WorldWideScience

Sample records for total arsenic content

  1. Geographical variation in total and inorganic arsenic content of polished (white) rice.

    Science.gov (United States)

    Meharg, Andrew A; Williams, Paul N; Adomako, Eureka; Lawgali, Youssef Y; Deacon, Claire; Villada, Antia; Cambell, Robert C J; Sun, Guoxin; Zhu, Yong-Guan; Feldmann, Joerg; Raab, Andrea; Zhao, Fang-Jie; Islam, Rafiqul; Hossain, Shahid; Yanai, Junta

    2009-03-01

    An extensive data set of total arsenic analysis for 901 polished (white) grain samples, originating from 10 countries from 4 continents, was compiled. The samples represented the baseline (i.e., notspecifically collected from arsenic contaminated areas), and all were for market sale in major conurbations. Median total arsenic contents of rice varied 7-fold, with Egypt (0.04 mg/kg) and India (0.07 mg/kg) having the lowest arsenic content while the U.S. (0.25 mg/kg) and France (0.28 mg/kg) had the highest content. Global distribution of total arsenic in rice was modeled by weighting each country's arsenic distribution by that country's contribution to global production. A subset of 63 samples from Bangladesh, China, India, Italy, and the U.S. was analyzed for arsenic species. The relationship between inorganic arsenic contentversus total arsenic contentsignificantly differed among countries, with Bangladesh and India having the steepest slope in linear regression, and the U.S. having the shallowest slope. Using country-specific rice consumption data, daily intake of inorganic arsenic was estimated and the associated internal cancer risk was calculated using the U.S. Environmental Protection Agency (EPA) cancer slope. Median excess internal cancer risks posed by inorganic arsenic ranged 30-fold for the 5 countries examined, being 0.7 per 10,000 for Italians to 22 per 10,000 for Bangladeshis, when a 60 kg person was considered.

  2. Heavy metal, total arsenic, and inorganic arsenic contents of algae food products.

    Science.gov (United States)

    Almela, C; Algora, S; Benito, V; Clemente, M J; Devesa, V; Súñer, M A; Vélez, D; Montoro, R

    2002-02-13

    The total arsenic, inorganic arsenic, lead, cadmium, and mercury contents of 18 algae food products currently on sale in Spain were determined. The suitability of the analytical methodologies for this type of matrix was confirmed by evaluating their analytical characteristics. The concentration ranges found for each contaminant, expressed in milligrams per kilogram of dry weight, were as follows: total arsenic, 2.3-141; inorganic arsenic, 0.15-88; lead, mercury, 0.004-0.04. There is currently no legislation in Spain regarding contaminants in algae food products, but some of the samples analyzed revealed Cd and inorganic As levels higher than those permitted by legislation in other countries. Given the high concentrations of inorganic As found in Hizikia fusiforme, a daily consumption of 1.7 g of the product would reach the Provisional Tolerable Weekly Intake recommended by the WHO for an average body weight of 68 kg. A more comprehensive study of the contents and toxicological implications of the inorganic As present in the algae food products currently sold in Spain may be necessary, which might then be the basis for the introduction of specific sales restrictions.

  3. Total arsenic, mercury, lead, and cadmium contents in edible dried seaweed in Korea.

    Science.gov (United States)

    Hwang, Y O; Park, S G; Park, G Y; Choi, S M; Kim, M Y

    2010-01-01

    Total arsenic, mercury, lead, and cadmium contents were determined in 426 samples of seaweed sold in Korea in 2007-08. The average concentrations, expressed in mg kg(-1), dry weight, were: total arsenic 17.4 (less than the limit of detection [LOD] to 88.8), Hg 0.01 (from 0.001 to 0.050), lead 0.7 (less than the LOD to 2.7), and cadmium 0.50 (less than the LOD to 2.9). There were differences in mercury, cadmium, and arsenic content in seaweed between different kinds of products and between coastal areas. The intakes of total mercury, lead, and cadmium for Korean people from seaweed were estimated to be 0.11, 0.65, and 0.45 µg kg(-1) body weight week(-1), respectively. With respect to food safety, consumption of 8.5 g day(-1) of the samples analysed could represent up to 0.2-6.7% of the respective provisional tolerable weekly intakes established by the World Health Organization (WHO). Therefore, even if Korean people have a high consumption of seaweed, this study confirms the low probability of health risks from these metals via seaweed consumption.

  4. Total and inorganic arsenic in fish samples from Norwegian waters

    DEFF Research Database (Denmark)

    Julshamn, K.; Nilsen, B. M.; Frantzen, S.

    2012-01-01

    The contents of total arsenic and inorganic arsenic were determined in fillet samples of Northeast Arctic cod, herring, mackerel, Greenland halibut, tusk, saithe and Atlantic halibut. In total, 923 individual fish samples were analysed. The fish were mostly caught in the open sea off the coast......-assisted dissolution of the samples. The concentrations found for total arsenic varied greatly between fish species, and ranged from 0.3 to 110 mg kg–1 wet weight. For inorganic arsenic, the concentrations found were very low (...

  5. Total and inorganic arsenic in fish samples from Norwegian waters.

    Science.gov (United States)

    Julshamn, Kaare; Nilsen, Bente M; Frantzen, Sylvia; Valdersnes, Stig; Maage, Amund; Nedreaas, Kjell; Sloth, Jens J

    2012-01-01

    The contents of total arsenic and inorganic arsenic were determined in fillet samples of Northeast Artic cod, herring, mackerel, Greenland halibut, tusk, saithe and Atlantic halibut. In total, 923 individual fish samples were analysed. The fish were mostly caught in the open sea off the coast of Norway, from 40 positions. The determination of total arsenic was carried out by inductively coupled plasma mass spectrometry following microwave-assisted wet digestion. The determination of inorganic arsenic was carried out by high-performance liquid chromatography-ICP-MS following microwave-assisted dissolution of the samples. The concentrations found for total arsenic varied greatly between fish species, and ranged from 0.3 to 110 mg kg(-1) wet weight. For inorganic arsenic, the concentrations found were very low (fish used in the recent EFSA opinion on arsenic in food.

  6. Total and inorganic arsenic in dietary supplements based on herbs, other botanicals and algae—a possible contributor to inorganic arsenic exposure

    DEFF Research Database (Denmark)

    Hedegaard, Rikke Susanne Vingborg; Rokkjær, Inge; Sloth, Jens Jørgen

    2013-01-01

    The content of total and inorganic arsenic was determined in 16 dietary supplements based on herbs, other botanicals and algae purchased on the Danish market. The dietary supplements originated from various regions, including Asia, Europe and USA. The contents of total and inorganic arsenic...... was determined by inductively coupled plasma mass spectrometry (ICP-MS) and anion exchange HPLC-ICP-MS, respectively, were in the range of 0.58 to 5.0 mgkg−1 and 0.03 to 3.2 mg kg−1, respectively, with a ratio between inorganic arsenic and total arsenic ranging between 5 and 100 %. Consumption of the recommended...... dose of the individual dietary supplement would lead to an exposure to inorganic arsenic within the range of 0.07 to 13 μg day−1. Such exposure from dietary supplements would in worst case constitute 62.4 % of the range of benchmark dose lower confidence limit values (BMDL01 at 0.3 to 8 μg kg bw−1 kg−1...

  7. A study of lipid- and water-soluble arsenic species in liver of Northeast Arctic cod (Gadus morhua) containing high levels of total arsenic

    DEFF Research Database (Denmark)

    Sele, Veronika; Sloth, Jens Jørgen; Julshamn, Kale

    2015-01-01

    In the present study liver samples (n = 26) of Northeast Arctic cod (Gadus morhua), ranging in total arsenic concentrations from 2.1 to 240 mg/kg liver wet weight (ww), were analysed for their content of total arsenic and arsenic species in the lipid-soluble and water-soluble fractions. The arsen...

  8. Total and inorganic arsenic in fish, seafood and seaweeds--exposure assessment.

    Science.gov (United States)

    Mania, Monika; Rebeniak, Małgorzata; Szynal, Tomasz; Wojciechowska-Mazurek, Maria; Starska, Krystyna; Ledzion, Ewa; Postupolski, Jacek

    2015-01-01

    According to the European Food Safety Authority (EFSA), fish, seafood and seaweeds are foodstuffs that significantly contribute to dietary arsenic intake. With the exception of some algal species, the dominant compounds of arsenic in such food products are the less toxic organic forms. Both the Joint FAO/WHO Expert Committee on Food Additives (JECFA) and EFSA recommend that speciation studies be performed to determine the different chemical forms in which arsenic is present in food due to the differences in their toxicity. Knowing such compositions can thus enable a complete exposure assessment to be made. Determination of total and inorganic arsenic contents in fish, their products, seafood and seaweeds present on the Polish market. This was then followed by an exposure assessment of consumers to inorganic arsenic in these foodstuffs. Total and inorganic arsenic was determined in 55 samples of fish, their products, seafood as well as seaweeds available on the market. The analytical method was hydride generation atomic absorption spectrometry (HGAAS), after dry ashing of samples and reduction of arsenic to arsenic hydride using sodium borohydride. In order to isolate only the inorganic forms of arsenic prior to mineralisation, samples were subjected to concentrated HCl hydrolysis, followed by reduction with hydrobromic acid and hydrazine sulphate after which triple chloroform extractions and triple 1M HCl re-extractions were performed. Exposure of adults was estimated in relation to the Benchmark Dose Lower Confidence Limit (BMDL0.5) as set by the Joint FAO/WHO Expert Committee on Food Additives (JECFA) that resulted in a 0.5% increase in lung cancer (3.0 μg/kg body weight (b.w.) per day). Mean total arsenic content from all investigated fish samples was 0.46 mg/kg (90th percentile 0.94 mg/kg), whilst the inorganic arsenic content never exceeded the detection limit of the analytical method used (0.025 mg/kg). In fish products, mean total arsenic concentration was

  9. Survey of total and inorganic arsenic content in blue mussels (Mytilus edulis L.) from Norwegian fiords: Revelation of unusual high levels of inorganic arsenic

    DEFF Research Database (Denmark)

    Sloth, Jens Jørgen; Julshamn, Kåre

    2008-01-01

    arsenic. Total arsenic was determined using inductively coupled plasma mass spectrometry (ICPMS) following microwave-assisted acidic digestion of the samples. Inorganic arsenic was determined using an anion-exchange HPLC-ICPMS method following microwave-assisted alkaline solubilization of the samples...

  10. Determination of Total Arsenic in Seaweed Products by Neutron Activation Analysis

    International Nuclear Information System (INIS)

    Salim, N.; Santoso, M.; Yanuar, A.; Damayanti; Kartawinata, T.G.

    2013-01-01

    Seaweed products are widely consumed as food nowadays. Seaweeds are known to contain arsenic due to their capability to accumulate arsenic from the environment. Arsenic is a known toxic element which naturally occurs in the environment. Ingestion of high levels of arsenic will cause several adverse health effects. Arsenic in food occurs at trace concentrations which require sensitive and selective analysis methods to perform elemental analysis on. Validated neutron activation analysis was used to determine the arsenic contents in seaweed products namely catoni from domestic product and nori from foreign products. The total arsenic concentration in the samples analyzed ranges from 0.79 mg/kg to 30.14 mg/kg with mean concentration 14.39 mg/kg. The estimated exposure to arsenic contributed by the analyzed products is from 0.07% up to 8.54% of the established provisional tolerable daily intake (PTDI) which is still far below the maximum tolerable level. (author)

  11. Determination of Total Arsenic in Seaweed Products by Neutron Activation Analysis

    Directory of Open Access Journals (Sweden)

    N. Salim

    2013-04-01

    Full Text Available Seaweed products are widely consumed as food nowadays. Seaweeds are known to contain arsenic due to their capability to accumulate arsenic from the environment. Arsenic is a known toxic element which naturally occurs in the environment. Ingestion of high levels of arsenic will cause several adverse health effects. Arsenic in food occurs at trace concentrations which require sensitive and selective analysis methods to perform elemental analysis on. Validated neutron activation analysis was used to determine the arsenic contents in seaweed products namely catoni from domestic product and nori from foreign products. The total arsenic concentration in the samples analyzed ranges from 0.79 mg/kg to 30.14 mg/kg with mean concentration 14.39 mg/kg. The estimated exposure to arsenic contributed by the analyzed products is from 0.07% up to 8.54% of the established provisional tolerable daily intake (PTDI which is still far below the maximum tolerable level

  12. Total arsenic in selected food samples from Argentina: Estimation of their contribution to inorganic arsenic dietary intake.

    Science.gov (United States)

    Sigrist, Mirna; Hilbe, Nandi; Brusa, Lucila; Campagnoli, Darío; Beldoménico, Horacio

    2016-11-01

    An optimized flow injection hydride generation atomic absorption spectroscopy (FI-HGAAS) method was used to determine total arsenic in selected food samples (beef, chicken, fish, milk, cheese, egg, rice, rice-based products, wheat flour, corn flour, oats, breakfast cereals, legumes and potatoes) and to estimate their contributions to inorganic arsenic dietary intake. The limit of detection (LOD) and limit of quantification (LOQ) values obtained were 6μgkg(-)(1) and 18μgkg(-)(1), respectively. The mean recovery range obtained for all food at a fortification level of 200μgkg(-)(1) was 85-110%. Accuracy was evaluated using dogfish liver certified reference material (DOLT-3 NRC) for trace metals. The highest total arsenic concentrations (in μgkg(-)(1)) were found in fish (152-439), rice (87-316) and rice-based products (52-201). The contribution to inorganic arsenic (i-As) intake was calculated from the mean i-As content of each food (calculated by applying conversion factors to total arsenic data) and the mean consumption per day. The primary contributors to inorganic arsenic intake were wheat flour, including its proportion in wheat flour-based products (breads, pasta and cookies), followed by rice; both foods account for close to 53% and 17% of the intake, respectively. The i-As dietary intake, estimated as 10.7μgday(-)(1), was significantly lower than that from drinking water in vast regions of Argentina. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Variations of arsenic species content in edible Boletus badius growing at polluted sites over four years.

    Science.gov (United States)

    Mleczek, Mirosław; Niedzielski, Przemysław; Rzymski, Piotr; Siwulski, Marek; Gąsecka, Monika; Kozak, Lidia

    2016-07-02

    The content of arsenic (As) in mushrooms can vary depending on the concentration level of this metalloid in the soil/substrate. The present study evaluated the content of arsenic in Boletus badius fruiting bodies collected from polluted and non-polluted sites in relation to the content of this element in overgrown substrate. It was found that mushrooms from the arsenic-polluted sites contained mean concentrations from 49 to 450 mg As kg(-1) dry matter (d.m.), with the greatest content found for specimens growing in close proximity of sludge deposits (490±20 mg As kg(-1)d.m.). The mean content of total arsenic in mushrooms from clean sites ranged from 0.03 to 0.37 mg kg(-1) It was found that B. badius could tolerate arsenic in soil substrate at concentrations of up to 2500 mg kg(-1), at least. In different years of investigation, shifts in particular arsenic forms, as well as a general increase in the accumulation of organic arsenic content, were observed. The results of this study clearly indicate that B. badius should not be collected for culinary purposes from any sites that may be affected by pollution.

  14. Arsenic speciation in total contents and bioaccessible fractions in atmospheric particles related to human intakes

    International Nuclear Information System (INIS)

    Huang, Minjuan; Chen, Xunwen; Zhao, Yinge; Yu Chan, Chuen; Wang, Wei; Wang, Xuemei; Wong, Ming Hung

    2014-01-01

    Speciation of inorganic trivalent arsenicals (iAs III ), inorganic pentavalent arsenicals (iAs V ), monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) in total arsenic (As) content and its bioaccessible fractions contained in road dust, household air-conditioning (AC) filter dust and PM 2.5 was investigated. Inorganic As, especially iAs V , was observed as the dominant species. Physiologically based extraction test (PBET), an in-vitro gastrointestinal method, was used to estimate the oral As bioaccessibility in coarse particles and the species present in the oral bioaccessible fraction. A composite lung simulating serum was used to mimic the pulmonary condition to extract the respiratory bioaccessible As and its species in PM 2.5 . Reduction of iAs V to iAs III occurred in both in-vitro gastrointestinal and lung simulating extraction models. The inorganic As species was the exclusive species for absorption through ingestion and inhalation of atmospheric particles, which was an important exposure route to inorganic As, in addition to drinking water and food consumption. - Highlights: • Inorganic As species was the predominant species in dust and airborne particles. • Existence of iAs III in dust and airborne particles increases human health risks. • Reduction from iAs V to iAs III occurred through in-vitro gastrointestinal model. • Reduction from iAs V to iAs III occurred in the simulating pulmonary region. • Atmospheric particles were important exposure sources of inorganic As. - Atmospheric particles are important exposure sources of inorganic As, of which the bioaccessibility is dependent on the extraction phases and models used

  15. A significant positive correlation between endogenous trans-zeatin content and total arsenic in arsenic hyperaccumulator Pteris cretica var. nervosa.

    Science.gov (United States)

    Zhang, Xuemei; Yang, Xiaoyan; Wang, Hongbin; Li, Qinchun; Wang, Haijuan; Li, Yanyan

    2017-04-01

    A pot experiment was conducted to compare the content of endogenous trans-zeatin (Z), plant arsenic (As) uptake and physiological indices in the fronds of As-hyperaccumulator (Pteris cretica var. nervosa) and non-hyperaccumulator (Pteris ensiformis). Furthermore, a stepwise regression method was used to study the relationship among determined indices, and the time-course effect of main indices was also investigated under 100mg/kg As stress with time extension. In the 100-200mg/kg As treatments, plant height showed no significant difference and endogenous Z content significantly increased in P. cretica var. nervosa compared to the control, but a significant decrease of height and endogenous Z was observed in P. ensiformis. The concentrations of As (III) and As (V) increased significantly in the fronds of two plants, but this increase was much higher in P. cretica var. nervosa. Compared to the control, the contents of chlorophyll and soluble protein were significantly increased in P. cretica var. nervosa but decreased in P. ensiformis in the 200mg/kg As treatment, respectively. A significant positive correlation was found between the contents of endogenous Z and total As in P. cretica var. nervosa, but such a correlation was not found in P. ensiformis. Additionally, in the time-course effect experiment, a peak value of each index was appeared in the 43rd day in two plants, except for chlorophyll in P. ensiformis, but this value was significantly higher in P. cretica var. nervosa than that in P. ensiformis. In conclusion, a higher endogenous Z content contributed to As accumulation of P. cretica var. nervosa under As stress. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Arsenic content in pteridophytes from the Iron Quadrangle, Minas Gerais, Brazil

    International Nuclear Information System (INIS)

    Uemura, George; Menezes, Maria Angela de Barros C.; Silva, Lucilene Guerra e; Isaias, Rosy Mary dos Santos; Salino, Alexandre

    2005-01-01

    Natural arsenic contamination is a cause for concern in many countries of the world and, in Brazil, specially in the Iron Quadrangle area, where mining activities contributed to aggravate natural contamination of this area. The discovery that a fern, Pteris vitata, hyperaccumulates arsenic led to the search of other pteridophytes species with such capacity, due to their possible use for phytoremediation of contaminated areas. In the literature cited, arsenic amounts were measured by atomic absorption, using leaf and roots samples; and only one species (Pityrogramma calomelanos) had the arsenic content of its spores measured. In a preliminary study, ferns samples from the Iron Quadrangle region were collected, identified and had their leaves processed for measurement of their arsenic content through Neutron Activation Analysis - method k 0 ; also, spores of Pteris vitata had their arsenic content measured. The results showed that: spores of P. vitata present arsenic accumulation and another fern species was found to accumulate arsenic (Adiantum raddianum). Other species that were screened confirm that, among the families of ferns already studied, species from the family Pteridaceae seems the most promising for arsenic phytoremediation purposes. Considering that two species that showed arsenic accumulation in their leaves, also presented high arsenic content in their spores, it might fasten the selection if the spores of different fern species from contaminated sites are screened first, making the process of species selection for phytoremediation faster and more efficient. (author)

  17. Arsenic content in pteridophytes from the Iron Quadrangle, Minas Gerais, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Uemura, George; Menezes, Maria Angela de Barros C.; Silva, Lucilene Guerra e [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG (Brazil)]. E-mail: george@cdtn.br; menezes@cdtn.br; leneguerra@bol.com.br; Isaias, Rosy Mary dos Santos; Salino, Alexandre [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Inst. de Ciencias Biologicas. Dept. de Botanica]. E-mail: rosy@icb.ufmg.br; salino@mono.icb.ufmg.br

    2005-07-01

    Natural arsenic contamination is a cause for concern in many countries of the world and, in Brazil, specially in the Iron Quadrangle area, where mining activities contributed to aggravate natural contamination of this area. The discovery that a fern, Pteris vitata, hyperaccumulates arsenic led to the search of other pteridophytes species with such capacity, due to their possible use for phytoremediation of contaminated areas. In the literature cited, arsenic amounts were measured by atomic absorption, using leaf and roots samples; and only one species (Pityrogramma calomelanos) had the arsenic content of its spores measured. In a preliminary study, ferns samples from the Iron Quadrangle region were collected, identified and had their leaves processed for measurement of their arsenic content through Neutron Activation Analysis - method k{sub 0}; also, spores of Pteris vitata had their arsenic content measured. The results showed that: spores of P. vitata present arsenic accumulation and another fern species was found to accumulate arsenic (Adiantum raddianum). Other species that were screened confirm that, among the families of ferns already studied, species from the family Pteridaceae seems the most promising for arsenic phytoremediation purposes. Considering that two species that showed arsenic accumulation in their leaves, also presented high arsenic content in their spores, it might fasten the selection if the spores of different fern species from contaminated sites are screened first, making the process of species selection for phytoremediation faster and more efficient. (author)

  18. Total Arsenic, Cadmium, and Lead Determination in Brazilian Rice Samples Using ICP-MS.

    Science.gov (United States)

    Mataveli, Lidiane Raquel Verola; Buzzo, Márcia Liane; de Arauz, Luciana Juncioni; Carvalho, Maria de Fátima Henriques; Arakaki, Edna Emy Kumagai; Matsuzaki, Richard; Tiglea, Paulo

    2016-01-01

    This study is aimed at investigating a suitable method for rice sample preparation as well as validating and applying the method for monitoring the concentration of total arsenic, cadmium, and lead in rice by using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Various rice sample preparation procedures were evaluated. The analytical method was validated by measuring several parameters including limit of detection (LOD), limit of quantification (LOQ), linearity, relative bias, and repeatability. Regarding the sample preparation, recoveries of spiked samples were within the acceptable range from 89.3 to 98.2% for muffle furnace, 94.2 to 103.3% for heating block, 81.0 to 115.0% for hot plate, and 92.8 to 108.2% for microwave. Validation parameters showed that the method fits for its purpose, being the total arsenic, cadmium, and lead within the Brazilian Legislation limits. The method was applied for analyzing 37 rice samples (including polished, brown, and parboiled), consumed by the Brazilian population. The total arsenic, cadmium, and lead contents were lower than the established legislative values, except for total arsenic in one brown rice sample. This study indicated the need to establish monitoring programs for emphasizing the study on this type of cereal, aiming at promoting the Public Health.

  19. Total Arsenic, Cadmium, and Lead Determination in Brazilian Rice Samples Using ICP-MS

    Directory of Open Access Journals (Sweden)

    Lidiane Raquel Verola Mataveli

    2016-01-01

    Full Text Available This study is aimed at investigating a suitable method for rice sample preparation as well as validating and applying the method for monitoring the concentration of total arsenic, cadmium, and lead in rice by using Inductively Coupled Plasma Mass Spectrometry (ICP-MS. Various rice sample preparation procedures were evaluated. The analytical method was validated by measuring several parameters including limit of detection (LOD, limit of quantification (LOQ, linearity, relative bias, and repeatability. Regarding the sample preparation, recoveries of spiked samples were within the acceptable range from 89.3 to 98.2% for muffle furnace, 94.2 to 103.3% for heating block, 81.0 to 115.0% for hot plate, and 92.8 to 108.2% for microwave. Validation parameters showed that the method fits for its purpose, being the total arsenic, cadmium, and lead within the Brazilian Legislation limits. The method was applied for analyzing 37 rice samples (including polished, brown, and parboiled, consumed by the Brazilian population. The total arsenic, cadmium, and lead contents were lower than the established legislative values, except for total arsenic in one brown rice sample. This study indicated the need to establish monitoring programs for emphasizing the study on this type of cereal, aiming at promoting the Public Health.

  20. Arsenic content of soils from three regions of Santa Catarina State

    Directory of Open Access Journals (Sweden)

    Leticia Cristina de Souza

    2016-03-01

    Full Text Available The determination of trace elements is necessary in order to monitor their entry into the soil system and to remediate contaminated areas. The purpose of this study was to determine the natural content of arsenic (As in soils of three regions of Santa Catarina State (SC: the Southern Plateau, the Metropolitan area and the Southern Coast. Arsenic content was obtained after digestion in a microwave oven, following the USEPA 3051 A protocol and quantification was made by atomic absorption spectrometry with electrothermal atomization. The results were analyzed by the Scott-Knott test at a 5% significance level. Soil attributes that best correlated with arsenic content were clay, organic carbon, cation exchange capacity and Al and Fe oxides. The arsenic levels are related to the source material and the slope of regional soils.

  1. [Arsenic contents in soil, water, and crops in an e-waste disposal area].

    Science.gov (United States)

    Yao, Chun-xia; Yin, Xue-bin; Song, Jing; Li, Chen-xi; Qian, Wei; Zhao, Qi-guo; Luo, Yong-ming

    2008-06-01

    In order to study whether disposing electronic wastes and secondary metal smelting could cause an arsenic pollution in the environment or not, Luqiao town, Taizhou City, Zhejiang Province was selected as a study area. The main purpose of this paper was to characterize arsenic contents in the local environment, including waters, sediments, soils and rice, and to assess the potential risk to humans. Additionally, the arsenic spatial distribution property and arsenic uptake-translocation rule in soil-rice system were also studied. The results showed that the average arsenic levels in the surface water and the groundwater were 8.26 microg/L and 18.52 microg/L, respectively, which did not exceed the limiting value of Chinese Environment Standards class III . Whereas,some groundwater exceeded the recommended standard by the WHO for drinking water (10 microg/L). The arsenic (on average 7.11 mg/kg) in paddy soils and arsenic (on average 6.17 mg/kg) in the vegetable garden soils were lower than the value recommended by the National Standard (level I). The average arsenic contents in brown rice and husks were 165.1 microg/kg and 144.2 microg/kg, which was also lower than the Chinese Foods Quality Standard. The arsenic contents between the corresponding soils-rice and husks-brown rice showed significantly positive correlations. By comparison, the arsenic contents of soils and husks collected around electroplating were relatively higher than most of other pollutant sources, indicating the electroplating may lead accumulation of arsenic in the paddy soil-rice system.

  2. Determination of total arsenic in soil and arsenic-resistant bacteria from selected ground water in Kandal Province, Cambodia

    International Nuclear Information System (INIS)

    Hamzah, A.; Wong, K.K.; Hasan, F.N.; Mustafa, S.; Khoo, K.S.; Sarmani, S.B.

    2013-01-01

    Cambodia has geological environments conducive to generation of high-arsenic groundwater and people are at high risk of chronic arsenic exposure. The aims of this study are to investigate the concentration of total arsenic and to isolate and identify arsenic-resistant bacteria from selected locations in Kandal Province, Cambodia. The INAA technique was used to measure the concentration of total arsenic in soils. The arsenic concentrations in soils were above permissible 5 mg/kg, ranging from 5.34 to 27.81 mg/kg. Bacteria resistant to arsenic from two arsenic-contaminated wells in Preak Russey were isolated by enrichment method in nutrient broth (NB). Colonies isolated from NB was then grown on minimal salt media (MSM) added with arsenic at increasing concentrations of 10, 20, 30, 50, 100 and 250 ppm. Two isolates that can tolerate 750 ppm of arsenic were identified as Enterobacter agglomerans and Acinetobacter lwoffii based on a series of biochemical, physiological and morphological analysis. Optimum growth of both isolates ranged from pH 6.6 to 7.0 and 30-35 deg C. E. agglomerans and A. lwoffii were able to remove 66.4 and 64.1 % of arsenic, respectively at the initial concentration of 750 ppm, within 72 h of incubation. Using energy dispersive X-ray technique, the percentage of arsenic absorbed by E. agglomerans and A. lwoffii was 0.09 and 0.15 %, respectively. This study suggested that arsenic-resistant E. agglomerans and A. lwoffii removed arsenic from media due to their ability to absorb arsenic. (author)

  3. Comparison of Microwave Assisted Acid Digestion Methods for ICP-MS Determination of Total Arsenic in Fish Tissue

    International Nuclear Information System (INIS)

    Ghanthimathi, S.; Aminah Abdullah; Salmijah, S.; Ujang, T.; Nurul, I.A.

    2012-01-01

    Fish is one of the most important sources of arsenic exposure in human diet and the Food Safety and Quality Division, Ministry of Health since 2007 has required routine monitoring of total arsenic in sea foods such as fish. This study describes an improved extraction method of total arsenic in fish using microwave assisted acid digestion procedure before being analysed by inductively coupled plasma mass spectrometry (ICP-MS). The parameters studied were pre-treatment of sample, digestion temperature, time programme and the chemicals (HNO 3 / H 2 O 2 ) used. Arsenic contents in fish samples under these conditions were compared using the standards additions technique. Microwave assisted acid digestion method with a combination of ultrapure concentrated nitric acid (HNO 3 ) to concentrated hydrogen peroxide (H 2 O 2 ) at a ratio of 7 mL: 1 mL, run time of 25 min and digestion temperature of 200 degree Celsius with no pre-treatment was found to have recovery of 100.7 % as compared to other digestion procedure where the recovery were 115.5, 111.6 and 101.8 %. Validation using certified reference material (CRM) of fish tissue (DORM-3) showed a recovery of 101.4 ± 2.5 % for total arsenic from the CRM. (author)

  4. Total and inorganic arsenic in foods of the first Hong Kong total diet study.

    Science.gov (United States)

    Chung, Stephen Wai-cheung; Lam, Chi-ho; Chan, Benny Tsz-pun

    2014-04-01

    Arsenic (As) is a metalloid that occurs in different inorganic and organic forms, which are found in the environment from both natural occurrence and anthropogenic activity. The inorganic forms of As (iAs) are more toxic as compared with the organic As, but so far most of the occurrence data in food collected in the framework of official food control are still reported as total As without differentiating the various As species. In this paper, total As and iAs contents of 600 total diet study (TDS) samples, subdivided into 15 different food groups, were quantified by high-resolution inductively coupled plasma mass spectrometry (HR-ICP/MS) and hydride generation (HG) ICP/MS respectively. The method detection limits for both total As and iAs were 3 μg As kg(-1). As the samples were prepared for TDS, food items were purchased directly from the market or prepared as for normal consumption, i.e. table ready, in the manner most representative of and consistent with cultural habits in Hong Kong as far as practicable. The highest total As and iAs content were found in 'fish, seafood and their products' and 'vegetables and their products' respectively. Besides, this paper also presents the ratios of iAs and total As content in different ready-to-eat food items. The highest ratio of iAs to total As was found in 'vegetables and their products'. It is likely that iAs in vegetables maintained its status even after cooking.

  5. Determination of dietary intake of total arsenic, inorganic arsenic and total mercury in the Chilean school meal program.

    Science.gov (United States)

    Bastías, J M; Bermúdez, M; Carrasco, J; Espinoza, O; Muñoz, M; Galotto, M J; Muñoz, O

    2010-10-01

    The dietary intake of total arsenic (tAs), inorganic arsenic (iAs) and total mercury (tHg) in lunch and breakfast servings provided by the Chilean School Meal Program (SMP) was estimated, using the duplicate-portion variant of the total diet study. Lunch and breakfast samples were collected from 65 schools throughout the country in 2006. The population sample was a group of girls and boys between 6 and 18 years old. The tAs concentration was measured via hydride-generation atomic absorption spectrometry. The total mercury concentration was measured via cold-vapor atomic absorption spectroscopy. The estimated iAs intake was 12.5% (5.4 μg/day) of the Provisional tolerable daily intake (PTDI) as proposed by the FAO/WHO, and the tHg intake was 13.2% (1.9 μg/day) of the PTDI as proposed by the FAO/WHO. It was therefore concluded that tAs, iAs and tHg intake from food provided by the SMP do not pose risks to student health.

  6. Extant contents of chromium, copper and arsenic in waste CCA-treated timber

    International Nuclear Information System (INIS)

    Chiba, Keiko; Uchida, Shinpei; Honma, Yoshinori; Sera, Koichiro; Saitoh, Katsumi

    2009-01-01

    The segregation and disposal of chromated copper arsenate (CCA)-treated wood waste when recycling building waste materials is a serious issue. We examined the contents of CCA preserved cedar timber by PIXE analysis. CCA preserved timber contained large amounts of these metals both on the surface and core of the wood. The ratio of chromium, copper and arsenic contained on the surface was 1:2:1, and in contrast, the ratio in the core was 1:1:2. In other words, the arsenic content was highest in the core. Moreover, the chemical form of arsenic in both parts of the wood was only inorganic arsenic; the same form of arsenic in preservative components known as carcinogenic substances. These findings mean that the complete separation of waste CCA preserved timber from construction and demolition wood is needed. (author)

  7. Total arsenic in raw and boiled portions of Norway lobster (Nephrops norvegicus) from the central Adriatic Sea.

    Science.gov (United States)

    Visciano, Pierina; Perugini, Monia; Manera, Maurizio; Abete, Maria Cesarina; Tarasco, Renata; Salese, Carmine; Amorena, Michele

    2013-12-18

    The distribution of total arsenic in different portions of Norway lobster (Nephrops norvegicus L., Crustacea) was studied both in fresh samples and after a boiling process. All individuals (n = 80) were selected of medium standard commercial size (13-15 cm). The highest mean concentrations (26.86 ± 1.57 mg/kg wet weight (ww)) were found in the raw brown meat of the crustacean, probably due to its detoxification role, whereas the lowest mean values (15.97 ± 0.85 mg/kg ww) were in the raw exoskeleton. The raw white meat reported mean values of 16.09 ± 0.61 mg/kg ww. The levels of arsenic contamination detected in the boiled portions showed a significant (p < 0.01) decrease compared to the raw portions, as a consequence of solubilization phenomena. In fact, a large amount of arsenic from raw lobsters was transferred to the corresponding boiling broth. In the most commonly consumed portion, the white meat, only slight losses (7.22%) in total arsenic content were observed compared to the raw portion.

  8. Urinary total arsenic and 8-hydroxydeoxyguanosine are associated with renal cell carcinoma in an area without obvious arsenic exposure

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chao-Yuan [Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Department of Urology, National Taiwan University Hospital, College of Medicine National Taiwan University, Taipei, Taiwan (China); Su, Chien-Tien [Department of Family Medicine, Taipei Medical University Hospital, Taipei, Taiwan (China); Chung, Chi-Jung [Department of Health Risk Management, College of Public Health, China Medical University, Taichung, Taiwan (China); Department of Medical Research, China Medical University Hospital, Taichung, Taiwan (China); Pu, Yeong-Shiau [Department of Urology, National Taiwan University Hospital, College of Medicine National Taiwan University, Taipei, Taiwan (China); Chu, Jan-Show [Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Department of Pathology, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Yang, Hsiu-Yuan [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China); Wu, Chia-Chang [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China); Department of Urology, Taipei Medical Universtiy-Shuang Ho Hospital, Taipei, Taiwan (China); Hsueh, Yu-Mei, E-mail: ymhsueh@tmu.edu.tw [Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China)

    2012-08-01

    8-Hydroxydeoxyguanosine (8-OHdG) is one of the most reliable and abundant markers of DNA damage. The study was designed to explore the relationship between urinary 8-OHdG and renal cell carcinoma (RCC) and to investigate whether individuals with a high level of 8-OHdG would have a modified odds ratio (OR) of arsenic-related RCC. This case–control study was conducted with 132 RCC patients and 245 age- and sex-matched controls from a hospital-based pool between November 2006 and May 2009. Pathological verification of RCC was completed by image-guided biopsy or surgical resection of renal tumors. Urinary 8-OHdG levels were determined using liquid chromatography with tandem mass spectrometry (LC–MS/MS). Concentrations of urinary arsenic species, including inorganic arsenic, monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA), were determined by a high performance liquid chromatography-linked hydride generator and atomic absorption spectrometry. Level of urinary 8-OHdG was significantly associated with the OR of RCC in a dose–response relationship after multivariate adjustment. Urinary 8-OHdG was significantly related to urinary total arsenic. The greatest OR (3.50) was seen in the individuals with high urinary 8-OHdG and high urinary total arsenic. A trend test indicated that the OR of RCC was increased with one of these factors and was further increased with both (p = 0.002). In conclusion, higher urinary 8-OHdG was a strong predictor of the RCC. High levels of 8-OHdG combined with urinary total arsenic might be indicative of arsenic-induced RCC. -- Highlights: ► Urinary 8-OHdG was significantly related to urinary total arsenic. ► Higher urinary 8-OHdG was a strong predictor of RCC risk. ► Urinary 8-OHdG may modify arsenic related RCC risk.

  9. Assessment of the content of arsenic in solid by-products from coal combustion

    Directory of Open Access Journals (Sweden)

    Wierońska Faustyna

    2017-01-01

    Full Text Available The coal combustion processes constitute one of the major sources of heavy metals emission into the atmosphere. From the point of view of the reduction of the emission of heavy metals and the selection of the correct exhaust gas treatment system, it is important to monitor the amount of trace elements in the solid fuels and in the solid by-products from coal combustion. One of these highly toxic elements is arsenic. The average content of arsenic in Polish hard coals and lignites is 0 ÷ 40 mg/kg [1] and 5 ÷ 15 mg/kg [2], respectively. The world average content of arsenic in hard coals and lignites, is equal to 9.0 ± 0.8 and 7.4 ± 1.4 mg/kg [3], respectively. During coal combustion processes, a significant amount of arsenic enters the atmosphere through gases and fly ashes. The proportions in which those two forms of arsenic occur in exhaust gases depend on the conditions of combustion processes [4]. The aim of the research was to determine the content of arsenic in coal blends and by-products of their combustion (slag, fly ash, gypsum, filter cakes. The determination of the arsenic quantity was performed using the Atomic Absorption Spectrometry with the electrothermal atomization.

  10. Reduction of arsenic content in a complex galena concentrate by Acidithiobacillus ferrooxidans

    Directory of Open Access Journals (Sweden)

    López Alejandro

    2004-10-01

    Full Text Available Abstract Background Bioleaching is a process that has been used in the past in mineral pretreatment of refractory sulfides, mainly in the gold, copper and uranium benefit. This technology has been proved to be cheaper, more efficient and environmentally friendly than roasting and high pressure moisture heating processes. So far the most studied microorganism in bioleaching is Acidithiobacillus ferrooxidans. There are a few studies about the benefit of metals of low value through bioleaching. From all of these, there are almost no studies dealing with complex minerals containing arsenopyrite (FeAsS. Reduction and/or elimination of arsenic in these ores increase their value and allows the exploitation of a vast variety of minerals that today are being underexploited. Results Arsenopyrite was totally oxidized. The sum of arsenic remaining in solution and removed by sampling represents from 22 to 33% in weight (yield of the original content in the mineral. The rest of the biooxidized arsenic form amorphous compounds that precipitate. Galena (PbS was totally oxidized too, anglesite (PbSO4 formed is virtually insoluble and remains in the solids. The influence of seven factors in a batch process was studied. The maximum rate of arsenic dissolution in the concentrate was found using the following levels of factors: small surface area of particle exposure, low pulp density, injecting air and adding 9 K medium to the system. It was also found that ferric chloride and carbon dioxide decreased the arsenic dissolution rate. Bioleaching kinetic data of arsenic solubilization were used to estimate the dilution rate for a continuous culture. Calculated dilution rates were relatively small (0.088–0.103 day-1. Conclusion Proper conditions of solubilization of arsenic during bioleaching are key features to improve the percentage (22 to 33% in weight of arsenic removal. Further studies are needed to determine other factors that influence specifically the

  11. Determination of total arsenic in streams and sediments from Obuasi gold mines

    International Nuclear Information System (INIS)

    Serfor Armah, Yaw

    1994-03-01

    In this work streams and sediments of Obuasi, a major gold mining town in Ghana were analysed. In addition to the total arsenic the parameters determined included the levels of Pe, Al, Nn and Au and nutrients. Leaching of arsenic from the sediment was also carried out to ascertain the rate at which As will be removed from the sediment to acceptable levels. Results indicate that in spite of the newly installed Arsenic Recovery Plant (ARP) which is able to remove about 90% of the arsenic dusts, the streams in the area remain heavily polluted with arsenic. In the water Total Arsenic values range between 0.13 - 20.00ppm. The sediments are also polluted to a depth of at least 30cm with values ranging from 15.38 - 50.00ppm. Contrary to expectations, the gold concentration in both the water and sediment are too low and may not be suitable for exploration. The leaching results show that very little amount of arsenic was leached from the sediments. Even after 20 weeks of continuous leaching less than 1% of As had been leached. This was attributed to the ability of arsenic to form sparingly soluble compounds with Fe, Al, Mn etc in the sediment environment. (au)

  12. Determination of total arsenic and arsenic species in drinking water, surface water, wastewater, and snow from Wielkopolska, Kujawy-Pomerania, and Lower Silesia provinces, Poland.

    Science.gov (United States)

    Komorowicz, Izabela; Barałkiewicz, Danuta

    2016-09-01

    Arsenic is a ubiquitous element which may be found in surface water, groundwater, and drinking water. In higher concentrations, this element is considered genotoxic and carcinogenic; thus, its level must be strictly controlled. We investigated the concentration of total arsenic and arsenic species: As(III), As(V), MMA, DMA, and AsB in drinking water, surface water, wastewater, and snow collected from the provinces of Wielkopolska, Kujawy-Pomerania, and Lower Silesia (Poland). The total arsenic was analyzed by inductively coupled plasma mass spectrometry (ICP-MS), and arsenic species were analyzed with use of high-performance liquid chromatography inductively coupled plasma mass spectrometry (HPLC/ICP-MS). Obtained results revealed that maximum total arsenic concentration determined in drinking water samples was equal to 1.01 μg L(-1). The highest concentration of total arsenic in surface water, equal to 3778 μg L(-1) was determined in Trująca Stream situated in the area affected by geogenic arsenic contamination. Total arsenic concentration in wastewater samples was comparable to those determined in drinking water samples. However, significantly higher arsenic concentration, equal to 83.1 ± 5.9 μg L(-1), was found in a snow sample collected in Legnica. As(V) was present in all of the investigated samples, and in most of them, it was the sole species observed. However, in snow sample collected in Legnica, more than 97 % of the determined concentration, amounting to 81 ± 11 μg L(-1), was in the form of As(III), the most toxic arsenic species.

  13. Determination of Arsenic Content of Available Traditional Medicines ...

    African Journals Online (AJOL)

    Purpose: To determine the content of arsenic (As) in some locally available traditional medicines in the East Coast region of Malaysia. Methods: The determination of As was conducted using hydride generation-atomic absorption spectrometry (HG-AAS). Sample preparation entailed mineral acid digestion using ...

  14. Total Mercury, Methylmercury, Inorganic Arsenic and Other Elements in Meat from Minke Whale (Balaenoptera acutorostrata) from the North East Atlantic Ocean.

    Science.gov (United States)

    Maage, Amund; Nilsen, Bente M; Julshamn, Kaare; Frøyland, Livar; Valdersnes, Stig

    2017-08-01

    Meat samples of 84 minke whales (Balaenoptera acutorostrata) mainly from the Barents Sea, collected between 1 May and 16 August 2011, were analyzed for total mercury, methylmercury, cadmium, lead, total arsenic, inorganic arsenic and selenium. The average total mercury concentration found was 0.15 ± 0.09 mg/kg, with a range from 0.05 to 0.49 mg/kg. The molar ratio of selenium to mercury varied between 1.0 and 10.3. Cadmium content ranged from 0.002 to 0.036 mg/kg, while the content of lead in whale meat ranged from whale samples exceeded established EU maximum levels for metals in fish muscle, but 4.8% and 6.8% of the samples exceeded Japanese maximum levels for total mercury and methylmercury, respectively, in whale meat. There was only minor variations in element concentrations between whales from different geographical areas, and cadmium was the only element were the concentration increased with increasing length.

  15. EFFECT OF ARSENIC ON DRY WEIGHT AND RELATIVE CHLOROPHYLL CONTENT IN GREENINGMAIZE AND SUNFLOWER TISSUES

    Directory of Open Access Journals (Sweden)

    Szilvia Várallyay

    2015-02-01

    Full Text Available Arsenic is one of the most toxic elements that can be found in the environment. Excessive uptake of arsenic may cause physiological changes in plants. The aim of the study was to investigate the effect of different arsenic treatments on relative chlorophyll content and dry weight of shoot and root of maize and sunflower in the early phases of plant development. Seedlings were grown in climatic room in nutrient solution under strictly regulated environmental conditions. The plants were exposed to 3, 10 and 30 mg kg-1arsenic, whereas there was no arsenic treatment on the control plants. We applied arsenic in the form of arsenite (NaAsO2 and arsenate (KH2AsO4, respectively. After 14 days of arsenic treatments, changes in relative chlorophyll content and dry weight of maize shoots and roots were recorded. In the case of sunflower these physiological parameters were measured after 21 day. The applied arsenic decreased the relative chlorophyll content of maize and sunflower leaves, especially at concentration of30 mg kg-1. The increasing amount of As treatment were resulted the lower weight of the experimental plants, which was more considerable in the case of the roots. The results indicate that the sunflower plants is more sensitive to arsenic toxicity than maize plants and all data demonstrate that the As(III is more toxic to these crop plants than the As(V.

  16. Voltammetric Study of Arsenic (III and Arsenic (V in Ground Water of Hajigonj and Kalkini in Bangladesh

    Directory of Open Access Journals (Sweden)

    Mohammad Arifur Rahman

    2008-06-01

    Full Text Available The speciation of arsenic in groundwater samples using Square Wave Anodic Stripping Voltammetry (SWASV, Differential Pulse Anodic Stripping Voltammetry (DPASV and Normal Pulse Anodic Stripping Voltammetry (NPASV are described. Good resolution of the species, arsenic (III and arsenic (V is achieved using SWASV. The reliability of the methods was checked by analyzing the total arsenic content of the samples by Hydride Generation Atomic Absorptioion Spectrophotometer and by analyzing prepared controlled laboratory standard solution. Since this technique is comparatively cheaper than other available techniques it could be a better analytical technique for arsenic speciation from water. In this study, the assessment of inorganic arsenic species in ground water of Kalkini (Madaripur and Hajigonj (Chandpur is reported. It shows that arsenic content in water in different locations is irregular. Most of the locations contain higher level of As(III than As(V. The highest concentration of arsenic is found in Anayetnagor (554.46 ± 0.07 mg/L of Kalkini and Raichar (562 ± 0.50 mg/L of Hajigonj. However, the level of total arsenic and As(III of most of the villages of the study areas are more than the WHO guideline value (50mg/L. Therefore a proper monitoring process should be evolved along with the development of methods to keep the water free from arsenic.

  17. Mean total arsenic concentrations in chicken 1989-2000 and estimated exposures for consumers of chicken.

    OpenAIRE

    Lasky, Tamar; Sun, Wenyu; Kadry, Abdel; Hoffman, Michael K

    2004-01-01

    The purpose of this study was to estimate mean concentrations of total arsenic in chicken liver tissue and then estimate total and inorganic arsenic ingested by humans through chicken consumption. We used national monitoring data from the Food Safety and Inspection Service National Residue Program to estimate mean arsenic concentrations for 1994-2000. Incorporating assumptions about the concentrations of arsenic in liver and muscle tissues as well as the proportions of inorganic and organic a...

  18. Report of the key comparison CCQM-K108 determination of arsenic species, total arsenic and cadmium in brown rice flour

    Science.gov (United States)

    Hioki, Akiharu; Narukawa, Tomohiro; Inagaki, Kazumi; Miyashita, Shinichi; Kotzeva, Boriana; Kakoulides, Elias; Sxoina, Vasiliki; Fung, W. H.; Choi, Y. Y.; Yau, H. P.; Tsoi, Y. T.; Lee, C. L.; Kong, M. F.; Shin, Richard; Juan, Wang; Sin Yee, Ng; Uribe, Christian; Marques Rodrigues, Janaína; Caciano de Sena, Rodrigo; Silva Dutra, Emily; Bergamaschi, Luigi; Giordani, Laura; D'Agostino, Giancarlo; Valiente, Liliana; Horvat, Milena; Jacimovic, Radojko; Oduor Okumu, Tom; Kang'Iri, Jacqueline; Owiti Orwa, Tabitha; Chao, Wei; Jingbo, Chao; Taebunpakul, Sutthinun; Yafa, Charun; Kaewkhomdee, Nattikarn; Chailap, Benjamat; Pharat, Yanee; Phukphattanachai, Pranee; Turk, Gregory C.; Long, Stephen; Murphy, K. E.; Davis, Clay; Ellisor, Michael; Merrick, Jeffrey; White, Ian; Saxby, David; Linsky, S. M.; Barzev, A.; Botha, A.

    2015-01-01

    The CCQM-K108 key comparison was organised by the Inorganic Analysis Working Group (IAWG) of CCQM to test the abilities of national metrology institutes (NMIs) or designated institutes (DIs) to measure the mass fractions of arsenic species, total arsenic and cadmium in brown rice flour. The National Metrology Institute of Japan (NMIJ) acted as the coordinating laboratory. The participants used different measurement methods, though most of them used inductively coupled plasma mass spectrometry (ICP-MS) or isotope-dilution inductively coupled plasma mass spectrometry (ID-ICP-MS) for Cd and ICP-MS for total arsenic. Regarding arsenic speciation, all participants used ICP-MS coupled with liquid chromatography (LC). Accounting for relative expanded uncertainty, comparability of measurement results for each of total arsenic and cadmium was successfully demonstrated by the participating NMIs or DIs for the measurement of the measurand at the level of less than 0.5 mg/kg. Regarding arsenic species (inorganic arsenic and dimethylarsinic acid (DMAA)), there was, however, a measurement problem still to be solved and that part of CCQM-K108 will be repeated. It is expected that arsenic, cadmium and other metals at mass fractions greater than approximately 0.1 mg/kg in rice flour can be determined by each participant using the same technique(s) employed for this key comparison to achieve similar uncertainties mentioned in the present report. Furthermore, the results of this key comparison can be utilised along with the IAWG core capability approach. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  19. [A study on the relationship between drinking water with high arsenic content and incidence of malignant tumour in Heihe Village, western part of Huhehot, Inner Mongolia].

    Science.gov (United States)

    Luo, F J; Luo, Z D; Ma, L

    1995-10-01

    Since 1991, it has been repeatedly reported that endemic arsenism was noticed in the large areas in the middle and west parts of Inne Mongolian Autonomous Region. Heihe village is located in a geological area with rich natural arsenic. The inhabitants of the village have drunk the water with high arsenic content for a long time and many people have died of malignant tumours. A historical prospective method has been used in the study. The research has been carried out chronologically on the statistical relationship between drinking water with high arsenic content consumed by local inhabitants for 22 years and the mortality of malignant tumours. This study has confirmed that the accumulated mortality rate and the average mortality rate of Heihe villagers who had drunk the water with high arsenic content for a number of total 22 years (from January 1971 to January 1993) were 13 590/10(5) person-year and 642.01/10(5) person-year. In terms of the portion among all malignant tumour deaths, cancer for the lung takes the lead, followed by liver cancer and then bladder cancer. The risk of death of malignant tumours in the villagers who drink water with high arsenic content was 9.38 times to the risk in the inhabitants who do not drink water with high arsenic content.

  20. CCQM-K108.2014: determination of arsenic species and total arsenic in brown rice flour

    Science.gov (United States)

    Inagaki, K.; Narukawa, T.; Hioki, A.; Miyashita, S.; Long, S. E.; Ellisor, M. B.; Peng, S. L.; Dewi, F.; Shin, R.; Kapp, T.; Wai-hong, F.; Hei-shing, C.; Chao, W.; Kaewkhomdee, N.; Taebunpakul, S.; Thiengmanee, U.; Yafa, C.

    2017-01-01

    The key comparison CCQM-K108.2014 was organised by the Inorganic Analysis Working Group (IAWG) of CCQM to test the abilities of the national metrology institutes (NMIs) or the designated institutes (DIs) to measure the mass fractions of inorganic arsenic (i-As, sum of the amount of arsenite [As(III)] and arsenate [As(V)]), dimethylarsinic acid (DMAA), and total arsenic (total As) in brown rice flour. This was the follow-up comparison for the CCQM-K108 & CCQM-P147 (Cd, As, inorganic arsenic, and DMAA in brown rice flour). For total As, no strong outliers among the reported values were observed, and the distribution of the results was narrow, within 3% around the median. For i-As and DMAA, the distributions of the results were slightly wider than that for total arsenic, but no strong outliers among the reported values of i-As and DMAA were observed. Two potentially bias sources, an extraction efficiency of As species (the ratio of the sum of i-As and DMAA to total As) and the quality of primary standard of DMAA, were discussed. The extraction efficiency was estimated as the ratio of the sum of i-As and DMAA to total As. In the previous comparison (CCQM-K108 & CCQM-P147), the extraction efficiency was one of the largest bias sources for i-As and DMAA. However, in this study, all the extraction efficiencies estimated from the reported values were close to 100 %. Regarding the quality of the primary standard solutions, no significant difference was observed among the primary standard solution used by the participants. These results suggest the two potential bias sources mentioned above would not have been majors in this study, and then the technical issues in the previous comparison had been overcome. Accounting for relative expanded uncertainty, a comparability of measurement was successfully demonstrated by the participating NMIs and DIs for the measurement of total As at the level of less than 0.7 mg/kg, i-As at the level of less than 0.6 mg/kg, and DMAA at the level

  1. Relationship between arsenic and selenium in workers occupationally exposed to inorganic arsenic.

    Science.gov (United States)

    Janasik, Beata; Zawisza, Anna; Malachowska, Beata; Fendler, Wojciech; Stanislawska, Magdalena; Kuras, Renata; Wasowicz, Wojciech

    2017-07-01

    The interaction between arsenic (As) and selenium (Se) has been one of the most extensively studied. The antagonism between As and Se suggests that low Se status plays an important role in aggravating arsenic toxicity in diseases development. The objective of this study was to assess the Se contents in biological samples of inorganic As exposed workers (n=61) and in non-exposed subjects (n=52). Median (Me) total arsenic concentration in urine of exposed workers was 21.83μg/g creat. (interquartile range (IQR) 15.49-39.77) and was significantly higher than in the control group - (Me 3.75μg/g creat. (IQR 2.52-9.26), piAs+MMA+DMA) was significantly associated with the high total selenium urine excretion (B=0.14 (95%CI (confidence interval) 0.05-0.23)). Combination of both arsenic and selenium status to assess the risk of arsenic-induced diseases requires more studies with regard to both the analysis of speciation, genetics and the influence of factors such as nutritional status. Copyright © 2017 Elsevier GmbH. All rights reserved.

  2. Inorganic arsenic levels in baby rice are of concern

    International Nuclear Information System (INIS)

    Meharg, Andrew A.; Sun, Guoxin; Williams, Paul N.; Adomako, Eureka; Deacon, Claire; Zhu, Yong-Guan; Feldmann, Joerg; Raab, Andrea

    2008-01-01

    Inorganic arsenic is a chronic exposure carcinogen. Analysis of UK baby rice revealed a median inorganic arsenic content (n = 17) of 0.11 mg/kg. By plotting inorganic arsenic against total arsenic, it was found that inorganic concentrations increased linearly up to 0.25 mg/kg total arsenic, then plateaued at 0.16 mg/kg at higher total arsenic concentrations. Inorganic arsenic intake by babies (4-12 months) was considered with respect to current dietary ingestion regulations. It was found that 35% of the baby rice samples analysed would be illegal for sale in China which has regulatory limit of 0.15 mg/kg inorganic arsenic. EU and US food regulations on arsenic are non-existent. When baby inorganic arsenic intake from rice was considered, median consumption (expressed as μg/kg/d) was higher than drinking water maximum exposures predicted for adults in these regions when water intake was expressed on a bodyweight basis. - Median consumption of organic arsenic levels for UK babies from baby rice is above threshold considered safe

  3. Arsenic content and forms in some tropical soils

    Energy Technology Data Exchange (ETDEWEB)

    Fassbender, H W

    1975-01-01

    Some Latin American soils were analyzed for total arsenic and its various forms. For the volcanic ash soils from Colombia and Costa Rica an average of 5.1 and 7.0 ppm As was found. Some oxisols and ultisols from Puerto Rico reached an average of 10.0 ppm As. The distribution of arsenic with soil depth does not show any trend; consequently unlike P, it does not undergo biogenic accumulation on soil surfaces. Two soils of Puerto Rico reached exceptional high As values (over 100 ppm); it is believed that As of sea water precipitates with carbonate in calcareous sediments. In these soils Ca-bound As predominates over Fe - and Al-arsenate. In a Costa Rican soil, where arsenic compounds are used to control coffee diseases, a great accumulation of As in the upper soils depths was registered (for 0 to 5 cm from 10.6 to 49.0 ppm As). In the soil profile represents the most important transformation form applied arsenate.

  4. Major and minor arsenic compounds accounting for the total urinary excretion of arsenic following intake of blue mussels (Mytilus edulis): A controlled human study

    DEFF Research Database (Denmark)

    Molin, M.; Ydersbond, T.A.; Ulven, S.M.

    2012-01-01

    Blue mussels (Mytilus edulis) accumulate and biotransform arsenic (As) to a larger variety of arsenicals than most seafood. Eight volunteers ingested a test meal consisting of 150g blue mussel (680μg As), followed by 72h with an identical, low As controlled diet and full urine sampling. We provide...... a complete speciation, with individual patterns, of urinary As excretion. Total As (tAs) urinary excretion was 328±47μg, whereof arsenobetaine (AB) and dimethylarsinate (DMA) accounted for 66% and 21%, respectively. Fifteen minor urinary arsenicals were quantified with inductively coupled plasma mass...... spectrometry (ICPMS) coupled to reverse-phase, anion and cation-exchange high performance liquid chromatography (HPLC). Thio-arsenicals and non-thio minor arsenicals (including inorganic As (iAs) and methylarsonate (MA)) contributed 10% and 7% of the total sum of species excretion, respectively, but there were...

  5. Arsenic content in Portland cement: a literature review.

    Science.gov (United States)

    Tenório de Franca, Talita Ribeiro; da Silva, Raphaela Juvenal; Sedycias de Queiroz, Michellini; Aguiar, Carlos Menezes

    2010-01-01

    Portland cement (PC) is a hydraulic binding material widely used in the building industry. The main interest in its use in dentistry is focused on a possible alternative to mineral trioxide aggregate (MTA) because PC is less expensive and is widely available. In dentistry, PC has been used in dental procedures such as pulpotomy, pulp capping, repair of root perforation and root-end filling. The purpose of this article is review the dental literature about the PC, its composition with special attention to arsenic content, properties, and application in dentistry. A bibliographic research was performed in Bireme, PubMed, LILACS and Scopus data bases looking for national and international studies about the PC composition, properties and clinical use. It was observed that PC has favorable biological properties very similar to those of MTA. The PC has shown good cell proliferation induction with formation of a monolayer cell, satisfactory inflammatory response, inhibitory effect of prostaglandin and antimicrobial effect. Studies have shown that PC is not cytotoxic, stimulates the apposition of reparative dentin and permits cellular attachment and growth. Regarding arsenic presence, its levels and release are low. PC has physical, chemical and biological properties similar to MTA. Arsenic levels and release are low, therefore, unable to cause toxic effects.

  6. Arsenic content in Portland cement: A literature review

    Directory of Open Access Journals (Sweden)

    Tenorio de Franca Talita

    2010-01-01

    Full Text Available Portland cement (PC is a hydraulic binding material widely used in the building industry. The main interest in its use in dentistry is focused on a possible alternative to mineral trioxide aggregate (MTA because PC is less expensive and is widely available. In dentistry, PC has been used in dental procedures such as pulpotomy, pulp capping, repair of root perforation and root-end filling. The purpose of this article is review the dental literature about the PC, its composition with special attention to arsenic content, properties, and application in dentistry. A bibliographic research was performed in Bireme, PubMed, LILACS and Scopus data bases looking for national and international studies about the PC composition, properties and clinical use. It was observed that PC has favorable biological properties very similar to those of MTA. The PC has shown good cell proliferation induction with formation of a monolayer cell, satisfactory inflammatory response, inhibitory effect of prostaglandin and antimicrobial effect. Studies have shown that PC is not cytotoxic, stimulates the apposition of reparative dentin and permits cellular attachment and growth. Regarding arsenic presence, its levels and release are low. PC has physical, chemical and biological properties similar to MTA. Arsenic levels and release are low, therefore, unable to cause toxic effects.

  7. Levels of plasma selenium and urinary total arsenic interact to affect the risk for prostate cancer.

    Science.gov (United States)

    Hsueh, Yu-Mei; Su, Chien-Tien; Shiue, Horng-Sheng; Chen, Wei-Jen; Pu, Yeong-Shiau; Lin, Ying-Chin; Tsai, Cheng-Shiuan; Huang, Chao-Yuan

    2017-09-01

    This study investigated whether plasma selenium levels modified the risk for prostate cancer (PC) related to arsenic exposure. We conducted a case-control study that included 318 PC patients and 318 age-matched, healthy control subjects. Urinary arsenic profiles were examined using HPLC-HG-AAS and plasma selenium levels were measured by ICP-MS. We found that plasma selenium levels displayed a significant dose-dependent inverse association with PC. The odds ratio (OR) and 95% confidence interval (CI) for PC was 0.07 (0.04-0.13) among participants with a plasma selenium level >28.06 μg/dL vs. ≤19.13 μg/dL. A multivariate analysis showed that participants with a urinary total arsenic concentration >29.28 μg/L had a significantly higher OR (1.75, 1.06-2.89) for PC than participants with ≤29.89 μg/L. The combined presence of a low plasma selenium level and a high urinary total arsenic concentration exponentially increased the OR for PC, and additively interacted with PSA at levels ≥20 ng/mL. This is the first epidemiological study to examine the combined effects of plasma selenium and urinary total arsenic levels on the OR for PC. Our data suggest a low plasma selenium level coupled with a high urinary total arsenic concentration creates a significant risk for aggressive PC. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Binational Arsenic Exposure Survey: Methodology and Estimated Arsenic Intake from Drinking Water and Urinary Arsenic Concentrations

    Directory of Open Access Journals (Sweden)

    Robin B. Harris

    2012-03-01

    Full Text Available The Binational Arsenic Exposure Survey (BAsES was designed to evaluate probable arsenic exposures in selected areas of southern Arizona and northern Mexico, two regions with known elevated levels of arsenic in groundwater reserves. This paper describes the methodology of BAsES and the relationship between estimated arsenic intake from beverages and arsenic output in urine. Households from eight communities were selected for their varying groundwater arsenic concentrations in Arizona, USA and Sonora, Mexico. Adults responded to questionnaires and provided dietary information. A first morning urine void and water from all household drinking sources were collected. Associations between urinary arsenic concentration (total, organic, inorganic and estimated level of arsenic consumed from water and other beverages were evaluated through crude associations and by random effects models. Median estimated total arsenic intake from beverages among participants from Arizona communities ranged from 1.7 to 14.1 µg/day compared to 0.6 to 3.4 µg/day among those from Mexico communities. In contrast, median urinary inorganic arsenic concentrations were greatest among participants from Hermosillo, Mexico (6.2 µg/L whereas a high of 2.0 µg/L was found among participants from Ajo, Arizona. Estimated arsenic intake from drinking water was associated with urinary total arsenic concentration (p < 0.001, urinary inorganic arsenic concentration (p < 0.001, and urinary sum of species (p < 0.001. Urinary arsenic concentrations increased between 7% and 12% for each one percent increase in arsenic consumed from drinking water. Variability in arsenic intake from beverages and urinary arsenic output yielded counter intuitive results. Estimated intake of arsenic from all beverages was greatest among Arizonans yet participants in Mexico had higher urinary total and inorganic arsenic concentrations. Other contributors to urinary arsenic concentrations should be evaluated.

  9. Phytoremediation of arsenic contaminated soil by Pteris vittata L. II. Effect on arsenic uptake and rice yield.

    Science.gov (United States)

    Mandal, Asit; Purakayastha, T J; Patra, A K; Sanyal, S K

    2012-07-01

    A greenhouse experiment evaluated the effect of phytoextraction of arsenic from a contaminated soil by Chinese Brake Fern (Pteris vittata L.) and its subsequent effects on growth and uptake of arsenic by rice (Oryza sativa L.) crop. Pteris vittata was grown for one or two growing cycles of four months each with two phosphate sources, using single super phosphate (SSP) and di-ammonium phosphate (DAP). Rice was grown on phytoextracted soils followed by measurements of biomass yield (grain, straw, and root), arsenic concentration and, uptake by individual plant parts. The biomass yield (grain, straw and rice) of rice was highest in soil phytoextracted with Pteris vittata grown for two cycles and fertilized with diammonium phosphate (DAP). Total arsenic uptake in contaminated soil ranged from 8.2 to 16.9 mg pot(-1) in first growing cycle and 5.5 to 12.0 mg pot(-1) in second growing cycle of Pteris vittata. There was thus a mean reduction of 52% in arsenic content of rice grain after two growing cycle of Pteris vittata and 29% after the one growing cycle. The phytoextraction of arsenic contaminated soil by Pteris vittata was beneficial for growing rice resulted in decreased arsenic content in rice grain of <1 ppm. There was a mean improvement in rice grain yield 14% after two growing cycle and 8% after the one growing cycle of brake fern.

  10. Leaching of copper concentrates with high arsenic content in chlorine-chloride media

    International Nuclear Information System (INIS)

    Herreros, O.; Fuentes, G.; Quiroz, R.; Vinals, J.

    2003-01-01

    This work reports the results of copper concentrates leaching which have high arsenic concepts (up to 2.5%). The treatments were carried out using chlorine that forms from sodium hypochlorite and sulphuric acid. The aim of this work is to obtain a solution having high copper content 4 to 6 g/l and 5 to 7 g/l free acid in order to submit it directly to a solvent extraction stage. In addition, this solution should have minimum content of arsenic and chloride ions. To carry out this investigation, an acrylic reactor was constructed where the leaching tests were made at constant temperature in a thermostatic bath under atmospheric pressure. The concentrate samples were obtained from mineral processing plants from Antofagasta, Chile. Typical variables were studied, such as leaching agent concentration, leaching time, pulp density and temperature among others. Some of the residues were analyzed by XRD and EPS. On the other hand, the solutions were analyzed by Atomic Absorption Spectroscopy. The results indicate solutions having the contents stated above can be obtained. (Author) 19 refs

  11. [Study on the variation of arsenic concentration in groundwater and chemical characteristics of arsenic in sediment cores at the areas with endemic arsenic poison disease in Jianghan Plain].

    Science.gov (United States)

    Zhou, Suhua; Ye, Hengpeng; Li, Mingjian; Xiong, Peisheng; Du, Dongyun; Wang, Jingwen

    2015-06-01

    To understand the variation of arsenic concentration in underground water at the endemic arsenic poison disease area of Jianghan Plain so as to better understand the spatial distribution of high arsenic groundwater, hydro-chemical evolution and source of arsenic in this region. Thirty underground water samples were collected respectively around 3 km radius of the two houses where arsenic poisoning patients lived, in Xiantao and Honghu. Sediment cores of three drillings were collected as well. Both paired t-test or paired Wilcoxon Signed Ranking Test were used to compare the arsenic concentration of water. The arsenic concentration in 2011-2012 appeared lower than that in 2006-2007 at the Nanhong village of Xiantao (t = 4.645 3, P arsenic concentration and Cl, HCO3(-), Fe, Mn. However, negative correlations were found between As and SO4(2-), NO3(-). The range of arsenic content in the sediment was 1.500 mg/kg to 17.289 mg/kg. The maximum arsenic content existed in the soil layer, while the minimum arsenic content existed in the sand layer. The concentration of arsenic varied widely with time and space at endemic arsenic poison disease area of Jianghan Plain. Characteristics of these water chemicals showed significant differences, when compared to the groundwater from Datong Basin, Shanxi Shanyin and Hetao Plain of Inner Mongolia, which presented a typical environment with high arsenic contents in the groundwater. The arsenic content in the sediment samples seemed related to the lithologic structure.

  12. Arsenic distribution in soils and plants of an arsenic impacted former mining area

    International Nuclear Information System (INIS)

    Otones, V.; Alvarez-Ayuso, E.; Garcia-Sanchez, A.; Santa Regina, I.; Murciego, A.

    2011-01-01

    A mining area affected by the abandoned exploitation of an arsenical tungsten deposit was studied in order to assess its arsenic pollution level and the feasibility of native plants for being used in phytoremediation approaches. Soil and plant samples were collected at different distances from the polluting sources and analysed for their As content and distribution. Critical soil total concentrations of As were found, with values in the range 70-5330 mg kg -1 in the uppermost layer. The plant community develops As tolerance by exclusion strategies. Of the plant species growing in the most polluted site, the shrubs Salix atrocinerea Brot. and Genista scorpius (L.) DC. exhibit the lowest bioaccumulation factor (BF) values for their aerial parts, suggesting their suitability to be used with revegetation purposes. The species Scirpus holoschoenus L. highlights for its important potential to stabilise As at root level, accumulating As contents up to 3164 mg kg -1 . - Highlights: → Environmental assessment of an abandoned arsenical tungsten mining exploitation. → Under the present soils conditions As mobility is relatively low, with [As] soluble /[As] total ≤ 2%. → The highest risk of As mobilisation would take place under reducing conditions. → The shrubs Salix atrocinerea and Genista scorpius are suitable for revegetation. → The species Scirpus holoschoenus accumulates high As contents at root level. - The plants Salix atrocinerea, Genista scorpius and Scirpus holoschoenus are suitable for revegetation or phytostabilisation approaches of As-polluted soils.

  13. Arsenic distribution in soils and plants of an arsenic impacted former mining area

    Energy Technology Data Exchange (ETDEWEB)

    Otones, V. [Department of Environmental Geochemistry, IRNASA (CSIC), Apdo. 257, 37071 Salamanca (Spain); Alvarez-Ayuso, E., E-mail: esther.alvarez@irnasa.csic.es [Department of Environmental Geochemistry, IRNASA (CSIC), Apdo. 257, 37071 Salamanca (Spain); Garcia-Sanchez, A.; Santa Regina, I. [Department of Environmental Geochemistry, IRNASA (CSIC), Apdo. 257, 37071 Salamanca (Spain); Murciego, A. [Department of Geology, Plza. de los Caidos s/n., Salamanca University, 37008 Salamanca (Spain)

    2011-10-15

    A mining area affected by the abandoned exploitation of an arsenical tungsten deposit was studied in order to assess its arsenic pollution level and the feasibility of native plants for being used in phytoremediation approaches. Soil and plant samples were collected at different distances from the polluting sources and analysed for their As content and distribution. Critical soil total concentrations of As were found, with values in the range 70-5330 mg kg{sup -1} in the uppermost layer. The plant community develops As tolerance by exclusion strategies. Of the plant species growing in the most polluted site, the shrubs Salix atrocinerea Brot. and Genista scorpius (L.) DC. exhibit the lowest bioaccumulation factor (BF) values for their aerial parts, suggesting their suitability to be used with revegetation purposes. The species Scirpus holoschoenus L. highlights for its important potential to stabilise As at root level, accumulating As contents up to 3164 mg kg{sup -1}. - Highlights: > Environmental assessment of an abandoned arsenical tungsten mining exploitation. > Under the present soils conditions As mobility is relatively low, with [As]{sub soluble}/[As]{sub total} {<=} 2%. > The highest risk of As mobilisation would take place under reducing conditions. > The shrubs Salix atrocinerea and Genista scorpius are suitable for revegetation. > The species Scirpus holoschoenus accumulates high As contents at root level. - The plants Salix atrocinerea, Genista scorpius and Scirpus holoschoenus are suitable for revegetation or phytostabilisation approaches of As-polluted soils.

  14. Investigations of arsenic metabolism. The physiological arsenic content in normal and pathologically alterated pancreas. Uptake and excretion of arsenic (/sup 74/As) in mice in consideration with regard to the excretion time

    Energy Technology Data Exchange (ETDEWEB)

    Graeper, P

    1974-01-01

    In the first part of the dissertation, the physiological arsenic content of 50 normal and 50 pathologically altered pancreases was determined using a method proposed by VASAK and SEDIVEC and modified by ARNOLD and SCHROEDER. A mean arsenic content of 4.86 ..mu..g% (dry weight) was found. There were no significantly increased or reduced values between the two groups of organs. The results agreed with similar investigations of other organs. The method of determination proposed by VASAK, SEDIVEC was not sensitive enough for the second part of the work in which the uptake and elimination rate as well as, if necessary, the place of retention of very small amounts of arsenic applied to mice as measured. The application of small amounts of radioactive /sup 74/As and subsequent measurements in a well-type scintillation counter showed a fast uptake in the major metabolic organs followed by equally fast elimination. Storage of As was not observed in the organs under investigation.

  15. Arsenic concentrations in Chinese coals

    International Nuclear Information System (INIS)

    Wang Mingshi; Zheng Baoshan; Wang Binbin; Li Shehong; Wu Daishe; Hu Jun

    2006-01-01

    The arsenic concentrations in 297 coal samples were collected from the main coal-mines of 26 provinces in China were determined by molybdenum blue coloration method. These samples were collected from coals that vary widely in coal rank and coal-forming periods from the five main coal-bearing regions in China. Arsenic content in Chinese coals range between 0.24 to 71 mg/kg. The mean of the concentration of Arsenic is 6.4 ± 0.5 mg/kg and the geometric mean is 4.0 ± 8.5 mg/kg. The level of arsenic in China is higher in northeastern and southern provinces, but lower in northwestern provinces. The relationship between arsenic content and coal-forming period, coal rank is studied. It was observed that the arsenic contents decreases with coal rank in the order: Tertiary > Early Jurassic > Late Triassic > Late Jurassic > Middle Jurassic > Late Permian > Early Carboniferous > Middle Carboniferous > Late Carboniferous > Early Permian; It was also noted that the arsenic contents decrease in the order: Subbituminous > Anthracite > Bituminous. However, compared with the geological characteristics of coal forming region, coal rank and coal-forming period have little effect on the concentration of arsenic in Chinese coal. The average arsenic concentration of Chinese coal is lower than that of the whole world. The health problems in China derived from in coal (arsenism) are due largely to poor local life-style practices in cooking and home heating with coal rather than to high arsenic contents in the coal

  16. Determination of total arsenic in fish by hydride-generation atomic absorption spectrometry: method validation, traceability and uncertainty evaluation

    Science.gov (United States)

    Nugraha, W. C.; Elishian, C.; Ketrin, R.

    2017-03-01

    Fish containing arsenic compound is one of the important indicators of arsenic contamination in water monitoring. The high level of arsenic in fish is due to absorption through food chain and accumulated in their habitat. Hydride generation (HG) coupled with atomic absorption spectrometric (AAS) detection is one of the most popular techniques employed for arsenic determination in a variety of matrices including fish. This study aimed to develop a method for the determination of total arsenic in fish by HG-AAS. The method for sample preparation from American of Analytical Chemistry (AOAC) Method 999.10-2005 was adopted for acid digestion using microwave digestion system and AOAC Method 986.15 - 2005 for dry ashing. The method was developed and validated using Certified Reference Material DORM 3 Fish Protein for trace metals for ensuring the accuracy and the traceability of the results. The sources of uncertainty of the method were also evaluated. By using the method, it was found that the total arsenic concentration in the fish was 45.6 ± 1.22 mg.Kg-1 with a coverage factor of equal to 2 at 95% of confidence level. Evaluation of uncertainty was highly influenced by the calibration curve. This result was also traceable to International Standard System through analysis of Certified Reference Material DORM 3 with 97.5% of recovery. In summary, it showed that method of preparation and HG-AAS technique for total arsenic determination in fish were valid and reliable.

  17. Arsenic in sediments from the southeastern Baltic Sea

    International Nuclear Information System (INIS)

    Garnaga, Galina; Wyse, Eric; Azemard, Sabine; Stankevicius, Algirdas; Mora, Stephen de

    2006-01-01

    Arsenic occurs as a persistent constituent in many of the chemical weapons dumped into the Baltic Sea; it can be used as an indicator of leakage and dispersal of released munitions to the marine environment. Total arsenic was analysed in sediment samples taken from the Lithuanian economic zone in the Baltic Sea, which included samples from the chemical munitions dumpsite in the Gotland Basin and national monitoring stations in the southeastern Baltic Sea. Arsenic concentrations in sediments ranged from 1.1 to 19.0 mg kg -1 , with an average of 3.4 mg kg -1 . Although there was evidence of slightly elevated arsenic content in sediments near the weapons dumpsite, arsenic concentrations were nevertheless quite low relative to other investigations in the Baltic and North Seas. - Arsenic concentrations in sediments near chemical weapons dumpsites were only slightly elevated

  18. Correlation of Breastmilk Arsenic With Maternal, Infant Urinary Arsenic and Drinking Water Arsenic in an Arsenic Affected Area of Bangladesh

    Science.gov (United States)

    Alauddin, M.; Islam, M. R.; Milton, A. H.; Alauddin, S. T.; Mouly, T.; Behri, E.; Ayesha, A.; Akter, S.; Islam, M. M.

    2016-12-01

    About 97% of population in Bangladesh depend on groundwater as the principle source of drinking water and this water is highly contaminated with inorganic arsenic. Consumption of arsenic contaminated drinking water by pregnant women raises the prospect of early life exposure to inorganic arsenic for newborn which may be lead to adverse health effect in later life. This work was carried out in parts of Gopalganj district in Bangladesh, a region affected by arsenic contamination in groundwater. The objective of the work was to assess potential early life exposure to arsenic for infants through breastfeeding by mothers who were drinking water with arsenic levels ranging from 100 to 300 µg/l. A cohort of 30 mother-baby pairs were selected for the current study. Breastmilk samples from mothers, urine samples from each pair of subjects at 1, 6 and 9 month age of infant were collected and total arsenic were determined in these samples. In addition speciation of urinary arsenic and metabolites were carried out in 12 mother-baby pairs. Median level for breastmilk arsenic were 0.50 µg/l. Urinary arsenic of infants did not correlate with breastmilk arsenic with progressing age of infants. Maternal and infant urinary total arsenic at 1 month age of infant showed some positive correlation (r = 0.39). In infant urine major metabolite were dimethyl arsenic acid (DMA) (approximately 70%) indicating good methylating capacity for infants at 1 and 6 months of age. In conclusion, infants were not exposed to arsenic through breastfeeding even though mothers were exposed to significant levels of arsenic through drinking water.

  19. A survey of arsenic in foodstuffs on sale in the United Kingdom and imported from Bangladesh

    International Nuclear Information System (INIS)

    Al Rmalli, S.W.; Haris, P.I.; Harrington, C.F.; Ayub, M.

    2005-01-01

    Arsenic is a highly toxic element and its presence in food composites is a matter of concern to the well being of both humans and animals. Arsenic-contaminated groundwater is often used in Bangladesh and West Bengal (India) to irrigate crops used for food and animal consumption, which could potentially lead to arsenic entering the human food chain. In this study, we used graphite furnace atomic absorption spectroscopy to determine the total arsenic concentrations in a range of foodstuffs, including vegetables, rice and fish, imported into the United Kingdom from Bangladesh. The mean and range of the total arsenic concentration in all the vegetables imported from Bangladesh were 54.5 and 5-540 μg/kg, respectively. The highest arsenic values found were for the skin of Arum tuber, 540 μg/kg, followed by Arum Stem, 168 μg/kg, and Amaranthus, 160 μg/kg. Among the other samples, freshwater fish contained total arsenic levels between 97 and 1318 μg/kg. The arsenic content of the vegetables from the UK was approximately 2- to 3-fold lower than those observed for the vegetables imported from Bangladesh. The levels of arsenic found in vegetables imported from Bangladesh in this study, in some cases, are similar to those previously recorded for vegetables grown in arsenic-affected areas of West Bengal, India, although lower than the levels reported in studies from Bangladesh. While the total arsenic content detected in our study in vegetables, imported from Bangladesh, is far less than the recommended maximum permitted level of arsenic, it does provide an additional source of arsenic in the diet. This raises the possibility that the level of arsenic intake by certain sectors of the UK population may be significantly higher then the general population and requires further investigations

  20. Arsenic in garden soils and vegetable crops in Cornwall, England: Implications for human health.

    Science.gov (United States)

    Xu, J; Thornton, I

    1985-12-01

    Total concentrations of arsenic in surface (0-15cm) garden soils in the historical mining area of Hayle-Camborne-Godolphin, Cornwall, England are large and range widely (144-892 μg/g). Amounts of water soluble and acid-fluoride extractable soil arsenic are significantly correlated with total content.Examination of 6 salad and vegetable crops grown in 32 gardens has shown arsenic concentrations in the edible tissues to be only slightly elevated. There were strong correlations between arsenic in beetroot, lettuce, onion and peas and soil arsenic (total, water soluble and acid extractable). Regression equations have been calculated. Ridge regression analysis applied to test the importance of other soil variables has shown both iron and phosphorus to influence the uptake of arsenic.Arsenic in all the vegetables sampled was below the statutory limit in the U.K. of 1 mg/kg fresh weight. Implications for health should be assessed in relation to other exposure routesvia water, air and directly ingested dust and soil.

  1. Total and bioavailable arsenic concentration in arid soils and its uptake by native plants from the pre-Andean zones in Chile.

    Science.gov (United States)

    Díaz, O; Tapia, Y; Pastene, R; Montes, S; Núñez, N; Vélez, D; Montoro, R

    2011-06-01

    Arsenic is the most important contaminant of the environment in northern Chile. Soil samples and plant organs from three native plant species, Pluchea absinthioides, Atriplex atacamensis and Lupinus microcarpus, were collected from arid zones in order to determine the total and bioavailable arsenic concentrations in soils and to assess the bioconcentration factor (BCF) and transport index (Ti) of arsenic in the plants. Total arsenic concentrations in soils (pH 8.3-8.5) where A. atacamensis and P. absinthioides were collected, reached levels considered to be contaminated (54.3 ± 15.4 and 52.9 ± 9.9 mg kg⁻¹, respectively), and these values were approximately ten times higher than in soils (pH 7.6) where L. microcarpus was collected. Bioavailable arsenic ranged from 0.18 to 0.42% of total arsenic concentration. In the three plant species, arsenic concentration in leaves were significantly (p ≤ 0.05) higher than in roots. L. microcarpus showed the highest arsenic concentration in its leaves (9.7 ± 1.6 mg kg⁻¹) and higher values of BCF (1.8) and Ti (6.1), indicating that this species has a greater capacity to accumulate and translocate the metalloid to the leaf than do the other species.

  2. Automated method for the determination of total arsenic and selenium in natural and drinking water by HG-AAS.

    Science.gov (United States)

    Pistón, Mariela; Silva, Javier; Pérez-Zambra, Ramiro; Dol, Isabel; Knochen, Moisés

    2012-04-01

    A multicommutated flow system was designed and evaluated for the determination of total arsenic and selenium by Hydride Generation Atomic Absorption Spectrometry (HG-AAS). It was applied to the determination of arsenic and selenium in samples of natural and drinking water. Detection limits were 0.46 and 0.08 μg l(-1) for arsenic and selenium, respectively; sampling frequency was 120 samples h(-1) for arsenic and 160 samples h(-1) for selenium. Linear ranges found were 1.54-10 μg l(-1) (R = 0.999) for arsenic and 0.27-27 μg l(-1) (R = 0.999) for selenium. Accuracy was evaluated by spiking various water samples and using a reference material. Recoveries were in the range 95-116%. Analytical precision (s ( r ) (%), n = 10) was 6% for both elements. Compared with the Standard Methods, APHA, 3114B manual method, the system consumes at least 10 times less sample per determination, and the quantities of acid and reducing agent used are significantly lower with a reduction in the generation of pollutants and waste. As an additional advantage, the system is very fast, efficient and environmentally friendly for monitoring total arsenic and selenium levels in waters.

  3. A study on the relationship of arsenic accumulation with protein, lipid, ash and moisture contents in muscle of eight species of fish in Iran

    Directory of Open Access Journals (Sweden)

    A Askary Sary

    2012-11-01

    Full Text Available A comparative study was conducted to investigate a relationship between concentration of arsenic with protein, lipid, ash and moisture content in Cyprinus carpio, Oncorhynchus mykiss, Aristichthys nobilis, Hypophthalmichthys molitrix, Ctenopharyngodon idella, Scomberomorus commerson, Scomberomorus guttatus and Otolithes ruber. A total of 72 sample of common carp, Bighead carp, silver carp and grass carp fishing from Azadegan fish farming center, Ahvaz; Rainbow trout from Cheshme Dimeh and Scomberomorus commerson, Scomberomorus guttatus and Otolithes ruber caught with gill netfrom Hendijan. Wet-digestion method was performed prior to arsenic determination in the samples. The level of arsenic was measured by atomic absorption spectrophotometer. The results showed that concentration of arsenic in the muscle of fishes was 269.87 ± 20.96 µg/Kg. Moreover, levels of protein, lipid, ash and moisture in the samples were estimated at 19.67±0.78 g/100, 2.45±0.45 g/100, 1.49±0.23 g/100, 78±1.89 g/100, respectively. Results also showed a positive correlation between the accumulation of arsenic in muscle of fishes with levels of protein, lipid, ash and moisture (p

  4. Arsenic K-edge X-ray absorption near-edge spectroscopy to determine oxidation states of arsenic of a coastal aquifer–aquitard system

    International Nuclear Information System (INIS)

    Wang, Ya; Jiao, Jiu Jimmy; Zhu, Sanyuan; Li, Yiliang

    2013-01-01

    Determination of oxidation states of solid-phase arsenic in bulk sediments is a valuable step in the evaluation of its bioavailability and environmental fate in deposits, but is difficult when the sediments have low arsenic contents and heterogeneous distribution of arsenic species. As K-edge X-ray absorption near-edge spectroscopy (XANES) was used to determine quantitatively the oxidation states of arsenic in sediments collected from different depths of boreholes in the Pearl River Delta, China, where the highest aquatic arsenic concentration is 161.4 μg/L, but the highest solid arsenic content only 39.6 mg/kg. The results demonstrated that XANES is efficient in determining arsenic oxidation states of the sediments with low arsenic contents and multiple arsenic species. The study on the high-resolution vertical variations of arsenic oxidation states also indicated that these states are influenced strongly by groundwater activities. With the help of geochemical data, solid arsenic speciation, toxicity and availability were further discussed. -- Highlights: •XANES is efficient in determining arsenic oxidation states of the bulk sediments. •Distribution of arsenic oxidation states is consistent with geochemical conditions. •Arsenic oxidation states are influenced strongly by groundwater activities. -- As K-edge X-ray absorption near-edge spectroscopy is efficient in determining arsenic oxidation states of the bulk sediments with low arsenic contents and heterogeneous distribution of arsenic species

  5. Determination of total inorganic arsenic in potable water through spectroscopy of atomic absorption with generation of hydride

    International Nuclear Information System (INIS)

    Rodriguez Roman, S.

    1997-01-01

    This study developed a method for the cuantitative analysis of arsenic in potable water , through the spectrophotometric technique of atomic absorption. It used an automatic system of injection of flux for the generation of hydrides. It studied the effect produced by reducer agents, in the prereduction of arsenic in water, obtaining the best result with the use of potasium iodide 1.5% and ascorbic acid 0.25% in hydrochloric acid 3.7%, for the direct determination of total inorganic arsenic. It observed the effect produced by cadmium and selenium to the half of the concentration of arsenic, chromium, lead and silver at the same concentration, and barium at a ten times higher concentration, in the recuperation of total inorganic arsenic. It also used sodium borohydride 0.3% in sodium hydroxide 0.05% (5mL/min), for the formation of the volatile hydrides. It used hydrochloric acid 3.7% (12 mL/min) as disolution of transport; argon as inert gas, and a flame air-acetylene, for the atomization of the hydrides. This method was applied to 19 samples of potable water, and the result was no detectable for all of them. (S. Grainger)

  6. Arsenic-induced oxidative myocardial injury: protective role of arjunolic acid

    Energy Technology Data Exchange (ETDEWEB)

    Manna, Prasenjit; Sinha, Mahua; Sil, Parames C. [Bose Institute, Department of Chemistry, Kolkata, West Bengal (India)

    2008-03-15

    Arsenic, one of the most harmful metalloids, is ubiquitous in the environment. The present study has been carried out to investigate the protective role of a triterpenoid saponin, arjunolic acid (AA) against arsenic-induced cardiac oxidative damage. In the study, NaAsO{sub 2} was chosen as the source of arsenic. The free radical scavenging activity and the effect of AA on the intracellular antioxidant power were determined from its 2,2-diphenyl-1-picryl hydrazyl radical scavenging ability and ferric reducing/antioxidant power assay, respectively. Oral administration of NaAsO{sub 2} at a dose of 10 mg/kg body weight for 2 days caused significant accumulation of arsenic in cardiac tissues of the experimental mice in association with the reduction in cardiac antioxidant enzymes activities, namely superoxide dismutase, catalase, glutathione-S-transferase, glutathione reductase and glutathione peroxidase. Arsenic intoxication also decreased the cardiac glutathione (GSH) and total thiol contents and increased the levels of oxidized glutathione (GSSG), lipid peroxidation end products and protein carbonyl content. Treatment with AA at a dose of 20 mg/kg body weight for 4 days prior to NaAsO{sub 2} intoxication protected the cardiac tissue from arsenic-induced oxidative impairment. In addition to oxidative stress, arsenic administration increased total cholesterol level as well as the reduced high-density lipoprotein cholesterol level in the sera of the experimental mice. AA pretreatment, however, could prevent this hyperlipidemia. Histological studies on the ultrastructural changes in cardiac tissue supported the protective activity of AA also. Combining all, results suggest that AA could protect cardiac tissues against arsenic-induced oxidative stress probably due to its antioxidant property. (orig.)

  7. Arsenic and arsenic species in shellfish and finfish from the western Arabian Gulf and consumer health risk assessment

    International Nuclear Information System (INIS)

    Krishnakumar, Periyadan K.; Qurban, Mohammad A.; Stiboller, Michael; Nachman, Keeve E.; Joydas, Thadickal V.; Manikandan, Karuppasamy P.; Mushir, Shemsi Ahsan; Francesconi, Kevin A.

    2016-01-01

    This study reports the levels of total arsenic and arsenic species in marine biota such as clams (Meretrix meretrix; N = 21) and pearl oyster (Pinctada radiata; N = 5) collected from nine costal sites in Jan 2014, and cuttlefish (Sepia pharaonis; N = 8), shrimp (Penaeus semisulcatus; N = 1), and seven commercially important finfish species (N = 23) collected during Apr–May 2013 from seven offshore sites in the western Arabian Gulf. Total As and As species such as dimethylarsinic acid (DMA), arsenobetaine (AB), trimethylarsine oxide (TMAO), arsenocholine (AC), tetramethylarsonium ion (Tetra), arsenosugar-glycerol (As-Gly) and inorganic As (iAs) were determined by using ICPMS and HPLC/ICPMS. In bivalves, the total As concentrations ranged from 16 to 118 mg/kg dry mass; the toxic iAs fraction contributed on average less than 0.8% of the total As, while the nontoxic AB fraction formed around 58%. Total As concentrations for the remaining seafood (cuttlefish, shrimp and finfish) ranged from 11 to 134 mg/kg dry mass and the iAs and AB fractions contributed on average 0.03% and 81% respectively of the total As. There was no significant relationship between the tissue concentrations of total As and iAs in the samples. There was also no significant relationship between As levels in seafood and geographical location or salinity of the waters from which samples were collected. Based on our results, we recommend introducing a maximum permissible level of arsenic in seafood from the Gulf based on iAs content rather than based on total As. Our analyses of cancer risks and non-cancer hazards identified non-negligible risks and the potential for hazards; the greatest risks were identified for expatriate consumers of bivalves and high-end consumers of seafood. Despite this, many uncertainties remain that would be best addressed by further analyses. - Highlights: • Arabian Gulf seafood contains relatively high concentrations of total arsenic. • Non-toxic arsenobetaine forms

  8. Arsenic and arsenic species in shellfish and finfish from the western Arabian Gulf and consumer health risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Krishnakumar, Periyadan K., E-mail: kkumarpk@kfupm.edu.sa [Center for Environment and Water, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Qurban, Mohammad A. [Center for Environment and Water, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Stiboller, Michael [Institute of Chemistry-Analytical Chemistry, NAWI Graz, University of Graz, A-8010 Graz (Austria); Nachman, Keeve E. [Johns Hopkins Bloomberg School of Public Health, Department of Environmental Health Sciences, Baltimore, MD (United States); Joydas, Thadickal V.; Manikandan, Karuppasamy P.; Mushir, Shemsi Ahsan [Center for Environment and Water, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Francesconi, Kevin A. [Institute of Chemistry-Analytical Chemistry, NAWI Graz, University of Graz, A-8010 Graz (Austria)

    2016-10-01

    This study reports the levels of total arsenic and arsenic species in marine biota such as clams (Meretrix meretrix; N = 21) and pearl oyster (Pinctada radiata; N = 5) collected from nine costal sites in Jan 2014, and cuttlefish (Sepia pharaonis; N = 8), shrimp (Penaeus semisulcatus; N = 1), and seven commercially important finfish species (N = 23) collected during Apr–May 2013 from seven offshore sites in the western Arabian Gulf. Total As and As species such as dimethylarsinic acid (DMA), arsenobetaine (AB), trimethylarsine oxide (TMAO), arsenocholine (AC), tetramethylarsonium ion (Tetra), arsenosugar-glycerol (As-Gly) and inorganic As (iAs) were determined by using ICPMS and HPLC/ICPMS. In bivalves, the total As concentrations ranged from 16 to 118 mg/kg dry mass; the toxic iAs fraction contributed on average less than 0.8% of the total As, while the nontoxic AB fraction formed around 58%. Total As concentrations for the remaining seafood (cuttlefish, shrimp and finfish) ranged from 11 to 134 mg/kg dry mass and the iAs and AB fractions contributed on average 0.03% and 81% respectively of the total As. There was no significant relationship between the tissue concentrations of total As and iAs in the samples. There was also no significant relationship between As levels in seafood and geographical location or salinity of the waters from which samples were collected. Based on our results, we recommend introducing a maximum permissible level of arsenic in seafood from the Gulf based on iAs content rather than based on total As. Our analyses of cancer risks and non-cancer hazards identified non-negligible risks and the potential for hazards; the greatest risks were identified for expatriate consumers of bivalves and high-end consumers of seafood. Despite this, many uncertainties remain that would be best addressed by further analyses. - Highlights: • Arabian Gulf seafood contains relatively high concentrations of total arsenic. • Non-toxic arsenobetaine forms

  9. Determination of Total Arsenic in Seaweed Products by Neutron Activation Analysis

    OpenAIRE

    Salim, N; Santoso, M; Damayanti, S; Kartawinata, T.G

    2013-01-01

    Seaweed products are widely consumed as food nowadays. Seaweeds are known to contain arsenic due to their capability to accumulate arsenic from the environment. Arsenic is a known toxic element which naturally occurs in the environment. Ingestion of high levels of arsenic will cause several adverse health effects. Arsenic in food occurs at trace concentrations which require sensitive and selective analysis methods to perform elemental analysis on. Validated neutron activation analysis was use...

  10. Arsenic speciation analysis of urine samples from individuals living in an arsenic-contaminated area in Bangladesh.

    Science.gov (United States)

    Hata, Akihisa; Yamanaka, Kenzo; Habib, Mohamed Ahsan; Endo, Yoko; Fujitani, Noboru; Endo, Ginji

    2012-05-01

    Chronic inorganic arsenic (iAs) exposure currently affects tens of millions of people worldwide. To accurately determine the proportion of urinary arsenic metabolites in residents continuously exposed to iAs, we performed arsenic speciation analysis of the urine of these individuals and determined whether a correlation exists between the concentration of iAs in drinking water and the urinary arsenic species content. The subjects were 165 married couples who had lived in the Pabna District in Bangladesh for more than 5 years. Arsenic species were measured using high-performance liquid chromatography and inductively coupled plasma mass spectrometry. The median iAs concentration in drinking water was 55 μgAs/L (range 47.9-153.4 μgAs/L), respectively. No arsenobetaine or arsenocholine was detected. The concentrations of the 4 urinary arsenic species were significantly and linearly related to each other. The urinary concentrations of total arsenic and each species were significantly correlated with the iAs concentration of drinking water. All urinary arsenic species are well correlated with each other and with iAs in drinking water. The most significant linear relationship existed between the iAs concentration in drinking water and urinary iAs + MMA concentration. From these results, combined with the effects of seafood ingestion, the best biomarker of iAs exposure is urinary iAs + MMA concentration.

  11. Metagenomic analysis revealed highly diverse microbial arsenic metabolism genes in paddy soils with low-arsenic contents

    International Nuclear Information System (INIS)

    Xiao, Ke-Qing; Li, Li-Guan; Ma, Li-Ping; Zhang, Si-Yu; Bao, Peng; Zhang, Tong; Zhu, Yong-Guan

    2016-01-01

    Microbe-mediated arsenic (As) metabolism plays a critical role in global As cycle, and As metabolism involves different types of genes encoding proteins facilitating its biotransformation and transportation processes. Here, we used metagenomic analysis based on high-throughput sequencing and constructed As metabolism protein databases to analyze As metabolism genes in five paddy soils with low-As contents. The results showed that highly diverse As metabolism genes were present in these paddy soils, with varied abundances and distribution for different types and subtypes of these genes. Arsenate reduction genes (ars) dominated in all soil samples, and significant correlation existed between the abundance of arr (arsenate respiration), aio (arsenite oxidation), and arsM (arsenite methylation) genes, indicating the co-existence and close-relation of different As resistance systems of microbes in wetland environments similar to these paddy soils after long-term evolution. Among all soil parameters, pH was an important factor controlling the distribution of As metabolism gene in five paddy soils (p = 0.018). To the best of our knowledge, this is the first study using high-throughput sequencing and metagenomics approach in characterizing As metabolism genes in the five paddy soil, showing their great potential in As biotransformation, and therefore in mitigating arsenic risk to humans. - Highlights: • Use metagenomics to analyze As metabolism genes in paddy soils with low-As content. • These genes were ubiquitous, abundant, and associated with diverse microbes. • pH as an important factor controlling their distribution in paddy soil. • Imply combinational effect of evolution and selection on As metabolism genes. - Metagenomics was used to analyze As metabolism genes in paddy soils with low-As contents. These genes were ubiquitous, abundant, and associated with diverse microbes.

  12. [Study on Content Determination of Lead and Arsenic in Four Traditional Tibetan Medicine Prescription Preparations by Wet Digestion Flow Injection-Hydride Generation-Atomic Absorption Spectrometry].

    Science.gov (United States)

    Zheng, Zhi-yuan; Du, Yu-zhi; Zhang, Ming; Yu, Ming-jie; Li, Cen; Yang, Hong-xia; Zhao, Jing; Xia, Zheng-hua; Wei, Li-xin

    2015-04-01

    Four common traditional tibetan medicine prescription preparations "Anzhijinghuasan, Dangzuo, Renqingchangjue and Rannasangpei" in tibetan areas were selected as study objects in the present study. The purpose was to try to establish a kind of wet digestion and flow injection-hydride generation-atomic absorption spectrometry (FI-HAAS) associated analysis method for the content determinations of lead and arsenic in traditional tibetan medicine under optimized digestion and measurement conditions and determine their contents accurately. Under these optimum operating conditions, experimental results were as follows. The detection limits for lead and arsenic were 0.067 and 0.012 µg · mL(-1) respectively. The quantification limits for lead and arsenic were 0.22 and 0.041 µg · mL(-1) respectively. The linear ranges for lead and arsenic were 25-1,600 ng · mL(-1) (r = 0.9995) and 12.5-800 ng · mL(-1) (r = 0.9994) respectively. The degrees of precision(RSD) for lead and arsenic were 2.0% and 3.2% respectively. The recovery rates for lead and arsenic were 98.00%-99.98% and 96.67%-99.87% respectively. The content determination results of lead and arsenic in four traditional tibetan medicine prescription preparations were as fol- lows. The contents of lead and arsenic in Anzhijinghuasan are 0.63-0.67 µg · g(-1) and 0.32-0.33 µg · g(-1) in Anzhijinghua- san, 42.92-43.36 µg · g(-1) and 24.67-25.87 µg · g(-1) in Dangzuo, 1,611. 39-1,631.36 µg · g(-1) and 926.76-956.52 µg- g(-1) in Renqing Changjue, and 1,102.28-1,119.127 µg-g(-1) and 509.96-516.87 µg · g(-1) in Rannasangpei, respectively. This study established a method for content determination of lead and arsenic in traditional tibetan medicine, and determined the content levels of lead and arsenic in four tibetan medicine-prescription preparations accurately. In addition, these results also provide the basis for the safe and effective use of those medicines in clinic.

  13. Renin–angiotensin–aldosterone system related gene polymorphisms and urinary total arsenic is related to chronic kidney disease

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wei-Jen [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China); Huang, Ya-Li [Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Shiue, Horng-Sheng [Department of Chinese Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan (China); Chen, Tzen-Wen [Division of Nephrology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan (China); Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Lin, Yuh-Feng [Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, New Taipei, Taiwan (China); Huang, Chao-Yuan [Department of Urology, National Taiwan University Hospital, College of Medicine National Taiwan University, Taipei, Taiwan (China); Lin, Ying-Chin [Department of Family Medicine, Shung Ho Hospital, Taipei Medical University, New Taipei, Taiwan (China); Department of Health Examination, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan (China); Division of Family Medicine, School of Medicine, Taipei Medical University, Taipei, Taiwan (China); Han, Bor-Cheng [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China); Hsueh, Yu-Mei, E-mail: ymhsueh@tmu.edu.tw [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China); Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (China)

    2014-09-01

    A recent study demonstrated that an increased risk of chronic kidney disease (CKD) was associated with high urinary total arsenic levels. However, whether genomic instability is related to CKD remains unclear. An association between CKD and genetic polymorphisms of regulation enzymes of the renin–angiotensin–aldosterone system (RAAS), such as angiotensin-converting enzyme (ACE), angiotensinogen (AGT), angiotensin II type I receptor (AT1R), and aldosterone synthase (CYP11B2) has not been shown. The aim of the present study was to investigate the relationship between arsenic, genetic polymorphisms of RAAS enzymes and CKD. A total of 233 patients and 449 age- and gender-matched controls were recruited from the Taipei Medical University Hospital, Taipei Municipal Wan Fang Hospital and the Shin Kong Wu Ho-Su Memorial Hospital. Concentrations of urinary arsenic were determined by a high-performance liquid chromatography-linked hydride generator, and atomic absorption spectrometry. Polymorphisms of ACE(I/D), AGT(A[− 20]C), (T174M), (M235T), AT1R(A1166C) and CYP11B2(C[− 344]T) were examined by polymerase chain reaction and restriction fragment length polymorphism. Subjects carrying the CYP11B2 TT genotype had a higher odds ratio (OR), 1.39 (0.96–2.01), of CKD; while those with the AGT(A[− 20]C) CC genotype had an inverse OR of CKD (0.20 (0.05–0.81)), and a high-risk genotype was defined as A/A + A/C for AGT(A[− 20C]) and T/T for CYP11B2(C[− 344]T). The trend test showed a higher OR for CKD in patients who had either high urinary total arsenic levels or carried the high-risk genotype, or both, compared to patients with low urinary total arsenic levels, who carried the low-risk genotype, and could also be affected by the hypertension or diabetes status. - Highlights: • AGT(− 20 C) and CYP11B2(− 344 T) genotypes were significantly associated with CKD. • Combined effect of high-risk genotypes and high urinary total arsenic on OR of CKD. • Combined

  14. Renin–angiotensin–aldosterone system related gene polymorphisms and urinary total arsenic is related to chronic kidney disease

    International Nuclear Information System (INIS)

    Chen, Wei-Jen; Huang, Ya-Li; Shiue, Horng-Sheng; Chen, Tzen-Wen; Lin, Yuh-Feng; Huang, Chao-Yuan; Lin, Ying-Chin; Han, Bor-Cheng; Hsueh, Yu-Mei

    2014-01-01

    A recent study demonstrated that an increased risk of chronic kidney disease (CKD) was associated with high urinary total arsenic levels. However, whether genomic instability is related to CKD remains unclear. An association between CKD and genetic polymorphisms of regulation enzymes of the renin–angiotensin–aldosterone system (RAAS), such as angiotensin-converting enzyme (ACE), angiotensinogen (AGT), angiotensin II type I receptor (AT1R), and aldosterone synthase (CYP11B2) has not been shown. The aim of the present study was to investigate the relationship between arsenic, genetic polymorphisms of RAAS enzymes and CKD. A total of 233 patients and 449 age- and gender-matched controls were recruited from the Taipei Medical University Hospital, Taipei Municipal Wan Fang Hospital and the Shin Kong Wu Ho-Su Memorial Hospital. Concentrations of urinary arsenic were determined by a high-performance liquid chromatography-linked hydride generator, and atomic absorption spectrometry. Polymorphisms of ACE(I/D), AGT(A[− 20]C), (T174M), (M235T), AT1R(A1166C) and CYP11B2(C[− 344]T) were examined by polymerase chain reaction and restriction fragment length polymorphism. Subjects carrying the CYP11B2 TT genotype had a higher odds ratio (OR), 1.39 (0.96–2.01), of CKD; while those with the AGT(A[− 20]C) CC genotype had an inverse OR of CKD (0.20 (0.05–0.81)), and a high-risk genotype was defined as A/A + A/C for AGT(A[− 20C]) and T/T for CYP11B2(C[− 344]T). The trend test showed a higher OR for CKD in patients who had either high urinary total arsenic levels or carried the high-risk genotype, or both, compared to patients with low urinary total arsenic levels, who carried the low-risk genotype, and could also be affected by the hypertension or diabetes status. - Highlights: • AGT(− 20 C) and CYP11B2(− 344 T) genotypes were significantly associated with CKD. • Combined effect of high-risk genotypes and high urinary total arsenic on OR of CKD. • Combined

  15. [Study of relationship between arsenic methylation and skin lesion in a population with long-term high arsenic exposure].

    Science.gov (United States)

    Su, Liqin; Cheng, Yibin; Lin, Shaobin; Wu, Chuanye

    2007-05-01

    To investigate the difference of arsenic metabolism in populations with long-term high arsenic exposure and explore the relationship between arsenic metabolism diversity and skin lesion. 327 residents in an arsenic polluted village were voluntarily enrolled in this study. Questionnaire survey and medical examination were carried out to learn basic information and detect skin lesions. Urinary inorganic and methylated arsenic were speciated by high performance liquid chromatography combined with hydride-generation atomic fluorescence spectrometry. Total arsenic concentration in hair was determined with DDC-Ag method. Hair arsenic content of studied polutions was generally high, but no significant difference were found among the studied four groups. MMA and DMA concentration in urine increased with studied polution age, and were positively related with skin lesion grade. The relative proportion of MMA in serious skin lesion group was significantly higher than in other 3 groups, while DMA/MMA ratio was significantly lower than control and mild group. The relative proportion of MMA was positively related with skin lesion grade, DMA/ MMA ratio was negatively related with skin lesion grade. Males could have higher arsenic cumulation and lower methylation capacity than those of females. The population of above 40 years old may have higher methylation capacity than those of adults below 40yeas old. Smokers and drinkers seemed lower methylation capacity than those of non-smokers and non-drinkers respectively. The methylation of arsenic could affect by several factors, including age gender, smoking and drinking. Arsenic methylation copacity mey be associated with skin lesion induced by arsenic exposure.

  16. Effect of organic matter amendment, arsenic amendment and water management regime on rice grain arsenic species

    International Nuclear Information System (INIS)

    Norton, Gareth J.; Adomako, Eureka E.; Deacon, Claire M.; Carey, Anne-Marie; Price, Adam H.; Meharg, Andrew A.

    2013-01-01

    Arsenic accumulation in rice grain has been identified as a major problem in some regions of Asia. A study was conducted to investigate the effect of increased organic matter in the soil on the release of arsenic into soil pore water and accumulation of arsenic species within rice grain. It was observed that high concentrations of soil arsenic and organic matter caused a reduction in plant growth and delayed flowering time. Total grain arsenic accumulation was higher in the plants grown in high soil arsenic in combination with high organic matter, with an increase in the percentage of organic arsenic species observed. The results indicate that the application of organic matter should be done with caution in paddy soils which have high soil arsenic, as this may lead to an increase in accumulation of arsenic within rice grains. Results also confirm that flooding conditions substantially increase grain arsenic. -- Highlights: ► High soil arsenic and organic matter caused a reduction in plant growth. ► A delayed flowering time was observed in high arsenic and organic matter soil. ► Total grain arsenic increased in high arsenic and organic matter soil. ► Percentage organic arsenic in the grain altered in arsenic and organic matter soil. -- The addition of high amounts of organic matter to soils led to an increase in total rice grain arsenic, as well as alteration in the percentage arsenic species in the rice grains

  17. Inorganic arsenic contents in rice-based infant foods from Spain, UK, China and USA

    International Nuclear Information System (INIS)

    Carbonell-Barrachina, Ángel A.; Wu, Xiangchun; Ramírez-Gandolfo, Amanda; Norton, Gareth J.; Burló, Francisco; Deacon, Claire; Meharg, Andrew A.

    2012-01-01

    Spanish gluten-free rice, cereals with gluten, and pureed baby foods were analysed for total (t-As) and inorganic As (i-As) using ICP-MS and HPLC–ICP-MS, respectively. Besides, pure infant rice from China, USA, UK and Spain were also analysed. The i-As contents were significantly higher in gluten-free rice than in cereals mixtures with gluten, placing infants with celiac disease at high risk. All rice-based products displayed a high i-As content, with values being above 60% of the t-As content and the remainder being dimethylarsinic acid (DMA). Approximately 77% of the pure infant rice samples showed contents below 150 μg kg −1 (Chinese limit). When daily intake of i-As by infants (4–12 months) was estimated and expressed on a bodyweight basis (μg d −1 kg −1 ), it was higher in all infants aged 8–12 months than drinking water maximum exposures predicted for adults (assuming 1 L consumption per day for a 10 μg L −1 standard). Highlights: ► Inorganic As was higher in rice-based foods than in items based on other cereals. ► Total As was very high in fish-based foods but As was present as non-toxic species. ► The maximum daily intake of i-As was found between 8 and 12 months of age. ► Pure infant rice samples from Spain presented relatively low i-As contents. ► Infants with the celiac disease are exposed to elevated levels of i-As. - Infants with the celiac disease are exposed to high levels of inorganic arsenic because of their high consumption of rice-based foods.

  18. Arsenic in Surface Soils Affected by Mining and Metallurgical Processing in K. Mitrovica Region, Kosovo

    Directory of Open Access Journals (Sweden)

    Robert Sajn

    2010-11-01

    Full Text Available The results of a study on the spatial distribution of arsenic in topsoil (0–5 cm over the K. Mitrovica region, Kosovo, are reported. The investigated region (300 km2 was covered by a sampling grid of 1.4 km × 1.4 km. In total, 159 soil samples were collected from 149 locations. Inductively coupled plasma–mass spectrometry (ICP-MS was applied for the determination of arsenic levels. It was found that the average content of arsenic in the topsoil for the entire study area was 30 mg/kg (from 2.1 to 3,900 mg/kg which exceeds the estimated European arsenic average in topsoil by a factor of 4.3. Contents of arsenic in the topsoil exceeded the optimum value recommended by the new Dutchlist (29 mg/kg As in 124 km2. The action value (55 mg/kg As was exceeded in 64 km2, with the average content of 105 mg/kg (from 55 to 3,900 mg/kg As.

  19. Quantitative Determination of Arsenic in Bottled Drinking Water Using Atomic Absorption Spectroscopy

    Directory of Open Access Journals (Sweden)

    Maria Guţu Claudia

    2013-10-01

    Full Text Available Background: Many studies have been performed in the past few years, to determine arsenic speciation in drinking water, food chain and environment, arsenic being a well-recognized carcinogenic and toxic agent mainly in its inorganic species. The instrumental techniques used for arsenic determination, such as hydride generation atomic absorption spectrometry (HGAAS, graphite furnace atomic absorption spectrometry (GFAAS and inductively coupled plasma mass spectrometry (ICP-MS, can provide a great sensitivity only on the total amount. Objective: The aim of this study was to develop a simple and rapid method and to analyze the concentration of total inorganic arsenic in bottled drinking water. Methods: Total arsenic was determined in samples from six different types of commercially available bottled drinking water using atomic absorption spectrometry with electrothermal or hydride generation vaporisation. All drinking water samples were acidified with 0.1M nitric acid to match the acidity of the standards. Results: The method was linear within the studied range (1-5 μg/L, R = 0.9943. The quantification limits for arsenic determination were 0.48 μg/L (HGAAS and 0.03 μg/L (GFAAS. The evaluated arsenic content in drinking water was within the accepted limits provided by law. Conclusions: A simple and sensitive method for the quantification of arsenic in drinking water using atomic absorbtion spectroscopy was described, which can be further used in toxicological studies. As an additional advantage, the system is very fast, efficient and environmental friendly

  20. Correlation of arsenic exposure through drinking groundwater and urinary arsenic excretion among adults in Pakistan.

    Science.gov (United States)

    Ahmed, Mubashir; Fatmi, Zafar; Ali, Arif

    2014-01-01

    Long-term exposure to arsenic has been associated with manifestation of skin lesions (melanosis/keratosis) and increased risk of internal cancers (lung/bladder). The objective of the study described here was to determine the relationship between exposure of arsenic through drinking groundwater and urinary arsenic excretion among adults > or =15 years of age living in Khairpur district, Pakistan. Total arsenic was determined in drinking groundwater and in spot urine samples of 465 randomly selected individuals through hydride generation-atomic absorption spectrometry. Spearman's rank correlation coefficient was calculated between arsenic in drinking groundwater and arsenic excreted in urine. The median arsenic concentration in drinking water was 2.1 microg/L (range: 0.1-350), and in urine was 28.5 microg/L (range: 0.1-848). Positive correlation was found between total arsenic in drinking water and in urine (r = .52, p arsenic may be used as a biomarker of arsenic exposure through drinking water.

  1. Spectroscopic Analysis of Arsenic Uptake in Pteris Ferns

    Directory of Open Access Journals (Sweden)

    Terrence Slonecker

    2009-09-01

    Full Text Available Two arsenic-accumulating Pteris ferns (Pteris cretica mayii and Pteris multifida, along with a non-accumulating control fern (Nephrolepis exaltata were grown in greenhouse conditions in clean sand spiked with 0, 20, 50, 100 and 200 ppm sodium arsenate. Spectral data were collected for each of five replicates prior to harvest at 4-week intervals. Fern samples were analyzed for total metals content and Partial Least Squares and Stepwise Linear Regression techniques were used to develop models from the spectral data. Results showed that Pteris cretica mayii and Pteris multifida are confirmed hyperaccumulators of inorganic arsenic and that reasonably accurate predictive models of arsenic concentration can be developed from the first derivative of spectral reflectance of the hyperaccumulating Pteris ferns. Both the arsenic uptake and spectral results indicate that there is some species-specific variability but the results compare favorably with previously published data and additional research is recommended.

  2. Content of arsenic, selenium, mercury in the coal, food, clay and drinking water on the Zhaotong fluorosis area, eastern Yunnan Province

    Energy Technology Data Exchange (ETDEWEB)

    Luo Kun-li; Li Hui-jie; Chen Tong-bin (and others) [Chinese Academy of Sciences, Beijing (China). Institute of Geographic Sciences and Natural Resources Research

    2008-03-15

    About 160 samples of coal, corn, capsicum and drinking water were collected from the endemic fluorosis area of Zhenxiong and Weixin County, Zhaotong City of Yunnan Province, to determine the arsenic (As), selenium (Se) and mercury (Hg) content by AAF-800. The study found that the As content in the main coal seam from the Late Permian coal mines in Zhaotong City is 8.84 mg/kg and some civil coal can reach 89.09 mg/kg. The Se and Hg in the coal samples of Late Permian is lower, but Se and Hg are more concentrated in the pyritic coal balls and the pyritic gangue of the coal seam. The As content in corn and capsicum dried by coal-burning is more than 0.7 mg/kg, the natural standard amount of arsenic content permitted in food by China. The Se and Hg content in corn dried by coal-burning is lower than the natural standard of Se and Hg content in food in China but the Se and Hg content of capsicum dried by coal-burning exceeds the amount permitted by the natural standard for food in China. Clay, used as an additive for the coal-burning process and as a binder in making briquettes, contains a high content of As, generally more than 16 mg/kg. However, the Se and Hg content of clay itself are low. The As, Se and Hg content of drinking water are lower than the natural standard of As, Se and Hg content in the drinking water. So, there is high-As content coal and high-As content dried corn and capsicum in the endemic fluorosis area of Zhaotong City of Yunnan Province. The high As content of the dried corn and capsicum might have originated from the high arsenic content of burnt coal and clay. 30 refs., 4 tabs.

  3. Mercury, cadmium and arsenic contents of calcium dietary supplements.

    Science.gov (United States)

    Kim, Meehye

    2004-08-01

    The cadmium (Cd) and arsenic (As) contents of calcium (Ca) supplements available on the Korean market were determined by a graphite furnace atomic absorption spectrometer using Zeeman background correction and peak area mode after microwave digestion. The mercury (Hg) content of the supplements was measured using an Hg analyser. Recoveries ranged from 92 to 98% for Hg, Cd and As analyses. Fifty-five brands of Ca supplements were classified into seven categories based on the major composite: bone, milk, oyster/clam shell, egg shell, algae, shark cartilage and chelated. The means of Hg, Cd and As in Ca supplements were 0.01, 0.02, and 0.48 mg kg(-1), respectively. Ca supplements made of shark cartilage had the highest means of Hg (0.06 mg kg(-1)) and Cd (0.13 mg kg(-1)). The mean daily intakes of Hg and Cd from the supplement were estimated as about 0.1-0.2 microg, with both contributing less than 0.4% of provisional tolerable daily intakes set by the Food and Agricultural Organization/World Health Organization Joint Food Additive and Contaminants Committee.

  4. Comparison of mild extraction procedures for determination of plant-available arsenic compounds in soil

    Energy Technology Data Exchange (ETDEWEB)

    Szakova, Jirina; Tlustos, Pavel; Pavlikova, Daniela; Balik, Jiri [Czech University of Agriculture, Department of Agrochemistry and Plant Nutrition, Prague (Czech Republic); Goessler, Walter; Schlagenhaufen, Claudia [Karl-Franzens-University Graz, Institute of Chemistry, Analytical Chemistry, Graz (Austria)

    2005-05-01

    In this work three mild extraction agents for determination of plant-available fractions of elements in soil were evaluated for arsenic speciation in soil samples. Pepper (Capsicum annum, L.) var. California Wonder was cultivated in pots, and aqueous solutions of arsenite, arsenate, methylarsonic acid, and dimethylarsinic acid, at a concentration of 15 mg As kg{sup -1} soil, were added at the beginning of the experiment. Control pots (untreated) were also included. Deionized water, 0.01 mol L{sup -1} CaCl{sub 2}, and 0.05 mol L{sup -1} (NH{sub 4}){sub 2}SO{sub 4} were used to extract the plant-available fraction of the arsenic compounds in soil samples collected during the vegetation period of the plants. Whereas in control samples the extractable arsenic fraction did not exceed 1% of total arsenic content, soil amendment by arsenic compounds resulted in extraction of larger amounts, which varied between 1.4 and 8.1% of total arsenic content, depending on soil treatment and on the extracting agent applied. Among arsenic compounds determined by HPLC-ICPMS arsenate was predominant, followed by small amounts of arsenite, methylarsonic acid, and dimethylarsinic acid, depending on the individual soil treatment. In all the experiments in which methylarsonic acid was added to the soil methylarsonous acid was detected in the extracts, suggesting that the soil bacteria are capable of reducing methylarsonic acid before a further methylation occurs. No significant differences were observed between analytical data obtained by using different extraction procedures. (orig.)

  5. Speciation of arsenic in baby foods and the raw fish ingredients using liquid chromatography-hydride generation-atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Vinas, P.; Lopez-Garcia, I.; Merino-Merono, B.; Campillo, N.; Hernandez-Cordoba, M. [Murcia Univ. (Spain). Dept. of Analytical Chemistry

    2003-07-01

    The speciation of arsenic in different baby foods and the raw fish ingredients using the direct hybridisation of liquid chromatography (LC) and hydride generation atomic absorption spectrometry (HGAAS) is described. Good resolution of the species, arsenic(III), dimethylarsinic acid (DMAA), monomethylarsenic acid (MMAA) and arsenic(V) is achieved using an anion-exchange column with potassium phosphate as the mobile phase and gradient elution. Arsenobetaine (AsB) is determined by on-line oxidation using peroxydisulphate and hydride generation. The arsenicals were extracted by an enzymatic digestion procedure based on the action of trypsin or pancreatin. Arsenobetaine was the only arsenic species detected. The reliability of the procedure was checked by analyzing the total arsenic content of the samples by electrothermal atomic absorption spectrometry with microwave-oven digestion and by analyzing a certified reference material. The arsenic content in the baby foods comes from the raw fish ingredients and is highest when plaice is used. (orig.)

  6. Interactions between arsenic species and marine algae

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, J.G.

    1978-01-01

    The arsenic concentration and speciation of marine algae varies widely, from 0.4 to 23 ng.mg/sup -1/, with significant differences in both total arsenic content and arsenic speciation occurring between algal classes. The Phaeophyceae contain more arsenic than other algal classes, and a greater proportion of the arsenic is organic. The concentration of inorganic arsenic is fairly constant in macro-algae, and may indicate a maximum level, with the excess being reduced and methylated. Phytoplankton take up As(V) readily, and incorporate a small percentage of it into the cell. The majority of the As(V) is reduced, methylated, and released to the surrounding media. The arsenic speciation in phytoplankton and Valonia also changes when As(V) is added to cultures. Arsenate and phosphate compete for uptake by algal cells. Arsenate inhibits primary production at concentrations as low as 5 ..mu..g.1/sup -1/ when the phosphate concentration is low. The inhibition is competitive. A phosphate enrichment of > 0.3 ..mu..M alleviates this inhibition; however, the As(V) stress causes an increase in the cell's phosphorus requirement. Arsenite is also toxic to phytoplankton at similar concentrations. Methylated arsenic species did not affect cell productivity, even at concentrations of 25 ..mu..g.1/sup -1/. Thus, the methylation of As(V) by the cell produces a stable, non-reactive compound which is nontoxic. The uptake and subsequent reduction and methylation of As(V) is a significant factor in determining the arsenic biogeochemistry of productive systems, and also the effect that the arsenic may have on algal productivity. Therefore, the role of marine algae in determining the arsenic speciation of marine systems cannot be ignored. (ERB)

  7. The use of L-ascorbic acid in speciation of arsenic compounds in drinking water

    Directory of Open Access Journals (Sweden)

    Marjanović Nikola J.

    2009-01-01

    Full Text Available Arsenic speciation, besides total arsenic content determination, is very important in analysis of water, foodstuffs, and environmental samples, because of varying degrees of toxicity of different species. For such purpose hydride generation atomic absorption spectrometry can be used based on the generation of certain types of hydride, depending on the pH value and pretreatment in different reaction media. In this study, we have investigated the effect of L-ascorbic acid as the reaction medium as well as the pre-reducing agent in speciation of arsenic by hydride generation-atomic absorption spectrometry in order to determine monomethyl arsonic acid (MMA in the presence of inorganic forms of arsenic.

  8. Urinary arsenic species, toenail arsenic, and arsenic intake estimates in a Michigan population with low levels of arsenic in drinking water.

    Science.gov (United States)

    Rivera-Núñez, Zorimar; Meliker, Jaymie R; Meeker, John D; Slotnick, Melissa J; Nriagu, Jerome O

    2012-01-01

    The large disparity between arsenic concentrations in drinking water and urine remains unexplained. This study aims to evaluate predictors of urinary arsenic in a population exposed to low concentrations (≤50 μg/l) of arsenic in drinking water. Urine and drinking water samples were collected from a subsample (n=343) of a population enrolled in a bladder cancer case-control study in southeastern Michigan. Total arsenic in water and arsenic species in urine were determined using ICP-MS: arsenobetaine (AsB), arsenite (As[III]), arsenate (As[V]), methylarsenic acid (MMA[V]), and dimethylarsenic acid (DMA[V]). The sum of As[III], As[V], MMA[V], and DMA[V] was denoted as SumAs. Dietary information was obtained through a self-reported food intake questionnaire. Log(10)-transformed drinking water arsenic concentration at home was a significant (Pwater were removed and further improved when analyses were applied to individuals who consumed amounts of home drinking water above the median volume (R(2)=0.40, Pwater was 0.42. Results show that arsenic exposure from drinking water consumption is an important determinant of urinary arsenic concentrations, even in a population exposed to relatively low levels of arsenic in drinking water, and suggest that seafood intake may influence urinary DMA[V] concentrations.

  9. Total arsenic concentrations in toenails quantified by two techniques provide a useful biomarker of chronic arsenic exposure in drinking water

    International Nuclear Information System (INIS)

    Adair, Blakely M.; Hudgens, Edward E.; Schmitt, Michael T.; Calderon, Rebecca L.; Thomas, David J.

    2006-01-01

    Accurate quantitation of any contaminant of interest is critical for exposure assessment and metabolism studies that support risk assessment. A preliminary step in an arsenic exposure assessment study in Nevada quantified total arsenic (TAs) concentrations in tissues as biomarkers of exposure. Participants in this study (n=95) were at least 45 years old, had lived in the area for more than 20 years, and were exposed to a wide range of arsenic concentrations in drinking water (3-2100ppb). Concentrations of TAs in blood, urine, and toenails determined by hydride generation-atomic fluorescence spectrometry (HG-AFS) ranged from below detection to 0.03, 0.76, and 12ppm, respectively; TAs in blood rarely exceeded the limit of detection. For comparison, TAs in toenails determined by neutron activation analysis (NAA) ranged from below detection to 16ppm. Significant (P 2 =0.3557 HG-AFS, adjusted r 2 =0.3922 NAA); TAs concentrations in urine were not described by drinking water As (adjusted r 2 =0.0170, P=0.1369). Analyses of TAs in toenails by HGAFS and NAA yielded highly concordant estimates (r=0.7977, P<0.0001). These results suggest that toenails are a better biomarker of chronic As exposure than urine in the current study, because the sequestration of As in toenails provides an integration of exposure over time that does not occur in urine

  10. Influence of cooking method on arsenic retention in cooked rice related to dietary exposure.

    Science.gov (United States)

    Rahman, M Azizur; Hasegawa, H; Rahman, M Arifur; Rahman, M Mahfuzur; Miah, M A Majid

    2006-10-15

    Arsenic concentration in raw rice is not only the determinant in actual dietary exposure. Though there have been many reports on arsenic content in raw rice and different tissues of rice plant, little is known about arsenic content retained in cooked rice after being cooked following the traditional cooking methods employed by the people of arsenic epidemic areas. A field level experiment was conducted in Bangladesh to investigate the influence of cooking methods on arsenic retention in cooked rice. Rice samples were collected directly from a severely arsenic affected area and also from an unaffected area, to compare the results. Rice was cooked according to the traditional methods employed by the population of subjected areas. Arsenic concentrations were 0.40+/-0.03 and 0.58+/-0.12 mg/kg in parboiled rice of arsenic affected area, cooked with excess water and 1.35+/-0.04 and 1.59+/-0.07 mg/kg in gruel for BRRI dhan28 and BRRI hybrid dhan1, respectively. In non-parboiled rice, arsenic concentrations were 0.39+/-0.04 and 0.44+/-0.03 mg/kg in rice cooked with excess water and 1.62+/-0.07 and 1.74+/-0.05 mg/kg in gruel for BRRI dhan28 and BRRI hybrid dhan1, respectively. Total arsenic content in rice, cooked with limited water (therefore gruel was absorbed completely by rice) were 0.89+/-0.07 and 1.08+/-0.06 mg/kg (parboiled) and 0.75+/-0.04 and 1.09+/-0.06 mg/kg (non-parboiled) for BRRI dhan28 and BRRI hybrid dhan1, respectively. Water used for cooking rice contained 0.13 and 0.01 mg of As/l for contaminated and non-contaminated areas, respectively. Arsenic concentrations in cooked parboiled and non-parboiled rice and gruel of non-contaminated area were significantly lower (p<0.01) than that of contaminated area. The results imply that cooking of arsenic contaminated rice with arsenic contaminated water increases its concentration in cooked rice.

  11. The effect of different water managements on rice arsenic content in two arsenic-spiked soils

    Directory of Open Access Journals (Sweden)

    Chang H. Y.

    2013-04-01

    Full Text Available Growing rice on arsenic (As-contaminated paddy fields may induce high As level grain production. In order to reduce the food contamination risk, the pot experiments containing two As-spiked aging soils and four water managements were conducted to evaluate the effects of water managements on rice As content. The results indicated that As concentration of Erlin soil solution was 10 to 20 times (210-520 μg/L higher than that of Pinchen soil solution (5-20 μg/L at early stage of experiment (0-60 days. Aerobic water treatment will decrease As level to 30-50% (108-220 μg/L of original As concentration in Erlin soil solution. Statistic results indicated that water management was effective to reduce the rice grain As level in Erlin soil. However, the management impact was not obvious in Pinchen soil, which may be attributed to high clay or free Fe and Al content in the soil. This study suggested that keeping soil under aerobic condition for 3 weeks before rice heading can reduce the risk of rice grown at the As-contamination soil.

  12. Arsenic contamination in food chain: Thread to food security

    Science.gov (United States)

    Shekhar Azad Kashyap, Chandra; Singh, Swati

    2017-04-01

    The supply of good quality food is a necessity for economic and social health welfare of urban and rural population. Over the last several decades groundwater contamination in developing countries has assumed dangerous levels as a result millions of people are at risk. This is so particularly with respect to arsenic that has registered high concentration in groundwater in countries like India and Bangladesh. The arsenic content in groundwater varies from 10 to 780 µg/L, which is far above the levels for drinking water standards prescribed by World Health Organization (WHO). Currently arsenic has entered in food chain due to irrigation with arsenic contaminated water. In the present study reports the arsenic contamination in groundwater that is being used for irrigating paddy in Manipur and West Bengal. The arsenic content in irrigation water is 475 µg/L and 780 µg/L in Manipur and West Bengal, respectively. In order to assess the effect of such waters on the rice crop, we collected rice plant from Manipur and determined the arsenic content in roots, stem, and grain. The arsenic content in grain varies from 110 to 190 mg/kg while the limit of arsenic intake by humans is 10 mg/kg (WHO). This problem is not confine to the area, it spread global level, and rice being cultivated in these regions is export to the other countries like USA, Middle East and Europe and will be thread to global food security.

  13. Improvement scheme for the determination of arsenic species in mussel and fish tissues

    DEFF Research Database (Denmark)

    Lagarde, F.; Amran, M. B.; Leroy, M. J. F.

    1999-01-01

    Six interlaboratory studies were organised by the Standard, Measurement and Testing Programme of the European Commission on the determination of arsenic species (arsenobetaine, arsenocholine, monomethylarsonic acid, dimethylarsinic acid, As(III) and As(V)) in marine matrices and soil. A step-by-s...... and at the end of the six campaigns allowed the certification of a reference material of tuna-fish tissue (BCR-CRM 627) for its total arsenic, arsenobetaine and dimethylarsinic acid contents....

  14. Urinary arsenic metabolism in a Western Chinese population exposed to high-dose inorganic arsenic in drinking water: Influence of ethnicity and genetic polymorphisms

    International Nuclear Information System (INIS)

    Fu, Songbo; Wu, Jie; Li, Yuanyuan; Liu, Yan; Gao, Yanhui; Yao, Feifei; Qiu, Chuanying; Song, Li; Wu, Yu; Liao, Yongjian; Sun, Dianjun

    2014-01-01

    To investigate the differences in urinary arsenic metabolism patterns of individuals exposed to a high concentration of inorganic arsenic (iAs) in drinking water, an epidemiological investigation was conducted with 155 individuals living in a village where the arsenic concentration in the drinking water was 969 μg/L. Blood and urine samples were collected from 66 individuals including 51 cases with skin lesions and 15 controls without skin lesions. The results showed that monomethylated arsenic (MMA), the percentage of MMA (%MMA) and the ratio of MMA to iAs (MMA/iAs) were significantly increased in patients with skin lesions as compared to controls, while dimethylated arsenic (DMA), the percentage of DMA (%DMA) and the ratio of DMA to MMA (DMA/MMA) were significantly reduced. The percent DMA of individuals with the Ala/Asp genotype of glutathione S-transferase omega 1 (GSTO1) was significantly lower than those with Ala/Ala. The percent MMA of individuals with the A2B/A2B genotype of arsenic (+ 3 oxidation state) methyltransferase (AS3MT) was significantly lower than those with AB/A2B. The iAs and total arsenic (tAs) content in the urine of a Tibetan population were significantly higher than that of Han and Hui ethnicities, whereas MMA/iAs was significantly lower than that of Han and Hui ethnicities. Our results showed that when exposed to the same arsenic environment, different individuals exhibited different urinary arsenic metabolism patterns. Gender and ethnicity affect these differences and above polymorphisms may be effectors too. - Highlights: • We first survey a village with high iAs content in the drinking water (969 μg/L). • 90 villagers suffered typical skin lesions with a morbidity rate of 58%. • Cases exhibited higher %MMA and MMA/iAs, and lower %DMA and DMA/MMA than controls. • Gender and ethnicity affect the differences of iAs methylation metabolism levels. • GSTO1 and AS3MT gene polymorphisms may be factors too

  15. Urinary arsenic metabolism in a Western Chinese population exposed to high-dose inorganic arsenic in drinking water: Influence of ethnicity and genetic polymorphisms

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Songbo [Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Hei Long Jiang Province and Ministry of Health (23618104), Harbin 150081 (China); Wu, Jie [Laboratory of Medical Genetics, Harbin Medical University, Harbin 150081 (China); Li, Yuanyuan [Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Hei Long Jiang Province and Ministry of Health (23618104), Harbin 150081 (China); Liu, Yan [Department of Health Statistics, Harbin Medical University, Harbin 150081 (China); Gao, Yanhui; Yao, Feifei [Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Hei Long Jiang Province and Ministry of Health (23618104), Harbin 150081 (China); Qiu, Chuanying [Dongcheng District Center for Disease Control and Prevention, Beijing 100009 (China); Song, Li; Wu, Yu [Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Hei Long Jiang Province and Ministry of Health (23618104), Harbin 150081 (China); Liao, Yongjian [Gansu Center for Disease Control and Prevention, 730020 (China); Sun, Dianjun, E-mail: hrbmusdj@163.com [Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Hei Long Jiang Province and Ministry of Health (23618104), Harbin 150081 (China)

    2014-01-01

    To investigate the differences in urinary arsenic metabolism patterns of individuals exposed to a high concentration of inorganic arsenic (iAs) in drinking water, an epidemiological investigation was conducted with 155 individuals living in a village where the arsenic concentration in the drinking water was 969 μg/L. Blood and urine samples were collected from 66 individuals including 51 cases with skin lesions and 15 controls without skin lesions. The results showed that monomethylated arsenic (MMA), the percentage of MMA (%MMA) and the ratio of MMA to iAs (MMA/iAs) were significantly increased in patients with skin lesions as compared to controls, while dimethylated arsenic (DMA), the percentage of DMA (%DMA) and the ratio of DMA to MMA (DMA/MMA) were significantly reduced. The percent DMA of individuals with the Ala/Asp genotype of glutathione S-transferase omega 1 (GSTO1) was significantly lower than those with Ala/Ala. The percent MMA of individuals with the A2B/A2B genotype of arsenic (+ 3 oxidation state) methyltransferase (AS3MT) was significantly lower than those with AB/A2B. The iAs and total arsenic (tAs) content in the urine of a Tibetan population were significantly higher than that of Han and Hui ethnicities, whereas MMA/iAs was significantly lower than that of Han and Hui ethnicities. Our results showed that when exposed to the same arsenic environment, different individuals exhibited different urinary arsenic metabolism patterns. Gender and ethnicity affect these differences and above polymorphisms may be effectors too. - Highlights: • We first survey a village with high iAs content in the drinking water (969 μg/L). • 90 villagers suffered typical skin lesions with a morbidity rate of 58%. • Cases exhibited higher %MMA and MMA/iAs, and lower %DMA and DMA/MMA than controls. • Gender and ethnicity affect the differences of iAs methylation metabolism levels. • GSTO1 and AS3MT gene polymorphisms may be factors too.

  16. [Transformation and mobility of arsenic in the rhizosphere and non-rhizosphere soils at different growth stages of rice].

    Science.gov (United States)

    Yang, Wen-Tao; Wang, Ying-Jie; Zhou, Hang; Yi, Kai-Xin; Zeng, Min; Peng, Pei-Qin; Liao, Bo-Han

    2015-02-01

    Speciation and bioavailability of arsenic in the rhizosphere and non-rhizosphere soils at different growth stages (tillering stage, jointing stage, booting stage, filling stage and maturing stage) of rice (Oryza sativa L.) were studied using toxicity characteristic leaching procedure (TCLP) and arsenic speciation analysis. Pot experiments were conducted and the soil samples were taken from a certain paddy soil in Hunan Province contaminated by mining industry. The results showed that: (1) With the extension of rice growth period, pH values and TCLP extractable arsenic levels in the rhizosphere and non-rhizosphere soils increased gradually. Soil pH and TCLP extractable arsenic levels in non-rhizosphere soils were higher than those in the rhizosphere soils at the same growth stage. (2) At the different growth stages of rice, contents of exchangeable arsenic (AE-As) in rhizosphere and non-rhizosphere soils were lower than those before the rice planting, and increased gradually with the extension of the rice growing period. Contents of Al-bound arsenic (Al-As), Fe-bound arsenic (Fe-As) and Ca-bound arsenic (Ca-As) increased gradually after rice planting, but not significantly. Residual arsenic (O-As) and total arsenic (T-As) decreased gradually after rice planting, by 37.30% and 14.69% in the rhizosphere soils and by 31.38% and 8.67% in the non-rhizosphere soils, respectively. (3) At the different growth stages of rice, contents of various forms of arsenic in the soils were in the following order: residual arsenic (O-As) > Fe-bound arsenic ( Fe-As) > Al-bound arsenic (Al-As) > Ca-bound arsenic (Ca-As) > exchangeable arsenic (AE-As). In the pH range of 5.0- 5.8, significant positive linear correlations were found between most forms of arsenic or TCLP extractable arsenic levels and pH values, while the Ca-bound arsenic was poorly correlated with pH values in the rhizosphere soils.

  17. Automated atomic absorption spectrometric determination of total arsenic in water and streambed materials

    Science.gov (United States)

    Fishman, M.

    1977-01-01

    An automated method to determine both inorganic and organic forms of arsenic In water, water-suspended mixtures, and streambed materials Is described. Organic arsenic-containing compounds are decomposed by either ultraviolet radiation or by suHurlc acid-potassium persulfate digestion. The arsenic liberated, with Inorganic arsenic originally present, is reduced to arsine with sodium borohydrlde. The arable Is stripped from the solution with the aid of nitrogen and Is then decomposed In a tube furnace heated to 800 ??C which Is placed in the optical path of an atomic absorption spectrometer. Thirty samples per hour can be analyzed to levels of 1 ??g arsenic per liter.

  18. Phytoremediation assessment of Gomphrena globosa and Zinnia elegans grown in arsenic-contaminated hydroponic conditions as a safe and feasible alternative to be applied in arsenic-contaminated soils of the Bengal Delta.

    Science.gov (United States)

    Signes-Pastor, A J; Munera-Picazo, S; Burló, F; Cano-Lamadrid, M; Carbonell-Barrachina, A A

    2015-06-01

    Several agricultural fields show high contents of arsenic because of irrigation with arsenic-contaminated groundwater. Vegetables accumulate arsenic in their edible parts when grown in contaminated soils. Polluted vegetables are one of the main sources of arsenic in the food chain, especially for people living in rural arsenic endemic villages of India and Bangladesh. The aim of this study was to assess the feasibility of floriculture in the crop rotation system of arsenic endemic areas of the Bengal Delta. The effects of different arsenic concentrations (0, 0.5, 1.0, and 2.0 mg As L(-1)) and types of flowering plant (Gomphrena globosa and Zinnia elegans) on plant growth and arsenic accumulation were studied under hydroponic conditions. Total arsenic was quantified using atomic absorption spectrometer with hydride generation (HG-AAS). Arsenic was mainly accumulated in the roots (72 %), followed by leaves (12 %), stems (10 %), and flowers (phytoremediation capacities as other wild species, such as ferns. However, they behaved as arsenic tolerant plants and grew and bloomed well, without showing any phytotoxic signs. This study proves that floriculture could be included within the crop rotation system in arsenic-contaminated agricultural soils, in order to improve food safety and also food security by increasing farmer's revenue.

  19. Thorium coprecipitation method for spectrophotometric determination of arsenic (III) and arsenic (V) in groundwaters

    International Nuclear Information System (INIS)

    Tamari, Yuzo; Yamamoto, Nobuki; Tsuji, Haruo; Kusaka, Yuzuru

    1989-01-01

    A new coprecipitation method for the spectrophotometry of arsenic (III) and arsenic (V) in groundwater has been developed. Arsenic (III) and arsenic (V) were coprecipitated with thorium (IV) hydroxide from 1000ml of groundwater at pH9. The precipitate was centrifuged and then dissolved with hydrochloric acid. Arsenic (III) was spectrophotometrically determined by the usual silver diethylditiocarbamate (Ag-DDTC) method after generating the arsenic to arsine with sodium tetrahydroborate under masking the thorium with EDTA-NaF at pH6. From another portion of the same groundwater, both arsenic (III) and arsenic (V) were determined by the Ag-DDTC method after reducing all the arsenic to arsine with sodium tetrahydroborate at pH less than 1 in the presence of the EDTA-NaF. The concentration of arsenic (V) was obtained by subtracting that of arsenic (III) from the total for arsenic. (author)

  20. Plants as useful vectors to reduce environmental toxic arsenic content.

    Science.gov (United States)

    Mirza, Nosheen; Mahmood, Qaisar; Maroof Shah, Mohammad; Pervez, Arshid; Sultan, Sikander

    2014-01-01

    Arsenic (As) toxicity in soil and water is an increasing menace around the globe. Its concentration both in soil and environment is due to natural and anthropogenic activities. Rising arsenic concentrations in groundwater is alarming due to the health risks to plants, animals, and human beings. Anthropogenic As contamination of soil may result from mining, milling, and smelting of copper, lead, zinc sulfide ores, hide tanning waste, dyes, chemical weapons, electroplating, gas exhaust, application of municipal sludge on land, combustion of fossil fuels, As additives to livestock feed, coal fly ash, and use of arsenical pesticides in agricultural sector. Phytoremediation can be viewed as biological, solar-driven, pump-and-treat system with an extensive, self-extending uptake network (the root system) that enhances the natural ecosystems for subsequent productive use. The present review presents recent scientific developments regarding phytoremediation of arsenic contaminated environments and its possible detoxification mechanisms in plants.

  1. Wild plants as tools for the remediation of abandoned mining sites with a high arsenic content

    Science.gov (United States)

    Martínez-Lopez, Salvadora; Martínez-Sanchez, MJose; Perez-Sirvent, Carmen; Martínez, Lucia B.; Bech, Jaume

    2014-05-01

    The aim of this study was to assess the environmental risk posed by arsenic when new vegetation types are introduced, analyzing the transfer of arsenic in different plant species that grow spontaneously in mining areas of SE Spain (Sierra Minera of Cartagena), and the contribution of such plants to the environmental risk represented by their ingestion by animals living in the same ecosystems. When dealing with remediation projects in zones affected by mining activities, the risk posed by the ingestion of the plants by fauna is often forgotten. To study the transfer to the trophic chain, two mammals, sheep and vole, were selected. The risk analysis was centered in the contribution of these natural plants to the ingestion calculated. For this study, 21 vegetal species naturally growing in the soils were collected from the Sierra Minera. The vegetal material studied is clearly associated with the Mediterranean Region (S.E. of Spain) and the plant species collected are endemisms and plants characteristic of the zone. Physico-chemical properties were obtained by means of the usual procedures. To determine the arsenic content, the soil samples and plant materials were digested in a microwave system and the arsenic concentration was determined using atomic fluorescence spectrometry with an automated continuous flow hydride generation system. A semiquantitative estimation of the mineralogical composition of the samples was made by X Ray Diffraction analysis. The soils were classified into three groups: Low (group 1) (7-35 mg/kg) medium (group 2) (35-327 mg/kg) and high (group 3) (> 327 mg/kg), according to their As content. The mineralogy and As content of the soils studied depends on the materials related with mining activity. The descriptive statistical analysis of the population of plants studied showed the As range in roots to be 0.31-150 mg/kg while leaf concentrations were lower (0.21-83.4 mg/kg). The potential risk of As entering the food chain through of the plant

  2. Intra-annual variations of arsenic totals and species in tropical estuary surface sediments

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, P.; Jayachandran, S.; Babu, P.V.R.; Karri, S.; Tyadi, P.; Yao, K.M.; Sharma, B.M.

    the mobility of arsenic complexes in an estuarine system. The higher salt (NaCl) concentrations result in less arsenic adsorption to the sediment due to formation of weak arsenic complexes because of competition from Cl sup(-) ions or due to a reduction...

  3. ARSENIC REMOVAL BY PHYTOFILTRATION AND SILICON TREATMENT : A POTENTIAL SOLUTION FOR LOWERING ARSENIC CONCENTRATIONS IN FOOD CROPS

    OpenAIRE

    Sandhi, Arifin

    2017-01-01

    Use of arsenic-rich groundwater for crop irrigation can increase the arsenic (As) content in food crops and act as a carcinogen, compromising human health. Using aquatic plant based phytofiltration is a potential eco-technique for removing arsenic from water. The aquatic moss species Warnstorfia fluitans grows naturally in mining areas in northern Sweden, where high concentrations of arsenic occur in lakes and rivers. This species was selected as a model for field, climate chamber and greenho...

  4. Natural Arsenic Pollution and Hydrochemistry of Drinking Water of an Urban Part of Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Mosaferi

    2014-12-01

    Full Text Available Natural contamination of surface and groundwater resources with arsenic is a worldwide problem. The present study aimed to investigate and report on the quality of drinking water resources with special focus on arsenic presence in an urban part of Iran. Arsenic concentrations were measured by graphite furnace atomic absorption spectroscopy (GFAAS. In both surface and groundwater samples, arsenic concentrations ranged from 6 - 61 µg/L with an average value of 39 ± 20 µg/L. Concentration of arsenic, which was up to six times greater than guideline values (10 µg/L indicates the presence of arsenic bearing materials in the geological structure of the region. It was found that the quality of treated surface water produced by the water treatment facility was good in respect to arsenic (9 µg/L and solid content (EC = µs/cm. However, in drinking water samples of wells, total solids (mean EC = 1580 ± 150 µs/cm, total hardness (mean = 479 + 94 mg/L as CaCO3 and arsenic (mean = 42 + 16 µg/L were significantly higher. Correspondingly, there was a significant correlation between arsenic concentration and EC, Na+, K+ and Cl- values. The type of water in most of groundwater samples (70% was determined as HCO3-Na+. Considering the population of the city and probable health effects due to exposure to arsenic through drinking water, comprehensive measures as well as application of arsenic removal processes in water treatment facilities and replacement of contaminated wells with safe wells are required.

  5. Arsenic contamination of soils and agricultural plants through irrigation water in Nepal

    International Nuclear Information System (INIS)

    Dahal, B.M.; Fuerhacker, M.; Mentler, A.; Karki, K.B.; Shrestha, R.R.; Blum, W.E.H.

    2008-01-01

    This study monitored the influence of arsenic-contaminated irrigation water on alkaline soils and arsenic uptake in agricultural plants at field level. The arsenic concentrations in irrigation water ranges from -1 where the arsenic concentrations in the soils were measured from 6.1 to 16.7 mg As kg -1 . The arsenic content in different parts of plants are found in the order of roots > shoots > leaves > edible parts. The mean arsenic content of edible plant material (dry weight) were found in the order of onion leaves (0.55 mg As kg -1 ) > onion bulb (0.45 mg As kg -1 ) > cauliflower (0.33 mg As kg -1 ) > rice (0.18 mg As kg -1 ) > brinjal (0.09 mg As kg -1 ) > potato ( -1 ). - The arsenic content in soil and plants is influenced by the degree of arsenic amount in irrigated water

  6. Sulfate and glutathione enhanced arsenic accumulation by arsenic hyperaccumulator Pteris vittata L

    International Nuclear Information System (INIS)

    Wei Shuhe; Ma, Lena Q.; Saha, Uttam; Mathews, Shiny; Sundaram, Sabarinath; Rathinasabapathi, Bala; Zhou Qixing

    2010-01-01

    This experiment examined the effects of sulfate (S) and reduced glutathione (GSH) on arsenic uptake by arsenic hyperaccumulator Pteris vittata after exposing to arsenate (0, 15 or 30 mg As L -1 ) with sulfate (6.4, 12.8 or 25.6 mg S L -1 ) or GSH (0, 0.4 or 0.8 mM) for 2-wk. Total arsenic, S and GSH concentrations in plant biomass and arsenic speciation in the growth media and plant biomass were determined. While both S (18-85%) and GSH (77-89%) significantly increased arsenic uptake in P. vittata, GSH also increased arsenic translocation by 61-85% at 0.4 mM (p < 0.05). Sulfate and GSH did not impact plant biomass or arsenic speciation in the media and biomass. The S-induced arsenic accumulation by P. vittata was partially attributed to increased plant GSH (21-31%), an important non-enzymatic antioxidant countering oxidative stress. This experiment demonstrated that S and GSH can effectively enhance arsenic uptake and translocation by P. vittata. - Sulfate and glutathione increased arsenic uptake and translocation in Pteris vittata.

  7. Plants as Useful Vectors to Reduce Environmental Toxic Arsenic Content

    Directory of Open Access Journals (Sweden)

    Nosheen Mirza

    2014-01-01

    Full Text Available Arsenic (As toxicity in soil and water is an increasing menace around the globe. Its concentration both in soil and environment is due to natural and anthropogenic activities. Rising arsenic concentrations in groundwater is alarming due to the health risks to plants, animals, and human beings. Anthropogenic As contamination of soil may result from mining, milling, and smelting of copper, lead, zinc sulfide ores, hide tanning waste, dyes, chemical weapons, electroplating, gas exhaust, application of municipal sludge on land, combustion of fossil fuels, As additives to livestock feed, coal fly ash, and use of arsenical pesticides in agricultural sector. Phytoremediation can be viewed as biological, solar-driven, pump-and-treat system with an extensive, self-extending uptake network (the root system that enhances the natural ecosystems for subsequent productive use. The present review presents recent scientific developments regarding phytoremediation of arsenic contaminated environments and its possible detoxification mechanisms in plants.

  8. Plants as Useful Vectors to Reduce Environmental Toxic Arsenic Content

    Science.gov (United States)

    Mirza, Nosheen; Mahmood, Qaisar; Maroof Shah, Mohammad; Pervez, Arshid; Sultan, Sikander

    2014-01-01

    Arsenic (As) toxicity in soil and water is an increasing menace around the globe. Its concentration both in soil and environment is due to natural and anthropogenic activities. Rising arsenic concentrations in groundwater is alarming due to the health risks to plants, animals, and human beings. Anthropogenic As contamination of soil may result from mining, milling, and smelting of copper, lead, zinc sulfide ores, hide tanning waste, dyes, chemical weapons, electroplating, gas exhaust, application of municipal sludge on land, combustion of fossil fuels, As additives to livestock feed, coal fly ash, and use of arsenical pesticides in agricultural sector. Phytoremediation can be viewed as biological, solar-driven, pump-and-treat system with an extensive, self-extending uptake network (the root system) that enhances the natural ecosystems for subsequent productive use. The present review presents recent scientific developments regarding phytoremediation of arsenic contaminated environments and its possible detoxification mechanisms in plants. PMID:24526924

  9. Arsenic in the environment: enrichments in the Slovenian soils

    Directory of Open Access Journals (Sweden)

    Mateja Gosar

    2005-12-01

    Full Text Available Arsenic, a toxic element with metalloid properties, is found in detectable concentrations in environmental samples. In nature it is enriched in metal (sulphide ore deposits, mainly as arsenides of Cu, Ni and Fe. Arsenic compounds are used mainly in agricultureand forestry as pesticides and herbicides. The ecosystem can be contaminated with arsenic via both natural and anthropogenic sources. Uses of arsenic contaminated water present so far the greatest health hazard. Occurrences of mining related arsenic problems havealso been recorded in many parts of the world.The impact of mining and metallurgic industry with regard to arsenic contents in soils in some potentially contaminated areas in Slovenia is discussed. Enriched contents of arsenic were found in Mežica. Arsenic correlates very well with lead, zinc and other heavymetals which are enriched as a result of long lasting lead production in the area. Also in Celje and Jesenice arsenic has the same distribution pattern as other anthropogenically introduced pollutants. In Idrija there are some slightly arsenic enriched areas, but there is no correlation with mercury, so the origin of arsenic in not clear yet.

  10. Occurrence and sorption properties of arsenicals in marine sediments

    DEFF Research Database (Denmark)

    Fauser, Patrik; Sanderson, Hans; Hedegaard, Rikke Susanne Vingborg

    2013-01-01

    in marine sediments when conditions are similar to the Baltic Sea. At locations with significant anthropogenic point sources or where the local geology contains volcanic rock and sulphide mineral deposits, there may be significantly elevated arsenic concentrations, and it is recommended to determine on......The content of total arsenic, the inorganic forms: arsenite (As(III)) and arsenate (As(V)), the methylated forms: monomethylarsonic acid and dimethylarsinic acid (DMA), trimethylarsenic oxide, tetramethylarsenonium ion and arsenobetaine was measured in 95 sediment samples and 11 pore water samples...... in the Baltic Sea and other parts of the world. Existing data for on-site measurements of sorption coefficients (Kd) of arsenicals in marine and freshwater sediments show large variability from 1,000 L/kg. In this work, calculated sorption coefficients (Kd and Koc) for As(III+V) showed significant correlation...

  11. Determination of arsenic compounds in earthworms

    Energy Technology Data Exchange (ETDEWEB)

    Geiszinger, A.; Goessler, W.; Kuehnelt, D.; Kosmus, W. [Karl-Franzens-Univ., Graz (Austria). Inst. for Analytical Chemistry; Francesconi, K. [Odense Univ. (Denmark). Inst. of Biology

    1998-08-01

    Earthworms and soil collected from six sites in Styria, Austria, were investigated for total arsenic concentrations by ICP-MS and for arsenic compounds by HPLC-ICP-MS. Total arsenic concentrations ranged from 3.2 to 17.9 mg/kg dry weight in the worms and from 5.0 to 79.7 mg/kg dry weight in the soil samples. There was no strict correlation between the total arsenic concentrations in the worms and soil. Arsenic compounds were extracted from soil and a freeze-dried earthworm sample with a methanol/water mixture (9:1, v/v). The extracts were evaporated to dryness, redissolved in water, and chromatographed on an anion- and a cation-exchange column. Arsenic compounds were identified by comparison of the retention times with known standards. Only traces of arsenic acid could be extracted from the soil with the methanol/water (9:1, v/v) mixture. The major arsenic compounds detected in the extracts of the earthworms were arsenous acid and arsenic acid. Arsenobetaine was present as a minor constituent, and traces of dimethylarsinic acid were also detected. Two dimethylarsinoyltribosides were also identified in the extracts by co-chromatography with standard compounds. This is the first report of the presence of dimethylarsinoylribosides in a terrestrial organism. Two other minor arsenic species were present in the extract, but their retention times did not match with the retention times of the available standards.

  12. Arsenic contamination in food chain: Thread to global food security

    Science.gov (United States)

    Kashyap, C. A.

    2016-12-01

    The supply of good quality food is a necessity for economic and social health of urban and rural population. Over the last several decades groundwater contamination in developing countries has assumed dangerous levels as a result millions of people are at risk. This is so particularly with respect to arsenic that has registered high concentration in groundwater in countries like India and Bangladesh. The arsenic content in groundwater varies from 10 to 780 µg/L, which is far above the levels for drinking water standards prescribed by World Health Organization (WHO). Currently arsenic has entered in food chain due to irrigation with arsenic contaminated water. In the present study reports the arsenic contamination in groundwater that is being used for irrigating paddy in Manipur and West Bengal. The arsenic content in irrigation water is 475 µg/L and 780 µg/L in Manipur and West Bengal, respectively. In order to assess the effect of such waters on the rice crop, we collected rice plant from Manipur and determined the arsenic content in roots, stem, and grain. The arsenic content in grain varies from 110 to 190 mg/kg while the limit of arsenic intake by humans is 10 mg/kg (WHO). This problem is not confine to the area, it spread global level, and rice being cultivated in these regions is export to the other countries like USA, Middle East and Europe and will be thread to global food security.

  13. Total Arsenic, Cadmium, and Lead Determination in Brazilian Rice Samples Using ICP-MS

    OpenAIRE

    Mataveli, Lidiane Raquel Verola; Buzzo, Márcia Liane; Arauz, Luciana Juncioni de; Carvalho, Maria de Fátima Henriques; Arakaki, Edna Emy Kumagai; Matsuzaki, Richard; Tiglea, Paulo

    2016-01-01

    This study is aimed at investigating a suitable method for rice sample preparation as well as validating and applying the method for monitoring the concentration of total arsenic, cadmium, and lead in rice by using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Various rice sample preparation procedures were evaluated. The analytical method was validated by measuring several parameters including limit of detection (LOD), limit of quantification (LOQ), linearity, relative bias, and rep...

  14. Determination of total inorganic arsenic in potable water through spectroscopy of atomic absorption with generation of hydride

    International Nuclear Information System (INIS)

    Rodriguez Roman, Susan; Barquero, M.

    2000-01-01

    Arsenic is an element that has been studied in the analysis of environmental samples for its toxicity showed in very low concentrations. The objective of this work is the validation of a method for the determination of total inorganic arsenic in drinking water. Through the spectrophotometric technique of atomic absorption an automatic system of flow injection for the generation of hydrides is used. The prereduction of Arsenic was made with potasium iodide 1,5% m/v and ascorbic acid 0.25% m/v dissolved in hydrochloric acid 3,7% m/v. The recuperation percentage of the method was 97 ± 3% in a dynamic range to 30 μg/L. The detection limit was 0,7 μg/L established over 0,5 mL of sample. The samples analyzed were found under the set limits of normative in Costa Rica of 10 μg/L. (author) [es

  15. Arsenic precipitation from metallurgical effluents

    International Nuclear Information System (INIS)

    Navarro, P.; Vargas, C.; Araya, E.; Martin, I.; Alguacil, F. J.

    2004-01-01

    In the mining-metallurgical companies different liquid effluents are produced, which can contain a series of dissolved elements that are considered dangerous from an environmental point of view. One of these elements is the arsenic, especially in the state of oxidation +5 that can be precipitated as calcium or iron arsenate. To fulfil the environmental requests it should have in solution a content of arsenic lower than 0,5 mg/l and the obtained solid product should be very stable under the condition in which it will be stored. this work looks for the best conditions of arsenic precipitation, until achieving contents in solution lower than such mentioned concentration. Also, the stability of the precipitates was studied. (Author) 7 refs

  16. Estimating Inorganic Arsenic Exposure from U.S. Rice and Total Water Intakes

    OpenAIRE

    Mantha, Madhavi; Yeary, Edward; Trent, John; Creed, Patricia A.; Kubachka, Kevin; Hanley, Traci; Shockey, Nohora; Heitkemper, Douglas; Caruso, Joseph; Xue, Jianping; Rice, Glenn; Wymer, Larry; Creed, John T.

    2017-01-01

    Background: Among nonoccupationally exposed U.S. residents, drinking water and diet are considered primary exposure pathways for inorganic arsenic (iAs). In drinking water, iAs is the primary form of arsenic (As), while dietary As speciation techniques are used to differentiate iAs from less toxic arsenicals in food matrices. Objectives: Our goal was to estimate the distribution of iAs exposure rates from drinking water intakes and rice consumption in the U.S. population and ethnic- and age-b...

  17. Blood Pressure Associated with Arsenic Methylation and Arsenic Metabolism Caused by Chronic Exposure to Arsenic in Tube Well Water.

    Science.gov (United States)

    Wei, Bing Gan; Ye, Bi Xiong; Yu, Jiang Ping; Yang, Lin Sheng; Li, Hai Rong; Xia, Ya Juan; Wu, Ke Gong

    2017-05-01

    The effects of arsenic exposure from drinking water, arsenic metabolism, and arsenic methylation on blood pressure (BP) were observed in this study. The BP and arsenic species of 560 participants were determined. Logistic regression analysis was applied to estimate the odds ratios of BP associated with arsenic metabolites and arsenic methylation capability. BP was positively associated with cumulative arsenic exposure (CAE). Subjects with abnormal diastolic blood pressure (DBP), systolic blood pressure (SBP), and pulse pressure (PP) usually had higher urinary iAs (inorganic arsenic), MMA (monomethylated arsenic), DMA (dimethylated arsenic), and TAs (total arsenic) than subjects with normal DBP, SBP, and PP. The iAs%, MMA%, and DMA% differed slightly between subjects with abnormal BP and those with normal BP. The PMI and SMI were slightly higher in subjects with abnormal PP than in those with normal PP. Our findings suggest that higher CAE may elevate BP. Males may have a higher risk of abnormal DBP, whereas females have a higher risk of abnormal SBP and PP. Higher urinary iAs may increase the risk of abnormal BP. Lower PMI may elevate the BP. However, higher SMI may increase the DBP and SBP, and lower SMI may elevate the PP. Copyright © 2017 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  18. Arsenic Transformation in Swine Wastewater with Low-Arsenic Content during Anaerobic Digestion

    Directory of Open Access Journals (Sweden)

    Weiwei Zhai

    2017-10-01

    Full Text Available In this study, the raw wastewater (RW, and effluents from the acidogenic phase (AP and methanogenic phase (MP in a swine wastewater treatment plant were collected to investigate the occurrence and transformation of arsenic (As, as well as the abundance of As metabolism genes during the anaerobic digestion (AD process. The results showed that total concentrations of As generally decreased by 33–71% after AD. Further analysis showed that the As species of the dissolved fractions were present mainly as dimethylarsinic acid (DMA, with arsenite (As(III and arsenate (As(V as the minor species. Moreover, real-time PCR (qPCR results showed that As metabolism genes (arsC, arsenate reduction gene; aioA, arsenite oxidation gene and arsM, arsenite methylation gene were highly abundant, with arsM being predominant among the metabolism genes. This study provides reliable evidence on As biotransformation in swine wastewater treatment process, suggesting that AD could be a valuable treatment to mitigate the risk of As in wastewater.

  19. Arsenic contamination of soils and agricultural plants through irrigation water in Nepal

    Energy Technology Data Exchange (ETDEWEB)

    Dahal, B.M. [Institute of Soil Research, University of Natural Resources and Applied Life Sciences (BOKU), Peter Jordan Strasse 82, A-1190 Vienna (Austria); Institute of Sanitary Engineering and Water Pollution Control, University of Natural Resources and Applied Life Sciences (BOKU), Muthgasse 18, A-1190 Vienna (Austria); Environment and Public Health Organization (ENPHO), P.O. Box 4102, Kathmandu (Nepal); Fuerhacker, M. [Institute of Sanitary Engineering and Water Pollution Control, University of Natural Resources and Applied Life Sciences (BOKU), Muthgasse 18, A-1190 Vienna (Austria); Mentler, A. [Institute of Soil Research, University of Natural Resources and Applied Life Sciences (BOKU), Peter Jordan Strasse 82, A-1190 Vienna (Austria); Karki, K.B. [Soil Science Division, Nepal Agricultural Research Council, Khumaltar, Lalitpur (Nepal); Shrestha, R.R. [UN Habitat-Nepal, UN House, Pulchwok, P.O. Box 107, Kathmandu (Nepal); Blum, W.E.H. [Institute of Soil Research, University of Natural Resources and Applied Life Sciences (BOKU), Peter Jordan Strasse 82, A-1190 Vienna (Austria)], E-mail: winfried.blum@boku.ac.at

    2008-09-15

    This study monitored the influence of arsenic-contaminated irrigation water on alkaline soils and arsenic uptake in agricultural plants at field level. The arsenic concentrations in irrigation water ranges from <0.005 to 1.014 mg L{sup -1} where the arsenic concentrations in the soils were measured from 6.1 to 16.7 mg As kg{sup -1}. The arsenic content in different parts of plants are found in the order of roots > shoots > leaves > edible parts. The mean arsenic content of edible plant material (dry weight) were found in the order of onion leaves (0.55 mg As kg{sup -1}) > onion bulb (0.45 mg As kg{sup -1}) > cauliflower (0.33 mg As kg{sup -1}) > rice (0.18 mg As kg{sup -1}) > brinjal (0.09 mg As kg{sup -1}) > potato (<0.01 mg As kg{sup -1}). - The arsenic content in soil and plants is influenced by the degree of arsenic amount in irrigated water.

  20. Behavior of arsenic impurity at antimony electric precipitation

    International Nuclear Information System (INIS)

    Kim, G.N.; Rakhmanov, A.

    2001-01-01

    In the paper the arsenic impurity electrochemical behavior and it purification from antimony by electric precipitation out of fluoride solutions was studied. For this the arsenic sample with mass 0.003-0.006 g has been irradiated at the WWR-SM nuclear reactor during 3-5 hour in the thermal neutron flux 10 13 n/cm 2 s, after 24 h keeping the sample has being dissolved in the concentrated nitric acid, and then it has been evaporated several times with distillation water addition up to wet precipitation state. It is shown, that arsenic impurity behavior character in the antimony electric precipitation out to fluoride electrolyte depends on the electrolyte content, electrolysis conditions, arsenic valency state in arsenic impurity existence in the five-valency state its joint electric reduction with antimony is practically not observing. In the case the arsenic being in three-valency state, it joint electric reduction with antimony is taking place. In this time the electrolytic antimony contents arsenic impurities less in dozen time than initial material

  1. Rapid decadal evolution in the groundwater arsenic content of Kolkata, India and its correlation with the practices of her dwellers.

    Science.gov (United States)

    Malakar, Arindam; Islam, Samirul; Ali, Md Ashif; Ray, Sugata

    2016-10-01

    Increasing arsenic contamination in the groundwater is one of the biggest environmental challenges that the Bengal delta is facing today. Groundwater is still the main source of water for a large number of population in this region and therefore, significant presence of toxic arsenic has a direct consequence on human lives here. Moreover, arsenic also enters into the food chain through the consumed agricultural products grown in this area. Therefore, acquiring knowledge about the ever-changing map of arsenic contamination and employing adequate protective measures are of utmost importance. Here, we present a comprehensive municipal ward-wise map of the arsenic content of the shallow groundwater table of Kolkata-the most important and highly population dense city of the delta. Comparison with previously available data reveals a rapid change and the grim situation for the city. Our study suggests that it should be an immediate task of the administration to extend treated water service to the whole population of the city for direct consumption, and artificial recharge and maximum rainwater replenishment need to be taken up with utmost urgency to avoid intrusion of toxicity in biological food chains via agricultural products. We hope our study would drive the city planners to reconsider the existing urbanization and development plans of all the cities, placed over arsenic-contaminated groundwater aquifers.

  2. Binding of Industrial Deposits of Heavy Metals and Arsenic in the Soil by 3-Aminopropyltrimethoxysilane

    Directory of Open Access Journals (Sweden)

    Grzesiak Piotr

    2014-06-01

    Full Text Available The results of the research studies concerning binding of heavy metals and arsenic (HM+As, occurring in soils affected by emissions from Głogów Copper Smelter and Refinery, by silane nanomaterial have been described. The content of heavy metals and arsenic was determined by AAS and the effectiveness of heavy metals and arsenic binding by 3-Aminopropyltrimethoxysilane was examined. The total leaching level of impurities in those fractions was 73.26% Cu, 74.7% – Pb, 79.5% Zn, 65.81% – Cd and 55.55% As. The studies demonstrated that the total binding of heavy metals and arsenic with nanomaterial in all fractions was about as follows: 20.5% Cu, 9.5% Pb, 7.1% Zn, 25.3% Cd and 10.89% As. The results presented how the safety of food can be cultivated around industrial area, as the currently used soil stabilization technique of HM by soil pH does not guarantee their stable blocking in a sorptive complex.

  3. Arsenic species in raw and cooked rice: Implications for human health in rural Bengal

    Energy Technology Data Exchange (ETDEWEB)

    Halder, Dipti, E-mail: dipti@kth.se [KTH-International Groundwater Arsenic Research Group, Division of Land and Water Resources Engineering, Department of Sustainable Development, Environmental Sciences and Engineering, KTH Royal Institute of Technology, Teknikringen 76, SE-100 44 Stockholm (Sweden); Department of Chemistry, University of Kalyani, Kalyani, 741 235, West Bengal (India); Biswas, Ashis [KTH-International Groundwater Arsenic Research Group, Division of Land and Water Resources Engineering, Department of Sustainable Development, Environmental Sciences and Engineering, KTH Royal Institute of Technology, Teknikringen 76, SE-100 44 Stockholm (Sweden); Department of Chemistry, University of Kalyani, Kalyani, 741 235, West Bengal (India); Šlejkovec, Zdenka [Environmental Sciences Department, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana (Slovenia); Chatterjee, Debashis [Department of Chemistry, University of Kalyani, Kalyani, 741 235, West Bengal (India); Nriagu, Jerome [Department of Environmental Health Sciences, School of Public Health, University of Michigan, 109 Observatory Street, Ann Arbor, MI 48109-2029 (United States); Jacks, Gunnar; Bhattacharya, Prosun [KTH-International Groundwater Arsenic Research Group, Division of Land and Water Resources Engineering, Department of Sustainable Development, Environmental Sciences and Engineering, KTH Royal Institute of Technology, Teknikringen 76, SE-100 44 Stockholm (Sweden)

    2014-11-01

    This study compares the concentrations of total and different species of arsenic (As) in 29 pairs of raw and cooked rice samples collected from households in an area of West Bengal affected by endemic arsenicism. The aim is to investigate the effects of indigenous cooking practice of the rural villagers on As accumulation and speciation in cooked rice. It is found that inorganic As is the predominant species in both raw (93.8%) and cooked rice (88.1%). Cooking of rice with water low in As (< 10 μg L{sup −1}) significantly decreases the total and inorganic As content in cooked rice compared to raw rice. Arsenic concentration is mainly decreased during boiling of rice grains with excess water. Washing of rice grains with low As water has negligible effect on grain As concentration. The study suggests that rice cooking with low As water by the villagers is a beneficial risk reduction strategy. Despite reductions in As content in cooked rice because of cooking with low As water, the consumption of cooked rice represents a significant health threat (in terms of chronic As toxicity) to the study population. - Highlights: • Pairs of raw and cooked rice samples are collected from households. • Total and different species of As in raw and cooked rice samples are compared. • Cooking with As safe water reduces total and inorganic As contents in cooked rice. • Inorganic As is the predominant species in both raw (93.8%) and cooked rice (88.1%). • Risks of As exposure from cooked rice consumption exceed the safety standards.

  4. Arsenic species in raw and cooked rice: Implications for human health in rural Bengal

    International Nuclear Information System (INIS)

    Halder, Dipti; Biswas, Ashis; Šlejkovec, Zdenka; Chatterjee, Debashis; Nriagu, Jerome; Jacks, Gunnar; Bhattacharya, Prosun

    2014-01-01

    This study compares the concentrations of total and different species of arsenic (As) in 29 pairs of raw and cooked rice samples collected from households in an area of West Bengal affected by endemic arsenicism. The aim is to investigate the effects of indigenous cooking practice of the rural villagers on As accumulation and speciation in cooked rice. It is found that inorganic As is the predominant species in both raw (93.8%) and cooked rice (88.1%). Cooking of rice with water low in As (< 10 μg L −1 ) significantly decreases the total and inorganic As content in cooked rice compared to raw rice. Arsenic concentration is mainly decreased during boiling of rice grains with excess water. Washing of rice grains with low As water has negligible effect on grain As concentration. The study suggests that rice cooking with low As water by the villagers is a beneficial risk reduction strategy. Despite reductions in As content in cooked rice because of cooking with low As water, the consumption of cooked rice represents a significant health threat (in terms of chronic As toxicity) to the study population. - Highlights: • Pairs of raw and cooked rice samples are collected from households. • Total and different species of As in raw and cooked rice samples are compared. • Cooking with As safe water reduces total and inorganic As contents in cooked rice. • Inorganic As is the predominant species in both raw (93.8%) and cooked rice (88.1%). • Risks of As exposure from cooked rice consumption exceed the safety standards

  5. Arsenic in contaminated soil and river sediment

    International Nuclear Information System (INIS)

    Bombach, G.; Pierra, A.; Klemm, W.

    1994-01-01

    Different areas in the Erzgebirge mountains are contaminated by high arsenic concentration which is caused by the occurrence of ore and industrial sources. The study showed clearly a high concentration of arsenic in the surface and under soil (A and B horizons) in the Freiberg district. The distribution of the arsenic concentration in the area, the content of water soluble arsenic, the several oxidation states (As 3+ , As 5+ ) and the bonding types have been analyzed. (orig.)

  6. Determination of lead and arsenic in tobacco and cigarettes: an important issue of public health.

    Science.gov (United States)

    Lazarević, Konstansa; Nikolić, Dejan; Stosić, Ljiljana; Milutinović, Suzana; Videnović, Jelena; Bogdanović, Dragan

    2012-03-01

    Contents of lead and arsenic were determined in 617 tobacco samples and 80 samples of cigarettes. The mean content of lead in tobacco was 0.93 microg/g (range 0.02-8.56 microg/g) and arsenic was 0.15 microg/g (range arsenic was 0.11 microg/g (range arsenic content among samples of tobacco and samples of cigarettes. Positive correlation between lead and arsenic contents in tobacco was found (r = 0.22; p arsenic in tobacco and cigarettes in other studies and discuss the influence of smoking to lead and arsenic exposure and health. In conclusion, at the same time with the implementation of tobacco use prevention programmes it is advisable to implement continuous monitoring of lead and arsenic in tobacco and cigarettes in order to reduce the health risk due to exposure of these metals.

  7. Earthworms and in vitro physiologically-based extraction tests : complementary tools for a holistic approach towards understanding risk at arsenic-contaminated sites

    OpenAIRE

    Button, Mark; Watts, Michael J.; Cave, Mark R.; Harrington, Chris F.; Jenkin, Gawen R.T.

    2009-01-01

    The relationship of the total arsenic content of a soil and its bioaccumulation by earthworms (Lumbricus rubellus and Dendrodrilus rubidus) to the arsenic fraction bioaccessible to humans, measured using an in vitro physiologically-based extraction test (PBET), was investigated. Soil and earthworm samples were collected at 24 sites at the former arsenic mine at the Devon Great Consols (DGC) in southwest England (UK), along with an uncontaminated site in Nottingham, UK, for comparison. Analysi...

  8. Assessment of arsenic content in soil, rice grains and groundwater and associated health risks in human population from Ropar wetland, India, and its vicinity.

    Science.gov (United States)

    Sharma, Sakshi; Kaur, Inderpreet; Nagpal, Avinash Kaur

    2017-08-01

    In the present study, potential health risks posed to human population from Ropar wetland and its vicinity, by consumption of inorganic arsenic (i-As) via arsenic contaminated rice grains and groundwater, were assessed. Total arsenic (t-As) in soil and rice grains were found in the range of 0.06-0.11 mg/kg and 0.03-0.33 mg/kg, respectively, on dry weight basis. Total arsenic in groundwater was in the range of 2.31-15.91 μg/L. i-As was calculated from t-As using relevant conversion factors. Rice plants were found to be arsenic accumulators as bioconcentration factor (BCF) was observed to be >1 in 75% of rice grain samples. Further, correlation analysis revealed that arsenic accumulation in rice grains decreased with increase in the electrical conductivity of soil. One-way ANOVA, cluster analysis and principal component analysis indicated that both geogenic and anthropogenic sources affected t-As in soil and groundwater. Hazard index and total cancer risk estimated for individuals from the study area were above the USEPA limits of 1.00 and 1.00 × 10 -6 , respectively. Kruskal-Wallis H test indicated that groundwater intake posed significantly higher health risk than rice grain consumption (χ 2 (1) = 17.280, p = 0.00003).

  9. Combined effects of DNA methyltransferase 1 and 3A polymorphisms and urinary total arsenic levels on the risk for clear cell renal cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shu-Mei [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China); Huang, Chao-Yuan [Department of Urology, National Taiwan University Hospital, College of Medicine National Taiwan University, Taipei, Taiwan (China); Shiue, Horng-Sheng [Department of Chinese Medicine, Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Taoyuan, Taiwan (China); Pu, Yeong-Shiau [Department of Urology, National Taiwan University Hospital, College of Medicine National Taiwan University, Taipei, Taiwan (China); Hsieh, Yi-Hsun; Chen, Wei-Jen [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China); Lin, Ying-Chin [Department of Family Medicine, Shung Ho Hospital, Taipei Medical University, Taipei, Taiwan (China); Department of Health Examination, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan (China); Division of Family Medicine, School of Medicine, Taipei Medical University, Taipei, Taiwan (China); Hsueh, Yu-Mei, E-mail: ymhsueh@tmu.edu.tw [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China); Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (China)

    2016-08-15

    Our previous study showed that high urinary total arsenic levels were associated with higher odds ratio (OR) for renal cell carcinoma (RCC). Single nucleotide polymorphisms (SNPs) of DNA methyltransferases (DNMTs) might influence DNMT enzyme activity associated with tumorigenesis. In this study, we investigated the association of five SNPs from DNMT1 (rs8101626 and rs2228611), DNMT3A (rs34048824 and rs1550117), and DNMT3B (rs1569686) with the risk of clear cell renal cell carcinoma (ccRCC). We also examined the combined effects of DNMT genotypes and urinary arsenic levels on ccRCC risk. We conducted a hospital-based case-control study, which included 293 subjects with ccRCC and 293 age- and gender-matched controls. The urinary arsenic species were determined by a high performance liquid chromatography-linked hydride generator and atomic absorption spectrometry. Genotypes were investigated using polymerase chain reaction and restriction fragment length polymorphism analyses. We observed that the DNMT1 rs8101626 G/G genotype was significantly associated with reduced odds ratio (OR) of ccRCC [OR = 0.38, 95% confidence interval (CI) 0.14–0.99]. Subjects with concurrent DNMT1 rs8101626 A/A + A/G and DNMT3A rs34048824 T/T + T/C genotypes had significantly higher OR for ccRCC [OR = 2.88, 95% CI 1.44–5.77]. Participants with the high-risk genotype of DNMT1 rs8101626 and DNMT3A rs34048824 with concurrently high urinary total arsenic levels had even higher OR of ccRCC in a dose-response manner. This is the first study to evaluate variant DNMT1 rs8101626 and DNMT3A rs34048824 genotypes that modify the arsenic-related ccRCC risk in a geographic area without significant arsenic exposure in Taiwan. - Highlights: • High urinary total arsenic level or polymorphism of DNMT1 increased the OR of ccRCC. • High risk genotypes of combination of DNMT1 and DNMT3A increased the OR of ccRCC. • A joint effect of urinary total arsenic level and DNMTs genotypes may affect ccRCC.

  10. Arsenic activation analysis of freshwater fish through the precipitation of elemental arsenic

    International Nuclear Information System (INIS)

    Comparetto, G.M.; Jester, W.A.; Skinner, W.F.

    1982-01-01

    The activation analysis of trace elements of arsenic in biological samples is complicated by the interference of a 82 Br photo peak (554KeV) and the compton continuum with the major 76 As photo peak of 559 KeV. In addition, the half-lives of 24 Na, 82 Br, and 76 As are too similar to be resolved by varying irradiation and/or decay times. Thus post irradiation chemical separation of arsenic is often required. A study of existing radiochemistry techniques reported in the literature found that existing methods were complex x and/or lengthy. In this work, a more rapid and less extensive method was required to analyze a large number of fish samples exposed to fly ash sluice water from coalburning power plant. A method has been developed which involves the dissolution of irradiated homogenized fish samples, the addition of an arsenic carrier, and the reduction of arsenic to the +3 state. Arsenic is then precipitated as elemental arsenic. An important factor in this work was the discovery that this procedure produced arsenic yields of 81+-3% for both the fish samples and the NBC Orchard leaves standard employed in this analysis. Thus the determination of absolute arsenic yields is not required. This method has been used to analyze 32 of the fish samples the average arsenic content of which was found to vary between 0.08 and 4.8 ppm. (author)

  11. Arsenic speciation in seafood samples with emphasis on minor constituents. An investigation by high performance liquid chromatography with inductively coupled plasma mass spectrometric detection

    DEFF Research Database (Denmark)

    Larsen, Erik Huusfeldt; Pritzl, G.; Hansen, S. H.

    1993-01-01

    Extracts of 11 samples of shrimp, crab, fish, fish liver, shellfish and lobster digestive gland (hepatopancreas), including five certified reference materials, were investigated for their contents of arsenic compounds (arsenic speciation). The cation-exchange high performance liquid chromatography...... (as arsenic atom) relative to the total arsenic extracted from the samples were: arsenobetaine 19-98%, arsenocholine and trimethylarsine oxide 0-0.6% and the trimethylarsonium ion 0-2.2%. Additionally, an unknown arsenic species (U1) was present at 3.1-18% in the shellfish and in the lobster digestive...

  12. Evaluation of potential effects of soil available phosphorus on soil arsenic availability and paddy rice inorganic arsenic content.

    Science.gov (United States)

    Jiang, Wei; Hou, Qingye; Yang, Zhongfang; Zhong, Cong; Zheng, Guodong; Yang, Zhiqiang; Li, Jie

    2014-05-01

    The transfer of arsenic from paddy field to rice is a major exposure route of the highly toxic element to humans. The aim of our study is to explore the effects of soil available phosphorus on As uptake by rice, and identify the effects of soil properties on arsenic transfer from soil to rice under actual field conditions. 56 pairs of topsoil and rice samples were collected. The relevant parameters in soil and the inorganic arsenic in rice grains were analyzed, and then all the results were treated by statistical methods. Results show that the main factors influencing the uptake by rice grain include soil pH and available phosphorus. The eventual impact of phosphorus is identified as the suppression of As uptake by rice grains. The competition for transporters from soil to roots between arsenic and phosphorus in rhizosphere soil has been a dominant feature. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Heating Changes Bio-Schwertmannite Microstructure and Arsenic(III Removal Efficiency

    Directory of Open Access Journals (Sweden)

    Xingxing Qiao

    2017-01-01

    Full Text Available Schwertmannite (Sch is an efficient adsorbent for arsenic(III removal from arsenic(III-contaminated groundwater. In this study, bio-schertmannite was synthesized in the presence of dissolved ferrous ions and Acidithiobacillus ferrooxidans LX5 in a culture media. Bio-synthesized Sch characteristics, such as total organic carbon (TOC, morphology, chemical functional groups, mineral phase, specific surface area, and pore volume were systematically studied after it was dried at 105 °C and then heated at 250–550 °C. Differences in arsenic(III removal efficiency between 105 °C dried-sch and 250–550 °C heated-sch also were investigated. The results showed that total organic carbon content in Sch and Sch weight gradually decreased when temperature increased from 105 °C to 350 °C. Sch partly transformed to another nanocrystalline or amorphous phase above 350 °C. The specific surface area of 250 °C heated-sch was 110.06 m2/g compared to 5.14 m2/g for the 105 °C dried-sch. Total pore volume of 105 °C dried-sch was 0.025 cm3/g with 32.0% mesopore and 68.0% macropore. However, total pore volume of 250 °C heated-mineral was 0.106 cm3/g with 23.6% micropore, 33.0% mesopore, and 43.4% macropore. The arsenic(III removal efficiency from an initial 1 mg/L arsenic(III solution (pH 7.5 was 25.1% when 0.25 g/L of 105 °C dried-sch was used as adsorbent. However, this efficiency increased to 93.0% when using 250 °C heated-sch as adsorbent. Finally, the highest efficiency for arsenic(III removal was obtained with sch-250 °C due to high amounts of sorption sites in agreement with the high specific surface area (SSA obtained for this sample.

  14. Chronic arsenic poisoning from burning high-arsenic-containing coal in Guizhou, China

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J.; Zheng, B.S.; Aposhian, H.V.; Zhou, Y.S.; Chen, M.L.; Zhang, A.H.; Waalkes, M.P. [NIEHS, Research Triangle Park, NC (USA)

    2002-07-01

    Arsenic is an environmental hazard and the reduction of drinking water arsenic levels is under consideration. People are exposed to arsenic not only through drinking water but also through arsenic-contaminated air and food. Here the health effects of arsenic exposure from burning high arsenic-containing coal in Guizhou, China was investigated. Coal is burned inside the home in open pits for daily cooking and crop drying, producing a high concentration of arsenic in indoor air. Arsenic in the air coats and permeates food being dried producing high concentrations in food; however, arsenic concentrations in the drinking water are in the normal range. The estimated sources of total arsenic exposure in this area are from arsenic-contaminated food (50-80%), air (10-20%), water (1-5%), and direct contact in coal-mining workers (1%). At least 3,000 patients with arsenic poisoning were found in the Southwest Prefecture of Guizhou, and approximately 200,000 people are at risk for such over exposures. Skin lesions are common, including keratosis of the hands and feet, pigmentation on the trunk, skin ulceration, and skin cancers. Toxicities to internal organs, including lung dysfunction, neuropathy, and nephrotoxicity, are clinically evident. The prevalence of hepatomegaly was 20%, and cirrhosis, ascites, and liver cancer are the most serious outcomes of arsenic poisoning. The Chinese government and international organizations are attempting to improve the house conditions and the coal source, and thereby protect human health in this area.

  15. Assessment of arsenic and heavy metal contents in cockles (Anadara granosa) using multivariate statistical techniques

    International Nuclear Information System (INIS)

    Abbas Alkarkhi, F.M.; Ismail, Norli; Easa, Azhar Mat

    2008-01-01

    Cockles (Anadara granosa) sample obtained from two rivers in the Penang State of Malaysia were analyzed for the content of arsenic (As) and heavy metals (Cr, Cd, Zn, Cu, Pb, and Hg) using a graphite flame atomic absorption spectrometer (GF-AAS) for Cr, Cd, Zn, Cu, Pb, As and cold vapor atomic absorption spectrometer (CV-AAS) for Hg. The two locations of interest with 20 sampling points of each location were Kuala Juru (Juru River) and Bukit Tambun (Jejawi River). Multivariate statistical techniques such as multivariate analysis of variance (MANOVA) and discriminant analysis (DA) were applied for analyzing the data. MANOVA showed a strong significant difference between the two rivers in term of As and heavy metals contents in cockles. DA gave the best result to identify the relative contribution for all parameters in discriminating (distinguishing) the two rivers. It provided an important data reduction as it used only two parameters (Zn and Cd) affording more than 72% correct assignations. Results indicated that the two rivers were different in terms of As and heavy metal contents in cockle, and the major difference was due to the contribution of Zn and Cd. A positive correlation was found between discriminate functions (DF) and Zn, Cd and Cr, whereas negative correlation was exhibited with other heavy metals. Therefore, DA allowed a reduction in the dimensionality of the data set, delineating a few indicator parameters responsible for large variations in heavy metals and arsenic content. Taking into account of these results, it can be suggested that a continuous monitoring of As and heavy metals in cockles be performed in these two rivers

  16. Determination of Arsenic Content of Available Traditional Medicines ...

    African Journals Online (AJOL)

    Tropical Journal of Pharmaceutical Research December 2013; 12 (6): 1053- ... Medicines in Malaysia using Hydride Generation Atomic ... Keywords: Traditional medicine, Arsenic, Hydride Generation –Atomic Absorption Spectrometer HG-.

  17. Groundwater arsenic content in Raigon Aquifer System (San Jose, Uruguay)

    International Nuclear Information System (INIS)

    Manay, N.; Piston, M.; Goso, C.; Fernnandez, T.; Rejas, M.; Garcia Valles, M.

    2013-01-01

    As a Medical Geology research issue, an environmental arsenic risk assessment study in the most important sedimentary aquifer in southern Uruguay is presented. The Raigon Aquifer System is the most exploited in Uruguay. It has a surface extent of about 1,800 square kilometres and 10,000 inhabitants in San Jose Department, where it was studied. Agriculture and cattle breeding are the main economic activities and this aquifer is the basic support. The groundwater sampling was done on 37 water samples of PRENADER (Natural Resources Management and Irrigation Development Program) wells. Outcropping sediments of Raigon Formation and the overlying Libertad Formation were also sampled in the Kiyu region. The analyses were performed by inductively coupled plasma-optical emission spectrometry (ICP-OES) and inductively coupled plasma-mass spectrometry (ICP-MS). The results showed 80% samples with arsenic levels exceeding the 10 μg/l of WHO as limit for waters, and 11% exceeds the 20 μg/l limit of uruguayan regulation. The median, maximum and minimum water arsenic concentrations determined have been 14.24, 24.19 and 1.44 μg/l, respectively. On the other hand, nine sediment samples of Raigon and Libertad Formations in Kiyu region were analysed and yielded median, maximum and minimum arsenic concentrations of 5.03, 9.82 and 1.18 ppm, respectively. This issue leads to the supposition that the population, as well as industrial and agricultural activities, are consuming water with arsenic concentrations over the national and international maximum recommended limit.

  18. Arsenic exposure, urinary arsenic speciation, and peripheral vascular disease in blackfoot disease-hyperendemic villages in Taiwan

    International Nuclear Information System (INIS)

    Tseng, C.-H.; Huang, Y.-K.; Huang, Y.-L.; Chung, C.-J.; Yang, M.-H.; Chen, C.-J.; Hsueh, Y.-M.

    2005-01-01

    Long-term exposure to ingested inorganic arsenic is associated with peripheral vascular disease (PVD) in the blackfoot disease (BFD)-hyperendemic area in Taiwan. This study further examined the interaction between arsenic exposure and urinary arsenic speciation on the risk of PVD. A total of 479 (220 men and 259 women) adults residing in the BFD-hyperendemic area were studied. Doppler ultrasound was used to diagnose PVD. Arsenic exposure was estimated by an index of cumulative arsenic exposure (CAE). Urinary levels of total arsenic, inorganic arsenite (As III ) and arsenate (As V ), monomethylarsonic acid (MMA V ), and dimethylarsinic acid (DMA V ) were determined. Primary methylation index [PMI = MMA V /(As III + As V )] and secondary methylation index (SMI = DMA V /MMA V ) were calculated. The association between PVD and urinary arsenic parameters was evaluated with consideration of the interaction with CAE and the confounding effects of age, sex, body mass index, total cholesterol, triglycerides, cigarette smoking, and alcohol consumption. Results showed that aging was associated with a diminishing capacity to methylate inorganic arsenic and women possessed a more efficient arsenic methylation capacity than men did. PVD risk increased with a higher CAE and a lower capacity to methylate arsenic to DMA V . The multivariate-adjusted odds ratios for CAE of 0, 0.1-15.4, and >15.4 mg/L x year were 1.00, 3.41 (0.74-15.78), and 4.62 (0.96-22.21), respectively (P 6.93, PMI > 1.77 and SMI > 6.93, PMI > 1.77 and SMI ≤ 6.93, and PMI ≤ 1.77 and SMI ≤ 6.93 were 1.00, 2.93 (0.90-9.52), 2.85 (1.05-7.73), and 3.60 (1.12-11.56), respectively (P V have a higher risk of developing PVD in the BFD-hyperendemic area in Taiwan

  19. Earthworms and in vitro physiologically-based extraction tests: complementary tools for a holistic approach towards understanding risk at arsenic-contaminated sites.

    Science.gov (United States)

    Button, Mark; Watts, Michael J; Cave, Mark R; Harrington, Chris F; Jenkin, Gawen T

    2009-04-01

    The relationship of the total arsenic content of a soil and its bioaccumulation by earthworms (Lumbricus rubellus and Dendrodrilus rubidus) to the arsenic fraction bioaccessible to humans, measured using an in vitro physiologically-based extraction test (PBET), was investigated. Soil and earthworm samples were collected at 24 sites at the former arsenic mine at the Devon Great Consols (DGC) in southwest England (UK), along with an uncontaminated site in Nottingham, UK, for comparison. Analysis of soil and earthworm total arsenic via inductively coupled plasma mass spectrometry (ICP-MS) was performed following a mixed acid digestion. Arsenic concentrations in the soil were elevated (204-9,025 mg kg(-1)) at DGC. The arsenic bioaccumulation factor (BAF) for both earthworm species was found to correlate positively with the human bioaccessible fraction (HBF), although the correlation was only significant (P earthworms as complementary tools is explored as a holistic and multidisciplinary approach towards understanding risk at contaminated sites. Arsenic resistant earthworm species such as the L. rubellus populations at DGC are presented as a valuable tool for understanding risk at highly contaminated sites.

  20. Magnetic field effect on growth, arsenic uptake, and total amylolytic activity on mesquite (Prosopis juliflora x P. velutina) seeds

    Science.gov (United States)

    Flores-Tavizón, Edith; Mokgalaka-Matlala, Ntebogeng S.; Elizalde Galindo, José T.; Castillo-Michelle, Hiram; Peralta-Videa, Jose R.; Gardea-Torresdey, Jorge L.

    2012-04-01

    Magnetic field is closely related to the cell metabolism of plants [N. A. Belyavskaya, Adv. Space Res. 34, 1566 (2004)]. In order to see the effect of magnetic field on the plant growth, arsenic uptake, and total amylolytic activity of mesquite (Prosopis juliflora x P. velutina) seeds, ten sets of 80 seeds were selected to be oriented with the long axis parallel or randomly oriented to an external magnetic field. The external magnetic field magnitude was 1 T, and the exposition time t = 30 min. Then, the seeds were stored for three days in a plastic bag and then sown on paper towels in a modified Hoagland's nutrient solution. After three days of germination in the dark and three days in light, seedlings were grown hydroponically in modified Hoagland's nutrient solution (high PO42-) containing 0, 10, or 20 ppm of arsenic as As (III) and (V). The results show that the germination ratios, growth, elongation, arsenic uptake, and total amylolytic activity of the long axis oriented mesquite seeds were much higher than those of the randomly oriented seeds. Also, these two sets of seeds showed higher properties than the ones that were not exposed to external magnetic field.

  1. Arsenic metabolites in humans after ingestion of wakame seaweed

    Directory of Open Access Journals (Sweden)

    Hata A.

    2013-04-01

    Full Text Available Seaweed contains large amounts of various arsenic compounds such as arsenosugars (AsSugs, but their relative toxicities have not yet been fully evaluated. A risk evaluation of dietary arsenic would be necessary. After developing an arsenic speciation analysis of wakame seaweed (Undaria pinnatifida, we conducted a wakame ingestion experiment using volunteers. Five volunteers ingested 300 g of commercial wakame after refraining from seafood for 5 days. Arsenic metabolites in the urine were monitored over a 5-day period after ingestion. Total arsenic concentration of the wakame seaweed was 34.3 ± 2.1 mg arsenic/kg (dry weight, n = 3. Two AsSugs, 3-[5′-deoxy-5′-(dimethyl-arsinoyl-β-ribofuranosyloxy]-propylene glycol (AsSug328 and 3-[5′-deoxy-5′-(dimethyl-arsinoyl-β- ribofuranosyl-oxy]-2-hydroxypropyl-2,3-dihydroxy-propyl phosphate (AsSug482 were detected, but arsenobetaine, dimethylarsinic acid (DMA, monomethylarsonic acid, and inorganic arsenics (iAs were not detected. The major peak was AsSug328, which comprised 89% of the total arsenic. Approximately 30% of the total arsenic ingested was excreted in the urine during the 5-day observation. Five arsenic compounds were detected in the urine after ingestion, the major one being DMA, which comprised 58.1 ± 5.0% of the total urinary arsenic excreted over the 5 days. DMA was believed to be metabolized not from iAs but from AsSugs, and its biological half-time was approximately 13 h.

  2. Plants as Useful Vectors to Reduce Environmental Toxic Arsenic Content

    OpenAIRE

    Nosheen Mirza; Qaisar Mahmood; Mohammad Maroof Shah; Arshid Pervez; Sikander Sultan

    2014-01-01

    Arsenic (As) toxicity in soil and water is an increasing menace around the globe. Its concentration both in soil and environment is due to natural and anthropogenic activities. Rising arsenic concentrations in groundwater is alarming due to the health risks to plants, animals, and human beings. Anthropogenic As contamination of soil may result from mining, milling, and smelting of copper, lead, zinc sulfide ores, hide tanning waste, dyes, chemical weapons, electroplating, gas exhaust, applica...

  3. Factors Affecting Arsenic Methylation in Arsenic-Exposed Humans: A Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Shen, Hui; Niu, Qiang; Xu, Mengchuan; Rui, Dongsheng; Xu, Shangzhi; Feng, Gangling; Ding, Yusong; Li, Shugang; Jing, Mingxia

    2016-02-06

    Chronic arsenic exposure is a critical public health issue in many countries. The metabolism of arsenic in vivo is complicated because it can be influenced by many factors. In the present meta-analysis, two researchers independently searched electronic databases, including the Cochrane Library, PubMed, Springer, Embase, and China National Knowledge Infrastructure, to analyze factors influencing arsenic methylation. The concentrations of the following arsenic metabolites increase (piAs), monomethyl arsenic (MMA), dimethyl arsenic (DMA), and total arsenic. Additionally, the percentages of iAs (standard mean difference (SMD): 1.00; 95% confidence interval (CI): 0.60-1.40; p< 0.00001) and MMA (SMD: 0.49; 95% CI: 0.21-0.77; p = 0.0006) also increase, while the percentage of DMA (SMD: -0.57; 95% CI: -0.80--0.31; p< 0.0001), primary methylation index (SMD: -0.57; 95% CI: -0.94--0.20; p = 0.002), and secondary methylation index (SMD: -0.27; 95% CI: -0.46--0.90; p = 0.004) decrease. Smoking, drinking, and older age can reduce arsenic methylation, and arsenic methylation is more efficient in women than in men. The results of this analysis may provide information regarding the role of arsenic oxidative methylation in the arsenic poisoning process.

  4. Determining the arsenic, cadmium, lead, copper and chromium contents by atomic absorption spectrometry in Pangasius fillets from Vietnam.

    Science.gov (United States)

    Molognoni, Luciano; Vitali, Luciano; Ploêncio, Leandro As; Santos, Jacson N; Daguer, Heitor

    2016-07-01

    Pangasius is a fish produced on a large scale in Vietnam and exported to many countries. Since river contamination from human activities can affect the safety of this food, fish consumption can cause exposure to potentially toxic elements for humans. The aim of this study, therefore, was to assess arsenic, cadmium, lead, copper and chromium contents by atomic absorption spectrometry in Pangasius fillet produced in the provinces of Dong Thap and Can Tho (Vietnam) and exported to Brazil. The limits of detection were: arsenic 0.5443 µg kg(-1) , cadmium 0.0040 mg kg(-1) , chromium 0.0004 mg kg(-1) , copper 0.0037 mg kg(-1) and lead 0.0284 mg kg(-1) . Analysis of 20 samples showed results below the limit of detection for arsenic, chromium and lead, while copper average concentration was 0.0234 mg kg(-1) . Cadmium average concentration was 0.0547 mg kg(-1) , with no significant difference between the two regions studied. The samples of Pangasius had no detectable concentrations of arsenic, chromium, copper and lead, and do not represent a hazard to public health. However, cadmium analysis revealed non-compliant samples, demonstrating the importance of monitoring the quality of imported Pangasius fish. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  5. Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica

    Directory of Open Access Journals (Sweden)

    Quy Diem Do

    2014-09-01

    Full Text Available Limnophila aromatica is commonly used as a spice and a medicinal herb in Southeast Asia. In this study, water and various concentrations (50%, 75%, and 100% of methanol, ethanol, and acetone in water were used as solvent in the extraction of L. aromatica. The antioxidant activity, total phenolic content, and total flavonoid content of the freeze-dried L. aromatica extracts were investigated using various in vitro assays. The extract obtained by 100% ethanol showed the highest total antioxidant activity, reducing power and DPPH (2,2-diphenyl-1-picrylhydrazyl radical scavenging activity. The same extract also exhibited the highest phenolic content (40.5 mg gallic acid equivalent/g of defatted L. aromatica and the highest flavonoid content (31.11 mg quercetin equivalent/g of defatted L. aromatica. The highest extraction yield was obtained by using 50% aqueous acetone. These results indicate that L. aromatica can be used in dietary applications with a potential to reduce oxidative stress.

  6. Total arsenic, lead, cadmium, copper, and zinc in some salt rivers in the northern Andes of Antofagasta, Chile.

    Science.gov (United States)

    Queirolo, F; Stegen, S; Mondaca, J; Cortés, R; Rojas, R; Contreras, C; Munoz, L; Schwuger, M J; Ostapczuk, P

    2000-06-08

    The pre-Andes water in the region of Antofagasta is the main drinking and irrigation water source for approximately 3000 Atacameña (indigenous) people. The concentration for soluble elements (filtration in field through a 0.45-microm filter) was: Cd < 0.1 ng/ml; Pb < 0.5 ng/ml; and Zn and Cu between 1 and 10 ng/ml. In particulate material the concentrations were: for Cd < 0.1 ng/ml; for Pb < 0.3 ng/ml; and for Zn and Cu less than 1 ng/ml. The total content of these elements is far below the international recommendations (WHO) and the national standards (N. Ch. 1333 mod. 1987 and 409-1 of 1984). On the other hand, in some rivers a very high arsenic concentration was found (up to 3000 ng/ml) which exceed more than 50 times the national standard. In order to verify the analytical results, inter-laboratory and comparison with different determination methods have been done.

  7. Honey as a bioindicator of arsenic contamination due to volcanic and mining activities in Chile

    OpenAIRE

    Bastías, José M; Jambon, Philippe; Muñoz, Ociel; Manquián, Nimia; Bahamonde, Patricia; Neira, Miguel

    2013-01-01

    The content of heavy metals in honey is indicative of natural or anthropogenic pollution and has therefore been proposed as a feasible bioindicator for arsenic contamination in different regions of Chile. Total arsenic (t-As) and inorganic As (i-As) concentrations were determined in 227 samples of honey harvested during the years 2007, 2008, and 2009 in the areas of San Pedro de Atacama, Atacama, Chiloé, and Futaleufú, with the last town located 156 km from the Chaitén Volcano (latest eruptio...

  8. Protective effect of nitric oxide against arsenic-induced oxidative ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-03-15

    Mar 15, 2010 ... 1Department of Soil and Water Science, College of Resources and Environment, ... alleviated arsenic-induced electrolyte leakage and malondiadehyde (MDA) content in ..... gene construct for environmental arsenic detection.

  9. Roxarsone, inorganic arsenic, and other arsenic species in chicken: a U.S.-based market basket sample.

    Science.gov (United States)

    Nachman, Keeve E; Baron, Patrick A; Raber, Georg; Francesconi, Kevin A; Navas-Acien, Ana; Love, David C

    2013-07-01

    Inorganic arsenic (iAs) causes cancer and possibly other adverse health outcomes. Arsenic-based drugs are permitted in poultry production; however, the contribution of chicken consumption to iAs intake is unknown. We sought to characterize the arsenic species profile in chicken meat and estimate bladder and lung cancer risk associated with consuming chicken produced with arsenic-based drugs. Conventional, antibiotic-free, and organic chicken samples were collected from grocery stores in 10 U.S. metropolitan areas from December 2010 through June 2011. We tested 116 raw and 142 cooked chicken samples for total arsenic, and we determined arsenic species in 65 raw and 78 cooked samples that contained total arsenic at ≥ 10 µg/kg dry weight. The geometric mean (GM) of total arsenic in cooked chicken meat samples was 3.0 µg/kg (95% CI: 2.5, 3.6). Among the 78 cooked samples that were speciated, iAs concentrations were higher in conventional samples (GM = 1.8 µg/kg; 95% CI: 1.4, 2.3) than in antibiotic-free (GM = 0.7 µg/kg; 95% CI: 0.5, 1.0) or organic (GM = 0.6 µg/kg; 95% CI: 0.5, 0.8) samples. Roxarsone was detected in 20 of 40 conventional samples, 1 of 13 antibiotic-free samples, and none of the 25 organic samples. iAs concentrations in roxarsone-positive samples (GM = 2.3 µg/kg; 95% CI: 1.7, 3.1) were significantly higher than those in roxarsone-negative samples (GM = 0.8 µg/kg; 95% CI: 0.7, 1.0). Cooking increased iAs and decreased roxarsone concentrations. We estimated that consumers of conventional chicken would ingest an additional 0.11 µg/day iAs (in an 82-g serving) compared with consumers of organic chicken. Assuming lifetime exposure and a proposed cancer slope factor of 25.7 per milligram per kilogram of body weight per day, this increase in arsenic exposure could result in 3.7 additional lifetime bladder and lung cancer cases per 100,000 exposed persons. Conventional chicken meat had higher iAs concentrations than did conventional antibiotic

  10. Inorganic arsenic contents in ready-to-eat rice products and various Korean rice determined by a highly sensitive gas chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Jung, Mun Yhung; Kang, Ju Hee; Jung, Hyun Jeong; Ma, Sang Yong

    2018-02-01

    Rice and rice products have been reported to contain high contents of toxic inorganic arsenic (iAs). The inorganic arsenic contents in microwavable ready-to-eat rice products (n=30) and different types of Korean rice (n=102) were determined by a gas chromatography-tandem mass spectrometry (GC-MS/MS). The method showed low limit of detection (0.015pg), high intra- and inter-day repeatability (ready-to-eat rice products was 59μgkg -1 (dry weight basis). The mean iAs contents in polished white, brown, black, and waxy rice were 65, 109, 91, and 66μgkg -1 , respectively. The percentages of ready-to-eat rice products, white, brown, black, and waxy rice containing iAs over the maximum level (100μgkg -1 ) set by EU for the infant foods were 17, 4, 70, 36 and 0%, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Urinary arsenic speciation profile in ethnic group of the Atacama desert (Chile) exposed to variable arsenic levels in drinking water.

    Science.gov (United States)

    Yáñez, Jorge; Mansilla, Héctor D; Santander, I Paola; Fierro, Vladimir; Cornejo, Lorena; Barnes, Ramón M; Amarasiriwardena, Dulasiri

    2015-01-01

    Ethnic groups from the Atacama Desert (known as Atacameños) have been exposed to natural arsenic pollution for over 5000 years. This work presents an integral study that characterizes arsenic species in water used for human consumption. It also describes the metabolism and arsenic elimination through urine in a chronically exposed population in northern Chile. In this region, water contained total arsenic concentrations up to 1250 μg L(-1), which was almost exclusively As(V). It is also important that this water was ingested directly from natural water sources without any treatment. The ingested arsenic was extensively methylated. In urine 93% of the arsenic was found as methylated arsenic species, such as monomethylarsonic acid [MMA(V)] and dimethylarsinic acid [DMA(V)]. The original ingested inorganic species [As(V)], represent less than 1% of the total urinary arsenic. Methylation activity among individuals can be assessed by measuring primary [inorganic As/methylated As] and secondary methylation [MMA/DMA] indexes. Both methylation indexes were 0.06, indicating a high biological converting capability of As(V) into MMA and then MMA into DMA, compared with the control population and other arsenic exposed populations previously reported.

  12. Arsenic species excretion after dimercaptopropanesulfonic acid (DMPS) treatment of an acute arsenic trioxide poisoning

    Energy Technology Data Exchange (ETDEWEB)

    Heinrich-Ramm, R. [Ordinariat fuer Arbeitsmedizin der Universitaet Hamburg und Zentralinstitut fuer Arbeitsmedizin, Hamburg (Germany); Schaller, K.H.; Angerer, J. [Institut und Poliklinik fuer Arbeits-, Sozial- und Umweltmedizin der Universitaet Erlangen-Nuernberg, Schillerstr. 25, 91054 Erlangen (Germany); Horn, J. [Medizinische Klinik II, Toxikologische-internistische Intensivstation, Klinikum Nuernberg, Nuernberg (Germany)

    2003-02-01

    We studied the urinary excretion of the different arsenic species in urine samples from a young man who tried to commit suicide by ingesting about 0.6 g arsenic trioxide. He received immediate therapy with dimercaptopropanesulfonic acid (DMPS) after his delivery into the hospital. We assessed urinary arsenite (inorganic trivalent arsenic), arsenate (inorganic pentavalent arsenic), pentavalent dimethylarsinic acid (DMA) and pentavalent monomethylarsonic acid (MMA) in urine with ion-exchange chromatography and on-line hydride-technique atomic absorption spectrometry. The predominant amount of the excreted arsenic was unchanged trivalent inorganic arsenic (37.4%), followed by pentavalent inorganic arsenic (2.6%), MMA (2.1%), DMA (0.2%) and one unidentified arsenic species (0.7%, if calculated as DMA). In the first urine voiding in the clinic, the total arsenic concentration was 215 mg/l, which fell 1000-fold after 8 days of DMPS therapy. A most striking finding was the almost complete inhibition of the second methylation step in arsenic metabolism. As mechanisms for the reduced methylation efficiency, the saturation of the enzymatic process of arsenic methylation, the high dosage of antidote DMPS, which might inhibit the activity of the methyl transferases, and analytical reasons are discussed. The high dosage of DMPS is the most likely explanation. The patient left the hospital after a 12-day treatment with antidote. (orig.)

  13. Containing arsenic-enriched groundwater tracing lead isotopic compositions of common arsenical pesticides in a coastal Maine watershed

    Science.gov (United States)

    Ayuso, Robert A.; Foley, Nora K.; Robinson, Glipin R.; Colvin, A.S.; Lipfert, G.; Reeve, A.S.

    2006-01-01

    Arsenical pesticides and herbicides were extensively used on apple, blueberry, and potato crops in New England during the first half of the twentieth century. Lead arsenate was the most heavily used arsenical pesticide until it was officially banned. Lead arsenate, calcium arsenate, and sodium arsenate have similar Pb isotope compositions: 208Pb207Pb = 2.3839-2.4722, and 206Pb207Pb = 1.1035-1.2010. Other arsenical pesticides such as copper acetoarsenite (Paris green), methyl arsonic acid and methane arsonic acid, as well as arsanilic acid are widely variable in isotope composition. Although a complete understanding of the effects of historical use of arsenical pesticides is not available, initial studies indicate that arsenic and lead concentrations in stream sediments in New England are higher in agricultural areas that intensely used arsenical pesticides than in other areas. The Pb isotope compositions of pesticides partially overlap values of stream sediments from areas with the most extensive agricultural use. The lingering effects of arsenical pesticide use were tested in a detailed geochemical and isotopic study of soil profiles from a watershed containing arsenic-enriched ground water in coastal Maine. Acid-leach compositions of the soils represent lead adsorbed to mineral surfaces or held in soluble minerals (Fe- and Mn-hydroxides, carbonate, and some micaceous minerals), whereas residue compositions likely reflect bedrock compositions. The soil profiles contain labile Pb (acid-leach) showing a moderate range in 206Pb 207Pb (1.1870-1.2069), and 208Pb207Pb (2.4519-2.4876). Isotope values vary as a function of depth: the lowest Pb isotope ratios (e.g.,208Pb206Pb) representing labile lead are in the uppermost soil horizons. Lead contents decrease with depth in the soil profiles. Arsenic contents show no clear trend with depth. A multi-component mixing scheme that included lead from the local parent rock (Penobscot Formation), lead derived from combustion of

  14. Study of arsenic contents in human hair of contrast sites in Bangladesh

    International Nuclear Information System (INIS)

    Hafiz, M.A.; Hossain, S.M.; Arafat, Y.

    2007-01-01

    Arsenic concentrations in human hair samples of a highly polluted site namely Boro Dudpalila village, Damurhuda, Chuadanga and nonpolluted sites of Goainghat and Sylhet Sadar thanas were determined using instrumental neutron activation analysis (INAA) technique. Samples were irradiated in the TRIGA Mark-II research reactor of Atomic Energy Research Establishment (AERE), Savar, Dhaka, Bangladesh and PARR-2 of Pakistan Institute of Nuclear Science and Technology (PINSTECH), Islamabad, Pakistan at a thermal neutron flux of order 10 12 n/cm 2 /s for 3 hours. Decay time was about 2 days. Measurement time was 2700 sec for Dhaka and 1800 sec for Islamabad laboratories. HPGe detectors were used for γ-ray measurement. Ranges of arsenic concentrations in Chuadanga and Sylhet samples were found to be 1.04±0.06 to 48.66±1.32 and <0.20 to 0.84±0.04 ppm, respectively. Minimum detection limit of arsenic in the hair samples was found to be 0.20 ppm. All Chuadanga samples exceeded the normal level of arsenic in human hair (1 ppm). In the study it was found that both males and females are affected and there was generally no consistency in the arsenic levels in hair of the members of the same family. (author)

  15. Determination of gold and arsenic in Indian tobacco leaves

    International Nuclear Information System (INIS)

    Purkayastha, B.C.; Bhattacharyya, D.K.

    1975-01-01

    Two varieties of Indian Tobacco leaves have been analysed for gold and arsenic by neutron activation ( 76 As, 198 Au). Nicotiana rustica variety from North Bengal was found to contain 3.7x10 -1 ppm of gold and 4.0x10 -3 ppm of arsenic and the nicotiana tabaccum variety from Andhra Pradesh contains 1.26x10 -1 ppm of gold and 5.1x10 -3 ppm of arsenic, respectively. Unlike those in other countries Indian tobacco leaves seem to be enriched in the gold content and depleted in the arsenic content. The soil of North Bengal is richer in gold than the soil of Andhra Pradesh which requires further investigation, and the amount of arsenic in both soils is physiologically insignificant. Irradiation of leaf samples was done in a CIRUS reactor at a neutron flux of 10 13 n cm -2 s -1 for seven days. (F.G.)

  16. Precipitation of organic arsenic compounds and their degradation products during struvite formation

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jin-Biao; Yuan, Shoujun [School of Civil Engineering, Hefei University of Technology, Hefei 230009 (China); Institute of Water Treatment and Wastes Reutilization, Hefei University of Technology, Hefei 230009 (China); Wang, Wei, E-mail: dwhit@126.com [School of Civil Engineering, Hefei University of Technology, Hefei 230009 (China); Institute of Water Treatment and Wastes Reutilization, Hefei University of Technology, Hefei 230009 (China); Hu, Zhen-Hu, E-mail: zhhu@hfut.edu.cn [School of Civil Engineering, Hefei University of Technology, Hefei 230009 (China); Institute of Water Treatment and Wastes Reutilization, Hefei University of Technology, Hefei 230009 (China); Yu, Han-Qing [Department of Chemistry, University of Science & Technology of China, Hefei 230026 (China)

    2016-11-05

    Highlights: • Organic and inorganic arsenic compounds precipitated during struvite formation. • Precipitation of organic arsenic compounds in struvite decreased with increasing pH. • Arsenate easily precipitate in struvite as compared to organic arsenic compounds. • Arsenic compounds in solution affected the shape of struvite crystallization products. - Abstract: Roxarsone (ROX) and arsanilic acid (ASA) have been extensively used as organoarsenic animal feed additives. Organic arsenic compounds and their degradation products, arsenate (As(V)) and arsenite (As(III)), exist in the effluent from anaerobic reactors treating animal manure contaminated by ROX or ASA with ammonium (NH{sub 4}{sup +}-N) and phosphate (PO{sub 4}{sup 3−}-P) together. Therefore, arsenic species in the effluent might be involved in the struvite formation process. In this study, the involvement of organic arsenic compounds and their degradation products As(V) and As(III) in the struvite crystallization was investigated. The results demonstrated that arsenic compounds did not substantially affect the PO{sub 4}{sup 3−}-P recovery, but confirmed the precipitation of arsenic during struvite formation. The precipitation of arsenic compounds in struvite was considerably affected by a solution pH from 9.0 to 11.0. With an increase in pH, the content of ASA and ROX in the precipitation decreased, but the contents of As(III) and As(V) increased. In addition, the arsenic content of As(V) in the struvite was higher than that of As(III), ASA and ROX. The results indicated that the struvite could be contaminated when the solution contains arsenic species, but that could be minimized by controlling the solution pH and maintaining anaerobic conditions during struvite formation.

  17. Assessment of chemical and biological significance of arsenical species in the Maurice River drainage basin (N. J. ). Part I. Distribution in water and river and lake sediments

    Energy Technology Data Exchange (ETDEWEB)

    Faust, S.D.; Winka, A.J.; Belton, T.

    1987-01-01

    Levels of arsenic were determined in the bottom sediments and waters of the Maurice River, Blackwater Branch, and Union Lake, (N.J.) that were contaminated by a local chemical industry. This was the only known source of the arsenic. Levels of total arsenic in the sediments and waters were determined quarterly over the course of one year. Sediments were extracted for water soluble and total extractable arsenic fractions and partitioned into four species: monomethylarsonic acid (MMAA), dimethylarsinic acid (DMAA), arsenite (As(III)), and arsenate (As(V)). In Union Lake at a shallow sandy sediment site, As (V) predominates. In organic sediments, As (III) or (V) predominate depending upon the dissolved oxygen content of the overlying waters. The oxidations state of the arsenic was affected also by the seasonal lake cycles of stratifying or mixing.

  18. Incorporation of arsenic into gypsum: Relevant to arsenic removal and immobilization process in hydrometallurgical industry

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Danni; Yuan, Zidan [Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016 (China); Wang, Shaofeng, E-mail: wangshaofeng@iae.ac.cn [Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016 (China); Jia, Yongfeng, E-mail: yongfeng.jia@iae.ac.cn [Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016 (China); Demopoulos, George P. [Department of Mining and Materials Engineering, McGill University, Montreal, QC H3A 2B2 (Canada)

    2015-12-30

    Highlights: • Quantitatively studied the incorporation of arsenic into the structure of gypsum. • Arsenic content in the solid increased with pH and initial arsenic concentration. • Calcium arsenate phase precipitated in addition to gypsum at higher pH values. • The structure of gypsum and its morphology was altered by the incorporated arsenate. • The incorporated arsenate formed sainfeldite-like local structure in gypsum. - Abstract: Gypsum precipitates as a major secondary mineral during the iron-arsenate coprecipitation process for the removal of arsenic from hydrometallurgical effluents. However, its role in the fixation of arsenic is still unknown. This work investigated the incorporation of arsenic into gypsum quantitatively during the crystallization process at various pHs and the initial arsenic concentrations. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray absorption near edge spectroscopy (XANES) and scanning electron microscopy (SEM) were employed to characterize the coprecipitated solids. The results showed that arsenate was measurably removed from solution during gypsum crystallization and the removal increased with increasing pH. At lower pH where the system was undersaturated with respect to calcium arsenate, arsenate ions were incorporated into gypsum structure, whereas at higher pH, calcium arsenate was formed and constituted the major arsenate bearing species in the precipitated solids. The findings may have important implications for arsenic speciation and stability of the hydrometallurgical solid wastes.

  19. Anomalous arsenic content in soils of Villa Nueva, Department Calingasta, Province of San Juan Argentina. Analysis of the source

    International Nuclear Information System (INIS)

    Arroqui Langer, A.; Cardús, A; Echenique, O.; Nozica, G.

    2010-01-01

    In soils entysol type of Villa Nueva, were detected anomalous arsenic values ​​(not recommended for agricultural soils). This location downstream of old mines of Au and Ag, Pb, and Zn is basing its economic growth in the agriculture, forestry and mining. In this study the geochemistry of the different areas of contribution related to the genesis of the soils analyzed. Two areas were considered for the interpretation of the results : one associated with the upper watershed of Brown River (upstream of the town of Villa Nueva) and another related to the geomorphological units on which the village is developed. The evaluation of results from the analysis of 443 samples, allows for content As high in the regional context, with more content, widespread in sub-basins upstream of the village under study, irrespective of the sectors where it was developed historic mining, so a naturally occurring arsenic in soils of Villa Nueva is assigned. Bioavailability studies are needed to assess the risk of existing toxicity in soils

  20. Geochemical fates and unusual distribution of arsenic in natural ferromanganese duricrust

    International Nuclear Information System (INIS)

    Liu, Huan; Lu, Xiancai; Li, Juan; Chen, Xiaoye; Zhu, Xiangyu; Xiang, Wanli; Zhang, Rui; Wang, Xiaolin; Lu, Jianjun; Wang, Rucheng

    2017-01-01

    Preferential enrichment of arsenic in iron oxides relative to manganese oxides has been well documented. In this study, however, a distinct arsenic enrichment is revealed in natural ferromanganese duricrusts, which are commonly found in natural weathering profiles of manganese-bearing carbonate rocks. In the studied ferromanganese duricrust covering Carboniferous carbonates at Qixia Mountain in eastern China, stromotalite-like structures composed by hematite, goethite, pyrolusite and hetaerolite have been observed. Electron microprobe analysis (EMPA) mapping and synchrotron-based micro-scanning X-ray fluorescence (μ-XRF) analyses reveal that the arsenic content in manganese oxides is elevated with respect to iron oxide phases. For example, the arsenic content of pyrolusite is approximately 5 times as much as that of hematite or hetaerolite. However, the highest arsenic content (0.58 wt% As_2O_5) occurs in 2.75 (±0.96, ±σ) μm micro-bands of hematite ((Fe_xMn"I"I"I_1_-_x)_2O_3, 0.75 < x < 0.83). Although arsenic contents in the Mn-rich hematite micro-bands are extraordinarily high, the amount of hematite with a high Mn content is very low in the duricrust. Hence manganese oxides are suggested to be the major arsenic sink in the ferromanganese duricrust. Extended X-ray absorption fine structure spectra (EXAFS) further shows that all arsenic is present as oxidized As(V) and are bound to Fe/Mn oxides in bidentate binuclear bridging complexes with As−Fe and As−Mn bond distances of 3.24 Å and 3.23 Å, respectively. In addition, it is found that zinc is also more enriched in Mn oxides (besides hetaerolite) than in Fe oxides. The fine hematite crust with low contents of heavy metals could act as a protective seal to separate Mn oxides core with high Zn and As from environmental fluids. This separation could reduce the interaction between them and decrease the release of Zn and As from this ferromanganese duricrusts, which ensures long-term sequestration of

  1. Groundwater arsenic in Chimaltenango, Guatemala.

    Science.gov (United States)

    Lotter, Jason T; Lacey, Steven E; Lopez, Ramon; Socoy Set, Genaro; Khodadoust, Amid P; Erdal, Serap

    2014-09-01

    In the Municipality of Chimaltenango, Guatemala, we sampled groundwater for total inorganic arsenic. In total, 42 samples were collected from 27 (43.5%) of the 62 wells in the municipality, with sites chosen to achieve spatial representation throughout the municipality. Samples were collected from household faucets used for drinking water, and sent to the USA for analysis. The only site found to have a concentration above the 10 μg/L World Health Organization provisional guideline for arsenic in drinking water was Cerro Alto, where the average concentration was 47.5 μg/L. A health risk assessment based on the arsenic levels found in Cerro Alto showed an increase in noncarcinogenic and carcinogenic risks for residents as a result of consuming groundwater as their primary drinking water source. Using data from the US Geological Survey and our global positioning system data of the sample locations, we found Cerro Alto to be the only site sampled within the tertiary volcanic rock layer, a known source of naturally occurring arsenic. Recommendations were made to reduce the levels of arsenic found in the community's drinking water so that the health risks can be managed.

  2. A modified routine analysis of arsenic content in drinking-water in Bangladesh by hydride generation-atomic absorption spectrophotometry.

    Science.gov (United States)

    Wahed, M A; Chowdhury, Dulaly; Nermell, Barbro; Khan, Shafiqul Islam; Ilias, Mohammad; Rahman, Mahfuzar; Persson, Lars Ake; Vahter, Marie

    2006-03-01

    The high prevalence of elevated levels of arsenic in drinking-water in many countries, including Bangladesh, has necessitated the development of reliable and rapid methods for the determination of a wide range of arsenic concentrations in water. A simple hydride generation-atomic absorption spectrometry (HG-AAS) method for the determination of arsenic in the range of microg/L to mg/L concentrations in water is reported here. The method showed linearity over concentrations ranging from 1 to 30 microg/L, but requires dilution of samples with higher concentrations. The detection limit ranged from 0.3 to 0.5 microg/L. Evaluation of the method, using internal quality-control (QC) samples (pooled water samples) and spiked internal QC samples throughout the study, and Standard Reference Material in certain lots, showed good accuracy and precision. Analysis of duplicate water samples at another laboratory also showed good agreement. In total, 13,286 tubewell water samples from Matlab, a rural area in Bangladesh, were analyzed. Thirty-seven percent of the water samples had concentrations below 50 microg/L, 29% below the WHO guideline value of 10 microg/L, and 17% below 1 microg/L. The HG-AAS was found to be a precise, sensitive, and reasonably fast and simple method for analysis of arsenic concentrations in water samples.

  3. Speciation of arsenic in rice and estimation of daily intake of different arsenic species by Brazilians through rice consumption.

    Science.gov (United States)

    Batista, Bruno L; Souza, Juliana M O; De Souza, Samuel S; Barbosa, Fernando

    2011-07-15

    Rice is an important source of essential elements. However, rice may also contain toxic elements such as arsenic. Therefore, in the present study, the concentration of total arsenic and five main chemical species of arsenic (As(3+), As(5+), DMA, MMA and AsB) were evaluated in 44 different rice samples (white, parboiled white, brown, parboiled brown, parboiled organic and organic white) from different Brazilian regions using high-performance liquid chromatography hyphenated to inductively coupled plasma mass spectrometry (HPLC-ICP-MS). The mean level of total arsenic was 222.8 ng g(-1) and the daily intake of inorganic arsenic (the most toxic form) from rice consumption was estimated as 10% of the Provisional Tolerable Daily Intake (PTDI) with a daily ingestion of 88 g of rice. Inorganic arsenic (As(3+), As(5+)) and dimethylarsinic acid (DMA) are the predominant forms in all samples. The percentages of species were 38.7; 39.7; 3.7 and 17.8% for DMA, As(3+), MMA and As(5+), respectively. Moreover, rice samples harvested in the state of Rio Grande do Sul presented more fractions of inorganic arsenic than rice in Minas Gerais or Goiás, which could lead to different risks of arsenic exposure. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Determination of leachable arsenic from glass ampoules

    International Nuclear Information System (INIS)

    Kayasth, S.R.; Swain, K.K.

    2004-01-01

    Appreciable amounts of different arsenic compounds are used in the manufacture of glass and glass ampoules (injection vials and bottles) used to store drugs. Exposure/intake of arsenic to human beings may result in skin ulceration, injury to mucous membranes, perforation of nasal septum, skin cancer and keratoses, especially of the palms and soles and may cause detrimental effects. Considering the toxicity of arsenic, even if traces of arsenic from such glass containers/ampoules are leached out, it can impart damage to human beings. To check the possibility of leaching of arsenic from glass ampoules, a simple methodology has been developed. Different makes and varieties of glass ampoules filled with de-ionized water were subjected to high pressure and temperature leaching for varying amount of time using autoclave to create extreme conditions for the maximum leaching out of the analyte. Subsequently, the determination of the arsenic contents in leached water using neutron activation analysis is reported in detail with observations. (author)

  5. Mécanismes et transferts de l'arsenic dans une confluence du Var et étude d'une méthode de remédiation dans les eaux potables

    OpenAIRE

    Campredon , Brice

    2013-01-01

    This work aimed to solve a local problem of high water contamination with natural arsenic. In order to monitor and manage the water resource quality in French Riviera region. The different geographical repartition of arsenic content makes the consequences of this contamination to the geology. The interest of this work is to understand the interaction at solid/liquid interfaces between total dissolved arsenic and the solid particles (suspended particles matter, bed sediments and natural solids...

  6. Arsenic speciation in edible alga samples by microwave-assisted extraction and high performance liquid chromatography coupled to atomic fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Salgado, S. [Departamento de Ingenieria Civil: Tecnologia Hidraulica y Energetica, Escuela Universitaria de Ingenieria Tecnica de Obras Publicas, Universidad Politecnica de Madrid, Alfonso XII 3 y 5, 28014 Madrid (Spain); Quijano, M.A., E-mail: marian.quijano@upm.es [Departamento de Ingenieria Civil: Tecnologia Hidraulica y Energetica, Escuela Universitaria de Ingenieria Tecnica de Obras Publicas, Universidad Politecnica de Madrid, Alfonso XII 3 y 5, 28014 Madrid (Spain); Bonilla, M.M. [Departamento de Ingenieria Civil: Tecnologia Hidraulica y Energetica, Escuela Universitaria de Ingenieria Tecnica de Obras Publicas, Universidad Politecnica de Madrid, Alfonso XII 3 y 5, 28014 Madrid (Spain)

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer Total As and As species were analyzed in edible marine algae. Black-Right-Pointing-Pointer A microwave-assisted extraction method with deionized water was applied. Black-Right-Pointing-Pointer As compounds identified comprised DMA, As(V) and four arsenosugars Black-Right-Pointing-Pointer Considerably high As(V) concentrations were found in the most of the algae studied. - Abstract: Twelve commercially available edible marine algae from France, Japan and Spain and the certified reference material (CRM) NIES No. 9 Sargassum fulvellum were analyzed for total arsenic and arsenic species. Total arsenic concentrations were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES) after microwave digestion and ranged from 23 to 126 {mu}g g{sup -1}. Arsenic species in alga samples were extracted with deionized water by microwave-assisted extraction and showed extraction efficiencies from 49 to 98%, in terms of total arsenic. The presence of eleven arsenic species was studied by high performance liquid chromatography-ultraviolet photo-oxidation-hydride generation atomic-fluorescence spectrometry (HPLC-(UV)-HG-AFS) developed methods, using both anion and cation exchange chromatography. Glycerol and phosphate sugars were found in all alga samples analyzed, at concentrations between 0.11 and 22 {mu}g g{sup -1}, whereas sulfonate and sulfate sugars were only detected in three of them (0.6-7.2 {mu}g g{sup -1}). Regarding arsenic toxic species, low concentration levels of dimethylarsinic acid (DMA) (<0.9 {mu}g g{sup -1}) and generally high arsenate (As(V)) concentrations (up to 77 {mu}g g{sup -1}) were found in most of the algae studied. The results obtained are of interest to highlight the need to perform speciation analysis and to introduce appropriate legislation to limit toxic arsenic species content in these food products.

  7. Arsenic speciation in edible alga samples by microwave-assisted extraction and high performance liquid chromatography coupled to atomic fluorescence spectrometry

    International Nuclear Information System (INIS)

    García-Salgado, S.; Quijano, M.A.; Bonilla, M.M.

    2012-01-01

    Highlights: ► Total As and As species were analyzed in edible marine algae. ► A microwave-assisted extraction method with deionized water was applied. ► As compounds identified comprised DMA, As(V) and four arsenosugars ► Considerably high As(V) concentrations were found in the most of the algae studied. - Abstract: Twelve commercially available edible marine algae from France, Japan and Spain and the certified reference material (CRM) NIES No. 9 Sargassum fulvellum were analyzed for total arsenic and arsenic species. Total arsenic concentrations were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES) after microwave digestion and ranged from 23 to 126 μg g −1 . Arsenic species in alga samples were extracted with deionized water by microwave-assisted extraction and showed extraction efficiencies from 49 to 98%, in terms of total arsenic. The presence of eleven arsenic species was studied by high performance liquid chromatography–ultraviolet photo-oxidation–hydride generation atomic–fluorescence spectrometry (HPLC–(UV)–HG–AFS) developed methods, using both anion and cation exchange chromatography. Glycerol and phosphate sugars were found in all alga samples analyzed, at concentrations between 0.11 and 22 μg g −1 , whereas sulfonate and sulfate sugars were only detected in three of them (0.6-7.2 μg g −1 ). Regarding arsenic toxic species, low concentration levels of dimethylarsinic acid (DMA) ( −1 ) and generally high arsenate (As(V)) concentrations (up to 77 μg g −1 ) were found in most of the algae studied. The results obtained are of interest to highlight the need to perform speciation analysis and to introduce appropriate legislation to limit toxic arsenic species content in these food products.

  8. Atorvastatin ameliorates arsenic-induced hypertension and enhancement of vascular redox signaling in rats

    International Nuclear Information System (INIS)

    Sarath, Thengumpallil Sasindran; Waghe, Prashantkumar; Gupta, Priyanka; Choudhury, Soumen; Kannan, Kandasamy; Pillai, Ayyappan Harikrishna; Harikumar, Sankaran Kutty; Mishra, Santosh Kumar; Sarkar, Souvendra Nath

    2014-01-01

    Chronic arsenic exposure has been linked to elevated blood pressure and cardiovascular diseases, while statins reduce the incidence of cardiovascular disease predominantly by their low density lipoprotein-lowering effect. Besides, statins have other beneficial effects, including antioxidant and anti-inflammatory activities. We evaluated whether atorvastatin, a widely used statin, can ameliorate arsenic-induced increase in blood pressure and alteration in lipid profile and also whether the amelioration could relate to altered NO and ROS signaling. Rats were exposed to sodium arsenite (100 ppm) through drinking water for 90 consecutive days. Atorvastatin (10 mg/kg bw, orally) was administered once daily during the last 30 days of arsenic exposure. On the 91st day, blood was collected for lipid profile. Western blot of iNOS and eNOS protein, NO and 3-nitrotyrosine production, Nox-4 and p22Phox mRNA expression, Nox activity, ROS generation, lipid peroxidation and antioxidants were evaluated in thoracic aorta. Arsenic increased systolic, diastolic and mean arterial blood pressure, while it decreased HDL-C and increased LDL-C, total cholesterol and triglycerides in serum. Arsenic down-regulated eNOS and up-regulated iNOS protein expression and increased basal NO and 3-nitrotyrosine level. Arsenic increased aortic Nox-4 and p22Phox mRNA expression, Nox activity, ROS generation and lipid peroxidation. Further, arsenic decreased the activities of superoxide dismutase, catalase, and glutathione peroxidase and depleted aortic GSH content. Atorvastatin regularized blood pressure, improved lipid profile and attenuated arsenic-mediated redox alterations. The results demonstrate that atorvastatin has the potential to ameliorate arsenic-induced hypertension by improving lipid profile, aortic NO signaling and restoring vascular redox homeostasis. - Highlights: • Arsenic increased systolic, diastolic and mean arterial blood pressure and caused dyslipidemia. • Arsenic increased

  9. Atorvastatin ameliorates arsenic-induced hypertension and enhancement of vascular redox signaling in rats

    Energy Technology Data Exchange (ETDEWEB)

    Sarath, Thengumpallil Sasindran; Waghe, Prashantkumar; Gupta, Priyanka; Choudhury, Soumen; Kannan, Kandasamy [Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243122 Bareilly, Uttar Pradesh (India); Pillai, Ayyappan Harikrishna [Division of Animal Biochemistry, Indian Veterinary Research Institute, Izatnagar, 243122 Bareilly, Uttar Pradesh (India); Harikumar, Sankaran Kutty; Mishra, Santosh Kumar [Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243122 Bareilly, Uttar Pradesh (India); Sarkar, Souvendra Nath, E-mail: snsarkar1911@rediffmail.com [Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243122 Bareilly, Uttar Pradesh (India)

    2014-11-01

    Chronic arsenic exposure has been linked to elevated blood pressure and cardiovascular diseases, while statins reduce the incidence of cardiovascular disease predominantly by their low density lipoprotein-lowering effect. Besides, statins have other beneficial effects, including antioxidant and anti-inflammatory activities. We evaluated whether atorvastatin, a widely used statin, can ameliorate arsenic-induced increase in blood pressure and alteration in lipid profile and also whether the amelioration could relate to altered NO and ROS signaling. Rats were exposed to sodium arsenite (100 ppm) through drinking water for 90 consecutive days. Atorvastatin (10 mg/kg bw, orally) was administered once daily during the last 30 days of arsenic exposure. On the 91st day, blood was collected for lipid profile. Western blot of iNOS and eNOS protein, NO and 3-nitrotyrosine production, Nox-4 and p22Phox mRNA expression, Nox activity, ROS generation, lipid peroxidation and antioxidants were evaluated in thoracic aorta. Arsenic increased systolic, diastolic and mean arterial blood pressure, while it decreased HDL-C and increased LDL-C, total cholesterol and triglycerides in serum. Arsenic down-regulated eNOS and up-regulated iNOS protein expression and increased basal NO and 3-nitrotyrosine level. Arsenic increased aortic Nox-4 and p22Phox mRNA expression, Nox activity, ROS generation and lipid peroxidation. Further, arsenic decreased the activities of superoxide dismutase, catalase, and glutathione peroxidase and depleted aortic GSH content. Atorvastatin regularized blood pressure, improved lipid profile and attenuated arsenic-mediated redox alterations. The results demonstrate that atorvastatin has the potential to ameliorate arsenic-induced hypertension by improving lipid profile, aortic NO signaling and restoring vascular redox homeostasis. - Highlights: • Arsenic increased systolic, diastolic and mean arterial blood pressure and caused dyslipidemia. • Arsenic increased

  10. Dietary arsenic consumption and urine arsenic in an endemic population: response to improvement of drinking water quality in a 2-year consecutive study.

    Science.gov (United States)

    Biswas, Anirban; Deb, Debasree; Ghose, Aloke; Du Laing, Gijs; De Neve, Jan; Santra, Subhas Chandra; Guha Mazumder, Debendra Nath

    2014-01-01

    We assessed the association between arsenic intake through water and diet, and arsenic levels in first morning-void urine under variable conditions of water contamination. This was done in a 2-year consecutive study in an endemic population. Exposure of arsenic through water and diet was assessed for participants using arsenic-contaminated water (≥50 μg L(-1)) in a first year (group I) and for participants using water lower in arsenic (water in groups I and II males was 7.44 and 0.85 μg kg body wt.(-1) day(-1) (p water were reduced to below 50 μg L(-1) (Indian permissible limit), total arsenic intake and arsenic intake through the water significantly decreased, but arsenic uptake through the diet was found to be not significantly affected. Moreover, it was found that drinking water mainly contributed to variations in urine arsenic concentrations. However, differences between male and female participants also indicate that not only arsenic uptake, but also many physiological factors affect arsenic behavior in the body and its excretion. As total median arsenic exposure still often exceeded 3.0 μg kg body wt.(-1) day(-1) (the permissible lower limit established by the Joint Expert Committee on Food Additives) after installation of the drinking water filters, it can be concluded that supplying the filtered water only may not be sufficient to minimize arsenic availability for an already endemic population.

  11. Associations between toenail arsenic concentration and dietary factors in a New Hampshire population

    Directory of Open Access Journals (Sweden)

    Gruber Joann F

    2012-06-01

    Full Text Available Abstract Background Dietary factors such as folate, vitamin B12, protein, and methionine are important for the excretion of arsenic via one-carbon metabolism in undernourished populations exposed to high levels of arsenic via drinking water. However, the effects of dietary factors on toenail arsenic concentrations in well-nourished populations exposed to relatively low levels of water arsenic are unknown. Methods As part of a population-based case–control study of skin and bladder cancer from the USA, we evaluated relationships between consumption of dietary factors and arsenic concentrations in toenail clippings. Consumption of each dietary factor was determined from a validated food frequency questionnaire. We used general linear models to examine the associations between toenail arsenic and each dietary factor, taking into account potentially confounding effects. Results As expected, we found an inverse association between ln-transformed toenail arsenic and consumption of vitamin B12 (excluding supplements and animal protein. Unexpectedly, there were also inverse associations with numerous dietary lipids (e.g., total fat, total animal fat, total vegetable fat, total monounsaturated fat, total polyunsaturated fat, and total saturated fat. Finally, increased toenail arsenic concentrations were associated with increased consumption of long chain n-3 fatty acids. Conclusion In a relatively well-nourished population exposed to relatively low levels of arsenic via water, consumption of certain dietary lipids may decrease toenail arsenic concentration, while long chain n-3 fatty acids may increase toenail arsenic concentration, possibly due to their association with arsenolipids in fish tissue.

  12. Arsenic in Drinking Water—A Global Environmental Problem

    Science.gov (United States)

    Shaofen Wang, Joanna; Wai, Chien M.

    2004-02-01

    Arsenic contamination of groundwater is a global environmental problem affecting a large number of populations, especially in developing countries. The "blackfoot disease"that occurred in Taiwan more than half of a century ago was attributed to drinking arsenic-contaminated water from deep wells containing high concentrations of the trivalent arsenite species. Similar arsenic poisoning cases were reported later in Chinese Inner Mongolia, Bangladesh, and India—all related to drinking groundwater contaminated with arsenic. The maximum contaminant level (MCL) of arsenic in drinking water has been changed recently by the U.S. EPA from 50 ppb to 10 ppb; the compliance date is January 2006. This article summarizes documented global arsenic contamination problems, the regulatory controversy regarding MCL of arsenic in drinking water, and available technologies for removing arsenic from contaminated waters. Methods for analyzing total arsenic and arsenic species in water are also described.

  13. Effect of fly ash characteristics on arsenic mobilization in the environment

    International Nuclear Information System (INIS)

    Bhumbla, D.K.; Singh, R.N.; Keefer, R.F.

    1993-01-01

    Coal combustion by products are a major source of arsenic mobilization in the environment. These by products have been successfully used in the reclamation of mine lands. However, there are concerns about the potential pollution problems from As by such use. A field experiment was established on a recently remined abandoned mine land where fly ashes from three different power plants were used for reclaiming mine soils. The experiment had seven treatments and 4 replications which were arranged in a randomized block design. The treatments consisted of 3 fly ashes at 2 rates each and a check treatment received lime. Arsenic content of the fly ashes varied between 53 and 220 mg/kg. Fly ashes also varied in the amounts of amorphous oxides of iron and neutralization potential. Arsenic concentrations were monitored in the vegetation, soil solutions, and soils. The results of this experiment showed that arsenic concentrations were higher in plants grown on plots receiving fly ash than in plants grown on plots receiving lime treatment. Arsenic concentrations in the plants, water, or soil were not governed by the arsenic content of fly ashes. Arsenic mobilization from the ashes was controlled by the chemical and morphological characteristics of the fly ashes and chemical transformations in the arsenic containing components in soil

  14. Arsenic in drinking water and in scalp hair by EDXRF. A major recent health hazard in Bangladesh

    International Nuclear Information System (INIS)

    Ali, M.; Tarafdar, S.A.

    2003-01-01

    Arsenic content in drinking water and in scalp hair of the arsenic affected areas in Bangladesh were measured using energy dispersive X-ray fluorescence (EDXRF) to determine the contribution of drinking water to body burden and health risks. Around 61% of the water analyzed from tube-wells has arsenic content above 0.05 mg/l and about 13% have arsenic content above 0.01 mg/l. The mean concentration of arsenic in contaminated water is about 0.26 mg/l with the maximum level of 0.83 mg/l. The contaminated water thus contributes a significant amount to the arsenic budget in humans in Bangladesh and consequently, to their health hazards. The average concentration of arsenic in hair of a patient group drinking contaminated water is 14.1 mg/kg where the normal levels are <3.0 mg/kg. The distribution of arsenic in water and in hair is compared and discussed with the data reported in the literature. The daily dietary intake value of arsenic by the adult population in Bangladesh is estimated and assessed signifying health effects. (author)

  15. Reduction in bioavailability of arsenic in contaminated irrigated soil using zinc and organic manure

    International Nuclear Information System (INIS)

    Batool, S.Q.

    2012-01-01

    The experiments were conducted to reduce the bioavailability of arsenic with application of organic and inorganic materials from contaminated soils irrigated with arsenic contaminated water. The results showed that the amount of extractable arsenic increased with submergence and decreased with application of organic material. However, amount of such decrease altered with inorganic material i.e. zinc and decrease was greater with As5Zn10 (0.17 to 0.0 mg/kg) where zinc was applied at the rate of 10 mg/kg. Among the different organic materials, arsenic content in soil remarkably decreased with application of farmyard manure. The decrease in arsenic content was less than upper toxic limit of arsenic in soil i.e.10mg/kg for paddy soils. Other manures also showed decrease in arsenic concentration but with desorption after half interval of treatment. Best remediating agents used for arsenic retention was zinc sulphate> organic compost >farmyard manure. (author)

  16. Health Effects of Chronic Arsenic Exposure

    Directory of Open Access Journals (Sweden)

    Young-Seoub Hong

    2014-09-01

    Full Text Available Arsenic is a unique element with distinct physical characteristics and toxicity whose importance in public health is well recognized. The toxicity of arsenic varies across its different forms. While the carcinogenicity of arsenic has been confirmed, the mechanisms behind the diseases occurring after acute or chronic exposure to arsenic are not well understood. Inorganic arsenic has been confirmed as a human carcinogen that can induce skin, lung, and bladder cancer. There are also reports of its significant association to liver, prostate, and bladder cancer. Recent studies have also suggested a relationship with diabetes, neurological effects, cardiac disorders, and reproductive organs, but further studies are required to confirm these associations. The majority of research to date has examined cancer incidence after a high exposure to high concentrations of arsenic. However, numerous studies have reported various health effects caused by chronic exposure to low concentrations of arsenic. An assessment of the health effects to arsenic exposure has never been performed in the South Korean population; thus, objective estimates of exposure levels are needed. Data should be collected on the biological exposure level for the total arsenic concentration, and individual arsenic concentration by species. In South Korea, we believe that biological exposure assessment should be the first step, followed by regular health effect assessments.

  17. Relationship between arsenic content of food and water applied for food processing.

    Science.gov (United States)

    Sugár, Eva; Tatár, Enikő; Záray, Gyula; Mihucz, Victor G

    2013-12-01

    As part of a survey conducted by the Central Agricultural Office of Hungary, 67 food samples including beverages were taken from 57 food industrial and catering companies, 75% of them being small and medium-sized enterprises (SMEs). Moreover, 40% of the SMEs were micro entities. Water used for food processing was simultaneously sampled. The arsenic (As) content of solid food stuff was determined by hydride generation atomic absorption spectrometry after dry ashing. Food stuff with high water content and water samples were analyzed by inductively coupled plasma mass spectrometry. The As concentration exceeded 10 μg/L in 74% of the water samples taken from SMEs. The As concentrations of samples with high water content and water used were linearly correlated. Estimated As intake from combined exposure to drinking water and food of the population was on average 40% of the daily lower limit of WHO on the benchmark dose for a 0.5% increased incidence of lung cancer (BMDL0.5) for As. Five settlements had higher As intake than the BMDL0.5. Three of these settlements are situated in Csongrád county and the distance between them is less than 55 km. The maximum As intake might be 3.8 μg/kg body weight. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Ecotoxicology of arsenic in the marine environment

    Energy Technology Data Exchange (ETDEWEB)

    Neff, J.M. [Battelle Ocean Sciences Lab., Duxbury, MA (United States)

    1997-05-01

    Arsenic has a complex marine biogeochemistry that has important implications for its toxicity to marine organisms and their consumers. The average concentration of total arsenic in the ocean is about 1.7 {micro}g/L, about two orders of magnitude higher than the US Environmental Protection Agency`s human health criterion value of 0.0175 {micro}g/L. The dominant form of arsenic in oxygenated marine and brackish waters in arsenate (As V). The more toxic and potentially carcinogenic arsenite (As III) rarely accounts for more than 20% of total arsenic in seawater. Uncontaminated marine sediments contain from 5 to about 40 {micro}g/g dry weight total arsenic. Arsenate dominates in oxidized sediments and is associated primarily with iron oxyhydroxides. In reducing marine sediments, arsenate is reduced to arsenite and is associated primarily with sulfide minerals. Marine algae accumulate arsenate from seawater, reduce it to arsenite, and then oxidize the arsenite to a large number of organoarsenic compounds. The algae release arsenite, methylarsonic acid, and dimethylarsinic acid to seawater. Dissolved arsenite and arsenate are more toxic to marine phytoplankton than to marine invertebrates and fish. This may be due to the fact that marine animals have a limited ability to bioconcentrate inorganic arsenic from seawater but can bioaccumulate organoarsenic compounds from their food. Tissues of marine invertebrates and fish contain high concentrations of arsenic, usually in the range of about 1 to 100 {micro}g/g dry weight, most of it in the form of organoarsenic compounds, particularly arsenobetaine. Organoarsenic compounds are bioaccumulated by human consumers of seafood products, but the arsenic is excreted rapidly, mostly as organoarsenic compounds. Arsenobetaine, the most abundant organoarsenic compound in seafoods, is not toxic or carcinogenic to mammals. Little of the organoarsenic accumulated by humans from seafood is converted to toxic inorganic arsenite.

  19. Antioxidative responses to arsenic in the arsenic-hyperaccumulator Chinese brake fern (Pteris vittata L.)

    International Nuclear Information System (INIS)

    Cao Xinde; Ma, Lena Q.; Tu Cong

    2004-01-01

    This study measured antioxidative responses of Chinese brake fern (Pteris vittata L.) upon exposure to arsenic (As) of different concentrations. Chinese brake fern was grown in an artificially-contaminated soil containing 0 to 200 mg As kg -1 (Na 2 HAsO 4 ) for 12 weeks in a greenhouse. Soil As concentrations at ≤20 mg kg -1 enhanced plant growth, with 12-71% biomass increase compared to the control. Such beneficial effects were not observed at >20 mg As kg -1 . Plant As concentrations increased with soil As concentrations, with more As being accumulated in the fronds (aboveground biomass) than in the roots and with maximum frond As concentration being 4675 mg kg -1 . Arsenic uptake by Chinese brake enhanced uptake of nutrient elements K, P, Fe, Mn, and Zn except Ca and Mg, whose concentrations mostly decreased. The contents of non-enzymatic antioxidants (glutathione, acid-soluble thiol) followed similar trends as plant As concentrations, increasing with soil As concentrations, with greater contents in the fronds than in the roots especially when exposed to high As concentrations (>50 mg kg -1 ). The activities of enzymatic antioxidants (superoxide dismutase, catalase, ascorbate peroxidase, guaiacol peroxidase) in Chinese brake followed the same trends as plant biomass, increasing with soil As up to 20 mg kg -1 and then decreased. The results indicated though both enzymatic and non-enzymatic antioxidants played significant roles in As detoxification and hyperaccumulation in Chinese brake, the former is more important at low As exposure (≤20 mg kg -1 ), whereas the latter is more critical at high As exposure (50-200 mg kg -1 ). - At low levels of arsenic exposure, enzymatic antioxidants are important for arsenic detoxification and accumulation in Chinese brake fern, while non-enzymatic antioxidants were more important at high arsenic exposure

  20. Seasonal determination of trace and ultra-trace content in Macrocystis pyrifera from San Jorge Gulf (Patagonia) by Total Reflection X-ray Fluorescence

    Science.gov (United States)

    Salomone, Vanesa N.; Riera, Marina; Cerchietti, Luciana; Custo, Graciela; Muniain, Claudia

    2017-05-01

    Seaweed have a great capacity to accumulate heavy metals in their tissues. The chemical characterization of seaweed is important due to their use in environmental monitoring and human or animal food. The aim of the present study was to evaluate the multi-elemental composition of seaweed from San Jorge Gulf (Patagonia, Argentina) by Total Reflection X-ray Fluorescence (TXRF). The elements As, Br, Cu, Cr, Fe, Mn, Ni, Pb, Rb, Sr, V and Zn were seasonally analyzed and quantified in blades of Macrocystis pyrifera. TXRF showed to be a suitable technique for simultaneous multi-element analysis in this kind of samples. The results revealed seasonal variations in the chemical content for some elements; arsenic content was maximum in summer and autumn, iron concentration increased to the winter and zinc concentration was maximum in autumn. The sum of principal micronutrients (Fe + Zn + Mn + Cu) varied between 114 and 171 mg k- 1 g dw. The total As concentration ranged between 36 and 66 mg kg- 1. Lead, nickel and copper were not detected.

  1. Human Arsenic Poisoning Issues in Central-East Indian Locations: Biomarkers and Biochemical Monitoring

    Directory of Open Access Journals (Sweden)

    Madhurima Pandey

    2007-03-01

    Full Text Available The study reports the use of three biomarkers i.e. total arsenic in hair and nails, total arsenic in blood, and total arsenic in urine to identify or quantify arsenic exposure and concomitant health effects. The main source of arsenic was inorganic exposure through drinking water. The arsenic levels and the health effects were analyzed closely in a family having maximum symptoms of arsenic. Based on the result of this study it is reported that there exist a correlation between the clinically observable symptoms, the blood and urine arsenic level, and the arsenic intake through drinking water. An intensive study on the urinary arsenic levels was carried out in which the urine levels of arsenic and the urine sufficiency tests were performed. A composite picture of body burden of arsenic has been obtained by carrying out a complete biochemical analysis of a maximum affected family. This confirms pronounced chronic exposure of the arsenic to these people. A combined correlation study on the arsenic levels measured in whole blood, urine, hair, nails and age present a remarkable outcome. Accordingly, the arsenic levels in blood are negatively correlated with the urine arsenic levels, which indicate either the inadequacy of the renal system in cleaning the blood arsenic or a continuous recirculation of the accumulated arsenic. This is an important conclusion about arsenical metabolism in humans. The study also raises the issues of the prospects of complete elimination of the accumulated arsenic and the reversibility of the health effects. Based on the work in Kourikasa village we report that there are very remote chances of complete purging of arsenic and thus reversibility of the health effects owing to various factors. The paper also discusses the various issues concerning the chronic arsenic poisoning management in the affected locations.

  2. Use of Endophytic and Rhizosphere Bacteria To Improve Phytoremediation of Arsenic-Contaminated Industrial Soils by Autochthonous Betula celtiberica.

    Science.gov (United States)

    Mesa, Victoria; Navazas, Alejandro; González-Gil, Ricardo; González, Aida; Weyens, Nele; Lauga, Béatrice; Gallego, Jose Luis R; Sánchez, Jesús; Peláez, Ana Isabel

    2017-04-15

    The aim of this study was to investigate the potential of indigenous arsenic-tolerant bacteria to enhance arsenic phytoremediation by the autochthonous pseudometallophyte Betula celtiberica The first goal was to perform an initial analysis of the entire rhizosphere and endophytic bacterial communities of the above-named accumulator plant, including the cultivable bacterial species. B. celtiberica 's microbiome was dominated by taxa related to Flavobacteriales , Burkholderiales , and Pseudomonadales , especially the Pseudomonas and Flavobacterium genera. A total of 54 cultivable rhizobacteria and 41 root endophytes, mainly affiliated with the phyla Proteobacteria , Bacteroidetes , Firmicutes , and Actinobacteria , were isolated and characterized with respect to several potentially useful features for metal plant accumulation, such as the ability to promote plant growth, metal chelation, and/or mitigation of heavy-metal stress. Seven bacterial isolates were further selected and tested for in vitro accumulation of arsenic in plants; four of them were finally assayed in field-scale bioaugmentation experiments. The exposure to arsenic in vitro caused an increase in the total nonprotein thiol compound content in roots, suggesting a detoxification mechanism through phytochelatin complexation. In the contaminated field, the siderophore and indole-3-acetic acid producers of the endophytic bacterial consortium enhanced arsenic accumulation in the leaves and roots of Betula celtiberica , whereas the rhizosphere isolate Ensifer adhaerens strain 91R mainly promoted plant growth. Field experimentation showed that additional factors, such as soil arsenic content and pH, influenced arsenic uptake in the plant, attesting to the relevance of field conditions in the success of phytoextraction strategies. IMPORTANCE Microorganisms and plants have developed several ways of dealing with arsenic, allowing them to resist and metabolize this metalloid. These properties form the basis of

  3. Total and soluble oxalate content of some Indian spices.

    Science.gov (United States)

    Ghosh Das, Sumana; Savage, G P

    2012-06-01

    Spices, such as cinnamon, cloves, cardamom, garlic, ginger, cumin, coriander and turmeric are used all over the world as flavouring and colouring ingredients in Indian foods. Previous studies have shown that spices contain variable amounts of total oxalates but there are few reports of soluble oxalate contents. In this study, the total, soluble and insoluble oxalate contents of ten different spices commonly used in Indian cuisine were measured. Total oxalate content ranged from 194 (nutmeg) to 4,014 (green cardamom) mg/100 g DM, while the soluble oxalate contents ranged from 41 (nutmeg) to 3,977 (green cardamom) mg/100 g DM. Overall, the percentage of soluble oxalate content of the spices ranged from 4.7 to 99.1% of the total oxalate content which suggests that some spices present no risk to people liable to kidney stone formation, while other spices can supply significant amounts of soluble oxalates and therefore should be used in moderation.

  4. Distribution and speciation of arsenic by transplacental and early life exposure to inorganic arsenic in offspring rats.

    Science.gov (United States)

    Xi, Shuhua; Jin, Yaping; Lv, Xiuqiang; Sun, Guifan

    2010-04-01

    The amount of arsenic compounds was determined in the liver and brain of pups and in breast milk in the pup's stomach in relation to the route of exposure: transplacental, breast milk, or drinking water. Forty-eight pregnant rats were randomly divided into four groups, each group was given free access to drinking water that contained 0, 10, 50, and 100 mg/L NaAsO(2) from gestation day 6 (GD 6) until postnatal day 42 (PND 42). Once pups were weaned, they started to drink the same arsenic-containing water as the dams. Contents of inorganic arsenic (iAs), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), and trimethylarsenic acid (TMA) in livers and brains of the pups on PND 0, 15, 28, and 42 and breast milk taken from the pup's stomach on PND 0 and 15 were detected using the hydride generation atomic absorption spectroscopy method. Concentrations of iAs, MMA, and DMA in the breast milk, the brain, and the liver of the pups increased with the concentration of arsenic in drinking water on PND 0, 15, 28, and 42. Compared to the liver or brain, breast milk had the lowest arsenic concentrations. There was a significant decrease in the levels of arsenic species on PND 15 compared to PND 0, 28, or 42. It was confirmed that arsenic species can pass through the placental barrier from dams to offspring and across the blood-brain barrier in the pups, and breast milk from dams exposed to arsenic in drinking water contains less arsenic than the liver and brain of pups.

  5. Determination of arsenate and organic arsenic via potentiometric titration of its heteropoly anions.

    Science.gov (United States)

    Metelka, R; Slavíková, S; Vytras, K

    2002-08-16

    Determination of arsenate based on its conversion to molybdoarsenate heteropoly anions followed by potentiometric titration is described. The titration is realized on the ion-pairing principle using cetylpyridinium chloride (or an analogous titrant containing a lipophilic cation), and is monitored by a carbon paste electrode, although other liquid-polymeric membrane-based electrodes can also be used. Calibration plots of the titrant end-point consumption versus concentration of arsenic were constructed and used to evaluate the content of arsenic in aqueous samples. The method could be applied in the analyses of samples with quite low arsenic content (amounts approximately 10 mug As in 50 cm(3) could be titrated). Organic arsenic was determined analogously after the Schöniger combustion of the sample and conversion of its arsenic to arsenate.

  6. Assessing arsenic and selenium in a single nail clipping using portable X-ray fluorescence

    International Nuclear Information System (INIS)

    Fleming, David E.B.; Nader, Michel N.; Foran, Kelly A.; Groskopf, Craig; Reno, Michael C.; Ware, Chris S.; Tehrani, Mina; Guimarães, Diana; Parsons, Patrick J.

    2017-01-01

    The feasibility of measuring arsenic and selenium contents in a single nail clipping was investigated using a small-focus portable X-ray fluorescence (XRF) instrument with monochromatic excitation beams. Nail clipping phantoms supplemented with arsenic and selenium to produce materials with 0, 5, 10, 15, and 20 µg/g were used for calibration purposes. In total, 10 different clippings were analyzed at two different measurement positions. Energy spectra were fit with detection peaks for arsenic K_α, selenium K_α, arsenic K_β, selenium K_β, and bromine K_α characteristic X-rays. Data analysis was performed under two distinct conditions of fitting constraint. Calibration lines were established from the amplitude of each of the arsenic and selenium peaks as a function of the elemental contents in the clippings. The slopes of the four calibration lines were consistent between the two conditions of analysis. The calculated minimum detection limit (MDL) of the method, when considering the K_α peak only, ranged from 0.210±0.002 µg/g selenium under one condition of analysis to 0.777±0.009 µg/g selenium under another. Compared with previous portable XRF nail clipping studies, MDLs were substantially improved for both arsenic and selenium. The new measurement technique had the additional benefits of being short in duration (~3 min) and requiring only a single nail clipping. The mass of the individual clipping used did not appear to play a major role in signal strength, but positioning of the clipping is important. - Highlights: • Portable X-ray fluorescence was used to assess As and Se in nail clipping phantoms. • Calibration lines were consistent between two different conditions of data analysis. • This new XRF approach was sensitive and required only a single nail clipping.

  7. Exercise Prevents Memory Impairment Induced by Arsenic Exposure in Mice: Implication of Hippocampal BDNF and CREB.

    Directory of Open Access Journals (Sweden)

    Bao-Fei Sun

    Full Text Available High concentrations of arsenic, which can be occasionally found in drinking water, have been recognized as a global health problem. Exposure to arsenic can disrupt spatial memory; however, the underlying mechanism remains unclear. In the present study, we tested whether exercise could interfere with the effect of arsenic exposure on the long-term memory (LTM of object recognition in mice. Arsenic (0, 1, 3, and 10 mg/ kg, i.g. was administered daily for 12 weeks. We found that arsenic at dosages of 1, 3, and 10 mg/kg decreased body weight and increased the arsenic content in the brain. The object recognition LTM (tested 24 h after training was disrupted by 3 mg/ kg and 10 mg/ kg, but not 1 mg/ kg arsenic exposure. Swimming exercise also prevented LTM impairment induced by 3 mg/ kg, but not with 10 mg/ kg, of arsenic exposure. The expression of brain-derived neurotrophic factor (BDNF and phosphorylated cAMP-response element binding protein (pCREB in the CA1 and dentate gyrus areas (DG of the dorsal hippocampus were decreased by 3 mg/ kg and 10 mg/ kg, but not by 1 mg/ kg, of arsenic exposure. The decrease in BDNF and pCREB in the CA1 and DG induced by 3 mg/ kg, but not 10 mg/ kg, of arsenic exposure were prevented by swimming exercise. Arsenic exposure did not affect the total CREB expression in the CA1 or DG. Taken together, these results indicated that swimming exercise prevented the impairment of object recognition LTM induced by arsenic exposure, which may be mediated by BDNF and CREB in the dorsal hippocampus.

  8. A methodological approach for the identification of arsenic bearing phases in polluted soils

    International Nuclear Information System (INIS)

    Matera, V.; Le Hecho, I.; Laboudigue, A.; Thomas, P.; Tellier, S.; Astruc, M.

    2003-01-01

    Arsenic in the three polluted soils is mainly associated with neoformed amorphous iron (hydr)oxides. - A methodological approach is used to characterize arsenic pollution in three soils and to determine arsenic speciation and association with solid phases in three polluted soils. HPLC-ICP-MS was used for arsenic speciation analysis, SEM-EDS and XRD for physical characterization of arsenic pollution, and sequential chemical extractions to identify arsenic distribution. Arsenic was concentrated in the finest size fractions also enriched in iron and aluminium. Total arsenic concentrations in soils are close to 1%. Arsenic was mainly present as arsenate, representing more than 90% of total arsenic. No crystallised arsenic minerals were detected by XRD analysis. SEM-EDS observations indicated arsenic/iron associations. Modified Tessier's procedure showed that arsenic was mainly extracted from amorphous iron oxide phase. The results of this methodological approach lead to predict the formation of iron arsenates in the case of one of the studied soils while arsenic sorption on iron amorphous (hydr)oxides seemed to be the determinant in the two other soils

  9. Cooking rice in excess water reduces both arsenic and enriched vitamins in the cooked grain.

    Science.gov (United States)

    Gray, Patrick J; Conklin, Sean D; Todorov, Todor I; Kasko, Sasha M

    2016-01-01

    This paper reports the effects of rinsing rice and cooking it in variable amounts of water on total arsenic, inorganic arsenic, iron, cadmium, manganese, folate, thiamin and niacin in the cooked grain. We prepared multiple rice varietals both rinsed and unrinsed and with varying amounts of cooking water. Rinsing rice before cooking has a minimal effect on the arsenic (As) content of the cooked grain, but washes enriched iron, folate, thiamin and niacin from polished and parboiled rice. Cooking rice in excess water efficiently reduces the amount of As in the cooked grain. Excess water cooking reduces average inorganic As by 40% from long grain polished, 60% from parboiled and 50% from brown rice. Iron, folate, niacin and thiamin are reduced by 50-70% for enriched polished and parboiled rice, but significantly less so for brown rice, which is not enriched.

  10. [Investigation of the arsenic levels in ecosystem aspect in water type of endemic arsenicosis area in Datong City].

    Science.gov (United States)

    Yun, Fen; Yang, Mimi; Ma, Caifeng; Miao, Yanling; Gao, Yi; Tian, Fengjie; Lü, Yi; Pei, Qiuling

    2015-01-01

    To investigate the arsenic levels in endemic arsenism in Datong City, Shanxi Province. A total of 85 inhabitants from one village in endemic arsenism area in Datong City, Shanxi Province were collected as research subjects. The People's Republic of China health industry standard for endemic arsenism was used to identify and diagnosis the patients. Daily drinking water and soil were collected and detected by atomic fluorescence spectrometry. The content of vegetables were detected by inductively coupled plasma mass spectrometry (ICP-MS). In the study, 85 samples were collected. Arsenic concentration in the daily drinking water were 14.41 - 90.34 μg/L, and the median value was 43.88 μg/L. The arsenic concentration of vegetables were 0.001 - 0.771 mg/kg, and 43.04% of samples, were higher than the maximal permissible limit of As in food. The results that the arsenic concentration of vegetables constant changes in the leaf vegetables > tubers > fruit vegetables. The health risk of intaking arsenic pollution in vegetables up to 71.77%. The arsenic levels in village of four directions were not exceeded the Chinese standards. Arsenic concentration in drinking water and vegetables are high in waterborn endemic arsenicosis area of Shanxi province. Arsenic in drinking water has been considered as a primary cause of arsenism, but direct intake of arsenic from vegetables can not be ignored.

  11. Non-chromatographic screening procedure for arsenic speciation analysis in fish-based baby foods by using electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Lopez-Garcia, Ignacio; Briceno, Marisol; Hernandez-Cordoba, Manuel

    2011-01-01

    Highlights: → Arsenic in fish-based food samples can be determined without the need of a dissolution stage. → Speciation of the main forms of arsenic in fish-based baby foods does not require chromatography. → The behavior of arsenic compounds in ETAAS strongly depends on the chemical modifier used. - Abstract: A procedure for the speciation analysis of arsenic in fish-based baby foods is presented. Inorganic arsenic, methylarsonic acid (MA), dimethylarsinic acid (DMA) and arsenobetaine (AB) were determined by electrothermal atomic absorption spectrometry (ETAAS) using suspensions prepared in a 0.01 mol L -1 tetramethylammonium hydroxide (TMAH) solution. Speciation is based on the use of three different chemically modified ETAAS atomizers to obtain the analytical signals. Using a palladium salt as the chemical modifier, the signal corresponding to the total arsenic concentration is obtained. When palladium is replaced by Ce(IV), the signal is solely due to inorganic arsenic (III and V) + MA. If no signal is obtained in this latter case, it is possible to distinguish between DMA and AB using a zirconium coated atomizer. The signal obtained in this way is due solely to DMA, and the concentration of AB can be obtained by the difference with the total arsenic content. Determinations by ETAAS require the use of the standard additions method. The limits of detection for the determination of AB, DMA and inorganic arsenic (+MA) are 15, 25 and 50 ng g -1 expressed as arsenic, respectively. These detection limits are good enough for the procedure to be appropriate for the rapid determination of these compounds, avoiding extraction processes and/or chromatographic separations. Data for commercial samples, as well as for four standard reference materials, are given.

  12. Non-chromatographic screening procedure for arsenic speciation analysis in fish-based baby foods by using electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Garcia, Ignacio; Briceno, Marisol [Department of Analytical Chemistry, Faculty of Chemistry, University of Murcia, E-30071 Murcia (Spain); Hernandez-Cordoba, Manuel, E-mail: hcordoba@um.es [Department of Analytical Chemistry, Faculty of Chemistry, University of Murcia, E-30071 Murcia (Spain)

    2011-08-05

    Highlights: {yields} Arsenic in fish-based food samples can be determined without the need of a dissolution stage. {yields} Speciation of the main forms of arsenic in fish-based baby foods does not require chromatography. {yields} The behavior of arsenic compounds in ETAAS strongly depends on the chemical modifier used. - Abstract: A procedure for the speciation analysis of arsenic in fish-based baby foods is presented. Inorganic arsenic, methylarsonic acid (MA), dimethylarsinic acid (DMA) and arsenobetaine (AB) were determined by electrothermal atomic absorption spectrometry (ETAAS) using suspensions prepared in a 0.01 mol L{sup -1} tetramethylammonium hydroxide (TMAH) solution. Speciation is based on the use of three different chemically modified ETAAS atomizers to obtain the analytical signals. Using a palladium salt as the chemical modifier, the signal corresponding to the total arsenic concentration is obtained. When palladium is replaced by Ce(IV), the signal is solely due to inorganic arsenic (III and V) + MA. If no signal is obtained in this latter case, it is possible to distinguish between DMA and AB using a zirconium coated atomizer. The signal obtained in this way is due solely to DMA, and the concentration of AB can be obtained by the difference with the total arsenic content. Determinations by ETAAS require the use of the standard additions method. The limits of detection for the determination of AB, DMA and inorganic arsenic (+MA) are 15, 25 and 50 ng g{sup -1} expressed as arsenic, respectively. These detection limits are good enough for the procedure to be appropriate for the rapid determination of these compounds, avoiding extraction processes and/or chromatographic separations. Data for commercial samples, as well as for four standard reference materials, are given.

  13. [Contents of total flavonoids in Rhizoma Arisaematis].

    Science.gov (United States)

    Du, S S; Lin, H Y; Zhou, Y X; Wei, L X

    2001-06-01

    Comparing the contents of total flavonoides of Rhizoma Arisaematis, which collected in different time, regions, different varieties and processed. Determining the contents by ultraviolet spectro-photometry. The contents were found in the following sequence: 1. the end of July, the begin of July, August, September; 2. Beijing, Shanxi, Sichuan, Anhui; 3. Arisaema erubenscens, A. heterophyllum, A. amurense; 4. unprocessed product, processed product.

  14. Synthesis of magnetic wheat straw for arsenic adsorption

    International Nuclear Information System (INIS)

    Tian, Ye; Wu, Min; Lin, Xiaobo; Huang, Pei; Huang, Yong

    2011-01-01

    Highlights: → This work provides a way for fabricating low-cost arsenic adsorbents using agro- or plant-residues. → The introduction of wheat straw template highly enhances the arsenic adsorption of Fe 3 O 4 . → This magnetic adsorbent can be separated and collected by magnetic control easily and rapidly. → This adsorbent can be regenerated. → - Abstract: Magnetic wheat straw (MWS) with different Fe 3 O 4 content was synthesized by using in-situ co-precipitation method. It was characterized by powder X-ray diffraction (XRD) and vibrating sample magnetometer (VSM). This material can be used for arsenic adsorption from water, and can be easily separated by applied magnetic field. The introduction of wheat straw template highly enhanced the arsenic adsorption of Fe 3 O 4 . Among three adsorption isotherm models examined, the data fitted Langmuir model better. Fe 3 O 4 content and initial pH value influenced its adsorption behavior. Higher Fe 3 O 4 content corresponded to a higher adsorption capacity. In the pH range of 3-11, As(V) adsorption was decreased with increasing of pH; As(III) adsorption had the highest capacity at pH 7-9. Moreover, by using 0.1 mol L -1 NaOH aqueous solution, it could be regenerated. This work provided an efficient way for making use of agricultural waste.

  15. The relationship between obesity, insulin and arsenic methylation capability in Taiwan adolescents

    International Nuclear Information System (INIS)

    Su, Chien-Tien; Lin, Hsiu-Chen; Choy, Cheuk-Sing; Huang, Yung-Kai; Huang, Shiau-Rung; Hsueh, Yu-Mei

    2012-01-01

    Purpose: This study evaluated the arsenic methylation profile of adolescents and explored the influence of body mass index (BMI) on the arsenic methylation profile of adolescents in an area of Taiwan with no-obvious arsenic exposure. Methods: This study evaluated 202 normal weight students and 101 obese students from eight elementary schools, recruited from September 2009 to December 2009. Concentrations of urinary arsenic species, including inorganic arsenic, monomethylarsonic acid (MMA 5+ ) and dimethylarsinic acid (DMA 5+ ) were determined by a high-performance liquid chromatography-linked hydride generator and atomic absorption spectrometry. Results: Urinary total arsenic was significantly decreased with increasing BMI, indicating that obese children may retain higher levels of arsenic in the body, as compared to normal weight children. Participants with obesity accompanied by high insulin levels had higher inorganic arsenic, significantly higher MMA percentage and significantly lower DMA percentage than those with obesity and low insulin levels. It seems children with obesity and high insulin levels had lower arsenic methylation capacity than those with obesity and low insulin. Conclusions: This is the first study to demonstrate that total urinary arsenic is negatively associated with the BMI in adolescents in Taiwan, adjusted for age and sex. Obese adolescents with high insulin levels had significantly higher MMA% and significantly lower DMA% than obese adolescents with low insulin. - Highlights: ► This is the first to find that urinary total arsenic is related inversely to the BMI. ► Arsenic methylation capability may be associated with obesity and insulin. ► Obese adolescents with high insulin had low arsenic methylation capacity.

  16. Urinary arsenic speciation and its correlation with 8-OHdG in Chinese residents exposed to arsenic through coal burning

    Energy Technology Data Exchange (ETDEWEB)

    Li, X.; Pi, J.B.; Li, B.; Xu, Y.Y.; Jin, Y.P.; Sun, G.F. [China Medical University, Shenyang (China). Dept. for Occupational & Environmental Health

    2008-10-15

    In contrast to arsenicosis caused by consumption of water contaminated by naturally occurring inorganic arsenic, human exposure to this metalloid through coal burning has been rarely reported. In this study, arsenic speciation and 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels in urine were determined in the Chinese residents exposed to arsenic through coal burning in Guizhou, China, an epidemic area of chronic arsenic poisoning caused by coal burning. The urinary concentrations of inorganic arsenic (iAs), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA) and total arsenic (tAs) of high-arsenic exposed subjects were significantly higher than those of low-arsenic exposed residents. A biomarker of oxidative DNA damage, urinary 8-OHdG level was significantly higher in high-arsenic exposed subjects than that of low exposed. Significant positive correlations were found between 8-OHdG levels and concentrations of iAs, MMA, DMA and tAs, respectively. In addition, a significant negative correlation was observed between 8-OHdG levels and the secondary methylation ratio (DMA/(MMA + DMA)). The results suggest that chronic arsenic exposure through burning coal rich in arsenic is associated with oxidative DNA damages, and that secondary methylation capacity is potentially related to the susceptibility of individuals to oxidative DNA damage induced by arsenic exposure through coal burning in domestic living.

  17. Arsenic Exposure, Arsenic Metabolism, and Incident Diabetes in the Strong Heart Study

    Science.gov (United States)

    Howard, Barbara V.; Umans, Jason G.; Gribble, Matthew O.; Best, Lyle G.; Francesconi, Kevin A.; Goessler, Walter; Lee, Elisa; Guallar, Eliseo; Navas-Acien, Ana

    2015-01-01

    OBJECTIVE Little is known about arsenic metabolism in diabetes development. We investigated the prospective associations of low-moderate arsenic exposure and arsenic metabolism with diabetes incidence in the Strong Heart Study. RESEARCH DESIGN AND METHODS A total of 1,694 diabetes-free participants aged 45–75 years were recruited in 1989–1991 and followed through 1998–1999. We used the proportions of urine inorganic arsenic (iAs), monomethylarsonate (MMA), and dimethylarsinate (DMA) over their sum (expressed as iAs%, MMA%, and DMA%) as the biomarkers of arsenic metabolism. Diabetes was defined as fasting glucose ≥126 mg/dL, 2-h glucose ≥200 mg/dL, self-reported diabetes history, or self-reported use of antidiabetic medications. RESULTS Over 11,263.2 person-years of follow-up, 396 participants developed diabetes. Using the leave-one-out approach to model the dynamics of arsenic metabolism, we found that lower MMA% was associated with higher diabetes incidence. The hazard ratios (95% CI) of diabetes incidence for a 5% increase in MMA% were 0.77 (0.63–0.93) and 0.82 (0.73–0.92) when iAs% and DMA%, respectively, were left out of the model. DMA% was associated with higher diabetes incidence only when MMA% decreased (left out of the model) but not when iAs% decreased. iAs% was also associated with higher diabetes incidence when MMA% decreased. The association between MMA% and diabetes incidence was similar by age, sex, study site, obesity, and urine iAs concentrations. CONCLUSIONS Arsenic metabolism, particularly lower MMA%, was prospectively associated with increased incidence of diabetes. Research is needed to evaluate whether arsenic metabolism is related to diabetes incidence per se or through its close connections with one-carbon metabolism. PMID:25583752

  18. Significantly increased risk of carotid atherosclerosis with arsenic exposure and polymorphisms in arsenic metabolism genes

    International Nuclear Information System (INIS)

    Hsieh, Yi-Chen; Lien, Li-Ming; Chung, Wen-Ting; Hsieh, Fang-I; Hsieh, Pei-Fan; Wu, Meei-Maan; Tseng, Hung-Pin; Chiou, Hung-Yi; Chen, Chien-Jen

    2011-01-01

    Individual susceptibility to arsenic-induced carotid atherosclerosis might be associated with genetic variations in arsenic metabolism. The purpose of this study is to explore the interaction effect on risk of carotid atherosclerosis between arsenic exposure and risk genotypes of purine nucleoside phosphorylase (PNP), arsenic (+3) methyltransferase (As3MT), and glutathione S-transferase omega 1 (GSTO1) and omega 2 (GSTO2). A community-based case-control study was conducted in northeastern Taiwan to investigate the arsenic metabolic-related genetic susceptibility to carotid atherosclerosis. In total, 863 subjects, who had been genotyped and for whom the severity of carotid atherosclerosis had been determined, were included in the present study. Individual well water was collected and arsenic concentration determined using hydride generation combined with flame atomic absorption spectrometry. The result showed that a significant dose-response trend (P=0.04) of carotid atherosclerosis risk associated with increasing arsenic concentration. Non-significant association between genetic polymorphisms of PNP Gly51Ser, Pro57Pro, As3MT Met287Thr, GSTO1 Ala140Asp, and GSTO2 A-183G and the risk for development of carotid atherosclerosis were observed. However, the significant interaction effect on carotid atherosclerosis risk was found for arsenic exposure (>50 μg/l) and the haplotypes of PNP (p=0.0115). A marked elevated risk of carotid atherosclerosis was observed in subjects with arsenic exposure of >50 μg/l in drinking water and those who carried the PNP A-T haplotype and at least either of the As3MT risk polymorphism or GSTO risk haplotypes (OR, 6.43; 95% CI, 1.79-23.19). In conclusion, arsenic metabolic genes, PNP, As3MT, and GSTO, may exacerbate the formation of atherosclerosis in individuals with high levels of arsenic concentration in well water (>50 μg/l). - Highlights: →Arsenic metabolic genes might be associated with carotid atherosclerosis. → A case

  19. Significantly increased risk of carotid atherosclerosis with arsenic exposure and polymorphisms in arsenic metabolism genes

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Yi-Chen [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, 250 Wusing St., Taipei 11031, Taiwan (China); Lien, Li-Ming [Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); School of Medicine, Taipei Medical University, Taipei, Taiwan (China); Department of Neurology, Shin Kong WHS Memorial Hospital, Taipei, Taiwan (China); Chung, Wen-Ting [Department of Neurology, Wanfang Hospital, Taipei Medical University, Taipei, Taiwan (China); Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan (China); Hsieh, Fang-I; Hsieh, Pei-Fan [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, 250 Wusing St., Taipei 11031, Taiwan (China); Wu, Meei-Maan [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, 250 Wusing St., Taipei 11031, Taiwan (China); Graduate Institute of Basic Medicine, College of Medicine, Fu-Jen Catholic University, Taipei, Taiwan (China); Tseng, Hung-Pin [Department of Neurology, Lotung Poh-Ai Hospital, I-Lan, Taiwan (China); Chiou, Hung-Yi, E-mail: hychiou@tmu.edu.tw [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, 250 Wusing St., Taipei 11031, Taiwan (China); Chen, Chien-Jen [Genomics Research Center, Academia Sinica, Taipei, Taiwan (China)

    2011-08-15

    Individual susceptibility to arsenic-induced carotid atherosclerosis might be associated with genetic variations in arsenic metabolism. The purpose of this study is to explore the interaction effect on risk of carotid atherosclerosis between arsenic exposure and risk genotypes of purine nucleoside phosphorylase (PNP), arsenic (+3) methyltransferase (As3MT), and glutathione S-transferase omega 1 (GSTO1) and omega 2 (GSTO2). A community-based case-control study was conducted in northeastern Taiwan to investigate the arsenic metabolic-related genetic susceptibility to carotid atherosclerosis. In total, 863 subjects, who had been genotyped and for whom the severity of carotid atherosclerosis had been determined, were included in the present study. Individual well water was collected and arsenic concentration determined using hydride generation combined with flame atomic absorption spectrometry. The result showed that a significant dose-response trend (P=0.04) of carotid atherosclerosis risk associated with increasing arsenic concentration. Non-significant association between genetic polymorphisms of PNP Gly51Ser, Pro57Pro, As3MT Met287Thr, GSTO1 Ala140Asp, and GSTO2 A-183G and the risk for development of carotid atherosclerosis were observed. However, the significant interaction effect on carotid atherosclerosis risk was found for arsenic exposure (>50 {mu}g/l) and the haplotypes of PNP (p=0.0115). A marked elevated risk of carotid atherosclerosis was observed in subjects with arsenic exposure of >50 {mu}g/l in drinking water and those who carried the PNP A-T haplotype and at least either of the As3MT risk polymorphism or GSTO risk haplotypes (OR, 6.43; 95% CI, 1.79-23.19). In conclusion, arsenic metabolic genes, PNP, As3MT, and GSTO, may exacerbate the formation of atherosclerosis in individuals with high levels of arsenic concentration in well water (>50 {mu}g/l). - Highlights: {yields}Arsenic metabolic genes might be associated with carotid atherosclerosis. {yields

  20. Variability in human metabolism of arsenic

    International Nuclear Information System (INIS)

    Loffredo, C.A.; Aposhian, H.V.; Cebrian, M.E.; Yamauchi, Hiroshi; Silbergeld, E.K.

    2003-01-01

    Estimating the nature and extent of human cancer risks due to arsenic (As) in drinking water is currently of great concern, since millions of persons worldwide are exposed to arsenic, primarily through natural enrichment of drinking water drawn from deep wells. Humans metabolize and eliminate As through oxidative methylation and subsequent urinary excretion. While there is debate as to the role of methylation in activation/detoxification, variations in arsenic metabolism may affect individual risks of toxicity and carcinogenesis. Using data from three populations, from Mexico, China, and Chile, we have analyzed the distribution in urine of total arsenic and arsenic species (inorganic arsenic (InAs), monomethyl arsenic (MMA), and dimethyl arsenic (DMA). Data were analyzed in terms of the concentration of each species and by evaluating MMA:DMA and (MMA+DMA):InAs ratios. In all persons most urinary As was present as DMA. Male:female differences were discernible in both high- and low-exposure groups from all three populations, but the gender differences varied by populations. The data also indicated bimodal distributions in the ratios of DMA to InAs and to MMA. While the gene or genes responsible for arsenic methylation are still unknown, the results of our studies among the ethnic groups in this study are consistent with the presence of functional genetic polymorphisms in arsenic methylation leading to measurable differences in toxicity. This analysis highlights the need for continuing research on the health effects of As in humans using molecular epidemiologic methods

  1. Elements in rice from the Swedish market: 1. Cadmium, lead and arsenic (total and inorganic).

    Science.gov (United States)

    Jorhem, L; Astrand, C; Sundström, B; Baxter, M; Stokes, P; Lewis, J; Grawé, K Petersson

    2008-03-01

    A survey of the levels of cadmium, lead and arsenic in different types of rice available on the Swedish retail market was carried out in 2001--03. The types of rice included long and short grain, brown, white, and parboiled white rice. The mean levels found were as follows: total As: 0.20 mg kg(-1), inorganic As: 0.11 mg kg(-1); Cd: 0.024 mg kg(-1); and Pb: 0.004 mg kg(-1). ICP-MS was used for the determination of As (total and inorganic) after acid digestion. Lead and cadmium were determined using graphite furnace atomic absorption spectrometry (GFAAS) after dry ashing. In countries where rice is a staple food, it may represent a significant contribution in relation to the provisional tolerable weekly intake for Cd and inorganic As.

  2. An investigation of the health effects caused by exposure to arsenic from drinking water and coal combustion: arsenic exposure and metabolism.

    Science.gov (United States)

    Wei, Binggan; Yu, Jiangping; Kong, Chang; Li, Hairong; Yang, Linsheng; Guo, Zhiwei; Cui, Na; Xia, Yajuan; Wu, Kegong

    2017-11-01

    Few studies have been conducted to compare arsenic exposure, metabolism, and methylation in populations exposed to arsenic in drinking water and from coal combustion. Therefore, arsenic concentrations in the environment and arsenic speciation in the urine of subjects exposed to arsenic as a consequence of coal combustion in a rural area in Shaanxi province (CCA) and in drinking water in a rural area in Inner Mongolia (DWA) were investigated. The mean arsenic concentrations in drinking water, indoor air, and soil in CCA were 4.52 μg/L, 0.03 mg/m 3 , and 14.93 mg/kg, respectively. The mean arsenic concentrations in drinking water and soil in DWA were 144.71 μg/L and 10.19 mg/kg, respectively, while the level in indoor air was lower than the limit of detection. The total daily intakes of arsenic in DWA and CCA were 4.47 and 3.13 μg/day·kg, respectively. The mean urinary concentrations of inorganic arsenic (iAs), monomethylarsonic acid (MMA), dimethylarsenic acid (DMA), and total arsenic (TAs) for subjects with skin lesions in DWA were 50.41, 47.01, 202.66, and 300.08 μg/L. The concentrations for subjects without skin lesions were 49.76, 44.20, 195.60, and 289.56 μg/L, respectively. The %iAs, %MMA, and %DMA in the TAs in the urine of subjects from CCA were 12.24, 14.73, and 73.03%, while the corresponding values from DWA were 17.54, 15.57, and 66.89%, respectively. The subjects in DWA typically had a higher %iAs and %MMA, and a lower %DMA, and primary and secondary methylation index (PMI and SMI) than the subjects in CCA. It was concluded that the arsenic methylation efficiency of subjects in DWA and CCA was significantly influenced by chronic exposure to high levels of arsenic in the environment. The lower PMI and SMI values in DWA revealed lower arsenic methylation capacity due to ingestion of arsenic in drinking water. However, it remained unclear if the differences in arsenic metabolism between the two groups were due to differences in exposure levels

  3. Flavonoid, hesperidine, total phenolic contents and antioxidant ...

    African Journals Online (AJOL)

    Additionally, the antioxidant activities were also determined by ferric reducing antioxidant power (FRAP) and 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical scavenging activity. C. hystrix had the highest flavonoid and total phenolic contents while C. aurantifolia had the highest hesperidine content. The antioxidant activity of ...

  4. Determining Total Phenolics, Anthocyanin Content and Ascorbic Acid Content in Some Plum Genotypes Grown in Ardahan Ecological Conditions

    Directory of Open Access Journals (Sweden)

    Z. T. ABACI

    2014-06-01

    Full Text Available In this study, total phenol content, total anthocyanin content, brix, pH, titrable acidity and total ascorbic acid content in the five plum genotypes cultivated in Ardahan City are determined and sustenance of the plums are revealed. Total phenol content was determined with folin-ciocalteu’s method, total anthocyanin content was determined with pH differential method and total ascorbic acid was determined with 2,6-dichlorophenolindophenol method.It is detected that the genotype with the highest brix content (%13.9 and lowest acidity (%0.98 is cancur, the genotype with the lowest brix content (%11 and highest acidity (%2.06 is wild plum, the genotype with the highest content of total anthocyanin, total phenolic substance and ascorbic acid is the wild plum and the genotype with the least content of these is the water plum. As a result of the study, it is revealed that the plum fruit has high levels of phenolic substance, anthocyanin and ascorbic acid content, so it has a high sustenance.

  5. Analytical approaches for arsenic determination in air: A critical review

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez-Rodas, Daniel, E-mail: rodas@uhu.es [Centre for Research in Sustainable Chemistry-CIQSO, Associated Unit CSIC-University of Huelva “Atmospheric Pollution”, Campus El Carmen, University of Huelva, 21071 Huelva (Spain); Department of Chemistry and Materials Science, University of Huelva, 21071 Huelva (Spain); Sánchez de la Campa, Ana M. [Centre for Research in Sustainable Chemistry-CIQSO, Associated Unit CSIC-University of Huelva “Atmospheric Pollution”, Campus El Carmen, University of Huelva, 21071 Huelva (Spain); Department of Mining, Mechanic and Energetic Engineering, ETSI, University of Huelva, 21071 Huelva (Spain); Alsioufi, Louay [Centre for Research in Sustainable Chemistry-CIQSO, Associated Unit CSIC-University of Huelva “Atmospheric Pollution”, Campus El Carmen, University of Huelva, 21071 Huelva (Spain)

    2015-10-22

    This review describes the different steps involved in the determination of arsenic in air, considering the particulate matter (PM) and the gaseous phase. The review focuses on sampling, sample preparation and instrumental analytical techniques for both total arsenic determination and speciation analysis. The origin, concentration and legislation concerning arsenic in ambient air are also considered. The review intends to describe the procedures for sample collection of total suspended particles (TSP) or particles with a certain diameter expressed in microns (e.g. PM10 and PM2.5), or the collection of the gaseous phase containing gaseous arsenic species. Sample digestion of the collecting media for PM is described, indicating proposed and established procedures that use acids or mixtures of acids aided with different heating procedures. The detection techniques are summarized and compared (ICP-MS, ICP-OES and ET-AAS), as well those techniques capable of direct analysis of the solid sample (PIXE, INAA and XRF). The studies about speciation in PM are also discussed, considering the initial works that employed a cold trap in combination with atomic spectroscopy detectors, or the more recent studies based on chromatography (GC or HPLC) combined with atomic or mass detectors (AFS, ICP-MS and MS). Further trends and challenges about determination of As in air are also addressed. - Highlights: • Review about arsenic in the air. • Sampling, sample treatment and analysis of arsenic in particulate matter and gaseous phase. • Total arsenic determination and arsenic speciation analysis.

  6. Changes in serum thioredoxin among individuals chronically exposed to arsenic in drinking water

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuanyuan; Gao, Yanhui; Zhao, Lijun [Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Hei Long Jiang Province and Ministry of Health (23618104), Harbin 150081 (China); Wei, Yudan [Department of Community Medicine, Mercer University School of Medicine, Macon 31207, GA (United States); Feng, Hongqi; Wang, Cheng; Wei, Wei; Ding, Yunpeng [Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Hei Long Jiang Province and Ministry of Health (23618104), Harbin 150081 (China); Sun, Dianjun, E-mail: hrbmusdj@163.com [Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Hei Long Jiang Province and Ministry of Health (23618104), Harbin 150081 (China)

    2012-02-15

    It is well known that oxidative damage plays a key role in the development of chronic arsenicosis. There is a complex set of mechanisms of redox cycling in vivo to protect cells from the damage. In this study, we examined the differences in the levels of serum thioredoxin1 (TRX1) among individuals exposed to different levels of arsenic in drinking water and detected early biomarkers of arsenic poisoning before the appearance of skin lesions. A total of 157 subjects from endemic regions of China were selected and divided into arsenicosis group with skin lesions (total intake of arsenic: 8.68–45.71 mg-year) and non-arsenicosis group without skin lesions, which further divided into low (0.00–1.06 mg-year), medium (1.37–3.55 mg-year), and high (4.26–48.13 mg-year) arsenic exposure groups. Concentrations of serum TRX1 were analyzed by an ELISA method. Levels of water arsenic and urinary speciated arsenics, including inorganic arsenic (iAs), monomethylated arsenic (MMA), and dimethylated arsenic (DMA), were determined by hydride generation atomic absorption spectrometry. Our results showed that the levels of serum TRX1 in arsenicosis patients were significantly higher than that of the subjects who were chronically exposed to arsenic, but without skin lesions. A positive correlation was seen between the levels of serum TRX1 and the total water arsenic intake or the levels of urinary arsenic species. The results of this study indicate that arsenic exposure could significantly change the levels of human serum TRX1, which can be detected before arsenic-specific dermatological symptoms occur. This study provides further evidence on revealing the mechanism of arsenic toxicity. -- Highlights: ► Three regions are selected as the areas affected by endemic arsenicosis of China. ► We first examine changes in serum TRX1 among individuals exposed to arsenic. ► A positive correlation was seen between serum TRX1 and total water arsenic intake. ► The same relationship

  7. Changes in serum thioredoxin among individuals chronically exposed to arsenic in drinking water

    International Nuclear Information System (INIS)

    Li, Yuanyuan; Gao, Yanhui; Zhao, Lijun; Wei, Yudan; Feng, Hongqi; Wang, Cheng; Wei, Wei; Ding, Yunpeng; Sun, Dianjun

    2012-01-01

    It is well known that oxidative damage plays a key role in the development of chronic arsenicosis. There is a complex set of mechanisms of redox cycling in vivo to protect cells from the damage. In this study, we examined the differences in the levels of serum thioredoxin1 (TRX1) among individuals exposed to different levels of arsenic in drinking water and detected early biomarkers of arsenic poisoning before the appearance of skin lesions. A total of 157 subjects from endemic regions of China were selected and divided into arsenicosis group with skin lesions (total intake of arsenic: 8.68–45.71 mg-year) and non-arsenicosis group without skin lesions, which further divided into low (0.00–1.06 mg-year), medium (1.37–3.55 mg-year), and high (4.26–48.13 mg-year) arsenic exposure groups. Concentrations of serum TRX1 were analyzed by an ELISA method. Levels of water arsenic and urinary speciated arsenics, including inorganic arsenic (iAs), monomethylated arsenic (MMA), and dimethylated arsenic (DMA), were determined by hydride generation atomic absorption spectrometry. Our results showed that the levels of serum TRX1 in arsenicosis patients were significantly higher than that of the subjects who were chronically exposed to arsenic, but without skin lesions. A positive correlation was seen between the levels of serum TRX1 and the total water arsenic intake or the levels of urinary arsenic species. The results of this study indicate that arsenic exposure could significantly change the levels of human serum TRX1, which can be detected before arsenic-specific dermatological symptoms occur. This study provides further evidence on revealing the mechanism of arsenic toxicity. -- Highlights: ► Three regions are selected as the areas affected by endemic arsenicosis of China. ► We first examine changes in serum TRX1 among individuals exposed to arsenic. ► A positive correlation was seen between serum TRX1 and total water arsenic intake. ► The same relationship

  8. The relationship between obesity, insulin and arsenic methylation capability in Taiwan adolescents

    Energy Technology Data Exchange (ETDEWEB)

    Su, Chien-Tien [Department of Family Medicine, Taipei Medical University Hospital, Taipei, Taiwan (China); School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China); Lin, Hsiu-Chen [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China); Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei, Taiwan (China); Choy, Cheuk-Sing [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China); Department of Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Emergency Department, Taipei Hospital, Department of Health, Taiwan (China); Huang, Yung-Kai [School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan (China); Huang, Shiau-Rung [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China); Hsueh, Yu-Mei, E-mail: ymhsueh@tmu.edu.tw [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China); Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (China)

    2012-01-01

    Purpose: This study evaluated the arsenic methylation profile of adolescents and explored the influence of body mass index (BMI) on the arsenic methylation profile of adolescents in an area of Taiwan with no-obvious arsenic exposure. Methods: This study evaluated 202 normal weight students and 101 obese students from eight elementary schools, recruited from September 2009 to December 2009. Concentrations of urinary arsenic species, including inorganic arsenic, monomethylarsonic acid (MMA{sup 5+}) and dimethylarsinic acid (DMA{sup 5+}) were determined by a high-performance liquid chromatography-linked hydride generator and atomic absorption spectrometry. Results: Urinary total arsenic was significantly decreased with increasing BMI, indicating that obese children may retain higher levels of arsenic in the body, as compared to normal weight children. Participants with obesity accompanied by high insulin levels had higher inorganic arsenic, significantly higher MMA percentage and significantly lower DMA percentage than those with obesity and low insulin levels. It seems children with obesity and high insulin levels had lower arsenic methylation capacity than those with obesity and low insulin. Conclusions: This is the first study to demonstrate that total urinary arsenic is negatively associated with the BMI in adolescents in Taiwan, adjusted for age and sex. Obese adolescents with high insulin levels had significantly higher MMA% and significantly lower DMA% than obese adolescents with low insulin. - Highlights: Black-Right-Pointing-Pointer This is the first to find that urinary total arsenic is related inversely to the BMI. Black-Right-Pointing-Pointer Arsenic methylation capability may be associated with obesity and insulin. Black-Right-Pointing-Pointer Obese adolescents with high insulin had low arsenic methylation capacity.

  9. Problem of cadmium, arsenic and zinc determination in enviroment samples

    International Nuclear Information System (INIS)

    Malyugin, M.S.; Luzhnova, M.A.; Lontsikh, S.V.

    1983-01-01

    Using the emission spectroscopy technique new information has been obtained on cadmium-, arsenic and zinc content in some reference samples (RS) of rocks and soils not previously certified as to the content of the elements, as well as in nealy issued RS of soils. Metrologic estimation of the results obtained is carried out. A comparison with the atomic-absorption analysis data as well as with those of the neutron-activation-, colorimetric and other methods of the analysis permits to refer to the advantages of using the spectrographic determination technique based on fractionated evaporation, in case of determining cadmium and arsenic in rocks and soils. Consideration of the results of cadmium, arsenic and zinc spectrography contributed greatly to the certification of reference samples of soils

  10. A review on environmental factors regulating arsenic methylation in humans

    International Nuclear Information System (INIS)

    Tseng, C.-H.

    2009-01-01

    Subjects exposed to arsenic show significant inter-individual variation in urinary patterns of arsenic metabolites but insignificant day-to-day intra-individual variation. The inter-individual variation in arsenic methylation can be partly responsible for the variation in susceptibility to arsenic toxicity. Wide inter-ethnic variation and family correlation in urinary arsenic profile suggest a genetic effect on arsenic metabolism. In this paper the environmental factors affecting arsenic metabolism are reviewed. Methylation capacity might reduce with increasing dosage of arsenic exposure. Furthermore, women, especially at pregnancy, have better methylation capacity than their men counterparts, probably due to the effect of estrogen. Children might have better methylation capacity than adults and age shows inconsistent relevance in adults. Smoking and alcohol consumption might be associated with a poorer methylation capacity. Nutritional status is important in the methylation capacity and folate may facilitate the methylation and excretion of arsenic. Besides, general health conditions and medications might influence the arsenic methylation capacity; and technical problems can cause biased estimates. The consumption of seafood, seaweed, rice and other food with high arsenic contents and the extent of cooking and arsenic-containing water used in food preparation may also interfere with the presentation of the urinary arsenic profile. Future studies are necessary to clarify the effects of the various arsenic metabolites including the trivalent methylated forms on the development of arsenic-induced human diseases with the consideration of the effects of confounding factors and the interactions with other effect modifiers

  11. [Inventories of atmospheric arsenic emissions from coal combustion in China, 2005].

    Science.gov (United States)

    Tian, He-Zhong; Qu, Yi-Ping

    2009-04-15

    Anthropogenic arsenic (As) emitted from coal combustion is one of key trace elements leading to negative air pollution and national economy loss. It is of great significance to estimate the atmospheric arsenic emission for proposing relevant laws or regulations and selecting proper pollution control technologies. The inventories of atmospheric arsenic emissions from coal combustion in China were evaluated by adopting the emission factor method based on fuel consumption. Arsenic emission sources were firstly classified into several categories by economic sectors, combustion types and pollution control technologies. Then, according to provincial coal consumption and averaged arsenic concentration in the feed fuel, the inventories of atmospheric arsenic emission from coal combustion in China in 2005 were established. Coal outputand consumption in China in 2005 were 2,119.8 and 2,099.8 Mt, respectively. The total emissions of arsenic released into the atmosphere in 2005 in China were estimated at about 1,564.4 t, and Shandong ranked the largest province with 144.4 t arsenic release, followed by Hunan (141.1 t), Hebei (108.5 t), Henan (77.7 t), and Jiangsu (77.0 t), which were mainly concentrated in the eastern and central provinces of China. The arsenic emissions were largely emitted by industry sector (818.8 t) and thermal power generation sector (303.4 t), contributing 52.3% and 19.4% of the totals, respectively. About 375.5 t arsenic was estimated to be released into the atmosphere in the form of gas phase in China in 2005, with a share of 24% of the totals. In general, arsenic pollution control from coal combustion should be highlighted for the power and industry sectors in the whole country. However, arsenic poisoning caused by residential coal burning should also be paid great attention in some areas such as Xinjiang, Gansu, Qinghai and Guishou.

  12. Speciation and monitoring test for inorganic arsenic in white rice flour.

    Science.gov (United States)

    Narukawa, Tomohiro; Hioki, Akiharu; Chiba, Koichi

    2012-02-01

    A monitoring test for arsenic species in white rice flour was developed and applied to flours made from 20 samples of polished rice collected from locations all over Japan. The arsenic species in white rice flour made from five samples each of four types of rice were analyzed by HPLC-ICP-MS after a heat-assisted aqueous extraction. The total arsenic and major and minor element concentrations in the white rice flours were measured by ICP-MS and ICP-OES after microwave-assisted digestion. 91 ± 1% of the arsenic in the flours was extractable. Concentrations of arsenite [As(III)], arsenate [As(V)], and dimethylarsinic acid (DMAA) were closely positively correlated with the total arsenic concentrations. The total arsenic concentration in flours made from rice collected around Japan was 0.15 ± 0.07 mg kg(-1) (highest, 0.32 mg kg(-1)), which is very low. It was thus confirmed that the white rice flour samples collected in this experiment were not suffered from noticeable As contamination.

  13. Bioaccumulation of Arsenic Species in Rays from the Northern Adriatic Sea

    Directory of Open Access Journals (Sweden)

    Zdenka Šlejkovec

    2014-12-01

    Full Text Available The difference in arsenic concentration and speciation between benthic (Pteromylaeus bovinus, Myliobatis aquila and pelagic rays (Pteroplatytrygon violacea from the northern Adriatic Sea (Gulf of Trieste in relation to their size (age was investigated. High arsenic concentrations were found in both groups with tendency of more efficient arsenic accumulation in benthic species, particularly in muscle (32.4 to 362 µg·g−1 of total arsenic. This was attributed to species differences in arsenic access, uptake and retention. In liver most arsenic was present in a form of arsenobetaine, dimethylarsinic acid and arsenoipids, whereas in muscle mainly arsenobetaine was found. The good correlations between total arsenic/arsenobetaine and size reflect the importance of accumulation of arsenobetaine with age. Arsenobetaine is an analogue of glycine betaine, a known osmoregulator in marine animals and both are very abundant in mussels, representing an important source of food for benthic species P. bovinus and M. aquila.

  14. Oral bioavailability of arsenic, antimony and a selection of metals in ashes; Oral biotillgaenglighet av arsenik, antimon och ett urval av metaller i askor

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, Christel; Bendz, David; Jones, Celia

    2008-06-15

    In an earlier study, financed by Varmeforsk, 'Q4-238 Environmental guidelines for reuse of ash in civil engineering applications', the total content of arsenic and lead was shown to determine whether or not reuse of some of the ashes in construction work is feasible. The model used to calculate the guidelines uses the total concentration of metals to evaluate the health risks resulting from exposure to the ashes. The use of total concentration can lead to overly conservative risk assessments if a significant fraction of the total metal content is not bioavailable. Better precision in the risk assessment can be given by the use of the bioavailable fraction of arsenic and lead in the model. As a result, ashes which are rejected on the basis of total metal concentration may be acceptable for use in engineering construction when the assessment is based on the bioavailable fraction. The purpose of the study was to (i) compile information on the oral bioavailability of arsenic, antimony and a selection of metals in ashes and similar materials, and on in vitro methods for determination of oral bioavailability, and (ii) experimentally estimate oral bioavailability of arsenic, antimony and some metals in a selection of ashes by analysis of the gastrointestinal bioaccessibility of these elements. The investigated elements were antimony, arsenic, lead, cadmium, copper, chromium, nickel and zinc. In the literature study performed within the project a number of static and dynamic in vitro methods simulating gastrointestinal processes of contaminants were compiled. The methods include one or several segments, i.e. mouth, stomach and intestine. Among the compiled methods, the RIVM (Rijksinstituut voor volksgesundheid en milieu) in vitro method was used in the experimental part of the project. The advantages with the method was that: the method to a high degree mimicked the human gastrointestinal processes (the method included three segments mouth, stomach, and intestine

  15. Arsenic in drinking water and congenital heart anomalies in Hungary.

    Science.gov (United States)

    Rudnai, Tamás; Sándor, János; Kádár, Mihály; Borsányi, Mátyás; Béres, Judit; Métneki, Júlia; Maráczi, Gabriella; Rudnai, Péter

    2014-11-01

    Inorganic arsenic can get easily through the placenta however there are very few human data on congenital anomalies related to arsenic exposure. Objective of our study was to explore the associations between arsenic content of drinking water and prevalence of some congenital anomalies. Four anomalies reported to the Hungarian Congenital Anomalies Registry between 1987 and 2003 were chosen to be analysed in relation to arsenic exposure: congenital anomalies of the circulatory system (n=9734) were considered as cases, while Down syndrome, club foot and multiple congenital malformations were used as controls (n=5880). Arsenic exposure of the mothers during pregnancy was estimated by using archive measurement data for each year and for each settlement where the mothers lived. Analysis of the associations between the prevalence of congenital heart anomalies and arsenic exposure during pregnancy was performed by logistic regression. The child's gender and age of the mother were adjusted for. The associations were evaluated by using the present EU health limit value of 10.0 μg/L arsenic concentration as a cut-off point. Regular consumption of drinking water with arsenic concentration above 10 μg/L during pregnancy was associated with an increased risk of congenital heart anomalies in general (adjusted OR=1.41; 95% C.I.: 1.28-1.56), and especially that of ductus Botalli persistens (adjusted OR=1.81, 95%C.I.: 1.54-2.11) and atrial septal defect (adjusted OR=1.79; 95%C.I.: 1.59-2.01). The presented results showed an increased risk of congenital heart anomalies among infants whose mothers were exposed to drinking water with arsenic content above 10 μg/L during pregnancy. Further studies of possible similar effects of concentrations below 10 μg/L are warranted. Copyright © 2014 Elsevier GmbH. All rights reserved.

  16. Airborne arsenic and urinary excretion of arsenic metabolites during boiler cleaning operations in a Slovak coal-fired power plant

    Energy Technology Data Exchange (ETDEWEB)

    Yager, J.W.; Hicks, J.B.; Fabianova, N. [EPRI, Palo Alto, CA (United States). Environment Group

    1997-08-01

    Little information is available on the relationship between occupational exposure to inorganic arsenic in coal fly ash and urinary excretion of arsenic metabolites. This study was undertaken in a coal-fired power plant in Slovakia during a routine maintenance outage. Arsenic was measured in the breathing zone of workers during 5 consecutive workdays, and urine samples were obtained for analysis of arsenic metabolites-inorganic arsenic (As), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA) prior to the start of each shift. Results from a small number of cascade impacter air samples indicated that approximately 90% of total particle mass and arsenic was present in particle size fractions {ge} 3.5 {mu}m. The 8-hr time-weighted average (TWA) mean arsenic air concentration was 48.3 {mu}g/m{sup 3} (range 0.17-375.2) and the mean sum of urinary arsenic (Sigma As) metabolites was 16.9 {mu}g As/g creatinine (range 2.6-50.8). For an 8-hr TWA of 10 {mu}g/m{sup 3} arsenic from coal fly ash, the predicted mean concentration f the Sigma As urinary metabolites was 13.2 {mu}g As/g creatinine. Comparisons with previously published studies of exposure to arsenic trioxide vapors and dusts in copper smelters suggest that bioavailability of arsenic from airborne coal fly ash (as indicated by urinary excretion) is about one-third that seen in smelters and similar settings. Arsenic compound characteristics, matrix composition, and particle size distribution probably play major roles in determining actual uptake of airborne arsenic.

  17. Source of arsenic-bearing pyrite in southwestern Vermont, USA: Sulfur isotope evidence

    Energy Technology Data Exchange (ETDEWEB)

    Mango, Helen, E-mail: helen.mango@castleton.edu [Department of Natural Sciences, Castleton State College, 233 South Street, Castleton, VT 05735 (United States); Ryan, Peter, E-mail: pryan@middlebury.edu [Department of Geology, Middlebury College, 276 Bicentennial Way, Middlebury, VT 05753 (United States)

    2015-02-01

    Arsenic-bearing pyrite is the source of arsenic in groundwater produced in late Cambrian and Ordovician gray and black slates and phyllites in the Taconic region of southwestern Vermont, USA. The aim of this study is to analyze the sulfur isotopic composition of this pyrite and determine if a relationship exists between pyrite δ{sup 34}S and arsenic content. Pyrite occurs in both sedimentary/diagenetic (bedding-parallel layers and framboids) and low-grade metamorphic (porphyroblast) forms, and contains up to > 2000 ppm As. The sulfur isotopic composition of arsenic-bearing pyrite ranges from − 5.2‰ to 63‰. In the marine environment, the sulfur in sedimentary pyrite becomes increasingly enriched in {sup 34}S as the geochemical environment becomes increasingly anoxic. There is a positive correlation between δ{sup 34}S and arsenic content in the Taconic pyrite, suggesting that uptake of arsenic by pyrite increased as the environment became more reducing. This increased anoxia may have been due to a rise in sea level and/or tectonic activity during the late Cambrian and Ordovician. Low-grade metamorphism appears to have little effect on sulfur isotope composition, but does correlate with lower arsenic content in pyrite. New groundwater wells drilled in this region should therefore avoid gray and black slates and phyllites that contain sedimentary/diagenetic pyrite with heavy δ{sup 34}S values. - Highlights: • Pyrite is the source of arsenic in groundwater in the Taconic region of Vermont, USA. • As-bearing pyrite δ{sup 34}S = – 5.2 to 63‰ with higher {sup 34}S as environment becomes more anoxic. • High sea level, tectonic activity create anoxia, with incorporation of As into pyrite. • New wells should avoid slate/phyllite containing sedimentary pyrite with heavy δ{sup 34}S.

  18. Source of arsenic-bearing pyrite in southwestern Vermont, USA: Sulfur isotope evidence

    International Nuclear Information System (INIS)

    Mango, Helen; Ryan, Peter

    2015-01-01

    Arsenic-bearing pyrite is the source of arsenic in groundwater produced in late Cambrian and Ordovician gray and black slates and phyllites in the Taconic region of southwestern Vermont, USA. The aim of this study is to analyze the sulfur isotopic composition of this pyrite and determine if a relationship exists between pyrite δ 34 S and arsenic content. Pyrite occurs in both sedimentary/diagenetic (bedding-parallel layers and framboids) and low-grade metamorphic (porphyroblast) forms, and contains up to > 2000 ppm As. The sulfur isotopic composition of arsenic-bearing pyrite ranges from − 5.2‰ to 63‰. In the marine environment, the sulfur in sedimentary pyrite becomes increasingly enriched in 34 S as the geochemical environment becomes increasingly anoxic. There is a positive correlation between δ 34 S and arsenic content in the Taconic pyrite, suggesting that uptake of arsenic by pyrite increased as the environment became more reducing. This increased anoxia may have been due to a rise in sea level and/or tectonic activity during the late Cambrian and Ordovician. Low-grade metamorphism appears to have little effect on sulfur isotope composition, but does correlate with lower arsenic content in pyrite. New groundwater wells drilled in this region should therefore avoid gray and black slates and phyllites that contain sedimentary/diagenetic pyrite with heavy δ 34 S values. - Highlights: • Pyrite is the source of arsenic in groundwater in the Taconic region of Vermont, USA. • As-bearing pyrite δ 34 S = – 5.2 to 63‰ with higher 34 S as environment becomes more anoxic. • High sea level, tectonic activity create anoxia, with incorporation of As into pyrite. • New wells should avoid slate/phyllite containing sedimentary pyrite with heavy δ 34 S

  19. Phytoremediation of arsenic by Trapa natans in a hydroponic system.

    Science.gov (United States)

    Baruah, Sangita; Borgohain, Jayasree; Sarma, K P

    2014-05-01

    Phytoremediation of arsenic (As) by water chestnut (Trapa natans) in a hydroponic system was studied. Plants were grown at two concentrations of arsenic, 1.28 mg/L and 10.80 mg/L, in a single metal solution. Scanning Electron Microscope-Energy Dispersive X-ray (SEM-EDX) confirmed highest arsenic concentration in the roots, followed by shoots and leaves. SEM-EDX also confirmed internalization of arsenic in T. natans and the damage caused due to arsenic exposure. Fourier Transform Infra Red Spectroscopy (FT-IRS) indicated that the binding characteristics of the arsenic ions involved the hydroxyl, amide, amino, and thiol groups in the biomass. Chlorophyll concentration decreased with increasing metal concentration and duration of exposure, but proline content increases with increasing concentration in the plant. Morphological changes were studied on the 3rd, 5th and 7th day. Unhealthy growth and chlorosis were found to be related with arsenic toxicity. From the above studies it is clear that T. natans can be used successfully for the removal of arsenic ions by a phytoremediation process.

  20. A need for determination of arsenic species at low levels in cereal-based food and infant cereals. Validation of a method by IC-ICPMS.

    Science.gov (United States)

    Llorente-Mirandes, Toni; Calderón, Josep; Centrich, Francesc; Rubio, Roser; López-Sánchez, José Fermín

    2014-03-15

    The present study arose from the need to determine inorganic arsenic (iAs) at low levels in cereal-based food. Validated methods with a low limit of detection (LOD) are required to analyse these kinds of food. An analytical method for the determination of iAs, methylarsonic acid (MA) and dimethylarsinic acid (DMA) in cereal-based food and infant cereals is reported. The method was optimised and validated to achieve low LODs. Ion chromatography-inductively coupled plasma mass spectrometry (IC-ICPMS) was used for arsenic speciation. The main quality parameters were established. To expand the applicability of the method, different cereal products were analysed: bread, biscuits, breakfast cereals, wheat flour, corn snacks, pasta and infant cereals. The total and inorganic arsenic content of 29 cereal-based food samples ranged between 3.7-35.6 and 3.1-26.0 μg As kg(-1), respectively. The present method could be considered a valuable tool for assessing inorganic arsenic contents in cereal-based foods. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Arsenic in the rhizosphere soil solution of ferns.

    Science.gov (United States)

    Wei, Chaoyang; Zheng, Huan; Yu, Jiangping

    2012-12-01

    The aim of this study was to explore the evidence of arsenic hyperaccumulation in plant rhizosphere solutions. Six common fern plants were selected and grown in three types of substrate: arsenic (As) -tailings, As-spiked soil, and soil-As-tailing composites. A rhizobox was designed with an in-situ collection of soil solutions to analyze changes in the As concentration and valence as well as the pH, dissolved organic carbon (DOC) and total nitrogen (TN). Arsenite composed less than 20% of the total As, and As depletion was consistent with N depletion in the rhizosphere solutions of the various treatments. The As concentrations in the rhizosphere and non-rhizosphere solutions in the presence of plants were lower than in the respective controls without plants, except for in the As-spiked soils. The DOC concentrations were invariably higher in the rhizosphere versus non-rhizosphere solutions from the various plants; however, no significant increase in the DOC content was observed in Pteris vittata, in which only a slight decrease in pH appeared in the rhizosphere compared to non-rhizosphere solutions. The results showed that As reduction by plant roots was limited, acidification-induced solubilization was not the mechanism for As hyperaccumulation.

  2. Geochemistry of redox-sensitive elements and sulfur isotopes in the high arsenic groundwater system of Datong Basin, China

    Energy Technology Data Exchange (ETDEWEB)

    Xie Xianjun [MOE Key Laboratory of Biogeology and Environmental Geology and School of Environmental Studies, China University of Geosciences, Wuhan 430074 (China); Ellis, Andre [Department of Geological Sciences, University of Texas at El Paso, TX 79968-0555 (United States); Wang Yanxin, E-mail: yx.wang@cug.edu.cn [MOE Key Laboratory of Biogeology and Environmental Geology and School of Environmental Studies, China University of Geosciences, Wuhan 430074 (China); Xie Zuoming; Duan Mengyu; Su Chunli [MOE Key Laboratory of Biogeology and Environmental Geology and School of Environmental Studies, China University of Geosciences, Wuhan 430074 (China)

    2009-06-01

    {sub [SO4]} values (from - 2.5 to + 36.1 per mille ) in the basin relative to the margins (from + 8 per mille to + 15 per mille ) indicate that sulfur is undergoing redox cycling. The highly enriched values point to sulfate reduction that was probably mediated by bacteria. The presence of monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) is also evidence of microbial reactions. The depleted signatures indicate that some oxidation of depleted sulfide occurred in the basin. It must be noted that the samples with depleted sulfur isotope values have very low sulfate concentrations and therefore even a small amount of sulfide oxidation will bias the ratio. No significant correlation was observed between {delta}{sup 34}S{sub [SO4]} values and total arsenic contents when all the samples were considered. However, the wells in the central basin do appear to become enriched in {delta}{sup 34}S{sub [SO4]} as arsenic concentration increases. Although there is evidence for sulfate reduction, it is clear that sulfate reduction does not co-precipitate or sequester arsenic. The one sample with high arsenic that is oxidizing cannot be explained by oxidation of pyrite and is likely an indication that there are multiple redox zones that control arsenic speciation but not necessarily its mobilization and contradict the possibility that Fe-oxyhydroxides sorb appreciable amounts of arsenic in this study area. It is evident that this basin like other two young sedimentary basins (Huhhot and Hetao in Inner Mongolia) of northern China with high arsenic groundwater is transporting arsenic at a very slow rate. The data are consistent with the possibility that the traditional models of arsenic mobilization, namely reductive dissolution of Fe-oxyhydroxides, reduction of As(V) to more mobile As(III), and bacteria mediated reactions, are active to varying degrees. It is also likely that different processes control arsenic mobilization at different locations of the basin and more detailed

  3. Geochemistry of redox-sensitive elements and sulfur isotopes in the high arsenic groundwater system of Datong Basin, China

    International Nuclear Information System (INIS)

    Xie Xianjun; Ellis, Andre; Wang Yanxin; Xie Zuoming; Duan Mengyu; Su Chunli

    2009-01-01

    - 2.5 to + 36.1 per mille ) in the basin relative to the margins (from + 8 per mille to + 15 per mille ) indicate that sulfur is undergoing redox cycling. The highly enriched values point to sulfate reduction that was probably mediated by bacteria. The presence of monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) is also evidence of microbial reactions. The depleted signatures indicate that some oxidation of depleted sulfide occurred in the basin. It must be noted that the samples with depleted sulfur isotope values have very low sulfate concentrations and therefore even a small amount of sulfide oxidation will bias the ratio. No significant correlation was observed between δ 34 S [SO4] values and total arsenic contents when all the samples were considered. However, the wells in the central basin do appear to become enriched in δ 34 S [SO4] as arsenic concentration increases. Although there is evidence for sulfate reduction, it is clear that sulfate reduction does not co-precipitate or sequester arsenic. The one sample with high arsenic that is oxidizing cannot be explained by oxidation of pyrite and is likely an indication that there are multiple redox zones that control arsenic speciation but not necessarily its mobilization and contradict the possibility that Fe-oxyhydroxides sorb appreciable amounts of arsenic in this study area. It is evident that this basin like other two young sedimentary basins (Huhhot and Hetao in Inner Mongolia) of northern China with high arsenic groundwater is transporting arsenic at a very slow rate. The data are consistent with the possibility that the traditional models of arsenic mobilization, namely reductive dissolution of Fe-oxyhydroxides, reduction of As(V) to more mobile As(III), and bacteria mediated reactions, are active to varying degrees. It is also likely that different processes control arsenic mobilization at different locations of the basin and more detailed studies along major flow paths upgradient of the high

  4. Arsenic leaching and speciation in C&D debris landfills and the relationship with gypsum drywall content.

    Science.gov (United States)

    Zhang, Jianye; Kim, Hwidong; Dubey, Brajesh; Townsend, Timothy

    2017-01-01

    The effects of sulfide levels on arsenic leaching and speciation were investigated using leachate generated from laboratory-scale construction and demolition (C&D) debris landfills, which were simulated lysimeters containing various percentages of gypsum drywall. The drywall percentages in lysimeters were 0, 1, 6, and 12.4wt% (weight percent) respectively. With the exception of a control lysimeter that contained 12.4wt% of drywall, each lysimeter contained chromated copper arsenate (CCA) treated wood, which accounts for 10wt% of the C&D waste. During the period of study, lysimeters were mostly under anaerobic conditions. Leachate analysis results showed that sulfide levels increased as the percentage of drywall increased in landfills, but arsenic concentrations in leachate were not linearly correlated with sulfide levels. Instead, the arsenic concentrations decreased as sulfide increased up to approximately 1000μg/L, but had an increase with further increase in sulfide levels, forming a V-shape on the arsenic vs. sulfide plot. The analysis of arsenic speciation in leachate showed different species distribution as sulfide levels changed; the fraction of arsenite (As(III)) increased as the sulfide level increased, and thioarsenate anions (As(V)) were detected when the sulfide level further increased (>10 4 μg/L). The formation of insoluble arsenic sulfide minerals at a lower range of sulfide and soluble thioarsenic anionic species at a higher range of sulfide likely contributed to the decreasing and increasing trend of arsenic leaching. Copyright © 2016. Published by Elsevier Ltd.

  5. Effects of exogenous glutathione on arsenic burden and NO metabolism in brain of mice exposed to arsenite through drinking water.

    Science.gov (United States)

    Wang, Yan; Zhao, Fenghong; Jin, Yaping; Zhong, Yuan; Yu, Xiaoyun; Li, Gexin; Lv, Xiuqiang; Sun, Guifan

    2011-03-01

    Chronic exposure to inorganic arsenic (iAs) is associated with neurotoxicity. Studies to date have disclosed that methylation of ingested iAs is the main metabolic pathway, and it is a process relying on reduced glutathione (GSH). The aim of this study was to explore the effects of exogenous GSH on arsenic burden and metabolism of nitric oxide (NO) in the brain of mice exposed to arsenite via drinking water. Mice were exposed to sodium arsenite through drinking water contaminated with 50 mg/L arsenic for 4 weeks and treated intraperitoneally with saline solution, 200 mg/kg body weight (b.w), 400 mg/kg b.w, or 800 mg/kg b.w GSH, respectively, at the 4th week. Levels of iAs, monomethylarsenic acid, and dimethylarsenic acid (DMAs) in the liver, blood, and brain were determined by method of hydride generation coupled with atomic absorption spectrophotometry. Activities of nitric oxide synthase (NOS) and contents of NO in the brain were determined by colorimetric method. Compared with mice exposed to arsenite alone, administration of GSH increased dose-dependently the primary and secondary methylation ratio in the liver, which caused the decrease in percent iAs and increase in percent DMAs in the liver, as a consequence, resulted in significant decrease in iAs levels in the blood and total arsenic levels in both blood and brain. NOS activities and NO levels in the brain of mice in iAs group were significantly lower than those in control; however, administration of GSH could increase significantly activities of NOS and contents of NO. Findings from this study suggested that exogenous GSH could promote both primary and secondary arsenic methylation capacity in the liver, which might facilitate excretion of arsenicals, and consequently reduce arsenic burden in both blood and brain and furthermore ameliorate the effects of arsenicals on NO metabolism in the brain.

  6. [Relativity among starch quantity, polysaccharides content and total alkaloid content of Dendrobium loddigesii].

    Science.gov (United States)

    Zhu, Hua; Teng, Jianbei; Cai, Yi; Liang, Jie; Zhu, Yilin; Wei, Tao

    2011-12-01

    To find out the relativity among starch quantity, polysaccharides content and total alkaloid content of Dendrobium loddigesii. Microscopy-counting process was applied to starch quantity statistics, sulfuric acid-anthrone colorimetry was used to assay polysaccharides content and bromocresol green colorimetry was used to assay alkaloid content. Pearson product moment correlation analysis, Kendall's rank correlation analysis and Spearman's concordance coefficient analysis were applied to study their relativity. Extremely significant positive correlation was found between starch quantity and polysaccharides content, and significant negative correlation between alkaloid content and starch quantity was discovered, as well was between alkaloid content and polysaccharides content.

  7. [Mixture Leaching Remediation Technology of Arsenic Contaminated Soil].

    Science.gov (United States)

    Chen, Xun-feng; Li, Xiao-ming; Chen, Can; Yang, Qi; Deng, Lin-jing; Xie, Wei-qiang; Zhong, Yui; Huang, Bin; Yang, Wei-qiang; Zhang, Zhi-bei

    2016-03-15

    Soil contamination of arsenic pollution has become a severely environmental issue, while soil leaching is an efficient method for remediation of arsenic-contaminated soil. In this study, batch tests were primarily conducted to select optimal mixture leaching combination. Firstly, five conventional reagents were selected and combined with each other. Secondly, the fractions were analyzed before and after the tests. Finally, to explore the feasibility of mixed leaching, three soils with different arsenic pollution levels were used to compare the leaching effect. Comparing with one-step washing, the two-step sequential washing with different reagents increased the arsenic removal efficiency. These results showed that the mixture of 4 h 0.5 mol · L⁻¹ NaOH + 4 h 0.1 mol · L⁻¹ EDTA was found to be practicable, which could enhance the removal rate of arsenic from 66.67% to 91.83%, and the concentration of arsenic in soil was decreased from 186 mg · kg⁻¹ to 15.2 mg · kg⁻¹. Furthermore, the results indicated that the distribution of fractions of arsenic in soil changed apparently after mixture leaching. Leaching process could significantly reduce the available contents of arsenic in soil. Moreover, the mixture of 0.5 mol · L⁻¹ NaOH + 0.1 mol L⁻¹ EDTA could well decrease the arsenic concentration in aluminum-type soils, while the mixture of 0.5 mol · L⁻¹ OX + 0.5 mol · L⁻¹ NaOH could well decrease the arsenic concentration in iron-type soils.

  8. US-Total Electron Content Product (USTEC)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The US Total Electron Content (US-TEC) product is designed to specify TEC over the Continental US (CONUS) in near real-time. The product uses a Kalman Filter data...

  9. INORGANIC ARSENIC SPECIATION IN THE ATMOSPHERE: STUDY IN ISFAHAN

    Directory of Open Access Journals (Sweden)

    A KALANTARI

    2000-06-01

    Full Text Available Introduction. Arsenic is one of the most hazardous elements that associate with airborne particulate matter in the atmosphere. Among the different species of arsenic, ASIII has the most toxic and carcinogenic property between any other kind of this element. Arsenic speciation is important in environmental studies. Methods. We collected 59 samples of airborne particulate matter from the atmosphere in Isfahan in a three months period by a high volume air sampler with a flow rate of 1 m3 min-1. Air particulates were collected on the paper filter (Whatman No.41. Four different digestive procedures were examined in order to find the best method. At last we chose digestion of filter with HCI (10-4N due to its feasibility, cost benefit and efficacy. Other methods that examined were digestion of filter with a mixture of HN03 and H2O2, with a mixture of HNO3 and H2O2 and with HCI (1 N. The determination of As3+ and As5+ concentrations were performed by hydrIde generation atomic absorption spectrometry. The effect of Ph on the absorption signal was also investigated in arsenic speciation. Results. Average of total saspended particles (TSP in July, August, and September 1998 were 223, 172, and 247 mg.m3 respectively. The recovery of arsenic from airborne particulate matter was almost the same for the different digestion methods. The concentration and volume of NaBH4 was optimized for determining of different species of arsenic. At pH=5, Asv didn't produce any absorption signal. So, the determination of ASm was carried out easilyat the above mentioned pH. The concentrations of total arsenic were determined in 47 samples. The mean concentrations of total arsenic in July, August and September were 3.31, 2.01 and 2.6, respectively. Discussion. More than 50 percent of total atmospheric arsenic exists as ASIII which is the most toxic and carcinogenic forms of this element. So, it is recommended to make a suitable policy for decreasing of this hazardous

  10. Poisoning by coal smoke containing arsenic and fluoride

    Energy Technology Data Exchange (ETDEWEB)

    An, D.; He, Y.G.; Hu, Q.X. [Guizhou Sanitary and Epidemiological Station, Guiyang (China)

    1997-02-01

    An investigation was made into a disease involving skin pigmentation, keratosis of the hands and feet, dental discoloration, and generalized bone and joint pain, stiffness and rigidity, in the village of Bazhi, Zhijin County, Ghizhou Province, People`s Republic of China. Measurements were made of the arsenic and fluoride levels of coal, water, air, food, urine and hair in Bazhi and a control village, Xinzhai, in which coal with a low arsenic content was used. Up to 188 people, including children, in Bazhi and 752 in Xinzhai, were examined for the presence of chronic arsenium, skeletal fluorosis, dental fluorosis and electrocardiogram abnormalities. The coal in Bazhi was found to contain high levels of arsenic and fluoride resulting, after burning in homes without an adequate chimney systems, in pollution of air and food with arsenic and fluoride. The coal in Xinzhai did not cause arsenic pollution but did produce a higher level of fluoride pollution. It was concluded that the endemic disease in Bazhi was caused by pollution by coal smoke containing arsenic and fluoride. It is suggested that arsenic may act synergistically with fluoride so that a lower level of fluoride may produce fluoride toxicity with dental and skeletal fluorosis.

  11. Seasonal variations of arsenic in mussels Mytilus galloprovincialis

    Science.gov (United States)

    Klarić, Sanja; Pavičić-Hamer, Dijana; Lucu, Čedomil

    2004-10-01

    Total arsenic concentration in the edible part of mussels Mytilus galloprovincialis was evaluated seasonally in the coastal area of Rijeka Bay (North Adriatic Sea, Croatia). Sampling stations were located close to the City of Bakar with no industrial facilities (site 1), in the vicinity of the oil refinery and oil thermoelectric power plant (Urinj, site 2), and 4 miles away from the Plomin coal thermoelectric power plant (Brseč village, site 3). Additionally, the concentration of arsenic in the tail muscle of the lobster Nephrops norvegicus, collected in Rijeka Bay, was studied. During winter at sites 2 and 3, the total arsenic in the edible part of the mussels was 16.4 mg As/kg FW (FW=fresh weight) and 4.38 mg As/kg FW, respectively, and increased during springtime at site 2 (6.5 mg As/kg FW) compared to the rest of the year, when individual total arsenic concentration at all sites ranged from 1.7 to 3.7 mg As/kg FW. In the winter (sites 2 and 3) and springtime (site 2) there was no correlation between the length of the mussel shell and the arsenic concentration in the edible part of the mussels. In the other seasons, at sites 1, 2 and 3, there was a correlation between arsenic in the edible part of mussels and shell length in most cases (correlation coefficients r varied from 0.64 to 0.85; P edible part of the mussels shows linearity with a high regression coefficient (r =0.914; P edible part during winter. In addition, a linear relationship was found between body length and arsenic concentration in the tail muscle (mean 17.11±4.48 mg As/kg FW) of the Norway lobster.

  12. The effect of arsenic contamination on amino acids metabolism in Spinacia oleracea L.

    Science.gov (United States)

    Pavlík, Milan; Pavlíková, Daniela; Staszková, Ludmila; Neuberg, Marek; Kaliszová, Regina; Száková, Jirina; Tlustos, Pavel

    2010-09-01

    Changes of amino acid concentrations (proline, glutamate, asparagine, aspartate, alanine) and glutamate kinase activity (GKA) in plants under arsenic chronic stress reported here reveal their role in plant arsenic stress adaptation. Results of the pot experiment confirmed the toxic effect of arsenic at tested levels (As1=25 mg As kg(-1) soil, As2=50 mg As kg(-1) soil, As3=75 mg As kg(-1) soil) for spinach. Growing available arsenic contents in soil were associated with the strong inhibition of above-ground biomass and with the enhancement of As plant content. The changes of glutamate, asparagine, aspartate and proline levels in the plants showed strong linear dependences on arsenic concentration in plants (R2=0.60-0.90). Compared to the untreated control, concentrations of free proline and aspartate of As3 treatment were enhanced up to 381% and 162%, respectively. The significant changes of glutamate were observed on As2 and As3 treatments (increased level up to 188, i.e. 617%). Arsenic in plants was shown to be an inhibitor of glutamase kinase activity (R2=0.91). Inhibition of GKA resulted in an increase in the content of glutamate that is used in synthesis of phytochelatins in plant cells. Concentration of alanine did not have a confirmed linear dependence on arsenic concentration in plant (R2=0.05). The changes of its concentrations could be affected by changes of pH in plant cell or induction of alanine aminotransferase by hypoxia. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  13. Arsenic, Anaerobes, and Astrobiology

    Science.gov (United States)

    Stolz, J. F.; Oremland, R. S.; Switzer Blum, J.; Hoeft, S. E.; Baesman, S. M.; Bennett, S.; Miller, L. G.; Kulp, T. R.; Saltikov, C.

    2013-12-01

    Arsenic is an element best known for its highly poisonous nature, so it is not something one would associate with being a well-spring for life. Yet discoveries made over the past two decades have delineated that not only are some microbes resistant to arsenic, but that this element's primary redox states can be exploited to conserve energy and support prokaryotic growth ('arsenotrophy') in the absence of oxygen. Hence, arsenite [As(III)] can serve as an electron donor for chemo- or photo-autotrophy while arsenate [As(V)] will serve as an electron acceptor for chemo-heterotrophs and chemo-autotrophs. The phylogenetic diversity of these microbes is broad, encompassing many individual species from diverse taxonomic groups in the Domain Bacteria, with fewer representatives in the Domain Archaea. Speculation with regard to the evolutionary origins of the key functional genes in anaerobic arsenic transformations (arrA and arxA) and aerobic oxidation (aioB) has led to a disputation as to which gene and function is the most ancient and whether arsenic metabolism extended back into the Archaean. Regardless of its origin, robust arsenic metabolism has been documented in extreme environments that are rich in their arsenic content, such as hot springs and especially hypersaline soda lakes associated with volcanic regions. Searles Lake, CA is an extreme, salt-saturated end member where vigorous arsenic metabolism occurs, but there is no detectable sulfate-reduction or methanogenesis. The latter processes are too weak bio-energetically to survive as compared with arsenotrophy, and are also highly sensitive to the abundance of borate ions present in these locales. These observations have implications with respect to the search for microbial life elsewhere in the Solar System where volcanic-like processes have been operative. Hence, because of the likelihood of encountering dense brines in the regolith of Mars (formed by evapo-concentration) or beneath the ice layers of Europa

  14. Distribution of Arsenic and Risk Assessment of Activities on Soccer Pitches Irrigated with Arsenic-Contaminated Water

    Directory of Open Access Journals (Sweden)

    Nadia Martínez-Villegas

    2018-05-01

    Full Text Available The aim of this research was to estimate the risk of human exposure to arsenic due to sporting activities in a private soccer club in Mexico, where arsenic-contaminated water was regularly used for irrigation. For this purpose, the total concentration in the topsoil was considered for risk assessment. This was accomplished through three main objectives: (1 measuring arsenic concentrations in irrigation water and irrigated soils, (2 determining arsenic spatial distribution in shallow soils with Geographical Information Systems (GIS using geostatistical analysis, and (3 collecting field and survey data to develop a risk assessment calculation for soccer activities in the soccer club. The results showed that the average arsenic concentrations in shallow soils (138.1 mg/kg were 6.2 times higher than the Mexican threshold for domestic soils (22 mg/kg. Furthermore, dermal contact between exposed users and contaminated soils accounted for a maximum carcinogenic risk value of 1.8 × 10−5, which is one order of magnitude higher than the recommended risk value, while arsenic concentrations in the irrigation water were higher (6 mg/L than the WHO’s permissible threshold in drinking water, explaining the contamination of soils after irrigation. To the best of our knowledge, this is the first risk study regarding dermal contact with arsenic following regular grass irrigation with contaminated water in soccer pitches.

  15. [Effect of the interaction of microorganisms and iron oxides on arsenic releasing into groundwater in Chinese Loess].

    Science.gov (United States)

    Xie, Yun-Yun; Chen, Tian-Hu; Zhou, Yue-Fei; Xie, Qiao-Qin

    2013-10-01

    A large part of groundwater in the Chinese Loess Plateau area is characterized by high arsenic concentration. Anaerobic bacteria have been considered to play key roles in promoting arsenic releasing from loess to groundwater. However, this hypothesis remains unconfirmed. Based on modeling experiments, this study investigated the speciation of arsenic in loess, and then determined the release rates and quantities of arsenic with the mediation of anaerobic bacteria. The results showed that arsenic contents in loess were between 23 mg.kg-1 and 30 mg.kg-1. No obvious arsenic content difference among loess samples was observed. The ratios for specific adsorbed, iron oxides co-precipitated and silicate co-precipitated arsenic were 37.76% , 36. 15% and 25. 69% , respectively. Indigenous microorganisms, dissimilatory iron reducing bacteria (DIRB) and sulfate reducing bacteria (SRB) could all promote the release of arsenic from loess. Organic matters highly affected the release rates. More than 100 mg.L-1 sodium lactate was required for all bacterial experiments to facilitate obvious arsenic release. Considering the redox condition in loess, the contribution of SRB to arsenic release in loess area was less feasible than that of DIRB and indigenous microorganisms.

  16. Analytical artefacts in the speciation of arsenic in clinical samples

    International Nuclear Information System (INIS)

    Slejkovec, Zdenka; Falnoga, Ingrid; Goessler, Walter; Elteren, Johannes T. van; Raml, Reingard; Podgornik, Helena; Cernelc, Peter

    2008-01-01

    Urine and blood samples of cancer patients, treated with high doses of arsenic trioxide were analysed for arsenic species using HPLC-HGAFS and, in some cases, HPLC-ICPMS. Total arsenic was determined with either flow injection-HGAFS in urine or radiochemical neutron activation analysis in blood fractions (in serum/plasma, blood cells). The total arsenic concentrations (during prolonged, daily/weekly arsenic trioxide therapy) were in the μg mL -1 range for urine and in the ng g -1 range for blood fractions. The main arsenic species found in urine were As(III), MA and DMA and in blood As(V), MA and DMA. With proper sample preparation and storage of urine (no preservation agents/storage in liquid nitrogen) no analytical artefacts were observed and absence of significant amounts of alleged trivalent metabolites was proven. On the contrary, in blood samples a certain amount of arsenic can get lost in the speciation procedure what was especially noticeable for the blood cells although also plasma/serum gave rise to some disappearance of arsenic. The latter losses may be attributed to precipitation of As(III)-containing proteins/peptides during the methanol/water extraction procedure whereas the former losses were due to loss of specific As(III)-complexing proteins/peptides (e.g. cysteine, metallothionein, reduced GSH, ferritin) on the column (Hamilton PRP-X100) during the separation procedure. Contemporary analytical protocols are not able to completely avoid artefacts due to losses from the sampling to the detection stage so that it is recommended to be careful with the explanation of results, particularly regarding metabolic and pharmacokinetic interpretations, and always aim to compare the sum of species with the total arsenic concentration determined independently

  17. Arsenic precipitation from metallurgical effluents; Precipitacion de arsenico desde efluentes metalurgicos

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, P.; Vargas, C.; Araya, E.; Martin, I.; Alguacil, F. J.

    2004-07-01

    In the mining-metallurgical companies different liquid effluents are produced, which can contain a series of dissolved elements that are considered dangerous from an environmental point of view. One of these elements is the arsenic, especially in the state of oxidation +5 that can be precipitated as calcium or iron arsenate. To fulfil the environmental requests it should have in solution a content of arsenic lower than 0,5 mg/l and the obtained solid product should be very stable under the condition in which it will be stored. this work looks for the best conditions of arsenic precipitation, until achieving contents in solution lower than such mentioned concentration. Also, the stability of the precipitates was studied. (Author) 7 refs.

  18. Microbial community in high arsenic shallow groundwater aquifers in Hetao Basin of Inner Mongolia, China.

    Directory of Open Access Journals (Sweden)

    Ping Li

    Full Text Available A survey was carried out on the microbial community of 20 groundwater samples (4 low and 16 high arsenic groundwater and 19 sediments from three boreholes (two high arsenic and one low arsenic boreholes in a high arsenic groundwater system located in Hetao Basin, Inner Mongolia, using the 454 pyrosequencing approach. A total of 233,704 sequence reads were obtained and classified into 12-267 operational taxonomic units (OTUs. Groundwater and sediment samples were divided into low and high arsenic groups based on measured geochemical parameters and microbial communities, by hierarchical clustering and principal coordinates analysis. Richness and diversity of the microbial communities in high arsenic sediments are higher than those in high arsenic groundwater. Microbial community structure was significantly different either between low and high arsenic samples or between groundwater and sediments. Acinetobacter, Pseudomonas, Psychrobacter and Alishewanella were the top four genera in high arsenic groundwater, while Thiobacillus, Pseudomonas, Hydrogenophaga, Enterobacteriaceae, Sulfuricurvum and Arthrobacter dominated high arsenic sediments. Archaeal sequences in high arsenic groundwater were mostly related to methanogens. Biota-environment matching and co-inertia analyses showed that arsenic, total organic carbon, SO4(2-, SO4(2-/total sulfur ratio, and Fe(2+ were important environmental factors shaping the observed microbial communities. The results of this study expand our current understanding of microbial ecology in high arsenic groundwater aquifers and emphasize the potential importance of microbes in arsenic transformation in the Hetao Basin, Inner Mongolia.

  19. Microbial community in high arsenic shallow groundwater aquifers in Hetao Basin of Inner Mongolia, China.

    Science.gov (United States)

    Li, Ping; Wang, Yanhong; Dai, Xinyue; Zhang, Rui; Jiang, Zhou; Jiang, Dawei; Wang, Shang; Jiang, Hongchen; Wang, Yanxin; Dong, Hailiang

    2015-01-01

    A survey was carried out on the microbial community of 20 groundwater samples (4 low and 16 high arsenic groundwater) and 19 sediments from three boreholes (two high arsenic and one low arsenic boreholes) in a high arsenic groundwater system located in Hetao Basin, Inner Mongolia, using the 454 pyrosequencing approach. A total of 233,704 sequence reads were obtained and classified into 12-267 operational taxonomic units (OTUs). Groundwater and sediment samples were divided into low and high arsenic groups based on measured geochemical parameters and microbial communities, by hierarchical clustering and principal coordinates analysis. Richness and diversity of the microbial communities in high arsenic sediments are higher than those in high arsenic groundwater. Microbial community structure was significantly different either between low and high arsenic samples or between groundwater and sediments. Acinetobacter, Pseudomonas, Psychrobacter and Alishewanella were the top four genera in high arsenic groundwater, while Thiobacillus, Pseudomonas, Hydrogenophaga, Enterobacteriaceae, Sulfuricurvum and Arthrobacter dominated high arsenic sediments. Archaeal sequences in high arsenic groundwater were mostly related to methanogens. Biota-environment matching and co-inertia analyses showed that arsenic, total organic carbon, SO4(2-), SO4(2-)/total sulfur ratio, and Fe(2+) were important environmental factors shaping the observed microbial communities. The results of this study expand our current understanding of microbial ecology in high arsenic groundwater aquifers and emphasize the potential importance of microbes in arsenic transformation in the Hetao Basin, Inner Mongolia.

  20. Leaching of copper concentrates with high arsenic content in chlorine-chloride media; Lixiviacion de concentrados de cobre con alto contenido de arsenico en medio cloro-cloruro

    Energy Technology Data Exchange (ETDEWEB)

    Herreros, O.; Fuentes, G.; Quiroz, R.; Vinals, J.

    2003-07-01

    This work reports the results of copper concentrates leaching which have high arsenic concepts (up to 2.5%). The treatments were carried out using chlorine that forms from sodium hypochlorite and sulphuric acid. The aim of this work is to obtain a solution having high copper content 4 to 6 g/l and 5 to 7 g/l free acid in order to submit it directly to a solvent extraction stage. In addition, this solution should have minimum content of arsenic and chloride ions. To carry out this investigation, an acrylic reactor was constructed where the leaching tests were made at constant temperature in a thermostatic bath under atmospheric pressure. The concentrate samples were obtained from mineral processing plants from Antofagasta, Chile. Typical variables were studied, such as leaching agent concentration, leaching time, pulp density and temperature among others. Some of the residues were analyzed by XRD and EPS. On the other hand, the solutions were analyzed by Atomic Absorption Spectroscopy. The results indicate solutions having the contents stated above can be obtained. (Author) 19 refs.

  1. Lead, arsenic, and copper content of crops grown on lead arsenate-treated and untreated soils

    Energy Technology Data Exchange (ETDEWEB)

    Chisholm, D

    1972-01-01

    Increased lead and arsenic concentrations in the surface soil (0-15 cm), resulting from applications of lead arsenate (PbHAs0/sub 1/), increased both lead and arsenic levels in crops grown on treated plots. The lead levels in some crops approached or exceeded the Canadian residue tolerance of 2.0 ppM. Lead arsenate soil treatments did not affect copper absorption by crops. On areas such as old orchard land contaminated with lead arsenate residues it may be advisable to ascertain crops, and also to determine the lead affinity and arsenic sensitivity of the plants to be grown.

  2. Arsenic compounds in a marine food chain

    Energy Technology Data Exchange (ETDEWEB)

    Goessler, W.; Irgolic, K.J.; Kuehnelt, D.; Schlagenhaufen, C. [Institute for Analytical Chemistry, Karl-Franzens-Universitaet Graz, Universitaetsplatz 1, A-8010 Graz (Austria); Maher, W. [CRC for Freshwater Ecology, University of Canberra, PO Box 1, Belconnen ACT. 2616 (Australia); Kaise, T. [Laboratory of Environmental Chemistry, School of Life Science, University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachijoji, Tokyo 192-03 (Japan)

    1997-10-01

    A three-organism food chain within a rock pool at Rosedale, NSW, Australia, was investigated with respect to arsenic compounds by high performance liquid chromatography - hydraulic high pressure nebulization - inductively coupled plasma mass spectrometry (HPLC-HHPN-ICP-MS). Total arsenic concentration was determined in the seaweed Hormosira banksii (27.2 {mu}g/g dry mass), in the gastropod Austrocochlea constricta (74.4 {mu}g/g dry mass), which consumes the seaweed, and in the gastropod Morula marginalba (233 {mu}g/g dry mass), which eats Austrocochlea constricta. The major arsenic compounds in the seaweed were (2`R)-dimethyl[1-O-(2`,3`-dihydroxypropyl)-5-deoxy-{beta}-d-ribofuranos-5-yl]arsine oxide and an unidentified compound. The herbivorous gastropod Austrocochlea constricta transformed most of the arsenic taken up with the seaweed to arsenobetaine. Traces of arsenite, arsenate, dimethylarsinic acid, arsenocholine, the tetramethylarsonium cation, and several unknown arsenic compounds were detected. Arsenobetaine accounted for 95% of the arsenic in the carnivorous gastropod Morula marginalba. In Morula marginalba the concentration of arsenocholine was higher, and the concentrations of the minor arsenic compounds lower than in the herbivorous gastropod Austrocochlea constricta. (orig.) With 4 figs., 1 tab., 13 refs.

  3. Phytoextraction by arsenic hyperaccumulator Pteris vittata L. from six arsenic-contaminated soils: Repeated harvests and arsenic redistribution

    Energy Technology Data Exchange (ETDEWEB)

    Gonzaga, Maria I.S.; Santos, Jorge A.G. [Department of Soil Chemistry, Universidade Federal da Bahia, Cruz das Almas, 44380000 (Brazil); Ma, Lena Q. [Soil and Water Science Department, University of Florida, 2169 McCarty Hall, Gainesville, FL 32611-0290 (United States)], E-mail: lqma@ifas.ufl.edu

    2008-07-15

    This greenhouse experiment evaluated arsenic removal by Pteris vittata and its effects on arsenic redistribution in soils. P. vittata grew in six arsenic-contaminated soils and its fronds were harvested and analyzed for arsenic in October, 2003, April, 2004, and October, 2004. The soil arsenic was separated into five fractions via sequential extraction. The ferns grew well and took up arsenic from all soils. Fern biomass ranged from 24.8 to 33.5 g plant{sup -1} after 4 months of growth but was reduced in the subsequent harvests. The frond arsenic concentrations ranged from 66 to 6,151 mg kg{sup -1}, 110 to 3,056 mg kg{sup -1}, and 162 to 2,139 mg kg{sup -1} from the first, second and third harvest, respectively. P. vittata reduced soil arsenic by 6.4-13% after three harvests. Arsenic in the soils was primarily associated with amorphous hydrous oxides (40-59%), which contributed the most to arsenic taken up by P. vittata (45-72%). It is possible to use P. vittata to remediate arsenic-contaminated soils by repeatedly harvesting its fronds. - Pteris vittata was effective in continuously removing arsenic from contaminated soils after three repeated harvests.

  4. An evaluation of different soil washing solutions for remediating arsenic-contaminated soils.

    Science.gov (United States)

    Wang, Yiwen; Ma, Fujun; Zhang, Qian; Peng, Changsheng; Wu, Bin; Li, Fasheng; Gu, Qingbao

    2017-04-01

    Soil washing is a promising way to remediate arsenic-contaminated soils. Most research has mostly focused on seeking efficient extractants for removing arsenic, but not concerned with any changes in soil properties when using this technique. In this study, the removal of arsenic from a heavily contaminated soil employing different washing solutions including H 3 PO 4 , NaOH and dithionite in EDTA was conducted. Subsequently, the changes in soil physicochemical properties and phytotoxicity of each washing technique were evaluated. After washing with 2 M H 3 PO 4 , 2 M NaOH or 0.1 M dithionite in 0.1 M EDTA, the soil samples' arsenic content met the clean-up levels stipulated in China's environmental regulations. H 3 PO 4 washing decreased soil pH, Ca, Mg, Al, Fe, and Mn concentrations but increased TN and TP contents. NaOH washing increased soil pH but decreased soil TOC, TN and TP contents. Dithionite in EDTA washing reduced soil TOC, Ca, Mg, Al, Fe, Mn and TP contents. A drastic color change was observed when the soil sample was washed with H 3 PO 4 or 0.1 M dithionite in 0.1 M EDTA. After adjusting the soil pH to neutral, wheat planted in the soil sample washed by NaOH evidenced the best growth of all three treated soil samples. These results will help with selecting the best washing solution when remediating arsenic-contaminated soils in future engineering applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Arsenic in freshwater fish in the Chihuahua County water reservoirs (Mexico).

    Science.gov (United States)

    Nevárez, Myrna; Moreno, Myriam Verónica; Sosa, Manuel; Bundschuh, Jochen

    2011-01-01

    Water reservoirs in Chihuahua County, Mexico, are affected by some punctual and non-punctual geogenic and anthropogenic pollution sources; fish are located at the top of the food chain and are good indicators for the ecosystems pollution. The study goal was to: (i) determine arsenic concentration in fish collected from the Chuviscar, Chihuahua, San Marcos and El Rejon water reservoirs; (ii) to assess if the fishes are suitable for human consumption and (iii) link the arsenic contents in fish with those in sediment and water reported in studies made the same year for these water reservoirs. Sampling was done in summer, fall and winter. The highest arsenic concentration in the species varied through the sampling periods: Channel catfish (Ictalurus punctatus) with 0.22 ± 0.15 mg/kg dw in winter and Green sunfish (Lepomis cyanellus) with 2.00 ± 0.15 mg/kg dw in summer in El Rejon water reservoir. A positive correlation of arsenic contents was found through all sampling seasons in fish samples and the samples of sediment and water. The contribution of the weekly intake of inorganic arsenic, based on the consumption of 0.245 kg fish muscles/body weight/week was found lower than the acceptable weekly intake of 0.015 mg/kg/body weight for inorganic arsenic suggested by FAO/WHO.

  6. Regenerating an Arsenic Removal Iron-Based Adsorptive ...

    Science.gov (United States)

    The replacement of exhausted, adsorptive media used to remove arsenic from drinking water accounts for approximately 80% of the total operational and maintenance (O/M) costs of this commonly used small system technology. The results of three, full scale system studies of an on-site media regeneration process (Part 1) showed it to be effective in stripping arsenic and other contaminants from the exhausted media. Part 2, of this two part paper, presents information on the performance of the regenerated media to remove arsenic through multiple regeneration cycles (3) and the approximate cost savings of regeneration over media replacement. The results of the studies indicate that regenerated media is very effective in removing arsenic and the regeneration cost is substantially less than the media replacement cost. On site regeneration, therefore, provides small systems with alternative to media replacement when removing arsenic from drinking water using adsorptive media technology. Part 2 of a two part paper on the performance of the regenerated media to remove arsenic through multiple regeneration cycles (3) and the approximate cost savings of regeneration over media replacement.

  7. Low selenium status affects arsenic metabolites in an arsenic exposed population with skin lesions.

    Science.gov (United States)

    Huang, Zhi; Pei, Qiuling; Sun, Guifan; Zhang, Sichum; Liang, Jiang; Gao, Yi; Zhang, Xinrong

    2008-01-01

    The antagonistic effects between selenium (Se) and arsenic (As) suggest that low selenium status plays important roles in arsenism development. However, no study has been reported for humans suffering from chronic arsenic exposure with low selenium status. Sixty-three subjects were divided into 2 experimental groups by skin lesions (including hyperkeratosis, depigmentation, and hyperpigmentation). Total urine and serum concentrations of arsenic and selenium were determined by ICP-MS with collision/reaction cell. Arsenic species were analysed by ICP-MS coupled with HPLC. The mean concentration of As in the drinking waters was 41.5 microg/l. The selenium dietary intake for the studied population was 31.7 microg Se/d, and which for the cases and controls were 25.9 and 36.3 microg Se/d, respectively. Compared with the controls, the skin lesions cases had lower selenium concentrations in serum and urine (41.4 vs 49.6 microg/l and 71.0 vs 78.8 microg/l, respectively), higher inorganic arsenic (iAs) in serum (5.2 vs 3.4 microg/l, PiAs in serum and urine (20.2) vs 16.9% and 18.3 vs 14.5%, respectively, PiAs and its inhibition to be biotransformed to DMA occurred in human due to chronic exposure of low selenium status.

  8. Inorganic arsenic exposure and type 2 diabetes mellitus in Mexico

    International Nuclear Information System (INIS)

    Coronado-Gonzalez, Jose Antonio; Razo, Luz Maria del; Garcia-Vargas, Gonzalo; Sanmiguel-Salazar, Francisca; Escobedo-de la Pena, Jorge

    2007-01-01

    Inorganic arsenic exposure in drinking water has been recently related to diabetes mellitus. To evaluate this relationship the authors conducted in 2003, a case-control study in an arseniasis-endemic region from Coahuila, a northern state of Mexico with a high incidence of diabetes. The present analysis includes 200 cases and 200 controls. Cases were obtained from a previous cross-sectional study conducted in that region. Diagnosis of diabetes was established following the American Diabetes Association criteria, with two fasting glucose values ≥126 mg/100 ml (≥7.0 mmol/l) or a history of diabetes treated with insulin or oral hypoglycemic agents. The next subject studied, subsequent to the identification of a case in the cross-sectional study was taken as control. Inorganic arsenic exposure was measured through total arsenic concentrations in urine, measured by hydride-generation atomic absorption spectrophotometry. Subjects with intermediate total arsenic concentration in urine (63.5-104 μg/g creatinine) had two-fold higher risk of having diabetes (odds ratio=2.16; 95% confidence interval: 1.23, 3.79), but the risk was almost three times greater in subjects with higher concentrations of total arsenic in urine (odds ratio=2.84; 95% confidence interval: 1.64, 4.92). This data provides additional evidence that inorganic arsenic exposure may be diabetogenic

  9. Dietary Arsenic Exposure in Bangladesh

    OpenAIRE

    Kile, Molly L.; Houseman, E. Andres; Breton, Carrie V.; Smith, Thomas; Quamruzzaman, Quazi; Rahman, Mahmuder; Mahiuddin, Golam; Christiani, David C.

    2007-01-01

    Background Millions of people in Bangladesh are at risk of chronic arsenic toxicity from drinking contaminated groundwater, but little is known about diet as an additional source of As exposure. Methods We employed a duplicate diet survey to quantify daily As intake in 47 women residing in Pabna, Bangladesh. All samples were analyzed for total As, and a subset of 35 samples were measured for inorganic arsenic (iAs) using inductively coupled plasma mass spectrometry equipped with a dynamic rea...

  10. Arsenic pollution sources.

    Science.gov (United States)

    Garelick, Hemda; Jones, Huw; Dybowska, Agnieszka; Valsami-Jones, Eugenia

    2008-01-01

    Arsenic is a widely dispersed element in the Earth's crust and exists at an average concentration of approximately 5 mg/kg. There are many possible routes of human exposure to arsenic from both natural and anthropogenic sources. Arsenic occurs as a constituent in more than 200 minerals, although it primarily exists as arsenopyrite and as a constituent in several other sulfide minerals. The introduction of arsenic into drinking water can occur as a result of its natural geological presence in local bedrock. Arsenic-containing bedrock formations of this sort are known in Bangladesh, West Bengal (India), and regions of China, and many cases of endemic contamination by arsenic with serious consequences to human health are known from these areas. Significant natural contamination of surface waters and soil can arise when arsenic-rich geothermal fluids come into contact with surface waters. When humans are implicated in causing or exacerbating arsenic pollution, the cause can almost always be traced to mining or mining-related activities. Arsenic exists in many oxidation states, with arsenic (III) and (V) being the most common forms. Similar to many metalloids, the prevalence of particular species of arsenic depends greatly on the pH and redox conditions of the matrix in which it exists. Speciation is also important in determining the toxicity of arsenic. Arsenic minerals exist in the environment principally as sulfides, oxides, and phosphates. In igneous rocks, only those of volcanic origin are implicated in high aqueous arsenic concentrations. Sedimentary rocks tend not to bear high arsenic loads, and common matrices such as sands and sandstones contain lower concentrations owing to the dominance of quartz and feldspars. Groundwater contamination by arsenic arises from sources of arsenopyrite, base metal sulfides, realgar and orpiment, arsenic-rich pyrite, and iron oxyhydroxide. Mechanisms by which arsenic is released from minerals are varied and are accounted for by

  11. Simultaneous determination of total arsenic and total selenium in Chinese medicinal herbs by hydride generation atomic fluorescence spectrometry in tartaric acid medium

    International Nuclear Information System (INIS)

    Liu Zhanfeng; Sun Hanwen; Shen Shigang; Li Liqing; Shi Hongmei

    2005-01-01

    By HG-AFS, a new method was proposed for simultaneous determination of total arsenic and total selenium existed in the Chinese medicinal herbs in tartaric acid medium. The effects of analytical conditions and coexisting ions on the fluorescence signal intensity of analytes were investigated. The proposed method was provided with linear response ranges above 22 μg l -1 for As and 44 μg l -1 for Se, and the detection limits of 0.13 and 0.12 μg l -1 were obtained for As and Se respectively. The recoveries of 93.8-96.1% for As and 95.3-99.1% for Se, and the precision of 1.2-3.8% and 2.4-5.3% (R.S.D., n = 8) respectively, were obtained via simultaneous determined four samples of Chinese medicinal herbs and three certified botanic reference materials successfully. The proposed method has the advantages of simple operation, high sensitivity and high efficiency

  12. Is arsenobetaine the major arsenic compound in the liver of birds marine mammals, and sea turtles?

    Science.gov (United States)

    Kubota, R.; Kunito, T.; Tanabe, S.

    2003-05-01

    Concentrations of total arsenic and individual arsenic compounds were determined in the livers of birds, marine mammals, and sea turtles by using hydride generation-atomic absorption spectrometry (HG-AAS) and high performance liquid chromatography/inductively coupled plasma-mass spectrometry (HPLC/ICP-MS). Marine mammals feeding on cephalopods and crustaceans accumulated higher arsenic concentrations than the species feeding on fishes. No significant age and gender differences in arsenic concentrations were observed for most of the species of marine mammals. Elevated total arsenic concentrations were found in livers of black-footed albatross and loggerhead turtles and these values were comparable to those of lower trophic marine animals. Arsenobetaine was the major arsenical in the livers of most of the species examined. Particularly, in seabirds, mean proportions of arsenobetaine was more than90% of total extractable arsenic In contast, arsenobetaine was a minor constituent in dugong. The compositions of arsenic compounds were different among the species examined. These results might be due to the differences in the metabolic capacity among species and/or the different compositions of arsenic compounds in their preys.

  13. Arsenic drinking water exposure and urinary excretion among adults in the Yaqui Valley, Sonora, Mexico

    International Nuclear Information System (INIS)

    Meza, M.M.; Kopplin, M.J.; Burgess, J.L.; Gandolfi, A.J.

    2004-01-01

    The objective of this study was to determine arsenic exposure via drinking water and to characterize urinary arsenic excretion among adults in the Yaqui Valley, Sonora, Mexico. A cross-sectional study was conducted from July 2001 to May 2002. Study subjects were from the Yaqui Valley, Sonora, Mexico, residents of four towns with different arsenic concentrations in their drinking water. Arsenic exposure was estimated through water intake over 24 h. Arsenic excretion was assessed in the first morning void urine. Total arsenic concentrations and their species arsenate (As V), arsenite (As III), monomethyl arsenic (MMA), and dimethyl arsenic (DMA) were determined by HPLC/ICP-MS. The town of Esperanza with the highest arsenic concentration in water had the highest daily mean intake of arsenic through drinking water, the mean value was 65.5 μg/day. Positive correlation between total arsenic intake by drinking water/day and the total arsenic concentration in urine (r=0.50, P<0.001) was found. Arsenic excreted in urine ranged from 18.9 to 93.8 μg/L. The people from Esperanza had the highest geometric mean value of arsenic in urine, 65.1 μg/L, and it was statistically significantly different from those of the other towns (P<0.005). DMA was the major arsenic species in urine (47.7-67.1%), followed by inorganic arsenic (16.4-25.4%), and MMA (7.5-15%). In comparison with other reports the DMA and MMA distribution was low, 47.7-55.6% and 7.5-9.7%, respectively, in the urine from the Yaqui Valley population (except the town of Cocorit). The difference in the proportion of urinary arsenic metabolites in those towns may be due to genetic polymorphisms in the As methylating enzymes of these populations

  14. Arsenic drinking water exposure and urinary excretion among adults in the Yaqui Valley, Sonora, Mexico.

    Science.gov (United States)

    Meza, Maria Mercedes; Kopplin, Michael J; Burgess, Jefferey L; Gandolfi, A Jay

    2004-10-01

    The objective of this study was to determine arsenic exposure via drinking water and to characterize urinary arsenic excretion among adults in the Yaqui Valley, Sonora, Mexico. A cross-sectional study was conducted from July 2001 to May 2002. Study subjects were from the Yaqui Valley, Sonora, Mexico, residents of four towns with different arsenic concentrations in their drinking water. Arsenic exposure was estimated through water intake over 24 h. Arsenic excretion was assessed in the first morning void urine. Total arsenic concentrations and their species arsenate (As V), arsenite (As III), monomethyl arsenic (MMA), and dimethyl arsenic (DMA) were determined by HPLC/ICP-MS. The town of Esperanza with the highest arsenic concentration in water had the highest daily mean intake of arsenic through drinking water, the mean value was 65.5 microg/day. Positive correlation between total arsenic intake by drinking water/day and the total arsenic concentration in urine (r = 0.50, P < 0.001) was found. Arsenic excreted in urine ranged from 18.9 to 93.8 microg/L. The people from Esperanza had the highest geometric mean value of arsenic in urine, 65.1 microg/L, and it was statistically significantly different from those of the other towns (P < 0.005). DMA was the major arsenic species in urine (47.7-67.1%), followed by inorganic arsenic (16.4-25.4%), and MMA (7.5-15%). In comparison with other reports the DMA and MMA distribution was low, 47.7-55.6% and 7.5-9.7%, respectively, in the urine from the Yaqui Valley population (except the town of Cocorit). The difference in the proportion of urinary arsenic metabolites in those towns may be due to genetic polymorphisms in the As methylating enzymes of these populations.

  15. Arsenic speciation in moso bamboo shoot - A terrestrial plant that contains organoarsenic species

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Rui [Department of Chemistry, Key laboratory for Atomic and Molecular Nanosciences of Education Ministry, Tsinghua University, Beijing 100084, P.R. China (China); Zhao Mengxia [Department of Chemistry, Key laboratory for Atomic and Molecular Nanosciences of Education Ministry, Tsinghua University, Beijing 100084 (China); Wang Hui [Department of Chemistry, Key laboratory for Atomic and Molecular Nanosciences of Education Ministry, Tsinghua University, Beijing 100084 (China); Taneike, Yasuhito [Shimadzu Co Ltd, Spectroscopy Business Unit Analytical Instruments Div, Nakagyo Ku, Kyoto, 6048511 (Japan); Zhang Xinrong [Department of Chemistry, Key laboratory for Atomic and Molecular Nanosciences of Education Ministry, Tsinghua University, Beijing 100084 (China)]. E-mail: xrzhang@chem.tsinghua.edu.cn

    2006-12-01

    Arsenic is predominantly found as an inorganic species in most terrestrial plants. However, we found that a significant proportion of organic arsenic was present in moso bamboo (Phyllostachys pubescens Mazel) shoot in a market survey of arsenic species in edible terrestrial plants. Moso bamboo shoots from different producing areas in China were collected for analysis to confirm the ubiquity of methylated arsenic species. The total arsenic concentrations of bamboo shoots were determined by hydride generation coupled atomic fluorescence spectrometry (HG-AFS), ranging from 27.7 to 94.0 {mu}g/kg. Information about arsenic species was acquired from cold trap-hydride generation-atomic absorption spectrometry (CT-HG-AAS). Dimethylarsinic acid (DMA) was present in the amount of 13.9% to 44.9% of sum of the arsenic species in all these samples. Monomethylarsonic acid (MMA) and trimethylarsine oxide (TMAO) were also detected in certain samples in the range of 4.2-16.5% and 11.8-18.4%, respectively. In addition, bamboo shoots collected in winter were found to have more total arsenic and organic arsenic than those collected in spring. To investigate the source of the organic arsenic in moso bamboo shoots, arsenic species in the rhizosphere soils of the plants were examined. The absence of organic arsenic in soils would suggest the possibility of formation of methylated arsenic in the plants. In addition, studies of arsenic speciation in the peel and core of winter bamboo shoots showed that all the cores contained organic arsenic while no organic arsenic was detected in the peels. The study provides useful information for better understanding of the distribution of arsenic species in terrestrial plants.

  16. Total inorganic arsenic detection in real water samples using anodic stripping voltammetry and a gold-coated diamond thin-film electrode.

    Science.gov (United States)

    Song, Yang; Swain, Greg M

    2007-06-12

    An accurate method for total inorganic arsenic determination in real water samples was developed using differential pulse anodic stripping voltammetry (DPASV) and a Au-coated boron-doped diamond thin-film electrode. Keys to the method are the use of a conducting diamond platform and solid phase extraction for sample preparation. In the method, the As(III) present in the sample is first detected by DPASV. The As(V) present is then reduced to As(III) by reaction with Na2SO3 and this is followed by a second detection of As(III) by DPASV. Interfering metal ions (e.g., Cu(II)) that cause decreased electrode response sensitivity for arsenic in real samples are removed by solid phase extraction as part of the sample preparation. For example, Cu(II) caused a 30% decrease in the As stripping peak current at a solution concentration ratio of 3:1 (Cu(II)/As(III)). This loss was mitigated by passage of the solution through a Chelex 100 cation exchange resin. After passage, only a 5% As stripping current response loss was seen. The effect of organic matter on the Au-coated diamond electrode response for As(III) was also evaluated. Humic acid at a 5 ppm concentration caused only a 9% decrease in the As stripping peak charge for Au-coated diamond. By comparison, a 50% response decrease was observed for Au foil. Clearly, the chemical properties of the diamond surface in the vicinity of the metal deposits inhibit molecular adsorption on at least some of the Au surface. The method provided reproducible and accurate results for total inorganic arsenic in two contaminated water samples provided by the U.S. Bureau of Reclamation. The total inorganic As concentration in the two samples, quantified by the standard addition method, was 23.2+/-2.9 ppb for UV plant influent water and 16.4+/-0.9 ppb for Well 119 water (n=4). These values differed from the specified concentrations by less than 4%.

  17. Total inorganic arsenic detection in real water samples using anodic stripping voltammetry and a gold-coated diamond thin-film electrode

    International Nuclear Information System (INIS)

    Song Yang; Swain, Greg M.

    2007-01-01

    An accurate method for total inorganic arsenic determination in real water samples was developed using differential pulse anodic stripping voltammetry (DPASV) and a Au-coated boron-doped diamond thin-film electrode. Keys to the method are the use of a conducting diamond platform and solid phase extraction for sample preparation. In the method, the As(III) present in the sample is first detected by DPASV. The As(V) present is then reduced to As(III) by reaction with Na 2 SO 3 and this is followed by a second detection of As(III) by DPASV. Interfering metal ions (e.g., Cu(II)) that cause decreased electrode response sensitivity for arsenic in real samples are removed by solid phase extraction as part of the sample preparation. For example, Cu(II) caused a 30% decrease in the As stripping peak current at a solution concentration ratio of 3:1 (Cu(II)/As(III)). This loss was mitigated by passage of the solution through a Chelex 100 cation exchange resin. After passage, only a 5% As stripping current response loss was seen. The effect of organic matter on the Au-coated diamond electrode response for As(III) was also evaluated. Humic acid at a 5 ppm concentration caused only a 9% decrease in the As stripping peak charge for Au-coated diamond. By comparison, a 50% response decrease was observed for Au foil. Clearly, the chemical properties of the diamond surface in the vicinity of the metal deposits inhibit molecular adsorption on at least some of the Au surface. The method provided reproducible and accurate results for total inorganic arsenic in two contaminated water samples provided by the U.S. Bureau of Reclamation. The total inorganic As concentration in the two samples, quantified by the standard addition method, was 23.2 ± 2.9 ppb for UV plant influent water and 16.4 ± 0.9 ppb for Well 119 water (n = 4). These values differed from the specified concentrations by less than 4%

  18. Arsenic toxicosis in cattle associated with soil and water contamination from mining operations

    Energy Technology Data Exchange (ETDEWEB)

    Bergeland, M.E.; Ruth, G.R.; Stack, R.L.; Emerick, R.J.

    1976-01-01

    Arsenic toxicosis occurred in cattle from 2 herds located along rivers in western South Dakota that have been contaminated by effluence of mine tailings during many years of gold mining in the area. Clinical signs in cattle of various ages from herd A included aberrant behavior, progressive weakness, abscess formation, emaciation, and agonal convulsions. Cows from herd B exhibited posterior ataxia and recurrent epileptiform convulsions. Hepatic lipidosis was found in 2 cows, and cerebral edema plus necrosis of cerebrocortical neurons was seen in the brain of 1 cow. Soil from the cattle yard of premise A, which is on the floodplain of a contaminated creek, contained 2200 ppM arsenic. Corn silage that has been contaminated with soil during silo-filling contained 140 ppM arsenic. The arsenic content of hair from herd A cattle ranged from 2.4 to 22.0 ppM and the arsenic content of the liver and kidney of 1 cow from herd B was 3.0 and 7.0 ppM, respectively.

  19. Soil biological attributes in arsenic-contaminated gold mining sites after revegetation.

    Science.gov (United States)

    Dos Santos, Jessé Valentim; de Melo Rangel, Wesley; Azarias Guimarães, Amanda; Duque Jaramillo, Paula Marcela; Rufini, Márcia; Marra, Leandro Marciano; Varón López, Maryeimy; Pereira da Silva, Michele Aparecida; Fonsêca Sousa Soares, Cláudio Roberto; de Souza Moreira, Fatima Maria

    2013-12-01

    Recovery of arsenic contaminated areas is a challenge society faces throughout the world. Revegetation associated with microbial activity can play an essential role in this process. This work investigated biological attributes in a gold mining area with different arsenic contents at different sites under two types of extant revegetation associated with cover layers of the soil: BS, Brachiaria sp. and Stizolobium sp., and LEGS, Acacia crassicarpa, A. holosericea, A. mangium, Sesbania virgata, Albizia lebbeck and Pseudosamanea guachapele. References were also evaluated, comprising the following three sites: B1, weathered sulfide substrate without revegetation; BM, barren material after gold extraction and PRNH (private reserve of natural heritage), an uncontaminated forest site near the mining area. The organic and microbial biomass carbon contents and substrate-induced respiration rates for these sites from highest to lowest were: PRNH > LEGS > BS > B1 and BM. These attributes were negatively correlated with soluble and total arsenic concentration in the soil. The sites that have undergone revegetation (LEGS and BS) had higher densities of bacteria, fungi, phosphate solubilizers and ammonium oxidizers than the sites without vegetation. Principal component analysis showed that the LEGS site grouped with PRNH, indicating that the use of leguminous species associated with an uncontaminated soil cover layer contributed to the improvement of the biological attributes. With the exception of acid phosphatase, all the biological attributes were indicators of soil recovery, particularly the following: microbial carbon, substrate-induced respiration, density of culturable bacteria, fungi and actinobacteria, phosphate solubilizers and metabolic quotient.

  20. Establishment of Groundwater Arsenic Potential Distribution and Discrimination in Taiwan

    Science.gov (United States)

    Tsai, Kuo Sheng; Chen, Yu Ying; Chung Liu, Chih; Lin, Chien Wen

    2016-04-01

    According to the last 10 years groundwater monitoring data in Taiwan, Arsenic concentration increase rapidly in some areas, similar to Bengal and India, the main source of Arsenic-polluted groundwater is geological sediments, through reducing reactions. There are many researches indicate that high concentration of Arsenic in groundwater poses the risk to water safety, for example, the farm lands irrigation water contains Arsenic cause the concentration of Arsenic increase in soil and crops. Based on the management of water usage instead of remediation in the situation of insufficient water. Taiwan EPA has been developed the procedures of Arsenic contamination potential area establishment and source discriminated process. Taiwan EPA use the procedures to determine the management of using groundwater, and the proposing usage of Arsenic groundwater accordance with different objects. Agencies could cooperate with the water quality standard or water needs, studying appropriate water purification methods and the groundwater depth, water consumption, thus achieve the goal of water safety and environmental protection, as a reference of policy to control total Arsenic concentration in groundwater. Keywords: Arsenic; Distribution; Discrimination; Pollution potential area of Arsenic; Origin evaluation of groundwater Arsenic

  1. Determination of trace metals and analysis of arsenic species in tropical marine fishes from Spratly islands.

    Science.gov (United States)

    Li, Jingxi; Sun, Chengjun; Zheng, Li; Jiang, Fenghua; Wang, Shuai; Zhuang, Zhixia; Wang, Xiaoru

    2017-09-15

    Trace metal contents in 38 species of tropical marine fishes harvested from the Spratly islands of China were determined by microwave digestion and inductively coupled plasma mass spectrometry analysis. Arsenic species were determined by high-performance liquid chromatography and inductively coupled plasma mass spectrometry analysis. The average levels of Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Pb, and U in the fish samples were 1.683, 0.350, 0.367, 2.954, 36.615, 0.087, 0.319, 1.566, 21.946, 20.845, 2.526, 3.583, 0.225, 0.140, and 0.061mg·kg -1 , respectively; Fe, Zn, and As were found at high concentrations. The trace metals exhibited significant positive correlation between each other, with r value of 0.610-0.852. Further analysis indicated that AsB (8.560-31.020mg·kg -1 ) was the dominant arsenic species in the fish samples and accounted for 31.48% to 47.24% of the total arsenic. As(III) and As(V) were detected at low concentrations, indicating minimal arsenic toxicity. Copyright © 2017. Published by Elsevier Ltd.

  2. Arsenic contamination of natural waters in San Juan and La Pampa, Argentina.

    Science.gov (United States)

    O'Reilly, J; Watts, M J; Shaw, R A; Marcilla, A L; Ward, N I

    2010-12-01

    Arsenic (As) speciation in surface and groundwater from two provinces in Argentina (San Juan and La Pampa) was investigated using solid phase extraction (SPE) cartridge methodology with comparison to total arsenic concentrations. A third province, Río Negro, was used as a control to the study. Strong cation exchange (SCX) and strong anion exchange (SAX) cartridges were utilised in series for the separation and preservation of arsenite (As(III)), arsenate (As(V)), monomethylarsonic acid (MA(V)) and dimethylarsinic acid (DMA(V)). Samples were collected from a range of water outlets (rivers/streams, wells, untreated domestic taps, well water treatment works) to assess the relationship between total arsenic and arsenic species, water type and water parameters (pH, conductivity and total dissolved solids, TDS). Analysis of the waters for arsenic (total and species) was performed by inductively coupled plasma mass spectrometry (ICP-MS) in collision cell mode. Total arsenic concentrations in the surface and groundwater from Encon and the San José de Jáchal region of San Juan (north-west Argentina within the Cuyo region) ranged from 9 to 357 μg l(-1) As. Groundwater from Eduardo Castex (EC) and Ingeniero Luiggi (LU) in La Pampa (central Argentina within the Chaco-Pampean Plain) ranged from 3 to 1326 μg l(-1) As. The pH range for the provinces of San Juan (7.2-9.7) and La Pampa (7.0-9.9) are in agreement with other published literature. The highest total arsenic concentrations were found in La Pampa well waters (both rural farms and pre-treated urban sources), particularly where there was high pH (typically > 8.2), conductivity (>2,600 μS cm(-1)) and TDS (>1,400 mg l(-1)). Reverse osmosis (RO) treatment of well waters in La Pampa for domestic drinking water in EC and LU significantly reduced total arsenic concentrations from a range of 216-224 μg l(-1) As to 0.3-0.8 μg l(-1) As. Arsenic species for both provinces were predominantly As(III) and As(V). As

  3. Arsenic biotransformation by a cyanobacterium Nostoc sp. PCC 7120.

    Science.gov (United States)

    Xue, Xi-Mei; Yan, Yu; Xiong, Chan; Raber, Georg; Francesconi, Kevin; Pan, Ting; Ye, Jun; Zhu, Yong-Guan

    2017-09-01

    Nostoc sp. PCC 7120 (Nostoc), a typical filamentous cyanobacterium ubiquitous in aquatic system, is recognized as a model organism to study prokaryotic cell differentiation and nitrogen fixation. In this study, Nostoc cells incubated with arsenite (As(III)) for two weeks were extracted with dichloromethane/methanol (DCM/MeOH) and the extract was partitioned between water and DCM. Arsenic species in aqueous and DCM layers were determined using high performance liquid chromatography - inductively coupled plasma mass spectrometer/electrospray tandem mass spectrometry (HPLC-ICPMS/ESIMSMS). In addition to inorganic arsenic (iAs), the aqueous layer also contained monomethylarsonate (MAs(V)), dimethylarsinate (DMAs(V)), and the two arsenosugars, namely a glycerol arsenosugar (Oxo-Gly) and a phosphate arsenosugar (Oxo-PO4). Two major arsenosugar phospholipids (AsSugPL982 and AsSugPL984) were detected in DCM fraction. Arsenic in the growth medium was also investigated by HPLC/ICPMS and shown to be present mainly as the inorganic forms As(III) and As(V) accounting for 29%-38% and 29%-57% of the total arsenic respectively. The total arsenic of methylated arsenic, arsenosugars, and arsenosugar phospholipids in Nostoc cells with increasing As(III) exposure were not markedly different, indicating that the transformation to organoarsenic in Nostoc was not dependent on As(III) concentration in the medium. Our results provide new insights into the role of cyanobacteria in the biogeochemical cycling of arsenic. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Protective effects of plasma alpha-tocopherols on the risk of inorganic arsenic-related urothelial carcinoma

    International Nuclear Information System (INIS)

    Chung, Chi-Jung; Pu, Yeong-Shiau; Chen, Ying-Ting; Su, Chien-Tien; Wu, Chia-Chang; Shiue, Horng-Sheng; Huang, Chao-Yuan; Hsueh, Yu-Mei

    2011-01-01

    Arsenic plays an important role in producing oxidative stress in cultured cells. To investigate the interaction between high oxidative stress and low arsenic methylation capacity on arsenic carcinogenesis, a case-control study was conducted to evaluate the relationship among the indices of oxidative stress, such as urinary 8-hydroxydeoxyquanine (8-OHdG), as well as plasma micronutrients and urinary arsenic profiles on urothelial carcinoma (UC) risk. Urinary 8-OHdG was measured using high-sensitivity enzyme-linked immunosorbent assay kits. The urinary arsenic species were analyzed using high-performance liquid chromatography and hydride generator-atomic absorption spectrometry. Plasma micronutrient levels were analyzed using reversed-phase high-performance liquid chromatography. The present study showed a significant protective effect of plasma alpha-tocopherol on UC risk. Plasma alpha-tocopherol levels were significantly inversely related to urinary total arsenic concentrations and inorganic arsenic percentage (InAs%), and significantly positively related to dimethylarsinic acid percentage (DMA%). There were no correlations between plasma micronutrients and urinary 8-OHdG. Study participants with lower alpha-tocopherol and higher urinary total arsenic, higher InAs%, higher MMA%, and lower DMA% had a higher UC risk than those with higher alpha-tocopherol and lower urinary total arsenic, lower InAs%, lower MMA%, and higher DMA%. These results suggest that plasma alpha-tocopherol might modify the risk of inorganic arsenic-related UC. - Research Highlights: → Plasma alpha-tocopherol levels were significantly inversely related to UC risk. → There were no correlations between plasma micronutrients and urinary 8-OHdG. → People with lower alpha-tocopherol and higher total arsenic had increased UC risk.

  5. Protective effects of plasma alpha-tocopherols on the risk of inorganic arsenic-related urothelial carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Chi-Jung [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China); Pu, Yeong-Shiau [Department of Urology, National Taiwan University Hospital, Taipei, Taiwan (China); Chen, Ying-Ting [Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Su, Chien-Tien [Department of Family Medicine, Taipei Medical University Hospital, Taipei, Taiwan (China); Wu, Chia-Chang [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China); Department of Urology, Taipei Medical Universtiy-Shuang Ho Hospital, Taipei, Taiwan (China); Shiue, Horng-Sheng [Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan (China); Huang, Chao-Yuan [Department of Urology, National Taiwan University Hospital, Taipei, Taiwan (China); Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Hsueh, Yu-Mei, E-mail: ymhsueh@tmu.edu.tw [Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (China)

    2011-02-15

    Arsenic plays an important role in producing oxidative stress in cultured cells. To investigate the interaction between high oxidative stress and low arsenic methylation capacity on arsenic carcinogenesis, a case-control study was conducted to evaluate the relationship among the indices of oxidative stress, such as urinary 8-hydroxydeoxyquanine (8-OHdG), as well as plasma micronutrients and urinary arsenic profiles on urothelial carcinoma (UC) risk. Urinary 8-OHdG was measured using high-sensitivity enzyme-linked immunosorbent assay kits. The urinary arsenic species were analyzed using high-performance liquid chromatography and hydride generator-atomic absorption spectrometry. Plasma micronutrient levels were analyzed using reversed-phase high-performance liquid chromatography. The present study showed a significant protective effect of plasma alpha-tocopherol on UC risk. Plasma alpha-tocopherol levels were significantly inversely related to urinary total arsenic concentrations and inorganic arsenic percentage (InAs%), and significantly positively related to dimethylarsinic acid percentage (DMA%). There were no correlations between plasma micronutrients and urinary 8-OHdG. Study participants with lower alpha-tocopherol and higher urinary total arsenic, higher InAs%, higher MMA%, and lower DMA% had a higher UC risk than those with higher alpha-tocopherol and lower urinary total arsenic, lower InAs%, lower MMA%, and higher DMA%. These results suggest that plasma alpha-tocopherol might modify the risk of inorganic arsenic-related UC. - Research Highlights: {yields} Plasma alpha-tocopherol levels were significantly inversely related to UC risk. {yields} There were no correlations between plasma micronutrients and urinary 8-OHdG. {yields} People with lower alpha-tocopherol and higher total arsenic had increased UC risk.

  6. Rapid biotransformation of arsenic by a model protozoan Tetrahymena thermophila

    Energy Technology Data Exchange (ETDEWEB)

    Yin Xixiang [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); State Key Lab of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China); Zhang Yongyu; Yang Jun [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Zhu Yongguan, E-mail: ygzhu@rcees.ac.cn [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); State Key Lab of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China)

    2011-04-15

    Arsenic biomethylation and biovolatilization are thought to be two important metabolic pathways in aquatic and soil environments. Tetrahymena thermophila is a genus of free-living ciliated protozoan that is widely distributed in freshwater environments around the world. In this study, we studied arsenic accumulation, speciation, efflux, methylation and volatilization in this unicellular eukaryote exposed to various concentrations of arsenate. Our results show that T. thermophila accumulated 187 mg.kg{sup -1} dry weight of arsenic when exposed to 40 {mu}M for 48 h, with MMAs(V) (monomethylarsenate) and DMAs(V) (dimethylarsenate) as the dominant species, accounting for 66% of the total arsenic. Meanwhile, arsenate, arsenite, MMAs(V) and DMAs(V) were detected in the culture medium; the last three were released by the cells. The production of volatile arsenic increased with increasing external As(V) concentrations and exposure time. To our knowledge, this is the first study on arsenic metabolism, particularly biomethylation and biovolatilization, in protozoa. - Tetrahymena thermophila can rapidly methylate arsenic, and produce volatile arsenicals.

  7. Interspecific variation in total phenolic content in temperate brown algae

    Directory of Open Access Journals (Sweden)

    Anna Maria Mannino

    2017-09-01

    Full Text Available Marine algae synthesize secondary metabolites such as polyphenols that function as defense and protection mechanisms. Among brown algae, Fucales and Dictyotales (Phaeophyceae contain the highest levels of phenolic compounds, mainly phlorotannins, that play multiple roles. Four temperate brown algae (Cystoseira amentacea, Cystoseira compressa, Dictyopteris polypodioides and Padina pavonica were studied for total phenolic contents. Total phenolic content was determined colorimetrically with the Folin-Ciocalteu reagent. Significant differences in total phenolic content were observed between leathery and sheetlike algae and also within each morphological group. Among the four species, the sheet-like alga D. polypodioides, living in the upper infralittoral zone, showed the highest concentration of phenolic compounds. These results are in agreement with the hypothesis that total phenolic content in temperate brown algae is influenced by a combination of several factors, such as growth form, depth, and exposition to solar radiation.

  8. Naturally occurring arsenic in the groundwater at the Kansas City Plant

    Energy Technology Data Exchange (ETDEWEB)

    Korte, N.E.

    1990-12-01

    This report describes an investigation concerning the presence of arsenic in concentrations exceeding 0.4 mg/L in the groundwater under the Department of Energy's Kansas City Plant (KCP). The study consisted of four distinct phases: a thorough review of the technical literature, a historical survey of arsenic use at the facility, a laboratory study of existing techniques for determining arsenic speciation, and a field program including water, soil, and sediment sampling. The historical survey and literature review demonstrated that plant activities had not released significant quantities of arsenic to the environment but that similar occurrences of arsenic in alluvial groundwater are widespread in the midwestern United States. Laboratory studies showed that a chromatographic separation technique was necessary to accurately determine arsenic speciation for the KCP groundwater samples. Field studies revealed that naturally occurring reducing conditions prevalent in the subsurface are responsible for dissolving arsenic previously sorbed by iron oxides. Indeed, the data demonstrated that the bulk arsenic concentration of site subsoils and sediments is {approximately}7 mg/kg, whereas the arsenic content of iron oxide subsamples is as high as 84 mg/kg. Literature showed that similar concentrations of arsenic in sediments occur naturally and are capable of producing the levels of arsenic found in groundwater monitoring wells at the KCP. The study concludes, therefore, that the arsenic present in the KCP groundwater is the result of natural phenomena. 44 refs., 8 figs., 14 tabs.

  9. Total Arsenic Determination and Speciation in Infant Food Products by Ion Chromatography Inductively Coupled Plasma Mass Spectrometry

    Science.gov (United States)

    Health risk associated with dietary arsenic intake may be different for infants and adults. Seafood is the main contributor to arsenic intake for adults while terrestrial-based food is the primary source for infants. Processed infant food products such as rice-based cereals, mi...

  10. Arsenic in the light ashes and cow milk in Ostrava region

    Energy Technology Data Exchange (ETDEWEB)

    Masek, J; Hais, K; Medek, T; Svobodova, R

    1965-09-01

    The authors found that the more a region-supplying fodder for cattle is polluted by arsenic exhalations, the more of it is eliminated by cow milk. In a region with an average of 33.0 kg. of arsenic deposition per 1 km/sup 2/ in the course of a year, an average concentration of 12.52 gamma % of arsenic is reported to be present in the dried cow milk, but in a region with an average of 10.0 kg of arsenic dust fall per 1 km/sup 2/ in the course of a year, an average concentration of 7.69 gamma % of arsenic was found. In the control region no arsenic either in dust fall or milk was found. These results suggest that in a region with arsenic emissions, the content of this element is accumulated in all agricultural products, in fodder and in the cow milk. The authors emphasize the necessity for factories to take appropriate measures to improve the atmosphere by preventing all waste substances which threaten man's and animal's health conditions.

  11. Arsenic in industrial waste water from copper production technological process

    Directory of Open Access Journals (Sweden)

    Biljana Jovanović

    2013-12-01

    Full Text Available Investigation of arsenic in industrial waste water is of a great importance for environment. Discharge of untreated waste water from a copper production process results in serious pollution of surface water, which directly affects flora and fauna, as well as humans. There is a need for efficient and environmentally acceptable treament of waste waters containing heavy metals and arsenic. The paper presents an analyisis of the waste water from The Copper Smelter which is discharged into the Bor river. The expected arsenic content in treated waste water after using HDS procedure is also presented.

  12. Arsenic poisoning in cattle following pasture contamination by drift of spray

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, A D

    1962-03-03

    Arsenical poisoning was the cause of death of 3 calves in a small herd of 1 cow and 5 calves. The source was drift contamination from potato haulm spraying. Information is given on symptoms, post mortem findings, analysis of haulms, herbage, kidney, urine and milk samples. No significant rise was found in the arsenic content of excreted milk.

  13. Arsenic concentrations correlate with salinity for fish taken from the North Sea and Baltic waters

    DEFF Research Database (Denmark)

    Larsen, Erik Huusfeldt; Francesconi, K. A.

    2003-01-01

    Total arsenic concentrations were determined in three teleost species (herring Clupea harengus; cod Gadus morhua, and flounder Platichthys flesus) taken. from four locations in the Baltic and North Sea with salinities ranging from 8 to 32 psu. Individual arsenic concentrations ranged from 0.......04 to 10.9 mg/kg wet mass, and there was a positive linear relationship between arsenic concentration and salinity for all three species (r(2) 0.44 to 0.72, all P arsenic than do freshwater fish, the data reported...... here are the first showing a relationship between the total arsenic concentration in fish and salinity....

  14. Corrigendum to "Arsenic mineralogy and mobility in the arsenic-rich historical mine waste dump" [Sci. Total Environ. 536 (2015) 713-728

    Czech Academy of Sciences Publication Activity Database

    Filippi, Michal; Drahota, P.; Machovič, V.; Böhmová, Vlasta; Mihaljevič, M.

    2016-01-01

    Roč. 541, January 15 (2016), s. 1639 ISSN 0048-9697 Institutional support: RVO:67985831 Keywords : corrigendum * erratum * arsenic mineralogy Subject RIV: DB - Geology ; Mineralogy Impact factor: 4.900, year: 2016

  15. HPLC-HG-AFS determination of arsenic species in acute promyelocytic leukemia (APL) plasma and blood cells.

    Science.gov (United States)

    Guo, Meihua; Wang, Wenjing; Hai, Xin; Zhou, Jin

    2017-10-25

    Arsenic trioxide (ATO) has been successfully used in the treatment of acute promyelocytic leukemia (APL). To clarify the arsenic species in APL patients, high performance liquid chromatography-hydride generation-atomic fluorescence spectrometry (HPLC-HG-AFS) and HG-AFS methods were developed and validated to quantify the plasma concentrations of inorganic arsenic (As(III) and As(V)) and methylated metabolites (MMA and DMA), and the total amounts of arsenic in blood cells and plasma. Blood cells and plasma were digested with mixtures of HNO 3 H 2 O 2 and analyzed by HG-AFS. For arsenic speciation, plasma samples were prepared with perchloric acid to precipitate protein. The supernatant was separated on an anion-exchange column within 6min with isocratic elution using 13mM CH 3 COONa, 3mM NaH 2 PO 4 , 4mM KNO 3 and 0.2mM EDTA-2Na. The methods provided linearity range of 0.2-20ng/mL for total arsenic and 2.0-50ng/mL for four arsenic species. The developed methods for total arsenic and arsenic species determination were precise and accurate. The spiked recoveries ranged from 81.2%-108.6% and the coefficients of variation for intra- and inter-batch precision were less than 9.3% and 12.5%, respectively. The developed methods were applied successfully for the assay of total arsenic and arsenic species in 5 APL patients. The HPLC-HG-AFS may be a good alternative for arsenic species determination in APL patients with its simplicity and low-cost in comparison with HPLC-ICP-MS. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Comparison of total phenolic content and composition of individual ...

    African Journals Online (AJOL)

    A successful peanut breeding to obtain genotypes with greater phenolic content requires information on type and content of phenolic compounds in parental peanut genotypes. The aim of this study was to investigate the total phenolic contents and phenolic acid profiles of 15 Valencia-type peanut genotypes both in peanut ...

  17. Removal of arsenic from ground water samples collected from West Bengal, India

    International Nuclear Information System (INIS)

    Ajith, Nicy; Swain, K.K.; Dalvi, Aditi A.; Verma, R.

    2015-01-01

    Arsenic contamination in ground water is one of the major concerns in many parts of the world including Bangladesh and India. Considering the high toxicity of arsenic, World Health Organization (WHO) has set a provisional guideline value of 10 μg L -1 for arsenic in drinking water. Several methods have been adopted for the removal of arsenic from drinking water. Most of the methods fail to remove As(III), the most toxic form of arsenic. An extra oxidative treatment step is essential for effective removal of total arsenic. Manganese dioxide (MnO 2 ) oxidizes As(III) to As(V). Removal of arsenic from water using manganese dioxide has been reported. During this work, removal of arsenic from ground water samples collected from arsenic contaminated area of West Bengal, India were carried out using MnO 2

  18. Bioaccessibility and arsenic speciation in carrots, beets and quinoa from a contaminated area of Chile

    Energy Technology Data Exchange (ETDEWEB)

    Pizarro, Isabel [Facultad de Ciencias Básicas, Universidad de Antofagasta, 02800 Antofagasta (Chile); Gómez-Gómez, Milagros [Department of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, 28040 Madrid (Spain); León, Jennifer; Román, Domingo [Facultad de Ciencias Básicas, Universidad de Antofagasta, 02800 Antofagasta (Chile); Palacios, M. Antonia, E-mail: palacor@ucm.es [Department of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, 28040 Madrid (Spain)

    2016-09-15

    Consumption of vegetables grown in arsenic (As)-contaminated soils is an important exposure route to the element for humans. The present study is focused on locally-grown, frequently-consumed vegetables, such as carrots (Daucus carota), beets (Beta vulgaris) and quinoa (Chenopodium) from the As-polluted Chiu Chiu area in Northern Chile. The latter region is affected both by As discharge from copper mining activity and natural As contamination, leading to a high As content in local food and water. For the selected vegetables, the following aspects were investigated: i) Their total As, Cu, Pb, Cr, Cd and Mn content; ii) Arsenic speciation in the edible part of the vegetables by liquid chromatography inductively-coupled plasma mass spectrometry (LC-ICPMS) analysis; iii) Arsenic bioaccessibility in the vegetables during in vitro gastrointestinal digestion; iv) Arsenic species present in the extracts obtained from in vitro gastrointestinal digestion; and v) Arsenic dietary exposure estimates for the assessment of the risk posed by the vegetables consumption. A significant degree of As contamination was found in the vegetables under study, their metal content having been compared with that of similar Spanish uncontaminated products. In vitro gastrointestinal digestion of the studied vegetables led to quantitative extraction of As from carrots and beets, whereas efficiency was about 40% for quinoa. For carrots, only As(III) and As(V) species were found, being their concentration levels similar. In the case of quinoa, around 85% of the element was present as As(V). For beets, inorganic As(V) and unknown overlapped As species (probably arsenosugars) were found. No significant transformation of the original As species was observed during in vitro gastrointestinal digestion. Arsenic dietary exposure values obtained for the three vegetables (0.017–0.021 μg As person{sup −1} day{sup −1}) were much lower than the JFCFA's safety limit of 50 μg As person{sup −1} day

  19. Bioaccessibility and arsenic speciation in carrots, beets and quinoa from a contaminated area of Chile

    International Nuclear Information System (INIS)

    Pizarro, Isabel; Gómez-Gómez, Milagros; León, Jennifer; Román, Domingo; Palacios, M. Antonia

    2016-01-01

    Consumption of vegetables grown in arsenic (As)-contaminated soils is an important exposure route to the element for humans. The present study is focused on locally-grown, frequently-consumed vegetables, such as carrots (Daucus carota), beets (Beta vulgaris) and quinoa (Chenopodium) from the As-polluted Chiu Chiu area in Northern Chile. The latter region is affected both by As discharge from copper mining activity and natural As contamination, leading to a high As content in local food and water. For the selected vegetables, the following aspects were investigated: i) Their total As, Cu, Pb, Cr, Cd and Mn content; ii) Arsenic speciation in the edible part of the vegetables by liquid chromatography inductively-coupled plasma mass spectrometry (LC-ICPMS) analysis; iii) Arsenic bioaccessibility in the vegetables during in vitro gastrointestinal digestion; iv) Arsenic species present in the extracts obtained from in vitro gastrointestinal digestion; and v) Arsenic dietary exposure estimates for the assessment of the risk posed by the vegetables consumption. A significant degree of As contamination was found in the vegetables under study, their metal content having been compared with that of similar Spanish uncontaminated products. In vitro gastrointestinal digestion of the studied vegetables led to quantitative extraction of As from carrots and beets, whereas efficiency was about 40% for quinoa. For carrots, only As(III) and As(V) species were found, being their concentration levels similar. In the case of quinoa, around 85% of the element was present as As(V). For beets, inorganic As(V) and unknown overlapped As species (probably arsenosugars) were found. No significant transformation of the original As species was observed during in vitro gastrointestinal digestion. Arsenic dietary exposure values obtained for the three vegetables (0.017–0.021 μg As person"−"1 day"−"1) were much lower than the JFCFA's safety limit of 50 μg As person"−"1 day"−"1. Therefore

  20. Evaluation of innovative arsenic treatment technologies :the arsenic water technology partnership vendors forums summary report.

    Energy Technology Data Exchange (ETDEWEB)

    Everett, Randy L.; Siegel, Malcolm Dean; McConnell, Paul E.; Kirby, Carolyn (Comforce Technical Services, Inc.)

    2006-09-01

    The lowering of the drinking water standard (MCL) for arsenic from 50 {micro}g/L to 10 {micro}g/L in January 2006 could lead to significant increases in the cost of water for many rural systems throughout the United States. The Arsenic Water Technology Partnership (AWTP), a collaborative effort of Sandia National Laboratories, the Awwa Research Foundation (AwwaRF) and WERC: A Consortium for Environmental Education and Technology Development, was formed to address this problem by developing and testing novel treatment technologies that could potentially reduce the costs of arsenic treatment. As a member of the AWTP, Sandia National Laboratories evaluated cutting-edge commercial products in three annual Arsenic Treatment Technology Vendors Forums held during the annual New Mexico Environmental Health Conferences (NMEHC) in 2003, 2004 and 2005. The Forums were comprised of two parts. At the first session, open to all conference attendees, commercial developers of innovative treatment technologies gave 15-minute talks that described project histories demonstrating the effectiveness of their products. During the second part, these same technologies were evaluated and ranked in closed sessions by independent technical experts for possible use in pilot-scale field demonstrations being conducted by Sandia National Laboratories. The results of the evaluations including numerical rankings of the products, links to company websites and copies of presentations made by the representatives of the companies are posted on the project website at http://www.sandia.gov/water/arsenic.htm. This report summarizes the contents of the website by providing brief descriptions of the technologies represented at the Forums and the results of the evaluations.

  1. Biotransformation of arsenic by a Yellowstone thermoacidophilic eukaryotic alga.

    Science.gov (United States)

    Qin, Jie; Lehr, Corinne R; Yuan, Chungang; Le, X Chris; McDermott, Timothy R; Rosen, Barry P

    2009-03-31

    Arsenic is the most common toxic substance in the environment, ranking first on the Superfund list of hazardous substances. It is introduced primarily from geochemical sources and is acted on biologically, creating an arsenic biogeocycle. Geothermal environments are known for their elevated arsenic content and thus provide an excellent setting in which to study microbial redox transformations of arsenic. To date, most studies of microbial communities in geothermal environments have focused on Bacteria and Archaea, with little attention to eukaryotic microorganisms. Here, we show the potential of an extremophilic eukaryotic alga of the order Cyanidiales to influence arsenic cycling at elevated temperatures. Cyanidioschyzon sp. isolate 5508 oxidized arsenite [As(III)] to arsenate [As(V)], reduced As(V) to As(III), and methylated As(III) to form trimethylarsine oxide (TMAO) and dimethylarsenate [DMAs(V)]. Two arsenic methyltransferase genes, CmarsM7 and CmarsM8, were cloned from this organism and demonstrated to confer resistance to As(III) in an arsenite hypersensitive strain of Escherichia coli. The 2 recombinant CmArsMs were purified and shown to transform As(III) into monomethylarsenite, DMAs(V), TMAO, and trimethylarsine gas, with a T(opt) of 60-70 degrees C. These studies illustrate the importance of eukaryotic microorganisms to the biogeochemical cycling of arsenic in geothermal systems, offer a molecular explanation for how these algae tolerate arsenic in their environment, and provide the characterization of algal methyltransferases.

  2. Arsenic tolerant Trichoderma sp. reduces arsenic induced stress in chickpea (Cicer arietinum).

    Science.gov (United States)

    Tripathi, Pratibha; Singh, Poonam C; Mishra, Aradhana; Srivastava, Suchi; Chauhan, Reshu; Awasthi, Surabhi; Mishra, Seema; Dwivedi, Sanjay; Tripathi, Preeti; Kalra, Alok; Tripathi, Rudra D; Nautiyal, Chandra S

    2017-04-01

    Toxic metalloids including arsenic (As) can neither be eliminated nor destroyed from environment; however, they can be converted from toxic to less/non-toxic forms. The form of As species and their concentration determines its toxicity in plants. Therefore, the microbe mediated biotransformation of As is crucial for its plant uptake and toxicity. In the present study the role of As tolerant Trichoderma in modulating As toxicity in chickpea plants was explored. Chickpea plants grown in arsenate spiked soil under green house conditions were inoculated with two plant growth promoting Trichoderma strains, M-35 (As tolerant) and PPLF-28 (As sensitive). Total As concentration in chickpea tissue was comparable in both the Trichoderma treatments, however, differences in levels of organic and inorganic As (iAs) species were observed. The shift in iAs to organic As species ratio in tolerant Trichoderma treatment correlated with enhanced plant growth and nutrient content. Arsenic stress amelioration in tolerant Trichoderma treatment was also evident through rhizospheric microbial community and anatomical studies of the stem morphology. Down regulation of abiotic stress responsive genes (MIPS, PGIP, CGG) in tolerant Trichoderma + As treatment as compared to As alone and sensitive Trichoderma + As treatment also revealed that tolerant strain enhanced the plant's potential to cope with As stress as compared to sensitive one. Considering the bioremediation and plant growth promotion potential, the tolerant Trichoderma may appear promising for its utilization in As affected fields for enhancing agricultural productivity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Effects of different inorganic arsenic species in Cyprinus carpio (Cyprinidae) tissues after short-time exposure: Bioaccumulation, biotransformation and biological responses

    International Nuclear Information System (INIS)

    Ventura-Lima, Juliane; Fattorini, Daniele; Regoli, Francesco; Monserrat, Jose M.

    2009-01-01

    Differences in the toxicological and metabolic pathway of inorganic arsenic compounds are largely unknown for aquatic species. In the present study the effects of short-time and acute exposure to As III and As V were investigated in gills and liver of the common carp, Cyprinus carpio (Cyprinidae), measuring accumulation and chemical speciation of arsenic, and the activity of glutathione-S-transferase omega (GST Ω), the rate limiting enzyme in biotransformation of inorganic arsenic. Oxidative biomarkers included antioxidant defenses (total glutathione-S-transferases, glutathione reductase, glutathione, and glucose-6-phosphate dehydrogenase), total scavenging capacity toward peroxyl radicals, reactive oxygen species (ROS) measurement and lipid peroxidation products. A marked accumulation of arsenic was observed only in gills of carps exposed to 1000 ppb As V . Also in gills, antioxidant responses were mostly modulated through a significant induction of glucose-6-phosphate dehydrogenase activity which probably contributed to reduce ROS formation; however this increase was not sufficient to prevent lipid peroxidation. No changes in metal content were measured in liver of exposed carps, characterized by lower activity of GST Ω compared to gills. On the other hand, glutathione metabolism was more sensitive in liver tissue, where a significant inhibition of glutathione reductase was concomitant with increased levels of glutathione and higher total antioxidant capacity toward peroxyl radicals, thus preventing lipid peroxidation and ROS production. The overall results of this study indicated that exposure of C. carpio to As III and As V can induce different responses in gills and liver of this aquatic organism. - Common carp (Cyprinus carpio) presented marked differences between gills and liver after arsenic exposure in terms of antioxidant responses and also in biotransformation.

  4. Environmental arsenic exposure, selenium and sputum alpha-1 antitrypsin

    DEFF Research Database (Denmark)

    Burgess, Jefferey L; Kurzius-Spencer, Margaret; Poplin, Gerald S

    2014-01-01

    Exposure to arsenic in drinking water is associated with increased respiratory disease. Alpha-1 antitrypsin (AAT) protects the lung against tissue destruction. The objective of this study was to determine whether arsenic exposure is associated with changes in airway AAT concentration and whether...... this relationship is modified by selenium. A total of 55 subjects were evaluated in Ajo and Tucson, Arizona. Tap water and first morning void urine were analyzed for arsenic species, induced sputum for AAT and toenails for selenium and arsenic. Household tap-water arsenic, toenail arsenic and urinary inorganic...... arsenic and metabolites were significantly higher in Ajo (20.6±3.5 μg/l, 0.54±0.77 μg/g and 27.7±21.2 μg/l, respectively) than in Tucson (3.9±2.5 μg/l, 0.16±0.20 μg/g and 13.0±13.8 μg/l, respectively). In multivariable models, urinary monomethylarsonic acid (MMA) was negatively, and toenail selenium...

  5. Speciation of arsenic in human nail and hair from arsenic-affected area by HPLC-inductively coupled argon plasma mass spectrometry

    International Nuclear Information System (INIS)

    Mandal, Badal Kumar; Ogra, Yasumitsu; Suzuki, Kazuo T.

    2003-01-01

    Nail and hair are rich in fibrous proteins, i.e., α-keratins that contain abundant cysteine residues (up to 22% in nail and 10-14% in hair). Although they are metabolically dead materials in the epidermis, the roots are highly influenced by the health status of the living beings and their analyses are used as a tool to monitor occupational and environmental exposure to toxic elements. The aims of the present study are to speciate arsenicals in human nail and hair and also to judge whether they should be used as a biomarker to arsenic (As) exposure and/or toxicity. All human fingernail and hair samples (n = 47) were collected from the As-affected area of West Bengal, India. Speciation of arsenicals in water extracts of fingernails and hair at 90 degree sign C was carried out by HPLC-inductively coupled argon plasma mass spectrometer (ICP MS). Fingernails contained iAs III (58.6%), iAs V (21.5), MMA V (7.7), DMA III (9.2), and DMA V (3.0), and hair contained iAs III (60.9%), iAs V (33.2), MMA V (2.2), and DMA V (3.6). Fingernails contained DMA III , but hair did not. The higher percentage of iAs III both in fingernails and hair than that of iAs V suggests more affinity of iAs III to keratin. Although all arsenicals in fingernails and hair correlate to As exposure positively, As speciation in fingernails seems to be more correlated with arsenism than that in hair. Exogenous contamination is a confounding factor for hair to consider it as a biomarker, whereas this is mostly absent in fingernails, which recommends it to be a better biomarker to arsenic exposure. DMA III content in fingernails and DMA V contents in both fingernails and hair could be the biomarker to As exposure

  6. Arsenic rich iron plaque on macrophyte roots - an ecotoxicological risk?

    International Nuclear Information System (INIS)

    Taggart, M.A.; Mateo, R.; Charnock, J.M.; Bahrami, F.; Green, A.J.; Meharg, A.A.

    2009-01-01

    Arsenic is known to accumulate with iron plaque on macrophyte roots. Three to four years after the Aznalcollar mine spill (Spain), residual arsenic contamination left in seasonal wetland habitats has been identified in this form by scanning electron microscopy. Total digestion has determined arsenic concentrations in thoroughly washed 'root + plaque' material in excess of 1000 mg kg -1 , and further analysis using X-ray absorption spectroscopy suggests arsenic exists as both arsenate and arsenite. Certain herbivorous species feed on rhizomes and bulbs of macrophytes in a wide range of global environments, and the ecotoxicological impact of consuming arsenic rich iron plaque associated with such food items remains to be quantified. Here, greylag geese which feed on Scirpus maritimus rhizome and bulb material in areas affected by the Aznalcollar spill are shown to have elevated levels of arsenic in their feces, which may originate from arsenic rich iron plaque. - Accumulation of metals with iron plaque on macrophyte roots in wetlands poses an ecotoxicological risk to certain herbivores

  7. Arsenic rich iron plaque on macrophyte roots--an ecotoxicological risk?

    Science.gov (United States)

    Taggart, M A; Mateo, R; Charnock, J M; Bahrami, F; Green, A J; Meharg, A A

    2009-03-01

    Arsenic is known to accumulate with iron plaque on macrophyte roots. Three to four years after the Aznalcóllar mine spill (Spain), residual arsenic contamination left in seasonal wetland habitats has been identified in this form by scanning electron microscopy. Total digestion has determined arsenic concentrations in thoroughly washed 'root+plaque' material in excess of 1000 mg kg(-1), and further analysis using X-ray absorption spectroscopy suggests arsenic exists as both arsenate and arsenite. Certain herbivorous species feed on rhizomes and bulbs of macrophytes in a wide range of global environments, and the ecotoxicological impact of consuming arsenic rich iron plaque associated with such food items remains to be quantified. Here, greylag geese which feed on Scirpus maritimus rhizome and bulb material in areas affected by the Aznalcóllar spill are shown to have elevated levels of arsenic in their feces, which may originate from arsenic rich iron plaque.

  8. Deciphering factors controlling groundwater arsenic spatial variability in Bangladesh

    Science.gov (United States)

    Tan, Z.; Yang, Q.; Zheng, C.; Zheng, Y.

    2017-12-01

    Elevated concentrations of geogenic arsenic in groundwater have been found in many countries to exceed 10 μg/L, the WHO's guideline value for drinking water. A common yet unexplained characteristic of groundwater arsenic spatial distribution is the extensive variability at various spatial scales. This study investigates factors influencing the spatial variability of groundwater arsenic in Bangladesh to improve the accuracy of models predicting arsenic exceedance rate spatially. A novel boosted regression tree method is used to establish a weak-learning ensemble model, which is compared to a linear model using a conventional stepwise logistic regression method. The boosted regression tree models offer the advantage of parametric interaction when big datasets are analyzed in comparison to the logistic regression. The point data set (n=3,538) of groundwater hydrochemistry with 19 parameters was obtained by the British Geological Survey in 2001. The spatial data sets of geological parameters (n=13) were from the Consortium for Spatial Information, Technical University of Denmark, University of East Anglia and the FAO, while the soil parameters (n=42) were from the Harmonized World Soil Database. The aforementioned parameters were regressed to categorical groundwater arsenic concentrations below or above three thresholds: 5 μg/L, 10 μg/L and 50 μg/L to identify respective controlling factors. Boosted regression tree method outperformed logistic regression methods in all three threshold levels in terms of accuracy, specificity and sensitivity, resulting in an improvement of spatial distribution map of probability of groundwater arsenic exceeding all three thresholds when compared to disjunctive-kriging interpolated spatial arsenic map using the same groundwater arsenic dataset. Boosted regression tree models also show that the most important controlling factors of groundwater arsenic distribution include groundwater iron content and well depth for all three

  9. Environmental Arsenic Exposure and Microbiota in Induced Sputum

    Directory of Open Access Journals (Sweden)

    Allison G. White

    2014-02-01

    Full Text Available Arsenic exposure from drinking water is associated with adverse respiratory outcomes, but it is unknown whether arsenic affects pulmonary microbiota. This exploratory study assessed the effect of exposure to arsenic in drinking water on bacterial diversity in the respiratory tract of non-smokers. Induced sputum was collected from 10 subjects with moderate mean household water arsenic concentration (21.1 ± 6.4 ppb and 10 subjects with low household water arsenic (2.4 ± 0.8 ppb. To assess microbiota in sputum, the V6 hypervariable region amplicons of bacterial 16s rRNA genes were sequenced using the Ion Torrent Personal Genome Machine. Microbial community differences between arsenic exposure groups were evaluated using QIIME and Metastats. A total of 3,920,441 sequence reads, ranging from 37,935 to 508,787 per sample for 316 chips after QIIME quality filtering, were taxonomically classified into 142 individual genera and five phyla. Firmicutes (22%, Proteobacteria (17% and Bacteriodetes (12% were the main phyla in all samples, with Neisseriaceae (15%, Prevotellaceae (12% and Veillonellacea (7% being most common at the genus level. Some genera, including Gemella, Lactobacillales, Streptococcus, Neisseria and Pasteurellaceae were elevated in the moderate arsenic exposure group, while Rothia, Prevotella, Prevotellaceae Fusobacterium and Neisseriaceae were decreased, although none of these differences was statistically significant. Future studies with more participants and a greater range of arsenic exposure are needed to further elucidate the effects of drinking water arsenic consumption on respiratory microbiota.

  10. Estimation of Total Body Fat from Potassium-40 Content

    International Nuclear Information System (INIS)

    Taha Mohamed Taha Ahmed, T.M.T.

    2010-01-01

    This paper concerns on estimation of total body fat from potassium 40 content using total body counting technique. The work performed using fast scan whole body counter. Calibration of that system for K-40 was carried out under assumption that uniformity distribution of radioactivity of potassium was distributed in 10 polyethylene bottles phantom. Different body sizes were represented by 2, 4, 6, 8 and 10 polyethylene bottles; each bottle has a volume of 0.04 m3. The counting efficiency for each body size was determined. Lean body weight (LBW) was calculated for ten males and ten females using appropriate mathematical equation. Total Body Potassium, TBK for the same selected group was measured using whole body counter. A mathematical relationship between lean body weight and potassium content was deduced .Fat contents for some individuals were calculated and weight/height ratio was indicated for fatness.

  11. Arsenic mobilization in sediments

    DEFF Research Database (Denmark)

    Bennett, W. W.; Teasdale, P. R.; Panther, J. G.

    2012-01-01

    We have recently developed Diffusive Gradients in Thin films (DGT) and Diffusive Equilibrium in Thin films (DET) techniques that permit the measurement of high-resolution porewater distributions of As(III), total inorganic arsenic and Fe(II). These novel techniques were utilized to investigate th...

  12. Determination of Arsenic Species in Ophiocordyceps sinensis from Major Habitats in China by HPLC-ICP-MS and the Edible Hazard Assessment.

    Science.gov (United States)

    Guo, Lian-Xian; Zhang, Gui-Wei; Wang, Jia-Ting; Zhong, Yue-Ping; Huang, Zhi-Gang

    2018-04-26

    This study sought to determine the concentration and distribution of arsenic (As) species in Ophiocordyceps sinensis ( O. sinensis ), and to assess its edible hazard for long term consumption. The total arsenic concentrations, measured through inductively coupled plasma mass spectrometry (ICP-MS), ranged from 4.00 mg/kg to 5.25 mg/kg. As determined by HPLC-ICP-MS, the most concerning arsenic species—AsB, MMA V , DMA V , As V , and As Ш —were either not detected (MMA V and DMA V ) or were detected as minor As species (AsB: 1.4⁻2.9%; As V : 1.3⁻3.2%, and As Ш : 4.1⁻6.0%). The major components were a cluster of unknown organic As (uAs) compounds with As Ш , which accounted for 91.7⁻94.0% of the As content. Based on the H₂O₂ test and the chromatography behavior, it can be inferred that, the uAs might not be toxic organic As. Estimated daily intake ( EDI) , hazard quotient ( HQ ), and cancer risk ( CR ) caused by the total As content; the sum of inorganic As (iAs) and uAs, namely i+uAs; and iAs exposure from long term O. sinensis consumption were calculated and evaluated through equations from the US Environmental Protection Agency and the uncertainties were analyzed by Monte-Carlo Simulation (MCS). EDI total As and EDI i+uAs are approximately ten times more than EDI iAs ; HQ total As and HQ i+u As > 1 while HQ i As 1 × 10 −4 while CR iAs iAs is very low.

  13. Slow arsenic poisoning of the contaminated groundwater users

    International Nuclear Information System (INIS)

    Uddin, M. M.; Harun-Ar-Rashid, A. K. M.; Hossain, S. M.; Hafiz, M. A.; Nahar, K.; Mubin, S. H.

    2006-01-01

    This paper gives impact of Arsenic contaminated water on human health as well as overview of the extent and severity of groundwater arsenic contamination in Bangladesh. Scalp hair is the most important part of the human body to monitor the accumulation of this type of poison. Therefore, an experiment has been carried out by Neutron Activation Analysis at Atomic Energy Research Establishment , Savar, Dhaka, Bangladesh on human hair of corresponding tube well water users of these areas to determine the total accumulation of arsenic to their body. Hair samples collected from the region where the groundwater was found highly contaminated with arsenic. The obtained results of arsenic concentration in the lower age (Hb) categories of users (below 12 years of age users) is in the range of 0.33 to 3.29 μg/g (ppm) and that in the Hu categories (upper 12 years of age users) is 0.47 to 6.64 μg/g (ppm). Where as maximum permissible range is 1 ppm certified from WHO. Results show that the peoples are highly affected where the groundwater is highly contaminated with arsenic and acts as the primary source of arsenic poisoning among the peoples of those areas. The results indicate that human population is affected with arsenic locally using the contaminated water for a long time

  14. Phytoremediation of arsenic contaminated soil by Pteris vittata L. I. Influence of phosphatic fertilizers and repeated harvests.

    Science.gov (United States)

    Mandal, Asit; Purakayastha, T J; Patra, A K; Sanyal, S K

    2012-12-01

    A greenhouse experiment was conducted to evaluate the effectiveness of diammonium phosphate (DAP), single superphosphate (SSP) and two growing cycles on arsenic removal by Chinese Brake Fern (Pteris vittata L.) from an arsenic contaminated Typic Haplustept of the Indian state of West Bengal. After harvest of Pteris vittata the total, Olsen's extractable and other five soil arsenic fractions were determined. The total biomass yield of P. vittata ranged from 10.7 to 16.2 g pot(-1) in first growing cycle and from 7.53 to 11.57 g pot(-1) in second growing cycle. The frond arsenic concentrations ranged from 990 to 1374 mg kg(-1) in first growing cycle and from 875 to 1371 mg kg(-1) in second growing cycle. DAP was most efficient in enhancing biomass yield, frond and root arsenic concentrations and total arsenic removal from soil. After first growing cycle, P. vittata reduced soil arsenic by 10 to 20%, while after two growing cycles Pteris reduced it by 18 to 34%. Among the different arsenic fractions, Fe-bound arsenic dominated over other fractions. Two successive harvests with DAP as the phosphate fertilizer emerged as the promising management strategy for amelioration of arsenic contaminated soil of West Bengal through phyotoextraction by P. vittata.

  15. Effects of Carbon in Flooded Paddy Soils: Implications for Microbial Activity and Arsenic Mobilization

    Science.gov (United States)

    Avancha, S.; Boye, K.

    2014-12-01

    In the Mekong delta in Cambodia, naturally occurring arsenic (originating from erosion in the Himalaya Mountains) in paddy soils is mobilized during the seasonal flooding. As a consequence, rice grown on the flooded soils may take up arsenic and expose people eating the rice to this carcinogenic substance. Microbial activity will enhance or decrease the mobilization of arsenic depending on their metabolic pathways. Among the microbes naturally residing in the soil are denitrifying bacteria, sulfate reducers, metal reducers (Fe, Mn), arsenic reducers, methanogens, and fermenters, whose activity varies based on the presence of oxygen. The purpose of the experiment was to assess how different amendments affect the microbial activity and the arsenic mobilization during the transition from aerobic to anaerobic metabolism after flooding of naturally contaminated Cambodian soil. In a batch experiment, we investigated how the relative metabolic rate of naturally occurring microbes could vary with different types of organic carbon. The experiment was designed to measure the effects of various sources of carbon (dried rice straw, charred rice straw, manure, and glucose) on the microbial activity and arsenic release in an arsenic-contaminated paddy soil from Cambodia under flooded conditions. All amendments were added based on the carbon content in order to add 0.036 g of carbon per vial. The soil was flooded with a 10mM TRIS buffer solution at pH 7.04 in airtight 25mL serum vials and kept at 25 °C. We prepared 14 replicates per treatment to sample both gas and solution. On each sampling point, the solution replicates were sampled destructively. The gas replicates continued on and were sampled for both gas and solution on the final day of the experiment. We measured pH, total arsenic, methane, carbon dioxide, and nitrous oxide at 8 hours, 1.5 days, 3.33 days, and 6.33 days from the start of the experiment.

  16. Total and available metal contents in sediments by synchrotron radiation total reflection X-ray fluorescence

    International Nuclear Information System (INIS)

    Moreira, Silvana; Sobrinho, Gilmar A.; Jesus, Edgar F.O. de; Lopes, Ricardo T.

    2002-01-01

    In this work the total and available contents of Al, Si, Cl, K, Mn, Fe, Co, Ni, Cu, Zn, Sr, Zr, Ba, Ce and Pb in sediments from river Atibaia were determined by Synchrotron Radiation Total Reflection X-Ray Fluorescence technique. The detection limits for K series varies from 200 ng.mL -1 for Al to 2 ng.mL -1 for Zn while for L series the value varies from 20 ng.mL -1 for Ba to 10 ng.mL -1 for Pb. The samples were submitted to two different processes, in order to obtain the total and biological available metal contents. The information about metal content is a important parameter for a correct evaluation about the hydrologic cycle in Piracicaba basin. All the measure were carried out at the National Synchrotron Light Laboratory, Campinas, SP, Brazil, using a white beam for excitation. (author)

  17. Arsenic in soil and vegetation of a contaminated area

    NARCIS (Netherlands)

    Karimi, N.; Ghaderian, S.M.; Schat, H.

    2013-01-01

    Plant and soil samples were collected from one uncontaminated and four contaminated sites (in the Dashkasan mining area western Iran). Total and water-soluble arsenic in the soil ranged from 7 to 795 and from 0.007 to 2.32 mg/kg, respectively. The highest arsenic concentration in soil was found at

  18. Chronic exposure to low concentration of arsenic is immunotoxic to fish: Role of head kidney macrophages as biomarkers of arsenic toxicity to Clarias batrachus

    International Nuclear Information System (INIS)

    Datta, Soma; Ghosh, Debabrata; Saha, Dhira Rani; Bhattacharaya, Shelley; Mazumder, Shibnath

    2009-01-01

    The present study was aimed at elucidating the effect of chronic low-level arsenic exposure on the head kidney (HK) of Clarias batrachus and at determining the changes in head kidney macrophage (HKM) activity in response to arsenic exposure. Chronic exposure (30 days) to arsenic (As 2 O 3 , 0.50 μM) led to significant increase in arsenic content in the HK accompanied by reduction in both HKM number and head kidney somatic index (HKSI). Arsenic induced HK hypertrophy, reduction in melano-macrophage population and increased hemosiderin accumulation. Transmission electron microscopy of 30 days exposed HKM revealed prominent endoplasmic reticulum, chromatin condensation and loss in structural integrity of nuclear membrane. Head kidney macrophages from exposed fish demonstrated significant levels of superoxide anions but on infection with Aeromonas hydrophila were unable to clear the intracellular bacteria and died. Exposure-challenge experiments with A. hydrophila revealed that chronic exposure to micromolar concentration of arsenic interfered with the phagocytic potential of HKM, helped in intracellular survival of the ingested bacteria inside the HKM inducing significant HKM cytotoxicity. The immunosuppressive effect of arsenic was further evident from the ability of A. hydrophila to colonize and disseminate efficiently in exposed fish. Enzyme linked immunosorbent assay indicated that chronic exposure to arsenic suppressed the production of pro-inflammatory 'IL-1β like' factors from HKM. It is concluded that arsenic even at very low concentration is immunotoxic to fish and the changes observed in HKM may provide a useful early biomarker of low-level xenobiotic exposure

  19. Chronic exposure to low concentration of arsenic is immunotoxic to fish: Role of head kidney macrophages as biomarkers of arsenic toxicity to Clarias batrachus

    Energy Technology Data Exchange (ETDEWEB)

    Datta, Soma; Ghosh, Debabrata [Immunobiology Laboratory, School of Life Sciences, Visva Bharati University, Santiniketan 731 235 (India); Saha, Dhira Rani [Microscopy Laboratory, National Institute of Cholera and Enteric Diseases, P-33, Scheme XM, C.I.T. Road, Beliaghata, Kolkata 700 010 (India); Bhattacharaya, Shelley [Environmental Toxicology Laboratory, School of Life Sciences, Visva Bharati University, Santiniketan 731 235 (India); Mazumder, Shibnath [Immunobiology Laboratory, School of Life Sciences, Visva Bharati University, Santiniketan 731 235 (India)], E-mail: shibnath1@yahoo.co.in

    2009-04-09

    The present study was aimed at elucidating the effect of chronic low-level arsenic exposure on the head kidney (HK) of Clarias batrachus and at determining the changes in head kidney macrophage (HKM) activity in response to arsenic exposure. Chronic exposure (30 days) to arsenic (As{sub 2}O{sub 3}, 0.50 {mu}M) led to significant increase in arsenic content in the HK accompanied by reduction in both HKM number and head kidney somatic index (HKSI). Arsenic induced HK hypertrophy, reduction in melano-macrophage population and increased hemosiderin accumulation. Transmission electron microscopy of 30 days exposed HKM revealed prominent endoplasmic reticulum, chromatin condensation and loss in structural integrity of nuclear membrane. Head kidney macrophages from exposed fish demonstrated significant levels of superoxide anions but on infection with Aeromonas hydrophila were unable to clear the intracellular bacteria and died. Exposure-challenge experiments with A. hydrophila revealed that chronic exposure to micromolar concentration of arsenic interfered with the phagocytic potential of HKM, helped in intracellular survival of the ingested bacteria inside the HKM inducing significant HKM cytotoxicity. The immunosuppressive effect of arsenic was further evident from the ability of A. hydrophila to colonize and disseminate efficiently in exposed fish. Enzyme linked immunosorbent assay indicated that chronic exposure to arsenic suppressed the production of pro-inflammatory 'IL-1{beta} like' factors from HKM. It is concluded that arsenic even at very low concentration is immunotoxic to fish and the changes observed in HKM may provide a useful early biomarker of low-level xenobiotic exposure.

  20. Urinary 8-hydroxydeoxyguanosine and urothelial carcinoma risk in low arsenic exposure area

    International Nuclear Information System (INIS)

    Chung, C.-J.; Huang, C.-J.; Pu, Y.-S.; Su, C.-T.; Huang, Y.-K.; Chen, Y.-T.; Hsueh, Y.-M.

    2008-01-01

    Arsenic is a well-documented human carcinogen and is known to cause oxidative stress in cultured cells and animals. A hospital-based case-control study was conducted to evaluate the relationship among the levels of urinary 8-hydroxydeoxyguanosine (8-OHdG), the arsenic profile, and urothelial carcinoma (UC). Urinary 8-OHdG was measured by using high-sensitivity enzyme-linked immunosorbent assay (ELISA) kits. The urinary species of inorganic arsenic and their metabolites were analyzed by high-performance liquid chromatography (HPLC) and hydride generator-atomic absorption spectrometry (HG-AAS). This study showed that the mean urinary concentration of total arsenics was significantly higher, at 37.67 ± 2.98 μg/g creatinine, for UC patients than for healthy controls of 21.10 ± 0.79 μg/g creatinine (p < 0.01). Urinary 8-OHdG levels correlated with urinary total arsenic concentrations (r = 0.19, p < 0.01). There were significantly higher 8-OHdG levels, of 7.48 ± 0.97 ng/mg creatinine in UC patients, compared to healthy controls of 5.95 ± 0.21 ng/mg creatinine. Furthermore, female UC patients had higher 8-OHdG levels of 9.22 ± 0.75 than those of males at 5.76 ± 0.25 ng/mg creatinine (p < 0.01). Multiple linear regression analyses revealed that high urinary 8-OHdG levels were associated with increased total arsenic concentrations, inorganic arsenite, monomethylarsonic acid (MMA), and dimethylarsenate (DMA) as well as the primary methylation index (PMI) even after adjusting for age, gender, and UC status. The results suggest that oxidative DNA damage was associated with arsenic exposure, even at low urinary level of arsenic

  1. Phytoremediation of arsenic contaminated soil by arsenic accumulators: a three year study.

    Science.gov (United States)

    Raj, Anshita; Singh, Nandita

    2015-03-01

    To investigate whether phytoremediation can remove arsenic from the contaminated area, a study was conducted for three consecutive years to determine the efficiency of Pteris vittata, Adiantum capillus veneris, Christella dentata and Phragmites karka, on arsenic removal from the arsenic contaminated soil. Arsenic concentrations in the soil samples were analysed after harvesting in 2009, 2010 and 2011 at an interval of 6 months. Frond arsenic concentrations were also estimated in all the successive harvests. Fronds resulted in the greatest amount of arsenic removal. Root arsenic concentrations were analysed in the last harvest. Approximately 70 % of arsenic was removed by P. vittata which was recorded as the highest among the four plant species. However, 60 % of arsenic was removed by A. capillus veneris, 55.1 % by C. dentata and 56.1 % by P. karka of arsenic was removed from the contaminated soil in 3 years.

  2. Estimating Inorganic Arsenic Exposure from U.S. Rice and Total Water Intakes.

    Science.gov (United States)

    Mantha, Madhavi; Yeary, Edward; Trent, John; Creed, Patricia A; Kubachka, Kevin; Hanley, Traci; Shockey, Nohora; Heitkemper, Douglas; Caruso, Joseph; Xue, Jianping; Rice, Glenn; Wymer, Larry; Creed, John T

    2017-05-30

    Among nonoccupationally exposed U.S. residents, drinking water and diet are considered primary exposure pathways for inorganic arsenic (iAs). In drinking water, iAs is the primary form of arsenic (As), while dietary As speciation techniques are used to differentiate iAs from less toxic arsenicals in food matrices. Our goal was to estimate the distribution of iAs exposure rates from drinking water intakes and rice consumption in the U.S. population and ethnic- and age-based subpopulations. The distribution of iAs in drinking water was estimated by population, weighting the iAs concentrations for each drinking water utility in the Second Six-Year Review data set. To estimate the distribution of iAs concentrations in rice ingested by U.S. consumers, 54 grain-specific, production-weighted composites of rice obtained from U.S. mills were extracted and speciated using both a quantitative dilute nitric acid extraction and speciation (DNAS) and an in vitro gastrointestinal assay to provide an upper bound and bioaccessible estimates, respectively. Daily drinking water intake and rice consumption rate distributions were developed using data from the What We Eat in America (WWEIA) study. Using these data sets, the Stochastic Human Exposure and Dose Simulation (SHEDS) model estimated mean iAs exposures from drinking water and rice were 4.2 μg/day and 1.4 μg/day, respectively, for the entire U.S. population. The Tribal, Asian, and Pacific population exhibited the highest mean daily exposure of iAs from cooked rice (2.8 μg/day); the mean exposure rate for children between ages 1 and 2 years in this population is 0.104 μg/kg body weight (BW)/day. An average consumer drinking 1.5 L of water daily that contains between 2 and 3 ng iAs/mL is exposed to approximately the same amount of iAs as a mean Tribal, Asian, and Pacific consumer is exposed to from rice. https://doi.org/10.1289/EHP418. Among nonoccupationally exposed U.S. residents, drinking water and diet are considered

  3. Reduction and Coordination of Arsenic in Indian Mustard1

    Science.gov (United States)

    Pickering, Ingrid J.; Prince, Roger C.; George, Martin J.; Smith, Robert D.; George, Graham N.; Salt, David E.

    2000-01-01

    The bioaccumulation of arsenic by plants may provide a means of removing this element from contaminated soils and waters. However, to optimize this process it is important to understand the biological mechanisms involved. Using a combination of techniques, including x-ray absorption spectroscopy, we have established the biochemical fate of arsenic taken up by Indian mustard (Brassica juncea). After arsenate uptake by the roots, possibly via the phosphate transport mechanism, a small fraction is exported to the shoot via the xylem as the oxyanions arsenate and arsenite. Once in the shoot, the arsenic is stored as an AsIII-tris-thiolate complex. The majority of the arsenic remains in the roots as an AsIII-tris-thiolate complex, which is indistinguishable from that found in the shoots and from AsIII-tris-glutathione. The thiolate donors are thus probably either glutathione or phytochelatins. The addition of the dithiol arsenic chelator dimercaptosuccinate to the hydroponic culture medium caused a 5-fold-increased arsenic level in the leaves, although the total arsenic accumulation was only marginally increased. This suggests that the addition of dimercaptosuccinate to arsenic-contaminated soils may provide a way to promote arsenic bioaccumulation in plant shoots, a process that will be essential for the development of an efficient phytoremediation strategy for this element. PMID:10759512

  4. Sequential Determination of Total Arsenic and Cadmium in Concentrated Cadmium Sulphate Solutions by Flow-Through Stripping Chronopotentiometry after Online Cation Exchanger Separation

    Directory of Open Access Journals (Sweden)

    Frantisek Cacho

    2012-01-01

    Full Text Available Flow-through stripping chronopotentiometry with a gold wire electrode was used for the determination of total arsenic and cadmium in cadmium sulphate solutions for cadmium production. The analysis is based on the online separation of arsenic as arsenate anion from cadmium cations by means of a cation exchanger. On measuring arsenate in the effluent, the trapped cadmium is eluted by sodium chloride solution and determined in a small segment of the effluent by making use of the same electrode. The elaborated protocol enables a full automatic measurement of both species in the same sample solution. The accuracy of the results was confirmed by atomic absorption spectrometry. The LOD and LOQ for Arsenic were found to be 0.9 μg dm-3 and 2.7 μg dm-3, respectively. A linear response range was observed in the concentration range of 1 to 300 μg dm-3 for sample volumes of 4 mL. The repeatability and reproducibility were found to be 2.9% and 5.2%, respectively. The linear response range for cadmium was found to be 0.5 to 60 g/L. The method was tested on samples from a cadmium production plant.

  5. Health risk assessment of arsenic from blended water in distribution systems.

    Science.gov (United States)

    Zhang, Hui; Zhou, Xue; Wang, Kai; Wang, Wen D

    2017-12-06

    In a water distribution system with different sources, water blending occurs, causing specific variations of the arsenic level. This study was undertaken to investigate the concentration and cancer risk of arsenic in blended water in Xi'an city. A total of 672 tap water samples were collected from eight sampling points in the blending zones for arsenic determination. The risk was evaluated through oral ingestion and dermal absorption, separately for males and females, as well as with respect to seasons and blending zones. Although the arsenic concentrations always fulfilled the requirements of the World Health Organization (WHO) (≤10 μg L -1 ), the total cancer risk value was higher than the general guidance risk value of 1.00 × 10 -6 . In the blending zone of the Qujiang and No.3 WTPs (Z2), the total cancer risk value was over 1.00 × 10 -5 , indicating that public health would be affected to some extent. More than 99% of the total cancer risk was from oral ingestion, and dermal absorption had a little contribution. With higher exposure duration and lower body weight, women had a higher cancer risk. In addition, due to several influential factors, the total cancer risk in the four blending zones reached the maximum in different seasons. The sensitivity analysis by the tornado chart proved that body weight, arsenic concentration and ingestion rate significantly contributed to cancer risk. This study suggests the regular monitoring of water blending zones for improving risk management.

  6. Phytochemical screening, total phenolic, total flavonoids contents and antioxidant activity of cinchona ledgeriana leaves ethanol extract

    Science.gov (United States)

    Sundowo, Andini; Artanti, Nina; Hanafi, M.; Minarti, Primahana, Gian

    2017-11-01

    C ledgeriana is a medicinal plant that contains alkaloids, especially on the barks for commercial production of quinine as antimalarial. The main alkaloids in this plant are cinchonine, cinchonidine, quinine and quinidine. Besides for antiamalarial this plant is also commonly used to treat whooping cough, influenza and dysentery. Compare to other medicinal plants, nowadays only very few studies were conducted in Cinchona species. Our current study aims to determine the content of phytochemical, total phenol and total flavonoids from C. ledgeriana leaves 70% ethanol extract. The extraction was performed by maceration method using 70% ethanol solvent and then fractionated into hexane, ethylacetate and butanol. Phytochemical screening was performed to determine the content of alkaloids, flavonoids, terpenoids, tannins and saponins. Total phenol and flavonoid contents of the extract were determined by Folin-Ciocalteu and alumunium chloride colorimetric methods using gallic acid and quercetin as standards. The antioxidant activity was determined by using 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity. The results of phytochemical screening showed that the 70% ethanol extract of C. ledgeriana leaves contained alkaloids, flavonoids, terpenoids, tannins and saponins. The total phenol and total flavonoids analysis showed that ethyl acetate fraction had the highest total phenol (40.23%) and total flavonoids (65.34%).

  7. Arsenic (+3 oxidation state) methyltransferase and the inorganic arsenic methylation phenotype

    International Nuclear Information System (INIS)

    Li Jiaxin; Waters, Stephen B.; Drobna, Zuzana; Devesa, Vicenta; Styblo, Miroslav; Thomas, David J.

    2005-01-01

    Inorganic arsenic is enzymatically methylated; hence, its ingestion results in exposure to the parent compound and various methylated arsenicals. Both experimental and epidemiological evidences suggest that some of the adverse health effects associated with chronic exposure to inorganic arsenic may be mediated by these methylated metabolites. If i As methylation is an activation process, then the phenotype for inorganic arsenic methylation may determine risk associated with exposure to this metalloid. We examined inorganic arsenic methylation phenotypes and arsenic (+3 oxidation state) methyltransferase genotypes in four species: three that methylate inorganic arsenic (human (Homo sapiens), rat (Rattus norwegicus), and mouse (Mus musculus)) and one that does not methylate inorganic arsenic (chimpanzee, Pan troglodytes). The predicted protein products from arsenic (+3 oxidation state) methyltransferase are similar in size for rat (369 amino acid residues), mouse (376 residues), and human (375 residues). By comparison, a 275-nucleotide deletion beginning at nucleotide 612 in the chimpanzee gene sequence causes a frameshift that leads to a nonsense mutation for a premature stop codon after amino acid 205. The null phenotype for inorganic arsenic methylation in the chimpanzee is likely due to the deletion in the gene for arsenic (+3 oxidation state) methyltransferase that yields an inactive truncated protein. This lineage-specific loss of function caused by the deletion event must have occurred in the Pan lineage after Homo-Pan divergence about 5 million years ago

  8. Arsenic exacerbates atherosclerotic lesion formation and inflammation in ApoE-/- mice

    International Nuclear Information System (INIS)

    Srivastava, Sanjay; Vladykovskaya, Elena N.; Haberzettl, Petra; Sithu, Srinivas D.; D'Souza, Stanley E.; States, J. Christopher

    2009-01-01

    Exposure to arsenic-contaminated water has been shown to be associated with cardiovascular disease, especially atherosclerosis. We examined the effect of arsenic exposure on atherosclerotic lesion formation, lesion composition and nature in ApoE-/- mice. Early post-natal exposure (3-week-old mice exposed to 49 ppm arsenic as NaAsO 2 in drinking water for 7 weeks) increased the atherosclerotic lesion formation by 3- to 5-fold in the aortic valve and the aortic arch, without affecting plasma cholesterol. Exposure to arsenic for 13 weeks (3-week-old mice exposed to 1, 4.9 and 49 ppm arsenic as NaAsO 2 in drinking water) increased the lesion formation and macrophage accumulation in a dose-dependent manner. Temporal studies showed that continuous arsenic exposure significantly exacerbated the lesion formation throughout the aortic tree at 16 and 36 weeks of age. Withdrawal of arsenic for 12 weeks after an initial exposure for 21 weeks (to 3-week-old mice) significantly decreased lesion formation as compared with mice continuously exposed to arsenic. Similarly, adult exposure to 49 ppm arsenic for 24 weeks, starting at 12 weeks of age increased lesion formation by 2- to 3.6-fold in the aortic valve, the aortic arch and the abdominal aorta. Lesions of arsenic-exposed mice displayed a 1.8-fold increase in macrophage accumulation whereas smooth muscle cell and T-lymphocyte contents were not changed. Expression of pro-inflammatory chemokine MCP-1 and cytokine IL-6 and markers of oxidative stress, protein-HNE and protein-MDA adducts were markedly increased in lesions of arsenic-exposed mice. Plasma concentrations of MCP-1, IL-6 and MDA were also significantly elevated in arsenic-exposed mice. These data suggest that arsenic exposure increases oxidative stress, inflammation and atherosclerotic lesion formation.

  9. Interactions of arsenic and phenanthrene on their uptake and antioxidative response in Pteris vittata L

    International Nuclear Information System (INIS)

    Sun Lu; Yan Xiulan; Liao Xiaoyong; Wen Yi; Chong Zhongyi; Liang Tao

    2011-01-01

    The interactions of arsenic and phenanthrene on plant uptake and antioxidative response of Pteris vitatta L. were studied hydroponically. The combination of arsenic and phenanthrene decreased arsenic contents in fronds by 30-51%, whereas increased arsenic concentrations 1.2-1.6 times in roots, demonstrating the suppression of arsenic translocation compared to the corresponding treatment without phenanthrene. Under the co-exposure, As(III) concentrations in fronds deceased by 12-73%, and at higher arsenic exposure level (≥10 mg/L), As(V) in fronds and As(III) in roots increased compared to the single arsenic treatment. Arsenic exposure elevated phenanthrene concentrations in root by 39-164%. The co-existence of arsenic and phenanthrene had little impact on plant arsenic accumulation, although synergistic effect on antioxidants was observed, suggesting the special physiological process of P. vitatta in the co-exposure and application potential of P. vitatta in phytoremediation of arsenic and PAHs co-contamination. - Highlights: → Pteris vitatta L. show tolerance to the arsenic and phenanthrene co-exposure. → P. vitatta efficiently accumulate arsenic and simultaneously enhance phenanthrene dissipation. → Phenanthrene suppresses arsenic translocation from roots to fronds. → Phenanthrene causes As(III) elevation in roots while reduction in fronds. → Synergistic effect potentiates the toxicity and antioxidants in plant. - Pteris vitatta L. not only efficiently accumulate arsenic but also enhance phenanthrene dissipation under the arsenic and phenanthrene co-exposure.

  10. Interactions of arsenic and phenanthrene on their uptake and antioxidative response in Pteris vittata L

    Energy Technology Data Exchange (ETDEWEB)

    Sun Lu [Beijing Key Lab of Industrial Land Contamination and Remediation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing 100101 (China); Graduate University of the Chinese Academy of Sciences, Beijing 100049 (China); Yan Xiulan [Beijing Key Lab of Industrial Land Contamination and Remediation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing 100101 (China); Liao Xiaoyong, E-mail: liaoxy@igsnrr.ac.cn [Beijing Key Lab of Industrial Land Contamination and Remediation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing 100101 (China); Wen Yi; Chong Zhongyi; Liang Tao [Beijing Key Lab of Industrial Land Contamination and Remediation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing 100101 (China)

    2011-12-15

    The interactions of arsenic and phenanthrene on plant uptake and antioxidative response of Pteris vitatta L. were studied hydroponically. The combination of arsenic and phenanthrene decreased arsenic contents in fronds by 30-51%, whereas increased arsenic concentrations 1.2-1.6 times in roots, demonstrating the suppression of arsenic translocation compared to the corresponding treatment without phenanthrene. Under the co-exposure, As(III) concentrations in fronds deceased by 12-73%, and at higher arsenic exposure level ({>=}10 mg/L), As(V) in fronds and As(III) in roots increased compared to the single arsenic treatment. Arsenic exposure elevated phenanthrene concentrations in root by 39-164%. The co-existence of arsenic and phenanthrene had little impact on plant arsenic accumulation, although synergistic effect on antioxidants was observed, suggesting the special physiological process of P. vitatta in the co-exposure and application potential of P. vitatta in phytoremediation of arsenic and PAHs co-contamination. - Highlights: > Pteris vitatta L. show tolerance to the arsenic and phenanthrene co-exposure. > P. vitatta efficiently accumulate arsenic and simultaneously enhance phenanthrene dissipation. > Phenanthrene suppresses arsenic translocation from roots to fronds. > Phenanthrene causes As(III) elevation in roots while reduction in fronds. > Synergistic effect potentiates the toxicity and antioxidants in plant. - Pteris vitatta L. not only efficiently accumulate arsenic but also enhance phenanthrene dissipation under the arsenic and phenanthrene co-exposure.

  11. Spatial distribution and vertical variation of arsenic in Guangdong soil profiles, China

    International Nuclear Information System (INIS)

    Zhang, H.H.; Yuan, H.X.; Hu, Y.G.; Wu, Z.F.; Zhu, L.A.; Zhu, L.; Li, F.B.; LI, D.Q.

    2006-01-01

    Total of 260 soil profiles were reported to investigate the arsenic spatial distribution and vertical variation in Guangdong province. The arsenic concentration followed an approximately lognormal distribution. The arsenic geometric mean concentration of 10.4 mg/kg is higher than that of China. An upper baseline concentration of 23.4 mg/kg was estimated for surface soils. The influence of soil properties on arsenic concentration was not important. Arsenic spatial distributions presented similar patterns that high arsenic concentration mainly located in limestone, and sandshale areas, indicating that soil arsenic distribution was dependent on bedrock properties than anthropogenic inputs. Moreover, from A- to C-horizon arsenic geometric mean concentrations had an increasing tendency of 10.4, 10.7 to 11.3 mg/kg. This vertical variation may be related to the lower soil organic matter and soil degradation and erosion. Consequently, the soil arsenic export into surface and groundwaters would reach 1040 t year -1 in the study area. - Soil arsenic movement export is a potential threat to the water quality of the study area

  12. Trends in arsenic levels in PM10 and PM 2.5 aerosol fractions in an industrialized area.

    Science.gov (United States)

    García-Aleix, J R; Delgado-Saborit, J M; Verdú-Martín, G; Amigó-Descarrega, J M; Esteve-Cano, V

    2014-01-01

    Arsenic is a toxic element that affects human health and is widely distributed in the environment. In the area of study, the main Spanish and second largest European industrial ceramic cluster, the main source of arsenic aerosol is related to the impurities in some boracic minerals used in the ceramic process. Epidemiological studies on cancer occurrence in Spain points out the study region as one with the greater risk of cancer. Concentrations of particulate matter and arsenic content in PM10 and PM2.5 were measured and characterized by ICP-MS in the area of study during the years 2005-2010. Concentrations of PM10 and its arsenic content range from 27 to 46 μg/m(3) and from 0.7 to 6 ng/m(3) in the industrial area, respectively, and from 25 to 40 μg/m(3) and from 0.7 to 2.8 ng/m(3) in the urban area, respectively. Concentrations of PM2.5 and its arsenic content range from 12 to 14 μg/m(3) and from 0.5 to 1.4 ng/m(3) in the urban background area, respectively. Most of the arsenic content is present in the fine fraction, with ratios of PM2.5/PM10 in the range of 0.65-0.87. PM10, PM2.5, and its arsenic content show a sharp decrease in recent years associated with the economic downturn, which severely hit the production of ceramic materials in the area under study. The sharp production decrease due to the economic crisis combined with several technological improvements in recent years such as substitution of boron, which contains As impurities as raw material, have reduced the concentrations of PM10, PM2.5, and As in air to an extent that currently meets the existing European regulations.

  13. Association of oxidative stress with arsenic methylation in chronic arsenic-exposed children and adults

    International Nuclear Information System (INIS)

    Xu Yuanyuan; Wang Yi; Zheng Quanmei; Li Xin; Li Bing; Jin Yaping; Sun Xiance; Sun Guifan

    2008-01-01

    Though oxidative stress is recognized as an important pathogenic mechanism of arsenic, and arsenic methylation capacity is suggested to be highly involved in arsenic-related diseases, the association of arsenic methylation capacity with arsenic-induced oxidative stress remains unclear. To explore oxidative stress and its association with arsenic methylation, cross-sectional studies were conducted among 208 high and 59 low arsenic-exposed subjects. Levels of urinary arsenic species [inorganic arsenic (iAs), monomethylated arsenic (MMA) and dimethylated arsenic (DMA)] were determined by hydride generation atomic absorption spectrometry. Proportions of urinary arsenic species, the first methylation ratio (FMR) and the secondary methylation ratio (SMR) were used as indicators for arsenic methylation capacity. Urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) concentrations were analyzed by enzyme-linked immunosorbent assay kits. Reduced glutathione (GSH) levels and superoxide dismutase (SOD) activity in whole blood were determined to reflect anti-oxidative status. The high arsenic-exposed children and adults were significantly increased in urinary 8-OHdG concentrations but decreased in blood GSH levels compared with the low exposed children and adults. In multiple linear regression models, blood GSH levels and urinary 8-OHdG concentrations of arsenic-exposed children and adults showed strong associations with the levels of urinary arsenic species. Arsenic-exposed subjects in the lower and the upper quartiles of proportions of urinary arsenic species, FMR or SMR were significantly different in urinary 8-OHdG, blood GSH and SOD. The associations of arsenic methylation capacity with 8-OHdG, GSH and SOD were also observed in multivariate regression analyses. These results may provide linkage between arsenic methylation capacity and oxidative stress in humans and suggest that adverse health effects induced by arsenic are related to arsenic methylation through oxidative stress

  14. The evaluation of total mercury and arsenic in skin bleaching creams commonly used in Trinidad and Tobago and their potential risk to the people of the Caribbean.

    Science.gov (United States)

    Mohammed, Terry; Mohammed, Elisabeth; Bascombe, Shermel

    2017-12-13

    Background. Skin lightening is very popular among women and some men of the Caribbean, and its popularity appears to be growing. The lightening of skin colour is done to produce a lighter complexion which is believed to increase attractiveness, social standing and improves one's potential of being successful. Design and Methods. Fifteen (15) common skin lightening creams found in pharmacies and cosmetic retailers throughout Trinidad and Tobago were evaluated for Mercury by Cold Vapor Atomic Absorption Spectrophotometry (CVAAS) and Arsenic by Hydride Generation Atomic Absorption Spectrophotometry (HGAAS). The results obtained were compared to global standards and previous research. Results. Fourteen (14) of the fifteen samples analysed contained Mercury in the range of 0.473 μg/g to 0.766 μg/g. One sample had a Mercury content of 14,507.74±490.75 μg/g which was over 14,000 times higher than the USFDA limit for mercury in cosmetics of 1 μg/g. All samples contained Arsenic in the range 1.016 μg/g to 6.612 μg/g, which exceeds the EU limit for cosmetics of 0 μg/g. Conclusions. All the samples analysed contained significant amounts of Mercury and Arsenic and none of them can be considered safe for prolonged human use. The samples that contained Mercury levels which were lower than the USFDA limit contained Arsenic levels which exceeded the EU standard of 0 μg/g in cosmetics. The popularity of these skin lightening creams in the Caribbean region places the population at elevated risk of chronic Mercury and Arsenic poisoning and possibly acute Mercury Poisoning.

  15. The evaluation of total mercury and arsenic in skin bleaching creams commonly used in Trinidad and Tobago and their potential risk to the people of the Caribbean

    Directory of Open Access Journals (Sweden)

    Terry Mohammed

    2017-10-01

    Full Text Available Background. Skin lightening is very popular among women and some men of the Caribbean, and its popularity appears to be growing. The lightening of skin colour is done to produce a lighter complexion which is believed to increase attractiveness, social standing and improves one’s potential of being successful. Design and Methods. Fifteen (15 common skin lightening creams found in pharmacies and cosmetic retailers throughout Trinidad and Tobago were evaluated for Mercury by Cold Vapor Atomic Absorption Spectrophotometry (CVAAS and Arsenic by Hydride Generation Atomic Absorption Spectrophotometry (HGAAS. The results obtained were compared to global standards and previous research. Results. Fourteen (14 of the fifteen samples analysed contained Mercury in the range of 0.473 μg/g to 0.766 μg/g. One sample had a Mercury content of 14,507.74±490.75 μg/g which was over 14,000 times higher than the USFDA limit for mercury in cosmetics of 1 μg/g. All samples contained Arsenic in the range 1.016 μg/g to 6.612 μg/g, which exceeds the EU limit for cosmetics of 0 μg/g. Conclusions. All the samples analysed contained significant amounts of Mercury and Arsenic and none of them can be considered safe for prolonged human use. The samples that contained Mercury levels which were lower than the USFDA limit contained Arsenic levels which exceeded the EU standard of 0 μg/g in cosmetics. The popularity of these skin lightening creams in the Caribbean region places the population at elevated risk of chronic Mercury and Arsenic poisoning and possibly acute Mercury Poisoning.

  16. Preconcentration determination of arsenic species by sorption of As(V) on Amberlite IRA-410 coupled with fluorescence quenching of L-cysteine capped CdS nanoparticles.

    Science.gov (United States)

    Hosseini, Mohammad Saeid; Nazemi, Sahar

    2013-10-07

    A simple and accurate method for arsenic speciation analysis in natural and drinking water samples is described in which preconcentration of arsenic as As(V) was coupled with spectrofluorometric determination. The extracted As(V) species with a column containing Amberlite IRA-410 were subjected to L-cysteine capped CdS quantum dots (QDs) and the fluorescence quenching of the QDs due to reduction of As(V) by L-cysteine was considered as a signal relevant to As(V) concentration. The As(III) species were also determined after oxidation of As(III) ions to As(V) with H2O2 and measurement of the total arsenic content. In treatment with 400 mL portions of water samples containing 30 μg L(-1) As(V), the relative standard deviation was 2.8%. The detection limit of arsenic was also found to be 0.75 μg L(-1) (1 × 10(-8) M). The reliability of proposed method was confirmed using certified reference materials. The trace amounts of arsenic species were then determined in different water samples, satisfactorily.

  17. Determination of total arsenic and arsenic(III) in phosphate fertilizers by hydride generation atomic absorption spectrometry after ultrasound-assisted extraction based on a control acid media.

    Science.gov (United States)

    Rezende, Helen Cristine; Coelho, Nivia Maria Melo

    2014-01-01

    An ultrasound-assisted extraction procedure was developed for determination of inorganic arsenic (As) in phosphate fertilizer by hydride generation atomic absorption spectrometry. The variables that affect the hydride generation step were optimized, including the reducer, acid, sample flow rate, and concentrations of the acid and reducer. The determination of As(lll) was performed through the simple control of solution pH with a 0.5 M citric acid-sodium citrate buffer solution at pH 4.5, and total As was determined after a pre-reduction reaction with 1.0% (w/v) thiourea. Ultrasound-assisted acid extraction was performed, and the parameters sonication time and acid and Triton X-114 concentrations were optimized using a 23 factorial design and central composite design. LODs for As(lll) and total As were 0.029 and 0.022 microg/L, respectively. The accuracy of the method was confirmed with certified reference materials. The method was successfully applied in the determination of inorganic As in phosphate fertilizer samples.

  18. Determination of Total Arsenic and Speciation in Apple Juice by Liquid Chromatography-Inductively Coupled Plasma Mass Spectrometry: An Experiment for the Analytical Chemistry Laboratory

    Science.gov (United States)

    He, Ping; Colon, Luis A.; Aga, Diana S.

    2016-01-01

    A two-part laboratory experiment was designed for upper-level analytical chemistry students to provide hands-on experience in the use of high performance liquid chromatography (HPLC) for separation and inductively coupled plasma mass spectrometry (ICP-MS) for detection. In the first part of the experiment, the students analyze total arsenic in…

  19. Total arsenic, lead, and cadmium levels in vegetables cultivated at the Andean villages of northern Chile.

    Science.gov (United States)

    Queirolo, F; Stegen, S; Restovic, M; Paz, M; Ostapczuk, P; Schwuger, M J; Muñoz, L

    2000-06-08

    Various vegetables (broad beans, corn, potato, alfalfa and onion) were sampled in northern Chile, Antofagasta Region. They are the basis of human nutrition in this region and of great relevance to human health. This region is characterized by volcanic events (eruptions, thermal springs, etc.). Most of the vegetables cultivated in this area enter the local markets for a population of approximately 4000 people, whose ancestors were mainly atacameños and quechuas (local indigenous people). The cadmium and lead in these foods was determined by differential pulse anodic stripping voltammetry (DPASV). Results indicate that the highest concentration of Pb and Cd are in the potato skin, while the edible part of the potatoes contained a lower concentration of these metals. The INAA analyses of As in the vegetables from Socaire and Talabre, two towns located close to active volcanoes (e.g. Lascar), show a very high As content: 1850 microg/kg in corn (Socaire) and 860 microg/kg in potatoes (+ skin) (Talabre). These values exceed the National Standard for arsenic (500 microg/kg) by approximately 400% and 180%, respectively. In general, the data show a concentration of Pb greater than Cd with the potential for some vegetables to accumulate heavy metals, The values, expressed in fresh weight, vary from 0.2 to 40 microg/g for Cd and from 0.6 to 94 microg/g for Pb. These concentration intervals, except that of arsenic, are within the recommended standards in the Food Sanitary Regulation (Decree 977), which, expressed as fresh weight, must be equal to or smaller than 500 microg/kg for Pb. There is no legal standard for Cd.

  20. Minerals and Total Polyphenolic Content of Some Vegetal Powders

    Directory of Open Access Journals (Sweden)

    Roxana E. TUFEANU

    2017-11-01

    Full Text Available The total polyphenolic content and minerals were determined for chia seeds, Psyllium husks and watermelon rind powder. The minerals content was performed by using the Inductively Coupled Plasma Optical Emissions Spectrometer and Atomic Absorption Spectrometer, technique FIAS-Furnace (for Se. The sample with the highest content of polyphenols was chia (2.69 mg GAE/g s. followed by the watermelon rind powder. Reduced amounts of polyphenols were found in the Psyllium husks. Also, the total polyphenol concentration increased with the increase of the extraction time on the ultrasonic water bath. Minerals analysis indicated that powders obtained from chia seeds and watermelon rind contained large amounts of potassium, calcium, phosphorus and magnesium. The most abundant mineral in the Psyllium husks powder was found potassium, followed by calcium. In conclusion, these powders can be used as ingredients for functional food and food supplements production due to the high nutritional content and bioactive properties.

  1. Site-specific data confirm arsenic exposure predicted by the U.S. Environmental Protection Agency.

    Science.gov (United States)

    Walker, S; Griffin, S

    1998-03-01

    The EPA uses an exposure assessment model to estimate daily intake to chemicals of potential concern. At the Anaconda Superfund site in Montana, the EPA exposure assessment model was used to predict total and speciated urinary arsenic concentrations. Predicted concentrations were then compared to concentrations measured in children living near the site. When site-specific information on concentrations of arsenic in soil, interior dust, and diet, site-specific ingestion rates, and arsenic absorption rates were used, measured and predicted urinary arsenic concentrations were in reasonable agreement. The central tendency exposure assessment model successfully described the measured urinary arsenic concentration for the majority of children at the site. The reasonable maximum exposure assessment model successfully identified the uppermost exposed population. While the agreement between measured and predicted urinary arsenic is good, it is not exact. The variables that were identified which influenced agreement included soil and dust sample collection methodology, daily urinary volume, soil ingestion rate, and the ability to define the exposure unit. The concentration of arsenic in food affected agreement between measured and predicted total urinary arsenic, but was not considered when comparing measured and predicted speciated urinary arsenic. Speciated urinary arsenic is the recommended biomarker for recent inorganic arsenic exposure. By using site-specific data in the exposure assessment model, predicted risks from exposure to arsenic were less than predicted risks would have been if the EPA's default values had been used in the exposure assessment model. This difference resulted in reduced magnitude and cost of remediation while still protecting human health.

  2. Arsenic rich iron plaque on macrophyte roots - an ecotoxicological risk?

    Energy Technology Data Exchange (ETDEWEB)

    Taggart, M.A. [School of Biological Sciences, University of Aberdeen, Cruickshank Bld, St Machar Drive, Aberdeen, AB24 3UU (United Kingdom); Instituto de Investigacion en Recursos Cinegeticos, IREC (CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13005 Ciudad Real (Spain)], E-mail: mark.taggart@uclm.es; Mateo, R. [Instituto de Investigacion en Recursos Cinegeticos, IREC (CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13005 Ciudad Real (Spain); Charnock, J.M.; Bahrami, F. [Synchrotron Radiation Department, CCLRC Daresbury Laboratory, Warrington, Cheshire, WA4 4AD (United Kingdom); Green, A.J. [Department of Wetland Ecology, Estacion Biologica de Donana, CSIC, Pabellon del Peru, Avenida Maria Luisa s/n, 41013 Seville (Spain); Meharg, A.A. [School of Biological Sciences, University of Aberdeen, Cruickshank Bld, St Machar Drive, Aberdeen, AB24 3UU (United Kingdom)

    2009-03-15

    Arsenic is known to accumulate with iron plaque on macrophyte roots. Three to four years after the Aznalcollar mine spill (Spain), residual arsenic contamination left in seasonal wetland habitats has been identified in this form by scanning electron microscopy. Total digestion has determined arsenic concentrations in thoroughly washed 'root + plaque' material in excess of 1000 mg kg{sup -1}, and further analysis using X-ray absorption spectroscopy suggests arsenic exists as both arsenate and arsenite. Certain herbivorous species feed on rhizomes and bulbs of macrophytes in a wide range of global environments, and the ecotoxicological impact of consuming arsenic rich iron plaque associated with such food items remains to be quantified. Here, greylag geese which feed on Scirpus maritimus rhizome and bulb material in areas affected by the Aznalcollar spill are shown to have elevated levels of arsenic in their feces, which may originate from arsenic rich iron plaque. - Accumulation of metals with iron plaque on macrophyte roots in wetlands poses an ecotoxicological risk to certain herbivores.

  3. Effects of different inorganic arsenic species in Cyprinus carpio (Cyprinidae) tissues after short-time exposure: Bioaccumulation, biotransformation and biological responses

    Energy Technology Data Exchange (ETDEWEB)

    Ventura-Lima, Juliane [Instituto de Ciencias Biologicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS (Brazil); Programa de Pos-Graduacao em Ciencias Fisiologicas - Fisiologia Animal Comparada (FURG), Rio Grande, RS (Brazil); Fattorini, Daniele; Regoli, Francesco [Istituto di Biologia e Genetica, Universita Politecnica delle Marche, 60100, Ancona (Italy); Monserrat, Jose M., E-mail: josemmonserrat@pesquisador.cnpq.b [Instituto de Ciencias Biologicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS (Brazil); Programa de Pos-Graduacao em Ciencias Fisiologicas - Fisiologia Animal Comparada (FURG), Rio Grande, RS (Brazil)

    2009-12-15

    Differences in the toxicological and metabolic pathway of inorganic arsenic compounds are largely unknown for aquatic species. In the present study the effects of short-time and acute exposure to As{sup III} and As{sup V} were investigated in gills and liver of the common carp, Cyprinus carpio (Cyprinidae), measuring accumulation and chemical speciation of arsenic, and the activity of glutathione-S-transferase omega (GST OMEGA), the rate limiting enzyme in biotransformation of inorganic arsenic. Oxidative biomarkers included antioxidant defenses (total glutathione-S-transferases, glutathione reductase, glutathione, and glucose-6-phosphate dehydrogenase), total scavenging capacity toward peroxyl radicals, reactive oxygen species (ROS) measurement and lipid peroxidation products. A marked accumulation of arsenic was observed only in gills of carps exposed to 1000 ppb As{sup V}. Also in gills, antioxidant responses were mostly modulated through a significant induction of glucose-6-phosphate dehydrogenase activity which probably contributed to reduce ROS formation; however this increase was not sufficient to prevent lipid peroxidation. No changes in metal content were measured in liver of exposed carps, characterized by lower activity of GST OMEGA compared to gills. On the other hand, glutathione metabolism was more sensitive in liver tissue, where a significant inhibition of glutathione reductase was concomitant with increased levels of glutathione and higher total antioxidant capacity toward peroxyl radicals, thus preventing lipid peroxidation and ROS production. The overall results of this study indicated that exposure of C. carpio to As{sup III} and As{sup V} can induce different responses in gills and liver of this aquatic organism. - Common carp (Cyprinus carpio) presented marked differences between gills and liver after arsenic exposure in terms of antioxidant responses and also in biotransformation.

  4. Sorption of Arsenic from Desalination Concentrate onto Drinking Water Treatment Solids: Operating Conditions and Kinetics

    Directory of Open Access Journals (Sweden)

    Xuesong Xu

    2018-01-01

    Full Text Available Selective removal of arsenic from aqueous solutions with high salinity is required for safe disposal of the concentrate and protection of the environment. The use of drinking water treatment solids (DWTS to remove arsenic from reverse osmosis (RO concentrate was studied by batch sorption experiments. The impacts of solution chemistry, contact time, sorbent dosage, and arsenic concentration on sorption were investigated, and arsenic sorption kinetics and isotherms were modeled. The results indicated that DWTS were effective in removing arsenic from RO concentrate. The arsenic sorption process followed a pseudo-second-order kinetic model. Multilayer adsorption was simulated by Freundlich equation. The maximum sorption capacities were calculated to be 170 mg arsenic per gram of DWTS. Arsenic sorption was enhanced by surface precipitation onto the DWTS due to the high amount of calcium in the RO concentrate and the formation of ternary complexes between arsenic and natural organic matter (NOM bound by the polyvalent cations in DWTS. The interactions between arsenic and NOM in the solid phase and aqueous phase exhibited two-sided effects on arsenic sorption onto DWTS. NOM in aqueous solution hindered the arsenic sorption onto DWTS, while the high organic matter content in solid DWTS phase enhanced arsenic sorption.

  5. Absorption of foliar-applied arsenic by the arsenic hyperaccumulating fern (Pteris vittata L.)

    Energy Technology Data Exchange (ETDEWEB)

    Bondada, Bhaskar R.; Tu, Shuxin; Ma, Lena Q

    2004-10-01

    The fact that heavy metals can enter various domains of the plant system through foliar pathways spurred us to explore if the fronds of the Chinese brake fern (Pteris vittata L.), a hyperaccumulator of arsenic, a carcinogenic metalloid, was proficient in absorbing arsenic in the form of sprays. The specific objective of this study was to investigate the impact of frond age, form of arsenic, and time of application on the absorption of foliar-applied arsenic by the brake fern; also examined were the effects of foliar sprays on surface ultrastructure and arsenic speciation in the frond following absorption. Foliar sprays of different arsenic concentrations (0, 50, 100, 200, and 400 ppm) were applied to young and fertile fronds. A positive linear relationship existed between arsenic concentration and absorption; the arsenic concentration of fronds increased from 50 to 200 ppm. Time-course analysis with excised pinnae indicated an initial linear increase followed by a plateau at 48 h. The young fronds with immature sori absorbed more arsenic (3100 ppm) than the fertile mature fronds (890 ppm). In the frond, the arsenic absorption was greatest in the lamina of the pinnae followed by the sori and the rachis. Applying arsenic during night (20:00-22:00 h) or afternoon (12:00-14:00 h) resulted in greater absorption of arsenic than the application in the morning (08:00-10:00 h). The arsenic absorption was greater through abaxial surfaces than through adaxial surfaces. The brake fern absorbed more arsenic when it was applied in the form of arsenite. Regardless of the form of arsenic and the surface it was applied to, arsenic occurred as arsenite, the reduced and the most toxic form of arsenic, after having been absorbed by the fronds. Scanning electron microscopy revealed no surface morphological alterations following all arsenic sprays. The study unequivocally illustrated that the Chinese brake fern absorbed foliar-applied arsenic with great efficiency. Consequently, the

  6. Absorption of foliar-applied arsenic by the arsenic hyperaccumulating fern (Pteris vittata L.)

    International Nuclear Information System (INIS)

    Bondada, Bhaskar R.; Tu, Shuxin; Ma, Lena Q.

    2004-01-01

    The fact that heavy metals can enter various domains of the plant system through foliar pathways spurred us to explore if the fronds of the Chinese brake fern (Pteris vittata L.), a hyperaccumulator of arsenic, a carcinogenic metalloid, was proficient in absorbing arsenic in the form of sprays. The specific objective of this study was to investigate the impact of frond age, form of arsenic, and time of application on the absorption of foliar-applied arsenic by the brake fern; also examined were the effects of foliar sprays on surface ultrastructure and arsenic speciation in the frond following absorption. Foliar sprays of different arsenic concentrations (0, 50, 100, 200, and 400 ppm) were applied to young and fertile fronds. A positive linear relationship existed between arsenic concentration and absorption; the arsenic concentration of fronds increased from 50 to 200 ppm. Time-course analysis with excised pinnae indicated an initial linear increase followed by a plateau at 48 h. The young fronds with immature sori absorbed more arsenic (3100 ppm) than the fertile mature fronds (890 ppm). In the frond, the arsenic absorption was greatest in the lamina of the pinnae followed by the sori and the rachis. Applying arsenic during night (20:00-22:00 h) or afternoon (12:00-14:00 h) resulted in greater absorption of arsenic than the application in the morning (08:00-10:00 h). The arsenic absorption was greater through abaxial surfaces than through adaxial surfaces. The brake fern absorbed more arsenic when it was applied in the form of arsenite. Regardless of the form of arsenic and the surface it was applied to, arsenic occurred as arsenite, the reduced and the most toxic form of arsenic, after having been absorbed by the fronds. Scanning electron microscopy revealed no surface morphological alterations following all arsenic sprays. The study unequivocally illustrated that the Chinese brake fern absorbed foliar-applied arsenic with great efficiency. Consequently, the

  7. Relationship between arsenic skin lesions and the age of natural menopause.

    Science.gov (United States)

    Yunus, Fakir Md; Rahman, Musarrat Jabeen; Alam, Md Zahidul; Hore, Samar Kumar; Rahman, Mahfuzar

    2014-05-02

    Chronic exposure to arsenic is associated with neoplastic, cardiovascular, endocrine, neuro-developmental disorders and can have an adverse effect on women's reproductive health outcomes. This study examined the relationship between arsenic skin lesions (a hallmark sign of chronic arsenic poisoning) and age of natural menopause (final menopausal period) in populations with high levels of arsenic exposure in Bangladesh. We compared menopausal age in two groups of women--with and without arsenic skin lesions; and presence of arsenic skin lesions was used as an indicator for chronic arsenic exposure. In a cross-sectional study, a total of 210 participants were randomly identified from two ongoing studies--participants with arsenic skin lesions were identified from an ongoing clinical trial and participants with no arsenic skin lesions were identified from an ongoing cohort study. Mean age of menopause between these two groups were calculated and compared. Multivariable linear regression was used to estimate the relationship between the status of the arsenic skin lesions and age of natural menopause in women. Women with arsenic skin lesions were 1.5 years younger (p <0.001) at the time of menopause compared to those without arsenic skin lesions. After adjusting with contraceptive use, body mass index, urinary arsenic level and family history of premature menopause, the difference between the groups' age at menopause was 2.1 years earlier (p <0.001) for respondents with arsenic skin lesions. The study showed a statistically significant association between chronic exposure to arsenic and age at menopause. Heavily exposed women experienced menopause two years earlier than those with lower or no exposure.

  8. Assessment of human dietary exposure to arsenic through rice.

    Science.gov (United States)

    Davis, Matthew A; Signes-Pastor, Antonio J; Argos, Maria; Slaughter, Francis; Pendergrast, Claire; Punshon, Tracy; Gossai, Anala; Ahsan, Habibul; Karagas, Margaret R

    2017-05-15

    Rice accumulates 10-fold higher inorganic arsenic (i-As), an established human carcinogen, than other grains. This review summarizes epidemiologic studies that examined the association between rice consumption and biomarkers of arsenic exposure. After reviewing the literature we identified 20 studies, among them included 18 observational and 2 human experimental studies that reported on associations between rice consumption and an arsenic biomarker. Among individuals not exposed to contaminated water, rice is a source of i-As exposure - rice consumption has been consistently related to arsenic biomarkers, and the relationship has been clearly demonstrated in experimental studies. Early-life i-As exposure is of particular concern due to its association with lifelong adverse health outcomes. Maternal rice consumption during pregnancy also has been associated with infant toenail total arsenic concentrations indicating that dietary exposure during pregnancy results in fetal exposure. Thus, the collective evidence indicates that rice is an independent source of arsenic exposure in populations around the world and highlights the importance of investigating its affect on health. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Prediction of Groundwater Arsenic Contamination using Geographic Information System and Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Md. Moqbul Hossain

    2013-01-01

    Full Text Available Ground water arsenic contamination is a well known health and environmental problem in Bangladesh. Sources of this heavy metal are known to be geogenic, however, the processes of its release into groundwater are poorly understood phenomena. In quest of mitigation of the problem it is necessary to predict probable contamination before it causes any damage to human health. Hence our research has been carried out to find the factor relations of arsenic contamination and develop an arsenic contamination prediction model. Researchers have generally agreed that the elevated concentration of arsenic is affected by several factors such as soil reaction (pH, organic matter content, geology, iron content, etc. However, the variability of concentration within short lateral and vertical intervals, and the inter-relationships of variables among themselves, make the statistical analyses highly non-linear and difficult to converge with a meaningful relationship. Artificial Neural Networks (ANN comes in handy for such a black box type problem. This research uses Back propagation Neural Networks (BPNN to train and validate the data derived from Geographic Information System (GIS spatial distribution grids. The neural network architecture with (6-20-1 pattern was able to predict the arsenic concentration with reasonable accuracy.

  10. Comparative total phenolic content, anti-lipase and antioxidant ...

    African Journals Online (AJOL)

    Total phenol values are expressed in terms of Gallic acid equivalent (w/w of dry mass). Aframomum melegueta exhibited the highest phenolic content of 60.4 ± 2.36 mgGAE/g, a percentage antioxidant activity of 86.6 % at 200μg/ml and percentage lipase inhibition of 89% at 1mg/ml while Aframomum danielli revealed a total ...

  11. Influence of arsenic co-contamination on DDT breakdown and microbial activity

    International Nuclear Information System (INIS)

    Zwieten, Lukas van; Ayres, Matthew R.; Morris, Stephen G.

    2003-01-01

    Co-occurrence of arsenic and DDT in soil may result increased persistence of DDT. - The impacts of arsenic co-contamination on the natural breakdown of 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) in soil are investigated in a study of 12 former cattle dip sites located in northeastern NSW, Australia. This study examines the relationship between the intrinsic breakdown of DDT to 1,1-dichloro-2,2-bis(4-chlorophenyl)ethane (DDD) and 1,1-dichloro-2,2-bis(4-chlorophenyl)ethylene (DDE), and the impacts of arsenic co-contamination on this breakdown. Between-site analysis demonstrated that arsenic at 2000 mg/kg gave a 50% reduction in the concentration of DDD compared to background arsenic of 5 mg/kg. Within-site analysis also showed the ratio of DDT:DDD increased in soils as arsenic concentrations increased. This within-site trend was also apparent with the DDT:DDE ratio, suggesting inhibition of DDT breakdown by arsenic co-contamination. Microbial activity was inhibited as residues of total DDTs and arsenic increased. Hence arsenic co-contamination and high concentrations of DDT in soil may result in an increased persistence of DDT in the environment studied

  12. Treatability of inorganic arsenic and organoarsenicals in groundwater

    International Nuclear Information System (INIS)

    Kuhlmeier, P.D.; Sherwood, S.P.

    1996-01-01

    A 2-year three-phase study into methods for treatment of mixed inorganic and organic arsenic species to drinking water levels was conducted at a former pesticide facility in Houston, Tex. The species present include monomethylarsinic acid, dimethylarsinic acid, arsenate, and arsenite. Phase One studies reported here included the evaluation of four adsorbents using bottle roll and column flow through techniques, oxidation through the application of Fenton's reagent followed by coprecipitation, coprecipitation without oxidation, and ultraviolet (UV)/ozone tests. The four adsorbents tested were activated carbon, activated alumina, ferrous sulfide, and a strongly basic ion exchange resin. All adsorbents removed some arsenic, but none except ferrous sulfide was sufficiently effective to warrant follow-up studies. Two small ferrous sulfide column tests, run under different conditions, removed arsenic but not to the levels and loading capacities needed to make this method practical. Organic compound destruction was tested using Fenton's reagent (a mixture of hydrogen peroxide and ferrous iron) before coprecipitation. Arsenic was reduced to 170 ppb in the treated liquor. Coprecipitation without oxidative pretreatment produced a liquor containing 260 ppb arsenic. A two-stage Fenton-type coprecipitation procedure produced a supernatant containing 110 ppb total arsenic. Preliminary tests with a second-stage oxidative process, using ozone and UV radiation, showed approximately 80% destruction of an organic-arsenic surrogate (cacodylic acid) in 1 hour

  13. Bioavailability and speciation of arsenic in carrots grown in contaminated soil

    DEFF Research Database (Denmark)

    Helgesen, H.; Larsen, Erik Huusfeldt

    1998-01-01

    increasing depression of growth with increasing level of contamination, At the experimental plots E-G with soil arsenic concentrations above 400 mu g g(-1) no carrots developed. Whether this effect was caused by arsenic or the concomitant copper content which ranged from 11 to 810 mu g g(-1) in the soil...... mixtures is unknown. The arsenic species extracted from the soils and carrots were separated and detected using anion-exchange HPLC coupled with ICP-MS, In the less contaminated soils from plots A and B arsenite (As-III) was more abundant than arsenate (As-V) in the soil using 1 mmole l(-1) calcium nitrate...

  14. Speciation And Uptake of Arsenic Accumulated By Corn Seedlings Using XAS And DRC-ICP-MS

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, J.G.; Martinez-Martinez, A.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L.

    2009-05-21

    ICP-MS was used to investigate the uptake of As(III) and As(V) from hydroponics growth media by corn seedlings. It was found that arsenic uptake by the plant roots for the arsenic(V) and arsenic(III) treatments were 95 and 112 ppm, respectively. However, in the shoots of the arsenic (V) treatments had 18 ppm whereas arsenic(III) treatments had 12 ppm. XANES studies showed that As for both treatments arsenic was present as a mixture of an As(III) sulfur complex and an As(V) oxygen complex. The XANES data was corroborated by the EXAFS studies showing the presence of both oxygen and sulfur ligands coordinated to the arsenic. Iron concentrations were found to increase by 4 fold in the As(V) contaminated growth media and 7 fold in the As(III) treatment compared to the control iron concentration of 500 ppm. Whereas, the total iron concentration in the shoots was found to decrease by approximately the same amount for both treatments from 360 ppm in the control to approximately 125 ppm in both arsenic treatments. Phosphorus concentrations were found to decrease in both the roots and shoots compared to the control plants. The total sulfur in the roots was found to increase in the arsenic(III) and arsenic(V) treatments to 560 ppm and 800 ppm, respectively, compared to the control plants 358 ppm. In addition, the total sulfur in shoots of the plants was found to remain relatively constant at approximately 1080 ppm. The potassium concentrations in the plants were found to increase in the roots and decrease in the shoots.

  15. Evaluation of some selected herbs on arsenic-affected cattle in Nadia District, West Bengal, India.

    Science.gov (United States)

    Hazarika, Jantu M; Sarkar, Prasanta K; Chattopadhyay, Abichal; Mandal, Tapan K; Sarkar, Samar

    2015-04-01

    Arsenic poisoning due to contaminated subsoil water is one of the most alarming environment hazards in West Bengal, India. Cattle are also affected by arsenic due to ingestion of arsenic contaminated water, paddy straw, crops and vegetables. Thirty milch cattle having arsenic content in the range of 3.5 to 4.5 mg/kg in hair were chosen for this experiment from cattle of five respective villages in Nadia District, West Bengal, India. The cattle were divided into three groups containing 10 animals each. Group I cattle were treated with turmeric powder (Curcuma longa) 20 g/day orally for 60 days. Group II cattle were treated with turmeric powder (10 g/day) and Amaranthus spinosus powder (10 g/day) orally for 60 days. Group III cattle were treated with turmeric powder (10 g/day) and Eclipta alba powder (10 g/day) orally for 60 days. Ten apparently healthy milch cows with no history of exposure to arsenic were selected and kept as control group (group IV). Arsenic content in hair, faeces, urine and milk; different biochemical and haematological parameters and DNA fragmentation percentage assay were carried out before commencement of the treatment, after 30 days and after 60 days of treatment. The test drugs were found significantly (p < 0.05) effective to eliminate arsenic from the body and lead to significant improvement in different biochemistry, pathology and DNA fragmentation assay. These drugs also give protection from possible damage caused by arsenic exposure.

  16. Chlorophyll meter reading and total nitrogen content applied as ...

    African Journals Online (AJOL)

    Ana Mascarello

    The present study was aimed to assess the relationship between the reading of the chlorophyll meter and the total nitrogen (N) content ... devices to measure chlorophyll index (SPAD) and N content in the leaf. The nitrogen levels were found ... absorption of other nutrients and the production of carbohydrates. The methods ...

  17. Standard test methods for arsenic in uranium hexafluoride

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2005-01-01

    1.1 These test methods are applicable to the determination of total arsenic in uranium hexafluoride (UF6) by atomic absorption spectrometry. Two test methods are given: Test Method A—Arsine Generation-Atomic Absorption (Sections 5-10), and Test Method B—Graphite Furnace Atomic Absorption (Appendix X1). 1.2 The test methods are equivalent. The limit of detection for each test method is 0.1 μg As/g U when using a sample containing 0.5 to 1.0 g U. Test Method B does not have the complete collection details for precision and bias data thus the method appears as an appendix. 1.3 Test Method A covers the measurement of arsenic in uranyl fluoride (UO2F2) solutions by converting arsenic to arsine and measuring the arsine vapor by flame atomic absorption spectrometry. 1.4 Test Method B utilizes a solvent extraction to remove the uranium from the UO2F2 solution prior to measurement of the arsenic by graphite furnace atomic absorption spectrometry. 1.5 Both insoluble and soluble arsenic are measured when UF6 is...

  18. Inorganic arsenic and iron(II) distributions in sediment porewaters investigated by a combined DGTcolourimetric DET technique

    DEFF Research Database (Denmark)

    Bennett, William W.; Teasdale, Peter R.; Welsh, David T.

    2012-01-01

    A new approach for investigating the biogeochemistry of inorganic arsenic and iron(II) in freshwater, estuarine and marine sediments is reported. The recently developed Metsorb diffusive gradients in thin films (DGT) technique for the measurement of total inorganic arsenic and the colourimetric d...... highly representative assessment of the biogeochemical status of arsenic and iron in a variety of natural sediments, including groundwater sediments where mobilised arsenic is responsible for significant human health risks.......A new approach for investigating the biogeochemistry of inorganic arsenic and iron(II) in freshwater, estuarine and marine sediments is reported. The recently developed Metsorb diffusive gradients in thin films (DGT) technique for the measurement of total inorganic arsenic and the colourimetric...... diffusive equilibration in thin films (DET) technique for the measurement of iron(II), were utilised in combination to determine co-located depth profiles of both solutes in sediment porewaters. DGT-measured porewater arsenic concentrations were typically less than 40nM, whereas iron(II) concentrations...

  19. Determination of total arsenic using a novel Zn-ferrite binding gel for DGT techniques: Application to the redox speciation of arsenic in river sediments.

    Science.gov (United States)

    Gorny, Josselin; Lesven, Ludovic; Billon, Gabriel; Dumoulin, David; Noiriel, Catherine; Pirovano, Caroline; Madé, Benoît

    2015-11-01

    A new laboratory-made Zn-ferrite (ZnFe2O4) binding gel is fully tested using Diffusive Gradient in Thin films (DGT) probes to measure total As [including inorganic As(III) and As(V), as well as MonoMethyl Arsenic Acid (MMAA(V)) and DiMethyl Arsenic Acid (DMAA(V))] in river waters and sediment pore waters. The synthesis of the binding gel is easy, cheap and its insertion into the acrylamide gel is not problematic. An important series of triplicate tests have been carried out to validate the use of the Zn-ferrite binding gel in routine for several environmental matrixes studies, in order to test: (i) the effect of pH on the accumulation efficiency of inorganic As species; (ii) the reproducibility of the results; (iii) the accumulation efficiency of As species; (iv) the effects of the ionic strength and possible competitive anions; and (v) the uptake and the elution efficiency of As species after accumulation in the binding gel. All experimental conditions have been reproduced using two other existing binding gels for comparison: ferrihydrite and Metsorb® HMRP 50. We clearly demonstrate that the Zn-ferrite binding gel is at least as good as the two other binding gels, especially for pH values higher than 8. In addition, by taking into consideration the diffusion rates of As(III) and As(V) in the gel, combining the 3-mercaptopropyl [accumulating only As(III)] with the Zn-ferrite binding gels allows for performing speciation studies. An environmental study along the Marque River finally illustrates the ability of the new binding gel to be used for field studies. Copyright © 2015. Published by Elsevier B.V.

  20. Arsenic in drinking water in the Los Altos de Jalisco region of Mexico.

    Science.gov (United States)

    Hurtado-Jiménez, Roberto; Gardea-Torresdey, Jorge L

    2006-10-01

    To establish the degree of contamination by arsenic in drinking water in the Los Altos de Jalisco (LAJ) region of west-central Mexico, and to estimate the levels of exposure that residents of the area face. Total arsenic concentration (the sum of all arsenic forms, organic and inorganic) was determined for 129 public water wells in 17 municipal capitals (cabeceras municipales) of the LAJ region, using inductively coupled plasma-optical emission spectroscopy. For most of the wells, water samples were taken in both November 2002 and October 2003. The levels of exposure to arsenic were estimated for babies (10 kg), children (20 kg), and adults (70 kg). Mean concentrations of arsenic higher than the Mexican national guideline value of 25 micro g/L were found in 44 (34%) of the 129 wells. The mean concentration of total arsenic for the 129 wells ranged from 14.7 micro g/L to 101.9 micro g/L. The highest concentrations were found in well water samples collected in the cities of Mexticacán (262.9 micro g/L), Teocaltiche (157.7 micro g/L), and San Juan de los Lagos (113.8 micro g/L). Considering the global mean concentration for all the wells in each of the 17 cities, the mean concentration of arsenic exceeded the Mexican guideline value in 7 of the cities. However, the global mean concentration in all 17 cities was higher than the World Health Organization guideline value of 10 micro g/L for arsenic. The range of the estimated exposure doses to arsenic in drinking water was 1.1-7.6 micro g/kg/d for babies, 0.7-5.1 micro g/kg/d for children, and 0.4-2.7 micro g/kg/d for adults. At the exposure doses estimated in the LAJ region, the potential health effects from chronic arsenic ingestion include skin diseases, gastrointestinal effects, neurological damage, cardiovascular problems, and hematological effects. While all the residents may not be affected, an important fraction of the total population of the LAJ region is under potential health risk due to the ingestion of high

  1. [Seasonal changes and response to stress of total flavonoids content of Farfugium japonicum].

    Science.gov (United States)

    Cui, Dalian; Ma, Yuxin

    2013-05-01

    To investigate the seasonal variation of total flavonoid content of Farfugium japonicum and its response to stress. The total flavonoids of Farfugium japonicum were determined by spectrophotometry in different seasons and under various stressful factors. The total flavonoid content in Farfugium japonicum leaves was the highest, followed by the petiole, and rhizomes (Pseasons (Pwater stress, the total flavonoid content in Farfugium japonicum leaves gradually increased, that in petiole first increased and then decreased,while that in rhizomes decreased (Pstress, the total flavonoid content in leaves, petioles and rhizomes of Farfugium japonicum showed a decreasing trend (Pseasons and that in different parts of the plant has different responses to ecological stressful factors.

  2. In situ chemical fixation of arsenic-contaminated soils: Anexperimental study

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Li; Donahoe, Rona J.; Redwine, James C.

    2007-03-27

    This paper reports the results of an experimentalstudytesting a low-cost in situ chemical fixation method designed to reclaimarsenic-contaminated subsurface soils. Subsurface soils from severalindustrial sites in southeastern U.S. were contaminated with arsenicthrough heavy application of herbicide containing arsenic trioxide. Themean concentrations of environmentally available arsenic in soilscollected from the two study sites, FW and BH, are 325 mg/kg and 900mg/kg, respectively. The soils are sandy loams with varying mineralogicaland organic contents. The previous study [Yang L, Donahoe RJ. The form,distribution and mobility of arsenic in soils contaminated by arsenictrioxide, at sites in Southeast USA. Appl Geochem 2007;22:320 341]indicated that a large portion of the arsenic in both soils is associatedwith amorphous aluminum and iron oxyhydroxides and shows very slowrelease against leaching by synthetic precipitation. The soil's amorphousaluminum and iron oxyhydroxides content was found to have the mostsignificant effect on its ability to retain arsenic.Based on thisobservation, contaminated soils were reacted with different treatmentsolutions in an effort to promote the formation of insolublearsenic-bearing phases and thereby decrease the leachability of arsenic.Ferrous sulfate, potassium permanganate and calcium carbonate were usedas the reagents for the chemical fixation solutions evaluated in threesets of batch experiments: (1) FeSO4; (2) FeSO4 and KMnO4; (3) FeSO4,KMnO4 and CaCO3. The optimum treatment solutions for each soil wereidentified based on the mobility of arsenic during sequential leaching oftreated and untreated soils using the fluids described in EPA Method 1311[USEPA. Method 1311: toxicity characteristic leaching procedure. Testmethods for evaluating solid waste, physical/chemical methods. 3rd ed.Washington, DC: U.S. Environmental Protection Agency, Office of SolidWaste. U.S. Government Printing Office; 1992]toxic characteristicsleaching

  3. Relating soil geochemical properties to arsenic bioaccessibility

    Data.gov (United States)

    U.S. Environmental Protection Agency — soil element total concentration, soil pH and arsenic bioaccessibility values. This dataset is not publicly accessible because: EPA cannot release personally...

  4. Biological monitoring of arsenic exposure of gallium arsenide- and inorganic arsenic-exposed workers by determination of inorganic arsenic and its metabolites in urine and hair

    Energy Technology Data Exchange (ETDEWEB)

    Yamauchi, H.; Takahashi, K.; Mashiko, M.; Yamamura, Y. (St. Marianna Univ. School of Medicine, Kawasaki (Japan))

    1989-11-01

    In an attempt to establish a method for biological monitoring of inorganic arsenic exposure, the chemical species of arsenic were measured in the urine and hair of gallium arsenide (GaAs) plant and copper smelter workers. Determination of urinary inorganic arsenic concentration proved sensitive enough to monitor the low-level inorganic arsenic exposure of the GaAs plant workers. The urinary inorganic arsenic concentration in the copper smelter workers was far higher than that of a control group and was associated with high urinary concentrations of the inorganic arsenic metabolites, methylarsonic acid (MAA) and dimethylarsinic acid (DMAA). The results established a method for exposure level-dependent biological monitoring of inorganic arsenic exposure. Low-level exposures could be monitored only by determining urinary inorganic arsenic concentration. High-level exposures clearly produced an increased urinary inorganic arsenic concentration, with an increased sum of urinary concentrations of inorganic arsenic and its metabolites (inorganic arsenic + MAA + DMAA). The determination of urinary arsenobetaine proved to determine specifically the seafood-derived arsenic, allowing this arsenic to be distinguished clearly from the arsenic from occupational exposure. Monitoring arsenic exposure by determining the arsenic in the hair appeared to be of value only when used for environmental monitoring of arsenic contamination rather than for biological monitoring.

  5. Extraction techniques for arsenic species in rice flour and their speciation by HPLC-ICP-MS.

    Science.gov (United States)

    Narukawa, Tomohiro; Suzuki, Toshihiro; Inagaki, Kazumi; Hioki, Akiharu

    2014-12-01

    The extraction of arsenic (As) species present in rice flour samples was investigated using different extracting solvents, and the concentration of each species was determined by HPLC-ICP-MS after heat-assisted extraction. The extraction efficiencies for total arsenic species and especially for arsenite [As(III)] and arsenate [As(V)] were investigated. As(III), As(V) and dimethylarsinic acid (DMAA) were found in the samples, and the concentration of DMAA did not vary with treatment conditions. However, the concentrations of extracted total arsenic and those of As(III) and As(V) depended on the extracting solvents. When an extracting solvent was highly acidic, the concentrations of extracted total arsenic were in good agreement with the total arsenic concentration determined by ICP-MS after microwave-assisted digestion, though a part of the As(V) was reduced to As(III) during the highly acidic extraction process. Extraction under neutral conditions increased the extracted As(V), but extracted total arsenic was decreased because a part of the As(III) could not be extracted. Optimum conditions for the extraction of As(III) and As(V) from rice flour samples are discussed to allow the accurate determinations of As(III), As(V) and DMAA in the rice flour samples. Heat block extraction techniques using 0.05 mol L(-1) HClO4 and silver-containing 0.15 mol L(-1) HNO3 were also developed. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. CAMEX-4 DC-8 NEVZOROV TOTAL CONDENSED WATER CONTENT SENSOR V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The CAMEX-4 DC-8 Nevzorov Total Condensed Water Content Sensor dataset was collected by the Nevzorov total condensed water content sensor which was used to measure...

  7. The potential of Thelypteris palustris and Asparagus sprengeri in phytoremediation of arsenic contamination.

    Science.gov (United States)

    Anderson, LaShunda L; Walsh, Maud; Roy, Amitava; Bianchetti, Christopher M; Merchan, Gregory

    2011-02-01

    The potential of two plants, Thelypteris palustris (marsh fern) and Asparagus sprengeri (asparagus fern), for phytoremediation of arsenic contamination was evaluated. The plants were chosen for this study because of the discovery of the arsenic hyperaccumulating fern, Pteris vittata (Ma et al., 2001) and previous research indicating asparagus fern's ability to tolerate > 1200 ppm soil arsenic. Objectives were (1) to assess if selected plants are arsenic hyperaccumulators; and (2) to assess changes in the species of arsenic upon accumulation in selected plants. Greenhouse hydroponic experiments arsenic treatment levels were established by adding potassium arsenate to solution. All plants were placed into the hydroponic experiments while still potted in their growth media. Marsh fern and Asparagus fern can both accumulate arsenic. Marsh fern bioaccumulation factors (> 10) are in the range of known hyperaccumulator, Pteris vittata Therefore, Thelypteris palustris is may be a good candidate for remediation of arsenic soil contamination levels of arsenic. Total oxidation of As (III) to As (V) does not occur in asparagus fern. The asparagus fern is arsenic tolerant (bioaccumulation factors phytoremediation candidate.

  8. Arsenic speciation in xylem sap of cucumber (Cucumis sativus L.)

    Energy Technology Data Exchange (ETDEWEB)

    Mihucz, Victor G. [Joint Research Group of Environmental Chemistry of the Hungarian Academy of Sciences and L. Eoetvoes University, Budapest (Hungary); Hungarian Satellite Centre of Trace Elements Institute to UNESCO, Budapest (Hungary); Tatar, Eniko [Hungarian Satellite Centre of Trace Elements Institute to UNESCO, Budapest (Hungary); L. Eoetvoes University, Department of Inorganic and Analytical Chemistry, Budapest (Hungary); Virag, Istvan [L. Eoetvoes University, Department of Inorganic and Analytical Chemistry, Budapest (Hungary); Cseh, Edit; Fodor, Ferenc [L. Eoetvoes University, Department of Plant Physiology, Budapest (Hungary); Zaray, Gyula [Joint Research Group of Environmental Chemistry of the Hungarian Academy of Sciences and L. Eoetvoes University, Budapest (Hungary); Hungarian Satellite Centre of Trace Elements Institute to UNESCO, Budapest (Hungary); L. Eoetvoes University, Department of Inorganic and Analytical Chemistry, Budapest (Hungary)

    2005-10-01

    Flow injection analysis (FIA) and high-performance liquid chromatography double-focusing sector field inductively coupled plasma mass spectrometry (HPLC-DF-ICP-MS) were used for total arsenic determination and arsenic speciation of xylem sap of cucumber plants (Cucumis sativus L.) grown in hydroponics containing 2 {mu}mol dm{sup -3} arsenate or arsenite, respectively. Arsenite [As(III)], arsenate [As(V)] and dimethylarsinic acid (DMA) were identified in the sap of the plants. Arsenite was the predominant arsenic species in the xylem saps regardless of the type of arsenic treatment, and the following concentration order was determined: As(III) > As(V) > DMA. The amount of total As, calculated taking into consideration the mass of xylem sap collected, was almost equal for both treatments. Arsenite was taken up more easily by cucumber than arsenate. Partial oxidation of arsenite to arsenate (<10% in 48 h) was observed in the case of arsenite-containing nutrient solutions, which may explain the detection of arsenate in the saps of plants treated with arsenite. (orig.)

  9. Arsenic in Food

    Science.gov (United States)

    ... Vaccines, Blood & Biologics Animal & Veterinary Cosmetics Tobacco Products Food Home Food Foodborne Illness & Contaminants Metals Arsenic Share ... of the Method used to Measure Arsenic in Foods Inductively Coupled Plasma-Mass Spectrometric Determination of Arsenic, ...

  10. Elevated lactate dehydrogenase activity and increased cardiovascular mortality in the arsenic-endemic areas of southwestern Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Ya-Tang [Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Taiwan (China); Graduate Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taiwan (China); Genomics Research Center, Academia Sinica, Taiwan (China); Chen, Chien-Jen [Graduate Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taiwan (China); Genomics Research Center, Academia Sinica, Taiwan (China); Li, Wan-Fen [Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Taiwan (China); Hsu, Ling-I [Genomics Research Center, Academia Sinica, Taiwan (China); Tsai, Li-Yu; Huang, Yeou-Lih [Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Taiwan (China); Sun, Chien-Wen [Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Taiwan (China); Chen, Wei J., E-mail: wjchen@ntu.edu.tw [Graduate Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taiwan (China); Genetic Epidemiology Core Laboratory, National Taiwan University Center for Genomic Medicine, Taiwan (China); Wang, Shu-Li, E-mail: slwang@nhri.org.tw [Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Taiwan (China); Department of Public Health, College of Public Health, China Medical University, Taichung, Taiwan (China)

    2012-08-01

    Arsenic ingestion has been linked to increasing global prevalence of and mortality from cardiovascular disease (CVD); arsenic can be removed from drinking water to reduce related health effects. Lactate dehydrogenase (LDH) is used for the evaluation of acute arsenic toxicity in vivo and in vitro, but it is not validated for the evaluation of long-term, chronic arsenic exposure. The present study examined the long-term effect of chronic arsenic exposure on CVD and serum LDH levels, after consideration of arsenic metabolism capacity. A total of 380 subjects from an arseniasis-endemic area and 303 from a non-endemic area of southwestern Taiwan were recruited in 2002. Various urinary arsenic species were analyzed using high-performance liquid chromatography (HPLC) and hydride generation systems. Fasting serum was used for quantitative determination of the total LDH activity. A significant dose–response relationship was observed between arsenic exposure and LDH elevation, independent of urinary arsenic profiles (P < 0.001). Furthermore, abnormal LDH elevation was associated with CVD mortality after adjustment for Framingham risk scores for 10-year CVD and arsenic exposure (hazard ratio, 3.98; 95% confidence interval, 1.07–14.81). LDH was elevated in subjects with arsenic exposure in a dose-dependent manner. LDH is a marker of arsenic toxicity associated with CVD mortality. Results of this study have important implications for use in ascertaining long-term arsenic exposure risk of CVD. -- Highlights: ► We showed that arsenic exposure was correlated with LDH elevation. ► LDH elevation was related to arsenic methylation capacity. ► Abnormal LDH elevation can be a marker of susceptibility to CVD mortality.

  11. Elevated lactate dehydrogenase activity and increased cardiovascular mortality in the arsenic-endemic areas of southwestern Taiwan

    International Nuclear Information System (INIS)

    Liao, Ya-Tang; Chen, Chien-Jen; Li, Wan-Fen; Hsu, Ling-I; Tsai, Li-Yu; Huang, Yeou-Lih; Sun, Chien-Wen; Chen, Wei J.; Wang, Shu-Li

    2012-01-01

    Arsenic ingestion has been linked to increasing global prevalence of and mortality from cardiovascular disease (CVD); arsenic can be removed from drinking water to reduce related health effects. Lactate dehydrogenase (LDH) is used for the evaluation of acute arsenic toxicity in vivo and in vitro, but it is not validated for the evaluation of long-term, chronic arsenic exposure. The present study examined the long-term effect of chronic arsenic exposure on CVD and serum LDH levels, after consideration of arsenic metabolism capacity. A total of 380 subjects from an arseniasis-endemic area and 303 from a non-endemic area of southwestern Taiwan were recruited in 2002. Various urinary arsenic species were analyzed using high-performance liquid chromatography (HPLC) and hydride generation systems. Fasting serum was used for quantitative determination of the total LDH activity. A significant dose–response relationship was observed between arsenic exposure and LDH elevation, independent of urinary arsenic profiles (P < 0.001). Furthermore, abnormal LDH elevation was associated with CVD mortality after adjustment for Framingham risk scores for 10-year CVD and arsenic exposure (hazard ratio, 3.98; 95% confidence interval, 1.07–14.81). LDH was elevated in subjects with arsenic exposure in a dose-dependent manner. LDH is a marker of arsenic toxicity associated with CVD mortality. Results of this study have important implications for use in ascertaining long-term arsenic exposure risk of CVD. -- Highlights: ► We showed that arsenic exposure was correlated with LDH elevation. ► LDH elevation was related to arsenic methylation capacity. ► Abnormal LDH elevation can be a marker of susceptibility to CVD mortality.

  12. HPLC-ICP-MS speciation analysis of arsenic in urine of Japanese subjects without occupational exposure.

    Science.gov (United States)

    Hata, Akihisa; Endo, Yoko; Nakajima, Yoshiaki; Ikebe, Maiko; Ogawa, Masanori; Fujitani, Noboru; Endo, Ginji

    2007-05-01

    The toxicity and carcinogenicity of arsenic depend on its species. Individuals living in Japan consume much seafood that contains high levels of organoarsenics. Speciation analysis of urinary arsenic is required to clarify the health risks of arsenic intake. There has been no report of urinary arsenic analysis in Japan using high performance liquid chromatography with inductively coupled plasma mass spectrometry (HPLC-ICP-MS). We performed speciation analysis of urinary arsenic for 210 Japanese male subjects without occupational exposure using HPLC-ICP-MS. The median values of urinary arsenics were as follows: sodium arsenite (AsIII), 3.5; sodium arsenate (AsV), 0.1; monomethylarsonic acid (MMA), 3.1; dimethylarsinic acid (DMA), 42.6; arsenobetaine (AsBe), 61.3; arsenocholine, trimethylarsine oxide, and unidentified arsenics (others), 5.2; and total arsenic (total As), 141.3 microgAs/l. The median creatinine-adjusted values were as follows: AsIII, 3.0; AsV, 0.1; MMA, 2.6; DMA, 35.9; AsBe, 52.1; others 3.5; and total As, 114.9 microgAs/g creatinine. Our findings indicate that DMA and AsBe levels in Japan are much higher than those found in Italian and American studies. It appears that the high levels of DMA and AsBe observed in Japan may be due in part to seafood intake. ACGIH and DFG set the BEI and BAT values for occupational arsenic exposure as 35 microgAs/l and 50 microgAs/l, respectively, using the sum of inorganic arsenic (iAs), MMA, and DMA. In the general Japanese population, the sums of these were above 50 microgAs/l in 115 (55%) samples. We therefore recommend excluding DMA concentration in monitoring of iAs exposure.

  13. The Role of Antioxidants in Biochemical Disorders Induced by Arsenic in Adult male Rats

    International Nuclear Information System (INIS)

    Hassanin, M.M.; Zaki, Z.T.; Emarah, E.A.M.; Hussein, A.M.M.

    2010-01-01

    The present investigation included biochemical, radiometric, molecular studies and histopathological examination to evaluate the protective role of Antox tablets toward Arsenic toxicity in adult male albino rats (Rattus rattus). Arsenic were given as sodium arsenate to different groups in drinking water at a dose of 100 mg/L, for 3 and 6 weeks led to severe tissue damage as revealed by an elevation of serum total protein and alteration of serum protein fractions. Using radioimmunoassay it was found that serum total testosterone level was significantly decreased. The decreased level of total testosterone paralleled the observed testicular damage. Treatment of male rats with antioxidant (Antox) along with arsenic led to an improvement in both the biochemical and histological alterations induced by arsenic. Thus the protective role of Antox is attributed to its antioxidant and free radicals scavenging properties of its components (selenium, vitamin A acetate, ascorbic acid and vitamin E).

  14. Arsenic Speciation and Extraction and the Significance of Biodegradable Acid on Arsenic Removal—An Approach for Remediation of Arsenic-Contaminated Soil

    Science.gov (United States)

    Nguyen Van, Thinh; Osanai, Yasuhito; Do Nguyen, Hai; Kurosawa, Kiyoshi

    2017-01-01

    A series of arsenic remediation tests were conducted using a washing method with biodegradable organic acids, including oxalic, citric and ascorbic acids. Approximately 80% of the arsenic in one sample was removed under the effect of the ascorbic and oxalic acid combination, which was roughly twice higher than the effectiveness of the ascorbic and citric acid combination under the same conditions. The soils treated using biodegradable acids had low remaining concentrations of arsenic that are primarily contained in the crystalline iron oxides and organic matter fractions. The close correlation between extracted arsenic and extracted iron/aluminum suggested that arsenic was removed via the dissolution of Fe/Al oxides in soils. The fractionation of arsenic in four contaminated soils was investigated using a modified sequential extraction method. Regarding fractionation, we found that most of the soil contained high proportions of arsenic (As) in exchangeable fractions with phosphorus, amorphous oxides, and crystalline iron oxides, while a small amount of the arsenic fraction was organic matter-bound. This study indicated that biodegradable organic acids can be considered as a means for arsenic-contaminated soil remediation.

  15. Urinary arsenic levels in the French adult population: the French National Nutrition and Health Study, 2006-2007.

    Science.gov (United States)

    Saoudi, Abdessattar; Zeghnoun, Abdelkrim; Bidondo, Marie-Laure; Garnier, Robert; Cirimele, Vincent; Persoons, Renaud; Fréry, Nadine

    2012-09-01

    The French Nutrition and Health Survey (ENNS) was conducted to describe dietary intakes, nutritional status, physical activity, and levels of various biomarkers for environmental chemicals (heavy metals and pesticides) in the French population (adults aged 18-74 years and children aged 3-17 years living in continental France in 2006-2007). The aim of this paper was to describe the distributions of total arsenic and the sum of iAs+MMA+DMA in the general adult population, and to present their main risk factors. In the arsenic study, 1500 and 1515 adults (requested to avoid seafood intake in the previous 3 days preceding urine collection) were included respectively for the analysis of the sum of inorganic arsenic (iAs) and its two metabolites, monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA), and for the total arsenic. Results were presented as geometric means and selected percentiles of urinary arsenic concentrations (μg/L) and creatinine-adjusted urinary arsenic (μg/g of creatinine) for total arsenic, and the sum of inorganic arsenic and metabolites (iAs+MMA+DMA). The geometric mean concentration of the sum of iAs+MMA+DMA in the adult population living in France was 3.34 μg/g of creatinine [3.23-3.45] (3.75 μg/L [3.61-3.90]) with a 95th percentile of 8.9 μg/g of creatinine (10.68 μg/L). The geometric mean concentration of total arsenic was 11.96 μg/g of creatinine [11.41-12.53] (13.42 μg/L [12.77-14.09]) with a 95th percentile of 61.29 μg/g of creatinine (72.75 μg/L). Urinary concentrations of total arsenic and iAS+MMA+DMA were influenced by sociodemographic and economic factors, and by risk factors such as consumption of seafood products and of wine. In our study, covariate-adjusted geometric means demonstrated several slight differences, due to consumption of fish, shellfish/crustaceans or wine. This study provides the first reference value for arsenic in a representative sample of the French population not particularly exposed to high levels

  16. Arsenic in cooked rice: Effect of chemical, enzymatic and microbial processes on bioaccessibility and speciation in the human gastrointestinal tract

    International Nuclear Information System (INIS)

    Sun Guoxin; Van de Wiele, Tom; Alava, Pradeep; Tack, Filip; Du Laing, Gijs

    2012-01-01

    Rice, used as staple food for half of the world population, can easily accumulate arsenic (As) into its grain, which often leads to As contamination. The health risk induced by presence of As in food depends on its release from the food matrix, i.e., its bioaccessibility. Using an in vitro gastrointestinal simulator, we incubated two types of cooked rice (total As: 0.389 and 0.314 mg/kg). Arsenic bioaccessibility and speciation changes were determined upon gastrointestinal digestion. Washing with deionized water and cooking did not result in changes of As speciation in the rice although the arsenic content dropped by 7.1–20.6%. Arsenic bioaccessibility of the cooked rice in the small intestine ranged between 38 and 57%. Bioaccessibility slightly increased during digestion in the simulated small intestine and decreased with time in the simulated colon. Significant speciation changes were noted in the simulated colon, with trivalent monomethylarsonate (MMA III ) becoming an important species. - Highlights: ► We studied arsenic bioaccessibility and speciation in rice during in vitro digestion. ► Bioaccessibility in cooked rice ranged between 38 and 57%. ► Bioaccessibility increased in the small intestine and dropped in the colon. ► Significant speciation changes were observed in the colon. ► Toxic trivalent monomethylarsonate (MMA III ) was produced in the colon. - Arsenic bioaccessibility and speciation changes were studied upon in vitro gastrointestinal digestion of As-polluted rice with specific attention to the role of colon micro-organisms.

  17. Arsenic in Eggs and Excreta of Laying Hens in Bangladesh: A Preliminary Study

    Science.gov (United States)

    Awal, M. A.; Majumder, Shankar; Mostofa, Mahbub; Khair, Abul; Islam, M. Z.; Rao, D. Ramkishan

    2012-01-01

    The aim of this study was to detect arsenic concentrations in feed, well-water for drinking, eggs, and excreta of laying hens in arsenic-prone areas of Bangladesh and to assess the effect of arsenic-containing feed and well-water on the accumulation of arsenic in eggs and excreta of the same subject. One egg from each laying hen (n=248) and its excreta, feed, and well-water for drinking were collected. Total arsenic concentrations were determined by atomic absorption spectrophotometer, coupled with hydride generator. Effects of arsenic-containing feed and drinking-water on the accumulation of arsenic in eggs and excreta were analyzed by multivariate regression model, using Stata software. Mean arsenic concentrations in drinking-water, feed (dry weight [DW]), egg (wet weight [WW]), and excreta (DW) of hens were 77.3, 176.6, 19.2, and 1,439.9 ppb respectively. Significant (pBangladesh, the arsenic shows low biological transmission capability from body to eggs and, thus, the value was below the maximum tolerable limit for humans. However, arsenic in drinking-water and/or feed makes a significant contribution to the arsenic accumulations in eggs and excreta of laying hens. PMID:23304904

  18. Phytoremediation of arsenic from the contaminated soil using transgenic tobacco plants expressing ACR2 gene of Arabidopsis thaliana.

    Science.gov (United States)

    Nahar, Noor; Rahman, Aminur; Nawani, Neelu N; Ghosh, Sibdas; Mandal, Abul

    2017-11-01

    We have cloned, characterized and transformed the AtACR2 gene (arsenic reductase 2) of Arabidopsis thaliana into the genome of tobacco (Nicotiana tabacum, var Sumsun). Our results revealed that the transgenic tobacco plants are more tolerant to arsenic than the wild type ones. These plants can grow on culture medium containing 200μM arsenate, whereas the wild type can barely survive under this condition. Furthermore, when exposed to 100μM arsenate for 35days the amount of arsenic accumulated in the shoots of transgenic plants was significantly lower (28μg/g d wt.) than that found in the shoots of non-transgenic controls (40μg/g d wt.). However, the arsenic content in the roots of transgenic plants was significantly higher (2400μg/g d. wt.) than that (2100μg/g d. wt.) observed in roots of wild type plants. We have demonstrated that Arabidopsis thaliana AtACR2 gene is a potential candidate for genetic engineering of plants to develop new crop cultivars that can be grown on arsenic contaminated fields to reduce arsenic content of the soil and can become a source of food containing no arsenic or exhibiting substantially reduced amount of this metalloid. Copyright © 2017 Elsevier GmbH. All rights reserved.

  19. HPLC-ICP-MS speciation analysis and risk assessment of arsenic in Cordyceps sinensis.

    Science.gov (United States)

    Zuo, Tian-Tian; Li, Yao-Lei; Jin, Hong-Yu; Gao, Fei; Wang, Qi; Wang, Ya-Dan; Ma, Shuang-Cheng

    2018-01-01

    Cordyceps sinensis , one of the most valued traditional herbal medicines in China, contains high amount of arsenic. Considering the adverse health effects of arsenic, this is of particular concern. The aim of this study was to determine and analyze arsenic speciation in C. sinensis , and to measure the associated human health risks. We used microwave extraction and high-performance liquid chromatography coupled with inductively coupled plasma mass spectrometry to determine and analyze the arsenic content in C. sinensis , and measured the associated human health risks according to the hazard index (HI), lifetime cancer risk (CR), and target hazard quotient (THQ). The main arsenic speciation in C. sinensis were not the four organic arsenic compounds, including dimethyl arsenic, monomethyl arsenic, arsenobetaine, and arsenocholine, but comprised inorganic arsenic and other unknown risk arsenic compounds. HI scores indicated that the risk of C. sinensis was acceptable. CR results suggested that the cancer risk was greater than the acceptable lifetime risk of 10 -5 , even at low exposure levels. THQ results indicated that at the exposure level  3.0 months/year, the systemic effects of the arsenic in C. sinensis was of great concern. The arsenic in C. sinensis might not be free of risks. The suggested C. sinensis consumption rate of 2.0 months/year provided important insights into the ways by which to minimize potential health risks. Our study not only played the role of "cast a brick to attract jade" by which to analyze arsenic speciation in C. sinensis but also offered a promising strategy of risk assessment for harmful residues in traditional herbal medicines.

  20. Total phenol content and antioxidant activity of water solutions of plant extracts

    Directory of Open Access Journals (Sweden)

    Mirela Kopjar

    2009-01-01

    Full Text Available Water solutions of extracts were investigated for total phenol content, flavonoid content and antioxidant activity. Susceptibility to degradation of water solutions of plant extracts, under light and in the dark, during storage at room temperature was investigated in order to determine their stability prior to their application for fortification of food products. Large dispersion of total phenol (TP content in the investigated model solutions of selected extracts (olive leaves, green tea, red grape, red wine, pine bark PE 5:1, pine bark PE 95 %, resveratrol, ranging from 11.10 mg GAE/100 mL to 92.19 mg GAE/100 mL was observed. Consequently, large dispersion of total flavonoids (TF content (8.89 mg to 61.75 mg CTE/100 mL was also observed. Since phenols have been mostly responsible for antioxidant activity of extracts, in most cases, antioxidant activity followed the TP content. That was proven by estimation of correlation coefficient between the total phenol content and antioxidant activity. Correlation coefficients between investigated parameters ranged from 0.5749 to 0.9604. During storage of 5 weeks at room temperature loss of phenols and flavonoids occurred. Antioxidant activity decreased with the decrease of TP and TF content. Degradations of phenols and flavonoids were more pronounced in samples stored at light.

  1. Bioaccessibility and excretion of arsenic in Niu Huang Jie Du Pian pills

    International Nuclear Information System (INIS)

    Koch, Iris; Sylvester, Steven; Lai, Vivian W.-M.; Owen, Andrew; Reimer, Kenneth J.; Cullen, William R.

    2007-01-01

    Traditional Chinese medicines (TCMs) often contain significant levels of potentially toxic elements, including arsenic. Niu Huang Jie Du Pian pills were analyzed to determine the concentration, bioaccessibility (arsenic fraction soluble in the human gastrointestinal system) and chemical form (speciation) of arsenic. Arsenic excretion in urine (including speciation) and facial hair were studied after a one-time ingestion. The pills contained arsenic in the form of realgar, and although the total arsenic that was present in a single pill was high (28 mg), the low bioaccessibility of this form of arsenic predicted that only 4% of it was available for absorption into the bloodstream (1 mg of arsenic per pill). The species of arsenic that were solubilized were inorganic arsenate (As(V)) and arsenite (As(III)) but DMAA and MMAA were detected in urine. Two urinary arsenic excretion peaks were observed: an initial peak several (4-8) hours after ingestion corresponding to the excretion of predominantly As(III), and a larger peak at 14 h corresponding predominantly to DMAA and MMAA. No methylated As(III) species were observed. Facial hair analysis revealed that arsenic concentrations did not increase significantly as a result of the ingestion. Arsenic is incompletely soluble under human gastrointestinal conditions, and is metabolized from the inorganic to organic forms found in urine. Bioaccessible arsenic is comparable to the quantity excreted. Facial hair as a bio-indicator should be further tested

  2. Arsenic bioavailability in soils before and after soil washing: the use of Escherichia coli whole-cell bioreporters.

    Science.gov (United States)

    Yoon, Youngdae; Kang, Yerin; Chae, Yooeun; Kim, Sunghoon; Lee, Youngshim; Jeong, Seung-Woo; An, Youn-Joo

    2016-02-01

    We investigated the quantification of bioavailable arsenic in contaminated soils and evaluation of soil-washing processes in the aspect of bioavailability using a novel bacterial bioreporter developed in present study. The whole-cell bioreporter (WCB) was genetically engineered by fusing the promoter of nik operon from Escherichia coli and green fluorescent protein as a sensing domain and reporter domain. Among eight well-known hazardous heavy metals and metalloid, this system responded specifically to arsenic, thereby inferring association of As(III) with NikR inhibits the repression. Moreover, the response was proportional to the concentration of As(III), thereby it was capable to determine the amount of bioavailable arsenic quantitatively in contaminated soils. The bioavailable portion of arsenic was 5.9 (3.46-10.96) and 0.9 (0.27-1.74) % of total from amended and site soils, respectively, suggesting the bioavailability of arsenic in soils was related to the soil properties and duration of aging. On the other hand, only 1.37 (0.21-2.97) % of total arsenic was extracted into soil solutions and 19.88 (11.86-28.27) % of arsenic in soil solution was bioavailable. This result showed that the soluble arsenic is not all bioavailable and most of bioavailable arsenic in soils is water non-extractable. In addition, the bioavailable arsenic was increased after soil-washing while total amount was decreased, thereby suggesting the soil-washing processes release arsenic associated with soil materials to be bioavailable. Therefore, it would be valuable to have a tool to assess bioavailability and the bioavailability should be taken into consideration for soil remediation plans.

  3. Understanding arsenic metabolism through spectroscopic determination of arsenic in human urine

    OpenAIRE

    Brima, Eid I.; Jenkins, Richard O.; Haris, Parvez I.

    2006-01-01

    In this review we discuss a range of spectroscopic techniques that are currently used for analysis of arsenic in human urine for understanding arsenic metabolism and toxicity, especially in relation to genetics/ethnicity, ingestion studies and exposure to arsenic through drinking water and diet. Spectroscopic techniques used for analysis of arsenic in human urine include inductively coupled plasma mass spectrometry (ICP-MS), hydride generation atomic absorption spectrometry (HG-AAS), hydride ...

  4. Concentrations and speciation of arsenic in groundwater polluted by warfare agents

    International Nuclear Information System (INIS)

    Daus, Birgit; Hempel, Michael; Wennrich, Rainer; Weiss, Holger

    2010-01-01

    Groundwater polluted with phenylarsenicals from former warfare agent deposits and their metabolites was investigated with respect to the behavior of relevant arsenic species. Depth profiles at the estimated source and at about 1 km downgradient from the source zone were sampled. The source zone is characterized by high total arsenic concentrations up to 16 mg L -1 and is dominated by organic arsenic compounds. The concentrations in the downgradient region are much lower (up to 400 μg L -1 ) and show a high proportion of inorganic arsenic species. Iron precipitation seems to be an effective mechanism to prevent dispersion of inorganic arsenic as well as phenylarsonic acid. Reductive conditions were observed in the deeper zone with predominant occurrence of trivalent arsenic species. The inorganic species are in redox equilibrium, whereas the phenylarsenic compounds have variable proportions. Methylphenylarsinic acid was identified in groundwater in traces which indicates microbial degradation activity. - The environmental fate and behavior of phenylarsenicals in groundwater are influenced by the geochemical environment.

  5. Concentrations and speciation of arsenic in groundwater polluted by warfare agents

    Energy Technology Data Exchange (ETDEWEB)

    Daus, Birgit, E-mail: birgit.daus@ufz.d [UFZ - Helmholtz Centre for Environmental Research, Department of Groundwater Remediation, Permoserstrasse 15, 04318 Leipzig (Germany); Hempel, Michael [UFZ - Helmholtz Centre for Environmental Research, Department of Groundwater Remediation, Permoserstrasse 15, 04318 Leipzig (Germany); Wennrich, Rainer [Department of Analytical Chemistry, Permoserstrasse 15, 04318 Leipzig (Germany); Weiss, Holger [UFZ - Helmholtz Centre for Environmental Research, Department of Groundwater Remediation, Permoserstrasse 15, 04318 Leipzig (Germany)

    2010-11-15

    Groundwater polluted with phenylarsenicals from former warfare agent deposits and their metabolites was investigated with respect to the behavior of relevant arsenic species. Depth profiles at the estimated source and at about 1 km downgradient from the source zone were sampled. The source zone is characterized by high total arsenic concentrations up to 16 mg L{sup -1} and is dominated by organic arsenic compounds. The concentrations in the downgradient region are much lower (up to 400 {mu}g L{sup -1}) and show a high proportion of inorganic arsenic species. Iron precipitation seems to be an effective mechanism to prevent dispersion of inorganic arsenic as well as phenylarsonic acid. Reductive conditions were observed in the deeper zone with predominant occurrence of trivalent arsenic species. The inorganic species are in redox equilibrium, whereas the phenylarsenic compounds have variable proportions. Methylphenylarsinic acid was identified in groundwater in traces which indicates microbial degradation activity. - The environmental fate and behavior of phenylarsenicals in groundwater are influenced by the geochemical environment.

  6. Comparison of the Proximate Composition, Total Carotenoids and Total Polyphenol Content of Nine Orange-Fleshed Sweet Potato Varieties Grown in Bangladesh

    Directory of Open Access Journals (Sweden)

    Mohammad Khairul Alam

    2016-09-01

    Full Text Available In an attempt to develop the food composition table for Bangladesh, the nutritional composition of nine varieties of orange-fleshed sweet potato was analyzed together with total carotenoids (TCC and total polyphenol content (TPC. Each variety showed significant variation in different nutrient contents. The quantification of the TCC and TPC was done by spectrophotometric measurement, and the proximate composition was done by the AOAC method. The obtained results showed that total polyphenol content varied from 94.63 to 136.05 mg gallic acid equivalent (GAE/100 g fresh weight. Among the selected sweet potatoes, Bangladesh Agricultural Research Institute (BARI Sweet Potato 7 (SP7 contained the highest, whereas BARI SP6 contained the lowest amount of total polyphenol content. The obtained results also revealed that total carotenoids content ranged from 0.38 to 7.24 mg/100 g fresh weight. BARI SP8 showed the highest total carotenoids content, whereas BARI SP6 showed the lowest. Total carotenoids content was found to be higher in dark orange-colored flesh varieties than their light-colored counterparts. The results of the study indicated that selected sweet potato varieties are rich in protein and carbohydrate, low in fat, high in polyphenol and carotenoids and, thus, could be a good source of dietary antioxidants to prevent free radical damage, which leads to chronic diseases, and also to prevent vitamin A malnutrition.

  7. Comparison of the Proximate Composition, Total Carotenoids and Total Polyphenol Content of Nine Orange-Fleshed Sweet Potato Varieties Grown in Bangladesh.

    Science.gov (United States)

    Alam, Mohammad Khairul; Rana, Ziaul Hasan; Islam, Sheikh Nazrul

    2016-09-14

    In an attempt to develop the food composition table for Bangladesh, the nutritional composition of nine varieties of orange-fleshed sweet potato was analyzed together with total carotenoids (TCC) and total polyphenol content (TPC). Each variety showed significant variation in different nutrient contents. The quantification of the TCC and TPC was done by spectrophotometric measurement, and the proximate composition was done by the AOAC method. The obtained results showed that total polyphenol content varied from 94.63 to 136.05 mg gallic acid equivalent (GAE)/100 g fresh weight. Among the selected sweet potatoes, Bangladesh Agricultural Research Institute (BARI) Sweet Potato 7 (SP7) contained the highest, whereas BARI SP6 contained the lowest amount of total polyphenol content. The obtained results also revealed that total carotenoids content ranged from 0.38 to 7.24 mg/100 g fresh weight. BARI SP8 showed the highest total carotenoids content, whereas BARI SP6 showed the lowest. Total carotenoids content was found to be higher in dark orange-colored flesh varieties than their light-colored counterparts. The results of the study indicated that selected sweet potato varieties are rich in protein and carbohydrate, low in fat, high in polyphenol and carotenoids and, thus, could be a good source of dietary antioxidants to prevent free radical damage, which leads to chronic diseases, and also to prevent vitamin A malnutrition.

  8. Influence of operating parameters on the arsenic and boron removal by electrocoagulation

    International Nuclear Information System (INIS)

    Can, B. Z.; Boncukcuoglu, R.; Bayar, S.; Bayhan, Y.K

    2016-01-01

    Despite their high boron contents, some boron deposits contain considerable amounts of arsenic. Its toxicology and health hazard also has been reported for many years. In this work arsenic and boron removal from synthetic water was studied on laboratory scale by electrocoagulation using aluminum electrodes. The influence of main operating parameters such as current density, stirring speed, supporting electrolyte type and concentration on the arsenic and boron removal was investigated. Waste water sample was prepared with initial arsenic concentration of 50 mg L/sup -1/ and boron concentration of 1000 mg L/sup -1/. Current density was varied from 0.18 to 4.28 mA cm/sup -2/, stirring speed was varied as 50, 150, 250, 350 rpm, NaCl, KCl and Na/sub 2/SO/sub 4/ were used as supporting electrolyte. The obtained experimental results showed that efficiency of arsenic and boron removal increased with increasing current density. As the current density increases, the potential difference applied to the system also increases the energy consumption. Increasing the supporting electrolyte concentration increased conductivity of solution and decreased energy consumption. The most favorable supporting electrolyte type was NaCl for arsenic and boron removal. The best stirring speed was 150 rpm for arsenic and boron removal. (author)

  9. Chronic Arsenic Toxicity: Statistical Study of the Relationships Between Urinary Arsenic, Selenium and Antimony

    OpenAIRE

    Analía Boemo, BS; Irene María Lomniczi, PhD; Elsa Mónica Farfán Torres, PhD

    2012-01-01

    Background. The groundwater of Argentina’s Chaco plain presents arsenic levels above those suitable for human consumption. Studies suggest skin disorders among local populations caused by arsenic intake. The relationship between urinary arsenic and arsenic in drinking water is well known, but urinary arsenic alone is not enough for risk assessment due to modulating factors such as the intake of selenium and antimony. Objectives. Determining the relationship between urinary arsenic, seleniu...

  10. Proficiency testing program for the determination of total arsenic, cadmium, and lead in seawater shrimp.

    Science.gov (United States)

    Kong, Mei-Fung; Chan, Serena; Wong, Yiu-Chung

    2008-01-01

    The proficiency testing (PT) program for 97 worldwide laboratories for determining total arsenic, cadmium, and lead in seawater shrimp under the auspices of the Asia-Pacific Laboratory Accreditation Cooperation (APLAC) is discussed. The program is one of the APLAC PT series whose primary purposes are to establish mutual agreement on the equivalence of the operation of APLAC member laboratories and to take corrective actions if testing deficiencies are identified. Pooled data for Cd and Pb were normally distributed with interlaboratory variations of 21.9 and 34.8%, respectively. The corresponding consensus mean values estimated by robust statistics were in good agreement with those obtained in the homogeneity tests. However, a bimodal distribution was observed from the determination of total As, in which 14 out of 74 participants reported much smaller values (0.482-6.4 mg/kg) as compared with the mean values of 60.9 mg/kg in the homogeneity test. The use of consensus mean is known to have significant deviation from the true value in bi- or multimodal distribution. Therefore, the mode value, a better estimate of central tendency, was chosen to assess participants' performance for total As. Estimates of the overall uncertainty from participants varied in this program, and some were recommended to acquire more comprehensive exposure toward important criteria as stipulated in ISO/IEC 17025.

  11. Top down arsenic uncertainty measurement in water and sediments from Guarapiranga dam (Brazil)

    Science.gov (United States)

    Faustino, M. G.; Lange, C. N.; Monteiro, L. R.; Furusawa, H. A.; Marques, J. R.; Stellato, T. B.; Soares, S. M. V.; da Silva, T. B. S. C.; da Silva, D. B.; Cotrim, M. E. B.; Pires, M. A. F.

    2018-03-01

    Total arsenic measurements assessment regarding legal threshold demands more than average and standard deviation approach. In this way, analytical measurement uncertainty evaluation was conducted in order to comply with legal requirements and to allow the balance of arsenic in both water and sediment compartments. A top-down approach for measurement uncertainties was applied to evaluate arsenic concentrations in water and sediments from Guarapiranga dam (São Paulo, Brazil). Laboratory quality control and arsenic interlaboratory tests data were used in this approach to estimate the uncertainties associated with the methodology.

  12. Arsenic in your food: potential health hazards from arsenic found in rice

    Directory of Open Access Journals (Sweden)

    Munera-Picazo S

    2015-01-01

    Full Text Available Sandra Munera-Picazo,1 Marina Cano-Lamadrid,1 María Concepción Castaño-Iglesias,2 Francisco Burló,1 Ángel A Carbonell-Barrachina11Food Quality and Safety Group, Department of Agro-Food Technology, Universidad Miguel Hernández, Orihuela, 2Servicio de Pediatría, Hospital Universitario San Juan de Alicante, Alicante, SpainAbstract: Rice is a staple food for over half of the world population, but there is some concern about the occurrence of arsenic (As in this cereal and the possible overexposure to this metalloid. Recently, the Codex Alimentarius Commission established a maximum limit of 200 µg kg–1 for inorganic arsenic (iAs in rice. Because the maximum content of As in water has been reduced to 10 µg L–1, intoxication through rice and rice-based products can be considered an important source of As poisoning. The chronic effects of this iAs exposure can be lung and bladder cancer, skin lesions, or other noncarcinogenic diseases. There is clear evidence of high levels of iAs in rice and rice-based products. Different solutions for the reduction of As intake are proposed at different levels: 1 during the plant-growing process through agronomic practices, 2 pretreatment of rice before its use in the food industry, 3 optimization of the conditions of unit operations during processing, and 4 by cooking.Keywords: arsenic speciation, food safety, dietary exposure, Oryza sativa

  13. Inorganic arsenic removal in rice bran by percolating cooking water.

    Science.gov (United States)

    Signes-Pastor, Antonio J; Carey, Manus; Meharg, Andrew A

    2017-11-01

    Rice bran, a by-product of milling rice, is highly nutritious but contains very high levels of the non-threshold carcinogen inorganic arsenic (i-As), at concentrations around 1mg/kg. This i-As content needs to be reduced to make rice bran a useful food ingredient. Evaluated here is a novel approach to minimizing rice bran i-As content which is also suitable for its stabilization namely, cooking bran in percolating arsenic-free boiling water. Up to 96% of i-As removal was observed for a range of rice bran products, with i-As removal related to the volume of cooking water used. This process reduced the copper, potassium, and phosphorus content, but had little effect on other trace- and macro-nutrient elements in the rice bran. There was little change in organic composition, as assayed by NIR, except for a decrease in the soluble sugar and an increase, due to biomass loss, in dietary fiber. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Relationship between drinking water and toenail arsenic concentrations among a cohort of Nova Scotians.

    Science.gov (United States)

    Yu, Zhijie M; Dummer, Trevor J B; Adams, Aimee; Murimboh, John D; Parker, Louise

    2014-01-01

    Consumption of arsenic-contaminated drinking water is associated with increased cancer risk. The relationship between arsenic body burden, such as concentrations in human toenails, and arsenic in drinking water is not fully understood. We evaluated the relationship between arsenic concentrations in drinking water and toenail clippings among a cohort of Nova Scotians. A total of 960 men and women aged 35 to 69 years provided home drinking water and toenail clipping samples. Information on water source and treatment use and covariables was collected through questionnaires. Arsenic concentrations in drinking water and toenail clippings and anthropometric indices were measured. Private drilled water wells had higher arsenic concentrations compared with other dug wells and municipal drinking water sources (Pwater arsenic levels ≥1 μg/l, there was a significant relationship between drinking water and toenail arsenic concentrations (r=0.46, Pwater, obese individuals had significantly lower concentrations of arsenic in toenails compared with those with a normal weight. Private drilled water wells were an important source of arsenic exposure in the study population. Body weight modifies the relationship between drinking water arsenic exposure and toenail arsenic concentrations.

  15. Atherosclerosis induced by arsenic in drinking water in rats through altering lipid metabolism

    International Nuclear Information System (INIS)

    Cheng, Tain-Junn; Chuu, Jiunn-Jye; Chang, Chia-Yu; Tsai, Wan-Chen; Chen, Kuan-Jung; Guo, How-Ran

    2011-01-01

    Arsenic in drinking water is a global environmental health problem, and the exposure may increase cardiovascular and cerebrovascular diseases mortalities, most likely through causing atherosclerosis. However, the mechanism of atherosclerosis formation after arsenic exposure is still unclear. To study the mechanism of atherosclerosis formation after arsenic exposure and explore the role of high cholesterol diet (HCD) in this process, we fed spontaneous hypertensive rats and Wistar Kyoto rats with basal diet or HCD and provided with them drinking water containing arsenic at different ages and orders for 20 consecutive weeks. We measured high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C), total cholesterol, triglycerides, heat shock protein 70 (HSP 70), and high sensitive C-reactive protein (hs-CRP) at predetermined intervals and determined expressions of cholesteryl ester transfer protein-1 (CETP-1) and liver X receptor β (LXRβ) in the liver. Atherosclerosis was determined by examining the aorta with hematoxylin and eosin stain. After 20 weeks, we found arsenic, alone or combined with HCD, may promote atherosclerosis formation with transient increases in HSP 70 and hs-CRP. Early combination exposure decreased the HDL-C/LDL-C ratio without changing the levels of total cholesterol and triglyceride until 30 weeks old. Both CETP-1 and LXRβ activities were suppressed, most significantly in early combination exposure. In conclusion, arsenic exposure may induce atherosclerosis through modifying reverse cholesterol transport in cholesterol metabolism and suppressing LXRβ and CEPT-1 expressions. For decreasing atherosclerosis related mortality associated with arsenic, preventing exposure from environmental sources in early life is an important element. - Highlights: → Arsenic causes cardiovascular and cerebrovascular diseases through atherosclerosis. → Arsenic may promote atherosclerosis with transient increase in HSP 70 and hs

  16. [Effect of glutathione and sodium selenite on the metabolism of arsenic in mice exposed to arsenic through drinking water].

    Science.gov (United States)

    Yu, Xiao-Yun; Zhong, Yuan; Niu, Yu-Hong; Qu, Chun-Qing; Li, Ge-Xin; Lü, Xiu-Qiang; Sun, Gui-Fan; Jin, Ya-Ping

    2008-09-01

    To explore the effect of glutathione (GSH) and sodium selenite on the metabolism of arsenic in the liver, kidney and blood of mice exposed to iAsIII through drinking water. The mice were randomly divided into control, arsenic, GSH and sodium selenite group, respectively. And each group had eight mice and the mice were exposed to 50 mg/L arsenite by drinking water for 4 weeks. Mice were intraperitoneally injected with GSH (600 mg/kg) and sodium selenite (1 mg/kg) for seven days from the beginning of the fourth week. At the end of the fourth week, liver, kidney and blood were sampled to assess the concentrations of inorganic arsenic (iAs), monomethylarsenic acid (MMA), dimethylarsenic acid (DMA) by hydride generation trapping by ultra-hypothermia coupled with atomic absorption spectrometry. The liver DMA (233.76 +/- 60.63 ng/g) concentration in GSH group was significantly higher than the arsenic group (218.36 +/- 42.71 ng/g). The concentration of DMA (88.52 +/- 30.86 ng/g) and total arsenic (TAs) (162.32 +/- 49.45 ng/g) in blood of GSH group was significantly higher than those [(45.32 +/- 12.19 ng/g), (108.51 +/- 18.00 ng/g), respectively] of arsenic groups(q values were 3.06, 6.40, 10.72 respectively, P < 0.05). The primary methylated index (PMI) (0.65 +/- 0.050) and secondary methylated index (SMI) (0.55 +/- 0.050) in liver sample of GSH group were significantly higher than those (0.58 +/- 0.056, 0.44 +/- 0. 093) in arsenic group. In blood samples, the PMI (0.85 +/- 0.066) in GSH group was significantly higher than that (0.54 +/- 0.113) in arsenic group (q values were 3.75, 5.26, 4.21 respectively, P < 0.05). However, no significant difference was identified between sodium selenite and arsenic groups in liver, kidney or blood samples. And no significant difference was detected in kidney samples among all arsenic exposing groups. Exogenous GSH could promote the methylated metabolism of iAsIII, but sodium selenite showed no significant effects.

  17. Interaction of arbuscular mycorrhizal symbionts with arsenic and other potentially toxic elements

    International Nuclear Information System (INIS)

    Khairuddin Abdul Rahim

    2000-01-01

    The response of arbuscular mycorrhizal (AM) symbionts to arsenic, and arsenic interactions with phosphorus and potentially toxic elements (PTEs) in soils from a former arsenic mine, the Devon Great Consols, were investigated. The objective was to determine whether AM associations ameliorate arsenic toxicity in Plantago lanceolata and Agrostis capillaris, plants commonly found at abandoned mines. An exploratory investigation indicated the richness in biodiversity of AMF that colonised plants growing at the site. Arsenic was found at high concentrations and was strongly associated with copper and iron. P. lanceolata was always colonised by AMF, while colonisation of A. capillaris was variable. There was no evidence in the field of soil pH or PTEs influencing AMF colonisation and spore density. There was no strong correlation between arsenic content in plant and available arsenic, obtained through various extraction methods. Spore germination and infectivity in the mine soils were strongly influenced by the AMF genotype and to a lesser extent by the soil environment. P. lanceolata and A. capillaris root growth was inhibited at arsenic concentrations of ≥50 μg g -1 in agar. Bioavailability experiments using mine soils and Terra-Green TM (calcined attapulgite) spiked with sodium arsenate gave no evidence that AMF-colonised plants translocated less arsenic to the shoots. Plants accumulated more arsenic in their roots than in their shoots, whether they were colonised by AMF or not. The A. capillaris genotype used in the present study translocated less of both arsenic and phosphorus to its shoots than P. lanceolata. High available phosphorus in Terra-Green TM protected plants against arsenic toxicity, at -1 As. There was evidence for inhibition by arsenic in AMF colonisation of roots. For quantifying AMF extra radical hyphae contribution to arsenic transportation from growth medium to plant using a compartmented pot system, the use of low phosphorus medium and a longer

  18. Evaluation of the fate of arsenic-contaminated groundwater at different aquifers of Thar coalfield Pakistan.

    Science.gov (United States)

    Ali, Jamshed; Kazi, Tasneem G; Baig, Jameel A; Afridi, Hassan I; Arain, Mariam S; Ullah, Naeem; Brahman, Kapil D; Arain, Sadaf S; Panhwar, Abdul H

    2015-12-01

    In present study, the ground water at different aquifers was evaluated for physicochemical parameters, iron, total arsenic, total inorganic arsenic and arsenic species (arsenite and arsenate). The samples of groundwater were collected at different depths, first aquifer (AQ1) 50-60 m, second aquifer (AQ2) 100-120 m, and third aquifer (AQ3) 200-250 m of Thar coalfield, Pakistan. Total inorganic arsenic was determined by solid phase extraction using titanium dioxide as an adsorbent. The arsenite was determined by cloud point extraction using ammonium pyrrolidinedithiocarbamate as a chelating reagent, and resulted complex was extracted by Triton X-114. The resulted data of groundwater were reported in terms of basic statistical parameters, principal component, and cluster analysis. The resulted data indicated that physicochemical parameters of groundwater of different aquifers were exceeded the World Health Organization provisional guideline for drinking water except pH and SO4(2-). The positive correlation was observed between arsenic species and physicochemical parameters of groundwater except F(-) and K(+), which might be caused by geochemical minerals. Results of cluster analysis indicated that groundwater samples of AQ1 was highly contaminated with arsenic species as compared to AQ2 and AQ3 (p > 0.05).

  19. Approaches to increase arsenic awareness in Bangladesh: an evaluation of an arsenic education program.

    Science.gov (United States)

    George, Christine Marie; Factor-Litvak, Pam; Khan, Khalid; Islam, Tariqul; Singha, Ashit; Moon-Howard, Joyce; van Geen, Alexander; Graziano, Joseph H

    2013-06-01

    The objective of this study was to design and evaluate a household-level arsenic education and well water arsenic testing intervention to increase arsenic awareness in Bangladesh. The authors randomly selected 1,000 study respondents located in 20 villages in Singair, Bangladesh. The main outcome was the change in knowledge of arsenic from baseline to follow-up 4 to 6 months after the household received the intervention. This was assessed through a pre- and postintervention quiz concerning knowledge of arsenic. Respondents were between 18 and 102 years of age, with an average age of 37 years; 99.9% were female. The knowledge of arsenic quiz scores for study participants were significantly higher at follow-up compared with baseline. The intervention was effective in increasing awareness of the safe uses of arsenic-contaminated water and dispelling the misconception that boiling water removes arsenic. At follow-up, nearly all respondents were able to correctly identify the meaning of a red (contaminated) and green (arsenic safe) well relative to arsenic (99%). The educational program also significantly increased the proportion of respondents who were able to correctly identify the health implications of arsenic exposure. However, the intervention was not effective in dispelling the misconceptions in the population that arsenicosis is contagious and that illnesses such as cholera, diarrhea, and vomiting could be caused by arsenic. Further research is needed to develop effective communication strategies to dispel these misconceptions. This study demonstrates that a household-level arsenic educational program can be used to significantly increase arsenic awareness in Bangladesh.

  20. Arsenic speciation in saliva of acute promyelocytic leukemia patients undergoing arsenic trioxide treatment

    OpenAIRE

    Chen, Baowei; Cao, Fenglin; Yuan, Chungang; Lu, Xiufen; Shen, Shengwen; Zhou, Jin; Le, X. Chris

    2013-01-01

    Arsenic trioxide has been successfully used as a therapeutic in the treatment of acute promyelocytic leukemia (APL). Detailed monitoring of the therapeutic arsenic and its metabolites in various accessible specimens of APL patients can contribute to improving treatment efficacy and minimizing arsenic-induced side effects. This article focuses on the determination of arsenic species in saliva samples from APL patients undergoing arsenic treatment. Saliva samples were collected from nine APL pa...

  1. Changes in Serum Adiponectin in Mice Chronically Exposed to Inorganic Arsenic in Drinking Water.

    Science.gov (United States)

    Song, Xuanbo; Li, Ying; Liu, Junqiu; Ji, Xiaohong; Zhao, Lijun; Wei, Yudan

    2017-09-01

    Cardiovascular disease and diabetes mellitus are prominent features of glucose and lipid metabolism disorders. Adiponectin is a key adipokine that is largely involved in glucose and lipid metabolism processes. A growing body of evidence suggests that chronic exposure to inorganic arsenic is associated with cardiovascular disease and diabetes mellitus. We hypothesized that arsenic exposure may increase the risk of cardiovascular disease and diabetes mellitus by affecting the level of adiponectin. In this study, we examined serum adiponectin levels, as well as serum levels of metabolic measures (including fasting blood glucose, insulin, total cholesterol, triglyceride, and high-density lipoprotein (HDL)-cholesterol) in C57BL/6 mice exposed to inorganic arsenic in drinking water (5 and 50 ppm NaAsO 2 ) for 18 weeks. Body mass and adiposity were monitored throughout the study. We found no significant changes in serum insulin and glucose levels in mice treated with arsenic for 18 weeks. However, arsenic exposure decreased serum levels of adiponectin, triglyceride, and HDL-cholesterol. Further, an inverse relationship was observed between urinary concentrations of total arsenic and serum levels of adiponectin. This study suggests that arsenic exposure could disturb the metabolism of lipids and increase the risk of cardiovascular disease by reducing the level of adiponectin.

  2. Arsenic accumulation and phosphorus status in two rice (Oryza sativa L.) cultivars surveyed from fields in South China

    International Nuclear Information System (INIS)

    Lu Ying; Dong, Fei; Deacon, Claire; Chen Huojun; Raab, Andrea; Meharg, Andrew A.

    2010-01-01

    The consumption of paddy rice (Oryza sativa L.) is a major inorganic arsenic exposure pathway in S.E. Asia. A multi-location survey was undertaken in Guangdong Province, South China to assess arsenic accumulation and speciation in 2 rice cultivars, one an Indica and the other a hybrid Indica. The results showed that arsenic concentrations in rice tissue increased in the order grain < husk < straw < root. Rice grain arsenic content of 2 rice cultivars was significant different and correlated with phosphorus concentration and molar ratio of P/As in shoot, being higher for the Indica cultivar than for the hybrid Indica, which suggests altering shoot phosphorus status as a promising route for breeding rice cultivars with reduced grain arsenic. Speciation of grain arsenic, performed using HPLC-ICP-MS, identified inorganic arsenic as the dominant arsenic species present in the rice grain. - Altering rice shoot phosphorus status is a promising route for breeding rice cultivars with reduced grain arsenic.

  3. Removal of Arsenic from Wastewaters by Airlift Electrocoagulation: Part 3: Copper Smelter Wastewater Treatment

    DEFF Research Database (Denmark)

    Hansen, H.K.; Ottosen, Lisbeth M.

    2010-01-01

    The arsenic content in wastewater is of major concern for copper smelters. A typical complex wastewater treatment is needed with a combination of chemical and physical processes. Electrocoagulation (EC) has shown its potential for arsenic removal due to the formation of ferric hydroxide-arsenate ...... threshold value for wastewater discharge could rapidly be reached when the conventional method did not clean the wastewater sufficiently....

  4. Risk assessment for arsenic-contaminated groundwater along River Indus in Pakistan.

    Science.gov (United States)

    Rabbani, Unaib; Mahar, Gohar; Siddique, Azhar; Fatmi, Zafar

    2017-02-01

    The study determined the risk zone and estimated the population at risk of adverse health effects for arsenic exposure along the bank of River Indus in Pakistan. A cross-sectional survey was conducted in 216 randomly selected villages of one of the districts along River Indus. Wells of ten households from each village were selected to measure arsenic levels. The location of wells was identified using global positioning system device, and spatial variations of the groundwater contamination were assessed using geographical information system tools. Using layers of contaminated drinking water wells according to arsenic levels and population with major landmarks, a risk zone and estimated population at risk were determined, which were exposed to arsenic level ≥10 µg/L. Drinking wells with arsenic levels of ≥10 µg/L were concentrated within 18 km near the river bank. Based on these estimates, a total of 13 million people were exposed to ≥10 µg/L arsenic concentration along the course of River Indus traversing through 27 districts in Pakistan. This information would help the researchers in designing health effect studies on arsenic and policy makers in allocating resources for designing focused interventions for arsenic mitigation in Pakistan. The study methods have implication on similar populations which are affected along rivers due to arsenic contamination.

  5. [Contents of total anthocyanins and total saponins as well as composition of saponin monomers of Purple and Green Notoginseng Radix et Rhizoma].

    Science.gov (United States)

    Zhao, Chang-ling; Yang, Sheng-chao; Chen, Zhong-jian; Shen, Yong; Wei, Fu-gang; Wang, Wu; Long, Ting-ju

    2014-10-01

    The contents of total anthocyanins and total saponins as well as the composition of saponin monomers of Purple and Green Notoginseng Radix et Rhizoma were studied to compare the medicinal quality and commercial values. Three-year-old Notoginseng Radix et Rhizoma was selected as the research materials. The contents of total anthocyanins and total saponins were determined by spectrophotometry. The compositions of saponin monomers were monitored by HPLC. The significance of content differences was determined by variance analysis. The contents of total anthocyanins and total saponins of Purple Notoginseng Radix et Rhizomawere about 204.85% and 33.86% higher than those of Green Notoginseng Radix et Rhizoma respectively. The Purple and Green Notoginseng Radix et Rhizoma both contained five saponin monomers whose contents were as follows: ginsenoside Rg1 > ginsenoside Rb1 > notoginsenoside R1 > ginsenoside Rd > ginsenoside Re. The contents of notoginsenoside R1, ginsenoside Rd and ginsenoside Re of Purple Notoginseng Radix et Rhizoma were about 16.03%, 10.83% and 5.39% higher than those of Green Notoginseng Radix et Rhizoma respectively. However, the contents of ginsenoside Rg1 and ginsenoside Rb1 of Green Notoginseng Radix et Rhizoma were about 0.93% and 3.33% higher than those of Purple Notoginseng Radix et Rhizoma respectively. With respect to Green Notoginseng Radix et Rhizoma, the increase of the total anthocyanins in Purple Notoginseng Radix et Rhizoma reached a significant level, but the increases of total saponins, notoginsenoside R1, ginsenoside Rd and ginsenoside Re and the decreases of ginsenoside Rg1 and ginsenoside Rb1 did not. The total anthocyanins accumulation in Notoginseng Radix et Rhizoma implies the content increases of the total saponins, notoginsenoside R1, ginsenoside Rd and ginsenoside Re, and the slight decreases of ginsenoside Rg1 and ginsenoside Rb1 contents; but the type and relative contents of saponin monomers remain unchanged. The medicinal

  6. Total and Free Sugar Content of Canadian Prepackaged Foods and Beverages

    Science.gov (United States)

    Bernstein, Jodi T.; Schermel, Alyssa; Mills, Christine M.; L’Abbé, Mary R.

    2016-01-01

    A number of recommendations for policy and program interventions to limit excess free sugar consumption have emerged, however there are a lack of data describing the amounts and types of sugar in foods. This study presents an assessment of sugar in Canadian prepackaged foods including: (a) the first systematic calculation of free sugar contents; (b) a comprehensive assessment of total sugar and free sugar levels; and (c) sweetener and free sugar ingredient use, using the University of Toronto’s Food Label Information Program (FLIP) database 2013 (n = 15,342). Food groups with the highest proportion of foods containing free sugar ingredients also had the highest median total sugar and free sugar contents (per 100 g/mL): desserts (94%, 15 g, and 12 g), sugars and sweets (91%, 50 g, and 50 g), and bakery products (83%, 16 g, and 14 g, proportion with free sugar ingredients, median total sugar and free sugar content in Canadian foods, respectively). Free sugar accounted for 64% of total sugar content. Eight of 17 food groups had ≥75% of the total sugar derived from free sugar. Free sugar contributed 20% of calories overall in prepackaged foods and beverages, with the highest at 70% in beverages. These data can be used to inform interventions aimed at limiting free sugar consumption. PMID:27657125

  7. Total and Free Sugar Content of Canadian Prepackaged Foods and Beverages

    Directory of Open Access Journals (Sweden)

    Jodi T. Bernstein

    2016-09-01

    Full Text Available A number of recommendations for policy and program interventions to limit excess free sugar consumption have emerged, however there are a lack of data describing the amounts and types of sugar in foods. This study presents an assessment of sugar in Canadian prepackaged foods including: (a the first systematic calculation of free sugar contents; (b a comprehensive assessment of total sugar and free sugar levels; and (c sweetener and free sugar ingredient use, using the University of Toronto’s Food Label Information Program (FLIP database 2013 (n = 15,342. Food groups with the highest proportion of foods containing free sugar ingredients also had the highest median total sugar and free sugar contents (per 100 g/mL: desserts (94%, 15 g, and 12 g, sugars and sweets (91%, 50 g, and 50 g, and bakery products (83%, 16 g, and 14 g, proportion with free sugar ingredients, median total sugar and free sugar content in Canadian foods, respectively. Free sugar accounted for 64% of total sugar content. Eight of 17 food groups had ≥75% of the total sugar derived from free sugar. Free sugar contributed 20% of calories overall in prepackaged foods and beverages, with the highest at 70% in beverages. These data can be used to inform interventions aimed at limiting free sugar consumption.

  8. Determination of arsenic in human hair by destructive neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bayat, I.; Ansar Kabootar Ahangi, M.; Sadegh Keramati, M. [Atomic Energy Organization of Iran, Waste Management Dept., Tehran (Iran)

    2002-03-01

    The method described below was developed for the purposes of the determination of micro quantities of arsenic in human hair. The nuclear research reactor of the AEOI, the Atomic Energy Organization of Iran, was used for the irradiation of 150 mg hair samples for a period of 20 hours. Radiochemical methods were used for the separation of interfering ions. The total arsenic concentrations found in over 100 samples ranged from 0.01 to 4 ppm, with the detection limit for arsenic being reported to lie between 0.1 and 0.01 ppm. (orig.)

  9. Environmental Source of Arsenic Exposure

    OpenAIRE

    Chung, Jin-Yong; Yu, Seung-Do; Hong, Young-Seoub

    2014-01-01

    Arsenic is a ubiquitous, naturally occurring metalloid that may be a significant risk factor for cancer after exposure to contaminated drinking water, cigarettes, foods, industry, occupational environment, and air. Among the various routes of arsenic exposure, drinking water is the largest source of arsenic poisoning worldwide. Arsenic exposure from ingested foods usually comes from food crops grown in arsenic-contaminated soil and/or irrigated with arsenic-contaminated water. According to a ...

  10. Polymorphism of inflammatory genes and arsenic methylation capacity are associated with urothelial carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Chia-Chang [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China); Department of Urology, Taipei Medical University—Shuang Ho Hospital, Taipei, Taiwan (China); Huang, Yung-Kai [School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan (China); Chung, Chi-Jung [Department of Health Risk Management, College of Public Health, China Medical University and Hospital, Taichung, Taiwan (China); Department of Medical Research, China Medical University Hospital, Taichung, Taiwan (China); Huang, Chao-Yuan; Pu, Yeong-Shiau [Department of Urology, National Taiwan University Hospital, College of Medicine National Taiwan University, Taipei, Taiwan (China); Shiue, Horng-Sheng [Department of Chinese Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan (China); Lai, Li-An [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China); Lin, Ying-Chin [Department of Family Medicine, Shung Ho Hospital, Taipei Medical University, Taipei, Taiwan (China); Department of Health Examination, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan (China); Su, Chien-Tien [Department of Family Medicine, Taipei Medical University Hospital, Taipei, Taiwan (China); Hsueh, Yu-Mei, E-mail: ymhsueh@tmu.edu.tw [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China); Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (China)

    2013-10-01

    Chronic exposure to arsenic can generate reactive oxidative species, which can induce certain proinflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and interleukin-8 (IL-8). TNF-α, IL-6 and IL-8 have been shown to be involved in the development and progression of various cancers, including bladder cancer. This study aimed to investigate the joint effect of the polymorphism of TNF-α − 308 G/A, IL-6 − 174 G/C, IL-8 − 251 T/A and urinary arsenic profiles on urothelial carcinoma (UC) risk. This study evaluated 300 pathologically-confirmed cases of UC and 594 cancer-free controls. Urinary arsenic species were detected using high-performance liquid chromatography-linked hydride generator and atomic absorption spectrometry. The polymorphism of TNF-α − 308 G/A, IL-6 − 174 G/C and IL-8 − 251 T/A was determined using polymerase chain reaction-restriction fragment length polymorphism. The joint effects on UC risk were estimated by odds ratios and 95% confidence intervals using unconditional logistic regression. We found that the TNF-α − 308 A/A and IL-8 − 251 T/T polymorphisms were significantly associated with UC. Moreover, significant dose–response joint effect of TNF-α − 308 A/A or IL-8 − 251 T/T genotypes and arsenic methylation indices were seen to affect UC risk. The present results also showed a significant increase in UC risk in subjects with the IL-8 − 251 T/T genotype for each SD increase in urinary total arsenic and MMA%. In contrast, a significant decrease in UC risk was found in subjects who carried the IL-8 − 251 T/T genotype for each SD increase in DMA%. - Highlights: • Joint effect of the TNF-α -308 A/A genotype and urinary total arsenic affected UC. • Joint effect of the IL-8 -251 T/T genotype and urinary total arsenic affected UC. • Urinary total arsenic level, TNF-α -308 A/A and IL-8 -251 T/T genotype affected UC.

  11. Polymorphism of inflammatory genes and arsenic methylation capacity are associated with urothelial carcinoma

    International Nuclear Information System (INIS)

    Wu, Chia-Chang; Huang, Yung-Kai; Chung, Chi-Jung; Huang, Chao-Yuan; Pu, Yeong-Shiau; Shiue, Horng-Sheng; Lai, Li-An; Lin, Ying-Chin; Su, Chien-Tien; Hsueh, Yu-Mei

    2013-01-01

    Chronic exposure to arsenic can generate reactive oxidative species, which can induce certain proinflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and interleukin-8 (IL-8). TNF-α, IL-6 and IL-8 have been shown to be involved in the development and progression of various cancers, including bladder cancer. This study aimed to investigate the joint effect of the polymorphism of TNF-α − 308 G/A, IL-6 − 174 G/C, IL-8 − 251 T/A and urinary arsenic profiles on urothelial carcinoma (UC) risk. This study evaluated 300 pathologically-confirmed cases of UC and 594 cancer-free controls. Urinary arsenic species were detected using high-performance liquid chromatography-linked hydride generator and atomic absorption spectrometry. The polymorphism of TNF-α − 308 G/A, IL-6 − 174 G/C and IL-8 − 251 T/A was determined using polymerase chain reaction-restriction fragment length polymorphism. The joint effects on UC risk were estimated by odds ratios and 95% confidence intervals using unconditional logistic regression. We found that the TNF-α − 308 A/A and IL-8 − 251 T/T polymorphisms were significantly associated with UC. Moreover, significant dose–response joint effect of TNF-α − 308 A/A or IL-8 − 251 T/T genotypes and arsenic methylation indices were seen to affect UC risk. The present results also showed a significant increase in UC risk in subjects with the IL-8 − 251 T/T genotype for each SD increase in urinary total arsenic and MMA%. In contrast, a significant decrease in UC risk was found in subjects who carried the IL-8 − 251 T/T genotype for each SD increase in DMA%. - Highlights: • Joint effect of the TNF-α -308 A/A genotype and urinary total arsenic affected UC. • Joint effect of the IL-8 -251 T/T genotype and urinary total arsenic affected UC. • Urinary total arsenic level, TNF-α -308 A/A and IL-8 -251 T/T genotype affected UC

  12. Effect of applying an arsenic-resistant and plant growth-promoting rhizobacterium to enhance soil arsenic phytoremediation by Populus deltoides LH05-17.

    Science.gov (United States)

    Wang, Q; Xiong, D; Zhao, P; Yu, X; Tu, B; Wang, G

    2011-11-01

    Bioremediation of highly arsenic (As)-contaminated soil is difficult because As is very toxic for plants and micro-organisms. The aim of this study was to investigate soil arsenic removal effects using poplar in combination with the inoculation of a plant growth-promoting rhizobacterium (PGPR). A rhizobacterium D14 was isolated and identified within Agrobacterium radiobacter. This strain was highly resistant to arsenic and produced indole acetic acid and siderophore. Greenhouse pot bioremediation experiments were performed for 5 months using poplar (Populus deltoides LH05-17) grown on As-amended soils, inoculated with strain D14. The results showed that P. deltoides was an efficient arsenic accumulator; however, high As concentrations (150 and 300 mg kg(-1)) inhibited its growth. With the bacterial inoculation, in the 300 mg kg(-1) As-amended soils, 54% As in the soil was removed, which was higher than the uninoculated treatments (43%), and As concentrations in roots, stems and leaves were significantly increased by 229, 113 and 291%, respectively. In addition, the As translocation ratio [(stems + leaves)/roots = 0·8] was significantly higher than the uninoculated treatments (0·5). About 45% As was translocated from roots to the above-ground tissues. The plant height and dry weight of roots, stems and leaves were all enhanced; the contents of chlorophyll and soluble sugar, and the activities of superoxide dismutase and catalase were all increased; and the content of a toxic compound malondialdehyde was decreased. The results indicated that the inoculation of strain D14 could contribute to the increase in the As tolerance of P. deltoides, promotion of the growth, increase in the uptake efficiency and enhancement of As translocation. The use of P. deltoides in combination with the inoculation of strain D14 provides a potential application for efficient soil arsenic bioremediation. © 2011 The Authors. Journal of Applied Microbiology ©2011 The Society for Applied

  13. Field Deployable Method for Arsenic Speciation in Water.

    Science.gov (United States)

    Voice, Thomas C; Flores Del Pino, Lisveth V; Havezov, Ivan; Long, David T

    2011-01-01

    Contamination of drinking water supplies by arsenic is a world-wide problem. Total arsenic measurements are commonly used to investigate and regulate arsenic in water, but it is well understood that arsenic occurs in several chemical forms, and these exhibit different toxicities. It is problematic to use laboratory-based speciation techniques to assess exposure as it has been suggested that the distribution of species is not stable during transport in some types of samples. A method was developed in this study for the on-site speciation of the most toxic dissolved arsenic species: As (III), As (V), monomethylarsonic acid (MMA) and dimethylarsenic acid (DMA). Development criteria included ease of use under field conditions, applicable at levels of concern for drinking water, and analytical performance.The approach is based on selective retention of arsenic species on specific ion-exchange chromatography cartridges followed by selective elution and quantification using graphite furnace atomic absorption spectroscopy. Water samples can be delivered to a set of three cartridges using either syringes or peristaltic pumps. Species distribution is stable at this point, and the cartridges can be transported to the laboratory for elution and quantitative analysis. A set of ten replicate spiked samples of each compound, having concentrations between 1 and 60 µg/L, were analyzed. Arsenic recoveries ranged from 78-112 % and relative standard deviations were generally below 10%. Resolution between species was shown to be outstanding, with the only limitation being that the capacity for As (V) was limited to approximately 50 µg/L. This could be easily remedied by changes in either cartridge design, or the extraction procedure. Recoveries were similar for two spiked hard groundwater samples indicating that dissolved minerals are not likely to be problematic. These results suggest that this methodology can be use for analysis of the four primary arsenic species of concern in

  14. Microbial contributions to coupled arsenic and sulfur cycling in the acid-sulfide hot spring Champagne Pool, New Zealand.

    Science.gov (United States)

    Hug, Katrin; Maher, William A; Stott, Matthew B; Krikowa, Frank; Foster, Simon; Moreau, John W

    2014-01-01

    Acid-sulfide hot springs are analogs of early Earth geothermal systems where microbial metal(loid) resistance likely first evolved. Arsenic is a metalloid enriched in the acid-sulfide hot spring Champagne Pool (Waiotapu, New Zealand). Arsenic speciation in Champagne Pool follows reaction paths not yet fully understood with respect to biotic contributions and coupling to biogeochemical sulfur cycling. Here we present quantitative arsenic speciation from Champagne Pool, finding arsenite dominant in the pool, rim and outflow channel (55-75% total arsenic), and dithio- and trithioarsenates ubiquitously present as 18-25% total arsenic. In the outflow channel, dimethylmonothioarsenate comprised ≤9% total arsenic, while on the outflow terrace thioarsenates were present at 55% total arsenic. We also quantified sulfide, thiosulfate, sulfate and elemental sulfur, finding sulfide and sulfate as major species in the pool and outflow terrace, respectively. Elemental sulfur concentration reached a maximum at the terrace. Phylogenetic analysis of 16S rRNA genes from metagenomic sequencing revealed the dominance of Sulfurihydrogenibium at all sites and an increased archaeal population at the rim and outflow channel. Several phylotypes were found closely related to known sulfur- and sulfide-oxidizers, as well as sulfur- and sulfate-reducers. Bioinformatic analysis revealed genes underpinning sulfur redox transformations, consistent with sulfur speciation data, and illustrating a microbial role in sulfur-dependent transformation of arsenite to thioarsenate. Metagenomic analysis also revealed genes encoding for arsenate reductase at all sites, reflecting the ubiquity of thioarsenate and a need for microbial arsenate resistance despite anoxic conditions. Absence of the arsenite oxidase gene, aio, at all sites suggests prioritization of arsenite detoxification over coupling to energy conservation. Finally, detection of methyl arsenic in the outflow channel, in conjunction with

  15. Urinary Arsenic Metabolites of Subjects Exposed to Elevated Arsenic Present in Coal in Shaanxi Province, China

    Directory of Open Access Journals (Sweden)

    Linsheng Yang

    2011-06-01

    Full Text Available In contrast to arsenic (As poisoning caused by naturally occurring inorganic arsenic-contaminated water consumption, coal arsenic poisoning (CAP induced by elevated arsenic exposure from coal combustion has rarely been reported. In this study, the concentrations and distributions of urinary arsenic metabolites in 57 volunteers (36 subjects with skin lesions and 21 subjects without skin lesions, who had been exposed to elevated levels of arsenic present in coal in Changshapu village in the south of Shaanxi Province (China, were reported. The urinary arsenic species, including inorganic arsenic (iAs [arsenite (iAsIII and arsenate (iAsV], monomethylarsonic acid (MMAV and dimethylarsinic acid (DMAV, were determined by high-performance liquid chromatography (HPLC combined with inductively coupled plasma mass spectroscopy (ICP-MS. The relative distributions of arsenic species, the primary methylation index (PMI = MMAV/iAs and the secondary methylation index (SMI = DMAV/MMAV were calculated to assess the metabolism of arsenic. Subjects with skin lesions had a higher concentration of urinary arsenic and a lower arsenic methylation capability than subjects without skin lesions. Women had a significantly higher methylation capability of arsenic than men, as defined by a higher percent DMAV and SMI in urine among women, which was the one possible interpretation of women with a higher concentration of urinary arsenic but lower susceptibility to skin lesions. The findings suggested that not only the dose of arsenic exposure but also the arsenic methylation capability have an impact on the individual susceptibility to skin lesions induced by coal arsenic exposure.

  16. Arsenite-oxidizing and arsenate-reducing bacteria associated with arsenic-rich groundwater in Taiwan

    Science.gov (United States)

    Liao, Vivian Hsiu-Chuan; Chu, Yu-Ju; Su, Yu-Chen; Hsiao, Sung-Yun; Wei, Chia-Cheng; Liu, Chen-Wuing; Liao, Chung-Min; Shen, Wei-Chiang; Chang, Fi-John

    2011-04-01

    Drinking highly arsenic-contaminated groundwater is a likely cause of blackfoot disease in Taiwan, but microorganisms that potentially control arsenic mobility in the subsurface remain unstudied. The objective of this study was to investigate the relevant arsenite-oxidizing and arsenate-reducing microbial community that exists in highly arsenic-contaminated groundwater in Taiwan. We cultured and identified arsenic-transforming bacteria, analyzed arsenic resistance and transformation, and determined the presence of genetic markers for arsenic transformation. In total, 11 arsenic-transforming bacterial strains with different colony morphologies and varying arsenic transformation abilities were isolated, including 10 facultative anaerobic arsenate-reducing bacteria and one strictly aerobic arsenite-oxidizing bacterium. All of the isolates exhibited high levels of arsenic resistance with minimum inhibitory concentrations of arsenic ranging from 2 to 200 mM. Strain AR-11 was able to rapidly oxidize arsenite to arsenate at concentrations relevant to environmental groundwater samples without the addition of any electron donors or acceptors. We provide evidence that arsenic-reduction activity may be conferred by the ars operon(s) that were not amplified by the designed primers currently in use. The 16S rRNA sequence analysis grouped the isolates into the following genera: Pseudomonas, Bacillus, Psychrobacter, Vibrio, Citrobacter, Enterobacter, and Bosea. Among these genera, we present the first report of the genus Psychrobacter being involved in arsenic reduction. Our results further support the hypothesis that bacteria capable of either oxidizing arsenite or reducing arsenate coexist and are ubiquitous in arsenic-contaminated groundwater.

  17. A study of the metal content of municipal solid waste. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Churney, K.L.; Domalski, E.S.

    1998-01-01

    Knowledge of the content of toxic components, so called pollutant precursors, in the municipal solid waste (MSW) stream is essential to development of the strategies for source reduction and reuse, recycling, composting and disposal. Data are scarce; trends in composition for any locality even more so. In a previous study the total and water soluble chlorine content of the components of municipal solid waste were determined from sampling studies at two sites, Baltimore County, MD, and Brooklyn, NY, each for a five day period. The total sulfur content of the combined combustible components was also determined. Because of the scarcity of data and synergistic effects, it seemed appropriate to determine the heavy metal content of the preceding material prior to its disposal. The metals chosen were the so-called priority pollutant metals (PPM): antimony, arsenic, beryllium, cadmium, chromium, copper, lead, mercury, nickel, selenium, silver, thallium, and zinc.

  18. Total protein and lipid contents of canned fish on the Serbian market

    OpenAIRE

    Marković Goran; Mladenović Jelena; Cvijović Milica; Miljković Jelena

    2015-01-01

    Total protein and lipid contents were analysed in 5 samples of canned fish (sardines, Atlantic mackerel fillets, tuna in olive oil, smoked Baltic sprat and herring fillets) available on the Serbian market. Standard methods for the determination of protein (Kjeldahl method) and lipid (Soxhlet method) contents were used on drained samples. The protein content was 21.31% on average, with a range of 18.59% - 24.17%. Total lipids showed considerably large variations (5.49% - 35.20%), and averaged ...

  19. Arsenic (As Contamination in Different Food and Dietary Samples from Several Districts of Bangladesh and Arsenic (As Detection, Mitigation and Toxicity Measurement and impact of Dietary Arsenic Exposure on Human Health

    Directory of Open Access Journals (Sweden)

    M A Awal

    2010-10-01

    Full Text Available Objective: To determine the level of arsenic concentration in vegetables and other food categories in three selected areas of Pabna district and to estimate quantitatively the dietary arsenic exposure in one of the arsenic contaminated areas of Bangladesh.Materials and Methods: The study was conducted in CharRuppur, Char mirkamari and Lakshmikunda village of IshwardiUpzila in Pabna district. Ishwardi (Town consists of 12 wardsand 37 mahallas. Arsenic was detected in the ADM Lab,Department of Pharmacology, Bangladesh Agricultural University, Mymensingh with Hydride Generation Atomic Absorption Spectrophotometer (HG-AAS; PG-990, PG Instruments Ltd. UK. Arsenic was detected by forming AsH3 at below pH 1.0 after the reaction of As with a solution of sodiumborohydride (NaBH4, sodium hydroxide (NaOH, M=40,000g/mol, and 10% HCl. In this test, standard was maintained asAsV ranging from 0 to 12.5 μg/L.Results: A total of 120 vegetable samples, 15 rice samples and15 fish samples were collected from five different markets ofthree different villages of Pabna district and were tested forarsenic concentration. Findings demonstrated that the mean concentration of As in leafy vegetables (0.52 μg g-1 was significantly higher compared to those found in fruity (0.422μg g-1 and root & tuber vegetables (0.486 μg g-1.Conclusion: Underground Contaminated water was the major source for the As contamination of various products in Pabna.The arsenic levels were found higher among the leafy vegetables samples in comparison to fruit and root & tuber vegetables. Further studies will be conducted to search the genetic risk factors of arsenic toxicity in the population of the mostly affected people.

  20. Distribution of arsenic in Permian coals of North Karanpura coalfield, Jharkhand

    Energy Technology Data Exchange (ETDEWEB)

    Priyadarshi, N. [Ranchi University, Ranchi (India). Dept. of Geology

    2004-05-01

    The North Karanpura coalfield, a western most member in the east-west chain of the Damodar Valley Basin, forms a large expanse of coal bearing sediments spread over Hazaribagh, Ranchi and Palamau districts of Jharkhand State. It covers a total area of around 1230 sq. km. For the arsenic study, samples of coal from Badam, Kerendari, KDH, Rohini, Dakra and Karkatta were analysed. Molybdenum-blue colorimetry was used as the chemical technique for arsenic determination as recommended by the International Standard Organisation. Concentration of arsenic in coal samples range from {lt} 0.01 to 0.49 ppm with an arithmetic mean of 0.15 ppm. Concentration of arsenic is very low compared to most world coals. Average ash% is very high (up to 32.51%). In natural water arsenic varies from {lt} 0.001 ppm to 0.002 ppm and it is far below the drinking water specification (0.05 ppm). In sediments, it varies from 0.2 ppm to 2.0 ppm. In the study area arsenic is mainly confined to the surface water and sediments nearer to the mining area.

  1. Enhanced phytoremediation of arsenic contaminated land.

    Science.gov (United States)

    Jankong, P; Visoottiviseth, P; Khokiattiwong, S

    2007-08-01

    In an attempt to clean up arsenic (As) contaminated soil, the effects of phosphorus (P) fertilizer and rhizosphere microbes on arsenic accumulation by the silverback fern, Pityrogramma calomelanos, were investigated in both greenhouse and field experiments. Field experiments were conducted in Ron Phibun District, an As-contaminated area in Thailand. Soil (136-269 microg As g(-1)) was collected there and used in the greenhouse experiment. Rhizosphere microbes (bacteria and fungi) were isolated from roots of P. calomelanos growing in Ron Phibun District. The results showed that P-fertilizer significantly increased plant biomass and As accumulation of the experimental P. calomelanos. Rhizobacteria increased significantly the biomass and As content of the test plants. Thus, P-fertilizer and rhizosphere bacteria enhanced As-phytoextraction. In contrast, rhizofungi reduced significantly As concentration in plants but increased plant biomass. Therefore, rhizosphere fungi exerted their effects on phytostabilization.

  2. Arsenic waste management: a critical review of testing and disposal of arsenic-bearing solid wastes generated during arsenic removal from drinking water.

    Science.gov (United States)

    Clancy, Tara M; Hayes, Kim F; Raskin, Lutgarde

    2013-10-01

    Water treatment technologies for arsenic removal from groundwater have been extensively studied due to widespread arsenic contamination of drinking water sources. Central to the successful application of arsenic water treatment systems is the consideration of appropriate disposal methods for arsenic-bearing wastes generated during treatment. However, specific recommendations for arsenic waste disposal are often lacking or mentioned as an area for future research and the proper disposal and stabilization of arsenic-bearing waste remains a barrier to the successful implementation of arsenic removal technologies. This review summarizes current disposal options for arsenic-bearing wastes, including landfilling, stabilization, cow dung mixing, passive aeration, pond disposal, and soil disposal. The findings from studies that simulate these disposal conditions are included and compared to results from shorter, regulatory tests. In many instances, short-term leaching tests do not adequately address the range of conditions encountered in disposal environments. Future research directions are highlighted and include establishing regulatory test conditions that align with actual disposal conditions and evaluating nonlandfill disposal options for developing countries.

  3. Arsenic accumulation by two brake ferns growing on an arsenic mine and their potential in phytoremediation.

    Science.gov (United States)

    Wei, Chao-Yang; Chen, Tong-Bin

    2006-05-01

    In an area near an arsenic mine in Hunan Province of south China, soils were often found with elevated arsenic levels. A field survey was conducted to determine arsenic accumulation in 8 Cretan brake ferns (Pteris cretica) and 16 Chinese brake ferns (Pteris vittata) growing on these soils. Three factors were evaluated: arsenic concentration in above ground parts (fronds), arsenic bioaccumulation factor (BF; ratio of arsenic in fronds to soil) and arsenic translocation factor (TF; ratio of arsenic in fronds to roots). Arsenic concentrations in the fronds of Chinese brake fern were 3-704 mg kg-1, the BFs were 0.06-7.43 and the TFs were 0.17-3.98, while those in Cretan brake fern were 149-694 mg kg-1, 1.34-6.62 and 1.00-2.61, respectively. Our survey showed that both ferns were capable of arsenic accumulation under field conditions. With most of the arsenic being accumulated in the fronds, these ferns have potential for use in phytoremediation of arsenic contaminated soils.

  4. Arsenic speciation and trace element analysis of the volcanic rio Agrio and the geothermal waters of Copahue, Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Farnfield, Hannah R. [ICP-MS Facility, Chemical Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH (United Kingdom); Marcilla, Andrea L. [Patagonia BBS, General Roca, Rio Negro (Argentina); Ward, Neil I., E-mail: n.ward@surrey.ac.uk [ICP-MS Facility, Chemical Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH (United Kingdom)

    2012-09-01

    Surface water originating from the Copahue volcano crater-lake was analysed for total arsenic and four arsenic species: arsenite (iAs{sup III}), arsenate (iAs{sup V}), monomethylarsonic acid (MA{sup V}) and dimethylarsinic acid (DMA{sup V}) and other trace elements (Fe, Mn, V, Cr, Ni, Zn). A novel in-field technique for the preconcentration and separation of four arsenic species was, for the first time, used for the analysis of geothermal and volcanic waters. Total arsenic levels along the rio Agrio ranged from < 0.2-3783 {mu}g/l As{sub T}. The highest arsenic levels were recorded in the el Vertedero spring (3783 {mu}g/l As{sub T}) on the flank of the Copahue volcano, which feeds the acidic rio Agrio. Arsenite (H{sub 3}AsO{sub 3}) predominated along the upper rio Agrio (78.9-81.2% iAs{sup III}) but the species distribution changed at lago Caviahue and arsenate (H{sub 2}AsO{sub 4}{sup -}) became the main species (51.4-61.4% iAs{sup V}) up until Salto del Agrio. The change in arsenic species is potentially a result of an increase in redox potential and the formation of iron-based precipitates. Arsenic speciation showed a statistically significant correlation with redox potential (r = 0.9697, P = 0.01). Both total arsenic and arsenic speciation displayed a statistically significant correlation with vanadium levels along the river (r = 0.9961, P = 0.01 and r = 0.8488, P = 0.05, respectively). This study highlights that chemical speciation analysis of volcanic waters is important in providing ideas on potential chemical toxicity. Furthermore there is a need for further work evaluating how arsenic (and other trace elements), released in volcanic and geothermal streams/vents, impacts on both biota and humans (via exposure in thermal pools or consuming commercial drinking water). -- Highlights: Black-Right-Pointing-Pointer Application of a novel field-based method for the separation of arsenic species in a volcanic surface water system. Black-Right-Pointing-Pointer First

  5. TOXICITY OF INDUSTRIAL EFFLUENT ON TOTAL CHLOROPHYLL CONTENT OF CERTAIN AQUATIC MACROPHYTES

    OpenAIRE

    Singh Priti; Vishen Ashish; Wadhwani R; Pandey Y.N

    2012-01-01

    To assess the toxicity of industrial effluents on certain macrophytes, the total chlorophyll content of free floating, submerged and emergent macrophytes were estimated in concentrations of industrial effluents at varying exposure duration. The result revealed reduction in total chlorophyll content of exposed macrophytes at higher concentrations of industrial effluents on prolonged duration.

  6. Sedimentology and arsenic pollution in the Bengal Basin: insight into arsenic occurrence and subsurface geology.

    Science.gov (United States)

    Hills, Andrew; McArthur, John

    2014-05-01

    is more complex than previously thought. References 1. Goodbred, S. L. & Kuehl, S. A. 2000. Enormous Ganges-Brahmaputra sediment discharge during strengthened early Holocene monsoon. Geology, 28, 1083-1086. 2. Goodbred, S. L., Kuehl, S. A., Steckler, M. S., & Sarkar, M. H. 2003. Controls on facies distribution and stratigraphic preservation in the Ganges-Brahmaputra delta sequence. Sedimentary Geology, 155, 301-316. 3. Hoque, M. A., McArthur, J. M., & Sikdar, P. K. 2012. The palaeosol model of arsenic pollution of groundwater tested along a 32 km traverse across West Bengal, India. Science of the Total Environment, 431, 157-165. 4. McArthur, J. M., Ravenscroft, P., Banerjee, D. M., Milsom, J., Hudson-Edwards, K. A., Sengupta, S., Bristow, C., Sarkar, A., & Purohit, R. 2008. How palaeosols influence groundwater flow and arsenic pollution: A model from the Bengal Basin and its worldwide implication. Water Resources Research, 44, W11411, doi: 10.1029/2007WR0067552. 5. McArthur, J. M., Nath, B., Banerjee, D. M., Purohit, R., & Grassineau, N. 2011. Palaeosol control on groundwater flow and pollutant distribution: The example of arsenic. Environmental Science and Technology, 45, 1376-1383.

  7. Arsenic Methyltransferase

    Science.gov (United States)

    The metalloid arsenic enters the environment by natural processes (volcanic activity, weathering of rocks) and by human activity (mining, smelting, herbicides and pesticides). Although arsenic has been exploited for homicidal and suicidal purposes since antiquity, its significan...

  8. Speciated arsenic in air: measurement methodology and risk assessment considerations.

    Science.gov (United States)

    Lewis, Ari S; Reid, Kim R; Pollock, Margaret C; Campleman, Sharan L

    2012-01-01

    Accurate measurement of arsenic (As) in air is critical to providing a more robust understanding of arsenic exposures and associated human health risks. Although there is extensive information available on total arsenic in air, less is known on the relative contribution of each arsenic species. To address this data gap, the authors conducted an in-depth review of available information on speciated arsenic in air. The evaluation included the type of species measured and the relative abundance, as well as an analysis of the limitations of current analytical methods. Despite inherent differences in the procedures, most techniques effectively separated arsenic species in the air samples. Common analytical techniques such as inductively coupled plasma mass spectrometry (ICP-MS) and/or hydride generation (HG)- or quartz furnace (GF)-atomic absorption spectrometry (AAS) were used for arsenic measurement in the extracts, and provided some of the most sensitive detection limits. The current analysis demonstrated that, despite limited comparability among studies due to differences in seasonal factors, study duration, sample collection methods, and analytical methods, research conducted to date is adequate to show that arsenic in air is mainly in the inorganic form. Reported average concentrations of As(III) and As(V) ranged up to 7.4 and 10.4 ng/m3, respectively, with As(V) being more prevalent than As(III) in most studies. Concentrations of the organic methylated arsenic compounds are negligible (in the pg/m3 range). However because of the variability in study methods and measurement methodology, the authors were unable to determine the variation in arsenic composition as a function of source or particulate matter (PM) fraction. In this work, the authors include the implications of arsenic speciation in air on potential exposure and risks. The authors conclude that it is important to synchronize sample collection, preparation, and analytical techniques in order to generate

  9. Arsenic-Induced Genotoxicity and Genetic Susceptibility to Arsenic-Related Pathologies

    Directory of Open Access Journals (Sweden)

    Fabrizio Bianchi

    2013-04-01

    Full Text Available The arsenic (As exposure represents an important problem in many parts of the World. Indeed, it is estimated that over 100 million individuals are exposed to arsenic, mainly through a contamination of groundwaters. Chronic exposure to As is associated with adverse effects on human health such as cancers, cardiovascular diseases, neurological diseases and the rate of morbidity and mortality in populations exposed is alarming. The purpose of this review is to summarize the genotoxic effects of As in the cells as well as to discuss the importance of signaling and repair of arsenic-induced DNA damage. The current knowledge of specific polymorphisms in candidate genes that confer susceptibility to arsenic exposure is also reviewed. We also discuss the perspectives offered by the determination of biological markers of early effect on health, incorporating genetic polymorphisms, with biomarkers for exposure to better evaluate exposure-response clinical relationships as well as to develop novel preventative strategies for arsenic- health effects.

  10. Safe limit of arsenic in soil in relation to dietary exposure of arsenicosis patients from Malda district, West Bengal- A case study.

    Science.gov (United States)

    Golui, Debasis; Guha Mazumder, D N; Sanyal, S K; Datta, S P; Ray, P; Patra, P K; Sarkar, S; Bhattacharya, K

    2017-10-01

    Safe limit of arsenic in soil in relation to dietary exposure of arsenicosis patients was established in Malda district of West Bengal. Out of 182 participants examined, 80 (43.9%) participants showed clinical features of arsenicosis, characterized by arsenical skin lesion (pigmentation and keratosis), while 102 participants did not have any such lesion (control). Experimental results of the twenty eight soils (own field) of the participants showed the mean Olsen extractable and total arsenic concentration of 0.206 and 6.70mgkg -1 , respectively. Arsenic concentration in rice grain ranged from 2.00 to 1260μgkg -1 with the mean value of 146μgkg -1 . The hazard quotient (HQ) for intake of As by human through consumption of rice varied from 0.03 to 3.52. HQ exceeds 1.0 for drinking water and rice grain grown in the study area in many cases. As high as 77.6% variation in As content in rice grain could be explained by the solubility-free ion activity model. Toxic limit of extractable As in soil for rice in relation to soil properties and human health hazard, associated with consumption of rice grain by human, was established. For example, the permissible limit of Olsen extractable As in soil would be 0.43mgkg -1 for rice cultivation, if soil pH and organic carbon content were 7.5% and 0.50%, respectively. However, the critical limit of Olsen extractable As in soil would be 0.54mgkg -1 , if soil pH and organic carbon were 8.5% and 0.75%, respectively. The conceptual framework of fixing the toxic limit of arsenic in soils with respect to soil properties and human health under modeling-framework was established. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. A comprehensive review of arsenic levels in the semiconductor manufacturing industry.

    Science.gov (United States)

    Park, Donguk; Yang, Haengsun; Jeong, Jeeyeon; Ha, Kwonchul; Choi, Sangjun; Kim, Chinyon; Yoon, Chungsik; Park, Dooyong; Paek, Domyung

    2010-11-01

    This paper presents a summary of arsenic level statistics from air and wipe samples taken from studies conducted in fabrication operations. The main objectives of this study were not only to describe arsenic measurement data but also, through a literature review, to categorize fabrication workers in accordance with observed arsenic levels. All airborne arsenic measurements reported were included in the summary statistics for analysis of the measurement data. The arithmetic mean was estimated assuming a lognormal distribution from the geometric mean and the geometric standard deviation or the range. In addition, weighted arithmetic means (WAMs) were calculated based on the number of measurements reported for each mean. Analysis of variance (ANOVA) was employed to compare arsenic levels classified according to several categories such as the year, sampling type, location sampled, operation type, and cleaning technique. Nine papers were found reporting airborne arsenic measurement data from maintenance workers or maintenance areas in semiconductor chip-making plants. A total of 40 statistical summaries from seven articles were identified that represented a total of 423 airborne arsenic measurements. Arsenic exposure levels taken during normal operating activities in implantation operations (WAM = 1.6 μg m⁻³, no. of samples = 77, no. of statistical summaries = 2) were found to be lower than exposure levels of engineers who were involved in maintenance works (7.7 μg m⁻³, no. of samples = 181, no. of statistical summaries = 19). The highest level (WAM = 218.6 μg m⁻³) was associated with various maintenance works performed inside an ion implantation chamber. ANOVA revealed no significant differences in the WAM arsenic levels among the categorizations based on operation and sampling characteristics. Arsenic levels (56.4 μg m⁻³) recorded during maintenance works performed in dry conditions were found to be much higher than those from maintenance works in wet

  12. Groundwater contamination with arsenic and other trace elements in an area of the Pampa, province of Cordoba, Argentina

    International Nuclear Information System (INIS)

    Nicolli, H.B.; Suriano, J.M.; Gomez Peral, M.A.; Ferpozzi, L.H.; Baleani, O.A.

    1989-01-01

    A geochemical study of the groundwater of the pampa in the province of Cordoba, Argentina, is reported. Physical-chemical parameters, dissolved solids, and seven trace elements were determined in 60 selected water samples. Systematic and accurate measurements of arsenic, fluorine, and vanadium were performed for the first time. The geographic distribution of the seven trace elements was mapped and its correlation with the anion-cation composition of the water was studied. Eighty-four percent of the water analyzed showed arsenic contents over 0.05 mg/l. The maxima for arsenic, fluorine, vanadium, and uranium contents were found in the western part of the study area, in waters dominated by alkali metal cations. Maximum selenium and antimony contents were found in the eastern part of the areas, whereas molybdenum distribution showed no relationship to the other groups. The movements of the subsoil have disturbed surface and subsurface drainage, thus influencing the water salinity and trace element contents. To investigate the origin of contamination, 54 loess samples were collected at wells in depths ranging from the surface down to the water table. This loess, which has a high proportion of volcanic components, mainly rhyolitic glass, exhibits a chemical composition corresponding to that of a dacite. The loess and volcanic glass show anomalous contents of all contaminant trace elements, mainly arsenic and selenium. For this reason, loess is considered to be the most important source of contamination of this ground water area. 30 refs., 6 figs., 9 tab

  13. Total alkaloid content in various fractions of Tabernaemonata sphaerocarpa Bl. (Jembirit) leaves

    Science.gov (United States)

    Salamah, N.; Ningsih, D. S.

    2017-11-01

    Tabernaemontana sphaerocarpa Bl. (Jembirit) is one of the Apocynaceae family plants containing alkaloid compound. Traditionally, it is used as an anti-inflammatory medicine. It is found to have a new bisindole alkaloid compound that shows a potent cytotoxic activity in human cancer. This study aimed to know the total alkaloid content in some fractions of ethanolic extract of T. sphaerocarpa Bl. leaf powder was extracted by maceration method in 70% ethanol solvent. Then, the extract was fractionated in a separatory funnel using water, ethyl acetate, and hexane. The total alkaloid content in each fraction was analyzed with visible spectrophotometric methods based on the reaction with Bromocresol Green (BCG). The total alkaloids in water fraction and ethyl acetate fraction were (0.0312±0.0009)% and (0.0281±0.0014)%, respectively. Meanwhile, the total alkaloid content in hexane was not detected. The statistical analysis, performed in SPSS, resulted in a significant difference between the total alkaloids in water fraction and ethyl acetate fraction. The total alkaloid in water fraction of T. sphaerocarpa Bl. was higher than the one in ethyl acetate fraction.

  14. Arsenic Content of the Drinking Water Source, for the Guadiana Valley, Mexico; Contenido de arsenico en el agua potable de Valle del Guadiana, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Alarcon Herrera, Maria Teresa [Centro de Investigacion en Materiales Avanzados (Mexico); Flores Montenegro, Isela [Sistema Desentralizado de agua Potable y alcantarillado Durango (Mexico); Romero Navar, Pedro [Comision Nacional del Agua (Mexico); Martin Dominguez, Ignacio [Centro de Investigacion en Materiales Avanzados (Mexico); Trejo Vazquez, Rodolfo [Instituto Tecnologico de Aguascalientes (Mexico)

    2001-12-01

    In recent years, high levels of arsenic concentration have been detected in some drinking water sources of the Guadiana Valley (Durango and surrounding towns) in Mexico. These levels are above the limits recommended bye the world Health Organization (WHO) and the maximum levels allowed by the Mexican standards. due to the well.known toxicity of this element, this study set as its objective to determine in quantitative terms the arsenic content of the drinking water sources for the Guadiana Valley, as the first step in the way to solve environment problems, It was found that 59% of the sources in the south, northeast and Northwest zones of Durango exceed in 40% the maximum level established by Mexican standards for arsenic content. In the Guadiana towns, 48% of the sources surpass such levels even in 46%. If the maximum levels suggested bye the WHO are taken as the reference, then virtually all sources exceed such level. [Spanish] En los ultimos anos, en la region del valle de Gadiana (ciudad de Durango y poblados cercanos) se han detectado niveles de concentracion de arsenico (As) en algunos pozos de abastecimiento de agua potable que superan los limites recomendados por la Organizacion Mundial de la Salud(OMS) y el limite maximo permisible establecido por la legislacion mexicana. Dada la conocida toxicidad de dicho elemento, en el presente estudio se propuso determinar cuantitativamente el contenido de arsenico en los pozos de abastecimiento de agua potable del valle del Guadiana, como un primer paso hacia la solucion de la problematica ambiental. Se encontro que en la zona sureste, noroeste y noreste de la ciudad, en 59% de los pozos se excede hasta en 40% la concentracion de arsenico establecida como limite maximo por la legislacion mexicana. En las poblaciones del valle del Guadiana, 48% de los pozos superan los limites mencionados hasta en un 136%. Si se toma como referencia el limite maximo establecido por la OMS, practicamente todos los pozos exceden el

  15. Both Phosphorus Fertilizers and Indigenous Bacteria Enhance Arsenic Release into Groundwater in Arsenic-Contaminated Aquifers.

    Science.gov (United States)

    Lin, Tzu-Yu; Wei, Chia-Cheng; Huang, Chi-Wei; Chang, Chun-Han; Hsu, Fu-Lan; Liao, Vivian Hsiu-Chuan

    2016-03-23

    Arsenic (As) is a human carcinogen, and arsenic contamination in groundwater is a worldwide public health concern. Arsenic-affected areas are found in many places but are reported mostly in agricultural farmlands, yet the interaction of fertilizers, microorganisms, and arsenic mobilization in arsenic-contaminated aquifers remains uncharacterized. This study investigates the effects of fertilizers and bacteria on the mobilization of arsenic in two arsenic-contaminated aquifers. We performed microcosm experiments using arsenic-contaminated sediments and amended with inorganic nitrogenous or phosphorus fertilizers for 1 and 4 months under aerobic and anaerobic conditions. The results show that microcosms amended with 100 mg/L phosphorus fertilizers (dipotassium phosphate), but not nitrogenous fertilizers (ammonium sulfate), significantly increase aqueous As(III) release in arsenic-contaminated sediments under anaerobic condition. We also show that concentrations of iron, manganese, potassium, sodium, calcium, and magnesium are increased in the aqueous phase and that the addition of dipotassium phosphate causes a further increase in aqueous iron, potassium, and sodium, suggesting that multiple metal elements may take part in the arsenic release process. Furthermore, microbial analysis indicates that the dominant microbial phylum is shifted from α-proteobacteria to β- and γ-proteobacteria when the As(III) is increased and phosphate is added in the aquifer. Our results provide evidence that both phosphorus fertilizers and microorganisms can mediate the release of arsenic to groundwater in arsenic-contaminated sediments under anaerobic condition. Our study suggests that agricultural activity such as the use of fertilizers and monitoring phosphate concentration in groundwater should be taken into consideration for the management of arsenic in groundwater.

  16. Effect of water management, tillage options and phosphorus status on arsenic uptake in rice.

    Science.gov (United States)

    Talukder, A S M H M; Meisner, C A; Sarkar, M A R; Islam, M S

    2011-05-01

    High arsenic (As) concentrations in soil may lead to elevated concentrations of arsenic in agricultural products. Field experiments were conducted to examine the effects of water management (WM) and Phosphorus (P) rates on As uptake, rice growth, yield and yield attributes of winter (boro) and monsoon (aman) rice in an As contaminated soil-water at Gobindagonj, Gaibandha, Bangladesh in 2004 and 2005. Significantly, the highest average grain yields (6.88±0.07 t ha(-1) in boro 6.38±0.06 t ha(-1) in aman) were recorded in permanent raised bed (PRB; aerobic WM: Eh=+360 mV) plus 100% P amendment. There was a 12% yield increase over conventional till on flat (CTF; anaerobic WM: Eh=-56 mV) at the same P level. In boro, the As content in grain and As content in straw were about 3 and 6 times higher in CTF compared to PRB, respectively. The highest total As content (0.646±0.01 ppm in grain and 10.93±0.19 ppm in straw) was recorded under CTF, and the lowest total As content (0.247±0.01 and 1.554±0.09 ppm in grain and straw, respectively) was recorded under PRB (aerobic WM). The results suggest that grain and straw As are closely associated in boro rice. The furrow irrigation approach of the PRB treatments consistently reduced irrigation input by 29-31% for boro and 27-30% for aman rice relative to CTF treatments in 2004 and 2005, respectively, thus reducing the amount of As added to the soil from the As-contaminated irrigation water. Yearly, 30% less As was deposited to the soil compared to CTF system through irrigation water during boro season. High As concentrations in grain and straw in rice grown using CTF in the farmers' field, and the fact that using PRB reduced grain As concentrations to value less than half of the proposed food hygiene standard. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. Arsenic speciation and trace element analysis of the volcanic río Agrio and the geothermal waters of Copahue, Argentina

    International Nuclear Information System (INIS)

    Farnfield, Hannah R.; Marcilla, Andrea L.; Ward, Neil I.

    2012-01-01

    Surface water originating from the Copahue volcano crater-lake was analysed for total arsenic and four arsenic species: arsenite (iAs III ), arsenate (iAs V ), monomethylarsonic acid (MA V ) and dimethylarsinic acid (DMA V ) and other trace elements (Fe, Mn, V, Cr, Ni, Zn). A novel in-field technique for the preconcentration and separation of four arsenic species was, for the first time, used for the analysis of geothermal and volcanic waters. Total arsenic levels along the río Agrio ranged from T . The highest arsenic levels were recorded in the el Vertedero spring (3783 μg/l As T ) on the flank of the Copahue volcano, which feeds the acidic río Agrio. Arsenite (H 3 AsO 3 ) predominated along the upper río Agrio (78.9–81.2% iAs III ) but the species distribution changed at lago Caviahue and arsenate (H 2 AsO 4 − ) became the main species (51.4–61.4% iAs V ) up until Salto del Agrio. The change in arsenic species is potentially a result of an increase in redox potential and the formation of iron-based precipitates. Arsenic speciation showed a statistically significant correlation with redox potential (r = 0.9697, P = 0.01). Both total arsenic and arsenic speciation displayed a statistically significant correlation with vanadium levels along the river (r = 0.9961, P = 0.01 and r = 0.8488, P = 0.05, respectively). This study highlights that chemical speciation analysis of volcanic waters is important in providing ideas on potential chemical toxicity. Furthermore there is a need for further work evaluating how arsenic (and other trace elements), released in volcanic and geothermal streams/vents, impacts on both biota and humans (via exposure in thermal pools or consuming commercial drinking water). -- Highlights: ► Application of a novel field-based method for the separation of arsenic species in a volcanic surface water system. ► First arsenic speciation data for volcanic systems in the Andes (iAs V , iAs III , MA V , DMA V ). ► Total arsenic levels

  18. Developmental and genetic modulation of arsenic biotransformation: A gene by environment interaction?

    International Nuclear Information System (INIS)

    Meza, Mercedes; Gandolfi, A. Jay; Klimecki, Walter T.

    2007-01-01

    The complexity of arsenic toxicology has confounded the identification of specific pathways of disease causation. One focal point of arsenic research is aimed at fully characterizing arsenic biotransformation in humans, a process that appears to be quite variable, producing a mixture of several arsenic species with greatly differing toxic potencies. In an effort to characterize genetic determinants of variability in arsenic biotransformation, a genetic association study of 135 subjects in western Sonora, Mexico was performed by testing 23 polymorphic sites in three arsenic biotransformation candidate genes. One gene, arsenic 3 methyltransferase (AS3MT), was strongly associated with the ratio of urinary dimethylarsinic acid to monomethylarsonic acid (D/M) in children (7-11 years) but not in adults (18-79 years). Subsequent analyses revealed that the high D/M values associated with variant AS3MT alleles were primarily due to lower levels of monomethylarsonic acid as percent of total urinary arsenic (%MMA5). In light of several reports of arsenic-induced disease being associated with relatively high %MMA5 levels, these findings raise the possibility that variant AS3MT individuals may suffer less risk from arsenic exposure than non-variant individuals. These analyses also provide evidence that, in this population, regardless of AS3MT variant status, children tend to have lower %MMA5 values than adults, suggesting that the global developmental regulation of arsenic biotransformation may interact with genetic variants in metabolic genes to result in novel genetic effects such as those in this report

  19. [Distributions and seasonal variations of total dissolved inorganic arsenic in the estuaries and coastal area of eastern Hainan].

    Science.gov (United States)

    Cao, Xiu-Hong; Ren, Jing-Ling; Zhang, Gui-Ling; Zhang, Jin-E; Du, Jin-Zhou; Zhu, De-Di

    2012-03-01

    The concentrations of total dissolved inorganic arsenic (TDIAs) were measured by Hydride Generation-Atomic Fluorescence Spectrometry (HG-AFS). Two cruises were carried out in the river, estuary, coastal area and groundwater of eastern Hainan in December 2006 and August 2007. The concentrations of TDIAs in the Wanquan and Wenchang/Wenjiao rivers and their estuaries, coastal area in December 2006 were 4.0-9.4, 1.3-13.3, 13.3-17.3 nmol x L(-1), respectively. The concentrations of TDIAs in the Wanquan and Wenchang/Wenjiao rivers and their estuaries, coastal area in August 2007 were 1.6-15.5, 2.4-15.9, 10.8-17.6 nmol x L(-1), respectively. There was no significantly seasonal variation of TDIAs in the rivers and estuaries during the dry and wet seasons. Compared with other areas in the world, the concentration of TDIAs in the Eastern Hainan remained at pristine levels. TDIAs showed conservatively mixing in the both estuaries. The concentration of TDIAs of groundwater was below detection limit (BDL)-41.7 nmol x L(-1). The submarine groundwater discharge (SGD) to the coastal area was estimated in the drainage basin of Wenchang/Wenjiao river based on the average concentration of TDIAs in the groundwater and SGD water discharge, with the value of 1 153 mol x a(-1). Budget estimation indicated that the SGD discharge is one of the important sources of arsenic in the coastal area.

  20. Environmental source of arsenic exposure.

    Science.gov (United States)

    Chung, Jin-Yong; Yu, Seung-Do; Hong, Young-Seoub

    2014-09-01

    Arsenic is a ubiquitous, naturally occurring metalloid that may be a significant risk factor for cancer after exposure to contaminated drinking water, cigarettes, foods, industry, occupational environment, and air. Among the various routes of arsenic exposure, drinking water is the largest source of arsenic poisoning worldwide. Arsenic exposure from ingested foods usually comes from food crops grown in arsenic-contaminated soil and/or irrigated with arsenic-contaminated water. According to a recent World Health Organization report, arsenic from contaminated water can be quickly and easily absorbed and depending on its metabolic form, may adversely affect human health. Recently, the US Food and Drug Administration regulations for metals found in cosmetics to protect consumers against contaminations deemed deleterious to health; some cosmetics were found to contain a variety of chemicals including heavy metals, which are sometimes used as preservatives. Moreover, developing countries tend to have a growing number of industrial factories that unfortunately, harm the environment, especially in cities where industrial and vehicle emissions, as well as household activities, cause serious air pollution. Air is also an important source of arsenic exposure in areas with industrial activity. The presence of arsenic in airborne particulate matter is considered a risk for certain diseases. Taken together, various potential pathways of arsenic exposure seem to affect humans adversely, and future efforts to reduce arsenic exposure caused by environmental factors should be made.

  1. Environmental Source of Arsenic Exposure

    Directory of Open Access Journals (Sweden)

    Jin-Yong Chung

    2014-09-01

    Full Text Available Arsenic is a ubiquitous, naturally occurring metalloid that may be a significant risk factor for cancer after exposure to contaminated drinking water, cigarettes, foods, industry, occupational environment, and air. Among the various routes of arsenic exposure, drinking water is the largest source of arsenic poisoning worldwide. Arsenic exposure from ingested foods usually comes from food crops grown in arsenic-contaminated soil and/or irrigated with arsenic-contaminated water. According to a recent World Health Organization report, arsenic from contaminated water can be quickly and easily absorbed and depending on its metabolic form, may adversely affect human health. Recently, the US Food and Drug Administration regulations for metals found in cosmetics to protect consumers against contaminations deemed deleterious to health; some cosmetics were found to contain a variety of chemicals including heavy metals, which are sometimes used as preservatives. Moreover, developing countries tend to have a growing number of industrial factories that unfortunately, harm the environment, especially in cities where industrial and vehicle emissions, as well as household activities, cause serious air pollution. Air is also an important source of arsenic exposure in areas with industrial activity. The presence of arsenic in airborne particulate matter is considered a risk for certain diseases. Taken together, various potential pathways of arsenic exposure seem to affect humans adversely, and future efforts to reduce arsenic exposure caused by environmental factors should be made.

  2. Microbial Community Structure and Arsenic Biogeochemistry in an Acid Vapor-Formed Spring in Tengchong Geothermal Area, China.

    Science.gov (United States)

    Jiang, Zhou; Li, Ping; Jiang, Dawei; Dai, Xinyue; Zhang, Rui; Wang, Yanhong; Wang, Yanxin

    2016-01-01

    Arsenic biogeochemistry has been studied extensively in acid sulfate-chloride hot springs, but not in acid sulfate hot springs with low chloride. In this study, Zhenzhuquan in Tengchong geothermal area, a representative acid sulfate hot spring with low chloride, was chosen to study arsenic geochemistry and microbial community structure using Illumina MiSeq sequencing. Over 0.3 million 16S rRNA sequence reads were obtained from 6-paired parallel water and sediment samples along its outflow channel. Arsenic oxidation occurred in the Zhenxhuquan pool, with distinctly high ratios of arsenate to total dissolved arsenic (0.73-0.86). Coupled with iron and sulfur oxidation along the outflow channel, arsenic accumulated in downstream sediments with concentrations up to 16.44 g/kg and appeared to significantly constrain their microbial community diversity. These oxidations might be correlated with the appearance of some putative functional microbial populations, such as Aquificae and Pseudomonas (arsenic oxidation), Sulfolobus (sulfur and iron oxidation), Metallosphaera and Acidicaldus (iron oxidation). Temperature, total organic carbon and dissolved oxygen significantly shaped the microbial community structure of upstream and downstream samples. In the upstream outflow channel region, most microbial populations were microaerophilic/anaerobic thermophiles and hyperthermophiles, such as Sulfolobus, Nocardia, Fervidicoccus, Delftia, and Ralstonia. In the downstream region, aerobic heterotrophic mesophiles and thermophiles were identified, including Ktedonobacteria, Acidicaldus, Chthonomonas and Sphingobacteria. A total of 72.41-95.91% unassigned-genus sequences were derived from the downstream high arsenic sediments 16S rRNA clone libraries. This study could enable us to achieve an integrated understanding on arsenic biogeochemistry in acid hot springs.

  3. Urinary arsenic profile affects the risk of urothelial carcinoma even at low arsenic exposure

    International Nuclear Information System (INIS)

    Pu, Y.-S.; Yang, S.-M.; Huang, Y.-K.; Chung, C.-J.; Huang, Steven K.; Chiu, Allen Wen-Hsiang; Yang, M.-H.; Chen, C.-J.; Hsueh, Y.-M.

    2007-01-01

    Arsenic exposure is associated with an increased risk of urothelial carcinoma (UC). To explore the association between individual risk and urinary arsenic profile in subjects without evident exposure, 177 UC cases and 313 age-matched controls were recruited between September 2002 and May 2004 for a case-control study. Urinary arsenic species including the following three categories, inorganic arsenic (As III + As V ), monomethylarsonic acid (MMA V ) and dimethylarsinic acid (DMA V ), were determined with high-performance liquid chromatography-linked hydride generator and atomic absorption spectrometry. Arsenic methylation profile was assessed by percentages of various arsenic species in the sum of the three categories measured. The primary methylation index (PMI) was defined as the ratio between MMA V and inorganic arsenic. Secondary methylation index (SMI) was determined as the ratio between DMA V and MMA V . Smoking is associated with a significant risk of UC in a dose-dependent manner. After multivariate adjustment, UC cases had a significantly higher sum of all the urinary species measured, higher percent MMA V , lower percent DMA V , higher PMI and lower SMI values compared with controls. Smoking interacts with the urinary arsenic profile in modifying the UC risk. Differential carcinogenic effects of the urinary arsenic profile, however, were seen more prominently in non-smokers than in smokers, suggesting that smoking is not the only major environmental source of arsenic contamination since the UC risk differs in non-smokers. Subjects who have an unfavorable urinary arsenic profile have an increased UC risk even at low exposure levels

  4. Sampling technologies and air pollution control devices for gaseous and particulate arsenic: a review

    International Nuclear Information System (INIS)

    Helsen, Lieve

    2005-01-01

    Direct measurement of arsenic release requires a good sampling and analysis procedure in order to capture and detect the total amount of metals emitted. The literature is extensively reviewed in order to evaluate the efficiency of full field-scale and laboratory scale techniques for capturing particulate and gaseous emissions of arsenic from the thermo-chemical treatment of different sources of arsenic. Furthermore, trace arsenic concentrations in ambient air, national standard sampling methods and arsenic analysis methods are considered. Besides sampling techniques, the use of sorbents is also reviewed with respect to both approaches (1) to prevent the metals from exiting with the flue gas and (2) to react or combine with the metals in order to be collected in air pollution control systems. The most important conclusion is that submicron arsenic fumes are difficult to control in conventional air pollution control devices. Complete capture of the arsenic species requires a combination of particle control and vapour control devices. - Submicron arsenic fumes are difficult to control in conventional air pollution control devices

  5. Surface and Airborne Arsenic Concentrations in a Recreational Site near Las Vegas, Nevada, USA

    Science.gov (United States)

    Goossens, Dirk

    2015-01-01

    Elevated concentrations of arsenic, up to 7058 μg g-1 in topsoil and bedrock, and more than 0.03 μg m-3 in air on a 2-week basis, were measured in the Nellis Dunes Recreation Area (NDRA), a very popular off-road area near Las Vegas, Nevada, USA. The elevated arsenic concentrations in the topsoil and bedrock are correlated to outcrops of yellow sandstone belonging to the Muddy Creek Formation (≈ 10 to 4 Ma) and to faults crossing the area. Mineralized fluids moved to the surface through the faults and deposited the arsenic. A technique was developed to calculate airborne arsenic concentrations from the arsenic content in the topsoil. The technique was tested by comparing calculated with measured concentrations at 34 locations in the NDRA, for 3 periods of 2 weeks each. We then applied it to calculate airborne arsenic concentrations for more than 500 locations all over the NDRA. The highest airborne arsenic concentrations occur over sand dunes and other zones with a surficial layer of aeolian sand. Ironically these areas show the lowest levels of arsenic in the topsoil. However, they are highly susceptible to wind erosion and emit very large amounts of sand and dust during episodes of strong winds, thereby also emitting much arsenic. Elsewhere in the NDRA, in areas not or only very slightly affected by wind erosion, airborne arsenic levels equal the background level for airborne arsenic in the USA, approximately 0.0004 μg m-3. The results of this study are important because the NDRA is visited by more than 300,000 people annually. PMID:25897667

  6. Site-specific data confirm arsenic exposure predicted by the U.S. Environmental Protection Agency.

    OpenAIRE

    Walker, S; Griffin, S

    1998-01-01

    The EPA uses an exposure assessment model to estimate daily intake to chemicals of potential concern. At the Anaconda Superfund site in Montana, the EPA exposure assessment model was used to predict total and speciated urinary arsenic concentrations. Predicted concentrations were then compared to concentrations measured in children living near the site. When site-specific information on concentrations of arsenic in soil, interior dust, and diet, site-specific ingestion rates, and arsenic abso...

  7. Arsenic in the human food chain, biotransformation and toxicology--Review focusing on seafood arsenic.

    Science.gov (United States)

    Molin, Marianne; Ulven, Stine Marie; Meltzer, Helle Margrete; Alexander, Jan

    2015-01-01

    Fish and seafood are main contributors of arsenic (As) in the diet. The dominating arsenical is the organoarsenical arsenobetaine (AB), found particularly in finfish. Algae, blue mussels and other filter feeders contain less AB, but more arsenosugars and relatively more inorganic arsenic (iAs), whereas fatty fish contain more arsenolipids. Other compounds present in smaller amounts in seafood include trimethylarsine oxide (TMAO), trimethylarsoniopropionate (TMAP), dimethylarsenate (DMA), methylarsenate (MA) and sulfur-containing arsenicals. The toxic and carcinogenic arsenical iAs is biotransformed in humans and excreted in urine as the carcinogens dimethylarsinate (DMA) and methylarsonate (MA), producing reactive intermediates in the process. Less is known about the biotransformation of organoarsenicals, but new insight indicates that bioconversion of arsenosugars and arsenolipids in seafood results in urinary excretion of DMA, possibly also producing reactive trivalent arsenic intermediates. Recent findings also indicate that the pre-systematic metabolism by colon microbiota play an important role for human metabolism of arsenicals. Processing of seafood may also result in transformation of arsenicals. Copyright © 2015 Elsevier GmbH. All rights reserved.

  8. A Potential Synergy between Incomplete Arsenic Methylation Capacity and Demographic Characteristics on the Risk of Hypertension: Findings from a Cross-Sectional Study in an Arsenic-Endemic Area of Inner Mongolia, China

    Directory of Open Access Journals (Sweden)

    Yongfang Li

    2015-03-01

    Full Text Available Inefficient arsenic methylation capacity has been associated with various health hazards induced by arsenic. In this study, we aimed to explore the interaction effect of lower arsenic methylation capacity with demographic characteristics on hypertension risk. A total of 512 adult participants (126 hypertension subjects and 386 non-hypertension subjects residing in an arsenic-endemic area in Inner Mongolia, China were included. Urinary levels of inorganic arsenic (iAs, monomethylarsonic acid (MMA, and dimethylarsinic acid (DMA were measured for all subjects. The percentage of urinary arsenic metabolites (iAs%, MMA%, and DMA%, primary methylation index (PMI and secondary methylation index (SMI were calculated to assess arsenic methylation capacity of individuals. Results showed that participants carrying a lower methylation capacity, which is characterized by lower DMA% and SMI, have a higher risk of hypertension compared to their corresponding references after adjusting for multiple confounders. A potential synergy between poor arsenic methylation capacity (higher MMA%, lower DMA% and SMI and older age or higher BMI were detected. The joint effects of higher MMA% and lower SMI with cigarette smoking also suggest some evidence of synergism. The findings of present study indicated that inefficient arsenic methylation capacity was associated with hypertension and the effect might be enhanced by certain demographic factors.

  9. Biomarkers of exposure, effect, and susceptibility of arsenic-induced health hazards in Taiwan

    International Nuclear Information System (INIS)

    Chen, C.-J.; Hsu, L.-I; Wang, C.-H.

    2005-01-01

    Long-term exposure to inorganic arsenic from drinking water has been documented to induce cancers and vascular diseases in a dose-response relationship. A series of molecular environmental epidemiological studies have been carried out to elucidate biomarkers of exposure, effect, and susceptibility for arsenic-related health hazards in Taiwan. Arsenic levels in urine, hair, and nail are biomarkers for short-term (<1 year) internal dose, skin hyperpigmentation and palmoplantar hyperkeratosis are for long-term (many years) internal dose, and percentage of monomethylarsonic acid in total metabolites of inorganic arsenic in urine may be considered as an exposure marker for biologically effective dose. The biomarkers of early biological effects of ingested inorganic arsenic included blood levels of reactive oxidants and anti-oxidant capacity, genetic expression of inflammatory molecules, as well as cytogenetic changes including sister chromatid exchange, micronuclei, and chromosome aberrations of peripheral lymphocytes. Both mutation type and hot spots of p53 gene were significantly different in arsenic-induced and non-arsenic-induced TCCs. The frequency of chromosomal imbalances analyzed by comparative genomic hybridization and the frequency of loss of heterozygosity were significantly higher in arsenic-induced TCC than non-arsenic-induced TCC at specific sites. Biomarkers of susceptibility to arsenic-induced health hazards included genetic polymorphisms of enzymes involved in xenobiotic metabolism, DNA repair, and oxidative stress, as well as serum level of carotenoids. Gene-gene and gene-environment interactions are involved in arsenic-induced health hazards through toxicological mechanisms including genomic instability and oxidative stress

  10. ARSENIC SPECIATION ANALYSIS IN HUMAN SALIVA

    Science.gov (United States)

    Background: Determination of arsenic species in human saliva is potentially useful for biomonitoring of human exposure to arsenic and for studying arsenic metabolism. However, there is no report on the speciation analysis of arsenic in saliva. Methods: Arsenic species in saliva ...

  11. Arsenic speciation in Chinese Herbal Medicines and human health implication for inorganic arsenic

    International Nuclear Information System (INIS)

    Liu Xiaojuan; Zhao Quanli; Sun Guoxin; Williams, Paul; Lu Xiujun; Cai Jingzhu; Liu Wenju

    2013-01-01

    Rice and drinking water are recognized as the dominant sources of arsenic (As) for human intake, while little is known about As accumulation and speciation in Chinese Herbal Medicines (CHMs), which have been available for many hundreds of years for the treatment of diseases in both eastern and western cultures. Inorganic arsenic was the predominant species in all of CHMs samples. The levels of inorganic arsenic in CHMs from fields and markets or pharmacies ranged from 63 to 550 ng/g with a mean of 208 ng/g and 94 to 8683 ng/g with a mean of 1092 ng/g, respectively. The highest concentration was found in the Chrysanthemum from pharmacies. It indicates that the risk of inorganic As in CHMs to human health is higher in medicines from markets or pharmacies than that collected directly from fields. Some CHMs may make a considerable contribution to the human intake of inorganic arsenic. - Highlights: ► Arsenic speciation was extracted using 1% HNO 3 in microwave. ► Inorganic arsenic was the predominant species in all of CHMs samples. ► The highest concentration of inorganic arsenic was found in the Chrysanthemum. - Inorganic arsenic was the predominant species in all of CHMs samples.

  12. In vitro assessment on the impact of soil arsenic in the eight rice varieties of West Bengal, India.

    Science.gov (United States)

    Bhattacharya, Piyal; Samal, Alok C; Majumdar, Jayjit; Banerjee, Satabdi; Santra, Subhas C

    2013-11-15

    Rice is an efficient accumulator of arsenic and thus irrigation with arsenic-contaminated groundwater and soil may induce human health hazard via water-soil-plant-human pathway. A greenhouse pot experiment was conducted on three high yielding, one hybrid and four local rice varieties to investigate the uptake, distribution and phytotoxicity of arsenic in rice plant. 5, 10, 20, 30 and 40 mg kg(-1) dry weights arsenic dosing was applied in pot soil and the results were compared with the control samples. All the studied high yielding and hybrid varieties (Ratna, IET 4094, IR 50 and Gangakaveri) were found to be higher accumulator of arsenic as compared to all but one local rice variety, Kerala Sundari. In these five rice varieties accumulation of arsenic in grain exceeded the WHO permissible limit (1.0 mg kg(-1)) at 20 mg kg(-1) arsenic dosing. Irrespective of variety, arsenic accumulation in different parts of rice plant was found to increase with increasing arsenic doses, but not at the same rate. A consistent negative correlation was established between soil arsenic and chlorophyll contents while carbohydrate accumulation depicted consistent positive correlation with increasing arsenic toxicity in rice plant. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Potential of bioleaching of arsenic from ash soils from site Zemianske Kostolany

    International Nuclear Information System (INIS)

    Slebodnikova, Z.; Petkova, K.; Molnarova, M.

    2014-01-01

    The essence of this work is to study bioleaching of potentially toxic elements, arsenic, using the filamentous fungus Asperillus niger. As a model locality was chosen Zemianske Kosto.any, which represents the heart of coal mining in Slovakia. Species A. niger was isolated from anthropogenic sediments with a high content of potentially toxic elements, especially arsenic. Filamentous fungus A. niger was put on soil samples from the site model. The aim of this work is to evaluate the potential of arsenic bioleaching using the three different soil samples for analysis (1 g, 10 g and 100 g). It was found that the most efficient leaching of arsenic was achieved with furnish at 1 g of the substrate. The highest portion of arsenic was released into the medium, values range from 131.75 μg.dm -3 to 1517.55 μg.dm -3 . At the furnish 10 g of soil were released lower amounts, from 69.77 μg.dm -3 to 553.45 μg.dm -3 . Lowest bioleaching efficiency was achieved with the furnish 100 g, values are from 38.02 μg.dm -3 to 254.07 μg.dm -3 . (authors)

  14. Arsenic adsorption of lateritic soil, limestone powder, lime and fly ash on arsenic-contaminated soil

    Directory of Open Access Journals (Sweden)

    Wuthiphun, L.

    2007-05-01

    Full Text Available Arsenic adsorption efficiency of soil covering materials (lateritic soil, limestone powder, lime and fly ash on arsenic-contaminated soil obtained from Ronpiboon District, Nakhon Sri Thammarat Province tosolve arsenic air pollution problem was investigated using batch experiments. The four types of the aforementioned soil covering materials were examined to determine their arsenic adsorption efficiency, equilibriumtime as well as adsorption isotherms.The results revealed that among soil covering materials mixed with arsenic-contaminated soil at 10% w/w, the efficiency of arsenic adsorption of fly ash, lateritic soil, lime and limestone powder were 84, 60,38 and 1% respectively. The equilibrium time for lateritic soil at pH 4 was achieved within 4 hrs, whereas pH 7 and 12, the equilibrium time was 6 hrs. For fly ash, 2 hrs were required to reach the equilibrium at pH 12, while the equilibrium time was attained within 6 hrs at pH 4 and 7. Furthermore, lateritic soil possessedhigh arsenic adsorption efficiency at pH 7 and 4 and best fit with the Langmuir isotherm. The fly ash showing high arsenic adsorption efficiency at pH 12 and 7 fit the Freundlich isotherm at pH 12 and Langmuirisotherm at pH 7.This indicated that lateritic soil was suitable for arsenic adsorption at low pH, whilst at high pH,arsenic was well adsorbed by fly ash. The Freundlich and Langmuir isotherm could be used to determine quantities of soil covering materials for arsenic adsorption to prevent arsenic air pollution from arseniccontaminated soils.

  15. Environmental biochemistry of arsenic

    Energy Technology Data Exchange (ETDEWEB)

    Tamaki, S.; Frankenberger, W.T. Jr. (Department of Soil and Environmental Sciences, University of California, Riverside (United States))

    1992-01-01

    Microorganisms are involved in the redistribution and global cycling of arsenic. Arsenic can accumulate and can be subject to various biotransformations including reduction, oxidation, and methylation. Bacterial methylation of inorganic arsenic is coupled to the methane biosynthetic pathway in methanogenic bacteria under anaerobic conditions and may be a mechanism for arsenic detoxification. The pathway proceeds by reduction of arsenate to arsenite followed by methylation to dimethylarsine. Fungi are also able to transform inorganic and organic arsenic compounds into volatile methylarsines. The pathway proceeds aerobically by arsenate reduction to arsenite followed by several methylation steps producing trimethylarsine. Volatile arsine gases are very toxic to mammals because they destroy red blood cells (LD50 in rats; 3.0 mg kg-1). Further studies are needed on dimethylarsine and trimethylarsine toxicity tests through inhalation of target animals. Marine algae transform arsenate into non-volatile methylated arsenic compounds (methanearsonic and dimethylarsinic acids) in seawater. This is considered to be a beneficial step not only to the primary producers, but also to the higher trophic levels, since non-volatile methylated arsenic is much less toxic to marine invertebrates. Freshwater algae like marine algae synthesize lipid-soluble arsenic compounds and do not produce volatile methylarsines. Aquatic plants also synthesize similar lipid-soluble arsenic compounds. In terrestrial plants, arsenate is preferentially taken up 3 to 4 times the rate of arsenite. In the presence of phosphate, arsenate uptake is inhibited while in the presence of arsenate, phosphate uptake is only slightly inhibited. There is a competitive interaction between arsenate and phosphate for the same uptake system in terrestrial plants.

  16. Molybdenum blue reaction and determination of phosphorus in waters containing arsenic, silicon, and germanium

    Science.gov (United States)

    Levine, H.; Rowe, J.J.; Grimaldi, F.S.

    1955-01-01

    Microgram amounts of phosphate are usually determined by the molybdenum blue reaction, but this reaction is not specific for phosphorus. The research established the range of conditions under which phosphate, arsenate, silicate, and germanate give the molybdenum blue reaction for differentiating these elements, and developed a method for the determination of phosphate in waters containing up to 10 p.p.m. of the oxides of germanium, arsenic(V), and silicon. With stannous chloride or 1-amino-2-naphthol-4-sulfonic acid as the reducing agent no conditions were found for distinguishing silicate from germanate and phosphate from arsenate. In the recommended procedure the phosphate is concentrated by coprecipitation on aluminum hydroxide, and coprecipitated arsenic, germanium, and silicon are volatilized by a mixture of hydrofluoric, hydrochloric, and hydrobromic acids prior to the determination of phosphate. The authors are able to report that the total phosphorus content of several samples of sea water from the Gulf of Mexico ranged from 0.018 to 0.059 mg. of phosphorus pentoxide per liter of water.

  17. Magnitude of arsenic pollution in the Mekong and Red River Deltas - Cambodia and Vietnam

    International Nuclear Information System (INIS)

    Berg, Michael; Stengel, Caroline; Trang, Pham Thi Kim; Hung Viet, Pham; Sampson, Mickey L.; Leng, Moniphea; Samreth, Sopheap; Fredericks, David

    2007-01-01

    Large alluvial deltas of the Mekong River in southern Vietnam and Cambodia and the Red River in northern Vietnam have groundwaters that are exploited for drinking water by private tube-wells, which are of increasing demand since the mid-1990s. This paper presents an overview of groundwater arsenic pollution in the Mekong delta: arsenic concentrations ranged from 1-1610 μg/L in Cambodia (average 217 μg/L) and 1-845 μg/L in southern Vietnam (average 39 μg/L), respectively. It also evaluates the situation in Red River delta where groundwater arsenic concentrations vary from 1-3050 μg/L (average 159 μg/L). In addition to rural areas, the drinking water supply of the city of Hanoi has elevated arsenic concentrations. The sediments of 12-40 m deep cores from the Red River delta contain arsenic levels of 2-33 μg/g (average 7 μg/g, dry weight) and show a remarkable correlation with sediment-bound iron. In all three areas, the groundwater arsenic pollution seem to be of natural origin and caused by reductive dissolution of arsenic-bearing iron phases buried in aquifers. The population at risk of chronic arsenic poisoning is estimated to be 10 million in the Red River delta and 0.5-1 million in the Mekong delta. A subset of hair samples collected in Vietnam and Cambodia from residents drinking groundwater with arsenic levels > 50 μg/L have a significantly higher arsenic content than control groups (< 50 μg/L). Few cases of arsenic related health problems are recognized in the study areas compared to Bangladesh and West Bengal. This difference probably relates to arsenic contaminated tube-well water only being used substantially over the past 7 to 10 years in Vietnam and Cambodia. Because symptoms of chronic arsenic poisoning usually take more than 10 years to develop, the number of future arsenic related ailments in Cambodia and Vietnam is likely to increase. Early mitigation measures should be a high priority

  18. Study on optimal fat content in total parenteral nutrition in partially hepatectomized rats.

    Science.gov (United States)

    Abe, S; Sakabe, S; Hirata, M; Kamuro, H; Asahara, N; Watanabe, M

    1997-04-01

    In order to investigate the optimal fat content for total parenteral nutrition (TPN) solutions, male Wistar rats were subjected to 70% hepatectomy and then placed, for five days, on one of five TPN regimens in which fat represented 0%, 10%, 20%, 30% and 40%, respectively, of the total calorie content. As serum triglyceride levels in the fat-treated groups were lower than those in the non-treated normal rats, it was concluded that the administered fat was sufficiently hydrolyzed. The greater the fat content, the higher the regeneration rate of the remnant liver. Significant differences were found between the 0%-fat group and 20%-plus fat groups. Hepatic triglyceride level was significantly lower in the 20%-fat group. Hepatic protein level was significantly elevated in all fat-treated groups. Serum phospholipids and total cholesterol due to the lecithin contained in fat emulsion were significantly elevated in the 30 and 40%-fat groups, indicating that fat content of 30 and 40% was excessive. The results suggest that TPN containing fat is superior to fat-free TPN for liver regeneration after partial hepatectomy, and that optimal fat content is estimated to be about 20% of total calorie content in the case of this fat emulsion.

  19. Choroid plexus accumulates cadmium, lead, mercury and arsenic

    International Nuclear Information System (INIS)

    Zheng, W.; Perry, D.F.; Nelson, D.L.; Aposhian, H.V.

    1990-01-01

    The choroid plexus (CP) is the site of the formation of cerebrospinal fluid (CSF) and the major location of the blood-CSF barrier. The property of CP in sequestering heavy metals so as to prevent their entering CSF was studied in male rats and rabbits. The content of Cd, Pb and Hg in rat tissues was determined by AAS and radioactive isotopes 24 hours after a single exposure. Cd was 33 fold greater in CP than in brain cortex (BC) after 4 mg Cd/kg ip. No Cd was detected in CSF. In rats given 27 mg Pb/kg ip, Pb in CP was 57 fold greater than in BC and 12 fold greater in blood than CSF. Rats exposed to 1 mg Hg/kg ip showed a 13 fold greater Hg content in CP than in BC. Hg was 78 fold lower in CSF than in blood. Arsenic distribution in rabbits was determined 4 hours after iv injection of 1.7 mg As 5+ /kg. As in CP was 6 fold greater than in BC and in blood it was 26 fold more than in CSF. Total thiol content in BC was significantly higher than that in CP. In CP, 87% of total thiol was non-protein bound thiol. Results suggest that the CP accumulates toxic metals such as Cd, Pb, Hg and As and acts as a filter to limit these metals passing through the blood-CSF barrier. CdCl 2 , Pb acetate, HgCl 2 or Na arsenate was used for injection

  20. Voltammetric determination of arsenic in high iron and manganese groundwaters.

    Science.gov (United States)

    Gibbon-Walsh, Kristoff; Salaün, Pascal; Uroic, M Kalle; Feldmann, Joerg; McArthur, John M; van den Berg, Constant M G

    2011-09-15

    Determination of the speciation of arsenic in groundwaters, using cathodic stripping voltammetry (CSV), is severely hampered by high levels of iron and manganese. Experiments showed that the interference is eliminated by addition of EDTA, making it possible to determine the arsenic speciation on-site by CSV. This work presents the CSV method to determine As(III) in high-iron or -manganese groundwaters in the field with only minor sample treatment. The method was field-tested in West-Bengal (India) on a series of groundwater samples. Total arsenic was subsequently determined after acidification to pH 1 by anodic stripping voltammetry (ASV). Comparative measurements by ICP-MS as reference method for total As, and by HPLC for its speciation, were used to corroborate the field data in stored samples. Most of the arsenic (78±0.02%) was found to occur as inorganic As(III) in the freshly collected waters, in accordance with previous studies. The data shows that the modified on-site CSV method for As(III) is a good measure of water contamination with As. The EDTA was also found to be effective in stabilising the arsenic speciation for longterm sample storage at room temperature. Without sample preservation, in water exposed to air and sunlight, the As(III) was found to become oxidised to As(V), and Fe(II) oxidised to Fe(III), removing the As(V) by adsorption on precipitating Fe(III)-hydroxides within a few hours. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Assessment of total flavonoid content and antioxidant activity of Mullein (Verbascum songaricum ecotypes

    Directory of Open Access Journals (Sweden)

    2017-11-01

    Full Text Available Background and objectives: The Mullein genus is the largest genus of Scrophulariaceae family which has extensive natural habitat in southwest of Iran. Mullein contains compounds such as phenolic compounds, mucilage, saponins and anthocyanin. The aim of this study was to evaluate the total flavonoid content and antioxidant activity of mullein ecotypes in Iran. Methods: Six ecotypes of the Verbascum songaricum were evaluated. Determination of total flavonoid content was performed bythealuminium chloride colourimetric method. The antioxidant activity of the flower extracts was measured using the DPPH method. Results: The results showed that total flavonoid content and antioxidant activity were different among ecotypes.  The highest and lowest amounts of total flavonoidwas obtained  from Shermard ecotype (13.42 mg rutin /g DW and Klar ecotypes(10.10 mg rutin /g DW, respectively. The highest amounts of antioxidant activity were obtained from the Shermard ecotype (IC50 246.35 μg/mL. The correlation analysis showed that a significant relation between flavonoid, antioxidant activity and habitat elevation. Conclusion: Total flavonoid content and antioxidant activity of the samples were affected by habitat climatic.  The present data indicated that the highest antioxidant activity may be due to higher flavonoid content and the habitat elevation was effective on the flavonoid content. Due to the high amounts of flavonoid and antioxidant activity of mullein extract, it seems to be a good herbal option as an antioxidant in complementary therapies.

  2. Evaluation of the Content of Lead, Cadmium, Mercury, Arsenic, Tin, Copper and Zinc during the Production Process Flow of Tomato Broth

    Directory of Open Access Journals (Sweden)

    Corina Andrei

    2013-11-01

    Full Text Available Heavy metals are among the largest contaminants of food products. Once metals are present in vegetables, their concentrations are rarely modified by industrial processing techniques, although in some cases washing may decrease the metal content. The main objective of this study was to quantify the effect of industrial processing on the content of lead, cadmium, mercury, arsenic, tin, copper and zinc in tomatoes and products resulting on flow technology of tomato broth. For the determination of essential elements and/or potentially toxic was use atomic absorption spectrometry. The analytical results for quantitative evaluation the concentrations of the investigated elements on the samples of tomatoes taken from the technological process of the production of tomato broth indicated the presence of Pb, Cd, Cu and Zn but with a level of concentration that significantly decreased in the finished product and the absence of metals Hg and As in all investigated samples. Effect of industrial processing on the content of tin in tomato samples analyzed was characterized by fluctuations in the residual content that led to a significant increase in concentration of 0.100 ± 0.041 mg kg-1 (tomatoes - unprocessed to 0.200 ± 0.041 mg kg-1 (tomato broth.

  3. Microbial contributions to coupled arsenic and sulfur cycling in the acid-sulfide hot spring Champagne Pool, New Zealand

    Directory of Open Access Journals (Sweden)

    Katrin eHug

    2014-11-01

    Full Text Available Acid-sulfide hot springs are analogs of early Earth geothermal systems where microbial metal(loid resistance likely first evolved. Arsenic is a metalloid enriched in the acid-sulfide hot spring Champagne Pool (Waiotapu, New Zealand. Arsenic speciation in Champagne Pool follows reaction paths not yet fully understood with respect to biotic contributions and coupling to biogeochemical sulfur cycling. Here we present quantitative arsenic speciation from Champagne Pool, finding arsenite dominant in the pool, rim and outflow channel (55-75% total arsenic, and dithio- and trithioarsenates ubiquitously present as 18-25% total arsenic. In the outflow channel, dimethylmonothioarsenate comprised ≤9% total arsenic, while on the outflow terrace thioarsenates were present at 55% total arsenic. We also quantified sulfide, thiosulfate, sulfate and elemental sulfur, finding sulfide and sulfate as major species in the pool and outflow terrace, respectively. Elemental sulfur reached a maximum at the terrace. Phylogenetic analysis of 16S rRNA genes from metagenomic sequencing revealed the dominance of Sulfurihydrogenibium at all sites and an increased archaeal population at the rim and outflow channel. Several phylotypes were found closely related to known sulfur- and sulfide-oxidizers, as well as sulfur- and sulfate-reducers. Bioinformatic analysis revealed genes underpinning sulfur redox transformations, consistent with sulfur speciation data, and illustrating a microbial role in sulfur-dependent transformation of arsenite to thioarsenate. Metagenomic analysis also revealed genes encoding for arsenate reductase at all sites, reflecting the ubiquity of thioarsenate and a need for microbial arsenate resistance despite anoxic conditions. Absence of the arsenite oxidase gene, aio, at all sites suggests prioritization of arsenite detoxification over coupling to energy conservation. Finally, detection of methyl arsenic in the outflow channel, in conjunction with

  4. The polymorphisms of P53 codon 72 and MDM2 SNP309 and renal cell carcinoma risk in a low arsenic exposure area

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chao-Yuan [Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Department of Urology, National Taiwan University Hospital, College of Medicine National Taiwan University, Taipei, Taiwan (China); Su, Chien-Tien [Department of Family Medicine, Taipei Medical University Hospital, Taipei, Taiwan (China); Chu, Jan-Show [Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Department of Pathology, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Huang, Shu-Pin [Department of Urology, Kaohsiung Medical University Hospital, College of Medicine Kaohsiung Medical University, Kaohsiung, Taiwan (China); Pu, Yeong-Shiau [Department of Urology, National Taiwan University Hospital, College of Medicine National Taiwan University, Taipei, Taiwan (China); Yang, Hsiu-Yuan [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China); Chung, Chi-Jung [Department of Medical Research, China Medical University Hospital, Taichung, Taiwan (China); Department of Health Risk Management, College of Public Health, China Medical University, Taichung, Taiwan (China); Wu, Chia-Chang [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China); Department of Urology, Taipei Medical Universtiy-Shuang Ho Hospital, Taipei, Taiwan (China); Hsueh, Yu-Mei, E-mail: ymhsueh@tmu.edu.tw [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China); Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (China)

    2011-12-15

    Our recent study demonstrated the increased risk of renal cell carcinoma (RCC) associated with high urinary total arsenic levels among people living in a low arsenic exposure area. Genomic instability is important in arsenic carcinogenesis. This study evaluated the relationship between the polymorphisms of p53, p21, and MDM2, which plays a role in gene stability, and the arsenic-related RCC risk. Here, we found that p53 Pro/Pro genotype and MDM2 SNP309 GG genotype significantly increased RCC risk compared to the p53 Arg/Arg genotype and MDM2 SNP309 TT genotype. RCC patients with the p53Arg/Arg genotype had a signicantly low percentage of inorganic arsenic, a low percentage of monomethylarsonic acid (MMA), and a high percentage of dimethylarsinic acid (DMA), which indicates efcient arsenic methylation capacity. Subjects with the p53 Arg/Pro + Pro/Pro genotype or MDM2 SNP309 TG + GG genotype, in conjunction with high urinary total arsenic ({>=} 14.02 {mu}g/L), had a signicantly higher RCC risk than those with the p53 Arg/Arg or MDM2 SNP309 TT genotypes and low urinary total arsenic. Taken together, this is the first study to show that a variant genotype of p53 Arg{sup 72}Pro or MDM2 SNP309 may modify the arsenic-related RCC risk even in a non-obvious arsenic exposure area. -- Highlights: Black-Right-Pointing-Pointer Subjects with p53 Pro/Pro or MDM2 GG genotype significantly increased RCC risk. Black-Right-Pointing-Pointer A significant multiplicative joint effect of p53 and p21 on RCC risk. Black-Right-Pointing-Pointer RCC patients with p53 Arg/Arg genotype had efficient arsenic methylation capacity. Black-Right-Pointing-Pointer Joint effect of p53 or MDM2 genotype and high urinary total arsenic on RCC risk.

  5. The occurrence and geochemistry of arsenic in groundwaters of Taiwan

    Science.gov (United States)

    Chen, W.; Lu, H.; Liu, T.

    2008-12-01

    Blackfoot disease caused by digesting water with high concentration (>0.3 mg/L) of arsenic from deep wells affected thousands of people in Chianan of Taiwan during 1930 to 1960. Drinking water with arsenic, even in a lower concentration (0.1-0.01 mg/L) increase risk of cancer that had been demonstrated by a number of studies on Taiwan. By concerning the effects of long-term chronic exposure to arsenic, the EPA of United States had revised the regulatory limit of arsenic for drinking water from 0.05 to 0.01 mg/L in 2006. Many researches have investigated on the occurrence and chemistry of the arsenic-contained groundwater and its health effects in Chianan of Taiwan. However, there are only a few studies on the other groundwater basins of Taiwan that providing about one third of water supplies for a population of 21 million. In this study, we investigate the occurrence and redox geochemistry of arsenic in nine major groundwater basins of Taiwan. The values and concentrations of pH, Eh, dissolved oxygen, nitrate, sulfate, iron, methane, sulfide, bicarbonate and ammonium in groundwaters were determined with a total of 610 monitoring wells in 2006. More than 60% of wells in the GW6 basin with a concentration of arsenic exceed 0.05 mg/L. The groundwaters in GW6 basin also have the highest average arsenic concentration. The exceeding percent (>0.05 mg/L) of wells for GW7, GW5, GW9 and GW8 basins are 30%, 20%, 18% and 8%, respectively. All of arsenic concentrations in groundwaters of GW1 to GW4 basins are lower than 0.05 mg/L, but some samples are higher than 0.01 mg/L. The exceeding percent of samples for arsenic 0.01 mg/L in GW3, GW1, GW2 and GW4 basins are 28%, 24%, 23% and 6%, respectively. Our results suggest that the concentrations of arsenic as well as iron in groundwaters of Taiwan were elevated by the iron-reducing process in aquifers. Samples, especially those with higher concentration of bicarbonate (> 400 mg/L) and oversaturated methane, mostly in the GW6 basin

  6. Co-occurrence of arseniasis and fluorosis due to indoor combustion of high fluorine and arsenic content coal in a rural township in northwest China: epidemiological and toxicological aspects

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Guo-fang; Shen, Jian-hua [Chinese Academy of Sciences, Shanghai Institutes for Biological Sciences, Institute of Plant Physiology and Ecology, Shanghai (China); Gong, Shi-you [County Center for Disease Control and Prevention of Ziyang, Ziyang, Shaanxi (China); Wei, Cheng [Township Clinics of Haoping, Ziyang, Shaanxi (China); Chen, Ji-gang [Municipal Center for Disease Prevention and Control of Shanghai, Shanghai (China); Golka, Klaus [Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund (Germany)

    2012-06-15

    A large number of fluorosis and arseniasis cases appeared in a mountainous area in northwest China. The residents relied on local inferior coal (''bone coal'') of high fluorine and arsenic content for domestic heating and cooking. For deep-inside information about this rare case of co-endemia of fluorosis and arseniasis in the population in this special exposure scenario, a field investigation in one of the hyperendemic townships was conducted. The resident population registered (n = 27,713) was enrolled in the investigation. All cases were diagnosed and assigned to three symptom severity groups, that is severe, medium, and mild according to Chinese National Standard Criteria GB 16396-96 and to the technical guideline WS/T208-01 or WS/T211-01 issued by the Chinese Ministry of Health. Gender difference was analyzed by standardized incidence ratio. Age trend and severity trend were tested by {chi}{sup 2} analysis. Fluorosis was diagnosed in 56.7% of the residents. Over 95% of the diagnosed arseniasis cases were simultaneously diagnosed with fluorosis symptoms. Combined fluorosis-arseniasis represented 11.9% of the total fluorosis cases and 6.7% of the local population. No gender-related differences in the prevalence of skeletal, dental, or dermal symptoms inside all severity groups were detected. Symptom severity increased with age. The high frequency of superposition of arseniasis with fluorosis might be due to the fact that the local resident population has been exposed to very high levels of fluorine and arsenic via the same exposure route. (orig.)

  7. Arsenic contamination of groundwater and drinking water in Vietnam: a human health threat.

    Science.gov (United States)

    Berg, M; Tran, H C; Nguyen, T C; Pham, H V; Schertenleib, R; Giger, W

    2001-07-01

    This is the first publication on arsenic contamination of the Red River alluvial tract in the city of Hanoi and in the surrounding rural districts. Due to naturally occurring organic matter in the sediments, the groundwaters are anoxic and rich in iron. With an average arsenic concentration of 159 micrograms/L, the contamination levels varied from 1 to 3050 micrograms/L in rural groundwater samples from private small-scale tubewells. In a highly affected rural area, the groundwater used directly as drinking water had an average concentration of 430 micrograms/L. Analysis of raw groundwater pumped from the lower aquifer for the Hanoi water supply yielded arsenic levels of 240-320 micrograms/L in three of eight treatment plants and 37-82 micrograms/L in another five plants. Aeration and sand filtration that are applied in the treatment plants for iron removal lowered the arsenic concentrations to levels of 25-91 micrograms/L, but 50% remained above the Vietnamese Standard of 50 micrograms/L. Extracts of sediment samples from five bore cores showed a correlation of arsenic and iron contents (r2 = 0.700, n = 64). The arsenic in the sediments may be associated with iron oxyhydroxides and released to the groundwater by reductive dissolution of iron. Oxidation of sulfide phases could also release arsenic to the groundwater, but sulfur concentrations in sediments were below 1 mg/g. The high arsenic concentrations found in the tubewells (48% above 50 micrograms/L and 20% above 150 micrograms/L) indicate that several million people consuming untreated groundwater might be at a considerable risk of chronic arsenic poisoning.

  8. A cultural practice of drinking realgar wine leading to elevated urinary arsenic and its potential health risk.

    Science.gov (United States)

    Zhang, Ying-Nan; Sun, Guo-Xin; Huang, Qing; Williams, Paul N; Zhu, Yong-Guan

    2011-07-01

    Toasting friends and family with realgar wines and painting children's foreheads and limbs with the leftover realgar/alcohol slurries is an important customary ritual during the Dragon Boat Festival (DBF); a Chinese national holiday and ancient feast day celebrated throughout Asia. Realgar is an arsenic sulfide mineral, and source of highly toxic inorganic arsenic. Despite the long history of realgar use during the DBF, associated risk to human health by arsenic ingestion or percutaneous adsorption is unknown. To address this urine samples were collected from a cohort of volunteers who were partaking in the DBF festivities. The total concentration of arsenic in the wine consumed was 70 mg L⁻¹ with all the arsenic found to be inorganic. Total arsenic concentrations in adult urine reached a maximum of ca. 550 μg L⁻¹ (mean 220.2 μg L⁻¹) after 16 h post-ingestion of realgar wine, while face painting caused arsenic levels in children's urine to soar to 100 μg L⁻¹ (mean 85.3 μg L⁻¹) 40 h after the initial paint application. The average concentration of inorganic arsenic in the urine of realgar wine drinkers on average doubled 16 h after drinking, although this was not permanent and levels subsided after 28 h. As would be expected in young children, the proportions of organic arsenic in the urine remained high throughout the 88-h monitoring period. However, even when arsenic concentrations in the urine peaked at 40 h after paint application, concentrations in the urine only declined slightly thereafter, suggesting pronounced longer term dermal accumulation and penetration of arsenic. Drinking wines blended with realgar or using realgar based paints on children does result in the significant absorption of arsenic and therefore presents a potentially serious and currently unquantified health risk. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Removal of arsenic and methylene blue from water by granular activated carbon media impregnated with zirconium dioxide nanoparticles

    International Nuclear Information System (INIS)

    Sandoval, Robert; Cooper, Anne Marie; Aymar, Kathryn; Jain, Arti; Hristovski, Kiril

    2011-01-01

    Highlights: → The morphology, content and distribution of ZrO 2 nanoparticles inside the pores of GAC are affected by the type of GAC. → Lignite ZrO 2 -GAC exhibited Zr content of 12%, while bituminous based ZrO 2 -GAC exhibited Zr content of 9.5%. → The max. adsorption capacities under equilibrium conditions in 5 mM NaHCO 3 buffered water matrix were ∼8.6 As/g Zr and ∼12.2 mg As/g Zr at pH = 7.6. → The max. adsorption capacities under equilibrium conditions in NSF 53 Challenge water matrix while ∼1.5 mg As/g Zr and ∼3.2 mg As/g Zr at pH = 7.6. → Introduction of nanoparticles did not impact the MB adsorption capacity of the lignite ZrO 2 -GAC, while the one of bituminous ZrO 2 -GAC decreased. - Abstract: This study investigated the effects of in situ ZrO 2 nanoparticle formation on properties of granulated activated carbon (GAC) and their impacts on arsenic and organic co-contaminant removal. Bituminous and lignite based zirconium dioxide impregnated GAC (Zr-GAC) media were fabricated by hydrolysis of zirconium salt followed by annealing of the product at 400 o C in an inert environment. Media characterization suggested that GAC type does not affect the crystalline structure of the resulting ZrO 2 nanoparticles, but does affect zirconium content of the media, nanoparticle morphology, nanoparticle distribution, and surface area of Zr-GAC. The arsenic removal performance of both media was compared using 5 mM NaHCO 3 buffered ultrapure water and model groundwater containing competing ions, both with an initial arsenic C 0 ∼ 120 μg/L. Experimental outcomes suggested favorable adsorption energies and higher or similar adsorption capacities than commercially available or experimental adsorbents when compared on the basis of metal content. Short bed adsorber column tests showed that arsenic adsorption capacity decreases as a result of kinetics of competing ions. Correlation between the properties of the media and arsenic and methylene blue removal

  10. Microbial Community Structure and Arsenic Biogeochemistry in an Acid Vapor-Formed Spring in Tengchong Geothermal Area, China.

    Directory of Open Access Journals (Sweden)

    Zhou Jiang

    Full Text Available Arsenic biogeochemistry has been studied extensively in acid sulfate-chloride hot springs, but not in acid sulfate hot springs with low chloride. In this study, Zhenzhuquan in Tengchong geothermal area, a representative acid sulfate hot spring with low chloride, was chosen to study arsenic geochemistry and microbial community structure using Illumina MiSeq sequencing. Over 0.3 million 16S rRNA sequence reads were obtained from 6-paired parallel water and sediment samples along its outflow channel. Arsenic oxidation occurred in the Zhenxhuquan pool, with distinctly high ratios of arsenate to total dissolved arsenic (0.73-0.86. Coupled with iron and sulfur oxidation along the outflow channel, arsenic accumulated in downstream sediments with concentrations up to 16.44 g/kg and appeared to significantly constrain their microbial community diversity. These oxidations might be correlated with the appearance of some putative functional microbial populations, such as Aquificae and Pseudomonas (arsenic oxidation, Sulfolobus (sulfur and iron oxidation, Metallosphaera and Acidicaldus (iron oxidation. Temperature, total organic carbon and dissolved oxygen significantly shaped the microbial community structure of upstream and downstream samples. In the upstream outflow channel region, most microbial populations were microaerophilic/anaerobic thermophiles and hyperthermophiles, such as Sulfolobus, Nocardia, Fervidicoccus, Delftia, and Ralstonia. In the downstream region, aerobic heterotrophic mesophiles and thermophiles were identified, including Ktedonobacteria, Acidicaldus, Chthonomonas and Sphingobacteria. A total of 72.41-95.91% unassigned-genus sequences were derived from the downstream high arsenic sediments 16S rRNA clone libraries. This study could enable us to achieve an integrated understanding on arsenic biogeochemistry in acid hot springs.

  11. Long-term trends in the total electron content

    Czech Academy of Sciences Publication Activity Database

    Laštovička, Jan; Urbář, Jaroslav; Kozubek, Michal

    2017-01-01

    Roč. 44, č. 16 (2017), s. 8186-8172 ISSN 0094-8276 R&D Projects: GA ČR(CZ) GA15-03909S Institutional support: RVO:68378289 Keywords : total electron content * long-term trend * solar control Subject RIV: DG - Athmosphere Sciences, Meteorology OBOR OECD: Climatic research Impact factor: 4.253, year: 2016 http://onlinelibrary.wiley.com/doi/10.1002/2017GL075063/full

  12. Preservation procedures for arsenic speciation in a stream affected by acid mine drainage in southwestern Spain

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Rodas, Daniel; Oliveira, Vanesa; Gomez-Ariza, Jose Luis [University of Huelva, Department of Chemistry and Materials Science, Faculty of Experimental Sciences, Huelva (Spain); Sarmiento, Aguasanta M.; Nieto, Jose Miguel [University of Huelva, Department of Geology, Faculty of Experimental Sciences, Huelva (Spain)

    2006-04-15

    A preservation study has been performed for arsenic speciation in surface freshwaters affected by acid mine drainage (AMD), a pollution source characterized by low pH and high metallic content. Two sample preservation procedures described in the literature were attempted using opaque glass containers and refrigeration: i) addition of 0.25 mol L{sup -1} EDTA to the samples, which maintained the stability of the arsenic species for 3 h; and ii) in situ sample clean-up with a cationic exchange resin, in order to reduce the metallic load, which resulted in a partial co-adsorption of arsenic onto Fe precipitates. A new proposed method was also tried: sample acidification with 6 mol L{sup -1} HCl followed by in situ clean-up with a cationic exchange resin, which allowed a longer preservation time of at least 48 h. The proposed method was successfully applied to water samples with high arsenic content, taken from the Aguas Agrias Stream (Odiel River Basin, SW Spain), which is severely affected by AMD that originates at the nearby polymetallic sulfide mine of Tharsis. The speciation results obtained by liquid chromatography-hydride generation-atomic fluorescence spectrometry (HPLC-HG-AFS) indicated that during the summer the main arsenic species was As(V) at the hundred {mu}g L{sup -1} level, followed by DMA (dimethyl arsenic) and As(III) below the ten {mu}g L{sup -1} level. In winter, As(V) and As(III) increased at least fivefold, whereas the DMA was not detected. (orig.)

  13. Antioxidant capacity and total polyphenol content in different apple varieties cultivated in Chile

    OpenAIRE

    Quitral, Vilma; Sepulveda, Marcela; Schwartz, Marco; Kern, Werther

    2014-01-01

    Three apple varieties cultivated in Chile were studied in total polyphenol content by Folin Ciocalteu method and antioxidant capacity by FRAP method: Granny Smith, Royal Gala and Fuji (whole and peeled apples). The total polyphenol content in whole and peeled apples do not show significant differences. The antioxidant capacity of the Granny Smith variety is significantly higher than Royal Gala and Fuji. Apple dehydration at 60 oC for 4 hours to obtain flakes keeps polyphenol content high. The...

  14. Neurotoxicity induced by arsenic in Gallus Gallus: Regulation of oxidative stress and heat shock protein response.

    Science.gov (United States)

    Zhao, Panpan; Guo, Ying; Zhang, Wen; Chai, Hongliang; Xing, Houjuan; Xing, Mingwei

    2017-01-01

    Arsenic, a naturally occurring heavy metal pollutant, is one of the functioning risk factors for neurological toxicity in humans. However, little is known about the effects of arsenic on the nervous system of Gallus Gallus. To investigate whether arsenic induce neurotoxicity and influence the oxidative stress and heat shock proteins (Hsps) response in chickens, seventy-two 1-day-old male Hy-line chickens were treated with different doses of arsenic trioxide (As 2 O 3 ). The histological changes, antioxidant enzyme activity, and the expressions of Hsps were detected. Results showed slightly histology changes were obvious in the brain tissues exposure to arsenic. The activities of Glutathione peroxidase (GSH-Px) and catalase (CAT) were decreased compared to the control, whereas the malondialdehyde (MDA) content was increased gradually along with increase in diet-arsenic. The mRNA levels of Hsps and protein expressions of Hsp60 and Hsp70 were up-regulated. These results suggested that sub-chronic exposure to arsenic induced neurotoxicity in chickens. Arsenic exposure disturbed the balance of oxidants and antioxidants. Increased heat shock response tried to protect chicken brain tissues from tissues damage caused by oxidative stress. The mechanisms of neurotoxicity induced by arsenic include oxidative stress and heat shock protein response in chicken brain tissues. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. A Phytoremediation Strategy for Arsenic

    Energy Technology Data Exchange (ETDEWEB)

    Meagher, Richard B.

    2005-06-01

    A Phytoremediation Strategy for Arsenic Progress Report May, 2005 Richard B. Meagher Principal Investigator Arsenic pollution affects the health of several hundred millions of people world wide, and an estimated 10 million Americans have unsafe levels of arsenic in their drinking water. However, few environmentally sound remedies for cleaning up arsenic contaminated soil and water have been proposed. Phytoremediation, the use of plants to extract and sequester environmental pollutants, is one new technology that offers an ecologically sound solution to a devastating problem. We propose that it is less disruptive to the environment to harvest and dispose of several thousand pounds per acre of contaminated aboveground plant material, than to excavate and dispose of 1 to 5 million pounds of contaminated soil per acre (assumes contamination runs 3 ft deep). Our objective is to develop a genetics-based phytoremediation strategy for arsenic removal that can be used in any plant species. This strategy requires the enhanced expression of several transgenes from diverse sources. Our working hypothesis is that organ-specific expression of several genes controlling the transport, electrochemical state, and binding of arsenic will result in the efficient extraction and hyperaccumulation of arsenic into aboveground plant tissues. This hypothesis is supported by theoretical arguments and strong preliminary data. We proposed six Specific Aims focused on testing and developing this arsenic phytoremediation strategy. During the first 18 months of the grant we made significant progress on five Specific Aims and began work on the sixth as summarized below. Specific Aim 1: Enhance plant arsenic resistance and greatly expand sinks for arsenite by expressing elevated levels of thiol-rich, arsenic-binding peptides. Hyperaccumulation of arsenic depends upon making plants that are both highly tolerant to arsenic and that have the capacity to store large amounts of arsenic aboveground

  16. Epidemiology of chronic disease related to arsenic in Argentina: A systematic review

    International Nuclear Information System (INIS)

    Bardach, Ariel Esteban; Ciapponi, Agustin; Soto, Natalie; Chaparro, Martin R.; Calderon, Maria; Briatore, Agustina; Cadoppi, Norma; Tassara, Roberto; Litter, Marta I.

    2015-01-01

    Four million people in Argentina are exposed to arsenic contamination from drinking waters of several center-northern provinces. A systematic review to examine the geographical distribution of arsenic-related diseases in Argentina was conducted, searching electronic databases and gray literature up to November 2013. Key informants were also contacted. Of the 430 references identified, 47 (mostly cross-sectional and ecological designs) referred to arsenic concentration in water and its relationship with the incidence and mortality of cancer, dermatological diseases and genetic disorders. A high percentage of the water samples had arsenic concentrations above the WHO threshold value of 10 μg/L, especially in the province of Buenos Aires. The median prevalence of arsenicosis was 2.6% in exposed areas. The proportion of skin cancer in patients with arsenicosis reached 88% in case-series from the Buenos Aires province. We found higher incidence rate ratios per 100 μg/L increment in inorganic arsenic concentration for colorectal, lung, breast, prostate and skin cancer, for both genders. Liver and skin cancer mortality risk ratios were higher in regions with medium/high concentrations than in those with low concentrations. The relative risk of mortality by skin cancer associated to arsenic exposure in the province of Buenos Aires ranged from 2.5 to 5.2. In the north of this province, high levels of arsenic in drinking water were reported; however, removal interventions were scarcely documented. Arsenic contamination in Argentina is associated with an increased risk of serious chronic diseases, including cancer, showing the need for adequate and timely actions. - Highlights: • Arsenic content in Argentina was associated with increased risk of chronic diseases. • The median arsenicosis prevalence was 2.6% in exposed areas. • The relative risk of mortality by skin cancer was 2.5 to 5.2 in affected areas. • The median percentage of water samples above the cut

  17. Epidemiology of chronic disease related to arsenic in Argentina: A systematic review

    Energy Technology Data Exchange (ETDEWEB)

    Bardach, Ariel Esteban, E-mail: abardach@iecs.org.ar [Institute for Clinical Effectiveness and Health Policy, Buenos Aires (Argentina); Ciapponi, Agustin; Soto, Natalie; Chaparro, Martin R.; Calderon, Maria [Institute for Clinical Effectiveness and Health Policy, Buenos Aires (Argentina); Briatore, Agustina [Hospital Italiano, Buenos Aires (Argentina); Cadoppi, Norma; Tassara, Roberto [Foro Estratégico para el Desarrollo Nacional (Argentina); Litter, Marta I. [National Atomic Energy Commission, National Scientific and Technical Research Council (Argentina)

    2015-12-15

    Four million people in Argentina are exposed to arsenic contamination from drinking waters of several center-northern provinces. A systematic review to examine the geographical distribution of arsenic-related diseases in Argentina was conducted, searching electronic databases and gray literature up to November 2013. Key informants were also contacted. Of the 430 references identified, 47 (mostly cross-sectional and ecological designs) referred to arsenic concentration in water and its relationship with the incidence and mortality of cancer, dermatological diseases and genetic disorders. A high percentage of the water samples had arsenic concentrations above the WHO threshold value of 10 μg/L, especially in the province of Buenos Aires. The median prevalence of arsenicosis was 2.6% in exposed areas. The proportion of skin cancer in patients with arsenicosis reached 88% in case-series from the Buenos Aires province. We found higher incidence rate ratios per 100 μg/L increment in inorganic arsenic concentration for colorectal, lung, breast, prostate and skin cancer, for both genders. Liver and skin cancer mortality risk ratios were higher in regions with medium/high concentrations than in those with low concentrations. The relative risk of mortality by skin cancer associated to arsenic exposure in the province of Buenos Aires ranged from 2.5 to 5.2. In the north of this province, high levels of arsenic in drinking water were reported; however, removal interventions were scarcely documented. Arsenic contamination in Argentina is associated with an increased risk of serious chronic diseases, including cancer, showing the need for adequate and timely actions. - Highlights: • Arsenic content in Argentina was associated with increased risk of chronic diseases. • The median arsenicosis prevalence was 2.6% in exposed areas. • The relative risk of mortality by skin cancer was 2.5 to 5.2 in affected areas. • The median percentage of water samples above the cut

  18. Arsenic responsive microRNAs in vivo and their potential involvement in arsenic-induced oxidative stress

    International Nuclear Information System (INIS)

    Ren, Xuefeng; Gaile, Daniel P.; Gong, Zhihong; Qiu, Wenting; Ge, Yichen; Zhang, Chuanwu; Huang, Chenping; Yan, Hongtao; Olson, James R.; Kavanagh, Terrance J.; Wu, Hongmei

    2015-01-01

    Arsenic exposure is postulated to modify microRNA (miRNA) expression, leading to changes of gene expression and toxicities, but studies relating the responses of miRNAs to arsenic exposure are lacking, especially with respect to in vivo studies. We utilized high-throughput sequencing technology and generated miRNA expression profiles of liver tissues from Sprague Dawley (SD) rats exposed to various concentrations of sodium arsenite (0, 0.1, 1, 10 and 100 mg/L) for 60 days. Unsupervised hierarchical clustering analysis of the miRNA expression profiles clustered the SD rats into different groups based on the arsenic exposure status, indicating a highly significant association between arsenic exposure and cluster membership (p-value of 0.0012). Multiple miRNA expressions were altered by arsenic in an exposure concentration-dependent manner. Among the identified arsenic-responsive miRNAs, several are predicted to target Nfe2l2-regulated antioxidant genes, including glutamate–cysteine ligase (GCL) catalytic subunit (GCLC) and modifier subunit (GCLM) which are involved in glutathione (GSH) synthesis. Exposure to low concentrations of arsenic increased mRNA expression for Gclc and Gclm, while high concentrations significantly reduced their expression, which were correlated to changes in hepatic GCL activity and GSH level. Moreover, our data suggested that other mechanisms, e.g., miRNAs, rather than Nfe2l2-signaling pathway, could be involved in the regulation of mRNA expression of Gclc and Gclm post-arsenic exposure in vivo. Together, our findings show that arsenic exposure disrupts the genome-wide expression of miRNAs in vivo, which could lead to the biological consequence, such as an altered balance of antioxidant defense and oxidative stress. - Highlights: • Chronic arsenic exposure induces changes of hepatic miRNA expression profiles. • Hepatic GCL activity and GSH level in rats are altered following arsenic exposure. • Arsenic induced GCL expression change is

  19. Arsenic responsive microRNAs in vivo and their potential involvement in arsenic-induced oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Xuefeng, E-mail: xuefengr@buffalo.edu [Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York, Buffalo, NY 14214 (United States); Department of Pharmacology and Toxicology, School of Biomedical Sciences, The State University of New York, Buffalo, NY 14214 (United States); Gaile, Daniel P. [Department of Biostatistics, School of Public Health and Health Professions, the State University of New York, Buffalo, NY 14214 (United States); Gong, Zhihong [Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York, Buffalo, NY 14214 (United States); Qiu, Wenting [School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035 (China); Ge, Yichen [Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York, Buffalo, NY 14214 (United States); Zhang, Chuanwu; Huang, Chenping; Yan, Hongtao [School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035 (China); Olson, James R. [Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York, Buffalo, NY 14214 (United States); Department of Pharmacology and Toxicology, School of Biomedical Sciences, The State University of New York, Buffalo, NY 14214 (United States); Kavanagh, Terrance J. [Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195 (United States); Wu, Hongmei, E-mail: hongmeiwwu@hotmail.com [School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035 (China)

    2015-03-15

    Arsenic exposure is postulated to modify microRNA (miRNA) expression, leading to changes of gene expression and toxicities, but studies relating the responses of miRNAs to arsenic exposure are lacking, especially with respect to in vivo studies. We utilized high-throughput sequencing technology and generated miRNA expression profiles of liver tissues from Sprague Dawley (SD) rats exposed to various concentrations of sodium arsenite (0, 0.1, 1, 10 and 100 mg/L) for 60 days. Unsupervised hierarchical clustering analysis of the miRNA expression profiles clustered the SD rats into different groups based on the arsenic exposure status, indicating a highly significant association between arsenic exposure and cluster membership (p-value of 0.0012). Multiple miRNA expressions were altered by arsenic in an exposure concentration-dependent manner. Among the identified arsenic-responsive miRNAs, several are predicted to target Nfe2l2-regulated antioxidant genes, including glutamate–cysteine ligase (GCL) catalytic subunit (GCLC) and modifier subunit (GCLM) which are involved in glutathione (GSH) synthesis. Exposure to low concentrations of arsenic increased mRNA expression for Gclc and Gclm, while high concentrations significantly reduced their expression, which were correlated to changes in hepatic GCL activity and GSH level. Moreover, our data suggested that other mechanisms, e.g., miRNAs, rather than Nfe2l2-signaling pathway, could be involved in the regulation of mRNA expression of Gclc and Gclm post-arsenic exposure in vivo. Together, our findings show that arsenic exposure disrupts the genome-wide expression of miRNAs in vivo, which could lead to the biological consequence, such as an altered balance of antioxidant defense and oxidative stress. - Highlights: • Chronic arsenic exposure induces changes of hepatic miRNA expression profiles. • Hepatic GCL activity and GSH level in rats are altered following arsenic exposure. • Arsenic induced GCL expression change is

  20. Pilot-scale demonstration of phytofiltration for treatment of arsenic in New Mexico drinking water.

    Science.gov (United States)

    Elless, Mark P; Poynton, Charissa Y; Willms, Cari A; Doyle, Mike P; Lopez, Alisa C; Sokkary, Dale A; Ferguson, Bruce W; Blaylock, Michael J

    2005-10-01

    Arsenic contamination of drinking water poses serious health risks to millions of people worldwide. To reduce such risks, the United States Environmental Protection Agency recently lowered the Maximum Contaminant Level for arsenic in drinking water from 50 to 10 microgL(-1). The majority of water systems requiring compliance are small systems that serve less than 10,000 people. Current technologies used to clean arsenic-contaminated water have significant drawbacks, particularly for small treatment systems. In this pilot-scale demonstration, we investigated the use of arsenic-hyperaccumulating ferns to remove arsenic from drinking water using a continuous flow phytofiltration system. Over the course of a 3-month demonstration period, the system consistently produced water having an arsenic concentration less than the detection limit of 2 microgL(-1), at flow rates as high as 1900 L day(-1) for a total treated water volume of approximately 60,000 L. Our results demonstrate that phytofiltration provides the basis for a solar-powered hydroponic technique to enable small-scale cleanup of arsenic-contaminated drinking water.

  1. Arsenic and Old Mustard: Chemical Problems of Old Arsenical and 'Mustard' Munitions (Joseph F. Bunnett and Marian Mikotajczyk, Eds.)

    Science.gov (United States)

    Garrett, Benjamin

    1999-10-01

    What do Knute Rockne, Notre Dame's famed football coach, and Lewisite, a chemical warfare agent dubbed "the dew of death", have in common? Both owe their discovery to Father Julius Arthur Nieuwland.1 Rockne's legacy lives on in the Fighting Irish and their tradition of excellence on the gridiron. Lewisite, together with other arsenical- and mustard-type chemical warfare agents, provide a legacy that lives on, too, but with less cheerful consequences. The book Arsenic and Old Mustard: Chemical Problems of Old Arsenical and 'Mustard' Munitions makes clear the challenges faced in dealing with those consequences. This book documents the proceedings of a workshop devoted to arsenical- and mustard-type chemical warfare agents and their associated munitions. The workshop, held in Poland in 1996, included nine lectures, eight posters, and three discussion groups; and the contents of all these are presented. Major support for the workshop came from the Scientific Affairs Division of NATO as part of on ongoing series of meetings, cooperative research projects, and related efforts dealing with problems leftover from the Cold War and, in the case of the arsenicals and mustards, from conflicts dating to World War I. These problems can be seen in contemporary accounts, including a January 1999 news report that the U.S. Department of Defense intends to survey Washington, DC, areas near both American University and the Catholic University of America (CUA), site of the original synthesis of Lewisite, for chemical warfare agents and other materials disposed at the end of World War I.2 The first nine chapters of the book present the workshop's lectures. Of these, readers interested in chemical weapon destruction might find especially useful the first chapter, in which Ron Mansley of the Organisation for the Prohibition of Chemical Weapons presents a scholarly overview covering historical aspects of the arsenicals and mustards; their production and use; prospective destruction

  2. Isolation and characterization of Staphylococcus sp. strain NBRIEAG-8 from arsenic contaminated site of West Bengal

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Shubhi; Singh, Namrata; Singh, Nandita [CSIR - National Botanical Research Institute, Lucknow, UP (India). Eco-auditing Lab.; Verma, Praveen C.; Singh, Ankit; Mishra, Manisha [CSIR - National Botanical Research Institute, Lucknow, UP (India). Plant Molecular Biology and Genetic Engineering; Sharma, Neeta [Lucknow Univ., UP (India). Plant Pathology Lab.

    2012-09-15

    Arsenic contaminated rhizospheric soils of West Bengal, India were sampled for arsenic resistant bacteria that could transform different arsenic forms. Staphylococcus sp. NBRIEAG-8 was identified by16S rDNA ribotyping, which was capable of growing at 30,000 mg l{sup -1} arsenate [As(V)] and 1,500 mg l{sup -1} arsenite [As(III)]. This bacterial strain was also characterized for arsenical resistance (ars) genes which may be associated with the high-level resistance in the ecosystems of As-contaminated areas. A comparative proteome analysis was conducted with this strain treated with 1,000 mg l{sup -1} As(V) to identify changes in their protein expression profiles. A 2D gel analysis showed a significant difference in the proteome of arsenic treated and untreated bacterial culture. The change in pH of cultivating growth medium, bacterial growth pattern (kinetics), and uptake of arsenic were also evaluated. After 72 h of incubation, the strain was capable of removing arsenic from the culture medium amended with arsenate and arsenite [12% from As(V) and 9% from As(III)]. The rate of biovolatilization of As(V) was 23% while As(III) was 26%, which was determined indirectly by estimating the sum of arsenic content in bacterial biomass and medium. This study demonstrates that the isolated strain, Staphylococcus sp., is capable for uptake and volatilization of arsenic by expressing ars genes and 8 new upregulated proteins which may have played an important role in reducing arsenic toxicity in bacterial cells and can be used in arsenic bioremediation. (orig.)

  3. Evaluation of Biochemical Changes in Chronic Arsenic Poisoning among Bangladeshi Patients

    Directory of Open Access Journals (Sweden)

    Laila N. Islam

    2005-12-01

    Full Text Available An estimated 40 million people in Bangladesh have been suffering from arsenic toxicity-related diseases because of drinking water contamination with high levels of naturally occurring arsenic. To evaluate the biochemical changes in chronic arsenic exposure, a total of 115 exposed subjects diagnosed as arsenicosis patients were examined and interviewed, and 120 unexposed volunteers were enrolled in this study. Drinking water, urine and peripheral blood samples were collected from all participants and analyzed. The average levels of arsenic in the drinking water and spot urine samples of the arsenicosis patients were 218.18g/L and 234.68g/L, respectively, and duration of exposure was 7.6 ± 5.2 yrs that ranged from 1-25 yrs. Prevalence of diabetes mellitus among chronic arsenic-exposed subjects was about 2.8 times higher than the unexposed subjects. The activities of alkaline phosphatase were significantly elevated in the patients, 197 U/L compared to 149 U/L in the controls, but alanine transaminase and aspartate transaminase were mostly normal. The patients had significantly lower levels of serum creatinine, 0.97 mg/dL compared to 1.15 mg/dL in the controls; but had significantly elevated levels of total protein, 84 g/L and 77 g/L respectively. The mean level of inorganic phosphate in the serum of arsenicosis patients was 6.4 mg/dL compared to 4.6 mg/dL in the unexposed subjects and the level was significantly higher, indicating substitution of the pentavalent arsenate for the phosphate ion causing underutilization of the latter. Evaluation of the lipid profiles showed while the levels of triacylglycerol were not much different, the patients had significantly lower levels of cholesterol, HDL-cholesterol and LDL-cholesterol compared to the unexposed subjects. These findings suggest significant changes in biochemical parameters in human arsenic toxicity.

  4. Leachability of Arsenic and Heavy Metals from Mine Tailings of Abandoned Metal Mines

    Science.gov (United States)

    Lim, Mihee; Han, Gi-Chun; Ahn, Ji-Whan; You, Kwang-Suk; Kim, Hyung-Seok

    2009-01-01

    Mine tailings from an abandoned metal mine in Korea contained high concentrations of arsenic (As) and heavy metals [e.g., As: 67,336, Fe: 137,180, Cu: 764, Pb: 3,572, and Zn: 12,420 (mg/kg)]. US EPA method 6010 was an effective method for analyzing total arsenic and heavy metals concentrations. Arsenic in the mine tailings showed a high residual fraction of 89% by a sequential extraction. In Toxicity Characteristic Leaching Procedure (TCLP) and Korean Standard Leaching Test (KSLT), leaching concentrations of arsenic and heavy metals were very low [e.g., As (mg/L): 0.4 for TCLP and 0.2 for KSLT; cf. As criteria (mg/L): 5.0 for TCLP and 1.5 for KSLT]. PMID:20049231

  5. Removal of Arsenic (V) from Aqueous Solutions Using Chitosan-Red Scoria and Chitosan-Pumice Blends.

    Science.gov (United States)

    Asere, Tsegaye Girma; Mincke, Stein; De Clercq, Jeriffa; Verbeken, Kim; Tessema, Dejene A; Fufa, Fekadu; Stevens, Christian V; Du Laing, Gijs

    2017-08-09

    In different regions across the globe, elevated arsenic contents in the groundwater constitute a major health problem. In this work, a biopolymer chitosan has been blended with volcanic rocks (red scoria and pumice) for arsenic (V) removal. The effect of three blending ratios of chitosan and volcanic rocks (1:2, 1:5 and 1:10) on arsenic removal has been studied. The optimal blending ratio was 1:5 (chitosan: volcanic rocks) with maximum adsorption capacity of 0.72 mg/g and 0.71 mg/g for chitosan: red scoria (Ch-Rs) and chitosan: pumice (Ch-Pu), respectively. The experimental adsorption data fitted well a Langmuir isotherm ( R ² > 0.99) and followed pseudo-second-order kinetics. The high stability of the materials and their high arsenic (V) removal efficiency (~93%) in a wide pH range (4 to 10) are useful for real field applications. Moreover, the blends could be regenerated using 0.05 M NaOH and used for several cycles without losing their original arsenic removal efficiency. The results of the study demonstrate that chitosan-volcanic rock blends should be further explored as a potential sustainable solution for removal of arsenic (V) from water.

  6. Arsenic pollution and fractionation in sediments and mine waste samples from different mine sites

    International Nuclear Information System (INIS)

    Larios, Raquel; Fernández-Martínez, Rodolfo; Álvarez, Rodrigo; Rucandio, Isabel

    2012-01-01

    A characterization of arsenic pollution and its associations with solid mineral phases in sediments and spoil heap samples from four different abandoned mines in Spain is performed. Three of them were mercury mines located in the same mining district, in the province of Asturias, and the other one, devoted to arsenic mining, is in the province of León. A sequential extraction procedure, especially developed for arsenic, was applied for the study of arsenic partitioning. Very high total arsenic concentrations ranging 300–67,000 mg·kg −1 were found. Arsenic fractionation in each mine is broadly in accordance with the mineralogy of the area and the extent of the mine workings. In almost all the studied samples, arsenic appeared predominantly associated with iron oxyhydroxides, especially in the amorphous form. Sediments from cinnabar roasted piles showed a higher arsenic mobility as a consequence of an intense ore treatment, posing an evident risk of arsenic spread to the surroundings. Samples belonging to waste piles where the mining activity was less intense presented a higher proportion of arsenic associated with structural minerals. Nevertheless, it represents a long-term source of arsenic to the environment. - Highlights: ► Arsenic fractionation in sediments from different mining areas is evaluated. ► A sequential extraction scheme especially designed for arsenic partitioning is applied. ► As associations with mineral pools is in accordance to the mineralogy of each area. ► As distribution and mobility in each area depends on the extent of mining activity. ► As occurs mainly associated with amorphous iron oxyhydroxides in all samples.

  7. Arsenic pollution and fractionation in sediments and mine waste samples from different mine sites

    Energy Technology Data Exchange (ETDEWEB)

    Larios, Raquel; Fernandez-Martinez, Rodolfo [Unidad de Espectroscopia, Division de Quimica, Departamento de Tecnologia, CIEMAT. Av. Complutense, 40, E-28040 Madrid (Spain); Alvarez, Rodrigo [Dpto. de Explotacion y Prospeccion de Minas, Universidad de Oviedo, ETS de Ingenieros de Minas, C/Independencia, 13, E-33004 Oviedo (Spain); Rucandio, Isabel, E-mail: isabel.rucandio@ciemat.es [Unidad de Espectroscopia, Division de Quimica, Departamento de Tecnologia, CIEMAT. Av. Complutense, 40, E-28040 Madrid (Spain)

    2012-08-01

    A characterization of arsenic pollution and its associations with solid mineral phases in sediments and spoil heap samples from four different abandoned mines in Spain is performed. Three of them were mercury mines located in the same mining district, in the province of Asturias, and the other one, devoted to arsenic mining, is in the province of Leon. A sequential extraction procedure, especially developed for arsenic, was applied for the study of arsenic partitioning. Very high total arsenic concentrations ranging 300-67,000 mg{center_dot}kg{sup -1} were found. Arsenic fractionation in each mine is broadly in accordance with the mineralogy of the area and the extent of the mine workings. In almost all the studied samples, arsenic appeared predominantly associated with iron oxyhydroxides, especially in the amorphous form. Sediments from cinnabar roasted piles showed a higher arsenic mobility as a consequence of an intense ore treatment, posing an evident risk of arsenic spread to the surroundings. Samples belonging to waste piles where the mining activity was less intense presented a higher proportion of arsenic associated with structural minerals. Nevertheless, it represents a long-term source of arsenic to the environment. - Highlights: Black-Right-Pointing-Pointer Arsenic fractionation in sediments from different mining areas is evaluated. Black-Right-Pointing-Pointer A sequential extraction scheme especially designed for arsenic partitioning is applied. Black-Right-Pointing-Pointer As associations with mineral pools is in accordance to the mineralogy of each area. Black-Right-Pointing-Pointer As distribution and mobility in each area depends on the extent of mining activity. Black-Right-Pointing-Pointer As occurs mainly associated with amorphous iron oxyhydroxides in all samples.

  8. Honey as a bioindicator of arsenic contamination due to volcanic and mining activities in Chile

    Directory of Open Access Journals (Sweden)

    José M Bastías

    2013-06-01

    Full Text Available The content of heavy metals in honey is indicative of natural or anthropogenic pollution and has therefore been proposed as a feasible bioindicator for arsenic contamination in different regions of Chile. Total arsenic (t-As and inorganic As (i-As concentrations were determined in 227 samples of honey harvested during the years 2007, 2008, and 2009 in the areas of San Pedro de Atacama, Atacama, Chiloé, and Futaleufú, with the last town located 156 km from the Chaitén Volcano (latest eruption in 2008. These analyses were conducted using an atomic absorption spectrophotometer coupled with a hydride generator. In the honey samples, the concentrations of t-As ranged from 2.2 to 171.9 μg kg-1, and the i-As concentrations ranged from none detected (ND to 24.6 μg kg-1, with the area of San Pedro de Atacama having the highest As concentrations. The samples of honey from Futaleufú showed higher As concentrations after the eruption of the Chaitén Volcano in 2008. This study demonstrates that As pollution in honey may originate from both natural and anthropogenic sources. The results indicate that it is appropriate to use honey as a bioindicator of environmental pollution. In addition, the consumption of the honey studied herein does not pose any health hazards to the consumer due to its As content.

  9. An approach for identification and determination of arsenic species in the extract of kelp.

    Science.gov (United States)

    Yu, Lee L; Wei, Chao; Zeisler, Rolf; Tong, Junting; Oflaz, Rabia; Bao, Haixia; Wang, Jun

    2015-05-01

    The National Institute of Standards and Technology is developing a kelp powder standard reference material (SRM) in support of dietary supplement measurements. Edible seaweeds such as kelp and laver consumed as diet or dietary supplement contain tens of mg/kg arsenic. The speciation information of arsenic in the seaweed should be provided because the total arsenic alone does not fully address the safety issue of the dietary supplement as the value assignment is originally intended. The inability to avail all arsenic species for value assignment measurements prevented the certification of arsenic species in the candidate SRM; however, approximately 70 % of total arsenic extracted with a 1:1 volume fraction of methanol:water mixture allowed arsenic speciation values to be assigned to a procedure-defined extract, which may be used for method validation in research to improve upon current extraction and measurement practices. Arsenic species in kelp and laver were identified using electrospray ionization ion trap time of flight mass spectrometry (ESI-IT-TOF). Arsenosugars As(328), As(482), and As(392) were found in the kelp candidate SRM while As(328) and As(482) were found in GBW 08521, a certified reference material (CRM) of laver produced by the National Institute of Metrology of China (NIM). A discovery that the digests of kelp and laver contained only dimethylarsinic acid led to the conclusion that the seaweeds did not contain detectible levels of arsenobetaine, arsenocholine or trimethylarsine oxide that could overlap with the peaks of arsenosugars in the separation. The mean ± s of (5.68 ± 0.28) mg/kg and (13.43 ± 0.31) mg/kg found for As(482) and As(392) in kelp, respectively, using instrumental neutron activation analysis (INAA) demonstrated that value assignment measurement of arsenosugars was possible without arsenosugar calibration standards.

  10. [Arsenical keratosis treated by dermatome shaving].

    Science.gov (United States)

    Kjerkegaard, Ulrik Knap; Heje, Jens Martin; Vestergaard, Christian; Stausbøl-Grøn, Birgitte; Stolle, Lars Bjørn

    2014-05-05

    Cutaneous malignancy in association with arsenic exposure is a rare but well-documented phenomenon. Signs of chronic arsenic exposure are very rare in Denmark today. However, arsenic was used in the medical treatment of psoriasis vulgaris up till the 1980's and several patients suffer from this arsenic treatment today. This case report shows that arsenical keratosis can be treated by dermatome shaving, a superficial destructive therapy.

  11. Heat-assisted aqueous extraction of rice flour for arsenic speciation analysis.

    Science.gov (United States)

    Narukawa, Tomohiro; Chiba, Koichi

    2010-07-28

    A versatile heat-assisted pretreatment aqueous extraction method for the analysis of arsenic species in rice was developed. Rice flour certified reference materials NIST SRM1568a and NMIJ CRM 7503-a and a flour made from polished rice were used as samples, and HPLC-ICP-MS was employed for the determination of arsenic species. Arsenite [As(III)], arsenate [As(V)], monomethylarsonic acid (MMAA) and dimethylarsinic acid (DMAA) were detected in NIST SRM, and As(III), As(V) and DMAA were found in NMIJ CRM and the prepared polished rice flour. The sums of the concentrations of all species in each rice flour sample were 97-102% of the total arsenic concentration in each sample.

  12. Effects of arsenic on nitrate metabolism in arsenic hyperaccumulating and non-hyperaccumulating ferns

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Nandita [Soil and Water Science Department, University of Florida, Gainesville, Fl 32611-0290 (United States); Eco-Auditing group, National Botanical Research Institute, Rana Pratap Marg, Lucknow 226 001 (India); Ma, Lena Q., E-mail: lqma@ufl.ed [Soil and Water Science Department, University of Florida, Gainesville, Fl 32611-0290 (United States); Vu, Joseph C. [Chemistry Research Unit, CMAVE, USDA-ARS, Gainesville, FL 32608-1069 and Agronomy Department, University of Florida, Gainesville, FL 32611-0500 (United States); Raj, Anshita [Eco-Auditing group, National Botanical Research Institute, Rana Pratap Marg, Lucknow 226 001 (India)

    2009-08-15

    This study investigated the effects of arsenic on the in vitro activities of the enzymes (nitrate reductase and nitrite reductase) involved in nitrate metabolism in the roots, rhizomes, and fronds of four-month old Pteris vittata (arsenic - hyperaccumulator) and Pteris ensiformis (non-arsenic--hyperaccumulator) plants. The arsenic treatments (0, 150, and 300 muM as sodium arsenate) in hydroponics had adverse effects on the root and frond dry weights, and this effect was more evident in P. ensiformis than in P. vittata. Nitrate reductase and nitrite reductase activities of arsenate-treated plants were reduced more in P. ensiformis than in P. vittata. This effect was accompanied by similar decreases in tissue NO{sub 3}{sup -} concentrations. Therefore, this decrease is interpreted as being indirect, i.e., the consequence of the reduced NO{sub 3}{sup -} uptake and translocation in the plants. The study shows the difference in the tolerance level of the two Pteris species with varying sensitivity to arsenic. - Arsenic reduced the activity of nitrate and nitrite reductase more in Pteris ensiformis than Pteris vittata.

  13. Determination of Arsenic Species in Ophiocordyceps sinensis from Major Habitats in China by HPLC-ICP-MS and the Edible Hazard Assessment

    Directory of Open Access Journals (Sweden)

    Lian-Xian Guo

    2018-04-01

    Full Text Available This study sought to determine the concentration and distribution of arsenic (As species in Ophiocordyceps sinensis (O. sinensis, and to assess its edible hazard for long term consumption. The total arsenic concentrations, measured through inductively coupled plasma mass spectrometry (ICP-MS, ranged from 4.00 mg/kg to 5.25 mg/kg. As determined by HPLC-ICP-MS, the most concerning arsenic species—AsB, MMAV, DMAV, AsV, and AsШ—were either not detected (MMAV and DMAV or were detected as minor As species (AsB: 1.4–2.9%; AsV: 1.3–3.2%, and AsШ: 4.1–6.0%. The major components were a cluster of unknown organic As (uAs compounds with AsШ, which accounted for 91.7–94.0% of the As content. Based on the H2O2 test and the chromatography behavior, it can be inferred that, the uAs might not be toxic organic As. Estimated daily intake (EDI, hazard quotient (HQ, and cancer risk (CR caused by the total As content; the sum of inorganic As (iAs and uAs, namely i+uAs; and iAs exposure from long term O. sinensis consumption were calculated and evaluated through equations from the US Environmental Protection Agency and the uncertainties were analyzed by Monte-Carlo Simulation (MCS. EDItotal As and EDIi+uAs are approximately ten times more than EDIiAs; HQtotal As and HQi+uAs > 1 while HQiAs < 1; and CRtotal As and CRi+uAs > 1 × 10−4 while CRiAs < 1 × 10−4. Thus, if the uAs is non-toxic, there is no particular risk to local consumers and the carcinogenic risk is acceptable for consumption of O. sinensis because the concentration of toxic iAs is very low.

  14. Speciation of arsenic in biological samples.

    Science.gov (United States)

    Mandal, Badal Kumar; Ogra, Yasumitsu; Anzai, Kazunori; Suzuki, Kazuo T

    2004-08-01

    Speciation of arsenicals in biological samples is an essential tool to gain insight into its distribution in tissues and its species-specific toxicity to target organs. Biological samples (urine, hair, fingernail) examined in the present study were collected from 41 people of West Bengal, India, who were drinking arsenic (As)-contaminated water, whereas 25 blood and urine samples were collected from a population who stopped drinking As contaminated water 2 years before the blood collection. Speciation of arsenicals in urine, water-methanol extract of freeze-dried red blood cells (RBCs), trichloroacetic acid treated plasma, and water extract of hair and fingernail was carried out by high-performance liquid chromatography (HPLC)-inductively coupled argon plasma mass spectrometry (ICP MS). Urine contained arsenobetaine (AsB, 1.0%), arsenite (iAs(III), 11.3), arsenate (iAs(V), 10.1), monomethylarsonous acid (MMA(III), 6.6), monomethylarsonic acid (MMA(V), 10.5), dimethylarsinous acid (DMA(III), 13.0), and dimethylarsinic acid (DMA(V), 47.5); fingernail contained iAs(III) (62.4%), iAs(V) (20.2), MMA(V) (5.7), DMA(III) (8.9), and DMA(V) (2.8); hair contained iAs(III) (58.9%), iAs(V) (34.8), MMA(V) (2.9), and DMA(V) (3.4); RBCs contained AsB (22.5%) and DMA(V) (77.5); and blood plasma contained AsB (16.7%), iAs(III) (21.1), MMA(V) (27.1), and DMA(V) (35.1). MMA(III), DMA(III), and iAs(V) were not found in any plasma and RBCs samples, but urine contained all of them. Arsenic in urine, fingernails, and hair are positively correlated with water As, suggesting that any of these measurements could be considered as a biomarker to As exposure. Status of urine and exogenous contamination of hair urgently need speciation of As in these samples, but speciation of As in nail is related to its total As (tAs) concentration. Therefore, total As concentrations of nails could be considered as biomarker to As exposure in the endemic areas.

  15. Speciation of arsenic in biological samples

    International Nuclear Information System (INIS)

    Mandal, Badal Kumar; Ogra, Yasumitsu; Anzai, Kazunori; Suzuki, Kazuo T.

    2004-01-01

    Speciation of arsenicals in biological samples is an essential tool to gain insight into its distribution in tissues and its species-specific toxicity to target organs. Biological samples (urine, hair, fingernail) examined in the present study were collected from 41 people of West Bengal, India, who were drinking arsenic (As)-contaminated water, whereas 25 blood and urine samples were collected from a population who stopped drinking As contaminated water 2 years before the blood collection. Speciation of arsenicals in urine, water-methanol extract of freeze-dried red blood cells (RBCs), trichloroacetic acid treated plasma, and water extract of hair and fingernail was carried out by high-performance liquid chromatography (HPLC)-inductively coupled argon plasma mass spectrometry (ICP MS). Urine contained arsenobetaine (AsB, 1.0%), arsenite (iAs III , 11.3), arsenate (iAs V , 10.1), monomethylarsonous acid (MMA III , 6.6), monomethylarsonic acid (MMA V , 10.5), dimethylarsinous acid (DMA III , 13.0), and dimethylarsinic acid (DMA V , 47.5); fingernail contained iAs III (62.4%), iAs V (20.2), MMA V (5.7), DMA III (8.9), and DMA V (2.8); hair contained iAs III (58.9%), iAs V (34.8), MMA V (2.9), and DMA V (3.4); RBCs contained AsB (22.5%) and DMA V (77.5); and blood plasma contained AsB (16.7%), iAs III (21.1), MMA V (27.1), and DMA V (35.1). MMA III , DMA III , and iAs V were not found in any plasma and RBCs samples, but urine contained all of them. Arsenic in urine, fingernails, and hair are positively correlated with water As, suggesting that any of these measurements could be considered as a biomarker to As exposure. Status of urine and exogenous contamination of hair urgently need speciation of As in these samples, but speciation of As in nail is related to its total As (tAs) concentration. Therefore, total As concentrations of nails could be considered as biomarker to As exposure in the endemic areas

  16. Uptake and toxicity of arsenic, copper, and silicon in Azolla caroliniana and Lemna minor.

    Science.gov (United States)

    Rofkar, Jordan R; Dwyer, Daryl F; Bobak, Deanna M

    2014-01-01

    Here we report on the analysis of two aquatic plant species, Azolla caroliniana and Lemna minor, with respect to tolerance and uptake of co-occurring arsenic, copper, and silicon for use in engineered wetlands. Plants were cultured in nutrient solution that was amended with arsenic (0 or 20 microM), copper (2 or 78 microM), and silicon (0 or 1.8 mM) either singly or in combination. We hypothesized that arsenic and copper would negatively affect the uptake of metals, growth, and pigmentation and that silicon would mitigate those stresses. Tolerance was assessed by measuring growth of biomass and concentrations of chlorophyll and anthocyanins. Both plant species accumulated arsenic, copper, and silicon; L. minor generally had higher levels on a per biomass basis. Arsenic negatively impacted A. caroliniana, causing a 30% decrease in biomass production and an increase in the concentration of anthocyanin. Copper negatively impacted L. minor, causing a 60% decrease in biomass production and a 45% decrease in chlorophyll content. Silicon augmented the impact of arsenic on biomass production in A. caroliniana but mitigated the effect of copper on L. minor. Our results suggest that mixtures of plant species may be needed to maximize uptake of multiple contaminants in engineered wetlands.

  17. Acute and chronic arsenic toxicity

    OpenAIRE

    Ratnaike, R

    2003-01-01

    Arsenic toxicity is a global health problem affecting many millions of people. Contamination is caused by arsenic from natural geological sources leaching into aquifers, contaminating drinking water and may also occur from mining and other industrial processes. Arsenic is present as a contaminant in many traditional remedies. Arsenic trioxide is now used to treat acute promyelocytic leukaemia. Absorption occurs predominantly from ingestion from the small intestine, though minimal absorption o...

  18. Cytotoxicity, Total Phenolic Contents and Antioxidant Activity of the ...

    African Journals Online (AJOL)

    The leaves of Annona muricata were extracted using ethanol and the extracts were evaluated for cytotoxicity using Brine Shrimp Lethality Assay, total phenolic content (TPC) and antioxidant activity using DPPH radical scavenging assay. The crude extract showed 73.33 % mortality at 1000 μg/mL concentration and its ...

  19. Arsenic Metabolites, Including N-Acetyl-4-hydroxy-m-arsanilic Acid, in Chicken Litter from a Roxarsone-Feeding Study Involving 1600 Chickens.

    Science.gov (United States)

    Yang, Zonglin; Peng, Hanyong; Lu, Xiufen; Liu, Qingqing; Huang, Rongfu; Hu, Bin; Kachanoski, Gary; Zuidhof, Martin J; Le, X Chris

    2016-07-05

    The poultry industry has used organoarsenicals, such as 3-nitro-4-hydroxyphenylarsonic acid (Roxarsone, ROX), to prevent disease and to promote growth. Although previous studies have analyzed arsenic species in chicken litter after composting or after application to agricultural lands, it is not clear what arsenic species were excreted by chickens before biotransformation of arsenic species during composting. We describe here the identification and quantitation of arsenic species in chicken litter repeatedly collected on days 14, 24, 28, 30, and 35 of a Roxarsone-feeding study involving 1600 chickens of two strains. High performance liquid chromatography separation with simultaneous detection by both inductively coupled plasma mass spectrometry and electrospray ionization tandem mass spectrometry provided complementary information necessary for the identification and quantitation of arsenic species. A new metabolite, N-acetyl-4-hydroxy-m-arsanilic acid (N-AHAA), was identified, and it accounted for 3-12% of total arsenic. Speciation analyses of litter samples collected from ROX-fed chickens on days 14, 24, 28, 30, and 35 showed the presence of N-AHAA, 3-amino-4-hydroxyphenylarsonic acid (3-AHPAA), inorganic arsenite (As(III)), arsenate (As(V)), monomethylarsonic acid (MMA(V)), dimethylarsinic acid (DMA(V)), and ROX. 3-AHPAA accounted for 3-19% of the total arsenic. Inorganic arsenicals (the sum of As(III) and As(V)) comprised 2-6% (mean 3.5%) of total arsenic. Our results on the detection of inorganic arsenicals, methylarsenicals, 3-AHPAA, and N-AHAA in the chicken litter support recent findings that ROX is actually metabolized by the chicken or its gut microbiome. The presence of the toxic metabolites in chicken litter is environmentally relevant as chicken litter is commonly used as fertilizer.

  20. Increases of equatorial total electron content (TEC) during magnetic storms

    International Nuclear Information System (INIS)

    Yeboah-Amankwah, D.

    1976-01-01

    This paper is a report on the analysis of equatorial electron content, TEC, during magnetic storms. Storms between 1969 and 1972 have been examined as part of an on-going study of TEC morphology during magnetically disturbed days. The published magnetic Ksup(p) indices and TEC data from the Legon abservatory have been employed. The general picture arising from the analysis is that the total electron content of the ionosphere is significantly enhanced during magnetic storms. (author)

  1. Arsenic metabolism efficiency has a causal role in arsenic toxicity: Mendelian randomization and gene-environment interaction.

    Science.gov (United States)

    Pierce, Brandon L; Tong, Lin; Argos, Maria; Gao, Jianjun; Farzana, Jasmine; Roy, Shantanu; Paul-Brutus, Rachelle; Rahaman, Ronald; Rakibuz-Zaman, Muhammad; Parvez, Faruque; Ahmed, Alauddin; Quasem, Iftekhar; Hore, Samar K; Alam, Shafiul; Islam, Tariqul; Harjes, Judith; Sarwar, Golam; Slavkovich, Vesna; Gamble, Mary V; Chen, Yu; Yunus, Mohammad; Rahman, Mahfuzar; Baron, John A; Graziano, Joseph H; Ahsan, Habibul

    2013-12-01

    Arsenic exposure through drinking water is a serious global health issue. Observational studies suggest that individuals who metabolize arsenic efficiently are at lower risk for toxicities such as arsenical skin lesions. Using two single nucleotide polymorphisms(SNPs) in the 10q24.32 region (near AS3MT) that show independent associations with metabolism efficiency, Mendelian randomization can be used to assess whether the association between metabolism efficiency and skin lesions is likely to be causal. Using data on 2060 arsenic-exposed Bangladeshi individuals, we estimated associations for two 10q24.32 SNPs with relative concentrations of three urinary arsenic species (representing metabolism efficiency): inorganic arsenic (iAs), monomethylarsonic acid(MMA) and dimethylarsinic acid (DMA). SNP-based predictions of iAs%, MMA% and DMA% were tested for association with skin lesion status among 2483 cases and 2857 controls. Causal odds ratios for skin lesions were 0.90 (95% confidence interval[CI]: 0.87, 0.95), 1.19 (CI: 1.10, 1.28) and 1.23 (CI: 1.12, 1.36)for a one standard deviation increase in DMA%, MMA% and iAs%,respectively. We demonstrated genotype-arsenic interaction, with metabolism-related variants showing stronger associations with skin lesion risk among individuals with high arsenic exposure (synergy index: 1.37; CI: 1.11, 1.62). We provide strong evidence for a causal relationship between arsenic metabolism efficiency and skin lesion risk. Mendelian randomization can be used to assess the causal role of arsenic exposure and metabolism in a wide array of health conditions.exposure and metabolism in a wide array of health conditions.Developing interventions that increase arsenic metabolism efficiency are likely to reduce the impact of arsenic exposure on health.

  2. Sequestration of arsenic in ombrotrophic peatlands

    Science.gov (United States)

    Rothwell, James; Hudson-Edwards, Karen; Taylor, Kevin; Polya, David; Evans, Martin; Allott, Tim

    2014-05-01

    Peatlands can be important stores of arsenic but we are lacking spectroscopic evidence of the sequestration pathways of this toxic metalloid in peatland environments. This study reports on the solid-phase speciation of anthropogenically-derived arsenic in atmospherically contaminated peat from the Peak District National Park (UK). Surface and sub-surface peat samples were analysed by synchrotron X-ray absorption spectroscopy on B18 beamline at Diamond Light Source (UK). The results suggest that there are contrasting arsenic sequestration mechanisms in the peat. The bulk arsenic speciation results, in combination with strong arsenic-iron correlations at the surface, suggest that iron (hydr)oxides are key phases for the immobilisation of arsenic at the peat surface. In contrast, the deeper peat samples are dominated by arsenic sulphides (arsenopyrite, realgar and orpiment). Given that these peats receive inputs solely from the atmosphere, the presence of these sulphide phases suggests an in-situ authigenic formation. Redox oscillations in the peat due to a fluctuating water table and an abundant store of legacy sulphur from historic acid rain inputs may favour the precipitation of arsenic sequestering sulphides in sub-surface horizons. Oxidation-induced loss of these arsenic sequestering sulphur species by water table drawdown has important implications for the mobility of arsenic and the quality of waters draining peatlands.

  3. Arsenic speciation in hair and nails of acute promyelocytic leukemia (APL) patients undergoing arsenic trioxide treatment.

    Science.gov (United States)

    Chen, Baowei; Cao, Fenglin; Lu, Xiufen; Shen, Shengwen; Zhou, Jin; Le, X Chris

    2018-07-01

    Arsenic in hair and nails has been used to assess chronic exposure of humans to environmental arsenic. However, it remains to be seen whether it is appropriate to evaluate acute exposure to sub-lethal doses of arsenic typically used in therapeutics. In this study, hair, fingernail and toenail samples were collected from nine acute promyelocytic leukemia (APL) patients who were administered intravenously the daily dose of 10 mg arsenic trioxide (7.5 mg arsenic) for up to 54 days. These hair and nail samples were analyzed for arsenic species using high performance liquid chromatography separation and inductively coupled plasma mass spectrometry detection (HPLC-ICPMS). Inorganic arsenite was the predominant form among water-extractable arsenicals. Dimethylarsinic acid (DMA V ), monomethylarsonic acid (MMA V ), monomethylarsonous acid (MMA III ), monomethylmonothioarsonic acid (MMMTA V ), and dimethylmonothioarsinic acid (DMMTA V ) were also detected in both hair and nail samples. This is the first report of the detection of MMA III and MMMTA V as metabolites of arsenic in hair and nails of APL patients. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. AAS determination of total mercury content in environmental samples

    International Nuclear Information System (INIS)

    Moskalova, M.; Zemberyova, M.

    1997-01-01

    Two methods for determination of total mercury content in environmental samples soils, and sediments, were compared. Dissolution procedure of soils, sediments, and biological material under elevated pressure followed by determination of mercury by cold vapour atomic absorption spectrometry using a MHS-1 system and direct total mercury determination without any chemical pretreatment from soil samples using a Trace Mercury Analyzer TMA-254 were compared. TMA-254 was also applied for the determination of mercury in various further standard reference materials. Good agreement with certified values of environmental reference materials was obtained. (authors)

  5. Chronic arsenic poisoning in drinking water in Inner Mongolia and its associated health effects.

    Science.gov (United States)

    Guo, Juan X; Hu, Lin; Yand, Peng Z; Tanabe, Kimiko; Miyatalre, Munetoshi; Chen, Yao

    2007-10-01

    Since 1990, a large number of people have been experiencing various health problems from drinking arsenic contaminated water (50-1860 microg/L) in 13 counties of Inner Mongolia, China, most of which are located in the Hetao Plain area. It is calculated that 411,243 people are currently at risk from arsenic poisoning. Clinical and epidemiological investigations were carried out on 13,021 people to ascertain the nature and degree of morbidity that occurred due to chronic arsenic toxicity. In all of the studied patients, 22% had typical hyperkeratosis on the palms or soles and some had raindrop-like hyperpigmentation and depigmentation on the trunk. Other data recorded included subjective and objective symptoms, such as chronic cough (35.0%) and insomnia (37.5%). During physical checkups of 680 villagers in arsenic affected areas, liver function tests showed elevated globulin levels in 6.8% (P value=0.006) of the subjects. Neurotoxicity manifesting as loss of hearing 5.88 (P value=0.005), loss of taste 5.44% (P value=0.001), blurred vision 17.35% (P value=0.000), tingling and numbness of the limbs 33.53% (P value=0.000) and hypertension 8.09% (P value=0.000) were significantly higher in the arsenic affected villages and arsenic pollution also seemed to affect patients' social life and mental health. To solve the problem of arsenic exposure, the quality of drinking water needs to be improved by reducing the arsenic content. We also plan to carry out a survey to detect the incidence and types of cancer among this population.

  6. Mouse arsenic (+3 oxidation state) methyltransferase genotype affects metabolism and tissue dosimetry of arsenicals after arsenite administration in drinking water.

    Science.gov (United States)

    Chen, Baowei; Arnold, Lora L; Cohen, Samuel M; Thomas, David J; Le, X Chris

    2011-12-01

    Arsenic (+3 oxidation state) methyltransferase (As3mt) catalyzes methylation of inorganic arsenic (iAs) producing a number of methylated arsenic metabolites. Although methylation has been commonly considered a pathway for detoxification of arsenic, some highly reactive methylated arsenicals may contribute to toxicity associated with exposure to inorganic arsenic. Here, adult female wild-type (WT) C57BL/6 mice and female As3mt knockout (KO) mice received drinking water that contained 1, 10, or 25 ppm (mg/l) of arsenite for 33 days and blood, liver, kidney, and lung were taken for arsenic speciation. Genotype markedly affected concentrations of arsenicals in tissues. Summed concentrations of arsenicals in plasma were higher in WT than in KO mice; in red blood cells, summed concentrations of arsenicals were higher in KO than in WT mice. In liver, kidney, and lung, summed concentrations of arsenicals were greater in KO than in WT mice. Although capacity for arsenic methylation is much reduced in KO mice, some mono-, di-, and tri-methylated arsenicals were found in tissues of KO mice, likely reflecting the activity of other tissue methyltransferases or preabsorptive metabolism by the microbiota of the gastrointestinal tract. These results show that the genotype for arsenic methylation determines the phenotypes of arsenic retention and distribution and affects the dose- and organ-dependent toxicity associated with exposure to inorganic arsenic.

  7. Thio-dimethylarsinate is a common metabolite in urine samples from arsenic-exposed women in Bangladesh

    International Nuclear Information System (INIS)

    Raml, Reingard; Rumpler, Alice; Goessler, Walter; Vahter, Marie; Li Li; Ochi, Takafumi; Francesconi, Kevin A.

    2007-01-01

    Over the last 6 years, much work on arsenic species in urine samples has been directed toward the determination of the reduced dimethylated arsenic species, DMA(III), because of its high toxicity and perceived key role in the metabolism of inorganic arsenic. Recent work, however, has suggested that DMA(III) may at times have been misidentified because its chromatographic properties can be similar to those of thio-dimethylarsinate (thio-DMA). We analyzed by HPLC-ICPMS (inductively coupled plasma mass spectrometry) urine samples from 75 arsenic-exposed women from Bangladesh with total arsenic concentrations ranging from 8 to 1034 μg As/L and found that thio-DMA was present in 44% of the samples at concentrations ranging mostly from trace amounts to 24 μg As/L (one sample contained 123 μg As/L). Cytotoxicity testing with HepG2 cells derived from human hepatocarcinoma indicated that thio-DMA was about 10-fold more cytotoxic than dimethylarsinate (DMA). The widespread occurrence of thio-DMA in urine from these arsenic-exposed women suggests that this arsenical may also be present in other urine samples and has so far escaped detection. The work highlights the need for analytical methods providing specific determinations of arsenic compounds in future studies on arsenic metabolism and toxicology

  8. Thio-dimethylarsinate is a common metabolite in urine samples from arsenic-exposed women in Bangladesh

    Energy Technology Data Exchange (ETDEWEB)

    Raml, Reingard; Rumpler, Alice; Goessler, Walter [Karl-Franzens University Graz, Institute of Chemistry-Analytical Chemistry, Universitaetsplatz 1, 8010 Graz (Austria); Vahter, Marie; Li, Li [Institute of Environmental Medicine, Karolinska Institutet, PO Box 210, 17177 Stockholm (Sweden); Ochi, Takafumi [Laboratory of Toxicology, Faculty of Pharmaceutical Sciences, Teikyo University, Sagamiko, Kanagawa 199-0195 (Japan); Francesconi, Kevin A. [Karl-Franzens University Graz, Institute of Chemistry-Analytical Chemistry, Universitaetsplatz 1, 8010 Graz (Austria)], E-mail: kevin.francesconi@uni-graz.at

    2007-08-01

    Over the last 6 years, much work on arsenic species in urine samples has been directed toward the determination of the reduced dimethylated arsenic species, DMA(III), because of its high toxicity and perceived key role in the metabolism of inorganic arsenic. Recent work, however, has suggested that DMA(III) may at times have been misidentified because its chromatographic properties can be similar to those of thio-dimethylarsinate (thio-DMA). We analyzed by HPLC-ICPMS (inductively coupled plasma mass spectrometry) urine samples from 75 arsenic-exposed women from Bangladesh with total arsenic concentrations ranging from 8 to 1034 {mu}g As/L and found that thio-DMA was present in 44% of the samples at concentrations ranging mostly from trace amounts to 24 {mu}g As/L (one sample contained 123 {mu}g As/L). Cytotoxicity testing with HepG2 cells derived from human hepatocarcinoma indicated that thio-DMA was about 10-fold more cytotoxic than dimethylarsinate (DMA). The widespread occurrence of thio-DMA in urine from these arsenic-exposed women suggests that this arsenical may also be present in other urine samples and has so far escaped detection. The work highlights the need for analytical methods providing specific determinations of arsenic compounds in future studies on arsenic metabolism and toxicology.

  9. Rapid arsenic(V)-reduction by fire in schwertmannite-rich soil enhances arsenic mobilisation

    Science.gov (United States)

    Johnston, Scott G.; Bennett, William W.; Burton, Edward D.; Hockmann, Kerstin; Dawson, Nigel; Karimian, Niloofar

    2018-04-01

    Arsenic in acid sulfate soil (ASS) landscapes commonly associates with schwertmannite, a poorly crystalline Fe(III) mineral. Fires in ASS landscapes can thermally transform Fe(III) minerals to more crystalline phases, such as maghemite (γFe2O3). Although thermal genesis of maghemite requires electron transfer via organic matter pyrolysis, the possibility of fire causing concurrent transfer of electrons to schwertmannite-bound As(V) remains unexplored. Here, we subject an organic-rich soil with variable carbon content (∼9-44% organic C) mixed (4:1) with As(V)-bearing schwertmannite (total As of 4.7-5.4 μmol g-1), to various temperatures (200-800 °C) and heating durations (5-120 min). We explore the consequences for As and Fe via X-ray absorption spectroscopy, X-ray diffraction, 57Fe Mössbauer spectroscopy and selective extracts. Heating transforms schwertmannite to mainly maghemite and hematite at temperatures above 300-400 °C, with some transitory formation of magnetite, and electrons are readily transferred to both Fe(III) and As(V). As(V) reduction to As(III) is influenced by a combination of temperature, heating duration and carbon content and is significantly (P moderate fires in ASS landscapes, even of short duration, may generate considerable labile As(III) species and cause a pulse of As(III)aq mobilisation following initial re-wetting. Further research is warranted to examine if analogous As(III) formation occurs during combustion of organic-rich soil containing common As-bearing Fe(III) minerals such as ferrihydrite and goethite.

  10. Study of groundwater arsenic pollution in Lanyang Plain using multivariate statistical analysis

    Science.gov (United States)

    chan, S.

    2013-12-01

    The study area, Lanyang Plain in the eastern Taiwan, has highly developed agriculture and aquaculture, which consume over 70% of the water supplies. Groundwater is frequently considered as an alternative water source. However, the serious arsenic pollution of groundwater in Lanyan Plain should be well studied to ensure the safety of groundwater usage. In this study, 39 groundwater samples were collected. The results of hydrochemistry demonstrate two major trends in Piper diagram. The major trend with most of groundwater samples is determined with water type between Ca+Mg-HCO3 and Na+K-HCO3. This can be explained with cation exchange reaction. The minor trend is obviously corresponding to seawater intrusion, which has water type of Na+K-Cl, because the localities of these samples are all in the coastal area. The multivariate statistical analysis on hydrochemical data was conducted for further exploration on the mechanism of arsenic contamination. Two major factors can be extracted with factor analysis. The major factor includes Ca, Mg and Sr while the minor factor includes Na, K and As. This reconfirms that cation exchange reaction mainly control the groundwater hydrochemistry in the study area. It is worth to note that arsenic is positively related to Na and K. The result of cluster analysis shows that groundwater samples with high arsenic concentration can be grouped into that with high Na, K and HCO3. This supports that cation exchange would enhance the release of arsenic and exclude the effect of seawater intrusion. In other words, the water-rock reaction time is key to obtain higher arsenic content. In general, the major source of arsenic in sediments include exchangeable, reducible and oxidizable phases, which are adsorbed ions, Fe-Mn oxides and organic matters/pyrite, respectively. However, the results of factor analysis do not show apparent correlation between arsenic and Fe/Mn. This may exclude Fe-Mn oxides as a major source of arsenic. The other sources

  11. Neutron activation analysis of arsenic in Greece

    International Nuclear Information System (INIS)

    Grimanis, A.P.

    1989-01-01

    Arsenic is considered a toxic trace element for plant, animal, and human organisms. Arsenic and certain arsenic compounds have been listed as carcinogens by the U.S. Environmental Protection Agency. Arsenic is emitted in appreciable quantities into the atmosphere by coal combustion and the production of cement. Arsenic enters the aquatic environment through industrial activities such as smelting of metallic ores, metallurgical glassware, and ceramics as well as insecticide production and use. Neutron activation analysis (NAA) is a very sensitive, precise, and accurate method for determining arsenic. This paper is a review of research studies of arsenic in the Greek environment by NAA performed at our radioanalytical laboratory. The objectives of these studies were (a) to determine levels of arsenic concentrations in environmental materials, (b) to pinpoint arsenic pollution sources and estimate the extent of arsenic pollution, and (c) to find out whether edible marine organisms from the gulfs of Greece receiving domestic, industrial, and agricultural wastes have elevated concentrations of arsenic in their tissues that could render them dangerous for human consumption

  12. Predicting arsenic concentrations in groundwater of San Luis Valley, Colorado: implications for individual-level lifetime exposure assessment.

    Science.gov (United States)

    James, Katherine A; Meliker, Jaymie R; Buttenfield, Barbara E; Byers, Tim; Zerbe, Gary O; Hokanson, John E; Marshall, Julie A

    2014-08-01

    Consumption of inorganic arsenic in drinking water at high levels has been associated with chronic diseases. Risk is less clear at lower levels of arsenic, in part due to difficulties in estimating exposure. Herein we characterize spatial and temporal variability of arsenic concentrations and develop models for predicting aquifer arsenic concentrations in the San Luis Valley, Colorado, an area of moderately elevated arsenic in groundwater. This study included historical water samples with total arsenic concentrations from 595 unique well locations. A longitudinal analysis established temporal stability in arsenic levels in individual wells. The mean arsenic levels for a random sample of 535 wells were incorporated into five kriging models to predict groundwater arsenic concentrations at any point in time. A separate validation dataset (n = 60 wells) was used to identify the model with strongest predictability. Findings indicate that arsenic concentrations are temporally stable (r = 0.88; 95 % CI 0.83-0.92 for samples collected from the same well 15-25 years apart) and the spatial model created using ordinary kriging best predicted arsenic concentrations (ρ = 0.72 between predicted and observed validation data). These findings illustrate the value of geostatistical modeling of arsenic and suggest the San Luis Valley is a good region for conducting epidemiologic studies of groundwater metals because of the ability to accurately predict variation in groundwater arsenic concentrations.

  13. An Artificial Channel Experiment for Purifying Drainage Water Containing Arsenic by Using Eleocharis acicularis

    Science.gov (United States)

    Okazaki, Kenji; Yamazaki, Shusaku; Kurahashi, Toshiyuki; Sakakibara, Masayuki

    2017-06-01

    This paper reports the results of an artificial channel experiment in which water containing arsenic was purified by using Eleocharis acicularis. The experiment was conducted to investigate the feasibility of phytoremediation by Eleocharis acicularis in civil engineering projects. In the experiment, 15 m2 of Eleocharis acicularis mats were laid in an artificial channel. Three sessions of artificial flow were implemented by leading 100.0 L of river water containing 0.234 mg/L of arsenic into the channel each time. The arsenic concentration of the leachate from the channel was analyzed. As the results of experiment, the arsenic concentrations of the leachate for the three sessions were 0.045 mg/L, 0.133 mg/L, and 0.249 mg/L. This shows that the arsenic concentration decreased during the first two sessions, whose flow totaled 200 L. The arsenic concentrations in the Eleocharis acicularis were 0.87 mg/kg, 1.01 mg/kg, and 4.16 mg/kg, which show that the plant absorbs arsenic. Moreover, it was found that the amount of sample water was reduced through evapotranspiration from the plant and the artificial channel.

  14. Selective reduction of arsenic species by hydride generation - atomic absorption spectrometry. Part 2 - sample storage and arsenic determination in natural waters

    Directory of Open Access Journals (Sweden)

    Quináia Sueli P.

    2001-01-01

    Full Text Available Total arsenic, arsenite, arsinate and dimethylarsinic acid (DMA were selectively determined in natural waters by hydride generation - atomic absorption spectrometry, using sodium tetrahydroborate(III as reductant but in different reduction media. River water samples from the north region of Paraná State, Brazil, were analysed and showed arsenate as the principal arsenical form. Detection limits found for As(III (citrate buffer, As(III + DMA (acetic acid and As(III + As(V (hydrochloric acid were 0.6, 1.1 and 0.5 mg As L-1, respectively. Sample storage on the proper reaction media revealed to be a useful way to preserve the water sample.

  15. Physical and arsenic adsorption properties of maghemite and magnetite sub-microparticles

    Science.gov (United States)

    Mejia-Santillan, M. E.; Pariona, N.; Bravo-C., J.; Herrera-Trejo, M.; Montejo-Alvaro, F.; Zarate, A.; Perry, D. L.; Mtz-Enriquez, A. I.

    2018-04-01

    The topotactic transformation from magnetite to maghemite sub-microparticles was demonstrated by a variety of techniques that include X-ray diffraction, Raman spectroscopy, electron microscopy, Mössbauer spectroscopy, magnetic measurements, and vis-NIR diffuse reflectance. The physical, chemical, and morphological properties of the particles were correlated with their adsorptive properties in water with respect to arsenic (V). The adsorptive properties of the iron oxide are increased by changing the crystal phases involved, specifically, the transformation of magnetite to maghemite. Maghemite sub-microparticles are capable of efficiently decreasing the arsenic content in water from 100 ppb to below the World Health Organization (WHO) guideline of 10 ppb.

  16. Arsenic and Antimony Transporters in Eukaryotes

    Directory of Open Access Journals (Sweden)

    Ewa Maciaszczyk-Dziubinska

    2012-03-01

    Full Text Available Arsenic and antimony are toxic metalloids, naturally present in the environment and all organisms have developed pathways for their detoxification. The most effective metalloid tolerance systems in eukaryotes include downregulation of metalloid uptake, efflux out of the cell, and complexation with phytochelatin or glutathione followed by sequestration into the vacuole. Understanding of arsenic and antimony transport system is of high importance due to the increasing usage of arsenic-based drugs in the treatment of certain types of cancer and diseases caused by protozoan parasites as well as for the development of bio- and phytoremediation strategies for metalloid polluted areas. However, in contrast to prokaryotes, the knowledge about specific transporters of arsenic and antimony and the mechanisms of metalloid transport in eukaryotes has been very limited for a long time. Here, we review the recent advances in understanding of arsenic and antimony transport pathways in eukaryotes, including a dual role of aquaglyceroporins in uptake and efflux of metalloids, elucidation of arsenic transport mechanism by the yeast Acr3 transporter and its role in arsenic hyperaccumulation in ferns, identification of vacuolar transporters of arsenic-phytochelatin complexes in plants and forms of arsenic substrates recognized by mammalian ABC transporters.

  17. Arsenic and Antimony Transporters in Eukaryotes

    Science.gov (United States)

    Maciaszczyk-Dziubinska, Ewa; Wawrzycka, Donata; Wysocki, Robert

    2012-01-01

    Arsenic and antimony are toxic metalloids, naturally present in the environment and all organisms have developed pathways for their detoxification. The most effective metalloid tolerance systems in eukaryotes include downregulation of metalloid uptake, efflux out of the cell, and complexation with phytochelatin or glutathione followed by sequestration into the vacuole. Understanding of arsenic and antimony transport system is of high importance due to the increasing usage of arsenic-based drugs in the treatment of certain types of cancer and diseases caused by protozoan parasites as well as for the development of bio- and phytoremediation strategies for metalloid polluted areas. However, in contrast to prokaryotes, the knowledge about specific transporters of arsenic and antimony and the mechanisms of metalloid transport in eukaryotes has been very limited for a long time. Here, we review the recent advances in understanding of arsenic and antimony transport pathways in eukaryotes, including a dual role of aquaglyceroporins in uptake and efflux of metalloids, elucidation of arsenic transport mechanism by the yeast Acr3 transporter and its role in arsenic hyperaccumulation in ferns, identification of vacuolar transporters of arsenic-phytochelatin complexes in plants and forms of arsenic substrates recognized by mammalian ABC transporters. PMID:22489166

  18. Ferric minerals and organic matter change arsenic speciation in copper mine tailings.

    Science.gov (United States)

    Wang, Peng; Liu, Yunjia; Menzies, Neal W; Wehr, J Bernhard; de Jonge, Martin D; Howard, Daryl L; Kopittke, Peter M; Huang, Longbin

    2016-11-01

    Arsenic (As) is commonly associated with Cu ore minerals, with the resultant risk that As can be released offsite from mine tailings. We used synchrotron-based fluorescence X-ray absorption near-edge spectroscopy (XANES) imaging to provide in situ, laterally-resolved speciation of As within tailings which differed in magnetite content (5-12%) and organic matter content (0-5%). Although the total As content was lower in tailings with low magnetite (LM), the soluble (pore water) As was actually 7-times higher in LM tailings than in high magnetite (HM) tailings. Additionally, amendment with 5% sugarcane mulch residues (SMR) (for revegetation) further increased soluble As due to the dissolution and oxidation of arsenopyrite or orpiment. Indeed, in HM tailings, arsenopyrite and orpiment initially accounted for 88% of the total As, which decreased to 48% upon the addition of SMR - this being associated with an increase in As V -ferrihydrite from 12% to 52%. In LM tailings, the pattern of As distribution and speciation was similar, with As as As V -ferrihydrite increasing from 57% to 75% upon the addition of SMR. These findings indicate that changes in ore processing technology, such as the recovery of magnetite could have significant environmental consequences regarding the As mobilisation and transformation in mine tailings. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. MDI Biological Laboratory Arsenic Summit: Approaches to Limiting Human Exposure to Arsenic

    OpenAIRE

    Stanton, Bruce A.

    2015-01-01

    This report is the outcome of the meeting: “Environmental and Human Health Consequences of Arsenic”, held at the MDI Biological Laboratory in Salisbury Cove, Maine, August 13–15, 2014. Human exposure to arsenic represents a significant health problem worldwide that requires immediate attention according to the World Health Organization (WHO). One billion people are exposed to arsenic in food and more than 200 million people ingest arsenic via drinking water at concentrations greater than inte...

  20. Removal of arsenic and methylene blue from water by granular activated carbon media impregnated with zirconium dioxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sandoval, Robert; Cooper, Anne Marie; Aymar, Kathryn; Jain, Arti [Environmental Technology, College of Technology and Innovation, Arizona State University, 6073 S. Backus Mall, Mesa, AZ 85212 (United States); Hristovski, Kiril, E-mail: Kiril.Hristovski@asu.edu [Environmental Technology, College of Technology and Innovation, Arizona State University, 6073 S. Backus Mall, Mesa, AZ 85212 (United States)

    2011-10-15

    Highlights: {yields} The morphology, content and distribution of ZrO{sub 2} nanoparticles inside the pores of GAC are affected by the type of GAC. {yields} Lignite ZrO{sub 2}-GAC exhibited Zr content of 12%, while bituminous based ZrO{sub 2}-GAC exhibited Zr content of 9.5%. {yields} The max. adsorption capacities under equilibrium conditions in 5 mM NaHCO{sub 3} buffered water matrix were {approx}8.6 As/g Zr and {approx}12.2 mg As/g Zr at pH = 7.6. {yields} The max. adsorption capacities under equilibrium conditions in NSF 53 Challenge water matrix while {approx}1.5 mg As/g Zr and {approx}3.2 mg As/g Zr at pH = 7.6. {yields} Introduction of nanoparticles did not impact the MB adsorption capacity of the lignite ZrO{sub 2}-GAC, while the one of bituminous ZrO{sub 2}-GAC decreased. - Abstract: This study investigated the effects of in situ ZrO{sub 2} nanoparticle formation on properties of granulated activated carbon (GAC) and their impacts on arsenic and organic co-contaminant removal. Bituminous and lignite based zirconium dioxide impregnated GAC (Zr-GAC) media were fabricated by hydrolysis of zirconium salt followed by annealing of the product at 400 {sup o}C in an inert environment. Media characterization suggested that GAC type does not affect the crystalline structure of the resulting ZrO{sub 2} nanoparticles, but does affect zirconium content of the media, nanoparticle morphology, nanoparticle distribution, and surface area of Zr-GAC. The arsenic removal performance of both media was compared using 5 mM NaHCO{sub 3} buffered ultrapure water and model groundwater containing competing ions, both with an initial arsenic C{sub 0} {approx} 120 {mu}g/L. Experimental outcomes suggested favorable adsorption energies and higher or similar adsorption capacities than commercially available or experimental adsorbents when compared on the basis of metal content. Short bed adsorber column tests showed that arsenic adsorption capacity decreases as a result of kinetics of