WorldWideScience

Sample records for total brain volume

  1. Total brain, cortical and white matter volumes in children previously treated with glucocorticoids

    DEFF Research Database (Denmark)

    Holm, Sara K; Madsen, Kathrine S; Vestergaard, Martin

    2018-01-01

    BACKGROUND: Perinatal exposure to glucocorticoids and elevated endogenous glucocorticoid-levels during childhood can have detrimental effects on the developing brain. Here, we examined the impact of glucocorticoid-treatment during childhood on brain volumes. METHODS: Thirty children and adolescents...... with rheumatic or nephrotic disease previously treated with glucocorticoids and 30 controls matched on age, sex, and parent education underwent magnetic resonance imaging (MRI) of the brain. Total cortical grey and white matter, brain, and intracranial volume, and total cortical thickness and surface area were...... were mainly driven by the children with rheumatic disease. Total cortical thickness and cortical surface area did not significantly differ between groups. We found no significant associations between glucocorticoid-treatment variables and volumetric measures. CONCLUSION: Observed smaller total brain...

  2. Current self-reported symptoms of attention deficit/hyperactivity disorder are associated with total brain volume in healthy adults.

    Directory of Open Access Journals (Sweden)

    Martine Hoogman

    Full Text Available BACKGROUND: Reduced total brain volume is a consistent finding in children with Attention Deficit/Hyperactivity Disorder (ADHD. In order to get a better understanding of the neurobiology of ADHD, we take the first step in studying the dimensionality of current self-reported adult ADHD symptoms, by looking at its relation with total brain volume. METHODOLOGY/PRINCIPAL FINDINGS: In a sample of 652 highly educated adults, the association between total brain volume, assessed with magnetic resonance imaging, and current number of self-reported ADHD symptoms was studied. The results showed an association between these self-reported ADHD symptoms and total brain volume. Post-hoc analysis revealed that the symptom domain of inattention had the strongest association with total brain volume. In addition, the threshold for impairment coincides with the threshold for brain volume reduction. CONCLUSIONS/SIGNIFICANCE: This finding improves our understanding of the biological substrates of self-reported ADHD symptoms, and suggests total brain volume as a target intermediate phenotype for future gene-finding in ADHD.

  3. Genetic Schizophrenia Risk Variants Jointly Modulate Total Brain and White Matter Volume

    DEFF Research Database (Denmark)

    Terwisscha van Scheltinga, Afke F; Bakker, Steven C; van Haren, Neeltje E M

    2013-01-01

    with total brain volume (R(2)=.048, p=1.6×10(-4)) and white matter volume (R(2)=.051, p=8.6×10(-5)) equally in patients and control subjects. The number of (independent) SNPs that substantially influenced both disease risk and white matter (n=2020) was much smaller than the entire set of SNPs that modulated...... modulating schizophrenia and brain volume. METHODS: Odds ratios for genome-wide SNP data were calculated in the sample collected by the Psychiatric Genome-wide Association Study Consortium (8690 schizophrenia patients and 11,831 control subjects, excluding subjects from the present study). These were used...

  4. Developmentally Sensitive Interaction Effects of Genes and the Social Environment on Total and Subcortical Brain Volumes.

    Directory of Open Access Journals (Sweden)

    Jennifer S Richards

    Full Text Available Smaller total brain and subcortical volumes have been linked to psychopathology including attention-deficit/hyperactivity disorder (ADHD. Identifying mechanisms underlying these alterations, therefore, is of great importance. We investigated the role of gene-environment interactions (GxE in interindividual variability of total gray matter (GM, caudate, and putamen volumes. Brain volumes were derived from structural magnetic resonance imaging scans in participants with (N = 312 and without ADHD (N = 437 from N = 402 families (age M = 17.00, SD = 3.60. GxE effects between DAT1, 5-HTT, and DRD4 and social environments (maternal expressed warmth and criticism; positive and deviant peer affiliation as well as the possible moderating effect of age were examined using linear mixed modeling. We also tested whether findings depended on ADHD severity. Deviant peer affiliation was associated with lower caudate volume. Participants with low deviant peer affiliations had larger total GM volumes with increasing age. Likewise, developmentally sensitive GxE effects were found on total GM and putamen volume. For total GM, differential age effects were found for DAT1 9-repeat and HTTLPR L/L genotypes, depending on the amount of positive peer affiliation. For putamen volume, DRD4 7-repeat carriers and DAT1 10/10 homozygotes showed opposite age relations depending on positive peer affiliation and maternal criticism, respectively. All results were independent of ADHD severity. The presence of differential age-dependent GxE effects might explain the diverse and sometimes opposing results of environmental and genetic effects on brain volumes observed so far.

  5. Developmentally Sensitive Interaction Effects of Genes and the Social Environment on Total and Subcortical Brain Volumes.

    Science.gov (United States)

    Richards, Jennifer S; Arias Vásquez, Alejandro; Franke, Barbara; Hoekstra, Pieter J; Heslenfeld, Dirk J; Oosterlaan, Jaap; Faraone, Stephen V; Buitelaar, Jan K; Hartman, Catharina A

    2016-01-01

    Smaller total brain and subcortical volumes have been linked to psychopathology including attention-deficit/hyperactivity disorder (ADHD). Identifying mechanisms underlying these alterations, therefore, is of great importance. We investigated the role of gene-environment interactions (GxE) in interindividual variability of total gray matter (GM), caudate, and putamen volumes. Brain volumes were derived from structural magnetic resonance imaging scans in participants with (N = 312) and without ADHD (N = 437) from N = 402 families (age M = 17.00, SD = 3.60). GxE effects between DAT1, 5-HTT, and DRD4 and social environments (maternal expressed warmth and criticism; positive and deviant peer affiliation) as well as the possible moderating effect of age were examined using linear mixed modeling. We also tested whether findings depended on ADHD severity. Deviant peer affiliation was associated with lower caudate volume. Participants with low deviant peer affiliations had larger total GM volumes with increasing age. Likewise, developmentally sensitive GxE effects were found on total GM and putamen volume. For total GM, differential age effects were found for DAT1 9-repeat and HTTLPR L/L genotypes, depending on the amount of positive peer affiliation. For putamen volume, DRD4 7-repeat carriers and DAT1 10/10 homozygotes showed opposite age relations depending on positive peer affiliation and maternal criticism, respectively. All results were independent of ADHD severity. The presence of differential age-dependent GxE effects might explain the diverse and sometimes opposing results of environmental and genetic effects on brain volumes observed so far.

  6. Structural imaging of the brain reveals decreased total brain and total gray matter volumes in obese but not in lean women with polycystic ovary syndrome compared to body mass index-matched counterparts.

    Science.gov (United States)

    Ozgen Saydam, Basak; Has, Arzu Ceylan; Bozdag, Gurkan; Oguz, Kader Karli; Yildiz, Bulent Okan

    2017-07-01

    To detect differences in global brain volumes and identify relations between brain volume and appetite-related hormones in women with polycystic ovary syndrome (PCOS) compared to body mass index-matched controls. Forty subjects participated in this study. Cranial magnetic resonance imaging and measurements of fasting ghrelin, leptin and glucagon-like peptide 1 (GLP-1), as well as GLP-1 levels during mixed-meal tolerance test (MTT), were performed. Total brain volume and total gray matter volume (GMV) were decreased in obese PCOS compared to obese controls (p lean PCOS and controls did not show a significant difference. Secondary analyses of regional brain volumes showed decreases in GMV of the caudate nucleus, ventral diencephalon and hippocampus in obese PCOS compared to obese controls (p lean patients with PCOS had lower GMV in the amygdala than lean controls (p PCOS, suggests volumetric reductions in global brain areas in obese women with PCOS. Functional studies with larger sample size are needed to determine physiopathological roles of these changes and potential effects of long-term medical management on brain structure of PCOS.

  7. Volumetric quantification of brain volume in children using sequential CT scans

    International Nuclear Information System (INIS)

    Hamano, K.; Iwasaki, N.; Kawashima, K.; Takita, H.

    1990-01-01

    We devised a three dimensional method for the accurate measurement of brain volume and applied it to 32 neurologically normal children, 7 children with only mental retardation and 15 children with both mental retardation and motor disturbance. In the group of neurologically normal children, the total brain volume increased from 723 cm 3 to 1407 cm 3 in order of age. The correlation ratio between the total brain volume and age was significant (P 00600.0001). The values of the total brain volume and the developmental curve were similar to those of the total brain weight of normal children previously reported. The combined volume of the cerebellum, the midbrain, the pons, and the medulla also increased from 76 cm 3 to 200 cm 3 in a manner similar to that of the total brain. The correlation between total brain volume and head circumference was significant (P<0.0001). In the group of children with mental retardation, the total brain volume was relatively smaller than that of neurologically normal children. In the group of the children with mental retardation and motor disturbance, 10 out of 15 cases showed values below -2 SD of those of neurologically normal children. The values of the total brain volume were each less than -3 SD in 3 cases whose head circumferences were each more than -3 SD. Our method for the direct measurement of brain volume based on serial CT scans may be useful for the accurate examination of brain development. (orig.)

  8. Change in brain and lesion volumes after CEE therapies

    Science.gov (United States)

    Espeland, Mark A.; Hogan, Patricia E.; Resnick, Susan M.; Bryan, R. Nick; Robinson, Jennifer G.; Goveas, Joseph S.; Davatzikos, Christos; Kuller, Lewis H.; Williamson, Jeff D.; Bushnell, Cheryl D.; Shumaker, Sally A.

    2014-01-01

    Objectives: To determine whether smaller brain volumes in older women who had completed Women's Health Initiative (WHI)-assigned conjugated equine estrogen–based hormone therapy (HT), reported by WHI Memory Study (WHIMS)-MRI, correspond to a continuing increased rate of atrophy an average of 6.1 to 7.7 years later in WHIMS-MRI2. Methods: A total of 1,230 WHI participants were contacted: 797 (64.8%) consented, and 729 (59%) were rescanned an average of 4.7 years after the initial MRI scan. Mean annual rates of change in total brain volume, the primary outcome, and rates of change in ischemic lesion volumes, the secondary outcome, were compared between treatment groups using mixed-effect models with adjustment for trial, clinical site, age, intracranial volumes, and time between MRI measures. Results: Total brain volume decreased an average of 3.22 cm3/y in the active arm and 3.07 cm3/y in the placebo arm (p = 0.53). Total ischemic lesion volumes increased in both arms at a rate of 0.12 cm3/y (p = 0.88). Conclusions: Conjugated equine estrogen–based postmenopausal HT, previously assigned at WHI baseline, did not affect rates of decline in brain volumes or increases in brain lesion volumes during the 4.7 years between the initial and follow-up WHIMS-MRI studies. Smaller frontal lobe volumes were observed as persistent group differences among women assigned to active HT compared with placebo. Women with a history of cardiovascular disease treated with active HT, compared with placebo, had higher rates of accumulation in white matter lesion volume and total brain lesion volume. Further study may elucidate mechanisms that explain these findings. PMID:24384646

  9. Longitudinal changes in total brain volume in schizophrenia: relation to symptom severity, cognition and antipsychotic medication.

    Directory of Open Access Journals (Sweden)

    Juha Veijola

    Full Text Available Studies show evidence of longitudinal brain volume decreases in schizophrenia. We studied brain volume changes and their relation to symptom severity, level of function, cognition, and antipsychotic medication in participants with schizophrenia and control participants from a general population based birth cohort sample in a relatively long follow-up period of almost a decade. All members of the Northern Finland Birth Cohort 1966 with any psychotic disorder and a random sample not having psychosis were invited for a MRI brain scan, and clinical and cognitive assessment during 1999-2001 at the age of 33-35 years. A follow-up was conducted 9 years later during 2008-2010. Brain scans at both time points were obtained from 33 participants with schizophrenia and 71 control participants. Regression models were used to examine whether brain volume changes predicted clinical and cognitive changes over time, and whether antipsychotic medication predicted brain volume changes. The mean annual whole brain volume reduction was 0.69% in schizophrenia, and 0.49% in controls (p = 0.003, adjusted for gender, educational level, alcohol use and weight gain. The brain volume reduction in schizophrenia patients was found especially in the temporal lobe and periventricular area. Symptom severity, functioning level, and decline in cognition were not associated with brain volume reduction in schizophrenia. The amount of antipsychotic medication (dose years of equivalent to 100 mg daily chlorpromazine over the follow-up period predicted brain volume loss (p = 0.003 adjusted for symptom level, alcohol use and weight gain. In this population based sample, brain volume reduction continues in schizophrenia patients after the onset of illness, and antipsychotic medications may contribute to these reductions.

  10. The relationship between brain volumes and intelligence in bipolar disorder.

    Science.gov (United States)

    Vreeker, Annabel; Abramovic, Lucija; Boks, Marco P M; Verkooijen, Sanne; van Bergen, Annet H; Ophoff, Roel A; Kahn, René S; van Haren, Neeltje E M

    2017-12-01

    Bipolar disorder type-I (BD-I) patients show a lower Intelligence Quotient (IQ) and smaller brain volumes as compared with healthy controls. Considering that in healthy individuals lower IQ is related to smaller total brain volume, it is of interest to investigate whether IQ deficits in BD-I patients are related to smaller brain volumes and to what extent smaller brain volumes can explain differences between premorbid IQ estimates and IQ after a diagnosis of BD-I. Magnetic resonance imaging brain scans, IQ and premorbid IQ scores were obtained from 195 BDI patients and 160 controls. We studied the relationship of (global, cortical and subcortical) brain volumes with IQ and IQ change. Additionally, we investigated the relationship between childhood trauma, lithium- and antipsychotic use and IQ. Total brain volume and IQ were positively correlated in the entire sample. This correlation did not differ between patients and controls. Although brain volumes mediated the relationship between BD-I and IQ in part, the direct relationship between the diagnosis and IQ remained significant. Childhood trauma and use of lithium and antipsychotic medication did not affect the relationship between brain volumes and IQ. However, current lithium use was related to lower IQ in patients. Our data suggest a similar relationship between brain volume and IQ in BD-I patients and controls. Smaller brain volumes only partially explain IQ deficits in patients. Therefore, our findings indicate that in addition to brain volumes and lithium use other disease factors play a role in IQ deficits in BD-I patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Language and Brain Volumes in Children with Epilepsy

    Science.gov (United States)

    Caplan, Rochelle; Levitt, Jennifer; Siddarth, Prabha; Wu, Keng Nei; Gurbani, Suresh; Shields, W. Donald; Sankar, Raman

    2010-01-01

    This study compared the relationship of language skill with fronto-temporal volumes in 69 medically treated epilepsy subjects and 34 healthy children, aged 6.1-16.6 years. It also determined if the patients with linguistic deficits had abnormal volumes and atypical associations between volumes and language skills in these brain regions. The children underwent language testing and magnetic resonance imaging scans at 1.5 Tesla. Brain tissue was segmented and fronto-temporal volumes were computed. Higher mean language scores were significantly associated with larger inferior frontal gyrus, temporal lobe, and posterior superior temporal gyrus gray matter volumes in the epilepsy group and in the children with epilepsy with average language scores. Increased total brain and dorsolateral prefrontal gray and white matter volumes, however, were associated with higher language scores in the healthy controls. Within the epilepsy group, linguistic deficits were related to smaller anterior superior temporal gyrus gray matter volumes and a negative association between language scores and dorsolateral prefrontal gray matter volumes. These findings demonstrate abnormal development of language related brain regions, and imply differential reorganization of brain regions subserving language in children with epilepsy with normal linguistic skills and in those with impaired language. PMID:20149755

  12. Longitudinal Changes in Total Brain Volume in Schizophrenia: Relation to Symptom Severity, Cognition and Antipsychotic Medication

    NARCIS (Netherlands)

    Veijola, J.; Guo, J.Y.; Moilanen, J.S.; Jaaskelainen, E.; Miettunen, J.; Kyllonen, M.; Haapea, M.; Huhtaniska, S.; Alaraisanen, A.; Maki, P.; Kiviniemi, V.; Nikkinen, J.; Starck, T.; Remes, J.J.; Tanskanen, P.; Tervonen, O.; Wink, A.M.; Kehagia, A.; Suckling, J.; Kobayashi, H.; Barnett, J.H.; Barnes, A.; Koponen, H.J.; Jones, P.B.; Isohanni, M.; Murray, G.K.

    2014-01-01

    Studies show evidence of longitudinal brain volume decreases in schizophrenia. We studied brain volume changes and their relation to symptom severity, level of function, cognition, and antipsychotic medication in participants with schizophrenia and control participants from a general population

  13. Change in brain and lesion volumes after CEE therapies: the WHIMS-MRI studies.

    Science.gov (United States)

    Coker, Laura H; Espeland, Mark A; Hogan, Patricia E; Resnick, Susan M; Bryan, R Nick; Robinson, Jennifer G; Goveas, Joseph S; Davatzikos, Christos; Kuller, Lewis H; Williamson, Jeff D; Bushnell, Cheryl D; Shumaker, Sally A

    2014-02-04

    To determine whether smaller brain volumes in older women who had completed Women's Health Initiative (WHI)-assigned conjugated equine estrogen-based hormone therapy (HT), reported by WHI Memory Study (WHIMS)-MRI, correspond to a continuing increased rate of atrophy an average of 6.1 to 7.7 years later in WHIMS-MRI2. A total of 1,230 WHI participants were contacted: 797 (64.8%) consented, and 729 (59%) were rescanned an average of 4.7 years after the initial MRI scan. Mean annual rates of change in total brain volume, the primary outcome, and rates of change in ischemic lesion volumes, the secondary outcome, were compared between treatment groups using mixed-effect models with adjustment for trial, clinical site, age, intracranial volumes, and time between MRI measures. Total brain volume decreased an average of 3.22 cm(3)/y in the active arm and 3.07 cm(3)/y in the placebo arm (p = 0.53). Total ischemic lesion volumes increased in both arms at a rate of 0.12 cm(3)/y (p = 0.88). Conjugated equine estrogen-based postmenopausal HT, previously assigned at WHI baseline, did not affect rates of decline in brain volumes or increases in brain lesion volumes during the 4.7 years between the initial and follow-up WHIMS-MRI studies. Smaller frontal lobe volumes were observed as persistent group differences among women assigned to active HT compared with placebo. Women with a history of cardiovascular disease treated with active HT, compared with placebo, had higher rates of accumulation in white matter lesion volume and total brain lesion volume. Further study may elucidate mechanisms that explain these findings.

  14. The relationship between brain volumes and intelligence in bipolar disorder

    NARCIS (Netherlands)

    Vreeker, Annabel; Abramovic, Lucija; Boks, Marco P.M.; Verkooijen, Sanne; van Bergen, Annet H.; Ophoff, Roel A.; Kahn, René S.; van Haren, Neeltje E.M.

    2017-01-01

    Objectives Bipolar disorder type-I (BD-I) patients show a lower Intelligence Quotient (IQ) and smaller brain volumes as compared with healthy controls. Considering that in healthy individuals lower IQ is related to smaller total brain volume, it is of interest to investigate whether IQ deficits in

  15. Gender dimorphism of brain reward system volumes in alcoholism.

    Science.gov (United States)

    Sawyer, Kayle S; Oscar-Berman, Marlene; Barthelemy, Olivier J; Papadimitriou, George M; Harris, Gordon J; Makris, Nikos

    2017-05-30

    The brain's reward network has been reported to be smaller in alcoholic men compared to nonalcoholic men, but little is known about the volumes of reward regions in alcoholic women. Morphometric analyses were performed on magnetic resonance brain scans of 60 long-term chronic alcoholics (ALC; 30 men) and 60 nonalcoholic controls (NC; 29 men). We derived volumes of total brain, and cortical and subcortical reward-related structures including the dorsolateral prefrontal (DLPFC), orbitofrontal, and cingulate cortices, and the temporal pole, insula, amygdala, hippocampus, nucleus accumbens septi (NAc), and ventral diencephalon (VDC). We examined the relationships of the volumetric findings to drinking history. Analyses revealed a significant gender interaction for the association between alcoholism and total reward network volumes, with ALC men having smaller reward volumes than NC men and ALC women having larger reward volumes than NC women. Analyses of a priori subregions revealed a similar pattern of reward volume differences with significant gender interactions for DLPFC and VDC. Overall, the volume of the cerebral ventricles in ALC participants was negatively associated with duration of abstinence, suggesting decline in atrophy with greater length of sobriety. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  16. Corpus callosum thickness on mid-sagittal MRI as a marker of brain volume: a pilot study in children with HIV-related brain disease and controls

    Energy Technology Data Exchange (ETDEWEB)

    Andronikou, Savvas [University of the Witwatersrand, Department of Radiology, Faculty of Health Sciences, Cape Town (South Africa); Ackermann, Christelle [University of Stellenbosch, Department of Radiology, Stellenbosch (South Africa); Laughton, Barbara; Cotton, Mark [Stellenbosch University and Tygerberg Children' s Hospital, Children' s Infectious Diseases Research Unit, Stellenbosch (South Africa); Tomazos, Nicollette [University of Cape Town, Faculty of Commerce, Department of Management Studies, Cape Town (South Africa); Spottiswoode, Bruce [University of Cape Town, MRC/UCT Medical Imaging Research Unit, Department of Human Biology, Cape Town (South Africa); Mauff, Katya [University of Cape Town, Department of Statistical Sciences, Cape Town (South Africa); Pettifor, John M. [University of the Witwatersrand, MRC/Wits Developmental Pathways for Health Research Unit, Department of Paediatrics, Faculty of Health Sciences, Witwatersrand (South Africa)

    2015-07-15

    Corpus callosum thickness measurement on mid-sagittal MRI may be a surrogate marker of brain volume. This is important for evaluation of diseases causing brain volume gain or loss, such as HIV-related brain disease and HIV encephalopathy. To determine if thickness of the corpus callosum on mid-sagittal MRI is a surrogate marker of brain volume in children with HIV-related brain disease and in controls without HIV. A retrospective MRI analysis in children (<5 years old) with HIV-related brain disease and controls used a custom-developed semi-automated tool, which divided the midline corpus callosum and measured its thickness in multiple locations. Brain volume was determined using volumetric analysis. Overall corpus callosum thickness and thickness of segments of the corpus callosum were correlated with overall and segmented (grey and white matter) brain volume. Forty-four children (33 HIV-infected patients and 11 controls) were included. Significant correlations included overall corpus callosum (mean) and total brain volume (P = 0.05); prefrontal corpus callosum maximum with white matter volume (P = 0.02); premotor corpus callosum mean with total brain volume (P = 0.04) and white matter volume (P = 0.02), premotor corpus callosum maximum with white matter volume (P = 0.02) and sensory corpus callosum mean with total brain volume (P = 0.02). Corpus callosum thickness correlates with brain volume both in HIV-infected patients and controls. (orig.)

  17. Corpus callosum thickness on mid-sagittal MRI as a marker of brain volume: a pilot study in children with HIV-related brain disease and controls

    International Nuclear Information System (INIS)

    Andronikou, Savvas; Ackermann, Christelle; Laughton, Barbara; Cotton, Mark; Tomazos, Nicollette; Spottiswoode, Bruce; Mauff, Katya; Pettifor, John M.

    2015-01-01

    Corpus callosum thickness measurement on mid-sagittal MRI may be a surrogate marker of brain volume. This is important for evaluation of diseases causing brain volume gain or loss, such as HIV-related brain disease and HIV encephalopathy. To determine if thickness of the corpus callosum on mid-sagittal MRI is a surrogate marker of brain volume in children with HIV-related brain disease and in controls without HIV. A retrospective MRI analysis in children (<5 years old) with HIV-related brain disease and controls used a custom-developed semi-automated tool, which divided the midline corpus callosum and measured its thickness in multiple locations. Brain volume was determined using volumetric analysis. Overall corpus callosum thickness and thickness of segments of the corpus callosum were correlated with overall and segmented (grey and white matter) brain volume. Forty-four children (33 HIV-infected patients and 11 controls) were included. Significant correlations included overall corpus callosum (mean) and total brain volume (P = 0.05); prefrontal corpus callosum maximum with white matter volume (P = 0.02); premotor corpus callosum mean with total brain volume (P = 0.04) and white matter volume (P = 0.02), premotor corpus callosum maximum with white matter volume (P = 0.02) and sensory corpus callosum mean with total brain volume (P = 0.02). Corpus callosum thickness correlates with brain volume both in HIV-infected patients and controls. (orig.)

  18. Relations between brain volumes, neuropsychological assessment and parental questionnaire in prematurely born children.

    Science.gov (United States)

    Lind, Annika; Haataja, Leena; Rautava, Liisi; Väliaho, Anniina; Lehtonen, Liisa; Lapinleimu, Helena; Parkkola, Riitta; Korkman, Marit

    2010-05-01

    The objective of this study is to assess the relationship between brain volumes at term equivalent age and neuropsychological functions at 5 years of age in very low birth weight (VLBW) children, and to compare the results from a neuropsychological assessment and a parental questionnaire at 5 years of age. The study group included a regional cohort of 97 VLBW children and a control group of 161 children born at term. At term equivalent age, brain magnetic resonance imaging (MRI) was performed on the VLBW children, and analysed for total and regional brain volumes. At 5 years of age, a psychologist assessed the neuropsychological performance with NEPSY II, and parents completed the Five to fifteen (FTF) questionnaire on development and behaviour. The results of the control group were used to give the age-specific reference values. No significant associations were found between the brain volumes and the NEPSY II domains. As for the FTF, significant associations were found between a smaller total brain tissue volume and poorer executive functions, between a smaller cerebellar volume and both poorer executive functions and motor skills, and, surprisingly, between a larger volume of brainstem and poorer language functions. Even after adjustment for total brain tissue volume, the two associations between the cerebellar volume and the FTF domains remained borderline significant (P = 0.05). The NEPSY II domains Executive Functioning, Language and Motor Skills were significantly associated with the corresponding FTF domains. In conclusion, altered brain volumes at term equivalent age appear to affect development still at 5 years of age. The FTF seems to be a good instrument when used in combination with other neuropsychological assessment.

  19. Postmenopausal hormone therapy, type 2 diabetes mellitus, and brain volumes.

    Science.gov (United States)

    Espeland, Mark A; Brinton, Roberta Diaz; Manson, JoAnn E; Yaffe, Kristine; Hugenschmidt, Christina; Vaughan, Leslie; Craft, Suzanne; Edwards, Beatrice J; Casanova, Ramon; Masaki, Kamal; Resnick, Susan M

    2015-09-29

    To examine whether the effect of postmenopausal hormone therapy (HT) on brain volumes in women aged 65-79 years differs depending on type 2 diabetes status during postintervention follow-up of a randomized controlled clinical trial. The Women's Health Initiative randomized clinical trials assigned women to HT (0.625 mg/day conjugated equine estrogens with or without 2.5 mg/day medroxyprogesterone acetate) or placebo for an average of 5.6 years. A total of 1,402 trial participants underwent brain MRI 2.4 years after the trials; these were repeated in 699 women 4.7 years later. General linear models were used to assess the interaction between diabetes status and HT assignment on brain volumes. Women with diabetes at baseline or during follow-up who had been assigned to HT compared to placebo had mean decrement in total brain volume of -18.6 mL (95% confidence interval [CI] -29.6, -7.6). For women without diabetes, this mean decrement was -0.4 (95% CI -3.8, 3.0) (interaction p=0.002). This interaction was evident for total gray matter (pNeurology.

  20. Brain volume reduction after whole-brain radiotherapy: quantification and prognostic relevance.

    Science.gov (United States)

    Hoffmann, Christian; Distel, Luitpold; Knippen, Stefan; Gryc, Thomas; Schmidt, Manuel Alexander; Fietkau, Rainer; Putz, Florian

    2018-01-22

    Recent studies have questioned the value of adding whole-brain radiotherapy (WBRT) to stereotactic radiosurgery (SRS) for brain metastasis treatment. Neurotoxicity, including radiation-induced brain volume reduction, could be one reason why not all patients benefit from the addition of WBRT. In this study, we quantified brain volume reduction after WBRT and assessed its prognostic significance. Brain volumes of 91 patients with cerebral metastases were measured during a 150-day period after commencing WBRT and were compared with their pretreatment volumes. The average daily relative change in brain volume of each patient, referred to as the "brain volume reduction rate," was calculated. Univariate and multivariate Cox regression analyses were performed to assess the prognostic significance of the brain volume reduction rate, as well as of 3 treatment-related and 9 pretreatment factors. A one-way analysis of variance was used to compare the brain volume reduction rate across recursive partitioning analysis (RPA) classes. On multivariate Cox regression analysis, the brain volume reduction rate was a significant predictor of overall survival after WBRT (P < 0.001), as well as the number of brain metastases (P = 0.002) and age (P = 0.008). Patients with a relatively favorable prognosis (RPA classes 1 and 2) experienced significantly less brain volume decrease after WBRT than patients with a poor prognosis (RPA class 3) (P = 0.001). There was no significant correlation between delivered radiation dose and brain volume reduction rate (P = 0.147). In this retrospective study, a smaller decrease in brain volume after WBRT was an independent predictor of longer overall survival. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  1. Stereological brain volume changes in post-weaned socially isolated rats

    DEFF Research Database (Denmark)

    Fabricius, Katrine; Helboe, Lone; Steiniger-Brach, Björn

    2010-01-01

    Lister Hooded rats isolated from postnatal day 25 for 15 weeks. We observed the expected gender differences in total brain volume with males having larger brains than females. Further, we found that isolated males had significantly smaller brains than group-housed controls and larger lateral ventricles...... have evaluated the neuroanatomical changes in this animal model in comparison to changes seen in schizophrenia. In this study, we applied stereological volume estimates to evaluate the total brain, the ventricular system, and the pyramidal and granular cell layers of the hippocampus in male and female...... than controls. However, this was not seen in female rats. Isolated males had a significant smaller hippocampus, dentate gyrus and CA2/3 where isolated females had a significant smaller CA1 compared to controls. Thus, our results indicate that long-term isolation of male rats leads to neuroanatomical...

  2. A longitudinal study of brain volume changes in normal aging

    Energy Technology Data Exchange (ETDEWEB)

    Takao, Hidemasa, E-mail: takaoh-tky@umin.ac.jp [Department of Radiology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan); Hayashi, Naoto [Department of Computational Diagnostic Radiology and Preventive Medicine, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan); Ohtomo, Kuni [Department of Radiology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan)

    2012-10-15

    Purpose: To evaluate the effect of normal aging on brain volumes and examine the effects of age and sex on the rates of changes in global and regional brain volumes. Methods: A total of 199 normal subjects (65 females and 134 males, mean age = 56.4 ± 9.9 years, age range = 38.1–82.9 years) were included in this study. Each subject was scanned twice, at an interval of about 2 years (range = 1.5–2.3 years). Two-time-point percentage brain volume change (PBVC) was estimated with SIENA 2.6. Results: The mean annualized PBVC was −0.23%/y. Analysis of covariance (ANCOVA) for annual brain volume changes revealed a main effect of age. There was no main effect of sex, nor was there a sex-by-age interaction. Voxel-wise analysis revealed a negative correlation between age and edge displacement values mainly in the periventricular region. Conclusions: The results of our study indicate that brain atrophy accelerates with increasing age and that there is no gender difference in the rate of brain atrophy.

  3. A longitudinal study of brain volume changes in normal aging

    International Nuclear Information System (INIS)

    Takao, Hidemasa; Hayashi, Naoto; Ohtomo, Kuni

    2012-01-01

    Purpose: To evaluate the effect of normal aging on brain volumes and examine the effects of age and sex on the rates of changes in global and regional brain volumes. Methods: A total of 199 normal subjects (65 females and 134 males, mean age = 56.4 ± 9.9 years, age range = 38.1–82.9 years) were included in this study. Each subject was scanned twice, at an interval of about 2 years (range = 1.5–2.3 years). Two-time-point percentage brain volume change (PBVC) was estimated with SIENA 2.6. Results: The mean annualized PBVC was −0.23%/y. Analysis of covariance (ANCOVA) for annual brain volume changes revealed a main effect of age. There was no main effect of sex, nor was there a sex-by-age interaction. Voxel-wise analysis revealed a negative correlation between age and edge displacement values mainly in the periventricular region. Conclusions: The results of our study indicate that brain atrophy accelerates with increasing age and that there is no gender difference in the rate of brain atrophy

  4. Postmenopausal hormone therapy and regional brain volumes: the WHIMS-MRI Study.

    Science.gov (United States)

    Resnick, S M; Espeland, M A; Jaramillo, S A; Hirsch, C; Stefanick, M L; Murray, A M; Ockene, J; Davatzikos, C

    2009-01-13

    To determine whether menopausal hormone therapy (HT) affects regional brain volumes, including hippocampal and frontal regions. Brain MRI scans were obtained in a subset of 1,403 women aged 71-89 years who participated in the Women's Health Initiative Memory Study (WHIMS). WHIMS was an ancillary study to the Women's Health Initiative, which consisted of two randomized, placebo-controlled trials: 0.625 mg conjugated equine estrogens (CEE) with or without 2.5 mg medroxyprogesterone acetate (MPA) in one daily tablet. Scans were performed, on average, 3.0 years post-trial for the CEE + MPA trial and 1.4 years post-trial for the CEE-Alone trial; average on-trial follow-up intervals were 4.0 years for CEE + MPA and 5.6 years for CEE-Alone. Total brain, ventricular, hippocampal, and frontal lobe volumes, adjusted for age, clinic site, estimated intracranial volume, and dementia risk factors, were the main outcome variables. Compared with placebo, covariate-adjusted mean frontal lobe volume was 2.37 cm(3) lower among women assigned to HT (p = 0.004), mean hippocampal volume was slightly (0.10 cm(3)) lower (p = 0.05), and differences in total brain volume approached significance (p = 0.07). Results were similar for CEE + MPA and CEE-Alone. HT-associated reductions in hippocampal volumes were greatest in women with the lowest baseline Modified Mini-Mental State Examination scores (scores equine estrogens with or without MPA are associated with greater brain atrophy among women aged 65 years and older; however, the adverse effects are most evident in women experiencing cognitive deficits before initiating hormone therapy.

  5. Novel whole brain segmentation and volume estimation using quantitative MRI

    International Nuclear Information System (INIS)

    West, J.; Warntjes, J.B.M.; Lundberg, P.

    2012-01-01

    Brain segmentation and volume estimation of grey matter (GM), white matter (WM) and cerebro-spinal fluid (CSF) are important for many neurological applications. Volumetric changes are observed in multiple sclerosis (MS), Alzheimer's disease and dementia, and in normal aging. A novel method is presented to segment brain tissue based on quantitative magnetic resonance imaging (qMRI) of the longitudinal relaxation rate R 1 , the transverse relaxation rate R 2 and the proton density, PD. Previously reported qMRI values for WM, GM and CSF were used to define tissues and a Bloch simulation performed to investigate R 1 , R 2 and PD for tissue mixtures in the presence of noise. Based on the simulations a lookup grid was constructed to relate tissue partial volume to the R 1 -R 2 -PD space. The method was validated in 10 healthy subjects. MRI data were acquired using six resolutions and three geometries. Repeatability for different resolutions was 3.2% for WM, 3.2% for GM, 1.0% for CSF and 2.2% for total brain volume. Repeatability for different geometries was 8.5% for WM, 9.4% for GM, 2.4% for CSF and 2.4% for total brain volume. We propose a new robust qMRI-based approach which we demonstrate in a patient with MS. (orig.)

  6. Novel whole brain segmentation and volume estimation using quantitative MRI

    Energy Technology Data Exchange (ETDEWEB)

    West, J. [Linkoeping University, Radiation Physics, Department of Medical and Health Sciences, Faculty of Health Sciences, Linkoeping (Sweden); Linkoeping University, Center for Medical Imaging Science and Visualization (CMIV), Linkoeping (Sweden); SyntheticMR AB, Linkoeping (Sweden); Warntjes, J.B.M. [Linkoeping University, Center for Medical Imaging Science and Visualization (CMIV), Linkoeping (Sweden); SyntheticMR AB, Linkoeping (Sweden); Linkoeping University and Department of Clinical Physiology UHL, County Council of Oestergoetland, Clinical Physiology, Department of Medical and Health Sciences, Faculty of Health Sciences, Linkoeping (Sweden); Lundberg, P. [Linkoeping University, Center for Medical Imaging Science and Visualization (CMIV), Linkoeping (Sweden); Linkoeping University and Department of Radiation Physics UHL, County Council of Oestergoetland, Radiation Physics, Department of Medical and Health Sciences, Faculty of Health Sciences, Linkoeping (Sweden); Linkoeping University and Department of Radiology UHL, County Council of Oestergoetland, Radiology, Department of Medical and Health Sciences, Faculty of Health Sciences, Linkoeping (Sweden)

    2012-05-15

    Brain segmentation and volume estimation of grey matter (GM), white matter (WM) and cerebro-spinal fluid (CSF) are important for many neurological applications. Volumetric changes are observed in multiple sclerosis (MS), Alzheimer's disease and dementia, and in normal aging. A novel method is presented to segment brain tissue based on quantitative magnetic resonance imaging (qMRI) of the longitudinal relaxation rate R{sub 1}, the transverse relaxation rate R{sub 2} and the proton density, PD. Previously reported qMRI values for WM, GM and CSF were used to define tissues and a Bloch simulation performed to investigate R{sub 1}, R{sub 2} and PD for tissue mixtures in the presence of noise. Based on the simulations a lookup grid was constructed to relate tissue partial volume to the R{sub 1}-R{sub 2}-PD space. The method was validated in 10 healthy subjects. MRI data were acquired using six resolutions and three geometries. Repeatability for different resolutions was 3.2% for WM, 3.2% for GM, 1.0% for CSF and 2.2% for total brain volume. Repeatability for different geometries was 8.5% for WM, 9.4% for GM, 2.4% for CSF and 2.4% for total brain volume. We propose a new robust qMRI-based approach which we demonstrate in a patient with MS. (orig.)

  7. A genetic analysis of brain volumes and IQ in children

    NARCIS (Netherlands)

    van Leeuwen, M.; Peper, J.S.; van den Berg, S.M.; Brouwer, R.M.; Hulshoff Pol, H.E.; Kahn, R.S.; Boomsma, D.I.

    2009-01-01

    In a population-based sample of 112 nine-year old twin pairs, we investigated the association among total brain volume, gray matter and white matter volume, intelligence as assessed by the Raven IQ test, verbal comprehension, perceptual organization and perceptual speed as assessed by the Wechsler

  8. Total and regional brain volumes in a population-based normative sample from 4 to 18 years: the NIH MRI Study of Normal Brain Development.

    Science.gov (United States)

    2012-01-01

    Using a population-based sampling strategy, the National Institutes of Health (NIH) Magnetic Resonance Imaging Study of Normal Brain Development compiled a longitudinal normative reference database of neuroimaging and correlated clinical/behavioral data from a demographically representative sample of healthy children and adolescents aged newborn through early adulthood. The present paper reports brain volume data for 325 children, ages 4.5-18 years, from the first cross-sectional time point. Measures included volumes of whole-brain gray matter (GM) and white matter (WM), left and right lateral ventricles, frontal, temporal, parietal and occipital lobe GM and WM, subcortical GM (thalamus, caudate, putamen, and globus pallidus), cerebellum, and brainstem. Associations with cross-sectional age, sex, family income, parental education, and body mass index (BMI) were evaluated. Key observations are: 1) age-related decreases in lobar GM most prominent in parietal and occipital cortex; 2) age-related increases in lobar WM, greatest in occipital, followed by the temporal lobe; 3) age-related trajectories predominantly curvilinear in females, but linear in males; and 4) small systematic associations of brain tissue volumes with BMI but not with IQ, family income, or parental education. These findings constitute a normative reference on regional brain volumes in children and adolescents.

  9. Brain size and brain/intracranial volume ratio in major mental illness

    Directory of Open Access Journals (Sweden)

    Teale Peter

    2010-10-01

    Full Text Available Abstract Background This paper summarizes the findings of a long term study addressing the question of how several brain volume measure are related to three major mental illnesses in a Colorado subject group. It reports results obtained from a large N, collected and analyzed by the same laboratory over a multiyear period, with visually guided MRI segmentation being the primary initial analytic tool. Methods Intracerebral volume (ICV, total brain volume (TBV, ventricular volume (VV, ventricular/brain ratio (VBR, and TBV/ICV ratios were calculated from a total of 224 subject MRIs collected over a period of 13 years. Subject groups included controls (C, N = 89, and patients with schizophrenia (SZ, N = 58, bipolar disorder (BD, N = 51, and schizoaffective disorder (SAD, N = 26. Results ICV, TBV, and VV measures compared favorably with values obtained by other research groups, but in this study did not differ significantly between groups. TBV/ICV ratios were significantly decreased, and VBR increased, in the SZ and BD groups compared to the C group. The SAD group did not differ from C on any measure. Conclusions In this study TBV/ICV and VBR ratios separated SZ and BD patients from controls. Of interest however, SAD patients did not differ from controls on these measures. The findings suggest that the gross measure of TBV may not reliably differ in the major mental illnesses to a degree useful in diagnosis, likely due to the intrinsic variability of the measures in question; the differences in VBR appear more robust across studies. Differences in some of these findings compared to earlier reports from several laboratories finding significant differences between groups in VV and TBV may relate to phenomenological drift, differences in analytic techniques, and possibly the "file drawer problem".

  10. Brain volume measurement using three-dimensional magnetic resonance images

    International Nuclear Information System (INIS)

    Ishimaru, Yoshihiro

    1996-01-01

    This study was designed to validate accurate measurement method of human brain volume using three dimensional (3D) MRI data on a workstation, and to establish optimal correcting method of human brain volume on diagnosis of brain atrophy. 3D MRI data were acquired by fast SPGR sequence using 1.5 T MR imager. 3D MRI data were segmented by region growing method and 3D image was displayed by surface rendering method on the workstation. Brain volume was measured by the volume measurement function of the workstation. In order to validate the accurate measurement method, phantoms and a specimen of human brain were examined. Phantom volume was measured by changing the lower level of threshold value. At the appropriate threshold value, percentage of error of phantoms and the specimen were within 0.6% and 0.08%, respectively. To establish the optimal correcting method, 130 normal volunteers were examined. Brain volumes corrected with height weight, body surface area, and alternative skull volume were evaluated. Brain volume index, which is defined as dividing brain volume by alternative skull volume, had the best correlation with age (r=0.624, p<0.05). No gender differences was observed in brain volume index in contrast to in brain volume. The clinical usefulness of this correcting method for brain atrophy diagnosis was evaluated in 85 patients. Diagnosis by 2D spin echo MR images was compared with brain volume index. Diagnosis of brain atrophy by 2D MR image was concordant with the evaluation by brain volume index. These results indicated that this measurement method had high accuracy, and it was important to set the appropriate threshold value. Brain volume index was the appropriate indication for evaluation of human brain volume, and was considered to be useful for the diagnosis of brain atrophy. (author)

  11. Associations between subjective sleep quality and brain volume in Gulf War veterans.

    Science.gov (United States)

    Chao, Linda L; Mohlenhoff, Brian S; Weiner, Michael W; Neylan, Thomas C

    2014-03-01

    To investigate whether subjective sleep quality is associated with brain volume independent of comorbid psychiatric conditions. Cross-sectional. Department of Veterans Affairs (VA) Medical Center. One hundred forty-four Gulf War Veterans (mean age 45 years; range: 31-70 years; 14% female). None. Total cortical, lobar gray matter, and hippocampal volumes were quantified from 1.5 Tesla magnetic resonance images using Freesurfer version 4.5. Subjective sleep quality was assessed with the Pittsburgh Sleep Quality Index (PSQI). Multiple linear regressions were used to determine the association of sleep quality with total and regional brain volumes. The global PSQI score was positively correlated with lifetime and current posttraumatic stress disorder (PTSD) and current depressive symptoms (P sleep quality. Poorer subjective sleep quality was associated with reduced total cortical and regional frontal lobe volumes independent of comorbid psychiatric conditions. Future work will be needed to examine if effective treatment of disturbed sleep leads to improved structural and functional integrity of the frontal lobes.

  12. A Genetic Analysis of Brain Volumes and IQ in Children

    Science.gov (United States)

    van Leeuwen, Marieke; Peper, Jiska S.; van den Berg, Stephanie M.; Brouwer, Rachel M.; Hulshoff Pol, Hilleke E.; Kahn, Rene S.; Boomsma, Dorret I.

    2009-01-01

    In a population-based sample of 112 nine-year old twin pairs, we investigated the association among total brain volume, gray matter and white matter volume, intelligence as assessed by the Raven IQ test, verbal comprehension, perceptual organization and perceptual speed as assessed by the Wechsler Intelligence Scale for Children-III. Phenotypic…

  13. Region-specific reduction in brain volume in young adults with perinatal hypoxic-ischaemic encephalopathy.

    Science.gov (United States)

    Bregant, Tina; Rados, Milan; Vasung, Lana; Derganc, Metka; Evans, Alan C; Neubauer, David; Kostovic, Ivica

    2013-11-01

    A severe form of perinatal hypoxic-ischaemic encephalopathy (HIE) carries a high risk of perinatal death and severe neurological sequelae while in mild HIE only discrete cognitive disorders may occur. To compare total brain volumes and region-specific cortical measurements between young adults with mild-moderate perinatal HIE and a healthy control group of the same age. MR imaging was performed in a cohort of 14 young adults (9 males, 5 females) with a history of mild or moderate perinatal HIE. The control group consisted of healthy participants, matched with HIE group by age and gender. Volumetric analysis was done after the processing of MR images using a fully automated CIVET pipeline. We measured gyrification indexes, total brain volume, volume of grey and white matter, and of cerebrospinal fluid. We also measured volume, thickness and area of the cerebral cortex in the parietal, occipital, frontal, and temporal lobe, and of the isthmus cinguli, parahippocampal and cingulated gyrus, and insula. The HIE patient group showed smaller absolute volumetric data. Statistically significant (p right hemisphere, of cortical areas in the right temporal lobe and parahippocampal gyrus, of cortical volumes in the right temporal lobe and of cortical thickness in the right isthmus of the cingulate gyrus were found. Comparison between the healthy group and the HIE group of the same gender showed statistically significant changes in the male HIE patients, where a significant reduction was found in whole brain volume; left parietal, bilateral temporal, and right parahippocampal gyrus cortical areas; and bilateral temporal lobe cortical volume. Our analysis of total brain volumes and region-specific corticometric parameters suggests that mild-moderate forms of perinatal HIE lead to reductions in whole brain volumes. In the study reductions were most pronounced in temporal lobe and parahippocampal gyrus. Copyright © 2013 European Paediatric Neurology Society. All rights reserved.

  14. Brain volumes predict neurodevelopment in adolescents after surgery for congenital heart disease.

    Science.gov (United States)

    von Rhein, Michael; Buchmann, Andreas; Hagmann, Cornelia; Huber, Reto; Klaver, Peter; Knirsch, Walter; Latal, Beatrice

    2014-01-01

    Patients with complex congenital heart disease are at risk for neurodevelopmental impairments. Evidence suggests that brain maturation can be delayed and pre- and postoperative brain injury may occur, and there is limited information on the long-term effect of congenital heart disease on brain development and function in adolescent patients. At a mean age of 13.8 years, 39 adolescent survivors of childhood cardiopulmonary bypass surgery with no structural brain lesions evident through conventional cerebral magnetic resonance imaging and 32 healthy control subjects underwent extensive neurodevelopmental assessment and cerebral magnetic resonance imaging. Cerebral scans were analysed quantitatively using surface-based and voxel-based morphometry. Compared with control subjects, patients had lower total brain (P = 0.003), white matter (P = 0.004) and cortical grey matter (P = 0.005) volumes, whereas cerebrospinal fluid volumes were not different. Regional brain volume reduction ranged from 5.3% (cortical grey matter) to 11% (corpus callosum). Adolescents with cyanotic heart disease showed more brain volume loss than those with acyanotic heart disease, particularly in the white matter, thalami, hippocampi and corpus callosum (all P-values Brain volume reduction correlated significantly with cognitive, motor and executive functions (grey matter: P < 0.05, white matter: P < 0.01). Our findings suggest that there are long-lasting cerebral changes in adolescent survivors of cardiopulmonary bypass surgery for congenital heart disease and that these changes are associated with functional outcome.

  15. Longitudinal genetic analysis of brain volumes in normal elderly male twins

    OpenAIRE

    Lessov-Schlaggar, Christina N.; Hardin, Jill; DeCarli, Charles; Krasnow, Ruth E.; Reed, Terry; Wolf, Philip A.; Swan, Gary E.; Carmelli, Dorit

    2010-01-01

    This study investigated the role of genetic and environmental influences on individual differences in brain volumes measured at two time points in normal elderly males from the National Heart, Lung, and Blood Institute Twin Study. The MRI scans were conducted four years apart on 33 monozygotic and 33 dizygotic male twin pairs, aged 68 to 77 years when first scanned. Volumetric measures of total brain and total cerebrospinal fluid were significantly heritable at baseline (over 70%). For both v...

  16. Spatial patterns of progressive brain volume loss after moderate-severe traumatic brain injury

    Science.gov (United States)

    Jolly, Amy; de Simoni, Sara; Bourke, Niall; Patel, Maneesh C; Scott, Gregory; Sharp, David J

    2018-01-01

    Abstract Traumatic brain injury leads to significant loss of brain volume, which continues into the chronic stage. This can be sensitively measured using volumetric analysis of MRI. Here we: (i) investigated longitudinal patterns of brain atrophy; (ii) tested whether atrophy is greatest in sulcal cortical regions; and (iii) showed how atrophy could be used to power intervention trials aimed at slowing neurodegeneration. In 61 patients with moderate-severe traumatic brain injury (mean age = 41.55 years ± 12.77) and 32 healthy controls (mean age = 34.22 years ± 10.29), cross-sectional and longitudinal (1-year follow-up) brain structure was assessed using voxel-based morphometry on T1-weighted scans. Longitudinal brain volume changes were characterized using a novel neuroimaging analysis pipeline that generates a Jacobian determinant metric, reflecting spatial warping between baseline and follow-up scans. Jacobian determinant values were summarized regionally and compared with clinical and neuropsychological measures. Patients with traumatic brain injury showed lower grey and white matter volume in multiple brain regions compared to controls at baseline. Atrophy over 1 year was pronounced following traumatic brain injury. Patients with traumatic brain injury lost a mean (± standard deviation) of 1.55% ± 2.19 of grey matter volume per year, 1.49% ± 2.20 of white matter volume or 1.51% ± 1.60 of whole brain volume. Healthy controls lost 0.55% ± 1.13 of grey matter volume and gained 0.26% ± 1.11 of white matter volume; equating to a 0.22% ± 0.83 reduction in whole brain volume. Atrophy was greatest in white matter, where the majority (84%) of regions were affected. This effect was independent of and substantially greater than that of ageing. Increased atrophy was also seen in cortical sulci compared to gyri. There was no relationship between atrophy and time since injury or age at baseline. Atrophy rates were related to memory performance at the end of the

  17. Spatial patterns of progressive brain volume loss after moderate-severe traumatic brain injury.

    Science.gov (United States)

    Cole, James H; Jolly, Amy; de Simoni, Sara; Bourke, Niall; Patel, Maneesh C; Scott, Gregory; Sharp, David J

    2018-01-04

    Traumatic brain injury leads to significant loss of brain volume, which continues into the chronic stage. This can be sensitively measured using volumetric analysis of MRI. Here we: (i) investigated longitudinal patterns of brain atrophy; (ii) tested whether atrophy is greatest in sulcal cortical regions; and (iii) showed how atrophy could be used to power intervention trials aimed at slowing neurodegeneration. In 61 patients with moderate-severe traumatic brain injury (mean age = 41.55 years ± 12.77) and 32 healthy controls (mean age = 34.22 years ± 10.29), cross-sectional and longitudinal (1-year follow-up) brain structure was assessed using voxel-based morphometry on T1-weighted scans. Longitudinal brain volume changes were characterized using a novel neuroimaging analysis pipeline that generates a Jacobian determinant metric, reflecting spatial warping between baseline and follow-up scans. Jacobian determinant values were summarized regionally and compared with clinical and neuropsychological measures. Patients with traumatic brain injury showed lower grey and white matter volume in multiple brain regions compared to controls at baseline. Atrophy over 1 year was pronounced following traumatic brain injury. Patients with traumatic brain injury lost a mean (± standard deviation) of 1.55% ± 2.19 of grey matter volume per year, 1.49% ± 2.20 of white matter volume or 1.51% ± 1.60 of whole brain volume. Healthy controls lost 0.55% ± 1.13 of grey matter volume and gained 0.26% ± 1.11 of white matter volume; equating to a 0.22% ± 0.83 reduction in whole brain volume. Atrophy was greatest in white matter, where the majority (84%) of regions were affected. This effect was independent of and substantially greater than that of ageing. Increased atrophy was also seen in cortical sulci compared to gyri. There was no relationship between atrophy and time since injury or age at baseline. Atrophy rates were related to memory performance at the end of the follow

  18. A physical multifield model predicts the development of volume and structure in the human brain

    Science.gov (United States)

    Rooij, Rijk de; Kuhl, Ellen

    2018-03-01

    The prenatal development of the human brain is characterized by a rapid increase in brain volume and a development of a highly folded cortex. At the cellular level, these events are enabled by symmetric and asymmetric cell division in the ventricular regions of the brain followed by an outwards cell migration towards the peripheral regions. The role of mechanics during brain development has been suggested and acknowledged in past decades, but remains insufficiently understood. Here we propose a mechanistic model that couples cell division, cell migration, and brain volume growth to accurately model the developing brain between weeks 10 and 29 of gestation. Our model accurately predicts a 160-fold volume increase from 1.5 cm3 at week 10 to 235 cm3 at week 29 of gestation. In agreement with human brain development, the cortex begins to form around week 22 and accounts for about 30% of the total brain volume at week 29. Our results show that cell division and coupling between cell density and volume growth are essential to accurately model brain volume development, whereas cell migration and diffusion contribute mainly to the development of the cortex. We demonstrate that complex folding patterns, including sinusoidal folds and creases, emerge naturally as the cortex develops, even for low stiffness contrasts between the cortex and subcortex.

  19. Brain volume reductions in adolescent heavy drinkers.

    Science.gov (United States)

    Squeglia, Lindsay M; Rinker, Daniel A; Bartsch, Hauke; Castro, Norma; Chung, Yoonho; Dale, Anders M; Jernigan, Terry L; Tapert, Susan F

    2014-07-01

    Brain abnormalities in adolescent heavy drinkers may result from alcohol exposure, or stem from pre-existing neural features. This longitudinal morphometric study investigated 40 healthy adolescents, ages 12-17 at study entry, half of whom (n=20) initiated heavy drinking over the 3-year follow-up. Both assessments included high-resolution magnetic resonance imaging. FreeSurfer was used to segment brain volumes, which were measured longitudinally using the newly developed quantitative anatomic regional change analysis (QUARC) tool. At baseline, participants who later transitioned into heavy drinking showed smaller left cingulate, pars triangularis, and rostral anterior cingulate volume, and less right cerebellar white matter volumes (pteens. Over time, participants who initiated heavy drinking showed significantly greater volume reduction in the left ventral diencephalon, left inferior and middle temporal gyrus, and left caudate and brain stem, compared to substance-naïve youth (pbrain regions in future drinkers and greater brain volume reduction in subcortical and temporal regions after alcohol use was initiated. This is consistent with literature showing pre-existing cognitive deficits on tasks recruited by frontal regions, as well as post-drinking consequences on brain regions involved in language and spatial tasks. Published by Elsevier Ltd.

  20. Big Cat Coalitions: A Comparative Analysis of Regional Brain Volumes in Felidae.

    Science.gov (United States)

    Sakai, Sharleen T; Arsznov, Bradley M; Hristova, Ani E; Yoon, Elise J; Lundrigan, Barbara L

    2016-01-01

    Broad-based species comparisons across mammalian orders suggest a number of factors that might influence the evolution of large brains. However, the relationship between these factors and total and regional brain size remains unclear. This study investigated the relationship between relative brain size and regional brain volumes and sociality in 13 felid species in hopes of revealing relationships that are not detected in more inclusive comparative studies. In addition, a more detailed analysis was conducted of four focal species: lions ( Panthera leo ), leopards ( Panthera pardus ), cougars ( Puma concolor ), and cheetahs ( Acinonyx jubatus ). These species differ markedly in sociality and behavioral flexibility, factors hypothesized to contribute to increased relative brain size and/or frontal cortex size. Lions are the only truly social species, living in prides. Although cheetahs are largely solitary, males often form small groups. Both leopards and cougars are solitary. Of the four species, leopards exhibit the most behavioral flexibility, readily adapting to changing circumstances. Regional brain volumes were analyzed using computed tomography. Skulls ( n = 75) were scanned to create three-dimensional virtual endocasts, and regional brain volumes were measured using either sulcal or bony landmarks obtained from the endocasts or skulls. Phylogenetic least squares regression analyses found that sociality does not correspond with larger relative brain size in these species. However, the sociality/solitary variable significantly predicted anterior cerebrum (AC) volume, a region that includes frontal cortex. This latter finding is despite the fact that the two social species in our sample, lions and cheetahs, possess the largest and smallest relative AC volumes, respectively. Additionally, an ANOVA comparing regional brain volumes in four focal species revealed that lions and leopards, while not significantly different from one another, have relatively larger AC

  1. Big Cat Coalitions: A comparative analysis of regional brain volumes in Felidae

    Directory of Open Access Journals (Sweden)

    Sharleen T Sakai

    2016-10-01

    Full Text Available Broad-based species comparisons across mammalian orders suggest a number of factors that might influence the evolution of large brains. However, the relationship between these factors and total and regional brain size remains unclear. This study investigated the relationship between relative brain size and regional brain volumes and sociality in 13 felid species in hopes of revealing relationships that are not detected in more inclusive comparative studies. In addition, a more detailed analysis was conducted of 4 focal species: lions (Panthera leo, leopards (Panthera pardus, cougars (Puma concolor, and cheetahs (Acinonyx jubatus. These species differ markedly in sociality and behavioral flexibility, factors hypothesized to contribute to increased relative brain size and/or frontal cortex size. Lions are the only truly social species, living in prides. Although cheetahs are largely solitary, males often form small groups. Both leopards and cougars are solitary. Of the four species, leopards exhibit the most behavioral flexibility, readily adapting to changing circumstances. Regional brain volumes were analyzed using computed tomography (CT. Skulls (n=75 were scanned to create three-dimensional virtual endocasts, and regional brain volumes were measured using either sulcal or bony landmarks obtained from the endocasts or skulls. Phylogenetic least squares (PGLS regression analyses found that sociality does not correspond with larger relative brain size in these species. However, the sociality/solitary variable significantly predicted anterior cerebrum (AC volume, a region that includes frontal cortex. This latter finding is despite the fact that the two social species in our sample, lions and cheetahs, possess the largest and smallest relative AC volumes, respectively. Additionally, an ANOVA comparing regional brain volumes in 4 focal species revealed that lions and leopards, while not significantly different from one another, have relatively

  2. Restraint of appetite and reduced regional brain volumes in anorexia nervosa: a voxel-based morphometric study

    Directory of Open Access Journals (Sweden)

    Brooks Samantha J

    2011-11-01

    Full Text Available Abstract Background Previous Magnetic Resonance Imaging (MRI studies of people with anorexia nervosa (AN have shown differences in brain structure. This study aimed to provide preliminary extensions of this data by examining how different levels of appetitive restraint impact on brain volume. Methods Voxel based morphometry (VBM, corrected for total intracranial volume, age, BMI, years of education in 14 women with AN (8 RAN and 6 BPAN and 21 women (HC was performed. Correlations between brain volume and dietary restraint were done using Statistical Package for the Social Sciences (SPSS. Results Increased right dorsolateral prefrontal cortex (DLPFC and reduced right anterior insular cortex, bilateral parahippocampal gyrus, left fusiform gyrus, left cerebellum and right posterior cingulate volumes in AN compared to HC. RAN compared to BPAN had reduced left orbitofrontal cortex, right anterior insular cortex, bilateral parahippocampal gyrus and left cerebellum. Age negatively correlated with right DLPFC volume in HC but not in AN; dietary restraint and BMI predicted 57% of variance in right DLPFC volume in AN. Conclusions In AN, brain volume differences were found in appetitive, somatosensory and top-down control brain regions. Differences in regional GMV may be linked to levels of appetitive restraint, but whether they are state or trait is unclear. Nevertheless, these discrete brain volume differences provide candidate brain regions for further structural and functional study in people with eating disorders.

  3. Trajectories of cortical surface area and cortical volume maturation in normal brain development

    Directory of Open Access Journals (Sweden)

    Simon Ducharme

    2015-12-01

    Full Text Available This is a report of developmental trajectories of cortical surface area and cortical volume in the NIH MRI Study of Normal Brain Development. The quality-controlled sample included 384 individual typically-developing subjects with repeated scanning (1–3 per subject, total scans n=753 from 4.9 to 22.3 years of age. The best-fit model (cubic, quadratic, or first-order linear was identified at each vertex using mixed-effects models, with statistical correction for multiple comparisons using random field theory. Analyses were performed with and without controlling for total brain volume. These data are provided for reference and comparison with other databases. Further discussion and interpretation on cortical developmental trajectories can be found in the associated Ducharme et al.׳s article “Trajectories of cortical thickness maturation in normal brain development – the importance of quality control procedures” (Ducharme et al., 2015 [1].

  4. Volume of Structures in the Fetal Brain Measured with a New Semiautomated Method.

    Science.gov (United States)

    Ber, R; Hoffman, D; Hoffman, C; Polat, A; Derazne, E; Mayer, A; Katorza, E

    2017-11-01

    Measuring the volume of fetal brain structures is challenging due to fetal motion, low resolution, and artifacts caused by maternal tissue. Our aim was to introduce a new, simple, Matlab-based semiautomated method to measure the volume of structures in the fetal brain and present normal volumetric curves of the structures measured. The volume of the supratentorial brain, left and right hemispheres, cerebellum, and left and right eyeballs was measured retrospectively by the new semiautomated method in MR imaging examinations of 94 healthy fetuses. Four volume ratios were calculated. Interobserver agreement was calculated with the intraclass correlation coefficient, and a Bland-Altman plot was drawn for comparison of manual and semiautomated method measurements of the supratentorial brain. We present normal volumetric curves and normal percentile values of the structures measured according to gestational age and of the ratios between the cerebellum and the supratentorial brain volume and the total eyeball and the supratentorial brain volume. Interobserver agreement was good or excellent for all structures measured. The Bland-Altman plot between manual and semiautomated measurements showed a maximal relative difference of 7.84%. We present a technologically simple, reproducible method that can be applied prospectively and retrospectively on any MR imaging protocol, and we present normal volumetric curves measured. The method shows results like manual measurements while being less time-consuming and user-dependent. By applying this method on different cranial and extracranial structures, anatomic and pathologic, we believe that fetal volumetry can turn from a research tool into a practical clinical one. © 2017 by American Journal of Neuroradiology.

  5. Brain Volume Estimation Enhancement by Morphological Image Processing Tools

    Directory of Open Access Journals (Sweden)

    Zeinali R.

    2017-12-01

    Full Text Available Background: Volume estimation of brain is important for many neurological applications. It is necessary in measuring brain growth and changes in brain in normal/ abnormal patients. Thus, accurate brain volume measurement is very important. Magnetic resonance imaging (MRI is the method of choice for volume quantification due to excellent levels of image resolution and between-tissue contrast. Stereology method is a good method for estimating volume but it requires to segment enough MRI slices and have a good resolution. In this study, it is desired to enhance stereology method for volume estimation of brain using less MRI slices with less resolution. Methods: In this study, a program for calculating volume using stereology method has been introduced. After morphologic method, dilation was applied and the stereology method enhanced. For the evaluation of this method, we used T1-wighted MR images from digital phantom in BrainWeb which had ground truth. Results: The volume of 20 normal brain extracted from BrainWeb, was calculated. The volumes of white matter, gray matter and cerebrospinal fluid with given dimension were estimated correctly. Volume calculation from Stereology method in different cases was made. In three cases, Root Mean Square Error (RMSE was measured. Case I with T=5, d=5, Case II with T=10, D=10 and Case III with T=20, d=20 (T=slice thickness, d=resolution as stereology parameters. By comparing these results of two methods, it is obvious that RMSE values for our proposed method are smaller than Stereology method. Conclusion: Using morphological operation, dilation allows to enhance the estimation volume method, Stereology. In the case with less MRI slices and less test points, this method works much better compared to Stereology method.

  6. SU-E-T-568: Improving Normal Brain Sparing with Increasing Number of Arc Beams for Volume Modulated Arc Beam Radiosurgery of Multiple Brain Metastases

    International Nuclear Information System (INIS)

    Hossain, S; Hildebrand, K; Ahmad, S; Larson, D; Ma, L; Sahgal, A

    2014-01-01

    Purpose: Intensity modulated arc beams have been newly reported for treating multiple brain metastases. The purpose of this study was to determine the variations in the normal brain doses with increasing number of arc beams for multiple brain metastases treatments via the TrueBeam Rapidarc system (Varian Oncology, Palo Alto, CA). Methods: A patient case with 12 metastatic brain lesions previously treated on the Leksell Gamma Knife Perfexion (GK) was used for the study. All lesions and organs at risk were contoured by a senior radiation oncologist and treatment plans for a subset of 3, 6, 9 and all 12 targets were developed for the TrueBeam Rapidarc system via 3 to 7 intensity modulated arc-beams with each target covered by at least 99% of the prescribed dose of 20 Gy. The peripheral normal brain isodose volumes as well as the total beam-on time were analyzed with increasing number of arc beams for these targets. Results: All intensisty modulated arc-beam plans produced efficient treatment delivery with the beam-on time averaging 0.6–1.5 min per lesion at an output of 1200 MU/min. With increasing number of arc beams, the peripheral normal brain isodose volumes such as the 12-Gy isodose line enclosed normal brain tissue volumes were on average decreased by 6%, 11%, 18%, and 28% for the 3-, 6-, 9-, 12-target treatment plans respectively. The lowest normal brain isodose volumes were consistently found for the 7-arc treatment plans for all the cases. Conclusion: With nearly identical beam-on times, the peripheral normal brain dose was notably decreased when the total number of intensity modulated arc beams was increased when treating multiple brain metastases. Dr Sahgal and Dr Ma are currently serving on the board of international society of stereotactic radiosurgery

  7. The impact of glucose disorders on cognition and brain volumes in the elderly: the Sydney Memory and Ageing Study.

    Science.gov (United States)

    Samaras, Katherine; Lutgers, Helen L; Kochan, Nicole A; Crawford, John D; Campbell, Lesley V; Wen, Wei; Slavin, Melissa J; Baune, Bernard T; Lipnicki, Darren M; Brodaty, Henry; Trollor, Julian N; Sachdev, Perminder S

    2014-04-01

    Type 2 diabetes predicts accelerated cognitive decline and brain atrophy. We hypothesized that impaired fasting glucose (IFG) and incident glucose disorders have detrimental effects on global cognition and brain volume. We further hypothesized that metabolic and inflammatory derangements accompanying hyperglycaemia contribute to change in brain structure and function. This was a longitudinal study of a community-dwelling elderly cohort with neuropsychological testing (n = 880) and brain volumes by magnetic resonance imaging (n = 312) measured at baseline and 2 years. Primary outcomes were global cognition and total brain volume. Secondary outcomes were cognitive domains (processing speed, memory, language, visuospatial and executive function) and brain volumes (hippocampal, parahippocampal, precuneus and frontal lobe). Participants were categorised as normal, impaired fasting glucose at both assessments (stable IFG), baseline diabetes or incident glucose disorders (incident diabetes or IFG at 2 years). Measures included inflammatory cytokines and oxidative metabolites. Covariates were age, sex, education, non-English speaking background, smoking, blood pressure, lipid-lowering or antihypertensive medications, mood score, apolipoprotein E genotype and baseline cognition or brain volume. Participants with incident glucose disorders had greater decline in global cognition and visuospatial function compared to normal, similar to that observed in baseline diabetes. Homocysteine was independently associated with the observed effect of diabetes on executive function. Apolipoprotein E genotype did not influence the observed effects of diabetes on cognition. Incident glucose disorders and diabetes were also associated with greater 2-year decline in total brain volume, compared to normal (40.0 ± 4.2 vs. 46.7 ± 5.7 mm(3) vs. 18.1 ± 6.2, respectively, p cognition or brain volumes compared to normal. Incident glucose disorders, like diabetes, are

  8. Total volume versus bouts

    DEFF Research Database (Denmark)

    Chinapaw, Mai; Klakk, Heidi; Møller, Niels Christian

    2018-01-01

    BACKGROUND/OBJECTIVES: Examine the prospective relationship of total volume versus bouts of sedentary behaviour (SB) and moderate-to-vigorous physical activity (MVPA) with cardiometabolic risk in children. In addition, the moderating effects of weight status and MVPA were explored. SUBJECTS....../METHODS: Longitudinal study including 454 primary school children (mean age 10.3 years). Total volume and bouts (i.e. ≥10 min consecutive minutes) of MVPA and SB were assessed by accelerometry in Nov 2009/Jan 2010 (T1) and Aug/Oct 2010 (T2). Triglycerides, total cholesterol/HDL cholesterol ratio (TC:HDLC ratio......, with or without mutual adjustments between MVPA and SB. The moderating effects of weight status and MVPA (for SB only) were examined by adding interaction terms. RESULTS: Children engaged daily in about 60 min of total MVPA and 0-15 min/week in MVPA bouts. Mean total sedentary time was around 7 h/day with over 3...

  9. Familial and environmental influences on brain volumes in twins with schizophrenia.

    Science.gov (United States)

    Picchioni, Marco M; Rijsdijk, Fruhling; Toulopoulou, Timothea; Chaddock, Christopher; Cole, James H; Ettinger, Ulrich; Oses, Ana; Metcalfe, Hugo; Murray, Robin M; McGuire, Philip

    2017-03-01

    Reductions in whole brain and grey matter volumes are robust features of schizophrenia, yet their etiological influences are unclear. We investigated the association between the genetic and environmental risk for schizophrenia and brain volumes. Whole brain, grey matter and white matter volumes were established from structural MRIs from twins varying in their zygosity and concordance for schizophrenia. Hippocampal volumes were measured manually. We conducted between-group testing and full genetic modelling. We included 168 twins in our study. Whole brain, grey matter, white matter and right hippocampal volumes were smaller in twins with schizophrenia. Twin correlations were larger for whole brain, grey matter and white matter volumes in monozygotic than dizygotic twins and were significantly heritable, whereas hippocampal volume was the most environmentally sensitive. There was a significant phenotypic correlation between schizophrenia and reductions in all the brain volumes except for that of the left hippocampus. For whole brain, grey matter and the right hippocampus the etiological links with schizophrenia were principally associated with the shared familial environment. Lower birth weight and perinatal hypoxia were both associated with lower whole brain volume and with lower white matter and grey matter volumes, respectively. Scan data were collected across 2 sites, and some groups were modest in size. Whole brain, grey matter and right hippocampal volume reductions are linked to schizophrenia through correlated familial risk (i.e., the shared familial environment). The degree of influence of etiological factors varies between brain structures, leading to the possibility of a neuroanatomically specific etiological imprint.

  10. Brain tumor locating in 3D MR volume using symmetry

    Science.gov (United States)

    Dvorak, Pavel; Bartusek, Karel

    2014-03-01

    This work deals with the automatic determination of a brain tumor location in 3D magnetic resonance volumes. The aim of this work is not the precise segmentation of the tumor and its parts but only the detection of its location. This work is the first step in the tumor segmentation process, an important topic in neuro-image processing. The algorithm expects 3D magnetic resonance volumes of brain containing a tumor. The detection is based on locating the area that breaks the left-right symmetry of the brain. This is done by multi-resolution comparing of corresponding regions in left and right hemisphere. The output of the computation is the probabilistic map of the tumor location. The created algorithm was tested on 80 volumes from publicly available BRATS databases containing 3D brain volumes afflicted by a brain tumor. These pathological structures had various sizes and shapes and were located in various parts of the brain. The locating performance of the algorithm was 85% for T1-weighted volumes, 91% for T1-weighted contrast enhanced volumes, 96% for FLAIR and T2-wieghted volumes and 95% for their combinations.

  11. Multicenter Study of Brain Volume Abnormalities in Children and Adolescent-Onset Psychosis

    Science.gov (United States)

    Reig, Santiago; Parellada, Mara; Castro-Fornieles, Josefina; Janssen, Joost; Moreno, Dolores; Baeza, Inmaculada; Bargalló, Nuria; González-Pinto, Ana; Graell, Montserrat; Ortuño, Felipe; Otero, Soraya; Arango, Celso; Desco, Manuel

    2011-01-01

    The goal of the study is to determine the extent of structural brain abnormalities in a multicenter sample of children and adolescents with a recent-onset first episode of psychosis (FEP), compared with a sample of healthy controls. Total brain and lobar volumes and those of gray matter (GM), white matter, and cerebrospinal fluid (CSF) were measured in 92 patients with a FEP and in 94 controls, matched for age, gender, and years of education. Male patients (n = 64) showed several significant differences when compared with controls (n = 61). GM volume in male patients was reduced in the whole brain and in frontal and parietal lobes compared with controls. Total CSF volume and frontal, temporal, and right parietal CSF volumes were also increased in male patients. Within patients, those with a further diagnosis of “schizophrenia” or “other psychosis” showed a pattern similar to the group of all patients relative to controls. However, bipolar patients showed fewer differences relative to controls. In female patients, only the schizophrenia group showed differences relative to controls, in frontal CSF. GM deficit in male patients with a first episode correlated with negative symptoms. Our study suggests that at least part of the GM deficit in children and adolescent-onset schizophrenia and in other psychosis occurs before onset of the first positive symptoms and that, contrary to what has been shown in children-onset schizophrenia, frontal GM deficits are probably present from the first appearance of positive symptoms in children and adolescents. PMID:20478821

  12. Subcortical Brain Morphology in Schizophrenia : Descriptive analysis based on MRI findings of subcortical brain volumes

    OpenAIRE

    Gunleiksrud, Sindre

    2009-01-01

    The aim of this study was to investigate magnetic resonance images (MR) from patients with schizophrenia and healthy control subjects for difference in brain morphology with focus on subcortical brain volumes. Method: The study compared fourteen subcortical brain structure volumes of 96 patients diagnosed with schizophrenia (n=81) or schizoaffective disorder (n=15) with 106 healthy control subjects. Volume measures were obtained using voxel-based morphometry (FreeSurfer software suite) of ...

  13. Evolution of brain region volumes during artificial selection for relative brain size.

    Science.gov (United States)

    Kotrschal, Alexander; Zeng, Hong-Li; van der Bijl, Wouter; Öhman-Mägi, Caroline; Kotrschal, Kurt; Pelckmans, Kristiaan; Kolm, Niclas

    2017-12-01

    The vertebrate brain shows an extremely conserved layout across taxa. Still, the relative sizes of separate brain regions vary markedly between species. One interesting pattern is that larger brains seem associated with increased relative sizes only of certain brain regions, for instance telencephalon and cerebellum. Till now, the evolutionary association between separate brain regions and overall brain size is based on comparative evidence and remains experimentally untested. Here, we test the evolutionary response of brain regions to directional selection on brain size in guppies (Poecilia reticulata) selected for large and small relative brain size. In these animals, artificial selection led to a fast response in relative brain size, while body size remained unchanged. We use microcomputer tomography to investigate how the volumes of 11 main brain regions respond to selection for larger versus smaller brains. We found no differences in relative brain region volumes between large- and small-brained animals and only minor sex-specific variation. Also, selection did not change allometric scaling between brain and brain region sizes. Our results suggest that brain regions respond similarly to strong directional selection on relative brain size, which indicates that brain anatomy variation in contemporary species most likely stem from direct selection on key regions. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  14. Volume of the crocodilian brain and endocast during ontogeny.

    Directory of Open Access Journals (Sweden)

    Daniel Jirak

    Full Text Available Understanding complex situations and planning difficult actions require a brain of appropriate size. Animal encephalisation provides an indirect information about these abilities. The brain is entirely composed of soft tissue and, as such, rarely fossilises. As a consequence, the brain proportions and morphology of some extinct vertebrates are usually only inferred from their neurocranial endocasts. However, because the morphological configuration of the brain is not fully reflected in the endocast, knowledge of the brain/endocast relationship is essential (especially the ratio of brain volume to endocast volume or the equivalent proportion of interstitial tissue for studying the endocasts of extinct animals. Here we assess the encephalic volume and structure of modern crocodilians. The results we obtained using ex vivo magnetic resonance imaging reveal how the endoneurocranial cavity and brain compartments of crocodilians change configuration during ontogeny. We conclude that the endocasts of adult crocodilians are elongated and expanded while their brains are more linearly organised. The highest proportion of brain tissue to endocast volume is in the prosencephalon at over 50% in all but the largest animals, whereas the proportion in other brain segments is under 50% in all but the smallest animals and embryos. Our results may enrich the field of palaeontological study by offering more precise phylogenetic interpretations of the neuroanatomic characteristics of extinct vertebrates at various ontogenetic stages.

  15. Childhood adversity is linked to differential brain volumes in adolescents with alcohol use disorder: a voxel-based morphometry study.

    Science.gov (United States)

    Brooks, Samantha J; Dalvie, Shareefa; Cuzen, Natalie L; Cardenas, Valerie; Fein, George; Stein, Dan J

    2014-06-01

    Previous neuroimaging studies link both alcohol use disorder (AUD) and early adversity to neurobiological differences in the adult brain. However, the association between AUD and childhood adversity and effects on the developing adolescent brain are less clear, due in part to the confound of psychiatric comorbidity. Here we examine early life adversity and its association with brain volume in a unique sample of 116 South African adolescents (aged 12-16) with AUD but without psychiatric comorbidity. Participants were 58 adolescents with DSM-IV alcohol dependence and with no other psychiatric comorbidities, and 58 age-, gender- and protocol-matched light/non-drinking controls (HC). Assessments included the Childhood Trauma Questionnaire (CTQ). MR images were acquired on a 3T Siemens Magnetom Allegra scanner. Volumes of global and regional structures were estimated using SPM8 Voxel Based Morphometry (VBM), with analysis of covariance (ANCOVA) and regression analyses. In whole brain ANCOVA analyses, a main effect of group when examining the AUD effect after covarying out CTQ was observed on brain volume in bilateral superior temporal gyrus. Subsequent regression analyses to examine how childhood trauma scores are linked to brain volumes in the total cohort revealed a negative correlation in the left hippocampus and right precentral gyrus. Furthermore, bilateral (but most significantly left) hippocampal volume was negatively associated with sub-scores on the CTQ in the total cohort. These findings support our view that some alterations found in brain volumes in studies of adolescent AUD may reflect the impact of confounding factors such as psychiatric comorbidity rather than the effects of alcohol per se. In particular, early life adversity may influence the developing adolescent brain in specific brain regions, such as the hippocampus.

  16. Quantitative estimation of a ratio of intracranial cerebrospinal fluid volume to brain volume based on segmentation of CT images in patients with extra-axial hematoma.

    Science.gov (United States)

    Nguyen, Ha Son; Patel, Mohit; Li, Luyuan; Kurpad, Shekar; Mueller, Wade

    2017-02-01

    Background Diminishing volume of intracranial cerebrospinal fluid (CSF) in patients with space-occupying masses have been attributed to unfavorable outcome associated with reduction of cerebral perfusion pressure and subsequent brain ischemia. Objective The objective of this article is to employ a ratio of CSF volume to brain volume for longitudinal assessment of space-volume relationships in patients with extra-axial hematoma and to determine variability of the ratio among patients with different types and stages of hematoma. Patients and methods In our retrospective study, we reviewed 113 patients with surgical extra-axial hematomas. We included 28 patients (age 61.7 +/- 17.7 years; 19 males, nine females) with an acute epidural hematoma (EDH) ( n = 5) and subacute/chronic subdural hematoma (SDH) ( n = 23). We excluded 85 patients, in order, due to acute SDH ( n = 76), concurrent intraparenchymal pathology ( n = 6), and bilateral pathology ( n = 3). Noncontrast CT images of the head were obtained using a CT scanner (2004 GE LightSpeed VCT CT system, tube voltage 140 kVp, tube current 310 mA, 5 mm section thickness) preoperatively, postoperatively (3.8 ± 5.8 hours from surgery), and at follow-up clinic visit (48.2 ± 27.7 days after surgery). Each CT scan was loaded into an OsiriX (Pixmeo, Switzerland) workstation to segment pixels based on radiodensity properties measured in Hounsfield units (HU). Based on HU values from -30 to 100, brain, CSF spaces, vascular structures, hematoma, and/or postsurgical fluid were segregated from bony structures, and subsequently hematoma and/or postsurgical fluid were manually selected and removed from the images. The remaining images represented overall brain volume-containing only CSF spaces, vascular structures, and brain parenchyma. Thereafter, the ratio between the total number of voxels representing CSF volume (based on values between 0 and 15 HU) to the total number of voxels

  17. Partial volume correction and image segmentation for accurate measurement of standardized uptake value of grey matter in the brain.

    Science.gov (United States)

    Bural, Gonca; Torigian, Drew; Basu, Sandip; Houseni, Mohamed; Zhuge, Ying; Rubello, Domenico; Udupa, Jayaram; Alavi, Abass

    2015-12-01

    Our aim was to explore a novel quantitative method [based upon an MRI-based image segmentation that allows actual calculation of grey matter, white matter and cerebrospinal fluid (CSF) volumes] for overcoming the difficulties associated with conventional techniques for measuring actual metabolic activity of the grey matter. We included four patients with normal brain MRI and fluorine-18 fluorodeoxyglucose (F-FDG)-PET scans (two women and two men; mean age 46±14 years) in this analysis. The time interval between the two scans was 0-180 days. We calculated the volumes of grey matter, white matter and CSF by using a novel segmentation technique applied to the MRI images. We measured the mean standardized uptake value (SUV) representing the whole metabolic activity of the brain from the F-FDG-PET images. We also calculated the white matter SUV from the upper transaxial slices (centrum semiovale) of the F-FDG-PET images. The whole brain volume was calculated by summing up the volumes of the white matter, grey matter and CSF. The global cerebral metabolic activity was calculated by multiplying the mean SUV with total brain volume. The whole brain white matter metabolic activity was calculated by multiplying the mean SUV for the white matter by the white matter volume. The global cerebral metabolic activity only reflects those of the grey matter and the white matter, whereas that of the CSF is zero. We subtracted the global white matter metabolic activity from that of the whole brain, resulting in the global grey matter metabolism alone. We then divided the grey matter global metabolic activity by grey matter volume to accurately calculate the SUV for the grey matter alone. The brain volumes ranged between 1546 and 1924 ml. The mean SUV for total brain was 4.8-7. Total metabolic burden of the brain ranged from 5565 to 9617. The mean SUV for white matter was 2.8-4.1. On the basis of these measurements we generated the grey matter SUV, which ranged from 8.1 to 11.3. The

  18. Associations between regional brain volumes at term-equivalent age and development at 2 years of age in preterm children

    International Nuclear Information System (INIS)

    Lind, Annika; Parkkola, Riitta; Lehtonen, Liisa; Maunu, Jonna; Lapinleimu, Helena; Munck, Petriina; Haataja, Leena

    2011-01-01

    Altered brain volumes and associations between volumes and developmental outcomes have been reported in prematurely born children. To assess which regional brain volumes are different in very low birth weight (VLBW) children without neurodevelopmental impairments ([NDI] cerebral palsy, hearing loss, blindness and significantly delayed cognitive performance) compared with VLBW children with NDI, and to evaluate the association between regional brain volumes at term-equivalent age and cognitive development and neurological performance at a corrected age of 2 years. The study group consisted of a regional cohort of 164 VLBW children, divided into one group of children without NDI (n = 148) and one group of children with NDI (n = 16). Brain (MRI) was performed at term-equivalent age, from which brain volumes were manually analysed. Cognitive development was assessed with the Bayley Scales of Infant Development II (BSID-II), and neurological performance with the Hammersmith Infant Neurological Examination at the corrected age of 2 years. The volumes of total brain tissue, cerebrum, frontal lobes, basal ganglia and thalami, and cerebellum were significantly smaller, and the volume of the ventricles significantly larger, in the children with NDI than in those without NDI. Even in children without NDI, a smaller cerebellar volume was significantly correlated with poor neurological performance at 2 years of corrected age. Volumetric analysis at brain MRI can provide an additional parameter for early prediction of outcome in VLBW children. (orig.)

  19. Associations between regional brain volumes at term-equivalent age and development at 2 years of age in preterm children

    Energy Technology Data Exchange (ETDEWEB)

    Lind, Annika [Turku University Hospital, Department of Pediatrics, Turku (Finland); Aabo Akademi University, Department of Psychology, Turku (Finland); Parkkola, Riitta [University of Turku and Turku University Hospital, Department of Radiology and Turku PET Center, PO Box 52, Turku (Finland); Lehtonen, Liisa; Maunu, Jonna; Lapinleimu, Helena [University of Turku and Turku University Hospital, Department of Pediatrics, Turku (Finland); Munck, Petriina [Turku University Hospital, Department of Pediatrics, Turku (Finland); University of Turku, Department of Psychology, Turku (Finland); Haataja, Leena [University of Turku and Turku University Hospital, Department of Pediatric Neurology, Turku (Finland)

    2011-08-15

    Altered brain volumes and associations between volumes and developmental outcomes have been reported in prematurely born children. To assess which regional brain volumes are different in very low birth weight (VLBW) children without neurodevelopmental impairments ([NDI] cerebral palsy, hearing loss, blindness and significantly delayed cognitive performance) compared with VLBW children with NDI, and to evaluate the association between regional brain volumes at term-equivalent age and cognitive development and neurological performance at a corrected age of 2 years. The study group consisted of a regional cohort of 164 VLBW children, divided into one group of children without NDI (n = 148) and one group of children with NDI (n = 16). Brain (MRI) was performed at term-equivalent age, from which brain volumes were manually analysed. Cognitive development was assessed with the Bayley Scales of Infant Development II (BSID-II), and neurological performance with the Hammersmith Infant Neurological Examination at the corrected age of 2 years. The volumes of total brain tissue, cerebrum, frontal lobes, basal ganglia and thalami, and cerebellum were significantly smaller, and the volume of the ventricles significantly larger, in the children with NDI than in those without NDI. Even in children without NDI, a smaller cerebellar volume was significantly correlated with poor neurological performance at 2 years of corrected age. Volumetric analysis at brain MRI can provide an additional parameter for early prediction of outcome in VLBW children. (orig.)

  20. Dose-volume considerations in stereotaxic brain radiation therapy

    International Nuclear Information System (INIS)

    Houdek, P.V.; Schwade, J.G.; Pisciotta, V.J.; Medina, A.J.; Lewin, A.A.; Abitbol, A.A.; Serago, C.F.

    1988-01-01

    Although brain radiation therapy experience suggests that a gain in the therapeutic ratio may be achieved by optimizing the dose-volume relationship, no practical system for quantitative assessment of dose-volume data has been developed. This presentation describes the rationale for using the integral dose function for this purpose and demonstrates that with the use of a conventional treatment planning computer and a series of computed tomographic scans, first-order optimization of the dose-volume function can be accomplished in two steps: first, high-dose volume is minimized by selecting an appropriate treatment technique and tumor margin, and then dosage is maximized by calculating the brain tolerance dose as a function of the irradiated volume

  1. Protective Effect of Human Leukocyte Antigen (HLA Allele DRB1*13:02 on Age-Related Brain Gray Matter Volume Reduction in Healthy Women

    Directory of Open Access Journals (Sweden)

    Lisa M. James

    2018-03-01

    Full Text Available Background: Reduction of brain volume (brain atrophy during healthy brain aging is well documented and dependent on genetic, lifestyle and environmental factors. Here we investigated the possible dependence of brain gray matter volume reduction in the absence of the Human Leukocyte Antigen (HLA allele DRB1*13:02 which prevents brain atrophy in Gulf War Illness (James et al., 2017. Methods: Seventy-one cognitively healthy women (32–69 years old underwent a structural Magnetic Resonance Imaging (sMRI scan to measure the volumes of total gray matter, cerebrocortical gray matter, and subcortical gray matter. Participants were assigned to two groups, depending on whether they lacked the DRB1*13:02 allele (No DRB1*13:02 group, N = 60 or carried the DRB1*13:02 allele (N = 11. We assessed the change of brain gray matter volume with age in each group by performing a linear regression where the brain volume (adjusted for total intracranial volume was the dependent variable and age was the independent variable. Findings: In the No DRB1*13:02 group, the volumes of total gray matter, cerebrocortical gray matter, and subcortical gray matter were reduced highly significantly. In contrast, none of these volumes showed a statistically significant reduction with age in the DRB1*13:02 group. Interpretation: These findings document the protective effect of DRB1*13:02 on age-dependent reduction of brain gray matter in healthy individuals. Since the role of this allele is to connect to matching epitopes of external antigens for the subsequent production of antibodies and elimination of the offending antigen, we hypothesize that its protective effect may be due to the successful elimination of such antigens to which we are exposed during the lifespan, antigens that otherwise would persist causing gradual brain atrophy. In addition, we consider a possible beneficial role of DRB1*13:02 attributed to its binding to cathepsin S, a known harmful substance in brain

  2. Genomic regulation of natural variation in cortical and noncortical brain volume

    Directory of Open Access Journals (Sweden)

    Laughlin Rick E

    2006-02-01

    Full Text Available Abstract Background The relative growth of the neocortex parallels the emergence of complex cognitive functions across species. To determine the regions of the mammalian genome responsible for natural variations in cortical volume, we conducted a complex trait analysis using 34 strains of recombinant inbred (Rl strains of mice (BXD, as well as their two parental strains (C57BL/6J and DBA/2J. We measured both neocortical volume and total brain volume in 155 coronally sectioned mouse brains that were Nissl stained and embedded in celloidin. After correction for shrinkage, the measured cortical and noncortical brain volumes were entered into a multiple regression analysis, which removed the effects of body size and age from the measurements. Marker regression and interval mapping were computed using WebQTL. Results An ANOVA revealed that more than half of the variance of these regressed phenotypes is genetically determined. We then identified the regions of the genome regulating this heritability. We located genomic regions in which a linkage disequilibrium was present using WebQTL as both a mapping engine and genomic database. For neocortex, we found a genome-wide significant quantitative trait locus (QTL on chromosome 11 (marker D11Mit19, as well as a suggestive QTL on chromosome 16 (marker D16Mit100. In contrast, for noncortex the effect of chromosome 11 was markedly reduced, and a significant QTL appeared on chromosome 19 (D19Mit22. Conclusion This classic pattern of double dissociation argues strongly for different genetic factors regulating relative cortical size, as opposed to brain volume more generally. It is likely, however, that the effects of proximal chromosome 11 extend beyond the neocortex strictly defined. An analysis of single nucleotide polymorphisms in these regions indicated that ciliary neurotrophic factor (Cntf is quite possibly the gene underlying the noncortical QTL. Evidence for a candidate gene modulating neocortical

  3. Associations between regional brain volumes at term-equivalent age and development at 2 years of age in preterm children.

    Science.gov (United States)

    Lind, Annika; Parkkola, Riitta; Lehtonen, Liisa; Munck, Petriina; Maunu, Jonna; Lapinleimu, Helena; Haataja, Leena

    2011-08-01

    Altered brain volumes and associations between volumes and developmental outcomes have been reported in prematurely born children. To assess which regional brain volumes are different in very low birth weight (VLBW) children without neurodevelopmental impairments ([NDI] cerebral palsy, hearing loss, blindness and significantly delayed cognitive performance) compared with VLBW children with NDI, and to evaluate the association between regional brain volumes at term-equivalent age and cognitive development and neurological performance at a corrected age of 2 years. The study group consisted of a regional cohort of 164 VLBW children, divided into one group of children without NDI (n = 148) and one group of children with NDI (n = 16). Brain (MRI) was performed at term-equivalent age, from which brain volumes were manually analysed. Cognitive development was assessed with the Bayley Scales of Infant Development II (BSID-II), and neurological performance with the Hammersmith Infant Neurological Examination at the corrected age of 2 years. The volumes of total brain tissue, cerebrum, frontal lobes, basal ganglia and thalami, and cerebellum were significantly smaller, and the volume of the ventricles significantly larger, in the children with NDI than in those without NDI. Even in children without NDI, a smaller cerebellar volume was significantly correlated with poor neurological performance at 2 years of corrected age. Volumetric analysis at brain MRI can provide an additional parameter for early prediction of outcome in VLBW children.

  4. Clinical evaluation of dose-volume-effect relationship in radiation injury of the brain

    International Nuclear Information System (INIS)

    Saito, Mari

    1990-01-01

    Radiation brain injury, including functional disturbances or morphological changes (brain atrophy, periventricular lucencies or ventricular dilatation), were studied by CT in patients with primary intracranial neoplasms who were followed-up for at least 5 months after receiving radiotherapy. Each of 33 patients with medulloblastoma, pinealregion tumor or malignant lymphoma received a total dose of 40-61 Gy by conventional fractionation using a whole brain irradiation field boosted by a localized field. Of these patients, 19 (58%) developed radiation brain injury. It was concluded that the volume-dose was one of the most important factors influencing the development of radiation brain injury. Age at the time of radiotherapy and time of follow-up after the treatment were also considered to be important factors. (author)

  5. Stereological brain volume changes in post-weaned socially isolated rats

    DEFF Research Database (Denmark)

    Fabricius, Katrine; Helboe, Lone; Steiniger-Brach, Björn

    2010-01-01

    Rearing rats in isolation after weaning is an environmental manipulation that leads to behavioural and neurochemical alterations that resemble what is seen in schizophrenia. The model is neurodevelopmental in origin and has been used as an animal model of schizophrenia. However, only a few studies...... Lister Hooded rats isolated from postnatal day 25 for 15 weeks. We observed the expected gender differences in total brain volume with males having larger brains than females. Further, we found that isolated males had significantly smaller brains than group-housed controls and larger lateral ventricles...... than controls. However, this was not seen in female rats. Isolated males had a significant smaller hippocampus, dentate gyrus and CA2/3 where isolated females had a significant smaller CA1 compared to controls. Thus, our results indicate that long-term isolation of male rats leads to neuroanatomical...

  6. Early Life Stress-Related Elevations in Reaction Time Variability Are Associated with Brain Volume Reductions in HIV+ Adults

    Directory of Open Access Journals (Sweden)

    Uraina S. Clark

    2018-01-01

    Full Text Available There is burgeoning evidence that, among HIV+ adults, exposure to high levels of early life stress (ELS is associated with increased cognitive impairment as well as brain volume abnormalities and elevated neuropsychiatric symptoms. Currently, we have a limited understanding of the degree to which cognitive difficulties observed in HIV+ High-ELS samples reflect underlying neural abnormalities rather than increases in neuropsychiatric symptoms. Here, we utilized a behavioral marker of cognitive function, reaction time intra-individual variability (RT-IIV, which is sensitive to both brain volume reductions and neuropsychiatric symptoms, to elucidate the unique contributions of brain volume abnormalities and neuropsychiatric symptoms to cognitive difficulties in HIV+ High-ELS adults. We assessed the relation of RT-IIV to neuropsychiatric symptom levels and total gray and white matter volumes in 44 HIV+ adults (26 with high ELS. RT-IIV was examined during a working memory task. Self-report measures assessed current neuropsychiatric symptoms (depression, stress, post-traumatic stress disorder. Magnetic resonance imaging was used to quantify total gray and white matter volumes. Compared to Low-ELS participants, High-ELS participants exhibited elevated RT-IIV, elevated neuropsychiatric symptoms, and reduced gray and white matter volumes. Across the entire sample, RT-IIV was significantly associated with gray and white matter volumes, whereas significant associations with neuropsychiatric symptoms were not observed. In the High-ELS group, despite the presence of elevated neuropsychiatric symptom levels, brain volume reductions explained more than 13% of the variance in RT-IIV, whereas neuropsychiatric symptoms explained less than 1%. Collectively, these data provide evidence that, in HIV+ High-ELS adults, ELS-related cognitive difficulties (as indexed by RT-IIV exhibit strong associations with global brain volumes, whereas ELS-related elevations in

  7. Estimated maximal and current brain volume predict cognitive ability in old age

    Science.gov (United States)

    Royle, Natalie A.; Booth, Tom; Valdés Hernández, Maria C.; Penke, Lars; Murray, Catherine; Gow, Alan J.; Maniega, Susana Muñoz; Starr, John; Bastin, Mark E.; Deary, Ian J.; Wardlaw, Joanna M.

    2013-01-01

    Brain tissue deterioration is a significant contributor to lower cognitive ability in later life; however, few studies have appropriate data to establish how much influence prior brain volume and prior cognitive performance have on this association. We investigated the associations between structural brain imaging biomarkers, including an estimate of maximal brain volume, and detailed measures of cognitive ability at age 73 years in a large (N = 620), generally healthy, community-dwelling population. Cognitive ability data were available from age 11 years. We found positive associations (r) between general cognitive ability and estimated brain volume in youth (male, 0.28; females, 0.12), and in measured brain volume in later life (males, 0.27; females, 0.26). Our findings show that cognitive ability in youth is a strong predictor of estimated prior and measured current brain volume in old age but that these effects were the same for both white and gray matter. As 1 of the largest studies of associations between brain volume and cognitive ability with normal aging, this work contributes to the wider understanding of how some early-life factors influence cognitive aging. PMID:23850342

  8. Assessing brain volume changes in older women with breast cancer receiving adjuvant chemotherapy: a brain magnetic resonance imaging pilot study.

    Science.gov (United States)

    Chen, Bihong T; Sethi, Sean K; Jin, Taihao; Patel, Sunita K; Ye, Ningrong; Sun, Can-Lan; Rockne, Russell C; Haacke, E Mark; Root, James C; Saykin, Andrew J; Ahles, Tim A; Holodny, Andrei I; Prakash, Neal; Mortimer, Joanne; Waisman, James; Yuan, Yuan; Somlo, George; Li, Daneng; Yang, Richard; Tan, Heidi; Katheria, Vani; Morrison, Rachel; Hurria, Arti

    2018-05-02

    Cognitive decline is among the most feared treatment-related outcomes of older adults with cancer. The majority of older patients with breast cancer self-report cognitive problems during and after chemotherapy. Prior neuroimaging research has been performed mostly in younger patients with cancer. The purpose of this study was to evaluate longitudinal changes in brain volumes and cognition in older women with breast cancer receiving adjuvant chemotherapy. Women aged ≥ 60 years with stage I-III breast cancer receiving adjuvant chemotherapy and age-matched and sex-matched healthy controls were enrolled. All participants underwent neuropsychological testing with the US National Institutes of Health (NIH) Toolbox for Cognition and brain magnetic resonance imaging (MRI) prior to chemotherapy, and again around one month after the last infusion of chemotherapy. Brain volumes were measured using Neuroreader™ software. Longitudinal changes in brain volumes and neuropsychological scores were analyzed utilizing linear mixed models. A total of 16 patients with breast cancer (mean age 67.0, SD 5.39 years) and 14 age-matched and sex-matched healthy controls (mean age 67.8, SD 5.24 years) were included: 7 patients received docetaxel and cyclophosphamide (TC) and 9 received chemotherapy regimens other than TC (non-TC). There were no significant differences in segmented brain volumes between the healthy control group and the chemotherapy group pre-chemotherapy (p > 0.05). Exploratory hypothesis generating analyses focusing on the effect of the chemotherapy regimen demonstrated that the TC group had greater volume reduction in the temporal lobe (change = - 0.26) compared to the non-TC group (change = 0.04, p for interaction = 0.02) and healthy controls (change = 0.08, p for interaction = 0.004). Similarly, the TC group had a decrease in oral reading recognition scores (change = - 6.94) compared to the non-TC group (change = - 1.21, p for

  9. Direct and Indirect Effects of Brain Volume, Socioeconomic Status and Family Stress on Child IQ

    Science.gov (United States)

    Marcus Jenkins, Jade V; Woolley, Donald P; Hooper, Stephen R; De Bellis, Michael D

    2013-01-01

    1.1. Background A large literature documents the detrimental effects of socioeconomic disparities on intelligence and neuropsychological development. Researchers typically measure environmental factors such as socioeconomic status (SES), using income, parent's occupation and education. However, SES is more complex, and this complexity may influence neuropsychological outcomes. 1.2. Methods This studyused principal components analysis to reduce 14 SES and 28 family stress indicators into their core dimensions (e.g. community and educational capital, financial resources, marital conflict). Core dimensions were used in path analyses to examine their relationships with parent IQ and cerebral volume (white matter, grey matter and total brain volume), to predict child IQ in a sample of typically developing children. 1.3. Results Parent IQ affected child IQ directly and indirectly through community and educational capital, demonstrating how environmental factors interact with familial factors in neuro-development. There were no intervening effects of cerebral white matter, grey matter, or total brain volume. 1.4. Conclusions Findings may suggest that improving community resources can foster the intellectual development of children. PMID:24533427

  10. The cerebrovascular structure and brain tissue volume: a comparative study between beagle dogs and mongrel dogs

    International Nuclear Information System (INIS)

    Liu Sheng; Shi Haibin; Hu Weixing; Zu Qingquan; Lu Shanshan; Xu Xiaoquan; Sun Lei; Li Linsun

    2011-01-01

    Objective: To compare the differences of cerebrovascular structure and brain tissue volume between beagle and mongrel dogs by using angiography and MR scanning. Methods: A total of 40 dogs, including 20 beagle dogs (beagle group) and 20 mongrel dogs (mongrel group), were enrolled in this study. Under general anesthesia, all dogs were examined with cerebral angiography and MR scanning. The cerebrovascular structure was evaluated with angiography via selective catheterization of aortic arch, bilateral external cerebral arteries (ECA), maxillary arteries, internal cerebral arteries (ICA) and vertebral arteries separately. The diameters of the ICA, middle cerebral artery (MCA), rostral cerebral artery (RCA), the anastomosis channel ICA and ECA, and basilar artery (BA) were measured at the similar point of each dog. Meanwhile the volumes of the brain tissue were calculated in coronal T2 view of MR scanning. The statistical analysis was performed among the weight of dogs, the diameter of arteries and the volume of brain tissue. The differences in the diameters and brain tissue volume were compared between the two groups. Results: No obvious variations in the cerebrovascular structure and brain tissue volume were found in these dogs. One mongrel dog was excluded from this study because of the severe stenosis of ICA. The mean weight of 20 beagle dogs and 19 mongrel dogs was (12.81±1.29) kg and (12.85±1.12) kg, respectively. The diameters of the ICA, MCA, RCA, the anastomosis channel between ICA and ECA and BA in beagle group were (1.26±0.07) mm, (0.90±0.05) mm, (0.58±0.07) mm, (0.55±0.07) mm and (0.95±0.06) mm, respectively. These parameters in mongrel group were (1.27±0.07) mm, (0.92±0.05) mm, (0.59±0.06) mm, (0.67±0.07) mm and (0.94±0.05) mm, respectively. The volume of brain in two groups was (76232.33±5018.51) mm 3 and (71863.96±4626.87) mm 3 , respectively. There were no obvious correlation among the body weight, the cerebrovascular diameters and brain

  11. Developmentally Stable Whole-Brain Volume Reductions and Developmentally Sensitive Caudate and Putamen Volume Alterations in Those With Attention-Deficit/Hyperactivity Disorder and Their Unaffected Siblings

    NARCIS (Netherlands)

    Greven, Corina U.; Bralten, Janita; Mennes, Maarten; O'Dwyer, Laurence; van Hulzen, Kimm J. E.; Rommelse, Nanda; Schweren, Lizanne J. S.; Hoekstra, Pieter J.; Hartman, Catharina A.; Heslenfeld, Dirk; Oosterlaan, Jaap; Faraone, Stephen V.; Franke, Barbara; Zwiers, Marcel P.; Arias-Vasquez, Alejandro; Buitelaar, Jan K.

    IMPORTANCE Attention-deficit/hyperactivity disorder (ADHD) is a heritable neurodevelopmental disorder. It has been linked to reductions in total brain volume and subcortical abnormalities. However, owing to heterogeneity within and between studies and limited sample sizes, findings on the

  12. Brain volumes in relatives of patients with schizophrenia - A meta-analysis

    NARCIS (Netherlands)

    Boos, Heleen B. M.; Aleman, Andre; Cahn, Wiepke; Pol, Hilleke Hulshoff; Kahn, Rene S.

    Context: Smaller brain volumes have consistently been found in patients with schizophrenia, particularly in gray matter and medial temporal lobe structures. Although several studies have investigated brain volumes in nonpsychotic relatives of patients with schizophrenia, results have been

  13. Genetic influences on schizophrenia and subcortical brain volumes

    DEFF Research Database (Denmark)

    Franke, Barbara; Stein, Jason L; Ripke, Stephan

    2016-01-01

    and subcortical volume measures either at the level of common variant genetic architecture or for single genetic markers. These results provide a proof of concept (albeit based on a limited set of structural brain measures) and define a roadmap for future studies investigating the genetic covariance between...... genome-wide data to investigate genetic overlap. Here we integrated results from common variant studies of schizophrenia (33,636 cases, 43,008 controls) and volumes of several (mainly subcortical) brain structures (11,840 subjects). We did not find evidence of genetic overlap between schizophrenia risk...

  14. Symptom dimensions are associated with progressive brain volume changes in schizophrenia

    NARCIS (Netherlands)

    Collin, G.; Derks, E. M.; van Haren, N. E. M.; Schnack, H. G.; Hulshoff Pol, H. E.; Kahn, R. S.; Cahn, W.

    2012-01-01

    Background: There is considerable variation in progressive brain volume changes in schizophrenia. Whether this is related to the clinical heterogeneity that characterizes the illness remains to be determined. This study examines the relationship between change in brain volume over time and

  15. Multiple determinants of whole and regional brain volume among terrestrial carnivorans.

    Directory of Open Access Journals (Sweden)

    Eli M Swanson

    Full Text Available Mammalian brain volumes vary considerably, even after controlling for body size. Although several hypotheses have been proposed to explain this variation, most research in mammals on the evolution of encephalization has focused on primates, leaving the generality of these explanations uncertain. Furthermore, much research still addresses only one hypothesis at a time, despite the demonstrated importance of considering multiple factors simultaneously. We used phylogenetic comparative methods to investigate simultaneously the importance of several factors previously hypothesized to be important in neural evolution among mammalian carnivores, including social complexity, forelimb use, home range size, diet, life history, phylogeny, and recent evolutionary changes in body size. We also tested hypotheses suggesting roles for these variables in determining the relative volume of four brain regions measured using computed tomography. Our data suggest that, in contrast to brain size in primates, carnivoran brain size may lag behind body size over evolutionary time. Moreover, carnivore species that primarily consume vertebrates have the largest brains. Although we found no support for a role of social complexity in overall encephalization, relative cerebrum volume correlated positively with sociality. Finally, our results support negative relationships among different brain regions after accounting for overall endocranial volume, suggesting that increased size of one brain regions is often accompanied by reduced size in other regions rather than overall brain expansion.

  16. Increased brain iron deposition is a risk factor for brain atrophy in patients with haemodialysis: a combined study of quantitative susceptibility mapping and whole brain volume analysis.

    Science.gov (United States)

    Chai, Chao; Zhang, Mengjie; Long, Miaomiao; Chu, Zhiqiang; Wang, Tong; Wang, Lijun; Guo, Yu; Yan, Shuo; Haacke, E Mark; Shen, Wen; Xia, Shuang

    2015-08-01

    To explore the correlation between increased brain iron deposition and brain atrophy in patients with haemodialysis and their correlation with clinical biomarkers and neuropsychological test. Forty two patients with haemodialysis and forty one age- and gender-matched healthy controls were recruited in this prospective study. 3D whole brain high resolution T1WI and susceptibility weighted imaging were scanned on a 3 T MRI system. The brain volume was analyzed using voxel-based morphometry (VBM) in patients and to compare with that of healthy controls. Quantitative susceptibility mapping was used to measure and compare the susceptibility of different structures between patients and healthy controls. Correlation analysis was used to investigate the relationship between the brain volume, iron deposition and neuropsychological scores. Stepwise multiple regression analysis was used to explore the effect of clinical biomarkers on the brain volumes in patients. Compared with healthy controls, patients with haemodialysis showed decreased volume of bilateral putamen and left insular lobe (All P brain iron deposition is negatively correlated with the decreased volume of bilateral putamen (P brain iron deposition and dialysis duration was risk factors for brain atrophy in patients with haemodialysis. The decreased gray matter volume of the left insular lobe was correlated with neurocognitive impairment.

  17. Associations Between Family Adversity and Brain Volume in Adolescence: Manual vs. Automated Brain Segmentation Yields Different Results

    Directory of Open Access Journals (Sweden)

    Hannah Lyden

    2016-09-01

    Full Text Available Associations between brain structure and early adversity have been inconsistent in the literature. These inconsistencies may be partially due to methodological differences. Different methods of brain segmentation may produce different results, obscuring the relationship between early adversity and brain volume. Moreover, adolescence is a time of significant brain growth and certain brain areas have distinct rates of development, which may compromise the accuracy of automated segmentation approaches. In the current study, 23 adolescents participated in two waves of a longitudinal study. Family aggression was measured when the youths were 12 years old, and structural scans were acquired an average of 4 years later. Bilateral amygdalae and hippocampi were segmented using three different methods (manual tracing, FSL, and NeuroQuant. The segmentation estimates were compared, and linear regressions were run to assess the relationship between early family aggression exposure and all three volume segmentation estimates. Manual tracing results showed a positive relationship between family aggression and right amygdala volume, whereas FSL segmentation showed negative relationships between family aggression and both the left and right hippocampi. However, results indicate poor overlap between methods, and different associations between early family aggression exposure and brain volume depending on the segmentation method used.

  18. Associations between Family Adversity and Brain Volume in Adolescence: Manual vs. Automated Brain Segmentation Yields Different Results.

    Science.gov (United States)

    Lyden, Hannah; Gimbel, Sarah I; Del Piero, Larissa; Tsai, A Bryna; Sachs, Matthew E; Kaplan, Jonas T; Margolin, Gayla; Saxbe, Darby

    2016-01-01

    Associations between brain structure and early adversity have been inconsistent in the literature. These inconsistencies may be partially due to methodological differences. Different methods of brain segmentation may produce different results, obscuring the relationship between early adversity and brain volume. Moreover, adolescence is a time of significant brain growth and certain brain areas have distinct rates of development, which may compromise the accuracy of automated segmentation approaches. In the current study, 23 adolescents participated in two waves of a longitudinal study. Family aggression was measured when the youths were 12 years old, and structural scans were acquired an average of 4 years later. Bilateral amygdalae and hippocampi were segmented using three different methods (manual tracing, FSL, and NeuroQuant). The segmentation estimates were compared, and linear regressions were run to assess the relationship between early family aggression exposure and all three volume segmentation estimates. Manual tracing results showed a positive relationship between family aggression and right amygdala volume, whereas FSL segmentation showed negative relationships between family aggression and both the left and right hippocampi. However, results indicate poor overlap between methods, and different associations were found between early family aggression exposure and brain volume depending on the segmentation method used.

  19. MRI volume measurement of the brain in schizophrenia

    International Nuclear Information System (INIS)

    Someya, Yasuhiro; Abe, Tetsuo; Asai, Kunihiko; Okubo, Yoshirou; Toru, Michio.

    1996-01-01

    The T1-weighted images of whole-brain three-dimensional MRI (thickness, 3 mm; interval, 3 mm) were obtained from schizophrenic patients and 20 healthy volunteers. Detailed volumetric measurement of each part in the brain was carried out. As the result, the volume of both ventricles and third ventriculus cerebri in the schizophrenic group was significantly larger than that of the control group. No significant difference was observed in terms of the volume of the bilateral frontal lobe, bilateral body of caudate nucleus division and right temporal lobe. The volume of bilateral hippocampus and left temporal lobe of the schizophrenic group was significantly smaller than that of the control group. Negative correlation was observed between symptoms and the right temporal lobe volume (r=-0.41) in the schizophrenic group. In the schizophrenic group, morphological abnormality was admitted in the hippocampus, ventriculus cerebri and left temporal lobe. The morphological abnormality of the right temporal lobe seemed to involve the expression of negative symptoms. (S.Y.)

  20. Senior Dance Experience, Cognitive Performance, and Brain Volume in Older Women

    Directory of Open Access Journals (Sweden)

    Claudia Niemann

    2016-01-01

    Full Text Available Physical activity is positively related to cognitive functioning and brain volume in older adults. Interestingly, different types of physical activity vary in their effects on cognition and on the brain. For example, dancing has become an interesting topic in aging research, as it is a popular leisure activity among older adults, involving cardiovascular and motor fitness dimensions that can be positively related to cognition. However, studies on brain structure are missing. In this study, we tested the association of long-term senior dance experience with cognitive performance and gray matter brain volume in older women aged 65 to 82 years. We compared nonprofessional senior dancers (n=28 with nonsedentary control group participants without any dancing experience (n=29, who were similar in age, education, IQ score, lifestyle and health factors, and fitness level. Differences neither in the four tested cognitive domains (executive control, perceptual speed, episodic memory, and long-term memory nor in brain volume (VBM whole-brain analysis, region-of-interest analysis of the hippocampus were observed. Results indicate that moderate dancing activity (1-2 times per week, on average has no additional effects on gray matter volume and cognitive functioning when a certain lifestyle or physical activity and fitness level are reached.

  1. Clinical Relevance of Brain Volume Measures in Multiple Sclerosis

    DEFF Research Database (Denmark)

    De Stefano, Nicola; Airas, Laura; Grigoriadis, Nikolaos

    2014-01-01

    Multiple sclerosis (MS) is a chronic disease with an inflammatory and neurodegenerative pathology. Axonal loss and neurodegeneration occurs early in the disease course and may lead to irreversible neurological impairment. Changes in brain volume, observed from the earliest stage of MS...... therefore have important clinical implications affecting treatment decisions, with several clinical trials now demonstrating an effect of disease-modifying treatments (DMTs) on reducing brain volume loss. In clinical practice, it may therefore be important to consider the potential impact of a therapy...

  2. US evaluation of volume brain lesions produced by high-intensity focused US

    International Nuclear Information System (INIS)

    Chua, R.V.; Chua, G.T.; Fry, F.J.; Franklin, T.D.; Wills, E.R.; Hastings, J.S.; Sanghui, N.T.

    1987-01-01

    Eighteen volume brain lesions produced by high-intensity focused US in the right cerebral hemispheres of research canines were evaluated by diagnostic US from immediately after ablation up to 62 days later. Animals were killed and perfused for whole-brain recovery. US evaluation of whole-brain specimens was performed. Histologic analysis of brain sections verified lesion placement, size, and tissue response to US. These sections were compared with US studies for correlation data. Correlation data suggest that US visualization may aid in accurate placement of volume brain lesions and in evaluation of effects of high-intensity focuses US in normal brain

  3. Ribbon scanning confocal for high-speed high-resolution volume imaging of brain.

    Directory of Open Access Journals (Sweden)

    Alan M Watson

    Full Text Available Whole-brain imaging is becoming a fundamental means of experimental insight; however, achieving subcellular resolution imagery in a reasonable time window has not been possible. We describe the first application of multicolor ribbon scanning confocal methods to collect high-resolution volume images of chemically cleared brains. We demonstrate that ribbon scanning collects images over ten times faster than conventional high speed confocal systems but with equivalent spectral and spatial resolution. Further, using this technology, we reconstruct large volumes of mouse brain infected with encephalitic alphaviruses and demonstrate that regions of the brain with abundant viral replication were inaccessible to vascular perfusion. This reveals that the destruction or collapse of large regions of brain micro vasculature may contribute to the severe disease caused by Venezuelan equine encephalitis virus. Visualization of this fundamental impact of infection would not be possible without sampling at subcellular resolution within large brain volumes.

  4. Development and heritability of subcortical brain volumes at age 9 and 12

    NARCIS (Netherlands)

    Swagerman, S.C.; Brouwer, R.; de Geus, E.J.C.; Hulshoff Pol, H.E.; Boomsma, D.I.

    2014-01-01

    Subcortical brain structures are involved in a variety of cognitive and emotional functions and follow different trajectories of increase and decrease in volume from childhood to adulthood. The heritability of development of subcortical brain volumes during adolescence has not been studied

  5. Reduced astrocyte density underlying brain volume reduction in activity-based anorexia rats

    Science.gov (United States)

    Frintrop, Linda; Liesbrock, Johanna; Paulukat, Lisa; Johann, Sonja; Kas, Martien J; Tolba, Rene; Heussen, Nicole; Neulen, Joseph; Konrad, Kerstin; Herpertz-Dahlmann, Beate; Beyer, Cordian; Seitz, Jochen

    2018-04-01

    Severe grey and white matter volume reductions were found in patients with anorexia nervosa (AN) that were linked to neuropsychological deficits while their underlying pathophysiology remains unclear. For the first time, we analysed the cellular basis of brain volume changes in an animal model (activity-based anorexia, ABA). Female rats had 24 h/day running wheel access and received reduced food intake until a 25% weight reduction was reached and maintained for 2 weeks. In ABA rats, the volumes of the cerebral cortex and corpus callosum were significantly reduced compared to controls by 6% and 9%, respectively. The number of GFAP-positive astrocytes in these regions decreased by 39% and 23%, total astrocyte-covered area by 83% and 63%. In neurons no changes were observed. The findings were complemented by a 60% and 49% reduction in astrocyte (GFAP) mRNA expression. Volumetric brain changes in ABA animals mirror those in human AN patients. These alterations are associated with a reduction of GFAP-positive astrocytes as well as GFAP expression. Reduced astrocyte functioning could help explain neuronal dysfunctions leading to symptoms of rigidity and impaired learning. Astrocyte loss could constitute a new research target for understanding and treating semi-starvation and AN.

  6. The association between brain volumes, delirium duration, and cognitive outcomes in intensive care unit survivors: the VISIONS cohort magnetic resonance imaging study*.

    Science.gov (United States)

    Gunther, Max L; Morandi, Alessandro; Krauskopf, Erin; Pandharipande, Pratik; Girard, Timothy D; Jackson, James C; Thompson, Jennifer; Shintani, Ayumi K; Geevarghese, Sunil; Miller, Russell R; Canonico, Angelo; Merkle, Kristen; Cannistraci, Christopher J; Rogers, Baxter P; Gatenby, J Chris; Heckers, Stephan; Gore, John C; Hopkins, Ramona O; Ely, E Wesley

    2012-07-01

    Delirium duration is predictive of long-term cognitive impairment in intensive care unit survivors. Hypothesizing that a neuroanatomical basis may exist for the relationship between delirium and long-term cognitive impairment, we conducted this exploratory investigation of the associations between delirium duration, brain volumes, and long-term cognitive impairment. A prospective cohort of medical and surgical intensive care unit survivors with respiratory failure or shock. Quantitative high resolution 3-Tesla brain magnetic resonance imaging was used to calculate brain volumes at discharge and 3-month follow-up. Delirium was evaluated using the confusion assessment method for the intensive care unit; cognitive outcomes were tested at 3- and 12-month follow-up. Linear regression was used to examine associations between delirium duration and brain volumes, and between brain volumes and cognitive outcomes. A total of 47 patients completed the magnetic resonance imaging protocol. Patients with longer duration of delirium displayed greater brain atrophy as measured by a larger ventricle-to-brain ratio at hospital discharge (0.76, 95% confidence intervals [0.10, 1.41]; p = .03) and at 3-month follow-up (0.62 [0.02, 1.21], p = .05). Longer duration of delirium was associated with smaller superior frontal lobe (-2.11 cm(3) [-3.89, -0.32]; p = .03) and hippocampal volumes at discharge (-0.58 cm(3) [-0.85, -0.31], p Battery for the Assessment of Neuropsychological Status score -11.17 [-21.12, -1.22], p = .04). Smaller superior frontal lobes, thalamus, and cerebellar volumes at 3 months were associated with worse executive functioning and visual attention at 12 months. These preliminary data show that longer duration of delirium is associated with smaller brain volumes up to 3 months after discharge, and that smaller brain volumes are associated with long-term cognitive impairment up to 12 months. We cannot, however, rule out that smaller preexisting brain volumes explain

  7. Moral values are associated with individual differences in regional brain volume.

    Science.gov (United States)

    Lewis, Gary J; Kanai, Ryota; Bates, Timothy C; Rees, Geraint

    2012-08-01

    Moral sentiment has been hypothesized to reflect evolved adaptations to social living. If so, individual differences in moral values may relate to regional variation in brain structure. We tested this hypothesis in a sample of 70 young, healthy adults examining whether differences on two major dimensions of moral values were significantly associated with regional gray matter volume. The two clusters of moral values assessed were "individualizing" (values of harm/care and fairness) and "binding" (deference to authority, in-group loyalty, and purity/sanctity). Individualizing was positively associated with left dorsomedial pFC volume and negatively associated with bilateral precuneus volume. For binding, a significant positive association was found for bilateral subcallosal gyrus and a trend to significance for the left anterior insula volume. These findings demonstrate that variation in moral sentiment reflects individual differences in brain structure and suggest a biological basis for moral sentiment, distributed across multiple brain regions.

  8. Effects of Gestational Age and Birth Weight on Brain Volumes in Healthy 9 Year-Old Children

    NARCIS (Netherlands)

    van Soelen, I.L.C.; Brouwer, R.M.; Peper, J.S.; van Beijsterveldt, C.E.M.; van Leeuwen, M.; de Vries, L.S.; Kahn, R.S.; Hulshoff Pol, H.E.; Boomsma, D.I.

    2010-01-01

    Objective: To assess the effects of gestational age and birth weight on brain volumes in a population-based sample of normal developing children at the age of 9 years. Study design: A total of 192 children from twin births were included in the analyses. Data on gestational age and birth weight were

  9. Associations between Family Adversity and Brain Volume in Adolescence: Manual vs. Automated Brain Segmentation Yields Different Results

    OpenAIRE

    Lyden, Hannah; Gimbel, Sarah I.; Del Piero, Larissa; Tsai, A. Bryna; Sachs, Matthew E.; Kaplan, Jonas T.; Margolin, Gayla; Saxbe, Darby

    2016-01-01

    Associations between brain structure and early adversity have been inconsistent in the literature. These inconsistencies may be partially due to methodological differences. Different methods of brain segmentation may produce different results, obscuring the relationship between early adversity and brain volume. Moreover, adolescence is a time of significant brain growth and certain brain areas have distinct rates of development, which may compromise the accuracy of automated segmentation appr...

  10. Volume-regulated anion channel--a frenemy within the brain.

    Science.gov (United States)

    Mongin, Alexander A

    2016-03-01

    The volume-regulated anion channel (VRAC) is a ubiquitously expressed yet highly enigmatic member of the superfamily of chloride/anion channels. It is activated by cellular swelling and mediates regulatory cell volume decrease in a majority of vertebrate cells, including those in the central nervous system (CNS). In the brain, besides its crucial role in cellular volume regulation, VRAC is thought to play a part in cell proliferation, apoptosis, migration, and release of physiologically active molecules. Although these roles are not exclusive to the CNS, the relative significance of VRAC in the brain is amplified by several unique aspects of its physiology. One important example is the contribution of VRAC to the release of the excitatory amino acid neurotransmitters glutamate and aspartate. This latter process is thought to have impact on both normal brain functioning (such as astrocyte-neuron signaling) and neuropathology (via promoting the excitotoxic death of neuronal cells in stroke and traumatic brain injury). In spite of much work in the field, the molecular nature of VRAC remained unknown until less than 2 years ago. Two pioneer publications identified VRAC as the heterohexamer formed by the leucine-rich repeat-containing 8 (LRRC8) proteins. These findings galvanized the field and are likely to result in dramatic revisions to our understanding of the place and role of VRAC in the brain, as well as other organs and tissues. The present review briefly recapitulates critical findings in the CNS and focuses on anticipated impact on the LRRC8 discovery on further progress in neuroscience research.

  11. Total tree, merchantable stem and branch volume models for ...

    African Journals Online (AJOL)

    Total tree, merchantable stem and branch volume models for miombo woodlands of Malawi. Daud J Kachamba, Tron Eid. Abstract. The objective of this study was to develop general (multispecies) models for prediction of total tree, merchantable stem and branch volume including options with diameter at breast height (dbh) ...

  12. Basic MR sequence parameters systematically bias automated brain volume estimation

    International Nuclear Information System (INIS)

    Haller, Sven; Falkovskiy, Pavel; Roche, Alexis; Marechal, Benedicte; Meuli, Reto; Thiran, Jean-Philippe; Krueger, Gunnar; Lovblad, Karl-Olof; Kober, Tobias

    2016-01-01

    Automated brain MRI morphometry, including hippocampal volumetry for Alzheimer disease, is increasingly recognized as a biomarker. Consequently, a rapidly increasing number of software tools have become available. We tested whether modifications of simple MR protocol parameters typically used in clinical routine systematically bias automated brain MRI segmentation results. The study was approved by the local ethical committee and included 20 consecutive patients (13 females, mean age 75.8 ± 13.8 years) undergoing clinical brain MRI at 1.5 T for workup of cognitive decline. We compared three 3D T1 magnetization prepared rapid gradient echo (MPRAGE) sequences with the following parameter settings: ADNI-2 1.2 mm iso-voxel, no image filtering, LOCAL- 1.0 mm iso-voxel no image filtering, LOCAL+ 1.0 mm iso-voxel with image edge enhancement. Brain segmentation was performed by two different and established analysis tools, FreeSurfer and MorphoBox, using standard parameters. Spatial resolution (1.0 versus 1.2 mm iso-voxel) and modification in contrast resulted in relative estimated volume difference of up to 4.28 % (p < 0.001) in cortical gray matter and 4.16 % (p < 0.01) in hippocampus. Image data filtering resulted in estimated volume difference of up to 5.48 % (p < 0.05) in cortical gray matter. A simple change of MR parameters, notably spatial resolution, contrast, and filtering, may systematically bias results of automated brain MRI morphometry of up to 4-5 %. This is in the same range as early disease-related brain volume alterations, for example, in Alzheimer disease. Automated brain segmentation software packages should therefore require strict MR parameter selection or include compensatory algorithms to avoid MR parameter-related bias of brain morphometry results. (orig.)

  13. Basic MR sequence parameters systematically bias automated brain volume estimation

    Energy Technology Data Exchange (ETDEWEB)

    Haller, Sven [University of Geneva, Faculty of Medicine, Geneva (Switzerland); Affidea Centre de Diagnostique Radiologique de Carouge CDRC, Geneva (Switzerland); Falkovskiy, Pavel; Roche, Alexis; Marechal, Benedicte [Siemens Healthcare HC CEMEA SUI DI BM PI, Advanced Clinical Imaging Technology, Lausanne (Switzerland); University Hospital (CHUV), Department of Radiology, Lausanne (Switzerland); Meuli, Reto [University Hospital (CHUV), Department of Radiology, Lausanne (Switzerland); Thiran, Jean-Philippe [LTS5, Ecole Polytechnique Federale de Lausanne, Lausanne (Switzerland); Krueger, Gunnar [Siemens Medical Solutions USA, Inc., Boston, MA (United States); Lovblad, Karl-Olof [University of Geneva, Faculty of Medicine, Geneva (Switzerland); University Hospitals of Geneva, Geneva (Switzerland); Kober, Tobias [Siemens Healthcare HC CEMEA SUI DI BM PI, Advanced Clinical Imaging Technology, Lausanne (Switzerland); LTS5, Ecole Polytechnique Federale de Lausanne, Lausanne (Switzerland)

    2016-11-15

    Automated brain MRI morphometry, including hippocampal volumetry for Alzheimer disease, is increasingly recognized as a biomarker. Consequently, a rapidly increasing number of software tools have become available. We tested whether modifications of simple MR protocol parameters typically used in clinical routine systematically bias automated brain MRI segmentation results. The study was approved by the local ethical committee and included 20 consecutive patients (13 females, mean age 75.8 ± 13.8 years) undergoing clinical brain MRI at 1.5 T for workup of cognitive decline. We compared three 3D T1 magnetization prepared rapid gradient echo (MPRAGE) sequences with the following parameter settings: ADNI-2 1.2 mm iso-voxel, no image filtering, LOCAL- 1.0 mm iso-voxel no image filtering, LOCAL+ 1.0 mm iso-voxel with image edge enhancement. Brain segmentation was performed by two different and established analysis tools, FreeSurfer and MorphoBox, using standard parameters. Spatial resolution (1.0 versus 1.2 mm iso-voxel) and modification in contrast resulted in relative estimated volume difference of up to 4.28 % (p < 0.001) in cortical gray matter and 4.16 % (p < 0.01) in hippocampus. Image data filtering resulted in estimated volume difference of up to 5.48 % (p < 0.05) in cortical gray matter. A simple change of MR parameters, notably spatial resolution, contrast, and filtering, may systematically bias results of automated brain MRI morphometry of up to 4-5 %. This is in the same range as early disease-related brain volume alterations, for example, in Alzheimer disease. Automated brain segmentation software packages should therefore require strict MR parameter selection or include compensatory algorithms to avoid MR parameter-related bias of brain morphometry results. (orig.)

  14. The Corpus Callosum Area and Brain Volume in Alzheimer's Disease, Mild Cognitive Impairment and Healthy Controls

    International Nuclear Information System (INIS)

    Choi, Hee Seok; Kim, Kwang Ki; Yoon, Yup Yoon; Seo, Hyung Suk

    2009-01-01

    To compare the corpus callosum (CC) area and brain volume among individuals with Alzheimer's disease (AD), mild cognitive impairment (MCI) and healthy controls (HC). To evaluate the relationship of CC area and brain volume in 111 subjects (M:F = 48:63; mean age, 56.9 years) without memory disturbance and 28 subjects (11:17; 66.7years) with memory disturbance. The 11 AD (3:8; 75.7 years), 17 MCI (8:9; 60.9 years) and 28 selected HC (11:17; 66.4 years) patients were investigated for comparison of their CC area and brain volume. A good positive linear correlation was found between CC area and brain volume in subjects without and with memory disturbance (r = 0.64 and 0.66, respectively, p 2 , 715.4 ± 107 cm3) were significantly smaller than in MCI patients (595.9 ± 108, 844.1 ± 85) and the HCs (563.2 ± 75, 818.9 ± 109) (p < 0.05). The CC area and brain volume were not significantly different between MCI patients and the HCs. The CC area was significantly correlated with brain volume. Both CC area and brain volume were significantly smaller in the AD patients

  15. Functional Response of Tumor Vasculature to PaCO2: Determination of Total and Microvascular Blood Volume by MRI

    Directory of Open Access Journals (Sweden)

    Scott D. Packard

    2003-07-01

    Full Text Available In order to identify differences in functional activity, we compared the reactivity of glioma vasculature and the native cerebral vasculature to both dilate and constrict in response to altered PaCO2. Gliomas were generated by unilateral implantation of U87MGdEGFR human glioma tumor cells into the striatum of adult female athymic rats. Relative changes in total and microvascular cerebral blood volume were determined by steady state contrast agent-enhanced magnetic resonance imaging for transitions from normocarbia to hypercarbia and hypocarbia. Although hypercarbia induced a significant increase in both total and microvascular blood volume in normal brain and glioma, reactivity of glioma vasculature was significantly blunted in comparison to normal striatum; glioma total CBV increased by 0.6±0.1%/mm Hg CO2 whereas normal striatum increased by 1.5±0.2%/mm Hg CO2, (P < .0001, group t-test. Reactivity of microvascular blood volume was also significantly blunted. In contrast, hypocarbia decreased both total and microvascular blood volumes more in glioma than in normal striatum. These results indicate that cerebral blood vessels derived by tumor-directed angiogenesis do retain reactivity to CO2. Furthermore, reduced reactivity of tumor vessels to a single physiological perturbation, such as hypercarbia, should not be construed as a generalized reduction of functional activity of the tumor vascular bed.

  16. Contribution of brain size to IQ and educational underperformance in extremely preterm adolescents.

    Directory of Open Access Journals (Sweden)

    Jeanie L Y Cheong

    Full Text Available OBJECTIVES: Extremely preterm (EP survivors have smaller brains, lower IQ, and worse educational achievement than their term-born peers. The contribution of smaller brain size to the IQ and educational disadvantages of EP is unknown. This study aimed (i to compare brain volumes from multiple brain tissues and structures between EP-born (< 28 weeks and term-born (≥ 37 weeks control adolescents, (ii to explore the relationships of brain tissue volumes with IQ and basic educational skills and whether this differed by group, and (iii to explore how much total brain tissue volume explains the underperformance of EP adolescents compared with controls. METHODS: Longitudinal cohort study of 148 EP and 132 term controls born in Victoria, Australia in 1991-92. At age 18, magnetic resonance imaging-determined brain volumes of multiple tissues and structures were calculated. IQ and educational skills were measured using the Wechsler Abbreviated Scale of Intelligence (WASI and the Wide Range Achievement Test(WRAT-4, respectively. RESULTS: Brain volumes were smaller in EP adolescents compared with controls (mean difference [95% confidence interval] of -5.9% [-8.0, -3.7%] for total brain tissue volume. The largest relative differences were noted in the thalamus and hippocampus. The EP group had lower IQs(-11.9 [-15.4, -8.5], spelling(-8.0 [-11.5, -4.6], math computation(-10.3 [-13.7, -6.9] and word reading(-5.6 [-8.8, -2.4] scores than controls; all p-values<0.001. Volumes of total brain tissue and other brain tissues and structures correlated positively with IQ and educational skills, a relationship that was similar for both the EP and controls. Total brain tissue volume explained between 20-40% of the IQ and educational outcome differences between EP and controls. CONCLUSIONS: EP adolescents had smaller brain volumes, lower IQs and poorer educational performance than controls. Brain volumes of multiple tissues and structures are related to IQ and

  17. Age-dependent association of thyroid function with brain morphology and microstructural organization: evidence from brain imaging.

    Science.gov (United States)

    Chaker, Layal; Cremers, Lotte G M; Korevaar, Tim I M; de Groot, Marius; Dehghan, Abbas; Franco, Oscar H; Niessen, Wiro J; Ikram, M Arfan; Peeters, Robin P; Vernooij, Meike W

    2018-01-01

    Thyroid hormone (TH) is crucial during neurodevelopment, but high levels of TH have been linked to neurodegenerative disorders. No data on the association of thyroid function with brain imaging in the general population are available. We therefore investigated the association of thyroid-stimulating hormone and free thyroxine (FT4) with magnetic resonance imaging (MRI)-derived total intracranial volume, brain tissue volumes, and diffusion tensor imaging measures of white matter microstructure in 4683 dementia- and stroke-free participants (mean age 60.2, range 45.6-89.9 years). Higher FT4 levels were associated with larger total intracranial volumes (β = 6.73 mL, 95% confidence interval = 2.94-9.80). Higher FT4 levels were also associated with larger total brain and white matter volumes in younger individuals, but with smaller total brain and white matter volume in older individuals (p-interaction 0.02). There was a similar interaction by age for the association of FT4 with mean diffusivity on diffusion tensor imaging (p-interaction 0.026). These results are in line with differential effects of TH during neurodevelopmental and neurodegenerative processes and can improve the understanding of the role of thyroid function in neurodegenerative disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Correlation among body height, intelligence, and brain gray matter volume in healthy children.

    Science.gov (United States)

    Taki, Yasuyuki; Hashizume, Hiroshi; Sassa, Yuko; Takeuchi, Hikaru; Asano, Michiko; Asano, Kohei; Kotozaki, Yuka; Nouchi, Rui; Wu, Kai; Fukuda, Hiroshi; Kawashima, Ryuta

    2012-01-16

    A significant positive correlation between height and intelligence has been demonstrated in children. Additionally, intelligence has been associated with the volume of gray matter in the brains of children. Based on these correlations, we analyzed the correlation among height, full-scale intelligence quotient (IQ) and gray matter volume applying voxel-based morphometry using data from the brain magnetic resonance images of 160 healthy children aged 5-18 years of age. As a result, body height was significantly positively correlated with brain gray matter volume. Additionally, the regional gray matter volume of several regions such as the bilateral prefrontal cortices, temporoparietal region, and cerebellum was significantly positively correlated with body height and that the gray matter volume of several of these regions was also significantly positively correlated with full-scale intelligence quotient (IQ) scores after adjusting for age, sex, and socioeconomic status. Our results demonstrate that gray and white matter volume may mediate the correlation between body height and intelligence in healthy children. Additionally, the correlations among gray and white matter volume, height, and intelligence may be at least partially explained by the effect of insulin-like growth factor-1 and growth hormones. Given the importance of the effect of environmental factors, especially nutrition, on height, IQ, and gray matter volume, the present results stress the importance of nutrition during childhood for the healthy maturation of body and brain. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Measurement of brain perfusion, blood volume, and blood-brain barrier permeability, using dynamic contrast-enhanced T(1)-weighted MRI at 3 tesla

    DEFF Research Database (Denmark)

    Larsson, Henrik B W; Courivaud, Frédéric; Rostrup, Egill

    2009-01-01

    Assessment of vascular properties is essential to diagnosis and follow-up and basic understanding of pathogenesis in brain tumors. In this study, a procedure is presented that allows concurrent estimation of cerebral perfusion, blood volume, and blood-brain permeability from dynamic T(1)-weighted...... on a pixel-by-pixel basis of cerebral perfusion, cerebral blood volume, and blood-brain barrier permeability.......Assessment of vascular properties is essential to diagnosis and follow-up and basic understanding of pathogenesis in brain tumors. In this study, a procedure is presented that allows concurrent estimation of cerebral perfusion, blood volume, and blood-brain permeability from dynamic T(1)-weighted...... imaging of a bolus of a paramagnetic contrast agent passing through the brain. The methods are applied in patients with brain tumors and in healthy subjects. Perfusion was estimated by model-free deconvolution using Tikhonov's method (gray matter/white matter/tumor: 72 +/- 16/30 +/- 8/56 +/- 45 mL/100 g...

  20. Structural MRI markers of brain aging early after ischemic stroke.

    Science.gov (United States)

    Werden, Emilio; Cumming, Toby; Li, Qi; Bird, Laura; Veldsman, Michele; Pardoe, Heath R; Jackson, Graeme; Donnan, Geoffrey A; Brodtmann, Amy

    2017-07-11

    To examine associations between ischemic stroke, vascular risk factors, and MRI markers of brain aging. Eighty-one patients (mean age 67.5 ± 13.1 years, 31 left-sided, 61 men) with confirmed first-ever (n = 66) or recurrent (n = 15) ischemic stroke underwent 3T MRI scanning within 6 weeks of symptom onset (mean 26 ± 9 days). Age-matched controls (n = 40) completed identical testing. Multivariate regression analyses examined associations between group membership and MRI markers of brain aging (cortical thickness, total brain volume, white matter hyperintensity [WMH] volume, hippocampal volume), normalized against intracranial volume, and the effects of vascular risk factors on these relationships. First-ever stroke was associated with smaller hippocampal volume ( p = 0.025) and greater WMH volume ( p = 0.004) relative to controls. Recurrent stroke was in turn associated with smaller hippocampal volume relative to both first-ever stroke ( p = 0.017) and controls ( p = 0.001). These associations remained significant after adjustment for age, sex, education, and, in stroke patients, infarct volume. Total brain volume was not significantly smaller in first-ever stroke patients than in controls ( p = 0.056), but the association became significant after further adjustment for atrial fibrillation ( p = 0.036). Cortical thickness and brain volumes did not differ as a function of stroke type, infarct volume, or etiology. Brain structure is likely to be compromised before ischemic stroke by vascular risk factors. Smaller hippocampal and total brain volumes and increased WMH load represent proxies for underlying vascular brain injury. Copyright © 2017 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.

  1. A Computational Model for the Automatic Diagnosis of Attention Deficit Hyperactivity Disorder Based on Functional Brain Volume

    Directory of Open Access Journals (Sweden)

    Lirong Tan

    2017-09-01

    Full Text Available In this paper, we investigated the problem of computer-aided diagnosis of Attention Deficit Hyperactivity Disorder (ADHD using machine learning techniques. With the ADHD-200 dataset, we developed a Support Vector Machine (SVM model to classify ADHD patients from typically developing controls (TDCs, using the regional brain volumes as predictors. Conventionally, the volume of a brain region was considered to be an anatomical feature and quantified using structural magnetic resonance images. One major contribution of the present study was that we had initially proposed to measure the regional brain volumes using fMRI images. Brain volumes measured from fMRI images were denoted as functional volumes, which quantified the volumes of brain regions that were actually functioning during fMRI imaging. We compared the predictive power of functional volumes with that of regional brain volumes measured from anatomical images, which were denoted as anatomical volumes. The former demonstrated higher discriminative power than the latter for the classification of ADHD patients vs. TDCs. Combined with our two-step feature selection approach which integrated prior knowledge with the recursive feature elimination (RFE algorithm, our SVM classification model combining functional volumes and demographic characteristics achieved a balanced accuracy of 67.7%, which was 16.1% higher than that of a relevant model published previously in the work of Sato et al. Furthermore, our classifier highlighted 10 brain regions that were most discriminative in distinguishing between ADHD patients and TDCs. These 10 regions were mainly located in occipital lobe, cerebellum posterior lobe, parietal lobe, frontal lobe, and temporal lobe. Our present study using functional images will likely provide new perspectives about the brain regions affected by ADHD.

  2. The Corpus Callosum Area and Brain Volume in Alzheimer's Disease, Mild Cognitive Impairment and Healthy Controls

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hee Seok; Kim, Kwang Ki; Yoon, Yup Yoon [Dongguk University Medical Center, Goyang (Korea, Republic of); Seo, Hyung Suk [Korea University Ansan Hospital, Ansan (Korea, Republic of)

    2009-07-15

    To compare the corpus callosum (CC) area and brain volume among individuals with Alzheimer's disease (AD), mild cognitive impairment (MCI) and healthy controls (HC). To evaluate the relationship of CC area and brain volume in 111 subjects (M:F = 48:63; mean age, 56.9 years) without memory disturbance and 28 subjects (11:17; 66.7years) with memory disturbance. The 11 AD (3:8; 75.7 years), 17 MCI (8:9; 60.9 years) and 28 selected HC (11:17; 66.4 years) patients were investigated for comparison of their CC area and brain volume. A good positive linear correlation was found between CC area and brain volume in subjects without and with memory disturbance (r = 0.64 and 0.66, respectively, p < 0.01). The CC area and brain volume in AD patients (498.7 +- 72 mm{sup 2}, 715.4 +- 107 cm3) were significantly smaller than in MCI patients (595.9 +- 108, 844.1 +- 85) and the HCs (563.2 +- 75, 818.9 +- 109) (p < 0.05). The CC area and brain volume were not significantly different between MCI patients and the HCs. The CC area was significantly correlated with brain volume. Both CC area and brain volume were significantly smaller in the AD patients

  3. Structural covariance of brain region volumes is associated with both structural connectivity and transcriptomic similarity.

    Science.gov (United States)

    Yee, Yohan; Fernandes, Darren J; French, Leon; Ellegood, Jacob; Cahill, Lindsay S; Vousden, Dulcie A; Spencer Noakes, Leigh; Scholz, Jan; van Eede, Matthijs C; Nieman, Brian J; Sled, John G; Lerch, Jason P

    2018-05-18

    An organizational pattern seen in the brain, termed structural covariance, is the statistical association of pairs of brain regions in their anatomical properties. These associations, measured across a population as covariances or correlations usually in cortical thickness or volume, are thought to reflect genetic and environmental underpinnings. Here, we examine the biological basis of structural volume covariance in the mouse brain. We first examined large scale associations between brain region volumes using an atlas-based approach that parcellated the entire mouse brain into 318 regions over which correlations in volume were assessed, for volumes obtained from 153 mouse brain images via high-resolution MRI. We then used a seed-based approach and determined, for 108 different seed regions across the brain and using mouse gene expression and connectivity data from the Allen Institute for Brain Science, the variation in structural covariance data that could be explained by distance to seed, transcriptomic similarity to seed, and connectivity to seed. We found that overall, correlations in structure volumes hierarchically clustered into distinct anatomical systems, similar to findings from other studies and similar to other types of networks in the brain, including structural connectivity and transcriptomic similarity networks. Across seeds, this structural covariance was significantly explained by distance (17% of the variation, up to a maximum of 49% for structural covariance to the visceral area of the cortex), transcriptomic similarity (13% of the variation, up to maximum of 28% for structural covariance to the primary visual area) and connectivity (15% of the variation, up to a maximum of 36% for structural covariance to the intermediate reticular nucleus in the medulla) of covarying structures. Together, distance, connectivity, and transcriptomic similarity explained 37% of structural covariance, up to a maximum of 63% for structural covariance to the

  4. Quantitative analysis of normal fetal brain volume and flow by three-dimensional power Doppler ultrasound

    Directory of Open Access Journals (Sweden)

    Ju-Chun Hsu

    2013-09-01

    Conclusion: 3D ultrasound can be used to assess the fetal brain volume and blood flow development quantitatively. Our study indicates that the fetal brain vascularization and blood flow correlates significantly with the advancement of GA. This information may serve as a reference point for further studies of the fetal brain volume and blood flow in abnormal conditions.

  5. Wiring economy and volume exclusion determine neuronal placement in the Drosophila brain.

    Science.gov (United States)

    Rivera-Alba, Marta; Vitaladevuni, Shiv N; Mishchenko, Yuriy; Mischenko, Yuriy; Lu, Zhiyuan; Takemura, Shin-Ya; Scheffer, Lou; Meinertzhagen, Ian A; Chklovskii, Dmitri B; de Polavieja, Gonzalo G

    2011-12-06

    Wiring economy has successfully explained the individual placement of neurons in simple nervous systems like that of Caenorhabditis elegans [1-3] and the locations of coarser structures like cortical areas in complex vertebrate brains [4]. However, it remains unclear whether wiring economy can explain the placement of individual neurons in brains larger than that of C. elegans. Indeed, given the greater number of neuronal interconnections in larger brains, simply minimizing the length of connections results in unrealistic configurations, with multiple neurons occupying the same position in space. Avoiding such configurations, or volume exclusion, repels neurons from each other, thus counteracting wiring economy. Here we test whether wiring economy together with volume exclusion can explain the placement of neurons in a module of the Drosophila melanogaster brain known as lamina cartridge [5-13]. We used newly developed techniques for semiautomated reconstruction from serial electron microscopy (EM) [14] to obtain the shapes of neurons, the location of synapses, and the resultant synaptic connectivity. We show that wiring length minimization and volume exclusion together can explain the structure of the lamina microcircuit. Therefore, even in brains larger than that of C. elegans, at least for some circuits, optimization can play an important role in individual neuron placement. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Time series analysis of brain regional volume by MR image

    International Nuclear Information System (INIS)

    Tanaka, Mika; Tarusawa, Ayaka; Nihei, Mitsuyo; Fukami, Tadanori; Yuasa, Tetsuya; Wu, Jin; Ishiwata, Kiichi; Ishii, Kenji

    2010-01-01

    The present study proposed a methodology of time series analysis of volumes of frontal, parietal, temporal and occipital lobes and cerebellum because such volumetric reports along the process of individual's aging have been scarcely presented. Subjects analyzed were brain images of 2 healthy males and 18 females of av. age of 69.0 y, of which T1-weighted 3D SPGR (spoiled gradient recalled in the steady state) acquisitions with a GE SIGNA EXCITE HD 1.5T machine were conducted for 4 times in the time series of 42-50 months. The image size was 256 x 256 x (86-124) voxels with digitization level 16 bits. As the template for the regions, the standard gray matter atlas (icbn452 a tlas p robability g ray) and its labeled one (icbn.Labels), provided by UCLA Laboratory of Neuro Imaging, were used for individual's standardization. Segmentation, normalization and coregistration were performed with the MR imaging software SPM8 (Statistic Parametric Mapping 8). Volumes of regions were calculated as their voxel ratio to the whole brain voxel in percent. It was found that the regional volumes decreased with aging in all above lobes examined and cerebellum in average percent per year of -0.11, -0.07, -0.04, -0.02, and -0.03, respectively. The procedure for calculation of the regional volumes, which has been manually operated hitherto, can be automatically conducted for the individual brain using the standard atlases above. (T.T.)

  7. Global and regional annual brain volume loss rates in physiological aging.

    Science.gov (United States)

    Schippling, Sven; Ostwaldt, Ann-Christin; Suppa, Per; Spies, Lothar; Manogaran, Praveena; Gocke, Carola; Huppertz, Hans-Jürgen; Opfer, Roland

    2017-03-01

    The objective is to estimate average global and regional percentage brain volume loss per year (BVL/year) of the physiologically ageing brain. Two independent, cross-sectional single scanner cohorts of healthy subjects were included. The first cohort (n = 248) was acquired at the Medical Prevention Center (MPCH) in Hamburg, Germany. The second cohort (n = 316) was taken from the Open Access Series of Imaging Studies (OASIS). Brain parenchyma (BP), grey matter (GM), white matter (WM), corpus callosum (CC), and thalamus volumes were calculated. A non-parametric technique was applied to fit the resulting age-volume data. For each age, the BVL/year was derived from the age-volume curves. The resulting BVL/year curves were compared between the two cohorts. For the MPCH cohort, the BVL/year curve of the BP was an increasing function starting from 0.20% at the age of 35 years increasing to 0.52% at 70 years (corresponding values for GM ranged from 0.32 to 0.55%, WM from 0.02 to 0.47%, CC from 0.07 to 0.48%, and thalamus from 0.25 to 0.54%). Mean absolute difference between BVL/year trajectories across the age range of 35-70 years was 0.02% for BP, 0.04% for GM, 0.04% for WM, 0.11% for CC, and 0.02% for the thalamus. Physiological BVL/year rates were remarkably consistent between the two cohorts and independent from the scanner applied. Average BVL/year was clearly age and compartment dependent. These results need to be taken into account when defining cut-off values for pathological annual brain volume loss in disease models, such as multiple sclerosis.

  8. Atlas of total body radionuclide imaging. Volume I and II

    International Nuclear Information System (INIS)

    Fordham, E.W.; Ali, A.; Turner, D.A.; Charters, J.

    1982-01-01

    This two-volume work on total body imaging may well be regarded by future historians of nuclear medicine as representing the high points in the art of total body imaging in clinical nuclear medicine. With regard to information content and volume, it is the largest collection of well-interpreted, beautifully reproduced, total body images available to date. The primary goal of this atlas is to demonstrate patterns of abnormality in both typical and less typical variations. This goal is accomplished with many well-described examples of technical artifacts, of normal variants, of common and of rare diseases, and of pitfalls in interpretations. Volume I is entirely dedicated to skeletal imaging with Tc-99m labeled phosphates or phosphonates. The volume is divided into 22 chapters, which include chapters on methodology and instrumentation, chapters on the important bone diseases and other topics such as a treatise on false-negative and false-positive scans, and soft tissue and urinary tract abnormalities recognizable on bone scintigrams

  9. Gd-DTPA and volume acquisitions in brain and spine tumors

    International Nuclear Information System (INIS)

    Ross, J.S.; Masaryk, T.J.; Modic, M.T.; Clampitt, M.

    1988-01-01

    Seventeen cases referred for evaluation of suspected neoplasms were studied with anisotropic three-dimensional fast low-angle shot imaging (30-60/9-14/50) with partitions of 1.5-3 mm before and after 0.1 mmol/kg of Gd-DTPA (Berlex Laboratories). Multiplanar reconstructions were performed on a Kontron work station. Sagittal and axial T1-weighted two-dimensional spin-echo (SE) sequences were acquired for comparison. Diagnoses included normal (N = 3), brain neoplasms (N = 7), spine neoplasms (N = 6), and brain inflammation (N = 1). Volume studies were of sufficient quality to allow reconstructions in 12 cases and were comparable diagnostically with two-dimensional SE images. Advantages of the three-dimensional technique were capacity to reconstruct any plane, decreased partial volume averaging, and a shorter examination time. Tissue contrast appeared equivalent. In five patients the examinations were inferior to SE studies because of motion and lack of contrast between vessels and enhancing regions. Paramagnetic contrast increases the sensitivity of volume studies in the detection of disease

  10. Anatomically guided voxel-based partial volume effect correction in brain PET : Impact of MRI segmentation

    NARCIS (Netherlands)

    Gutierrez, Daniel; Montandon, Marie-Louise; Assal, Frederic; Allaoua, Mohamed; Ratib, Osman; Loevblad, Karl-Olof; Zaidi, Habib

    2012-01-01

    Partial volume effect is still considered one of the main limitations in brain PET imaging given the limited spatial resolution of current generation PET scanners. The accuracy of anatomically guided partial volume effect correction (PVC) algorithms in brain PET is largely dependent on the

  11. Cortical thickness and subcortical brain volumes in professional rugby league players

    Directory of Open Access Journals (Sweden)

    Magdalena Wojtowicz

    Full Text Available Purpose: The purpose of this study was to examine cortical thickness and subcortical volumes in professional rugby players with an extensive history of concussions compared to control subjects. Method: Participants included 24 active and former professional rugby league players [Age M(SD = 33.3(6.3; Range = 21–44] with an extensive history of concussion and 18 age- and education-matched controls with no history of neurotrauma or participation in contact sports. Participants underwent T1-weighted imaging and completed a neuropsychological battery, including two tests of memory. Whole brain cortical thickness analysis and structural volume analysis was performed using FreeSurfer version 6.0. Results: Professional rugby league players reported greater alcohol consumption (p < .001 and had significantly worse delayed recall of a visually complex design (p = .04. They did not differ from controls on other clinical outcome measures. There were no differences in cortical thickness between the groups. Professional players had smaller whole brain (p = .003, bilateral hippocampi (ps = .03, and left amygdala volumes (p = .01 compared to healthy controls. Within the players group, there were significant associations between greater alcohol use and smaller bilateral hippocampi and left amygdala volumes. There were no associations between structural volumes and history of concussions or memory performance. Conclusions: The literature examining cortical thickness in athletes with a history of multiple concussions is mixed. We did not observe differences in cortical thickness in professional rugby league players compared to controls. However, smaller subcortical volumes were found in players that were, in part, associated with greater alcohol consumption. Keywords: Volumetric MRI, Cortical thickness, Concussion, Brain morphometry, Athletes, Rugby

  12. Brain-derived Neurotrophic Factor (BDNF) and gray matter volume in bipolar disorder.

    Science.gov (United States)

    Poletti, S; Aggio, V; Hoogenboezem, T A; Ambrée, O; de Wit, H; Wijkhuijs, A J M; Locatelli, C; Colombo, C; Arolt, V; Drexhage, H A; Benedetti, F

    2017-02-01

    Bipolar Disorder (BD) is a severe psychiatric condition characterized by grey matter (GM) volumes reduction. Neurotrophic factors have been suggested to play a role in the neuroprogressive changes during the illness course. In particular peripheral brain-derived neurotrophic factor (BDNF) has been proposed as a potential biomarker related to disease activity and neuroprogression in BD. The aim of our study was to investigate if serum levels of BDNF are associated with GM volumes in BD patients and healthy controls (HC). We studied 36 inpatients affected by a major depressive episode in course of BD type I and 17 HC. Analysis of variance was performed to investigate the effect of diagnosis on GM volumes in the whole brain. Threshold for significance was PBDNF levels compared with HC. Reduced GM volumes in BD patients compared to HC were observed in several brain areas, encompassing the caudate head, superior temporal gyrus, insula, fusiform gyrus, parahippocampal gyrus, and anterior cingulate cortex. The interaction analysis between BDNF levels and diagnosis showed a significant effect in the middle frontal gyrus. HC reported higher BDNF levels associated with higher GM volumes, whereas no association between BDNF and GM volumes was observed in BD. Our study seems to suggest that although the production of BDNF is increased in BD possibly to prevent and repair neural damage, its effects could be hampered by underlying neuroinflammatory processes interfering with the neurodevelopmental role of BDNF. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  13. A meta-analysis of sex differences in human brain structure.

    Science.gov (United States)

    Ruigrok, Amber N V; Salimi-Khorshidi, Gholamreza; Lai, Meng-Chuan; Baron-Cohen, Simon; Lombardo, Michael V; Tait, Roger J; Suckling, John

    2014-02-01

    The prevalence, age of onset, and symptomatology of many neuropsychiatric conditions differ between males and females. To understand the causes and consequences of sex differences it is important to establish where they occur in the human brain. We report the first meta-analysis of typical sex differences on global brain volume, a descriptive account of the breakdown of studies of each compartmental volume by six age categories, and whole-brain voxel-wise meta-analyses on brain volume and density. Gaussian-process regression coordinate-based meta-analysis was used to examine sex differences in voxel-based regional volume and density. On average, males have larger total brain volumes than females. Examination of the breakdown of studies providing total volumes by age categories indicated a bias towards the 18-59 year-old category. Regional sex differences in volume and tissue density include the amygdala, hippocampus and insula, areas known to be implicated in sex-biased neuropsychiatric conditions. Together, these results suggest candidate regions for investigating the asymmetric effect that sex has on the developing brain, and for understanding sex-biased neurological and psychiatric conditions. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. A meta-analysis of sex differences in human brain structure☆

    Science.gov (United States)

    Ruigrok, Amber N.V.; Salimi-Khorshidi, Gholamreza; Lai, Meng-Chuan; Baron-Cohen, Simon; Lombardo, Michael V.; Tait, Roger J.; Suckling, John

    2014-01-01

    The prevalence, age of onset, and symptomatology of many neuropsychiatric conditions differ between males and females. To understand the causes and consequences of sex differences it is important to establish where they occur in the human brain. We report the first meta-analysis of typical sex differences on global brain volume, a descriptive account of the breakdown of studies of each compartmental volume by six age categories, and whole-brain voxel-wise meta-analyses on brain volume and density. Gaussian-process regression coordinate-based meta-analysis was used to examine sex differences in voxel-based regional volume and density. On average, males have larger total brain volumes than females. Examination of the breakdown of studies providing total volumes by age categories indicated a bias towards the 18–59 year-old category. Regional sex differences in volume and tissue density include the amygdala, hippocampus and insula, areas known to be implicated in sex-biased neuropsychiatric conditions. Together, these results suggest candidate regions for investigating the asymmetric effect that sex has on the developing brain, and for understanding sex-biased neurological and psychiatric conditions. PMID:24374381

  15. Three-dimensional sonographic measurement of normal fetal brain volume during the second half of pregnancy

    NARCIS (Netherlands)

    N.M. Roelfsema; W.C.J. Hop (Wim); S.M. Boito; J.W. Wladimiroff (Juriy)

    2004-01-01

    textabstractObjectives: This study was undertaken to develop a three-dimensional (3D) ultrasound method of measuring fetal brain volume. Study design: Serial 3D sonographic measurements of fetal brain volume were made in 68 normal singleton pregnancies at 18 to 34 weeks of gestation. A comparison

  16. Brain volume and cognitive function in patients with revascularized coronary artery disease

    NARCIS (Netherlands)

    Ottens, Thomas H; Hendrikse, Jeroen; Nathoe, Hendrik M; Biessels, Geert Jan; van Dijk, Diederik

    2017-01-01

    BACKGROUND: The pathogenesis of cognitive dysfunction in patients with CAD remains unclear. CAD is associated with brain atrophy and specific lesions. Detailed knowledge about the association of brain volume measured with MRI, and cognitive function in patients with CAD is lacking. We therefore

  17. Optimization of total arc degree for stereotactic radiotherapy by using integral biologically effective dose and irradiated volume

    International Nuclear Information System (INIS)

    Lim, Do Hoon; Kim, Dae Yong; Lee, Myung Za; Chun, Ha Chung

    2001-01-01

    To find the optimal values of total arc degree to protect the normal brain tissue from high dose radiation in stereotactic radiotherapy planning. With Xknife-3 planning system and 4 MV linear accelerator, the authors planned under various values of parameters. One isocenter, 12, 20, 30, 40, 50, and 60 mm of collimator diameters, 100 deg, 200 deg, 300 deg, 400 deg, 500 deg, 600 deg, of total arc degrees, and 30 deg or 45 deg of arc intervals were used. After the completion of planning, the plans were compared each other using V 50 (the volume of normal brain that is delivered high dose radiation) and integral biologically effective dose. At 30 deg of arc interval, the values of V 50 had the decreased pattern with the increase of total arc degree in any collimator diameter. At 45 deg arc interval, up to 400 deg of total arc degree, the values of V 50 decreased with the increase of total arc degree, but at 500 deg and 600 deg of total arc degrees, the values increased. At 30 deg of arc interval, integral biologically effective dose showed the decreased pattern with the increase of total arc degree in any collimator diameter. At 45 deg arc interval with less than 40 mm collimator diameter, the integral biologically effective dose decreased with the increase of total arc degree, but with 50 and 60 mm of collimator diameters, up to 400 deg of total arc degree, integral biologically effective dose decreased with the increase of total arc degree, but at 500 deg and 600 deg of total arc degrees, the values increased. In the stereotactic radiotherapy planning for brain lesions, planning with 400 deg of total arc degree is optimal. Especially, when the larger collimator more than 50 mm diameter should be used, the uses of 500 deg and 600 deg of total arc degrees make the increase of V 50 and integral biologically effective dose, Therefore stereotactic radiotherapy planning using 400 deg of total arc degree can increase the therapeutic ratio and produce the effective outcome

  18. Total numbers of neurons and glial cells in cortex and basal ganglia of aged brains with Down syndrome--a stereological study.

    Science.gov (United States)

    Karlsen, Anna Schou; Pakkenberg, Bente

    2011-11-01

    The total numbers of neurons and glial cells in the neocortex and basal ganglia in adults with Down syndrome (DS) were estimated with design-based stereological methods, providing quantitative data on brains affected by delayed development and accelerated aging. Cell numbers, volume of regions, and densities of neurons and glial cell subtypes were estimated in brains from 4 female DS subjects (mean age 66 years) and 6 female controls (mean age 70 years). The DS subjects were estimated to have about 40% fewer neocortical neurons in total (11.1 × 10(9) vs. 17.8 × 10(9), 2p ≤ 0.001) and almost 30% fewer neocortical glial cells with no overlap to controls (12.8 × 10(9) vs. 18.2 × 10(9), 2p = 0.004). In contrast, the total number of neurons in the basal ganglia was the same in the 2 groups, whereas the number of oligodendrocytes in the basal ganglia was reduced by almost 50% in DS (405 × 10(6) vs. 816 × 10(6), 2p = 0.01). We conclude that trisomy 21 affects cortical structures more than central gray matter emphasizing the differential impairment of brain development. Despite concomitant Alzheimer-like pathology, the neurodegenerative outcome in a DS brain deviates from common Alzheimer disease.

  19. Automatic, accurate, and reproducible segmentation of the brain and cerebro-spinal fluid in T1-weighted volume MRI scans and its application to serial cerebral and intracranial volumetry

    Science.gov (United States)

    Lemieux, Louis

    2001-07-01

    A new fully automatic algorithm for the segmentation of the brain and cerebro-spinal fluid (CSF) from T1-weighted volume MRI scans of the head was specifically developed in the context of serial intra-cranial volumetry. The method is an extension of a previously published brain extraction algorithm. The brain mask is used as a basis for CSF segmentation based on morphological operations, automatic histogram analysis and thresholding. Brain segmentation is then obtained by iterative tracking of the brain-CSF interface. Grey matter (GM), white matter (WM) and CSF volumes are calculated based on a model of intensity probability distribution that includes partial volume effects. Accuracy was assessed using a digital phantom scan. Reproducibility was assessed by segmenting pairs of scans from 20 normal subjects scanned 8 months apart and 11 patients with epilepsy scanned 3.5 years apart. Segmentation accuracy as measured by overlap was 98% for the brain and 96% for the intra-cranial tissues. The volume errors were: total brain (TBV): -1.0%, intra-cranial (ICV):0.1%, CSF: +4.8%. For repeated scans, matching resulted in improved reproducibility. In the controls, the coefficient of reliability (CR) was 1.5% for the TVB and 1.0% for the ICV. In the patients, the Cr for the ICV was 1.2%.

  20. Brain Volume Changes After Withdrawal of Atypical Antipsychotics in Patients With First-Episode Schizophrenia

    NARCIS (Netherlands)

    Boonstra, Geartsje; van Haren, Neeltje E. M.; Schnack, Hugo G.; Cahn, Wiepke; Burger, Huibert; Boersma, Maria; de Kroon, Bart; Grobbee, Diederick E.; Pol, Hilleke E. Hulshoff; Kahn, Rene S.

    The influence of antipsychotic medication on brain morphology in schizophrenia may confound interpretation of brain changes over time. We aimed to assess the effect of discontinuation of atypical antipsychotic medication on change in brain volume in patients. Sixteen remitted, stable patients with

  1. Reduced astrocyte density underlying brain volume reduction in activity-based anorexia rats

    NARCIS (Netherlands)

    Frintrop, Linda; Liesbrock, Johanna; Paulukat, Lisa; Johann, Sonja; Kas, Martien J; Tolba, Rene; Heussen, Nicole; Neulen, Joseph; Konrad, Kerstin; Herpertz-Dahlmann, Beate; Beyer, Cordian; Seitz, Jochen

    2017-01-01

    OBJECTIVES: Severe grey and white matter volume reductions were found in patients with anorexia nervosa (AN) that were linked to neuropsychological deficits while their underlying pathophysiology remains unclear. For the first time, we analysed the cellular basis of brain volume changes in an animal

  2. Specificity of abnormal brain volume in major depressive disorder: a comparison with borderline personality disorder.

    Science.gov (United States)

    Depping, Malte S; Wolf, Nadine D; Vasic, Nenad; Sambataro, Fabio; Thomann, Philipp A; Christian Wolf, R

    2015-03-15

    Abnormal brain volume has been frequently demonstrated in major depressive disorder (MDD). It is unclear if these findings are specific for MDD since aberrant brain structure is also present in disorders with depressive comorbidity and affective dysregulation, such as borderline personality disorder (BPD). In this transdiagnostic study, we aimed to investigate if regional brain volume loss differentiates between MDD and BPD. Further, we tested for associations between brain volume and clinical variables within and between diagnostic groups. 22 Females with a DSM-IV diagnosis of MDD, 17 females with a DSM-IV diagnosis of BPD and without comorbid posttraumatic stress disorder, and 22 age-matched female healthy controls (HC) were investigated using magnetic resonance imaging. High-resolution structural data were analyzed using voxel-based morphometry. A significant (pdisorders. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Accelerated Brain DCE-MRI Using Iterative Reconstruction With Total Generalized Variation Penalty for Quantitative Pharmacokinetic Analysis: A Feasibility Study.

    Science.gov (United States)

    Wang, Chunhao; Yin, Fang-Fang; Kirkpatrick, John P; Chang, Zheng

    2017-08-01

    To investigate the feasibility of using undersampled k-space data and an iterative image reconstruction method with total generalized variation penalty in the quantitative pharmacokinetic analysis for clinical brain dynamic contrast-enhanced magnetic resonance imaging. Eight brain dynamic contrast-enhanced magnetic resonance imaging scans were retrospectively studied. Two k-space sparse sampling strategies were designed to achieve a simulated image acquisition acceleration factor of 4. They are (1) a golden ratio-optimized 32-ray radial sampling profile and (2) a Cartesian-based random sampling profile with spatiotemporal-regularized sampling density constraints. The undersampled data were reconstructed to yield images using the investigated reconstruction technique. In quantitative pharmacokinetic analysis on a voxel-by-voxel basis, the rate constant K trans in the extended Tofts model and blood flow F B and blood volume V B from the 2-compartment exchange model were analyzed. Finally, the quantitative pharmacokinetic parameters calculated from the undersampled data were compared with the corresponding calculated values from the fully sampled data. To quantify each parameter's accuracy calculated using the undersampled data, error in volume mean, total relative error, and cross-correlation were calculated. The pharmacokinetic parameter maps generated from the undersampled data appeared comparable to the ones generated from the original full sampling data. Within the region of interest, most derived error in volume mean values in the region of interest was about 5% or lower, and the average error in volume mean of all parameter maps generated through either sampling strategy was about 3.54%. The average total relative error value of all parameter maps in region of interest was about 0.115, and the average cross-correlation of all parameter maps in region of interest was about 0.962. All investigated pharmacokinetic parameters had no significant differences between

  4. Age dependent white matter lesions and brain volume changes in healthy volunteers

    DEFF Research Database (Denmark)

    Christiansen, P; Larsson, H B; Thomsen, C

    1994-01-01

    The brain of 142 healthy volunteers aged 21 to 80 years were investigated using MR imaging. The number and size of the white matter hyperintensity lesions (WMHL) in the cerebral hemispheres were determined. Furthermore, the volume of the cerebral hemispheres and of the lateral ventricles was meas......The brain of 142 healthy volunteers aged 21 to 80 years were investigated using MR imaging. The number and size of the white matter hyperintensity lesions (WMHL) in the cerebral hemispheres were determined. Furthermore, the volume of the cerebral hemispheres and of the lateral ventricles...... was measured. An almost linear increase in the number of volunteers with WMHL was seen with aging for males and females. With aging a significant decrease in the volume of the cerebral hemispheres was found for males, and a significant increase in the volume of the lateral ventricles was seen for both males...... and females. Our results suggest that with aging central atrophy increases more (relatively) than cortical atrophy. No correlation was found between the decreasing volume of the cerebral hemispheres and the increasing number and size of WMHL, nor between the increasing volume of the lateral ventricles...

  5. Evaluating anorexia-related brain atrophy using MP2RAGE-based morphometry

    International Nuclear Information System (INIS)

    Boto, Jose; Loevblad, Karl-Olof; Vargas, Maria Isabel; Gkinis, Georgios; Ortiz, Nadia; Roche, Alexis; Kober, Tobias; Marechal, Benedicte; University Hospital; Ecole Polytechnique Federale de Lausanne; Lazeyras, Francois

    2017-01-01

    To evaluate brain atrophy in anorexic patients by automated cerebral segmentation with the magnetization-prepared 2 rapid acquisition gradient echo (MP2RAGE) MRI sequence. Twenty patients (female; mean age, 27.9 years), presenting consecutively for brain MRI between August 2014-December 2016 with clinical suspicion of anorexia nervosa and BMI<18.5 kg/m 2 were included. Controls were ten healthy females (mean age, 26.5 years). Automated brain morphometry was performed based on MP2RAGE. Means of morphometric results in the two groups were compared and correlation with BMI was analysed. Significantly lower volumes of total brain, grey matter (GM), white matter (WM), cerebellum and insula were found in anorexic patients. Anorexics had higher volumes of CSF, ventricles, lateral ventricles and third ventricle. When adjusted means for weight and height were compared, the volume of WM and cerebellum were not significantly different. However, volume of WM was significantly affected by weight and positively correlated with BMI. Significant positive correlations were found between BMI and volumes of total brain, GM, cortical GM and WM. BMI was negatively correlated with volumes of CSF and third ventricle. Brain atrophy was demonstrated in anorexic patients with MP2RAGE-based automated segmentation, which seems to reliably estimate brain volume. (orig.)

  6. Evaluating anorexia-related brain atrophy using MP2RAGE-based morphometry

    Energy Technology Data Exchange (ETDEWEB)

    Boto, Jose; Loevblad, Karl-Olof; Vargas, Maria Isabel [Geneva University Hospital (Switzerland). Div. of Neuroradiology and Faculty of Medicine of Geneva; Gkinis, Georgios; Ortiz, Nadia [Geneva University Hospital (Switzerland). Dept. of Mental Health and Psychiatry; Roche, Alexis; Kober, Tobias; Marechal, Benedicte [Siemens Healthcare HC CEMEA SUI DI BM PI, Lausanne (Switzerland). Siemens ACIT, Advanced Clinical Imaging Technology; University Hospital (CHUV), Lausanne (Switzerland). Dept. of Radiology; Ecole Polytechnique Federale de Lausanne (Switzerland). LTS5; Lazeyras, Francois [Geneva University Hospital (Switzerland). Div. of Radiology and Faculty of Medicine of Geneva

    2017-12-15

    To evaluate brain atrophy in anorexic patients by automated cerebral segmentation with the magnetization-prepared 2 rapid acquisition gradient echo (MP2RAGE) MRI sequence. Twenty patients (female; mean age, 27.9 years), presenting consecutively for brain MRI between August 2014-December 2016 with clinical suspicion of anorexia nervosa and BMI<18.5 kg/m{sup 2} were included. Controls were ten healthy females (mean age, 26.5 years). Automated brain morphometry was performed based on MP2RAGE. Means of morphometric results in the two groups were compared and correlation with BMI was analysed. Significantly lower volumes of total brain, grey matter (GM), white matter (WM), cerebellum and insula were found in anorexic patients. Anorexics had higher volumes of CSF, ventricles, lateral ventricles and third ventricle. When adjusted means for weight and height were compared, the volume of WM and cerebellum were not significantly different. However, volume of WM was significantly affected by weight and positively correlated with BMI. Significant positive correlations were found between BMI and volumes of total brain, GM, cortical GM and WM. BMI was negatively correlated with volumes of CSF and third ventricle. Brain atrophy was demonstrated in anorexic patients with MP2RAGE-based automated segmentation, which seems to reliably estimate brain volume. (orig.)

  7. The relationship between subcortical brain volume and striatal dopamine D2/3 receptor availability in healthy humans assessed with [11 C]-raclopride and [11 C]-(+)-PHNO PET.

    Science.gov (United States)

    Caravaggio, Fernando; Ku Chung, Jun; Plitman, Eric; Boileau, Isabelle; Gerretsen, Philip; Kim, Julia; Iwata, Yusuke; Patel, Raihaan; Chakravarty, M Mallar; Remington, Gary; Graff-Guerrero, Ariel

    2017-11-01

    Abnormalities in dopamine (DA) and brain morphology are observed in several neuropsychiatric disorders. However, it is not fully understood how these abnormalities may relate to one another. For such in vivo findings to be used as biomarkers for neuropsychiatric disease, it must be understood how variability in DA relates to brain structure under healthy conditions. We explored how the availability of striatal DA D 2/3 receptors (D 2/3 R) is related to the volume of subcortical brain structures in a sample of healthy humans. Differences in D 2/3 R availability measured with an antagonist radiotracer ([ 11 C]-raclopride) versus an agonist radiotracer ([ 11 C]-(+)-PHNO) were examined. Data from 62 subjects scanned with [ 11 C]-raclopride (mean age = 38.98 ± 14.45; 23 female) and 68 subjects scanned with [ 11 C]-(+)-PHNO (mean age = 38.54 ± 14.59; 25 female) were used. Subcortical volumes were extracted from T1-weighted images using the Multiple Automatically Generated Templates (MAGeT-Brain) algorithm. Partial correlations were used controlling for age, gender, and total brain volume. For [ 11 C]-(+)-PHNO, ventral caudate volumes were positively correlated with BP ND in the dorsal caudate and globus pallidus (GP). Ventral striatum (VS) volumes were positively correlated with BP ND in the VS. With [ 11 C]-raclopride, BP ND in the VS was negatively correlated with subiculum volume of the hippocampus. Moreover, BP ND in the GP was negatively correlated with the volume of the lateral posterior nucleus of the thalamus. Findings are purely exploratory and presented corrected and uncorrected for multiple comparisons. We hope they will help inform the interpretation of future PET studies where concurrent changes in D 2/3 R and brain morphology are observed. Hum Brain Mapp 38:5519-5534, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. Fetal growth, cognitive function, and brain volumes in childhood and adolescence.

    Science.gov (United States)

    Rogne, Tormod; Engstrøm, Andreas Aass; Jacobsen, Geir Wenberg; Skranes, Jon; Østgård, Heidi Furre; Martinussen, Marit

    2015-03-01

    To evaluate the association between fetal growth pattern and cognitive function at 5 and 9 years and regional brain volumes at 15 years. Eighty-three term-born small-for-gestational-age (SGA) neonates and 105 non-SGA neonates in a control group were available for follow-up. Based on serial fetal ultrasound measurements from gestational weeks 25-37, SGA neonates were classified with fetal growth restriction (n=13) or non-fetal growth restriction (n=36). Cognitive function was assessed at 5 and 9 years, and brain volumes were estimated with cerebral magnetic resonance imaging at 15 years. Small-for-gestational-age children had lower performance intelligence quotient at 5 years compared with those in a control group (107.3 compared with 112.5, Pgrowth restriction and control groups, the SGA fetal growth restriction group had significantly lower performance intelligence quotient at 5 years (103.5 compared with 112.5, Pgrowth restriction and control groups for thalamic (17.4 compared with 18.6 cm, Pintelligence quotient scores at 5 and 9 years and smaller brain volumes at 15 years compared with those in the control group, but these findings were only found in those with fetal growth restriction, indicating a possible relationship to decelerated fetal growth. II.

  9. Stereological quantification of tumor volume, mean nuclear volume and total number of melanoma cells correlated with morbidity and mortality

    DEFF Research Database (Denmark)

    Bønnelykke-Behrndtz, Marie Louise; Sørensen, Flemming Brandt; Damsgaard, Tine Engberg

    2008-01-01

    potential indicators of prognosis. Sixty patients who underwent surgery at the Department of Plastic Surgery, Aarhus University Hospital, from 1991 to 1994 were included in the study. Total tumor volume was estimated by the Cavalieri technique, total number of tumor cells by the optical dissector principle...... showed a significant impact on both disease-free survival (p=0.001) and mortality (p=0.009). In conclusion, tumor volume and total number of cancer cells were highly reproducible but did not add additional, independent prognostic information regarding the study population.......Stereological quantification of tumor volume, total number of tumor cells and mean nuclear volume provides unbiased data, regardless of the three-dimensional shape of the melanocytic lesion. The aim of the present study was to investigate whether these variables are reproducible and may represent...

  10. Genetic correlations between brain volumes and the WAIS-III dimensions of verbal comprehension, working memory, perceptual organization, and processing speed.

    Science.gov (United States)

    Posthuma, Daniëlle; Baaré, Wim F C; Hulshoff Pol, Hilleke E; Kahn, René S; Boomsma, Dorret I; De Geus, Eco J C

    2003-04-01

    We recently showed that the correlation of gray and white matter volume with full scale IQ and the Working Memory dimension are completely mediated by common genetic factors (Posthuma et al., 2002). Here we examine whether the other WAIS III dimensions (Verbal Comprehension, Perceptual Organization, Processing Speed) are also related to gray and white matter volume, and whether any of the dimensions are related to cerebellar volume. Two overlapping samples provided 135 subjects from 60 extended twin families for whom both MRI scans and WAIS III data were available. All three brain volumes are related to Working Memory capacity (r = 0.27). This phenotypic correlation is completely due to a common underlying genetic factor. Processing Speed was genetically related to white matter volume (r(g) = 0.39). Perceptual Organization was both genetically (r(g) = 0.39) and environmentally (r(e) = -0.71) related to cerebellar volume. Verbal Comprehension was not related to any of the three brain volumes. It is concluded that brain volumes are genetically related to intelligence which suggests that genes that influence brain volume may also be important for intelligence. It is also noted however, that the direction of causation (i.e., do genes influence brain volume which in turn influences intelligence, or alternatively, do genes influence intelligence which in turn influences brain volume), or the presence or absence of pleiotropy has not been resolved yet.

  11. Dysglycemia, brain volume and vascular lesions on MRI in a memory clinic population

    NARCIS (Netherlands)

    Exalto, L.G.; van der Flier, W.M.; Scheltens, P.; Vrenken, H.; Biessels, G.J.

    2014-01-01

    Objective It is unclear, if the association between abnormalities in glucose metabolism (dysglycemia) and impaired cognitive functioning is primarily driven by degenerative or vascular brain damage. We therefore examined the relation between dysglycemia and brain volume and vascular lesions on MRI

  12. Regional volumes and spatial volumetric distribution of gray matter in the gender dysphoric brain.

    Science.gov (United States)

    Hoekzema, Elseline; Schagen, Sebastian E E; Kreukels, Baudewijntje P C; Veltman, Dick J; Cohen-Kettenis, Peggy T; Delemarre-van de Waal, Henriette; Bakker, Julie

    2015-05-01

    The sexual differentiation of the brain is primarily driven by gonadal hormones during fetal development. Leading theories on the etiology of gender dysphoria (GD) involve deviations herein. To examine whether there are signs of a sex-atypical brain development in GD, we quantified regional neural gray matter (GM) volumes in 55 female-to-male and 38 male-to-female adolescents, 44 boys and 52 girls without GD and applied both univariate and multivariate analyses. In girls, more GM volume was observed in the left superior medial frontal cortex, while boys had more volume in the bilateral superior posterior hemispheres of the cerebellum and the hypothalamus. Regarding the GD groups, at whole-brain level they differed only from individuals sharing their gender identity but not from their natal sex. Accordingly, using multivariate pattern recognition analyses, the GD groups could more accurately be automatically discriminated from individuals sharing their gender identity than those sharing their natal sex based on spatially distributed GM patterns. However, region of interest analyses indicated less GM volume in the right cerebellum and more volume in the medial frontal cortex in female-to-males in comparison to girls without GD, while male-to-females had less volume in the bilateral cerebellum and hypothalamus than natal boys. Deviations from the natal sex within sexually dimorphic structures were also observed in the untreated subsamples. Our findings thus indicate that GM distribution and regional volumes in GD adolescents are largely in accordance with their respective natal sex. However, there are subtle deviations from the natal sex in sexually dimorphic structures, which can represent signs of a partial sex-atypical differentiation of the brain. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Long-term global and regional brain volume changes following severe traumatic brain injury: A longitudinal study with clinical correlates

    DEFF Research Database (Denmark)

    Sidaros, Annette; Skimminge, Arnold Jesper Møller; Liptrot, Matthew George

    2009-01-01

    with percent brain volume change (%BVC) ranging between − 0.6% and − 9.4% (mean − 4.0%). %BVC correlated significantly with injury severity, functional status at both scans, and with 1-year outcome. Moreover, %BVC improved prediction of long-term functional status over and above what could be predicted using......Traumatic brain injury (TBI) results in neurodegenerative changes that progress for months, perhaps even years post-injury. However, there is little information on the spatial distribution and the clinical significance of this late atrophy. In 24 patients who had sustained severe TBI we acquired 3D...... scan time point using SIENAX. Regional distribution of atrophy was evaluated using tensor-based morphometry (TBM). At the first scan time point, brain parenchymal volume was reduced by mean 8.4% in patients as compared to controls. During the scan interval, patients exhibited continued atrophy...

  14. Comparison of brain volume abnormalities between ADHD and conduct disorder in adolescence

    Science.gov (United States)

    Stevens, Michael C.; Haney-Caron, Emily

    2012-01-01

    Background Previous studies of brain structure abnormalities in conduct disorder and attention-deficit/hyperactivity disorder (ADHD) samples have been limited owing to cross-comorbidity, preventing clear understanding of which structural brain abnormalities might be specific to or shared by each disorder. To our knowledge, this study was the first direct comparison of grey and white matter volumes in diagnostically “pure” (i.e., no comorbidities) conduct disorder and ADHD samples. Methods Groups of adolescents with noncormobid conduct disorder and with noncomorbid, combined-subtype ADHD were compared with age- and sex-matched controls using DARTEL voxel-based analysis of T1-weighted brain structure images. Analysis of variance with post hoc analyses compared whole brain grey and white matter volumes among the groups. Results We included 24 adolescents in each study group. There was an overall 13% reduction in grey matter volume in adolescents with conduct disorder, reflecting numerous frontal, temporal, parietal and subcortical deficits. The same grey matter regions typically were not abnormal in those with ADHD. Deficits in frontal lobe regions previously identified in studies of patients with ADHD either were not detected, or group differences from controls were not as strong as those between the conduct disorder and control groups. White matter volume measurements did not differentiate conduct disorder and ADHD. Limitations Our modest sample sizes prevented meaningful examination of individual features of ADHD or conduct disorder, such as aggression, callousness, or hyperactive versus inattentive symptom subtypes. Conclusion The evidence supports theories of frontotemporal abnormalities in adolescents with conduct disorder, but raises questions about the prominence of frontal lobe and striatal structural abnormalities in those with noncomorbid, combined-subtype ADHD. The latter point is clinically important, given the widely held belief that ADHD is

  15. Brain extraction in partial volumes T2*@7T by using a quasi-anatomic segmentation with bias field correction.

    Science.gov (United States)

    Valente, João; Vieira, Pedro M; Couto, Carlos; Lima, Carlos S

    2018-02-01

    Poor brain extraction in Magnetic Resonance Imaging (MRI) has negative consequences in several types of brain post-extraction such as tissue segmentation and related statistical measures or pattern recognition algorithms. Current state of the art algorithms for brain extraction work on weighted T1 and T2, being not adequate for non-whole brain images such as the case of T2*FLASH@7T partial volumes. This paper proposes two new methods that work directly in T2*FLASH@7T partial volumes. The first is an improvement of the semi-automatic threshold-with-morphology approach adapted to incomplete volumes. The second method uses an improved version of a current implementation of the fuzzy c-means algorithm with bias correction for brain segmentation. Under high inhomogeneity conditions the performance of the first method degrades, requiring user intervention which is unacceptable. The second method performed well for all volumes, being entirely automatic. State of the art algorithms for brain extraction are mainly semi-automatic, requiring a correct initialization by the user and knowledge of the software. These methods can't deal with partial volumes and/or need information from atlas which is not available in T2*FLASH@7T. Also, combined volumes suffer from manipulations such as re-sampling which deteriorates significantly voxel intensity structures making segmentation tasks difficult. The proposed method can overcome all these difficulties, reaching good results for brain extraction using only T2*FLASH@7T volumes. The development of this work will lead to an improvement of automatic brain lesions segmentation in T2*FLASH@7T volumes, becoming more important when lesions such as cortical Multiple-Sclerosis need to be detected. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Comparision between Brain Atrophy and Subdural Volume to Predict Chronic Subdural Hematoma: Volumetric CT Imaging Analysis.

    Science.gov (United States)

    Ju, Min-Wook; Kim, Seon-Hwan; Kwon, Hyon-Jo; Choi, Seung-Won; Koh, Hyeon-Song; Youm, Jin-Young; Song, Shi-Hun

    2015-10-01

    Brain atrophy and subdural hygroma were well known factors that enlarge the subdural space, which induced formation of chronic subdural hematoma (CSDH). Thus, we identified the subdural volume that could be used to predict the rate of future CSDH after head trauma using a computed tomography (CT) volumetric analysis. A single institution case-control study was conducted involving 1,186 patients who visited our hospital after head trauma from January 1, 2010 to December 31, 2014. Fifty-one patients with delayed CSDH were identified, and 50 patients with age and sex matched for control. Intracranial volume (ICV), the brain parenchyme, and the subdural space were segmented using CT image-based software. To adjust for variations in head size, volume ratios were assessed as a percentage of ICV [brain volume index (BVI), subdural volume index (SVI)]. The maximum depth of the subdural space on both sides was used to estimate the SVI. Before adjusting for cranium size, brain volume tended to be smaller, and subdural space volume was significantly larger in the CSDH group (p=0.138, p=0.021, respectively). The BVI and SVI were significantly different (p=0.003, p=0.001, respectively). SVI [area under the curve (AUC), 77.3%; p=0.008] was a more reliable technique for predicting CSDH than BVI (AUC, 68.1%; p=0.001). Bilateral subdural depth (sum of subdural depth on both sides) increased linearly with SVI (pSubdural space volume was significantly larger in CSDH groups. SVI was a more reliable technique for predicting CSDH. Bilateral subdural depth was useful to measure SVI.

  17. Radiation Dose-Volume Effects in the Brain

    International Nuclear Information System (INIS)

    Lawrence, Yaacov Richard; Li, X. Allen; El Naqa, Issam; Hahn, Carol A.; Marks, Lawrence B.; Merchant, Thomas E.; Dicker, Adam P.

    2010-01-01

    We have reviewed the published data regarding radiotherapy (RT)-induced brain injury. Radiation necrosis appears a median of 1-2 years after RT; however, cognitive decline develops over many years. The incidence and severity is dose and volume dependent and can also be increased by chemotherapy, age, diabetes, and spatial factors. For fractionated RT with a fraction size of 80 Gy. For large fraction sizes (≥2.5 Gy), the incidence and severity of toxicity is unpredictable. For single fraction radiosurgery, a clear correlation has been demonstrated between the target size and the risk of adverse events. Substantial variation among different centers' reported outcomes have prevented us from making toxicity-risk predictions. Cognitive dysfunction in children is largely seen for whole brain doses of ≥18 Gy. No substantial evidence has shown that RT induces irreversible cognitive decline in adults within 4 years of RT.

  18. Reliability and Accuracy of Brain Volume Measurement on MR Imaging

    DEFF Research Database (Denmark)

    Yamagchii, Kechiro; Lassen, Anders; Ring, Poul

    1998-01-01

    Yamaguchi, K., Lassen, A. And Ring, P. Reliability and Accuracy of Brain Volume Measurement on MR Imaging. Abstract at ESMRMB98 European Society for Magnetic Resonance in Medicine and Biology, Geneva, Sept 17-20, 1998 Danish Research Center for Magnetic Resonance, Hvidovre University Hospital...

  19. Regional volumes and spatial volumetric distribution of gray matter in the gender dysphoric brain.

    OpenAIRE

    Hoekzema, Elseline; Schagen, Sebastian E. E.; Kreukels, Baudewijntje P. C.; Veltman, Dick J.; Cohen-Kettenis, Peggy T.; Delemarre-van de Waal, Henriette; Bakker, Julie

    2015-01-01

    The sexual differentiation of the brain is primarily driven by gonadal hormones during fetal development. Leading theories on the etiology of gender dysphoria (GD) involve deviations herein. To examine whether there are signs of a sex-atypical brain development in GD, we quantified regional neural gray matter (GM) volumes in 55 female-to-male and 38 male-to-female adolescents, 44 boys and 52 girls without GD and applied both univariate and multivariate analyses. In girls, more GM volume was o...

  20. Socialization of prosocial behavior: Gender differences in the mediating role of child brain volume

    NARCIS (Netherlands)

    R. Kok (Renske); P.J. Prinzie (Peter); M.J. Bakermans-Kranenburg (Marian); F.C. Verhulst (Frank); T.J.H. White (Tonya); H.W. Tiemeier (Henning); M.H. van IJzendoorn (Rien)

    2017-01-01

    textabstractEvidence has been accumulating for the impact of normal variation in caregiving quality on brain morphology in children, but the question remains whether differences in brain volume related to early caregiving translate to behavioral implications. In this longitudinal population-based

  1. Breakfast staple types affect brain gray matter volume and cognitive function in healthy children.

    Directory of Open Access Journals (Sweden)

    Yasuyuki Taki

    Full Text Available Childhood diet is important for brain development. Furthermore, the quality of breakfast is thought to affect the cognitive functioning of well-nourished children. To analyze the relationship among breakfast staple type, gray matter volume, and intelligence quotient (IQ in 290 healthy children, we used magnetic resonance images and applied voxel-based morphometry. We divided subjects into rice, bread, and both groups according to their breakfast staple. We showed that the rice group had a significantly larger gray matter ratio (gray matter volume percentage divided by intracranial volume and significantly larger regional gray matter volumes of several regions, including the left superior temporal gyrus. The bread group had significantly larger regional gray and white matter volumes of several regions, including the right frontoparietal region. The perceptual organization index (POI; IQ subcomponent of the rice group was significantly higher than that of the bread group. All analyses were adjusted for age, gender, intracranial volume, socioeconomic status, average weekly frequency of having breakfast, and number of side dishes eaten for breakfast. Although several factors may have affected the results, one possible mechanism underlying the difference between the bread and the rice groups may be the difference in the glycemic index (GI of these two substances; foods with a low GI are associated with less blood-glucose fluctuation than are those with a high GI. Our study suggests that breakfast staple type affects brain gray and white matter volumes and cognitive function in healthy children; therefore, a diet of optimal nutrition is important for brain maturation during childhood and adolescence.

  2. Breakfast staple types affect brain gray matter volume and cognitive function in healthy children.

    Science.gov (United States)

    Taki, Yasuyuki; Hashizume, Hiroshi; Sassa, Yuko; Takeuchi, Hikaru; Asano, Michiko; Asano, Kohei; Kawashima, Ryuta

    2010-12-08

    Childhood diet is important for brain development. Furthermore, the quality of breakfast is thought to affect the cognitive functioning of well-nourished children. To analyze the relationship among breakfast staple type, gray matter volume, and intelligence quotient (IQ) in 290 healthy children, we used magnetic resonance images and applied voxel-based morphometry. We divided subjects into rice, bread, and both groups according to their breakfast staple. We showed that the rice group had a significantly larger gray matter ratio (gray matter volume percentage divided by intracranial volume) and significantly larger regional gray matter volumes of several regions, including the left superior temporal gyrus. The bread group had significantly larger regional gray and white matter volumes of several regions, including the right frontoparietal region. The perceptual organization index (POI; IQ subcomponent) of the rice group was significantly higher than that of the bread group. All analyses were adjusted for age, gender, intracranial volume, socioeconomic status, average weekly frequency of having breakfast, and number of side dishes eaten for breakfast. Although several factors may have affected the results, one possible mechanism underlying the difference between the bread and the rice groups may be the difference in the glycemic index (GI) of these two substances; foods with a low GI are associated with less blood-glucose fluctuation than are those with a high GI. Our study suggests that breakfast staple type affects brain gray and white matter volumes and cognitive function in healthy children; therefore, a diet of optimal nutrition is important for brain maturation during childhood and adolescence.

  3. Slice-to-Volume Nonrigid Registration of Histological Sections to MR Images of the Human Brain

    Science.gov (United States)

    Osechinskiy, Sergey; Kruggel, Frithjof

    2011-01-01

    Registration of histological images to three-dimensional imaging modalities is an important step in quantitative analysis of brain structure, in architectonic mapping of the brain, and in investigation of the pathology of a brain disease. Reconstruction of histology volume from serial sections is a well-established procedure, but it does not address registration of individual slices from sparse sections, which is the aim of the slice-to-volume approach. This study presents a flexible framework for intensity-based slice-to-volume nonrigid registration algorithms with a geometric transformation deformation field parametrized by various classes of spline functions: thin-plate splines (TPS), Gaussian elastic body splines (GEBS), or cubic B-splines. Algorithms are applied to cross-modality registration of histological and magnetic resonance images of the human brain. Registration performance is evaluated across a range of optimization algorithms and intensity-based cost functions. For a particular case of histological data, best results are obtained with a TPS three-dimensional (3D) warp, a new unconstrained optimization algorithm (NEWUOA), and a correlation-coefficient-based cost function. PMID:22567290

  4. Slice-to-Volume Nonrigid Registration of Histological Sections to MR Images of the Human Brain

    Directory of Open Access Journals (Sweden)

    Sergey Osechinskiy

    2011-01-01

    Full Text Available Registration of histological images to three-dimensional imaging modalities is an important step in quantitative analysis of brain structure, in architectonic mapping of the brain, and in investigation of the pathology of a brain disease. Reconstruction of histology volume from serial sections is a well-established procedure, but it does not address registration of individual slices from sparse sections, which is the aim of the slice-to-volume approach. This study presents a flexible framework for intensity-based slice-to-volume nonrigid registration algorithms with a geometric transformation deformation field parametrized by various classes of spline functions: thin-plate splines (TPS, Gaussian elastic body splines (GEBS, or cubic B-splines. Algorithms are applied to cross-modality registration of histological and magnetic resonance images of the human brain. Registration performance is evaluated across a range of optimization algorithms and intensity-based cost functions. For a particular case of histological data, best results are obtained with a TPS three-dimensional (3D warp, a new unconstrained optimization algorithm (NEWUOA, and a correlation-coefficient-based cost function.

  5. Brain-volume changes in young and middle-aged smokers: a DARTEL-based voxel-based morphometry study.

    Science.gov (United States)

    Peng, Peng; Wang, Zhenchang; Jiang, Tao; Chu, Shuilian; Wang, Shuangkun; Xiao, Dan

    2017-09-01

    Many studies have reported brain volume changes in smokers. However, the volume differences of grey matter (GM) and white matter (WM) in young and middle-aged male smokers with different lifetime tobacco consumption (pack-years) remain uncertain. To examine the brain volume change, especially whether more pack-years smoking would be associated with smaller gray matter and white matter volume in young and middle-aged male smokers. We used a 3T MR scanner and performed Diffeomorphic anatomical registration through exponentiated lie algebra (DARTEL)-based voxel-based morphometry on 53 long-term male smokers (30.72 ± 4.19 years) and 53 male healthy non-smokers (30.83 ± 5.18 years). We separated smokers to light and heavy smokers by pack-years and compared brain volume between different smoker groups and non-smokers. And then we did analysis of covariance (ANCOVA) between smokers and non-smokers by setting pack-years as covariates. Light and heavy smokers all displayed smaller GM and WM volume than non-smokers and more obviously in heavy smokers. The main smaller areas in light and heavy smokers were superior temporal gyrus, insula, middle occipital gyrus, posterior cingulate, precuneus in GM and posterior cingulate, thalamus and midbrain in WM, in addition, we also observed more pack-years smoking was associated with some certain smaller GM and WM volumes by ANCOVA. Young and middle-aged male smokers had many smaller brain areas than non-smokers. Some of these areas' volume had negative correlation with pack-years, while some had not. These may due to different pathophysiological role of smokings. © 2015 John Wiley & Sons Ltd.

  6. Assessment of in vivo MR imaging compared to physical sections in vitro-A quantitative study of brain volumes using stereology

    DEFF Research Database (Denmark)

    Jelsing, Jacob; Rostrup, Egill; Markenroth, Karin

    2005-01-01

    The object of the present study was to compare stereological estimates of brain volumes obtained in vivo by magnetic resonance imaging (MRI) to corresponding volumes from physical sections in vitro. Brains of ten domestic pigs were imaged using a 3-T scanner. The volumes of different brain....... However, although intraobserver difference of MRI estimates was acceptable, the interobserver difference was not. A statistical highly significant difference of 11-41% was observed between observers for volume estimates of all compartments considered. The study demonstrates that quantitative MRI...

  7. Female adolescents with severe substance and conduct problems have substantially less brain gray matter volume.

    Directory of Open Access Journals (Sweden)

    Manish S Dalwani

    Full Text Available Structural neuroimaging studies have demonstrated lower regional gray matter volume in adolescents with severe substance and conduct problems. These research studies, including ours, have generally focused on male-only or mixed-sex samples of adolescents with conduct and/or substance problems. Here we compare gray matter volume between female adolescents with severe substance and conduct problems and female healthy controls of similar ages.Female adolescents with severe substance and conduct problems will show significantly less gray matter volume in frontal regions critical to inhibition (i.e. dorsolateral prefrontal cortex and ventrolateral prefrontal cortex, conflict processing (i.e., anterior cingulate, valuation of expected outcomes (i.e., medial orbitofrontal cortex and the dopamine reward system (i.e. striatum.We conducted whole-brain voxel-based morphometric comparison of structural MR images of 22 patients (14-18 years with severe substance and conduct problems and 21 controls of similar age using statistical parametric mapping (SPM and voxel-based morphometric (VBM8 toolbox. We tested group differences in regional gray matter volume with analyses of covariance, adjusting for age and IQ at p<0.05, corrected for multiple comparisons at whole-brain cluster-level threshold.Female adolescents with severe substance and conduct problems compared to controls showed significantly less gray matter volume in right dorsolateral prefrontal cortex, left ventrolateral prefrontal cortex, medial orbitofrontal cortex, anterior cingulate, bilateral somatosensory cortex, left supramarginal gyrus, and bilateral angular gyrus. Considering the entire brain, patients had 9.5% less overall gray matter volume compared to controls.Female adolescents with severe substance and conduct problems in comparison to similarly aged female healthy controls showed substantially lower gray matter volume in brain regions involved in inhibition, conflict processing, valuation

  8. Early developmental gene enhancers affect subcortical volumes in the adult human brain.

    Science.gov (United States)

    Becker, Martin; Guadalupe, Tulio; Franke, Barbara; Hibar, Derrek P; Renteria, Miguel E; Stein, Jason L; Thompson, Paul M; Francks, Clyde; Vernes, Sonja C; Fisher, Simon E

    2016-05-01

    Genome-wide association screens aim to identify common genetic variants contributing to the phenotypic variability of complex traits, such as human height or brain morphology. The identified genetic variants are mostly within noncoding genomic regions and the biology of the genotype-phenotype association typically remains unclear. In this article, we propose a complementary targeted strategy to reveal the genetic underpinnings of variability in subcortical brain volumes, by specifically selecting genomic loci that are experimentally validated forebrain enhancers, active in early embryonic development. We hypothesized that genetic variation within these enhancers may affect the development and ultimately the structure of subcortical brain regions in adults. We tested whether variants in forebrain enhancer regions showed an overall enrichment of association with volumetric variation in subcortical structures of >13,000 healthy adults. We observed significant enrichment of genomic loci that affect the volume of the hippocampus within forebrain enhancers (empirical P = 0.0015), a finding which robustly passed the adjusted threshold for testing of multiple brain phenotypes (cutoff of P < 0.0083 at an alpha of 0.05). In analyses of individual single nucleotide polymorphisms (SNPs), we identified an association upstream of the ID2 gene with rs7588305 and variation in hippocampal volume. This SNP-based association survived multiple-testing correction for the number of SNPs analyzed but not for the number of subcortical structures. Targeting known regulatory regions offers a way to understand the underlying biology that connects genotypes to phenotypes, particularly in the context of neuroimaging genetics. This biology-driven approach generates testable hypotheses regarding the functional biology of identified associations. Hum Brain Mapp 37:1788-1800, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Volume of the crocodilian brain and endocast during ontogeny

    Czech Academy of Sciences Publication Activity Database

    Jirák, D.; Janáček, Jiří

    2017-01-01

    Roč. 12, č. 6 (2017), č. článku e0178491. E-ISSN 1932-6203 R&D Projects: GA ČR(CZ) GAP302/12/1207; GA ČR(CZ) GA13-12412S Institutional support: RVO:67985823 Keywords : brain volume * endoneurocranium * crocodilians * magnetic resonance imaging Subject RIV: EA - Cell Biology OBOR OECD: Developmental biology Impact factor: 2.806, year: 2016

  10. Regional Differences in Brain Volume Predict the Acquisition of Skill in a Complex Real-Time Strategy Videogame

    Science.gov (United States)

    Basak, Chandramallika; Voss, Michelle W.; Erickson, Kirk I.; Boot, Walter R.; Kramer, Arthur F.

    2011-01-01

    Previous studies have found that differences in brain volume among older adults predict performance in laboratory tasks of executive control, memory, and motor learning. In the present study we asked whether regional differences in brain volume as assessed by the application of a voxel-based morphometry technique on high resolution MRI would also…

  11. Genetic contributions to human brain morphology and intelligence

    DEFF Research Database (Denmark)

    Hulshoff Pol, HE; Schnack, HG; Posthuma, D

    2006-01-01

    Variation in gray matter (GM) and white matter (WM) volume of the adult human brain is primarily genetically determined. Moreover, total brain volume is positively correlated with general intelligence, and both share a common genetic origin. However, although genetic effects on morphology...... of specific GM areas in the brain have been studied, the heritability of focal WM is unknown. Similarly, it is unresolved whether there is a common genetic origin of focal GM and WM structures with intelligence. We explored the genetic influence on focal GM and WM densities in magnetic resonance brain images...

  12. Brain tissues volume measurements from 2D MRI using parametric approach

    Science.gov (United States)

    L'vov, A. A.; Toropova, O. A.; Litovka, Yu. V.

    2018-04-01

    The purpose of the paper is to propose a fully automated method of volume assessment of structures within human brain. Our statistical approach uses maximum interdependency principle for decision making process of measurements consistency and unequal observations. Detecting outliers performed using maximum normalized residual test. We propose a statistical model which utilizes knowledge of tissues distribution in human brain and applies partial data restoration for precision improvement. The approach proposes completed computationally efficient and independent from segmentation algorithm used in the application.

  13. Regional differences in brain volume predict the acquisition of skill in a complex real-time strategy videogame.

    Science.gov (United States)

    Basak, Chandramallika; Voss, Michelle W; Erickson, Kirk I; Boot, Walter R; Kramer, Arthur F

    2011-08-01

    Previous studies have found that differences in brain volume among older adults predict performance in laboratory tasks of executive control, memory, and motor learning. In the present study we asked whether regional differences in brain volume as assessed by the application of a voxel-based morphometry technique on high resolution MRI would also be useful in predicting the acquisition of skill in complex tasks, such as strategy-based video games. Twenty older adults were trained for over 20 h to play Rise of Nations, a complex real-time strategy game. These adults showed substantial improvements over the training period in game performance. MRI scans obtained prior to training revealed that the volume of a number of brain regions, which have been previously associated with subsets of the trained skills, predicted a substantial amount of variance in learning on the complex game. Thus, regional differences in brain volume can predict learning in complex tasks that entail the use of a variety of perceptual, cognitive and motor processes. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Comparison of automated brain volumetry methods with stereology in children aged 2 to 3 years

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Kristina N. [University Children' s Hospital of Zurich, Center for MR Research, Zurich (Switzerland); University Children' s Hospital, Pediatric Cardiology, Zurich (Switzerland); Latal, Beatrice [University Children' s Hospital, Child Development Center, Zurich (Switzerland); University Children' s Hospital, Children' s Research Center, Zurich (Switzerland); Knirsch, Walter [University Children' s Hospital, Pediatric Cardiology, Zurich (Switzerland); University Children' s Hospital, Children' s Research Center, Zurich (Switzerland); Scheer, Ianina [University Children' s Hospital, Department for Diagnostic Neuroradiology, Zurich (Switzerland); Rhein, Michael von [University Children' s Hospital, Child Development Center, Zurich (Switzerland); Reich, Bettina; Bauer, Juergen; Gummel, Kerstin [Justus-Liebig University, Pediatric Heart Center, University Hospital Giessen, Giessen (Germany); Roberts, Neil [University of Edinburgh, Clinical Research and Imaging Centre (CRIC), The Queens Medical Research Institute (QMRI), Edinburgh (United Kingdom); O' Gorman Tuura, Ruth [University Children' s Hospital of Zurich, Center for MR Research, Zurich (Switzerland); University Children' s Hospital, Children' s Research Center, Zurich (Switzerland)

    2016-09-15

    The accurate and precise measurement of brain volumes in young children is important for early identification of children with reduced brain volumes and an increased risk for neurodevelopmental impairment. Brain volumes can be measured from cerebral MRI (cMRI), but most neuroimaging tools used for cerebral segmentation and volumetry were developed for use in adults and have not been validated in infants or young children. Here, we investigate the feasibility and accuracy of three automated software methods (i.e., SPM, FSL, and FreeSurfer) for brain volumetry in young children and compare the measures with corresponding volumes obtained using the Cavalieri method of modern design stereology. Cerebral MRI data were collected from 21 children with a complex congenital heart disease (CHD) before Fontan procedure, at a median age of 27 months (range 20.9-42.4 months). Data were segmented with SPM, FSL, and FreeSurfer, and total intracranial volume (ICV) and total brain volume (TBV) were compared with corresponding measures obtained using the Cavalieri method. Agreement between the estimated brain volumes (ICV and TBV) relative to the gold standard stereological volumes was strongest for FreeSurfer (p < 0.001) and moderate for SPM segment (ICV p = 0.05; TBV p = 0.006). No significant association was evident between ICV and TBV obtained using SPM NewSegment and FSL FAST and the corresponding stereological volumes. FreeSurfer provides an accurate method for measuring brain volumes in young children, even in the presence of structural brain abnormalities. (orig.)

  15. Comparison of automated brain volumetry methods with stereology in children aged 2 to 3 years

    International Nuclear Information System (INIS)

    Mayer, Kristina N.; Latal, Beatrice; Knirsch, Walter; Scheer, Ianina; Rhein, Michael von; Reich, Bettina; Bauer, Juergen; Gummel, Kerstin; Roberts, Neil; O'Gorman Tuura, Ruth

    2016-01-01

    The accurate and precise measurement of brain volumes in young children is important for early identification of children with reduced brain volumes and an increased risk for neurodevelopmental impairment. Brain volumes can be measured from cerebral MRI (cMRI), but most neuroimaging tools used for cerebral segmentation and volumetry were developed for use in adults and have not been validated in infants or young children. Here, we investigate the feasibility and accuracy of three automated software methods (i.e., SPM, FSL, and FreeSurfer) for brain volumetry in young children and compare the measures with corresponding volumes obtained using the Cavalieri method of modern design stereology. Cerebral MRI data were collected from 21 children with a complex congenital heart disease (CHD) before Fontan procedure, at a median age of 27 months (range 20.9-42.4 months). Data were segmented with SPM, FSL, and FreeSurfer, and total intracranial volume (ICV) and total brain volume (TBV) were compared with corresponding measures obtained using the Cavalieri method. Agreement between the estimated brain volumes (ICV and TBV) relative to the gold standard stereological volumes was strongest for FreeSurfer (p < 0.001) and moderate for SPM segment (ICV p = 0.05; TBV p = 0.006). No significant association was evident between ICV and TBV obtained using SPM NewSegment and FSL FAST and the corresponding stereological volumes. FreeSurfer provides an accurate method for measuring brain volumes in young children, even in the presence of structural brain abnormalities. (orig.)

  16. Normalized regional brain atrophy measurements in multiple sclerosis

    International Nuclear Information System (INIS)

    Zivadinov, Robert; Locatelli, Laura; Stival, Barbara; Bratina, Alessio; Nasuelli, Davide; Zorzon, Marino; Grop, Attilio; Brnabic-Razmilic, Ozana

    2003-01-01

    There is still a controversy regarding the best regional brain atrophy measurements in multiple sclerosis (MS) studies. The aim of this study was to establish whether, in a cross-sectional study, the normalized measurements of regional brain atrophy correlate better with the MRI-defined regional brain lesions than the absolute measurements of regional brain atrophy. We assessed 45 patients with clinically definite relapsing-remitting (RR) MS (median disease duration 12 years), and measured T1-lesion load (LL) and T2-LL of frontal lobes and pons, using a reproducible semi-automated technique. The regional brain parenchymal volume (RBPV) of frontal lobes and pons was obtained by use of a computerized interactive program, which incorporates semi-automated and automated segmentation processes. A normalized measurement, the regional brain parenchymal fraction (RBPF), was calculated as the ratio of RBPV to the total volume of the parenchyma and the cerebrospinal fluid (CSF) in the frontal lobes and in the region of the pons. The total regional brain volume fraction (TRBVF) was obtained after we had corrected for the total volume of the parenchyma and the CSF in the frontal lobes and in the region of the pons for the total intracranial volume. The mean coefficient of variation (CV) for RBPF of the pons was 1% for intra-observer reproducibility and 1.4% for inter-observer reproducibility. Generally, the normalized measurements of regional brain atrophy correlated with regional brain volumes and disability better than did the absolute measurements. RBPF and TRBVF correlated with T2-LL of the pons (r=-0.37, P=0.011, and r= -0.40, P=0.0005 respectively) and with T1-LL of the pons (r=-0.27, P=0.046, and r=-0.31, P=0.04, respectively), whereas RBPV did not (r=-0.18, P = NS). T1-LL of the frontal lobes was related to RBPF (r=-0.32, P=0.033) and TRBVF (r=-0.29, P=0.05), but not to RBPV (R=-0.27, P= NS). There was only a trend of correlation between T2-LL of the frontal lobes and

  17. Genetic influences on individual differences in longitudinal changes in global and subcortical brain volumes: Results of the ENIGMA plasticity working group.

    Science.gov (United States)

    Brouwer, Rachel M; Panizzon, Matthew S; Glahn, David C; Hibar, Derrek P; Hua, Xue; Jahanshad, Neda; Abramovic, Lucija; de Zubicaray, Greig I; Franz, Carol E; Hansell, Narelle K; Hickie, Ian B; Koenis, Marinka M G; Martin, Nicholas G; Mather, Karen A; McMahon, Katie L; Schnack, Hugo G; Strike, Lachlan T; Swagerman, Suzanne C; Thalamuthu, Anbupalam; Wen, Wei; Gilmore, John H; Gogtay, Nitin; Kahn, René S; Sachdev, Perminder S; Wright, Margaret J; Boomsma, Dorret I; Kremen, William S; Thompson, Paul M; Hulshoff Pol, Hilleke E

    2017-09-01

    Structural brain changes that occur during development and ageing are related to mental health and general cognitive functioning. Individuals differ in the extent to which their brain volumes change over time, but whether these differences can be attributed to differences in their genotypes has not been widely studied. Here we estimate heritability (h 2 ) of changes in global and subcortical brain volumes in five longitudinal twin cohorts from across the world and in different stages of the lifespan (N = 861). Heritability estimates of brain changes were significant and ranged from 16% (caudate) to 42% (cerebellar gray matter) for all global and most subcortical volumes (with the exception of thalamus and pallidum). Heritability estimates of change rates were generally higher in adults than in children suggesting an increasing influence of genetic factors explaining individual differences in brain structural changes with age. In children, environmental influences in part explained individual differences in developmental changes in brain structure. Multivariate genetic modeling showed that genetic influences of change rates and baseline volume significantly overlapped for many structures. The genetic influences explaining individual differences in the change rate for cerebellum, cerebellar gray matter and lateral ventricles were independent of the genetic influences explaining differences in their baseline volumes. These results imply the existence of genetic variants that are specific for brain plasticity, rather than brain volume itself. Identifying these genes may increase our understanding of brain development and ageing and possibly have implications for diseases that are characterized by deviant developmental trajectories of brain structure. Hum Brain Mapp 38:4444-4458, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  18. Identification of common variants associated with human hippocampal and intracranial volumes

    Science.gov (United States)

    Stein, Jason L; Medland, Sarah E; Vasquez, Alejandro Arias; Hibar, Derrek P; Senstad, Rudy E; Winkler, Anderson M; Toro, Roberto; Appel, Katja; Bartecek, Richard; Bergmann, Ørjan; Bernard, Manon; Brown, Andrew A; Cannon, Dara M; Chakravarty, M Mallar; Christoforou, Andrea; Domin, Martin; Grimm, Oliver; Hollinshead, Marisa; Holmes, Avram J; Homuth, Georg; Hottenga, Jouke-Jan; Langan, Camilla; Lopez, Lorna M; Hansell, Narelle K; Hwang, Kristy S; Kim, Sungeun; Laje, Gonzalo; Lee, Phil H; Liu, Xinmin; Loth, Eva; Lourdusamy, Anbarasu; Mattingsdal, Morten; Mohnke, Sebastian; Maniega, Susana Muñoz; Nho, Kwangsik; Nugent, Allison C; O’Brien, Carol; Papmeyer, Martina; Pütz, Benno; Ramasamy, Adaikalavan; Rasmussen, Jerod; Rijpkema, Mark; Risacher, Shannon L; Roddey, J Cooper; Rose, Emma J; Ryten, Mina; Shen, Li; Sprooten, Emma; Strengman, Eric; Teumer, Alexander; Trabzuni, Daniah; Turner, Jessica; van Eijk, Kristel; van Erp, Theo G M; van Tol, Marie-Jose; Wittfeld, Katharina; Wolf, Christiane; Woudstra, Saskia; Aleman, Andre; Alhusaini, Saud; Almasy, Laura; Binder, Elisabeth B; Brohawn, David G; Cantor, Rita M; Carless, Melanie A; Corvin, Aiden; Czisch, Michael; Curran, Joanne E; Davies, Gail; de Almeida, Marcio A A; Delanty, Norman; Depondt, Chantal; Duggirala, Ravi; Dyer, Thomas D; Erk, Susanne; Fagerness, Jesen; Fox, Peter T; Freimer, Nelson B; Gill, Michael; Göring, Harald H H; Hagler, Donald J; Hoehn, David; Holsboer, Florian; Hoogman, Martine; Hosten, Norbert; Jahanshad, Neda; Johnson, Matthew P; Kasperaviciute, Dalia; Kent, Jack W; Kochunov, Peter; Lancaster, Jack L; Lawrie, Stephen M; Liewald, David C; Mandl, René; Matarin, Mar; Mattheisen, Manuel; Meisenzahl, Eva; Melle, Ingrid; Moses, Eric K; Mühleisen, Thomas W; Nauck, Matthias; Nöthen, Markus M; Olvera, Rene L; Pandolfo, Massimo; Pike, G Bruce; Puls, Ralf; Reinvang, Ivar; Rentería, Miguel E; Rietschel, Marcella; Roffman, Joshua L; Royle, Natalie A; Rujescu, Dan; Savitz, Jonathan; Schnack, Hugo G; Schnell, Knut; Seiferth, Nina; Smith, Colin; Steen, Vidar M; Valdés Hernández, Maria C; Van den Heuvel, Martijn; van der Wee, Nic J; Van Haren, Neeltje E M; Veltman, Joris A; Völzke, Henry; Walker, Robert; Westlye, Lars T; Whelan, Christopher D; Agartz, Ingrid; Boomsma, Dorret I; Cavalleri, Gianpiero L; Dale, Anders M; Djurovic, Srdjan; Drevets, Wayne C; Hagoort, Peter; Hall, Jeremy; Heinz, Andreas; Jack, Clifford R; Foroud, Tatiana M; Le Hellard, Stephanie; Macciardi, Fabio; Montgomery, Grant W; Poline, Jean Baptiste; Porteous, David J; Sisodiya, Sanjay M; Starr, John M; Sussmann, Jessika; Toga, Arthur W; Veltman, Dick J; Walter, Henrik; Weiner, Michael W; Bis, Joshua C; Ikram, M Arfan; Smith, Albert V; Gudnason, Vilmundur; Tzourio, Christophe; Vernooij, Meike W; Launer, Lenore J; DeCarli, Charles; Seshadri, Sudha; Andreassen, Ole A; Apostolova, Liana G; Bastin, Mark E; Blangero, John; Brunner, Han G; Buckner, Randy L; Cichon, Sven; Coppola, Giovanni; de Zubicaray, Greig I; Deary, Ian J; Donohoe, Gary; de Geus, Eco J C; Espeseth, Thomas; Fernández, Guillén; Glahn, David C; Grabe, Hans J; Hardy, John; Hulshoff Pol, Hilleke E; Jenkinson, Mark; Kahn, René S; McDonald, Colm; McIntosh, Andrew M; McMahon, Francis J; McMahon, Katie L; Meyer-Lindenberg, Andreas; Morris, Derek W; Müller-Myhsok, Bertram; Nichols, Thomas E; Ophoff, Roel A; Paus, Tomas; Pausova, Zdenka; Penninx, Brenda W; Potkin, Steven G; Sämann, Philipp G; Saykin, Andrew J; Schumann, Gunter; Smoller, Jordan W; Wardlaw, Joanna M; Weale, Michael E; Martin, Nicholas G; Franke, Barbara; Wright, Margaret J; Thompson, Paul M

    2013-01-01

    Identifying genetic variants influencing human brain structures may reveal new biological mechanisms underlying cognition and neuropsychiatric illness. The volume of the hippocampus is a biomarker of incipient Alzheimer’s disease1,2 and is reduced in schizophrenia3, major depression4 and mesial temporal lobe epilepsy5. Whereas many brain imaging phenotypes are highly heritable6,7, identifying and replicating genetic influences has been difficult, as small effects and the high costs of magnetic resonance imaging (MRI) have led to underpowered studies. Here we report genome-wide association meta-analyses and replication for mean bilateral hippocampal, total brain and intracranial volumes from a large multinational consortium. The intergenic variant rs7294919 was associated with hippocampal volume (12q24.22; N = 21,151; P = 6.70 × 10−16) and the expression levels of the positional candidate gene TESC in brain tissue. Additionally, rs10784502, located within HMGA2, was associated with intracranial volume (12q14.3; N = 15,782; P = 1.12 × 10−12). We also identified a suggestive association with total brain volume at rs10494373 within DDR2 (1q23.3; N = 6,500; P = 5.81 × 10−7). PMID:22504417

  19. The Effect of Structured Exercise Intervention on Intensity and Volume of Total Physical Activity

    Directory of Open Access Journals (Sweden)

    Niko Wasenius

    2014-12-01

    Full Text Available This study aimed to investigate the effects of a 12-week structured exercise intervention on total physical activity and its subcategories. Twenty-three overweight or obese middle aged men with impaired glucose regulation were randomized into a 12-week Nordic walking group, a power-type resistance training group, and a non-exercise control group. Physical activity was measured with questionnaires before the intervention (1–4 weeks and during the intervention (1–12 weeks and was expressed in metabolic equivalents of task. No significant change in the volume of total physical activity between or within the groups was observed (p > 0.050. The volume of total leisure-time physical activity (structured exercises + non-structured leisure-time physical activity increased significantly in the Nordic walking group (p 0.050 compared to the control group. In both exercise groups increase in the weekly volume of total leisure-time physical activity was inversely associated with the volume of non-leisure-time physical activities. In conclusion, structured exercise intervention did not increase the volume of total physical activity. Albeit, endurance training can increase the volume of high intensity physical activities, however it is associated with compensatory decrease in lower intensity physical activities. To achieve effective personalized exercise program, individuality in compensatory behavior should be recognised.

  20. Preliminary application of voxel-based morphometry technique on brain changes in neuromyelitis

    International Nuclear Information System (INIS)

    Xiao Hui; Ma Lin; Chen Ziqian; Lou Xin; Chen Zhiye

    2011-01-01

    Objective: To investigate the changes of brain volumes in neuromyelitis optica (NMO) patients using voxel-based morphometry (VBM) method, and preliminarily explore the pattern of cerebral anatomical impairment. Methods: Twenty-three clinically defined NMO patients and 15 gender and age matched healthy volunteers underwent 3-dimensional (3D) fast spoiled gradient echo (FSPGR) sequence scanning on 3.0 Tesla MR system. Raw data was processed and analyzed using statistical parametric mapping (SPM) 5. Whole brain volumes included grey matter volume (GMV), white matter volume (WMV), total intracranial volume (TIV), grey matter fraction (GMF), white matter fraction (WMF), brain tissue fraction (BTF) and regional brain volumes between the two groups were compared by independent samples t-test and an Pearson were performed to compare the regional brain volumes and the ages. Results: GMV of NMO group [(610.2±55.0) ml] was significantly decreased comparing to healthy control group [(657.2±36.3) ml] (t=-2.915, P<0.05). The age of NMO patients [(40±9) years old] showed negative correlation with GMF [(42.5±2.6) %] (r=-0.673, P<0.05). Regional brain volume analysis showed decreased GMV in left insula and bilateral posterior cingutates in NMO patients, while decreased WMV was found in left frontal and left parietal white matter. Conclusion: VBM could detect brain volume changes sensitively. Total grey matter volume in NMO patients was decreased comparing to HC group. Regional grey matter atrophy in NMO patients occurred in left insular and bilateral posterior cingutates, regional white matter atrophy occurred in left frontal and left parietal lobe. (authors)

  1. Fully-automated computer-assisted method of CT brain scan analysis for the measurement of cerebrospinal fluid spaces and brain absorption density

    Energy Technology Data Exchange (ETDEWEB)

    Baldy, R.E.; Brindley, G.S.; Jacobson, R.R.; Reveley, M.A.; Lishman, W.A.; Ewusi-Mensah, I.; Turner, S.W.

    1986-03-01

    Computer-assisted methods of CT brain scan analysis offer considerable advantages over visual inspection, particularly in research; and several semi-automated methods are currently available. A new computer-assisted program is presented which provides fully automated processing of CT brain scans, depending on ''anatomical knowledge'' of where cerebrospinal fluid (CSF)-containing spaces are likely to lie. After identifying these regions of interest quantitative estimates are then provided of CSF content in each slice in cisterns, ventricles, Sylvian fissure and interhemispheric fissure. Separate measures are also provided of mean brain density in each slice. These estimates can be summated to provide total ventricular and total brain volumes. The program shows a high correlation with measures derived from mechanical planimetry and visual grading procedures, also when tested against a phantom brain of known ventricular volume. The advantages and limitations of the present program are discussed.

  2. Does early tetralogy of Fallot total correction give better final lung volumes?

    Science.gov (United States)

    Sadeghi, Hasan Allah; Miri, Seyed Reza; Bakhshandeh, Hooman; Mirmesdagh, Yalda; Paziraee, Nazita

    2013-06-01

    Pulmonary blood flow may affect lung development in adulthood. Early total correction of tetralogy of Fallot may affect development of final lung volumes. We evaluated the effect of age at total correction on lung volumes years after the operation. In a retrospective cohort study on patients with totally corrected tetralogy of Fallot (mean age, 13.40 years at the time of follow-up), forced vital capacity, slow vital capacity, forced expiratory volume in 1 s, and other parameters were measured 154.8 ± 46.25 months after the operation. Comparison were made of 3 groups: ≤2-, 2-8-, and >8-years old at the time of total correction surgery. Among 322 enrolled patients, the mean values of the follow-up spirometry results in ≤2-, 2-8-, >8-year-olds and the percentage of predicted values were respectively: vital capacity: 4.46 ± 0.57 L (107% ± 10.96%), 3.89 ± 0.58 L (91.10% ± 12.25%), 3.25 ± 0.48 L (82.35% ± 10.62%), p volume in 1 s: 4.22 ± 0.63 L (104.84% ± 13.64%), 3.66 ± 0.58 L (90.61% ± 12.59%), 3.02 ± 0.48 L (84.31% ± 12%), p volumes and capacities. It is better to consider total correction for all tetralogy of Fallot patients below 2-years old, or at least below 8-years old, if it is technically possible.

  3. A longitudinal analysis of regional brain volumes in macaques exposed to X-irradiation in early gestation.

    Directory of Open Access Journals (Sweden)

    Kristina Aldridge

    Full Text Available Early gestation represents a period of vulnerability to environmental insult that has been associated with adult psychiatric disease. However, little is known about how prenatal perturbation translates into adult brain dysfunction. Here, we use a longitudinal study design to examine the effects of disruption of early gestational neurogenesis on brain volume in the non-human primate.Five Rhesus macaques were exposed to x-irradiation in early gestation (E30-E41, and four control monkeys were sham-irradiated at comparable ages. Whole brain magnetic resonance imaging was performed at 6 months, 12 months, and 3 and 5 years of age. Volumes of whole cerebrum, cortical gray matter, caudate, putamen, and thalamus were estimated using semi-automated segmentation methods and high dimensional brain mapping. Volume reductions spanning all ages were observed in irradiated monkeys in the putamen (15-24%, p = 0.01 and in cortical gray matter (6-15%, p = 0.01. Upon covarying for whole cerebral volume, group differences were reduced to trend levels (putamen: p = 0.07; cortical gray matter: p = 0.08. No group-by-age effects were significant.Due to the small number of observations, the conclusions drawn from this study must be viewed as tentative. Early gestational irradiation may result in non-uniform reduction of gray matter, mainly affecting the putamen and cerebral cortex. This may be relevant to understanding how early prenatal environmental insult could lead to brain morphological differences in neurodevelopmental diseases.

  4. [Total brain T2-hyperintense lesion-volume and the axonal damage in the normal-appearing white matter of brainstem in early lapsing-remitting multiple sclerosis].

    Science.gov (United States)

    Pascual-Lozano, A M; Martínez-Bisbal, M C; Boscá-Blasco, I; Valero-Merino, C; Coret-Ferrer, F; Martí-Bonmatí, L; Martínez-Granados, B; Celda, B; Casanova-Estruch, B

    To evaluate the relationship between the total brain T2-hyperintense lesion volume (TBT2LV) and the axonal damage in the normal-appearing white matter of brainstem measured by 1H-MRS in a group of early relapsing-remitting multiple sclerosis patients. 40 relapsing-remitting multiple sclerosis patients and ten sex- and age-matched healthy subjects were prospectively studied for two years. T2-weighted MR and 1H-MRS imaging were acquired at time of recruitment and at year two. The TBT2LV was calculated with a semiautomatic program; N-acetylaspartate (NAA), creatine (Cr) and choline (Cho) resonances areas were integrated with jMRUI program and the ratios were calculated for four volume elements that represented the brainstem. At basal study we obtained an axonal loss (as a decrement of NAA/ Cho ratio) in the group of patients compared with controls (p = 0.017); this axonal loss increased at the second year of the follow-up for patients (NAA/Cho decrease, p = 0.004, and NAA/Cr decrease, p = 0.002) meanwhile control subjects had no significant metabolic changes. Higher lesion load was correlated with a poor clinical outcome, being the correlation between the basal TBT2LV and the Expanded Disability Status Scale at second year (r = 0.299; p = 0.05). Besides, axonal loss was not homogeneous for all multiple sclerosis patients, being stronger in the subgroup of patients with high basal TBT2LV (p = 0.043; ANOVA). Our data suggest that axonal damage is early in multiple sclerosis and higher in patients high basal TBT2LV, suggesting a possible relationship between these two phenomena.

  5. The role of testosterone and estradiol in brain volume changes across adolescence: a longitudinal structural MRI study.

    Science.gov (United States)

    Herting, Megan M; Gautam, Prapti; Spielberg, Jeffrey M; Kan, Eric; Dahl, Ronald E; Sowell, Elizabeth R

    2014-11-01

    It has been postulated that pubertal hormones may drive some neuroanatomical changes during adolescence, and may do so differently in girls and boys. Here, we use growth curve modeling to directly assess how sex hormones [testosterone (T) and estradiol (E₂)] relate to changes in subcortical brain volumes utilizing a longitudinal design. 126 adolescents (63 girls), ages 10 to 14, were imaged and restudied ∼2 years later. We show, for the first time, that best-fit growth models are distinctly different when using hormones as compared to a physical proxy of pubertal maturation (Tanner Stage) or age, to predict brain development. Like Tanner Stage, T and E₂ predicted white matter and right amygdala growth across adolescence in both sexes, independent of age. Tanner Stage also explained decreases in both gray matter and caudate volumes, whereas E₂ explained only gray matter decreases and T explained only caudate volume decreases. No pubertal measures were related to hippocampus development. Although specificity was seen, sex hormones had strikingly similar relationships with white matter, gray matter, right amygdala, and bilateral caudate volumes, with larger changes in brain volume seen at early pubertal maturation (as indexed by lower hormone levels), followed by less robust, or even reversals in growth, by late puberty. These novel longitudinal findings on the relationship between hormones and brain volume change represent crucial first steps toward understanding which aspects of puberty influence neurodevelopment. Copyright © 2014 Wiley Periodicals, Inc.

  6. Is lactate a volume transmitter of metabolic states of the brain?

    DEFF Research Database (Denmark)

    Bergersen, Linda H; Gjedde, Albert

    2012-01-01

    We present the perspective that lactate is a volume transmitter of cellular signals in brain that acutely and chronically regulate the energy metabolism of large neuronal ensembles. From this perspective, we interpret recent evidence to mean that lactate transmission serves the maintenance...... of network metabolism by two different mechanisms, one by regulating the formation of cAMP via the lactate receptor GPR81, the other by adjusting the NADH/NAD(+) redox ratios, both linked to the maintenance of brain energy turnover and possibly cerebral blood flow. The role of lactate as mediator...

  7. White Matter Volume Predicts Language Development in Congenital Heart Disease.

    Science.gov (United States)

    Rollins, Caitlin K; Asaro, Lisa A; Akhondi-Asl, Alireza; Kussman, Barry D; Rivkin, Michael J; Bellinger, David C; Warfield, Simon K; Wypij, David; Newburger, Jane W; Soul, Janet S

    2017-02-01

    To determine whether brain volume is reduced at 1 year of age and whether these volumes are associated with neurodevelopment in biventricular congenital heart disease (CHD) repaired in infancy. Infants with biventricular CHD (n = 48) underwent brain magnetic resonance imaging (MRI) and neurodevelopmental testing with the Bayley Scales of Infant Development-II and the MacArthur-Bates Communicative Development Inventories at 1 year of age. A multitemplate based probabilistic segmentation algorithm was applied to volumetric MRI data. We compared volumes with those of 13 healthy control infants of comparable ages. In the group with CHD, we measured Spearman correlations between neurodevelopmental outcomes and the residuals from linear regression of the volumes on corrected chronological age at MRI and sex. Compared with controls, infants with CHD had reductions of 54 mL in total brain (P = .009), 40 mL in cerebral white matter (P Development-II scores but did correlate positively with MacArthur-Bates Communicative Development Inventory language development. Infants with biventricular CHD show total brain volume reductions at 1 year of age, driven by differences in cerebral white matter. White matter volume correlates with language development, but not broader developmental indices. These findings suggest that abnormalities in white matter development detected months after corrective heart surgery may contribute to language impairment. ClinicalTrials.gov: NCT00006183. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Associations between the self-reported frequency of hearing chemical alarms in theater and regional brain volume in Gulf War Veterans.

    Science.gov (United States)

    Chao, Linda L; Reeb, Rosemary; Esparza, Iva L; Abadjian, Linda R

    2016-03-01

    We previously reported evidence of reduced cortical gray matter (GM), white matter (WM), and hippocampal volume in Gulf War (GW) veterans with predicted exposure to low-levels of nerve agent according to the 2000 Khamisiyah plume model analysis. Because there is suggestive evidence that other nerve agent exposures may have occurred during the Gulf War, we examined the association between the self-reported frequency of hearing chemical alarms sound during deployment in the Gulf War and regional brain volume in GW veterans. Ninety consecutive GW veterans (15 female, mean age: 52±8years) participating in a VA-funded study underwent structural magnetic resonance imaging (MRI) on a 3T scanner. Freesurfer (version 5.1) was used to obtain regional measures of cortical GM, WM, hippocampal, and insula volume. Multiple linear regression was used to determine the association between the self-reported frequencies of hearing chemical alarms during the Gulf War and regional brain volume. There was an inverse association between the self-reported frequency of hearing chemical alarms sound and total cortical GM (adjusted p=0.007), even after accounting for potentially confounding demographic and clinical variables, the veterans' current health status, and other concurrent deployment-related exposures that were correlated with hearing chemical alarms. Post-hoc analyses extended the inverse relationship between the frequency of hearing chemical alarms to GM volume in the frontal (adjusted p=0.02), parietal (adjusted p=0.01), and occipital (adjusted p=0.001) lobes. In contrast, regional brain volumes were not significantly associated with predicted exposure to the Khamisiyah plume or with Gulf War Illness status defined by the Kansas or Centers for Disease Control and Prevention criteria. Many veterans reported hearing chemical alarms sound during the Gulf War. The current findings suggest that exposure to substances that triggered those chemical alarms during the Gulf War likely

  9. A fully-automated computer-assisted method of CT brain scan analysis for the measurement of cerebrospinal fluid spaces and brain absorption density

    International Nuclear Information System (INIS)

    Baldy, R.E.; Brindley, G.S.; Jacobson, R.R.; Reveley, M.A.; Lishman, W.A.; Ewusi-Mensah, I.; Turner, S.W.

    1986-01-01

    Computer-assisted methods of CT brain scan analysis offer considerable advantages over visual inspection, particularly in research; and several semi-automated methods are currently available. A new computer-assisted program is presented which provides fully automated processing of CT brain scans, depending on ''anatomical knowledge'' of where cerebrospinal fluid (CSF)-containing spaces are likely to lie. After identifying these regions of interest quantitative estimates are then provided of CSF content in each slice in cisterns, ventricles, Sylvian fissure and interhemispheric fissure. Separate measures are also provided of mean brain density in each slice. These estimates can be summated to provide total ventricular and total brain volumes. The program shows a high correlation with measures derived from mechanical planimetry and visual grading procedures, also when tested against a phantom brain of known ventricular volume. The advantages and limitations of the present program are discussed. (orig.)

  10. An improved approach to reduce partial volume errors in brain SPET

    International Nuclear Information System (INIS)

    Hatton, R.L.; Hatton, B.F.; Michael, G.; Barnden, L.; QUT, Brisbane, QLD; The Queen Elizabeth Hospital, Adelaide, SA

    1999-01-01

    Full text: Limitations in SPET resolution give rise to significant partial volume error (PVE) in small brain structures We have investigated a previously published method (Muller-Gartner et al., J Cereb Blood Flow Metab 1992;16: 650-658) to correct PVE in grey matter using MRI. An MRI is registered and segmented to obtain a grey matter tissue volume which is then smoothed to obtain resolution matched to the corresponding SPET. By dividing the original SPET with this correction map, structures can be corrected for PVE on a pixel-by-pixel basis. Since this approach is limited by space-invariant filtering, modification was made by estimating projections for the segmented MRI and reconstructing these using identical parameters to SPET. The methods were tested on simulated brain scans, reconstructed with the ordered subsets EM algorithm (8,16, 32, 64 equivalent EM iterations) The new method provided better recovery visually. For 32 EM iterations, recovery coefficients were calculated for grey matter regions. The effects of potential errors in the method were examined. Mean recovery was unchanged with one pixel registration error, the maximum error found in most registration programs. Errors in segmentation > 2 pixels results in loss of accuracy for small structures. The method promises to be useful for reducing PVE in brain SPET

  11. A Novel Grey Wave Method for Predicting Total Chinese Trade Volume

    Directory of Open Access Journals (Sweden)

    Kedong Yin

    2017-12-01

    Full Text Available The total trade volume of a country is an important way of appraising its international trade situation. A prediction based on trade volume will help enterprises arrange production efficiently and promote the sustainability of the international trade. Because the total Chinese trade volume fluctuates over time, this paper proposes a Grey wave forecasting model with a Hodrick–Prescott filter (HP filter to forecast it. This novel model first parses time series into long-term trend and short-term cycle. Second, the model uses a general GM (1,1 to predict the trend term and the Grey wave forecasting model to predict the cycle term. Empirical analysis shows that the improved Grey wave prediction method provides a much more accurate forecast than the basic Grey wave prediction method, achieving better prediction results than autoregressive moving average model (ARMA.

  12. Role of cerebral blood volume changes in brain specific-gravity measurements

    International Nuclear Information System (INIS)

    Picozzi, P.; Todd, N.V.; Crockard, A.H.

    1985-01-01

    Cerebral blood volume (CBV) was calculated in gerbils from specific-gravity (SG) changes between normal and saline-perfused brains. Furthermore, changes in CBV were investigated during ischemia using carbon-14-labeled dextran (MW 70,000) as an intravascular marker. Both data were used to evaluate the possible error due to a change in CBV on the measurement of ischemic brain edema by the SG method. The methodological error found was 0.0004 for a 100% CBV change. This error is insignificant, being less than the standard deviation in the SG measured for the gerbil cortex. Thus, CBV changes are not responsible for the SG variations observed during the first phase of ischemia. These variations are better explained as an increase of brain water content during ischemia

  13. A whole brain volumetric approach in overweight/obese children: Examining the association with different physical fitness components and academic performance. The ActiveBrains project.

    Science.gov (United States)

    Esteban-Cornejo, Irene; Cadenas-Sanchez, Cristina; Contreras-Rodriguez, Oren; Verdejo-Roman, Juan; Mora-Gonzalez, Jose; Migueles, Jairo H; Henriksson, Pontus; Davis, Catherine L; Verdejo-Garcia, Antonio; Catena, Andrés; Ortega, Francisco B

    2017-10-01

    Obesity, as compared to normal weight, is associated with detectable structural differences in the brain. To the best of our knowledge, no previous study has examined the association of physical fitness with gray matter volume in overweight/obese children using whole brain analyses. Thus, the aim of this study was to examine the association between the key components of physical fitness (i.e. cardiorespiratory fitness, speed-agility and muscular fitness) and brain structural volume, and to assess whether fitness-related changes in brain volumes are related to academic performance in overweight/obese children. A total of 101 overweight/obese children aged 8-11 years were recruited from Granada, Spain. The physical fitness components were assessed following the ALPHA health-related fitness test battery. T1-weighted images were acquired with a 3.0 T S Magnetom Tim Trio system. Gray matter tissue was calculated using Diffeomorphic Anatomical Registration Through Exponentiated Lie algebra (DARTEL). Academic performance was assessed by the Batería III Woodcock-Muñoz Tests of Achievement. All analyses were controlled for sex, peak high velocity offset, parent education, body mass index and total brain volume. The statistical threshold was calculated with AlphaSim and further Hayasaka adjusted to account for the non-isotropic smoothness of structural images. The main results showed that higher cardiorespiratory fitness was related to greater gray matter volumes (P structures; besides, some of these brain structures may be related to better academic performance. Importantly, the identified associations of fitness and gray matter volume were different for each fitness component. These findings suggest that increases in cardiorespiratory fitness and speed-agility may positively influence the development of distinctive brain regions and academic indicators, and thus counteract the harmful effect of overweight and obesity on brain structure during childhood. Copyright

  14. Forecasting on the total volumes of Malaysia's imports and exports by multiple linear regression

    Science.gov (United States)

    Beh, W. L.; Yong, M. K. Au

    2017-04-01

    This study is to give an insight on the doubt of the important of macroeconomic variables that affecting the total volumes of Malaysia's imports and exports by using multiple linear regression (MLR) analysis. The time frame for this study will be determined by using quarterly data of the total volumes of Malaysia's imports and exports covering the period between 2000-2015. The macroeconomic variables will be limited to eleven variables which are the exchange rate of US Dollar with Malaysia Ringgit (USD-MYR), exchange rate of China Yuan with Malaysia Ringgit (RMB-MYR), exchange rate of European Euro with Malaysia Ringgit (EUR-MYR), exchange rate of Singapore Dollar with Malaysia Ringgit (SGD-MYR), crude oil prices, gold prices, producer price index (PPI), interest rate, consumer price index (CPI), industrial production index (IPI) and gross domestic product (GDP). This study has applied the Johansen Co-integration test to investigate the relationship among the total volumes to Malaysia's imports and exports. The result shows that crude oil prices, RMB-MYR, EUR-MYR and IPI play important roles in the total volumes of Malaysia's imports. Meanwhile crude oil price, USD-MYR and GDP play important roles in the total volumes of Malaysia's exports.

  15. The assessment of changes in brain volume using combined linear measurements

    International Nuclear Information System (INIS)

    Gomori, J.M.; Steiner, I.; Melamed, E.; Cooper, G.

    1984-01-01

    All linear measurements employed for evaluation of brain atrophy, were performed on 148 computed tomograms of patients aged 28 to 84 without evidence of any nervous system disorder. These included size of lateral, third and fourth ventricles, width of the Sylvian and frontal interhemispheric fissures and cortical sulci and size of the pre-pontine cistern. Various parameters indicated decrease in brain mass with age. Since the atrophic process is a diffuse phenomenon, integration of several measurements evaluating separate brain regions was made. The bicaudate ratio and the Sylvian fissure ratio (representing both central and cortical atrophy) were combined arithmetically, resulting in a correlation of 0.6390 with age (p<0.0005). With a computed canonical correlation analysis: a formula was obtained which combined measurements of the lateral and third ventricles, the Sylvian fissure and the pre-pontine cistern. This formula yealded a correlation of 0.67795 (p<0.0005). These linear measurements will enable simple and reliable assessment of reduction in brain volume during the normal aging process and in disorders accompanied by brain atrophy. (orig.)

  16. Sex Differences in Brain Volume Are Related to Specific Skills, Not to General Intelligence

    Science.gov (United States)

    Burgaleta, Miguel; Head, Kevin; Alvarez-Linera, Juan; Martinez, Kenia; Escorial, Sergio; Haier, Richard; Colom, Roberto

    2012-01-01

    It has been proposed that males would show higher mean scores than females in general intelligence ("g") because (1) men have, on average, larger brains than women, and (2) brain volume correlates with "g." Here we report a failure to support the conclusion derived from these premises. High resolution MRIs were acquired in a sample of one hundred…

  17. Physical Exercise Habits Correlate with Gray Matter Volume of the Hippocampus in Healthy Adult Humans

    Science.gov (United States)

    Killgore, William D. S.; Olson, Elizabeth A.; Weber, Mareen

    2013-12-01

    Physical activity facilitates neurogenesis of dentate cells in the rodent hippocampus, a brain region critical for memory formation and spatial representation. Recent findings in humans also suggest that aerobic exercise can lead to increased hippocampal volume and enhanced cognitive functioning in children and elderly adults. However, the association between physical activity and hippocampal volume during the period from early adulthood through middle age has not been effectively explored. Here, we correlated the number of minutes of self-reported exercise per week with gray matter volume of the hippocampus using voxel-based morphometry (VBM) in 61 healthy adults ranging from 18 to 45 years of age. After controlling for age, gender, and total brain volume, total minutes of weekly exercise correlated significantly with volume of the right hippocampus. Findings highlight the relationship between regular physical exercise and brain structure during early to middle adulthood.

  18. Regional growth and atlasing of the developing human brain.

    Science.gov (United States)

    Makropoulos, Antonios; Aljabar, Paul; Wright, Robert; Hüning, Britta; Merchant, Nazakat; Arichi, Tomoki; Tusor, Nora; Hajnal, Joseph V; Edwards, A David; Counsell, Serena J; Rueckert, Daniel

    2016-01-15

    Detailed morphometric analysis of the neonatal brain is required to characterise brain development and define neuroimaging biomarkers related to impaired brain growth. Accurate automatic segmentation of neonatal brain MRI is a prerequisite to analyse large datasets. We have previously presented an accurate and robust automatic segmentation technique for parcellating the neonatal brain into multiple cortical and subcortical regions. In this study, we further extend our segmentation method to detect cortical sulci and provide a detailed delineation of the cortical ribbon. These detailed segmentations are used to build a 4-dimensional spatio-temporal structural atlas of the brain for 82 cortical and subcortical structures throughout this developmental period. We employ the algorithm to segment an extensive database of 420 MR images of the developing brain, from 27 to 45weeks post-menstrual age at imaging. Regional volumetric and cortical surface measurements are derived and used to investigate brain growth and development during this critical period and to assess the impact of immaturity at birth. Whole brain volume, the absolute volume of all structures studied, cortical curvature and cortical surface area increased with increasing age at scan. Relative volumes of cortical grey matter, cerebellum and cerebrospinal fluid increased with age at scan, while relative volumes of white matter, ventricles, brainstem and basal ganglia and thalami decreased. Preterm infants at term had smaller whole brain volumes, reduced regional white matter and cortical and subcortical grey matter volumes, and reduced cortical surface area compared with term born controls, while ventricular volume was greater in the preterm group. Increasing prematurity at birth was associated with a reduction in total and regional white matter, cortical and subcortical grey matter volume, an increase in ventricular volume, and reduced cortical surface area. Copyright © 2015 The Authors. Published by

  19. Brain size and white matter content of cerebrospinal tracts determine the upper cervical cord area: evidence from structural brain MRI

    Energy Technology Data Exchange (ETDEWEB)

    Engl, Christina; Arsic, Milan; Boucard, Christine C.; Biberacher, Viola; Nunnemann, Sabine; Muehlau, Mark [Technische Universitaet Muenchen, Department of Neurology, Klinikum rechts der Isar, Munich (Germany); Technische Universitaet Muenchen, TUM-Neuroimaging Center, Klinikum rechts der Isar, Munich (Germany); Schmidt, Paul [Technische Universitaet Muenchen, Department of Neurology, Klinikum rechts der Isar, Munich (Germany); Ludwig-Maximilians-University Muenchen, Department of Statistics, Munich (Germany); Roettinger, Michael [Technische Universitaet Muenchen, Department of Radiology, Klinikum rechts der Isar, Munich (Germany); Muenchner Institut fuer Neuroradiologie, Munich (Germany); Etgen, Thorleif [Technische Universitaet Muenchen, Department of Neurology, Klinikum rechts der Isar, Munich (Germany); Klinikum Traunstein, Department of Neurology, Traunstein (Germany); Koutsouleris, Nikolaos; Meisenzahl, Eva M. [Ludwig-Maximilians-Universitaet Muenchen, Department of Psychiatry and Psychotherapy, Munich (Germany); Reiser, Maximilian [Ludwig-Maximilians-Universitaet, Department of Radiology, Munich (Germany)

    2013-08-15

    Measurement of the upper cervical cord area (UCCA) from brain MRI may be an effective way to quantify spinal cord involvement in neurological disorders such as multiple sclerosis. However, knowledge on the determinants of UCCA in healthy controls (HCs) is limited. In two cohorts of 133 and 285 HCs, we studied the influence of different demographic, body-related, and brain-related parameters on UCCA by simple and partial correlation analyses as well as by voxel-based morphometry (VBM) across both cerebral gray matter (GM) and white matter (WM). First, we confirmed the known but moderate effect of age on UCCA in the older cohort. Second, we studied the correlation of UCCA with sex, body height, and total intracranial volume (TIV). TIV was the only variable that correlated significantly with UCCA after correction for the other variables. Third, we studied the correlation of UCCA with brain-related parameters. Brain volume correlated stronger with UCCA than TIV. Both volumes of the brain tissue compartments GM and WM correlated with UCCA significantly. WM volume explained variance of UCCA after correction for GM volume, whilst the opposite was not observed. Correspondingly, VBM did not yield any brain region, whose GM content correlated significantly with UCCA, whilst cerebral WM content of cerebrospinal tracts strongly correlated with UCCA. This latter effect increased along a craniocaudal gradient. UCCA is mainly determined by brain volume as well as by WM content of cerebrospinal tracts. (orig.)

  20. Age-Modulated Associations between KIBRA, Brain Volume, and Verbal Memory among Healthy Older Adults

    Directory of Open Access Journals (Sweden)

    Ariana Stickel

    2018-01-01

    Full Text Available The resource modulation hypothesis suggests that the influence of genes on cognitive functioning increases with age. The KIBRA single nucleotide polymorphism rs17070145, associated with episodic memory and working memory, has been suggested to follow such a pattern, but few studies have tested this assertion directly. The present study investigated the relationship between KIBRA alleles (T carriers vs. CC homozygotes, cognitive performance, and brain volumes in three groups of cognitively healthy adults—middle aged (ages 52–64, n = 38, young old (ages 65–72, n = 45, and older old (ages 73–92, n = 62—who were carefully matched on potentially confounding variables including apolipoprotein ε4 status and hypertension. Consistent with our prediction, T carriers maintained verbal memory performance with increasing age while CC homozygotes declined. Voxel-based morphometric analysis of magnetic resonance images showed an advantage for T carriers in frontal white matter volume that increased with age. Focusing on the older old group, this advantage for T carriers was also evident in left lingual gyrus gray matter and several additional frontal white matter regions. Contrary to expectations, neither KIBRA nor the interaction between KIBRA and age predicted hippocampal volumes. None of the brain regions investigated showed a CC homozygote advantage. Taken together, these data suggest that KIBRA results in decreased verbal memory performance and lower brain volumes in CC homozygotes compared to T carriers, particularly among the oldest old, consistent with the resource modulation hypothesis.

  1. Brain Tissue Volumes and Perfusion Change with the Number of Optic Neuritis Attacks in Relapsing Neuromyelitis Optica: A Voxel-Based Correlation Study.

    Directory of Open Access Journals (Sweden)

    Carlos A Sánchez-Catasús

    Full Text Available Recent neuroimaging studies show that brain abnormalities in neuromyelitis optica (NMO are more frequent than earlier described. Yet, more research considering multiple aspects of NMO is necessary to better understand these abnormalities. A clinical feature of relapsing NMO (RNMO is that the incremental disability is attack-related. Therefore, association between the attack-related process and neuroimaging might be expected. On the other hand, the immunopathological analysis of NMO lesions has suggested that CNS microvasculature could be an early disease target, which could alter brain perfusion. Brain tissue volume changes accompanying perfusion alteration could also be expected throughout the attack-related process. The aim of this study was to investigate in RNMO patients, by voxel-based correlation analysis, the assumed associations between regional brain white (WMV and grey matter volumes (GMV and/or perfusion on one side, and the number of optic neuritis (ON attacks, myelitis attacks and/or total attacks on the other side. For this purpose, high resolution T1-weighted MRI and perfusion SPECT imaging were obtained in 15 RNMO patients. The results showed negative regional correlations of WMV, GMV and perfusion with the number of ON attacks, involving important components of the visual system, which could be relevant for the comprehension of incremental visual disability in RNMO. We also found positive regional correlation of perfusion with the number of ON attacks, mostly overlapping the brain area where the WMV showed negative correlation. This provides evidence that brain microvasculature is an early disease target and suggests that perfusion alteration could be important in the development of brain structural abnormalities in RNMO.

  2. Whole-brain hippocampal sparing radiation therapy: Volume-modulated arc therapy vs intensity-modulated radiation therapy case study

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Katrina, E-mail: Trinabena23@gmail.com; Lenards, Nishele; Holson, Janice

    2016-04-01

    The hippocampus is responsible for memory and cognitive function. An ongoing phase II clinical trial suggests that sparing dose to the hippocampus during whole-brain radiation therapy can help preserve a patient's neurocognitive function. Progressive research and advancements in treatment techniques have made treatment planning more sophisticated but beneficial for patients undergoing treatment. The aim of this study is to evaluate and compare hippocampal sparing whole-brain (HS-WB) radiation therapy treatment planning techniques using volume-modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT). We randomly selected 3 patients to compare different treatment techniques that could be used for reducing dose to the hippocampal region. We created 2 treatment plans, a VMAT and an IMRT, from each patient's data set and planned on the Eclipse 11.0 treatment planning system (TPS). A total of 6 plans (3 IMRT and 3 VMAT) were created and evaluated for this case study. The physician contoured the hippocampus as per the Radiation Therapy Oncology Group (RTOG) 0933 protocol atlas. The organs at risk (OR) were contoured and evaluated for the plan comparison, which included the spinal cord, optic chiasm, the right and left eyes, lenses, and optic nerves. Both treatment plans produced adequate coverage on the planning target volume (PTV) while significantly reducing dose to the hippocampal region. The VMAT treatment plans produced a more homogenous dose distribution throughout the PTV while decreasing the maximum point dose to the target. However, both treatment techniques demonstrated hippocampal sparing when irradiating the whole brain.

  3. Whole-brain hippocampal sparing radiation therapy: Volume-modulated arc therapy vs intensity-modulated radiation therapy case study

    International Nuclear Information System (INIS)

    Lee, Katrina; Lenards, Nishele; Holson, Janice

    2016-01-01

    The hippocampus is responsible for memory and cognitive function. An ongoing phase II clinical trial suggests that sparing dose to the hippocampus during whole-brain radiation therapy can help preserve a patient's neurocognitive function. Progressive research and advancements in treatment techniques have made treatment planning more sophisticated but beneficial for patients undergoing treatment. The aim of this study is to evaluate and compare hippocampal sparing whole-brain (HS-WB) radiation therapy treatment planning techniques using volume-modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT). We randomly selected 3 patients to compare different treatment techniques that could be used for reducing dose to the hippocampal region. We created 2 treatment plans, a VMAT and an IMRT, from each patient's data set and planned on the Eclipse 11.0 treatment planning system (TPS). A total of 6 plans (3 IMRT and 3 VMAT) were created and evaluated for this case study. The physician contoured the hippocampus as per the Radiation Therapy Oncology Group (RTOG) 0933 protocol atlas. The organs at risk (OR) were contoured and evaluated for the plan comparison, which included the spinal cord, optic chiasm, the right and left eyes, lenses, and optic nerves. Both treatment plans produced adequate coverage on the planning target volume (PTV) while significantly reducing dose to the hippocampal region. The VMAT treatment plans produced a more homogenous dose distribution throughout the PTV while decreasing the maximum point dose to the target. However, both treatment techniques demonstrated hippocampal sparing when irradiating the whole brain.

  4. Visual-motor integration and fine motor skills at 6½ years of age and associations with neonatal brain volumes in children born extremely preterm in Sweden: a population-based cohort study.

    Science.gov (United States)

    Bolk, Jenny; Padilla, Nelly; Forsman, Lea; Broström, Lina; Hellgren, Kerstin; Åden, Ulrika

    2018-02-17

    This exploratory study aimed to investigate associations between neonatal brain volumes and visual-motor integration (VMI) and fine motor skills in children born extremely preterm (EPT) when they reached 6½ years of age. Prospective population-based cohort study in Stockholm, Sweden, during 3 years. All children born before gestational age, 27 weeks, during 2004-2007 in Stockholm, without major morbidities and impairments, and who underwent MRI at term-equivalent age. Brain volumes were calculated using morphometric analyses in regions known to be involved in VMI and fine motor functions. VMI was assessed with The Beery-Buktenica Developmental Test of Visual-Motor Integration-sixth edition and fine motor skills were assessed with the manual dexterity subtest from the Movement Assessment Battery for Children-second edition, at 6½ years. Associations between the brain volumes and VMI and fine motor skills were evaluated using partial correlation, adjusted for total cerebral parenchyma and sex. Out of 107 children born at gestational age skills (r=0.54, P=0.01). Associations were also seen between fine motor skills and the volume of the cerebellum (r=0.42, P=0.02), brainstem (r=0.47, P=0.008) and grey matter (r=-0.38, P=0.04). Neonatal brain volumes in areas known to be involved in VMI and fine motor skills were associated with scores for these two functions when children born EPT without major brain lesions or cerebral palsy were evaluated at 6½ years of age. Establishing clear associations between early brain volume alterations and later VMI and/or fine motor skills could make early interventions possible. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  5. Visual–motor integration and fine motor skills at 6½ years of age and associations with neonatal brain volumes in children born extremely preterm in Sweden: a population-based cohort study

    Science.gov (United States)

    Padilla, Nelly; Forsman, Lea; Broström, Lina; Hellgren, Kerstin; Åden, Ulrika

    2018-01-01

    Objectives This exploratory study aimed to investigate associations between neonatal brain volumes and visual–motor integration (VMI) and fine motor skills in children born extremely preterm (EPT) when they reached 6½ years of age. Setting Prospective population-based cohort study in Stockholm, Sweden, during 3 years. Participants All children born before gestational age, 27 weeks, during 2004–2007 in Stockholm, without major morbidities and impairments, and who underwent MRI at term-equivalent age. Main outcome measures Brain volumes were calculated using morphometric analyses in regions known to be involved in VMI and fine motor functions. VMI was assessed with The Beery-Buktenica Developmental Test of Visual–Motor Integration—sixth edition and fine motor skills were assessed with the manual dexterity subtest from the Movement Assessment Battery for Children—second edition, at 6½ years. Associations between the brain volumes and VMI and fine motor skills were evaluated using partial correlation, adjusted for total cerebral parenchyma and sex. Results Out of 107 children born at gestational age motor skills (r=0.54, P=0.01). Associations were also seen between fine motor skills and the volume of the cerebellum (r=0.42, P=0.02), brainstem (r=0.47, P=0.008) and grey matter (r=−0.38, P=0.04). Conclusions Neonatal brain volumes in areas known to be involved in VMI and fine motor skills were associated with scores for these two functions when children born EPT without major brain lesions or cerebral palsy were evaluated at 6½ years of age. Establishing clear associations between early brain volume alterations and later VMI and/or fine motor skills could make early interventions possible. PMID:29455171

  6. Effects of peripubertal gonadotropin-releasing hormone agonist on brain development in sheep--a magnetic resonance imaging study.

    Science.gov (United States)

    Nuruddin, Syed; Bruchhage, Muriel; Ropstad, Erik; Krogenæs, Anette; Evans, Neil P; Robinson, Jane E; Endestad, Tor; Westlye, Lars T; Madison, Cindee; Haraldsen, Ira Ronit Hebold

    2013-10-01

    In many species sexual dimorphisms in brain structures and functions have been documented. In ovine model, we have previously demonstrated that peri-pubertal pharmacological blockade of gonadotropin releasing hormone (GnRH) action increased sex-differences of executive emotional behavior. The structural substrate of this behavioral alteration however is unknown. In this magnetic resonance image (MRI) study on the same animals, we investigated the effects of GnRH agonist (GnRHa) treatment on the volume of total brain, hippocampus and amygdala. In total 41 brains (17 treated; 10 females and 7 males, and 24 controls; 11 females and 13 males) were included in the MRI study. Image acquisition was performed with 3-T MRI scanner. Segmentation of the amygdala and the hippocampus was done by manual tracing and total gray and white matter volumes were estimated by means of automated brain volume segmentation of the individual T2-weighted MRI volumes. Statistical comparisons were performed with general linear models. Highly significant GnRHa treatment effects were found on the volume of left and right amygdala, indicating larger amygdalae in treated animals. Significant sex differences were found for total gray matter and right amygdala, indicating larger volumes in male compared to female animals. Additionally, we observed a significant interaction between sex and treatment on left amygdala volume, indicating stronger effects of treatment in female compared to male animals. The effects of GnRHa treatment on amygdala volumes indicate that increasing GnRH concentration during puberty may have an important impact on normal brain development in mammals. These novel findings substantiate the need for further studies investigating potential neurobiological side effects of GnRHa treatment on the brains of young animals and humans. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Frontal and temporal volumes in Childhood Absence Epilepsy.

    Science.gov (United States)

    Caplan, Rochelle; Levitt, Jennifer; Siddarth, Prabha; Wu, Keng Nei; Gurbani, Suresh; Sankar, Raman; Shields, W Donald

    2009-11-01

    This study compared frontotemporal brain volumes in children with childhood absence epilepsy (CAE) to age- and gender-matched children without epilepsy. It also examined the association of these volumes with seizure, demographic, perinatal, intelligence quotient (IQ), and psychopathology variables. Twenty-six children with CAE, aged 7.5-11.8 years, and 37 children without epilepsy underwent brain magnetic resonance imaging (MRI) scans at 1.5 Tesla. Tissue was segmented, and total brain, frontal lobe, frontal parcellations, and temporal lobe volumes were computed. All children had IQ testing and structured psychiatric interviews. Parents provided seizure, perinatal, and behavioral information on each child. The CAE group had significantly smaller gray matter volumes of the left orbital frontal gyrus as well as both left and right temporal lobes compared to the age- and gender-matched children without epilepsy. In the CAE group these volumes were related to age, gender, ethnicity, and pregnancy complications but not to seizure, IQ, and psychopathology variables. In the group of children without epilepsy, however, the volumes were related to IQ. These findings suggest that CAE impacts brain development in regions implicated in behavior, cognition, and language. In addition to supporting the cortical focus theory of CAE, these findings also imply that CAE is not a benign disorder.

  8. Fingolimod's Impact on MRI Brain Volume Measures in Multiple Sclerosis: Results from MS-MRIUS.

    Science.gov (United States)

    Zivadinov, Robert; Medin, Jennie; Khan, Nasreen; Korn, Jonathan R; Bergsland, Niels; Dwyer, Michael G; Chitnis, Tanuja; Naismith, Robert T; Alvarez, Enrique; Kinkel, Peter; Cohan, Stanley; Hunter, Samuel F; Silva, Diego; Weinstock-Guttman, Bianca

    2018-05-11

    Evidence is needed to understand the effect of fingolimod on slowing down brain atrophy progression in multiple sclerosis (MS) patients in clinical practice. We investigated the effect of fingolimod on brain atrophy in MS patients with active disease (clinically and/or magnetic resonance imaging [MRI]) versus no evidence of active disease (NEAD). MS and clinical outcome and MRI in the United States (MS-MRIUS) is a multicenter, retrospective study that included 590 relapsing-remitting MS patients, who initiated fingolimod, and were followed for a median of 16 months. Patients with active disease at baseline (245, 41.5%) were defined as those who had one or more relapses in the year previous starting fingolimod, and/or displayed gadolinium enhancing lesions(s) at baseline MRI scan, whereas patients with NEAD at baseline (345, 58.5%) did not fulfill these criteria. Annualized percentage brain volume change (PBVC) and percentage lateral ventricle volume change (PLVVC) over the follow-up were analyzed in both groups. Over the follow-up, the rate of PBVC was -.38% in active disease and -.25% in NEAD patients (P = .076), whereas PLLVC was 1.76% in active disease and .28% in NEAD patients (P = .046). No changes in timed 25-foot walk (P = .619) and Expanded Disability Status Scale (P = .275) scores or MRI lesion accumulation (P > 0.08) were detected, although the active disease group had a higher proportion of relapses during the follow-up period (P = .02). The study provides real-world evidence that rate of brain atrophy in MS patients with underlying active disease and NEAD in fingolimod treated patients is below the established pathological cutoff for loss of whole brain volume (>-.4%) or expansion of lateral ventricles (> 3.5%). Copyright © 2018 by the American Society of Neuroimaging.

  9. Volumetric Magnetic Resonance Imaging Study of Brain and Cerebellum in Children with Cerebral Palsy.

    Science.gov (United States)

    Kułak, Piotr; Maciorkowska, Elżbieta; Gościk, Elżbieta

    2016-01-01

    Introduction. Quantitative magnetic resonance imaging (MRI) studies are rarely used in the diagnosis of patients with cerebral palsy. The aim of present study was to assess the relationships between the volumetric MRI and clinical findings in children with cerebral palsy compared to control subjects. Materials and Methods. Eighty-two children with cerebral palsy and 90 age- and sex-matched healthy controls were collected. Results. The dominant changes identified on MRI scans in children with cerebral palsy were periventricular leukomalacia (42%) and posthemorrhagic hydrocephalus (21%). The total brain and cerebellum volumes in children with cerebral palsy were significantly reduced in comparison to controls. Significant grey matter volume reduction was found in the total brain in children with cerebral palsy compared with the control subjects. Positive correlations between the age of the children of both groups and the grey matter volumes in the total brain were found. Negative relationship between width of third ventricle and speech development was found in the patients. Positive correlations were noted between the ventricles enlargement and motor dysfunction and mental retardation in children with cerebral palsy. Conclusions. By using the voxel-based morphometry, the total brain, cerebellum, and grey matter volumes were significantly reduced in children with cerebral palsy.

  10. Acute Mountain Sickness: Relationship to Brain Volume and Effect of Oral Glycerol Prophylaxis

    National Research Council Canada - National Science Library

    Muza, Stephen

    1998-01-01

    ... development of cerebral edema. Furthermore, to assess whether AMS was associated with development of cerebral edema, we used MR imaging and post-processing to quantify changes in brain tissue volume, hypothesized to increase due to cerebral edema...

  11. 21 CFR 201.323 - Aluminum in large and small volume parenterals used in total parenteral nutrition.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Aluminum in large and small volume parenterals... for Specific Drug Products § 201.323 Aluminum in large and small volume parenterals used in total parenteral nutrition. (a) The aluminum content of large volume parenteral (LVP) drug products used in total...

  12. Physiological neuronal decline in healthy aging human brain - An in vivo study with MRI and short echo-time whole-brain (1)H MR spectroscopic imaging.

    Science.gov (United States)

    Ding, Xiao-Qi; Maudsley, Andrew A; Sabati, Mohammad; Sheriff, Sulaiman; Schmitz, Birte; Schütze, Martin; Bronzlik, Paul; Kahl, Kai G; Lanfermann, Heinrich

    2016-08-15

    Knowledge of physiological aging in healthy human brain is increasingly important for neuroscientific research and clinical diagnosis. To investigate neuronal decline in normal aging brain eighty-one healthy subjects aged between 20 and 70years were studied with MRI and whole-brain (1)H MR spectroscopic imaging. Concentrations of brain metabolites N-acetyl-aspartate (NAA), choline (Cho), total creatine (tCr), myo-inositol (mI), and glutamine+glutamate (Glx) in ratios to internal water, and the fractional volumes of brain tissue were estimated simultaneously in eight cerebral lobes and in cerebellum. Results demonstrated that an age-related decrease in gray matter volume was the largest contribution to changes in brain volume. Both lobar NAA and the fractional volume of gray matter (FVGM) decreased with age in all cerebral lobes, indicating that the decreased NAA was predominantly associated with decreased gray matter volume and neuronal density or metabolic activity. In cerebral white matter Cho, tCr, and mI increased with age in association with increased fractional volume, showing altered cellular membrane turn-over, energy metabolism, and glial activity in human aging white matter. In cerebellum tCr increased while brain tissue volume decreased with age, showing difference to cerebral aging. The observed age-related metabolic and microstructural variations suggest that physiological neuronal decline in aging human brain is associated with a reduction of gray matter volume and neuronal density, in combination with cellular aging in white matter indicated by microstructural alterations and altered energy metabolism in the cerebellum. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Comparison of doses received by the hippocampus in patients treated with single isocenter– vs multiple isocenter–based stereotactic radiation therapy to the brain for multiple brain metastases

    International Nuclear Information System (INIS)

    Algan, Ozer; Giem, Jared; Young, Julie; Ali, Imad; Ahmad, Salahuddin; Hossain, Sabbir

    2015-01-01

    To investigate the doses received by the hippocampus and normal brain tissue during a course of stereotactic radiation therapy using a single isocenter (SI)–based or multiple isocenter (MI)–based treatment planning in patients with less than 4 brain metastases. In total, 10 patients with magnetic resonance imaging (MRI) demonstrating 2-3 brain metastases were included in this retrospective study, and 2 sets of stereotactic intensity-modulated radiation therapy (IMRT) treatment plans (SI vs MI) were generated. The hippocampus was contoured on SPGR sequences, and doses received by the hippocampus and the brain were calculated and compared between the 2 treatment techniques. A total of 23 lesions in 10 patients were evaluated. The median tumor volume, the right hippocampus volume, and the left hippocampus volume were 3.15, 3.24, and 2.63 mL, respectively. In comparing the 2 treatment plans, there was no difference in the planning target volume (PTV) coverage except in the tail for the dose-volume histogram (DVH) curve. The only statistically significant dosimetric parameter was the V_1_0_0. All of the other measured dosimetric parameters including the V_9_5, V_9_9, and D_1_0_0 were not significantly different between the 2 treatment planning techniques. None of the dosimetric parameters evaluated for the hippocampus revealed any statistically significant difference between the MI and SI plans. The total brain doses were slightly higher in the SI plans, especially in the lower dose region, although this difference was not statistically different. The use of SI-based treatment plan resulted in a 35% reduction in beam-on time. The use of SI treatments for patients with up to 3 brain metastases produces similar PTV coverage and similar normal tissue doses to the hippocampus and the brain when compared with MI plans. SI treatment planning should be considered in patients with multiple brain metastases undergoing stereotactic treatment.

  14. Comparison of doses received by the hippocampus in patients treated with single isocenter- vs multiple isocenter-based stereotactic radiation therapy to the brain for multiple brain metastases.

    Science.gov (United States)

    Algan, Ozer; Giem, Jared; Young, Julie; Ali, Imad; Ahmad, Salahuddin; Hossain, Sabbir

    2015-01-01

    To investigate the doses received by the hippocampus and normal brain tissue during a course of stereotactic radiation therapy using a single isocenter (SI)-based or multiple isocenter (MI)-based treatment planning in patients with less than 4 brain metastases. In total, 10 patients with magnetic resonance imaging (MRI) demonstrating 2-3 brain metastases were included in this retrospective study, and 2 sets of stereotactic intensity-modulated radiation therapy (IMRT) treatment plans (SI vs MI) were generated. The hippocampus was contoured on SPGR sequences, and doses received by the hippocampus and the brain were calculated and compared between the 2 treatment techniques. A total of 23 lesions in 10 patients were evaluated. The median tumor volume, the right hippocampus volume, and the left hippocampus volume were 3.15, 3.24, and 2.63mL, respectively. In comparing the 2 treatment plans, there was no difference in the planning target volume (PTV) coverage except in the tail for the dose-volume histogram (DVH) curve. The only statistically significant dosimetric parameter was the V100. All of the other measured dosimetric parameters including the V95, V99, and D100 were not significantly different between the 2 treatment planning techniques. None of the dosimetric parameters evaluated for the hippocampus revealed any statistically significant difference between the MI and SI plans. The total brain doses were slightly higher in the SI plans, especially in the lower dose region, although this difference was not statistically different. The use of SI-based treatment plan resulted in a 35% reduction in beam-on time. The use of SI treatments for patients with up to 3 brain metastases produces similar PTV coverage and similar normal tissue doses to the hippocampus and the brain when compared with MI plans. SI treatment planning should be considered in patients with multiple brain metastases undergoing stereotactic treatment. Copyright © 2015 American Association of

  15. Comparison of doses received by the hippocampus in patients treated with single isocenter– vs multiple isocenter–based stereotactic radiation therapy to the brain for multiple brain metastases

    Energy Technology Data Exchange (ETDEWEB)

    Algan, Ozer, E-mail: oalgan@ouhsc.edu; Giem, Jared; Young, Julie; Ali, Imad; Ahmad, Salahuddin; Hossain, Sabbir

    2015-01-01

    To investigate the doses received by the hippocampus and normal brain tissue during a course of stereotactic radiation therapy using a single isocenter (SI)–based or multiple isocenter (MI)–based treatment planning in patients with less than 4 brain metastases. In total, 10 patients with magnetic resonance imaging (MRI) demonstrating 2-3 brain metastases were included in this retrospective study, and 2 sets of stereotactic intensity-modulated radiation therapy (IMRT) treatment plans (SI vs MI) were generated. The hippocampus was contoured on SPGR sequences, and doses received by the hippocampus and the brain were calculated and compared between the 2 treatment techniques. A total of 23 lesions in 10 patients were evaluated. The median tumor volume, the right hippocampus volume, and the left hippocampus volume were 3.15, 3.24, and 2.63 mL, respectively. In comparing the 2 treatment plans, there was no difference in the planning target volume (PTV) coverage except in the tail for the dose-volume histogram (DVH) curve. The only statistically significant dosimetric parameter was the V{sub 100}. All of the other measured dosimetric parameters including the V{sub 95}, V{sub 99}, and D{sub 100} were not significantly different between the 2 treatment planning techniques. None of the dosimetric parameters evaluated for the hippocampus revealed any statistically significant difference between the MI and SI plans. The total brain doses were slightly higher in the SI plans, especially in the lower dose region, although this difference was not statistically different. The use of SI-based treatment plan resulted in a 35% reduction in beam-on time. The use of SI treatments for patients with up to 3 brain metastases produces similar PTV coverage and similar normal tissue doses to the hippocampus and the brain when compared with MI plans. SI treatment planning should be considered in patients with multiple brain metastases undergoing stereotactic treatment.

  16. A stereotaxic, population-averaged T1w ovine brain atlas including cerebral morphology and tissue volumes

    Directory of Open Access Journals (Sweden)

    Björn eNitzsche

    2015-06-01

    Full Text Available Standard stereotaxic reference systems play a key role in human brain studies. Stereotaxic coordinate systems have also been developed for experimental animals including non-human primates, dogs and rodents. However, they are lacking for other species being relevant in experimental neuroscience including sheep. Here, we present a spatial, unbiased ovine brain template with tissue probability maps (TPM that offer a detailed stereotaxic reference frame for anatomical features and localization of brain areas, thereby enabling inter-individual and cross-study comparability. Three-dimensional data sets from healthy adult Merino sheep (Ovis orientalis aries, 12 ewes and 26 neutered rams were acquired on a 1.5T Philips MRI using a T1w sequence. Data were averaged by linear and non-linear registration algorithms. Moreover, animals were subjected to detailed brain volume analysis including examinations with respect to body weight, age and sex. The created T1w brain template provides an appropriate population-averaged ovine brain anatomy in a spatial standard coordinate system. Additionally, TPM for gray (GM and white (WM matter as well as cerebrospinal fluid (CSF classification enabled automatic prior-based tissue segmentation using statistical parametric mapping (SPM. Overall, a positive correlation of GM volume and body weight explained about 15% of the variance of GM while a positive correlation between WM and age was found. Absolute tissue volume differences were not detected, indeed ewes showed significantly more GM per bodyweight as compared to neutered rams. The created framework including spatial brain template and TPM represent a useful tool for unbiased automatic image preprocessing and morphological characterization in sheep. Therefore, the reported results may serve as a starting point for further experimental and/or translational research aiming at in vivo analysis in this species.

  17. Quantification of brain tissue through incorporation of partial volume effects

    Science.gov (United States)

    Gage, Howard D.; Santago, Peter, II; Snyder, Wesley E.

    1992-06-01

    This research addresses the problem of automatically quantifying the various types of brain tissue, CSF, white matter, and gray matter, using T1-weighted magnetic resonance images. The method employs a statistical model of the noise and partial volume effect and fits the derived probability density function to that of the data. Following this fit, the optimal decision points can be found for the materials and thus they can be quantified. Emphasis is placed on repeatable results for which a confidence in the solution might be measured. Results are presented assuming a single Gaussian noise source and a uniform distribution of partial volume pixels for both simulated and actual data. Thus far results have been mixed, with no clear advantage being shown in taking into account partial volume effects. Due to the fitting problem being ill-conditioned, it is not yet clear whether these results are due to problems with the model or the method of solution.

  18. N-terminal pro-brain natriuretic peptide and abnormal brain aging: The AGES-Reykjavik Study.

    Science.gov (United States)

    Sabayan, Behnam; van Buchem, Mark A; de Craen, Anton J M; Sigurdsson, Sigurdur; Zhang, Qian; Harris, Tamara B; Gudnason, Vilmundur; Arai, Andrew E; Launer, Lenore J

    2015-09-01

    To investigate the independent association of serum N-terminal fragment of the prohormone natriuretic peptide (NT-proBNP) with structural and functional features of abnormal brain aging in older individuals. In this cross-sectional study based on the Age, Gene/Environment Susceptibility (AGES)-Reykjavik Study, we included 4,029 older community-dwelling individuals (born 1907 to 1935) with a measured serum level of NT-proBNP. Outcomes included parenchymal brain volumes estimated from brain MRI, cognitive function measured by tests of memory, processing speed, and executive functioning, and presence of depressive symptoms measured using the Geriatric Depression Scale. In a substudy, cardiac output of 857 participants was assessed using cardiac MRI. In multivariate analyses, adjusted for sociodemographic and cardiovascular factors, higher levels of NT-proBNP were independently associated with lower total (p brain volumes. Likewise, in multivariate analyses, higher levels of NT-proBNP were associated with worse scores in memory (p = 0.005), processing speed (p = 0.001), executive functioning (p brain parenchymal volumes, impaired executive function and processing speed, and higher depressive symptoms were independent of the level of cardiac output. Higher serum levels of NT-proBNP, independent of cardiovascular risk factors and a measure of cardiac function, are linked with alterations in brain structure and function. Roles of natriuretic peptides in the process of brain aging need to be further elucidated. © 2015 American Academy of Neurology.

  19. A comparative study of linear measurement of the brain and three-dimensional measurement of brain volume using CT scans

    International Nuclear Information System (INIS)

    Hamano, K.; Iwasaki, N.; Takeya, T.; Takita, H.

    1993-01-01

    Parameters of linear measurement were compared with actual brain volume to assess the significance of linear measurements as indices of atrophy in 31 neurologically normal children and 22 neurologically abnormal children. Brain volume was established by means of an image-analyzing system using contiguous CT scans. The parameters or indices estimated were: (1) the maximum transverse width of both hemispheres, (2) the maximum longitudinal length of both hemispheres, (3) the maximum frontal subarachnoid space, (4) the maximum width of the interhemispheric fissure, (5) the maximum width of the Sylvian fissure, (6) Evans' ratio, (7) the maximum width of the third ventricle, (8) the cella media index, (9) the maximum width of the fourth ventricle. In neurologically normal children, the maximum transverse width of both hemispheres, the maximum longitudinal length of both hemispheres, the maximum width of the interhemispheric fissure and the maximum width of the Sylvian fissure correlated significantly with the combined volume (CV) of both hemipheres and basal ganglia. In particular, the maximum transverse width of both hemispheres and the maximum longitudinal length of both hemispheres had a high correlation. In neurologically abnormal children the maximum transverse width of both hemispheres and the maximum width of the interhemispheric fissure were significantly correlated with the CV of both hemispheres and basal ganglia. (orig.)

  20. External Validity of a Risk Stratification Score Predicting Early Distant Brain Failure and Salvage Whole Brain Radiation Therapy After Stereotactic Radiosurgery for Brain Metastases.

    Science.gov (United States)

    Press, Robert H; Boselli, Danielle M; Symanowski, James T; Lankford, Scott P; McCammon, Robert J; Moeller, Benjamin J; Heinzerling, John H; Fasola, Carolina E; Burri, Stuart H; Patel, Kirtesh R; Asher, Anthony L; Sumrall, Ashley L; Curran, Walter J; Shu, Hui-Kuo G; Crocker, Ian R; Prabhu, Roshan S

    2017-07-01

    A scoring system using pretreatment factors was recently published for predicting the risk of early (≤6 months) distant brain failure (DBF) and salvage whole brain radiation therapy (WBRT) after stereotactic radiosurgery (SRS) alone. Four risk factors were identified: (1) lack of prior WBRT; (2) melanoma or breast histologic features; (3) multiple brain metastases; and (4) total volume of brain metastases external patient population. We reviewed the records of 247 patients with 388 brain metastases treated with SRS between 2010 at 2013 at Levine Cancer Institute. The Press (Emory) risk score was calculated and applied to the validation cohort population, and subsequent risk groups were analyzed using cumulative incidence. The low-risk (LR) group had a significantly lower risk of early DBF than did the high-risk (HR) group (22.6% vs 44%, P=.004), but there was no difference between the HR and intermediate-risk (IR) groups (41.2% vs 44%, P=.79). Total lesion volume externally valid, but the model was able to stratify between 2 levels (LR and not-LR [combined IR and HR]) for early (≤6 months) DBF. These results reinforce the importance of validating predictive models in independent cohorts. Further refinement of this scoring system with molecular information and in additional contemporary patient populations is warranted. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Exposure to Severe Urban Air Pollution Influences Cognitive Outcomes, Brain Volume and Systemic Inflammation in Clinically Healthy Children

    Science.gov (United States)

    Calderon-Garciduenas, Lilian; Engle, Randall; Mora-Tiscareno, Antonieta; Styner, Martin; Gomez-Garza, Gilberto; Zhu, Hongtu; Jewells, Valerie; Torres-Jardon, Ricardo; Romero, Lina; Monroy-Acosta, Maria E.; Bryant, Christopher; Gonzalez-Gonzalez, Luis Oscar; Medina-Cortina, Humberto; D'Angiulli, Amedeo

    2011-01-01

    Exposure to severe air pollution produces neuroinflammation and structural brain alterations in children. We tested whether patterns of brain growth, cognitive deficits and white matter hyperintensities (WMH) are associated with exposures to severe air pollution. Baseline and 1 year follow-up measurements of global and regional brain MRI volumes,…

  2. Whole-brain hippocampal sparing radiation therapy: Volume-modulated arc therapy vs intensity-modulated radiation therapy case study.

    Science.gov (United States)

    Lee, Katrina; Lenards, Nishele; Holson, Janice

    2016-01-01

    The hippocampus is responsible for memory and cognitive function. An ongoing phase II clinical trial suggests that sparing dose to the hippocampus during whole-brain radiation therapy can help preserve a patient׳s neurocognitive function. Progressive research and advancements in treatment techniques have made treatment planning more sophisticated but beneficial for patients undergoing treatment. The aim of this study is to evaluate and compare hippocampal sparing whole-brain (HS-WB) radiation therapy treatment planning techniques using volume-modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT). We randomly selected 3 patients to compare different treatment techniques that could be used for reducing dose to the hippocampal region. We created 2 treatment plans, a VMAT and an IMRT, from each patient׳s data set and planned on the Eclipse 11.0 treatment planning system (TPS). A total of 6 plans (3 IMRT and 3 VMAT) were created and evaluated for this case study. The physician contoured the hippocampus as per the Radiation Therapy Oncology Group (RTOG) 0933 protocol atlas. The organs at risk (OR) were contoured and evaluated for the plan comparison, which included the spinal cord, optic chiasm, the right and left eyes, lenses, and optic nerves. Both treatment plans produced adequate coverage on the planning target volume (PTV) while significantly reducing dose to the hippocampal region. The VMAT treatment plans produced a more homogenous dose distribution throughout the PTV while decreasing the maximum point dose to the target. However, both treatment techniques demonstrated hippocampal sparing when irradiating the whole brain. Copyright © 2016 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  3. MRI-based brain structure volumes in temporal lobe epilepsy patients and their unaffected siblings: a preliminary study.

    LENUS (Irish Health Repository)

    Scanlon, Cathy

    2013-01-01

    Investigating the heritability of brain structure may be useful in simplifying complicated genetic studies in temporal lobe epilepsy (TLE). A preliminary study is presented to determine if volume deficits of candidate brain structures present at a higher rate in unaffected siblings than controls subjects.

  4. The role of surgeon volume on patient outcome in total knee arthroplasty: a systematic review of the literature

    Directory of Open Access Journals (Sweden)

    Lau Rick L

    2012-12-01

    Full Text Available Abstract Background A number of factors have been identified as influencing total knee arthroplasty outcomes, including patient factors such as gender and medical comorbidity, technical factors such as alignment of the prosthesis, and provider factors such as hospital and surgeon procedure volumes. Recently, strategies aimed at optimizing provider factors have been proposed, including regionalization of total joint arthroplasty to higher volume centers, and adoption of volume standards. To contribute to the discussions concerning the optimization of provider factors and proposals to regionalize total knee arthroplasty practices, we undertook a systematic review to investigate the association between surgeon volume and primary total knee arthroplasty outcomes. Methods We performed a systematic review examining the association between surgeon volume and primary knee arthroplasty outcomes. To be included in the review, the study population had to include patients undergoing primary total knee arthroplasty. Studies had to report on the association between surgeon volume and primary total knee arthroplasty outcomes, including perioperative mortality and morbidity, patient-reported outcomes, or total knee arthroplasty implant survivorship. There were no restrictions placed on study design or language. Results Studies were variable in defining surgeon volume (‘low’: 5 to >70 total knee arthroplasty per year. Mortality rate, survivorship and thromboembolic events were not found to be associated with surgeon volume. We found a significant association between low surgeon volume and higher rate of infection (0.26% - 2.8% higher, procedure time (165 min versus 135 min, longer length of stay (0.4 - 2.13 days longer, transfusion rate (13% versus 4%, and worse patient reported outcomes. Conclusions Findings suggest a trend towards better outcomes for higher volume surgeons, but results must be interpreted with caution.

  5. Prospective longitudinal MRI study of brain volumes and diffusion changes during the first year after moderate to severe traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Veronika Brezova

    2014-01-01

    Higher ADC values were detected in the cortex in individuals with severe TBI, DAI and PTA > 2 weeks, from 3 months. There were no associations between ADC values and brain volumes, and ADC values did not predict outcome.

  6. Automated delineation of brain structures in patients undergoing radiotherapy for primary brain tumors: From atlas to dose–volume histograms

    International Nuclear Information System (INIS)

    Conson, Manuel; Cella, Laura; Pacelli, Roberto; Comerci, Marco; Liuzzi, Raffaele; Salvatore, Marco; Quarantelli, Mario

    2014-01-01

    Purpose: To implement and evaluate a magnetic resonance imaging atlas-based automated segmentation (MRI-ABAS) procedure for cortical and sub-cortical grey matter areas definition, suitable for dose-distribution analyses in brain tumor patients undergoing radiotherapy (RT). Patients and methods: 3T-MRI scans performed before RT in ten brain tumor patients were used. The MRI-ABAS procedure consists of grey matter classification and atlas-based regions of interest definition. The Simultaneous Truth and Performance Level Estimation (STAPLE) algorithm was applied to structures manually delineated by four experts to generate the standard reference. Performance was assessed comparing multiple geometrical metrics (including Dice Similarity Coefficient – DSC). Dosimetric parameters from dose–volume-histograms were also generated and compared. Results: Compared with manual delineation, MRI-ABAS showed excellent reproducibility [median DSC ABAS = 1 (95% CI, 0.97–1.0) vs. DSC MANUAL = 0.90 (0.73–0.98)], acceptable accuracy [DSC ABAS = 0.81 (0.68–0.94) vs. DSC MANUAL = 0.90 (0.76–0.98)], and an overall 90% reduction in delineation time. Dosimetric parameters obtained using MRI-ABAS were comparable with those obtained by manual contouring. Conclusions: The speed, reproducibility, and robustness of the process make MRI-ABAS a valuable tool for investigating radiation dose–volume effects in non-target brain structures providing additional standardized data without additional time-consuming procedures

  7. Use of [11C]aminocyclohexanecarboxylate for the measurement of amino acid uptake and distribution volume in human brain

    International Nuclear Information System (INIS)

    Koeppe, R.A.; Mangner, T.; Betz, A.L.; Shulkin, B.L.; Allen, R.; Kollros, P.; Kuhl, D.E.; Agranoff, B.W.

    1990-01-01

    A quantitative positron emission tomographic (PET) method to measure amino acid blood-brain barrier (BBB) transport rate and tissue distribution volume (DV) has been developed using 11 C-labeled aminocyclohexanecarboxylate (ACHC), a nonmetabolized amino acid analogue. Dynamic PET data were acquired as a series of 15 scans covering a total of 60 min and analyzed by means of a two-compartment, two-parameter model. Functional images were calculated for the amino acid transport rate constants across the BBB and the amino acid DV in the brain. Results show [ 11 C]ACHC to have an influx rate constant in gray matter of approximately 0.03-0.04 ml g-1 min-1, indicating a single-pass extraction fraction of approximately 5-7%. The intersubject coefficient of variation was approximately 15% while intrasubject variability of repeat scans was only slightly greater than 5%. Studies were performed in 15 young normal volunteer control subjects, 5 elderly controls, 7 patients with probable Alzheimer's disease, and one patient with phenylketonuria. Results indicate that [ 11 C]-ACHC will serve as the basis of a method for measuring amino acid transport rate and DV in the normal and pathological human brain

  8. Know your tools - concordance of different methods for measuring brain volume change after ischemic stroke

    Energy Technology Data Exchange (ETDEWEB)

    Yassi, Nawaf; Campbell, Bruce C.V.; Davis, Stephen M.; Bivard, Andrew [The University of Melbourne, Departments of Medicine and Neurology, Melbourne Brain Centre rate at The Royal Melbourne Hospital, Parkville, Victoria (Australia); Moffat, Bradford A.; Steward, Christopher; Desmond, Patricia M. [The University of Melbourne, Department of Radiology, The Royal Melbourne Hospital, Parkville (Australia); Churilov, Leonid [The University of Melbourne, The Florey Institute of Neurosciences and Mental Health, Parkville (Australia); Parsons, Mark W. [University of Newcastle and Hunter Medical Research Institute, Priority Research Centre for Translational Neuroscience and Mental Health, Newcastle (Australia)

    2015-07-15

    Longitudinal brain volume changes have been investigated in a number of cerebral disorders as a surrogate marker of clinical outcome. In stroke, unique methodological challenges are posed by dynamic structural changes occurring after onset, particularly those relating to the infarct lesion. We aimed to evaluate agreement between different analysis methods for the measurement of post-stroke brain volume change, and to explore technical challenges inherent to these methods. Fifteen patients with anterior circulation stroke underwent magnetic resonance imaging within 1 week of onset and at 1 and 3 months. Whole-brain as well as grey- and white-matter volume were estimated separately using both an intensity-based and a surface watershed-based algorithm. In the case of the intensity-based algorithm, the analysis was also performed with and without exclusion of the infarct lesion. Due to the effects of peri-infarct edema at the baseline scan, longitudinal volume change was measured as percentage change between the 1 and 3-month scans. Intra-class and concordance correlation coefficients were used to assess agreement between the different analysis methods. Reduced major axis regression was used to inspect the nature of bias between measurements. Overall agreement between methods was modest with strong disagreement between some techniques. Measurements were variably impacted by procedures performed to account for infarct lesions. Improvements in volumetric methods and consensus between methodologies employed in different studies are necessary in order to increase the validity of conclusions derived from post-stroke cerebral volumetric studies. Readers should be aware of the potential impact of different methods on study conclusions. (orig.)

  9. Know your tools - concordance of different methods for measuring brain volume change after ischemic stroke

    International Nuclear Information System (INIS)

    Yassi, Nawaf; Campbell, Bruce C.V.; Davis, Stephen M.; Bivard, Andrew; Moffat, Bradford A.; Steward, Christopher; Desmond, Patricia M.; Churilov, Leonid; Parsons, Mark W.

    2015-01-01

    Longitudinal brain volume changes have been investigated in a number of cerebral disorders as a surrogate marker of clinical outcome. In stroke, unique methodological challenges are posed by dynamic structural changes occurring after onset, particularly those relating to the infarct lesion. We aimed to evaluate agreement between different analysis methods for the measurement of post-stroke brain volume change, and to explore technical challenges inherent to these methods. Fifteen patients with anterior circulation stroke underwent magnetic resonance imaging within 1 week of onset and at 1 and 3 months. Whole-brain as well as grey- and white-matter volume were estimated separately using both an intensity-based and a surface watershed-based algorithm. In the case of the intensity-based algorithm, the analysis was also performed with and without exclusion of the infarct lesion. Due to the effects of peri-infarct edema at the baseline scan, longitudinal volume change was measured as percentage change between the 1 and 3-month scans. Intra-class and concordance correlation coefficients were used to assess agreement between the different analysis methods. Reduced major axis regression was used to inspect the nature of bias between measurements. Overall agreement between methods was modest with strong disagreement between some techniques. Measurements were variably impacted by procedures performed to account for infarct lesions. Improvements in volumetric methods and consensus between methodologies employed in different studies are necessary in order to increase the validity of conclusions derived from post-stroke cerebral volumetric studies. Readers should be aware of the potential impact of different methods on study conclusions. (orig.)

  10. Breastfeeding and Childhood IQ: The Mediating Role of Gray Matter Volume

    Science.gov (United States)

    Luby, Joan L.; Belden, Andy C.; Whalen, Diana; Harms, Michael P.; Barch, Deanna M.

    2016-01-01

    Objective A substantial body of literature has established the positive effect of breastfeeding on child developmental outcomes. There is increasing consensus that breastfed children have higher IQs after accounting for key variables, including maternal education, IQ, and socioeconomic status. Cross-sectional investigations of the effects of breastfeeding on structural brain development suggest that breastfed infants have larger whole brain, cortical, and white matter volumes. To date, few studies have related these measures of brain structure to IQ in breastfed versus nonbreastfed children in a longitudinal sample. Method Data were derived from the Preschool Depression Study (PDS), a prospective longitudinal study in which children and caregivers were assessed annually for 8 waves over 11 years. A subset completed neuroimaging between the ages of 9.5 and 14.11 years. A total of 148 individuals had breastfeeding data at baseline and complete data on all variables of interest, including IQ and structural neuroimaging. General linear models and process mediation models were used. Results Breastfed children had significantly higher IQ scores and larger whole brain, total gray matter, total cortical gray matter, and subcortical gray matter volumes compared with the nonbreastfed group in models that covaried for key variables. Subcortical gray matter volume significantly mediated the association between breast-feeding and children's IQ scores. Conclusion The study findings suggest that the effects of breastfeeding on child IQ are mediated through subcortical gray volume. This effect and putative mechanism is of public health significance and further supports the importance of breastfeeding in mental health promotion. PMID:27126850

  11. How Acute Total Sleep Loss Affects the Attending Brain: A Meta-Analysis of Neuroimaging Studies

    Science.gov (United States)

    Ma, Ning; Dinges, David F.; Basner, Mathias; Rao, Hengyi

    2015-01-01

    Study Objectives: Attention is a cognitive domain that can be severely affected by sleep deprivation. Previous neuroimaging studies have used different attention paradigms and reported both increased and reduced brain activation after sleep deprivation. However, due to large variability in sleep deprivation protocols, task paradigms, experimental designs, characteristics of subject populations, and imaging techniques, there is no consensus regarding the effects of sleep loss on the attending brain. The aim of this meta-analysis was to identify brain activations that are commonly altered by acute total sleep deprivation across different attention tasks. Design: Coordinate-based meta-analysis of neuroimaging studies of performance on attention tasks during experimental sleep deprivation. Methods: The current version of the activation likelihood estimation (ALE) approach was used for meta-analysis. The authors searched published articles and identified 11 sleep deprivation neuroimaging studies using different attention tasks with a total of 185 participants, equaling 81 foci for ALE analysis. Results: The meta-analysis revealed significantly reduced brain activation in multiple regions following sleep deprivation compared to rested wakefulness, including bilateral intraparietal sulcus, bilateral insula, right prefrontal cortex, medial frontal cortex, and right parahippocampal gyrus. Increased activation was found only in bilateral thalamus after sleep deprivation compared to rested wakefulness. Conclusion: Acute total sleep deprivation decreases brain activation in the fronto-parietal attention network (prefrontal cortex and intraparietal sulcus) and in the salience network (insula and medial frontal cortex). Increased thalamic activation after sleep deprivation may reflect a complex interaction between the de-arousing effects of sleep loss and the arousing effects of task performance on thalamic activity. Citation: Ma N, Dinges DF, Basner M, Rao H. How acute total

  12. Target volumes in radiation therapy of childhood brain tumours

    International Nuclear Information System (INIS)

    Habrand, J.L.; Abdulkarim, B.; Beaudre, A.; El Khouri, M.; Kalifa, C.

    2001-01-01

    Pediatric tumors have enjoyed considerable improvements for the past 30 years. This is mainly due to the extensive use of combined therapeutical modalities in which chemotherapy plays a prominent role. In many children, local treatment including radiotherapy, can nowadays be adapted in terms of target volume and dose to the 'response' to an initial course of chemotherapy almost on a case by case basis. This makes precise recommendation on local therapy highly difficult in this age group. We will concentrate in this paper on brain tumors in which chemotherapy is of limited value and radiotherapy still plays a key-role. (authors)

  13. The relationship of hospital charges and volume to surgical site infection after total hip replacement.

    Science.gov (United States)

    Boas, Rebecca; Ensor, Kelsey; Qian, Edward; Hutzler, Lorraine; Slover, James; Bosco, Joseph

    2015-05-01

    The purpose of this study was to analyze the effect of hospital volume and charges on the rate of surgical site infections for total hip replacements (THRs) in New York State (NYS). In NYS, higher volume hospitals have higher charges after THR. The study team analyzed 93,620 hip replacements performed in NYS between 2008 and 2011. Hospital charges increased significantly from $43,713 in 2008 to $50,652 in 2011 (P<.01). Compared with lower volume hospitals, patients who underwent THR at the highest volume hospitals had significantly lower surgical site infection rates (P=.003) and higher total hospital charges (P<.0001). The study team found that in the highest volume hospitals, preventing one surgical site infection was associated with $1.6 million dollars in increased charges. © 2014 by the American College of Medical Quality.

  14. Somatic radiation risk in case of irradiation of the brain

    Energy Technology Data Exchange (ETDEWEB)

    Nocken, U.; Ewen, K.; Makoski, H.B.

    1983-09-01

    The somatic dose index for irradiation of the brain was determined for the 10 MeV bremsstrahlung of a linear electron-accelerator. A small volume rotation technique and the irradiation of the total neurocranium were chosen as extreme conditions for the radiation exposure of the skull. On the basis of a target volume dose of 50 Gy for the total irradiation series, the somatic dose index of the small volume technique is within the scope of coronarography. In case of irradiation of the total neurocranium, however, the somatic dose index largely exceeds the maximum values of X-ray diagnosis.

  15. Volume changes of whole brain gray matter in pediatric patients with Tourette syndrome: evidence from voxel-based morphometry

    International Nuclear Information System (INIS)

    Liu Yue; Peng Yun; Gao Peiyi; Nie Binbin; Lu Chuankai; Zhang Liping; Ji Zhiying; Yin Guangheng; Yu Tong; Shan Baoci

    2012-01-01

    Objectives: To identify the related abnormalities of gray matter in pediatric patients with Tourette syndrome (TS) by using the optimized voxel-based morphometry (VBM). Methods: Three dimensional T 1 WI was acquired in 31 TS children (28 boys, 3 girts, mean age 8 years, range 4-15 years) and 50 age- and sex-matched controls on a 1.5 Tesla Philips scanner. Images were pre-processed and analyzed using a version of VBM 2 in SPM 2. The whole brain gray matter volume was compared between the study and control group by using t-test. Multivariate linear regression analysis was used for analyzing the correlation between the change of grey matter volume within each brain region (mm 3 ) and YGTSS score and course of disease of TS patients. Statistical analyses were performed by using SPSS 13.0. Results: Using VBM, significant increases in gray matter volumes in left superior parietal lobule, right cerebellar hemisphere and left parahippocampal gyrus were detected in TS patients, and the volume changes were 4059, 2126 and 84 mm 3 (t=3.93, 3.71, 3.58, P<0.05) respectively. Compared to the control group, decreased grey matter volumes were found in medulla and left pons, and the volume changes were 213 and 117 mm 3 (t=3.53, 3.48, P<0.05)respectively. Tic severity was not correlated with any volume changes of gray matter in brain (P>0.05, a small volume correction, KE ≥ 10 voxel). Tic course was negatively correlated with the gray matter volume of left parahippocampal gyrus (Beta =-0.391, P=0.039). Conclusions: Using VBM technique, the gray matter abnormalities can be revealed in TS patients without obvious lesions on conventional MR imaging. The increasing volume of temporal and parietal lobes and cerebellar may be an adaptive anatomical change in response to experiential demand. The gray matter volume of the parahippocampal gyrus may be used as one potential objective index for evaluating the prognosis of TS. (authors)

  16. Modeling Early Postnatal Brain Growth and Development with CT: Changes in the Brain Radiodensity Histogram from Birth to 2 Years.

    Science.gov (United States)

    Cauley, K A; Hu, Y; Och, J; Yorks, P J; Fielden, S W

    2018-04-01

    The majority of brain growth and development occur in the first 2 years of life. This study investigated these changes by analysis of the brain radiodensity histogram of head CT scans from the clinical population, 0-2 years of age. One hundred twenty consecutive head CTs with normal findings meeting the inclusion criteria from children from birth to 2 years were retrospectively identified from 3 different CT scan platforms. Histogram analysis was performed on brain-extracted images, and histogram mean, mode, full width at half maximum, skewness, kurtosis, and SD were correlated with subject age. The effects of scan platform were investigated. Normative curves were fitted by polynomial regression analysis. Average total brain volume was 360 cm 3 at birth, 948 cm 3 at 1 year, and 1072 cm 3 at 2 years. Total brain tissue density showed an 11% increase in mean density at 1 year and 19% at 2 years. Brain radiodensity histogram skewness was positive at birth, declining logarithmically in the first 200 days of life. The histogram kurtosis also decreased in the first 200 days to approach a normal distribution. Direct segmentation of CT images showed that changes in brain radiodensity histogram skewness correlated with, and can be explained by, a relative increase in gray matter volume and an increase in gray and white matter tissue density that occurs during this period of brain maturation. Normative metrics of the brain radiodensity histogram derived from routine clinical head CT images can be used to develop a model of normal brain development. © 2018 by American Journal of Neuroradiology.

  17. Combined effects of marijuana and nicotine on memory performance and hippocampal volume.

    Science.gov (United States)

    Filbey, Francesca M; McQueeny, Tim; Kadamangudi, Shrinath; Bice, Collette; Ketcherside, Ariel

    2015-10-15

    Combined use of marijuana (MJ) and tobacco is highly prevalent in today's population. Individual use of either substance is linked to structural brain changes and altered cognitive function, especially with consistent reports of hippocampal volume deficits and poorer memory performance. However, the combined effects of MJ and tobacco on hippocampal structure and on learning and memory processes remain unknown. In this study, we examined both the individual and combined effects of MJ and tobacco on hippocampal volumes and memory performance in four groups of adults taken from two larger studies: MJ-only users (n=36), nicotine-only (Nic-only, n=19), combined marijuana and nicotine users (MJ+Nic, n=19) and non-using healthy controls (n=16). Total bilateral hippocampal volumes and memory performance (WMS-III logical memory) were compared across groups controlling for total brain size and recent alcohol use. Results found MJ and MJ+Nic groups had smaller total hippocampal volumes compared to Nic-only and controls. No significant difference between groups was found between immediate and delayed story recall. However, the controls showed a trend for larger hippocampal volumes being associated with better memory scores, while MJ+Nic users showed a unique inversion, whereby smaller hippocampal volume was associated with better memory. Overall, results suggest abnormalities in the brain-behavior relationships underlying memory processes with combined use of marijuana and nicotine use. Further research will need to address these complex interactions between MJ and nicotine. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Extracellular space, blood volume, and the early dumping syndrome after total gastrectomy

    Energy Technology Data Exchange (ETDEWEB)

    Miholic, J.; Reilmann, L.; Meyer, H.J.; Koerber, H.K.; Kotzerke, J.; Hecker, H. (Medzinische Hochschule Hannover (Germany, F.R.))

    1990-10-01

    Extracellular space and blood volume were measured using 82Br dilution and 51Cr-tagged erythrocytes in 24 tumor-free patients after total gastrectomy. Eleven of the patients suffered from early dumping. Age, blood volume, and extracellular space were significantly smaller in dumpers (P less than 0.05). The dumping score could be predicted by a multiple regression model considering blood volume per lean body mass and extracellular space (r = 0.637; P = 0.0039). Rapid (t1/2 less than 360 seconds) emptying of the gastric substitute, assessed using a 99Tc-labeled solid test meal, was significantly associated with dumping in addition to extracellular space and blood volume (r = 0.876; P = 0.0018). Both rapid emptying and a narrow extracellular space seem to contribute to the early dumping syndrome.

  19. IQ subgroups in relation to neurocognitive profiles, psychopathology and brain volume in first-episode schizophrenia

    DEFF Research Database (Denmark)

    Jensen, Maria Høj; Glenthøj, Birte Yding; Rostrup, Egill

    . low) using the healthy controls as reference. The IQ subgroups were compared using psychopathology ratings (Positive and Negative Symptoms Scale), neuropsychological assessments (Brief Assessment of Cognition in schizophrenia and Cambridge Neuropsychological Test Automated Battery) and a combined 3T......Background and Aim: Approximately half of patients with schizophrenia experience a deterioration in IQ before or around illness onset and recent studies have found apositive association between IQ and brain volume in first episode schizophrenia. The aim of this study was to examine the combined...... impact of estimated IQ trajectory and IQ level at illness onset on psychopathology, neurocognitive profiles and brain volume. Materials and methods: The design is a cross-sectional, case-control study of 60 first-episode antipsychotic-naïve schizophrenia patients and 60 matched healthy controls...

  20. Surface and volume three-dimensional displays of Tc-99m HMPAO brain SPECT images in stroke patients with three-head gamma camera

    International Nuclear Information System (INIS)

    Shih, W.J.; Slevin, J.T.; Schleenbaker, R.E.; Mills, B.J.; Magoun, S.L.; Ryo, U.Y.

    1991-01-01

    This paper evaluates volume and surface 3D displays in Tc-99m HMPAO brain SPECT imaging in stroke patients. Using a triple-head gamma camera interfaced with a 64-bit supercomputer, 20 patients with stroke were studied. Each patient was imaged 30-60 minutes after an intravenous injection of 20 mCi of Tc-99m HMPAO. SPECT images as well as planar images were routinely obtained; volume and surface 3D display then proceeded, with the process requiring 5-10 minutes. Volume and surface 3D displays show the brain from all angles; thus the location and extension of lesion(s) in the brain are much easier to appreciate. While a cerebral lesion(s) was more clearly delineated by surface 3D imaging, crossed cerebellar diaschisis in seven patients was clearly exhibited with volume 3D but not with surface 3D imaging. Volume and surface 3D displays enhance continuity of structures and understanding of spatial relationships

  1. Use of ( sup 11 C)aminocyclohexanecarboxylate for the measurement of amino acid uptake and distribution volume in human brain

    Energy Technology Data Exchange (ETDEWEB)

    Koeppe, R.A.; Mangner, T.; Betz, A.L.; Shulkin, B.L.; Allen, R.; Kollros, P.; Kuhl, D.E.; Agranoff, B.W. (Univ. of Michigan Medical School, Ann Arbor (USA))

    1990-09-01

    A quantitative positron emission tomographic (PET) method to measure amino acid blood-brain barrier (BBB) transport rate and tissue distribution volume (DV) has been developed using {sup 11}C-labeled aminocyclohexanecarboxylate (ACHC), a nonmetabolized amino acid analogue. Dynamic PET data were acquired as a series of 15 scans covering a total of 60 min and analyzed by means of a two-compartment, two-parameter model. Functional images were calculated for the amino acid transport rate constants across the BBB and the amino acid DV in the brain. Results show ({sup 11}C)ACHC to have an influx rate constant in gray matter of approximately 0.03-0.04 ml g-1 min-1, indicating a single-pass extraction fraction of approximately 5-7%. The intersubject coefficient of variation was approximately 15% while intrasubject variability of repeat scans was only slightly greater than 5%. Studies were performed in 15 young normal volunteer control subjects, 5 elderly controls, 7 patients with probable Alzheimer's disease, and one patient with phenylketonuria. Results indicate that ({sup 11}C)-ACHC will serve as the basis of a method for measuring amino acid transport rate and DV in the normal and pathological human brain.

  2. Safe total corporal contouring with large-volume liposuction for the obese patient.

    Science.gov (United States)

    Dhami, Lakshyajit D; Agarwal, Meenakshi

    2006-01-01

    The advent of the tumescent technique in 1987 allowed for safe total corporal contouring as an ambulatory, single-session megaliposuction with the patient under regional anesthesia supplemented by local anesthetic only in selected areas. Safety and aesthetic issues define large-volume liposuction as having a 5,000-ml aspirate, mega-volume liposuction as having an 8,000-ml aspirate, and giganto-volume liposuction as having an aspirate of 12,000 ml or more. Clinically, a total volume comprising 5,000 ml of fat and wetting solution aspirated during the procedure qualifies for megaliposuction/large-volume liposuction. Between September 2000 and August 2005, 470 cases of liposuction were managed. In 296 (63%) of the 470 cases, the total volume of aspirate exceeded 5 l (range, 5,000-22,000 ml). Concurrent limited or total-block lipectomy was performed in 70 of 296 cases (23.6%). Regional anesthesia with conscious sedation was preferred, except where liposuction targeted areas above the subcostal region (the upper trunk, lateral chest, gynecomastia, breast, arms, and face), or when the patient so desired. Tumescent infiltration was achieved with hypotonic lactated Ringer's solution, adrenalin, triamcinalone, and hyalase in all cases during the last one year of the series. This approach has clinically shown less tissue edema in the postoperative period than with conventional physiologic saline used in place of the Ringer's lactate solution. The amount injected varied from 1,000 to 8,000 ml depending on the size, site, and area. Local anesthetic was included only for the terminal portion of the tumescent mixture, wherever the subcostal regions were infiltrated. The aspirate was restricted to the unstained white/yellow fat, and the amount of fat aspirated did not have any bearing on the amount of solution infiltrated. There were no major complications, and no blood transfusions were administered. The hospital stay ranged from 8 to 24 h for both liposuction and liposuction

  3. Field in field technique in two-dimensional planning for whole brain irradiation; Tecnica field in field em planejamentos bidimensionais para irradiacao de cerebro total

    Energy Technology Data Exchange (ETDEWEB)

    Castro, A.L.S.; Campos, T.P.R., E-mail: radioterapia.andre@gmail.com [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte (Brazil). Departamento de Engenharia Nuclear

    2016-11-01

    Radiotherapy is the most used clinical method used for brain metastases treatment, the most frequent secondary tumors provided by breast, lung and melanomas as primary origin. The protocols often use high daily doses and, depending on the irradiation technique there is high probability of complications in health tissues. In order to minimize adverse effects, it is important the dosimetric analysis of three-dimensional radiotherapy planning through tomographic images or, concerning to the 2D simulations, by the application of techniques that optimize dose distribution by increasing the homogeneity. The study aimed to compare the 2D and 3D conformal planning for total brain irradiation in a individual equivalent situation and evaluate the progress of these planning applying the field in field technique. The methodology consisted of simulating a two-dimensional planning, reproduce it on a set of tomographic images and compare it with the conformal plan for two fields and four fields (field in field). The results showed no significant difference between 2D and 3D planning for whole brain irradiation, and the field in field technique significantly improved the dose distribution in brain volume compared with two fields for the proposal situation. As conclusion, the two-dimensional plane for the four fields described was viable for whole brain irradiation in the treatment of brain metastases at the proposal situation. (author)

  4. Feasibility of Commercially Available, Fully Automated Hepatic CT Volumetry for Assessing Both Total and Territorial Liver Volumes in Liver Transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Cheong Il; Kim, Se Hyung; Rhim, Jung Hyo; Yi, Nam Joon; Suh, Kyung Suk; Lee, Jeong Min; Han, Joon Koo; Choi, Byung Ihn [Seoul National University Hospital, Seoul (Korea, Republic of)

    2013-02-15

    To assess the feasibility of commercially-available, fully automated hepatic CT volumetry for measuring both total and territorial liver volumes by comparing with interactive manual volumetry and measured ex-vivo liver volume. For the assessment of total and territorial liver volume, portal phase CT images of 77 recipients and 107 donors who donated right hemiliver were used. Liver volume was measured using both the fully automated and interactive manual methods with Advanced Liver Analysis software. The quality of the automated segmentation was graded on a 4-point scale. Grading was performed by two radiologists in consensus. For the cases with excellent-to-good quality, the accuracy of automated volumetry was compared with interactive manual volumetry and measured ex-vivo liver volume which was converted from weight using analysis of variance test and Pearson's or Spearman correlation test. Processing time for both automated and interactive manual methods was also compared. Excellent-to-good quality of automated segmentation for total liver and right hemiliver was achieved in 57.1% (44/77) and 17.8% (19/107), respectively. For both total and right hemiliver volumes, there were no significant differences among automated, manual, and ex-vivo volumes except between automate volume and manual volume of the total liver (p = 0.011). There were good correlations between automate volume and ex-vivo liver volume ({gamma}= 0.637 for total liver and {gamma}= 0.767 for right hemiliver). Both correlation coefficients were higher than those with manual method. Fully automated volumetry required significantly less time than interactive manual method (total liver: 48.6 sec vs. 53.2 sec, right hemiliver: 182 sec vs. 244.5 sec). Fully automated hepatic CT volumetry is feasible and time-efficient for total liver volume measurement. However, its usefulness for territorial liver volumetry needs to be improved.

  5. Feasibility of Commercially Available, Fully Automated Hepatic CT Volumetry for Assessing Both Total and Territorial Liver Volumes in Liver Transplantation

    International Nuclear Information System (INIS)

    Shin, Cheong Il; Kim, Se Hyung; Rhim, Jung Hyo; Yi, Nam Joon; Suh, Kyung Suk; Lee, Jeong Min; Han, Joon Koo; Choi, Byung Ihn

    2013-01-01

    To assess the feasibility of commercially-available, fully automated hepatic CT volumetry for measuring both total and territorial liver volumes by comparing with interactive manual volumetry and measured ex-vivo liver volume. For the assessment of total and territorial liver volume, portal phase CT images of 77 recipients and 107 donors who donated right hemiliver were used. Liver volume was measured using both the fully automated and interactive manual methods with Advanced Liver Analysis software. The quality of the automated segmentation was graded on a 4-point scale. Grading was performed by two radiologists in consensus. For the cases with excellent-to-good quality, the accuracy of automated volumetry was compared with interactive manual volumetry and measured ex-vivo liver volume which was converted from weight using analysis of variance test and Pearson's or Spearman correlation test. Processing time for both automated and interactive manual methods was also compared. Excellent-to-good quality of automated segmentation for total liver and right hemiliver was achieved in 57.1% (44/77) and 17.8% (19/107), respectively. For both total and right hemiliver volumes, there were no significant differences among automated, manual, and ex-vivo volumes except between automate volume and manual volume of the total liver (p = 0.011). There were good correlations between automate volume and ex-vivo liver volume (γ= 0.637 for total liver and γ= 0.767 for right hemiliver). Both correlation coefficients were higher than those with manual method. Fully automated volumetry required significantly less time than interactive manual method (total liver: 48.6 sec vs. 53.2 sec, right hemiliver: 182 sec vs. 244.5 sec). Fully automated hepatic CT volumetry is feasible and time-efficient for total liver volume measurement. However, its usefulness for territorial liver volumetry needs to be improved.

  6. Dynamic glucose enhanced (DGE) MRI for combined imaging of blood-brain barrier break down and increased blood volume in brain cancer.

    Science.gov (United States)

    Xu, Xiang; Chan, Kannie W Y; Knutsson, Linda; Artemov, Dmitri; Xu, Jiadi; Liu, Guanshu; Kato, Yoshinori; Lal, Bachchu; Laterra, John; McMahon, Michael T; van Zijl, Peter C M

    2015-12-01

    Recently, natural d-glucose was suggested as a potential biodegradable contrast agent. The feasibility of using d-glucose for dynamic perfusion imaging was explored to detect malignant brain tumors based on blood brain barrier breakdown. Mice were inoculated orthotopically with human U87-EGFRvIII glioma cells. Time-resolved glucose signal changes were detected using chemical exchange saturation transfer (glucoCEST) MRI. Dynamic glucose enhanced (DGE) MRI was used to measure tissue response to an intravenous bolus of d-glucose. DGE images of mouse brains bearing human glioma showed two times higher and persistent changes in tumor compared with contralateral brain. Area-under-curve (AUC) analysis of DGE delineated blood vessels and tumor and had contrast comparable to the AUC determined using dynamic contrast enhanced (DCE) MRI with GdDTPA, both showing a significantly higher AUC in tumor than in brain (P blood volume and permeability with respect to normal brain. We expect DGE will provide a low-risk and less expensive alternative to DCE MRI for imaging cancer in vulnerable populations, such as children and patients with renal impairment. © 2015 Wiley Periodicals, Inc.

  7. Dynamic Glucose Enhanced (DGE) MRI for Combined Imaging of Blood Brain Barrier Break Down and Increased Blood Volume in Brain Cancer

    Science.gov (United States)

    Xu, Xiang; Chan, Kannie WY; Knutsson, Linda; Artemov, Dmitri; Xu, Jiadi; Liu, Guanshu; Kato, Yoshinori; Lal, Bachchu; Laterra, John; McMahon, Michael T.; van Zijl, Peter C.M.

    2015-01-01

    Purpose Recently, natural d-glucose was suggested as a potential biodegradable contrast agent. The feasibility of using d-glucose for dynamic perfusion imaging was explored to detect malignant brain tumors based on blood brain barrier breakdown. Methods Mice were inoculated orthotopically with human U87-EGFRvIII glioma cells. Time-resolved glucose signal changes were detected using chemical exchange saturation transfer (glucoCEST) MRI. Dynamic glucose enhanced (DGE) MRI was used to measure tissue response to an intravenous bolus of d-glucose. Results DGE images of mouse brains bearing human glioma showed two times higher and persistent changes in tumor compared to contralateral brain. Area-under-curve (AUC) analysis of DGE delineated blood vessels and tumor and had contrast comparable to the AUC determined using dynamic contrast enhanced (DCE) MRI with GdDTPA, both showing a significantly higher AUC in tumor than in brain (pblood volume and permeability with respect to normal brain. We expect DGE will provide a low-risk and less expensive alternative to DCE MRI for imaging cancer in vulnerable populations, such as children and patients with renal impairment. PMID:26404120

  8. Skeletal and total body volumes of human fetuses: assessment of reference data by spiral CT

    International Nuclear Information System (INIS)

    Braillon, Pierre M.; Buenerd, Annie; Bouvier, Raymonde; Lapillonne, Alexandre

    2002-01-01

    Objective: To define reference data for skeletal and total body volumes of normal human fetuses. Materials and methods: Spiral CT was used to assess the skeletal and total body volumes of 31 normal human stillborn infants with gestational age (GA) and body weight (BW) ranging from 14 to 41.5 weeks and 22 to 3,760 g, respectively. CT scans (slice thickness 2.7 mm, pitch 0.7) were performed within the first 24 h after delivery. Precise bone and soft-tissue windows were defined from analysis of the density along the diaphysis of the fetal long bones and from the measurement of a phantom that mimics soft tissues. Lengths and volumes were obtained from 3D reconstructions. The femur lengths measured from CT images (FLct) were compared with those provided by US studies (FLus). Results: Significant correlations (r>0.9) were found between BW, measured volumes of the entire skeleton or head, long-bone lengths, biparietal diameter and GA. Strong linear correlations (r>0.98) were observed between FLct and FLus. Conclusions: Skeletal and total body volume values obtained using spiral CT were significantly correlated with fetal biometric measurements. These data could complement those obtained in obstetric investigations with US. (orig.)

  9. Regional brain volumes, diffusivity, and metabolite changes after electroconvulsive therapy for severe depression

    DEFF Research Database (Denmark)

    Jørgensen, A.; Magnusson, P.; Hanson, Lars G.

    2016-01-01

    , and metabolite changes in 19 patients receiving ECT for severe depression. Other regions of interest included the amygdala, dorsolateral prefrontal cortex (DLPFC), orbitofrontal cortex, and hypothalamus. Patients received a 3T MR scan before ECT (TP1), 1 week (TP2), and 4 weeks (TP3) after ECT. Results......: Hippocampal and amygdala volume increased significantly at TP2 and continued to be increased at TP3. DLPFC exhibited a transient volume reduction at TP2. DTI revealed a reduced anisotropy and diffusivity of the hippocampus at TP2. We found no significant post-ECT changes in brain metabolite concentrations...

  10. Robust volume assessment of brain tissues for 3-dimensional fourier transformation MRI via a novel multispectral technique.

    Directory of Open Access Journals (Sweden)

    Jyh-Wen Chai

    Full Text Available A new TRIO algorithm method integrating three different algorithms is proposed to perform brain MRI segmentation in the native coordinate space, with no need of transformation to a standard coordinate space or the probability maps for segmentation. The method is a simple voxel-based algorithm, derived from multispectral remote sensing techniques, and only requires minimal operator input to depict GM, WM, and CSF tissue clusters to complete classification of a 3D high-resolution multislice-multispectral MRI data. Results showed very high accuracy and reproducibility in classification of GM, WM, and CSF in multislice-multispectral synthetic MRI data. The similarity indexes, expressing overlap between classification results and the ground truth, were 0.951, 0.962, and 0.956 for GM, WM, and CSF classifications in the image data with 3% noise level and 0% non-uniformity intensity. The method particularly allows for classification of CSF with 0.994, 0.961 and 0.996 of accuracy, sensitivity and specificity in images data with 3% noise level and 0% non-uniformity intensity, which had seldom performed well in previous studies. As for clinical MRI data, the quantitative data of brain tissue volumes aligned closely with the brain morphometrics in three different study groups of young adults, elderly volunteers, and dementia patients. The results also showed very low rates of the intra- and extra-operator variability in measurements of the absolute volumes and volume fractions of cerebral GM, WM, and CSF in three different study groups. The mean coefficients of variation of GM, WM, and CSF volume measurements were in the range of 0.03% to 0.30% of intra-operator measurements and 0.06% to 0.45% of inter-operator measurements. In conclusion, the TRIO algorithm exhibits a remarkable ability in robust classification of multislice-multispectral brain MR images, which would be potentially applicable for clinical brain volumetric analysis and explicitly promising

  11. Volumetric MRI study of the intrauterine growth restriction fetal brain

    International Nuclear Information System (INIS)

    Polat, A.; Barlow, S.; Ber, R.; Achiron, R.; Katorza, E.

    2017-01-01

    Intrauterine growth restriction (IUGR) is a pathologic fetal condition known to affect the fetal brain regionally and associated with future neurodevelopmental abnormalities. This study employed MRI to assess in utero regional brain volume changes in IUGR fetuses compared to controls. Retrospectively, using MRI images of fetuses at 30-34 weeks gestational age, a total of 8 brain regions - supratentorial brain and cavity, cerebral hemispheres, temporal lobes and cerebellum - were measured for volume in 13 fetuses with IUGR due to placental insufficiency and in 21 controls. Volumes and their ratios were assessed for difference using regression models. Reliability was assessed by intraclass correlation coefficients (ICC) between two observers. In both groups, all structures increase in absolute volume during that gestation period, and the rate of cerebellar growth is higher compared to that of supratentorial structures. All structures' absolute volumes were significantly smaller for the IUGR group. Cerebellar to supratentorial ratios were found to be significantly smaller (P < 0.05) for IUGR compared to controls. No other significant ratio differences were found. ICC showed excellent agreement. The cerebellar to supratentorial volume ratio is affected in IUGR fetuses. Additional research is needed to assess this as a radiologic marker in relation to long-term outcome. (orig.)

  12. Volumetric MRI study of the intrauterine growth restriction fetal brain

    Energy Technology Data Exchange (ETDEWEB)

    Polat, A.; Barlow, S.; Ber, R.; Achiron, R.; Katorza, E. [Tel Aviv University, Sackler School of Medicine, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Tel Hashomer (Israel)

    2017-05-15

    Intrauterine growth restriction (IUGR) is a pathologic fetal condition known to affect the fetal brain regionally and associated with future neurodevelopmental abnormalities. This study employed MRI to assess in utero regional brain volume changes in IUGR fetuses compared to controls. Retrospectively, using MRI images of fetuses at 30-34 weeks gestational age, a total of 8 brain regions - supratentorial brain and cavity, cerebral hemispheres, temporal lobes and cerebellum - were measured for volume in 13 fetuses with IUGR due to placental insufficiency and in 21 controls. Volumes and their ratios were assessed for difference using regression models. Reliability was assessed by intraclass correlation coefficients (ICC) between two observers. In both groups, all structures increase in absolute volume during that gestation period, and the rate of cerebellar growth is higher compared to that of supratentorial structures. All structures' absolute volumes were significantly smaller for the IUGR group. Cerebellar to supratentorial ratios were found to be significantly smaller (P < 0.05) for IUGR compared to controls. No other significant ratio differences were found. ICC showed excellent agreement. The cerebellar to supratentorial volume ratio is affected in IUGR fetuses. Additional research is needed to assess this as a radiologic marker in relation to long-term outcome. (orig.)

  13. SU-E-T-549: Modeling Relative Biological Effectiveness of Protons for Radiation Induced Brain Necrosis

    International Nuclear Information System (INIS)

    Mirkovic, D; Peeler, C; Grosshans, D; Titt, U; Taleei, R; Mohan, R

    2015-01-01

    Purpose: To develop a model of the relative biological effectiveness (RBE) of protons as a function of dose and linear energy transfer (LET) for induction of brain necrosis using clinical data. Methods: In this study, treatment planning information was exported from a clinical treatment planning system (TPS) and used to construct a detailed Monte Carlo model of the patient and the beam delivery system. The physical proton dose and LET were computed in each voxel of the patient volume using Monte Carlo particle transport. A follow-up magnetic resonance imaging (MRI) study registered to the treatment planning CT was used to determine the region of the necrosis in the brain volume. Both, the whole brain and the necrosis volumes were segmented from the computed tomography (CT) dataset using the contours drawn by a physician and the corresponding voxels were binned with respect to dose and LET. The brain necrosis probability was computed as a function of dose and LET by dividing the total volume of all necrosis voxels with a given dose and LET with the corresponding total brain volume resulting in a set of NTCP-like curves (probability as a function of dose parameterized by LET). Results: The resulting model shows dependence on both dose and LET indicating the weakness of the constant RBE model for describing the brain toxicity. To the best of our knowledge the constant RBE model is currently used in all clinical applications which may Result in increased rate of brain toxicities in patients treated with protons. Conclusion: Further studies are needed to develop more accurate brain toxicity models for patients treated with protons and other heavy ions

  14. Total regional and global number of synapses in the human brain neocortex

    NARCIS (Netherlands)

    Tang, Y.; Nyengaard, J.R.; Groot, D.M.G. de; Jorgen, H.; Gundersen, G.

    2001-01-01

    An estimator of the total number of synapses in neocortex of human autopsy brains based on unbiased stereological principles is described. Each randomly chosen cerebral hemisphere was stratified into the four major neocortical regions. Uniform sampling with a varying sampling fraction in each region

  15. A tensor-based morphometry analysis of regional differences in brain volume in relation to prenatal alcohol exposure.

    Science.gov (United States)

    Meintjes, E M; Narr, K L; van der Kouwe, A J W; Molteno, C D; Pirnia, T; Gutman, B; Woods, R P; Thompson, P M; Jacobson, J L; Jacobson, S W

    2014-01-01

    Reductions in brain volumes represent a neurobiological signature of fetal alcohol spectrum disorders (FASD). Less clear is how regional brain tissue reductions differ after normalizing for brain size differences linked with FASD and whether these profiles can predict the degree of prenatal exposure to alcohol. To examine associations of regional brain tissue excesses/deficits with degree of prenatal alcohol exposure and diagnosis with and without correction for overall brain volume, tensor-based morphometry (TBM) methods were applied to structural imaging data from a well-characterized, demographically homogeneous sample of children diagnosed with FASD (n = 39, 9.6-11.0 years) and controls (n = 16, 9.5-11.0 years). Degree of prenatal alcohol exposure was significantly associated with regionally pervasive brain tissue reductions in: (1) the thalamus, midbrain, and ventromedial frontal lobe, (2) the superior cerebellum and inferior occipital lobe, (3) the dorsolateral frontal cortex, and (4) the precuneus and superior parietal lobule. When overall brain size was factored out of the analysis on a subject-by-subject basis, no regions showed significant associations with alcohol exposure. FASD diagnosis was associated with a similar deformation pattern, but few of the regions survived FDR correction. In data-driven independent component analyses (ICA) regional brain tissue deformations successfully distinguished individuals based on extent of prenatal alcohol exposure and to a lesser degree, diagnosis. The greater sensitivity of the continuous measure of alcohol exposure compared with the categorical diagnosis across diverse brain regions underscores the dose dependence of these effects. The ICA results illustrate that profiles of brain tissue alterations may be a useful indicator of prenatal alcohol exposure when reliable historical data are not available and facial features are not apparent.

  16. A tensor-based morphometry analysis of regional differences in brain volume in relation to prenatal alcohol exposure

    Directory of Open Access Journals (Sweden)

    E.M. Meintjes

    2014-01-01

    Full Text Available Reductions in brain volumes represent a neurobiological signature of fetal alcohol spectrum disorders (FASD. Less clear is how regional brain tissue reductions differ after normalizing for brain size differences linked with FASD and whether these profiles can predict the degree of prenatal exposure to alcohol. To examine associations of regional brain tissue excesses/deficits with degree of prenatal alcohol exposure and diagnosis with and without correction for overall brain volume, tensor-based morphometry (TBM methods were applied to structural imaging data from a well-characterized, demographically homogeneous sample of children diagnosed with FASD (n = 39, 9.6–11.0 years and controls (n = 16, 9.5–11.0 years. Degree of prenatal alcohol exposure was significantly associated with regionally pervasive brain tissue reductions in: (1 the thalamus, midbrain, and ventromedial frontal lobe, (2 the superior cerebellum and inferior occipital lobe, (3 the dorsolateral frontal cortex, and (4 the precuneus and superior parietal lobule. When overall brain size was factored out of the analysis on a subject-by-subject basis, no regions showed significant associations with alcohol exposure. FASD diagnosis was associated with a similar deformation pattern, but few of the regions survived FDR correction. In data-driven independent component analyses (ICA regional brain tissue deformations successfully distinguished individuals based on extent of prenatal alcohol exposure and to a lesser degree, diagnosis. The greater sensitivity of the continuous measure of alcohol exposure compared with the categorical diagnosis across diverse brain regions underscores the dose dependence of these effects. The ICA results illustrate that profiles of brain tissue alterations may be a useful indicator of prenatal alcohol exposure when reliable historical data are not available and facial features are not apparent.

  17. Differences in Brain Adaptive Functional Reorganization in Right and Left Total Brachial Plexus Injury Patients.

    Science.gov (United States)

    Feng, Jun-Tao; Liu, Han-Qiu; Xu, Jian-Guang; Gu, Yu-Dong; Shen, Yun-Dong

    2015-09-01

    Total brachial plexus avulsion injury (BPAI) results in the total functional loss of the affected limb and induces extensive brain functional reorganization. However, because the dominant hand is responsible for more cognitive-related tasks, injuries on this side induce more adaptive changes in brain function. In this article, we explored the differences in brain functional reorganization after injuries in unilateral BPAI patients. We applied resting-state functional magnetic resonance imaging scanning to 10 left and 10 right BPAI patients and 20 healthy control subjects. The amplitude of low-frequency fluctuation (ALFF), which is a resting-state index, was calculated for all patients as an indication of the functional activity level of the brain. Two-sample t-tests were performed between left BPAI patients and controls, right BPAI patients and controls, and between left and right BPAI patients. Two-sample t-tests of the ALFF values revealed that right BPAIs induced larger scale brain reorganization than did left BPAIs. Both left and right BPAIs elicited a decreased ALFF value in the right precuneus (P right BPAI patients exhibited increased ALFF values in a greater number of brain regions than left BPAI patients, including the inferior temporal gyrus, lingual gyrus, calcarine sulcus, and fusiform gyrus. Our results revealed that right BPAIs induced greater extents of brain functional reorganization than left BPAIs, which reflected the relatively more extensive adaptive process that followed injuries of the dominant hand. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Subcortical intelligence: caudate volume predicts IQ in healthy adults.

    Science.gov (United States)

    Grazioplene, Rachael G; G Ryman, Sephira; Gray, Jeremy R; Rustichini, Aldo; Jung, Rex E; DeYoung, Colin G

    2015-04-01

    This study examined the association between size of the caudate nuclei and intelligence. Based on the central role of the caudate in learning, as well as neuroimaging studies linking greater caudate volume to better attentional function, verbal ability, and dopamine receptor availability, we hypothesized the existence of a positive association between intelligence and caudate volume in three large independent samples of healthy adults (total N = 517). Regression of IQ onto bilateral caudate volume controlling for age, sex, and total brain volume indicated a significant positive correlation between caudate volume and intelligence, with a comparable magnitude of effect across each of the three samples. No other subcortical structures were independently associated with IQ, suggesting a specific biological link between caudate morphology and intelligence. © 2014 Wiley Periodicals, Inc.

  19. Measurement of thyroid volume, iodine concentration and total iodine content by CT and its clinical significance

    International Nuclear Information System (INIS)

    Nakaji, Shunsuke; Imanishi, Yoshimasa; Okamoto, Kyouko; Shinagawa, Toshihito

    2007-01-01

    Recently, Imanishi et al have developed new CT software for quantitative in vivo measurement of thyroid iodine. Using a CT system with the software, we measured volume, iodine concentration and total iodine content of thyroids in 63 controls and 435 patients with various diffuse thyroid diseases and thyroid nodules. In controls, all of them showed no difference between the sexes. Although the iodine concentration of the thyroid showed no difference among children, adults and seniles, the volume and total iodine content of the thyroid appeared smaller in children and seniles than in adults. In addition, although the volume and iodine concentration of the thyroid had two peaks in distribution, the total iodine content had almost normal distribution. Normal range of volume, iodine concentration and total iodine content in adults were 5.2-15.5 cm 3 , 0.28831-0.85919 mg/cm 3 and 2.35-11.69 mg, respectively. In thyroid nodule, there is no significant difference in volume, iodine concentration and total iodine content between benign and malignant nodules. All nodules with iodine concentration of less than 0.00007 mg/cm 3 were benign. No thyroid was higher in iodine concentration than the normal range although the thyroid was lower in 78.7% of patients with diffuse thyroid diseases. In all thyroids with increasing iodine concentration and total iodine content in medication course, thyroidal symptoms and signs were uncontrollable by the medication. In 43.8% of patients with long-period systemic diseases, the thyroid showed abnormality in any of the three. We concluded that quantitative in vivo measurement of thyroid iodine by CT could assist the diagnosis of thyroid diseases and decision of therapeutic methods. (author)

  20. Tranexamic Acid Reduced the Percent of Total Blood Volume Lost During Adolescent Idiopathic Scoliosis Surgery.

    Science.gov (United States)

    Jones, Kristen E; Butler, Elissa K; Barrack, Tara; Ledonio, Charles T; Forte, Mary L; Cohn, Claudia S; Polly, David W

    2017-01-01

    Multilevel posterior spine fusion is associated with significant intraoperative blood loss. Tranexamic acid is an antifibrinolytic agent that reduces intraoperative blood loss. The goal of this study was to compare the percent of total blood volume lost during posterior spinal fusion (PSF) with or without tranexamic acid in patients with adolescent idiopathic scoliosis (AIS). Thirty-six AIS patients underwent PSF in 2011-2014; the last half (n=18) received intraoperative tranexamic acid. We retrieved relevant demographic, hematologic, intraoperative and outcomes information from medical records. The primary outcome was the percent of total blood volume lost, calculated from estimates of intraoperative blood loss (numerator) and estimated total blood volume per patient (denominator, via Nadler's equations). Unadjusted outcomes were compared using standard statistical tests. Tranexamic acid and no-tranexamic acid groups were similar (all p>0.05) in mean age (16.1 vs. 15.2 years), sex (89% vs. 83% female), body mass index (22.2 vs. 20.2 kg/m2), preoperative hemoglobin (13.9 vs. 13.9 g/dl), mean spinal levels fused (10.5 vs. 9.6), osteotomies (1.6 vs. 0.9) and operative duration (6.1 hours, both). The percent of total blood volume lost (TBVL) was significantly lower in the tranexamic acid-treated vs. no-tranexamic acid group (median 8.23% vs. 14.30%, p = 0.032); percent TBVL per level fused was significantly lower with tranexamic acid than without it (1.1% vs. 1.8%, p=0.048). Estimated blood loss (milliliters) was similar across groups. Tranexamic acid significantly reduced the percentage of total blood volume lost versus no tranexamic acid in AIS patients who underwent PSF using a standardized blood loss measure.Level of Evidence: 3. Institutional Review Board status: This medical record chart review (minimal risk) study was approved by the University of Minnesota Institutional Review Board.

  1. How acute total sleep loss affects the attending brain: a meta-analysis of neuroimaging studies.

    Science.gov (United States)

    Ma, Ning; Dinges, David F; Basner, Mathias; Rao, Hengyi

    2015-02-01

    Attention is a cognitive domain that can be severely affected by sleep deprivation. Previous neuroimaging studies have used different attention paradigms and reported both increased and reduced brain activation after sleep deprivation. However, due to large variability in sleep deprivation protocols, task paradigms, experimental designs, characteristics of subject populations, and imaging techniques, there is no consensus regarding the effects of sleep loss on the attending brain. The aim of this meta-analysis was to identify brain activations that are commonly altered by acute total sleep deprivation across different attention tasks. Coordinate-based meta-analysis of neuroimaging studies of performance on attention tasks during experimental sleep deprivation. The current version of the activation likelihood estimation (ALE) approach was used for meta-analysis. The authors searched published articles and identified 11 sleep deprivation neuroimaging studies using different attention tasks with a total of 185 participants, equaling 81 foci for ALE analysis. The meta-analysis revealed significantly reduced brain activation in multiple regions following sleep deprivation compared to rested wakefulness, including bilateral intraparietal sulcus, bilateral insula, right prefrontal cortex, medial frontal cortex, and right parahippocampal gyrus. Increased activation was found only in bilateral thalamus after sleep deprivation compared to rested wakefulness. Acute total sleep deprivation decreases brain activation in the fronto-parietal attention network (prefrontal cortex and intraparietal sulcus) and in the salience network (insula and medial frontal cortex). Increased thalamic activation after sleep deprivation may reflect a complex interaction between the de-arousing effects of sleep loss and the arousing effects of task performance on thalamic activity. © 2015 Associated Professional Sleep Societies, LLC.

  2. Duration of untreated psychosis/illness and brain volume changes in early psychosis.

    Science.gov (United States)

    Rapp, Charlotte; Canela, Carlos; Studerus, Erich; Walter, Anna; Aston, Jacqueline; Borgwardt, Stefan; Riecher-Rössler, Anita

    2017-09-01

    The time period during which patients manifest psychotic or unspecific symptoms prior to treatment (duration of untreated psychosis, DUP, and the duration of untreated illness, DUI) has been found to be moderately associated with poor clinical and social outcome. Equivocal evidence exists of an association between DUP/DUI and structural brain abnormalities, such as reduced hippocampus volume (HV), pituitary volume (PV) and grey matter volume (GMV). Thus, the goal of the present work was to examine if DUP and DUI are associated with abnormalities in HV, PV and GMV. Using a region of interest (ROI) based approach, we present data of 39 patients from the Basel FePsy (Früherkennung von Psychosen, early detection of psychosis) study for which information about DUP, DUI and HV, PV and GMV data could be obtained. Twenty-three of them were first episode psychosis (FEP) and 16 at-risk mental state (ARMS) patients who later made the transition to frank psychosis. In unadjusted analyses, we found a significant positive correlation between DUP and PV in FEP patients. However, when adjusted for covariates, we found no significant correlation between DUP or DUI and HV, PV or GMV anymore. There only was a trend for decreasing GMV with increasing DUI in FEP. Our results do not comprehensively support the hypothesis of a "toxic" effect of the pathogenic mechanism underlying untreated psychosis on brain structure. If there is any effect, it might rather occur very early in the disease process, during which patients experience only unspecific symptoms. Copyright © 2017. Published by Elsevier B.V.

  3. MR-based automatic delineation of volumes of interest in human brain PET images using probability maps

    DEFF Research Database (Denmark)

    Svarer, Claus; Madsen, Karina; Hasselbalch, Steen G.

    2005-01-01

    The purpose of this study was to develop and validate an observer-independent approach for automatic generation of volume-of-interest (VOI) brain templates to be used in emission tomography studies of the brain. The method utilizes a VOI probability map created on the basis of a database of several...... delineation of the VOI set. The approach was also shown to work equally well in individuals with pronounced cerebral atrophy. Probability-map-based automatic delineation of VOIs is a fast, objective, reproducible, and safe way to assess regional brain values from PET or SPECT scans. In addition, the method...

  4. Facial Emotion Recognition Impairments are Associated with Brain Volume Abnormalities in Individuals with HIV

    Science.gov (United States)

    Clark, Uraina S.; Walker, Keenan A.; Cohen, Ronald A.; Devlin, Kathryn N.; Folkers, Anna M.; Pina, Mathew M.; Tashima, Karen T.

    2015-01-01

    Impaired facial emotion recognition abilities in HIV+ patients are well documented, but little is known about the neural etiology of these difficulties. We examined the relation of facial emotion recognition abilities to regional brain volumes in 44 HIV-positive (HIV+) and 44 HIV-negative control (HC) adults. Volumes of structures implicated in HIV− associated neuropathology and emotion recognition were measured on MRI using an automated segmentation tool. Relative to HC, HIV+ patients demonstrated emotion recognition impairments for fearful expressions, reduced anterior cingulate cortex (ACC) volumes, and increased amygdala volumes. In the HIV+ group, fear recognition impairments correlated significantly with ACC, but not amygdala volumes. ACC reductions were also associated with lower nadir CD4 levels (i.e., greater HIV-disease severity). These findings extend our understanding of the neurobiological substrates underlying an essential social function, facial emotion recognition, in HIV+ individuals and implicate HIV-related ACC atrophy in the impairment of these abilities. PMID:25744868

  5. Optimization of stereotactically-guided conformal treatment planning of sellar and parasellar tumors, based on normal brain dose volume histograms

    International Nuclear Information System (INIS)

    Perks, Julian R.; Jalali, Rakesh; Cosgrove, Vivian P.; Adams, Elizabeth J.; Shepherd, Stephen F.; Warrington, Alan P.; Brada, Michael

    1999-01-01

    Purpose: To investigate the optimal treatment plan for stereo tactically-guided conformal radiotherapy (SCRT) of sellar and parasellar lesions, with respect to sparing normal brain tissue, in the context of routine treatment delivery, based on dose volume histogram analysis. Methods and Materials: Computed tomography (CT) data sets for 8 patients with sellar- and parasellar-based tumors (6 pituitary adenomas and 2 meningiomas) have been used in this study. Treatment plans were prepared for 3-coplanar and 3-, 4-, 6-, and 30-noncoplanar-field arrangements to obtain 95% isodose coverage of the planning target volume (PTV) for each plan. Conformal shaping was achieved by customized blocks generated with the beams eye view (BEV) facility. Dose volume histograms (DVH) were calculated for the normal brain (excluding the PTV), and comparisons made for normal tissue sparing for all treatment plans at ≥80%, ≥60%, and ≥40% of the prescribed dose. Results: The mean volume of normal brain receiving ≥80% and ≥60% of the prescribed dose decreased by 22.3% (range 14.8-35.1%, standard deviation σ = 7.5%) and 47.6% (range 25.8-69.1%, σ 13.2%), respectively, with a 4-field noncoplanar technique when compared with a conventional 3-field coplanar technique. Adding 2 further fields, from 4-noncoplanar to 6-noncoplanar fields reduced the mean normal brain volume receiving ≥80% of the prescribed dose by a further 4.1% (range -6.5-11.8%, σ = 6.4%), and the volume receiving ≥60% by 3.3% (range -5.5-12.2%, σ = 5.4%), neither of which were statistically significant. Each case must be considered individually however, as a wide range is seen in the volume spared when increasing the number of fields from 4 to 6. Comparing the 4- and 6-field noncoplanar techniques to a 30-field conformal field approach (simulating a dynamic arc plan) revealed near-equivalent normal tissue sparing. Conclusion: Four to six widely spaced, fixed-conformal fields provide the optimum class solution

  6. Brain structure mediates the association between height and cognitive ability.

    Science.gov (United States)

    Vuoksimaa, Eero; Panizzon, Matthew S; Franz, Carol E; Fennema-Notestine, Christine; Hagler, Donald J; Lyons, Michael J; Dale, Anders M; Kremen, William S

    2018-05-11

    Height and general cognitive ability are positively associated, but the underlying mechanisms of this relationship are not well understood. Both height and general cognitive ability are positively associated with brain size. Still, the neural substrate of the height-cognitive ability association is unclear. We used a sample of 515 middle-aged male twins with structural magnetic resonance imaging data to investigate whether the association between height and cognitive ability is mediated by cortical size. In addition to cortical volume, we used genetically, ontogenetically and phylogenetically distinct cortical metrics of total cortical surface area and mean cortical thickness. Height was positively associated with general cognitive ability and total cortical volume and cortical surface area, but not with mean cortical thickness. Mediation models indicated that the well-replicated height-general cognitive ability association is accounted for by individual differences in total cortical volume and cortical surface area (highly heritable metrics related to global brain size), and that the genetic association between cortical surface area and general cognitive ability underlies the phenotypic height-general cognitive ability relationship.

  7. Meta-analysis of associations between human brain volume and intelligence differences: How strong are they and what do they mean?

    Science.gov (United States)

    Pietschnig, Jakob; Penke, Lars; Wicherts, Jelte M; Zeiler, Michael; Voracek, Martin

    2015-10-01

    Positive associations between human intelligence and brain size have been suspected for more than 150 years. Nowadays, modern non-invasive measures of in vivo brain volume (Magnetic Resonance Imaging) make it possible to reliably assess associations with IQ. By means of a systematic review of published studies and unpublished results obtained by personal communications with researchers, we identified 88 studies examining effect sizes of 148 healthy and clinical mixed-sex samples (>8000 individuals). Our results showed significant positive associations of brain volume and IQ (r=.24, R(2)=.06) that generalize over age (children vs. adults), IQ domain (full-scale, performance, and verbal IQ), and sex. Application of a number of methods for detection of publication bias indicates that strong and positive correlation coefficients have been reported frequently in the literature whilst small and non-significant associations appear to have been often omitted from reports. We show that the strength of the positive association of brain volume and IQ has been overestimated in the literature, but remains robust even when accounting for different types of dissemination bias, although reported effects have been declining over time. While it is tempting to interpret this association in the context of human cognitive evolution and species differences in brain size and cognitive ability, we show that it is not warranted to interpret brain size as an isomorphic proxy of human intelligence differences. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Quantifying brain tissue volume in multiple sclerosis with automated lesion segmentation and filling

    Directory of Open Access Journals (Sweden)

    Sergi Valverde

    2015-01-01

    Full Text Available Lesion filling has been successfully applied to reduce the effect of hypo-intense T1-w Multiple Sclerosis (MS lesions on automatic brain tissue segmentation. However, a study of fully automated pipelines incorporating lesion segmentation and lesion filling on tissue volume analysis has not yet been performed. Here, we analyzed the % of error introduced by automating the lesion segmentation and filling processes in the tissue segmentation of 70 clinically isolated syndrome patient images. First of all, images were processed using the LST and SLS toolkits with different pipeline combinations that differed in either automated or manual lesion segmentation, and lesion filling or masking out lesions. Then, images processed following each of the pipelines were segmented into gray matter (GM and white matter (WM using SPM8, and compared with the same images where expert lesion annotations were filled before segmentation. Our results showed that fully automated lesion segmentation and filling pipelines reduced significantly the % of error in GM and WM volume on images of MS patients, and performed similarly to the images where expert lesion annotations were masked before segmentation. In all the pipelines, the amount of misclassified lesion voxels was the main cause in the observed error in GM and WM volume. However, the % of error was significantly lower when automatically estimated lesions were filled and not masked before segmentation. These results are relevant and suggest that LST and SLS toolboxes allow the performance of accurate brain tissue volume measurements without any kind of manual intervention, which can be convenient not only in terms of time and economic costs, but also to avoid the inherent intra/inter variability between manual annotations.

  9. Cerebral volumes, neuronal integrity and brain inflammation measured by MRI in patients receiving PI monotherapy or triple therapy.

    Science.gov (United States)

    Valero, Ignacio Pérez; Baeza, Alicia Gonzalez; Hernandez-Tamames, Juan Antonio; Monge, Susana; Arnalich, Francisco; Arribas, Jose Ramon

    2014-01-01

    Penetration of protease inhibitors (PI) in the central nervous system (CNS) is limited. Therefore, there are concerns about the capacity of PI monotherapy (MT) to control HIV in CNS and preserve brain integrity. Exploratory case-control study designed to compare neuronal integrity and brain inflammation in HIV-suppressed patients (>2 years) with and without neurocognitive impairment (NI), treated with MT or triple therapy (TT), 3-Tesla cerebral magnetic resonance image (MRI) and spectroscopy (MRS) were used to evaluate neuronal integrity (volume of cerebral structures and MRS levels of N-acetyl-aspartate (NAA)) and brain inflammation (MRS levels of myo-inositol (MI) and choline (CHO)). MRS biomarkers were measured in 4 voxels located in basal ganglia, frontal (2) and parietal lobes. A comprehensive battery of tests (14 tests - 7 domains) was used to diagnose neurocognitive impairment (1). We included 18 neurocognitively impaired patients (MT: 10, TT: 8) and 21 without NI (MT: 9; TT: 12, Table 1). Subset of patients with NI: cerebral volumes and MRS biomarkers were mostly similar between MT and TT with exception of the right cingulate nucleolus volume (MT: 8854±1851 vs TT: 10482±1107 mm(3); p<0.04), CHO levels in basal ganglia (MT: 0.44±0.05 vs TT: 0.37±0.03 MMOL/L; p<0.01) and the NAA levels in parietal lobe (MT: 1.49±0.12 vs 1.70±0.13 MMOL/L; p<0.01). Subset of patients without NI: cerebral volumes and MRS biomarkers were mostly similar between MT and TT with exception of MI levels in frontal lobe (MT: 1.20±0.36 vs 0.81±0.25 MMOL/L; p=0.01). We did not find significant differences in cerebral volumes or MRS biomarkers in most areas of the brain. However, we found higher levels of inflammation and neuronal damage in some brain areas of patients who received MT. This observation has to be taken into caution while we could not adjust our results by potential confounders. Further investigation is needed to confirm these preliminary results.

  10. Breastfeeding and Childhood IQ: The Mediating Role of Gray Matter Volume.

    Science.gov (United States)

    Luby, Joan L; Belden, Andy C; Whalen, Diana; Harms, Michael P; Barch, Deanna M

    2016-05-01

    A substantial body of literature has established the positive effect of breastfeeding on child developmental outcomes. There is increasing consensus that breastfed children have higher IQs after accounting for key variables, including maternal education, IQ, and socioeconomic status. Cross-sectional investigations of the effects of breastfeeding on structural brain development suggest that breastfed infants have larger whole brain, cortical, and white matter volumes. To date, few studies have related these measures of brain structure to IQ in breastfed versus nonbreastfed children in a longitudinal sample. Data were derived from the Preschool Depression Study (PDS), a prospective longitudinal study in which children and caregivers were assessed annually for 8 waves over 11 years. A subset completed neuroimaging between the ages of 9.5 and 14.11 years. A total of 148 individuals had breastfeeding data at baseline and complete data on all variables of interest, including IQ and structural neuroimaging. General linear models and process mediation models were used. Breastfed children had significantly higher IQ scores and larger whole brain, total gray matter, total cortical gray matter, and subcortical gray matter volumes compared with the nonbreastfed group in models that covaried for key variables. Subcortical gray matter volume significantly mediated the association between breastfeeding and children's IQ scores. The study findings suggest that the effects of breastfeeding on child IQ are mediated through subcortical gray volume. This effect and putative mechanism is of public health significance and further supports the importance of breastfeeding in mental health promotion. Copyright © 2016 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.

  11. Global and focal brain volume in long-term breast cancer survivors exposed to adjuvant chemotherapy

    NARCIS (Netherlands)

    Koppelmans, Vincent; de Ruiter, Michiel B.; van der Lijn, Fedde; Boogerd, Willem; Seynaeve, Caroline; van der Lugt, Aad; Vrooman, Henri; Niessen, Wiro J.; Breteler, Monique M. B.; Schagen, Sanne B.

    2012-01-01

    A limited number of studies have associated adjuvant chemotherapy with structural brain changes. These studies had small sample sizes and were conducted shortly after cessation of chemotherapy. Results of these studies indicate local gray matter volume decrease and an increase in white matter

  12. Optimism and the brain: trait optimism mediates the protective role of the orbitofrontal cortex gray matter volume against anxiety.

    Science.gov (United States)

    Dolcos, Sanda; Hu, Yifan; Iordan, Alexandru D; Moore, Matthew; Dolcos, Florin

    2016-02-01

    Converging evidence identifies trait optimism and the orbitofrontal cortex (OFC) as personality and brain factors influencing anxiety, but the nature of their relationships remains unclear. Here, the mechanisms underlying the protective role of trait optimism and of increased OFC volume against symptoms of anxiety were investigated in 61 healthy subjects, who completed measures of trait optimism and anxiety, and underwent structural scanning using magnetic resonance imaging. First, the OFC gray matter volume (GMV) was associated with increased optimism, which in turn was associated with reduced anxiety. Second, trait optimism mediated the relation between the left OFC volume and anxiety, thus demonstrating that increased GMV in this brain region protects against symptoms of anxiety through increased optimism. These results provide novel evidence about the brain-personality mechanisms protecting against anxiety symptoms in healthy functioning, and identify potential targets for preventive and therapeutic interventions aimed at reducing susceptibility and increasing resilience against emotional disturbances. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  13. Effects of atorvastatin on brain contusion volume and functional outcome of patients with moderate and severe traumatic brain injury; a randomized double-blind placebo-controlled clinical trial.

    Science.gov (United States)

    Farzanegan, Gholam Reza; Derakhshan, Nima; Khalili, Hosseinali; Ghaffarpasand, Fariborz; Paydar, Shahram

    2017-10-01

    The aim of the current study was to investigate the effects of atorvastatin on brain contusion volume and functional outcome of patients with moderate and severe traumatic brain injury (TBI). The study was conducted as a randomized clinical trial during a 16-month period from May 2015 and August 2016 in a level I trauma center in Shiraz, Southern Iran. We included 65 patients with moderate (GCS: 9-13) to severe (GCS: 5-8) TBI who had brain contusions of less than 30cc volume. We excluded those who required surgical intervention. Patients were randomly assigned to receive daily 20mg atorvastatin for 10days (n=21) or placebo in the same dosage (n=23). The brain contusion volumetry was performed on days 0, 3 and 7 utilizing spiral thin-cut brain CT-Scan (1-mm thickness). The outcome measured included modified Rankin scale (MRS), Glasgow Outcome Scale (GOS) and Disability rating Scale (DRS) which were all evaluated 3months post-injury. There was no significant difference between two study group regarding the baseline, 3rd day and 7th day of the contusion volume and the rate of contusion expansion. However, functional outcome scales of GOS, MRS and DRS at 3-months post-injury were significantly better in atorvastatin arm of the study compared to placebo (p values of 0.043, 0.039 and 0.030 respectively). Even though atorvastatin was not found to be more effective than placebo in reducing contusion expansion rate, it was associated with improved functional outcomes at 3-months following moderate to severe TBI. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Brain lesion correlates of fatigue in individuals with traumatic brain injury.

    Science.gov (United States)

    Schönberger, Michael; Reutens, David; Beare, Richard; O'Sullivan, Richard; Rajaratnam, Shantha M W; Ponsford, Jennie

    2017-10-01

    The purpose of this study was to investigate the neurological correlates of both subjective fatigue as well as objective fatigability in individuals with traumatic brain injury (TBI). The study has a cross-sectional design. Participants (N = 53) with TBI (77% male, mean age at injury 38 years, mean time since injury 1.8 years) underwent a structural magnetic resonance imaging (MRI) scan and completed the Fatigue Severity Scale (FSS), while a subsample (N = 36) was also tested with a vigilance task. While subjective fatigue (FSS) was not related to measures of brain lesions, multilevel analyses showed that a change in the participants' decision time was significantly predicted by grey matter (GM) lesions in the right frontal lobe. The time-dependent development of the participants' error rate was predicted by total brain white matter (WM) lesion volumes, as well as right temporal GM and WM lesion volumes. These findings could be explained by decreased functional connectivity of attentional networks, which results in accelerated exhaustion during cognitive task performance. The disparate nature of objectively measurable fatigability on the one hand and the subjective experience of fatigue on the other needs further investigation.

  15. MR brain volumetric measurements are predictive of neurobehavioral impairment in the HIV-1 transgenic rat.

    Science.gov (United States)

    Casas, Rafael; Muthusamy, Siva; Wakim, Paul G; Sinharay, Sanhita; Lentz, Margaret R; Reid, William C; Hammoud, Dima A

    2018-01-01

    HIV infection is known to be associated with brain volume loss, even in optimally treated patients. In this study, we assessed whether dynamic brain volume changes over time are predictive of neurobehavorial performance in the HIV-1 transgenic (Tg) rat, a model of treated HIV-positive patients. Cross-sectional brain MRI imaging was first performed comparing Tg and wild type (WT) rats at 3 and 19 months of age. Longitudinal MRI and neurobehavioral testing of another group of Tg and WT rats was then performed from 5 to 23 weeks of age. Whole brain and subregional image segmentation was used to assess the rate of brain growth over time. We used repeated-measures mixed models to assess differences in brain volumes and to establish how predictive the volume differences are of specific neurobehavioral deficits. Cross-sectional imaging showed smaller whole brain volumes in Tg compared to WT rats at 3 and at 19 months of age. Longitudinally, Tg brain volumes were smaller than age-matched WT rats at all time points, starting as early as 5 weeks of age. The Tg striatal growth rate delay between 5 and 9 weeks of age was greater than that of the whole brain. Striatal volume in combination with genotype was the most predictive of rota-rod scores and in combination with genotype and age was the most predictive of total exploratory activity scores in the Tg rats. The disproportionately delayed striatal growth compared to whole brain between 5 and 9 weeks of age and the role of striatal volume in predicting neurobehavioral deficits suggest an important role of the dopaminergic system in HIV associated neuropathology. This might explain problems with motor coordination and executive decisions in this animal model. Smaller brain and subregional volumes and neurobehavioral deficits were seen as early as 5 weeks of age, suggesting an early brain insult in the Tg rat. Neuroprotective therapy testing in this model should thus target this early stage of development, before brain

  16. Mapping brain function to brain anatomy

    International Nuclear Information System (INIS)

    Valentino, D.J.; Huang, H.K.; Mazziotta, J.C.

    1988-01-01

    In Imaging the human brain, MRI is commonly used to reveal anatomical structure, while PET is used to reveal tissue function. This paper presents a protocol for correlating data between these two imaging modalities; this correlation can provide in vivo regional measurements of brain function which are essential to our understanding of the human brain. The authors propose a general protocol to standardize the acquisition and analysis of functional image data. First, MR and PET images are collected to form three-dimensional volumes of structural and functional image data. Second, these volumes of image data are corrected for distortions inherent in each imaging modality. Third, the image volumes are correlated to provide correctly aligned structural and functional images. The functional images are then mapped onto the structural images in both two-dimensional and three-dimensional representations. Finally, morphometric techniques can be used to provide statistical measures of the structure and function of the human brain

  17. Asymmetry in the brain influenced the neurological deficits and infarction volume following the middle cerebral artery occlusion in rats

    Directory of Open Access Journals (Sweden)

    Zhang Meizeng

    2008-12-01

    Full Text Available Abstract Background Paw preference in rats is similar to human handedness, which may result from dominant hemisphere of rat brain. However, given that lateralization is the uniqueness of the humans, many researchers neglect the differences between the left and right hemispheres when selecting the middle cerebral artery occlusion (MCAO in rats. The aim of this study was to evaluate the effect of ischemia in the dominant hemisphere on neurobehavioral function and on the cerebral infarction volume following MCAO in rats. Methods The right-handed male Sprague-Dawley rats asserted by the quadrupedal food-reaching test were subjected to 2 hours MCA occlusion and then reperfusion. Results The neurological scores were significantly worse in the left MCAO group than that in the right MCAO group at 1 h, 24 h, 48 h and 72 h (p 0.05 respectively. There was a trend toward better neurobehavioral function recovery in the right MCAO group than in the left MCAO group. The total infarct volume in left MCAO was significantly larger than that in the right (p Conclusion The neurobehavioral function result and the pathological result were consistent with the hypothesis that paw preference in rats is similar to human handedness, and suggested that ischemia in dominant hemisphere caused more significant neurobehavioral consequence than in another hemisphere following MCAO in adult rats. Asymmetry in rat brain should be considered other than being neglected in choice of rat MCAO model.

  18. Quantified measurement of brain blood volume: comparative evaluations between the single photon emission computer tomography and the positron computer tomography

    International Nuclear Information System (INIS)

    Bouvard, G.; Fernandez, Y.; Petit-Taboue, M.C.; Derlon, J.M.; Travere, J.M.; Le Poec, C.

    1991-01-01

    The quantified measurement of cerebral blood volume is interesting for the brain blood circulation studies. This measurement is often used in positron computed tomography. It's more difficult in single photon emission computed tomography: there are physical problems with the limited resolution of the detector, the Compton effect and the photon attenuation. The objectif of this study is to compare the results between these two techniques. The quantified measurement of brain blood volume is possible with the single photon emission computer tomogragry. However, there is a loss of contrast [fr

  19. Meta-analysis of associations between human brain volume and intelligence differences : How strong are they and what do they mean?

    NARCIS (Netherlands)

    Pietschnig, J.; Penke, L.; Wicherts, J.M.; Zeiler, M.; Voracek, M.

    2015-01-01

    Positive associations between human intelligence and brain size have been suspected for more than 150 years. Nowadays, modern non-invasive measures of in vivo brain volume (Magnetic Resonance Imaging) make it possible to reliably assess associations with IQ. By means of a systematic review of

  20. Changes of pituitary gland volume in Kennedy disease.

    Science.gov (United States)

    Pieper, C C; Teismann, I K; Konrad, C; Heindel, W L; Schiffbauer, H

    2013-12-01

    Kennedy disease is a rare X-linked neurodegenerative disorder caused by a CAG repeat expansion in the first exon of the androgen-receptor gene. Apart from neurologic signs, this mutation can cause a partial androgen insensitivity syndrome with typical alterations of gonadotropic hormones produced by the pituitary gland. The aim of the present study was therefore to evaluate the impact of Kennedy disease on pituitary gland volume under the hypothesis that endocrinologic changes caused by partial androgen insensitivity may lead to morphologic changes (ie, hypertrophy) of the pituitary gland. Pituitary gland volume was measured in sagittal sections of 3D T1-weighted 3T-MR imaging data of 8 patients with genetically proven Kennedy disease and compared with 16 healthy age-matched control subjects by use of Multitracer by a blinded, experienced radiologist. The results were analyzed by a univariant ANOVA with total brain volume as a covariant. Furthermore, correlation and linear regression analyses were performed for pituitary volume, patient age, disease duration, and CAG repeat expansion length. Intraobserver reliability was evaluated by means of the Pearson correlation coefficient. Pituitary volume was significantly larger in patients with Kennedy disease (636 [±90] mm(3)) than in healthy control subjects (534 [±91] mm(3)) (P = .041). There was no significant difference in total brain volume (P = .379). Control subjects showed a significant decrease in volume with age (r = -0.712, P = .002), whereas there was a trend to increasing gland volume in patients with Kennedy disease (r = 0.443, P = .272). Gland volume correlated with CAG repeat expansion length in patients (r = 0.630, P = .047). The correlation coefficient for intraobserver reliability was 0.94 (P pituitary volume that correlated with the CAG repeat expansion length. This could reflect hypertrophy as the result of elevated gonadotropic hormone secretion caused by the androgen receptor mutation with partial

  1. Accuracy and reproducibility of simple cross-sectional linear and area measurements of brain structures and their comparison with volume measurements

    International Nuclear Information System (INIS)

    Whalley, H.C.; Wardlaw, J.M.

    2001-01-01

    Volumetric measurement of brain structure on brain images is regarded as a gold standard, yet is very time consuming. We wondered whether simple linear and area measurements might be as accurate and reproducible. Two observers independently measured the cross-sectional area of the corpus callosum, lentiform and caudate nuclei, thalamus, amygdalas, hippocampi, lateral and third ventricles, and the width of the sylvian and frontal interhemispheric fissures and brain stem on brain MRI of 55 patients using a program written in-house; one observer also measured the volumes of the basal ganglia, amygdalo-hippocampal complex and ventricular system using Analyze, and performed qualitative assessment of four regions (lateral and third ventricles, cortex, and medial temporal lobe) using the Lieberman score. All measures were performed blinded to all other information. Test objects of known size were also imaged with MRI and measured by the two observers using the in-house program. The true sizes of the test objects were measured using engineering calipers by two observers blind to the MRI results. Differences between the two observers using the same measurement method, and one observer using different methods, were calculated. The simple linear and cross-sectional area measurements were rapid (20 min versus 5 h for volumetric); were highly accurate for test-object measurement versus true size; had excellent intraobserver reliability; and, for most brain structures, the simple measures correlated highly significantly with volumetric measures. The simple measures were in general highly reproducible, the difference (as a percentage of the area or width of a region) between the two raters being around 10 %, range 0.1 %- 14.1 %, (similar to inter-rater variability in previous studies of volume measurements). The simple linear and area measures are reproducible and correlate well with the measured volumes, and there is a considerable time saving with the former. In circumstances

  2. N-Terminal pro-Brain Natriuretic Peptide and Associations With Brain Magnetic Resonance Imaging (MRI Features in Middle Age: The CARDIA Brain MRI Study

    Directory of Open Access Journals (Sweden)

    Ian T. Ferguson

    2018-05-01

    Full Text Available ObjectiveAs part of research on the heart–brain axis, we investigated the association of N-terminal pro-brain natriuretic peptide (NT-proBNP with brain structure and function in a community-based cohort of middle-aged adults from the Brain Magnetic Resonance Imaging sub-study of the Coronary Artery Risk Development in Young Adults (CARDIA Study.Approach and resultsIn a cohort of 634 community-dwelling adults with a mean (range age of 50.4 (46–52 years, we examined the cross-sectional association of NT-proBNP to total, gray (GM and white matter (WM volumes, abnormal WM load and WM integrity, and to cognitive function tests [the Digit Symbol Substitution Test (DSST, the Stroop test, and the Rey Auditory–Verbal Learning Test]. These associations were examined using linear regression models adjusted for demographic and cardiovascular risk factors and cardiac output. Higher NT-proBNP concentration was significantly associated with smaller GM volume (β = −3.44; 95% CI = −5.32, −0.53; p = 0.003, even after additionally adjusting for cardiac output (β = −2.93; 95% CI = −5.32, −0.53; p = 0.017. Higher NT-proBNP levels were also associated with lower DSST scores. NT-proBNP was not related to WM volume, WM integrity, or abnormal WM load.ConclusionIn this middle-aged cohort, subclinical levels of NT-proBNP were related to brain function and specifically to GM and not WM measures, extending similar findings in older cohorts. Further research is warranted into biomarkers of cardiac dysfunction as a target for early markers of a brain at risk.

  3. The total right/left-volume index: a new and simplified cardiac magnetic resonance measure to evaluate the severity of Ebstein anomaly of the tricuspid valve: a comparison with heart failure markers from various modalities.

    Science.gov (United States)

    Hösch, Olga; Sohns, Jan Martin; Nguyen, Thuy-Trang; Lauerer, Peter; Rosenberg, Christina; Kowallick, Johannes Tammo; Kutty, Shelby; Unterberg, Christina; Schuster, Andreas; Faßhauer, Martin; Staab, Wieland; Paul, Thomas; Lotz, Joachim; Steinmetz, Michael

    2014-07-01

    The classification of clinical severity of Ebstein anomaly still remains a challenge. The aim of this study was to focus on the interaction of the pathologically altered right heart with the anatomically-supposedly-normal left heart and to derive from cardiac magnetic resonance (CMR) a simple imaging measure for the clinical severity of Ebstein anomaly. Twenty-five patients at a mean age of 26±14 years with unrepaired Ebstein anomaly were examined in a prospective study. Disease severity was classified using CMR volumes and functional measurements in comparison with heart failure markers from clinical data, ECG, laboratory and cardiopulmonary exercise testing, and echocardiography. All examinations were completed within 24 hours. A total right/left-volume index was defined from end-diastolic volume measurements in CMR: total right/left-volume index=(RA+aRV+fRV)/(LA+LV). Mean total right/left-volume index was 2.6±1.7 (normal values: 1.1±0.1). This new total right/left-volume index correlated with almost all clinically used biomarkers of heart failure: brain natriuretic peptide (r=0.691; P=0.0003), QRS (r=0.432; P=0.039), peak oxygen consumption/kg (r=-0.479; P=0.024), ventilatory response to carbon dioxide production at anaerobic threshold (r=0.426; P=0.048), the severity of tricuspid regurgitation (r=0.692; P=0.009), tricuspid valve offset (r=0.583; P=0.004), and tricuspid annular plane systolic excursion (r=0.554; P=0.006). Previously described severity indices ([RA+aRV]/[fRV+LA+LV]) and fRV/LV end-diastolic volume corresponded only to some parameters. In patients with Ebstein anomaly, the easily acquired index of right-sided to left-sided heart volumes from CMR correlated well with established heart failure markers. Our data suggest that the total right/left-volume index should be used as a new and simplified CMR measure, allowing more accurate assessment of disease severity than previously described scoring systems. © 2014 American Heart Association, Inc.

  4. N-Acetylaspartate distribution in rat brain striatum during acute brain ischemia

    DEFF Research Database (Denmark)

    Sager, T.N.; Laursen, H; Fink-Jensen, A

    1999-01-01

    Brain N-acetylaspartate (NAA) can be quantified by in vivo proton magnetic resonance spectroscopy (1H-MRS) and is used in clinical settings as a marker of neuronal density. It is, however, uncertain whether the change in brain NAA content in acute stroke is reliably measured by 1H-MRS and how NAA......]e increased linearly to 4 mmol/L after 3 hours and this level was maintained for the next 4 h. From the change in in vivo recovery of the interstitial space volume marker [14C]mannitol, the relative amount of NAA distributed in the interstitial space was calculated to be 0.2% of the total brain NAA during...... normal conditions and only 2 to 6% during ischemia. It was concluded that the majority of brain NAA is intracellularly located during ischemia despite large increases of interstitial [NAA]. Thus, MR quantification of NAA during acute ischemia reflects primarily changes in intracellular levels of NAA...

  5. Hippocampal volume and auditory attention on a verbal memory task with adult survivors of pediatric brain tumor.

    Science.gov (United States)

    Jayakar, Reema; King, Tricia Z; Morris, Robin; Na, Sabrina

    2015-03-01

    We examined the nature of verbal memory deficits and the possible hippocampal underpinnings in long-term adult survivors of childhood brain tumor. 35 survivors (M = 24.10 ± 4.93 years at testing; 54% female), on average 15 years post-diagnosis, and 59 typically developing adults (M = 22.40 ± 4.35 years, 54% female) participated. Automated FMRIB Software Library (FSL) tools were used to measure hippocampal, putamen, and whole brain volumes. The California Verbal Learning Test-Second Edition (CVLT-II) was used to assess verbal memory. Hippocampal, F(1, 91) = 4.06, ηp² = .04; putamen, F(1, 91) = 11.18, ηp² = .11; and whole brain, F(1, 92) = 18.51, ηp² = .17, volumes were significantly lower for survivors than controls (p memory indices of auditory attention list span (Trial 1: F(1, 92) = 12.70, η² = .12) and final list learning (Trial 5: F(1, 92) = 6.01, η² = .06) were significantly lower for survivors (p attention, but none of the other CVLT-II indices. Secondary analyses for the effect of treatment factors are presented. Volumetric differences between survivors and controls exist for the whole brain and for subcortical structures on average 15 years post-diagnosis. Treatment factors seem to have a unique effect on subcortical structures. Memory differences between survivors and controls are largely contingent upon auditory attention list span. Only hippocampal volume is associated with the auditory attention list span component of verbal memory. These findings are particularly robust for survivors treated with radiation. PsycINFO Database Record (c) 2015 APA, all rights reserved.

  6. Automated CT-based segmentation and quantification of total intracranial volume

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, Carlos; Wahlund, Lars-Olof; Westman, Eric [Karolinska Institute, Department of Neurobiology, Care Sciences and Society (NVS), Division of Clinical Geriatrics, Stockholm (Sweden); Edholm, Kaijsa; Cavallin, Lena; Muller, Susanne; Axelsson, Rimma [Karolinska Institute, Department of Clinical Science, Intervention and Technology, Division of Medical Imaging and Technology, Stockholm (Sweden); Karolinska University Hospital in Huddinge, Department of Radiology, Stockholm (Sweden); Simmons, Andrew [King' s College London, Institute of Psychiatry, London (United Kingdom); NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia, London (United Kingdom); Skoog, Ingmar [Gothenburg University, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, Gothenburg (Sweden); Larsson, Elna-Marie [Uppsala University, Department of Surgical Sciences, Radiology, Akademiska Sjukhuset, Uppsala (Sweden)

    2015-11-15

    To develop an algorithm to segment and obtain an estimate of total intracranial volume (tICV) from computed tomography (CT) images. Thirty-six CT examinations from 18 patients were included. Ten patients were examined twice the same day and eight patients twice six months apart (these patients also underwent MRI). The algorithm combines morphological operations, intensity thresholding and mixture modelling. The method was validated against manual delineation and its robustness assessed from repeated imaging examinations. Using automated MRI software, the comparability with MRI was investigated. Volumes were compared based on average relative volume differences and their magnitudes; agreement was shown by a Bland-Altman analysis graph. We observed good agreement between our algorithm and manual delineation of a trained radiologist: the Pearson's correlation coefficient was r = 0.94, tICVml[manual] = 1.05 x tICVml[automated] - 33.78 (R{sup 2} = 0.88). Bland-Altman analysis showed a bias of 31 mL and a standard deviation of 30 mL over a range of 1265 to 1526 mL. tICV measurements derived from CT using our proposed algorithm have shown to be reliable and consistent compared to manual delineation. However, it appears difficult to directly compare tICV measures between CT and MRI. (orig.)

  7. Automated CT-based segmentation and quantification of total intracranial volume

    International Nuclear Information System (INIS)

    Aguilar, Carlos; Wahlund, Lars-Olof; Westman, Eric; Edholm, Kaijsa; Cavallin, Lena; Muller, Susanne; Axelsson, Rimma; Simmons, Andrew; Skoog, Ingmar; Larsson, Elna-Marie

    2015-01-01

    To develop an algorithm to segment and obtain an estimate of total intracranial volume (tICV) from computed tomography (CT) images. Thirty-six CT examinations from 18 patients were included. Ten patients were examined twice the same day and eight patients twice six months apart (these patients also underwent MRI). The algorithm combines morphological operations, intensity thresholding and mixture modelling. The method was validated against manual delineation and its robustness assessed from repeated imaging examinations. Using automated MRI software, the comparability with MRI was investigated. Volumes were compared based on average relative volume differences and their magnitudes; agreement was shown by a Bland-Altman analysis graph. We observed good agreement between our algorithm and manual delineation of a trained radiologist: the Pearson's correlation coefficient was r = 0.94, tICVml[manual] = 1.05 x tICVml[automated] - 33.78 (R 2 = 0.88). Bland-Altman analysis showed a bias of 31 mL and a standard deviation of 30 mL over a range of 1265 to 1526 mL. tICV measurements derived from CT using our proposed algorithm have shown to be reliable and consistent compared to manual delineation. However, it appears difficult to directly compare tICV measures between CT and MRI. (orig.)

  8. Is orbital volume associated with eyeball and visual cortex volume in humans?

    Science.gov (United States)

    Pearce, Eiluned; Bridge, Holly

    2013-01-01

    In humans orbital volume increases linearly with absolute latitude. Scaling across mammals between visual system components suggests that these larger orbits should translate into larger eyes and visual cortices in high latitude humans. Larger eyes at high latitudes may be required to maintain adequate visual acuity and enhance visual sensitivity under lower light levels. To test the assumption that orbital volume can accurately index eyeball and visual cortex volumes specifically in humans. Structural Magnetic Resonance Imaging (MRI) techniques are employed to measure eye and orbit (n = 88) and brain and visual cortex (n = 99) volumes in living humans. Facial dimensions and foramen magnum area (a proxy for body mass) were also measured. A significant positive linear relationship was found between (i) orbital and eyeball volumes, (ii) eyeball and visual cortex grey matter volumes and (iii) different visual cortical areas, independently of overall brain volume. In humans the components of the visual system scale from orbit to eye to visual cortex volume independently of overall brain size. These findings indicate that orbit volume can index eye and visual cortex volume in humans, suggesting that larger high latitude orbits do translate into larger visual cortices.

  9. Long-term occupational stress is associated with regional reductions in brain tissue volumes.

    Directory of Open Access Journals (Sweden)

    Eva Blix

    Full Text Available There are increasing reports of cognitive and psychological declines related to occupational stress in subjects without psychiatric premorbidity or major life trauma. The underlying neurobiology is unknown, and many question the notion that the described disabilities represent a medical condition. Using PET we recently found that persons suffering from chronic occupational stress had limbic reductions in the 5-HT1A receptor binding potential. Here we examine whether chronic work-related stress is also associated with changes in brain structure. We performed MRI-based voxel-based morphometry and structural volumetry in stressed subjects and unstressed controls focusing on gray (GM and white matter (WM volumes, and the volumes of hippocampus, caudate, and putamen - structures known to be susceptible to neurotoxic changes. Stressed subjects exhibited significant reductions in the GM volumes of the anterior cingulate cortex and the dorsolateral prefrontal cortex. Furthermore, their caudate and putamen volumes were reduced, and the volumes correlated inversely to the degree of perceived stress. Our results add to previous data on chronic psychosocial stress, and indicate a morphological involvement of the frontostriatal circuits. The present findings of morphological changes in these regions confirm our previous conclusion that symptoms from occupational stress merit careful investigations and targeted treatment.

  10. Long-Term Occupational Stress Is Associated with Regional Reductions in Brain Tissue Volumes

    Science.gov (United States)

    Blix, Eva; Perski, Aleksander; Berglund, Hans; Savic, Ivanka

    2013-01-01

    There are increasing reports of cognitive and psychological declines related to occupational stress in subjects without psychiatric premorbidity or major life trauma. The underlying neurobiology is unknown, and many question the notion that the described disabilities represent a medical condition. Using PET we recently found that persons suffering from chronic occupational stress had limbic reductions in the 5-HT1A receptor binding potential. Here we examine whether chronic work-related stress is also associated with changes in brain structure. We performed MRI-based voxel-based morphometry and structural volumetry in stressed subjects and unstressed controls focusing on gray (GM) and white matter (WM) volumes, and the volumes of hippocampus, caudate, and putamen – structures known to be susceptible to neurotoxic changes. Stressed subjects exhibited significant reductions in the GM volumes of the anterior cingulate cortex and the dorsolateral prefrontal cortex. Furthermore, their caudate and putamen volumes were reduced, and the volumes correlated inversely to the degree of perceived stress. Our results add to previous data on chronic psychosocial stress, and indicate a morphological involvement of the frontostriatal circuits. The present findings of morphological changes in these regions confirm our previous conclusion that symptoms from occupational stress merit careful investigations and targeted treatment. PMID:23776438

  11. Equal Pay for Equal Work: Medicare Procedure Volume and Reimbursement for Male and Female Surgeons Performing Total Knee and Total Hip Arthroplasty.

    Science.gov (United States)

    Holliday, Emma B; Brady, Christina; Pipkin, William C; Somerson, Jeremy S

    2018-02-21

    The observed sex gap in physician salary has been the topic of much recent debate in the United States, but it has not been well-described among orthopaedic surgeons. The objective of this study was to evaluate for sex differences in Medicare claim volume and reimbursement among orthopaedic surgeons. The Medicare Provider Utilization and Payment Public Use File was used to compare claim volume and reimbursement between female and male orthopaedic surgeons in 2013. Data were extracted for each billing code per orthopaedic surgeon in the year 2013 for total claims, surgical claims, total knee arthroplasty (TKA) claims, and total hip arthroplasty (THA) claims. A total of 20,546 orthopaedic surgeons who treated traditional Medicare patients were included in the initial analysis. Claim volume and reimbursement received were approximately twofold higher for all claims and more than threefold higher for surgical claims for male surgeons when compared with female surgeons (p 10 TKAs and THAs, respectively, in 2013 for Medicare patients and were included in the subset analyses. Although male surgeons performed a higher mean number of TKAs than female surgeons (mean and standard deviation, 37 ± 33 compared with 26 ± 17, respectively, p men and women for TKA or THA ($1,135 ± $228 compared with $1,137 ± $184 for TKA, respectively, p = 0.380; $1,049 ± $226 compared with $1,043 ± $266 for THA, respectively, p = 0.310). Female surgeons had a lower number of total claims and reimbursements compared with male surgeons. However, among surgeons who performed >10 THAs and TKAs, there were no sex differences in the mean reimbursement payment per surgeon. The number of women in orthopaedics is rising, and there is much interest in how their productivity and compensation compare with their male counterparts.

  12. Multiple Brain Markers are Linked to Age-Related Variation in Cognition

    Science.gov (United States)

    Hedden, Trey; Schultz, Aaron P.; Rieckmann, Anna; Mormino, Elizabeth C.; Johnson, Keith A.; Sperling, Reisa A.; Buckner, Randy L.

    2016-01-01

    Age-related alterations in brain structure and function have been challenging to link to cognition due to potential overlapping influences of multiple neurobiological cascades. We examined multiple brain markers associated with age-related variation in cognition. Clinically normal older humans aged 65–90 from the Harvard Aging Brain Study (N = 186) were characterized on a priori magnetic resonance imaging markers of gray matter thickness and volume, white matter hyperintensities, fractional anisotropy (FA), resting-state functional connectivity, positron emission tomography markers of glucose metabolism and amyloid burden, and cognitive factors of processing speed, executive function, and episodic memory. Partial correlation and mediation analyses estimated age-related variance in cognition shared with individual brain markers and unique to each marker. The largest relationships linked FA and striatum volume to processing speed and executive function, and hippocampal volume to episodic memory. Of the age-related variance in cognition, 70–80% was accounted for by combining all brain markers (but only ∼20% of total variance). Age had significant indirect effects on cognition via brain markers, with significant markers varying across cognitive domains. These results suggest that most age-related variation in cognition is shared among multiple brain markers, but potential specificity between some brain markers and cognitive domains motivates additional study of age-related markers of neural health. PMID:25316342

  13. The association of brain structure with gait velocity in older adults: a quantitative volumetric analysis of brain MRI

    Energy Technology Data Exchange (ETDEWEB)

    Ezzati, Ali [Albert Einstein College of Medicine of Yeshiva University, Saul B. Korey Department of Neurology, Bronx, NY (United States); Montefiore Medical Center, Department of Neurology, Bronx, NY (United States); Katz, Mindy J. [Albert Einstein College of Medicine of Yeshiva University, Saul B. Korey Department of Neurology, Bronx, NY (United States); Lipton, Michael L. [Albert Einstein College of Medicine of Yeshiva University, The Gruss Magnetic Resonance Research Center and Departments of Radiology, Psychiatry and Behavioral Sciences and the Dominick P. Purpura Department of Neuroscience, Bronx, NY (United States); Montefiore Medical Center, The Department of Radiology, Bronx, NY (United States); Lipton, Richard B. [Albert Einstein College of Medicine of Yeshiva University, Saul B. Korey Department of Neurology, Bronx, NY (United States); Albert Einstein College of Medicine of Yeshiva University, Department of Epidemiology and Population Health, Bronx, NY (United States); Verghese, Joe [Albert Einstein College of Medicine of Yeshiva University, Saul B. Korey Department of Neurology, Bronx, NY (United States); Albert Einstein College of Medicine, Division of Cognitive and Motor Aging, Bronx, NY (United States)

    2015-08-15

    While cortical processes play an important role in controlling locomotion, the underlying structural brain changes associated with slowing of gait in aging are not yet fully established. Our study aimed to examine the relationship between cortical gray matter volume (GM), white matter volume (WM), ventricular volume (VV), hippocampal and hippocampal subfield volumes, and gait velocity in older adults free of dementia. Gait and cognitive performance was tested in 112 community-residing adults, age 70 years and over, participating in the Einstein Aging Study. Gait velocity (cm/s) was obtained using an instrumented walkway. Volumetric MRI measures were estimated using a FreeSurfer software. We examined the cross-sectional relationship of GM, WM, VV, and hippocampal total and subfield volumes and gait velocity using linear regression models. In complementary models, the effect of memory performance on the relationship between gait velocity and regional volumes was evaluated. Slower gait velocity was associated with smaller cortical GM and total hippocampal volumes. There was no association between gait velocity and WM or VV. Among hippocampal subfields, only smaller presubiculum volume was significantly associated with decrease in gait velocity. Addition of the memory performance to the models attenuated the association between gait velocity and all volumetric measures. Our findings indicate that total GM and hippocampal volumes as well as specific hippocampal subfield volumes are inversely associated with locomotor function. These associations are probably affected by cognitive status of study population. (orig.)

  14. The association of brain structure with gait velocity in older adults: a quantitative volumetric analysis of brain MRI

    International Nuclear Information System (INIS)

    Ezzati, Ali; Katz, Mindy J.; Lipton, Michael L.; Lipton, Richard B.; Verghese, Joe

    2015-01-01

    While cortical processes play an important role in controlling locomotion, the underlying structural brain changes associated with slowing of gait in aging are not yet fully established. Our study aimed to examine the relationship between cortical gray matter volume (GM), white matter volume (WM), ventricular volume (VV), hippocampal and hippocampal subfield volumes, and gait velocity in older adults free of dementia. Gait and cognitive performance was tested in 112 community-residing adults, age 70 years and over, participating in the Einstein Aging Study. Gait velocity (cm/s) was obtained using an instrumented walkway. Volumetric MRI measures were estimated using a FreeSurfer software. We examined the cross-sectional relationship of GM, WM, VV, and hippocampal total and subfield volumes and gait velocity using linear regression models. In complementary models, the effect of memory performance on the relationship between gait velocity and regional volumes was evaluated. Slower gait velocity was associated with smaller cortical GM and total hippocampal volumes. There was no association between gait velocity and WM or VV. Among hippocampal subfields, only smaller presubiculum volume was significantly associated with decrease in gait velocity. Addition of the memory performance to the models attenuated the association between gait velocity and all volumetric measures. Our findings indicate that total GM and hippocampal volumes as well as specific hippocampal subfield volumes are inversely associated with locomotor function. These associations are probably affected by cognitive status of study population. (orig.)

  15. Genetic influences on individual differences in longitudinal changes in global and subcortical brain volumes : Results of the ENIGMA plasticity working group

    NARCIS (Netherlands)

    Brouwer, Rachel M; Panizzon, Matthew S; Glahn, David C; Hibar, Derrek P; Hua, Xue; Jahanshad, Neda; Abramovic, Lucija; De Zubicaray, Greig I; Franz, Carol E; Hansell, Narelle K; Hickie, Ian B; Koenis, Marinka M G; Martin, Nicholas G; Mather, Karen A; McMahon, Katie L; Schnack, Hugo G; Strike, Lachlan T; Swagerman, Suzanne C; Thalamuthu, Anbupalam; Wen, Wei; Gilmore, John H; Gogtay, Nitin; Kahn, René S; Sachdev, Perminder S; Wright, Margaret J; Boomsma, Dorret I; Kremen, William S; Thompson, Paul M; Hulshoff Pol, Hilleke E

    2017-01-01

    Structural brain changes that occur during development and ageing are related to mental health and general cognitive functioning. Individuals differ in the extent to which their brain volumes change over time, but whether these differences can be attributed to differences in their genotypes has not

  16. The use of phase sequence image sets to reconstruct the total volume occupied by a mobile lung tumor

    International Nuclear Information System (INIS)

    Gagne, Isabelle M.; Robinson, Don M.; Halperin, Ross; Roa, Wilson

    2005-01-01

    The use of phase sequence image (PSI) sets to reveal the total volume occupied by a mobile target is presented. Isocontrast composite clinical target volumes (CCTVs) may be constructed from PSI sets in order to reveal the total volume occupied by a mobile target during the course of its travel. The ability of the CCTV technique to properly account for target motion is demonstrated by comparison to contours of the true total volume occupied (TVO) for a number of experimental phantom geometries. Finally, using real patient data, the clinical utility of the CCTV technique to properly account for internal tumor motion while minimizing the volume of healthy lung tissue irradiated is assessed by comparison to the standard approach of applying safety margins. Results of the phantom study reveal that CCTV cross sections constructed at the 20% isocontrast level yield good agreement with the total cross sections (TXO) of mobile targets. These CCTVs conform well to the TVOs of the moving targets examined whereby the addition of small uniform margins ensures complete circumscription of the TVO with the inclusion of minimal amounts of surrounding external volumes. The CCTV technique is seen to be clearly superior to the common practice of the addition of safety margins to individual CTV contours in order to account for internal target motion. Margins required with the CCTV technique are eight to ten times smaller than those required with individual CTVs

  17. Brain volumes in healthy adults aged 40 years and over: a voxel-based morphometry study.

    Science.gov (United States)

    Riello, Roberta; Sabattoli, Francesca; Beltramello, Alberto; Bonetti, Matteo; Bono, Giorgio; Falini, Andrea; Magnani, Giuseppe; Minonzio, Giorgio; Piovan, Enrico; Alaimo, Giuseppina; Ettori, Monica; Galluzzi, Samantha; Locatelli, Enrico; Noiszewska, Malgorzata; Testa, Cristina; Frisoni, Giovanni B

    2005-08-01

    Gender and age effect on brain morphology have been extensively investigated. However, the great variety in methods applied to morphology partly explain the conflicting results of linear patterns of tissue changes and lateral asymmetry in men and women. The aim of the present study was to assess the effect of age, gender and laterality on the volumes of gray matter (GM) and white matter (WM) in a large group of healthy adults by means of voxel-based morphometry. This technique, based on observer-independent algorithms, automatically segments the 3 types of tissue and computes the amount of tissue in each single voxel. Subjects were 229 healthy subjects of 40 years of age or older, who underwent magnetic resonance (MR) for reasons other than cognitive impairment. MR images were reoriented following the AC-PC line and, after removing the voxels below the cerebellum, were processed by Statistical Parametric Mapping (SPM99). GM and WM volumes were normalized for intracranial volume. Women had more fractional GM and WM volumes than men. Age was negatively correlated with both fractional GM and WM, and a gender x age interaction effect was found for WM, men having greater WM loss with advancing age. Pairwise differences between left and right GM were negative (greater GM in right hemisphere) in men, and positive (greater GM in left hemisphere) in women (-0.56+/-4.2 vs 0.99+/-4.8; p=0.019). These results support side-specific accelerated WM loss in men, and may help our better understanding of changes in regional brain structures associated with pathological aging.

  18. [Totally paralyzed or brain dead?

    NARCIS (Netherlands)

    Dijk, G.W. van; Vos, P.E.; Eurelings, M.; Jansen, G.H.; Gijn, J. van

    2001-01-01

    In two patients, men aged 23 and 42 years, a condition that mimicked brain death was observed as a consequence of rapidly progressive complete peripheral paralyses, which included the intrinsic and extrinsic eye muscles. However, the EEG revealed a waking pattern. Maximal supportive therapy was

  19. Stereological estimates of nuclear volume and other quantitative variables in supratentorial brain tumors. Practical technique and use in prognostic evaluation

    DEFF Research Database (Denmark)

    Sørensen, Flemming Brandt; Braendgaard, H; Chistiansen, A O

    1991-01-01

    The use of morphometry and modern stereology in malignancy grading of brain tumors is only poorly investigated. The aim of this study was to present these quantitative methods. A retrospective feasibility study of 46 patients with supratentorial brain tumors was carried out to demonstrate...... the practical technique. The continuous variables were correlated with the subjective, qualitative WHO classification of brain tumors, and the prognostic value of the parameters was assessed. Well differentiated astrocytomas (n = 14) had smaller estimates of the volume-weighted mean nuclear volume and mean...... nuclear profile area, than those of anaplastic astrocytomas (n = 13) (2p = 3.1.10(-3) and 2p = 4.8.10(-3), respectively). No differences were seen between the latter type of tumor and glioblastomas (n = 19). The nuclear index was of the same magnitude in all three tumor types, whereas the mitotic index...

  20. Generalized decrease in brain glucose metabolism during fasting in humans studied by PET

    International Nuclear Information System (INIS)

    Redies, C.; Hoffer, L.J.; Beil, C.

    1989-01-01

    In prolonged fasting, the brain derives a large portion of its oxidative energy from the ketone bodies, beta-hydroxybutyrate and acetoacetate, thereby reducing whole body glucose consumption. Energy substrate utilization differs regionally in the brain of fasting rat, but comparable information has hitherto been unavailable in humans. We used positron emission tomography (PET) to study regional brain glucose and oxygen metabolism, blood flow, and blood volume in four obese subjects before and after a 3-wk total fast. Whole brain glucose utilization fell to 54% of control (postabsorptive) values (P less than 0.002). The whole brain rate constant for glucose tracer phosphorylation fell to 51% of control values (P less than 0.002). Both parameters decreased uniformly throughout the brain. The 2-fluoro-2-deoxy-D-glucose lumped constant decreased from a control value of 0.57 to 0.43 (P less than 0.01). Regional blood-brain barrier transfer coefficients for glucose tracer, regional oxygen utilization, blood flow, and blood volume were unchanged

  1. Effects of low-level exposure to sarin and cyclosarin during the 1991 Gulf War on brain function and brain structure in US veterans.

    Science.gov (United States)

    Chao, Linda L; Rothlind, Johannes C; Cardenas, Valerie A; Meyerhoff, Dieter J; Weiner, Michael W

    2010-09-01

    Potentially more than 100,000 US troops may have been exposed to the organophosphate chemical warfare agents sarin (GB) and cyclosarin (GF) when a munitions dump at Khamisiyah, Iraq was destroyed during the Gulf War (GW) in 1991. Although little is known about the long-term neurobehavioral or neurophysiological effects of low-dose exposure to GB/GF in humans, recent studies of GW veterans from the Devens Cohort suggest decrements in certain cognitive domains and atrophy in brain white matter occur individuals with higher estimated levels of presumed GB/GF exposure. The goal of the current study is to determine the generalizability of these findings in another cohort of GW veterans with suspected GB/GF exposure. Neurobehavioral and imaging data collected in a study on Gulf War Illness between 2002 and 2007 were used in this study. We focused on the data of 40 GW-deployed veterans categorized as having been exposed to GB/GF at Khamisiyah, Iraq and 40 matched controls. Magnetic resonance images (MRI) of the brain were analyzed using automated and semi-automated image processing techniques that produced volumetric measurements of gray matter (GM), white matter (WM), cerebrospinal fluid (CSF) and hippocampus. GW veterans with suspected GB/GF exposure had reduced total GM and hippocampal volumes compared to their unexposed peers (p< or =0.01). Although there were no group differences in measures of cognitive function or total WM volume, there were significant, positive correlations between total WM volume and measures of executive function and visuospatial abilities in veterans with suspected GB/GF exposure. These findings suggest that low-level exposure to GB/GF can have deleterious effects on brain structure and brain function more than decade later. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. 11C-CHO PET in optimization of target volume delineation and treatment regimens in postoperative radiotherapy for brain gliomas

    International Nuclear Information System (INIS)

    Li Fangming; Nie Qing; Wang Ruimin; Chang, Susan M.; Zhao Wenrui; Zhu Qi; Liang Yingkui; Yang Ping; Zhang Jun; Jia Haiwei; Fang Henghu

    2012-01-01

    Objective: We explored the clinical values of 11 C-choline ( 11 C-CHO) PET in optimization of target volume delineation and treatment regimens in postoperative radiotherapy for brain gliomas. Methods: Sixteen patients with the pathological confirmation of the diagnosis of gliomas prior to receiving radiotherapy (postoperative) were included, and on whom both MRI and CHO PET scans were performed at the same position for comparison of residual tumors with the two techniques. 11 C-CHO was used as the tracer in the PET scan. A plain T1-weighted, T2-weighted and contrast-enhanced T1-weighted imaging scans were performed in the MRI scan sequence. The gliomas' residual tumor volume was defined as the area with CHO-PET high-affinity uptake and metabolism (V CHO ) and one with MRI T1-weighted imaging high signal intensity (V Gd ), and was determined by a group of experienced professionals and clinicians. Results: (1) In CHO-PET images, the tumor target volume, i.e., the highly metabolic area with a high concentration of isotopes (SUV 1.016–4.21) and the corresponding contralateral normal brain tissues (SUV0.1–0.62), was well contrasted, and the boundary between lesions and surrounding normal brain tissues was better defined compared with MRI and 18 F-FDG PET images. (2) For patients with brain gliomas of WHO Grade II, the SUV was 1.016–2.5; for those with WHO Grades III and IV, SUVs were >26–4.2. (3) Both CHO PET and MRI were positive for 10 patients and negative for 2 patients. The residual tumor consistency between these two studies was 75%. Four of the 10 CHO-PET-positive patients were negative on MRI scans. The maximum distance between V Gd and V CHO margins was 1.8 cm. (4) The gross tumor volumes (GTVs) and the ensuing treatment regimens were changed for 31.3% (5/16) of patients based on the CHO-PET high-affinity uptake and metabolism, in which the change rate was 80% (4/5), 14.3 % (1/7) and 0% (0/4) for patients with WHO Grade II III, and IV gliomas

  3. Wavelet brain angiography suggests arteriovenous pulse wave phase locking.

    Directory of Open Access Journals (Sweden)

    William E Butler

    Full Text Available When a stroke volume of arterial blood arrives to the brain, the total blood volume in the bony cranium must remain constant as the proportions of arterial and venous blood vary, and by the end of the cardiac cycle an equivalent volume of venous blood must have been ejected. I hypothesize the brain to support this process by an extraluminally mediated exchange of information between its arterial and venous circulations. To test this I introduce wavelet angiography methods to resolve single moving vascular pulse waves (PWs in the brain while simultaneously measuring brain pulse motion. The wavelet methods require angiographic data acquired at significantly faster rate than cardiac frequency. I obtained these data in humans from brain surface optical angiograms at craniotomy and in piglets from ultrasound angiograms via cranial window. I exploit angiographic time of flight to resolve arterial from venous circulation. Initial wavelet reconstruction proved unsatisfactory because of angiographic motion alias from brain pulse motion. Testing with numerically simulated cerebral angiograms enabled the development of a vascular PW cine imaging method based on cross-correlated wavelets of mixed high frequency and high temporal resolution respectively to attenuate frequency and motion alias. Applied to the human and piglet data, the method resolves individual arterial and venous PWs and finds them to be phase locked each with separate phase relations to brain pulse motion. This is consistent with arterial and venous PW coordination mediated by pulse motion and points to a testable hypothesis of a function of cerebrospinal fluid in the ventricles of the brain.

  4. Optimal dose and volume for postoperative radiotherapy in brain oligometastases from lung cancer: a retrospective study

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Seung Yeun; Kim, Hye Ryun; Cho, Byoung Chul; Lee, Chang Geol; Suh, Chang Ok [Yonsei Cancer Center, Yonsei University College of Medicine, Seoul (Korea, Republic of); Chang, Jong Hee [Dept. of Neurosurgery, Severance Hospital, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2017-06-15

    To evaluate intracranial control after surgical resection according to the adjuvant treatment received in order to assess the optimal radiotherapy (RT) dose and volume. Between 2003 and 2015, a total of 53 patients with brain oligometastases from non-small cell lung cancer (NSCLC) underwent metastasectomy. The patients were divided into three groups according to the adjuvant treatment received: whole brain radiotherapy (WBRT) ± boost (WBRT ± boost group, n = 26), local RT/Gamma Knife surgery (local RT group, n = 14), and the observation group (n = 13). The most commonly used dose schedule was WBRT (25 Gy in 10 fractions, equivalent dose in 2 Gy fractions [EQD2] 26.04 Gy) with tumor bed boost (15 Gy in 5 fractions, EQD2 16.25 Gy). The WBRT ± boost group showed the lowest 1-year intracranial recurrence rate of 30.4%, followed by the local RT and observation groups, at 66.7%, and 76.9%, respectively (p = 0.006). In the WBRT ± boost group, there was no significant increase in the 1-year new site recurrence rate of patients receiving a lower dose of WBRT (EQD2) <27 Gy compared to that in patients receiving a higher WBRT dose (p = 0.553). The 1-year initial tumor site recurrence rate was lower in patients receiving tumor bed dose (EQD2) of ≥42.3 Gy compared to those receiving <42.3 Gy, although the difference was not significant (p = 0.347). Adding WBRT after resection of brain oligometastases from NSCLC seems to enhance intracranial control. Furthermore, combining lower-dose WBRT with a tumor bed boost may be an attractive option.

  5. Correlation between Peripheral Levels of Brain-Derived Neurotrophic Factor and Hippocampal Volume in Children and Adolescents with Bipolar Disorder

    Directory of Open Access Journals (Sweden)

    Tatiana Lauxen Peruzzolo

    2015-01-01

    Full Text Available Pediatric bipolar disorder (PBD is a serious mental disorder that affects the development and emotional growth of affected patients. The brain derived neurotrophic factor (BDNF is recognized as one of the possible markers of the framework and its evolution. Abnormalities in BDNF signaling in the hippocampus could explain the cognitive decline seen in patients with TB. Our aim with this study was to evaluate possible changes in hippocampal volume in children and adolescents with BD and associate them to serum BDNF. Subjects included 30 patients aged seven to seventeen years from the ProCAB (Program for Children and Adolescents with Bipolar Disorder. We observed mean right and left hippocampal volumes of 41910.55 and 41747.96 mm3, respectively. No statistically significant correlations between peripheral BDNF levels and hippocampal volumes were found. We believe that the lack of correlation observed in this study is due to the short time of evolution of BD in children and adolescents. Besides studies with larger sample sizes to confirm the present findings and longitudinal assessments, addressing brain development versus a control group and including drug-naive patients in different mood states may help clarify the role of BDNF in the brain changes consequent upon BD.

  6. Effects of Age on Brain Development in Autism

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2002-09-01

    Full Text Available Total brain volumes were measured by MRI in 67 non-mentally retarded children with autism and 83 healthy controls, aged 8 to 46 years, in a study at University of Washington, Seattle: Johns Hopkins University Hospital, Baltimore: and University of Pittsburgh School of Medicine, PA.

  7. Volume-dependent hemodynamic effects of blood collection in canine donors - evaluation of 13% and 15% of total blood volume depletion

    Directory of Open Access Journals (Sweden)

    RUI R.F. FERREIRA

    2015-03-01

    Full Text Available Background: There is no consensus regarding the blood volume that could be safely donated by dogs, ranging from 11 to 25% of its total blood volume (TBV. No previous studies evaluated sedated donors.Aim: To evaluate the hemodynamic effects of blood collection from sedated and non-sedated dogs and to understand if such effects were volume-dependent.Materials and Methods: Fifty three donations of 13% of TBV and 20 donations of 15% TBV were performed in dogs sedated with diazepam and ketamine. Additionally, a total of 30 collections of 13% TBV and 20 collections of 15% TBV were performed in non-sedated dogs. Non-invasive arterial blood pressures and pulse rates were registered before and 15 min after donation. Results: Post-donation pulse rates increased significantly in both sedated groups, with higher differences in the 15% TBV collections. Systolic arterial pressures decreased significantly in these groups, while diastolic pressures increased significantly in 13% TBV donations. Non-sedated groups revealed a slight, but significant, SBP decrease. No clinical signs related to donations were registered.Conclusion: These results suggest that the collection of 15% TBV in sedated donors induces hemodynamic variations that may compromise the harmlessness of the procedure, while it seems to be a safe procedure in non-sedated dogs.

  8. Repairing the brain with physical exercise: Cortical thickness and brain volume increases in long-term pediatric brain tumor survivors in response to a structured exercise intervention

    Directory of Open Access Journals (Sweden)

    Kamila U. Szulc-Lerch

    Full Text Available There is growing evidence that exercise induced experience dependent plasticity may foster structural and functional recovery following brain injury. We examined the efficacy of exercise training for neural and cognitive recovery in long-term pediatric brain tumor survivors treated with radiation.We conducted a controlled clinical trial with crossover of exercise training (vs. no training in a volunteer sample of 28 children treated with cranial radiation for brain tumors (mean age = 11.5 yrs.; mean time since diagnosis = 5.7 yrs. The endpoints were anatomical T1 MRI data and multiple behavioral outcomes presenting a broader analysis of structural MRI data across the entire brain. This included an analysis of changes in cortical thickness and brain volume using automated, user unbiased approaches. A series of general linear mixed effects models evaluating the effects of exercise training on cortical thickness were performed in a voxel and vertex-wise manner, as well as for specific regions of interest. In exploratory analyses, we evaluated the relationship between changes in cortical thickness after exercise with multiple behavioral outcomes, as well as the relation of these measures at baseline.Exercise was associated with increases in cortical thickness within the right pre and postcentral gyri. Other notable areas of increased thickness related to training were present in the left pre and postcentral gyri, left temporal pole, left superior temporal gyrus, and left parahippocampal gyrus. Further, we observed that compared to a separate cohort of healthy children, participants displayed multiple areas with a significantly thinner cortex prior to training and fewer differences following training, indicating amelioration of anatomical deficits. Partial least squares analysis (PLS revealed specific patterns of relations between cortical thickness and various behavioral outcomes both after training and at baseline.Overall, our results

  9. Estimating volumes of the pituitary gland from T1-weighted magnetic-resonance images: effects of age, puberty, testosterone, and estradiol.

    Science.gov (United States)

    Wong, Angelita Pui-Yee; Pipitone, Jon; Park, Min Tae M; Dickie, Erin W; Leonard, Gabriel; Perron, Michel; Pike, Bruce G; Richer, Louis; Veillette, Suzanne; Chakravarty, M Mallar; Pausova, Zdenka; Paus, Tomáš

    2014-07-01

    The pituitary gland is a key structure in the hypothalamic-pituitary-gonadal (HPG) axis--it plays an important role in sexual maturation during puberty. Despite its small size, its volume can be quantified using magnetic resonance imaging (MRI). Here, we study a cohort of 962 typically developing adolescents from the Saguenay Youth Study and estimate pituitary volumes using a newly developed multi-atlas segmentation method known as the MAGeT Brain algorithm. We found that age and puberty stage (controlled for age) each predicts adjusted pituitary volumes (controlled for total brain volume) in both males and females. Controlling for the effects of age and puberty stage, total testosterone and estradiol levels also predict adjusted pituitary volumes in males and pre-menarche females, respectively. These findings demonstrate that the pituitary gland grows during adolescence, and its volume relates to circulating plasma-levels of sex steroids in both males and females. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Short-term mechanisms influencing volumetric brain dynamics

    Directory of Open Access Journals (Sweden)

    Nikki Dieleman

    2017-01-01

    Full Text Available With the use of magnetic resonance imaging (MRI and brain analysis tools, it has become possible to measure brain volume changes up to around 0.5%. Besides long-term brain changes caused by atrophy in aging or neurodegenerative disease, short-term mechanisms that influence brain volume may exist. When we focus on short-term changes of the brain, changes may be either physiological or pathological. As such determining the cause of volumetric dynamics of the brain is essential. Additionally for an accurate interpretation of longitudinal brain volume measures by means of neurodegeneration, knowledge about the short-term changes is needed. Therefore, in this review, we discuss the possible mechanisms influencing brain volumes on a short-term basis and set-out a framework of MRI techniques to be used for volumetric changes as well as the used analysis tools. 3D T1-weighted images are the images of choice when it comes to MRI of brain volume. These images are excellent to determine brain volume and can be used together with an analysis tool to determine the degree of volume change. Mechanisms that decrease global brain volume are: fluid restriction, evening MRI measurements, corticosteroids, antipsychotics and short-term effects of pathological processes like Alzheimer's disease, hypertension and Diabetes mellitus type II. Mechanisms increasing the brain volume include fluid intake, morning MRI measurements, surgical revascularization and probably medications like anti-inflammatory drugs and anti-hypertensive medication. Exercise was found to have no effect on brain volume on a short-term basis, which may imply that dehydration caused by exercise differs from dehydration by fluid restriction. In the upcoming years, attention should be directed towards studies investigating physiological short-term changes within the light of long-term pathological changes. Ultimately this may lead to a better understanding of the physiological short-term effects of

  11. MRI estimation of total renal volume demonstrates significant association with healthy donor weight

    International Nuclear Information System (INIS)

    Cohen, Emil I.; Kelly, Sarah A.; Edye, Michael; Mitty, Harold A.; Bromberg, Jonathan S.

    2009-01-01

    Purpose: The purpose of this study was to correlate total renal volume (TRV) calculations, obtained through the voxel-count method and ellipsoid formula with various physical characteristics. Materials and methods: MRI reports and physical examination from 210 healthy kidney donors (420 kidneys), on whom renal volumes were obtained using the voxel-count method, were retrospectively reviewed. These values along with ones obtained through a more traditional method (ellipsoid formula) were correlated with subject height, body weight, body mass index (BMI), and age. Results: TRV correlated strongly with body weight (r = 0.7) and to a lesser degree with height, age, or BMI (r = 0.5, -0.2, 0.3, respectively). The left kidney volume was greater than the right, on average (p < 0.001). The ellipsoid formula method over-estimated renal volume by 17% on average which was significant (p < 0.001). Conclusions: Body weight was the physical characteristic which demonstrated the strongest correlation with renal volume in healthy subjects. Given this finding, a formula was derived for estimating the TRV for a given patient based on the his or her weight: TRV = 2.96 x weight (kg) + 113 ± 64.

  12. The procyonid social club: comparison of brain volumes in the coatimundi (Nasua nasua, N. narica), kinkajou (Potos flavus), and raccoon (Procyon lotor).

    Science.gov (United States)

    Arsznov, Bradley M; Sakai, Sharleen T

    2013-01-01

    The present study investigated whether increased relative brain size, including regional brain volumes, is related to differing behavioral specializations exhibited by three member species of the family Procyonidae. Procyonid species exhibit continuums of behaviors related to social and physical environmental complexities: the mostly solitary, semiarboreal and highly dexterous raccoons (Procyon lotor); the exclusively arboreal kinkajous (Potos flavus), which live either alone or in small polyandrous family groups, and the social, terrestrial coatimundi (Nasua nasua, N. narica). Computed tomographic (CT) scans of 45 adult skulls including 17 coatimundis (9 male, 8 female), 14 raccoons (7 male, 7 female), and 14 kinkajous (7 male, 7 female) were used to create three-dimensional virtual endocasts. Endocranial volume was positively correlated with two separate measures of body size: skull basal length (r = 0.78, p Comparisons of relative regional brain volumes revealed that the anterior cerebrum volume consisting mainly of frontal cortex and surface area was significantly larger in the social coatimundi compared to kinkajous and raccoons. The dexterous raccoon had the largest relative posterior cerebrum volume, which includes the somatosensory cortex, in comparison to the other procyonid species studied. The exclusively arboreal kinkajou had the largest relative cerebellum and brain stem volume in comparison to the semi arboreal raccoon and the terrestrial coatimundi. Finally, intraspecific comparisons failed to reveal any sex differences, except in the social coatimundi. Female coatimundis possessed a larger relative frontal cortical volume than males. Social life histories differ in male and female coatimundis but not in either kinkajous or raccoons. This difference may reflect the differing social life histories experienced by females who reside in their natal bands, and forage and engage in antipredator behavior as a group, while males disperse upon reaching

  13. Quantitative analysis of CT brain images: a statistical model incorporating partial volume and beam hardening effects

    International Nuclear Information System (INIS)

    McLoughlin, R.F.; Ryan, M.V.; Heuston, P.M.; McCoy, C.T.; Masterson, J.B.

    1992-01-01

    The purpose of this study was to construct and evaluate a statistical model for the quantitative analysis of computed tomographic brain images. Data were derived from standard sections in 34 normal studies. A model representing the intercranial pure tissue and partial volume areas, with allowance for beam hardening, was developed. The average percentage error in estimation of areas, derived from phantom tests using the model, was 28.47%. We conclude that our model is not sufficiently accurate to be of clinical use, even though allowance was made for partial volume and beam hardening effects. (author)

  14. Sex differences in the clinical characteristics and brain gray matter volume alterations in unmedicated patients with major depressive disorder.

    Science.gov (United States)

    Yang, Xiao; Peng, Zugui; Ma, Xiaojuan; Meng, Yajing; Li, Mingli; Zhang, Jian; Song, Xiuliu; Liu, Ye; Fan, Huanhuan; Zhao, Liansheng; Deng, Wei; Li, Tao; Ma, Xiaohong

    2017-05-30

    This study was to explore the sex differences in clinical characteristics and brain gray matter volume (GMV) alterations in 29 male patients with major depressive disorder (MDDm), 53 female patients with MDD (MDDf), and in 29 male and 53 female matched healthy controls. Maps of GMV were constructed using magnetic resonance imaging data and compared between groups. We evaluated clinical symptoms using the Hamilton Rating Scale for Depression and obtained a total score and five syndrome scores. A two-factor ANCOVA model was specified using SPM8, with sex and diagnosis as the between-subject factors. We found that: (1) significant GMV increase in the left cerebellum and GMV reduction in the bilateral middle temporal gyrus and left ventral medial prefrontal gyrus occurred selectively in male patients, while the GMV reduction in the left lingual gyrus and dorsal medial prefrontal gyrus occurred selectively in female patients; (2) MDDf may have experienced more severe sleep disturbance than MDDm; and (3) the severity of sleep symptom could be predicted by the sex specific brain structural alterations in depressions. These findings suggest that sex specific anatomical alterations existed in MDD, and these alterations were associated with the clinical symptoms.

  15. Psychopathic traits are associated with cortical and subcortical volume alterations in healthy individuals.

    Science.gov (United States)

    Vieira, Joana B; Ferreira-Santos, Fernando; Almeida, Pedro R; Barbosa, Fernando; Marques-Teixeira, João; Marsh, Abigail A

    2015-12-01

    Research suggests psychopathy is associated with structural brain alterations that may contribute to the affective and interpersonal deficits frequently observed in individuals with high psychopathic traits. However, the regional alterations related to different components of psychopathy are still unclear. We used voxel-based morphometry to characterize the structural correlates of psychopathy in a sample of 35 healthy adults assessed with the Triarchic Psychopathy Measure. Furthermore, we examined the regional grey matter alterations associated with the components described by the triarchic model. Our results showed that, after accounting for variation in total intracranial volume, age and IQ, overall psychopathy was negatively associated with grey matter volume in the left putamen and amygdala. Additional regression analysis with anatomical regions of interests revealed total triPM score was also associated with increased lateral orbitofrontal cortex (OFC) and caudate volume. Boldness was positively associated with volume in the right insula. Meanness was positively associated with lateral OFC and striatum volume, and negatively associated with amygdala volume. Finally, disinhibition was negatively associated with amygdala volume. Results highlight the contribution of both subcortical and cortical brain alterations for subclinical psychopathy and are discussed in light of prior research and theoretical accounts about the neurobiological bases of psychopathic traits. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  16. Review: magnetic resonance imaging of male/female differences in human adolescent brain anatomy

    Directory of Open Access Journals (Sweden)

    Giedd Jay N

    2012-08-01

    Full Text Available Abstract Improvements in neuroimaging technologies, and greater access to their use, have generated a plethora of data regarding male/female differences in the developing brain. Examination of these differences may shed light on the pathophysiology of the many illnesses that differ between the sexes and ultimately lead to more effective interventions. In this review, we attempt to synthesize the anatomic magnetic resonance imaging (MRI literature of male/female brain differences with emphasis on studies encompassing adolescence – a time of divergence in physical and behavioral characteristics. Across all ages total brain size is consistently reported to be about 10% larger in males. Structures commonly reported to be different between sexes include the caudate nucleus, amygdala, hippocampus, and cerebellum – all noted to have a relatively high density of sex steroid receptors. The direction and magnitude of reported brain differences depends on the methodology of data acquisition and analysis, whether and how the subcomponents are adjusted for the total brain volume difference, and the age of the participants in the studies. Longitudinal studies indicate regional cortical gray matter volumes follow inverted U shaped developmental trajectories with peak size occurring one to three years earlier in females. Cortical gray matter differences are modulated by androgen receptor genotyope and by circulating levels of hormones. White matter volumes increase throughout childhood and adolescence in both sexes but more rapidly in adolescent males resulting in an expanding magnitude of sex differences from childhood to adulthood.

  17. Early Expansion of the Intracranial CSF Volume After Palliative Whole-Brain Radiotherapy: Results of a Longitudinal CT Segmentation Analysis

    International Nuclear Information System (INIS)

    Sanghera, Paul; Gardner, Sandra L.; Scora, Daryl; Davey, Phillip

    2010-01-01

    Purpose: To assess cerebral atrophy after radiotherapy, we measured intracranial cerebrospinal fluid volume (ICSFV) over time after whole-brain radiotherapy (WBRT) and compared it with published normal-population data. Methods and Materials: We identified 9 patients receiving a single course of WBRT (30 Gy in 10 fractions over 2 weeks) for ipsilateral brain metastases with at least 3 years of computed tomography follow-up. Segmentation analysis was confined to the tumor-free hemi-cranium. The technique was semiautomated by use of thresholds based on scanned image intensity. The ICSFV percentage (ratio of ICSFV to brain volume) was used for modeling purposes. Published normal-population ICSFV percentages as a function of age were used as a control. A repeated-measures model with cross-sectional (between individuals) and longitudinal (within individuals) quadratic components was fitted to the collected data. The influence of clinical factors including the use of subependymal plate shielding was studied. Results: The median imaging follow-up was 6.25 years. There was an immediate increase (p < 0.0001) in ICSFV percentage, which decelerated over time. The clinical factors studied had no significant effect on the model. Conclusions: WBRT immediately accelerates the rate of brain atrophy. This longitudinal study in patients with brain metastases provides a baseline against which the potential benefits of more localized radiotherapeutic techniques such as radiosurgery may be compared.

  18. Mapping directionality specific volume changes using tensor based morphometry: an application to the study of gyrogenesis and lateralization of the human fetal brain.

    Science.gov (United States)

    Rajagopalan, Vidya; Scott, Julia; Habas, Piotr A; Kim, Kio; Rousseau, Francois; Glenn, Orit A; Barkovich, A James; Studholme, Colin

    2012-11-01

    Tensor based morphometry (TBM) is a powerful approach to analyze local structural changes in brain anatomy. However, conventional scalar TBM methods do not completely capture all direction specific volume changes required to model complex changes such as those during brain growth. In this paper, we describe novel TBM descriptors for studying direction-specific changes in a subject population which can be used in conjunction with scalar TBM to analyze local patterns in directionality of volume change during brain development. We also extend the methodology to provide a new approach to mapping directional asymmetry in deformation tensors associated with the emergence of structural asymmetry in the developing brain. We illustrate the use of these methods by studying developmental patterns in the human fetal brain, in vivo. Results show that fetal brain development exhibits a distinct spatial pattern of anisotropic growth. The most significant changes in the directionality of growth occur in the cortical plate at major sulci. Our analysis also detected directional growth asymmetry in the peri-Sylvian region and the medial frontal lobe of the fetal brain. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Radiosurgery for brain metastases: is whole brain radiation therapy necessary?

    International Nuclear Information System (INIS)

    Forstner, Julie M.; Sneed, Penny K.; Lamborn, Kathleen R.; Shu, H.-K.G.; McDermott, Michael W.; Park, Elaine; Ho, Maria; Chang, Susan; Gutin, Philip H.; Phillips, Theodore L.; Wara, William M.; Larson, David A.

    1996-01-01

    Purpose: Because whole brain radiotherapy (WBRT) carries a significant risk of dementia in long-term survivors, it is desirable to determine if some patients with brain metastases may be managed with radiosurgery (RS) alone, reserving WBRT for salvage therapy as needed. To begin to approach this problem, we retrospectively reviewed freedom from brain failure/progression (Brain FFP) and survival of patients with newly-diagnosed solitary or multiple brain metastases treated with Gamma Knife RS ± WBRT. Materials and Methods: All patients treated at our institution with Gamma Knife RS for newly-diagnosed solitary or multiple (2-8) brain metastases from September 1991 through December 1995 were reviewed. Whether or not WBRT was given depended on physician preference and referral patterns. Brain FFP was measured from the date of RS until development of a new brain metastasis or progression of a treated metastasis, with censoring at the time of the last imaging study. Survival was measured from the date of RS until death or last clinical follow-up. Actuarial curves were estimated using the Kaplan-Meier method and compared with the log rank test. Multivariate analyses to adjust for known prognostic variables (age, KPS, history of extracranial metastases, and total target volume) were performed using the Cox proportional hazards model. Results: From September 1991-December 1995, 90 patients with newly-diagnosed brain metastases underwent RS. Three patients treated palliatively to a small component of their intracranial disease were excluded, leaving 54 treated with RS alone and 33 treated with RS + WBRT. Age ranged from 31-83 years (median, 59 years), KPS from 60-100 (median, 90), and total target volume from 0.15-26.1 cm 3 (median, 5.5 cm 3 ). Fifty patients had a history of extracranial metastases. Results are shown below. In the RS alone group, (22(54)) patients (41%) had a brain failure and (20(54)) (37%) died without evidence of brain failure. In the RS + WBRT group

  20. Predictive Risk of Radiation Induced Cerebral Necrosis in Pediatric Brain Cancer Patients after VMAT Versus Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Freund, Derek; Zhang, Rui, E-mail: rzhang@marybird.com [Department of Radiation Oncology, Mary Bird Perkins Cancer Center, 4950 Essen Ln., Baton Rouge, LA 70809 (United States); Department of Physics and Astronomy, Louisiana State University, Nicholson Hall, Tower Dr., Baton Rouge, LA 70810 (United States); Sanders, Mary [Department of Radiation Oncology, Mary Bird Perkins Cancer Center, 4950 Essen Ln., Baton Rouge, LA 70809 (United States); Newhauser, Wayne [Department of Radiation Oncology, Mary Bird Perkins Cancer Center, 4950 Essen Ln., Baton Rouge, LA 70809 (United States); Department of Physics and Astronomy, Louisiana State University, Nicholson Hall, Tower Dr., Baton Rouge, LA 70810 (United States)

    2015-04-13

    Cancer of the brain and central nervous system (CNS) is the second most common of all pediatric cancers. Treatment of many of these cancers includes radiation therapy of which radiation induced cerebral necrosis (RICN) can be a severe and potentially devastating side effect. Risk factors for RICN include brain volume irradiated, the dose given per fraction and total dose. Thirteen pediatric patients were selected for this study to determine the difference in predicted risk of RICN when treating with volumetric modulated arc therapy (VMAT) compared to passively scattered proton therapy (PSPT) and intensity modulated proton therapy (IMPT). Plans were compared on the basis of dosimetric endpoints in the planned treatment volume (PTV) and brain and a radiobiological endpoint of RICN calculated using the Lyman-Kutcher-Burman probit model. Uncertainty tests were performed to determine if the predicted risk of necrosis was sensitive to positional errors, proton range errors and selection of risk models. Both PSPT and IMPT plans resulted in a significant increase in the maximum dose to the brain, a significant reduction in the total brain volume irradiated to low doses, and a significant lower predicted risk of necrosis compared with the VMAT plans. The findings of this study were upheld by the uncertainty analysis.

  1. Predictive Risk of Radiation Induced Cerebral Necrosis in Pediatric Brain Cancer Patients after VMAT Versus Proton Therapy

    Directory of Open Access Journals (Sweden)

    Derek Freund

    2015-04-01

    Full Text Available Cancer of the brain and central nervous system (CNS is the second most common of all pediatric cancers. Treatment of many of these cancers includes radiation therapy of which radiation induced cerebral necrosis (RICN can be a severe and potentially devastating side effect. Risk factors for RICN include brain volume irradiated, the dose given per fraction and total dose. Thirteen pediatric patients were selected for this study to determine the difference in predicted risk of RICN when treating with volumetric modulated arc therapy (VMAT compared to passively scattered proton therapy (PSPT and intensity modulated proton therapy (IMPT. Plans were compared on the basis of dosimetric endpoints in the planned treatment volume (PTV and brain and a radiobiological endpoint of RICN calculated using the Lyman-Kutcher-Burman probit model. Uncertainty tests were performed to determine if the predicted risk of necrosis was sensitive to positional errors, proton range errors and selection of risk models. Both PSPT and IMPT plans resulted in a significant increase in the maximum dose to the brain, a significant reduction in the total brain volume irradiated to low doses, and a significant lower predicted risk of necrosis compared with the VMAT plans. The findings of this study were upheld by the uncertainty analysis.

  2. Hippocampus and amygdala volumes in parents of children with autistic disorder.

    Science.gov (United States)

    Rojas, Donald C; Smith, J Allegra; Benkers, Tara L; Camou, Suzanne L; Reite, Martin L; Rogers, Sally J

    2004-11-01

    Structural and functional abnormalities in the medial temporal lobe, particularly the hippocampus and amygdala, have been described in people with autism. The authors hypothesized that parents of children with a diagnosis of autistic disorder would show similar changes in these structures. Magnetic resonance imaging scans were performed in 17 biological parents of children with a diagnosis of DSM-IV autistic disorder. The scans were compared with scans from 15 adults with autistic disorder and 17 age-matched comparison subjects with no personal or familial history of autism. The volumes of the hippocampus, amygdala, and total brain were measured in all participants. The volume of the left hippocampus was larger in both the parents of children with autistic disorder and the adults with autistic disorder, relative to the comparison subjects. The hippocampus was significantly larger in the adults with autistic disorder than in the parents of children with autistic disorder. The left amygdala was smaller in the adults with autistic disorder, relative to the other two groups. No differences in total brain volume were observed between the three groups. The finding of larger hippocampal volume in autism is suggestive of abnormal early neurodevelopmental processes but is partly consistent with only one prior study and contradicts the findings of several others. The finding of larger hippocampal volume for the parental group suggests a potential genetic basis for hippocampal abnormalities in autism.

  3. Subclinical depressive symptoms during late midlife and structural brain alterations

    DEFF Research Database (Denmark)

    Osler, Merete; Sørensen, Lauge; Rozing, Maarten

    2018-01-01

    and brain structure outcomes were tested using Pearson's correlation, t test, and linear regression. Depressive symptoms at age 51 showed clear inverse correlations with total gray matter, pallidum, and hippocampal volume with the strongest estimate for hippocampal volume (r = -.22, p ... exclusion of men (n = 3) with scores in the range of clinical depression the inverse correlation between depressive symptoms and hippocampal volume became insignificant (r = -13, p = .08). Depressive symptoms at age 59 correlated positively with hippocampal and amygdala texture-potential early markers...

  4. Potential effect of skull thickening on the associations between cognition and brain atrophy in ageing.

    Science.gov (United States)

    Aribisala, Benjamin Segun; Royle, Natalie A; Valdés Hernández, Maria C; Murray, Catherine; Penke, Lars; Gow, Alan; Maniega, Susana Muñoz; Starr, John M; Bastin, Mark; Deary, Ian; Wardlaw, Joanna

    2014-09-01

    intracranial volume (ICV) is commonly used as a marker of premorbid brain size in neuroimaging studies as it is thought to remain fixed throughout adulthood. However, inner skull table thickening would encroach on ICV and could mask actual brain atrophy. we investigated the effect that thickening might have on the associations between brain atrophy and cognition. the sample comprised 57 non-demented older adults who underwent structural brain MRI at mean age 72.7 ± 0.7 years and were assessed on cognitive ability at mean age 11 and 73 years. Principal component analysis was used to derive factors of general cognitive ability (g), information processing speed and memory from the recorded cognitive ability data. The total brain tissue volume and ICV with (estimated original ICV) and without (current ICV) adjusting for the effects of inner table skull thickening were measured. General linear modelling was used to test for associations. all cognitive ability variables were significantly (P skull thickening (g: η(2) = 0.177, speed: η(2) = 0.264 and memory: η(2) = 0.132). After accounting for skull thickening, only speed was significantly associated with percentage total brain volume in ICV (η(2) = 0.085, P = 0.034), not g or memory. not accounting for skull thickening when computing ICV can distort the association between brain atrophy and cognitive ability in old age. Larger samples are required to determine the true effect. © The Author 2014. Published by Oxford University Press on behalf of the British Geriatrics Society. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Large-scale structural alteration of brain in epileptic children with SCN1A mutation.

    Science.gov (United States)

    Lee, Yun-Jeong; Yum, Mi-Sun; Kim, Min-Jee; Shim, Woo-Hyun; Yoon, Hee Mang; Yoo, Il Han; Lee, Jiwon; Lim, Byung Chan; Kim, Ki Joong; Ko, Tae-Sung

    2017-01-01

    Mutations in SCN1A gene encoding the alpha 1 subunit of the voltage gated sodium channel are associated with several epilepsy syndromes including genetic epilepsy with febrile seizures plus (GEFS +) and severe myoclonic epilepsy of infancy (SMEI). However, in most patients with SCN1A mutation, brain imaging has reported normal or non-specific findings including cerebral or cerebellar atrophy. The aim of this study was to investigate differences in brain morphometry in epileptic children with SCN1A mutation compared to healthy control subjects. We obtained cortical morphology (thickness, and surface area) and brain volume (global, subcortical, and regional) measurements using FreeSurfer (version 5.3.0, https://surfer.nmr.mgh.harvard.edu) and compared measurements of children with epilepsy and SCN1A gene mutation ( n  = 21) with those of age and gender matched healthy controls ( n  = 42). Compared to the healthy control group, children with epilepsy and SCN1A gene mutation exhibited smaller total brain, total gray matter and white matter, cerebellar white matter, and subcortical volumes, as well as mean surface area and mean cortical thickness. A regional analysis revealed significantly reduced gray matter volume in the patient group in the bilateral inferior parietal, left lateral orbitofrontal, left precentral, right postcentral, right isthmus cingulate, right middle temporal area with smaller surface area and white matter volume in some of these areas. However, the regional cortical thickness was not significantly different in two groups. This study showed large-scale developmental brain changes in patients with epilepsy and SCN1A gene mutation, which may be associated with the core symptoms of the patients. Further longitudinal MRI studies with larger cohorts are required to confirm the effect of SCN1A gene mutation on structural brain development.

  6. Effects of gestational age on brain volume and cognitive functions in generally healthy very preterm born children during school-age: A voxel-based morphometry study.

    Directory of Open Access Journals (Sweden)

    Sakari Lemola

    Full Text Available To determine whether the relationship of gestational age (GA with brain volumes and cognitive functions is linear or whether it follows a threshold model in preterm and term born children during school-age.We studied 106 children (M = 10 years 1 month, SD = 16 months; 40 females enrolled in primary school: 57 were healthy very preterm children (10 children born 24-27 completed weeks' gestation (extremely preterm, 14 children born 28-29 completed weeks' gestation, 19 children born 30-31 completed weeks' gestation (very preterm, and 14 born 32 completed weeks' gestation (moderately preterm all born appropriate for GA (AGA and 49 term-born children. Neuroimaging involved voxel-based morphometry with the statistical parametric mapping software. Cognitive functions were assessed with the WISC-IV. General Linear Models and multiple regressions were conducted controlling age, sex, and maternal education.Compared to groups of children born 30 completed weeks' gestation and later, children born <28 completed weeks' gestation had less gray matter volume (GMV and white matter volume (WMV and poorer cognitive functions including decreased full scale IQ, and processing speed. Differences in GMV partially mediated the relationship between GA and full scale IQ in preterm born children.In preterm children who are born AGA and without major complications GA is associated with brain volume and cognitive functions. In particular, decreased brain volume becomes evident in the extremely preterm group (born <28 completed weeks' gestation. In preterm children born 30 completed weeks' gestation and later the relationship of GA with brain volume and cognitive functions may be less strong as previously thought.

  7. Association of IQ Changes and Progressive Brain Changes in Patients With Schizophrenia.

    Science.gov (United States)

    Kubota, Manabu; van Haren, Neeltje E M; Haijma, Sander V; Schnack, Hugo G; Cahn, Wiepke; Hulshoff Pol, Hilleke E; Kahn, René S

    2015-08-01

    Although schizophrenia is characterized by impairments in intelligence and the loss of brain volume, the relationship between changes in IQ and brain measures is not clear. To investigate the association between IQ and brain measures in patients with schizophrenia across time. Case-control longitudinal study at the Department of Psychiatry at the University Medical Center Utrecht, Utrecht, the Netherlands, comparing patients with schizophrenia and healthy control participants between September 22, 2004, and April 17, 2008. Magnetic resonance imaging of the brain and IQ scores were obtained at baseline and the 3-year follow-up. Participants included 84 patients with schizophrenia (mean illness duration, 4.35 years) and 116 age-matched healthy control participants. Associations between changes in IQ and the total brain, cerebral gray matter, cerebral white matter, lateral ventricular, third ventricles, cortical, and subcortical volumes; cortical thickness; and cortical surface area. Cerebral gray matter volume (P = .006) and cortical volume (P = .03) and thickness (P = .02) decreased more in patients with schizophrenia across time compared with control participants. Patients showed additional loss in cortical volume and thickness of the right supramarginal, posterior superior temporal, left supramarginal, left postcentral, and occipital regions (P values were between IQ increased similarly in patients with schizophrenia and control participants, changes in IQ were negatively correlated with changes in lateral ventricular volume (P = .05) and positively correlated with changes in cortical volume (P = .007) and thickness (P = .004) only in patients with schizophrenia. Positive correlations between changes in IQ and cortical volume and thickness were found globally and in widespread regions across frontal, temporal, and parietal cortices (P values were between <.001 and .03 after clusterwise correction). These findings were independent of symptom

  8. An image-based model of brain volume biomarker changes in Huntington's disease.

    Science.gov (United States)

    Wijeratne, Peter A; Young, Alexandra L; Oxtoby, Neil P; Marinescu, Razvan V; Firth, Nicholas C; Johnson, Eileanoir B; Mohan, Amrita; Sampaio, Cristina; Scahill, Rachael I; Tabrizi, Sarah J; Alexander, Daniel C

    2018-05-01

    Determining the sequence in which Huntington's disease biomarkers become abnormal can provide important insights into the disease progression and a quantitative tool for patient stratification. Here, we construct and present a uniquely fine-grained model of temporal progression of Huntington's disease from premanifest through to manifest stages. We employ a probabilistic event-based model to determine the sequence of appearance of atrophy in brain volumes, learned from structural MRI in the Track-HD study, as well as to estimate the uncertainty in the ordering. We use longitudinal and phenotypic data to demonstrate the utility of the patient staging system that the resulting model provides. The model recovers the following order of detectable changes in brain region volumes: putamen, caudate, pallidum, insula white matter, nonventricular cerebrospinal fluid, amygdala, optic chiasm, third ventricle, posterior insula, and basal forebrain. This ordering is mostly preserved even under cross-validation of the uncertainty in the event sequence. Longitudinal analysis performed using 6 years of follow-up data from baseline confirms efficacy of the model, as subjects consistently move to later stages with time, and significant correlations are observed between the estimated stages and nonimaging phenotypic markers. We used a data-driven method to provide new insight into Huntington's disease progression as well as new power to stage and predict conversion. Our results highlight the potential of disease progression models, such as the event-based model, to provide new insight into Huntington's disease progression and to support fine-grained patient stratification for future precision medicine in Huntington's disease.

  9. Mediterranean-type diet and brain structural change from 73 to 76 years in a Scottish cohort

    Science.gov (United States)

    Corley, Janie; Cox, Simon R.; Valdés Hernández, Maria C.; Craig, Leone C.A.; Dickie, David Alexander; Karama, Sherif; McNeill, Geraldine M.; Bastin, Mark E.; Wardlaw, Joanna M.; Deary, Ian J.

    2017-01-01

    Objective: To assess the association between Mediterranean-type diet (MeDi) and change in brain MRI volumetric measures and mean cortical thickness across a 3-year period in older age (73–76 years). Methods: We focused on 2 longitudinal brain volumes (total and gray matter; n = 401 and 398, respectively) plus a longitudinal measurement of cortical thickness (n = 323), for which the previous cross-sectional evidence of an association with the MeDi was strongest. Adherence to the MeDi was calculated from data gathered from a food frequency questionnaire at age 70, 3 years prior to the baseline imaging data collection. Results: In regression models adjusting for relevant demographic and physical health indicators, we found that lower adherence to the MeDi was associated with greater 3-year reduction in total brain volume (explaining 0.5% of variance, p Scottish cohort is predictive of total brain atrophy over a 3-year interval. Fish and meat consumption does not drive this change, suggesting that other components of the MeDi or, possibly, all of its components in combination are responsible for the association. PMID:28053008

  10. Atlas based brain volumetry: How to distinguish regional volume changes due to biological or physiological effects from inherent noise of the methodology.

    Science.gov (United States)

    Opfer, Roland; Suppa, Per; Kepp, Timo; Spies, Lothar; Schippling, Sven; Huppertz, Hans-Jürgen

    2016-05-01

    Fully-automated regional brain volumetry based on structural magnetic resonance imaging (MRI) plays an important role in quantitative neuroimaging. In clinical trials as well as in clinical routine multiple MRIs of individual patients at different time points need to be assessed longitudinally. Measures of inter- and intrascanner variability are crucial to understand the intrinsic variability of the method and to distinguish volume changes due to biological or physiological effects from inherent noise of the methodology. To measure regional brain volumes an atlas based volumetry (ABV) approach was deployed using a highly elastic registration framework and an anatomical atlas in a well-defined template space. We assessed inter- and intrascanner variability of the method in 51 cognitively normal subjects and 27 Alzheimer dementia (AD) patients from the Alzheimer's Disease Neuroimaging Initiative by studying volumetric results of repeated scans for 17 compartments and brain regions. Median percentage volume differences of scan-rescans from the same scanner ranged from 0.24% (whole brain parenchyma in healthy subjects) to 1.73% (occipital lobe white matter in AD), with generally higher differences in AD patients as compared to normal subjects (e.g., 1.01% vs. 0.78% for the hippocampus). Minimum percentage volume differences detectable with an error probability of 5% were in the one-digit percentage range for almost all structures investigated, with most of them being below 5%. Intrascanner variability was independent of magnetic field strength. The median interscanner variability was up to ten times higher than the intrascanner variability. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Predictors of Survival in Contemporary Practice After Initial Radiosurgery for Brain Metastases

    Energy Technology Data Exchange (ETDEWEB)

    Likhacheva, Anna; Pinnix, Chelsea C. [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Parikh, Neil R. [Baylor College of Medicine, Houston, Texas (United States); Allen, Pamela K.; McAleer, Mary F. [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Chiu, Max S. [University of Nebraska-Lincoln, Lincoln, Nebraska (United States); Sulman, Erik P.; Mahajan, Anita [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Guha-Thakurta, Nandita [Department of Diagnostic Radiology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Prabhu, Sujit S. [Department of Neurosurgery, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Cahill, Daniel P. [Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts (United States); Luo, Dershan; Shiu, Almon S. [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Brown, Paul D. [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Chang, Eric L., E-mail: eric.chang@med.usc.edu [Department of Radiation Oncology, University of Southern California, Los Angeles, Los Angeles, California (United States)

    2013-03-01

    Purpose: The number of brain metastases (BM) is a major consideration in determining patient eligibility for stereotactic radiosurgery (SRS), but the evidence for this popular practice is equivocal. The purpose of this study was to determine whether, following multivariate adjustment, the number and volume of BM held prognostic significance in a cohort of patients initially treated with SRS alone. Methods and Materials: A total of 251 patients with primary malignancies, including non-small cell lung cancer (34%), melanoma (30%), and breast carcinoma (16%), underwent SRS for initial treatment of BM. SRS was used as the sole management (62% of patients) or was combined with salvage treatment with SRS (22%), whole-brain radiation therapy (WBRT; 13%), or resection (3%). Median follow-up time was 9.4 months. Survival was determined using the Kaplan-Meier method. Cox regression was used to assess the effects of patient factors on distant brain failure (DBF), local control (LC), and overall survival (OS). Results: LC at 1 year was 94.6%, and median time to DBF was 10 months. Median OS was 11.1 months. On multivariate analysis, statistically significant predictors of OS were presence of extracranial disease (hazard ratio [HR], 4.2, P<.001), total tumor volume greater than 2 cm{sup 3} (HR, 1.98; P<.001), age ≥60 years (HR, 1.67; P=.002), and diagnosis-specific graded prognostic assessment (HR, 0.71; P<.001). The presence of extracranial disease was a statistically significant predictor of DBF (HR, 2.15), and tumor volume was predictive of LC (HR, 4.56 for total volume >2 cm{sup 3}). The number of BM was not predictive of DBF, LC, or OS. Conclusions: The number of BM is not a strong predictor for clinical outcomes following initial SRS for newly diagnosed BM. Other factors including total treatment volume and systemic disease status are better determinants of outcome and may facilitate appropriate use of SRS or WBRT.

  12. The effects of intracranial volume adjustment approaches on multiple regional MRI volumes in healthy aging and Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Olga eVoevodskaya

    2014-10-01

    Full Text Available In neurodegeneration research, normalization of regional volumes by intracranial volume (ICV is important to estimate the extent of disease-driven atrophy. There is little agreement as to whether raw volumes, volume-to-ICV fractions or regional volumes from which the ICV factor has been regressed out should be used for volumetric brain imaging studies. Using multiple regional cortical and subcortical volumetric measures generated by Freesurfer (51 in total, the main aim of this study was to elucidate the implications of these adjustment approaches. Magnetic resonance imaging (MRI data were analyzed from two large cohorts, the population-based PIVUS cohort (N=406, all subjects age 75 and the Alzheimer disease Neuroimaging Initiative (ADNI cohort (N=724. Further, we studied whether the chosen ICV normalization approach influenced the relationship between hippocampus and cognition in the three diagnostic groups of the ADNI cohort (Alzheimer’s disease, mild cognitive impairment and healthy individuals. The ability of raw vs adjusted hippocampal volumes to predict diagnostic status was also assessed. In both cohorts raw volumes correlate positively with ICV, but do not scale directly proportionally with it. The correlation direction is reversed for all volume-to-ICV fractions, except the lateral and third ventricles. Most grey matter fractions are larger in females, while lateral ventricle fractions are greater in males. Residual correction effectively eliminated the correlation between the regional volumes and ICV and removed gender differences. The association between hippocampal volumes and cognition was not altered by ICV normalization. Comparing prediction of diagnostic status using the different approaches, small but significant differences were found. The choice of normalization approach should be carefully considered when designing a volumetric brain imaging study.

  13. Repairing the brain with physical exercise: Cortical thickness and brain volume increases in long-term pediatric brain tumor survivors in response to a structured exercise intervention.

    Science.gov (United States)

    Szulc-Lerch, Kamila U; Timmons, Brian W; Bouffet, Eric; Laughlin, Suzanne; de Medeiros, Cynthia B; Skocic, Jovanka; Lerch, Jason P; Mabbott, Donald J

    2018-01-01

    There is growing evidence that exercise induced experience dependent plasticity may foster structural and functional recovery following brain injury. We examined the efficacy of exercise training for neural and cognitive recovery in long-term pediatric brain tumor survivors treated with radiation. We conducted a controlled clinical trial with crossover of exercise training (vs. no training) in a volunteer sample of 28 children treated with cranial radiation for brain tumors (mean age = 11.5 yrs.; mean time since diagnosis = 5.7 yrs). The endpoints were anatomical T1 MRI data and multiple behavioral outcomes presenting a broader analysis of structural MRI data across the entire brain. This included an analysis of changes in cortical thickness and brain volume using automated, user unbiased approaches. A series of general linear mixed effects models evaluating the effects of exercise training on cortical thickness were performed in a voxel and vertex-wise manner, as well as for specific regions of interest. In exploratory analyses, we evaluated the relationship between changes in cortical thickness after exercise with multiple behavioral outcomes, as well as the relation of these measures at baseline. Exercise was associated with increases in cortical thickness within the right pre and postcentral gyri. Other notable areas of increased thickness related to training were present in the left pre and postcentral gyri, left temporal pole, left superior temporal gyrus, and left parahippocampal gyrus. Further, we observed that compared to a separate cohort of healthy children, participants displayed multiple areas with a significantly thinner cortex prior to training and fewer differences following training, indicating amelioration of anatomical deficits. Partial least squares analysis (PLS) revealed specific patterns of relations between cortical thickness and various behavioral outcomes both after training and at baseline. Overall, our results indicate that

  14. Global and regional associations of smaller cerebral gray and white matter volumes with gait in older people.

    Directory of Open Access Journals (Sweden)

    Michele L Callisaya

    Full Text Available BACKGROUND: Gait impairments increase with advancing age and can lead to falls and loss of independence. Brain atrophy also occurs in older age and may contribute to gait decline. We aimed to investigate global and regional relationships of cerebral gray and white matter volumes with gait speed, and its determinants step length and cadence, in older people. METHODS: In a population-based study, participants aged >60 years without Parkinson's disease or brain infarcts underwent magnetic resonance imaging and gait measurements using a computerized walkway. Linear regression was used to study associations of total gray and white matter volumes with gait, adjusting for each other, age, sex, height and white matter hyperintensity volume. Other covariates considered in analyses included weight and vascular disease history. Voxel-based morphometry was used to study regional relationships of gray and white matter with gait. RESULTS: There were 305 participants, mean age 71.4 (6.9 years, 54% male, mean gait speed 1.16 (0.22 m/s. Smaller total gray matter volume was independently associated with poorer gait speed (p = 0.001 and step length (p<0.001, but not cadence. Smaller volumes of cortical and subcortical gray matter in bilateral regions important for motor control, vision, perception and memory were independently associated with slower gait speed and shorter steps. No global or regional associations were observed between white matter volume and gait independent of gray matter volume, white matter hyperintensity volume and other covariates. CONCLUSION: Smaller gray matter volume in bilaterally distributed brain networks serving motor control was associated with slower gait speed and step length, but not cadence.

  15. MRI assessment of cerebral blood volume in patients with brain infarcts

    International Nuclear Information System (INIS)

    Wu, R.H.; Bruening, R.; Berchtenbreiter, C.; Weber, J.; Peller, M.; Penzkofer, H.; Reiser, M.; Steiger, H.J.

    1998-01-01

    MRI perfusion studies have focussed mainly on acute ischaemia and characterisation in ischaemia. Our purpose was to analyse regional brain haemodynamic information in acute, subacute, and chronic ischaemia. We performed 16 examinations of 11 patients on a 1.5 T MR images. Conventional and dynamic contrast-enhanced imaging were employed in all examinations. For the dynamic susceptibility sequences, a bolus (0.2 mmol/kg) of gadopentetate dimeglumine was injected. Reconstructed regional relative cerebral blood volume (rCBV) maps, bolus maps, and conventional images were analysed by consensus reading. In all examinations decreases in rCBV were observed in the lesions. The distribution of regional rCBV in lesions was heterogeneous. The rCBV of the periphery of the lesions was higher than that at their center. There was a correlation between the time since onset and abnormalities on the rCBV map and T2-weighted images (T2WI). In the early stage of acute stroke, the abnormalities tended to be larger on the rCBV than on T2WI. Many patterns of bolus passage were observed in ischaemic regions. rCBV maps provide additional haemodynamic information in patients with brain infarcts. (orig.)

  16. An algorithm based on OmniView technology to reconstruct sagittal and coronal planes of the fetal brain from volume datasets acquired by three-dimensional ultrasound.

    Science.gov (United States)

    Rizzo, G; Capponi, A; Pietrolucci, M E; Capece, A; Aiello, E; Mammarella, S; Arduini, D

    2011-08-01

    To describe a novel algorithm, based on the new display technology 'OmniView', developed to visualize diagnostic sagittal and coronal planes of the fetal brain from volumes obtained by three-dimensional (3D) ultrasonography. We developed an algorithm to image standard neurosonographic planes by drawing dissecting lines through the axial transventricular view of 3D volume datasets acquired transabdominally. The algorithm was tested on 106 normal fetuses at 18-24 weeks of gestation and the visualization rates of brain diagnostic planes were evaluated by two independent reviewers. The algorithm was also applied to nine cases with proven brain defects. The two reviewers, using the algorithm on normal fetuses, found satisfactory images with visualization rates ranging between 71.7% and 96.2% for sagittal planes and between 76.4% and 90.6% for coronal planes. The agreement rate between the two reviewers, as expressed by Cohen's kappa coefficient, was > 0.93 for sagittal planes and > 0.89 for coronal planes. All nine abnormal volumes were identified by a single observer from among a series including normal brains, and eight of these nine cases were diagnosed correctly. This novel algorithm can be used to visualize standard sagittal and coronal planes in the fetal brain. This approach may simplify the examination of the fetal brain and reduce dependency of success on operator skill. Copyright © 2011 ISUOG. Published by John Wiley & Sons, Ltd.

  17. SU-F-J-220: Micro-CT Based Quantification of Mouse Brain Vasculature: The Effects of Acquisition Technique and Contrast Material

    International Nuclear Information System (INIS)

    Tipton, C; Lamba, M; Qi, Z; LaSance, K; Tipton, C

    2016-01-01

    Purpose: Cognitive impairment from radiation therapy to the brain may be linked to the loss of total blood volume in the brain. To account for brain injury, it is crucial to develop an understanding of blood volume loss as a result of radiation therapy. This study investigates µCT based quantification of mouse brain vasculature, focusing on the effect of acquisition technique and contrast material. Methods: Four mice were scanned on a µCT scanner (Siemens Inveon). The reconstructed voxel size was 18µm3 and all protocols were Hounsfield Unit (HU) calibrated. The mice were injected with 40mg of gold nanoparticles (MediLumine) or 100µl of Exitron 12000 (Miltenyi Biotec). Two acquisition techniques were also performed. A single kVp technique scanned the mouse once using an x-ray beam of 80kVp and segmentation was completed based on a threshold of HU values. The dual kVp technique scanned the mouse twice using 50kVp and 80kVp, this segmentation was based on the ratio of the HU value of the two kVps. After image reconstruction and segmentation, the brain blood volume was determined as a percentage of the total brain volume. Results: For the single kVp acquisition at 80kVp, the brain blood volume had an average of 3.5% for gold and 4.0% for Exitron 12000. Also at 80kVp, the contrast-noise ratio was significantly better for images acquired with the gold nanoparticles (2.0) than for those acquired with the Exitron 12000 (1.4). The dual kVp acquisition shows improved separation of skull from vasculature, but increased image noise. Conclusion: In summary, the effects of acquisition technique and contrast material for quantification of mouse brain vasculature showed that gold nanoparticles produced more consistent segmentation of brain vasculature than Exitron 12000. Also, dual kVp acquisition may improve the accuracy of brain vasculature quantification, although the effect of noise amplification warrants further study.

  18. SU-F-J-220: Micro-CT Based Quantification of Mouse Brain Vasculature: The Effects of Acquisition Technique and Contrast Material

    Energy Technology Data Exchange (ETDEWEB)

    Tipton, C; Lamba, M; Qi, Z; LaSance, K; Tipton, C [University of Cincinnati College of Medicine, Cincinnati, OH (United States)

    2016-06-15

    Purpose: Cognitive impairment from radiation therapy to the brain may be linked to the loss of total blood volume in the brain. To account for brain injury, it is crucial to develop an understanding of blood volume loss as a result of radiation therapy. This study investigates µCT based quantification of mouse brain vasculature, focusing on the effect of acquisition technique and contrast material. Methods: Four mice were scanned on a µCT scanner (Siemens Inveon). The reconstructed voxel size was 18µm3 and all protocols were Hounsfield Unit (HU) calibrated. The mice were injected with 40mg of gold nanoparticles (MediLumine) or 100µl of Exitron 12000 (Miltenyi Biotec). Two acquisition techniques were also performed. A single kVp technique scanned the mouse once using an x-ray beam of 80kVp and segmentation was completed based on a threshold of HU values. The dual kVp technique scanned the mouse twice using 50kVp and 80kVp, this segmentation was based on the ratio of the HU value of the two kVps. After image reconstruction and segmentation, the brain blood volume was determined as a percentage of the total brain volume. Results: For the single kVp acquisition at 80kVp, the brain blood volume had an average of 3.5% for gold and 4.0% for Exitron 12000. Also at 80kVp, the contrast-noise ratio was significantly better for images acquired with the gold nanoparticles (2.0) than for those acquired with the Exitron 12000 (1.4). The dual kVp acquisition shows improved separation of skull from vasculature, but increased image noise. Conclusion: In summary, the effects of acquisition technique and contrast material for quantification of mouse brain vasculature showed that gold nanoparticles produced more consistent segmentation of brain vasculature than Exitron 12000. Also, dual kVp acquisition may improve the accuracy of brain vasculature quantification, although the effect of noise amplification warrants further study.

  19. Atrophy of gray and white matters in the brain during aging

    International Nuclear Information System (INIS)

    Takeda, Shumpei; Matsuzawa, Taiju; Ito, Hisao.

    1984-01-01

    We studied atrophy of gray and white matter during aging in 57 males and 44 females with no neurological disturbances using x-ray computed tomography. The ages ranged from 12 to 80 years. Brain atrophy was expressed as brain volume index: 100% x [(brain volume/cranial cavity volume) in individual subjects]/[(brain volume/cranial cavity volume) in normal subjects of 20-39 years]. Atrophy of gray and white matter volume was expressed as gray and white matter volume indices: 100% x (apparent gray or white matter volume index in individual subjects)/(apparent gray or white matter volume index in normal subjects whose brain volume index was greater than 98%), where apparent gray and white matter volume indices were expressed as 100% x [(gray or white matter volume/cranial cavity volume) in individual subjects]/[(gray or white matter volume/cranial cavity volume) in normal subjects of 20-39 years]. Both the gray and white matter volume indices changed proportionally to the brain volume index (p<0.001). As the brain atrophy advanced, the gray matter volume index decreased more than the white matter volume index (P<0.001). Decrease in the gray and white matter volume indices was statistically significant only in seventies (P<0.002 for gray matter, P<0.05 for white matter). (author)

  20. 3D PATTERN OF BRAIN ABNORMALITIES IN WILLIAMS SYNDROME VISUALIZED USING TENSOR-BASED MORPHOMETRY

    Science.gov (United States)

    Chiang, Ming-Chang; Reiss, Allan L.; Lee, Agatha D.; Bellugi, Ursula; Galaburda, Albert M.; Korenberg, Julie R.; Mills, Debra L.; Toga, Arthur W.; Thompson, Paul M.

    2009-01-01

    Williams syndrome (WS) is a neurodevelopmental disorder associated with deletion of ~20 contiguous genes in chromosome band 7q11.23. Individuals with WS exhibit mild to moderate mental retardation, but are relatively more proficient in specific language and musical abilities. We used tensor-based morphometry (TBM) to visualize the complex pattern of gray/white matter reductions in WS, based on fluid registration of structural brain images. Methods 3D T1-weighted brain MRIs of 41 WS subjects (age: 29.2±9.2SD years; 23F/18M) and 39 age-matched healthy controls (age: 27.5±7.4 years; 23F/16M) were fluidly registered to a minimum deformation target. Fine-scale volumetric differences were mapped between diagnostic groups. Local regions were identified where regional structure volumes were associated with diagnosis, and with intelligence quotient (IQ) scores. Brain asymmetry was also mapped and compared between diagnostic groups. Results WS subjects exhibited widely distributed brain volume reductions (~10–15% reduction; P < 0.0002, permutation test). After adjusting for total brain volume, the frontal lobes, anterior cingulate, superior temporal gyrus, amygdala, fusiform gyrus and cerebellum were found to be relatively preserved in WS, but parietal and occipital lobes, thalamus and basal ganglia, and midbrain were disproportionally decreased in volume (P < 0.0002). These regional volumes also correlated positively with performance IQ in adult WS subjects (age ≥ 30 years, P = 0.038). Conclusion TBM facilitates 3D visualization of brain volume reductions in WS. Reduced parietal/occipital volumes may be associated with visuospatial deficits in WS. By contrast, frontal lobes, amygdala, and cingulate gyrus are relatively preserved or even enlarged, consistent with unusual affect regulation and language production in WS. PMID:17512756

  1. The integral biologically effective dose to predict brain stem toxicity of hypofractionated stereotactic radiotherapy

    International Nuclear Information System (INIS)

    Clark, Brenda G.; Souhami, Luis; Pla, Conrado; Al-Amro, Abdullah S.; Bahary, Jean-Paul; Villemure, Jean-Guy; Caron, Jean-Louis; Olivier, Andre; Podgorsak, Ervin B.

    1998-01-01

    Purpose: The aim of this work was to develop a parameter for use during fractionated stereotactic radiotherapy treatment planning to aid in the determination of the appropriate treatment volume and fractionation regimen that will minimize risk of late damage to normal tissue. Materials and Methods: We have used the linear quadratic model to assess the biologically effective dose at the periphery of stereotactic radiotherapy treatment volumes that impinge on the brain stem. This paper reports a retrospective study of 77 patients with malignant and benign intracranial lesions, treated between 1987 and 1995, with the dynamic rotation technique in 6 fractions over a period of 2 weeks, to a total dose of 42 Gy prescribed at the 90% isodose surface. From differential dose-volume histograms, we evaluated biologically effective dose-volume histograms and obtained an integral biologically-effective dose (IBED) in each case. Results: Of the 77 patients in the study, 36 had target volumes positioned so that the brain stem received more than 1% of the prescribed dose, and 4 of these, all treated for meningioma, developed serious late damage involving the brain stem. Other than type of lesion, the only significant variable was the volume of brain stem exposed. An analysis of the IBEDs received by these 36 patients shows evidence of a threshold value for late damage to the brain stem consistent with similar thresholds that have been determined for external beam radiotherapy. Conclusions: We have introduced a new parameter, the IBED, that may be used to represent the fractional effective dose to structures such as the brain stem that are partially irradiated with stereotactic dose distributions. The IBED is easily calculated prior to treatment and may be used to determine appropriate treatment volumes and fractionation regimens minimizing possible toxicity to normal tissue

  2. Total reference air kerma can accurately predict isodose surface volumes in cervix cancer brachytherapy. A multicenter study

    DEFF Research Database (Denmark)

    Nkiwane, Karen S; Andersen, Else; Champoudry, Jerome

    2017-01-01

    PURPOSE: To demonstrate that V60 Gy, V75 Gy, and V85 Gy isodose surface volumes can be accurately estimated from total reference air kerma (TRAK) in cervix cancer MRI-guided brachytherapy (BT). METHODS AND MATERIALS: 60 Gy, 75 Gy, and 85 Gy isodose surface volumes levels were obtained from treatm...

  3. Evolving knowledge of sex differences in brain structure, function, and chemistry.

    Science.gov (United States)

    Cosgrove, Kelly P; Mazure, Carolyn M; Staley, Julie K

    2007-10-15

    Clinical and epidemiologic evidence demonstrates sex differences in the prevalence and course of various psychiatric disorders. Understanding sex-specific brain differences in healthy individuals is a critical first step toward understanding sex-specific expression of psychiatric disorders. Here, we evaluate evidence on sex differences in brain structure, chemistry, and function using imaging methodologies, including functional magnetic resonance imaging (fMRI), positron emission tomography (PET), single photon emission computed tomography (SPECT), and structural magnetic resonance imaging (MRI) in mentally healthy individuals. MEDLINE searches of English-language literature (1980-November 2006) using the terms sex, gender, PET, SPECT, MRI, fMRI, morphometry, neurochemistry, and neurotransmission were performed to extract relevant sources. The literature suggests that while there are many similarities in brain structure, function, and neurotransmission in healthy men and women, there are important differences that distinguish the male from the female brain. Overall, brain volume is greater in men than women; yet, when controlling for total volume, women have a higher percentage of gray matter and men a higher percentage of white matter. Regional volume differences are less consistent. Global cerebral blood flow is higher in women than in men. Sex-specific differences in dopaminergic, serotonergic, and gamma-aminobutyric acid (GABA)ergic markers indicate that male and female brains are neurochemically distinct. Insight into the etiology of sex differences in the normal living human brain provides an important foundation to delineate the pathophysiological mechanisms underlying sex differences in neuropsychiatric disorders and to guide the development of sex-specific treatments for these devastating brain disorders.

  4. SU-E-J-249: Correlation of Mean Lung Ventilation Value with Ratio of Total Lung Volumes

    International Nuclear Information System (INIS)

    Yu, N; Qu, H; Xia, P

    2014-01-01

    Purpose: Lung ventilation function measured from 4D-CT and from breathing correlated CT images is a novel concept to incorporate the lung physiologic function into treatment planning of radiotherapy. The calculated ventilation functions may vary from different breathing patterns, affecting evaluation of the treatment plans. The purpose of this study is to correlate the mean lung ventilation value with the ratio of the total lung volumes obtained from the relevant CTs. Methods: A ventilation map was calculated from the variations of voxel-to-voxel CT densities from two breathing phases from either 4D-CT or breathing correlated CTs. An open source image registration tool of Plastimatch was used to deform the inhale phase images to the exhale phase images. To calculate the ventilation map inside lung, the whole lung was delineated and the tissue outside the lung was masked out. With a software tool developed in house, the 3D ventilation map was then converted in the DICOM format associated with the planning CT images. The ventilation map was analyzed on a clinical workstation. To correlate ventilation map thus calculated with lung volume change, the total lung volume change was compared the mean ventilation from our method. Results: Twenty two patients who underwent stereotactic body irradiation for lung cancer was selected for this retrospective study. For this group of patients, the ratio of lung volumes for the inhale (Vin ) and exhale phase (Vex ) was shown to be linearly related to the mean of the local ventilation (Vent), Vin/Vex=1.+0.49*Vent (R2=0.93, p<0.01). Conclusion: The total lung volume change is highly correlated with the mean of local ventilation. The mean of local ventilation may be useful to assess the patient's lung capacity

  5. Short-term mechanisms influencing volumetric brain dynamics

    NARCIS (Netherlands)

    Dieleman, Nikki; Koek, Huiberdina L.; Hendrikse, Jeroen

    2017-01-01

    With the use of magnetic resonance imaging (MRI) and brain analysis tools, it has become possible to measure brain volume changes up to around 0.5%. Besides long-term brain changes caused by atrophy in aging or neurodegenerative disease, short-term mechanisms that influence brain volume may exist.

  6. Brain Volumes at Term-Equivalent Age in Preterm Infants : Imaging Biomarkers for Neurodevelopmental Outcome through Early School Age

    NARCIS (Netherlands)

    Keunen, Kristin; Išgum, Ivana; van Kooij, Britt J M; Anbeek, Petronella; van Haastert, Ingrid C; Koopman-Esseboom, Corine; van Stam, Petronella C; Nievelstein, Rutger A J; Viergever, Max A; de Vries, Linda S; Groenendaal, Floris; Benders, Manon J N L

    OBJECTIVE: To evaluate the relationship between brain volumes at term and neurodevelopmental outcome through early school age in preterm infants. STUDY DESIGN: One hundred twelve preterm infants (born mean gestational age 28.6 ± 1.7 weeks) were studied prospectively with magnetic resonance imaging

  7. Correlation of Tumor and Peritumoral Edema Volumes with Survival in Patients with Cerebral Metastases.

    Science.gov (United States)

    Kerschbaumer, Johannes; Bauer, Marlies; Popovscaia, Marina; Grams, Astrid E; Thomé, Claudius; Freyschlag, Christian F

    2017-02-01

    Surgical resection in combination with radiotherapy in selected cases remains the best option for patients with cerebral metastases. Postoperative relapse of brain metastases occurs frequently and can be reduced by postoperative whole-brain radiotherapy (WBRT). Continuous spread of tumor cells from the primary lesions is debated as a cause of recurrence. It is well known that in gliomas, infiltration takes place within the surrounding edema. Obviously, most brain metastases are usually associated with peritumoral edema, which may act as an indicator of infiltration and more aggressive tumor biology. Therefore, we aimed to investigate the correlation of tumor and edema volumes with overall survival in patients with cerebral metastases. A total of 143 patients diagnosed with brain metastasis (male:female=1.1:1) who underwent surgical resection were included retrospectively in this analysis. Clinical data were retrieved from electronic patient files. The volumes of tumor and edema calculated by manual delineation. The ratio of edema to tumor volume was calculated, leading to dichotomization of the patients. The median tumor volume was 20.1 cc (range=0.8-90.8 cc) and the median volume of edema 49.5 cc (range=0-179.9 cc). The volume of metastases did not significantly correlate with overall survival. The ratio of edema to tumor volume was also not a prognostic factor in terms of overall survival. Only surgical resection, preoperative recursive partitioning analysis class, and postoperative addition of WBRT, as well as female sex, demonstrated beneficial effects. The extent of edema surrounding cerebral metastases does not appear to influence overall survival in patients suffering from brain metastases, although it seems to be responsible for most of the patients' symptoms. The hypothesis that the extent of edema was disadvantageous concerning survival was supported by our data. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios

  8. Changes in brain size during the menstrual cycle.

    Directory of Open Access Journals (Sweden)

    Georg Hagemann

    Full Text Available BACKGROUND: There is increasing evidence for hormone-dependent modification of function and behavior during the menstrual cycle, but little is known about associated short-term structural alterations of the brain. Preliminary studies suggest that a hormone-dependent decline in brain volume occurs in postmenopausal, or women receiving antiestrogens, long term. Advances in serial MR-volumetry have allowed for the accurate detection of small volume changes of the brain. Recently, activity-induced short-term structural plasticity of the brain was demonstrated, challenging the view that the brain is as rigid as formerly believed. METHODOLOGY/PRINCIPAL FINDINGS: We used MR-volumetry to investigate short-term brain volume changes across the menstrual cycle in women or a parallel 4 week period in men, respectively. We found a significant grey matter volume peak and CSF loss at the time of ovulation in females. This volume peak did not correlate with estradiol or progesterone hormone levels. Men did not show any significant brain volume alterations. CONCLUSIONS/SIGNIFICANCE: These data give evidence of short-term hormone-dependent structural brain changes during the menstrual cycle, which need to be correlated with functional states and have to be considered in structure-associated functional brain research.

  9. Metric to quantify white matter damage on brain magnetic resonance images

    International Nuclear Information System (INIS)

    Valdes Hernandez, Maria del C.; Munoz Maniega, Susana; Anblagan, Devasuda; Bastin, Mark E.; Wardlaw, Joanna M.; Chappell, Francesca M.; Morris, Zoe; Sakka, Eleni; Dickie, David Alexander; Royle, Natalie A.; Armitage, Paul A.; Deary, Ian J.

    2017-01-01

    Quantitative assessment of white matter hyperintensities (WMH) on structural Magnetic Resonance Imaging (MRI) is challenging. It is important to harmonise results from different software tools considering not only the volume but also the signal intensity. Here we propose and evaluate a metric of white matter (WM) damage that addresses this need. We obtained WMH and normal-appearing white matter (NAWM) volumes from brain structural MRI from community dwelling older individuals and stroke patients enrolled in three different studies, using two automatic methods followed by manual editing by two to four observers blind to each other. We calculated the average intensity values on brain structural fluid-attenuation inversion recovery (FLAIR) MRI for the NAWM and WMH. The white matter damage metric is calculated as the proportion of WMH in brain tissue weighted by the relative image contrast of the WMH-to-NAWM. The new metric was evaluated using tissue microstructure parameters and visual ratings of small vessel disease burden and WMH: Fazekas score for WMH burden and Prins scale for WMH change. The correlation between the WM damage metric and the visual rating scores (Spearman ρ > =0.74, p =0.72, p < 0.0001). The repeatability of the WM damage metric was better than WM volume (average median difference between measurements 3.26% (IQR 2.76%) and 5.88% (IQR 5.32%) respectively). The follow-up WM damage was highly related to total Prins score even when adjusted for baseline WM damage (ANCOVA, p < 0.0001), which was not always the case for WMH volume, as total Prins was highly associated with the change in the intense WMH volume (p = 0.0079, increase of 4.42 ml per unit change in total Prins, 95%CI [1.17 7.67]), but not with the change in less-intense, subtle WMH, which determined the volumetric change. The new metric is practical and simple to calculate. It is robust to variations in image processing methods and scanning protocols, and sensitive to subtle and severe white

  10. Structural Brain Imaging of Long-Term Anabolic-Androgenic Steroid Users and Nonusing Weightlifters.

    Science.gov (United States)

    Bjørnebekk, Astrid; Walhovd, Kristine B; Jørstad, Marie L; Due-Tønnessen, Paulina; Hullstein, Ingunn R; Fjell, Anders M

    2017-08-15

    Prolonged high-dose anabolic-androgenic steroid (AAS) use has been associated with psychiatric symptoms and cognitive deficits, yet we have almost no knowledge of the long-term consequences of AAS use on the brain. The purpose of this study is to investigate the association between long-term AAS exposure and brain morphometry, including subcortical neuroanatomical volumes and regional cortical thickness. Male AAS users and weightlifters with no experience with AASs or any other equivalent doping substances underwent structural magnetic resonance imaging scans of the brain. The current paper is based upon high-resolution structural T1-weighted images from 82 current or past AAS users exceeding 1 year of cumulative AAS use and 68 non-AAS-using weightlifters. Images were processed with the FreeSurfer software to compare neuroanatomical volumes and cerebral cortical thickness between the groups. Compared to non-AAS-using weightlifters, the AAS group had thinner cortex in widespread regions and significantly smaller neuroanatomical volumes, including total gray matter, cerebral cortex, and putamen. Both volumetric and thickness effects remained relatively stable across different AAS subsamples comprising various degrees of exposure to AASs and also when excluding participants with previous and current non-AAS drug abuse. The effects could not be explained by differences in verbal IQ, intracranial volume, anxiety/depression, or attention or behavioral problems. This large-scale systematic investigation of AAS use on brain structure shows negative correlations between AAS use and brain volume and cortical thickness. Although the findings are correlational, they may serve to raise concern about the long-term consequences of AAS use on structural features of the brain. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  11. Cerebrospinal fluid volumetric MRI mapping as a simple measurement for evaluating brain atrophy

    Energy Technology Data Exchange (ETDEWEB)

    Vis, J.B. de; Zwanenburg, J.J.; Kleij, L.A. van der; Spijkerman, J.M.; Hendrikse, J. [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); Biessels, G.J. [University Medical Center Utrecht, Department of Neurology, Brain Center Rudolf Magnus, Utrecht (Netherlands); Petersen, E.T. [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); Hvidovre Hospital, Danish Research Centre for Magnetic Resonance, Hvidovre (Denmark)

    2016-05-15

    To assess whether volumetric cerebrospinal fluid (CSF) MRI can be used as a surrogate for brain atrophy assessment and to evaluate how the T{sub 2} of the CSF relates to brain atrophy. Twenty-eight subjects [mean age 64 (sd 2) years] were included; T{sub 1}-weighted and CSF MRI were performed. The first echo data of the CSF MRI sequence was used to obtain intracranial volume, CSF partial volume was measured voxel-wise to obtain CSF volume (V{sub CSF}) and the T{sub 2} of CSF (T{sub 2,CSF}) was calculated. The correlation between V{sub CSF} / T{sub 2,CSF} and brain atrophy scores [global cortical atrophy (GCA) and medial temporal lobe atrophy (MTA)] was evaluated. Relative total, peripheral subarachnoidal, and ventricular V{sub CSF} increased significantly with increased scores on the GCA and MTA (R = 0.83, 0.78 and 0.78 and R = 0.72, 0.62 and 0.86). Total, peripheral subarachnoidal, and ventricular T{sub 2} of the CSF increased significantly with higher scores on the GCA and MTA (R = 0.72, 0.70 and 0.49 and R = 0.60, 0.57 and 0.41). A fast, fully automated CSF MRI volumetric sequence is an alternative for qualitative atrophy scales. The T{sub 2} of the CSF is related to brain atrophy and could thus be a marker of neurodegenerative disease. (orig.)

  12. Regional brain morphometry predicts memory rehabilitation outcome after traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Gary E Strangman

    2010-10-01

    Full Text Available Cognitive deficits following traumatic brain injury (TBI commonly include difficulties with memory, attention, and executive dysfunction. These deficits are amenable to cognitive rehabilitation, but optimally selecting rehabilitation programs for individual patients remains a challenge. Recent methods for quantifying regional brain morphometry allow for automated quantification of tissue volumes in numerous distinct brain structures. We hypothesized that such quantitative structural information could help identify individuals more or less likely to benefit from memory rehabilitation. Fifty individuals with TBI of all severities who reported having memory difficulties first underwent structural MRI scanning. They then participated in a 12 session memory rehabilitation program emphasizing internal memory strategies (I-MEMS. Primary outcome measures (HVLT, RBMT were collected at the time of the MRI scan, immediately following therapy, and again at one month post-therapy. Regional brain volumes were used to predict outcome, adjusting for standard predictors (e.g., injury severity, age, education, pretest scores. We identified several brain regions that provided significant predictions of rehabilitation outcome, including the volume of the hippocampus, the lateral prefrontal cortex, the thalamus, and several subregions of the cingulate cortex. The prediction range of regional brain volumes were in some cases nearly equal in magnitude to prediction ranges provided by pretest scores on the outcome variable. We conclude that specific cerebral networks including these regions may contribute to learning during I-MEMS rehabilitation, and suggest that morphometric measures may provide substantial predictive value for rehabilitation outcome in other cognitive interventions as well.

  13. Volume transmission and receptor-receptor interactions in heteroreceptor complexes: understanding the role of new concepts for brain communication

    Directory of Open Access Journals (Sweden)

    Kjell Fuxe

    2016-01-01

    Full Text Available The discovery of the central monoamine neurons not only demonstrated novel types of brain stem neurons forming global terminal networks all over the brain and the spinal cord, but also to a novel type of communication called volume transmission. It is a major mode of communication in the central nervous system that takes places in the extracellular fluid and the cerebral spinal fluid through diffusion and flow of molecules, like neurotransmitters and extracellular vesicles. The integration of synaptic and volume transmission takes place through allosteric receptor-receptor interactions in heteroreceptor complexes. These heterocomplexes represent major integrator centres in the plasma membrane and their protomers act as moonlighting proteins undergoing dynamic changes and their structure and function. In fact, we propose that the molecular bases of learning and memory can be based on the reorganization of multiples homo and heteroreceptor complexes into novel assembles in the post-junctional membranes of synapses.

  14. 29 CFR 779.253 - What is included in computing the total annual inflow volume.

    Science.gov (United States)

    2010-07-01

    ... FAIR LABOR STANDARDS ACT AS APPLIED TO RETAILERS OF GOODS OR SERVICES Employment to Which the Act May... taxes and other charges which the enterprise must pay for such goods. Generally, all charges will be... computing the total annual inflow volume. The goods which the establishment purchases or receives for resale...

  15. Diagnostic performance of whole brain volume perfusion CT in intra-axial brain tumors: Preoperative classification accuracy and histopathologic correlation

    International Nuclear Information System (INIS)

    Xyda, Argyro; Haberland, Ulrike; Klotz, Ernst; Jung, Klaus; Bock, Hans Christoph; Schramm, Ramona; Knauth, Michael; Schramm, Peter

    2012-01-01

    Background: To evaluate the preoperative diagnostic power and classification accuracy of perfusion parameters derived from whole brain volume perfusion CT (VPCT) in patients with cerebral tumors. Methods: Sixty-three patients (31 male, 32 female; mean age 55.6 ± 13.9 years), with MRI findings suspected of cerebral lesions, underwent VPCT. Two readers independently evaluated VPCT data. Volumes of interest (VOIs) were marked circumscript around the tumor according to maximum intensity projection volumes, and then mapped automatically onto the cerebral blood volume (CBV), flow (CBF) and permeability Ktrans perfusion datasets. A second VOI was placed in the contra lateral cortex, as control. Correlations among perfusion values, tumor grade, cerebral hemisphere and VOIs were evaluated. Moreover, the diagnostic power of VPCT parameters, by means of positive and negative predictive value, was analyzed. Results: Our cohort included 32 high-grade gliomas WHO III/IV, 18 low-grade I/II, 6 primary cerebral lymphomas, 4 metastases and 3 tumor-like lesions. Ktrans demonstrated the highest sensitivity, specificity and positive predictive value, with a cut-off point of 2.21 mL/100 mL/min, for both the comparisons between high-grade versus low-grade and low-grade versus primary cerebral lymphomas. However, for the differentiation between high-grade and primary cerebral lymphomas, CBF and CBV proved to have 100% specificity and 100% positive predictive value, identifying preoperatively all the histopathologically proven high-grade gliomas. Conclusion: Volumetric perfusion data enable the hemodynamic assessment of the entire tumor extent and provide a method of preoperative differentiation among intra-axial cerebral tumors with promising diagnostic accuracy.

  16. Investigation of the alteration of gray matter volume in children with mental retardation with the optimal voxel-based morphometry

    International Nuclear Information System (INIS)

    Yuan Xinyu; Xie Sheng; Xiao Jiangxi; Zhang Yuanzhe; Jiang Xuexiang; Jin Chunhua; Bai Zhenhua; Yi Xiaoli

    2011-01-01

    Objective: To detect brain structural difference between children with unexplained mental retardation and children with typically normal development. Methods: The high-resolution magnetic MR imaging were obtained from 21 children with unexplained mental retardation and 30 age-matched control children without intellectual disabilities. Voxel-based morphometry analysis with an optimization of spatial segmentation and normalization procedures were applied to compare differences of gray matter volume between the two groups. The total and regional gray matter volume were compared between the two groups with independent t test. Meanwhile, correlation was conducted to analyze the relationship between the total gray matter volume and intelligence quotient (IQ) with partial correlation test. Results: The total gray matter volume was significantly increased in the mental retardation children (1.012±0.079) × 10 6 mm 3 ] in relative to the controls [(0.956±0.059)×10 6 mm 3 , t=-2.80, P 0.05). Conclusions: VBM would detect the gray matter abnormalities that were not founded in routine MR scanning. The increase of gray matter volume in the frontal-thalamus network might indicate the delayed maturation of the brain development. This might be one of the causations of' mental retardation in children. (authors)

  17. Normal variation in early parental sensitivity predicts child structural brain development.

    Science.gov (United States)

    Kok, Rianne; Thijssen, Sandra; Bakermans-Kranenburg, Marian J; Jaddoe, Vincent W V; Verhulst, Frank C; White, Tonya; van IJzendoorn, Marinus H; Tiemeier, Henning

    2015-10-01

    Early caregiving can have an impact on brain structure and function in children. The influence of extreme caregiving experiences has been demonstrated, but studies on the influence of normal variation in parenting quality are scarce. Moreover, no studies to date have included the role of both maternal and paternal sensitivity in child brain maturation. This study examined the prospective relation between mothers' and fathers' sensitive caregiving in early childhood and brain structure later in childhood. Participants were enrolled in a population-based prenatal cohort. For 191 families, maternal and paternal sensitivity was repeatedly observed when the child was between 1 year and 4 years of age. Head circumference was assessed at 6 weeks, and brain structure was assessed using magnetic resonance imaging (MRI) measurements at 8 years of age. Higher levels of parental sensitivity in early childhood were associated with larger total brain volume (adjusted β = 0.15, p = .01) and gray matter volume (adjusted β = 0.16, p = .01) at 8 years, controlling for infant head size. Higher levels of maternal sensitivity in early childhood were associated with a larger gray matter volume (adjusted β = 0.13, p = .04) at 8 years, independent of infant head circumference. Associations with maternal versus paternal sensitivity were not significantly different. Normal variation in caregiving quality is related to markers of more optimal brain development in children. The results illustrate the important role of both mothers and fathers in child brain development. Copyright © 2015 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.

  18. MO-F-CAMPUS-T-01: Radiosurgery of Multiple Brain Metastases with Single-Isocenter VMAT: Optimizing Treatment Geometry to Reduce Normal Brain Dose

    International Nuclear Information System (INIS)

    Wu, Q; Snyder, K; Liu, C; Huang, Y; Li, H; Chetty, I; Wen, N

    2015-01-01

    Purpose: To develop an optimization algorithm to reduce normal brain dose by optimizing couch and collimator angles for single isocenter multiple targets treatment of stereotactic radiosurgery. Methods: Three metastatic brain lesions were retrospectively planned using single-isocenter volumetric modulated arc therapy (VMAT). Three matrices were developed to calculate the projection of each lesion on Beam’s Eye View (BEV) by the rotating couch, collimator and gantry respectively. The island blocking problem was addressed by computing the total area of open space between any two lesions with shared MLC leaf pairs. The couch and collimator angles resulting in the smallest open areas were the optimized angles for each treatment arc. Two treatment plans with and without couch and collimator angle optimization were developed using the same objective functions and to achieve 99% of each target volume receiving full prescription dose of 18Gy. Plan quality was evaluated by calculating each target’s Conformity Index (CI), Gradient Index (GI), and Homogeneity index (HI), and absolute volume of normal brain V8Gy, V10Gy, V12Gy, and V14Gy. Results: Using the new couch/collimator optimization strategy, dose to normal brain tissue was reduced substantially. V8, V10, V12, and V14 decreased by 2.3%, 3.6%, 3.5%, and 6%, respectively. There were no significant differences in the conformity index, gradient index, and homogeneity index between two treatment plans with and without the new optimization algorithm. Conclusion: We have developed a solution to the island blocking problem in delivering radiation to multiple brain metastases with shared isocenter. Significant reduction in dose to normal brain was achieved by using optimal couch and collimator angles that minimize total area of open space between any of the two lesions with shared MLC leaf pairs. This technique has been integrated into Eclipse treatment system using scripting API

  19. MO-F-CAMPUS-T-01: Radiosurgery of Multiple Brain Metastases with Single-Isocenter VMAT: Optimizing Treatment Geometry to Reduce Normal Brain Dose

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Q [Wayne State University, Detroit, MI (United States); Snyder, K; Liu, C; Huang, Y; Li, H; Chetty, I; Wen, N [Henry Ford Health System, Detroit, MI (United States)

    2015-06-15

    Purpose: To develop an optimization algorithm to reduce normal brain dose by optimizing couch and collimator angles for single isocenter multiple targets treatment of stereotactic radiosurgery. Methods: Three metastatic brain lesions were retrospectively planned using single-isocenter volumetric modulated arc therapy (VMAT). Three matrices were developed to calculate the projection of each lesion on Beam’s Eye View (BEV) by the rotating couch, collimator and gantry respectively. The island blocking problem was addressed by computing the total area of open space between any two lesions with shared MLC leaf pairs. The couch and collimator angles resulting in the smallest open areas were the optimized angles for each treatment arc. Two treatment plans with and without couch and collimator angle optimization were developed using the same objective functions and to achieve 99% of each target volume receiving full prescription dose of 18Gy. Plan quality was evaluated by calculating each target’s Conformity Index (CI), Gradient Index (GI), and Homogeneity index (HI), and absolute volume of normal brain V8Gy, V10Gy, V12Gy, and V14Gy. Results: Using the new couch/collimator optimization strategy, dose to normal brain tissue was reduced substantially. V8, V10, V12, and V14 decreased by 2.3%, 3.6%, 3.5%, and 6%, respectively. There were no significant differences in the conformity index, gradient index, and homogeneity index between two treatment plans with and without the new optimization algorithm. Conclusion: We have developed a solution to the island blocking problem in delivering radiation to multiple brain metastases with shared isocenter. Significant reduction in dose to normal brain was achieved by using optimal couch and collimator angles that minimize total area of open space between any of the two lesions with shared MLC leaf pairs. This technique has been integrated into Eclipse treatment system using scripting API.

  20. Usefulness of PC based 3D volume rendering technique in the evaluation of suspected aneurysm on brain MRA

    International Nuclear Information System (INIS)

    Baek, Seung Il; Lee, Ghi Jai; Shim, Jae Chan; Bang, Sun Woo; Ryu, Seok Jong; Kim, Ho Kyun

    2002-01-01

    To evaluated usefulness of volume rending technique using 3D visualization software on PC in patients with suspected intracranial aneurysm on brain MRA. We analyzed prospectively 21 patients with suspected aneurysms on the routine MIP images which were obtained 15 .deg. C increment along axial and sagittal plane, among 135 patients in whom brain MRA was done due to stroke symptoms for recent 5 months. The locations were the anterior communicating artery (A-com) in 8 patients, the posterior communicating artery (P-com) in 3, the ICA bifurcation in 5, the MCA bifurcation in 4, and the basilar tip in one. Male to female ratio was 14:7 and mean age was 62 years. MRA source images were sent to PC through LAN, and the existence of aneurysm was evaluated with volume rendering technique using 3D visualization software on PC. The presence or absence of aneurysm on MIP and volume rendering images was decided by the consensus of two radiologists. We found the aneurysms with volume rendering technique, from 1 patient among 8 patients with suspected aneurysm at A-com and also 1 patient among 3 patients with suspected aneurysm at P=com on routine MIP images. Confirmative angiography and interventional procedures were done in these 2 patients. The causes for mimicking the aneurysm on MIP were flow displacement artifact in 9, normal P-com infundibulum in 2, and overlapped or narrowed vessels in 8 patients, and among them confirmative angiography was done in 2 patient. Volume rendering technique using visualization software on PC is useful to scrutinize the suspected aneurysm on routine MIP images and to avoid further invasive angiography

  1. Modelling the presence of myelin and oedema in the brain based on multi-parametric quantitative MRI

    Directory of Open Access Journals (Sweden)

    Marcel eWarntjes

    2016-02-01

    Full Text Available The aim of this study was to present a model that uses multi-parametric quantitative MRI to estimate the presence of myelin and oedema in the brain. The model relates simultaneous measurement of R1 and R2 relaxation rates and proton density to four partial volume compartments, consisting of myelin partial volume, cellular partial volume, free water partial volume and excess parenchymal water partial volume. The model parameters were obtained using spatially normalised brain images of a group of 20 healthy controls. The pathological brain was modelled in terms of the reduction of myelin content and presence of excess parenchymal water, which indicates the degree of oedema. The method was tested on spatially normalised brain images of a group of 20 age-matched multiple sclerosis (MS patients. Clear differences were observed with respect to the healthy controls: the MS group had a 79 mL smaller brain volume (1069 vs. 1148 mL, a 38 mL smaller myelin volume (119 vs. 157 mL and a 21 mL larger excess parenchymal water volume (78 vs. 57 mL. Template regions of interest of various brain structures indicated that the myelin partial volume in the MS group was 1.6±1.5% lower for grey matter (GM structures and 2.8±1.0% lower for white matter (WM structures. The excess parenchymal water partial volume was 9±10% larger for GM and 5±2% larger for WM. Manually placed ROIs indicated that the results using the template ROIs may have suffered from loss of anatomical detail due to the spatial normalization process. Examples of the application of the method on high-resolution images are provided for three individual subjects, a 45-year-old healthy subject, a 72-year-old healthy subject and a 45-year-old MS patient. The observed results agreed with the expected behaviour considering both age and disease. In conclusion, the proposed model may provide clinically important parameters such as the total brain volume, degree of myelination and degree of oedema, based on

  2. Whole brain CT perfusion in acute anterior circulation ischemia: coverage size matters

    International Nuclear Information System (INIS)

    Emmer, B.J.; Rijkee, M.; Walderveen, M.A.A. van; Niesten, J.M.; Velthuis, B.K.; Wermer, M.J.H.

    2014-01-01

    Our aim was to compare infarct core volume on whole brain CT perfusion (CTP) with several limited coverage sizes (i.e., 3, 4, 6, and 8 cm), as currently used in routine clinical practice. In total, 40 acute ischemic stroke patients with non-contrast CT (NCCT) and CTP imaging of anterior circulation ischemia were included. Imaging was performed using a 320-multislice CT. Average volumes of infarct core of all simulated partial coverage sizes were calculated. Infarct core volume of each partial brain coverage was compared with infarct core volume of whole brain coverage and expressed using a percentage. To determine the optimal starting position for each simulated CTP coverage, the percentage of infarct coverage was calculated for every possible starting position of the simulated partial coverage in relation to Alberta Stroke Program Early CT Score in Acute Stroke Triage (ASPECTS 1) level. Whole brain CTP coverage further increased the percentage of infarct core volume depicted by 10 % as compared to the 8-cm coverage when the bottom slice was positioned at the ASPECTS 1 level. Optimization of the position of the region of interest (ROI) in 3 cm, 4 cm, and 8 cm improved the percentage of infarct depicted by 4 % for the 8-cm, 7 % for the 4-cm, and 13 % for the 3-cm coverage size. This study shows that whole brain CTP is the optimal coverage for CTP with a substantial improvement in accuracy in quantifying infarct core size. In addition, our results suggest that the optimal position of the ROI in limited coverage depends on the size of the coverage. (orig.)

  3. Whole brain CT perfusion in acute anterior circulation ischemia: coverage size matters

    Energy Technology Data Exchange (ETDEWEB)

    Emmer, B.J. [Erasmus Medical Centre, Department of Radiology, Postbus 2040, Rotterdam (Netherlands); Rijkee, M.; Walderveen, M.A.A. van [Leiden University Medical Centre, Department of Radiology, Leiden (Netherlands); Niesten, J.M.; Velthuis, B.K. [University Medical Centre Utrecht, Department of Radiology, Utrecht (Netherlands); Wermer, M.J.H. [Leiden University Medical Centre, Department of Neurology, Leiden (Netherlands)

    2014-12-15

    Our aim was to compare infarct core volume on whole brain CT perfusion (CTP) with several limited coverage sizes (i.e., 3, 4, 6, and 8 cm), as currently used in routine clinical practice. In total, 40 acute ischemic stroke patients with non-contrast CT (NCCT) and CTP imaging of anterior circulation ischemia were included. Imaging was performed using a 320-multislice CT. Average volumes of infarct core of all simulated partial coverage sizes were calculated. Infarct core volume of each partial brain coverage was compared with infarct core volume of whole brain coverage and expressed using a percentage. To determine the optimal starting position for each simulated CTP coverage, the percentage of infarct coverage was calculated for every possible starting position of the simulated partial coverage in relation to Alberta Stroke Program Early CT Score in Acute Stroke Triage (ASPECTS 1) level. Whole brain CTP coverage further increased the percentage of infarct core volume depicted by 10 % as compared to the 8-cm coverage when the bottom slice was positioned at the ASPECTS 1 level. Optimization of the position of the region of interest (ROI) in 3 cm, 4 cm, and 8 cm improved the percentage of infarct depicted by 4 % for the 8-cm, 7 % for the 4-cm, and 13 % for the 3-cm coverage size. This study shows that whole brain CTP is the optimal coverage for CTP with a substantial improvement in accuracy in quantifying infarct core size. In addition, our results suggest that the optimal position of the ROI in limited coverage depends on the size of the coverage. (orig.)

  4. Metric to quantify white matter damage on brain magnetic resonance images

    Energy Technology Data Exchange (ETDEWEB)

    Valdes Hernandez, Maria del C.; Munoz Maniega, Susana; Anblagan, Devasuda; Bastin, Mark E.; Wardlaw, Joanna M. [University of Edinburgh, Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, Edinburgh (United Kingdom); University of Edinburgh, Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh (United Kingdom); UK Dementia Research Institute, Edinburgh Dementia Research Centre, London (United Kingdom); Chappell, Francesca M.; Morris, Zoe; Sakka, Eleni [University of Edinburgh, Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, Edinburgh (United Kingdom); UK Dementia Research Institute, Edinburgh Dementia Research Centre, London (United Kingdom); Dickie, David Alexander; Royle, Natalie A. [University of Edinburgh, Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, Edinburgh (United Kingdom); University of Edinburgh, Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh (United Kingdom); Armitage, Paul A. [University of Sheffield, Department of Cardiovascular Sciences, Sheffield (United Kingdom); Deary, Ian J. [University of Edinburgh, Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh (United Kingdom); University of Edinburgh, Department of Psychology, Edinburgh (United Kingdom)

    2017-10-15

    Quantitative assessment of white matter hyperintensities (WMH) on structural Magnetic Resonance Imaging (MRI) is challenging. It is important to harmonise results from different software tools considering not only the volume but also the signal intensity. Here we propose and evaluate a metric of white matter (WM) damage that addresses this need. We obtained WMH and normal-appearing white matter (NAWM) volumes from brain structural MRI from community dwelling older individuals and stroke patients enrolled in three different studies, using two automatic methods followed by manual editing by two to four observers blind to each other. We calculated the average intensity values on brain structural fluid-attenuation inversion recovery (FLAIR) MRI for the NAWM and WMH. The white matter damage metric is calculated as the proportion of WMH in brain tissue weighted by the relative image contrast of the WMH-to-NAWM. The new metric was evaluated using tissue microstructure parameters and visual ratings of small vessel disease burden and WMH: Fazekas score for WMH burden and Prins scale for WMH change. The correlation between the WM damage metric and the visual rating scores (Spearman ρ > =0.74, p < 0.0001) was slightly stronger than between the latter and WMH volumes (Spearman ρ > =0.72, p < 0.0001). The repeatability of the WM damage metric was better than WM volume (average median difference between measurements 3.26% (IQR 2.76%) and 5.88% (IQR 5.32%) respectively). The follow-up WM damage was highly related to total Prins score even when adjusted for baseline WM damage (ANCOVA, p < 0.0001), which was not always the case for WMH volume, as total Prins was highly associated with the change in the intense WMH volume (p = 0.0079, increase of 4.42 ml per unit change in total Prins, 95%CI [1.17 7.67]), but not with the change in less-intense, subtle WMH, which determined the volumetric change. The new metric is practical and simple to calculate. It is robust to variations in

  5. Linear and curvilinear correlations of brain gray matter volume and density with age using voxel-based morphometry with the Akaike information criterion in 291 healthy children.

    Science.gov (United States)

    Taki, Yasuyuki; Hashizume, Hiroshi; Thyreau, Benjamin; Sassa, Yuko; Takeuchi, Hikaru; Wu, Kai; Kotozaki, Yuka; Nouchi, Rui; Asano, Michiko; Asano, Kohei; Fukuda, Hiroshi; Kawashima, Ryuta

    2013-08-01

    We examined linear and curvilinear correlations of gray matter volume and density in cortical and subcortical gray matter with age using magnetic resonance images (MRI) in a large number of healthy children. We applied voxel-based morphometry (VBM) and region-of-interest (ROI) analyses with the Akaike information criterion (AIC), which was used to determine the best-fit model by selecting which predictor terms should be included. We collected data on brain structural MRI in 291 healthy children aged 5-18 years. Structural MRI data were segmented and normalized using a custom template by applying the diffeomorphic anatomical registration using exponentiated lie algebra (DARTEL) procedure. Next, we analyzed the correlations of gray matter volume and density with age in VBM with AIC by estimating linear, quadratic, and cubic polynomial functions. Several regions such as the prefrontal cortex, the precentral gyrus, and cerebellum showed significant linear or curvilinear correlations between gray matter volume and age on an increasing trajectory, and between gray matter density and age on a decreasing trajectory in VBM and ROI analyses with AIC. Because the trajectory of gray matter volume and density with age suggests the progress of brain maturation, our results may contribute to clarifying brain maturation in healthy children from the viewpoint of brain structure. Copyright © 2012 Wiley Periodicals, Inc.

  6. Effects of respiratory rate and tidal volume on gas exchange in total liquid ventilation.

    Science.gov (United States)

    Bull, Joseph L; Tredici, Stefano; Fujioka, Hideki; Komori, Eisaku; Grotberg, James B; Hirschl, Ronald B

    2009-01-01

    Using a rabbit model of total liquid ventilation (TLV), and in a corresponding theoretical model, we compared nine tidal volume-respiratory rate combinations to identify a ventilator strategy to maximize gas exchange, while avoiding choked flow, during TLV. Nine different ventilation strategies were tested in each animal (n = 12): low [LR = 2.5 breath/min (bpm)], medium (MR = 5 bpm), or high (HR = 7.5 bpm) respiratory rates were combined with a low (LV = 10 ml/kg), medium (MV = 15 ml/kg), or high (HV = 20 ml/kg) tidal volumes. Blood gases and partial pressures, perfluorocarbon gas content, and airway pressures were measured for each combination. Choked flow occurred in all high respiratory rate-high volume animals, 71% of high respiratory rate-medium volume (HRMV) animals, and 50% of medium respiratory rate-high volume (MRHV) animals but in no other combinations. Medium respiratory rate-medium volume (MRMV) resulted in the highest gas exchange of the combinations that did not induce choke. The HRMV and MRHV animals that did not choke had similar or higher gas exchange than MRMV. The theory predicted this behavior, along with spatial and temporal variations in alveolar gas partial pressures. Of the combinations that did not induce choked flow, MRMV provided the highest gas exchange. Alveolar gas transport is diffusion dominated and rapid during gas ventilation but is convection dominated and slow during TLV. Consequently, the usual alveolar gas equation is not applicable for TLV.

  7. Binge consumption of ethanol during pregnancy leads to significant developmental delay of mouse embryonic brain

    Science.gov (United States)

    Sudheendran, Narendran; Bake, Shameena; Miranda, Rajesh C.; Larin, Kirill V.

    2014-03-01

    Consumption of alcohol during pregnancy can be severely detrimental to the development of the brain in fetuses. This study explores the usage of optical coherence tomography (OCT) to the study the effects of maternal consumption of ethanol on brain development in mouse fetuses. On gestational day 14.5, fetuses were collected and fixed in 4% paraformaldehyde. A swept-source OCT (SSOCT) system was used to acquire 3D images of the brain of ethanol-exposed and control fetuses. The volume of right and left brain ventricles were measured and used to compare between ethanol-exposed and control fetuses. A total of 5 fetuses were used for each of the two groups. The average volumes of the right and left ventricles were measured to be 0.35 and 0.15 mm3 for ethanol-exposed and control fetuses, respectively. The results demonstrated that there is an alcohol-induced developmental delay in mouse fetal brains.

  8. Cardiorespiratory fitness, cognition and brain structure after TIA or minor ischemic stroke.

    Science.gov (United States)

    Boss, H Myrthe; Van Schaik, Sander M; Witkamp, Theo D; Geerlings, Mirjam I; Weinstein, Henry C; Van den Berg-Vos, Renske M

    2017-10-01

    Background It is not known whether cardiorespiratory fitness is associated with better cognitive performance and brain structure in patients with a TIA or minor ischemic stroke. Aims To examine the association between cardiorespiratory fitness, cognition and brain structure in patients with a TIA and minor stroke. Methods The study population consisted of patients with a TIA or minor stroke with a baseline measurement of the peak oxygen consumption, a MRI scan of brain and neuropsychological assessment. Composite z-scores were calculated for the cognitive domains attention, memory and executive functioning. White matter hyperintensities, microbleeds and lacunes were rated visually. The mean apparent diffusion coefficient was measured in regions of interest in frontal and occipital white matter and in the centrum semiovale as a marker of white matter structure. Normalized brain volumes were estimated by use of Statistical Parametric Mapping. Results In 84 included patients, linear regression analysis adjusted for age, sex and education showed that a higher peak oxygen consumption was associated with higher cognitive z-scores, a larger grey matter volume (B = 0.15 (95% CI 0.05; 0.26)) and a lower mean apparent diffusion coefficient (B = -.004 (95% CI -.007; -.001)). We found no association between the peak oxygen consumption and severe white matter hyperintensities, microbleeds, lacunes and total brain volume. Conclusions These data suggest that cardiorespiratory fitness is associated with better cognitive performance, greater grey matter volume and greater integrity of the white matter in patients with a TIA or minor ischemic stroke. Further prospective trials are necessary to define the effect of cardiorespiratory fitness on cognition and brain structure in patients with TIA or minor stroke.

  9. Correlation of neurocognitive function and brain parenchyma volumes in children surviving cancer

    Science.gov (United States)

    Reddick, Wilburn E.; White, Holly A.; Glass, John O.; Mulhern, Raymond K.

    2002-04-01

    This research builds on our hypothesis that white matter damage and associated neurocognitive symptoms, in children treated for cancer with cranial spinal irradiation, spans a continuum of severity that can be reliably probed using non-invasive MR technology. Quantitative volumetric assessments of MR imaging and psychological assessments were obtained in 40 long-term survivors of malignant brain tumors treated with cranial irradiation. Neurocognitive assessments included a test of intellect (Wechsler Intelligence Test for Children, Wechsler Adult Intelligence Scale), attention (Conner's Continuous Performance Test), and memory (California Verbal Learning Test). One-sample t-tests were conducted to evaluate test performance of survivors against age-adjusted scores from the test norms; these analyses revealed significant impairments in all apriori selected measures of intelligence, attention, and memory. Partial correlation analyses were performed to assess the relationships between brain tissues volumes (normal appearing white matter (NAWM), gray matter, and CSF) and neurocognitive function. Global intelligence (r = 0.32, p = 0.05) and global attentional (r = 0.49, p attentional deficits, whereas overall parenchyma loss, as reflected by increased CSF and decreased white matter, is associated with memory-related deficits.

  10. Brain putamen volume changes in newly-diagnosed patients with obstructive sleep apnea

    Directory of Open Access Journals (Sweden)

    Rajesh Kumar

    2014-01-01

    Full Text Available Obstructive sleep apnea (OSA is accompanied by cognitive, motor, autonomic, learning, and affective abnormalities. The putamen serves several of these functions, especially motor and autonomic behaviors, but whether global and specific sub-regions of that structure are damaged is unclear. We assessed global and regional putamen volumes in 43 recently-diagnosed, treatment-naïve OSA (age, 46.4 ± 8.8 years; 31 male and 61 control subjects (47.6 ± 8.8 years; 39 male using high-resolution T1-weighted images collected with a 3.0-Tesla MRI scanner. Global putamen volumes were calculated, and group differences evaluated with independent samples t-tests, as well as with analysis of covariance (covariates; age, gender, and total intracranial volume. Regional differences between groups were visualized with 3D surface morphometry-based group ratio maps. OSA subjects showed significantly higher global putamen volumes, relative to controls. Regional analyses showed putamen areas with increased and decreased tissue volumes in OSA relative to control subjects, including increases in caudal, mid-dorsal, mid-ventral portions, and ventral regions, while areas with decreased volumes appeared in rostral, mid-dorsal, medial-caudal, and mid-ventral sites. Global putamen volumes were significantly higher in the OSA subjects, but local sites showed both higher and lower volumes. The appearance of localized volume alterations points to differential hypoxic or perfusion action on glia and other tissues within the structure, and may reflect a stage in progression of injury in these newly-diagnosed patients toward the overall volume loss found in patients with chronic OSA. The regional changes may underlie some of the specific deficits in motor, autonomic, and neuropsychologic functions in OSA.

  11. Facilitated assessment of tissue loss following traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Anders eHånell

    2012-03-01

    Full Text Available All experimental models of traumatic brain injury (TBI result in a progressive loss of brain tissue. The extent of tissue loss reflects the injury severity and can be measured to evaluate the potential neuroprotective effect of experimental treatments. Quantitation of tissue volumes is commonly performed using evenly spaced brain sections stained using routine histochemical methods and digitally captured. The brain tissue areas are then measured and the corresponding volumes are calculated using the distance between the sections. Measurements of areas are usually performed using a general purpose image analysis software and the results are then transferred to another program for volume calculations. To facilitate the measurement of brain tissue loss we developed novel algorithms which automatically separate the areas of brain tissue from the surrounding image background and identify the ventricles. We implemented these new algorithms by creating a new computer program (SectionToVolume which also has functions for image organization, image adjustments and volume calculations. We analyzed brain sections from mice subjected to severe focal TBI using both SectionToVolume and ImageJ, a commonly used image analysis program. The volume measurements made by the two programs were highly correlated and analysis using SectionToVolume required considerably less time. The inter-rater reliability was high. Given the extensive use of brain tissue loss measurements in TBI research, SectionToVolume will likely be a useful tool for TBI research. We therefore provide both the source code and the program as attachments to this article.

  12. Genetic contributions to human brain morphology and intelligence

    DEFF Research Database (Denmark)

    Hulshoff Pol, HE; Schnack, HG; Posthuma, D

    2006-01-01

    the focal GM and WM densities of each twin are correlated with the psychometric intelligence quotient of his/her cotwin. Genes influenced individual differences in left and right superior occipitofrontal fascicle (heritability up to 0.79 and 0.77), corpus callosum (0.82, 0.80), optic radiation (0.69, 0.......79), corticospinal tract (0.78, 0.79), medial frontal cortex (0.78, 0.83), superior frontal cortex (0.76, 0.80), superior temporal cortex (0.80, 0.77), left occipital cortex (0.85), left postcentral cortex (0.83), left posterior cingulate cortex (0.83), right parahippocampal cortex (0.69), and amygdala (0.80, 0......Variation in gray matter (GM) and white matter (WM) volume of the adult human brain is primarily genetically determined. Moreover, total brain volume is positively correlated with general intelligence, and both share a common genetic origin. However, although genetic effects on morphology...

  13. Large-Scale Brain Network Coupling Predicts Total Sleep Deprivation Effects on Cognitive Capacity.

    Directory of Open Access Journals (Sweden)

    Yu Lei

    Full Text Available Interactions between large-scale brain networks have received most attention in the study of cognitive dysfunction of human brain. In this paper, we aimed to test the hypothesis that the coupling strength of large-scale brain networks will reflect the pressure for sleep and will predict cognitive performance, referred to as sleep pressure index (SPI. Fourteen healthy subjects underwent this within-subject functional magnetic resonance imaging (fMRI study during rested wakefulness (RW and after 36 h of total sleep deprivation (TSD. Self-reported scores of sleepiness were higher for TSD than for RW. A subsequent working memory (WM task showed that WM performance was lower after 36 h of TSD. Moreover, SPI was developed based on the coupling strength of salience network (SN and default mode network (DMN. Significant increase of SPI was observed after 36 h of TSD, suggesting stronger pressure for sleep. In addition, SPI was significantly correlated with both the visual analogue scale score of sleepiness and the WM performance. These results showed that alterations in SN-DMN coupling might be critical in cognitive alterations that underlie the lapse after TSD. Further studies may validate the SPI as a potential clinical biomarker to assess the impact of sleep deprivation.

  14. Soybean and tempeh total isoflvones improved antioxidant activities in normal and scopolamine-induced rat brain

    Directory of Open Access Journals (Sweden)

    Aliya Ahmad

    2015-11-01

    Full Text Available Objective: To highlight the comparative studies between total isoflavone extracts from soybean and tempeh on the neuronal oxidative stress and antioxidant activities. Methods: The total isoflavones were administered orally for 15 days with 3 selected doses (10, 20 and 40 mg/kg. Piracetam (400 mg/kg, p.o. was used as a standard drug while scopolamine (1 mg/kg, i.p. was used as a drug that promoted amnesia in selected groups. The oxidative markers (thiobarbituric acid reactive substances and nitric oxide were measured in brain homogenate. The antioxidant activities evaluated were catalase, superoxide dismutase, glutathione reductase and glutathione. Results: Our results showed that soybean and tempeh isoflavones significantly improved the levels of catalase, superoxide dismutase, glutathione reductase and glutathione while decreased levels of thiobarbituric acid reactive substances and nitric oxide in both the brain of normal as well as scopolamine-induced animals. Conclusions: Our findings suggested that soybean and tempeh isoflavones could be useful in the management and prevention of age-related neurodegenerative changes including Alzheimer’s disease through its antioxidant activities.

  15. Age of second language acquisition in multilinguals has an impact on gray matter volume in language-associated brain areas.

    Science.gov (United States)

    Kaiser, Anelis; Eppenberger, Leila S; Smieskova, Renata; Borgwardt, Stefan; Kuenzli, Esther; Radue, Ernst-Wilhelm; Nitsch, Cordula; Bendfeldt, Kerstin

    2015-01-01

    Numerous structural studies have established that experience shapes and reshapes the brain throughout a lifetime. The impact of early development, however, is still a matter of debate. Further clues may come from studying multilinguals who acquired their second language at different ages. We investigated adult multilinguals who spoke three languages fluently, where the third language was learned in classroom settings, not before the age of 9 years. Multilinguals exposed to two languages simultaneously from birth (SiM) were contrasted with multinguals who acquired their first two languages successively (SuM). Whole brain voxel based morphometry revealed that, relative to SuM, SiM have significantly lower gray matter volume in several language-associated cortical areas in both hemispheres: bilaterally in medial and inferior frontal gyrus, in the right medial temporal gyrus and inferior posterior parietal gyrus, as well as in the left inferior temporal gyrus. Thus, as shown by others, successive language learning increases the volume of language-associated cortical areas. In brains exposed early on and simultaneously to more than one language, however, learning of additional languages seems to have less impact. We conclude that - at least with respect to language acquisition - early developmental influences are maintained and have an effect on experience-dependent plasticity well into adulthood.

  16. Age of second language acquisition in multilinguals has an impact on grey matter volume in language-associated brain areas

    Directory of Open Access Journals (Sweden)

    Anelis eKaiser

    2015-06-01

    Full Text Available Numerous structural studies have established that experience shapes and reshapes the brain throughout a lifetime. The impact of early development, however, is still a matter of debate. Further clues may come from studying multilinguals who acquired their second language at different ages. We investigated adult multilinguals who spoke three languages fluently, where the third language was learned in classroom settings, not before the age of 9 years. Multilinguals exposed to 2 languages simultaneously from birth (SiM were contrasted with multinguals who acquired their first two languages successively (SuM. Whole brain voxel based morphometry revealed that, relative to SuM, SiM have significantly lower grey matter volume in several language-associated cortical areas in both hemispheres: bilaterally in medial and inferior frontal gyrus, in the right medial temporal gyrus and inferior posterior parietal gyrus, as well as in the left inferior frontal gyrus. Thus, as shown by others, successive language learning increases the volume of language-associated cortical areas. In brains exposed early on and simultaneously to more than one language, however, learning of additional languages seems to have less impact. We conclude that - at least with respect to language acquisition - early developmental influences are maintained and influence experience-dependent plasticity well into adulthood.

  17. Global brain metabolic quantification with whole-head proton MRS at 3 T.

    Science.gov (United States)

    Kirov, Ivan I; Wu, William E; Soher, Brian J; Davitz, Matthew S; Huang, Jeffrey H; Babb, James S; Lazar, Mariana; Fatterpekar, Girish; Gonen, Oded

    2017-10-01

    Total N-acetyl-aspartate + N-acetyl-aspartate-glutamate (NAA), total creatine (Cr) and total choline (Cho) proton MRS ( 1 H-MRS) signals are often used as surrogate markers in diffuse neurological pathologies, but spatial coverage of this methodology is limited to 1%-65% of the brain. Here we wish to demonstrate that non-localized, whole-head (WH) 1 H-MRS captures just the brain's contribution to the Cho and Cr signals, ignoring all other compartments. Towards this end, 27 young healthy adults (18 men, 9 women), 29.9 ± 8.5 years old, were recruited and underwent T 1 -weighted MRI for tissue segmentation, non-localizing, approximately 3 min WH 1 H-MRS (T E /T R /T I  = 5/10/940 ms) and 30 min 1 H-MR spectroscopic imaging (MRSI) (T E /T R  = 35/2100 ms) in a 360 cm 3 volume of interest (VOI) at the brain's center. The VOI absolute NAA, Cr and Cho concentrations, 7.7 ± 0.5, 5.5 ± 0.4 and 1.3 ± 0.2 mM, were all within 10% of the WH: 8.6 ± 1.1, 6.0 ± 1.0 and 1.3 ± 0.2 mM. The mean NAA/Cr and NAA/Cho ratios in the WH were only slightly higher than the "brain-only" VOI: 1.5 versus 1.4 (7%) and 6.6 versus 5.9 (11%); Cho/Cr were not different. The brain/WH volume ratio was 0.31 ± 0.03 (brain ≈ 30% of WH volume). Air-tissue susceptibility-driven local magnetic field changes going from the brain outwards showed sharp gradients of more than 100 Hz/cm (1 ppm/cm), explaining the skull's Cr and Cho signal losses through resonance shifts, line broadening and destructive interference. The similarity of non-localized WH and localized VOI NAA, Cr and Cho concentrations and their ratios suggests that their signals originate predominantly from the brain. Therefore, the fast, comprehensive WH- 1 H-MRS method may facilitate quantification of these metabolites, which are common surrogate markers in neurological disorders. Copyright © 2017 John Wiley & Sons, Ltd.

  18. Perceived Stress Is Differentially Related to Hippocampal Subfield Volumes among Older Adults.

    Directory of Open Access Journals (Sweden)

    Molly E Zimmerman

    Full Text Available Chronic exposure to stress has been shown to impact a wide range of health-related outcomes in older adults. Despite extensive animal literature revealing deleterious effects of biological markers of stress on the dentate gyrus subfield of the hippocampus, links between hippocampal subfields and psychological stress have not been studied in humans. This study examined the relationship between perceived stress and hippocampal subfield volumes among racially/ethnically diverse older adults.Between July 2011 and March 2014, 116 nondemented participants were consecutively drawn from the Einstein Aging Study, an ongoing community-based sample of individuals over the age of 70 residing in Bronx, New York. All participants completed the Perceived Stress Scale, Geriatric Depression Scale, and underwent 3.0 T MRI. FreeSurfer was used to derive total hippocampal volume, hippocampal subfield volumes (CA1, CA2/CA3, CA4/Dentate Gyrus (CA4/DG, and subiculum, entorhinal cortex volume, whole brain volume, and total intracranial volume.Linear regression analyses revealed that higher levels of perceived stress were associated with smaller total hippocampal volume (β = -0.20, t = -2.40, p = 0.02, smaller CA2/CA3 volumes (β = -0.18, t = -2.24, p = 0.03 and smaller CA4/DG volumes (β = -0.19, t = -2.28, p = 0.03 after controlling for total intracranial volume, age, gender, and race. These findings remained unchanged after removal of individuals with clinically significant symptoms of depression.Our findings provide evidence of a relationship between a direct indicator of psychological stress and specific hippocampal subfield volumes in elderly individuals. These results highlight the importance of clinical screening for chronic stress in otherwise healthy older adults.

  19. At least eighty percent of brain grey matter is modifiable by physical activity: A review study.

    Science.gov (United States)

    Batouli, Seyed Amir Hossein; Saba, Valiallah

    2017-08-14

    The human brain is plastic, i.e. it can show structural changes in response to the altered environment. Physical activity (PA) is a lifestyle factor which has significant associations with the structural and functional aspects of the human brain, as well as with the mind and body health. Many studies have reported regional/global brain volume increments due to exercising; however, a map which shows the overall extent of the influences of PAs on brain structure is not available. In this study, we collected all the reports on brain structural alterations in association with PA in healthy humans, and next, a brain map of the extent of these effects is provided. The results of this study showed that a large network of brain areas, equal to 82% of the total grey matter volume, were associated with PA. This finding has important implications in utilizing PA as a mediator factor for educational purposes in children, rehabilitation applications in patients, improving the cognitive abilities of the human brain such as in learning or memory, and preventing age-related brain deteriorations. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Clinical associations of total kidney volume: the Framingham Heart Study.

    Science.gov (United States)

    Roseman, Daniel A; Hwang, Shih-Jen; Oyama-Manabe, Noriko; Chuang, Michael L; O'Donnell, Christopher J; Manning, Warren J; Fox, Caroline S

    2017-08-01

    Total kidney volume (TKV) is an imaging biomarker that may have diagnostic and prognostic utility. The relationships between kidney volume, renal function and cardiovascular disease (CVD) have not been characterized in a large community-dwelling population. This information is needed to advance the clinical application of TKV. We measured TKV in 1852 Framingham Heart Study participants (mean age 64.1 ± 9.2 years, 53% women) using magnetic resonance imaging. A healthy sample was used to define reference values. The associations between TKV, renal function and CVD risk factors were determined using multivariable logistic regression analysis. Overall, mean TKV was 278 ± 54 cm3 for women and 365 ± 66 cm3 for men. Risk factors for high TKV (>90% healthy referent size) were body surface area (BSA), diabetes, smoking and albuminuria, while age, female and estimated glomerular filtration rate (eGFR) kidney damage including albuminuria and eGFR <60 mL/min/1.73 m2, while high TKV is associated with diabetes and decreased odds of eGFR <60 mL/min/1.73 m2. Prospective studies are needed to characterize the natural progression and clinical consequences of TKV. Published by Oxford University Press on behalf of ERA-EDTA 2016. This work is written by US Government employees and is in the public domain in the US.

  1. Aging, Brain Size, and IQ.

    Science.gov (United States)

    Bigler, Erin D.; And Others

    1995-01-01

    Whether cross-sectional rates of decline for brain volume and the Performance Intellectual Quotient of the Wechsler Adult Intelligence Scale-Revised were equivalent over the years 16 to 65 was studied with 196 volunteers. Results indicate remarkably similar rates of decline in perceptual-motor functions and aging brain volume loss. (SLD)

  2. Cognitively Engaging Activity is Associated with Greater Cortical and Subcortical Volumes

    Directory of Open Access Journals (Sweden)

    Talia R. Seider

    2016-05-01

    Full Text Available As the population ages and dementia becomes a growing healthcare concern, it is increasingly important to identify targets for intervention to delay or attenuate cognitive decline. Research has shown that the most successful interventions aim at altering lifestyle factors. Thus, this study examined how involvement in physical, cognitive, and social activity is related to brain structure in older adults. Sixty-five adults (mean age = 71.4 years, standard deviation = 8.9 received the Community Healthy Activities Model Program for Seniors (CHAMPS, a questionnaire that polls everyday activities in which older adults may be involved, and also underwent structural magnetic resonance imaging. Stepwise regression with backwards selection was used to predict weekly time spent in either social, cognitive, light physical, or heavy physical activity from the volume of one of the cortical or subcortical regions of interest (corrected by intracranial volume as well as age, education, and gender as control variables. Regressions revealed that more time spent in cognitive activity was associated with greater volumes of all brain regions studied: total cortex (β = .289, p = .014, frontal (β = .276, p = .019, parietal (β = .305, p = .009, temporal (β = .275, p = .020, and occipital (β = .256, p = .030 lobes, and thalamus (β = .310, p = .010, caudate (β = .233, p = .049, hippocampus (β = .286, p = .017, and amygdala (β = .336, p = .004. These effects remained even after accounting for the positive association between cognitive activity and education. No other activity variable was associated with brain volumes. Results indicate that time spent in cognitively engaging activity is associated with greater cortical and subcortical brain volume. Findings suggest that interventions aimed at increasing levels of cognitive activity may delay cognitive consequences of aging and decrease the risk of developing dementia.

  3. Hippocampal dose volume histogram predicts Hopkins Verbal Learning Test scores after brain irradiation

    Directory of Open Access Journals (Sweden)

    Catherine Okoukoni, PhD

    2017-10-01

    Full Text Available Purpose: Radiation-induced cognitive decline is relatively common after treatment for primary and metastatic brain tumors; however, identifying dosimetric parameters that are predictive of radiation-induced cognitive decline is difficult due to the heterogeneity of patient characteristics. The memory function is especially susceptible to radiation effects after treatment. The objective of this study is to correlate volumetric radiation doses received by critical neuroanatomic structures to post–radiation therapy (RT memory impairment. Methods and materials: Between 2008 and 2011, 53 patients with primary brain malignancies were treated with conventionally fractionated RT in prospectively accrued clinical trials performed at our institution. Dose-volume histogram analysis was performed for the hippocampus, parahippocampus, amygdala, and fusiform gyrus. Hopkins Verbal Learning Test-Revised scores were obtained at least 6 months after RT. Impairment was defined as an immediate recall score ≤15. For each anatomic region, serial regression was performed to correlate volume receiving a given dose (VD(Gy with memory impairment. Results: Hippocampal V53.4Gy to V60.9Gy significantly predicted post-RT memory impairment (P < .05. Within this range, the hippocampal V55Gy was the most significant predictor (P = .004. Hippocampal V55Gy of 0%, 25%, and 50% was associated with tumor-induced impairment rates of 14.9% (95% confidence interval [CI], 7.2%-28.7%, 45.9% (95% CI, 24.7%-68.6%, and 80.6% (95% CI, 39.2%-96.4%, respectively. Conclusions: The hippocampal V55Gy is a significant predictor for impairment, and a limiting dose below 55 Gy may minimize radiation-induced cognitive impairment.

  4. A prospective study of corpus callosum regional volumes and neurocognitive outcomes following cranial radiation for pediatric brain tumors.

    Science.gov (United States)

    Rashid, Arif; Ram, Ashwin N; Kates, Wendy R; Redmond, Kristin J; Wharam, Moody; Mark Mahone, E; Horska, Alena; Terezakis, Stephanie

    2017-06-01

    Cranial radiation therapy (CRT) may disrupt the corpus callosum (CC), which plays an important role in basic motor and cognitive functions. The aim of this prospective longitudinal study was to assess changes in CC mid-sagittal areas, CC volumes, and performance on neuropsychological (NP) tests related to the CC in children following CRT. Twelve pediatric patients were treated with CRT for primary brain malignancies. Thirteen age-matched healthy volunteers served as controls. Brain MRIs and NP assessment emphasizing motor dexterity, processing speed, visuomotor integration, and working memory (visual and verbal) were performed at baseline and at 6, 15, and 27 months following completion of CRT. Linear mixed effects (LME) analyses were used to evaluate patient NP performance and changes in regional CC volumes (genu, anterior body, mid-body, posterior body, and splenium) and mid-sagittal areas over time and with radiation doses, correcting for age at CRT start. The mean age at CRT was 9.41 (range 1.2-15.7) years. The median prescription dose was 54 (range 18-59.4) Gy. LME analysis revealed a significant decrease in overall CC volumes over time (p memory (both p memory. Further prospective study of larger cohorts of patients is needed to establish the relationship between CRT dose, neuroanatomical, and functional changes in the CC.

  5. Genetic correlations between brain volumes and the WAIS-III dimensions of verbal comprehension, working memory, perceptual organization, and processing speed

    DEFF Research Database (Denmark)

    Posthuma, Daniëlle; Baare, Wim F.C.; Hulshoff Pol, Hilleke E.

    2003-01-01

    We recently showed that the correlation of gray and white matter volume with full scale IQ and the Working Memory dimension are completely mediated by common genetic factors (Posthuma et al., 2002). Here we examine whether the other WAIS III dimensions (Verbal Comprehension, Perceptual Organization......, Processing Speed) are also related to gray and white matter volume, and whether any of the dimensions are related to cerebellar volume. Two overlapping samples provided 135 subjects from 60 extended twin families for whom both MRI scans and WAIS III data were available. All three brain volumes are related...... to Working Memory capacity (r = 0.27). This phenotypic correlation is completely due to a common underlying genetic factor. Processing Speed was genetically related to white matter volume (r(g) = 0.39). Perceptual Organization was both genetically (r(g) = 0.39) and environmentally (r(e) = -0.71) related...

  6. Effects of Hormone Therapy on Brain Volumes Changes of Postmenopausal Women Revealed by Optimally-Discriminative Voxel-Based Morphometry.

    Directory of Open Access Journals (Sweden)

    Tianhao Zhang

    Full Text Available The Women's Health Initiative Memory Study Magnetic Resonance Imaging (WHIMS-MRI provides an opportunity to evaluate how menopausal hormone therapy (HT affects the structure of older women's brains. Our earlier work based on region of interest (ROI analysis demonstrated potential structural changes underlying adverse effects of HT on cognition. However, the ROI-based analysis is limited in statistical power and precision, and cannot provide fine-grained mapping of whole-brain changes.We aimed to identify local structural differences between HT and placebo groups from WHIMS-MRI in a whole-brain refined level, by using a novel method, named Optimally-Discriminative Voxel-Based Analysis (ODVBA. ODVBA is a recently proposed imaging pattern analysis approach for group comparisons utilizing a spatially adaptive analysis scheme to accurately locate areas of group differences, thereby providing superior sensitivity and specificity to detect the structural brain changes over conventional methods.Women assigned to HT treatments had significant Gray Matter (GM losses compared to the placebo groups in the anterior cingulate and the adjacent medial frontal gyrus, and the orbitofrontal cortex, which persisted after multiple comparison corrections. There were no regions where HT was significantly associated with larger volumes compared to placebo, although a trend of marginal significance was found in the posterior cingulate cortical area. The CEE-Alone and CEE+MPA groups, although compared with different placebo controls, demonstrated similar effects according to the spatial patterns of structural changes.HT had adverse effects on GM volumes and risk for cognitive impairment and dementia in older women. These findings advanced our understanding of the neurobiological underpinnings of HT effects.

  7. Regional Brain Volumes Moderate, but Do Not Mediate, the Effects of Group-Based Exercise Training on Reductions in Loneliness in Older Adults.

    Science.gov (United States)

    Ehlers, Diane K; Daugherty, Ana M; Burzynska, Agnieszka Z; Fanning, Jason; Awick, Elizabeth A; Chaddock-Heyman, Laura; Kramer, Arthur F; McAuley, Edward

    2017-01-01

    Introduction: Despite the prevalence of and negative health consequences associated with perceived loneliness in older adults, few studies have examined interactions among behavioral, psychosocial, and neural mechanisms. Research suggests that physical activity and improvements in perceived social support and stress are related to reductions in loneliness. Yet, the influence of brain structure on these changes is unknown. The present study examined whether change in regional brain volume mediated the effects of changes in social support and stress on change in perceived loneliness after an exercise intervention. We also examined the extent to which baseline brain volumes moderated the relationship between changes in social support, stress, and loneliness. Methods: Participants were 247 older adults (65.4 ± 4.6 years-old) enrolled in a 6-month randomized controlled trial comprised of four exercise conditions: Dance ( n = 69), Strength/Stretching/Stability ( n = 70), Walk ( n = 54), and Walk Plus ( n = 54). All groups met for 1 h, three times weekly. Participants completed questionnaires assessing perceived social support, stress, and loneliness at baseline and post-intervention. Regional brain volumes (amygdala, prefrontal cortex [PFC], hippocampus) before and after intervention were measured with automatic segmentation of each participant's T1-weighted structural MRI. Data were analyzed in a latent modeling framework. Results: Perceived social support increased ( p = 0.003), while stress ( p loneliness ( p = 0.001) decreased over the intervention. Increased social support directly (-0.63, p loneliness. Changes in amygdala, PFC, and hippocampus volumes were unrelated to change in psychosocial variables (all p ≥ 0.44). However, individuals with larger baseline amygdalae experienced greater decreases in loneliness due to greater reductions in stress (0.35, p = 0.02). Further, individuals with larger baseline PFC volumes experienced greater reductions in stress due

  8. Regional Brain Volumes Moderate, but Do Not Mediate, the Effects of Group-Based Exercise Training on Reductions in Loneliness in Older Adults

    Directory of Open Access Journals (Sweden)

    Diane K. Ehlers

    2017-04-01

    Full Text Available Introduction: Despite the prevalence of and negative health consequences associated with perceived loneliness in older adults, few studies have examined interactions among behavioral, psychosocial, and neural mechanisms. Research suggests that physical activity and improvements in perceived social support and stress are related to reductions in loneliness. Yet, the influence of brain structure on these changes is unknown. The present study examined whether change in regional brain volume mediated the effects of changes in social support and stress on change in perceived loneliness after an exercise intervention. We also examined the extent to which baseline brain volumes moderated the relationship between changes in social support, stress, and loneliness.Methods: Participants were 247 older adults (65.4 ± 4.6 years-old enrolled in a 6-month randomized controlled trial comprised of four exercise conditions: Dance (n = 69, Strength/Stretching/Stability (n = 70, Walk (n = 54, and Walk Plus (n = 54. All groups met for 1 h, three times weekly. Participants completed questionnaires assessing perceived social support, stress, and loneliness at baseline and post-intervention. Regional brain volumes (amygdala, prefrontal cortex [PFC], hippocampus before and after intervention were measured with automatic segmentation of each participant's T1-weighted structural MRI. Data were analyzed in a latent modeling framework.Results: Perceived social support increased (p = 0.003, while stress (p < 0.001, and loneliness (p = 0.001 decreased over the intervention. Increased social support directly (−0.63, p < 0.01 and indirectly, through decreased stress (−0.10, p = 0.02, predicted decreased loneliness. Changes in amygdala, PFC, and hippocampus volumes were unrelated to change in psychosocial variables (all p ≥ 0.44. However, individuals with larger baseline amygdalae experienced greater decreases in loneliness due to greater reductions in stress (0.35, p = 0

  9. Dose-dependent neuroprotective effect of enoxaparin on cold-induced traumatic brain injury.

    Science.gov (United States)

    Keskin, Ilknur; Gunal, M Yalcin; Ayturk, Nilufer; Kilic, Ulkan; Ozansoy, Mehmet; Kilic, Ertugrul

    2017-05-01

    Recent evidence exists that enoxaparin can reduce brain injury because of its anticoagulant activity. To investigate the potential therapeutic effect of enoxaparin on cold-induced traumatic brain injury, at 20 minutes after modeling, male BALB/c mouse models of cold-induced traumatic brain injury were intraperitoneally administered 3 and 10 mg/kg enoxaparin or isotonic saline solution. Twenty-four hours later, enoxaparin at 10 mg/kg greatly reduced infarct volume, decreased cell apoptosis in the cortex and obviously increased serum level of total antioxidant status. By contrast, administration of enoxaparin at 3 mg/kg did not lead to these changes. These findings suggest that enoxaparin exhibits neuroprotective effect on cold-induced traumatic brain injury in a dose-dependent manner.

  10. Metopic synostosis: Measuring intracranial volume change following fronto-orbital advancement using three-dimensional photogrammetry.

    Science.gov (United States)

    Freudlsperger, Christian; Steinmacher, Sahra; Bächli, Heidi; Somlo, Elek; Hoffmann, Jürgen; Engel, Michael

    2015-06-01

    There is still disagreement regarding the intracranial volumes of patients with metopic synostosis compared with healthy patients. This study aimed to compare the intracranial volume of children with metopic synostosis before and after surgery to an age- and sex-matched control cohort using three-dimensional (3D) photogrammetry. Eighteen boys with metopic synostosis were operated on using standardized fronto-orbital advancement. Frontal, posterior and total intracranial volumes were measured exactly 1 day pre-operatively and 10 days post-operatively, using 3D photogrammetry. To establish an age- and sex-matched control group, the 3D photogrammetric data of 634 healthy boys between the ages of 3 and 13 months were analyzed. Mean age at surgery was 9 months (SD 1.7). Prior to surgery, boys with metopic synostosis showed significantly reduced frontal and total intracranial volumes compared with the reference group, but similar posterior volumes. After surgery, frontal and total intracranial volumes did not differ statistically from the control group. As children with metopic synostosis showed significantly smaller frontal and total intracranial volumes compared with an age- and sex-matched control group, corrective surgery should aim to achieve volume expansion. Furthermore, 3D photogrammetry provides a valuable alternative to CT scans in the measurement of intracranial volume in children with metopic synostosis, which significantly reduces the amount of radiation exposure to the growing brain. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  11. Brain volumes and neuropsychological performance are related to current smoking and alcoholism history

    Directory of Open Access Journals (Sweden)

    Luhar RB

    2013-11-01

    Full Text Available Riya B Luhar,1,2 Kayle S Sawyer,1,2 Zoe Gravitz,1,2 Susan Mosher Ruiz,1,2 Marlene Oscar-Berman1–3 1US Department of Veterans Affairs, Boston Healthcare System, 2Boston University School of Medicine, 3Athinoula A Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA Background: Dual dependence on alcohol and nicotine is common, with many reports suggesting that more than 80% of alcoholics also smoke cigarettes. Even after cessation of alcohol consumption, many recovering alcoholics continue to smoke. In this exploratory study, we examined how current smoking and a history of alcoholism interacted in relation to brain volumes and neuropsychological performance. Methods: Participants were 14 abstinent long-term alcoholics (seven current smokers and seven nonsmokers, and 13 nonalcoholics (six current smokers and seven nonsmokers. The groups were equivalent in age, gender, education, and intelligence quotient. Two multiecho magnetization-prepared rapid acquisition with gradient echo (MP-RAGE scans were collected for all participants using a 3T magnetic resonance imaging scanner with a 32 channel head coil. Brain volumes for each gray and white matter region of interest were derived using FreeSurfer. Participants completed a battery of neuropsychological tests measuring intelligence quotient, memory, executive functions, personality variables, and affect. Results: Compared to nonsmoking nonalcoholics, alcoholics who smoke (the comorbid group had volumetric abnormalities in: pre- and para-central frontal cortical areas and rostral middle frontal white matter; parahippocampal and temporal pole regions; the amygdala; the pallidum; the ventral diencephalic region; and the lateral ventricle. The comorbid group performed worse than nonsmoking nonalcoholics on tests of executive functioning and on visually-based memory tests. History of alcoholism was associated with higher neuroticism scores among smokers, and current

  12. Traumatic primary brain stem haemorrhage

    International Nuclear Information System (INIS)

    Andrioli, G.C.; Zuccarello, M.; Trincia, G.; Fiore, D.L.; De Caro, R.

    1983-01-01

    We report 36 cases of post-traumatic 'primary brain stem haemorrhage' visualized by the CT scan and confirmed at autopsy. Clinical experience shows that many technical factors influence the inability to visualize brain stem haemorrhages. Experimental injection of fresh blood into the pons and midbrain of cadavers shows that lesions as small as 0.25 ml in volume may be visualized. The volume and the anatomical configuration of traumatic lesions of the brain stem extended over a rostro-caudal direction, and their proximity to bony structures at the base of the skull are obstacles to the visualization of brain stem haemorrhages. (Author)

  13. High "normal" blood glucose is associated with decreased brain volume and cognitive performance in the 60s: the PATH through life study.

    Directory of Open Access Journals (Sweden)

    Moyra E Mortby

    Full Text Available Type 2 diabetes is associated with cerebral atrophy, cognitive impairment and dementia. We recently showed higher glucose levels in the normal range not to be free of adverse effects and to be associated with greater hippocampal and amygdalar atrophy in older community-dwelling individuals free of diabetes.This study aimed to determine whether blood glucose levels in the normal range (<6.1 mmol/L were associated with cerebral volumes in structures other than the hippocampus and amygdale, and whether these glucose-related regional volumes were associated with cognitive performance.210 cognitively healthy individuals (68-73 years without diabetes, glucose intolerance or metabolic syndrome were assessed in the large, community-based Personality and Total Health Through Life (PATH study.Baseline blood glucose levels in the normal range (3.2-6.1 mmol/l were used to determine regional brain volumes and associated cognitive function at wave 3.Higher blood glucose levels in the normal range were associated with lower grey/white matter regional volumes in the frontal cortices (middle frontal gyrus, inferior frontal gyrus precentral gyrus. Moreover, identified cerebral regions were associated with poorer cognitive performance and the structure-function associations were gender specific to men.These findings stress the need to re-evaluate what is considered as healthy blood glucose levels, and consider the role of higher normal blood glucose as a risk factor for cerebral health, cognitive function and dementia. A better lifetime management of blood glucose levels may contribute to improved cerebral and cognitive health in later life and possibly protect against dementia.

  14. Effect of childhood maltreatment and brain-derived neurotrophic factor on brain morphology

    NARCIS (Netherlands)

    van Velzen, Laura S.; Schmaal, Lianne; Jansen, Rick; Milaneschi, Yuri; Opmeer, Esther M.; Elzinga, Bernet M.; van der Wee, Nic J. A.; Veltman, Dick J.; Penninx, Brenda W. J. H.

    2016-01-01

    Childhood maltreatment (CM) has been associated with altered brain morphology, which may partly be due to a direct impact on neural growth, e.g. through the brain-derived neurotrophic factor (BDNF) pathway. Findings on CM, BDNF and brain volume are inconsistent and have never accounted for the

  15. Common genetic variants influence human subcortical brain structures

    Science.gov (United States)

    Hibar, Derrek P.; Stein, Jason L.; Renteria, Miguel E.; Arias-Vasquez, Alejandro; Desrivières, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S.; Armstrong, Nicola J.; Bernard, Manon; Bohlken, Marc M.; Boks, Marco P.; Bralten, Janita; Brown, Andrew A.; Chakravarty, M. Mallar; Chen, Qiang; Ching, Christopher R. K.; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L.; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J.; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H.; Olde Loohuis, Loes M.; Luciano, Michelle; Macare, Christine; Mather, Karen A.; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L.; Roiz-Santiañez, Roberto; Rose, Emma J.; Salami, Alireza; Sämann, Philipp G.; Schmaal, Lianne; Schork, Andrew J.; Shin, Jean; Strike, Lachlan T.; Teumer, Alexander; van Donkelaar, Marjolein M. J.; van Eijk, Kristel R.; Walters, Raymond K.; Westlye, Lars T.; Whelan, Christopher D.; Winkler, Anderson M.; Zwiers, Marcel P.; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M. H.; Hartberg, Cecilie B.; Haukvik, Unn K.; Heister, Angelien J. G. A. M.; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C. M.; Lopez, Lorna M.; Makkinje, Remco R. R.; Matarin, Mar; Naber, Marlies A. M.; McKay, D. Reese; Needham, Margaret; Nugent, Allison C.; Pütz, Benno; Royle, Natalie A.; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S. L.; van Hulzen, Kimm J. E.; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A.; Bastin, Mark E.; Brodaty, Henry; Bulayeva, Kazima B.; Carless, Melanie A.; Cichon, Sven; Corvin, Aiden; Curran, Joanne E.; Czisch, Michael; de Zubicaray, Greig I.; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D.; Erk, Susanne; Fedko, Iryna O.; Ferrucci, Luigi; Foroud, Tatiana M.; Fox, Peter T.; Fukunaga, Masaki; Gibbs, J. Raphael; Göring, Harald H. H.; Green, Robert C.; Guelfi, Sebastian; Hansell, Narelle K.; Hartman, Catharina A.; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G.; Heslenfeld, Dirk J.; Hoekstra, Pieter J.; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R.; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W.; Kochunov, Peter; Kwok, John B.; Lawrie, Stephen M.; Liu, Xinmin; Longo, Dan L.; McMahon, Katie L.; Meisenzahl, Eva; Melle, Ingrid; Mohnke, Sebastian; Montgomery, Grant W.; Mostert, Jeanette C.; Mühleisen, Thomas W.; Nalls, Michael A.; Nichols, Thomas E.; Nilsson, Lars G.; Nöthen, Markus M.; Ohi, Kazutaka; Olvera, Rene L.; Perez-Iglesias, Rocio; Pike, G. Bruce; Potkin, Steven G.; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D.; Rujescu, Dan; Schnell, Knut; Schofield, Peter R.; Smith, Colin; Steen, Vidar M.; Sussmann, Jessika E.; Thalamuthu, Anbupalam; Toga, Arthur W.; Traynor, Bryan J.; Troncoso, Juan; Turner, Jessica A.; Valdés Hernández, Maria C.; van ’t Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J. A.; van Tol, Marie-Jose; Veltman, Dick J.; Wassink, Thomas H.; Westman, Eric; Zielke, Ronald H.; Zonderman, Alan B.; Ashbrook, David G.; Hager, Reinmar; Lu, Lu; McMahon, Francis J.; Morris, Derek W.; Williams, Robert W.; Brunner, Han G.; Buckner, Randy L.; Buitelaar, Jan K.; Cahn, Wiepke; Calhoun, Vince D.; Cavalleri, Gianpiero L.; Crespo-Facorro, Benedicto; Dale, Anders M.; Davies, Gareth E.; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C.; Espeseth, Thomas; Gollub, Randy L.; Ho, Beng-Choon; Hoffmann, Wolfgang; Hosten, Norbert; Kahn, René S.; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Müller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W. J. H.; Roffman, Joshua L.; Sisodiya, Sanjay M.; Smoller, Jordan W.; van Bokhoven, Hans; van Haren, Neeltje E. M.; Völzke, Henry; Walter, Henrik; Weiner, Michael W.; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A.; Blangero, John; Boomsma, Dorret I.; Brouwer, Rachel M.; Cannon, Dara M.; Cookson, Mark R.; de Geus, Eco J. C.; Deary, Ian J.; Donohoe, Gary; Fernández, Guillén; Fisher, Simon E.; Francks, Clyde; Glahn, David C.; Grabe, Hans J.; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Hulshoff Pol, Hilleke E.; Jönsson, Erik G.; Kloszewska, Iwona; Lovestone, Simon; Mattay, Venkata S.; Mecocci, Patrizia; McDonald, Colm; McIntosh, Andrew M.; Ophoff, Roel A.; Paus, Tomas; Pausova, Zdenka; Ryten, Mina; Sachdev, Perminder S.; Saykin, Andrew J.; Simmons, Andy; Singleton, Andrew; Soininen, Hilkka; Wardlaw, Joanna M.; Weale, Michael E.; Weinberger, Daniel R.; Adams, Hieab H. H.; Launer, Lenore J.; Seiler, Stephan; Schmidt, Reinhold; Chauhan, Ganesh; Satizabal, Claudia L.; Becker, James T.; Yanek, Lisa; van der Lee, Sven J.; Ebling, Maritza; Fischl, Bruce; Longstreth, W. T.; Greve, Douglas; Schmidt, Helena; Nyquist, Paul; Vinke, Louis N.; van Duijn, Cornelia M.; Xue, Luting; Mazoyer, Bernard; Bis, Joshua C.; Gudnason, Vilmundur; Seshadri, Sudha; Ikram, M. Arfan; Martin, Nicholas G.; Wright, Margaret J.; Schumann, Gunter; Franke, Barbara; Thompson, Paul M.; Medland, Sarah E.

    2015-01-01

    The highly complex structure of the human brain is strongly shaped by genetic influences1. Subcortical brain regions form circuits with cortical areas to coordinate movement2, learning, memory3 and motivation4, and altered circuits can lead to abnormal behaviour and disease2. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume5 and intracranial volume6. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 × 10−33; 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability inhuman brain development, and may help to determine mechanisms of neuropsychiatric dysfunction. PMID:25607358

  16. Common genetic variants influence human subcortical brain structures.

    Science.gov (United States)

    Hibar, Derrek P; Stein, Jason L; Renteria, Miguel E; Arias-Vasquez, Alejandro; Desrivières, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S; Armstrong, Nicola J; Bernard, Manon; Bohlken, Marc M; Boks, Marco P; Bralten, Janita; Brown, Andrew A; Chakravarty, M Mallar; Chen, Qiang; Ching, Christopher R K; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H; Olde Loohuis, Loes M; Luciano, Michelle; Macare, Christine; Mather, Karen A; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L; Roiz-Santiañez, Roberto; Rose, Emma J; Salami, Alireza; Sämann, Philipp G; Schmaal, Lianne; Schork, Andrew J; Shin, Jean; Strike, Lachlan T; Teumer, Alexander; van Donkelaar, Marjolein M J; van Eijk, Kristel R; Walters, Raymond K; Westlye, Lars T; Whelan, Christopher D; Winkler, Anderson M; Zwiers, Marcel P; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M H; Hartberg, Cecilie B; Haukvik, Unn K; Heister, Angelien J G A M; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C M; Lopez, Lorna M; Makkinje, Remco R R; Matarin, Mar; Naber, Marlies A M; McKay, D Reese; Needham, Margaret; Nugent, Allison C; Pütz, Benno; Royle, Natalie A; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S L; van Hulzen, Kimm J E; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A; Bastin, Mark E; Brodaty, Henry; Bulayeva, Kazima B; Carless, Melanie A; Cichon, Sven; Corvin, Aiden; Curran, Joanne E; Czisch, Michael; de Zubicaray, Greig I; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D; Erk, Susanne; Fedko, Iryna O; Ferrucci, Luigi; Foroud, Tatiana M; Fox, Peter T; Fukunaga, Masaki; Gibbs, J Raphael; Göring, Harald H H; Green, Robert C; Guelfi, Sebastian; Hansell, Narelle K; Hartman, Catharina A; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G; Heslenfeld, Dirk J; Hoekstra, Pieter J; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W; Kochunov, Peter; Kwok, John B; Lawrie, Stephen M; Liu, Xinmin; Longo, Dan L; McMahon, Katie L; Meisenzahl, Eva; Melle, Ingrid; Mohnke, Sebastian; Montgomery, Grant W; Mostert, Jeanette C; Mühleisen, Thomas W; Nalls, Michael A; Nichols, Thomas E; Nilsson, Lars G; Nöthen, Markus M; Ohi, Kazutaka; Olvera, Rene L; Perez-Iglesias, Rocio; Pike, G Bruce; Potkin, Steven G; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D; Rujescu, Dan; Schnell, Knut; Schofield, Peter R; Smith, Colin; Steen, Vidar M; Sussmann, Jessika E; Thalamuthu, Anbupalam; Toga, Arthur W; Traynor, Bryan J; Troncoso, Juan; Turner, Jessica A; Valdés Hernández, Maria C; van 't Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J A; van Tol, Marie-Jose; Veltman, Dick J; Wassink, Thomas H; Westman, Eric; Zielke, Ronald H; Zonderman, Alan B; Ashbrook, David G; Hager, Reinmar; Lu, Lu; McMahon, Francis J; Morris, Derek W; Williams, Robert W; Brunner, Han G; Buckner, Randy L; Buitelaar, Jan K; Cahn, Wiepke; Calhoun, Vince D; Cavalleri, Gianpiero L; Crespo-Facorro, Benedicto; Dale, Anders M; Davies, Gareth E; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C; Espeseth, Thomas; Gollub, Randy L; Ho, Beng-Choon; Hoffmann, Wolfgang; Hosten, Norbert; Kahn, René S; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Müller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W J H; Roffman, Joshua L; Sisodiya, Sanjay M; Smoller, Jordan W; van Bokhoven, Hans; van Haren, Neeltje E M; Völzke, Henry; Walter, Henrik; Weiner, Michael W; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A; Blangero, John; Boomsma, Dorret I; Brouwer, Rachel M; Cannon, Dara M; Cookson, Mark R; de Geus, Eco J C; Deary, Ian J; Donohoe, Gary; Fernández, Guillén; Fisher, Simon E; Francks, Clyde; Glahn, David C; Grabe, Hans J; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Hulshoff Pol, Hilleke E; Jönsson, Erik G; Kloszewska, Iwona; Lovestone, Simon; Mattay, Venkata S; Mecocci, Patrizia; McDonald, Colm; McIntosh, Andrew M; Ophoff, Roel A; Paus, Tomas; Pausova, Zdenka; Ryten, Mina; Sachdev, Perminder S; Saykin, Andrew J; Simmons, Andy; Singleton, Andrew; Soininen, Hilkka; Wardlaw, Joanna M; Weale, Michael E; Weinberger, Daniel R; Adams, Hieab H H; Launer, Lenore J; Seiler, Stephan; Schmidt, Reinhold; Chauhan, Ganesh; Satizabal, Claudia L; Becker, James T; Yanek, Lisa; van der Lee, Sven J; Ebling, Maritza; Fischl, Bruce; Longstreth, W T; Greve, Douglas; Schmidt, Helena; Nyquist, Paul; Vinke, Louis N; van Duijn, Cornelia M; Xue, Luting; Mazoyer, Bernard; Bis, Joshua C; Gudnason, Vilmundur; Seshadri, Sudha; Ikram, M Arfan; Martin, Nicholas G; Wright, Margaret J; Schumann, Gunter; Franke, Barbara; Thompson, Paul M; Medland, Sarah E

    2015-04-09

    The highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume and intracranial volume. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 × 10(-33); 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability in human brain development, and may help to determine mechanisms of neuropsychiatric dysfunction.

  17. Reduced frontal cortex thickness and cortical volume associated with pathological narcissism.

    Science.gov (United States)

    Mao, Yu; Sang, Na; Wang, Yongchao; Hou, Xin; Huang, Hui; Wei, Dongtao; Zhang, Jinfu; Qiu, Jiang

    2016-07-22

    Pathological narcissism is often characterized by arrogant behavior, a lack of empathy, and willingness to exploit other individuals. Generally, individuals with high levels of narcissism are more likely to suffer mental disorders. However, the brain structural basis of individual pathological narcissism trait among healthy people has not yet been investigated with surface-based morphometry. Thus, in this study, we investigated the relationship between cortical thickness (CT), cortical volume (CV), and individual pathological narcissism in a large healthy sample of 176 college students. Multiple regression was used to analyze the correlation between regional CT, CV, and the total Pathological Narcissism Inventory (PNI) score, adjusting for age, sex, and total intracranial volume. The results showed that the PNI score was significantly negatively associated with CT and CV in the right dorsolateral prefrontal cortex (DLPFC, key region of the central executive network, CEN), which might be associated with impaired emotion regulation processes. Furthermore, the PNI score showed significant negative associations with CV in the right postcentral gyrus, left medial prefrontal cortex (MPFC), and the CT in the right inferior frontal cortex (IFG, overlap with social brain network), which may be related to impairments in social cognition. Together, these findings suggest a unique structural basis for individual differences in pathological narcissism, distributed across different gray matter regions of the social brain network and CEN. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Herpes zoster chronification to postherpetic neuralgia induces brain activity and grey matter volume change

    Science.gov (United States)

    Cao, Song; Qin, Bangyong; Zhang, Yi; Yuan, Jie; Fu, Bao; Xie, Peng; Song, Ganjun; Li, Ying; Yu, Tian

    2018-01-01

    Objective: Herpes zoster (HZ) can develop into postherpetic neuralgia (PHN), which is a chronic neuropathic pain (NP). Whether the chronification from HZ to PHN induced brain functional or structural change is unknown and no study compared the changes of the same brains of patients who transited from HZ to PHN. We minimized individual differences and observed whether the chronification of HZ to PHN induces functional and pain duration dependent grey matter volume (GMV) change in HZ-PHN patients. Methods: To minimize individual differences induced error, we enrolled 12 patients with a transition from HZ to PHN. The functional and structural changes of their brains between the two states were identified with resting-state functional MRI (rs-fMRI) technique (i.e., the regional homogeneity (ReHo) and fractional aptitude of low-frequency fluctuation (fALFF) method) and the voxel based morphometry (VBM) technology respectively. The correlations between MRI parameters (i.e., ΔReHo, ΔfALFF and ΔVBM) and Δpain duration were analyzed too. Results: Compared with HZ brains, PHN brains exhibited abnormal ReHo, fALFF and VBM values in pain matrix (the frontal lobe, parietal lobe, thalamus, limbic lobe and cerebellum) as well as the occipital lobe and temporal lobe. Nevertheless, the activity of vast area of cerebellum and frontal lobe significantly increased while that of occipital lobe and limbic lobe showed apparent decrease when HZ developed to PHN. In addition, PHN brain showed decreased GMV in the frontal lobe, the parietal lobe and the occipital lobe but increased in the cerebellum and the temporal lobe. Correlation analyses showed that some of the ReHo, fALFF and VBM differential areas (such as the cerebellum posterior lobe, the thalamus extra-nuclear and the middle temporal gyrus) correlated well with Δpain duration. Conclusions: HZ chronification induced functional and structural change in cerebellum, occipital lobe, temporal lobe, parietal lobe and limbic lobe

  19. Detecting brain growth patterns in normal children using tensor-based morphometry.

    Science.gov (United States)

    Hua, Xue; Leow, Alex D; Levitt, Jennifer G; Caplan, Rochelle; Thompson, Paul M; Toga, Arthur W

    2009-01-01

    Previous magnetic resonance imaging (MRI)-based volumetric studies have shown age-related increases in the volume of total white matter and decreases in the volume of total gray matter of normal children. Recent adaptations of image analysis strategies enable the detection of human brain growth with improved spatial resolution. In this article, we further explore the spatio-temporal complexity of adolescent brain maturation with tensor-based morphometry. By utilizing a novel non-linear elastic intensity-based registration algorithm on the serial structural MRI scans of 13 healthy children, individual Jacobian growth maps are generated and then registered to a common anatomical space. Statistical analyses reveal significant tissue growth in cerebral white matter, contrasted with gray matter loss in parietal, temporal, and occipital lobe. In addition, a linear regression with age and gender suggests a slowing down of the growth rate in regions with the greatest white matter growth. We demonstrate that a tensor-based Jacobian map is a sensitive and reliable method to detect regional tissue changes during development. (c) 2007 Wiley-Liss, Inc.

  20. Synaptic vesicle exocytosis in hippocampal synaptosomes correlates directly with total mitochondrial volume

    Science.gov (United States)

    Ivannikov, Maxim V.; Sugimori, Mutsuyuki; Llinás, Rodolfo R.

    2012-01-01

    Synaptic plasticity in many regions of the central nervous system leads to the continuous adjustment of synaptic strength, which is essential for learning and memory. In this study, we show by visualizing synaptic vesicle release in mouse hippocampal synaptosomes that presynaptic mitochondria and specifically, their capacities for ATP production are essential determinants of synaptic vesicle exocytosis and its magnitude. Total internal reflection microscopy of FM1-43 loaded hippocampal synaptosomes showed that inhibition of mitochondrial oxidative phosphorylation reduces evoked synaptic release. This reduction was accompanied by a substantial drop in synaptosomal ATP levels. However, cytosolic calcium influx was not affected. Structural characterization of stimulated hippocampal synaptosomes revealed that higher total presynaptic mitochondrial volumes were consistently associated with higher levels of exocytosis. Thus, synaptic vesicle release is linked to the presynaptic ability to regenerate ATP, which itself is a utility of mitochondrial density and activity. PMID:22772899

  1. Multiple sclerosis patients lacking oligoclonal bands in the cerebrospinal fluid have less global and regional brain atrophy.

    Science.gov (United States)

    Ferreira, Daniel; Voevodskaya, Olga; Imrell, Kerstin; Stawiarz, Leszek; Spulber, Gabriela; Wahlund, Lars-Olof; Hillert, Jan; Westman, Eric; Karrenbauer, Virginija Danylaité

    2014-09-15

    To investigate whether multiple sclerosis (MS) patients with and without cerebrospinal fluid (CSF) oligoclonal immunoglobulin G bands (OCB) differ in brain atrophy. Twenty-eight OCB-negative and thirty-five OCB-positive patients were included. Larger volumes of total CSF and white matter (WM) lesions; smaller gray matter (GM) volume in the basal ganglia, diencephalon, cerebellum, and hippocampus; and smaller WM volume in corpus callosum, periventricular-deep WM, brainstem, and cerebellum, were observed in OCB-positives. OCB-negative patients, known to differ genetically from OCB-positives, are characterized by less global and regional brain atrophy. This finding supports the notion that OCB-negative MS patients may represent a clinically relevant MS subgroup. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. A voxel-based morphometry study of brain volume changes in patients with neuromyelitis optica

    International Nuclear Information System (INIS)

    Duan Yunyun; Liu Yaou; Liang Peipeng; Huang Jing; Ren Zhuoqiong; Ye Jing; Dong Huiqing; Chen Hai; Li Kuncheng

    2012-01-01

    Objective: To detect changes of regional grey matter and white matter volume in patients of neuromyelitis optica (NMO) by voxel-based morphometry (VBM), and investigate its relationship with clinical variables. Methods: Conventional magnetic resonance imaging (MRI) and structural three-dimensional MRI were obtained from 20 NMO and 20 sex-and age-matched healthy volunteers. The comparison of grey matter and white matter volume between the two groups was analyzed by VBM tools of statistical parametric mapping (SPM) 5. Pearson correlation analysis was used to assess correlations between regional volume decrease and disease duration and expanded disability status scale (EDSS) scores in NMO patients. Results: Compared with normal controls, NMO patients had grey matter atrophy in several cortical regions, such as right inferior frontal gyrus (cluster size 514), left superior temporal gyrus (282), right middle temporal gyrus (229) and right insula (211) (t=3.58-5.11, AlphaSim corrected, P<0.05). White matter atrophy was found in several subcortical regions in NMO patients, such as right precentral and postcentral gyrus (cluster size 457, 110), left middle frontal gyrus (285), and right inferior parietal lobule (231) (t=2.90-4.25, AlphaSim corrected, P<0.05). Grey matter and white matter volume loss were not significantly correlated with clinical duration or EDSS score in NMO. Conclusion: By means of VBM, regional atrophy of grey matter and white matter is found in NMO patients, which may provide evidence for brain structural abnormality in NMO. (authors)

  3. The Developmental Course of Sleep Disturbances Across Childhood Relates to Brain Morphology at Age 7: The Generation R Study.

    Science.gov (United States)

    Kocevska, Desana; Muetzel, Ryan L; Luik, Annemarie I; Luijk, Maartje P C M; Jaddoe, Vincent W; Verhulst, Frank C; White, Tonya; Tiemeier, Henning

    2017-01-01

    Little is known about the impact of sleep disturbances on the structural properties of the developing brain. This study explored associations between childhood sleep disturbances and brain morphology at 7 years. Mothers from the Generation R cohort reported sleep disturbances in 720 children at ages 2 months, 1.5, 2, 3, and 6 years. T1-weighted Magnetic Resonance Imaging (MRI) images were used to assess brain structure at 7 years. Associations of sleep disturbances at each age and of sleep disturbance trajectories with brain volumes (total brain volume, cortical and subcortical grey matter, white matter) were tested with linear regressions. To assess regional differences, sleep disturbance trajectories were tested as determinants for cortical thickness in whole-brain analyses. Sleep disturbances followed a declining trend from toddlerhood onwards. Infant sleep was not associated with brain morphology at age 7. Per SD sleep disturbances (one frequent symptom or two less frequent symptoms) at 2 and 3 years of age, children had -6.3 (-11.7 to -0.8) cm3 and -6.4 (-11.7 to -1.7) cm3 smaller grey matter volumes, respectively. Sleep disturbances at age 6 years were associated with global brain morphology (grey matter: -7.3 (-12.1 to -2.6), p value = .01). Consistently, trajectory analyses showed that more adverse developmental course of childhood sleep disturbances are associated with smaller grey matter volumes and thinner dorsolateral prefrontal cortex. Sleep disturbances from age 2 years onwards are associated with smaller grey matter volumes. Thinner prefrontal cortex in children with adverse sleep disturbance trajectories may reflect effects of sleep disturbances on brain maturation. © Sleep Research Society 2016. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  4. Prescription Dose Guideline Based on Physical Criterion for Multiple Metastatic Brain Tumors Treated With Stereotactic Radiosurgery

    International Nuclear Information System (INIS)

    Sahgal, Arjun; Barani, Igor J.; Novotny, Josef; Zhang Beibei; Petti, Paula; Larson, David A.; Ma Lijun

    2010-01-01

    Purpose: Existing dose guidelines for intracranial stereotactic radiosurgery (SRS) are primarily based on single-target treatment data. This study investigated dose guidelines for multiple targets treated with SRS. Methods and Materials: A physical model was developed to relate the peripheral isodose volume dependence on an increasing number of targets and prescription dose per target. The model was derived from simulated and clinical multiple brain metastatic cases treated with the Leksell Gamma Knife Perfexion at several institutions, where the total number of targets ranged from 2 to 60. The relative increase in peripheral isodose volumes, such as the 12-Gy volume, was studied in the multitarget treatment setting based on Radiation Therapy Oncology Group 90-05 study dose levels. Results: A significant increase in the 12-Gy peripheral isodose volumes was found in comparing multiple target SRS to single-target SRS. This increase strongly correlated (R 2 = 0.92) with the total number of targets but not the total target volumes (R 2 = 0.06). On the basis of the correlated curve, the 12-Gy volume for multiple target treatment was found to increase by approximately 1% per target when a low target dose such as 15 Gy was used, but approximately 4% per target when a high dose such as 20-24 Gy was used. Reduction in the prescription dose was quantified for each prescription level in maintaining the 12-Gy volume. Conclusion: Normal brain dose increases predictably with increasing number of targets for multitarget SRS. A reduction of approximately 1-2 Gy in the prescribed dose is needed compared with single target radiosurgery.

  5. Hippocampal volumes in patients exposed to low-dose radiation to the basal brain. A case–control study in long-term survivors from cancer in the head and neck region

    International Nuclear Information System (INIS)

    Olsson, Erik; Löfdahl, Elisabet; Malmgren, Helge; Eckerström, Carl; Berg, Gertrud; Borga, Magnus; Ekholm, Sven; Johannsson, Gudmundur; Ribbelin, Susanne; Starck, Göran; Wysocka, Anna

    2012-01-01

    An earlier study from our group of long time survivors of head and neck cancer who had received a low radiation dose to the hypothalamic-pituitary region, with no signs of recurrence or pituitary dysfunction, had their quality of life (QoL) compromised as compared with matched healthy controls. Hippocampal changes have been shown to accompany several psychiatric conditions and the aim of the present study was to test whether the patients’ lowered QoL was coupled to a reduction in hippocampal volume. Patients (11 men and 4 women, age 31–65) treated for head and neck cancer 4–10 years earlier and with no sign of recurrence or pituitary dysfunction, and 15 matched controls were included. The estimated radiation doses to the basal brain including the hippocampus (1.5 – 9.3 Gy) had been calculated in the earlier study. The hippocampal volumetry was done on coronal sections from a 1.5 T MRI scanner. Measurements were done by two independent raters, blinded to patients and controls, using a custom method for computer assisted manual segmentation. The volumes were normalized for intracranial volume which was also measured manually. The paired t test and Wilcoxon’s signed rank test were used for the main statistical analysis. There was no significant difference with respect to left, right or total hippocampal volume between patients and controls. All mean differences were close to zero, and the two-tailed 95% confidence interval for the difference in total, normalized volume does not include a larger than 8% deficit in the patients. The study gives solid evidence against the hypothesis that the patients’ lowered quality of life was due to a major reduction of hippocampal volume

  6. Exposure to severe urban air pollution influences cognitive outcomes, brain volume and systemic inflammation in clinically healthy children.

    Science.gov (United States)

    Calderón-Garcidueñas, Lilian; Engle, Randall; Mora-Tiscareño, Antonieta; Styner, Martin; Gómez-Garza, Gilberto; Zhu, Hongtu; Jewells, Valerie; Torres-Jardón, Ricardo; Romero, Lina; Monroy-Acosta, Maria E; Bryant, Christopher; González-González, Luis Oscar; Medina-Cortina, Humberto; D'Angiulli, Amedeo

    2011-12-01

    Exposure to severe air pollution produces neuroinflammation and structural brain alterations in children. We tested whether patterns of brain growth, cognitive deficits and white matter hyperintensities (WMH) are associated with exposures to severe air pollution. Baseline and 1 year follow-up measurements of global and regional brain MRI volumes, cognitive abilities (Wechsler Intelligence Scale for Children-Revised, WISC-R), and serum inflammatory mediators were collected in 20 Mexico City (MC) children (10 with white matter hyperintensities, WMH(+), and 10 without, WMH(-)) and 10 matched controls (CTL) from a low polluted city. There were significant differences in white matter volumes between CTL and MC children - both WMH(+) and WMH(-) - in right parietal and bilateral temporal areas. Both WMH(-) and WMH(+) MC children showed progressive deficits, compared to CTL children, on the WISC-R Vocabulary and Digit Span subtests. The cognitive deficits in highly exposed children match the localization of the volumetric differences detected over the 1 year follow-up, since the deficits observed are consistent with impairment of parietal and temporal lobe functions. Regardless of the presence of prefrontal WMH, Mexico City children performed more poorly across a variety of cognitive tests, compared to CTL children, thus WMH(+) is likely only partially identifying underlying white matter pathology. Together these findings reveal that exposure to air pollution may perturb the trajectory of cerebral development and result in cognitive deficits during childhood. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. An association between human hippocampal volume and topographical memory in healthy young adults.

    Directory of Open Access Journals (Sweden)

    Tom eHartley

    2012-12-01

    Full Text Available The association between human hippocampal structure and topographical memory was investigated in healthy adults (N=30. Structural MR images were acquired, and voxel-based morphometry (VBM was used to estimate local gray matter volume throughout the brain. A complementary automated mesh-based segmentation approach was used to independently isolate and measure specified structures including the hippocampus. Topographical memory was assessed using a version of the Four Mountains Task, a short test designed to target hippocampal spatial function. Each item requires subjects to briefly study a landscape scene before recognizing the depicted place from a novel viewpoint and under altered non-spatial conditions when presented amongst similar alternative scenes. Positive correlations between topographical memory performance and hippocampal volume were observed in both VBM and segmentation-based analyses. Score on the topographical memory task was also correlated with the volume of some subcortical structures, extra-hippocampal gray matter and total brain volume, with the most robust and extensive covariation seen in circumscribed neocortical regions in the insula and anterior temporal lobes. Taken together with earlier findings, the results suggest that global variations in brain morphology affect the volume of the hippocampus and its specific contribution to topographical memory. We speculate that behavioral variation might arise directly through the impact of resource constraints on spatial representations in the hippocampal formation and its inputs, and perhaps indirectly through an increased reliance on non-allocentric strategies.

  8. Whole-brain 320-detector row dynamic volume CT perfusion detected crossed cerebellar diaschisis after spontaneous intracerebral hemorrhage

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Jun; Chen, Wei-jian; Wang, Mei-hao; Li, Jian-ce; Zhang, Qian; Xia, Neng-zhi; Yang, Yun-jun [Wenzhou Medical University, Department of Radiology, First Affiliated Hospital, Wenzhou (China); Wu, Gui-yun [Cleveland Clinics Foundation, Department of Nuclear Medicine, Imaging Institute, Cleveland, OH (United States); Cheng, Jing-liang; Zhang, Yong [Zhengzhou University, Department of Radiology, First Affiliated Hospital, Zhengzhou (China); Zhuge, Qichuan [Wenzhou Medical University, Department of Neurosurgery, First Affiliated Hospital, Wenzhou (China)

    2014-11-09

    The purpose of this study was to evaluate the value of 320-detector row CT used to detect crossed cerebellar diaschisis (CCD) in patients with unilateral supratentorial spontaneous intracerebral hemorrhage (SICH). We investigated 62 of 156 patients with unilateral supratentorial SICH using 320-detector row CT scanning. Regional cerebral blood flow (rCBF), cerebral blood volume (rCBV), mean transit time (rMTT), and time to peak (rTTP) levels were measured in different regions of interest (ROIs) that were manually outlined on computed tomography perfusion (CTP) for the cerebrum, including normal-appearing brain tissue that surrounded the perilesional low-density area (NA) and the perihematomal low-density area (PA) in all patients and the cerebellum (ipsilateral and contralateral) in CCD-positive patients. Of 62 cases, a total of 14 met the criteria for CCD due to cerebellar perfusion asymmetry on CTP maps. In the quantitative analysis, significant differences were found in the perfusion parameters between the contralateral and ipsilateral cerebellum in CCD-positive cases. No significant differences were found between the CCD-positive group and the CCD-negative group according to the hematoma volume, NIHSS scores, and cerebral perfusion abnormality (each P > 0.05). The correlation analysis of the degree of NA, PA perfusion abnormality, and the degree of CCD severity showed negative and significant linear correlations (R, -0.66∝-0.56; P < 0.05). 320-detector row CT is a robust and practicable method for the comprehensive primary imaging work-up of CCD in unilateral supratentorial SICH patients. (orig.)

  9. Whole-brain 320-detector row dynamic volume CT perfusion detected crossed cerebellar diaschisis after spontaneous intracerebral hemorrhage

    International Nuclear Information System (INIS)

    Fu, Jun; Chen, Wei-jian; Wang, Mei-hao; Li, Jian-ce; Zhang, Qian; Xia, Neng-zhi; Yang, Yun-jun; Wu, Gui-yun; Cheng, Jing-liang; Zhang, Yong; Zhuge, Qichuan

    2015-01-01

    The purpose of this study was to evaluate the value of 320-detector row CT used to detect crossed cerebellar diaschisis (CCD) in patients with unilateral supratentorial spontaneous intracerebral hemorrhage (SICH). We investigated 62 of 156 patients with unilateral supratentorial SICH using 320-detector row CT scanning. Regional cerebral blood flow (rCBF), cerebral blood volume (rCBV), mean transit time (rMTT), and time to peak (rTTP) levels were measured in different regions of interest (ROIs) that were manually outlined on computed tomography perfusion (CTP) for the cerebrum, including normal-appearing brain tissue that surrounded the perilesional low-density area (NA) and the perihematomal low-density area (PA) in all patients and the cerebellum (ipsilateral and contralateral) in CCD-positive patients. Of 62 cases, a total of 14 met the criteria for CCD due to cerebellar perfusion asymmetry on CTP maps. In the quantitative analysis, significant differences were found in the perfusion parameters between the contralateral and ipsilateral cerebellum in CCD-positive cases. No significant differences were found between the CCD-positive group and the CCD-negative group according to the hematoma volume, NIHSS scores, and cerebral perfusion abnormality (each P > 0.05). The correlation analysis of the degree of NA, PA perfusion abnormality, and the degree of CCD severity showed negative and significant linear correlations (R, -0.66∝-0.56; P < 0.05). 320-detector row CT is a robust and practicable method for the comprehensive primary imaging work-up of CCD in unilateral supratentorial SICH patients. (orig.)

  10. Control volume based hydrocephalus research

    Science.gov (United States)

    Cohen, Benjamin; Voorhees, Abram; Wei, Timothy

    2008-11-01

    Hydrocephalus is a disease involving excess amounts of cerebral spinal fluid (CSF) in the brain. Recent research has shown correlations to pulsatility of blood flow through the brain. However, the problem to date has presented as too complex for much more than statistical analysis and understanding. This talk will highlight progress on developing a fundamental control volume approach to studying hydrocephalus. The specific goals are to select physiologically control volume(s), develop conservation equations along with the experimental capabilities to accurately quantify terms in those equations. To this end, an in vitro phantom is used as a simplified model of the human brain. The phantom's design consists of a rigid container filled with a compressible gel. The gel has a hollow spherical cavity representing a ventricle and a cylindrical passage representing the aquaducts. A computer controlled piston pump supplies pulsatile volume fluctuations into and out of the flow phantom. MRI is used to measure fluid velocity, and volume change as functions of time. Independent pressure measurements and flow rate measurements are used to calibrate the MRI data. These data are used as a framework for future work with live patients.

  11. Correspondence Between Aberrant Intrinsic Network Connectivity and Gray-Matter Volume in the Ventral Brain of Preterm Born Adults.

    Science.gov (United States)

    Bäuml, Josef G; Daamen, Marcel; Meng, Chun; Neitzel, Julia; Scheef, Lukas; Jaekel, Julia; Busch, Barbara; Baumann, Nicole; Bartmann, Peter; Wolke, Dieter; Boecker, Henning; Wohlschläger, Afra M; Sorg, Christian

    2015-11-01

    Widespread brain changes are present in preterm born infants, adolescents, and even adults. While neurobiological models of prematurity facilitate powerful explanations for the adverse effects of preterm birth on the developing brain at microscale, convincing linking principles at large-scale level to explain the widespread nature of brain changes are still missing. We investigated effects of preterm birth on the brain's large-scale intrinsic networks and their relation to brain structure in preterm born adults. In 95 preterm and 83 full-term born adults, structural and functional magnetic resonance imaging at-rest was used to analyze both voxel-based morphometry and spatial patterns of functional connectivity in ongoing blood oxygenation level-dependent activity. Differences in intrinsic functional connectivity (iFC) were found in cortical and subcortical networks. Structural differences were located in subcortical, temporal, and cingulate areas. Critically, for preterm born adults, iFC-network differences were overlapping and correlating with aberrant regional gray-matter (GM) volume specifically in subcortical and temporal areas. Overlapping changes were predicted by prematurity and in particular by neonatal medical complications. These results provide evidence that preterm birth has long-lasting effects on functional connectivity of intrinsic networks, and these changes are specifically related to structural alterations in ventral brain GM. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. NMR imaging of cell phone radiation absorption in brain tissue

    Science.gov (United States)

    Gultekin, David H.; Moeller, Lothar

    2013-01-01

    A method is described for measuring absorbed electromagnetic energy radiated from cell phone antennae into ex vivo brain tissue. NMR images the 3D thermal dynamics inside ex vivo bovine brain tissue and equivalent gel under exposure to power and irradiation time-varying radio frequency (RF) fields. The absorbed RF energy in brain tissue converts into Joule heat and affects the nuclear magnetic shielding and the Larmor precession. The resultant temperature increase is measured by the resonance frequency shift of hydrogen protons in brain tissue. This proposed application of NMR thermometry offers sufficient spatial and temporal resolution to characterize the hot spots from absorbed cell phone radiation in aqueous media and biological tissues. Specific absorption rate measurements averaged over 1 mg and 10 s in the brain tissue cover the total absorption volume. Reference measurements with fiber optic temperature sensors confirm the accuracy of the NMR thermometry. PMID:23248293

  13. Common variants at 6q22 and 17q21 are associated with intracranial volume

    NARCIS (Netherlands)

    M.A. Ikram (Arfan); M. Fornage (Myriam); G.D. Smith; S. Seshadri (Sudha); R. Schmidt (Reinhold); S. Debette (Stéphanie); H.A. Vrooman (Henri); S. Sigurdsson (Stefan); S. Ropele (Stefan); H.R. Taal (Rob); D.O. Mook-Kanamori (Dennis); L.H. Coker (Laura); W.T. Longstreth Jr; W.J. Niessen (Wiro); A.L. DeStefano (Anita); A. Beiser (Alexa); A.P. Zijdenbos; M.V. Struchalin (Maksim); C.R. Jack Jr. (Clifford); F. Rivadeneira Ramirez (Fernando); A.G. Uitterlinden (André); D.S. Knopman (David); A.L. Hartikainen; C.E. Pennell (Craig); E. Thiering (Eelisabeth); E.A.P. Steegers (Eric); H. Hakonarson (Hakon); J. Heinrich (Joachim); C. Palmer (Cameron); M.-R. Jarvelin (Marjo-Riitta); M.I. McCarthy (Mark); S.F.A. Grant (Struan); B.S. Pourcain (Beate); N.J. Timpson (Nicholas); G.D. Smith; U. Sovio (Ulla); M.A. Nalls (Michael); R. Au (Rhoda); A. Hofman (Albert); H. Gudnason (Haukur); A. van der Lugt (Aad); T.B. Harris (Tamara); W.M. Meeks (William); M.W. Vernooij (Meike); M.A. van Buchem (Mark); D.J. Catellier (Diane); V.W.V. Jaddoe (Vincent); V. Gudnason (Vilmundur); B.G. Windham (B Gwen); P.A. Wolf (Philip); C.M. van Duijn (Cornelia); T.H. Mosley (Thomas); R. Schmidt (Reinhold); L.J. Launer (Lenore); M.M.B. Breteler (Monique); C. DeCarli (Charles); L.S. Adair (Linda); W.Q. Ang (Wei); M. Atalay (Mustafa); C.E.M. van Beijsterveldt (Toos); N.E. Bergen (Nienke); P.J. Benke (Paul); D. Berry (Diane); L. Coin (Lachlan); O.S.P. Davis (Oliver S.); P. Elliott (Paul); C. Flexeder (Claudia); T.M. Frayling (Timothy); R. Gaillard (Romy); M. Groen-Blokhuis (Maria); L.-K. Goh; C.M.A. Haworth (Claire M.); D. Hadley (David); J. Hedebrand (Johannes); A. Hinney (Anke); J.N. Hirschhorn (Joel); J.W. Holloway (John); J.J. Holst; J.J. Hottenga (Jouke Jan); M. Horikoshi (Momoko); V. Huikari (Ville); E. Hypponen (Elina); T.O. Kilpeläinen (Tuomas); M. Kirin (Mirna); M. Kowgier (Matthew); T.A. Lakka (Timo); L.A. Lange (Leslie); D.A. Lawlor (Debbie); T. Lehtimäki (Terho); A. Lewin (Alex); C.M. Lindgren (Cecilia); V. Lindi (Virpi); R. Maggi (Reedik); J.A. Marsh (Julie); C.M. Middeldorp (Christel); I.Y. Millwood (Iona); J.C. Murray (Jeffrey); M. Nivard (Michel); C. Nohr (Christian); I. Ntalla (Ioanna); E. Oken (Emily); K. Panoutsopoulou (Kalliope); J. Pararajasingham (Jennifer); A. Rodriguez (Alfredo Chapin); R.M. Salem (Rany); S. Sebert (Sylvain); N. Siitonen (Niina); D.P. Strachan (David); Y.Y. Teo (Yik Ying); B. Valcárcel (Beatriz); G.A.H.M. Willemsen (Gonneke); E. Zeggini (Eleftheria); D.I. Boomsma (Dorret); C. Cooper (Charles); M.H. Gillman (Matthew); B. Hocher (Berthold); T.A. Lakka (Timo); K.L. Mohlke (Karen); G.V. Dedoussis (George); K.K. Ong (Ken); E. Pearson (Ewan); T.S. Price (Thomas); C. Power (Christopher); O. Raitakari (Olli); S-M. Saw (Seang-Mei); A. Scherag (Andre); O. Simell (Olli); T.I.A. Sørensen (Thorkild); J.F. Wilson (James)

    2012-01-01

    textabstractDuring aging, intracranial volume remains unchanged and represents maximally attained brain size, while various interacting biological phenomena lead to brain volume loss. Consequently, intracranial volume and brain volume in late life reflect different genetic influences. Our

  14. Headache, migraine, and structural brain lesions and function: population based Epidemiology of Vascular Ageing-MRI study

    International Nuclear Information System (INIS)

    Kurth, T.; Mohamed, S.; Zhu, Y.C.; Dufouil, C.; Tzourio, Ch.; Kurth, T.; Zhu, Y.C.; Dufouil, C.; Tzourio, Ch.; Kurth, T.; Maillard, P.; Mazoyer, B.; Zhu, Y.C.; Chabriat, H.; Bousser, M.G.; Tzourio, Ch.; Zhu, Y.C.; Chabriat, H.; Bousser, M.G.; Mazoyer, B.

    2011-01-01

    Objective: To evaluate the association of overall and specific headaches with volume of white matter hyper-intensities, brain infarcts, and cognition. Design: Population based, cross sectional study. Setting: Epidemiology of Vascular Ageing study, Nantes, France. Participants: 780 participants (mean age 69, 58.5% women) with detailed headache assessment. Main outcome measures: Brain scans were evaluated for volume of white matter hyper-intensities (by fully automated imaging processing) and for classification of infarcts (by visual reading with a standardised assessment grid). Cognitive function was assessed by a battery of tests including the mini-mental state examination. Results: 163 (20.9%) participants reported a history of severe headache and 116 had migraine, of whom 17 (14.7%) reported aura symptoms. An association was found between any history of severe headache and increasing volume of white matter hyper-intensities. The adjusted odds ratio of being in the highest third for total volume of white matter hyper-intensities was 2.0 (95% confidence interval 1.3 to 3.1, P for trend 0.002) for participants with any history of severe headache when compared with participants without severe headache being in the lowest third. The association pattern was similar for all headache types. Migraine with aura was the only headache type strongly associated with volume of deep white matter hyper-intensities (highest third odds ratio 12.4, 1.6 to 99.4, P for trend 0.005) and with brain infarcts (3.4, 1.2 to 9.3). The location of infarcts was predominantly outside the cerebellum and brain stem. Evidence was lacking for cognitive impairment for any headache type with or without brain lesions. Conclusions: In this population based study, any history of severe headache was associated with an increased volume of white matter hyper-intensities. Migraine with aura was the only headache type associated with brain infarcts. Evidence that headache of any type by itself or in

  15. Autism attenuates sex differences in brain structure: a combined voxel-based morphometry and diffusion tensor imaging study.

    Science.gov (United States)

    Beacher, F D; Minati, L; Baron-Cohen, S; Lombardo, M V; Lai, M-C; Gray, M A; Harrison, N A; Critchley, H D

    2012-01-01

    It has been proposed that autism spectrums condition may represent a form of extreme male brain (EMB), a notion supported by psychometric, behavioral, and endocrine evidence. Yet, limited data are presently available evaluating this hypothesis in terms of neuroanatomy. Here, we investigated sex-related anatomic features in adults with AS, a "pure" form of autism not involving major developmental delay. Males and females with AS and healthy controls (n = 28 and 30, respectively) were recruited. Structural MR imaging was performed to measure overall gray and white matter volume and to assess regional effects by means of VBM. DTI was used to investigate the integrity of the main white matter tracts. Significant interactions were found between sex and diagnosis in total white matter volume, regional gray matter volume in the right parietal operculum, and fractional anisotropy (FA) in the body of the CC, cingulum, and CR. Post hoc comparisons indicated that the typical sexual dimorphism found in controls, whereby males have larger FA and total white matter volume, was absent or attenuated in participants with AS. Our results point to a fundamental role of the factors that underlie sex-specific brain differentiation in the etiology of autism.

  16. Total scalp irradiation using helical tomotherapy

    International Nuclear Information System (INIS)

    Orton, Nigel; Jaradat, Hazim; Welsh, James; Tome, Wolfgang

    2005-01-01

    Homogeneous irradiation of the scalp poses technical and dosimetric challenges due to the extensive, superficial, curved treatment volume. Conventional treatments on a linear accelerator use multiple matched electron fields or a combination of electron and photon fields. Problems with these techniques include dose heterogeneity in the target due to varying source-to-skin distance (SSD) and angle of beam incidence, significant dose to the brain, and the potential for overdose or underdose at match lines between the fields. Linac-based intensity-modulated radiation therapy (IMRT) plans have similar problems. This work presents treatment plans for total scalp irradiation on a helical tomotherapy machine. Helical tomotherapy is well-suited for scalp irradiation because it has the ability to deliver beamlets that are tangential to the scalp at all points. Helical tomotherapy also avoids problems associated with field matching and use of more than one modality. Tomotherapy treatment plans were generated and are compared to plans for treatment of the same patient on a linac. The resulting tomotherapy plans show more homogeneous target dose and improved critical structure dose when compared to state-of-the-art linac techniques. Target equivalent uniform dose (EUD) for the best tomotherapy plan was slightly higher than for the linac plan, while the volume of brain tissue receiving over 30 Gy was reduced by two thirds. Furthermore, the tomotherapy plan can be more reliably delivered than linac treatments, because the patient is aligned prior to each treatment based on megavoltage computed tomography (MVCT)

  17. Common variants at 6q22 and 17q21 are associated with intracranial volume

    NARCIS (Netherlands)

    Arfan Ikram, M.; Fornage, M.; Smith, A.V.; Seshadri, S.; Schmidt, R.; Debette, S.; Vrooman, H.A.; Sigurdsson, S.; Ropele, S.; Taal, H.R.; Mook-Kanamori, D.O.; Coker, L.H.; Longstreth, Jr. W.T.; Niessen, W.J.; DeStefano, A.L.; Beiser, A.; Zijdenbos, A.P.; Struchalin, M.; Jack, C.R.; Rivadeneira, F.; Uitterlinden, A.G.; Knopman, D.S.; Hartikainen, A.-L.; Pennell, C.E.; Thiering, E.; Steegers, E.A.P.; Hakonarson, H.; Heinrich, J.; Palmer, L.J.; Jarvelin, M.-R.; McCarthy, M.I.; Grant, S.F.A.; St Pourcain, B.; Timpson, N.J.; Smith, G.D.; Sovio, U.; van Beijsterveldt, C.E.M.; Groen-Blokhuis, M.M.; Hottenga, J.J.; Middeldorp, C.M.; Nivard, M.G.; Willemsen, G.; Boomsma, D.I.; Nalls, M.A.; Au, R.; Hofman, A.; Gudnason, H.; van der Lugt, A.; Harris, T.B.; Meeks, W.M.; Vernooij, M.W.; van Buchem, M.A.; Catellier, D.; Jaddoe, V.W.V.; Gudnason, V.; Windham, B.G.; Wolf, P.A.; van Duijn, C.M.; Mosley, T.H.; Schmidt, H.; Launer, L.J.; Breteler, M.M.B.; DeCarli, C.S.

    2012-01-01

    During aging, intracranial volume remains unchanged and represents maximally attained brain size, while various interacting biological phenomena lead to brain volume loss. Consequently, intracranial volume and brain volume in late life reflect different genetic influences. Our genome-wide

  18. External Beam Radiotherapy of Recurrent Glioma: Radiation Tolerance of the Human Brain

    Energy Technology Data Exchange (ETDEWEB)

    Sminia, Peter, E-mail: p.sminia@vumc.nl [Department of Radiation Oncology, Radiobiology Section, VU University Medical Center, De Boelelaan 1117, P.O. Box 7057, Amsterdam (Netherlands); Mayer, Ramona [EBG MedAustron GmbH., Viktor Kaplan-Strasse 2, A-2700, Wiener Neustadt (Austria)

    2012-04-05

    Malignant gliomas relapse in close proximity to the resection site, which is the postoperatively irradiated volume. Studies on re-irradiation of glioma were examined regarding radiation-induced late adverse effects (i.e., brain tissue necrosis), to obtain information on the tolerance dose and treatment volume of normal human brain tissue. The studies were analyzed using the linear-quadratic model to express the re-irradiation tolerance in cumulative equivalent total doses when applied in 2 Gy fractions (EQD2{sub cumulative}). Analysis shows that the EQD2{sub cumulative} increases from conventional re-irradiation series to fractionated stereotactic radiotherapy (FSRT) to LINAC-based stereotactic radiosurgery (SRS). The mean time interval between primary radiotherapy and the re-irradiation course was shortened from 30 months for conventional re-irradiation to 17 and 10 months for FSRT and SRS, respectively. Following conventional re-irradiation, radiation-induced normal brain tissue necrosis occurred beyond an EQD2{sub cumulative} around 100 Gy. With increasing conformality of therapy, the smaller the treatment volume is, the higher the radiation dose that can be tolerated. Despite the dose escalation, no increase in late normal tissue toxicity was reported. On basis of our analysis, the use of particle therapy in the treatment of recurrent gliomas, because of the optimized physical dose distribution in the tumour and surrounding healthy brain tissue, should be considered for future clinical trials.

  19. External Beam Radiotherapy of Recurrent Glioma: Radiation Tolerance of the Human Brain

    Directory of Open Access Journals (Sweden)

    Peter Sminia

    2012-04-01

    Full Text Available Malignant gliomas relapse in close proximity to the resection site, which is the postoperatively irradiated volume. Studies on re-irradiation of glioma were examined regarding radiation-induced late adverse effects (i.e., brain tissue necrosis, to obtain information on the tolerance dose and treatment volume of normal human brain tissue. The studies were analyzed using the linear-quadratic model to express the re-irradiation tolerance in cumulative equivalent total doses when applied in 2 Gy fractions (EQD2cumulative. Analysis shows that the EQD2cumulative increases from conventional re-irradiation series to fractionated stereotactic radiotherapy (FSRT to LINAC-based stereotactic radiosurgery (SRS. The mean time interval between primary radiotherapy and the re-irradiation course was shortened from 30 months for conventional re-irradiation to 17 and 10 months for FSRT and SRS, respectively. Following conventional re-irradiation, radiation-induced normal brain tissue necrosis occurred beyond an EQD2cumulative around 100 Gy. With increasing conformality of therapy, the smaller the treatment volume is, the higher the radiation dose that can be tolerated. Despite the dose escalation, no increase in late normal tissue toxicity was reported. On basis of our analysis, the use of particle therapy in the treatment of recurrent gliomas, because of the optimized physical dose distribution in the tumour and surrounding healthy brain tissue, should be considered for future clinical trials.

  20. Stereological estimation of nuclear mean volume in invasive meningiomas

    DEFF Research Database (Denmark)

    Madsen, C; Schrøder, H D

    1996-01-01

    A stereological estimation of nuclear mean volume in bone and brain invasive meningiomas was made. For comparison the nuclear mean volume of benign meningiomas was estimated. The aim was to investigate whether this method could discriminate between these groups. We found that the nuclear mean...... volume in the bone and brain invasive meningiomas was larger than in the benign tumors. The difference was significant and moreover it was seen that there was no overlap between the two groups. In the bone invasive meningiomas the nuclear mean volume appeared to be larger inside than outside the bone....... No significant difference in nuclear mean volume was found between brain and bone invasive meningiomas. The results demonstrate that invasive meningiomas differ from benign meningiomas by an objective stereological estimation of nuclear mean volume (p

  1. Brain volumetric changes and cognitive ageing during the eighth decade of life

    Science.gov (United States)

    Dickie, David Alexander; Cox, Simon R.; Valdes Hernandez, Maria del C.; Corley, Janie; Royle, Natalie A.; Pattie, Alison; Aribisala, Benjamin S.; Redmond, Paul; Muñoz Maniega, Susana; Taylor, Adele M.; Sibbett, Ruth; Gow, Alan J.; Starr, John M.; Bastin, Mark E.; Wardlaw, Joanna M.; Deary, Ian J.

    2015-01-01

    Abstract Later‐life changes in brain tissue volumes—decreases in the volume of healthy grey and white matter and increases in the volume of white matter hyperintensities (WMH)—are strong candidates to explain some of the variation in ageing‐related cognitive decline. We assessed fluid intelligence, memory, processing speed, and brain volumes (from structural MRI) at mean age 73 years, and at mean age 76 in a narrow‐age sample of older individuals (n = 657 with brain volumetric data at the initial wave, n = 465 at follow‐up). We used latent variable modeling to extract error‐free cognitive levels and slopes. Initial levels of cognitive ability were predictive of subsequent brain tissue volume changes. Initial brain volumes were not predictive of subsequent cognitive changes. Brain volume changes, especially increases in WMH, were associated with declines in each of the cognitive abilities. All statistically significant results were modest in size (absolute r‐values ranged from 0.114 to 0.334). These results build a comprehensive picture of macrostructural brain volume changes and declines in important cognitive faculties during the eighth decade of life. Hum Brain Mapp 36:4910–4925, 2015. © 2015 The Authors. Human Brain Mapping Published by Wiley Periodicals, Inc PMID:26769551

  2. Regional grey matter volume abnormalities in bulimia nervosa and binge-eating disorder.

    Science.gov (United States)

    Schäfer, Axel; Vaitl, Dieter; Schienle, Anne

    2010-04-01

    This study investigated whether bulimia nervosa (BN) and binge-eating disorder (BED) are associated with structural brain abnormalities. Both disorders share the main symptom binge-eating, but are considered differential diagnoses. We attempted to identify alterations in grey matter volume (GMV) that are present in both psychopathologies as well as disorder-specific GMV characteristics. Such information can help to improve neurobiological models of eating disorders and their classification. A total of 50 participants (patients suffering from BN (purge type), BED, and normal-weight controls) underwent structural MRI scanning. GMV for specific brain regions involved in food/reinforcement processing was analyzed by means of voxel-based morphometry. Both patient groups were characterized by greater volumes of the medial orbitofrontal cortex (OFC) compared to healthy controls. In BN patients, who had increased ventral striatum volumes, body mass index and purging severity were correlated with striatal grey matter volume. Altogether, our data implicate a crucial role of the medial OFC in the studied eating disorders. The structural abnormality might be associated with dysfunctions in food reward processing and/or self-regulation. The bulimia-specific volume enlargement of the ventral striatum is discussed in the framework of negative reinforcement through purging and associated weight regulation. Copyright 2009 Elsevier Inc. All rights reserved.

  3. Endothelial cell marker PAL-E reactivity in brain tumor, developing brain, and brain disease

    NARCIS (Netherlands)

    Leenstra, S.; Troost, D.; Das, P. K.; Claessen, N.; Becker, A. E.; Bosch, D. A.

    1993-01-01

    The endothelial cell marker PAL-E is not reactive to vessels in the normal brain. The present study concerns the PAL-E reactivity in brain tumors in contrast to normal brain and nonneoplastic brain disease. A total of 122 specimens were examined: brain tumors (n = 94), nonneoplastic brain disease (n

  4. Age-related changes in volumes of the ventricles, sulci and periventricular hyperintensity area

    International Nuclear Information System (INIS)

    Yamada, Kenji; Matsuzawa, Taiju; Ono, Shuichi; Kawashima, Ryuta; Matsui, Hiroshige; Yamada, Susumu; Hishinuma, Takashi

    1987-01-01

    Brain atrophy in 47 subjects without neurologic disturbances, ranging in age from 46 to 82 years, was studied using magnetic resonance imaging (MRI). Moreover, the association of the periventricular hyperintensity area (PVH) recognized with MRI, was also investigated. The volume percentages of the brain, the ventricles and sulci to cranial cavity were calculated as indicators of brain atrophy. The brain volume index decreased and the indeces of the ventricles and sulci linearly increased with age, significantly. The volume ratio of the ventricles to sulci significantly increased with increasing age (p < 0.01) and the correlation coefficient was 0.38. This ratio showed negative correlation to the brain volume index. The volume percentage of PVH to the cranial cavity started to increase in the sixties and negatively correlated with the brain volume index. There was positive correlation between the ratio of the ventricles to sulci and the index of PVH. (author)

  5. Dynamic illumination of spatially restricted or large brain volumes via a single tapered optical fiber.

    Science.gov (United States)

    Pisanello, Ferruccio; Mandelbaum, Gil; Pisanello, Marco; Oldenburg, Ian A; Sileo, Leonardo; Markowitz, Jeffrey E; Peterson, Ralph E; Della Patria, Andrea; Haynes, Trevor M; Emara, Mohamed S; Spagnolo, Barbara; Datta, Sandeep Robert; De Vittorio, Massimo; Sabatini, Bernardo L

    2017-08-01

    Optogenetics promises precise spatiotemporal control of neural processes using light. However, the spatial extent of illumination within the brain is difficult to control and cannot be adjusted using standard fiber optics. We demonstrate that optical fibers with tapered tips can be used to illuminate either spatially restricted or large brain volumes. Remotely adjusting the light input angle to the fiber varies the light-emitting portion of the taper over several millimeters without movement of the implant. We use this mode to activate dorsal versus ventral striatum of individual mice and reveal different effects of each manipulation on motor behavior. Conversely, injecting light over the full numerical aperture of the fiber results in light emission from the entire taper surface, achieving broader and more efficient optogenetic activation of neurons, compared to standard flat-faced fiber stimulation. Thus, tapered fibers permit focal or broad illumination that can be precisely and dynamically matched to experimental needs.

  6. Hippocampal volume is positively associated with behavioural inhibition (BIS) in a large community-based sample of mid-life adults: the PATH through life study.

    Science.gov (United States)

    Cherbuin, Nicolas; Windsor, Tim D; Anstey, Kaarin J; Maller, Jerome J; Meslin, Chantal; Sachdev, Perminder S

    2008-09-01

    The fields of personality research and neuropsychology have developed with very little overlap. Gray and McNaughton were among the first to recognize that personality traits must have neurobiological correlates and developed models relating personality factors to brain structures. Of particular note was their description of associations between conditioning, inhibition and activation of behaviours, and specific neural structures such as the hippocampus, amygdala and the prefrontal cortex. The aim of this study was to determine whether personality constructs representing the behavioural inhibition and activation systems (BIS/BAS) were associated with volumetric measures of the hippocampus and amygdala in humans. Amygdalar and hippocampal volumes were measured in 430 brain scans of cognitively intact community-based volunteers. Linear associations between brain volumes and the BIS/BAS measures were assessed using multiple regression, controlling for age, sex, education, intra-cranial and total brain volume. Results showed that hippocampal volumes were positively associated with BIS sensitivity and to a lesser extent with BAS sensitivity. No association was found between amygdalar volume and either the BIS or BAS. These findings add support to the model of Gray and McNaughton, which proposes a role of the hippocampus in the regulation of defensive/approach behaviours and trait anxiety but suggest an absence of associations between amygdala volume and BIS/BAS measures.

  7. Relative blood volume changes underestimate total blood volume changes during hemodialysis

    NARCIS (Netherlands)

    Dasselaar, Judith J.; Lub-de Hooge, Marjolijn N.; Pruim, Jan; Nijnuis, Hugo; Wiersum, Anneke; de Jong, Paul E.; Huisman, Roel M.; Franssen, Casper F. M.

    Background: Measurements of relative blood volume changes (ARBV) during hemodialysis (HD) are based on hemoconcentration and assume uniform mixing of erythrocytes and plasma throughout the circulation. However, whole-body hematocrit (Ht) is lower than systemic Ht. During HD, a change in the ratio

  8. Increased epicardial fat volume quantified by 64-multidetector computed tomography is associated with coronary atherosclerosis and totally occlusive lesions

    International Nuclear Information System (INIS)

    Ueno, Koji; Anzai, Toshihisa; Jinzaki, Masahiro

    2009-01-01

    The relationship between the epicardial fat volume measured by 64-slice multidetector computed tomography (MDCT) and the extension and severity of coronary atherosclerosis was investigated. Both MDCT and conventional coronary angiography (CAG) were performed in 71 consecutive patients who presented with effort angina. The volume of epicardial adipose tissue (EAT) was measured by MDCT. The severity of coronary atherosclerosis was assessed by evaluating the extension of coronary plaques in 790 segments using MDCT data, and the percentage diameter stenosis in 995 segments using CAG data. The estimated volume of EAT indexed by body surface area was defined as VEAT. Increased VEAT was associated with advanced age, male sex, degree of metabolic alterations, a history of acute coronary syndrome (ACS) and the presence of total occlusions, and showed positive correlation with the stenosis score r=0.28, P=0.02) and the atheromatosis score (r=0.67, P 3 /m 2 ) to be the strongest independent determinant of the presence of total occlusions odds ratio 4.64. P=0.02). VEAT correlates with the degree of metabolic alterations and coronary atheromatosis. Excessive accumulation of EAT might contribute to the development of ACS and coronary total occlusions. (author)

  9. Volume changes in Alzheimer's disease and mild cognitive impairment: cognitive associations

    International Nuclear Information System (INIS)

    Evans, Matthew C.; Barnes, Josephine; Nielsen, Casper; Clegg, Shona L.; Blair, Melanie; Douiri, Abdel; Boyes, Richard G.; Fox, Nick C.; Kim, Lois G.; Leung, Kelvin K.; Ourselin, Sebastien

    2010-01-01

    To assess the relationship between MRI-derived changes in whole-brain and ventricular volume with change in cognitive scores in Alzheimer's disease (AD), mild cognitive impairment (MCI) and control subjects. In total 131 control, 231 MCI and 99 AD subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort with T1-weighted volumetric MRIs from baseline and 12-month follow-up were used to derive volume changes. Mini mental state examination (MMSE), Alzheimer's disease assessment scale (ADAS)-cog and trails test changes were calculated over the same period. Brain atrophy rates and ventricular enlargement differed between subject groups (p < 0.0005) and in MCI and AD were associated with MMSE changes. Both measures were additionally associated with ADAS-cog and trails-B in MCI patients, and ventricular expansion was associated with ADAS-cog in AD patients. Brain atrophy (p < 0.0005) and ventricular expansion rates (p = 0.001) were higher in MCI subjects who progressed to AD within 12 months of follow-up compared with MCI subjects who remained stable. MCI subjects who progressed to AD within 12 months had similar atrophy rates to AD subjects. Whole-brain atrophy rates and ventricular enlargement differed between patient groups and healthy controls, and tracked disease progression and psychological decline, demonstrating their relevance as biomarkers. (orig.)

  10. Age-related brain atrophy and mental deterioration - a study with computed tomography

    International Nuclear Information System (INIS)

    Ito, M.; Hatazawa, J.; Yamaura, H.; Matsuzawa, T.

    1981-01-01

    The relation of brain atrophy measured with computed tomography (CT) to mental deterioration on living people was studied. A newly improved technique for quantitative measurement of brain atrophy was developed. The pixels inside the head slices were divided into three parts; brain skull, and cerebrospinal fluid according to their CT number. The volume of brain, CSF, and cranial cavity were calculated by counting the number of pixels of each tissue. Results from 130 normal brains showed that the CSF volume was constant at about 16 ml through 20-39 years old. After 40 years the mean CSF volume increased drastically and reached 71 ml in the seventies. The volume of the brain was standardized for comparison between different-sized heads (brain volume index: BVI). The mean BVI decreased with statistical significance after 40 years of age. Mental function of these persons were evaluated using Hasegawa's dementia rating scale for the elderly. Progression of brain atrophy accompanied loss of mental activities (p<0.01). (author)

  11. Brain structures in the sciences and humanities.

    Science.gov (United States)

    Takeuchi, Hikaru; Taki, Yasuyuki; Sekiguchi, Atsushi; Nouchi, Rui; Kotozaki, Yuka; Nakagawa, Seishu; Miyauchi, Carlos Makoto; Iizuka, Kunio; Yokoyama, Ryoichi; Shinada, Takamitsu; Yamamoto, Yuki; Hanawa, Sugiko; Araki, Tsuyoshi; Hashizume, Hiroshi; Sassa, Yuko; Kawashima, Ryuta

    2015-11-01

    The areas of academic interest (sciences or humanities) and area of study have been known to be associated with a number of factors associated with autistic traits. However, despite the vast amount of literature on the psychological and physiological characteristics associated with faculty membership, brain structural characteristics associated with faculty membership have never been investigated directly. In this study, we used voxel-based morphometry to investigate differences in regional gray matter volume (rGMV)/regional white matter volume (rWMV) between science and humanities students to test our hypotheses that brain structures previously robustly shown to be altered in autistic subjects are related to differences in faculty membership. We examined 312 science students (225 males and 87 females) and 179 humanities students (105 males and 74 females). Whole-brain analyses of covariance revealed that after controlling for age, sex, and total intracranial volume, the science students had significantly larger rGMV in an anatomical cluster around the medial prefrontal cortex and the frontopolar area, whereas the humanities students had significantly larger rWMV in an anatomical cluster mainly concentrated around the right hippocampus. These anatomical structures have been linked to autism in previous studies and may mediate cognitive functions that characterize differences in faculty membership. The present results may support the ideas that autistic traits and characteristics of the science students compared with the humanities students share certain characteristics from neuroimaging perspectives. This study improves our understanding of differences in faculty membership which is the link among cognition, biological factors, disorders, and education (academia).

  12. Effect of alcohol exposure on fetal brain development

    Science.gov (United States)

    Sudheendran, Narendran; Bake, Shameena; Miranda, Rajesh C.; Larin, Kirill V.

    2013-02-01

    Alcohol consumption during pregnancy can be severely damage to the brain development in fetuses. This study investigates the effects of maternal ethanol consumption on brain development in mice embryos. Pregnant mice at gestational day 12.5 were intragastrically gavaged with ethanol (3g/Kg bwt) twice daily for three consecutive days. On gestational day 14.5, fetuses were collected and fixed in 4% paraformaldehyde and imaged using a swept-source optical coherence tomography (SSOCT) system. 3D images of the mice embryo brain were obtained and the volumes of the left and right ventricles of the brain were measured. The average volumes of the left and the right volumes of 5 embryos each alcohol-exposed and control embryos were measured to be 0.35 and 0.15 mm3, respectively. The results suggest that the left and right ventricle volumes of brain are much larger in the alcohol-exposed embryos as compared to control embryos indicating alcohol-induced developmental delay.

  13. The relationship of waist circumference and body mass index to grey matter volume in community dwelling adults with mild obesity.

    Science.gov (United States)

    Hayakawa, Y K; Sasaki, H; Takao, H; Yoshikawa, T; Hayashi, N; Mori, H; Kunimatsu, A; Aoki, S; Ohtomo, K

    2018-02-01

    Previous work has shown that high body mass index (BMI) is associated with low grey matter volume. However, evidence on the relationship between waist circumference (WC) and brain volume is relatively scarce. Moreover, the influence of mild obesity (as indexed by WC and BMI) on brain volume remains unclear. This study explored the relationships between WC and BMI and grey matter volume in a large sample of Japanese adults. The participants were 792 community-dwelling adults (523 men and 269 women). Brain magnetic resonance images were collected, and the correlation between WC or BMI and global grey matter volume were analysed. The relationships between WC or BMI and regional grey matter volume were also investigated using voxel-based morphometry. Global grey matter volume was not correlated with WC or BMI. Voxel-based morphometry analysis revealed significant negative correlations between both WC and BMI and regional grey matter volume. The areas correlated with each index were more widespread in men than in women. In women, the total area of the regions significantly correlated with WC was slightly greater than that of the regions significantly correlated with BMI. Results show that both WC and BMI were inversely related to regional grey matter volume, even in Japanese adults with somewhat mild obesity. Especially in populations with less obesity, such as the female participants in current study, WC may be more sensitive than BMI as a marker of grey matter volume differences associated with obesity.

  14. Alzheimer's disease susceptibility genes APOE and TOMM40, and hippocampal volumes in the Lothian birth cohort 1936.

    Directory of Open Access Journals (Sweden)

    Donald M Lyall

    Full Text Available The APOE ε and TOMM40 rs10524523 ('523' variable length poly-T repeat gene loci have been significantly and independently associated with Alzheimer's disease (AD related phenotypes such as age of clinical onset. Hippocampal atrophy has been significantly associated with memory impairment, a characteristic of AD. The current study aimed to test for independent effects of APOE ε and TOMM40 '523' genotypes on hippocampal volumes as assessed by brain structural MRI in a relatively large sample of community-dwelling older adults. As part of a longitudinal study of cognitive ageing, participants in the Lothian Birth Cohort 1936 underwent genotyping for APOE ε2/ε3/ε4 status and TOMM40 '523' poly-T repeat length, and detailed structural brain MRI at a mean age of 72.7 years (standard deviation = 0.7, N range = 624 to 636. No significant effects of APOE ε or TOMM40 523 genotype were found on hippocampal volumes when analysed raw, or when adjusted for either intracranial or total brain tissue volumes. In summary, in a large community-dwelling sample of older adults, we found no effects of APOE ε or TOMM40 523 genotypes on hippocampal volumes. This is discrepant with some previous reports of significant association between APOE and left/right hippocampal volumes, and instead echoes other reports that found no association. Previous significant findings may partly reflect type 1 error. Future studies should carefully consider: 1 their specific techniques in adjusting for brain size; 2 assessing more detailed sub-divisions of the hippocampal formation; and 3 testing whether significant APOE-hippocampal associations are independent of generalised brain atrophy.

  15. Sleep habits, academic performance, and the adolescent brain structure

    OpenAIRE

    Urrila, Anna S.; Artiges, Eric; Massicotte, Jessica; Miranda, Ruben; Vulser, H?l?ne; B?zivin-Frere, Pauline; Lapidaire, Winok; Lema?tre, Herv?; Penttil?, Jani; Conrod, Patricia J.; Garavan, Hugh; Martinot, Marie-Laure Paill?re; Martinot, Jean-Luc

    2017-01-01

    Here we report the first and most robust evidence about how sleep habits are associated with regional brain grey matter volumes and school grade average in early adolescence. Shorter time in bed during weekdays, and later weekend sleeping hours correlate with smaller brain grey matter volumes in frontal, anterior cingulate, and precuneus cortex regions. Poor school grade average associates with later weekend bedtime and smaller grey matter volumes in medial brain regions. The medial prefronta...

  16. Quantification of convection-enhanced delivery to the ischemic brain

    International Nuclear Information System (INIS)

    Haar, Peter J; Broaddus, William C; Chen, Zhi-jian; Gillies, George T; Fatouros, Panos P; Corwin, Frank D

    2010-01-01

    Convection-enhanced delivery (CED) could have clinical application in the delivery of neuroprotective agents following ischemic stroke. However, ischemic brain tissue changes such as cytotoxic edema, in which cellular swelling decreases the fractional volume of the extracellular space, would be expected to significantly alter the distribution of neuroprotective agents delivered by CED. We sought to predict and characterize these effects using the magnetic resonance contrast agent gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA) as a model therapeutic agent. CED was observed using MRI in a normal rat brain and in a middle cerebral artery (MCA) occlusion rat model of brain ischemia. Gd-DTPA was infused to the caudate putamen in the normal rat (n = 6) and MCA occlusion model (n = 6). In each rat, baseline apparent diffusion coefficient images were acquired prior to infusion, and T1 maps were then acquired 13 times throughout the duration of the experiment. These T1 maps were used to compute Gd-DTPA concentrations throughout each brain. In the MCA occlusion group, CED delivered Gd-DTPA to a comparatively larger volume with lower average tissue concentrations. Following the infusion, the total content of Gd-DTPA decreased more slowly in the MCA occlusion group than in the normal group. This quantitative characterization confirms that edematous ischemic tissue changes alter the distribution of agents by CED. These findings may have important implications for CED in the treatment of brain injury, and will assist in future efforts to model the distribution of therapeutic agents

  17. The broad-spectrum cation channel blocker pinokalant (LOE 908 MS) reduces brain infarct volume in rats

    DEFF Research Database (Denmark)

    Christensen, Thomas; Wienrich, Marion; Ensinger, Helmut A

    2005-01-01

    this period and the spontaneous temperature after course in control rats established in other experiments was imitated. Seven days later histological brain sections were prepared and the infarct volumes measured. Body temperature did not differ between the groups. Mean arterial blood pressure was slightly...... higher in the pinokalant group. Pinokalant treatment significantly reduced cortical infarct volume from 33.8+/-15.8 mm3 to 24.5+/-13.1 mm3 (control group versus pinokalant group, P=0.017, t-test). Taking the effective drug plasma concentration established in other experiments into account revealed...... and electrophysiologic status of the ischemic penumbra and to reduce lesion size on magnetic resonance images in the acute phase following middle cerebral artery occlusion in rats. The purpose of the present study was to investigate whether these beneficial effects of pinokalant are translated into permanent...

  18. Morphological brain measures of cortico-limbic inhibition related to resilience.

    Science.gov (United States)

    Gupta, Arpana; Love, Aubrey; Kilpatrick, Lisa A; Labus, Jennifer S; Bhatt, Ravi; Chang, Lin; Tillisch, Kirsten; Naliboff, Bruce; Mayer, Emeran A

    2017-09-01

    Resilience is the ability to adequately adapt and respond to homeostatic perturbations. Although resilience has been associated with positive health outcomes, the neuro-biological basis of resilience is poorly understood. The aim of the study was to identify associations between regional brain morphology and trait resilience with a focus on resilience-related morphological differences in brain regions involved in cortico-limbic inhibition. The relationship between resilience and measures of affect were also investigated. Forty-eight healthy subjects completed structural MRI scans. Self-reported resilience was measured using the Connor and Davidson Resilience Scale. Segmentation and regional parcellation of images was performed to yield a total of 165 regions. Gray matter volume (GMV), cortical thickness, surface area, and mean curvature were calculated for each region. Regression models were used to identify associations between morphology of regions belonging to executive control and emotional arousal brain networks and trait resilience (total and subscales) while controlling for age, sex, and total GMV. Correlations were also conducted between resilience scores and affect scores. Significant associations were found between GM changes in hypothesized brain regions (subparietal sulcus, intraparietal sulcus, amygdala, anterior mid cingulate cortex, and subgenual cingulate cortex) and resilience scores. There were significant positive correlations between resilience and positive affect and negative correlations with negative affect. Resilience was associated with brain morphology of regions involved in cognitive and affective processes related to cortico-limbic inhibition. Brain signatures associated with resilience may be a biomarker of vulnerability to disease. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Measurement of P-31 MR relaxation times and concentrations in human brain and brain tumors

    International Nuclear Information System (INIS)

    Roth, K.; Naruse, S.; Hubesch, B.; Gober, I.; Lawry, T.; Boska, M.; Matson, G.B.; Weiner, M.W.

    1987-01-01

    Measurements of high-energy phosphates and pH were made in human brain and brain tumors using P-31 MR imaging. Using a Philips Gyroscan 1.5-T MRMRS, MR images were used to select a cuboidal volume of interest and P-31 MR spectra were obtained from that volume using the ISIS technique. An external quantitation standard was used. T 1 s were measured by inversion recovery. Quantitative values for metabolites were calculated using B 1 field plot of the head coil. The results for normal brain phosphates are as follows; adenosine triphosphate, 2.2 mM; phosphocreatin, 5.3 mM; inorganic phosphate, 1.6 mM. Preliminary studies with human brain tumors show a decrease of all phosphate compounds. These experiments are the first to quantitate metabolites in human brain

  20. SU-F-T-648: Sharpening Dose Fall-Off Via Beam Number Enhancements For Stereotactic Brain Radiosurgery

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, J; Braunstein, S; McDermott, M; Sneed, P; Ma, L [University of California San Francisco, San Francisco, CA (United States); Pierce, M [Indiana University, Bloomington, IN (United States)

    2016-06-15

    Purpose: Sharp dose fall-off is the hallmark of brain radiosurgery to deliver a high dose of radiation to the target while minimizing dose to normal brain tissue. In this study, we developed a technique for the purpose of enhancing the peripheral dose gradient by magnifying the total number of beams focused toward each isocenter via patient head tilt and simultaneous beam intensity modulations. Methods: Computer scripting for the proposed beam number enhancement (BNE) technique was developed. The technique was tested and then implemented on a clinical treatment planning system for a dedicated brain radiosurgical system (GK Perfexion, Elekta Oncology). To study technical feasibility and dosimetric advantages of the technique, we compared treatment planning quality and delivery efficiency for 20 radiosurgical cases previously treated at our institution. These cases included relatively complex treatments such as acoustic schwannoma, meningioma, brain metastasis and mesial temporal lobe epilepsy. Results: The BNE treatment plans were found to produce nearly identical target volume coverage (absolute value < 0.5%, P > 0.2) and dose conformity (BNE CI= 1.41±0.15 versus 1.41±0.20, P>0.9) as the original treatment plans. The total beam-on time for theBNE treatment plans were comparable (within 1.0 min or 1.8%) with those of the original treatment plans for all the cases. However, BNE treatment plans significantly improved the mean gradient index (BNE GI = 2.9±0.3 versus original GI =3.0±0.3 p<0.0001) and low-level isodose volumes, e.g. 20-50% prescribed isodose volumes, by 2.0% to 5.0% (p<0.02). Furthermore, with 4 to 5-fold increase in the total number of beams, the GI decreased by as much as 20% or 0.5 in absolute values. Conclusion: BNE via head tilt and simultaneous beam intensity modulation is an effective and efficient technique that physically sharpens the peripheral dose gradient for brain radiosurgery.

  1. Temporal course of cerebrospinal fluid dynamics and amyloid accumulation in the aging rat brain from three to thirty months

    Directory of Open Access Journals (Sweden)

    Chiu Catherine

    2012-01-01

    Full Text Available Abstract Background Amyloid accumulation in the brain parenchyma is a hallmark of Alzheimer's disease (AD and is seen in normal aging. Alterations in cerebrospinal fluid (CSF dynamics are also associated with normal aging and AD. This study analyzed CSF volume, production and turnover rate in relation to amyloid-beta peptide (Aβ accumulation in the aging rat brain. Methods Aging Fischer 344/Brown-Norway hybrid rats at 3, 12, 20, and 30 months were studied. CSF production was measured by ventriculo-cisternal perfusion with blue dextran in artificial CSF; CSF volume by MRI; and CSF turnover rate by dividing the CSF production rate by the volume of the CSF space. Aβ40 and Aβ42 concentrations in the cortex and hippocampus were measured by ELISA. Results There was a significant linear increase in total cranial CSF volume with age: 3-20 months (p p p p -1 to 12 months (11.30 day-1 and then a decrease to 20 months (10.23 day-1 and 30 months (6.62 day-1. Aβ40 and Aβ42 concentrations in brain increased from 3-30 months (p Conclusions In young rats there is no correlation between CSF turnover and Aβ brain concentrations. After 12 months, CSF turnover decreases as brain Aβ continues to accumulate. This decrease in CSF turnover rate may be one of several clearance pathway alterations that influence age-related accumulation of brain amyloid.

  2. What is ''normal aging brain for his/her age'' ? The first report

    International Nuclear Information System (INIS)

    Taki, Yasuyuki; Kinomura, Shigeo; Goto, Ryoi

    2005-01-01

    We evaluated the correlations between the gray matter volume, white matter volume and age, and determined normal aging brain for his/her age in every decade. We analyzed magnetic resonance images of the brain from 828 normal Japanese subjects. Significant negative correlation between the gray matter ratio (ratio of the gray matter volume in intracranial volume) and age was shown. From these results, we determined ''normal aging brain for his/her age'' and ''atrophied brain for his/her age'' in every decade. (author)

  3. Strain and sex differences in puberty onset and the effects of THC administration on weight gain and brain volumes.

    Science.gov (United States)

    Keeley, R J; Trow, J; McDonald, R J

    2015-10-01

    The use of recreational marijuana is widespread and frequently begins and persists through adolescence. Some research has shown negative consequences of adolescent marijuana use, but this is not seen across studies, and certain factors, like genetic background and sex, may influence the results. It is critical to identify which characteristics predispose an individual to be susceptible to the negative consequences of chronic exposure to marijuana in adolescence on brain health and behavior. To this end, using males and females of two strains of rats, Long-Evans hooded (LER) and Wistar (WR) rats, we explored whether these anatomically and behaviorally dimorphic strains demonstrated differences in puberty onset and strain-specific effects of adolescent exposure to Δ9-tetrahydrocannabinol (THC), the main psychoactive component of marijuana. Daily 5 mg/kg treatment began on the day of puberty onset and continued for 14 days. Of particular interest were metrics of growth and volumetric estimates of brain areas involved in cognition that contain high densities of cannabinoid receptors, including the hippocampus and its subregions, the amygdala, and the frontal cortex. Brain volumetrics were analyzed immediately following the treatment period. LER and WR females started puberty at different ages, but no strain differences were observed in brain volumes. THC decreased weight gain throughout the treatment period for all groups. Only the hippocampus and some of its subregions were affected by THC, and increased volumes with THC administration was observed exclusively in females, regardless of strain. Long-term treatment of THC did not affect all individuals equally, and females displayed evidence of increased sensitivity to the effects of THC, and by extension, marijuana. Identifying differences in adolescent physiology of WR and LER rats could help determine the cause for strain and sex differences in brain and behavior of adults and help to refine the use of animal models

  4. Chronic multisite brain recordings from a totally implantable bidirectional neural interface: experience in 5 patients with Parkinson's disease.

    Science.gov (United States)

    Swann, Nicole C; de Hemptinne, Coralie; Miocinovic, Svjetlana; Qasim, Salman; Ostrem, Jill L; Galifianakis, Nicholas B; Luciano, Marta San; Wang, Sarah S; Ziman, Nathan; Taylor, Robin; Starr, Philip A

    2018-02-01

    OBJECTIVE Dysfunction of distributed neural networks underlies many brain disorders. The development of neuromodulation therapies depends on a better understanding of these networks. Invasive human brain recordings have a favorable temporal and spatial resolution for the analysis of network phenomena but have generally been limited to acute intraoperative recording or short-term recording through temporarily externalized leads. Here, the authors describe their initial experience with an investigational, first-generation, totally implantable, bidirectional neural interface that allows both continuous therapeutic stimulation and recording of field potentials at multiple sites in a neural network. METHODS Under a physician-sponsored US Food and Drug Administration investigational device exemption, 5 patients with Parkinson's disease were implanted with the Activa PC+S system (Medtronic Inc.). The device was attached to a quadripolar lead placed in the subdural space over motor cortex, for electrocorticography potential recordings, and to a quadripolar lead in the subthalamic nucleus (STN), for both therapeutic stimulation and recording of local field potentials. Recordings from the brain of each patient were performed at multiple time points over a 1-year period. RESULTS There were no serious surgical complications or interruptions in deep brain stimulation therapy. Signals in both the cortex and the STN were relatively stable over time, despite a gradual increase in electrode impedance. Canonical movement-related changes in specific frequency bands in the motor cortex were identified in most but not all recordings. CONCLUSIONS The acquisition of chronic multisite field potentials in humans is feasible. The device performance characteristics described here may inform the design of the next generation of totally implantable neural interfaces. This research tool provides a platform for translating discoveries in brain network dynamics to improved neurostimulation

  5. Brain pathology after mild traumatic brain injury: an exploratory study by repeated magnetic resonance examination.

    Science.gov (United States)

    Lannsjö, Marianne; Raininko, Raili; Bustamante, Mariana; von Seth, Charlotta; Borg, Jörgen

    2013-09-01

    To explore brain pathology after mild traumatic brain injury by repeated magnetic resonance examination. A prospective follow-up study. Nineteen patients with mild traumatic brain injury presenting with Glasgow Coma Scale (GCS) 14-15. The patients were examined on day 2 or 3 and 3-7 months after the injury. The magnetic resonance protocol comprised conventional T1- and T2-weighted sequences including fluid attenuated inversion recovery (FLAIR), two susceptibility-weighted sequences to reveal haemorrhages, and diffusion-weighted sequences. Computer-aided volume comparison was performed. Clinical outcome was assessed by the Rivermead Post-Concussion Symptoms Questionnaire (RPQ), Hospital Anxiety and Depression Scale (HADS) and Glasgow Outcome Scale Extended (GOSE). At follow-up, 7 patients (37%) reported ≥  3 symptoms in RPQ, 5 reported some anxiety and 1 reported mild depression. Fifteen patients reported upper level of good recovery and 4 patients lower level of good recovery (GOSE 8 and 7, respectively). Magnetic resonance pathology was found in 1 patient at the first examination, but 4 patients (21%) showed volume loss at the second examination, at which 3 of them reported GOSE scores of 8. Loss of brain volume, demonstrated by computer-aided magnetic resonance imaging volumetry, may be a feasible marker of brain pathology after mild traumatic brain injury.

  6. Brain imaging research in autism spectrum disorders: in search of neuropathology and health across the lifespan.

    Science.gov (United States)

    Lainhart, Janet E

    2015-03-01

    Advances in brain imaging research in autism spectrum disorders (ASD) are rapidly occurring, and the amount of neuroimaging research has dramatically increased over the past 5 years. In this review, advances during the past 12 months and longitudinal studies are highlighted. Cross-sectional neuroimaging research provides evidence that the neural underpinnings of the behavioral signs of ASD involve not only dysfunctional integration of information across distributed brain networks but also basic dysfunction in primary cortices.Longitudinal studies of ASD show abnormally enlarged brain volumes and increased rates of brain growth during early childhood in only a small minority of ASD children. There is evidence of disordered development of white matter microstructure and amygdala growth, and at 2 years of age, network inefficiencies in posterior cerebral regions.From older childhood into adulthood, atypical age-variant and age-invariant changes in the trajectories of total and regional brain volumes and cortical thickness are apparent at the group level. There is evidence of abnormalities in posterior lobes and posterior brain networks during the first 2 years of life in ASD and, even in older children and adults, dysfunction in primary cortical areas.

  7. Effect of dietary poly unsaturated fatty acids on total brain lipid concentration and anxiety levels of electron beam irradiated mice

    International Nuclear Information System (INIS)

    Suchetha Kumari; Bekal, Mahesh

    2013-01-01

    The whole brain irradiation causes injury to the nervous system at various levels. Omega-3 poly unsaturated fatty acids are very much essential for the growth and development of nervous system. Dietary supplementation of these nutrients will promote the development of injured neuronal cells. Therefore this study was undertaken to establish the role of Omega-3 poly unsaturated fatty acids on total brain lipid concentration, lipid peroxidation and anxiety levels in the irradiated mice. The effect of Electron Beam Radiation (EBR) on total brain lipid concentration, lipid peroxidation and anxiety level were investigated in male Swiss albino mice. The study groups were subjected to a sub-lethal dose of EBR and also the flax seed extract and fish oil were given orally to the irradiated mice. Irradiated groups show significant elevation in anxiety levels when compared to control group, indicating the acute radiation effects on the central nervous system. But the oral supplementation of dietary PUFA source decrees the anxiety level in the irradiated group. The analysis of lipid peroxidation showed a significant level of changes when compared between control and radiation groups. Dietary PUFA supplementation showed a significant level of decrease in the lipid peroxidation in the irradiated groups. The observation of total lipids in brain shows decrease in concentration in the irradiated groups, the differences in the variables follow the similar patterns as of that the MDA levels. This study suggests that the dietary intake of PUFAs may help in prevention and recovery of the oxidative stress caused by radiation. (author)

  8. The effect of disease modifying therapies on brain atrophy in patients with relapsing-remitting multiple sclerosis: a systematic review and meta-analysis.

    Directory of Open Access Journals (Sweden)

    Georgios Tsivgoulis

    Full Text Available The aim of the present meta-analysis was to evaluate the effect of disease-modifying drugs (DMD on brain atrophy in patients with relapsing-remitting multiple sclerosis (RRMS using available randomized-controlled trial (RCT data.We conducted a systematic review and meta-analysis according to PRISMA guidelines of all available RCTs of patients with RRMS that reported data on brain volume measurements during the study period.We identified 4 eligible studies, including a total of 1819 RRMS patients (71% women, mean age 36.5 years, mean baseline EDSS-score: 2.4. The mean percentage change in brain volume was found to be significantly lower in DMD versus placebo subgroup (standardized mean difference: -0.19; 95%CI: -0.27--0.11; p<0.001. We detected no evidence of heterogeneity between estimates (I2 = 30%, p = 0.19 nor publication bias in the Funnel plots. Sensitivity analyses stratifying studies according to brain atrophy neuroimaging protocol disclosed no evidence of heterogeneity (p = 0.16. In meta-regression analyses, the percentage change in brain volume was found to be inversely related with duration of observation period in both DMD (meta-regression slope = -0.03; 95% CI: -0.04--0.02; p<0.001 and placebo subgroups (meta-regression slope = -0.05; 95% CI: -0.06--0.04; p<0.001. However, the rate of percentage brain volume loss over time was greater in placebo than in DMD subgroup (p = 0.017, ANCOVA.DMD appear to be effective in attenuating brain atrophy in comparison to placebo and their benefit in delaying the rate of brain volume loss increases linearly with longer treatment duration.

  9. Brain atrophy during aging

    International Nuclear Information System (INIS)

    Matsuzawa, Taiju; Takeda, Shumpei; Hatazawa, Jun

    1985-01-01

    Age-related brain atrophy was investigated in thousands of persons with no neurologic disturbances using X-CT and NMR-CT and following results were obtained. Brain atrophy was minimal in 34 -- 35 years old in both sexes, increased exponentially to the increasing age after 34 -- 35 years, and probably resulted in dementia, such as vascular or multiinfarct dementia. Brain atrophy was significantly greater in men than in women at all ages. Brain volumes were maximal in 34 -- 35 years old in both sexes with minimal individual differences which increased proportionally to the increasing age. Remarkable individual differences in the extents of brain atrophy (20 -- 30 %) existed among aged subjects. Some aged subjects had little or no atrophy of their brains, as seen in young subjects, and others had markedly shrunken brains associated with senility. From these results there must be pathological factors promoting brain atrophy with a great individual difference. We have studied the relation of intelligence to brain volume, and have ascertained that progression of brain atrophy was closely related to loss of mental activities independently of their ages. Our longitudinal study has revealed that the most important factors promoting brain atrophy during aging was decrease in the cerebral blood flow. MNR-CT can easily detected small infarction (lacunae) and edematous lesions resulting from ischemia and hypertensive encephalopathy, while X-CT can not. Therefore NMR-CT is very useful for detection of subtle changes in the brain. (J.P.N.)

  10. The rationale and technique of staged-volume arteriovenous malformation radiosurgery

    International Nuclear Information System (INIS)

    Pollock, Bruce E.; Kline, Robert W.; Stafford, Scott L.; Foote, Robert L.; Schomberg, Paula J.

    2000-01-01

    Purpose: Stereotactic radiosurgery is an effective management strategy for properly selected arteriovenous malformation (AVM) patients. However, the risk of postradiosurgical radiation-related injury generally limits this procedure to patients with AVMs of an average diameter of 3 cm or less. Radiosurgery of large AVMs in a planned staged fashion was undertaken to limit the radiation exposure to the surrounding normal brain. Methods and Materials: Between April 1997 and December 1999, 10 patients with a median AVM volume of 17.4 cm 3 (range, 7.4-53.3 cm 3 ) underwent staged-volume radiosurgery (23 procedures). At the first radiosurgical procedure, the total volume of the AVM is estimated and a dose plan calculated that covers 10 cm 3 -15 cm 3 , or one-half the nidus volume if the AVM is critically located (brainstem, thalamus, or basal ganglia). At 6-month intervals thereafter, radiosurgery was repeated to different portions of the AVM with the previous dose plan(s) being re-created utilizing intracranial landmarks to minimize radiation overlap. Radiosurgical procedures were continued until the entire malformation has been irradiated. Results: The radiation dosimetry of staged-volume AVM radiosurgery was compared to hypothetical single-session procedures for the 10 patients. Staged-volume radiosurgery decreased the 12-Gy volume by an average of 11.1% (range, 4.9-21%) (p < 0.001). The non-AVM 12-Gy volume was reduced by an average of 27.2% (range, 12.5-51.3%) (p < 0.001). Discussion: Staged-volume radiosurgery of large AVMs results in less radiation exposure to the adjacent brain. Further follow-up is needed to determine whether this technique provides a high rate of AVM obliteration while maintaining an acceptable rate of radiation-related complications

  11. Radiopharmaceuticals for brain - SPECT

    International Nuclear Information System (INIS)

    Moretti, J.L.

    1992-01-01

    Perfusion tracers for brain SPECT imaging suitable for regional cerebral blood flow measurement and regional cerebral blood volume determination, with respect to their ability to pass the blood-brain-barrier, are described. Problems related t the use of specific radiotracers to map receptors distribution in the brain are also discussed in this lecture. 9 figs, 6 tabs

  12. Water volume quantitation using nuclear magnetic resonance imaging: application to cerebrospinal fluid

    International Nuclear Information System (INIS)

    Lecouffe, P.; Huglo, D.; Dubois, P.; Rousseau, J.; Marchandise, X.

    1990-01-01

    Quantitation in proton NMR imaging is applied to cerebrospinal fluid (CSF). Total intracranial CSF volume was measured from Condon's method: CSF signal was compared with distilled water standard signal in a single sagittal thick slice. Brain signal was reduced to minimum using a 5000/360/400 sequence. Software constraints did not permit easy implementing on imager and uniformity correction was performed on a microcomputer. Accuracy was better than 4%. Total intracranial CSF was found between 91 and 164 ml in 5 healthy volunteers. Extraventricular CSF quantitation appears very improved by this method, but planimetric methods seem better in order to quantify ventricular CSF. This technique is compared to total lung water measurement from proton density according to Mac Lennan's method. Water volume quantitation confirms ability of NMR imaging to quantify biologic parameters but image defects have to be known by strict quality control [fr

  13. Magnetic Resonance Imaging-Based Target Volume Delineation in Radiation Therapy Treatment Planning for Brain Tumors Using Localized Region-Based Active Contour

    International Nuclear Information System (INIS)

    Aslian, Hossein; Sadeghi, Mahdi; Mahdavi, Seied Rabie; Babapour Mofrad, Farshid; Astarakee, Mahdi; Khaledi, Navid; Fadavi, Pedram

    2013-01-01

    Purpose: To evaluate the clinical application of a robust semiautomatic image segmentation method to determine the brain target volumes in radiation therapy treatment planning. Methods and Materials: A local robust region-based algorithm was used on MRI brain images to study the clinical target volume (CTV) of several patients. First, 3 oncologists delineated CTVs of 10 patients manually, and the process time for each patient was calculated. The averages of the oncologists’ contours were evaluated and considered as reference contours. Then, to determine the CTV through the semiautomatic method, a fourth oncologist who was blind to all manual contours selected 4-8 points around the edema and defined the initial contour. The time to obtain the final contour was calculated again for each patient. Manual and semiautomatic segmentation were compared using 3 different metric criteria: Dice coefficient, Hausdorff distance, and mean absolute distance. A comparison also was performed between volumes obtained from semiautomatic and manual methods. Results: Manual delineation processing time of tumors for each patient was dependent on its size and complexity and had a mean (±SD) of 12.33 ± 2.47 minutes, whereas it was 3.254 ± 1.7507 minutes for the semiautomatic method. Means of Dice coefficient, Hausdorff distance, and mean absolute distance between manual contours were 0.84 ± 0.02, 2.05 ± 0.66 cm, and 0.78 ± 0.15 cm, and they were 0.82 ± 0.03, 1.91 ± 0.65 cm, and 0.7 ± 0.22 cm between manual and semiautomatic contours, respectively. Moreover, the mean volume ratio (=semiautomatic/manual) calculated for all samples was 0.87. Conclusions: Given the deformability of this method, the results showed reasonable accuracy and similarity to the results of manual contouring by the oncologists. This study shows that the localized region-based algorithms can have great ability in determining the CTV and can be appropriate alternatives for manual approaches in brain cancer

  14. Magnetic Resonance Imaging-Based Target Volume Delineation in Radiation Therapy Treatment Planning for Brain Tumors Using Localized Region-Based Active Contour

    Energy Technology Data Exchange (ETDEWEB)

    Aslian, Hossein [Department of Medical Radiation, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Sadeghi, Mahdi [Agricultural, Medical and Industrial Research School, Karaj (Iran, Islamic Republic of); Mahdavi, Seied Rabie [Department of Medical Physics, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Babapour Mofrad, Farshid [Department of Medical Radiation, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Astarakee, Mahdi, E-mail: M-Astarakee@Engineer.com [Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Khaledi, Navid [Department of Medical Radiation, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Fadavi, Pedram [Department of Radiation Oncology, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2013-09-01

    Purpose: To evaluate the clinical application of a robust semiautomatic image segmentation method to determine the brain target volumes in radiation therapy treatment planning. Methods and Materials: A local robust region-based algorithm was used on MRI brain images to study the clinical target volume (CTV) of several patients. First, 3 oncologists delineated CTVs of 10 patients manually, and the process time for each patient was calculated. The averages of the oncologists’ contours were evaluated and considered as reference contours. Then, to determine the CTV through the semiautomatic method, a fourth oncologist who was blind to all manual contours selected 4-8 points around the edema and defined the initial contour. The time to obtain the final contour was calculated again for each patient. Manual and semiautomatic segmentation were compared using 3 different metric criteria: Dice coefficient, Hausdorff distance, and mean absolute distance. A comparison also was performed between volumes obtained from semiautomatic and manual methods. Results: Manual delineation processing time of tumors for each patient was dependent on its size and complexity and had a mean (±SD) of 12.33 ± 2.47 minutes, whereas it was 3.254 ± 1.7507 minutes for the semiautomatic method. Means of Dice coefficient, Hausdorff distance, and mean absolute distance between manual contours were 0.84 ± 0.02, 2.05 ± 0.66 cm, and 0.78 ± 0.15 cm, and they were 0.82 ± 0.03, 1.91 ± 0.65 cm, and 0.7 ± 0.22 cm between manual and semiautomatic contours, respectively. Moreover, the mean volume ratio (=semiautomatic/manual) calculated for all samples was 0.87. Conclusions: Given the deformability of this method, the results showed reasonable accuracy and similarity to the results of manual contouring by the oncologists. This study shows that the localized region-based algorithms can have great ability in determining the CTV and can be appropriate alternatives for manual approaches in brain cancer.

  15. Preliminary study on computer automatic quantification of brain atrophy

    International Nuclear Information System (INIS)

    Li Chuanfu; Zhou Kangyuan

    2006-01-01

    Objective: To study the variability of normal brain volume with the sex and age, and put forward an objective standard for computer automatic quantification of brain atrophy. Methods: The cranial volume, brain volume and brain parenchymal fraction (BPF) of 487 cases of brain atrophy (310 males, 177 females) and 1901 cases of normal subjects (993 males, 908 females) were calculated with the newly developed algorithm of automatic quantification for brain atrophy. With the technique of polynomial curve fitting, the mathematical relationship of BPF with age in normal subjects was analyzed. Results: The cranial volume, brain volume and BPF of normal subjects were (1 271 322 ± 128 699) mm 3 , (1 211 725 ± 122 077) mm 3 and (95.3471 ± 2.3453)%, respectively, and those of atrophy subjects were (1 276 900 ± 125 180) mm 3 , (1 203 400 ± 117 760) mm 3 and BPF(91.8115 ± 2.3035)% respectively. The difference of BPF between the two groups was extremely significant (P 0.05). The expression P(x)=-0.0008x 2 + 0.0193x + 96.9999 could accurately describe the mathematical relationship between BPF and age in normal subject (lower limit of 95% CI y=-0.0008x 2 +0.0184x+95.1090). Conclusion: The lower limit of 95% confidence interval mathematical relationship between BPF and age could be used as an objective criteria for automatic quantification of brain atrophy with computer. (authors)

  16. On the Relationships of Postcanine Tooth Size with Dietary Quality and Brain Volume in Primates: Implications for Hominin Evolution

    Directory of Open Access Journals (Sweden)

    Juan Manuel Jiménez-Arenas

    2014-01-01

    Full Text Available Brain volume and cheek-tooth size have traditionally been considered as two traits that show opposite evolutionary trends during the evolution of Homo. As a result, differences in encephalization and molarization among hominins tend to be interpreted in paleobiological grounds, because both traits were presumably linked to the dietary quality of extinct species. Here we show that there is an essential difference between the genus Homo and the living primate species, because postcanine tooth size and brain volume are related to negative allometry in primates and show an inverse relationship in Homo. However, when size effects are removed, the negative relationship between encephalization and molarization holds only for platyrrhines and the genus Homo. In addition, there is no general trend for the relationship between postcanine tooth size and dietary quality among the living primates. If size and phylogeny effects are both removed, this relationship vanishes in many taxonomic groups. As a result, the suggestion that the presence of well-developed postcanine teeth in extinct hominins should be indicative of a poor-quality diet cannot be generalized to all extant and extinct primates.

  17. Brain intra- and extracellular sodium concentration in multiple sclerosis: a 7 T MRI study.

    Science.gov (United States)

    Petracca, Maria; Vancea, Roxana O; Fleysher, Lazar; Jonkman, Laura E; Oesingmann, Niels; Inglese, Matilde

    2016-03-01

    Intra-axonal accumulation of sodium ions is one of the key mechanisms of delayed neuro-axonal degeneration that contributes to disability accrual in multiple sclerosis. In vivo sodium magnetic resonance imaging studies have demonstrated an increase of brain total sodium concentration in patients with multiple sclerosis, especially in patients with greater disability. However, total sodium concentration is a weighted average of intra- and extra-cellular sodium concentration whose changes reflect different tissue pathophysiological processes. The in vivo, non-invasive measurement of intracellular sodium concentration is quite challenging and the few applications in patients with neurological diseases are limited to case reports and qualitative assessments. In the present study we provide first evidence of the feasibility of triple quantum filtered (23)Na magnetic resonance imaging at 7 T, and provide in vivo quantification of global and regional brain intra- and extra-cellular sodium concentration in 19 relapsing-remitting multiple sclerosis patients and 17 heathy controls. Global grey matter and white matter total sodium concentration (respectively P brain regional level, clusters of increased total sodium concentration and intracellular sodium concentration and decreased intracellular sodium volume fraction were found in several cortical, subcortical and white matter regions when patients were compared with healthy controls (P Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Patent ductus arteriosus and brain volume

    NARCIS (Netherlands)

    Lemmers, Petra M A; Benders, Manon J N L; D'Ascenzo, Rita; Zethof, Jorine; Alderliesten, Thomas; Kersbergen, Karina J; Isgum, Ivana; de Vries, Linda S; Groenendaal, Floris; van Bel, Frank

    2016-01-01

    Background and Objectives: A hemodynamically significant patent ductus arteriosus (PDA) can compromise perfusion and oxygenation of the preterm brain. Reports suggest that PDA is associated with increased mortality and morbidity. We hypothesize that long-standing low cerebral oxygenation due to PDA

  19. Subacute brain atrophy induced by radiation therapy to the malignant brain tumors

    International Nuclear Information System (INIS)

    Asai, Akio; Matsutani, Masao; Takakura, Kintomo.

    1987-01-01

    In order to analyze brain atrophy after radiation therapy to the brain tumors, we calculated a CSF-cranial volume ratio on CT scan as an index of brain atrophy, and estimated dementia-score by Hasegawa's method in 91 post-irradiated patients with malignant brain tumors. Radiation-induced brain atrophy was observed in 51 out of 91 patients (56 %) and dementia in 23 out of 47 patients (49 %). These two conditions were closely related, and observed significantly more often in aged and whole-brain-irradiated patients. As radiation-induced brain atrophy accompanied by dementia appeared 2 - 3 months after the completion of radiation therapy, it should be regarded as a subacute brain injury caused by radiation therapy. (author)

  20. Topology of genetic associations between regional gray matter volume and intellectual ability: Evidence for a high capacity network.

    Science.gov (United States)

    Bohlken, Marc M; Brouwer, Rachel M; Mandl, René C W; Hedman, Anna M; van den Heuvel, Martijn P; van Haren, Neeltje E M; Kahn, René S; Hulshoff Pol, Hilleke E

    2016-01-01

    Intelligence is associated with a network of distributed gray matter areas including the frontal and parietal higher association cortices and primary processing areas of the temporal and occipital lobes. Efficient information transfer between gray matter regions implicated in intelligence is thought to be critical for this trait to emerge. Genetic factors implicated in intelligence and gray matter may promote a high capacity for information transfer. Whether these genetic factors act globally or on local gray matter areas separately is not known. Brain maps of phenotypic and genetic associations between gray matter volume and intelligence were made using structural equation modeling of 3T MRI T1-weighted scans acquired in 167 adult twins of the newly acquired U-TWIN cohort. Subsequently, structural connectivity analyses (DTI) were performed to test the hypothesis that gray matter regions associated with intellectual ability form a densely connected core. Gray matter regions associated with intellectual ability were situated in the right prefrontal, bilateral temporal, bilateral parietal, right occipital and subcortical regions. Regions implicated in intelligence had high structural connectivity density compared to 10,000 reference networks (p=0.031). The genetic association with intelligence was for 39% explained by a genetic source unique to these regions (independent of total brain volume), this source specifically implicated the right supramarginal gyrus. Using a twin design, we show that intelligence is genetically represented in a spatially distributed and densely connected network of gray matter regions providing a high capacity infrastructure. Although genes for intelligence have overlap with those for total brain volume, we present evidence that there are genes for intelligence that act specifically on the subset of brain areas that form an efficient brain network. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. The effect of post-wash total progressive motile sperm count and semen volume on pregnancy outcomes in intrauterine insemination cycles: a retrospective study.

    Science.gov (United States)

    Ok, Elvan Koyun; Doğan, Omer Erbil; Okyay, Recep Emre; Gülekli, Bülent

    2013-01-01

    The purpose of this study was to determine the impact of post-wash total progressive motile sperm count (TPMSC) and semen volume on pregnancy outcomes in intrauterine insemination (IUI) cycles. The retrospective study included a total of 156 cycles (141 couples) and was performed in our center over a 24-month period. The semen parameters were recorded for each man and each insemination. The semen samples were re-evaluated after the preparation process. Post-wash TPMSC values were divided into four groups; Group 1: 10×10(6). Post-wash inseminated semen volume was divided into three groups; Group 1: 0.3 mL; Group 2: 0.4 mL; Group 3: 0.5 mL. The effect of post-wash total progressive motile sperm and semen volume on pregnancy outcomes was evaluated. The pregnancy rates per cycle and per couple were 27.56% and 30.49%, respectively. There was not a significant relationship between the inseminated semen volume and pregnancy rate (p>0.05). However, a significant linear-by-linear association was documented between the TPMSC and pregnancy rate (p=0.042). Our findings suggest that the post-wash inseminated semen volume should be between 0.3-0.5 mL. An average post-wash total motile sperm count of 10×10(6) may be a useful threshold value for IUI success, but more studies are needed to determine a cut-off value for TPMSC.

  2. Brain anatomical networks in early human brain development.

    Science.gov (United States)

    Fan, Yong; Shi, Feng; Smith, Jeffrey Keith; Lin, Weili; Gilmore, John H; Shen, Dinggang

    2011-02-01

    Recent neuroimaging studies have demonstrated that human brain networks have economic small-world topology and modular organization, enabling efficient information transfer among brain regions. However, it remains largely unknown how the small-world topology and modular organization of human brain networks emerge and develop. Using longitudinal MRI data of 28 healthy pediatric subjects, collected at their ages of 1 month, 1 year, and 2 years, we analyzed development patterns of brain anatomical networks derived from morphological correlations of brain regional volumes. The results show that the brain network of 1-month-olds has the characteristically economic small-world topology and nonrandom modular organization. The network's cost efficiency increases with the brain development to 1 year and 2 years, so does the modularity, providing supportive evidence for the hypothesis that the small-world topology and the modular organization of brain networks are established during early brain development to support rapid synchronization and information transfer with minimal rewiring cost, as well as to balance between local processing and global integration of information. Copyright © 2010. Published by Elsevier Inc.

  3. Ex vivo MR volumetry of human brain hemispheres.

    Science.gov (United States)

    Kotrotsou, Aikaterini; Bennett, David A; Schneider, Julie A; Dawe, Robert J; Golak, Tom; Leurgans, Sue E; Yu, Lei; Arfanakis, Konstantinos

    2014-01-01

    The aims of this work were to (a) develop an approach for ex vivo MR volumetry of human brain hemispheres that does not contaminate the results of histopathological examination, (b) longitudinally assess regional brain volumes postmortem, and (c) investigate the relationship between MR volumetric measurements performed in vivo and ex vivo. An approach for ex vivo MR volumetry of human brain hemispheres was developed. Five hemispheres from elderly subjects were imaged ex vivo longitudinally. All datasets were segmented. The longitudinal behavior of volumes measured ex vivo was assessed. The relationship between in vivo and ex vivo volumetric measurements was investigated in seven elderly subjects imaged both antemortem and postmortem. This approach for ex vivo MR volumetry did not contaminate the results of histopathological examination. For a period of 6 months postmortem, within-subject volume variation across time points was substantially smaller than intersubject volume variation. A close linear correspondence was detected between in vivo and ex vivo volumetric measurements. Regional brain volumes measured with this approach for ex vivo MR volumetry remain relatively unchanged for a period of 6 months postmortem. Furthermore, the linear relationship between in vivo and ex vivo MR volumetric measurements suggests that this approach captures information linked to antemortem macrostructural brain characteristics. Copyright © 2013 Wiley Periodicals, Inc.

  4. Radiation Injury to the Brain

    Science.gov (United States)

    ... Hits since January 2003 RADIATION INJURY TO THE BRAIN Radiation treatments affect all cells that are targeted. ... fractions, duration of therapy, and volume of [healthy brain] nervous tissue irradiated influence the likelihood of injury. ...

  5. Cumulative Effects of Foraging Behavior and Social Dominance on Brain Development in a Facultatively Social Bee (Ceratina australensis).

    Science.gov (United States)

    Rehan, Sandra M; Bulova, Susan J; O'Donnell, Sean

    2015-01-01

    In social insects, both task performance (foraging) and dominance are associated with increased brain investment, particularly in the mushroom bodies. Whether and how these factors interact is unknown. Here we present data on a system where task performance and social behavior can be analyzed simultaneously: the small carpenter bee Ceratina australensis. We show that foraging and dominance have separate and combined cumulative effects on mushroom body calyx investment. Female C. australensis nest solitarily and socially in the same populations at the same time. Social colonies comprise two sisters: the social primary, which monopolizes foraging and reproduction, and the social secondary, which is neither a forager nor reproductive but rather remains at the nest as a guard. We compare the brains of solitary females that forage and reproduce but do not engage in social interactions with those of social individuals while controlling for age, reproductive status, and foraging experience. Mushroom body calyx volume was positively correlated with wing wear, a proxy for foraging experience. We also found that, although total brain volume did not vary among reproductive strategies (solitary vs. social nesters), socially dominant primaries had larger mushroom body calyx volumes (corrected for both brain and body size variation) than solitary females; socially subordinate secondaries (that are neither dominant nor foragers) had the least-developed mushroom body calyces. These data demonstrate that sociality itself does not explain mushroom body volume; however, achieving and maintaining dominance status in a group was associated with mushroom body calyx enlargement. Dominance and foraging effects were cumulative; dominant social primary foragers had larger mushroom body volumes than solitary foragers, and solitary foragers had larger mushroom body volumes than nonforaging social secondary guards. This is the first evidence for cumulative effects on brain development by

  6. Effect of residue hematoma volume on inflammation factors in hypertensive intracranial hemorrhage

    Directory of Open Access Journals (Sweden)

    You-san ZHANG

    2016-10-01

    Full Text Available Objectives  In this study, the relationships of residue hematoma volume to brain edema and inflammation factors were studied after intracerebral hematoma was evacuated with a frameless stereotactic aspiration. Methods  Eighty-nine patients with hypertensive intracerebral hemorrhage (ICH were treated by frameless stereotactic aspiration. According to residual volume of the hematoma, the patients were divided into gross-total removal of hematoma (GTRH (≤5ml and sub-total removal of hematoma (STRH (≥10ml groups after the operation. The pre-operative and postoperative data of the patients were compared between the two groups. The pre-operative data included age, sex, hematoma volume, time interval from the ictus to the operation, and Glasgow Coma Scale (GCS scores. The post-operative information included edema grade, level of thromboxane B2 (TXB2, 6-keto-prostaglandin F1α(6-K-PGF1α, tumor necrosis factor-α(TNF-α and endothelin (ET in hematoma cavity or cerebral spinal fluid (CSF. Results  There were 46 patients in GTRH group and 43 in STRH group respectively. There was no statistical difference in the pre-operative data between the two groups. The levels of TXB2, 6-K-PGF1α, TNF-αand ET were significantly lower in the GTRH group than in the STRH group at different post-operative time points. There was a significant difference between the two groups. The post-operative CT scan at different time points showed that the brain edema grades were better in the GTRH group than in the STRH group. Conclusions  GTRH is helpful for decreasing ICH-induced injury to brain tissue, which is related to decreased perihematomal edema formation and secondary injury by coagulation end products activated inflammatory cascade. DOI: 10.11855/j.issn.0577-7402.2016.09.12

  7. Brain Lateralization in Mice Is Associated with Zinc Signaling and Altered in Prenatal Zinc Deficient Mice That Display Features of Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Stefanie Grabrucker

    2018-01-01

    Full Text Available A number of studies have reported changes in the hemispheric dominance in autism spectrum disorder (ASD patients on functional, biochemical, and morphological level. Since asymmetry of the brain is also found in many vertebrates, we analyzed whether prenatal zinc deficient (PZD mice, a mouse model with ASD like behavior, show alterations regarding brain lateralization on molecular and behavioral level. Our results show that hemisphere-specific expression of marker genes is abolished in PZD mice on mRNA and protein level. Using magnetic resonance imaging, we found an increased striatal volume in PZD mice with no change in total brain volume. Moreover, behavioral patterns associated with striatal lateralization are altered and the lateralized expression of dopamine receptor 1 (DR1 in the striatum of PZD mice was changed. We conclude that zinc signaling during brain development has a critical role in the establishment of brain lateralization in mice.

  8. Brain abscess associated with ethmoidal sinus osteoma: A case report

    Directory of Open Access Journals (Sweden)

    Hiroaki Nagashima

    2014-12-01

    Full Text Available Osteoma of the paranasal sinus is uncommon, and the occurrence of brain abscess associated with ethmoidal osteoma is particularly rare. We report here a case of a brain abscess complicating an ethmoidal osteoma in a 68-year-old man who presented with high-grade fever and disturbance in the level of consciousness. Computed tomography scanning and magnetic resonance imaging revealed a ring-enhancing mass in the left frontal lobe with surrounding edema and a bony mass in the ethmoidal sinus. We scheduled a two-stage operation. First, emergency aspiration and drainage of the abscess via the forehead were performed to reduce the abscess volume. These were followed by a left frontal craniotomy to totally remove both the brain abscess and the bony mass. The bony mass had breached the dura mater. After removing the bony mass, we repaired the anterior skull base using a pericranial flap. Pathological findings of the bony tumor were consistent with osteoma. The postoperative course was uneventful. In the case of a huge brain abscess associated with an ethmoidal osteoma, volume reduction by drainage followed by surgical removal of both lesions may help to control infection and achieve a cure. Use of a vascularized pericranial flap is important to prevent direct communication between the paranasal sinuses and the cranial cavity.

  9. Sleep habits, academic performance, and the adolescent brain structure.

    Science.gov (United States)

    Urrila, Anna S; Artiges, Eric; Massicotte, Jessica; Miranda, Ruben; Vulser, Hélène; Bézivin-Frere, Pauline; Lapidaire, Winok; Lemaître, Hervé; Penttilä, Jani; Conrod, Patricia J; Garavan, Hugh; Paillère Martinot, Marie-Laure; Martinot, Jean-Luc

    2017-02-09

    Here we report the first and most robust evidence about how sleep habits are associated with regional brain grey matter volumes and school grade average in early adolescence. Shorter time in bed during weekdays, and later weekend sleeping hours correlate with smaller brain grey matter volumes in frontal, anterior cingulate, and precuneus cortex regions. Poor school grade average associates with later weekend bedtime and smaller grey matter volumes in medial brain regions. The medial prefrontal - anterior cingulate cortex appears most tightly related to the adolescents' variations in sleep habits, as its volume correlates inversely with both weekend bedtime and wake up time, and also with poor school performance. These findings suggest that sleep habits, notably during the weekends, have an alarming link with both the structure of the adolescent brain and school performance, and thus highlight the need for informed interventions.

  10. SPAM-assisted partial volume correction algorithm for PET

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sung Il; Kang, Keon Wook; Lee, Jae Sung; Lee, Dong Soo; Chung, June Key; Soh, Kwang Sup; Lee, Myung Chul [College of Medicine, Seoul National Univ., Seoul (Korea, Republic of)

    2000-07-01

    A probabilistic atlas of the human brain (Statistical Probability Anatomical Maps: SPAM) was developed by the International Consortium for Brain Mapping (ICBM). It will be a good frame for calculating volume of interest (VOI) according to statistical variability of human brain in many fields of brain images. We show that we can get more exact quantification of the counts in VOI by using SPAM in the correlation of partial volume effect for simulated PET image. The MRI of a patient with dementia was segmented into gray matter and white matter, and then they were smoothed to PET resolution. Simulated PET image was made by adding one third of the smoothed white matter to the smoothed gray matter. Spillover effect and partial volume effect were corrected for this simulated PET image with the aid of the segmented and smoothed MR images. The images were spatially normalized to the average brain MRI atlas of ICBM, and were multiplied by the probablities of 98 VOIs of SPAM images of Montreal Neurological Institute. After the correction of partial volume effect, the counts of frontal, partietal, temporal, and occipital lobes were increased by 38{+-}6%, while those of hippocampus and amygdala by 4{+-}3%. By calculating the counts in VOI using the product of probability of SPAM images and counts in the simulated PET image, the counts increase and become closer to the true values. SPAM-assisted partial volume correction is useful for quantification of VOIs in PET images.

  11. SPAM-assisted partial volume correction algorithm for PET

    International Nuclear Information System (INIS)

    Cho, Sung Il; Kang, Keon Wook; Lee, Jae Sung; Lee, Dong Soo; Chung, June Key; Soh, Kwang Sup; Lee, Myung Chul

    2000-01-01

    A probabilistic atlas of the human brain (Statistical Probability Anatomical Maps: SPAM) was developed by the International Consortium for Brain Mapping (ICBM). It will be a good frame for calculating volume of interest (VOI) according to statistical variability of human brain in many fields of brain images. We show that we can get more exact quantification of the counts in VOI by using SPAM in the correlation of partial volume effect for simulated PET image. The MRI of a patient with dementia was segmented into gray matter and white matter, and then they were smoothed to PET resolution. Simulated PET image was made by adding one third of the smoothed white matter to the smoothed gray matter. Spillover effect and partial volume effect were corrected for this simulated PET image with the aid of the segmented and smoothed MR images. The images were spatially normalized to the average brain MRI atlas of ICBM, and were multiplied by the probablities of 98 VOIs of SPAM images of Montreal Neurological Institute. After the correction of partial volume effect, the counts of frontal, partietal, temporal, and occipital lobes were increased by 38±6%, while those of hippocampus and amygdala by 4±3%. By calculating the counts in VOI using the product of probability of SPAM images and counts in the simulated PET image, the counts increase and become closer to the true values. SPAM-assisted partial volume correction is useful for quantification of VOIs in PET images

  12. Relationships between sleep quality and brain volume, metabolism, and amyloid deposition in late adulthood.

    Science.gov (United States)

    Branger, Pierre; Arenaza-Urquijo, Eider M; Tomadesso, Clémence; Mézenge, Florence; André, Claire; de Flores, Robin; Mutlu, Justine; de La Sayette, Vincent; Eustache, Francis; Chételat, Gaël; Rauchs, Géraldine

    2016-05-01

    Recent studies in mouse models of Alzheimer's disease (AD) and in humans suggest that sleep disruption and amyloid-beta (Aβ) accumulation are interrelated, and may, thus, exacerbate each other. We investigated the association between self-reported sleep variables and neuroimaging data in 51 healthy older adults. Participants completed a questionnaire assessing sleep quality and quantity and underwent positron emission tomography scans using [18F]florbetapir and [18F]fluorodeoxyglucose and an magnetic resonance imaging scan to measure Aβ burden, hypometabolism, and atrophy, respectively. Longer sleep latency was associated with greater Aβ burden in prefrontal areas. Moreover, the number of nocturnal awakenings was negatively correlated with gray matter volume in the insular region. In asymptomatic middle-aged and older adults, lower self-reported sleep quality was associated with greater Aβ burden and lower volume in brain areas relevant in aging and AD, but not with glucose metabolism. These results highlight the potential relevance of preserving sleep quality in older adults and suggest that sleep may be a factor to screen for in individuals at risk for AD. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Lower Monoamine Oxidase-A Total Distribution Volume in Impulsive and Violent Male Offenders with Antisocial Personality Disorder and High Psychopathic Traits: An [(11)C] Harmine Positron Emission Tomography Study.

    Science.gov (United States)

    Kolla, Nathan J; Matthews, Brittany; Wilson, Alan A; Houle, Sylvain; Bagby, R Michael; Links, Paul; Simpson, Alexander I; Hussain, Amina; Meyer, Jeffrey H

    2015-10-01

    Antisocial personality disorder (ASPD) often presents with highly impulsive, violent behavior, and pathological changes in the orbitofrontal cortex (OFC) and ventral striatum (VS) are implicated. Several compelling reasons support a relationship between low monoamine oxidase-A (MAO-A), an enzyme that regulates neurotransmitters, and ASPD. These include MAO-A knockout models in rodents evidencing impulsive aggression and positron emission tomography (PET) studies of healthy subjects reporting associations between low brain MAO-A levels and greater impulsivity or aggression. However, a fundamental gap in the literature is that it is unknown whether brain MAO-A levels are low in more severe, clinical disorders of impulsivity, such as ASPD. To address this issue, we applied [(11)C] harmine PET to measure MAO-A total distribution volume (MAO-A VT), an index of MAO-A density, in 18 male ASPD participants and 18 age- and sex-matched controls. OFC and VS MAO-A VT were lower in ASPD compared with controls (multivariate analysis of variance (MANOVA): F2,33=6.8, P=0.003; OFC and VS MAO-A VT each lower by 19%). Similar effects were observed in other brain regions: prefrontal cortex, anterior cingulate cortex, dorsal putamen, thalamus, hippocampus, and midbrain (MANOVA: F7,28=2.7, P=0.029). In ASPD, VS MAO-A VT was consistently negatively correlated with self-report and behavioral measures of impulsivity (r=-0.50 to -0.52, all P-valuesdisorder marked by pathological aggression and impulsivity.

  14. Less Daily Computer Use is Related to Smaller Hippocampal Volumes in Cognitively Intact Elderly.

    Science.gov (United States)

    Silbert, Lisa C; Dodge, Hiroko H; Lahna, David; Promjunyakul, Nutta-On; Austin, Daniel; Mattek, Nora; Erten-Lyons, Deniz; Kaye, Jeffrey A

    2016-01-01

    Computer use is becoming a common activity in the daily life of older individuals and declines over time in those with mild cognitive impairment (MCI). The relationship between daily computer use (DCU) and imaging markers of neurodegeneration is unknown. The objective of this study was to examine the relationship between average DCU and volumetric markers of neurodegeneration on brain MRI. Cognitively intact volunteers enrolled in the Intelligent Systems for Assessing Aging Change study underwent MRI. Total in-home computer use per day was calculated using mouse movement detection and averaged over a one-month period surrounding the MRI. Spearman's rank order correlation (univariate analysis) and linear regression models (multivariate analysis) examined hippocampal, gray matter (GM), white matter hyperintensity (WMH), and ventricular cerebral spinal fluid (vCSF) volumes in relation to DCU. A voxel-based morphometry analysis identified relationships between regional GM density and DCU. Twenty-seven cognitively intact participants used their computer for 51.3 minutes per day on average. Less DCU was associated with smaller hippocampal volumes (r = 0.48, p = 0.01), but not total GM, WMH, or vCSF volumes. After adjusting for age, education, and gender, less DCU remained associated with smaller hippocampal volume (p = 0.01). Voxel-wise analysis demonstrated that less daily computer use was associated with decreased GM density in the bilateral hippocampi and temporal lobes. Less daily computer use is associated with smaller brain volume in regions that are integral to memory function and known to be involved early with Alzheimer's pathology and conversion to dementia. Continuous monitoring of daily computer use may detect signs of preclinical neurodegeneration in older individuals at risk for dementia.

  15. Path Complexity in Virtual Water Maze Navigation: Differential Associations with Age, Sex, and Regional Brain Volume.

    Science.gov (United States)

    Daugherty, Ana M; Yuan, Peng; Dahle, Cheryl L; Bender, Andrew R; Yang, Yiqin; Raz, Naftali

    2015-09-01

    Studies of human navigation in virtual maze environments have consistently linked advanced age with greater distance traveled between the start and the goal and longer duration of the search. Observations of search path geometry suggest that routes taken by older adults may be unnecessarily complex and that excessive path complexity may be an indicator of cognitive difficulties experienced by older navigators. In a sample of healthy adults, we quantify search path complexity in a virtual Morris water maze with a novel method based on fractal dimensionality. In a two-level hierarchical linear model, we estimated improvement in navigation performance across trials by a decline in route length, shortening of search time, and reduction in fractal dimensionality of the path. While replicating commonly reported age and sex differences in time and distance indices, a reduction in fractal dimension of the path accounted for improvement across trials, independent of age or sex. The volumes of brain regions associated with the establishment of cognitive maps (parahippocampal gyrus and hippocampus) were related to path dimensionality, but not to the total distance and time. Thus, fractal dimensionality of a navigational path may present a useful complementary method of quantifying performance in navigation. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Cerebrospinal fluid volumetric MRI mapping as a simple measurement for evaluating brain atrophy

    DEFF Research Database (Denmark)

    De Vis, J B; Zwanenburg, J J; van der Kleij, L A

    2016-01-01

    OBJECTIVES: To assess whether volumetric cerebrospinal fluid (CSF) MRI can be used as a surrogate for brain atrophy assessment and to evaluate how the T2 of the CSF relates to brain atrophy. METHODS: Twenty-eight subjects [mean age 64 (sd 2) years] were included; T1-weighted and CSF MRI were......) and medial temporal lobe atrophy (MTA)] was evaluated. RESULTS: Relative total, peripheral subarachnoidal, and ventricular VCSF increased significantly with increased scores on the GCA and MTA (R = 0.83, 0.78 and 0.78 and R = 0.72, 0.62 and 0.86). Total, peripheral subarachnoidal, and ventricular T2...... be a marker of neurodegenerative disease. KEY POINTS: • A 1:11 min CSF MRI volumetric sequence can evaluate brain atrophy. • CSF MRI provides accurate atrophy assessment without partial volume effects. • CSF MRI data can be processed quickly without user interaction. • The measured T 2 of the CSF is related...

  17. Cortical thickness, surface area, and volume of the brain reward system in alcohol dependence: relationships to relapse and extended abstinence.

    Science.gov (United States)

    Durazzo, Timothy C; Tosun, Duygu; Buckley, Shannon; Gazdzinski, Stefan; Mon, Anderson; Fryer, Susanna L; Meyerhoff, Dieter J

    2011-06-01

    At least 60% of those treated for an alcohol use disorder will relapse. Empirical study of the integrity of the brain reward system (BRS) is critical to understanding the mechanisms of relapse as this collection of circuits is implicated in the development and maintenance of all forms of addictive disorders. This study compared thickness, surface area, and volume in neocortical components of the BRS among nonsmoking light-drinking controls (controls), individuals who remained abstinent and those who relapsed after treatment. Seventy-five treatment-seeking alcohol-dependent individuals (abstinent for 7±3 days) and 43 controls completed 1.5T proton magnetic resonance imaging studies. Parcellated morphological data were obtained for following bilateral components of the BRS: rostral and caudal anterior cingulate cortex, insula, medial and lateral orbitofrontal cortex (OFC), rostral and caudal middle and superior frontal gyri, amygdala and hippocampus as well as for 26 other bilateral neocortical regions. Alcohol-dependent participants were followed over 12-months after baseline study and were classified as abstainers (no alcohol consumption; n=24) and relapsers (any alcohol consumption; n=51) at follow-up. Relapsers and abstainers demonstrated lower cortical thickness in the vast majority of BRS regions as well as lower global thickness compared to controls. Relapsers had lower total BRS surface area than both controls and abstainers, but abstainers were not significantly different from controls on any surface area measure. Relapsers demonstrated lower volumes than controls in the majority of regions, while abstainers showed lower volumes than controls in the superior frontal gyrus, insula, amygdala, and hippocampus, bilaterally. Relapsers exhibited smaller volumes than abstainers in the right rostral middle and caudal middle frontal gyri and the lateral OFC, bilaterally. In relapsers, lower baseline volumes and surface areas in multiple regions were associated with

  18. Simultaneous assessment of cerebral blood volume and diffusion heterogeneity using hybrid IVIM and DK MR imaging: initial experience with brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Wen-Chau [National Taiwan University, Graduate Institute of Oncology, Taipei (China); National Taiwan University, Graduate Institute of Clinical Medicine, Taipei (China); National Taiwan University, Graduate Institute of Biomedical Electronics and Bioinformatics, Taipei (China); National Taiwan University Hospital, Department of Medical Imaging, Taipei (China); Yang, Shun-Chung; Chen, Ya-Fang; My, Pei-Chi [National Taiwan University Hospital, Department of Medical Imaging, Taipei (China); Tseng, Han-Min [National Taiwan University Hospital, Department of Neurology, Taipei (China)

    2017-01-15

    To investigate the feasibility of simultaneously assessing cerebral blood volume and diffusion heterogeneity using hybrid diffusion-kurtosis (DK) and intravoxel-incoherent-motion (IVIM) MR imaging. Fifteen healthy volunteers and 30 patients with histologically proven brain tumours (25 WHO grade II-IV gliomas and five metastases) were recruited. On a 3-T system, diffusion-weighted imaging was performed with six b-values ranging from 0 to 1,700 s/mm{sup 2}. Nonlinear least-squares fitting was employed to extract diffusion coefficient (D), diffusion kurtosis coefficient (K, a measure of the degree of non-Gaussian and heterogeneous diffusion) and intravascular volume fraction (f, a measure proportional to cerebral blood volume). Repeated-measures multivariate analysis of variance and receiver operating characteristic analysis were performed to assess the ability of D/K/f in differentiating contrast-enhanced tumour from peritumoral oedema and normal-appearing white matter. Based on our imaging setting (baseline signal-to-noise ratio = 32-128), coefficient of variation was 14-20 % for K, ∝6 % for D and 26-44 % for f. The indexes were able to differentiate contrast-enhanced tumour (Wilks' λ = 0.026, p < 10{sup -3}), and performance was greatest with K, followed by f and D. Hybrid DK IVIM imaging is capable of simultaneously measuring cerebral perfusion and diffusion indexes that together may improve brain tumour diagnosis. (orig.)

  19. Structure of the alexithymic brain: A parametric coordinate-based meta-analysis.

    Science.gov (United States)

    Xu, Pengfei; Opmeer, Esther M; van Tol, Marie-José; Goerlich, Katharina S; Aleman, André

    2018-04-01

    Alexithymia refers to deficiencies in identifying and expressing emotions. This might be related to changes in structural brain volumes, but its neuroanatomical basis remains uncertain as studies have shown heterogeneous findings. Therefore, we conducted a parametric coordinate-based meta-analysis. We identified seventeen structural neuroimaging studies (including a total of 2586 individuals with different levels of alexithymia) investigating the association between gray matter volume and alexithymia. Volumes of the left insula, left amygdala, orbital frontal cortex and striatum were consistently smaller in people with high levels of alexithymia. These areas are important for emotion perception and emotional experience. Smaller volumes in these areas might lead to deficiencies in appropriately identifying and expressing emotions. These findings provide the first quantitative integration of results pertaining to the structural neuroanatomical basis of alexithymia. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Use of brain electrical activity for the identification of hematomas in mild traumatic brain injury.

    Science.gov (United States)

    Hanley, Daniel F; Chabot, Robert; Mould, W Andrew; Morgan, Timothy; Naunheim, Rosanne; Sheth, Kevin N; Chiang, William; Prichep, Leslie S

    2013-12-15

    This study investigates the potential clinical utility in the emergency department (ED) of an index of brain electrical activity to identify intracranial hematomas. The relationship between this index and depth, size, and type of hematoma was explored. Ten minutes of brain electrical activity was recorded from a limited montage in 38 adult patients with traumatic hematomas (CT scan positive) and 38 mild head injured controls (CT scan negative) in the ED. The volume of blood and distance from recording electrodes were measured by blinded independent experts. Brain electrical activity data were submitted to a classification algorithm independently developed traumatic brain injury (TBI) index to identify the probability of a CT+traumatic event. There was no significant relationship between the TBI-Index and type of hematoma, or distance of the bleed from recording sites. A significant correlation was found between TBI-Index and blood volume. The sensitivity to hematomas was 100%, positive predictive value was 74.5%, and positive likelihood ratio was 2.92. The TBI-Index, derived from brain electrical activity, demonstrates high accuracy for identification of traumatic hematomas. Further, this was not influenced by distance of the bleed from the recording electrodes, blood volume, or type of hematoma. Distance and volume limitations noted with other methods, (such as that based on near-infrared spectroscopy) were not found, thus suggesting the TBI-Index to be a potentially important adjunct to acute assessment of head injury. Because of the life-threatening risk of undetected hematomas (false negatives), specificity was permitted to be lower, 66%, in exchange for extremely high sensitivity.

  1. Longitudinal volumetric changes following traumatic brain injury: a tensor-based morphometry study.

    Science.gov (United States)

    Farbota, Kimberly D M; Sodhi, Aparna; Bendlin, Barbara B; McLaren, Donald G; Xu, Guofan; Rowley, Howard A; Johnson, Sterling C

    2012-11-01

    After traumatic injury, the brain undergoes a prolonged period of degenerative change that is paradoxically accompanied by cognitive recovery. The spatiotemporal pattern of atrophy and the specific relationships of atrophy to cognitive changes are ill understood. The present study used tensor-based morphometry and neuropsychological testing to examine brain volume loss in 17 traumatic brain injury (TBI) patients and 13 controls over a 4-year period. Patients were scanned at 2 months, 1 year, and 4 years post-injury. High-dimensional warping procedures were used to create change maps of each subject's brain for each of the two intervals. TBI patients experienced volume loss in both cortical areas and white matter regions during the first interval. We also observed continuing volume loss in extensive regions of white matter during the second interval. Neuropsychological correlations indicated that cognitive tasks were associated with subsequent volume loss in task-relevant regions. The extensive volume loss in brain white matter observed well beyond the first year post-injury suggests that the injured brain remains malleable for an extended period, and the neuropsychological relationships suggest that this volume loss may be associated with subtle cognitive improvements.

  2. Reference values for total blood volume and cardiac output in humans

    Energy Technology Data Exchange (ETDEWEB)

    Williams, L.R. [Indiana Univ., South Bend, IN (United States). Division of Liberal Arts and Sciences

    1994-09-01

    Much research has been devoted to measurement of total blood volume (TBV) and cardiac output (CO) in humans but not enough effort has been devoted to collection and reduction of results for the purpose of deriving typical or {open_quotes}reference{close_quotes} values. Identification of normal values for TBV and CO is needed not only for clinical evaluations but also for the development of biokinetic models for ultra-short-lived radionuclides used in nuclear medicine (Leggett and Williams 1989). The purpose of this report is to offer reference values for TBV and CO, along with estimates of the associated uncertainties that arise from intra- and inter-subject variation, errors in measurement techniques, and other sources. Reference values are derived for basal supine CO and TBV in reference adult humans, and differences associated with age, sex, body size, body position, exercise, and other circumstances are discussed.

  3. Volume versus wiring transmission in the brain: a new theoretical frame for neuropsychopharmacology.

    Science.gov (United States)

    Agnati, L F; Bjelke, B; Fuxe, K

    1995-01-01

    A volume transmission mode of communication in brain was implicit already in the early work of Golgi, who postulated the existence of electrical signals in the extracellular fluid (ECF) based on Volta's "wet conductor" made by solutions. The term volume transmission is taken from the term volume conduction describing the flow of ionic currents in the ECF as a basis for the electrocorticogram. The slow VT mode includes also chemical signals and is opposed to the fast synaptic (wiring) transmission. Every neuron may function in a dual mode, the synaptic and the volume transmission mode, when considering the autocrine and synaptic classes of communication. The paracrine- and neuroendocrine-like classes only involve the VT mode in the latter case including the CSF as a route. The chemical signals for VT are the neuropeptides, but also the classical transmitters, the monoamines, acetylcholine, GABA, and glutamate can participate, when they operate via slow, high affinity G protein coupled receptors. Ions such as K+, Ca++, and H+ also function as VT signals. The hypothesis is also introduced that CO2 can act as a multifacit long-distance VT and WT regulator besides being part of the CO2/HCO3 buffer. CO2 via regulating NMDA receptor sensitivity can also regulate NO formation, which represents a paracrine and fast VT signal. The therapy of CNS disorders is also discussed in the frame of the wiring and VT concept. Two therapeutical approaches can therefore be developed, one based on increasing WT and one based on increasing VT. In contrast to the WT therapy, which must preserve the electrotemporal code, the VT therapy can operate also with postsynaptic agonists. Therefore, a therapeutic effect with such a drug indicates that the deficiency in the communication process operates via VT. In view of the lack of very effective negative feedbacks in VT vs. WT, VT therapy may produce less tolerance and drug dependency.

  4. Inorganic mercury accumulation in brain following waterborne exposure elicits a deficit on the number of brain cells and impairs swimming behavior in fish (white seabream-Diplodus sargus).

    Science.gov (United States)

    Pereira, Patrícia; Puga, Sónia; Cardoso, Vera; Pinto-Ribeiro, Filipa; Raimundo, Joana; Barata, Marisa; Pousão-Ferreira, Pedro; Pacheco, Mário; Almeida, Armando

    2016-01-01

    The current study contributes to fill the knowledge gap on the neurotoxicity of inorganic mercury (iHg) in fish through the implementation of a combined evaluation of brain morphometric alterations (volume and total number of neurons plus glial cells in specific regions of the brain) and swimming behavior (endpoints related with the motor activity and mood/anxiety-like status). White seabream (Diplodus sargus) was exposed to realistic levels of iHg in water (2μgL(-1)) during 7 (E7) and 14 days (E14). After that, fish were allowed to recover for 28 days (PE28) in order to evaluate brain regeneration and reversibility of behavioral syndromes. A significant reduction in the number of cells in hypothalamus, optic tectum and cerebellum was found at E7, accompanied by relevant changes on swimming behavior. Moreover, the decrease in the number of neurons and glia in the molecular layer of the cerebellum was followed by a contraction of its volume. This is the first time that a deficit on the number of cells is reported in fish brain after iHg exposure. Interestingly, a recovery of hypothalamus and cerebellum occurred at E14, as evidenced by the identical number of cells found in exposed and control fish, and volume of cerebellum, which might be associated with an adaptive phenomenon. After 28 days post-exposure, the optic tectum continued to show a decrease in the number of cells, pointing out a higher vulnerability of this region. These morphometric alterations coincided with numerous changes on swimming behavior, related both with fish motor function and mood/anxiety-like status. Overall, current data pointed out the iHg potential to induce brain morphometric alterations, emphasizing a long-lasting neurobehavioral hazard. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. White matter sexual dimorphism of the adult human brain

    Directory of Open Access Journals (Sweden)

    Bourisly Ali K.

    2017-05-01

    Full Text Available Sex-biased psychophysiology, behavior, brain function, and conditions are extensive, yet underlying structural brain mechanisms remain unclear. There is contradicting evidence regarding sexual dimorphism when it comes to brain structure, and there is still no consensus on whether or not there exists such a dimorphism for brain white matter. Therefore, we conducted a voxel-based morphometry (VBM analysis along with global volume analysis for white matter across sex. We analyzed 384 T1-weighted MRI brain images (192 male, 192 female to investigate any differences in white matter (WM between males and females. In the VBM analysis, we found males to have larger WM, compared to females, in occipital, temporal, insular, parietal, and frontal brain regions. In contrast, females showed only one WM region to be significantly larger than males: the right postcentral gyrus in the parietal lobe region. Although, on average, males showed larger global WM volume, we did not find any significant difference in global WM volume between males and females.

  6. Ex-vivo MR Volumetry of Human Brain Hemispheres

    Science.gov (United States)

    Kotrotsou, Aikaterini; Bennett, David A.; Schneider, Julie A.; Dawe, Robert J.; Golak, Tom; Leurgans, Sue E.; Yu, Lei; Arfanakis, Konstantinos

    2013-01-01

    Purpose The aims of this work were to: a) develop an approach for ex-vivo MR volumetry of human brain hemispheres that does not contaminate the results of histopathological examination, b) longitudinally assess regional brain volumes postmortem, and c) investigate the relationship between MR volumetric measurements performed in-vivo and ex-vivo. Methods An approach for ex-vivo MR volumetry of human brain hemispheres was developed. Five hemispheres from elderly subjects were imaged ex-vivo longitudinally. All datasets were segmented. The longitudinal behavior of volumes measured ex-vivo was assessed. The relationship between in-vivo and ex-vivo volumetric measurements was investigated in seven elderly subjects imaged both ante-mortem and postmortem. Results The presented approach for ex-vivo MR volumetry did not contaminate the results of histopathological examination. For a period of 6 months postmortem, within-subject volume variation across time points was substantially smaller than inter-subject volume variation. A close linear correspondence was detected between in-vivo and ex-vivo volumetric measurements. Conclusion Regional brain volumes measured with the presented approach for ex-vivo MR volumetry remain relatively unchanged for a period of 6 months postmortem. Furthermore, the linear relationship between in-vivo and ex-vivo MR volumetric measurements suggests that the presented approach captures information linked to ante-mortem macrostructural brain characteristics. PMID:23440751

  7. Quantitative analysis of normal fetal medulla oblongata volume and flow by three-dimensional power Doppler ultrasound.

    Science.gov (United States)

    Shyu, Ing-Luen; Wang, Peng-Hui; Chen, Chih-Yao; Chen, Yi-Jen; Chang, Chia-Ming; Horng, Huann-Cheng; Yang, Ming-Jie; Yen, Ming-Shyen

    2016-06-01

    Assessment of the fetal medulla oblongata volume (MOV) and blood flow might be important in the evaluation of fetal brain growth. We used three-dimensional power Doppler ultrasound (3DPDUS) to assess the fetal MOV and blood flow index in normal gestation. The relationships between these parameters were further analyzed. We assessed the total volume and blood flow index of the fetal MO in normal pregnancies using a 3DPDUS (Voluson 730 Expert). The true sagittal plane over the fetal occipital area was measured by a 3D transabdominal probe to scan the fetal MO under the power Doppler mode. Then, we quantitatively assessed the total volume of the fetal MOV, mean gray area (MG), vascularization index (VI), and flow index (FI). A total of 106 fetuses, ranging from 19 weeks to 39 weeks of gestation, were involved in our study. The volume of the fetal MO was highly positively correlated with gestational age [correlation coefficient (r) = 0.686, p < 0.0001]. The MG was negatively correlated with gestational age [r = -0.544, p < 0.0001). VI and FI showed no significant correlation with gestational age (p = 0.123 and p = 0.219, respectively). 3DPDUS can be used to assess the fetal MOV and blood flow development quantitatively. Our study indicated that fetal MOV and blood flow correlated significantly with the advancement of gestational age. This information may serve as reference data for further studies of the fetal brain and blood flow under abnormal conditions. Copyright © 2016. Published by Elsevier B.V.

  8. Brain viscoelasticity alteration in chronic-progressive multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Kaspar-Josche Streitberger

    Full Text Available INTRODUCTION: Viscoelastic properties indicate structural alterations in biological tissues at multiple scales with high sensitivity. Magnetic Resonance Elastography (MRE is a novel technique that directly visualizes and quantitatively measures biomechanical tissue properties in vivo. MRE recently revealed that early relapsing-remitting multiple sclerosis (MS is associated with a global decrease of the cerebral mechanical integrity. This study addresses MRE and MR volumetry in chronic-progressive disease courses of MS. METHODS: We determined viscoelastic parameters of the brain parenchyma in 23 MS patients with primary or secondary chronic progressive disease course in comparison to 38 age- and gender-matched healthy individuals by multifrequency MRE, and correlated the results with clinical data, T2 lesion load and brain volume. Two viscoelastic parameters, the shear elasticity μ and the powerlaw exponent α, were deduced according to the springpot model and compared to literature values of relapsing-remitting MS. RESULTS: In chronic-progressive MS patients, μ and α were reduced by 20.5% and 6.1%, respectively, compared to healthy controls. MR volumetry yielded a weaker correlation: Total brain volume loss in MS patients was in the range of 7.5% and 1.7% considering the brain parenchymal fraction. All findings were significant (P<0.001. CONCLUSIONS: Chronic-progressive MS disease courses show a pronounced reduction of the cerebral shear elasticity compared to early relapsing-remitting disease. The powerlaw exponent α decreased only in the chronic-progressive stage of MS, suggesting an alteration in the geometry of the cerebral mechanical network due to chronic neuroinflammation.

  9. Brain-Derived Neurotrophic Factor Serum Levels and Hippocampal Volume in Mild Cognitive Impairment and Dementia due to Alzheimer Disease.

    Science.gov (United States)

    Borba, Ericksen Mielle; Duarte, Juliana Avila; Bristot, Giovana; Scotton, Ellen; Camozzato, Ana Luiza; Chaves, Márcia Lorena Fagundes

    2016-01-01

    Hippocampal atrophy is a recognized biomarker of Alzheimer disease (AD) pathology. Serum brain-derived neurotrophic factor (BDNF) reduction has been associated with neurodegeneration. We aimed to evaluate BDNF serum levels and hippocampal volume in clinical AD (dementia and mild cognitive impairment [MCI]). Participants were 10 patients with MCI and 13 with dementia due to AD as well as 10 healthy controls. BDNF serum levels were determined by ELISA and volumetric measures with NeuroQuant®. MCI and dementia patients presented lower BDNF serum levels than healthy participants; dementia patients presented a smaller hippocampal volume than MCI patients and healthy participants. The findings support that the decrease in BDNF might start before the establishment of neuronal injury expressed by the hippocampal reduction.

  10. Influence of age on brain edema formation, secondary brain damage and inflammatory response after brain trauma in mice.

    Directory of Open Access Journals (Sweden)

    Ralph Timaru-Kast

    Full Text Available After traumatic brain injury (TBI elderly patients suffer from higher mortality rate and worse functional outcome compared to young patients. However, experimental TBI research is primarily performed in young animals. Aim of the present study was to clarify whether age affects functional outcome, neuroinflammation and secondary brain damage after brain trauma in mice. Young (2 months and old (21 months male C57Bl6N mice were anesthetized and subjected to a controlled cortical impact injury (CCI on the right parietal cortex. Animals of both ages were randomly assigned to 15 min, 24 h, and 72 h survival. At the end of the observation periods, contusion volume, brain water content, neurologic function, cerebral and systemic inflammation (CD3+ T cell migration, inflammatory cytokine expression in brain and lung, blood differential cell count were determined. Old animals showed worse neurological function 72 h after CCI and a high mortality rate (19.2% compared to young (0%. This did not correlate with histopathological damage, as contusion volumes were equal in both age groups. Although a more pronounced brain edema formation was detected in old mice 24 hours after TBI, lack of correlation between brain water content and neurological deficit indicated that brain edema formation is not solely responsible for age-dependent differences in neurological outcome. Brains of old naïve mice were about 8% smaller compared to young naïve brains, suggesting age-related brain atrophy with possible decline in plasticity. Onset of cerebral inflammation started earlier and primarily ipsilateral to damage in old mice, whereas in young mice inflammation was delayed and present in both hemispheres with a characteristic T cell migration pattern. Pulmonary interleukin 1β expression was up-regulated after cerebral injury only in young, not aged mice. The results therefore indicate that old animals are prone to functional deficits and strong ipsilateral cerebral

  11. Repeatability of Brain Volume Measurements Made with the Atlas-based Method from T1-weighted Images Acquired Using a 0.4 Tesla Low Field MR Scanner.

    Science.gov (United States)

    Goto, Masami; Suzuki, Makoto; Mizukami, Shinya; Abe, Osamu; Aoki, Shigeki; Miyati, Tosiaki; Fukuda, Michinari; Gomi, Tsutomu; Takeda, Tohoru

    2016-10-11

    An understanding of the repeatability of measured results is important for both the atlas-based and voxel-based morphometry (VBM) methods of magnetic resonance (MR) brain volumetry. However, many recent studies that have investigated the repeatability of brain volume measurements have been performed using static magnetic fields of 1-4 tesla, and no study has used a low-strength static magnetic field. The aim of this study was to investigate the repeatability of measured volumes using the atlas-based method and a low-strength static magnetic field (0.4 tesla). Ten healthy volunteers participated in this study. Using a 0.4 tesla magnetic resonance imaging (MRI) scanner and a quadrature head coil, three-dimensional T 1 -weighted images (3D-T 1 WIs) were obtained from each subject, twice on the same day. VBM8 software was used to construct segmented normalized images [gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) images]. The regions-of-interest (ROIs) of GM, WM, CSF, hippocampus (HC), orbital gyrus (OG), and cerebellum posterior lobe (CPL) were generated using WFU PickAtlas. The percentage change was defined as[100 × (measured volume with first segmented image - mean volume in each subject)/(mean volume in each subject)]The average percentage change was calculated as the percentage change in the 6 ROIs of the 10 subjects. The mean of the average percentage changes for each ROI was as follows: GM, 0.556%; WM, 0.324%; CSF, 0.573%; HC, 0.645%; OG, 1.74%; and CPL, 0.471%. The average percentage change was higher for the orbital gyrus than for the other ROIs. We consider that repeatability of the atlas-based method is similar between 0.4 and 1.5 tesla MR scanners. To our knowledge, this is the first report to show that the level of repeatability with a 0.4 tesla MR scanner is adequate for the estimation of brain volume change by the atlas-based method.

  12. Detection of EEG electrodes in brain volumes.

    Science.gov (United States)

    Graffigna, Juan P; Gómez, M Eugenia; Bustos, José J

    2010-01-01

    This paper presents a method to detect 128 EEG electrodes in image study and to merge with the Nuclear Magnetic Resonance volume for better diagnosis. First we propose three hypotheses to define a specific acquisition protocol in order to recognize the electrodes and to avoid distortions in the image. In the second instance we describe a method for segmenting the electrodes. Finally, registration is performed between volume of the electrodes and NMR.

  13. A comparison of perfusion computed tomography and contrast enhanced computed tomography on radiation target volume delineation using rabbit VX2 brain tumor model

    International Nuclear Information System (INIS)

    Sun Changjin; Luo Yunxiu; Yu Jinming; Lu Haibo; Li Chao; Zhang Dekang; Huang Jianming; Wang Jie; Lang Jinyi

    2010-01-01

    Objective: To compare the accuracy of blood volume perfusion imaging (perfusion CT)with contrast enhanced 64-slice spiral computed tomography (CECT) in the evaluation of gross tumor volume (GTV) and clinical target volume (CTV) using rabbits with VX2 brain tumor. Methods: Perfusion CT and CECT were performed in 20 rabbits with VX2 brain tumor. The GTV and CTV calculated with the maximal and minimal diameter of each tumor in the blood volume (BV) maps and CECT were measured and compared to those in pathological specimens. Results: The mean value of the maximal and minimal diameter of GTV was (8.19 ± 2.29) mm and (4.83 ± 1.31) mm in pathological specimens, (11.98 ±3.29) mm and (7.03±1.82) mm in BV maps, while (6.36±3.85) mm and (3.17±1.93) mm in CECT images, which were significantly different (pathological specimen vs. BV map, t = 7.17, P =0.000;pathological specimen vs. CECT, t = 8.37, P = 0.000, respectively). The mean value of the maximal and minimal diameter of CTV in pathologic specimens was (12.87 ± 3.74) mm and (7.71 ± 2.15) mm, which was significantly different from that of GTV and CTV in CECT (t = - 3. 18, P = 0. 005 and t = - 4.24, P =0.000; t= -11.59,P=0.000 and t= -9.39, P=0.000), while similar with that of GTV in BV maps (t = - 1.95,P = 0. 067; t = - 2. 06, P = 0. 054). For CECT, the margin from GTV to CTV was 81.83% ±40.33% for the maximal diameter and 276.73% ± 131.46% for the minimal. While for BV maps, the margin was 7.93% ± 17. 84% and 12.52% ± 27. 83%, which was significant different from that for CECT images (t=7.36, P=0. 000 and t= -8.78, P=0.000). Conclusions: Compared with CECT, the BV map from 64-slice spiral CT perfusion imaging might have higher accuracy in target volume delineation for brain tumor. (authors)

  14. Risk factors for radiation pneumonitis after stereotactic radiation therapy for lung tumours: clinical usefulness of the planning target volume to total lung volume ratio.

    Science.gov (United States)

    Ueyama, Tomoko; Arimura, Takeshi; Takumi, Koji; Nakamura, Fumihiko; Higashi, Ryutaro; Ito, Soichiro; Fukukura, Yoshihiko; Umanodan, Tomokazu; Nakajo, Masanori; Koriyama, Chihaya; Yoshiura, Takashi

    2018-06-01

    To identify risk factors for symptomatic radiation pneumonitis (RP) after stereotactic radiation therapy (SRT) for lung tumours. We retrospectively evaluated 68 lung tumours in 63 patients treated with SRT between 2011 and 2015. RP was graded according to the National Cancer Institute-Common Terminology Criteria for Adverse Events version 4.0. SRT was delivered at 7.0-12.0 Gy per each fraction, once daily, to a total of 48-64 Gy (median, 50 Gy). Univariate analysis was performed to assess patient- and treatment-related factors, including age, sex, smoking index (SI), pulmonary function, tumour location, serum Krebs von den Lungen-6 value (KL-6), dose-volume metrics (V5, V10, V20, V30, V40 and VS5), homogeneity index of the planning target volume (PTV), PTV dose, mean lung dose (MLD), contralateral MLD and V2, PTV volume, lung volume and the PTV/lung volume ratio (PTV/Lung). Performance of PTV/Lung in predicting symptomatic RP was also analysed using receiver operating characteristic (ROC) analysis. The median follow-up period was 21 months. 10 of 63 patients (15.9%) developed symptomatic RP after SRT. On univariate analysis, V10, V20, PTV volume and PTV/Lung were significantly associated with occurrence of RP  ≥Grade 2. ROC curves indicated that symptomatic RP could be predicted using PTV/Lung [area under curve (AUC): 0.88, confidence interval (CI: 0.78-0.95), cut-off value: 1.09, sensitivity: 90.0% and specificity: 72.4%]. PTV/Lung is a good predictor of symptomatic RP after SRT. Advances in knowledge: The cases with high PTV/Lung should be carefully monitored with caution for the occurrence of RP after SRT.

  15. Whole-brain perfusion CT using a toggling table technique to predict final infarct volume in acute ischemic stroke.

    Science.gov (United States)

    Schrader, I; Wilk, D; Jansen, O; Riedel, C

    2013-09-01

    To evaluate how accurately final infarct volume in acute ischemic stroke can be predicted with perfusion CT (PCT) using a 64-MDCT unit and the toggling table technique. Retrospective analysis of 89 patients with acute ischemic stroke who underwent CCT, CT angiography (CTA) and PCT using the "toggling table" technique within the first three hours after symptom onset. In patients with successful thrombolytic therapy (n = 48) and in those without effective thrombolytic therapy (n = 41), the infarct volume and the volume of the penumbra on PCT were compared to the infarct size on follow-up images (CT or MRI) performed within 8 days. The feasibility of complete infarct volume prediction by 8 cm cranio-caudal coverage was evaluated. The correlation between the volume of hypoperfusion on PCT defined by cerebral blood volume reduction and final infarct volume was strongest in patients with successful thrombolytic therapy with underestimation of the definite infarct volume by 8.5 ml on average. The CBV map had the greatest prognostic value. In patients without successful thrombolytic therapy, the final infarct volume was overestimated by 12.1 ml compared to the MTT map on PCT. All infarcts were detected completely. There were no false-positive or false-negative results. Using PCT and the "toggling table" technique in acute stroke patients is helpful for the rapid and accurate quantification of the minimal final infarct and is therefore a prognostic parameter which has to be evaluated in further studies to assess its impact on therapeutic decision. ▶ Using PCT and the “toggling table technique” allows accurate quantification of the infarct core and penumbra. ▶ It is possible to record dynamic perfusion parameters quickly and easily of almost the entire supratentorial brain volume on a 64-slice MDCT unit. ▶ The technique allows identification of those patients who could profit from thrombolytic therapy outside the established time intervals. © Georg Thieme Verlag

  16. Risk factors for local failure requiring salvage neurosurgery after radiosurgery for brain metastases

    International Nuclear Information System (INIS)

    Weltman, Eduardo; Hanriot, Rodrigo de Morais; Prisco, Flavio Eduardo; Nadalin, Wladimir; Brandt, Reynaldo Andre; Moreira, Frederico Rafael

    2004-01-01

    Objective: the aim of this study is to select the risk factors for local failure requiring salvage neurosurgery in patients with brain metastases treated with stereotactic radiosurgery in a single institution. Methods: the follow-up of 123 patients, with 255 brain metastases treated with radiosurgery at the Radiation Oncology Department of the Hospital Israelita Albert Einstein from July 1993 to August 2001, was retrospectively analyzed. The criteria for salvage neurosurgery were tumor volume enlargement, or tumor persistence leading to severe neurological symptoms, life threatening situation or critical steroid dependence. We considered the case as local failure when the histopathologic evaluation showed morphologically preserved cancer cells (tumor recurrence, persistence or progression). We applied the Fisher's exact test to evaluate the statistical correlation between local failure and primary tumor histology, volume of the brain metastases, prescribed radiosurgery dose, and whole brain radiotherapy. Results: fourteen of 123 patients (11%) underwent salvage neurosurgery. Histology showed preserved cancer cells with necrosis and/or bleeding in 11 cases (9% of the total accrual), and only necrosis with or without bleeding (without preserved cancer cells) in three cases. The primary tumor histology among the 11 patients considered with active neoplasia was malignant melanoma in five cases (21% of the patients with melanoma), breast adenocarcinoma in three (16% of the patients with breast cancer), and other histology in the remaining three. Breast cancer diagnosis, non-elective whole brain irradiation, volume of the brain metastases, and the prescribed radiosurgery dose did not correlate with the risk of local failure. Patients treated with elective whole brain radiotherapy showed fewer local failures, when compared to all patients receiving whole brain radiotherapy, and to the patients not receiving this treatment, with incidence of failure in 4%,7% and 14

  17. White matter volume mediates the relationship between self-efficacy and mobility in older women

    Science.gov (United States)

    Nagamatsu, Lindsay S.; Hsu, Chun Liang; Davis, Jennifer C.; Best, John R.; Liu-Ambrose, Teresa

    2017-01-01

    Background With our aging population, understanding determinants of healthy aging is a priority. One essential component of healthy aging is mobility. While self-efficacy can directly impact mobility in older adults, it is unknown what role brain health may play in this relationship. Methods We conducted a cross-sectional pilot analysis of community-dwelling women (n = 80, mean age = 69 years) to examine whether brain volume mediates the relationship between falls-related self-efficacy, as measured by the Activities-specific Balance Confidence (ABC) scale, and mobility, as measured by the Timed Up and Go (TUG) test. Age, depression, education, functional comorbidities, and Montreal Cognitive Assessment (MoCA) were included in the model as covariates. Results We report that total white matter volume, specifically, significantly mediates the relationship between self-efficacy and mobility, where higher self-efficacy was associated with greater white matter volume (r=0.28), which in turn, was associated with better mobility (r=−0.30). Conclusions Our pilot study extends our understanding of the psychosocial and neurological factors that contribute to mobility, and provides insight into effective strategies that may be used to improve functional independence among older adults. Future prospective and intervention studies are required to further elucidate the nature of the relationship between self-efficacy, mobility, and brain health. PMID:27749206

  18. Dietary Virgin Olive Oil Reduces Blood Brain Barrier Permeability, Brain Edema, and Brain Injury in Rats Subjected to Ischemia-Reperfusion

    Directory of Open Access Journals (Sweden)

    Fatemeh Mohagheghi

    2010-01-01

    Full Text Available Recent studies suggest that dietary virgin olive oil (VOO reduces hypoxia-reoxygenation injury in rat brain slices. We sought to extend these observations in an in vivo study of rat cerebral ischemia-reperfusion injury. Four groups, each consisting of 18 Wistar rats, were studied. One group (control received saline, while three treatment groups received oral VOO (0.25, 0.5, and 0.75 mL/kg/day, respectively. After 30 days, blood lipid profiles were determined, before a 60-min period of middle cerebral artery occlusion (MCAO. After 24-h reperfusion, neurological deficit scores, infarct volume, brain edema, and blood brain barrier permeability were each assessed in subgroups of six animals drawn from each main group. VOO reduced the LDL/HDL ratio in doses of 0.25, 0.5, and 0.75 mL/kg/day in comparison to the control group (p < 0.05, and offered cerebroprotection from ischemia-reperfusion. For controls vs. doses of 0.25 vs. 0.5 vs. 0.75 mL/kg/day, attenuated corrected infarct volumes were 207.82 ± 34.29 vs. 206.41 ± 26.23 vs. 124.21 ± 14.73 vs. 108.46 ± 31.63 mm3; brain water content of the infarcted hemisphere was 82 ±± 0.25 vs. 81.5 ± 0.56 vs. 80.5 ± 0.22 vs. 80.5 ± 0.34%; and blood brain barrier permeability of the infarcted hemisphere was 11.31 ± 2.67 vs. 9.21 ± 2.28 vs. 5.83 ± 1.6 vs. 4.43 ± 0.93 µg/g tissue (p < 0.05 for measures in doses 0.5 and 0.75 mL/kg/day vs. controls. Oral administration of VOO reduces infarct volume, brain edema, blood brain barrier permeability, and improves neurologic deficit scores after transient MCAO in rats.

  19. Application of the total reflection X-ray fluorescence method to the elemental analysis of brain tumors of different types and grades of malignancy

    International Nuclear Information System (INIS)

    Lankosz, M.W.; Grzelak, M.; Ostachowicz, B.; Wandzilak, A.; Szczerbowska-Boruchowska, M.; Wrobel, P.; Radwanska, E.; Adamek, D.

    2014-01-01

    The process of carcinogenesis may influence normal biochemical reactions leading to alterations in the elemental composition of the tissue. Total reflection X-ray fluorescence analysis (TXRF) was applied to the elemental analysis of different brain tumors. The following elements were present in all the neoplastic tissues analyzed: K, Ca, Fe, Cu, Zn and Rb. The results of the analysis showed that the elemental composition of a relatively small fragment of tissue represents satisfactorily the biochemical “signature” of a cancer. On the basis of the element concentrations determined, it was possible to differentiate between some types of brain tumors. - Highlights: • Elemental composition represents the biochemical signature of brain cancer. • The element levels differentiate some types of brain tumors. • TXRF spectrometry is a useful tool for elemental trace analysis of brain cancer

  20. Effect of steroid on brain tumors and surround edemas : observation with regional cerebral blood volume (rCBV) maps of perfusion MRI

    International Nuclear Information System (INIS)

    Choi, Ju Youl; Sun, Joo Sung; Kim, Sun Yong; Kim, Ji Hyung; Suh, Jung Ho; Cho, Kyung Gi; Kim, Jang Sung

    2000-01-01

    To observe the hemodynamic change in brain tumors and peritumoral edemas after steroid treatment, and then investigate the clinical usefulness of perfusion MRI. We acquired conventional and perfusion MR images in 15 patients with various intracranial tumors (4 glioblastoma multiformes, 4 meningiomas, 3 metastatic tumors, 1 anaplastic ependymoma, 1 anaplastic astrocytoma, 1 hemangioblastoma, and 1 pilocytic astrocytoma). For perfusion MR imaging, a 1.5T unit employing the gradient-echo EPI technique was used, and further perfusion MR images were obtained 2-10 days after intravenous steroid therapy. After processing of the raw data, regional cerebral blood volume (rCBV) maps were reconstructed. The maps were visually evaluated by comparing relative perfusion in brain tumors and peritumoral edemas with that in contralateral white matter. Objective evaluations were performed by comparing the perfusion ratios of brain tumors and peritumoral edemas. Visual evaluations of rCBV maps, showed that in most brain tumors (67%, 10/15), perfusion was high before steroid treatment and showed in (80%, 12/15) decreased afterwards. Objective evaluation, showed that in all brain tumors, perfusion decreased. Visual evaluation of perfusion change in peritumoral edemas revealed change in only one case, but objective evaluation indicated that perfusion decreased significantly in all seven cases. rCBV maps acquired by perfusion MR imaging can provide hemodynamic information about brain tumors and peritumoral edemas. Such maps could prove helpful in the preoperative planning of brain tumor surgery and the monitoring of steroid effects during conservative treatment. (author)

  1. Brain classification reveals the right cerebellum as the best biomarker of dyslexia

    Directory of Open Access Journals (Sweden)

    Demonet Jean

    2009-06-01

    Full Text Available Abstract Background Developmental dyslexia is a specific cognitive disorder in reading acquisition that has genetic and neurological origins. Despite histological evidence for brain differences in dyslexia, we recently demonstrated that in large cohort of subjects, no differences between control and dyslexic readers can be found at the macroscopic level (MRI voxel, because of large variances in brain local volumes. In the present study, we aimed at finding brain areas that most discriminate dyslexic from control normal readers despite the large variance across subjects. After segmenting brain grey matter, normalizing brain size and shape and modulating the voxels' content, normal readers' brains were used to build a 'typical' brain via bootstrapped confidence intervals. Each dyslexic reader's brain was then classified independently at each voxel as being within or outside the normal range. We used this simple strategy to build a brain map showing regional percentages of differences between groups. The significance of this map was then assessed using a randomization technique. Results The right cerebellar declive and the right lentiform nucleus were the two areas that significantly differed the most between groups with 100% of the dyslexic subjects (N = 38 falling outside of the control group (N = 39 95% confidence interval boundaries. The clinical relevance of this result was assessed by inquiring cognitive brain-based differences among dyslexic brain subgroups in comparison to normal readers' performances. The strongest difference between dyslexic subgroups was observed between subjects with lower cerebellar declive (LCD grey matter volumes than controls and subjects with higher cerebellar declive (HCD grey matter volumes than controls. Dyslexic subjects with LCD volumes performed worse than subjects with HCD volumes in phonologically and lexicon related tasks. Furthermore, cerebellar and lentiform grey matter volumes interacted in dyslexic

  2. Potential predictors for the amount of intra-operative brain shift during deep brain stimulation surgery

    Science.gov (United States)

    Datteri, Ryan; Pallavaram, Srivatsan; Konrad, Peter E.; Neimat, Joseph S.; D'Haese, Pierre-François; Dawant, Benoit M.

    2011-03-01

    A number of groups have reported on the occurrence of intra-operative brain shift during deep brain stimulation (DBS) surgery. This has a number of implications for the procedure including an increased chance of intra-cranial bleeding and complications due to the need for more exploratory electrodes to account for the brain shift. It has been reported that the amount of pneumocephalus or air invasion into the cranial cavity due to the opening of the dura correlates with intraoperative brain shift. Therefore, pre-operatively predicting the amount of pneumocephalus expected during surgery is of interest toward accounting for brain shift. In this study, we used 64 DBS patients who received bilateral electrode implantations and had a post-operative CT scan acquired immediately after surgery (CT-PI). For each patient, the volumes of the pneumocephalus, left ventricle, right ventricle, third ventricle, white matter, grey matter, and cerebral spinal fluid were calculated. The pneumocephalus was calculated from the CT-PI utilizing a region growing technique that was initialized with an atlas-based image registration method. A multi-atlas-based image segmentation method was used to segment out the ventricles of each patient. The Statistical Parametric Mapping (SPM) software package was utilized to calculate the volumes of the cerebral spinal fluid (CSF), white matter and grey matter. The volume of individual structures had a moderate correlation with pneumocephalus. Utilizing a multi-linear regression between the volume of the pneumocephalus and the statistically relevant individual structures a Pearson's coefficient of r = 0.4123 (p = 0.0103) was found. This study shows preliminary results that could be used to develop a method to predict the amount of pneumocephalus ahead of the surgery.

  3. Orbitofrontal cortex volumes in medication naïve children with major depressive disorder: a magnetic resonance imaging study.

    Science.gov (United States)

    Chen, Hua-Hsuan; Rosenberg, David R; MacMaster, Frank P; Easter, Philip C; Caetano, Sheila C; Nicoletti, Mark; Hatch, John P; Nery, Fabiano G; Soares, Jair C

    2008-12-01

    Adults with major depressive disorder (MDD) are reported to have reduced orbitofrontal cortex (OFC) volumes, which could be related to decreased neuronal density. We conducted a study on medication naïve children with MDD to determine whether abnormalities of OFC are present early in the illness course. Twenty seven medication naïve pediatric Diagnostic and Statistical Manual of Mental Disorders, 4(th) edition (DSM-IV) MDD patients (mean age +/- SD = 14.4 +/- 2.2 years; 10 males) and 26 healthy controls (mean age +/- SD = 14.4 +/- 2.4 years; 12 males) underwent a 1.5T magnetic resonance imaging (MRI) with 3D spoiled gradient recalled acquisition. The OFC volumes were compared using analysis of covariance with age, gender, and total brain volume as covariates. There was no significant difference in either total OFC volume or total gray matter OFC volume between MDD patients and healthy controls. Exploratory analysis revealed that patients had unexpectedly larger total right lateral (F = 4.2, df = 1, 48, p = 0.05) and right lateral gray matter (F = 4.6, df = 1, 48, p = 0.04) OFC volumes compared to healthy controls, but this finding was not significant following statistical correction for multiple comparisons. No other OFC subregions showed a significant difference. The lack of OFC volume abnormalities in pediatric MDD patients suggests the abnormalities previously reported for adults may develop later in life as a result of neural cell loss.

  4. Use of diffusion-weighted MRI to modify radiosurgery planning in brain metastases may reduce local recurrence.

    Science.gov (United States)

    Zakaria, Rasheed; Pomschar, Andreas; Jenkinson, Michael D; Tonn, Jörg-Christian; Belka, Claus; Ertl-Wagner, Birgit; Niyazi, Maximilian

    2017-02-01

    Stereotactic radiosurgery (SRS) is an effective and well tolerated treatment for selected brain metastases; however, local recurrence still occurs. We investigated the use of diffusion weighted MRI (DWI) as an adjunct for SRS treatment planning in brain metastases. Seventeen consecutive patients undergoing complete surgical resection of a solitary brain metastasis underwent image analysis retrospectively. SRS treatment plans were generated based on standard 3D post-contrast T1-weighted sequences at 1.5T and then separately using apparent diffusion coefficient (ADC) maps in a blinded fashion. Control scans immediately post operation confirmed complete tumour resection. Treatment plans were compared to one another and with volume of local recurrence at progression quantitatively and qualitatively by calculating the conformity index (CI), the overlapping volume as a proportion of the total combined volume, where 1 = identical plans and 0 = no conformation whatsoever. Gross tumour volumes (GTVs) using ADC and post-contrast T1-weighted sequences were quantitatively the same (related samples Wilcoxon signed rank test = -0.45, p = 0.653) but showed differing conformations (CI 0.53, p recurrence than the standard plan (median 3.53 cm 3 vs. 3.84 cm 3 , p = 0.002). ADC maps may be a useful tool in addition to the standard post-contrast T1-weighted sequence used for SRS planning.

  5. Variation in orbitofrontal cortex volume: relation to sex, emotion regulation and affect.

    Science.gov (United States)

    Welborn, B Locke; Papademetris, Xenophon; Reis, Deidre L; Rajeevan, Nallakkandi; Bloise, Suzanne M; Gray, Jeremy R

    2009-12-01

    Sex differences in brain structure have been examined extensively but are not completely understood, especially in relation to possible functional correlates. Our two aims in this study were to investigate sex differences in brain structure, and to investigate a possible relation between orbitofrontal cortex subregions and affective individual differences. We used tensor-based morphometry to estimate local brain volume from MPRAGE images in 117 healthy right-handed adults (58 female), age 18-40 years. We entered estimates of local brain volume as the dependent variable in a GLM, controlling for age, intelligence and whole-brain volume. Men had larger left planum temporale. Women had larger ventromedial prefrontal cortex (vmPFC), right lateral orbitofrontal (rlOFC), cerebellum, and bilateral basal ganglia and nearby white matter. vmPFC but not rlOFC volume covaried with self-reported emotion regulation strategies (reappraisal, suppression), expressivity of positive emotions (but not of negative), strength of emotional impulses, and cognitive but not somatic anxiety. vmPFC volume statistically mediated sex differences in emotion suppression. The results confirm prior reports of sex differences in orbitofrontal cortex structure, and are the first to show that normal variation in vmPFC volume is systematically related to emotion regulation and affective individual differences.

  6. Fatty acid composition of total lipids and phospholipids of muscular tissue and brain of rats under the impact of vibration

    Directory of Open Access Journals (Sweden)

    N. M. Kostyshyn

    2016-06-01

    Full Text Available Fatty acids are important structural components of biological membranes, energy substrate of cells involved in fixing phospholipid bilayer proteins, and acting as regulators and modulators of enzymatic activity. Under the impact of vibration oscillations there can occur shifts in the ratio of different groups of fatty acids, and degrees of their saturation may change. The imbalance between saturated, monounsaturated and polyunsaturated fatty acids, which occurs later in the cell wall, disrupts fluidity and viscosity of lipid phase and causes abnormal cellular metabolism. Aim. In order to study the impact of vibration on the level of fatty acids of total lipids in muscular tissue and fatty acid composition of phospholipids in muscles and brain, experimental animals have been exposed to vertical vibration oscillations with different frequency for 28 days. Methods and results. Tissues fragments of hip quadriceps and brain of rats were used for obtaining methyl esters of fatty acids studied by the method of gas-liquid chromatography. It was found that the lipid content, ratio of its separate factions and fatty acid composition in muscular tissue and brain of animals with the action of vibration considerably varies. With the increase of vibration acceleration tendency to increase in absolute quantity of total lipids fatty acids can be observed at the account of increased level of saturated and monounsaturated ones. These processes are caused by activation of self-defense mechanisms of the body under the conditions of deviations from stabilized physiological norm, since adaptation requires certain structural and energy costs. Increase in the relative quantity of saturated and monounsaturated fatty acids in phospholipids of muscles and brain and simultaneous reduction in concentration of polyunsaturated fatty acids are observed. Conclusion. These changes indicate worsening of structural and functional organization of muscles and brain cell membranes of

  7. Face-name association learning and brain structural substrates in alcoholism.

    Science.gov (United States)

    Pitel, Anne-Lise; Chanraud, Sandra; Rohlfing, Torsten; Pfefferbaum, Adolf; Sullivan, Edith V

    2012-07-01

    Associative learning is required for face-name association and is impaired in alcoholism, but the cognitive processes and brain structural components underlying this deficit remain unclear. It is also unknown whether prompting alcoholics to implement a deep level of processing during face-name encoding would enhance performance. Abstinent alcoholics and controls performed a levels-of-processing face-name learning task. Participants indicated whether the face was that of an honest person (deep encoding) or that of a man (shallow encoding). Retrieval was examined using an associative (face-name) recognition task and a single-item (face or name only) recognition task. Participants also underwent 3T structural MRI. Compared with controls, alcoholics had poorer associative and single-item learning and performed at similar levels. Level of processing at encoding had little effect on recognition performance but affected reaction time (RT). Correlations with brain volumes were generally modest and based primarily on RT in alcoholics, where the deeper the processing at encoding, the more restricted the correlations with brain volumes. In alcoholics, longer control task RTs correlated modestly with smaller tissue volumes across several anterior to posterior brain regions; shallow encoding correlated with calcarine and striatal volumes; deep encoding correlated with precuneus and parietal volumes; and associative recognition RT correlated with cerebellar volumes. In controls, poorer associative recognition with deep encoding correlated significantly with smaller volumes of frontal and striatal structures. Despite prompting, alcoholics did not take advantage of encoding memoranda at a deep level to enhance face-name recognition accuracy. Nonetheless, conditions of deeper encoding resulted in faster RTs and more specific relations with regional brain volumes than did shallow encoding. The normal relation between associative recognition and corticostriatal volumes was not

  8. Mean platelet volume and mean platelet volume/platelet count ratio

    African Journals Online (AJOL)

    Amira M. Elsayed

    2016-03-30

    Mar 30, 2016 ... The aim of this study was to compare the MPV and mean platelet volume/platelet count ... brain stroke, both in the acute phase and long after disease.17 ... males, while the healthy controls comprised 12 females and 8.

  9. Effects of Isometric Brain-Body Size Scaling on the Complexity of Monoaminergic Neurons in a Minute Parasitic Wasp

    NARCIS (Netherlands)

    Woude, van der Emma; Smid, Hans M.

    2017-01-01

    Trichogramma evanescens parasitic wasps show large phenotypic plasticity in brain and body size, resulting in a 5-fold difference in brain volume among genetically identical sister wasps. Brain volume scales linearly with body volume in these wasps. This isometric brain scaling forms an exception to

  10. [11C]befloxatone distribution is well correlated to monoamine oxidase A protein levels in the human brain.

    Science.gov (United States)

    Zanotti-Fregonara, Paolo; Bottlaender, Michel

    2014-12-01

    [(11)C]befloxatone is a positron emission tomography radioligand to image monoamine oxidase A (MAO-A) in the brain, which has been used in preclinical studies and in clinical protocols. However, a recent study found that [(11)C]befloxatone binding potential (k(3)/k(4)) has a poor correlation with MAO-A protein levels measured in the human brain. We here show that this poor correlation only depends on the choice of the parameter when performing kinetic modeling. In particular, the total volume of distribution of [(11)C]befloxatone shows a tight correlation with both protein and mRNA levels of MAO-A in the human brain.

  11. Aberrant paramagnetic signals outside the tumor volume on routine surveillance MRI of brain tumor patients.

    Science.gov (United States)

    Yust-Katz, Shlomit; Inbar, Edna; Michaeli, Natalia; Limon, Dror; Siegal, Tali

    2017-09-01

    Late complications of cerebral radiation therapy (RT) involve vascular injury with acquired cavernous malformation, telangiectasias and damage to vascular walls which are well recognized in children. Its incidence in adults is unknown. Blood products and iron deposition that accompany vascular injury create paramagnetic effects on MRI. This study retrospectively investigated the frequency of paramagnetic lesions on routine surveillance MRI of adult brain tumor patients. MRI studies of 115 brain tumor patients were reviewed. Only studies containing sequences of either susceptibility weighted images or gradient echo or blood oxygenation level dependent imaging were included. Lesions inside the tumor volume were not considered. 68 studies fulfilled the above criteria and included 48 patients with previous RT (35 followed for >2 years and 13 for 1 year) and 20 patients who were not treated with RT. The median age at time of irradiation was 47 years. Aberrant paramagnetic lesions were found in 23/35 (65%) patients followed for >2 years after RT and in only 1/13 (8%) patients followed for 1-year after radiation (p = 0.03). The 1-year follow-up group did not differ from the control group [2/20 (9%)]. Most lesions were within the radiation field and none of the patients had related symptomatology. The number and incidence of these lesions increased with time and amounted to 75% over 3 years post RT. MRI paramagnetic signal aberrations are common findings in adult brain tumor patients that evolve over time after RT. The clinical significance of these lesions needs further investigation.

  12. Brain-Derived Neurotrophic Factor Serum Levels and Hippocampal Volume in Mild Cognitive Impairment and Dementia due to Alzheimer Disease

    Directory of Open Access Journals (Sweden)

    Ericksen Mielle Borba

    2016-12-01

    Full Text Available Background/Aims: Hippocampal atrophy is a recognized biomarker of Alzheimer disease (AD pathology. Serum brain-derived neurotrophic factor (BDNF reduction has been associated with neurodegeneration. We aimed to evaluate BDNF serum levels and hippocampal volume in clinical AD (dementia and mild cognitive impairment [MCI]. Methods: Participants were 10 patients with MCI and 13 with dementia due to AD as well as 10 healthy controls. BDNF serum levels were determined by ELISA and volumetric measures with NeuroQuant®. Results: MCI and dementia patients presented lower BDNF serum levels than healthy participants; dementia patients presented a smaller hippocampal volume than MCI patients and healthy participants. Discussion: The findings support that the decrease in BDNF might start before the establishment of neuronal injury expressed by the hippocampal reduction.

  13. Cortical and subcortical brain alterations in Juvenile Absence Epilepsy

    Directory of Open Access Journals (Sweden)

    Manuela Tondelli

    2016-01-01

    Full Text Available Despite the common assumption that genetic generalized epilepsies are characterized by a macroscopically normal brain on magnetic resonance imaging, subtle structural brain alterations have been detected by advanced neuroimaging techniques in Childhood Absence Epilepsy syndrome. We applied quantitative structural MRI analysis to a group of adolescents and adults with Juvenile Absence Epilepsy (JAE in order to investigate micro-structural brain changes using different brain measures. We examined grey matter volumes, cortical thickness, surface areas, and subcortical volumes in 24 patients with JAE compared to 24 healthy controls; whole-brain voxel-based morphometry (VBM and Freesurfer analyses were used. When compared to healthy controls, patients revealed both grey matter volume and surface area reduction in bilateral frontal regions, anterior cingulate, and right mesial-temporal lobe. Correlation analysis with disease duration showed that longer disease was correlated with reduced surface area in right pre- and post-central gyrus. A possible effect of valproate treatment on brain structures was excluded. Our results indicate that subtle structural brain changes are detectable in JAE and are mainly located in anterior nodes of regions known to be crucial for awareness, attention and memory.

  14. Gender differences in age effect on brain atrophy measured by magnetic resonance imaging

    International Nuclear Information System (INIS)

    Gur, R.C.; Mozley, P.D.; Resnick, S.M.; Gottlieb, G.L.; Kohn, M.; Zimmerman, R.; Herman, G.; Atlas, S.; Grossman, R.; Berretta, D.; Erwin, R.; Gur, R.E.

    1991-01-01

    A prospective sample of 69 healthy adults, age range 18-80 years, was studied with magnetic resonance imaging scans of the entire cranium. Volumes were obtained by a segmentation algorithm that uses proton density and T 2 pixel values to correct field inhomogeneities (shading). Average (±SD) brain volume, excluding cerebellum, was 1090.91 ml and cerebrospinal fluid (DSF) volume was 127.91 ml. Brain volume was higher (by 5 ml) in the right hemisphere. Men had 91 ml higher brain and 20 ml higher CSF volume than women. Age was negatively correlated with brain volume and positively correlated with CSF volume. The slope fo the regression line with age for CSF was steeper for men than women. This difference in slopes was significant for sulca but not ventricular, CSF. The greatest amount of atrophy in elderly men was in the left hemisphere, whereas is women age effects were symmetric. The findings may point to neuroanatomic substrates of hemispheric specialization and gender differences in age-related changes in brain function. They suggest that women are less vulnerable to age-related changes in mental abilities, whereas men are particularly susceptible to aging effects on left hemispheric functions

  15. Longitudinal Regional Brain Development and Clinical Risk Factors in Extremely Preterm Infants.

    Science.gov (United States)

    Kersbergen, Karina J; Makropoulos, Antonios; Aljabar, Paul; Groenendaal, Floris; de Vries, Linda S; Counsell, Serena J; Benders, Manon J N L

    2016-11-01

    To investigate third-trimester extrauterine brain growth and correlate this with clinical risk factors in the neonatal period, using serially acquired brain tissue volumes in a large, unselected cohort of extremely preterm born infants. Preterm infants (gestational age regions covering the entire brain. Multivariable regression analysis was used to determine the influence of clinical variables on volumes at both scans, as well as on volumetric growth. MRIs at term equivalent age were available for 210 infants and serial data were available for 131 infants. Growth over these 10 weeks was greatest for the cerebellum, with an increase of 258%. Sex, birth weight z-score, and prolonged mechanical ventilation showed global effects on brain volumes on both scans. The effect of brain injury on ventricular size was already visible at 30 weeks, whereas growth data and volumes at term-equivalent age revealed the effect of brain injury on the cerebellum. This study provides data about third-trimester extrauterine volumetric brain growth in preterm infants. Both global and local effects of several common clinical risk factors were found to influence serial volumetric measurements, highlighting the vulnerability of the human brain, especially in the presence of brain injury, during this period. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. MRI quantitative assessment of brain maturation and prognosis in premature infants using total maturation score

    International Nuclear Information System (INIS)

    Qi Ying; Wang Xiaoming

    2009-01-01

    Objective: To quantitatively assess brain maturation and prognosis in premature infants on conventional MRI using total maturation score (TMS). Methods: Nineteen cases of sequelae of white matter damage (WMD group )and 21 cases of matched controls (control group) in premature infants confirmed by MRI examinations were included in the study. All cases underwent conventional MR imaging approximately during the perinatal period after birth. Brain development was quantitatively assessed using Childs AM's validated scoring system of TMS by two sophisticated radiology physicians. Interobserver agreement and reliability was evaluated by using intraclass correlation (ICC). Linear regression analysis between TMS and postmenstrual age (PMA) was made(Y: TMS, X: PMA). Independent-sample t test of the two groups' TMS was made. Results: Sixteen of 19 cases revealed MRI abnormalities. Lesions showing T 1 and T 2 shortening tended to occur in clusters or a linear pattern in the deep white matter of the centrum semiovale, periventricular white matter. Diffusion-weighted MR image (DWI) showed 3 cases with greater lesions and 4 cases with new lesions in corpus callosum. There was no abnormality in control group on MRI and DWI. The average numbers of TMS between the two observers were 7.13±2.27, 7.13±2.21. Interobservcer agreement was found to be high (ICC=0.990, P 2 =0.6401,0.5156 respectively, P 0.05). Conclusion: Conventional MRI is able to quantify the brain maturation and prognosis of premature infants using TMS. (authors)

  17. TOTAL WOOD VOLUME ESTIMATION OF EUCALYPTUS SPECIES BY IMAGES OF LANDSAT SATELLITE

    Directory of Open Access Journals (Sweden)

    Elias Fernando Berra

    2012-12-01

    Full Text Available http://dx.doi.org/10.5902/198050987566Models relating spectral answers with biophysical parameters aim estimate variables, like wood volume, without the necessity of frequent field measurements. The objective was to develop models to estimate wood volume by Landsat 5 TM images, supported by regional forest inventory data. The image was geo-referenced and converted to spectral reflectance. After, the images-index NDVI (Normalized Difference Vegetation Index and SR (Simple Ratio was generated. The reflectance values of the bands (TM1, TM2, TM3 e TM4 and of the indices (NDVI and SR was related with the wood volume. The biggest correlation with volume was with the NDVI and SR indices. The variables selection was made by Stepwise method, which returned three regression models as significant to explain the variation in volume. Finally, the best fitted model was selected (volume = -830,95 + 46,05 (SR + 107,47 (TM2, which was applied on the Landsat image where the pixels had started to represent the estimated volume in m³/ha on the Eucalyptus sp. production units. This model, significant at 95% confidence level, explains 68% of the wood volume variation.

  18. Longitudinal MRI evaluation of intracranial development and vascular characteristics of breast cancer brain metastases in a mouse model.

    Directory of Open Access Journals (Sweden)

    Heling Zhou

    Full Text Available Longitudinal MRI was applied to monitor intracranial initiation and development of brain metastases and assess tumor vascular volume and permeability in a mouse model of breast cancer brain metastases. Using a 9.4T system, high resolution anatomic MRI and dynamic susceptibility contrast (DSC perfusion MRI were acquired at different time points after an intracardiac injection of brain-tropic breast cancer MDA-MB231BR-EGFP cells. Three weeks post injection, multifocal brain metastases were first observed with hyperintensity on T2-weighted images, but isointensity on T1-weighted post contrast images, indicating that blood-tumor-barrier (BTB at early stage of brain metastases was impermeable. Follow-up MRI revealed intracranial tumor growth and increased number of metastases that distributed throughout the whole brain. At the last scan on week 5, T1-weighted post contrast images detected BTB disruption in 160 (34% of a total of 464 brain metastases. Enhancement in some of the metastases was only seen in partial regions of the tumor, suggesting intratumoral heterogeneity of BTB disruption. DSC MRI measurements of relative cerebral blood volume (rCBV showed that rCBV of brain metastases was significantly lower (mean= 0.89±0.03 than that of contralateral normal brain (mean= 1.00±0.03; p<0.005. Intriguingly, longitudinal measurements revealed that rCBV of individual metastases at early stage was similar to, but became significantly lower than that of contralateral normal brain with tumor growth (p<0.05. The rCBV data were concordant with histological analysis of microvascular density (MVD. Moreover, comprehensive analysis suggested no significant correlation among tumor size, rCBV and BTB permeability. In conclusion, longitudinal MRI provides non-invasive in vivo assessments of spatial and temporal development of brain metastases and their vascular volume and permeability. The characteristic rCBV of brain metastases may have a diagnostic value.

  19. Inside the Adolescent Brain

    Science.gov (United States)

    Drury, Stacy S.

    2009-01-01

    Dr. Jay Giedd says that the main alterations in the adolescent brain are the inverted U-shaped developmental trajectories with late childhood/early teen peaks for gray matter volume among others. Giedd adds that the adolescent brain is vulnerable to substances that artificially modulate dopamine levels since its reward system is in a state of flux.

  20. Irritable bowel syndrome in female patients is associated with alterations in structural brain networks.

    Science.gov (United States)

    Labus, Jennifer S; Dinov, Ivo D; Jiang, Zhiguo; Ashe-McNalley, Cody; Zamanyan, Alen; Shi, Yonggang; Hong, Jui-Yang; Gupta, Arpana; Tillisch, Kirsten; Ebrat, Bahar; Hobel, Sam; Gutman, Boris A; Joshi, Shantanu; Thompson, Paul M; Toga, Arthur W; Mayer, Emeran A

    2014-01-01

    Alterations in gray matter (GM) density/volume and cortical thickness (CT) have been demonstrated in small and heterogeneous samples of subjects with differing chronic pain syndromes, including irritable bowel syndrome (IBS). Aggregating across 7 structural neuroimaging studies conducted at University of California, Los Angeles, Los Angeles, CA, USA, between August 2006 and April 2011, we examined group differences in regional GM volume in 201 predominantly premenopausal female subjects (82 IBS, mean age: 32±10 SD, 119 healthy controls [HCs], 30±10 SD). Applying graph theoretical methods and controlling for total brain volume, global and regional properties of large-scale structural brain networks were compared between the group with IBS and the HC group. Relative to HCs, the IBS group had lower volumes in the bilateral superior frontal gyrus, bilateral insula, bilateral amygdala, bilateral hippocampus, bilateral middle orbital frontal gyrus, left cingulate, left gyrus rectus, brainstem, and left putamen. Higher volume was found in the left postcentral gyrus. Group differences were no longer significant for most regions when controlling for the Early Trauma Inventory global score, with the exception of the right amygdala and the left postcentral gyrus. No group differences were found for measures of global and local network organization. Compared to HCs, in patients with IBS, the right cingulate gyrus and right thalamus were identified as being significantly more critical for information flow. Regions involved in endogenous pain modulation and central sensory amplification were identified as network hubs in IBS. Overall, evidence for central alterations in patients with IBS was found in the form of regional GM volume differences and altered global and regional properties of brain volumetric networks. Copyright © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.