ha subalpine upper-...

  18. Modeling of CO2 storage in aquifers

    International Nuclear Information System (INIS)

    Savioli, Gabriela B; Santos, Juan E


    Storage of CO 2 in geological formations is a means of mitigating the greenhouse effect. Saline aquifers are a good alternative as storage sites due to their large volume and their common occurrence in nature. The first commercial CO 2 injection project is that of the Sleipner field in the Utsira Sand aquifer (North Sea). Nevertheless, very little was known about the effectiveness of CO 2 sequestration over very long periods of time. In this way, numerical modeling of CO 2 injection and seismic monitoring is an important tool to understand the behavior of CO 2 after injection and to make long term predictions in order to prevent CO 2 leaks from the storage into the atmosphere. The description of CO 2 injection into subsurface formations requires an accurate fluid-flow model. To simulate the simultaneous flow of brine and CO 2 we apply the Black-Oil formulation for two phase flow in porous media, which uses the PVT data as a simplified thermodynamic model. Seismic monitoring is modeled using Biot's equations of motion describing wave propagation in fluid-saturated poroviscoelastic solids. Numerical examples of CO 2 injection and time-lapse seismics using data of the Utsira formation show the capability of this methodology to monitor the migration and dispersal of CO 2 after injection.

  19. Explaining CO2 fluctuations observed in snowpacks (United States)

    Graham, Laura; Risk, David


    Winter soil carbon dioxide (CO2) respiration is a significant and understudied component of the global carbon (C) cycle. Winter soil CO2 fluxes can be surprisingly variable, owing to physical factors such as snowpack properties and wind. This study aimed to quantify the effects of advective transport of CO2 in soil-snow systems on the subdiurnal to diurnal (hours to days) timescale, use an enhanced diffusion model to replicate the effects of CO2 concentration depletions from persistent winds, and use a model-measure pairing to effectively explore what is happening in the field. We took continuous measurements of CO2 concentration gradients and meteorological data at a site in the Cape Breton Highlands of Nova Scotia, Canada, to determine the relationship between wind speeds and CO2 levels in snowpacks. We adapted a soil CO2 diffusion model for the soil-snow system and simulated stepwise changes in transport rate over a broad range of plausible synthetic cases. The goal was to mimic the changes we observed in CO2 snowpack concentration to help elucidate the mechanisms (diffusion, advection) responsible for observed variations. On subdiurnal to diurnal timescales with varying winds and constant snow levels, a strong negative relationship between wind speed and CO2 concentration within the snowpack was often identified. Modelling clearly demonstrated that diffusion alone was unable to replicate the high-frequency CO2 fluctuations, but simulations using above-atmospheric snowpack diffusivities (simulating advective transport within the snowpack) reproduced snow CO2 changes of the observed magnitude and speed. This confirmed that wind-induced ventilation contributed to episodic pulsed emissions from the snow surface and to suppressed snowpack concentrations. This study improves our understanding of winter CO2 dynamics to aid in continued quantification of the annual global C cycle and demonstrates a preference for continuous wintertime CO2 flux measurement systems.

  20. Porous Organic Polymers for CO2 Capture

    KAUST Repository

    Teng, Baiyang


    Carbon dioxide (CO2) has long been regarded as the major greenhouse gas, which leads to numerous negative effects on global environment. The capture and separation of CO2 by selective adsorption using porous materials proves to be an effective way to reduce the emission of CO2 to atmosphere. Porous organic polymers (POPs) are promising candidates for this application due to their readily tunable textual properties and surface functionalities. The objective of this thesis work is to develop new POPs with high CO2 adsorption capacities and CO2/N2 selectivities for post-combustion effluent (e.g. flue gas) treatment. We will also exploit the correlation between the CO2 capture performance of POPs and their textual properties/functionalities. Chapters Two focuses on the study of a group of porous phenolic-aldehyde polymers (PPAPs) synthesized by a catalyst-free method, the CO2 capture capacities of these PPAPs exceed 2.0 mmol/g at 298 K and 1 bar, while keeping CO2/N2 selectivity of more than 30 at the same time. Chapter Three reports the gas adsorption results of different hyper-cross-linked polymers (HCPs), which indicate that heterocyclo aromatic monomers can greatly enhance polymers’ CO2/N2 selectivities, and the N-H bond is proved to the active CO2 adsorption center in the N-contained (e.g. pyrrole) HCPs, which possess the highest selectivities of more than 40 at 273 K when compared with other HCPs. Chapter Four emphasizes on the chemical modification of a new designed polymer of intrinsic microporosity (PIM) with high CO2/N2 selectivity (50 at 273 K), whose experimental repeatability and chemical stability prove excellent. In Chapter Five, we demonstrate an improvement of both CO2 capture capacity and CO2/N2 selectivity by doping alkali metal ions into azo-polymers, which leads a promising method to the design of new porous organic polymers.

  1. Stomatal response of Pinus sylvestriformis to elevated CO2 concentrations during the four years of exposure

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yu-mei; HAN Shi-jie; LIU Ying; JIA Xia


    Four-year-old Pinus sylvestriformis were exposed for four growing seasons in open top chambers to ambient CO2 concentration (approx. 350 μmol·mol-1) and high CO2 concentrations (500 and 700 μmol·mol-1) at Research Station of Changbai Mountain Forest Ecosystems, Chinese Academy of Sciences at Antu Town, Jilin Province, China (42oN, 128oE). Stomatal response to elevated CO2 concentrations was examined by stomatal conductance (gs), ratio of intercellular to ambient CO2 concentration (ci/ca) and stomatal number. Reciprocal transfer experiments of stomatal conductance showed that stomatal conductance in high-[CO2]-grown plants increased in comparison with ambient-[CO2]-grown plants when measured at their respective growth CO2 concentration and at the same measurement CO2 concentration (except a reduction in 700 μmol·mol-1 CO2 grown plants compared with plants on unchambered field when measured at growth CO2 concentration and 350 μmol·mol-1CO2). High-[CO2]-grown plants exhibited lower ci/ca ratios than ambient-[CO2]-grown plants when measured at their respective growth CO2 concentration. However, ci/ca ratios increased for plants grown in high CO2 concentrations compared with control plants when measured at the same CO2 concentration. There was no significant difference in stomatal number per unit long needle between elevated and ambient CO2. However, elevated CO2 concentrations reduced the total stomatal number of whole needle by the decline of stomatal line and changed the allocation pattern of stomata between upper and lower surface of needle.

  2. Hollow fiber membrane contactors for CO2 capture: modeling and up-scaling to CO2 capture for an 800 MWe coal power station

    NARCIS (Netherlands)

    Kimball, E.; Al-Azki, A.; Gomez, A.; Goetheer, E.L.V.; Booth, N.; Adams, D.; Ferre, D.


    A techno-economic analysis was completed to compare the use of Hollow Fiber Membrane Modules (HFMM) with the more conventional structured packing columns as the absorber in amine-based CO2capture systems for power plants. In order to simulate the operation of industrial scale HFMMsystems, a

  3. Metal-Organic Framework-Stabilized CO2/Water Interfacial Route for Photocatalytic CO2 Conversion. (United States)

    Luo, Tian; Zhang, Jianling; Li, Wei; He, Zhenhong; Sun, Xiaofu; Shi, Jinbiao; Shao, Dan; Zhang, Bingxing; Tan, Xiuniang; Han, Buxing


    Here, we propose a CO 2 /water interfacial route for photocatalytic CO 2 conversion by utilizing a metal-organic framework (MOF) as both an emulsifier and a catalyst. The CO 2 reduction occurring at the CO 2 /water interface produces formate with remarkably enhanced efficiency as compared with that in conventional solvent. The route is efficient, facile, adjustable, and environmentally benign, which is applicable for the CO 2 transformation photocatalyzed by different kinds of MOFs.

  4. Processes for the control of 14CO2 during reprocessing

    International Nuclear Information System (INIS)

    Notz, K.J.; Holladay, D.W.; Forsberg, C.W.; Haag, G.L.


    The fixation of 14 CO 2 may be required at some future time because of the significant fractional contribution of 14 C, via the ingestion pathway, to the total population dose from the nuclear fuel cycle, even though the actual quantity of this dose is very small when compared to natural background. The work described here was done in support of fuel reprocessing development, of both graphite fuel (HTGRs) and metal-clad fuel (LWRs and LMFBRs), and was directed to the control of 14 CO 2 released during reprocessing operations. However, portions of this work are also applicable to the control of 14 CO 2 released during reactor operation. The work described falls in three major areas: (1) The application of liquid-slurry fixation with Ca(OH) 2 , which converts the CO 2 to CaCO 3 , carried out after treatment of the CO 2 -containing stream to remove other gaseous radioactive components, mainly 85 Kr. This approach is primarily for application to HTGR fuel reprocessing. (2) The above process for CO 2 fixation, but used ahead of Kr removal, and followed by a molecular sieve process to take out the 85 Kr. This approach was developed for use with HTGR reprocessing, but certain aspects also have application to metal-clad fuel reprocessing and to reactor operation. (3) The use of solid Ba(OH) 2 hydrate reacting directly with the gaseous phase. This process is generally applicable to both reprocessing and to reactor operation

  5. Soil gas (222Rn, CO2, 4He) behaviour over a natural CO2 accumulation, Montmiral area (Drome, France): geographical, geological and temporal relationships

    International Nuclear Information System (INIS)

    Gal, Frederick; Joublin, Franck; Haas, Hubert; Jean-prost, Veronique; Ruffier, Veronique


    The south east basin of France shelters deep CO 2 reservoirs often studied with the aim of better constraining geological CO 2 storage operations. Here we present new soil gas data, completing an existing dataset (CO 2 , 222 Rn, 4 He), together with mineralogical and physical characterisations of soil columns, in an attempt to better understand the spatial distribution of gas concentrations in the soils and to rule on the sealed character of the CO 2 reservoir at present time. Anomalous gas concentrations were found but did not appear to be clearly related to geological structures that may drain deep gases up to the surface, implying a dominant influence of near surface processes as indicated by carbon isotope ratios. Coarse grained, quartz-rich soils favoured the existence of high CO 2 concentrations. Fine grained clayey soils preferentially favoured the existence of 222 Rn but not CO 2 . Soil formations did not act as barriers preventing gas migrations in soils, either due to water content or due to mineralogical composition. No abundant leakage from the Montmiral reservoir can be highlighted by the measurements, even near the exploitation well. As good correlation between CO 2 and 222 Rn concentrations still exist, it is suggested that 222 Rn migration is also CO 2 dependent in non-leaking areas - diffusion dominated systems.

  6. Shaft sealing issue in CO2 storage sites (United States)

    Dieudonné, A.-C.; Charlier, R.; Collin, F.


    Carbon capture and storage is an innovating approach to tackle climate changes through the reduction of greenhouse gas emissions. Deep saline aquifers, depleted oil and gas reservoirs and unmineable coal seams are among the most studied reservoirs. However other types of reservoir, such as abandonned coal mines, could also be used for the storage of carbon dioxide. In this case, the problem of shaft sealing appears to be particularly critical regarding to the economic, ecologic and health aspects of geological storage. The purpose of the work is to study shaft sealing in the framework of CO2 storage projects in abandoned coal mines. The problem of gas transfers around a sealing system is studied numerically using the finite elements code LAGAMINE, which has been developped for 30 years at the University of Liege. A coupled hydro-mechanical model of unsaturated geomaterials is used for the analyses. The response of the two-phase flow model is first studied through a simple synthetic problem consisting in the injection of gas in a concrete-made column. It stands out of this first modeling that the advection of the gas phase represents the main transfer mechanism of CO2 in highly unsaturated materials. Furthermore the setting of a bentonite barrier seal limits considerably the gas influx into the biosphere. A 2D axisymetric hydromechanical modeling of the Anderlues natural gas storage site is then performed. The geological and hydrogeological contexts of the site are used to define the problem, for the initial and boundary conditions, as well as the material properties. In order to reproduce stress and water saturation states in the shale before CO2 injection in the mine, different phases corresponding to the shaft sinking, the mining and the set up of the sealing system are simulated. The system efficiency is then evaluated by simulating the CO2 injection with the imposed pressure at the shaft wall. According to the modeling, the low water saturation of concrete and

  7. Exergy and exergoeconomic analyses of a supercritical CO_2 cycle for a cogeneration application

    International Nuclear Information System (INIS)

    Wang, Xurong; Yang, Yi; Zheng, Ya; Dai, Yiping


    Detailed exergy and exergoeconomic analyses are performed for a combined cogeneration cycle in which the waste heat from a recompression supercritical CO_2 Brayton cycle (sCO_2) is recovered by a transcritical CO_2 cycle (tCO_2) for generating electricity. Thermodynamic and exergoeconomic models are developed on the basis of mass and energy conservations, exergy balance and exergy cost equations. Parametric investigations are then conducted to evaluate the influence of key decision variables on the sCO_2/tCO_2 performance. Finally, the combined cycle is optimized from the viewpoint of exergoeconomics. It is found that, combining the sCO_2 with a tCO_2 cycle not only enhances the energy and exergy efficiencies of the sCO_2, but also improves the cycle exergoeconomic performance. The results show that the most exergy destruction rate takes place in the reactor, and the components of the tCO_2 bottoming cycle have less exergy destruction. When the optimization is conducted based on the exergoeconomics, the overall exergoeconomic factor, the total cost rate and the exergy destruction cost rate are 53.52%, 11243.15 $/h and 5225.17 $/h, respectively. The optimization study reveals that an increase in reactor outlet temperature leads to a decrease in total cost rate and total exergy destruction cost rate of the system. - Highlights: • Exergy and exergoeconomic analyses of a combined sCO_2/tCO_2 cycle were performed. • Exergoeconomic optimization of the sCO_2/tCO_2 cycle was presented. • The reactor had the highest exergy loss among sCO_2/tCO_2 cycle components. • The overall exergoeconomic factor was up to 53.5% for the optimum case.

  8. Advanced technology development reducing CO2 emissions

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Sup


    Responding to Korean government policies on green growth and global energy/ environmental challenges, SK energy has been developing new technologies to reduce CO2 emissions by 1) CO2 capture and utilization, 2) efficiency improvement, and 3) Li-ion batteries. The paper introduces three advanced technologies developed by SK energy; GreenPol, ACO, and Li-ion battery. Contributing to company vision, a more energy and less CO2, the three technologies are characterized as follows. GreenPol utilizes CO2 as a feedstock for making polymer. Advanced Catalytic Olefin (ACO) reduces CO2 emission by 20% and increase olefin production by 17%. Li-ion Batteries for automotive industries improves CO2 emission.

  9. Diffuse soil CO_2 degassing from Linosa island

    Directory of Open Access Journals (Sweden)

    Dario Cellura


    Full Text Available Normal 0 14 false false false MicrosoftInternetExplorer4 Normal 0 14 false false false IT X-NONE X-NONE MicrosoftInternetExplorer4 Herein, we present and discuss the result of 148 measurements of soil CO2 flux performed for the first time in Linosa island (Sicily Channel, Italy, a Plio-Pleistocene volcanic complex no longer active but still of interest owing to its location within a seismically active portion of the Sicily Channel rift system. The main purpose of this survey was to assess the occurrence of CO2 soil degassing, and compare flux estimations from this island with data of soil degassing from worldwide active volcanic as well as non-volcanic areas. To this aim soil CO2 fluxes were measured over a surface of about 4.2 km2 covering ~80% of the island. The soil CO2 degassing was observed to be mainly concentrated in the eastern part of the island likely due to volcano-tectonic lineaments, the presence of which is in good agreement with the known predominant regional faults system. Then, the collected data were interpreted using sequential Gaussian simulation that allowed estimating the total CO2 emissions of the island. Results show low levels of CO2 emissions from the soil of the island (~55 ton d-1 compared with CO2 emissions of currently active volcanic areas, such as Miyakejima (Japan and Vulcano (Italy. Results from this study suggest that soil degassing in Linosa is mainly fed by superficial organic activity with a moderate contribution of a deep CO2 likely driven by NW-SE trending active tectonic structures in the eastern part of the island.

  10. Cost evaluation of CO2 sequestration by aqueous mineral carbonation

    International Nuclear Information System (INIS)

    Huijgen, Wouter J.J.; Comans, Rob N.J.; Witkamp, Geert-Jan


    A cost evaluation of CO 2 sequestration by aqueous mineral carbonation has been made using either wollastonite (CaSiO 3 ) or steel slag as feedstock. First, the process was simulated to determine the properties of the streams as well as the power and heat consumption of the process equipment. Second, a basic design was made for the major process equipment, and total investment costs were estimated with the help of the publicly available literature and a factorial cost estimation method. Finally, the sequestration costs were determined on the basis of the depreciation of investments and variable and fixed operating costs. Estimated costs are 102 and 77 EUR/ton CO 2 net avoided for wollastonite and steel slag, respectively. For wollastonite, the major costs are associated with the feedstock and the electricity consumption for grinding and compression (54 and 26 EUR/ton CO 2 avoided, respectively). A sensitivity analysis showed that additional influential parameters in the sequestration costs include the liquid-to-solid ratio in the carbonation reactor and the possible value of the carbonated product. The sequestration costs for steel slag are significantly lower due to the absence of costs for the feedstock. Although various options for potential cost reduction have been identified, CO 2 sequestration by current aqueous carbonation processes seems expensive relative to other CO 2 storage technologies. The permanent and inherently safe sequestration of CO 2 by mineral carbonation may justify higher costs, but further cost reductions are required, particularly in view of (current) prices of CO 2 emission rights. Niche applications of mineral carbonation with a solid residue such as steel slag as feedstock and/or a useful carbonated product hold the best prospects for an economically feasible CO 2 sequestration process. (author)

  11. CO2 Allowance and Electricity Price Interaction

    Energy Technology Data Exchange (ETDEWEB)



    With the introduction of CO2 emission constraints on power generators in the European Union, climate policy is starting to have notable effects on energy markets. This paper sheds light on the links between CO2 prices, electricity prices, and electricity costs to industry. It is based on a series of interviews with industrial and electricity stakeholders, as well as a rich literature seeking to estimate the exact effect of CO2 prices on electricity prices.

  12. CO2 sequestration: Storage capacity guideline needed (United States)

    Frailey, S.M.; Finley, R.J.; Hickman, T.S.


    Petroleum reserves are classified for the assessment of available supplies by governmental agencies, management of business processes for achieving exploration and production efficiency, and documentation of the value of reserves and resources in financial statements. Up to the present however, the storage capacity determinations made by some organizations in the initial CO2 resource assessment are incorrect technically. New publications should thus cover differences in mineral adsorption of CO2 and dissolution of CO2 in various brine waters.

  13. Economic effects on taxing CO2 emissions

    International Nuclear Information System (INIS)

    Haaparanta, P.; Jerkkola, J.; Pohjola, J.


    The CO 2 emissions can be reduced by using economic instruments, like carbon tax. This project included two specific questions related to CO 2 taxation. First one was the economic effects of increasing CO 2 tax and decreasing other taxes. Second was the economic adjustment costs of reducing net emissions instead of gross emissions. A computable general equilibrium (CGE) model was used in this analysis. The study was taken place in Helsinki School of Economics

  14. Estimation of CO2 emissions from fossil fuel burning by using satellite measurements of co-emitted gases: a new method and its application to the European region (United States)

    Berezin, Evgeny V.; Konovalov, Igor B.; Ciais, Philippe; Broquet, Gregoire


    Accurate estimates of emissions of carbon dioxide (CO2), which is a major greenhouse gas, are requisite for understanding of the thermal balance of the atmosphere and for predicting climate change. International and regional CO2 emission inventories are usually compiled by following the 'bottom-up' approach on the basis of available statistical information about fossil fuel consumption. Such information may be rather uncertain, leading to uncertainties in the emission estimates. One of the possible ways to understand and reduce this uncertainty is to use satellite measurements in the framework of the inverse modeling approach; however, information on CO2 emissions, which is currently provided by direct satellite measurements of CO2, remains very limited. The main goal of this study is to develop a CO2 emission estimation method based on using satellite measurements of co-emitted species, such as NOx (represented by NO2 in the satellite measurements) and CO. Due to a short lifetime of NOx and relatively low background concentration of CO, the observed column amounts of NO2 and CO are typically higher over regions with strong emission sources than over remote regions. Therefore, satellite measurements of these species can provide useful information on the spatial distribution and temporal evolution of major emission sources. The method's basic idea (which is similar to the ideas already exploited in the earlier studies [1, 2]) is to combine this information with available estimates of emission factors for all of the species considered. The method assumes optimization of the total CO2 emissions from the two major aggregated sectors of economy. CO2 emission estimates derived from independent satellite measurements of the different species are combined in a probabilistic way by taking into account their uncertainties. The CHIMERE chemistry transport model is used to simulate the relationship between NOx (CO) emissions and NO2 (CO) columns from the OMI (IASI

  15. Geophysical validation and long-term consistency between GOME-2/MetOp-A total ozone column and measurements from the sensors GOME/ERS-2, SCIAMACHY/ENVISAT and OMI/Aura

    Directory of Open Access Journals (Sweden)

    M. E. Koukouli


    Full Text Available The main aim of the paper is to assess the consistency of five years of Global Ozone Monitoring Experiment-2/Metop-A [GOME-2] total ozone columns and the long-term total ozone satellite monitoring database already in existence through an extensive inter-comparison and validation exercise using as reference Brewer and Dobson ground-based measurements. The behaviour of the GOME-2 measurements is being weighed against that of GOME (1995–2011, Ozone Monitoring Experiment [OMI] (since 2004 and the Scanning Imaging Absorption spectroMeter for Atmospheric CartograpHY [SCIAMACHY] (since 2002 total ozone column products. Over the background truth of the ground-based measurements, the total ozone columns are inter-evaluated using a suite of established validation techniques; the GOME-2 time series follow the same patterns as those observed by the other satellite sensors. In particular, on average, GOME-2 data underestimate GOME data by about 0.80%, and underestimate SCIAMACHY data by 0.37% with no seasonal dependence of the differences between GOME-2, GOME and SCIAMACHY. The latter is expected since the three datasets are based on similar DOAS algorithms. This underestimation of GOME-2 is within the uncertainty of the reference data used in the comparisons. Compared to the OMI sensor, on average GOME-2 data underestimate OMI_DOAS (collection 3 data by 1.28%, without any significant seasonal dependence of the differences between them. The lack of seasonality might be expected since both the GOME data processor [GDP] 4.4 and OMI_DOAS are DOAS-type algorithms and both consider the variability of the stratospheric temperatures in their retrievals. Compared to the OMI_TOMS (collection 3 data, no bias was found. We hence conclude that the GOME-2 total ozone columns are well suitable to continue the long-term global total ozone record with the accuracy needed for climate monitoring studies.

  16. The optimal atmospheric CO2 concentration for the growth of winter wheat (Triticum aestivum). (United States)

    Xu, Ming


    This study examined the optimal atmospheric CO2 concentration of the CO2 fertilization effect on the growth of winter wheat with growth chambers where the CO2 concentration was controlled at 400, 600, 800, 1000, and 1200 ppm respectively. I found that initial increase in atmospheric CO2 concentration dramatically enhanced winter wheat growth through the CO2 fertilization effect. However, this CO2 fertilization effect was substantially compromised with further increase in CO2 concentration, demonstrating an optimal CO2 concentration of 889.6, 909.4, and 894.2 ppm for aboveground, belowground, and total biomass, respectively, and 967.8 ppm for leaf photosynthesis. Also, high CO2 concentrations exceeding the optima not only reduced leaf stomatal density, length and conductance, but also changed the spatial distribution pattern of stomata on leaves. In addition, high CO2 concentration also decreased the maximum carboxylation rate (Vc(max)) and the maximum electron transport rate (J(max)) of leaf photosynthesis. However, the high CO2 concentration had little effect on leaf length and plant height. The optimal CO2 fertilization effect found in this study can be used as an indicator in selecting and breeding new wheat strains in adapting to future high atmospheric CO2 concentrations and climate change. Copyright © 2015. Published by Elsevier GmbH.

  17. Impact of Biogas Stations on CO2 Emission from Agriculture

    Directory of Open Access Journals (Sweden)

    Josef Slaboch


    Full Text Available This paper deals with the effects of biogas stations on CO2 emissions produced within agricultural sector. In last years, owing to a positive policy of renewable energy resources a number of biogas stations in the CR has rapidly increased – actually over 350 agricultural biogas stations with the total installed power 365 MW are in operation. Concerning CO2 emissions from the agricultural sector, there is a presumption of decrease in produced emissions owing to decrease of influence of animal wastes which are processed just in the biogas stations. From the results it is obvious that CO2 emissions produced by agriculture in the CR decrease by 93.7 thousand tonnes annually. A presumption P1 that building of biogas stations will further support this trend is documented with results of a simple dynamic linear regression model. Further, elasticities of particular variables influencing the total emission from agriculture are investigated in the paper.

  18. Supercritical CO2 uptake by nonswelling phyllosilicates. (United States)

    Wan, Jiamin; Tokunaga, Tetsu K; Ashby, Paul D; Kim, Yongman; Voltolini, Marco; Gilbert, Benjamin; DePaolo, Donald J


    Interactions between supercritical (sc) CO 2 and minerals are important when CO 2 is injected into geologic formations for storage and as working fluids for enhanced oil recovery, hydraulic fracturing, and geothermal energy extraction. It has previously been shown that at the elevated pressures and temperatures of the deep subsurface, scCO 2 alters smectites (typical swelling phyllosilicates). However, less is known about the effects of scCO 2 on nonswelling phyllosilicates (illite and muscovite), despite the fact that the latter are the dominant clay minerals in deep subsurface shales and mudstones. Our studies conducted by using single crystals, combining reaction (incubation with scCO 2 ), visualization [atomic force microscopy (AFM)], and quantifications (AFM, X-ray photoelectron spectroscopy, X-ray diffraction, and off-gassing measurements) revealed unexpectedly high CO 2 uptake that far exceeded its macroscopic surface area. Results from different methods collectively suggest that CO 2 partially entered the muscovite interlayers, although the pathways remain to be determined. We hypothesize that preferential dissolution at weaker surface defects and frayed edges allows CO 2 to enter the interlayers under elevated pressure and temperature, rather than by diffusing solely from edges deeply into interlayers. This unexpected uptake of CO 2 , can increase CO 2 storage capacity by up to ∼30% relative to the capacity associated with residual trapping in a 0.2-porosity sandstone reservoir containing up to 18 mass % of illite/muscovite. This excess CO 2 uptake constitutes a previously unrecognized potential trapping mechanism. Copyright © 2018 the Author(s). Published by PNAS.

  19. Energy consumption and CO2 emissions in Iran, 2025. (United States)

    Mirzaei, Maryam; Bekri, Mahmoud


    Climate change and global warming as the key human societies' threats are essentially associated with energy consumption and CO 2 emissions. A system dynamic model was developed in this study to model the energy consumption and CO 2 emission trends for Iran over 2000-2025. Energy policy factors are considered in analyzing the impact of different energy consumption factors on environmental quality. The simulation results show that the total energy consumption is predicted to reach 2150 by 2025, while that value in 2010 is 1910, which increased by 4.3% yearly. Accordingly, the total CO 2 emissions in 2025 will reach 985million tonnes, which shows about 5% increase yearly. Furthermore, we constructed policy scenarios based on energy intensity reduction. The analysis show that CO 2 emissions will decrease by 12.14% in 2025 compared to 2010 in the scenario of 5% energy intensity reduction, and 17.8% in the 10% energy intensity reduction scenario. The results obtained in this study provide substantial awareness regarding Irans future energy and CO 2 emission outlines. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Greenhouse gas (CO2 and CH4) emissions from a high altitude hydroelectric reservoir in the tropics (Riogrande II, Colombia) (United States)

    Guérin, Frédéric; Leon, Juan


    Tropical hydroelectric reservoirs are considered as very significant source of methane (CH4) and carbon dioxide (CO2), especially when flooding dense forest. We report emissions from the Rio Grande II Reservoir located at 2000 m.a.s.l. in the Colombian Andes. The dam was built at the confluence of the Rio Grande and Rio Chico in 1990. The reservoir has a surface of 12 km2, a maximum depth of 40m and a residence time of 2.5 month. Water quality (temperature, oxygen, pH, conductivity), nitrate, ammonium, dissolved and particulate organic carbon (DOC and POC), CO2 and CH4 were monitored bi-monthly during 1.5 year at 9 stations in the reservoir. Diffusive fluxes of CO2 and CH4 and CH4 ebullition were measured at 5 stations. The Rio grande II Reservoir is weakly stratified thermally with surface temperature ranging from 20 to 24°C and a constant bottom temperature of 18°C. The reservoir water column is well oxygenated at the surface and usually anoxic below 10m depth. At the stations close to the tributaries water inputs, the water column is well mixed and oxygenated from the surface to the bottom. As reported for other reservoirs located in "clear water" watersheds, the concentrations of nutrients are low (NO3-10 mmol m-2 d-1) were observed during the dry season. Close to the tributaries water inputs where the water column is well mixed, the average diffusive flux is 8 mmol m-2 d-1. CH4 ebullition was 3.5 mmol m-2 d-1 and no ebullition was observed for a water depth higher than 5m. The zone under the influence of the water inputs from tributaries represents 25% of the surface of the reservoir but contributed half of total CH4 emissions from the reservoir (29MgC month-1). Ebullition contributed only to 12% of total CH4 emissions over a year but it contributed up to 60% during the dry season. CH4 emissions from the Rio Grande Reservoir contributed 30% of the total GHG emissions (38GgCO2eq y-1). Overall, this study show that the majority of CH4 emissions from this

  1. Corn residue removal and CO2 emissions (United States)

    Carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4) are the primary greenhouse gases (GHG) emitted from the soil due to agricultural activities. In the short-term, increases in CO2 emissions indicate increased soil microbial activity. Soil micro-organisms decompose crop residues and release...

  2. Increasing CO2 storage in oil recovery

    International Nuclear Information System (INIS)

    Jessen, K.; Kovscek, A.R.; Orr, F.M. Jr.


    Oil fields offer a significant potential for storing CO 2 and will most likely be the first large scale geological targets for sequestration as the infrastructure, experience and permitting procedures already exist. The problem of co-optimizing oil production and CO 2 storage differs significantly from current gas injection practice due to the cost-benefit imbalance resulting from buying CO 2 for enhanced oil recovery projects. Consequently, operators aim to minimize the amount of CO 2 required to sweep an oil reservoir. For sequestration purposes, where high availability of low cost CO 2 is assumed, the design parameters of enhanced oil recovery processes must be re-defined to optimize the amount of CO 2 left in the reservoir at the time of abandonment. To redefine properly the design parameters, thorough insight into the mechanisms controlling the pore scale displacement efficiency and the overall sweep efficiency is essential. We demonstrate by calculation examples the different mechanisms controlling the displacement behavior of CO 2 sequestration schemes, the interaction between flow and phase equilibrium and how proper design of the injection gas composition and well completion are required to co-optimize oil production and CO 2 storage. [Author

  3. NIST Photoionization of CO2 (ARPES) Database (United States)

    SRD 119 NIST Photoionization of CO2 (ARPES) Database (Web, free access)   CO2 is studied using dispersed synchrotron radiation in the 650 Å to 850 Å spectral region. The vibrationally resolved photoelectron spectra are analyzed to generate relative vibrational transition amplitudes and the angular asymmetry parameters describing the various transitions observed.

  4. CO2 Capture with Enzyme Synthetic Analogue

    Energy Technology Data Exchange (ETDEWEB)

    Cordatos, Harry


    Overview of an ongoing, 2 year research project partially funded by APRA-E to create a novel, synthetic analogue of carbonic anhydrase and incorporate it into a membrane for removal of CO2 from flue gas in coal power plants. Mechanism background, preliminary feasibility study results, molecular modeling of analogue-CO2 interaction, and program timeline are provided.

  5. Eindhoven Airport : towards zero CO2 emissions

    NARCIS (Netherlands)

    Jorge Simoes Pedro, Joana


    Eindhoven airport is growing and it is strongly committed to take this opportunity to invest in innovative solutions for a sustainable development. Therefore, this document proposes a strategic plan for reaching Zero CO2 emissions at Eindhoven airport. This document proposes to reduce the CO2

  6. Thermodynamic modeling of CO2 mixtures

    DEFF Research Database (Denmark)

    Bjørner, Martin Gamel

    Knowledge of the thermodynamic properties and phase equilibria of mixtures containing carbon dioxide (CO2) is important in several industrial processes such as enhanced oil recovery, carbon capture and storage, and supercritical extractions, where CO2 is used as a solvent. Despite this importance...

  7. Increasing CO2 storage in oil recovery

    International Nuclear Information System (INIS)

    Jessen, Kristian; Kovscek, Anthony R.; Orr, Franklin M.


    Oil fields offer a significant potential for storing CO 2 and will most likely be the first large scale geological targets for sequestration as the infrastructure, experience and permitting procedures already exist. The problem of co-optimizing oil production and CO 2 storage differs significantly from current gas injection practice due to the cost-benefit imbalance resulting from buying CO 2 for enhanced oil recovery projects. Consequently, operators aim to minimize the amount of CO 2 required to sweep an oil reservoir. For sequestration purposes, where high availability of low cost CO 2 is assumed, the design parameters of enhanced oil recovery processes must be re-defined to optimize the amount of CO 2 left in the reservoir at the time of abandonment. To redefine properly the design parameters, thorough insight into the mechanisms controlling the pore scale displacement efficiency and the overall sweep efficiency is essential. We demonstrate by calculation examples the different mechanisms controlling the displacement behavior of CO 2 sequestration schemes, the interaction between flow and phase equilibrium and how proper design of the injection gas composition and well completion are required to co-optimize oil production and CO 2 storage

  8. CO2 emission calculations and trends

    International Nuclear Information System (INIS)

    Boden, T.A.; Marland, G.; Andres, R.J.


    Evidence that the atmospheric CO 2 concentration has risen during the past several decades is irrefutable. Most of the observed increase in atmospheric CO 2 is believed to result from CO 2 releases from fossil-fuel burning. The United Nations (UN) Framework Convention on Climate Change (FCCC), signed in Rio de Janeiro in June 1992, reflects global concern over the increasing CO 2 concentration and its potential impact on climate. One of the convention's stated objectives was the ''stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. '' Specifically, the FCCC asked all 154 signing countries to conduct an inventory of their current greenhouse gas emissions, and it set nonbinding targets for some countries to control emissions by stabilizing them at 1990 levels by the year 2000. Given the importance of CO 2 as a greenhouse gas, the relationship between CO 2 emissions and increases in atmospheric CO 2 levels, and the potential impacts of a greenhouse gas-induced climate change; it is important that comprehensive CO 2 emissions records be compiled, maintained, updated, and documented

  9. Recent development of capture of CO2

    CERN Document Server

    Chavez, Rosa Hilda


    "Recent Technologies in the capture of CO2" provides a comprehensive summary on the latest technologies available to minimize the emission of CO2 from large point sources like fossil-fuel power plants or industrial facilities. This ebook also covers various techniques that could be developed to reduce the amount of CO2 released into the atmosphere. The contents of this book include chapters on oxy-fuel combustion in fluidized beds, gas separation membrane used in post-combustion capture, minimizing energy consumption in CO2 capture processes through process integration, characterization and application of structured packing for CO2 capture, calcium looping technology for CO2 capture and many more. Recent Technologies in capture of CO2 is a valuable resource for graduate students, process engineers and administrative staff looking for real-case analysis of pilot plants. This eBook brings together the research results and professional experiences of the most renowned work groups in the CO2 capture field...

  10. Flow assurance studies for CO2 transport

    NARCIS (Netherlands)

    Veltin, J.; Belfroid, S.P.C.


    In order to compensate for the relative lack of experience of the CCTS community, Flow Assurance studies of new CO2 pipelines and networks are a very important step toward reliable operation. This report details a typical approach for Flow Assurance study of CO2 transport pipeline. Considerations to

  11. Quantification of the CO2 emitted from volcanic lakes in Pico Island (Azores) (United States)

    Andrade, César; Cruz, José; Viveiros, Fátima; Branco, Rafael


    This study shows the results of the diffuse CO2 degassing surveys performed in lakes from Pico volcanic Island (Azores archipelago, Portugal). Detailed flux measurements using the accumulation chamber method were made at six lakes (Capitão, Caiado, Paul, Rosada, Peixinho and Negra) during two field campaigns, respectively, in winter (February 2016) and late summer (September 2016). Pico is the second largest island of the Azores archipelago with an area of 444.8 km2; the oldest volcanic unit is dated from about 300,000 years ago. The edification of Pico was mainly due to Hawaiian and Strombolian type volcanic activity, resulting in pahoehoe and aa lava flows of basaltic nature, as well as scoria and spatter cones. Three main volcanic complexes are identified in the island, namely (1) the so-called Montanha Volcanic Complex, corresponding to a central volcano located in the western side of the island that reaches a maximum altitude of 2351 m, (2) the São Roque-Piedade Volcanic Complex, and (3) the Topo-Lajes Volcanic Complex, this last one corresponding to the remnants of a shield volcano located in the south coast. The studied lakes are spread along the São Roque-Piedade Volcanic Complex at altitudes between 785 m and 898 m. Three are associated with depressions of undifferentiated origin (Caiado, Peixinho, Negra), two with depressions of tectonic origin (Capitão, Paul), while Rosada lake is located inside a scoria cone crater. The lakes surface areas vary between 1.25x10-2 and 5.38x10-2 km2, and the water column maximum depth is 7.9 m (3.5-7.9 m). The water storage ranges between 3.6x104 to 9.1x104 m3, and the estimated residence time does not exceed 1.8x10-1 years. A total of 1579 CO2 flux measurements were made during both surveys (868 in summer and 711 in the winter campaign), namely 518 in Caiado lake (293; 225), 358 in Paul (195; 163), 279 in Capitão (150, 129), 200 in Rosada (106, 94), 171 in Peixinho (71, 100) and 53 measurements in Negra lake. Negra

  12. PULSE COLUMN (United States)

    Grimmett, E.S.


    This patent covers a continuous countercurrent liquidsolids contactor column having a number of contactor states each comprising a perforated plate, a layer of balls, and a downcomer tube; a liquid-pulsing piston; and a solids discharger formed of a conical section at the bottom of the column, and a tubular extension on the lowest downcomer terminating in the conical section. Between the conical section and the downcomer extension is formed a small annular opening, through which solids fall coming through the perforated plate of the lowest contactor stage. This annular opening is small enough that the pressure drop thereacross is greater than the pressure drop upward through the lowest contactor stage. (AEC)

  13. Excitation of transversely excited CO2 waveguide lasers

    International Nuclear Information System (INIS)

    Wood II, O.R.; Smith, P.W.; Adams, C.R.; Maloney, P.J.


    Using a preionization scheme based on the Malter effect, small-signal gains >5%/cm at 10.6 μm have been produced in a 1-mm 2 -cross-section waveguide CO 2 amplifier at total operating pressures of 100--760 Torr. Comparisons are made between this preionization scheme and those using electron beams

  14. 2-Micron Laser Transmitter for Coherent CO2 DIAL Measurement (United States)

    Singh, Upendra N.; Bai, Yingxin; Yu, Jirong


    Carbon dioxide (CO2) has been recognized as one of the most important greenhouse gases. It is essential for the study of global warming to accurately measure the CO2 concentration in the atmosphere and continuously record its variation. A high repetition rate, highly efficient, Q-switched 2-micron laser system as the transmitter of a coherent differential absorption lidar for CO2 measurement has been developed in NASA Langley Research Center. This laser system is capable of making a vertical profiling of CO2 from ground and column measurement of CO2 from air and space-borne platform. The transmitter is a master-slave laser system. The master laser operates in a single frequency, either on-line or off-line of a selected CO2 absorption line. The slave laser is a Q-switched ring-cavity Ho:YLF laser which is pumped by a Tm:fiber laser. The repetition rate can be adjusted from a few hundred Hz to 10 kHz. The injection seeding success rate is from 99.4% to 99.95%. For 1 kHz operation, the output pulse energy is 5.5mJ with the pulse length of 50 ns. The optical-to-optical efficiency is 39% when the pump power is 14.5W. A Ho:YLF laser operating in the range of 2.05 micrometers can be tuned over several characteristic lines of CO2 absorption. Experimentally, a diode pumped Ho:Tm:YLF laser has been successfully used as the transmitter of coherent differential absorption lidar for the measurement of CO2 with a repetition rate of 5 Hz and pulse energy of 75 mJ. For coherent detection, high repetition rate is required for speckle averaging to obtain highly precise measurements. However, a diode pumped Ho:Tm:YLF laser can not operate in high repetition rate due to the large heat loading and up-conversion. A Tm:fiber laser pumped Ho:YLF laser with low heat loading can operate in high repetition rate. A theoretical model has been established to simulate the performance of Tm:fiber laser pumped Ho:YLF lasers. For continuous wave (CW) operation, high pump intensity with small beam

  15. The ins and outs of CO2 (United States)

    Raven, John A.; Beardall, John


    It is difficult to distinguish influx and efflux of inorganic C in photosynthesizing tissues; this article examines what is known and where there are gaps in knowledge. Irreversible decarboxylases produce CO2, and CO2 is the substrate/product of enzymes that act as carboxylases and decarboxylases. Some irreversible carboxylases use CO2; others use HCO3 –. The relative role of permeation through the lipid bilayer versus movement through CO2-selective membrane proteins in the downhill, non-energized, movement of CO2 is not clear. Passive permeation explains most CO2 entry, including terrestrial and aquatic organisms with C3 physiology and biochemistry, terrestrial C4 plants and all crassulacean acid metabolism (CAM) plants, as well as being part of some mechanisms of HCO3 – use in CO2 concentrating mechanism (CCM) function, although further work is needed to test the mechanism in some cases. However, there is some evidence of active CO2 influx at the plasmalemma of algae. HCO3 – active influx at the plasmalemma underlies all cyanobacterial and some algal CCMs. HCO3 – can also enter some algal chloroplasts, probably as part of a CCM. The high intracellular CO2 and HCO3 – pools consequent upon CCMs result in leakage involving CO2, and occasionally HCO3 –. Leakage from cyanobacterial and microalgal CCMs involves up to half, but sometimes more, of the gross inorganic C entering in the CCM; leakage from terrestrial C4 plants is lower in most environments. Little is known of leakage from other organisms with CCMs, though given the leakage better-examined organisms, leakage occurs and increases the energetic cost of net carbon assimilation. PMID:26466660

  16. Remote sensing of CO2 and CH4 using solar absorption spectrometry with a low resolution spectrometer

    Directory of Open Access Journals (Sweden)

    J. Notholt


    Full Text Available Throughout the last few years solar absorption Fourier Transform Spectrometry (FTS has been further developed to measure the total columns of CO2 and CH4. The observations are performed at high spectral resolution, typically at 0.02 cm−1. The precision currently achieved is generally better than 0.25%. However, these high resolution instruments are quite large and need a dedicated room or container for installation. We performed these observations using a smaller commercial interferometer at its maximum possible resolution of 0.11 cm−1. The measurements have been performed at Bremen and have been compared to observations using our high resolution instrument also situated at the same location. The high resolution instrument has been successfully operated as part of the Total Carbon Column Observing Network (TCCON. The precision of the low resolution instrument is 0.32% for XCO2 and 0.46% for XCH4. A comparison of the measurements of both instruments yields an average deviation in the retrieved daily means of ≤0.2% for CO2. For CH4 an average bias between the instruments of 0.47% was observed. For test cases, spectra recorded by the high resolution instrument have been truncated to the resolution of 0.11 cm−1. This study gives an offset of 0.03% for CO2 and 0.26% for CH4. These results indicate that for CH4 more than 50% of the difference between the instruments results from the resolution dependent retrieval. We tentatively assign the offset to an incorrect a-priori concentration profile or the effect of interfering gases, which may not be treated correctly.

  17. Trend of CO2 emissions of the 30 largest power plants in Germany

    International Nuclear Information System (INIS)

    Hermann, Hauke


    The brochure on the trend of CO 2 emissions of the 30 largest power plants in Germany includes tables of the emissions of these power plants. The CO 2 emissions of these power plants in 2013 (25% of the total German greenhouse gas emissions) have increased by 5% compared to 2012. The total CO 2 emission sin Germany increased by 1.5%. The differences between brown coal and black coal fired power plants are discussed.

  18. Recycling CO 2 ? Computational Considerations of the Activation of CO 2 with Homogeneous Transition Metal Catalysts

    KAUST Repository

    Drees, Markus; Cokoja, Mirza; Kü hn, Fritz E.


    . A similar approach, storing energy from renewable sources in chemical bonds with CO 2 as starting material, may lead to partial recycling of CO 2 created by human industrial activities. Unfortunately, currently available routes for the transformation

  19. Carbonation and CO2 uptake of concrete

    International Nuclear Information System (INIS)

    Yang, Keun-Hyeok; Seo, Eun-A; Tae, Sung-Ho


    This study developed a reliable procedure to assess the carbon dioxide (CO 2 ) uptake of concrete by carbonation during the service life of a structure and by the recycling of concrete after demolition. To generalize the amount of absorbable CO 2 per unit volume of concrete, the molar concentration of carbonatable constituents in hardened cement paste was simplified as a function of the unit content of cement, and the degree of hydration of the cement paste was formulated as a function of the water-to-cement ratio. The contribution of the relative humidity, type of finishing material for the concrete surface, and the substitution level of supplementary cementitious materials to the CO 2 diffusion coefficient in concrete was reflected using various correction factors. The following parameters varying with the recycling scenario were also considered: the carbonatable surface area of concrete crusher-runs and underground phenomena of the decreased CO 2 diffusion coefficient and increased CO 2 concentration. Based on the developed procedure, a case study was conducted for an apartment building with a principal wall system and an office building with a Rahmen system, with the aim of examining the CO 2 uptake of each structural element under different exposure environments during the service life and recycling of the building. As input data necessary for the case study, data collected from actual surveys conducted in 2012 in South Korea were used, which included data on the surrounding environments, lifecycle inventory database, life expectancy of structures, and recycling activity scenario. Ultimately, the CO 2 uptake of concrete during a 100-year lifecycle (life expectancy of 40 years and recycling span of 60 years) was estimated to be 15.5%–17% of the CO 2 emissions from concrete production, which roughly corresponds to 18%–21% of the CO 2 emissions from the production of ordinary Portland cement. - Highlights: • CO 2 uptake assessment approach owing to the

  20. Potential and economics of CO2 sequestration

    International Nuclear Information System (INIS)

    Jean-Baptiste, Ph.; Ciais, Ph.; Orr, J.


    Increasing atmospheric level of greenhouse gases are causing global warming and putting at risk the global climate system. The main anthropogenic greenhouse gas is CO 2 . Some techniques could be used to reduced CO 2 emission and stabilize atmospheric CO 2 concentration, including i) energy savings and energy efficiency, ii) switch to lower carbon content fuels (natural gas) and use energy sources with zero CO 2 emissions such as renewable or nuclear energy, iii) capture and store CO 2 from fossil fuels combustion, and enhance the natural sinks for CO 2 (forests, soils, ocean...). The purpose of this report is to provide an overview of the technology and cost for capture and storage of CO 2 and to review the various options for CO 2 sequestration by enhancing natural carbon sinks. Some of the factors which will influence application, including environmental impact, cost and efficiency, are discussed. Capturing CO 2 and storing it in underground geological reservoirs appears as the best environmentally acceptable option. It can be done with existing technology, however, substantial R and D is needed to improve available technology and to lower the cost. Applicable to large CO 2 emitting industrial facilities such as power plants, cement factories, steel industry, etc., which amount to about 30% of the global anthropic CO 2 emission, it represents a valuable tool in the baffle against global warming. About 50% of the anthropic CO 2 is being naturally absorbed by the biosphere and the ocean. The 'natural assistance' provided by these two large carbon reservoirs to the mitigation of climate change is substantial. The existing natural sinks could be enhanced by deliberate action. Given the known and likely environmental consequences, which could be very damaging indeed, enhancing ocean sinks does not appears as a satisfactory option. In contrast, the promotion of land sinks through demonstrated carbon-storing approach to agriculture, forests and land management could

  1. Acclimation of the summer annual species, lolium temulentum, to CO(2) enrichment (United States)

    Lewis; Peratoner; Cairns; Causton; Foyer


    Lolium temulentum L. Ba 3081 was grown hydroponically in air (350 &mgr;mol mol(-1) CO(2)) and elevated CO(2) (700 &mgr;mol mol(-1) CO(2)) at two irradiances (150 and 500 &mgr;mol m(-2) s(-1)) for 35 days at which point the plants were harvested. Elevated CO(2) did not modify relative growth rate or biomass at either irradiance. Foliar carbon-to-nitrogen ratios were decreased at elevated CO(2) and plants had a greater number of shorter tillers, particularly at the lower growth irradiance. Both light-limited and light-saturated rates of photosynthesis were stimulated. The amount of ribulose-1, 5-bisphosphate carboxylase-oxygenase (Rubisco) protein was increased at elevated CO(2), but maximum extractable Rubisco activities were not significantly increased. A pronounced decrease in the Rubisco activation state was found with CO(2) enrichment, particularly at the higher growth irradiance. Elevated-CO(2)-induced changes in leaf carbohydrate composition were small in comparison to those caused by changes in irradiance. No CO(2)-dependent effects on fructan biosynthesis were observed. Leaf respiration rates were increased by 68% in plants grown with CO(2) enrichment and low light. We conclude that high CO(2) will only result in increased biomass if total light input favourably increases the photosynthesis-to-respiration ratio. At low irradiances, biomass is more limited by increased rates of respiration than by CO(2)-induced enhancement of photosynthesis.

  2. Characterization of a microalgal mutant for CO_2 biofixation and biofuel production

    International Nuclear Information System (INIS)

    Qi, Feng; Pei, Haiyan; Hu, Wenrong; Mu, Ruimin; Zhang, Shuo


    Highlights: • Combination of the isolation using 96-well microplates and traditional UV mutagenesis for screening HCT mutant. • Microalgal mutant Chlorella vulgaris SDEC-3M was screened out by modified UV mutagenesis. • SDEC-3M showed high CO_2 tolerance, high CO_2 requiring and relevant genetic stability. • LCE and carbohydrate content of SDEC-3M were significantly elevated. • SDEC-3M offers a strong candidature as CO_2 biofixation and biofuel production. - Abstract: In the present work, a Chlorella vulgaris mutant, named as SDEC-3M, was screened out through the combination of the isolation using 96-well microplates and traditional UV mutagenesis. Compared with its parent (wild type), the growth of SDEC-3M preferred higher CO_2 (15% v/v) environment to ambient air (0.038% CO_2 (v/v)), indicating that the mutant qualified with good tolerance and growth potential under high level CO_2 (high CO_2 tolerance) but was defective in directly utilizing the low level CO_2 (high CO_2 requiring). The genetic stability under ambient air and high level CO_2 was confirmed by a continuous cultivation for five generations. Higher light conversion efficiency (14.52%) and richer total carbohydrate content (42.48%) demonstrated that both solar energy and CO_2 were more effectively productively fixed into carbohydrates for bioethanol production than the parent strain. The mutant would benefit CO_2 biofixation from industrial exhaust gas to mitigate of global warming and promote biofuel production to relieve energy shortage.

  3. Uncovering China’s transport CO2 emission patterns at the regional level

    International Nuclear Information System (INIS)

    Guo, Bin; Geng, Yong; Franke, Bernd; Hao, Han; Liu, Yaxuan; Chiu, Anthony


    With China’s rapid economic development, its transport sector has experienced a dramatic growth, leading to a large amount of related CO 2 emission. This paper aims to uncover China’s transport CO 2 emission patterns at the regional and provincial level. We first present the CO 2 emission features from transport sector in 30 Chinese provinces, including per capita emissions, emission intensities, and historical evolution of annual CO 2 emission. We then quantify the related driving forces by adopting both period-wise and time-series LMDI analysis. Results indicate that significant regional CO 2 emission disparities exist in China’s transport sector. The eastern region had higher total CO 2 emissions and per capita CO 2 emissions, but lower CO 2 emission intensities in its transport sector. The western region had higher CO 2 emission intensities and experienced a rapid CO 2 emission increase. The CO 2 emission increments in the eastern provinces were mainly contributed by both economic activity effect and population effect, while energy intensity partially offset the emission growth and energy structure had a marginal effect. However, in the central and western provinces, both economic activity effect and energy intensity effect induced the CO 2 emission increases, while the effects from population and energy structure change were limited. - Highlights: • The CO 2 emission features from transport sector in 30 Chinese provinces were presented. • The driving forces of CO 2 emissions from transport sector were quantified. • Regional disparities on China’s transport sector CO 2 emission exist. • Region-specific mitigation policies on transport sector CO 2 emission are needed

  4. CO2 balance in production of energy based on biogas

    DEFF Research Database (Denmark)

    Nielsen, Per Sieverts; Holm-Nielsen, J.B.


    Biogas is an essential biomass source for achieving a reduction of CO2 emission by 50% in year 2030 in Denmark. The physical potential for biogas production in Denmark is more than 10 times the present biogas production in Denmark. In Denmark the largest part of the biogas production is produced...... of increased transportation distances at large biogas plants on the total CO2 balance of the biogas plant. The advantage of constructing large biogas plants is the cost-effective possibility of using industrial organic waste to increase biogas production. In some cases co-fermentation increases biogas...... production up 100%. The present study evaluate optimal transportation strategies for biogas plants taking CO2 balances into account....

  5. Tropospheric and total ozone columns over Paris (France measured using medium-resolution ground-based solar-absorption Fourier-transform infrared spectroscopy

    Directory of Open Access Journals (Sweden)

    C. Viatte


    Full Text Available Ground-based Fourier-transform infrared (FTIR solar absorption spectroscopy is a powerful remote sensing technique providing information on the vertical distribution of various atmospheric constituents. This work presents the first evaluation of a mid-resolution ground-based FTIR to measure tropospheric ozone, independently of stratospheric ozone. This is demonstrated using a new atmospheric observatory (named OASIS for "Observations of the Atmosphere by Solar absorption Infrared Spectroscopy", installed in Créteil (France. The capacity of the technique to separate stratospheric and tropospheric ozone is demonstrated. Daily mean tropospheric ozone columns derived from the Infrared Atmospheric Sounding Interferometer (IASI and from OASIS measurements are compared for summer 2009 and a good agreement of −5.6 (±16.1 % is observed. Also, a qualitative comparison between in-situ surface ozone measurements and OASIS data reveals OASIS's capacity to monitor seasonal tropospheric ozone variations, as well as ozone pollution episodes in summer 2009 around Paris. Two extreme pollution events are identified (on the 1 July and 6 August 2009 for which ozone partial columns from OASIS and predictions from a regional air-quality model (CHIMERE are compared following strict criteria of temporal and spatial coincidence. An average bias of 0.2%, a mean square error deviation of 7.6%, and a correlation coefficient of 0.91 is found between CHIMERE and OASIS, demonstrating the potential of a mid-resolution FTIR instrument in ground-based solar absorption geometry for tropospheric ozone monitoring.

  6. Electricity consumption and CO2 capture potential in Spain

    International Nuclear Information System (INIS)

    Romeo, Luis M.; Calvo, Elena; Valero, Antonio; De Vita, Alessia


    In this paper, different electricity demand scenarios for Spain are presented. Population, income per capita, energy intensity and the contribution of electricity to the total energy demand have been taken into account in the calculations. Technological role of different generation technologies, i.e. coal, nuclear, renewable, combined cycle (CC), combined heat and power (CHP) and carbon capture and storage (CCS), are examined in the form of scenarios up to 2050. Nine future scenarios corresponding to three electrical demands and three options for new capacity: minimum cost of electricity, minimum CO 2 emissions and a criterion with a compromise between CO 2 and cost (CO 2 -cost criterion) have been proposed. Calculations show reduction in CO 2 emissions from 2020 to 2030, reaching a maximum CO 2 emission reduction of 90% in 2050 in an efficiency scenario with CCS and renewables. The contribution of CCS from 2030 is important with percentage values of electricity production around 22-28% in 2050. The cost of electricity (COE) increases up to 25% in 2030, and then this value remains approximately constant or decreases slightly.

  7. Electrocatalytic Alloys for CO2 Reduction. (United States)

    He, Jingfu; Johnson, Noah J J; Huang, Aoxue; Berlinguette, Curtis P


    Electrochemically reducing CO 2 using renewable energy is a contemporary global challenge that will only be met with electrocatalysts capable of efficiently converting CO 2 into fuels and chemicals with high selectivity. Although many different metals and morphologies have been tested for CO 2 electrocatalysis over the last several decades, relatively limited attention has been committed to the study of alloys for this application. Alloying is a promising method to tailor the geometric and electric environments of active sites. The parameter space for discovering new alloys for CO 2 electrocatalysis is particularly large because of the myriad products that can be formed during CO 2 reduction. In this Minireview, mixed-metal electrocatalyst compositions that have been evaluated for CO 2 reduction are summarized. A distillation of the structure-property relationships gleaned from this survey are intended to help in the construction of guidelines for discovering new classes of alloys for the CO 2 reduction reaction. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. CO2 Accounting and Risk Analysis for CO2 Sequestration at Enhanced Oil Recovery Sites. (United States)

    Dai, Zhenxue; Viswanathan, Hari; Middleton, Richard; Pan, Feng; Ampomah, William; Yang, Changbing; Jia, Wei; Xiao, Ting; Lee, Si-Yong; McPherson, Brian; Balch, Robert; Grigg, Reid; White, Mark


    Using CO2 in enhanced oil recovery (CO2-EOR) is a promising technology for emissions management because CO2-EOR can dramatically reduce sequestration costs in the absence of emissions policies that include incentives for carbon capture and storage. This study develops a multiscale statistical framework to perform CO2 accounting and risk analysis in an EOR environment at the Farnsworth Unit (FWU), Texas. A set of geostatistical-based Monte Carlo simulations of CO2-oil/gas-water flow and transport in the Morrow formation are conducted for global sensitivity and statistical analysis of the major risk metrics: CO2/water injection/production rates, cumulative net CO2 storage, cumulative oil/gas productions, and CO2 breakthrough time. The median and confidence intervals are estimated for quantifying uncertainty ranges of the risk metrics. A response-surface-based economic model has been derived to calculate the CO2-EOR profitability for the FWU site with a current oil price, which suggests that approximately 31% of the 1000 realizations can be profitable. If government carbon-tax credits are available, or the oil price goes up or CO2 capture and operating expenses reduce, more realizations would be profitable. The results from this study provide valuable insights for understanding CO2 storage potential and the corresponding environmental and economic risks of commercial-scale CO2-sequestration in depleted reservoirs.

  9. Effects of tillage practice and atmospheric CO2 level on soil CO2 efflux (United States)

    Elevated atmospheric carbon dioxide (CO2) affects both the quantity and quality of plant tissues, which impacts the cycling and storage of carbon (C) within plant/soil systems and thus the rate of CO2 release back to the atmosphere. Research to accurately quantify the effects of elevated CO2 and as...

  10. CO2 content of electricity losses

    International Nuclear Information System (INIS)

    Daví-Arderius, Daniel; Sanin, María-Eugenia; Trujillo-Baute, Elisa


    Countries are implementing policies to develop greener energy markets worldwide. In Europe, the ¨2030 Energy and Climate Package¨ asks for further reductions of green house gases, renewable sources integration, and energy efficiency targets. But the polluting intensity of electricity may be different in average than when considering market inefficiencies, in particular losses, and therefore the implemented policy must take those differences into account. Precisely, herein we study the importance in terms of CO2 emissions the extra amount of energy necessary to cover losses. With this purpose we use Spanish market and system data with hourly frequency from 2011 to 2013. Our results show that indeed electricity losses significantly explain CO2 emissions, with a higher CO2 emissions rate when covering losses than the average rate of the system. Additionally, we find that the market closing technologies used to cover losses have a positive and significant impact on CO2 emissions: when polluting technologies (coal or combined cycle) close the market, the impact of losses on CO2 emissions is high compared to the rest of technologies (combined heat and power, renewables or hydropower). To the light of these results we make some policy recommendations to reduce the impact of losses on CO2 emissions. - Highlights: • Electricity losses significantly explain CO2 emissions. • Policies aimed to reducing losses have a positive impact on CO2 emissions. • The market closing technology used to cover losses have impacts on CO2 emissions. • Pollutant technologies that close the market should be replaced by renewables.

  11. CO2 fluxes near a forest edge

    DEFF Research Database (Denmark)

    Sogachev, Andrey; Leclerc, Monique Y.; Zhang, Gensheng


    In contrast with recent advances on the dynamics of the flow at a forest edge, few studies have considered its role on scalar transport and, in particular, on CO2 transfer. The present study addresses the influence of the abrupt roughness change on forest atmosphere CO2 exchange and contrasts...... as a function of both sources/sinks distribution and the vertical structure of the canopy. Results suggest that the ground source plays a major role in the formation of wave-like vertical CO2 flux behavior downwind of a forest edge, despite the fact that the contribution of foliage sources/sinks changes...

  12. CO2, the promises of geological sequestration

    International Nuclear Information System (INIS)

    Rouat, S.


    Trapping part of the world CO 2 effluents in the deep underground is a profitable and ecological way to limit the global warming. This digest paper presents the different ways of CO 2 sequestration (depleted oil and gas fields, unexploited coal seams, saline aquifers), the other possible solutions for CO 2 abatement (injection in the bottom of the ocean, conversion into carbonates by injection into basic rocks, fixation by photosynthesis thanks to micro-algae cultivation), and takes stock of the experiments in progress (Snoehvit field in Norway, European project Castor). (J.S.)

  13. Climate change and the CO2 myth

    International Nuclear Information System (INIS)

    Boettcher, C.J.F.


    Further increase of the CO 2 concentration in the atmosphere has little effect on the greenhouse effect contrary to the effect of the increase of other greenhouse gases. However, politicians are using targets for the reduction of CO 2 emissions that are unrealistic, taking into account the scientific uncertainties of the applied models, the doubts about the feasibility of quantitative targets and the economic consequences of such drastic measures. Some recommendations are given for a more realistic CO 2 policy. Also attention is paid to the important role that coal will play in the future of the energy supply. 5 figs., 3 ills

  14. Carbon Balance at Landscape Level inferred fromTower CO2 Concentration Measurements (United States)

    Chen, J. M.; Chen, B.; Higuchi, K.; Chan, D.; Shashkov, A.; Lin, H.; Liu, J.


    Terrestrial carbon sinks are considerable in the global carbon budget, but the accumulation of carbon in terrestrial ecosystems is very small (~0.2% per year) relative to the total carbon stocks in forests. Currently, eddy-covariance instruments mounted on towers are the only reliable means to measure carbon balance of a land surface, albeit limited to small areas and not free of caveats. In our quest of understanding the collective performance of ecosystems under the changing climate, it is highly desirable to have the ability to acquire carbon cycle information for large areas (landscape) consisting of patches of different ecosystems. For this purpose we explored methodologies of inferring carbon cycle information from tower CO2 concentration measurements affected by large areas (100-10000 km2). An ecosystem model named Boreal Ecosystem Productivity Simulator (BEPS) is coupled with a carbon-specific Vertical Diffusion Scheme (VDS) in order to decipher temporal variations in CO2 for landscape-level photosynthesis and respiration information. The coupled BEPS-VDS is applied to a unique 9-year (1990-2000 with 1997-8 missing data) 5-minute CO2 record measured on a 40-m tower over boreal forests near Fraserdale, Ontario, Canada. Over the period, the mean diurnal amplitude of the measured CO2 at 40 m increased by 5.58 ppmv, or 28% in the growing season. The increase in nighttime ecosystem respiration, causing the increase in the daily maximum CO2 concentration, was responsible for 65% of the increase in the diurnal amplitude, i.e., 3.61 ppmv, corresponding to an increase in the mean daily air temperature by about 2.77 degC and precipitation by 5% over the same period. The rest (35%) is explained by the increase in ecosystem daytime photosynthesis, causing the decrease in the daily minimum CO2 concentration. As the nighttime stable boundary layer (SBL) (270-560 m) was much shallower than the daytime convective boundary layer (CBL) (1000-1600 m), the increase in

  15. The Impact of Prior Biosphere Models in the Inversion of Global Terrestrial CO2 Fluxes by Assimilating OCO-2 Retrievals (United States)

    Philip, Sajeev; Johnson, Matthew S.


    Atmospheric mixing ratios of carbon dioxide (CO2) are largely controlled by anthropogenic emissions and biospheric fluxes. The processes controlling terrestrial biosphere-atmosphere carbon exchange are currently not fully understood, resulting in terrestrial biospheric models having significant differences in the quantification of biospheric CO2 fluxes. Atmospheric transport models assimilating measured (in situ or space-borne) CO2 concentrations to estimate "top-down" fluxes, generally use these biospheric CO2 fluxes as a priori information. Most of the flux inversion estimates result in substantially different spatio-temporal posteriori estimates of regional and global biospheric CO2 fluxes. The Orbiting Carbon Observatory 2 (OCO-2) satellite mission dedicated to accurately measure column CO2 (XCO2) allows for an improved understanding of global biospheric CO2 fluxes. OCO-2 provides much-needed CO2 observations in data-limited regions facilitating better global and regional estimates of "top-down" CO2 fluxes through inversion model simulations. The specific objectives of our research are to: 1) conduct GEOS-Chem 4D-Var assimilation of OCO-2 observations, using several state-of-the-science biospheric CO2 flux models as a priori information, to better constrain terrestrial CO2 fluxes, and 2) quantify the impact of different biospheric model prior fluxes on OCO-2-assimilated a posteriori CO2 flux estimates. Here we present our assessment of the importance of these a priori fluxes by conducting Observing System Simulation Experiments (OSSE) using simulated OCO-2 observations with known "true" fluxes.

  16. Equilibration of metabolic CO2 with preformed CO2 and bicarbonate

    International Nuclear Information System (INIS)

    Hems, R.; Saez, G.T.


    Entry of metabolic 14 CO 2 into urea is shown to occur more readily than it equilibrates with the general pool of cellular plus extracellular bicarbonate plus CO 2 . Since the sites of CO 2 production (pyruvate dehydrogenase and oxoglutarate dehydrogenase) and of fixation (carbamoylphosphate synthetase) are intramitochondrial, it is likely that the fixation of CO 2 is also more rapid than its equilibration with the cytoplasmic pool of bicarbonate plus CO 2 . This observation may point to a more general problem concerning the interpretation of isotope data, with compartmentation or proximity of sites of production and utilisation of metabolites may result in the isotope following a preferred pathway. (Auth.)

  17. Fixed-bed column studies of total organic carbon removal from industrial wastewater by use of diatomite decorated with polyethylenimine-functionalized pyroxene nanoparticles. (United States)

    Hethnawi, Afif; Manasrah, Abdallah D; Vitale, Gerardo; Nassar, Nashaat N


    In this study, a fixed-bed column adsorption process was employed to remove organic pollutants from a real industrial wastewater effluent using polyethylenimine-functionalized pyroxene nanoparticles (PEI-PY) embedded into Diatomite at very low mass percentage. Various dynamic parameters (e.g., inlet concentration, inlet flow rate, bed height, and PEI-nanoparticle concentration in Diatomite, (%nps)) were investigated to determine the breakthrough behavior. The obtained breakthrough curves were fit with a convection-dispersion model to determine the characteristic parameters based on mass transfer phenomena. The axial dispersion coefficient (D L ) and group of dimensionless numbers; including Renold number (Re), Schmidt number (Sc), and Sherwood number (Sh) were all determined and correlated by Wilson-Geankoplis correlation that was used to estimate the external film diffusion coefficients (Kc) at 0.0015 < Re<55. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. CO2 Capture by Cement Raw Meal

    DEFF Research Database (Denmark)

    Pathi, Sharat Kumar; Lin, Weigang; Illerup, Jytte Boll


    The cement industry is one of the major sources of CO2 emissions and is likely to contribute to further increases in the near future. The carbonate looping process has the potential to capture CO2 emissions from the cement industry, in which raw meal for cement production could be used...... as the sorbent. Cyclic experiments were carried out in a TGA apparatus using industrial cement raw meal and synthetic raw meal as sorbents, with limestone as the reference. The results show that the CO2 capture capacities of the cement raw meal and the synthetic raw meal are comparable to those of pure limestone...... that raw meal could be used as a sorbent for the easy integration of the carbonate looping process into the cement pyro process for reducing CO2 emissions from the cement production process....

  19. Energy Efficiency instead of CO2 levy

    International Nuclear Information System (INIS)

    Uetz, R.


    This article takes a look at ways of avoiding a future, planned Swiss CO 2 levy by improving the efficiency of energy use. The political situation concerning the reduction of CO 2 emissions in Switzerland is reviewed and the likeliness of the introduction of a CO 2 levy is discussed. Strategies for the reduction of fossil fuel consumption and therefore of CO 2 emissions are looked at, including process optimisation. Recommendations are made on how to approach this work systematically - data collection, assessment of the potential for reduction and the planning of measures to be taken are looked at. The high economic efficiency of immediate action is stressed and typical middle and long-term measures are listed

  20. The ATLAS IBL CO2 Cooling System

    CERN Document Server

    Verlaat, Bartholomeus; The ATLAS collaboration


    The Atlas Pixel detector has been equipped with an extra B-layer in the space obtained by a reduced beam pipe. This new pixel detector called the ATLAS Insertable B-Layer (IBL) is installed in 2014 and is operational in the current ATLAS data taking. The IBL detector is cooled with evaporative CO2 and is the first of its kind in ATLAS. The ATLAS IBL CO2 cooling system is designed for lower temperature operation (<-35⁰C) than the previous developed CO2 cooling systems in High Energy Physics experiments. The cold temperatures are required to protect the pixel sensors for the high expected radiation dose up to 550 fb^-1 integrated luminosity. This paper describes the design, development, construction and commissioning of the IBL CO2 cooling system. It describes the challenges overcome and the important lessons learned for the development of future systems which are now under design for the Phase-II upgrade detectors.

  1. Capture and geological storage of CO2

    International Nuclear Information System (INIS)


    Capture and geological storage of CO 2 could be a contribution to reduce CO 2 emissions, and also a way to meet the factor 4 objective of reduction of greenhouse gas emissions. This publication briefly presents the capture and storage definitions and principles, and comments some key data related to CO 2 emissions, and their natural trapping by oceans, soils and forests. It discusses strengths (a massive and perennial reduction of CO 2 emissions, a well defined regulatory framework) and weaknesses (high costs and uncertain cost reduction perspectives, a technology which still consumes a lot of energy, geological storage capacities still to be determined, health environmental impacts and risks to be controlled, a necessary consultation of population for planned projects) of this option. Actions undertaken by the ADEME are briefly reviewed

  2. CO2 Washout Capability with Breathing Manikin (United States)

    National Aeronautics and Space Administration — Carbon Dioxide (CO2) Washout performance is a critical parameter needed to ensure proper and sufficient designs in a spacesuit and in vehicle applications such as...

  3. Emerging terawatt picosecond CO2 laser technology

    International Nuclear Information System (INIS)

    Pogorelsky, I.V.


    The first terawatt picosecond (TWps) CO 2 laser is under construction at the BNL Accelerator Test Facility (ATF). TWps-CO 2 lasers, having an order of magnitude longer wavelength than the well-known table-top terawatt solid state lasers, offer new opportunities for strong-field physics research. For laser wakefield accelerators (LWFA) the advantage of the new class of lasers is due to a gain of two orders of magnitude in the ponderomotive potential. The large average power of CO 2 lasers is important for the generation of hard radiation through Compton back-scattering of the laser off energetic electron beams. The authors discuss applications of TWps-CO 2 lasers for LWFA modules of a tentative electron-positron collider, for γ-γ (or γ-lepton) colliders, for a possible table-top source of high-intensity x-rays and gamma rays, and the generation of polarized positron beams

  4. Porous Organic Polymers for CO2 Capture

    KAUST Repository

    Teng, Baiyang


    to reduce the emission of CO2 to atmosphere. Porous organic polymers (POPs) are promising candidates for this application due to their readily tunable textual properties and surface functionalities. The objective of this thesis work is to develop new POPs

  5. Upscaling of enzyme enhanced CO2 capture

    DEFF Research Database (Denmark)

    Gladis, Arne Berthold

    Fossil fuels are the backbone of the energy generation in the coming decades for USA, China, India and Europe, hence high greenhouse gas emissions are expected in future. Carbon capture and storage technology (CCS) is the only technology that can mitigate greenhouse gas emissions from fossil fuel...... the mass transfer of CO2 with slow-capturing but energetically favorable solvents can open up a variety of new process options for this technology. The ubiquitous enzyme carbonic anhydrase (CA), which enhances the mass transfer of CO2 in the lungs by catalyzing the reversible hydration of CO2, is one very...... enhanced CO2 capture technology by identifying the potentials and limitations in lab and in pilot scale and benchmarking the process against proven technologies. The main goal was to derive a realistic process model for technical size absorbers with a wide range of validity incorporating a mechanistic...

  6. Significant discharge of CO2 from hydrothermalism associated with the submarine volcano of El Hierro Island (United States)

    Santana-Casiano, J. M.; Fraile-Nuez, E.; González-Dávila, M.; Baker, E. T.; Resing, J. A.; Walker, S. L.


    The residual hydrothermalism associated with submarine volcanoes, following an eruption event, plays an important role in the supply of CO2 to the ocean. The emitted CO2 increases the acidity of seawater. The submarine volcano of El Hierro, in its degasification stage, provided an excellent opportunity to study the effect of volcanic CO2 on the seawater carbonate system, the global carbon flux, and local ocean acidification. A detailed survey of the volcanic edifice was carried out using seven CTD-pH-ORP tow-yo studies, localizing the redox and acidic changes, which were used to obtain surface maps of anomalies. In order to investigate the temporal variability of the system, two CTD-pH-ORP yo-yo studies were conducted that included discrete sampling for carbonate system parameters. Meridional tow-yos were used to calculate the amount of volcanic CO2 added to the water column for each surveyed section. The inputs of CO2 along multiple sections combined with measurements of oceanic currents produced an estimated volcanic CO2 flux = 6.0 105 ± 1.1 105 kg d-1 which is ~0.1% of global volcanic CO2 flux. Finally, the CO2 emitted by El Hierro increases the acidity above the volcano by ~20%.

  7. Impacts of CO2 Enrichment on Productivity and Light Requirements of Eelgrass. (United States)

    Zimmerman, R. C.; Kohrs, D. G.; Steller, D. L.; Alberte, R. S.


    Seagrasses, although well adapted for submerged existence, are CO2-limited and photosynthetically inefficient in seawater. This leads to high light requirements for growth and survival and makes seagrasses vulnerable to light limitation. We explored the long-term impact of increased CO2 availability on light requirements, productivity, and C allocation in eelgrass (Zostera marina L.). Enrichment of seawater CO2 increased photosynthesis 3-fold, but had no long-term impact on respiration. By tripling the rate of light-saturated photosynthesis, CO2 enrichment reduced the daily period of irradiance-saturated photosynthesis (Hsat) that is required for the maintenance of positive whole-plant C balance from 7 to 2.7 h, allowing plants maintained under 4 h of Hsat to perform like plants growing in unenriched seawater with 12 h of Hsat. Eelgrass grown under 4 h of Hsat without added CO2 consumed internal C reserves as photosynthesis rates and chlorophyll levels dropped. Growth ceased after 30 d. Leaf photosynthesis, respiration, chlorophyll, and sucrose-phosphate synthase activity of CO2-enriched plants showed no acclimation to prolonged enrichment. Thus, the CO2-stimulated improvement in photosynthesis reduced light requirements in the long term, suggesting that globally increasing CO2 may enhance seagrass survival in eutrophic coastal waters, where populations have been devastated by algal proliferation and reduced water-column light transparency.

  8. Performance of supercritical Brayton cycle using CO2-based binary mixture at varying critical points for SFR applications

    International Nuclear Information System (INIS)

    Jeong, Woo Seok; Jeong, Yong Hoon


    Kr mixtures had an increase in the total cycle efficiency. At the increased critical temperatures, the performances of CO 2 –H 2 S and CO 2 –cyclohexane with the recompression layout were superior to the S-CO 2 cycle when the compressor inlet temperature was above the critical temperature of CO 2

  9. Natural Analogues of CO2 Geological Storage

    International Nuclear Information System (INIS)

    Perez del Villar, L.; Pelayo, M.; Recreo, F.


    Geological storage of carbon dioxide is nowadays, internationally considered as the most effective method for greenhouse gas emission mitigation, in order to minimize the global climate change universally accepted. Nevertheless, the possible risks derived of this long-term storage have a direct influence on its public acceptance. Among the favourable geological formations to store CO2, depleted oil and gas fields, deep saline reservoirs, and unamiable coal seams are highlighted. One of the most important objectives of the R and D projects related to the CO2 geological storage is the evaluation of the CO2 leakage rate through the above mentioned geological formations. Therefore, it is absolutely necessary to increase our knowledge on the interaction among CO2, storage and sealing formations, as well as on the flow paths and the physical resistance of the sealing formation. The quantification of the CO2 leakage rate is essential to evaluate the effects on the human and animal health, as well as for the ecosystem and water quality. To achieve these objectives, the study of the natural analogues is very useful in order to know the natural leakage rate to the atmosphere, its flow paths, the physical, chemical and mineralogical modifications due to the long term interaction processes among the CO2 and the storage and sealing formations, as well as the effects on the groundwaters and ecosystems. In this report, we have tried to summarise the main characteristics of the natural reservoirs and surficial sources of CO2, which are both natural analogues of the geological storage and CO2 leakage, studied in EEUU, Europe and Australia. The main objective of this summary is to find the possible applications for long-term risk prediction and for the performance assessment by means of conceptual and numerical modelling, which will allow to validate the predictive models of the CO2 storage behaviour, to design and develop suitable monitoring techniques to control the CO2 behaviour

  10. A new method to detect long term trends of methane (CH4 and nitrous oxide (N2O total columns measured within the NDACC ground-based high resolution solar FTIR network

    Directory of Open Access Journals (Sweden)

    M. Schneider


    Full Text Available Total columns measured with the ground-based solar FTIR technique are highly variable in time due to atmospheric chemistry and dynamics in the atmosphere above the measurement station. In this paper, a multiple regression model with anomalies of air pressure, total columns of hydrogen fluoride (HF and carbon monoxide (CO and tropopause height are used to reduce the variability in the methane (CH4 and nitrous oxide (N2O total columns to estimate reliable linear trends with as small uncertainties as possible. The method is developed at the Harestua station (60° N, 11° E, 600 m a.s.l. and used on three other European FTIR stations, i.e. Jungfraujoch (47° N, 8° E, 3600 m a.s.l., Zugspitze (47° N, 11° E, 3000 m a.s.l., and Kiruna (68° N, 20° E, 400 m a.s.l.. Linear CH4 trends between 0.13 ± 0.01-0.25 ± 0.02 % yr−1 were estimated for all stations in the 1996-2009 period. A piecewise model with three separate linear trends, connected at change points, was used to estimate the short term fluctuations in the CH4 total columns. This model shows a growth in 1996–1999 followed by a period of steady state until 2007. From 2007 until 2009 the atmospheric CH4 amount increases between 0.57 ± 0.22–1.15 ± 0.17 % yr−1. Linear N2O trends between 0.19 ± 0.01–0.40 ± 0.02 % yr−1 were estimated for all stations in the 1996-2007 period, here with the strongest trend at Harestua and Kiruna and the lowest at the Alp stations. From the N2O total columns crude tropospheric and stratospheric partial columns were derived, indicating that the observed difference in the N2O trends between the FTIR sites is of stratospheric origin. This agrees well with the N2O measurements by the SMR instrument onboard the Odin satellite showing the highest trends at Harestua, 0.98 ± 0.28 % yr−1, and considerably smaller trends at lower latitudes, 0.27 ± 0.25 % yr−1. The multiple regression model was compared with two other trend methods, the ordinary linear

  11. Evaluation Analysis of the CO2 Emission and Absorption Life Cycle for Precast Concrete in Korea

    Directory of Open Access Journals (Sweden)

    Taehyoung Kim


    Full Text Available To comply with recent international trends and initiatives, and in order to help achieve sustainable development, Korea has established a greenhouse gas (GHG emission reduction target of 37% (851 million tons of the business as usual (BAU rate by 2030. Regarding environmentally-oriented standards such as the IGCC (International Green Construction Code, there are also rising demands for the assessment on CO2 emissions during the life cycle in accordance with ISO (International Standardization Organization’s Standard 14040. At present, precast concrete (PC engineering-related studies primarily cover structural and construction aspects, including improvement of structural performance in the joint, introduction of pre-stressed concrete and development of half PC. In the manufacture of PC, steam curing is mostly used for the early-strength development of concrete. In steam curing, a large amount of CO2 is produced, causing an environmental problem. Therefore, this study proposes a method to assess CO2 emissions (including absorption throughout the PC life cycle by using a life cycle assessment (LCA method. Using the proposed assessment method, CO2 emissions during the life cycle of a precast concrete girder (PCG were assessed. In addition, CO2 absorption was assessed against a PCG using conventional carbonation and CO2 absorption-related models. As a result, the CO2 emissions throughout the life cycle of the PCG were 1365.6 (kg-CO2/1 PCG. The CO2 emissions during the production of raw materials among the CO2 emissions throughout the life cycle of the PCG were 1390 (kg-CO2/1 PCG, accounting for a high portion to total CO2 emissions (nearly 90%. In contrast, the transportation and manufacture stages were 1% and 10%, respectively, having little effect on total CO2 emissions. Among the use of the PCG, CO2 absorption was mostly decided by the CO2 diffusion coefficient and the amount of CO2 absorption by cement paste. The CO2 absorption by carbonation

  12. CO2 emissions of nuclear power supply

    International Nuclear Information System (INIS)

    Wissel, S.; Mayer-Spohn, O.; Fahl, U.; Voss, A.


    Increasingly, supported by the recent reports of the IPCC (International Panel on Climate Change), political, social and scientific institutions call for the use of atomic energy for reducing CO2 emissions. In Germany, the discussion is highly controversial. A life-cycle balance of nuclear power shows that its CO2 emissions are much lower than those of other technologies, even if changes in the nuclear fuel cycle are taken into account. (orig.)

  13. Photoacoustic CO2-Sensor for Automotive Applications


    Huber, J.; Weber, C.; Eberhardt, A.; Wöllenstein, J.


    We present a field-tested miniaturized spectroscopic CO2 sensor which is based on the photoacoustic effect. The sensor is developed for automotive applications and considers the requirements for the usage in vehicles. The sensor measures two measurement ranges simultaneously: The monitoring of the indoor air quality and the detection of possible leakages of the coolant in CO2 air-conditioning systems. The sensor consists of a miniaturized innovative photoacoustic sensor unit with integrated e...

  14. Study on CO2 global recycling system

    International Nuclear Information System (INIS)

    Takeuchi, M.; Sakamoto, Y.; Niwa, S.


    In order to assist in finding ways to mitigate CO 2 emission and to slow the depletion of fossil fuels we have established and evaluated a representative system, which consists of three technologies developed in our laboratory. These technologies were in CO 2 recovery, hydrogen production and methanol synthesis and in addition we established the necessary supporting systems. Analysis of outline designs of the large scale renewable energy power generation system and this system and energy input for building plant, energy input for running plant has been conducted based on a case using this system for a 1000-MW coal fired power plant, followed by an evaluation of the material balance and energy balance. The results are as follows. Energy efficiency is 34%, the CO 2 reduction rate is 41%, the balance ratio of the energy and CO 2 of the system is 2.2 and 1.8, respectively, on the assumption that the primary renewable energy is solar thermal power generation, the stationary CO 2 emission source is a coal-fired power plant and the generation efficiency of the methanol power plant is 60%. By adopting the system, 3.7 million tons of CO 2 can be recovered, approximately 2.7 million tons of methanol can be produced, and 15.4 billion kWh of electricity can be generated per year. Compared to generating all electrical power using only coal, approximately 2.6 million tons of coal per year can be saved and approximately 2.15 million tons of CO 2 emission can be reduced. Therefore, it is clearly revealed that this system would be effective to reduce CO 2 emissions and to utilize renewable energy

  15. Managing geological uncertainty in CO2-EOR reservoir assessments (United States)

    Welkenhuysen, Kris; Piessens, Kris


    Recently the European Parliament has agreed that an atlas for the storage potential of CO2 is of high importance to have a successful commercial introduction of CCS (CO2 capture and geological storage) technology in Europe. CO2-enhanced oil recovery (CO2-EOR) is often proposed as a promising business case for CCS, and likely has a high potential in the North Sea region. Traditional economic assessments for CO2-EOR largely neglect the geological reality of reservoir uncertainties because these are difficult to introduce realistically in such calculations. There is indeed a gap between the outcome of a reservoir simulation and the input values for e.g. cost-benefit evaluations, especially where it concerns uncertainty. The approach outlined here is to turn the procedure around, and to start from which geological data is typically (or minimally) requested for an economic assessment. Thereafter it is evaluated how this data can realistically be provided by geologists and reservoir engineers. For the storage of CO2 these parameters are total and yearly CO2 injection capacity, and containment or potential on leakage. Specifically for the EOR operation, two additional parameters can be defined: the EOR ratio, or the ratio of recovered oil over injected CO2, and the CO2 recycling ratio of CO2 that is reproduced after breakthrough at the production well. A critical but typically estimated parameter for CO2-EOR projects is the EOR ratio, taken in this brief outline as an example. The EOR ratio depends mainly on local geology (e.g. injection per well), field design (e.g. number of wells), and time. Costs related to engineering can be estimated fairly good, given some uncertainty range. The problem is usually to reliably estimate the geological parameters that define the EOR ratio. Reliable data is only available from (onshore) CO2-EOR projects in the US. Published studies for the North Sea generally refer to these data in a simplified form, without uncertainty ranges, and are

  16. Quantifying pCO2 in biological ocean acidification experiments: A comparison of four methods. (United States)

    Watson, Sue-Ann; Fabricius, Katharina E; Munday, Philip L


    Quantifying the amount of carbon dioxide (CO2) in seawater is an essential component of ocean acidification research; however, equipment for measuring CO2 directly can be costly and involve complex, bulky apparatus. Consequently, other parameters of the carbonate system, such as pH and total alkalinity (AT), are often measured and used to calculate the partial pressure of CO2 (pCO2) in seawater, especially in biological CO2-manipulation studies, including large ecological experiments and those conducted at field sites. Here we compare four methods of pCO2 determination that have been used in biological ocean acidification experiments: 1) Versatile INstrument for the Determination of Total inorganic carbon and titration Alkalinity (VINDTA) measurement of dissolved inorganic carbon (CT) and AT, 2) spectrophotometric measurement of pHT and AT, 3) electrode measurement of pHNBS and AT, and 4) the direct measurement of CO2 using a portable CO2 equilibrator with a non-dispersive infrared (NDIR) gas analyser. In this study, we found these four methods can produce very similar pCO2 estimates, and the three methods often suited to field-based application (spectrophotometric pHT, electrode pHNBS and CO2 equilibrator) produced estimated measurement uncertainties of 3.5-4.6% for pCO2. Importantly, we are not advocating the replacement of established methods to measure seawater carbonate chemistry, particularly for high-accuracy quantification of carbonate parameters in seawater such as open ocean chemistry, for real-time measures of ocean change, nor for the measurement of small changes in seawater pCO2. However, for biological CO2-manipulation experiments measuring differences of over 100 μatm pCO2 among treatments, we find the four methods described here can produce similar results with careful use.

  17. Recent developments in CO2 lasers (United States)

    Du, Keming


    CO2 lasers have been used in industry mainly for such things as cutting, welding, and surface processing. To conduct a broad spectrum of high-speed and high-quality applications, most of the developments in industrial CO2 lasers at the ILT are aimed at increasing the output power, optimizing the beam quality, and reducing the production costs. Most of the commercial CO2 lasers above 5 kW are transverse-flow systems using dc excitation. The applications of these lasers are limited due to the lower beam quality, the poor point stability, and the lower modulation frequency. To overcome the problems we developed a fast axial- flow CO2 laser using rf excitation with an output of 13 kW. In section 2 some of the results are discussed concerning the gas flow, the discharge, the resonator design, optical effects of active medium, the aerodynamic window, and the modulation of the output power. The first CO2 lasers ever built are diffusion-cooled systems with conventional dc excited cylindrical discharge tubes surrounded by cooling jackets. The output power per unit length is limited to 50 W/m by those lasers with cylindrical tubes. In the past few years considerable increases in the output power were achieved, using new mechanical geometries, excitation- techniques, and resonator designs. This progress in diffusion-cooled CO2 lasers is presented in section 3.

  18. CO2 efflux from cleared mangrove peat.

    Directory of Open Access Journals (Sweden)

    Catherine E Lovelock

    Full Text Available CO(2 emissions from cleared mangrove areas may be substantial, increasing the costs of continued losses of these ecosystems, particularly in mangroves that have highly organic soils.We measured CO(2 efflux from mangrove soils that had been cleared for up to 20 years on the islands of Twin Cays, Belize. We also disturbed these cleared peat soils to assess what disturbance of soils after clearing may have on CO(2 efflux. CO(2 efflux from soils declines from time of clearing from ∼10,600 tonnes km(-2 year(-1 in the first year to 3000 tonnes km(2 year(-1 after 20 years since clearing. Disturbing peat leads to short term increases in CO(2 efflux (27 umol m(-2 s(-1, but this had returned to baseline levels within 2 days.Deforesting mangroves that grow on peat soils results in CO(2 emissions that are comparable to rates estimated for peat collapse in other tropical ecosystems. Preventing deforestation presents an opportunity for countries to benefit from carbon payments for preservation of threatened carbon stocks.

  19. How secure is subsurface CO2 storage? Controls on leakage in natural CO2 reservoirs (United States)

    Miocic, Johannes; Gilfillan, Stuart; McDermott, Christopher; Haszeldine, Stuart


    Carbon Capture and Storage (CCS) is the only industrial scale technology available to directly reduce carbon dioxide (CO2) emissions from fossil fuelled power plants and large industrial point sources to the atmosphere. The technology includes the capture of CO2 at the source and transport to subsurface storage sites, such as depleted hydrocarbon reservoirs or saline aquifers, where it is injected and stored for long periods of time. To have an impact on the greenhouse gas emissions it is crucial that there is no or only a very low amount of leakage of CO2 from the storage sites to shallow aquifers or the surface. CO2 occurs naturally in reservoirs in the subsurface and has often been stored for millions of years without any leakage incidents. However, in some cases CO2 migrates from the reservoir to the surface. Both leaking and non-leaking natural CO2 reservoirs offer insights into the long-term behaviour of CO2 in the subsurface and on the mechanisms that lead to either leakage or retention of CO2. Here we present the results of a study on leakage mechanisms of natural CO2 reservoirs worldwide. We compiled a global dataset of 49 well described natural CO2 reservoirs of which six are leaking CO2 to the surface, 40 retain CO2 in the subsurface and for three reservoirs the evidence is inconclusive. Likelihood of leakage of CO2 from a reservoir to the surface is governed by the state of CO2 (supercritical vs. gaseous) and the pressure in the reservoir and the direct overburden. Reservoirs with gaseous CO2 is more prone to leak CO2 than reservoirs with dense supercritical CO2. If the reservoir pressure is close to or higher than the least principal stress leakage is likely to occur while reservoirs with pressures close to hydrostatic pressure and below 1200 m depth do not leak. Additionally, a positive pressure gradient from the reservoir into the caprock averts leakage of CO2 into the caprock. Leakage of CO2 occurs in all cases along a fault zone, indicating that

  20. Atmospheric observations of carbon monoxide and fossil fuel CO2 emissions from East Asia

    DEFF Research Database (Denmark)

    Turnbull, Jocelyn C.; Tans, Pieter P.; Lehman, Scott J.


    Flask samples from two sites in East Asia, Tae-Ahn Peninsula, Korea (TAP), and Shangdianzi, China (SDZ), were measured for trace gases including CO2, CO and fossil fuel CO2(CO(2)ff, derived from Delta(CO2)-C-14 observations). The five-year TAP record shows high CO(2)ff when local air comes from...... the Korean Peninsula. Most samples, however, reflect air masses from Northeastern China with lower CO(2)ff. Our small set of SDZ samples from winter 2009/2010 have strongly elevated CO(2)ff. Biospheric CO2 contributes substantially to total CO2 variability at both sites, even in winter when non-fossil CO2....../ppm respectively, consistent with recent bottom-up inventory estimates and other observational studies. Locally influenced TAP samples fall into two distinct data sets, ascribed to air sourced from South Korea and North Korea. The South Korea samples have low R-CO:CO2ff of 13 +/- 3 ppb/ppm, slightly higher than...

  1. Plant-plant interactions mediate the plastic and genotypic response of Plantago asiatica to CO2: an experiment with plant populations from naturally high CO2 areas. (United States)

    van Loon, Marloes P; Rietkerk, Max; Dekker, Stefan C; Hikosaka, Kouki; Ueda, Miki U; Anten, Niels P R


    The rising atmospheric CO2 concentration ([CO2]) is a ubiquitous selective force that may strongly impact species distribution and vegetation functioning. Plant-plant interactions could mediate the trajectory of vegetation responses to elevated [CO2], because some plants may benefit more from [CO2] elevation than others. The relative contribution of plastic (within the plant's lifetime) and genotypic (over several generations) responses to elevated [CO2] on plant performance was investigated and how these patterns are modified by plant-plant interactions was analysed. Plantago asiatica seeds originating from natural CO2 springs and from ambient [CO2] sites were grown in mono stands of each one of the two origins as well as mixtures of both origins. In total, 1944 plants were grown in [CO2]-controlled walk-in climate rooms, under a [CO2] of 270, 450 and 750 ppm. A model was used for upscaling from leaf to whole-plant photosynthesis and for quantifying the influence of plastic and genotypic responses. It was shown that changes in canopy photosynthesis, specific leaf area (SLA) and stomatal conductance in response to changes in growth [CO2] were mainly determined by plastic and not by genotypic responses. We further found that plants originating from high [CO2] habitats performed better in terms of whole-plant photosynthesis, biomass and leaf area, than those from ambient [CO2] habitats at elevated [CO2] only when both genotypes competed. Similarly, plants from ambient [CO2] habitats performed better at low [CO2], also only when both genotypes competed. No difference in performance was found in mono stands. The results indicate that natural selection under increasing [CO2] will be mainly driven by competitive interactions. This supports the notion that plant-plant interactions have an important influence on future vegetation functioning and species distribution. Furthermore, plant performance was mainly driven by plastic and not by genotypic responses to changes in

  2. Plant–plant interactions mediate the plastic and genotypic response of Plantago asiatica to CO2: an experiment with plant populations from naturally high CO2 areas (United States)

    van Loon, Marloes P.; Rietkerk, Max; Dekker, Stefan C.; Hikosaka, Kouki; Ueda, Miki U.; Anten, Niels P. R.


    Background and Aims The rising atmospheric CO2 concentration ([CO2]) is a ubiquitous selective force that may strongly impact species distribution and vegetation functioning. Plant–plant interactions could mediate the trajectory of vegetation responses to elevated [CO2], because some plants may benefit more from [CO2] elevation than others. The relative contribution of plastic (within the plant’s lifetime) and genotypic (over several generations) responses to elevated [CO2] on plant performance was investigated and how these patterns are modified by plant–plant interactions was analysed. Methods Plantago asiatica seeds originating from natural CO2 springs and from ambient [CO2] sites were grown in mono stands of each one of the two origins as well as mixtures of both origins. In total, 1944 plants were grown in [CO2]-controlled walk-in climate rooms, under a [CO2] of 270, 450 and 750 ppm. A model was used for upscaling from leaf to whole-plant photosynthesis and for quantifying the influence of plastic and genotypic responses. Key Results It was shown that changes in canopy photosynthesis, specific leaf area (SLA) and stomatal conductance in response to changes in growth [CO2] were mainly determined by plastic and not by genotypic responses. We further found that plants originating from high [CO2] habitats performed better in terms of whole-plant photosynthesis, biomass and leaf area, than those from ambient [CO2] habitats at elevated [CO2] only when both genotypes competed. Similarly, plants from ambient [CO2] habitats performed better at low [CO2], also only when both genotypes competed. No difference in performance was found in mono stands. Conclusion The results indicate that natural selection under increasing [CO2] will be mainly driven by competitive interactions. This supports the notion that plant–plant interactions have an important influence on future vegetation functioning and species distribution. Furthermore, plant performance was mainly

  3. Hemiparasite abundance in an alpine treeline ecotone increases in response to atmospheric CO(2) enrichment. (United States)

    Hättenschwiler, Stephan; Zumbrunn, Thomas


    Populations of the annual hemiparasites Melampyrum pratense L. and Melampyrum sylvaticum L. were studied at the treeline in the Swiss Alps after 3 years of in situ CO(2) enrichment. The total density of Melampyrum doubled to an average of 44 individuals per square meter at elevated CO(2) compared to ambient CO(2). In response to elevated CO(2), the height of the more abundant and more evenly distributed M. pratense increased by 20%, the number of seeds per fruit by 21%, and the total seed dry mass per fruit by 27%, but the individual seed size did not change. These results suggest that rising atmospheric CO(2) may stimulate the reproductive output and increase the abundance of Melampyrum in the alpine treeline ecotone. Because hemiparasites can have important effects on community dynamics and ecosystem processes, notably the N cycle, changing Melampyrum abundance may potentially influence the functioning of alpine ecosystems in a future CO(2)-rich atmosphere.

  4. Re-Examining Embodied SO2 and CO2 Emissions in China

    Directory of Open Access Journals (Sweden)

    Rui Huang


    Full Text Available CO2 and SO2, while having different environmental impacts, are both linked to the burning of fossil fuels. Research on joint patterns of CO2 emissions and SO2 emissions may provide useful information for decision-makers to reduce these emissions effectively. This study analyzes both CO2 emissions and SO2 emissions embodied in interprovincial trade in 2007 and 2010 using multi-regional input–output analysis. Backward and forward linkage analysis shows that Production and Supply of Electric Power and Steam, Non-metal Mineral Products, and Metal Smelting and Pressing are key sectors for mitigating SO2 and CO2 emissions along the national supply chain. The total SO2 emissions and CO2 emissions of these sectors accounted for 81% and 76% of the total national SO2 emissions and CO2 emissions, respectively.

  5. Optimal scheduling for enhanced coal bed methane production through CO2 injection

    International Nuclear Information System (INIS)

    Huang, Yuping; Zheng, Qipeng P.; Fan, Neng; Aminian, Kashy


    Highlights: • A novel deterministic optimization model for CO 2 -ECBM production scheduling. • Maximize the total profit from both sales of natural gas and CO 2 credits trading in the carbon market. • A stochastic model incorporating uncertainties and dynamics of NG price and CO 2 credit. - Abstract: Enhanced coal bed methane production with CO 2 injection (CO 2 -ECBM) is an effective technology for accessing the natural gas embedded in the traditionally unmineable coal seams. The revenue via this production process is generated not only by the sales of coal bed methane, but also by trading CO 2 credits in the carbon market. As the technology of CO 2 -ECBM becomes mature, its commercialization opportunities are also springing up. This paper proposes applicable mathematical models for CO 2 -ECBM production and compares the impacts of their production schedules on the total profit. A novel basic deterministic model for CO 2 -ECBM production including the technical and chemical details is proposed and then a multistage stochastic programming model is formulated in order to address uncertainties of natural gas price and CO 2 credit. Both models are nonlinear programming problems, which are solved by commercial nonlinear programming software BARON via GAMS. Numerical experiments show the benefits (e.g., expected profit gain) of using stochastic models versus deterministic models

  6. Studies on CO2 removal and reduction. CO2 taisaku kenkyu no genjo

    Energy Technology Data Exchange (ETDEWEB)

    Shindo, Y [National Institute of Materials and Chemical Research, Tsukuba (Japan)


    This paper summarizes study trends mainly in CO2 fixing processes. Underground CO2 storage is a most promising method because it can fix a huge amount of CO2 and has low effects on ecological systems. Storing CO2 in ocean includes such methods as storing it in deep oceans; storing it in deep ocean beds; dissolving it into sea water; neutralizing it with calcium carbonates; and precipitating it as dry ice. Japan, disposing CO2 in these ways, may create international problems. Separation of CO2 may use a chemical absorption process as a superior method. Other processes discussed include a physical adsorption method and a membrane separation method. A useful method for CO2 fixation using marine organisms is fixation using coral reefs. This process will require an overall study including circulation of phosphorus and nitrogen. Marine organisms may include planktons and algae. CO2 fixation using land plants may be able to fix one trillion and 8 hundred billion tons of CO2 as converted to carbon. This process would require forest protection, prevention of desertification, and tree planting. Discussions are being given also on improving power generation cycles, recovering CO2 from automotive exhausts, and backfilling carbons into ground by means of photosynthesis. 23 refs., 7 figs., 1 tab.

  7. Fingerprinting captured CO2 using natural tracers: Determining CO2 fate and proving ownership (United States)

    Flude, Stephanie; Gilfillan, Stuart; Johnston, Gareth; Stuart, Finlay; Haszeldine, Stuart


    In the long term, captured CO2 will most likely be stored in large saline formations and it is highly likely that CO2 from multiple operators will be injected into a single saline formation. Understanding CO2 behavior within the reservoir is vital for making operational decisions and often uses geochemical techniques. Furthermore, in the event of a CO2 leak, being able to identify the owner of the CO2 is of vital importance in terms of liability and remediation. Addition of geochemical tracers to the CO2 stream is an effective way of tagging the CO2 from different power stations, but may become prohibitively expensive at large scale storage sites. Here we present results from a project assessing whether the natural isotopic composition (C, O and noble gas isotopes) of captured CO2 is sufficient to distinguish CO2 captured using different technologies and from different fuel sources, from likely baseline conditions. Results include analytical measurements of CO2 captured from a number of different CO2 capture plants and a comprehensive literature review of the known and hypothetical isotopic compositions of captured CO2 and baseline conditions. Key findings from the literature review suggest that the carbon isotope composition will be most strongly controlled by that of the feedstock, but significant fractionation is possible during the capture process; oxygen isotopes are likely to be controlled by the isotopic composition of any water used in either the industrial process or the capture technology; and noble gases concentrations will likely be controlled by the capture technique employed. Preliminary analytical results are in agreement with these predictions. Comparison with summaries of likely storage reservoir baseline and shallow or surface leakage reservoir baseline data suggests that C-isotopes are likely to be valuable tracers of CO2 in the storage reservoir, while noble gases may be particularly valuable as tracers of potential leakage.

  8. Accuracy of Transcutaneous CO2 Values Compared With Arterial and Capillary Blood Gases. (United States)

    Lambert, Laura L; Baldwin, Melissa B; Gonzalez, Cruz Velasco; Lowe, Gary R; Willis, J Randy


    Transcutaneous monitors are utilized to monitor a patient's respiratory status. Some patients have similar values when comparing transcutaneous carbon dioxide ( P tcCO 2 ) values with blood gas analysis, whereas others show extreme variability. A retrospective review of data was performed to determine how accurately P tcCO 2 correlated with CO 2 values obtained by arterial blood gas (ABG) or capillary blood gas. To determine whether P tcCO 2 values correlated with ABG or capillary blood gas values, subjects' records were retrospectively reviewed. Data collected included the P tcCO 2 value at the time of blood gas procurement and the ABG or capillary blood gas P CO 2 value. Agreement of pairs of methods (ABG vs P tcCO 2 and capillary blood gas vs P tcCO 2 ) was assessed with the Bland-Altman approach with limits of agreement estimated with a mixed model to account for serial measurements per subject. A total of 912 pairs of ABG/ P tcCO 2 values on 54 subjects and 307 pairs of capillary blood gas/ P tcCO 2 values on 34 subjects were analyzed. The P CO 2 range for ABG was 24-106 mm Hg, and P tcCO 2 values were 27-133 mm Hg. The P CO 2 range for capillary blood gas was 29-108 mm Hg, and P tcCO 2 values were 30-103 mm Hg. For ABG/ P tcCO 2 comparisons, the Pearson correlation coefficient was 0.82, 95% CI was 0.80-0.84, and P was <.001. For capillary blood gas/ P tcCO 2 comparisons, the Pearson correlation coefficient was 0.77, 95% CI was 0.72-0.81, and P was <.001. For ABG/ P tcCO 2 , the estimated difference ± SD was -6.79 t± 7.62 mm Hg, and limits of agreement were -22.03 to 8.45. For capillary blood gas/ P tcCO 2 , the estimated difference ± SD was -1.61 ± 7.64 mm Hg, and limits of agreement were -16.88 to 13.66. The repeatability coefficient was about 30 mm Hg. Based on these data, capillary blood gas comparisons showed less variation and a slightly lower correlation with P tcCO 2 than did ABG comparisons. After accounting for serial measurements per patient

  9. A numerical evaluation of prediction accuracy of CO2 absorber model for various reaction rate coefficients

    Directory of Open Access Journals (Sweden)

    Shim S.M.


    Full Text Available The performance of the CO2 absorber column using mono-ethanolamine (MEA solution as chemical solvent are predicted by a One-Dimensional (1-D rate based model in the present study. 1-D Mass and heat balance equations of vapor and liquid phase are coupled with interfacial mass transfer model and vapor-liquid equilibrium model. The two-film theory is used to estimate the mass transfer between the vapor and liquid film. Chemical reactions in MEA-CO2-H2O system are considered to predict the equilibrium pressure of CO2 in the MEA solution. The mathematical and reaction kinetics models used in this work are calculated by using in-house code. The numerical results are validated in the comparison of simulation results with experimental and simulation data given in the literature. The performance of CO2 absorber column is evaluated by the 1-D rate based model using various reaction rate coefficients suggested by various researchers. When the rate of liquid to gas mass flow rate is about 8.3, 6.6, 4.5 and 3.1, the error of CO2 loading and the CO2 removal efficiency using the reaction rate coefficients of Aboudheir et al. is within about 4.9 % and 5.2 %, respectively. Therefore, the reaction rate coefficient suggested by Aboudheir et al. among the various reaction rate coefficients used in this study is appropriate to predict the performance of CO2 absorber column using MEA solution. [Acknowledgement. This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF, funded by the Ministry of Education, Science and Technology (2011-0017220].

  10. Analysis of a New Liquefaction Combined with Desublimation System for CO2 Separation Based on N2/CO2 Phase Equilibrium

    Directory of Open Access Journals (Sweden)

    Wenchao Yang


    Full Text Available Cryogenic CO2 capture is considered as a promising CO2 capture method due to its energy saving and environmental friendliness. The phase equilibrium analysis of CO2-mixtures at low temperature is crucial for the design and operation of a cryogenic system because it plays an important role in analysis of recovery and purity of the captured CO2. After removal of water and toxic gas, the main components in typical boiler gases are N2/CO2. Therefore, this paper evaluates the reliabilities of different cubic equations of state (EOS and mixing rules for N2/CO2. The results show that Peng-Robinson (PR and Soave-Redlich-Kwong (SRK fit the experimental data well, PR combined with the van der Waals (vdW mixing rule is more accurate than the other models. With temperature decrease, the accuracy of the model improves and the deviation of the N2 vapor fraction is 0.43% at 220 K. Based on the selected calculation model, the thermodynamic properties of N2/CO2 at low temperature are analyzed. According to the results, a new liquefaction combined with a desublimation system is proposed. The total recovery and purity of CO2 production of the new system are satisfactory enough for engineering applications. Additionally, the total energy required by the new system to capture the CO2 is about 3.108 MJ·kg−1 CO2, which appears to be at least 9% lower than desublimation separation when the initial concentration of CO2 is 40%.

  11. CO2-Water-Rock Wettability: Variability, Influencing Factors, and Implications for CO2 Geostorage. (United States)

    Iglauer, Stefan


    Carbon geosequestration (CGS) has been identified as a key technology to reduce anthropogenic greenhouse gas emissions and thus significantly mitigate climate change. In CGS, CO 2 is captured from large point-source emitters (e.g., coal fired power stations), purified, and injected deep underground into geological formations for disposal. However, the CO 2 has a lower density than the resident formation brine and thus migrates upward due to buoyancy forces. To prevent the CO 2 from leaking back to the surface, four trapping mechanisms are used: (1) structural trapping (where a tight caprock acts as a seal barrier through which the CO 2 cannot percolate), (2) residual trapping (where the CO 2 plume is split into many micrometer-sized bubbles, which are immobilized by capillary forces in the pore network of the rock), (3) dissolution trapping (where CO 2 dissolves in the formation brine and sinks deep into the reservoir due to a slight increase in brine density), and (4) mineral trapping (where the CO 2 introduced into the subsurface chemically reacts with the formation brine or reservoir rock or both to form solid precipitates). The efficiency of these trapping mechanisms and the movement of CO 2 through the rock are strongly influenced by the CO 2 -brine-rock wettability (mainly due to the small capillary-like pores in the rock which form a complex network), and it is thus of key importance to rigorously understand CO 2 -wettability. In this context, a substantial number of experiments have been conducted from which several conclusions can be drawn: of prime importance is the rock surface chemistry, and hydrophilic surfaces are water-wet while hydrophobic surfaces are CO 2 -wet. Note that CO 2 -wet surfaces dramatically reduce CO 2 storage capacities. Furthermore, increasing pressure, salinity, or dissolved ion valency increases CO 2 -wettability, while the effect of temperature is not well understood. Indeed theoretical understanding of CO 2 -wettability and the

  12. Analysis of CO2 emissions reduction in the Malaysian transportation sector: An optimisation approach

    International Nuclear Information System (INIS)

    Mustapa, Siti Indati; Bekhet, Hussain Ali


    The demand for transport services is expected to rise, causing the CO 2 emissions level to increase as well. In Malaysia, the transportation sector accounts for 28% of total CO 2 emissions, of which 85% comes from road transport. By 2020, Malaysia is targeting a reduction in CO 2 emissions intensity by up to 40% and in this effort the role of road transport is paramount. This paper attempts to investigate effective policy options that can assist Malaysia in reducing the CO 2 emissions level. An Optimisation model is developed to estimate the potential CO 2 emissions mitigation strategies for road transport by minimising the CO 2 emissions under the constraint of fuel cost and demand travel. Several mitigation strategies have been applied to analyse the effect of CO 2 emissions reduction potential. The results demonstrate that removal of fuel price subsidies can result in reductions of up to 652 ktonnes of fuel consumption and CO 2 emissions can be decreased by 6.55%, which would enable Malaysia to hit its target by 2020. CO 2 emissions can be reduced significantly, up to 20%, by employing a combination of mitigation policies in Malaysia. This suggests that appropriate mitigation policies can assist the country in its quest to achieve the CO 2 emissions reduction target. - Highlights: • An optimisation model for CO 2 emissions reduction in Malaysia's road transport is formulated. • Sensible policy options to achieve the CO 2 emissions reduction target are provided. • Increase in fuel price has induced shift towards fuel efficient vehicles. • The CO 2 emissions can be reduced up to 5.7 MtCO 2 with combination of mitigation policies.

  13. Feasibility of Autonomous Monitoring of CO2 Leakage in Aquifers: Results From Controlled Laboratory Experiments (United States)

    Versteeg, R.; Leger, E.; Dafflon, B.


    Geologic sequestration of CO2 is one of the primary proposed approaches for reducing total atmospheric CO2 concentrations. MVAA (Monitoring, Verification, Accounting and Assessment) of CO2 sequestration is an essential part of the geologic CO2 sequestration cycle. MVAA activities need to meet multiple operational, regulatory and environmental objectives, including ensuring the protection of underground sources of drinking water. Anticipated negative consequences of CO2 leakage into groundwater, besides possible brine contamination and release of gaseous CO2, include a significant increase of dissolved CO2 into shallow groundwater systems, which will decrease groundwater pH and can potentially mobilize naturally occurring trace metals and ions that are commonly absorbed to or contained in sediments. Autonomous electrical geophysical monitoring in aquifers has the potential of allowing for rapid and automated detection of CO2 leakage. However, while the feasibility of such monitoring has been demonstrated by a number of different field experiments, automated interpretation of complex electrical resistivity data requires the development of quantitative relationships between complex electrical resistivity signatures and dissolved CO2 in the aquifer resulting from leakage Under a DOE SBIR funded effort we performed multiple tank scale experiments in which we investigated complex electrical resistivity signatures associated with dissolved CO2 plumes in saturated sediments. We also investigated the feasibility of distinguishing CO2 leakage signatures from signatures associated with other processes such as salt water movement, temperature variations and other variations in chemical or physical conditions. In addition to these experiments we also numerically modeled the tank experiments. These experiments showed that (a) we can distinguish CO2 leakage signatures from other signatures, (b) CO2 leakage signatures have a consistent characteristic, (c) laboratory experiments

  14. Ordered nanoporous carbon for increasing CO2 capture

    International Nuclear Information System (INIS)

    Yoo, Hye-Min; Lee, Seul-Yi; Park, Soo-Jin


    Ordered nanoporous carbons (ONCs) were prepared using a soft-templating method. The prepared ONCs materials were subjected to a controlled carbonization temperature over the temperature range, 700–1000 °C, to increase the specific surface area and total pore volume of ordered nanoporous carbon followed by carbonization of the phenolic resin. ONCs materials synthesized at various carbonization temperatures were used as adsorbents to improve the CO 2 adsorption efficiency. The surface properties of the ONCs materials were examined by X-ray photoelectron spectroscopy. The structural properties of the ONCs materials were analyzed by X-ray diffraction. The textural properties of the ONCs materials were examined using the N 2 /77 K adsorption isotherms according to the Brunauer–Emmett–Teller equation. The CO 2 adsorption capacity was measured by CO 2 isothermal adsorption at 298 K/30 bar and 298 K/1 bar. The carbonization temperature was found to have a major effect on the CO 2 adsorption capacity, resulting from the specific surface area and total pore volumes of the ONCs materials. - Graphical abstract: This schematic diagram described synthesis of ONCs. Highlights: ► ONCs materials can be prepared readily using the direct-triblock-copolymer-templating method. ► The distributions show that prominent development can be observed around the micro-pore region. ► The soft-templating method provides opportunities for controlling the pore structure of ONCs. ► From thermal power plants for CO2 capture by adsorption technology, is a new direction.

  15. A cost effective CO2 strategy

    DEFF Research Database (Denmark)

    , a scenario-part and a cost-benefit part. Air and sea modes are not analyzed. The model adopts a bottom-up approach to allow a detailed assessment of transport policy measures. Four generic areas of intervention were identified and the likely effect on CO2 emissions, socioeconomic efficiency and other...... are evaluated according to CO2 reduction potential and according to the ‘shadow price’ on a reduction of one ton CO2. The shadow price reflects the costs (and benefits) of the different measures. Comparing the measures it is possible to identify cost effective measures, but these measures are not necessarily...... by the Ministry of Transport, with the Technical University of Denmark as one of the main contributors. The CO2-strategy was to be based on the principle of cost-effectiveness. A model was set up to assist in the assessment. The model consists of a projection of CO2-emissions from road and rail modes from 2020...

  16. Rangeland -- plant response to elevated CO2

    International Nuclear Information System (INIS)

    Owensby, C.E.; Coyne, P.I.; Ham, J.M.; Parton, W.; Rice, C.; Auen, L.M.; Adam, N.


    Plots of a tallgrass prairie ecosystem were exposed to ambient and twice-ambient CO 2 concentrations in open-top chambers and compared to unchambered ambient CO 2 plots during the entire growing season from 1989 through 1992. Relative root production among treatments was estimated using root ingrowth bags which remained in place throughout the growing season. Latent heat flux was simulated with and without water stress. Botanical composition was estimated annuallyin all treatments. Open-top chambers appeared to reduce latent heat flux and increase water use efficiency similar to elevated CO 2 when water stress was not severe, but under severe water stress, chamber effect on water use efficiency was limited. In natural ecosystems with periodic moisture stress, increased water use efficiency under elevated CO 2 apparently would have a greater impact on productivity than photosynthetic pathway. Root ingrowth biomass was greater in 1990 and 1991 on elevated CO 2 plots compared to ambient or chambered-ambient plots. In 1992, there was no difference in root ingrowth biomass among treatments

  17. Economic efficiency of CO2 reduction programs

    International Nuclear Information System (INIS)

    Tahvonen, O.; Storch, H. von; Storch, J. von


    A highly simplified time-dependent low-dimensional system has been designed to describe conceptually the interaction of climate and economy. Enhanced emission of carbon dioxide (CO 2 ) is understood as the agent that not only favors instantaneous consumption but also causes unfavorable climate changes at a later time. The problem of balancing these two counterproductive effects of CO 2 emissions on a finite time horizon is considered. The climate system is represented by just two parameters, namely a globally averaged near-surface air-temperature and a globally averaged troposheric CO 2 concentration. The costs of abating CO 2 emissions are monitored by a function which depends quadratically on the percentage reduction of emission compared to an 'uncontrolled emission' scenario. Parameters are fitted to historical climate data and to estimates from studies of CO 2 abatement costs. Two optimization approaches, which differ from earlier attempts to describe the interaction of economy and climate, are discussed. In the 'cost oriented' strategy an optimal emission path is identified which balances the abatement costs and explicitly formulated damage costs. These damage costs, whose estimates are very uncertain, are hypothesized to be a linear function of the time-derivative of temperature. In the 'target oriented' strategy an emission path is chosen so that the abatement costs are minimal while certain restrictions on the terminal temperature and concentration change are met. (orig.)

  18. CO2-Switchable Membranes Prepared by Immobilization of CO2-Breathing Microgels. (United States)

    Zhang, Qi; Wang, Zhenwu; Lei, Lei; Tang, Jun; Wang, Jianli; Zhu, Shiping


    Herein, we report the development of a novel CO 2 -responsive membrane system through immobilization of CO 2 -responsive microgels into commercially available microfiltration membranes using a method of dynamic adsorption. The microgels, prepared from soap-free emulsion polymerization of CO 2 -responsive monomer 2-(diethylamino)ethyl methacrylate (DEA), can be reversibly expanded and shrunken upon CO 2 /N 2 alternation. When incorporated into the membranes, this switching behavior was preserved and further led to transformation between microfiltration and ultrafiltration membranes, as indicated from the dramatic changes on water flux and BSA rejection results. This CO 2 -regulated performance switching of membranes was caused by the changes of water transportation channel, as revealed from the dynamic water contact angle tests and SEM observation. This work represents a simple yet versatile strategy for making CO 2 -responsive membranes.

  19. CO2 sensing and CO2 regulation of stomatal conductance: advances and open questions (United States)

    Engineer, Cawas; Hashimoto-Sugimoto, Mimi; Negi, Juntaro; Israelsson-Nordstrom, Maria; Azoulay-Shemer, Tamar; Rappel, Wouter-Jan; Iba, Koh; Schroeder, Julian


    Guard cells form epidermal stomatal gas exchange valves in plants and regulate the aperture of stomatal pores in response to changes in the carbon dioxide (CO2) concentration in leaves. Moreover, the development of stomata is repressed by elevated CO2 in diverse plant species. Evidence suggests that plants can sense CO2 concentration changes via guard cells and via mesophyll tissues in mediating stomatal movements. We review new discoveries and open questions on mechanisms mediating CO2-regulated stomatal movements and CO2 modulation of stomatal development, which together function in CO2-regulation of stomatal conductance and gas exchange in plants. Research in this area is timely in light of the necessity of selecting and developing crop cultivars which perform better in a shifting climate. PMID:26482956

  20. A fine-tuned fluorinated MOF addresses the needs for trace CO2 removal and air capture using physisorption.

    KAUST Repository

    Bhatt, Prashant; Belmabkhout, Youssef; Cadiau, Amandine; Adil, Karim; Shekhah, Osama; Shkurenko, Aleksander; Barbour, Leonard J.; Eddaoudi, Mohamed


    The development of functional solid-state materials for carbon capture at low carbon dioxide (CO2) concentrations, from con-fined spaces (<0.5 %) and particularly from air (400 ppm), is of prime importance with respect to energy and environment sustainability. Herein, we report the deliberate construction of a hydrolytically stable fluorinated metal-organic framework (MOF), NbOFFIVE-1-Ni, with the proper pore system (size, shape and functionality), ideal for efficient and effective traces carbon dioxide removal. Markedly, the CO2-selective NbOFFIVE-1-Ni exhibits the highest CO2 gravimetric and volumetric uptake (ca. 1.3 mmol/g and 51.4 for physical adsorbents at 400 ppm CO2 and 298 K. Practically, the NbOFFIVE-1-Ni affords the complete CO2 desorption at 328 K under vacuum with an associated moderate energy input of 54 kJ/mol, typical for the full CO2 desorption in reference physical adsorbents but considerably lower than the conventional chemical sorbents. Noticeably, the contracted square-like channels, affording the close proximity of the fluorine centers, permitted the enhancement of the CO2-framework interactions and subsequently the attainment of an unprecedented CO2-selectivity at very low CO2 concentrations. The precise localization of the adsorbed CO2 at the vicinity of the periodically aligned fluorine centers, promoting the selective adsorption of CO2, is evidenced by the single-crystal X-ray diffraction study on the NbOFFIVE-1-Ni hosting CO2 molecules. Cyclic CO2/N2 mixed-gas column breakthrough experiments under dry and humid conditions corroborate the excellent CO2-selectivity under practical carbon capture conditions. Pertinently, the no-table hydrolytic stability positions the NbOFFIVE-1-Ni as the new benchmark adsorbent for direct air capture and CO2 removal from confined spaces.

  1. A fine-tuned fluorinated MOF addresses the needs for trace CO2 removal and air capture using physisorption.

    KAUST Repository

    Bhatt, Prashant


    The development of functional solid-state materials for carbon capture at low carbon dioxide (CO2) concentrations, from con-fined spaces (<0.5 %) and particularly from air (400 ppm), is of prime importance with respect to energy and environment sustainability. Herein, we report the deliberate construction of a hydrolytically stable fluorinated metal-organic framework (MOF), NbOFFIVE-1-Ni, with the proper pore system (size, shape and functionality), ideal for efficient and effective traces carbon dioxide removal. Markedly, the CO2-selective NbOFFIVE-1-Ni exhibits the highest CO2 gravimetric and volumetric uptake (ca. 1.3 mmol/g and 51.4 for physical adsorbents at 400 ppm CO2 and 298 K. Practically, the NbOFFIVE-1-Ni affords the complete CO2 desorption at 328 K under vacuum with an associated moderate energy input of 54 kJ/mol, typical for the full CO2 desorption in reference physical adsorbents but considerably lower than the conventional chemical sorbents. Noticeably, the contracted square-like channels, affording the close proximity of the fluorine centers, permitted the enhancement of the CO2-framework interactions and subsequently the attainment of an unprecedented CO2-selectivity at very low CO2 concentrations. The precise localization of the adsorbed CO2 at the vicinity of the periodically aligned fluorine centers, promoting the selective adsorption of CO2, is evidenced by the single-crystal X-ray diffraction study on the NbOFFIVE-1-Ni hosting CO2 molecules. Cyclic CO2/N2 mixed-gas column breakthrough experiments under dry and humid conditions corroborate the excellent CO2-selectivity under practical carbon capture conditions. Pertinently, the no-table hydrolytic stability positions the NbOFFIVE-1-Ni as the new benchmark adsorbent for direct air capture and CO2 removal from confined spaces.

  2. A method for permanent CO2 mineral carbonation

    Energy Technology Data Exchange (ETDEWEB)

    Dahlin, David C.; O' Connor, William K.; Nilsen, David N.; Rush, G.E.; Walters, Richard P.; Turner, Paul C.


    The Albany Research Center (ARC) of the U.S. Department of Energy (DOE) has been conducting research to investigate the feasibility of mineral carbonation as a method for carbon dioxide (CO2) sequestration. The research is part of a Mineral Carbonation Study Program within the Office of Fossil Energy in DOE. Other participants in this Program include DOE?s Los Alamos National Laboratory and National Energy Technology Laboratory, Arizona State University, and Science Applications International Corporation. The research has focused on ex-situ mineral carbonation in an aqueous system. The process developed at ARC reacts a slurry of magnesium silicate mineral with supercritical CO2 to produce a solid magnesium carbonate product. To date, olivine and serpentine have been used as the mineral reactant, but other magnesium silicates could be used as well. The process is designed to simulate the natural serpentinization reaction of ultramafic minerals, and consequently, these results may also be applicable to strategies for in-situ geological sequestration. Baseline tests were begun in distilled water on ground products of foundry-grade olivine. Tests conducted at 150 C and subcritical CO2 pressures (50 atm) resulted in very slow conversion to carbonate. Increasing the partial pressure of CO2 to supercritical (>73 atm) conditions, coupled with agitation of the slurry and gas dispersion within the water column, resulted in significant improvement in the extent of reaction in much shorter reaction times. A change from distilled water to a bicarbonate/salt solution further improved the rate and extent of reaction. When serpentine, a hydrated mineral, was used instead of olivine, extent of reaction was poor until heat treatment was included prior to the carbonation reaction. Removal of the chemically bound water resulted in conversion to carbonate similar to those obtained with olivine. Recent results have shown that conversions of nearly 80 pct are achievable after 30 minutes

  3. Characterization of gingerol analogues in supercritical carbon dioxide (SC CO2) extract of ginger (Zingiber officinale, R.,). (United States)

    Swapna Sonale, R; Kadimi, Udaya Sankar


    Organically grown ginger rhizome (Zingiber officinale Roscoe) SC CO2 extract obtained at 280 bar and 40 °C and its column chromatographic fractions are characterised for its composition. The components in the extract and fractions are identified by HPLC and LC based MS and are used as standard for the estimation of gingerol analogues in the extract. HPLC and mass analysis of the extracts confirmed the various forms of gingerol constituents [4]-, [6]-, [10]-gingerols and [6]-, [8]-, [10]-shogaols in ginger extracts. SC CO2 extract of organic ginger was found to show 6-gingerol around 25.97 % of total extract. The estimation of [6]-gingerol, [6]-shogaols, [4]gingerol, [10]-gingerol and 6-gingediol content of the SC CO2 purified ginger extract was found to be 75.92 ± 1.14, 1.25 ± 0.04, 4.54 ± 0.04, 13.15 ± 0.30 and 0.37 ± 0.00 % respectively. Antioxidant activity was measured by 2, 2-diphenyl-1-pycryl-hydrazyl (DPPH) free radical scavenging and ferric reducing antioxidant power (FRAP) and the assay have shown 652 ± 0.37 mg TE/g and 3.68 ± 0.18 mg TE/100 g respectively, are significantly higher results with SC CO2 organic ginger extract. Paradol analogues are not detected in this study. Small quantities of [4]-, [10]gingediol and [6]-gingediacetate are also found in ginger extract.

  4. Forgotten carbon: indirect CO2 in greenhouse gas emission inventories

    International Nuclear Information System (INIS)

    Gillenwater, Michael


    National governments that are Parties to the United Nations Framework Convention on Climate Change (UNFCCC) are required to submit greenhouse gas (GHG) inventories accounting for the emissions and removals occurring within their geographic territories. The Intergovernmental Panel on Climate Change (IPCC) provides inventory methodology guidance to the Parties of the UNFCCC. This methodology guidance, and national inventories based on it, omits carbon dioxide (CO 2 ) from the atmospheric oxidation of methane, carbon monoxide, and non-methane volatile organic compounds emissions that result from several source categories. The inclusion of this category of 'indirect' CO 2 in GHG inventories increases global anthropogenic emissions (excluding land use and forestry) between 0.5 and 0.7%. However, the effect of inclusion on aggregate UNFCCC Annex I Party GHG emissions would be to reduce the growth of total emissions, from 1990 to 2004, by 0.2% points. The effect on the GHG emissions and emission trends of individual countries varies. The paper includes a methodology for calculating these emissions and discusses uncertainties. Indirect CO 2 is equally relevant for GHG inventories at other scales, such as global, regional, organizational, and facility. Similarly, project-based methodologies, such as those used under the Clean Development Mechanism, may need revising to account for indirect CO 2

  5. Evaluation of a Prototype pCO2 Optical Sensor (United States)

    Sanborn-Marsh, C.; Sutton, A.; Sabine, C. L.; Lawrence-Salvas, N.; Dietrich, C.


    Anthropogenic greenhouse gas emissions continue to rise, driving climate change and altering the ocean carbonate systems. Carbonate chemistry can be characterized by any two of the four parameters: pH, total alkalinity, dissolved inorganic carbon, and partial pressure of dissolved carbon dioxide gas (pCO2). To fully monitor these dynamic systems, researchers must deploy a more temporally and spatially comprehensive sensor network. Logistical challenges, such as the energy consumption, size, lifetime, depth range, and cost of pCO2 sensors have limited the network's reach so far. NOAA's Pacific Marine Environmental Laboratory has conducted assessment tests of a pCO2 optical sensor (optode), recently developed by Atamanchuk et al (2014). We hope to deploy this optode in the summer of 2017 on high-resolution moored profiler, along with temperature, salinity, and oxygen sensors. While most pCO2 optodes have energy consumptions of 3-10 W, this 36mm-diameter by 86mm-long instrument consumes a mere 7-80 mW. Initial testing showed that its accuracy varied within an absolute range of 2-75 μatm, depending on environmental conditions, including temperature, salinity, response time, and initial calibration. Further research independently examining the effects of each variable on the accuracy of the data will also be presented.

  6. Evasion of CO2 injected into the ocean in the context of CO2 stabilization

    International Nuclear Information System (INIS)

    Kheshgi, Haroon S.


    The eventual evasion of injected CO 2 to the atmosphere is one consideration when assessing deep-sea disposal of CO 2 as a potential response option to climate change concerns. Evasion estimated using an ocean carbon cycle model is compared to long-term trajectories for future CO 2 emissions, including illustrative cases leading to stabilization of CO 2 concentration at various levels. Modeled residence time for CO 2 injected into the deep ocean exceeds the 100-year time-scale usually considered in scenarios for future emissions, and the potential impacts of climate change. Illustrative cases leading monotonically to constant CO 2 concentration have been highlighted by the Intergovernmental Panel on Climate Change to give guidance on possible timing of emission reductions that may be required to stabilize greenhouse gas concentrations at various levels. For stabilization cases considered, significant modeled evasion does not occur until long after CO 2 emissions have reached a maximum and begun to decline. Illustrative cases can also lead to a maximum in CO 2 concentration followed by a decline to slowly decreasing concentrations. In such cases, future injection of emissions into the deep ocean leads to lower maximum CO 2 concentration, with less effect on concentration later on in time

  7. Effect of Uncertainties in CO2 Property Databases on the S-CO2 Compressor Performance

    International Nuclear Information System (INIS)

    Lee, Je Kyoung; Lee, Jeong Ik; Ahn, Yoonhan; Kim, Seong Gu; Cha, Je Eun


    Various S-CO 2 Brayton cycle experiment facilities are on the state of construction or operation for demonstration of the technology. However, during the data analysis, S-CO 2 property databases are widely used to predict the performance and characteristics of S-CO 2 Brayton cycle. Thus, a reliable property database is very important before any experiment data analyses or calculation. In this paper, deviation of two different property databases which are widely used for the data analysis will be identified by using three selected properties for comparison, C p , density and enthalpy. Furthermore, effect of above mentioned deviation on the analysis of test data will be briefly discussed. From this deviation, results of the test data analysis can have critical error. As the S-CO 2 Brayton cycle researcher knows, CO 2 near the critical point has dramatic change on thermodynamic properties. Thus, it is true that a potential error source of property prediction exists in CO 2 properties near the critical point. During an experiment data analysis with the S-CO 2 Brayton cycle experiment facility, thermodynamic properties are always involved to predict the component performance and characteristics. Thus, construction or defining of precise CO 2 property database should be carried out to develop Korean S-CO 2 Brayton cycle technology

  8. Surface CO2 leakage during the first shallow subsurface CO2 release experiment


    Lewicki, J.L.; Oldenburg, C.; Dobeck, L.; Spangler, L.


    A new field facility was used to study CO2 migration processes and test techniques to detect and quantify potential CO2 leakage from geologic storage sites. For 10 days starting 9 July 2007, and for seven days starting 5 August 2007, 0.1 and 0.3 t CO2 d-1, respectively, were released from a ~;100-m long, sub-water table (~;2.5-m depth) horizontal well. The spatio-temporal evolution of leakage was mapped through repeated grid measurements of soil CO2 flux (FCO2). The surface leakage onset...

  9. Air-sea flux of CO2 in arctic coastal waters influenced by glacial melt water and sea ice

    DEFF Research Database (Denmark)

    Sejr, Mikael Kristian; Krause-Jensen, Dorte; Rysgaard, Søren


    Annual air–sea exchange ofCO2 inYoung Sound,NEGreenlandwas estimated using pCO2 surface-water measurements during summer (2006–2009) and during an ice-covered winter 2008. All surface pCO2 values were below atmospheric levels indicating an uptake of atmospheric CO2. During sea ice formation...... and thereby efficiently blocked air–sea CO2 exchange. During sea ice melt, dissolution of CaCO3 combined with primary production and strong stratification of the water column acted to lower surface-water pCO2 levels in the fjord. Also, a large input of glacial melt water containing geochemically reactive...... year-to-year variation in annual gas exchange....

  10. The idea of global CO2 trade

    International Nuclear Information System (INIS)

    Svendsen, G.T.


    The US has been criticized for wanting to earn a fortune on a global CO 2 market. However, compared to the situation without trade and provided that such a market is designed so that it does not pay to cheat, a global CO 2 market may provide the world with an epoch-making means of cost-effective control which can solve future global environmental problems. The economic gains from 'hot air' distributions of permits and CO 2 trade make the system politically attractive to potential participants. For example, vital financial subsidies from the EU to Eastern Europe are to be expected. It will probably not pay to cheat if quotas are renewed periodically by the UN. Cheating countries are then to be excluded from further profitable trade. Also, a periodical renewal of permits makes it possible to tighten target levels in the future

  11. Decoupling of CO2 emissions and GDP

    Directory of Open Access Journals (Sweden)

    Yves Rocha de Salles Lima


    Full Text Available The objetive of this work is to analyze the variation of CO2 emissions and GDP per capita throughout the years and identify the possible interaction between them. For this purpose, data from the International Energy Agency was collected on two countries, Brazil and the one with the highest GDP worldwide, the United States. Thus, the results showed that CO2 emissions have been following the country’s economic growth for many years. However, these two indicators have started to decouple in the US in 2007 while in Brazil the same happened in 2011. Furthermore, projections for CO2 emissions are made until 2040, considering 6 probable scenarios. These projections showed that even if the oil price decreases, the emissions will not be significantly affected as long as the economic growth does not decelerate.

  12. CO2 utilization: Developments in conversion processes

    Directory of Open Access Journals (Sweden)

    Erdogan Alper


    The potential utilization of CO2, captured at power plants, should also been taken into consideration for sustainability. This CO2 source, which is potentially a raw material for the chemical industry, will be available at sufficient quality and at gigantic quantity upon realization of on-going tangible capture projects. Products resulting from carboxylation reactions are obvious conversions. In addition, provided that enough supply of energy from non-fossil resources, such as solar [1], is ensured, CO2 reduction reactions can produce several valuable commodity chemicals including multi-carbon compounds, such as ethylene and acrylic acid, in addition to C1 chemicals and polymers. Presently, there are only few developing technologies which can find industrial applications. Therefore, there is a need for concerted research in order to assess the viability of these promising exploratory technologies rationally.

  13. Crop responses to CO2 enrichment

    International Nuclear Information System (INIS)

    Rogers, H.H.; Dahlman, R.C.


    Carbon dioxide is rising in the global atmosphere, and this increase can be expected to continue into the foreseeable future. This compound is an essential input to plant life. Crop function is affected across all scales from biochemical to agroecosystem. An array of methods (leaf cuvettes, field chambers, free-air release systems) are available for experimental studies of CO 2 effects. Carbon dioxide enrichment of the air in which crops grow usually stimulates their growth and yield. Plant structure and physiology are markedly altered. Interactions between CO 2 and environmental factors that influence plants are known to occur. Implications for crop growth and yield are enormous. Strategies designed to assure future global food security must include a consideration of crop responses to elevated atmospheric CO 2 . 137 refs., 4 figs., 4 tabs

  14. Waste cleaning using CO2-acid microemulsion

    International Nuclear Information System (INIS)

    Park, Kwangheon; Sung, Jinhyun; Koh, Moonsung; Ju, Minsu


    Frequently we need to decontaminate radioactive wastes for volume reduction purposes. Metallic contaminants in wastes can be removed by dissolution to acid; however, this process produces a large amount of liquid acid waste. To reduce this 2ndary liquid waste, we suggest CO 2 -acid emulsion in removing metallic contaminants. Micro- and macro-emulsion of acid in liquid/supercritical CO 2 were successfully made. The formation region of microemulsion (water or acid in CO 2 ) was measured, and stability of the microemulsion was analyzed with respect to surfactant types. We applied micro- and macro-emulsion containing acid to the decontamination of radioactive metallic parts contaminated on the surface. The cleaning methods of micro- and macro-emulsion seemed better compared to the conventional acid cleaning. Moreover, these methods produce very small amount of secondary wastes. (author)

  15. Direct electroreduction of CO2 into hydrocarbon

    International Nuclear Information System (INIS)

    Winea, Gauthier; Ledoux, Marc-Jacques; Pham-Huu, Cuong; Gangeri, Miriam; Perathoner, Siglinda; Centi, Gabriele


    A lot of methods exist to directly reduce carbon dioxide into hydrocarbons: the photoelectrochemical process is certainly the most interesting, essentially due to the similarities with photosynthesis. As the human activities produce a great quantity of CO 2 , this one can then be considered as an infinite source of carbon. The products of this reaction are identical to those obtained during a Fischer-Tropsch reaction, that is to say hydrocarbons, alcohols and carboxylic acids. These works deal with the electrochemical reduction of CO 2 in standard conditions of temperature and pressure. The photochemical part has been replaced by a current generator as electrons source and a KHCO 3 aqueous solution as protons source. The first catalytic results clearly show that it is possible to reduce CO 2 into light hydrocarbons, typically from C1 to C9. (O.M.)

  16. Cutting weeds with a CO2 laser

    DEFF Research Database (Denmark)

    Heisel, T.; Schou, Jørgen; Christensen, S.


    Stems of Chenopodium album. and Sinapis arvensis. and leaves of Lolium perenne. were cut with a CO2 laser or with a pair of scissors. Treatments were carried out on greenhouse-grown pot plants at three different growth stages and at two heights. Plant dry matter was measured 2 to 5 weeks after...... treatment. The relationship between dry weight and laser energy was analysed using a non-linear dose-response regression model. The regression parameters differed significantly between the weed species. At all growth stages and heights S. arvensis was more difficult to cut with a CO2 laser than C. album....... When stems were cut below the meristems, 0.9 and 2.3 J mm(-1) of CO2 laser energy dose was sufficient to reduce by 90% the biomass of C. album and S. arvensis respectively. Regrowth appeared when dicotyledonous plant stems were cut above meristems, indicating that it is important to cut close...

  17. Assessment of CO2 free energy options

    International Nuclear Information System (INIS)

    Cavlina, N.; Raseta, D.; Matutinovic, I.


    One of the European Union climate and energy targets is to significantly reduce CO 2 emissions, at least 20% by 2020, compared to 1990. In the power industry, most popular solution is use of solar and wind power. Since their production varies significantly during the day, for the purpose of base-load production they can be paired with gas-fired power plant. Other possible CO 2 -free solution is nuclear power plant. This article compared predicted cost of energy production for newly built nuclear power plant and newly built combination of wind or solar and gas-fired power plant. Comparison was done using Levelized Unit of Energy Cost (LUEC). Calculations were performed using the Monte Carlo method. For input parameters that have biggest uncertainty (gas cost, CO 2 emission fee) those uncertainties were addressed not only through probability distribution around predicted value, but also through different scenarios. Power plants were compared based on their economic lifetime. (authors)

  18. The ATLAS IBL CO2 Cooling System

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00237783; The ATLAS collaboration; Zwalinski, L.; Bortolin, C.; Vogt, S.; Godlewski, J.; Crespo-Lopez, O.; Van Overbeek, M.; Blaszcyk, T.


    The ATLAS Pixel detector has been equipped with an extra B-layer in the space obtained by a reduced beam pipe. This new pixel detector called the ATLAS Insertable B-Layer (IBL) is installed in 2014 and is operational in the current ATLAS data taking. The IBL detector is cooled with evaporative CO2 and is the first of its kind in ATLAS. The ATLAS IBL CO2 cooling system is designed for lower temperature operation (<-35⁰C) than the previous developed CO2 cooling systems in High Energy Physics experiments. The cold temperatures are required to protect the pixel sensors for the high expected radiation dose up to 550 fb^-1 integrated luminosity.

  19. Novel concepts for CO2 capture

    International Nuclear Information System (INIS)

    Dijkstra, J.W.; Jansen, D.


    This paper describes the possibilities for power generation with CO 2 capture using envisaged key technologies: gas turbines, membranes and solid oxide fuel cells (SOFCs). First, the underlying programs in the Netherlands and at ECN are introduced. Then the key technologies are introduced, and concepts using these technologies are discussed. A literature overview of systems for power generation with fuel cells in combination with CO 2 capture is presented. Then a novel concept is introduced. This concept uses a water gas shift membrane reactor to convert the CO and H 2 in the SOFC anode off-gas to gain a CO 2 rich stream, which can be used for sequestration without elaborate treatment. Several implementation schemes of the technique are discussed such as atmospheric systems and hybrid SOFC-GT systems

  20. Equilibrium Solubility of CO2 in Alkanolamines

    DEFF Research Database (Denmark)

    Waseem Arshad, Muhammad; Fosbøl, Philip Loldrup; von Solms, Nicolas


    Equilibrium solubility of CO2 were measured in aqueous solutions of Monoethanolamine (MEA) and N,N-diethylethanolamine(DEEA). Equilibrium cells are generally used for these measurements. In this study, the equilibrium data were measured from the calorimetry. For this purpose a reaction calorimeter...... (model CPA 122 from ChemiSens AB, Sweden) was used. The advantage of this method is being the measurement of both heats of absorption and equilibrium solubility data of CO2 at the same time. The measurements were performed for 30 mass % MEA and 5M DEEA solutions as a function of CO2 loading at three...... different temperatures 40, 80 and 120 ºC. The measured 30 mass % MEA and 5M DEEA data were compared with the literature data obtained from different equilibrium cells which validated the use of calorimeters for equilibrium solubility measurements....

  1. Study of CO2 bubble dynamics in seawater from QICS field Experiment (United States)

    Chen, B.; Dewar, M.; Sellami, N.; Stahl, H.; Blackford, J.


    One of the concerns of employing CCS at engineering scale is the risk of leakage of storage CO2 on the environment and especially on the marine life. QICS, a scientific research project was launched with an aim to study the effects of a potential leak from a CCS system on the UK marine environment [1]. The project involves the injection of CO2 from a shore-based lab into shallow marine sediments. One of the main objectives of the project is to generate experimental data to be compared with the developed physical models. The results of the models are vital for the biogeochemical and ecological models in order to predict the impact of a CO2 leak in a variety of situations. For the evaluation of the fate of the CO2 bubbles into the surrounding seawater, the physical model requires two key parameters to be used as input which are: (i) a correlation of the drag coefficient as function of the CO2 bubble Reynolds number and (ii) the CO2 bubble size distribution. By precisely measuring the CO2 bubble size and rising speed, these two parameters can be established. For this purpose, the dynamical characteristics of the rising CO2 bubbles in Scottish seawater were investigated experimentally within the QICS project. Observations of the CO2 bubbles plume rising freely in the in seawater column were captured by video survey using a ruler positioned at the leakage pockmark as dimension reference. This observation made it possible, for the first time, to discuss the dynamics of the CO2 bubbles released in seawater. [1] QICS, QICS: Quantifying and Monitoring Potential Ecosystem Impacts of Geological Carbon Storage. (Accessed 15.07.13),

  2. Spectroscopic technique for measuring atmospheric CO2

    International Nuclear Information System (INIS)

    Stokes, G.M.; Stokes, R.A.


    As part of a continuing effort to identify areas in which astronomical techniques and data may be profitably applied to atmospheric problems, both new and archival solar spectra have been collected to prepare for an analysis of their use for studying the changes of the atmospheric CO 2 burden. This analysis has resulted in the initiation of an observing program using the Fourier Transform Spectrometer (FTS) of the McMath Solar Telescope at Kitt Peak National Observatory (KPNO). This program is generating spectra, the quality of which should not only aid the archival CO 2 study but also lead to analyses of other trace gases

  3. 10 MW Supercritical CO2 Turbine Test

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, Craig


    The Supercritical CO2 Turbine Test project was to demonstrate the inherent efficiencies of a supercritical carbon dioxide (s-CO2) power turbine and associated turbomachinery under conditions and at a scale relevant to commercial concentrating solar power (CSP) projects, thereby accelerating the commercial deployment of this new power generation technology. The project involved eight partnering organizations: NREL, Sandia National Laboratories, Echogen Power Systems, Abengoa Solar, University of Wisconsin at Madison, Electric Power Research Institute, Barber-Nichols, and the CSP Program of the U.S. Department of Energy. The multi-year project planned to design, fabricate, and validate an s-CO2 power turbine of nominally 10 MWe that is capable of operation at up to 700°C and operates in a dry-cooled test loop. The project plan consisted of three phases: (1) system design and modeling, (2) fabrication, and (3) testing. The major accomplishments of Phase 1 included: Design of a multistage, axial-flow, s-CO2 power turbine; Design modifications to an existing turbocompressor to provide s-CO2 flow for the test system; Updated equipment and installation costs for the turbomachinery and associated support infrastructure; Development of simulation tools for the test loop itself and for more efficient cycle designs that are of greater commercial interest; Simulation of s-CO2 power cycle integration into molten-nitrate-salt CSP systems indicating a cost benefit of up to 8% in levelized cost of energy; Identification of recuperator cost as a key economic parameter; Corrosion data for multiple alloys at temperatures up to 650ºC in high-pressure CO2 and recommendations for materials-of-construction; and Revised test plan and preliminary operating conditions based on the ongoing tests of related equipment. Phase 1 established that the cost of the facility needed to test the power turbine at its full power and temperature would exceed the planned funding for Phases 2 and 3. Late

  4. 14CO2 fixation pattern of cyanobacteria

    International Nuclear Information System (INIS)

    Erdmann, N.; Schiewer, U.


    The 14 CO 2 fixation pattern of three cyanobacteria in the light and dark were studied. Two different chromatographic methods widely used for separating labelled photosynthetic intermediates were compared. After ethanolic extraction, a rather uniform fixation pattern reflecting mainly the β-carboxylation pathway is obtained for all 3 species. Of the intermediates, glucosylglycerol is specific and high citrulline and low malate contents are fairly specific to cyanobacteria. The composition of the 14 CO 2 fixation pattern is hardly affected by changes in temperature or light intensity, but it is severely affected by changes in the water potential of the medium. (author)

  5. Feeding enhances skeletal growth and energetic stores of an Atlantic coral under significantly elevated CO2 (United States)

    Drenkard, L.; Cohen, A. L.; McCorkle, D. C.; dePutron, S.; Zicht, A.


    Many corals living under the relatively acidic conditions of naturally high-CO2 reefs are calcifying as fast or faster than their conspecifics on naturally low CO2 reefs. These observations are inconsistent with most experimental work that shows a negative impact of ocean acidification on coral calcification. We investigated the link between coral nutritional (energetic) status and the calcification response to significantly elevated CO2. Juveniles of the Atlantic brooding coral, Favia fragum were reared for three weeks under fully crossed CO2 and feeding conditions: ambient (μar =1.6+-0.2) and high CO2 (μar =3.7+-0.3); fed and unfed. In most measured parameters, the effect of feeding is much stronger than the effect of CO2. Nutritionally enhanced (fed) corals, regardless of CO2 condition, have higher concentrations of total lipid and their skeletons are both significantly larger and more developmentally advanced than those of corals relying solely on autotrophy. In measurements of corallite weight, where the impact of CO2 is most apparent, no statistical difference is observed between unfed corals under ambient CO2 conditions and fed corals reared under 1600 ppm CO2. Our results suggest that coral energetic status, which can be enhanced by heterotrophic feeding but depleted by stressors such as bleaching, will play a key role in the coral response to ocean acidification and thus, in the resilience of reef ecosystems under climate change.

  6. Responses of soil microbial activity to cadmium pollution and elevated CO2. (United States)

    Chen, Yi Ping; Liu, Qiang; Liu, Yong Jun; Jia, Feng An; He, Xin Hua


    To address the combined effects of cadmium (Cd) and elevated CO2 on soil microbial communities, DGGE (denaturing gradient gel electrophoresis) profiles, respiration, carbon (C) and nitrogen (N) concentrations, loessial soils were exposed to four levels of Cd, i.e., 0 (Cd0), 1.5 (Cd1.5), 3.0 (Cd3.0) and 6.0 (Cd6.0) mg Cd kg(-1) soil, and two levels of CO2, i.e., 360 (aCO2) and 480 (eCO2) ppm. Compared to Cd0, Cd1.5 increased fungal abundance but decreased bacterial abundance under both CO2 levels, whilst Cd3.0 and Cd6.0 decreased both fungal and bacterial abundance. Profiles of DGGE revealed alteration of soil microbial communities under eCO2. Soil respiration decreased with Cd concentrations and was greater under eCO2 than under aCO2. Soil total C and N were greater under higher Cd. These results suggest eCO2 could stimulate, while Cd pollution could restrain microbial reproduction and C decomposition with the restraint effect alleviated by eCO2.

  7. A Review of CO2-Enhanced Oil Recovery with a Simulated Sensitivity Analysis

    Directory of Open Access Journals (Sweden)

    Mandadige Samintha Anne Perera


    Full Text Available This paper reports on a comprehensive study of the CO2-EOR (Enhanced oil recovery process, a detailed literature review and a numerical modelling study. According to past studies, CO2 injection can recover additional oil from reservoirs by reservoir pressure increment, oil swelling, the reduction of oil viscosity and density and the vaporization of oil hydrocarbons. Therefore, CO2-EOR can be used to enhance the two major oil recovery mechanisms in the field: miscible and immiscible oil recovery, which can be further increased by increasing the amount of CO2 injected, applying innovative flood design and well placement, improving the mobility ratio, extending miscibility, and controlling reservoir depth and temperature. A 3-D numerical model was developed using the CO2-Prophet simulator to examine the effective factors in the CO2-EOR process. According to that, in pure CO2 injection, oil production generally exhibits increasing trends with increasing CO2 injection rate and volume (in HCPV (Hydrocarbon pore volume and reservoir temperature. In the WAG (Water alternating gas process, oil production generally increases with increasing CO2 and water injection rates, the total amount of flood injected in HCPV and the distance between the injection wells, and reduces with WAG flood ratio and initial reservoir pressure. Compared to other factors, the water injection rate creates the minimum influence on oil production, and the CO2 injection rate, flood volume and distance between the flood wells have almost equally important influence on oil production.

  8. An Improved CO2 Separation and Purification System Based on Cryogenic Separation and Distillation Theory

    Directory of Open Access Journals (Sweden)

    Gang Xu


    Full Text Available In this study, an improved CO2 separation and purification system is proposed based on in-depth analyses of cryogenic separation and distillation theory as well as the phase transition characteristics of gas mixtures containing CO2. Multi-stage compression, refrigeration, and separation are adopted to separate the majority of the CO2 from the gas mixture with relatively low energy penalty and high purity. Subsequently, the separated crude liquid CO2 is distilled under high pressure and near ambient temperature conditions so that low energy penalty purification is achieved. Simulation results indicate that the specific energy consumption for CO2 capture is only 0.425 MJ/kgCO2 with 99.9% CO2 purity for the product. Techno-economic analysis shows that the total plant investment is relatively low. Given its technical maturity and great potential in large-scale production, compared to conventional MEA and SelexolTM absorption methods, the cost of CO2 capture of the proposed system is reduced by 57.2% and 45.9%, respectively. The result of this study can serve as a novel approach to recovering CO2 from high CO2 concentration gas mixtures.

  9. Elevated CO2 effects on canopy and soil water flux parameters measured using a large chamber in crops grown with free-air CO2 enrichment. (United States)

    Burkart, S; Manderscheid, R; Wittich, K-P; Löpmeier, F J; Weigel, H-J


    An arable crop rotation (winter barley-sugar beet-winter wheat) was exposed to elevated atmospheric CO(2) concentrations ([CO(2) ]) using a FACE facility (Free-Air CO(2) Enrichment) during two rotation periods. The atmospheric [CO(2) ] of the treatment plots was elevated to 550 ppm during daylight hours (T>5°C). Canopy transpiration (E(C) ) and conductance (G(C) ) were measured at selected intervals (>10% of total growing season) using a dynamic CO(2) /H(2) O chamber measuring system. Plant available soil water content (gravimetry and TDR probes) and canopy microclimate conditions were recorded in parallel. Averaged across both growing seasons, elevated [CO(2) ] reduced E(C) by 9%, 18% and 12%, and G(C) by 9%, 17% and 12% in barley, sugar beet and wheat, respectively. Both global radiation (Rg) and vapour pressure deficit (VPD) were the main driving forces of E(C) , whereas G(C) was mostly related to Rg. The responses of E(C) and especially G(C) to [CO(2) ] enrichment were insensitive to weather conditions and leaf area index. However, differences in LAI between plots counteracted the [CO(2) ] impact on E(C) and thus, at least in part, explained the variability of seasonal [CO(2) ] responses between crops and years. As a consequence of lower transpirational canopy water loss, [CO(2) ] enrichment increased plant available soil water content in the course of the season by ca. 15 mm. This was true for all crops and years. Lower transpirational cooling due to a [CO(2) ]-induced reduction of E(C) increased canopy surface and air temperature by up to 2 °C and 0.5 °C, respectively. This is the first study to address effects of FACE on both water fluxes at canopy scale and water status of a European crop rotation. © 2010 German Botanical Society and The Royal Botanical Society of the Netherlands.

  10. Capture and Geological Storage of CO2

    International Nuclear Information System (INIS)

    Kerr, T.; Brockett, S.; Hegan, L.; Barbucci, P.; Tullius, K.; Scott, J.; Otter, N.; Cook, P.; Hill, G.; Dino, R.; Aimard, N.; Giese, R.; Christensen, N.P.; Munier, G.; Paelinck, Ph.; Rayna, L.; Stromberg, L.; Birat, J.P.; Audigane, P.; Loizzo, M.; Arts, R.; Fabriol, H.; Radgen, P.; Hartwell, J.; Wartmann, S.; Drosin, E.; Willnow, K.; Moisan, F.


    To build on the growing success of the first two international symposia on emission reduction and CO 2 capture and geological storage, held in Paris in 2005 and again in 2007, IFP, ADEME and BRGM organised a third event on the same topic the 5-6 November 2009. This time, the focus was on the urgency of industrial deployment. Indeed, the IPCC 4. assessment report indicates that the world must achieve a 50 to 85% reduction in CO 2 emissions by 2050 compared to 2000, in order to limit the global temperature increase to around 2 deg. C. Moreover, IPCC stresses that a 'business as usual' scenario could lead to a temperature increase of between 4 deg. C to 7 deg. C across the planet. The symposium was organized in 4 sessions: Session I - Regulatory framework and strategies for enabling CCS deployment: - CCS: international status of political, regulatory and financing issues (Tom Kerr, IEA); - EC regulatory framework (Scott Brockett, European Commission, DG ENV); - Canada's investments towards implementation of CCS in Canada (Larry Hegan, Office of Energy Research and Development - Government of Canada); - A power company perspective (Pietro Barbucci, ENEL); - EC CCS demonstration network (Kai Tullius, European Commission, DG TREN); - Strategies and policies for accelerating global CCS deployment (Jesse Scott, E3G); - The global CCS Institute, a major initiative to facilitate the rapid deployment of CCS (Nick Otter, GCCSI); Session II - From pilot to demonstration projects: - Otway project, Australia (David Hilditch, CO2 CRC); - US regional partnerships (Gerald Hill, Southeast Regional Carbon Sequestration Partnership - SECARB); - CCS activities in Brazil (Rodolfo Dino, Petrobras); - Lessons learnt from Ketzin CO2Sink project in Germany (Ruediger Giese, GFZ); - CO 2 storage - from laboratory to reality (Niels-Peter Christensen, Vattenfall); - Valuation and storage of CO 2 : A global project for carbon management in South-East France (Gilles Munier, Geogreen); Session III

  11. Measurements of sulfur compounds in CO2 by diode laser atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Franzke, J.; Stancu, D.G.; Niemax, K.


    Two simple methods for the analysis of the total concentration of sulfur in CO 2 by diode laser atomic absorption spectrometry of excited, metastable sulfur atoms in a direct current discharge are presented. In the first method, the CO 2 sample gas is mixed with the plasma gas (Ar or He) while the second is based on reproducible measurements of the sulfur released from the walls in a helium discharge after being deposited as a result of operating the discharge in pure CO 2 sample gas. The detection limits obtained satisfy the requirements for the control of sulfur compounds in CO 2 used in the food and beverage industry

  12. Mars - CO2 adsorption and capillary condensation on clays: Significance for volatile storage and atmospheric history (United States)

    Fanale, F. P.; Cannon, W. A.


    Results on the adsorbate-adsorbent system CO2-nontronite are reported at 230, 196, and 158 deg K, covering the range of subsurface regolith temperature on Mars. A three-part regolith-atmosphere-cap model reveals that cold nontronite, and expanding clays in general, are far better but far more complex CO2 adsorbers than cold pulverized basalt. In addition, the layered terrain, and possibly the adjacent debris mantle, contains about 2% or more by mass of atmosphere-exchangeable CO2 and the total regolith inventory of available adsorbed CO2 is estimated to be 400 g/ sq cm.

  13. Spectroscopy, modeling and computation of metal chelate solubility in supercritical CO2. 1998 annual progress report

    International Nuclear Information System (INIS)

    Brennecke, J.F.; Chateauneuf, J.E.; Stadtherr, M.A.


    'This report summarizes work after 1 year and 8 months (9/15/96-5/14/98) of a 3 year project. Thus far, progress has been made in: (1) the measurement of the solubility of metal chelates in SC CO 2 with and without added cosolvents, (2) the spectroscopic determination of preferential solvation of metal chelates by cosolvents in SC CO 2 solutions, and (3) the development of a totally reliable computational technique for phase equilibrium computations. An important factor in the removal of metals from solid matrices with CO 2 /chelate mixtures is the equilibrium solubility of the metal chelate complex in the CO 2 .'

  14. An analysis of energy strategies for CO2 emission reduction in China. Case studies by MARKAL model

    International Nuclear Information System (INIS)

    Li Guangya


    The China's energy system has been analyzed by using the MARKAL model in this study and the time period is from the year 1990 to 2050. The MARKAL model is applied here to evaluate the cost effective energy strategies for CO 2 emission reduction in China. Firstly the Reference Energy System (RES) of China and its database were established, and the useful energy demand was projected on the basis of China's economic target and demographic forecasting. Four scenarios, BASE1-BASE4 were defined with different assumptions of crude oil and natural uranium availability. Analytical results show that without CO 2 emission constrains coal consumption will continue to hold a dominant position in primary energy supply, and CO 2 emissions in 2050 will be 9.55 BtCO 2 and 10.28 BtCO 2 with different natural uranium availability. Under the CO 2 emission constraints, nuclear and renewable energy will play important roles in CO 2 emission reduction, and feasible maximum CO 2 emission reduction estimated by this study is 3.16 BtCO 2 in 2050. The cumulative CO 2 emission from 1990 to 2050 will be 418.25 BtCO 2 and 429.16 BtCO 2 with different natural uranium availability. Total feasible maximum CO 2 emission reduction from 1990 to 2050 is 95.97 BtCO 2 . (author)

  15. Interactive effect of elevated CO2 and temperature on coral physiology (United States)

    Grottoli, A. G.; Cai, W.; Warner, M.; Melman, T.; Schoepf, V.; Baumann, J.; Matsui, Y.; Pettay, D. T.; Hoadley, K.; Xu, H.; Wang, Y.; Li, Q.; Hu, X.


    Increases in ocean acidification and temperature threaten coral reefs globally. However, the interactive effect of both lower pH and higher temperature on coral physiology and growth are poorly understood. Here, we present preliminary findings from a replicated controlled experiment where four species of corals (Acorpora millepora, Pocillopora damicornis, Montipora monasteriata, Turbinaria reniformis) were reared under the following six treatments for three weeks: 1) 400ppm CO2 and ambient temperature, 2) 400ppm CO2 and elevated temperature, 3) 650ppm CO2 and ambient temperature, 4) 650ppm CO2 and elevated temperature, 5) 800ppm CO2 and ambient temperature, 6) 800ppm CO2 and elevated temperature. Initial findings of photophysiological health (Fv/Fm), calcification rates (as measured by both buoyant weight and the total alkalinity methods), and energy reserves will be presented.

  16. Large Lakes Dominate CO2 Evasion From Lakes in an Arctic Catchment (United States)

    Rocher-Ros, Gerard; Giesler, Reiner; Lundin, Erik; Salimi, Shokoufeh; Jonsson, Anders; Karlsson, Jan


    CO2 evasion from freshwater lakes is an important component of the carbon cycle. However, the relative contribution from different lake sizes may vary, since several parameters underlying CO2 flux are size dependent. Here we estimated the annual lake CO2 evasion from a catchment in northern Sweden encompassing about 30,000 differently sized lakes. We show that areal CO2 fluxes decreased rapidly with lake size, but this was counteracted by the greater overall coverage of larger lakes. As a result, total efflux increased with lake size and the single largest lake in the catchment dominated the CO2 evasion (53% of all CO2 evaded). By contrast, the contribution from the smallest ponds (about 27,000) was minor (evasion at the landscape scale.

  17. An approach to optimize economics in a west Texas CO2 flood

    International Nuclear Information System (INIS)

    Pariani, G.J.; McColloch, K.A.; Warden, S.L.; Edens, D.R.


    Enhanced oil recovery projects, most notably CO 2 floods, are the next generation of recovery methods in the more mature West Texas waterfloods. The cost of installing and operating a CO 2 flood can be extremely high. In this paper, the authors will discuss the methods the authors used to make several active CO 2 floods more profitable by reducing operating costs and deferring investments. This paper reports that the author's goals in studying several active West Texas CO 2 floods were to determine the optimum near term cash flow, overall project economics (rate of return, present worth etc.) and oil recoveries. Using a reservoir simulator, various CO 2 flood designs were developed by altering specific operating parameters including the half-cycle slug size, gas-water ratio (GWR) injection schemes and total CO 2 slug sizes. The resulting injection and production rates were then entered into an economic simulator to determine the most economic set of operating conditions

  18. Effect of heat treatment on CO2 adsorption of KOH-activated graphite nanofibers. (United States)

    Meng, Long-Yue; Park, Soo-Jin


    In this work, graphite nanofibers (GNFs) were successfully expanded intercalating KOH followed by heat treatment in the temperature range of 700-1000 °C. The aim was to improve the CO(2) adsorption capacity of the GNFs by increasing the porosity of GNFs. The effects of heat treatment on the pore structures of GNFs were investigated by N(2) full isotherms, XRD, SEM, and TEM. The CO(2) adsorption capacity was measured by CO(2) isothermal adsorption at 25 °C and 1 atm. From the results, it was found that the activation temperature had a major influence on CO(2) adsorption capacity and textural properties of GNFs. The specific surface area, total pore volume, and mesopore volume of the GNFs increased after heat treatment. The CO(2) adsorption isotherms showed that G-900 exhibited the best CO(2) adsorption capacity with 59.2 mg/g. Copyright © 2010 Elsevier Inc. All rights reserved.

  19. The transmission of stress to grafted bone inside a titanium mesh cage used in anterior column reconstruction after total spondylectomy: a finite-element analysis. (United States)

    Akamaru, Tomoyuki; Kawahara, Norio; Sakamoto, Jiro; Yoshida, Akira; Murakami, Hideki; Hato, Taizo; Awamori, Serina; Oda, Juhachi; Tomita, Katsuro


    A finite-element study of posterior alone or anterior/posterior combined instrumentation following total spondylectomy and replacement with a titanium mesh cage used as an anterior strut. To compare the effect of posterior instrumentation versus anterior/posterior instrumentation on transmission of the stress to grafted bone inside a titanium mesh cage following total spondylectomy. The most recent reconstruction techniques following total spondylectomy for malignant spinal tumor include a titanium mesh cage filled with autologous bone as an anterior strut. The need for additional anterior instrumentation with posterior pedicle screws and rods is controversial. Transmission of the mechanical stress to grafted bone inside a titanium mesh cage is important for fusion and remodeling. To our knowledge, there are no published reports comparing the load-sharing properties of the different reconstruction methods following total spondylectomy. A 3-dimensional finite-element model of the reconstructed spine (T10-L4) following total spondylectomy at T12 was constructed. A Harms titanium mesh cage (DePuy Spine, Raynham, MA) was positioned as an anterior replacement, and 3 types of the reconstruction methods were compared: (1) multilevel posterior instrumentation (MPI) (i.e., posterior pedicle screws and rods at T10-L2 without anterior instrumentation); (2) MPI with anterior instrumentation (MPAI) (i.e., MPAI [Kaneda SR; DePuy Spine] at T11-L1); and (3) short posterior and anterior instrumentation (SPAI) (i.e., posterior pedicle screws and rods with anterior instrumentation at T11-L1). The mechanical energy stress distribution exerted inside the titanium mesh cage was evaluated and compared by finite-element analysis for the 3 different reconstruction methods. Simulated forces were applied to give axial compression, flexion, extension, and lateral bending. In flexion mode, the energy stress distribution in MPI was higher than 3.0 x 10 MPa in 73.0% of the total volume inside

  20. The growth response of plants to elevated CO2 under non-optimal environmental conditions

    NARCIS (Netherlands)

    Poorter, H.; Pérez-Soba, M.


    Under benign environmental conditions, plant growth is generally stimulated by elevated atmospheric CO2 concentrations. When environmental conditions become sub- or supra-optimal for growth, changes in the biomass enhancement ratio (BER; total plant biomass at elevated CO2 divided by plant biomass

  1. Atmospheric CO2 enrichment alters energy assimilation, investment and allocation in Xanthium strumarium. (United States)

    Nagel, Jennifer M; Wang, Xianzhong; Lewis, James D; Fung, Howard A; Tissue, David T; Griffin, Kevin L


    Energy-use efficiency and energy assimilation, investment and allocation patterns are likely to influence plant growth responses to increasing atmospheric CO2 concentration ([CO2]). Here, we describe the influence of elevated [CO2] on energetic properties as a mechanism of growth responses in Xanthium strumarium. Individuals of X. strumarium were grown at ambient or elevated [CO2] and harvested. Total biomass and energetic construction costs (CC) of leaves, stems, roots and fruits and percentage of total biomass and energy allocated to these components were determined. Photosynthetic energy-use efficiency (PEUE) was calculated as the ratio of total energy gained via photosynthetic activity (Atotal) to leaf CC. Elevated [CO2] increased leaf Atotal, but decreased CC per unit mass of leaves and roots. Consequently, X. strumarium individuals produced more leaf and root biomass at elevated [CO2] without increasing total energy investment in these structures (CCtotal). Whole-plant biomass was associated positively with PEUE. Whole-plant construction required 16.1% less energy than modeled whole-plant energy investment had CC not responded to increased [CO2]. As a physiological mechanism affecting growth, altered energetic properties could positively influence productivity of X. strumarium, and potentially other species, at elevated [CO2].

  2. Soil CO2 flux in response to wheel traffic in a no-till system (United States)

    Measurements of soil CO2 flux in the absence of living plants can be used to evaluate the effectiveness of soil management practices for C sequestration, but field CO2 flux is spatially variable and may be affected by soil compaction and percentage of total pore space filled with water (%WFPS). The ...

  3. Aviation and the environment, rating airlines on their co2 efficiency

    NARCIS (Netherlands)

    Van der Zwan, F.M.; Dorland, N.; Ghijs, S.S.A.; Santema, S.C.; Curran, R.


    The aviation industry contributes about 2% to the total global manmade CO2 emissions, which is seen as the main (manmade) greenhouse gas inducing climate change. This paper focuses on the design of a CO2 rating system which makes it possible to make a fair comparison of the environmental performance

  4. Water loss from terrestrial planets with CO2-rich atmospheres

    International Nuclear Information System (INIS)

    Wordsworth, R. D.; Pierrehumbert, R. T.


    Water photolysis and hydrogen loss from the upper atmospheres of terrestrial planets is of fundamental importance to climate evolution but remains poorly understood in general. Here we present a range of calculations we performed to study the dependence of water loss rates from terrestrial planets on a range of atmospheric and external parameters. We show that CO 2 can only cause significant water loss by increasing surface temperatures over a narrow range of conditions, with cooling of the middle and upper atmosphere acting as a bottleneck on escape in other circumstances. Around G-stars, efficient loss only occurs on planets with intermediate CO 2 atmospheric partial pressures (0.1-1 bar) that receive a net flux close to the critical runaway greenhouse limit. Because G-star total luminosity increases with time but X-ray and ultraviolet/ultravoilet luminosity decreases, this places strong limits on water loss for planets like Earth. In contrast, for a CO 2 -rich early Venus, diffusion limits on water loss are only important if clouds caused strong cooling, implying that scenarios where the planet never had surface liquid water are indeed plausible. Around M-stars, water loss is primarily a function of orbital distance, with planets that absorb less flux than ∼270 W m –2 (global mean) unlikely to lose more than one Earth ocean of H 2 O over their lifetimes unless they lose all their atmospheric N 2 /CO 2 early on. Because of the variability of H 2 O delivery during accretion, our results suggest that many 'Earth-like' exoplanets in the habitable zone may have ocean-covered surfaces, stable CO 2 /H 2 O-rich atmospheres, and high mean surface temperatures.

  5. Computational study on oxynitride perovskites for CO_2 photoreduction

    International Nuclear Information System (INIS)

    Hafez, Ahmed M.; Zedan, Abdallah F.; AlQaradawi, Siham Y.; Salem, Noha M.; Allam, Nageh K.


    Highlights: • Oxynitride perovskites are investigated for photoelectrochemical CO_2 reduction. • They have small electron and hole effective masses, rendering higher mobility. • The effect of cation size on the band gap is investigated and discussed. • W-doping allowed the selection of specific CO_2 reduction products. - Abstract: The photocatalytic conversion of CO_2 into chemical fuels is an attractive route for recycling this greenhouse gas. However, the large scale application of such approach is limited by the low selectivity and activity of the currently used photocatalysts. Using first principles calculations, we report on the selection of optimum oxynitride perovskites as photocatalysts for photoelectrochemical CO_2 reduction. The results revealed six perovskites that perfectly straddle the carbon dioxide redox potential; namely, BaTaO_2N, SrTaO_2N, CaTaO_2N, LaTiO_2N, BaNbO_2N, and SrNbO_2N. The electronic structure and the effective mass of the selected candidates are discussed in details, the partial and total density of states illustrated the orbital hybridization and the contribution of each element in the valence and conduction band minima. The effect of cation size in the ABO_2N perovskites on the band gap is investigated and discussed. The optical properties of the selected perovskites are calculated to account for their photoactivity. Moreover, the effect of W doping on improving the selectivity of perovskites toward specific hydrocarbon product (methane) is discussed in details. This study reveals the promising optical and structural properties of oxynitride perovskite candidates for CO_2 photoreduction.

  6. Elevated CO2 changes interspecific competition among three species of wheat aphids: Sitobion avenae, Rhopalosiphum padi, and Schizaphis graminum. (United States)

    Sun, Yu Cheng; Chen, Fa Jun; Ge, Feng


    Effects of elevated CO2 (twice ambient) on the interspecific competition among three species of wheat aphids (Sitobion avenae, Rhopalosiphum padi, and Schizaphis graminum) and on wheat-aphid interactions were studied. Wheat plants had higher biomass and yield and lower water and nitrogen content of grain when grown under elevated CO2 than under ambient CO2; levels of condensed tannins, total phenols, and total nonstructural carbohydrates were also higher in wheat ears under elevated CO2. Compared with ambient CO2, elevated CO2 increased the abundance of R. padi when introduced solely but reduced its abundance when S. avenae was also present. The spatial distribution of wheat aphids was apparently influenced by CO2 levels, with significantly more S. avenae on ears and a more even distribution of R. padi on wheat plants under elevated CO2 versus ambient CO2. Elevated CO2 did not affect the abundance and spatial distribution of S. graminus when inoculated solely. Moreover, when S. avenae was present with either R. padi or S. graminum, spatial niche overlap was significantly decreased with elevated CO2. When three species co-occurred, elevated CO2 reduced spatial niche overlap between S. avenae and S. graminum and between R. padi and S. graminum. Our results suggest that increases in atmospheric CO2 would alleviate interspecific competition for these cases, which would accentuate the abundance of and the damage caused by these wheat aphids.

  7. Prediction of CO2 leakage during sequestration into marine sedimentary strata

    International Nuclear Information System (INIS)

    Li, Qi; Wu Zhishen; Li Xiaochun


    Deep ocean storage of CO 2 could help reduce the atmospheric level of greenhouse gas as part of a climate change mitigation strategy. In this paper, a multiphase flow model of CO 2 sequestration into deep ocean sediments was designed associated with the formation of CO 2 hydrates. A simplified assumption was proposed to predict the critical time of CO 2 leakage from marine sedimentary strata into seawater. Moreover, some principal parameters, which include the permeability, anisotropy, total injection amount, and length of the injection part of wellbores, were investigated by numerical simulations. The numerical estimates are used to assess the feasibility and effectiveness of CO 2 storage in deep ocean sediments. Accurately predicting the actual fate of liquid CO 2 sequestered into the marine sedimentary strata at depths greater than 500 m is complicated by uncertainties associated with not only the chemical-physical behavior of CO 2 under such conditions but also the geo-environment of disposal sites. Modeling results have shown some implications that the effectiveness of CO 2 ocean sequestration depends mainly on the injection conditions (such as injection rate, total injection amount, and the depth of injection), the site geology (such as permeability and anisotropy of disposal formations), and the chemical-physical behavior of CO 2 in marine environment

  8. China’s provincial CO2 emissions embodied in international and interprovincial trade

    International Nuclear Information System (INIS)

    Guo Ju’e; Zhang Zengkai; Meng Lei


    Trades create a mechanism of embodied CO 2 emissions transfer among regions, causing distortion on the total emissions. As the world’s second largest economy, China has a large scale of trade, which results in the serious problem of embodied CO 2 emissions transfer. This paper analyzes the characteristics of China’s CO 2 emissions embodied in international and interprovincial trade from the provincial perspective. The multi-regional Input–Output Model is used to clarify provincial CO 2 emissions from geographical and sectoral dimensions, including 30 provinces and 28 sectors. Two calculating principles (production accounting principle and consumption accounting principle, ) are applied. The results show that for international trade, the eastern area accounts for a large proportion in China’s embodied CO 2 emissions. The sectors as net exporters and importers of embodied CO 2 emissions belong to labor-intensive and energy-intensive industries, respectively. For interprovincial trade, the net transfer of embodied CO 2 emissions is from the eastern area to the central area, and energy-intensive industries are the main contributors. With the largest amount of direct CO 2 emissions, the eastern area plays an important role in CO 2 emissions reduction. The central and western areas need supportive policies to avoid the transfer of industries with high emissions. - Highlights: ► China’s embodied CO 2 emissions are analyzed from the provincial perspective. ► Eastern provinces have larger CO 2 emissions embodied in international trade. ► Embodied CO 2 emissions are mainly transferred from eastern area to central area. ► Coastal provinces play important roles in CO 2 emissions reduction. ► Inland provinces need supportive policies on emissions reduction.

  9. Heterotrophic fixation of CO2 in soil

    Czech Academy of Sciences Publication Activity Database

    Šantrůčková, Hana; Bird, M. I.; Elhottová, Dana; Novák, Jaroslav; Picek, T.; Šimek, Miloslav; Tykva, Richard


    Roč. 49, č. 2 (2005), s. 218-225 ISSN 0095-3628 R&D Projects: GA ČR(CZ) GA206/02/1036; GA AV ČR(CZ) IAA6066901 Institutional research plan: CEZ:AV0Z60660521 Keywords : heterotrophic fixation * CO2 * soil Subject RIV: EH - Ecology, Behaviour Impact factor: 2.674, year: 2005

  10. Detection of 14CO2 in radiotoxicology

    International Nuclear Information System (INIS)

    Simonnet, Francoise; Bocquet, Colette.


    14 CO 2 is detected in exhaled air by conversion to Ba 14 CO 3 which is then filtered, dried and weighed. The radioactivity is measured by liquid scintillation counting. The radioactivity is expressed in μCi per litre of exhaled air according to the ICRP recommendations. The detection threshold is well below the values indicated by the ICRP [fr

  11. Stereotactic CO2 laser therapy for hydrocephalus (United States)

    Kozodoy-Pins, Rebecca L.; Harrington, James A.; Zazanis, George A.; Nosko, Michael G.; Lehman, Richard M.


    A new fiber-optic delivery system for CO2 radiation has been used to successfully treat non-communicating hydrocephalus. This system consists of a hollow sapphire waveguide employed in the lumen of a stereotactically-guided neuroendoscope. CO2 gas flows through the bore of the hollow waveguide, creating a path for the laser beam through the cerebrospinal fluid (CSF). This delivery system has the advantages of both visualization and guided CO2 laser radiation without the same 4.3 mm diameter scope. Several patients with hydrocephalus were treated with this new system. The laser was used to create a passage in the floor of the ventricle to allow the flow of CSF from the ventricles to the sub-arachnoid space. Initial postoperative results demonstrated a relief of the clinical symptoms. Long-term results will indicate if this type of therapy will be superior to the use of implanted silicone shunts. Since CO2 laser radiation at 10.6 micrometers is strongly absorbed by the water in tissue and CSF, damage to tissue surrounding the lesion with each laser pulse is limited. The accuracy and safety of this technique may prove it to be an advantageous therapy for obstructive hydrocephalus.

  12. Chilled ammonia process for CO2 capture

    DEFF Research Database (Denmark)

    Darde, Victor Camille Alfred; Thomsen, Kaj; van Well, Willy J. M


    The chilled ammonia process absorbs the CO2 at low temperature (2-10 degrees C). The heat of absorption of carbon dioxide by ammonia is significantly lower than for amines. In addition, degradation problems can be avoided and a high carbon dioxide capacity is achieved. Hence, this process shows...

  13. Chilled Ammonia Process for CO2 Capture

    DEFF Research Database (Denmark)

    Darde, Victor Camille Alfred; Thomsen, Kaj; Well, Willy J.M. van


    The chilled ammonia process absorbs the CO2 at low temperature (2–10°C). The heat of absorption of carbon dioxide by ammonia is significantly lower than for amines. In addition, degradation problems can be avoided and a high carbon dioxide capacity is achieved. Hence, this process shows good...

  14. The Idea of Global CO2 Trade

    DEFF Research Database (Denmark)

    Svendsen, Gert Tinggaard


    -effective control which can solve future global environmental problems. The gains from CO2 trade may give vital financial subsidies from the EU to Eastern Europe, for example, and it will probably not pay to cheat if quotas are renewed periodically by the UN. Cheating countries are then to be excluded from further...

  15. Climate change and CO2 emission reductions

    International Nuclear Information System (INIS)

    Ha Duong, M.; Campos, A.S.


    This paper presents the results of an opinion poll performed on a representative sample of 1000 persons about their sensitivity to climate change and to environment protection, their knowledge about technologies which are useful for environment protection, their opinion about geological CO 2 sequestration, and technologies to be developed to struggle against climate warming

  16. CO2 emissions of nuclear electricity generation

    International Nuclear Information System (INIS)

    Wissel, Steffen; Mayer-Spohn, Oliver; Fahl, Ulrich; Blesl, Markus; Voss, Alfred


    A survey of LCA studies on nuclear electricity generation revealed life cycle CO 2 emissions ranging between 3 g/kWhe to 60 g/kWhe and above. Firstly, this paper points out the discrepancies in studies by estimating the CO 2 emissions of nuclear power generation. Secondly, the paper sets out to provide critical review of future developments of the fuel cycle for light water reactors and illustrates the impact of uncertainties on the specific CO 2 emissions of nuclear electricity generation. Each step in the fuel cycle will be considered and with regard to the CO 2 emissions analysed. Thereby different assumptions and uncertainty levels are determined for the nuclear fuel cycle. With the impacts of low uranium ore grades for mining and milling as well as higher burn-up rates future fuel characteristics are considered. Sensitivity analyses are performed for all fuel processing steps, for different technical specifications of light water reactors as well as for further external frame conditions. (authors)

  17. CO2 effect on porous concrete

    Directory of Open Access Journals (Sweden)

    Sauman, Zdenek


    Full Text Available Not availableDebido a la acción del CO2 y de la humedad sobre un hormigón poroso, la tobermorita 11 A se descompone en vaterita, calcita y SÍO2 gel. A causa de la pseudomorfosis, la morfología de los cristales de la fase cementante no sufre cambios notables. La menor resistencia a la compresión se obtuvo después de 30 días de conservación en atmósferas de un 10 y un 30% de CO2. Después de un año de conservación, las resistencias no bajaron más de un 10%. En lo que respecta a la retracción de un hormigón poroso, la principal influencia fue la ejercida por la acción del CO2 y solamente en segundo lugar figura la acción ejercida por la humedad ambiente. Los hormigones porosos expuestos al aire (con su 0,03% de CO2 a h. r. de 50, 70 y 100% sufrieron al cabo de un año una expansión muy ligera.

  18. CO2 capture by Condensed Rotational Separation

    NARCIS (Netherlands)

    Benthum, van R.J.; Kemenade, van H.P.; Brouwers, J.J.H.; Golombok, M.


    Condensed Rotational Separation (CRS) technology is a patented method to upgrade gas mixtures. A novel application is thecapture of CO2 from coal-combustion fired power stations: Condensed Contaminant Centrifugal Separation in Coal Combustion(C5sep). CRS involves partial condensation of a gas

  19. CO2 contain of the electric heating

    International Nuclear Information System (INIS)

    Bacher, P.


    A recent announcement of the RTE and the ADEME on the CO 2 contain of the electric kW, refuting a 2005 study of EDF and ADEME, perturbed the public opinion and was presented as the proof that the nuclear has no part in the fight against the climatic change. The author aims to set things straight. (A.L.B.)

  20. Ocean acidification: the other CO2 problem. (United States)

    Doney, Scott C; Fabry, Victoria J; Feely, Richard A; Kleypas, Joan A


    Rising atmospheric carbon dioxide (CO2), primarily from human fossil fuel combustion, reduces ocean pH and causes wholesale shifts in seawater carbonate chemistry. The process of ocean acidification is well documented in field data, and the rate will accelerate over this century unless future CO2 emissions are curbed dramatically. Acidification alters seawater chemical speciation and biogeochemical cycles of many elements and compounds. One well-known effect is the lowering of calcium carbonate saturation states, which impacts shell-forming marine organisms from plankton to benthic molluscs, echinoderms, and corals. Many calcifying species exhibit reduced calcification and growth rates in laboratory experiments under high-CO2 conditions. Ocean acidification also causes an increase in carbon fixation rates in some photosynthetic organisms (both calcifying and noncalcifying). The potential for marine organisms to adapt to increasing CO2 and broader implications for ocean ecosystems are not well known; both are high priorities for future research. Although ocean pH has varied in the geological past, paleo-events may be only imperfect analogs to current conditions.

  1. The Idea of Global CO2 Trade

    DEFF Research Database (Denmark)

    Svendsen, Gert Tinggaard


    -effective control which can solve future global environmental problems. The economic gains from 'hot air' distributions of permits and CO2 trade make the system politically attractive to potential participants. For example, vital financial subsidies from the EU to Eastern Europe are to be expected. It will probably...

  2. Literatuuronderzoek CAM-fotosynthese en CO2-bemesting en CO2-bemesting bij bromelia's

    NARCIS (Netherlands)

    Marissen, A.; Warmenhoven, M.G.


    De ‘normale’ wijze van CO2-opname gebeurt bij de meeste planten overdag, wanneer er licht is om de opgenomen CO2 door middel van fotosynthese direct om te zetten in suikers. Hiervoor is het nodig dat de huidmondjes overdag open staan, ‘s nachts zijn huidmondjes meestal dicht. Via de huidmondjes gaat

  3. The Li–CO2 battery: a novel method for CO2 capture and utilization

    KAUST Repository

    Xu, Shaomao; Das, Shyamal K.; Archer, Lynden A.


    We report a novel primary Li-CO2 battery that consumes pure CO2 gas as its cathode. The battery exhibits a high discharge capacity of around 2500 mA h g-1 at moderate temperatures. At 100 °C the discharge capacity is close to 1000% higher than

  4. Rechargeable Al-CO2 Batteries for Reversible Utilization of CO2. (United States)

    Ma, Wenqing; Liu, Xizheng; Li, Chao; Yin, Huiming; Xi, Wei; Liu, Ruirui; He, Guang; Zhao, Xian; Luo, Jun; Ding, Yi


    The excessive emission of CO 2 and the energy crisis are two major issues facing humanity. Thus, the electrochemical reduction of CO 2 and its utilization in metal-CO 2 batteries have attracted wide attention because the batteries can simultaneously accelerate CO 2 fixation/utilization and energy storage/release. Here, rechargeable Al-CO 2 batteries are proposed and realized, which use chemically stable Al as the anode. The batteries display small discharge/charge voltage gaps down to 0.091 V and high energy efficiencies up to 87.7%, indicating an efficient battery performance. Their chemical reaction mechanism to produce the performance is revealed to be 4Al + 9CO 2 ↔ 2Al 2 (CO 3 ) 3 + 3C, by which CO 2 is reversibly utilized. These batteries are envisaged to effectively and safely serve as a potential CO 2 fixation/utilization strategy with stable Al. © 2018 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Sustained effects of atmospheric [CO2] and nitrogen availability on forest soil CO2 efflux (United States)

    A. Christopher Oishi; Sari Palmroth; Kurt H. Johnsen; Heather R. McCarthy; Ram. Oren


    Soil CO2 efflux (Fsoil) is the largest source of carbon from forests and reflects primary productivity as well as how carbon is allocated within forest ecosystems. Through early stages of stand development, both elevated [CO2] and availability of soil nitrogen (N; sum of mineralization, deposition, and fixation) have been shown to increase gross primary productivity,...

  6. Well technologies for CO2 geological storage: CO2-resistant cement

    International Nuclear Information System (INIS)

    Barlet-Gouedard, V.; Rimmele, G.; Porcherie, O.; Goffe, B.


    Storing carbon dioxide (CO 2 ) underground is considered the most effective way for long-term safe and low-cost CO 2 sequestration. This recent application requires long-term well-bore integrity. A CO 2 leakage through the annulus may occur much more rapidly than geologic leakage through the formation rock, leading to economic loss, reduction of CO 2 storage efficiency, and potential compromise of the field for storage. The possibility of such leaks raises considerable concern about the long-term well-bore isolation and the durability of hydrated cement that is used to isolate the annulus across the producing/injection intervals in CO 2 -storage wells. We propose a new experimental procedure and methodology to study reactivity of CO 2 -Water-Cement systems in simulating the interaction of the set cement with injected supercritical CO 2 under downhole conditions. The conditions of experiments are 90 deg. C under 280 bars. The evolution of mechanical, physical and chemical properties of Portland cement with time is studied up to 6 months. The results are compared to equivalent studies on a new CO 2 -resistant material; the comparison shows significant promise for this new material. (authors)

  7. Uncertainties in the CO2 buget associated to boundary layer dynamics and CO2-advection

    NARCIS (Netherlands)

    Kaikkonen, J.P.; Pino, D.; Vilà-Guerau de Arellano, J.


    The relationship between boundary layer dynamics and carbon dioxide (CO2) budget in the convective boundary layer (CBL) is investigated by using mixed-layer theory. We derive a new set of analytical relations to quantify the uncertainties on the estimation of the bulk CO2 mixing ratio and the

  8. Impact of total organic carbon (in sediments) and dissolved organic carbon (in overlying water column) on Hg sequestration by coastal sediments from the central east coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Chakrabortya, P.; Sharma, B.M.; Babu, P.V.R.; Yao, K.M.; Jaychandran, S.

    , 1991; Liu et al., 2006; Tack and Verloo, 1995). Mercury accumulates in sediment globally from many physical, chemical, biological, geological and anthropogenic environmental processes. Thus, sediment can be a good indicator of water quality of a...-Black method (Schumacher, 2002). This method has been widely used for the determination of total organic carbon in the soil and sediments. 3.0 Results and discussion The general description and texture analysis of the studied sediments are presented...

  9. Synthesis of zeolites 'type A' for adsorption of CO2

    International Nuclear Information System (INIS)

    Vieira, L.O.; Madeira, A.C.; Merlini, A.; Melo, C.R.; Mendes, E.; Santos, M.G.S.; Angioletto, E.


    The separation of gases is a very expensive step in the chemical industry and unquestionable relevance. In this work it was found the effectiveness of using zeolites of type A in the separation of CO 2 in a gas mixture containing 25% CO 2 , 4% O 2 and 71% N 2 concentrations similar to exhaust gases from combustion processes. To this end, was synthesized using zeolites type A commercial kaolin and mounted to an adsorption column to test the efficiency of zeolites in the adsorption of CO 2 . The synthesized zeolites showed surface area of 66.22m 2 /g. The CO 2 concentration was determined by gas chromatography with TCD detector. Adjusting the data to the Langmuir model, there was obtained the kinetics of adsorption. From these, we found the ability of zeolite to adsorb CO 2 used in the column of 0.461285mg/g. The results of adsorption proved promising and showed maximum adsorption of 78.4% at a time of 10 seconds. (author)

  10. The direct and indirect CO_2 rebound effect for private cars in China

    International Nuclear Information System (INIS)

    Zhang, Yue-Jun; Liu, Zhao; Qin, Chang-Xiong; Tan, Tai-De


    The quantity of China's private cars has increased dramatically in the past decade, which has become one of the key sources of carbon emission and air pollution in the cities of China. In theory, to improve energy efficiency can reduce carbon emission significantly, but the result may be affected by the rebound effect. This paper utilizes a two-stage Almost Ideal Demand System (AIDS) model to estimate the total CO_2 rebound effect for China's private cars during 2001–2012 at the provincial level, then uses a panel data model to analyze its impact factors. The results suggest that, first of all, the CO_2 emissions of private cars have the super conservation effect, partial rebound effect and backfire effect among provinces in China. And the direct CO_2 rebound effect plays a dominant role in the total CO_2 rebound effect in most provinces. Second, the total CO_2 rebound effect of private cars among China's provinces presents an overall convergence trend over time. Finally, the household expenditure and the population density have a negative and positive influence on the total CO_2 rebound effect for China's private cars, respectively. - Highlights: • Private cars have become the key source of carbon emission in China. • This paper employs a two-stage Almost Ideal Demand System (AIDS) model • The direct and indirect CO_2 rebound effects for China's private cars are estimated. • The direct CO_2 rebound effect plays a dominant role in the total CO_2 rebound effect in most provinces. • The total CO_2 rebound effect among China's provinces has a convergence over time.

  11. Development of Novel CO2 Adsorbents for Capture of CO2 from Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    Fauth, D.J.; Filburn, T.P. (University of Hartford, West Hartford, CT); Gray, M.L.; Hedges, S.W.; Hoffman, J.; Pennline, H.W.; Filburn, T.


    Capturing CO2 emissions generated from fossil fuel-based power plants has received widespread attention and is considered a vital course of action for CO2 emission abatement. Efforts are underway at the Department of Energy’s National Energy Technology Laboratory to develop viable energy technologies enabling the CO2 capture from large stationary point sources. Solid, immobilized amine sorbents (IAS) formulated by impregnation of liquid amines within porous substrates are reactive towards CO2 and offer an alternative means for cyclic capture of CO2 eliminating, to some degree, inadequacies related to chemical absorption by aqueous alkanolamine solutions. This paper describes synthesis, characterization, and CO2 adsorption properties for IAS materials previously tested to bind and release CO2 and water vapor in a closed loop life support system. Tetraethylenepentamine (TEPA), acrylonitrile-modified tetraethylenepentamine (TEPAN), and a single formulation consisting of TEPAN and N, N’-bis(2-hydroxyethyl)ethylenediamine (BED) were individually supported on a poly (methyl methacrylate) (PMMA) substrate and examined. CO2 adsorption profiles leading to reversible CO2 adsorption capacities were obtained using thermogravimetry. Under 10% CO2 in nitrogen at 25°C and 1 atm, TEPA supported on PMMA over 60 minutes adsorbed ~3.2 mmol/g{sorbent} whereas, TEPAN supported on PMMA along with TEPAN and BED supported on PMMA adsorbed ~1.7 mmol/g{sorbent} and ~2.3 mmol/g{sorbent} respectively. Cyclic experiments with a 1:1 weight ratio of TEPAN and BED supported on poly (methyl methacrylate) beads utilizing a fixed-bed flow system with 9% CO2, 3.5% O2, nitrogen balance with trace gas constituents were studied. CO2 adsorption capacity was ~ 3 mmols CO2/g{sorbent} at 40°C and 1.4 atm. No beneficial effect on IAS performance was found using a moisture-laden flue gas mixture. Tests with 750 ppmv NO in a humidified gas stream revealed negligible NO sorption onto the IAS. A high SO2

  12. CO2 capture by ionic liquids - an answer to anthropogenic CO2 emissions? (United States)

    Sanglard, Pauline; Vorlet, Olivier; Marti, Roger; Naef, Olivier; Vanoli, Ennio


    Ionic liquids (ILs) are efficient solvents for the selective removal of CO2 from flue gas. Conventional, offthe-shelf ILs are limited in use to physisorption, which restricts their absorption capacity. After adding a chemical functionality like amines or alcohols, absorption of CO2 occurs mainly by chemisorption. This greatly enhances CO2 absorption and makes ILs suitable for potential industrial applications. By carefully choosing the anion and the cation of the IL, equimolar absorption of CO2 is possible. This paper reviews the current state of the art of CO2 capture by ILs and presents the current research in this field performed at the ChemTech Institute of the Ecole d'Ingénieurs et d'Architectes de Fribourg.

  13. The Li–CO2 battery: a novel method for CO2 capture and utilization

    KAUST Repository

    Xu, Shaomao


    We report a novel primary Li-CO2 battery that consumes pure CO2 gas as its cathode. The battery exhibits a high discharge capacity of around 2500 mA h g-1 at moderate temperatures. At 100 °C the discharge capacity is close to 1000% higher than that at 40 °C, and the temperature dependence is significantly weaker for higher surface area carbon cathodes. Ex-situ FTIR and XRD analyses convincingly show that lithium carbonate (Li2CO3) is the main component of the discharge product. The feasibility of similar primary metal-CO2 batteries based on earth abundant metal anodes, such as Al and Mg, is demonstrated. The metal-CO2 battery platform provides a novel approach for simultaneous capturing of CO2 emissions and producing electrical energy. © 2013 The Royal Society of Chemistry.

  14. Comparison of atmospheric CO2 mole fractions and source-sink characteristics at four WMO/GAW stations in China (United States)

    Cheng, Siyang; Zhou, Lingxi; Tans, Pieter P.; An, Xingqin; Liu, Yunsong


    As CO2 is a primary driving factor of climate change, the mole fraction and source-sink characteristics of atmospheric CO2 over China are constantly inferred from multi-source and multi-site data. In this paper, we compared ground-based CO2 measurements with satellite retrievals and investigated the source-sink regional representativeness at China's four WMO/GAW stations. The results indicate that, firstly, atmospheric CO2 mole fractions from ground-based sampling measurement and Greenhouse Gases Observing Satellite (GOSAT) products reveal similar seasonal variation. The seasonal amplitude of the column-averaged CO2 mole fractions is smaller than that of the ground-based CO2 at all stations. The extrema of the seasonal cycle of ground-based and column CO2 mole fractions are basically synchronous except a slight phase delay at Lin'an (LAN) station. For the two-year average, the column CO2 is lower than ground-based CO2, and both of them reveal the lowest CO2 mole fraction at Waliguan (WLG) station. The lowest (∼4 ppm) and largest (∼8 ppm) differences between the column and ground-based CO2 appear at WLG and Longfengshan (LFS) stations, respectively. The CO2 mole fraction and its difference between GOSAT and ground-based measurement are smaller in summer than in winter. The differences of summer column CO2 among these stations are also much smaller than their ground-based counterparts. In winter, the maximum of ground-based CO2 mole fractions and the greatest difference between the two (ground-based and column) datasets appear at the LFS station. Secondly, the representative areas of the monthly CO2 background mole fractions at each station were found by employing footprints and emissions. Smaller representative areas appeared at Shangdianzi (SDZ) and LFS, whereas larger ones were seen at WLG and LAN. The representative areas in summer are larger than those in winter at WLG and SDZ, but the situation is opposite at LAN and LFS. The representative areas for the

  15. A new pilot absorber for CO2 capture from flue gases: Measuring and modelling capture with MEA solution

    DEFF Research Database (Denmark)

    Sønderby, Tim L.; Carlsen, Kim B.; Fosbøl, Philip Loldrup


    A pilot absorber column for CO2 recovery from flue gases was constructed and tested with aqueous 30wt% monoethanolamine (MEA), a primary amine, as capture solvent. The pilot plant data were compared with a mathematical rate based packed-column model. The simulation results compared well...... with the pilot plant data. The packed height of the column can be varied from 1.6 to 8.2. m by means of five different liquid inlets. The column has an inner diameter of 100. mm and is packed with structured Mellapak 250Y packing. Counter-current flow is used. The pilot plant performance was investigated...

  16. Imaging volcanic CO2 and SO2 (United States)

    Gabrieli, A.; Wright, R.; Lucey, P. G.; Porter, J. N.


    Detecting and quantifying volcanic carbon dioxide (CO2) and sulfur dioxide (SO2) emissions is of relevance to volcanologists. Changes in the amount and composition of gases that volcanoes emit are related to subsurface magma movements and the probability of eruptions. Volcanic gases and related acidic aerosols are also an important atmospheric pollution source that create environmental health hazards for people, animals, plants, and infrastructures. For these reasons, it is important to measure emissions from volcanic plumes during both day and night. We present image measurements of the volcanic plume at Kīlauea volcano, HI, and flux derivation, using a newly developed 8-14 um hyperspectral imaging spectrometer, the Thermal Hyperspectral Imager (THI). THI is capable of acquiring images of the scene it views from which spectra can be derived from each pixel. Each spectrum contains 50 wavelength samples between 8 and 14 um where CO2 and SO2 volcanic gases have diagnostic absorption/emission features respectively at 8.6 and 14 um. Plume radiance measurements were carried out both during the day and the night by using both the lava lake in the Halema'uma'u crater as a hot source and the sky as a cold background to detect respectively the spectral signatures of volcanic CO2 and SO2 gases. CO2 and SO2 path-concentrations were then obtained from the spectral radiance measurements using a new Partial Least Squares Regression (PLSR)-based inversion algorithm, which was developed as part of this project. Volcanic emission fluxes were determined by combining the path measurements with wind observations, derived directly from the images. Several hours long time-series of volcanic emission fluxes will be presented and the SO2 conversion rates into aerosols will be discussed. The new imaging and inversion technique, discussed here, are novel allowing for continuous CO2 and SO2 plume mapping during both day and night.

  17. CO2 Orbital Trends in Comets (United States)

    Kelley, Michael; Feaga, Lori; Bodewits, Dennis; McKay, Adam; Snodgrass, Colin; Wooden, Diane


    Spacecraft missions to comets return a treasure trove of details of their targets, e.g., the Rosetta mission to comet 67P/Churyumov-Gerasimenko, the Deep Impact experiment at comet 9P/Tempel 1, or even the flyby of C/2013 A1 (Siding Spring) at Mars. Yet, missions are rare, the diversity of comets is large, few comets are easily accessible, and comet flybys essentially return snapshots of their target nuclei. Thus, telescopic observations are necessary to place the mission data within the context of each comet's long-term behavior, and to further connect mission results to the comet population as a whole. We propose a large Cycle 11 project to study the long-term activity of past and potential future mission targets, and select bright Oort cloud comets to infer comet nucleus properties, which would otherwise require flyby missions. In the classical comet model, cometary mass loss is driven by the sublimation of water ice. However, recent discoveries suggest that the more volatile CO and CO2 ices are the likely drivers of some comet active regions. Surprisingly, CO2 drove most of the activity of comet Hartley 2 at only 1 AU from the Sun where vigorous water ice sublimation would be expected to dominate. Currently, little is known about the role of CO2 in comet activity because telluric absorptions prohibit monitoring from the ground. In our Cycle 11 project, we will study the CO2 activity of our targets through IRAC photometry. In conjunction with prior observations of CO2 and CO, as well as future data sets (JWST) and ongoing Earth-based projects led by members of our team, we will investigate both long-term activity trends in our target comets, with a particular goal to ascertain the connections between each comet's coma and nucleus.

  18. Sustained effects of atmospheric [CO2] and nitrogen availability on forest soil CO2 efflux. (United States)

    Oishi, A Christopher; Palmroth, Sari; Johnsen, Kurt H; McCarthy, Heather R; Oren, Ram


    Soil CO2 efflux (Fsoil ) is the largest source of carbon from forests and reflects primary productivity as well as how carbon is allocated within forest ecosystems. Through early stages of stand development, both elevated [CO2] and availability of soil nitrogen (N; sum of mineralization, deposition, and fixation) have been shown to increase gross primary productivity, but the long-term effects of these factors on Fsoil are less clear. Expanding on previous studies at the Duke Free-Air CO2 Enrichment (FACE) site, we quantified the effects of elevated [CO2] and N fertilization on Fsoil using daily measurements from automated chambers over 10 years. Consistent with previous results, compared to ambient unfertilized plots, annual Fsoil increased under elevated [CO2] (ca. 17%) and decreased with N (ca. 21%). N fertilization under elevated [CO2] reduced Fsoil to values similar to untreated plots. Over the study period, base respiration rates increased with leaf productivity, but declined after productivity saturated. Despite treatment-induced differences in aboveground biomass, soil temperature and water content were similar among treatments. Interannually, low soil water content decreased annual Fsoil from potential values - estimated based on temperature alone assuming nonlimiting soil water content - by ca. 0.7% per 1.0% reduction in relative extractable water. This effect was only slightly ameliorated by elevated [CO2]. Variability in soil N availability among plots accounted for the spatial variability in Fsoil , showing a decrease of ca. 114 g C m(-2) yr(-1) per 1 g m(-2) increase in soil N availability, with consistently higher Fsoil in elevated [CO2] plots ca. 127 g C per 100 ppm [CO2] over the +200 ppm enrichment. Altogether, reflecting increased belowground carbon partitioning in response to greater plant nutritional needs, the effects of elevated [CO2] and N fertilization on Fsoil in this stand are sustained beyond the early stages of stand development and

  19. Coalfire related CO2 emissions and remote sensing

    Energy Technology Data Exchange (ETDEWEB)

    Gangopadhyay, P.K.


    predict the speed and future location of coalfires. It was observed that the model can predict the future location of coalfires with a predefined time period. However, few uncertainties (e.g. abrupt climatic change) can not be taken into account in this model. To explore the sensitivity of present hyperspectral sensors with different atmospheric CO2 concentrations, additive and multiplicative noise were introduced in FASCOD (Fast atmospheric signature code) simulated spectra and evaluated. A comparison among the present available hyperspectral sensors was made to find out the most suitable remote sensing sensor for CO2 quantification. To achieve the core research objective, firstly, a band ratioing method was used for column atmospheric retrieval of CO2 and secondly atmospheric models were simulated in FASCOD to understand the local radiation transport and then the model was implemented with the inputs from hyperspectral remote sensing data. Both methods (band ratioing and radiative transfer based) were tested in a coalfire affected area in northern China. It was observed that retrieval of columnar abundance of CO2 with the band ratioing method is faster as less simulation is required in FASCOD. Alternatively, the inversion model could retrieve CO2 concentration from a (certain) source because it excludes the uncertainties in the higher altitude.

  20. Coalfires related CO2 emissions and remote sensing

    Energy Technology Data Exchange (ETDEWEB)

    Gangopadhyay, P.K.


    predict the speed and future location of coalfires. It was observed that the model can predict the future location of coalfires with a predefined time period. However, few uncertainties (e.g. abrupt climatic change) can not be taken account in this model. To explore the sensitivity of present hyperspectral sensors with different atmospheric CO2 concentrations, additive and multiplicative noise were introduced in FASCOD (Fast Atmospheric Signature Code) simulated spectra and evaluated. A comparison among the present available hyperspectral sensors was made to find out the most suitable remote sensing sensor for CO2 quantification. To achieve the core research objective, firstly, a band rationing method was used for column atmospheric retrieval of CO2 and secondly atmospheric models were simulated in FASCOD to understand the local radiation transport and then the model was implemented with the inputs from hyperspectral remote sensing data. Both methods (band ratioing and radiative transfer based) were tested in a coalfire affected area in northern China. It was observed that retrieval of columnar abundance of CO2 with the band ratioing method is faster as less simulation is required in FASCOD. Alternatively, the inversion model could retrieve CO2 concentration from a (certain) source because it excludes the uncertainties in the higher altitude.

  1. Coalfire related CO2 emissions and remote sensing

    International Nuclear Information System (INIS)

    Gangopadhyay, P.K.


    predict the speed and future location of coalfires. It was observed that the model can predict the future location of coalfires with a predefined time period. However, few uncertainties (e.g. abrupt climatic change) can not be taken into account in this model. To explore the sensitivity of present hyperspectral sensors with different atmospheric CO2 concentrations, additive and multiplicative noise were introduced in FASCOD (Fast atmospheric signature code) simulated spectra and evaluated. A comparison among the present available hyperspectral sensors was made to find out the most suitable remote sensing sensor for CO2 quantification. To achieve the core research objective, firstly, a band ratioing method was used for column atmospheric retrieval of CO2 and secondly atmospheric models were simulated in FASCOD to understand the local radiation transport and then the model was implemented with the inputs from hyperspectral remote sensing data. Both methods (band ratioing and radiative transfer based) were tested in a coalfire affected area in northern China. It was observed that retrieval of columnar abundance of CO2 with the band ratioing method is faster as less simulation is required in FASCOD. Alternatively, the inversion model could retrieve CO2 concentration from a (certain) source because it excludes the uncertainties in the higher altitude.

  2. Production of Excess CO2 relative to methane in peatlands: a new H2 sink (United States)

    Wilson, R.; Woodcroft, B. J.; Varner, R. K.; Tyson, G. W.; Tfaily, M. M.; Sebestyen, S.; Saleska, S. R.; Rogers, K.; Rich, V. I.; McFarlane, K. J.; Kostka, J. E.; Kolka, R. K.; Keller, J.; Iversen, C. M.; Hodgkins, S. B.; Hanson, P. J.; Guilderson, T. P.; Griffiths, N.; de La Cruz, F.; Crill, P. M.; Chanton, J.; Bridgham, S. D.; Barlaz, M.


    Methane is generated as the end product of anaerobic organic matter degradation following a series of reaction pathways including fermentation and syntrophy. Along with acetate and CO2, syntrophic reactions generate H2 and are only thermodynamically feasible when coupled to an exothermic reaction that consumes H2. The usual model of organic matter degradation in peatlands has assumed that methanogenesis is that exothermic H2-consuming reaction. If correct, this paradigm should ultimately result in equimolar production of CO2 and methane from the degradation of the model organic compound cellulose: i.e. C6H12O6 à 3CO2 + 3CH4. However, dissolved gas measurement and modeling results from field and incubation experiments spanning peatlands across the northern hemisphere have failed to demonstrate equimolar production of CO2 and methane. Instead, in a flagrant violation of thermodynamics, these studies show a large bias favoring CO2 production over methane generation. In this talk, we will use an array of complementary analytical techniques including FT-IR, cellulose and lignin measurements, 13C-NMR, fluorescence spectroscopy, and ultra-high resolution mass spectrometry to describe organic matter degradation within a peat column and identify the important degradation mechanisms. Hydrogenation was the most common transformation observed in the ultra-high resolution mass spectrometry data. From these results we propose a new mechanism for consuming H2 generated during CO2 production, without concomitant methane formation, consistent with observed high CO2/CH4 ratios. While homoacetogenesis is a known sink for H2 in these systems, this process also consumes CO2 and therefore does not explain the excess CO2 measured in field and incubation samples. Not only does the newly proposed mechanism consume H2 without generating methane, but it also yields enough energy to balance the coupled syntrophic reactions, thereby restoring thermodynamic order. Schematic of organic matter

  3. CO2 dispersion modelling over Paris region within the CO2-MEGAPARIS project

    Directory of Open Access Journals (Sweden)

    C. Lac


    Full Text Available Accurate simulation of the spatial and temporal variability of tracer mixing ratios over urban areas is a challenging and interesting task needed to be performed in order to utilise CO2 measurements in an atmospheric inverse framework and to better estimate regional CO2 fluxes. This study investigates the ability of a high-resolution model to simulate meteorological and CO2 fields around Paris agglomeration during the March field campaign of the CO2-MEGAPARIS project. The mesoscale atmospheric model Meso-NH, running at 2 km horizontal resolution, is coupled with the Town Energy Balance (TEB urban canopy scheme and with the Interactions between Soil, Biosphere and Atmosphere CO2-reactive (ISBA-A-gs surface scheme, allowing a full interaction of CO2 modelling between the surface and the atmosphere. Statistical scores show a good representation of the urban heat island (UHI with stronger urban–rural contrasts on temperature at night than during the day by up to 7 °C. Boundary layer heights (BLH have been evaluated on urban, suburban and rural sites during the campaign, and also on a suburban site over 1 yr. The diurnal cycles of the BLH are well captured, especially the onset time of the BLH increase and its growth rate in the morning, which are essential for tall tower CO2 observatories. The main discrepancy is a small negative bias over urban and suburban sites during nighttime (respectively 45 m and 5 m, leading to a few overestimations of nocturnal CO2 mixing ratios at suburban sites and a bias of +5 ppm. The diurnal CO2 cycle is generally well captured for all the sites. At the Eiffel tower, the observed spikes of CO2 maxima occur every morning exactly at the time at which the atmospheric boundary layer (ABL growth reaches the measurement height. At suburban ground stations, CO2 measurements exhibit maxima at the beginning and at the end of each night, when the ABL is fully contracted, with a strong spatio-temporal variability. A

  4. On the causal structure between CO2 and global temperature (United States)

    Stips, Adolf; Macias, Diego; Coughlan, Clare; Garcia-Gorriz, Elisa; Liang, X. San


    We use a newly developed technique that is based on the information flow concept to investigate the causal structure between the global radiative forcing and the annual global mean surface temperature anomalies (GMTA) since 1850. Our study unambiguously shows one-way causality between the total Greenhouse Gases and GMTA. Specifically, it is confirmed that the former, especially CO2, are the main causal drivers of the recent warming. A significant but smaller information flow comes from aerosol direct and indirect forcing, and on short time periods, volcanic forcings. In contrast the causality contribution from natural forcings (solar irradiance and volcanic forcing) to the long term trend is not significant. The spatial explicit analysis reveals that the anthropogenic forcing fingerprint is significantly regionally varying in both hemispheres. On paleoclimate time scales, however, the cause-effect direction is reversed: temperature changes cause subsequent CO2/CH4 changes. PMID:26900086

  5. Water vapor-nitrogen absorption at CO2 laser frequ