WorldWideScience

Sample records for total absorption gamma-ray

  1. Characterization of a new modular decay total absorption gamma-ray spectrometer (DTAS) for FAIR

    International Nuclear Information System (INIS)

    Montaner Pizá, A.; Taín, J. L.; Agramunt, J.; Algora, A.; Guadilla, V.; Marín, E.; Rice, S.; Rubio, B.

    2013-01-01

    Beta-decay studies are one of the main goals of the DEcay SPECtroscopy experiment (DESPEC) to be installed at the future Facility for Antiproton and Ion Research (FAIR). DESPEC aims at the study of nuclear structure of exotic nuclei. A new modular Decay Total Absorption gamma-ray Spectrometer (DTAS) is being built at IFIC and is specially adapted to studies at fragmentation facilities such as the Super Fragment Separator (Super-FRS) at FAIR. The designed spectrometer is composed of 16 identical NaI(Tl) scintillation crystals. This work focuses on the characterization of these independent modules, as an initial step for the characterization of the full spectrometer. Monte Carlo simulations have been performed in order to understand the detector response.

  2. Impact of the total absorption gamma-ray spectroscopy on FP decay heat calculations

    International Nuclear Information System (INIS)

    Yoshida, Tadashi; Tachibana, Takahiro; Katakura, Jun-ichi

    2004-01-01

    We calculated the average β- and γ-ray energies, E β and E γ , for 44 short-lived isotopes of Rb, Sr, Y, Cs, Ba, La, Ce, Pr, Nd, Pm, Sm and Eu from the data by Greenwood et al, who measured the β-feed in the decay of these nuclides using the total absorption γ-ray spectrometer. These E β and E γ were incorporated into the decay files from JENDL, JEF2.2 and ENDF-B/VI, and the decay heats were calculated. The results were compared with the integral measurements by the University of Tokyo, ORNL and Lowell. In the case of JENDL, where the correction for the so-called Pandemonium effect is applied on the basis of the gross theory, the very good agreement is no longer maintained. The γ-ray component is overestimated in the cooling time range from 3 to 300 seconds, suggesting a kind of an over-correction as for the Pandemonium effect. We have to evaluate both the applicability of the TAGS results and the correction method itself in order to generate a more consistent data basis for decay heat summation calculations. (author)

  3. Gamma ray auto absorption correction evaluation methodology

    International Nuclear Information System (INIS)

    Gugiu, Daniela; Roth, Csaba; Ghinescu, Alecse

    2010-01-01

    Neutron activation analysis (NAA) is a well established nuclear technique, suited to investigate the microstructural or elemental composition and can be applied to studies of a large variety of samples. The work with large samples involves, beside the development of large irradiation devices with well know neutron field characteristics, the knowledge of perturbing phenomena and adequate evaluation of correction factors like: neutron self shielding, extended source correction, gamma ray auto absorption. The objective of the works presented in this paper is to validate an appropriate methodology for gamma ray auto absorption correction evaluation for large inhomogeneous samples. For this purpose a benchmark experiment has been defined - a simple gamma ray transmission experiment, easy to be reproduced. The gamma ray attenuation in pottery samples has been measured and computed using MCNP5 code. The results show a good agreement between the computed and measured values, proving that the proposed methodology is able to evaluate the correction factors. (authors)

  4. Total absorption gamma-ray spectroscopy (TAGS): Current status of measurement programmes for decay heat calculations and other applications. Summary report of consultants' meeting

    International Nuclear Information System (INIS)

    Nichols, A.L.; Nordborg, C.

    2009-02-01

    A Consultants' Meeting on 'Total Absorption Gamma-ray Spectroscopy (TAGS)' was held on 27-28 January 2009 at the IAEA Headquarters, Vienna, Austria. All presentations, discussions and recommendations of this meeting are contained within this report. The purpose of the meeting was to report and discuss progress and plans to measure total gamma-ray spectra in order to derive mean beta and gamma decay data for decay heat calculations and other applications. This form of review had been recommended by contributors to Subgroup 25 of the OECD-NEA Working Party on International Evaluation Cooperation of the Nuclear Science Committee, for implementation in 2008/09. Hence, relevant specialists were invited to discuss their recently performed and planned TAGS studies, along with experimentalists proposing to assemble and operate such dedicated facilities. Knowledge and quantification of antineutrino spectra is believed to be a significant asset in the non-invasive monitoring of reactor operations and possible application in safeguards, as well as fundamental in the study of neutrino oscillations - these data needs were also debated in terms of appropriate TAGS measurements. A re-assessment of the current request list for TAGS studies is merited and was undertaken in the context of decay heat calculations, and agreement was reached to extend these requirements to the derivation of antineutrino spectra. (author)

  5. Planetary gamma-ray spectroscopy: the effects of hydrogen absorption cross-section of the gamma-ray spectrum

    International Nuclear Information System (INIS)

    Lapides, J.R.

    1981-01-01

    The gamma-ray spectroscopy of planet surfaces is one of several possible methods that are useful in determining the elemental composition of planet surfaces from orbiting spacecraft. This has been demonstrated on the Apollos 15 and 16 missions as well as the Soviet Mars-5 mission. Planetary gamma-ray emission is primarily the result of natural radioactive decay and cosmic-ray and solar-flare-induced nuclear reactions. Secondary neutron reactions play a large role in the more intense gamma-ray emission. The technique provides information on the elemental composition of the top few tens of centimeters of the planet surface. Varying concentrations of hydrogen and compositional variations that alter the macroscopic thermal-neutron absorption cross section have a significant effect on the neutron flux in the planet surface and therefore also on the gamma-ray emission from the surface. These effects have been systematically studied for a wide range of possible planetary compositions that include Mercury, the moon, Mars, the comets, and the asteroids. The problem of the Martian atmosphere was also investigated. The results of these calculations, in which both surface neutron fluxes and gamma-ray emission fluxes were determined, were used to develop general procedures for obtaining planet compositions from the gamma-ray spectrum. Several changes have been suggested for reanalyzing the Apollos 15 and 16 gamma-ray results. In addition, procedures have been suggested that can be applied to neutron-gamma techniques in mineral and oil exploration

  6. Determination of plutonium isotopic ratios and total concentration by gamma ray spectrometry

    International Nuclear Information System (INIS)

    Despres, Michele.

    1980-11-01

    A non-destructive method of analysis is being investigated for the control in situ of plutonium isotopic composition and total concentration in different matrix without preliminary calibration. The plutonium isotopic composition is determined by gamma-ray spectrometry using germanium detector systems. The same apparatus is used for direct measuring of the total plutonium concentration in solutions or solids by a differential attenuation technique based on two transmitted gamma rays with energies on both sides of the k shell absorption edge of plutonium [fr

  7. Gamma ray NDA assay system for total plutonium and isotopics in plutonium product solutions

    International Nuclear Information System (INIS)

    Cowder, L.R.; Hsue, S.T.; Johnson, S.S.; Parker, J.L.; Russo, P.A.; Sprinkle, J.K.; Asakura, Y.; Fukuda, T.; Kondo, I.

    1979-01-01

    A LASL-designed gamma-ray NDA instrument for assay of total plutonium and isotopics of product solutions at Tokai-Mura is currently installed and operating. The instrument is, optimally, a densitometer that uses radioisotopic sources for total plutonium measurements at the K absorption edge. The measured transmissions of additional gamma-ray lines from the same radioisotopic sources are used to correct for self-attenuation of passive gamma rays from plutonium. The corrected passive data give the plutonium isotopic content of freshly separated to moderately aged solutions. This off-line instrument is fully automated under computer control, with the exception of sample positioning, and operates routinely in a mode designed for measurement control. A one-half percent precision in total plutonium concentration is achieved with a 15-minute measurement

  8. Gamma ray absorption of cylindrical fissile material with dual shields

    International Nuclear Information System (INIS)

    Wu Chenyan; Cheng Yiying; Huang Yongyi; Lu Fuquan; Yang Fujia

    2005-01-01

    This work analyzed the gamma ray attenuation effect from the self-absorption and shield attenuation perspectively. An exact mathematical equation was given for the geometric factor of the cylindrical fissile material with dual shields. In addition, several approximation approaches suitable for real situation were discussed, especially in the radial and axial directions of the cylinders, since the G-factors have simple forms. Then the space distribution patterns of the G-factor were analyzed based on numerical result and effective ways to solved the geometric information of the cylindrical fissile material, the radii and the heights, were deduced. This method was checked and verified by numerical calculation. Because of the efficiency of the method, it is ideal for application in real situations, such as nuclear safeguards, which demands speed of detection and accuracy of geometric analysis. (authors)

  9. Studies of the $\\beta$-decay of Sr nuclei on and near the N=Z Line with a Total Absorption Gamma-ray Spectrometer

    CERN Multimedia

    Marechal, F; Caballero ontanaya, L

    2002-01-01

    In the framework of the investigation of the shapes of the ground states of the parent nucleus, we propose to carry out measurements of the complete Gamow-Teller strength distribution for the $^{76-80}$Sr isotopes, with a new Total Absorption Gamma Spectrometer installed on a new beam line. The results will be compared with theoretical calculations based on the mean field approach. A brief report on the IS370 experiment on $^{72-75}$Kr decay, which was recently performed at ISOLDE, will be given and the performance of the sum spectrometer will be presented.

  10. A method for determination mass absorption coefficient of gamma rays by Compton scattering.

    Science.gov (United States)

    El Abd, A

    2014-12-01

    A method was proposed for determination mass absorption coefficient of gamma rays for compounds, alloys and mixtures. It is based on simulating interaction processes of gamma rays with target elements having atomic numbers from Z=1 to Z=92 using the MCSHAPE software. Intensities of Compton scattered gamma rays at saturation thicknesses and at a scattering angle of 90° were calculated for incident gamma rays of different energies. The obtained results showed that the intensity of Compton scattered gamma rays at saturations and mass absorption coefficients can be described by mathematical formulas. These were used to determine mass absorption coefficients for compound, alloys and mixtures with the knowledge of their Compton scattered intensities. The method was tested by calculating mass absorption coefficients for some compounds, alloys and mixtures. There is a good agreement between obtained results and calculated ones using WinXom software. The advantages and limitations of the method were discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. The self-absorption effect of gamma rays in 239Pu

    International Nuclear Information System (INIS)

    Hsiaohua Hsu

    1989-01-01

    Nuclear materials assay with gamma-ray spectrum measurement is a well-established method for safeguards. However, for a thick source, the self-absorption of characteristic low-energy gamma rays has been a handicap to accurate assay. The author has carried out Monte Carlo simulations to study this effect using the 239 Pu α-decay gamma-ray spectrum as an example. The thickness of a plutonium metal source can be considered a function of gamma-ray intensity ratios. In a practical application, gamma-ray intensity ratios can be obtained from a measured spectrum. With the help of calculated curves, scientists can find the source thickness and make corrections to gamma-ray intensities, which then lead to an accurate quantitative determination of radioactive isotopes in the material

  12. A method for determination mass absorption coefficient of gamma rays by Compton scattering

    International Nuclear Information System (INIS)

    El Abd, A.

    2014-01-01

    A method was proposed for determination mass absorption coefficient of gamma rays for compounds, alloys and mixtures. It is based on simulating interaction processes of gamma rays with target elements having atomic numbers from Z=1 to Z=92 using the MCSHAPE software. Intensities of Compton scattered gamma rays at saturation thicknesses and at a scattering angle of 90° were calculated for incident gamma rays of different energies. The obtained results showed that the intensity of Compton scattered gamma rays at saturations and mass absorption coefficients can be described by mathematical formulas. These were used to determine mass absorption coefficients for compound, alloys and mixtures with the knowledge of their Compton scattered intensities. The method was tested by calculating mass absorption coefficients for some compounds, alloys and mixtures. There is a good agreement between obtained results and calculated ones using WinXom software. The advantages and limitations of the method were discussed. - Highlights: • Compton scattering of γ−rays was used for determining mass absorption coefficient. • Scattered intensities were determined by the MCSHAPE software. • Mass absorption coefficients were determined for some compounds, mixtures and alloys. • Mass absorption coefficients were calculated by Winxcom software. • Good agreements were found between determined and calculated results

  13. Self-absorption corrections for gamma ray spectral measurements of 210Pb in environmental samples

    International Nuclear Information System (INIS)

    Miller, K.M.

    1987-01-01

    Theoretical considerations and experimental data are used to demonstrate the basic behaviour of the self-absorption effect of a sample matrix in gamma ray spectrometry, particularly as it relates to the analysis of 210 Pb in environmental media. The results indicate that it may not be appropriate to apply the commonly used self-absorption function in all cases. (orig.)

  14. Use of appropriate absorption coefficients in gamma-ray dosimetry

    International Nuclear Information System (INIS)

    Gopinath, D.V.; Natarajan, A.; Subbaiah, K.V.

    1985-01-01

    The current use of the different types of absorption coefficients in the computation of γ-ray energy deposition rates and air dose is critically analyzed. Transport calculations are presented to bring out the errors associated with the use of different absorption coefficients. It is observed that except for source energies in the range of 0.3 to 3.0 MeV the consistent use of the absorption coefficient, μ/sub a/ results in an underestimate of the air dose everywhere and of energy deposition at regions away from source. The underestimate becomes more significant with increased atomic number (Z) of the medium. Based on the computations and analysis it is concluded that the absorption coefficients μ/sub a/ and μ/sub k/ are of very limited use in practical γ-ray dosimetry

  15. Advances in gamma ray resonant scattering and absorption long-lived isomeric nuclear states

    CERN Document Server

    Davydov, Andrey V

    2015-01-01

    This book presents the basics and advanced topics of research of gamma ray physics. It describes measuring of  Fermi surfaces with gamma resonance spectroscopy and the theory of angular distributions of resonantly scattered gamma rays. The dependence of excited-nuclei average lifetime on the shape of the exciting-radiation spectrum and electron binding energies in the spectra of scattered gamma rays is described. Resonant excitation by gamma rays of nuclear isomeric states with long lifetime leads to the emission and absorption lines. In the book, a new gamma spectroscopic method, gravitational gamma spectrometry, is developed. It has a resolution hundred million times higher than the usual Mössbauer spectrometer. Another important topic of this book is resonant scattering of annihilation quanta by nuclei with excited states in connection with positron annihilation. The application of the methods described is to explain the phenomenon of Coulomb fragmentation of gamma-source molecules and resonant scatt...

  16. Attenuation studies near K-absorption edges using Compton scattered 241Am gamma rays

    International Nuclear Information System (INIS)

    Abdullah, K.K.; Ramachandran, N.; Karunakaran Nair, K.; Babu, B.R.S.; Joseph, Antony; Thomas, Rajive; Varier, K.M.

    2008-01-01

    We have carried out photon attenuation measurements at several energies in the range from 49.38 keV to 57.96 keV around the K-absorption edges of the rare earth elements Sm, Eu, Gd, Tb, Dy and Er using 59.54 keV gamma rays from 241 Am source after Compton scattering from an aluminium target. Pellets of oxides of the rare earth elements were chosen as mixture absorbers in these investigations. A narrow beam good geometry set-up was used for the attenuation measurements. The scattered gamma rays were detected by an HPGe detector. The results are consistent with theoretical values derived from the XCOM package. (author)

  17. Effect of finite sample dimensions and total scatter acceptance angle on the gamma ray buildup factor

    International Nuclear Information System (INIS)

    Singh, Sukhpal; Kumar, Ashok; Singh, Charanjeet; Thind, Kulwant Singh; Mudahar, Gurmel S.

    2008-01-01

    The simultaneous variation of gamma ray buildup factors with absorber thickness (up to 6.5 mfp) and total scatter acceptance angle (which is the sum of incidence and exit beam divergence) in the media of high volume flyash concrete and water was studied experimentally using a point isotropic 137 Cs source

  18. Monte Carlo calculation of the total probability for gamma-Ray interaction in toluene

    International Nuclear Information System (INIS)

    Grau Malonda, A.; Garcia-Torano, E.

    1983-01-01

    Interaction and absorption probabilities for gamma-rays with energies between 1 and 1000 KeV have been computed and tabulated. Toluene based scintillator solution has been assumed in the computation. Both, point sources and homogeneously dispersed radioactive material have been assumed. These tables may be applied to cylinders with radii between 1.25 cm and 0.25 cm and heights between 4.07 cm and 0.20 cm. (Author) 26 refs

  19. Gamma-ray energy absorption in absorbing homogeneous medium. Applications to Oceanography and Geophysics (Gamma-ray spectroscopy from 500 to 1500 keV)

    International Nuclear Information System (INIS)

    Lapicque, G.

    1980-01-01

    The aim of this study is to establish a general algebrical approach for the calculation, without any program, of the full energy peak efficiency of a detecting probe designed to measure the gamma activity of a radio-element in a (semi) infinite homogeneous absorbing medium such as the Sea. The radio-active source may be punctual or, most often, constitute an integral part of the medium. The proposed theory is valid for any purely absorptive process of particles moving along straight trajectories, diffusion effects being allowed for separately. The formulation assumes a spherical detector and calculations are made for models having the same volume as two standard phosphors (10 cm x8 cm and 5 cm x 4.5 cm) in the energy band 0.5 to 1.5 MeV. The parameters are the detector radius and, at energy E 0 , the absorption coefficients in the various media for gamma rays together with the 'peak/total' ratio in the detector. The fact that this latter factor, which varies with each trajectory, cannot be obtained with accuracy, constitutes the main limitation of the formulation. The comparison with experimental results obtained with a 10 cm x 8 cm phosphor at the C.F.R. (Centre des Faibles Radioactivites, Gif-sur-Yvette) and with various data indicates an error of about +-5% for a point source at contact and -30% for a homogeneously distributed source in an infinite medium. This latter value may be interpreted as a superiority of the spherical shape over the cylinder (used in practice), for detectors operating in infinite media. Calculations are made without allowing for the Compton effect, which is found to give an approximate correction of +5% in water for a band width of 10 keV in the MeV region. Finally, the shape of the detecting probe around the detector is shown to be indifferent in the assumption of a constant peak/total ratio [fr

  20. Well logging study using total gamma rays in the region of Khnefis

    International Nuclear Information System (INIS)

    Asfahani, Jamal; Aslim, Ghassan

    1992-11-01

    Total gamma ray method has been used in some boreholes in Khnefis ores (a phosphate mine). The aim of the study was to determine the thickness and spreading of the phosphate beds in this area. Many anomalously ratio active zones have been identified, which reflect the P 2 O 5 and uranium content of the phosphate. The obtained data has been treated by using a developed Rock were-Logger. (author). 2 refs., 11 figs.,

  1. Self-absorption corrections of various sample-detector geometries in gamma-ray spectrometry using sample Monte Carlo Simulations

    International Nuclear Information System (INIS)

    Ahmad Saat; Appleby, P.G.; Nolan, P.J.

    1997-01-01

    Corrections for self-absorption in gamma-ray spectrometry have been developed using a simple Monte Carlo simulation technique. The simulation enables the calculation of gamma-ray path lengths in the sample which, using available data, can be used to calculate self-absorption correction factors. The simulation was carried out on three sample geometries: disk, Marinelli beaker, and cylinder (for well-type detectors). Mathematical models and experimental measurements are used to evaluate the simulations. A good agreement of within a few percents was observed. The simulation results are also in good agreement with those reported in the literature. The simulation code was carried out in FORTRAN 90,

  2. Evaluation of the total gamma-ray production cross-sections for nonelastic interaction of fast neutrons with iron nuclei

    International Nuclear Information System (INIS)

    Savin, M.V.; Nefedov, Yu.Ya; Livke, A.V.; Zvenigorodskij, A.G.

    2001-01-01

    Experimental data on the total gamma-ray production cross-sections for inelastic interaction of fast neutrons with iron nuclei were analysed. The total gamma-ray production cross-sections, grouped according to E γ , were evaluated in the neutron energy range 0.5-19 MeV. The statistical spline approximation method was used to evaluate the experimental data. Evaluated data stored in the ENDF, JENDL, BROND, and other libraries on gamma-ray production spectra and cross-sections for inelastic interaction of fast neutrons with iron nuclei, were analysed. (author)

  3. Gamma Ray Absorption Technique For Scannig Process Column In Up-IV Pertamina Cilacap

    International Nuclear Information System (INIS)

    Santoso, Sigit Budi; Kushartono; Bisana; Mulyanto, Eko; Adi, Soecipto

    2000-01-01

    A demonstration using gamma ray absorption technique was carried out to diagnose malfunction such as tray missing, flooding, and weeping occurred in 2 3C-5 Extraction Vacuum Flash Strip Tower . The scan was conducted from the bottom until the top of the orientation of the director-source are (122 o -308 o ) dan (122 o - 270 o ). The results indicate that the tray number 1 and 3 were missing while weeping occurred in the space between tray 4,5,6,and 7. The results show that this technique can be used to diagnose malfunction occurred in the column on-line so it can help maintenance personnel in planning, the time scheduled and spare part for shutdown. Beside of that this technique can be developed to help column personnel's in adjusting the operation parameter to achieve optimum operation

  4. Self-absorption of neutron capture gamma-rays in gold samples

    International Nuclear Information System (INIS)

    Wisshak, K.; Walter, G.; Kaeppeler, F.

    1983-06-01

    The self absorption of neutron capture gamma rays in gold samples has been determined experimentally for two standard setups used in measurements of neutron capture cross sections. One makes use of an artificially collimated neutron beam and two C 6 D 6 detectors, the other of kinematically collimated neutrons and three Moxon-Rae detectors. Correction factors for an actual measurement of a neutron capture cross section using a gold standard of 1 mm thickness up to 12% were found for the first setup while they are only 4% for the second setup. The present data allow to determine the correction in an actual measurement with an accuracy of 0.5-1%. (orig.) [de

  5. An empirical method for peak-to-total ratio computation of a gamma-ray detector

    International Nuclear Information System (INIS)

    Cesana, A.; Terrani, M.

    1989-01-01

    A simple expression for peak-to-total ratio evaluation of gamma-ray detectors in the energy range 0.3-10 MeV is proposed. The quantities one needs to know for the computation are: Detector dimensions and chemical composition, photon corss sections and an empirical energy dependent function which is valid for all the detector materials considered. This procedure seems able to produce peak-to-total values with an accuracy comparable with the most sophisticated Monte Carlo calculations. It has been tested using experimental peak-to-total values of Ge, NaI, CsI and BGO detectors but it is reasonable to suppose that it is valid for any detector material. (orig.)

  6. HELIUM IN NATAL H II REGIONS: THE ORIGIN OF THE X-RAY ABSORPTION IN GAMMA-RAY BURST AFTERGLOWS

    International Nuclear Information System (INIS)

    Watson, Darach; Andersen, Anja C.; Fynbo, Johan P. U.; Hjorth, Jens; Krühler, Thomas; Laursen, Peter; Leloudas, Giorgos; Malesani, Daniele; Zafar, Tayyaba; Gorosabel, Javier; Jakobsson, Páll

    2013-01-01

    Soft X-ray absorption in excess of Galactic is observed in the afterglows of most gamma-ray bursts (GRBs), but the correct solution to its origin has not been arrived at after more than a decade of work, preventing its use as a powerful diagnostic tool. We resolve this long-standing problem and find that absorption by He in the GRB's host H II region is responsible for most of the absorption. We show that the X-ray absorbing column density (N H X ) is correlated with both the neutral gas column density and with the optical afterglow's dust extinction (A V ). This correlation explains the connection between dark bursts and bursts with high N H X values. From these correlations, we exclude an origin of the X-ray absorption which is not related to the host galaxy, i.e., the intergalactic medium or intervening absorbers are not responsible. We find that the correlation with the dust column has a strong redshift evolution, whereas the correlation with the neutral gas does not. From this, we conclude that the column density of the X-ray absorption is correlated with the total gas column density in the host galaxy rather than the metal column density, in spite of the fact that X-ray absorption is typically dominated by metals. The strong redshift evolution of N H X /A V is thus a reflection of the cosmic metallicity evolution of star-forming galaxies and we find it to be consistent with measurements of the redshift evolution of metallicities for GRB host galaxies. We conclude that the absorption of X-rays in GRB afterglows is caused by He in the H II region hosting the GRB. While dust is destroyed and metals are stripped of all of their electrons by the GRB to great distances, the abundance of He saturates the He-ionizing UV continuum much closer to the GRB, allowing it to remain in the neutral or singly-ionized state. Helium X-ray absorption explains the correlation with total gas, the lack of strong evolution with redshift, as well as the absence of dust, metal or

  7. The effects of Co60 gamma rays on the absorption of salicylic natrium orally given to white rats

    International Nuclear Information System (INIS)

    Wiharto, Kunto; Kamal, Zainul; Mulyanto; Muryono, H.

    1982-01-01

    The effects of Co 60 gamma rays on the absorption of salicylic natrium orally taken by white rats after being irradiated were studied. Patients treated with radiation used to be given analgesic drugs to elicit pain. Effects of radiation on the physiology of gastrointestinal tracts of such patients are to be studied. Based on this perception some white rats were irradiated with Co 60 gamma rays at the cumulative doses of 500, 750, and 1000 rads which were fractionated to 5 daily doses of 100, 150, and 200 rads. Salicylate concentration in the rat's blood was measured with spectrophotometer. It was found that the greater the radiation dose was given, the less salicylic natrium was absorbed and at a certain dose saturation point happened. (RUW)

  8. Dose calculation method with 60-cobalt gamma rays in total body irradiation

    International Nuclear Information System (INIS)

    Scaff, Luiz Alberto Malaguti

    2001-01-01

    Physical factors associated to total body irradiation using 60 Co gamma rays beams, were studied in order to develop a calculation method of the dose distribution that could be reproduced in any radiotherapy center with good precision. The method is based on considering total body irradiation as a large and irregular field with heterogeneities. To calculate doses, or doses rates, of each area of interest (head, thorax, thigh, etc.), scattered radiation is determined. It was observed that if dismagnified fields were considered to calculate the scattered radiation, the resulting values could be applied on a projection to the real size to obtain the values for dose rate calculations. In a parallel work it was determined the variation of the dose rate in the air, for the distance of treatment, and for points out of the central axis. This confirm that the use of the inverse square law is not valid. An attenuation curve for a broad beam was also determined in order to allow the use of absorbers. In this work all the adapted formulas for dose rate calculations in several areas of the body are described, as well time/dose templates sheets for total body irradiation. The in vivo dosimetry, proved that either experimental or calculated dose rate values (achieved by the proposed method), did not have significant discrepancies. (author)

  9. Mass absorption and mass energy transfer coefficients for 0.4-10 MeV gamma rays in elemental solids and gases

    Energy Technology Data Exchange (ETDEWEB)

    Gurler, O. [Physics Department, Faculty of Arts and Sciences, Uludag University, Gorukle Campus, 16059 Bursa (Turkey)], E-mail: ogurler@uludag.edu.tr; Oz, H. [Physics Department, Faculty of Arts and Sciences, Uludag University, Gorukle Campus, 16059 Bursa (Turkey); Yalcin, S. [Education Faculty, Kastamonu University, 37200 Kastamonu (Turkey); Gundogdu, O. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); NCCPM, Medical Physics, Royal Surrey County Hospital, GU2 7XX (United Kingdom)

    2009-01-15

    The mass energy absorption, the mass energy transfer and mass absorption coefficients have been widely used for problems and applications involving dose calculations. Direct measurements of the coefficients are difficult, and theoretical computations are usually employed. In this paper, analytical equations are presented for determining the mass energy transfer and mass absorption coefficients for gamma rays with an incident energy range between 0.4 and 10 MeV in nitrogen, silicon, carbon, copper and sodium iodide. The mass absorption and mass energy transfer coefficients for gamma rays were calculated, and the results obtained were compared with the values reported in the literature.

  10. Mass absorption and mass energy transfer coefficients for 0.4-10 MeV gamma rays in elemental solids and gases

    International Nuclear Information System (INIS)

    Gurler, O.; Oz, H.; Yalcin, S.; Gundogdu, O.

    2009-01-01

    The mass energy absorption, the mass energy transfer and mass absorption coefficients have been widely used for problems and applications involving dose calculations. Direct measurements of the coefficients are difficult, and theoretical computations are usually employed. In this paper, analytical equations are presented for determining the mass energy transfer and mass absorption coefficients for gamma rays with an incident energy range between 0.4 and 10 MeV in nitrogen, silicon, carbon, copper and sodium iodide. The mass absorption and mass energy transfer coefficients for gamma rays were calculated, and the results obtained were compared with the values reported in the literature

  11. A self-sufficient and general method for self-absorption correction in gamma-ray spectrometry using GEANT4

    International Nuclear Information System (INIS)

    Hurtado, S.; Villa, M.; Manjon, G.; Garcia-Tenorio, R.

    2007-01-01

    This paper presents a self-sufficient and general method for measurement of the activity of low-level gamma-emitters in voluminous samples by gamma-ray spectrometry with a coaxial germanium detector. Due to self-absorption within the sample, the full-energy peak efficiency of low-energy emitters in semiconductor gamma-spectrometers depends strongly on a number of factors including sample composition, density, sample size and gamma-ray energy. As long as those commented factors are well characterized, the influence of self-absorption in the full-energy peak efficiency of low-energy emitters can be calculated using Monte Carlo method based on GEANT4 code for each individual sample. However this task is quite tedious and time consuming. In this paper, we propose an alternative method to determine this influence for voluminous samples of unknown composition. Our method combines both transmission measurements and Monte Carlo simulations, avoiding the application of Monte Carlo full-energy peak efficiency determinations for each individual sample. To test the accuracy and precision of the proposed method, we have calculated 210 Pb activity in sediments samples from an estuary located in the vicinity of several phosphates factories with the proposed method, comparing the obtained results with the ones determined in the same samples using two alternative radiometric techniques

  12. A comprehensive study of the energy absorption and exposure buildup factors of different bricks for gamma-rays shielding

    Directory of Open Access Journals (Sweden)

    M.I. Sayyed

    Full Text Available The present investigation has been performed on different bricks for the purpose of gamma-ray shielding. The values of the mass attenuation coefficient (µ/ρ, energy absorption buildup factor (EABF and exposure buildup factor (EBF were determined and utilized to assess the shielding effectiveness of the bricks under investigation. The mass attenuation coefficients of the selected bricks were calculated theoretically using WinXcom program and compared with MCNPX code. Good agreement between WinXcom and MCNPX results was observed. Furthermore, the EABF and EBF have been discussed as functions of the incident photon energy and penetration depth. It has been found that the EABF and EBF values are very large in the intermediate energy region. The steel slag showed good shielding properties, consequently, this brick is eco-friendly and feasible compared with other types of bricks used for construction. The results in this work should be useful in the construction of effectual shielding against hazardous gamma-rays. Keywords: Brick, Mass attenuation coefficient, Buildup factor, G-P fitting, Radiation shielding

  13. Influence of Gamma-Ray Irradiation on Absorption and Fluorescent Spectra of Nd:YAG and Yb:YAG Laser Crystals

    Institute of Scientific and Technical Information of China (English)

    SUN Dun-Lu; ZHANG Qing-Li; XIAO Jing-Zhong; LUO Jian-Qiao; JIANG Hai-He; YIN Shao-Tang

    2008-01-01

    We investigate the influence of gamma-ray irradiation on the absorption and fluorescent spectra of Nd3+ : Y3Al5O12 (Nd:YAG) and Yb3+ :Y3Al5O12 (Yb:YAG) crystals grown by the Czochralski method. Two additional absorption (AA) bands induced by gamma-ray irradiation appear at 255nm and 340nm. The former is eontributed due to Fe3+ impurity, the latter is due to Fe2+ ions and F-type colour centres. The intensity of the excitation and emission spectra as well as the fluorescent lifetime of Nd:YAG crystal decrease after the irradiation of 100 Mrad gamma-ray. In contrast, the same dose irradiation does not impair the fluorescent properties of Yb: YA G crystal. These results indicate that Yb: YA G crystal possesses the advantage over Nd: YA G crystal that has better reliability for applications in harsh radiant environment.

  14. Modeling of gamma ray energy-absorption buildup factors for thermoluminescent dosimetric materials using multilayer perceptron neural network

    DEFF Research Database (Denmark)

    Kucuk, Nil; Manohara, S.R.; Hanagodimath, S.M.

    2013-01-01

    In this work, multilayered perceptron neural networks (MLPNNs) were presented for the computation of the gamma-ray energy absorption buildup factors (BA) of seven thermoluminescent dosimetric (TLD) materials [LiF, BeO, Na2B4O7, CaSO4, Li2B4O7, KMgF3, Ca3(PO4)2] in the energy region 0.015–15Me......V, and for penetration depths up to 10 mfp (mean-free-path). The MLPNNs have been trained by a Levenberg–Marquardt learning algorithm. The developed model is in 99% agreement with the ANSI/ANS-6.4.3 standard data set. Furthermore, the model is fast and does not require tremendous computational efforts. The estimated BA...

  15. Constraints on gamma-ray burst and supernova progenitors through circumstellar absorption lines : II. Post-LBV Wolf-Rayet stars

    NARCIS (Netherlands)

    Marle, A.J.; Langer, N.; Garcia-Segura, G.

    2007-01-01

    Van Marle et al. (2005) showed that circumstellar absorption lines in early Type Ib/c supernova and gamma-ray burst afterglow spectra may reveal the progenitor evolution of the exploding Wolf-Rayet star. While the quoted paper deals with Wolf-Rayet stars which evolved through a red supergiant stage,

  16. Use of the gamma-ray absorption technique as a quality control procedure in the manufacture of powder metal shaped charge liners

    CSIR Research Space (South Africa)

    Lawrie, JJ

    2010-09-01

    Full Text Available The use of the gamma-ray absorption technique as a tool in evaluating the quality of manufactured powder metal liners was investigated. With powder metal liners, it is not only of interest to know whether the liner conforms geometrically...

  17. Effects of the gamma-ray irradiation on the optical absorption of pure silica core single-mode fibres in the visible and NIR range

    International Nuclear Information System (INIS)

    Calderon, A.; Calvo, E.; Figueroa, C.F.; Martinez-Rivero, C.; Matorras, F.; Rodrigo, T.; Sobron, M.; Vila, I.; Virto, A.L.; Arce, P.; Barcala, J.M.; Ferrando, A.; Josa, M.I.; Luque, J.M.; Molinero, A.; Navarrete, J.; Oller, J.C.; Yuste, C.

    2005-01-01

    Optical absorption induced by photon radiation was evaluated for several commercial pure silica core, single mode, optical fibres. The study was performed for three different wavelengths: 630, 670 and 785 nm. We have identified a fibre whose induced transmission loss stays below 1 dB/m after 300 kGy gamma-ray irradiation

  18. Development of gamma-ray absorption and scattering simulation platform based on MCNP

    International Nuclear Information System (INIS)

    Lai Wanchang; Chen Henggui; Zhang Zhen; Chen Xiaoqiang

    2010-01-01

    It describes a γ-ray absorption and scattering simulation platform centering on MCNP, and developed corresponding accessories on the basis of the MCNP. Simulation of this simulation platform can be 93 kinds of single-quality materials and 2-3 kinds of multi-element mixture absorption experiment, simulating the absorption thickness of 0-100cm, and the thickness increment in 0.001cm. The media of Scattering Simulation is from the Li to the Am, the angle between the simulation measuring degree and incident ray direction is from-90 to 90, the angle in increments in 1 degree. (authors)

  19. Energy absorption coefficients for 662 keV gamma ray in some fatty acids

    International Nuclear Information System (INIS)

    Bhandal, G.S.; Singh, K.; Rama Rani; Vijay Kumar

    1993-01-01

    The mass energy absorption coefficient refers to the amount of energy dissipation by the secondary electron set in motion as a result of interactions between incident photons and matter. Under certain conditions, the energy dissipated by electrons in a given volume can be equated to the energy absorbed in that volume. The absorbed energy is of basic interest in radiation dosimetry because it represents the amount of energy made available for the production of chemical or biological effects. Sphere transmission is employed for the direct measurement of mass energy absorption coefficients at 662 keV in some fatty acids. Excellent agreement is obtained between the measured and theoretical values. (author). 6 refs., 1 fig., 1 tab

  20. A new method to make gamma-ray self-absorption correction

    International Nuclear Information System (INIS)

    Tian Dongfeng; Xie Dong; Ho Yukun; Yang Fujia

    2001-01-01

    This paper is devoted to discuss a new method to directly extract the information of the geometric self-absorption correction through the measurement of characteristic γ radiation emitted spontaneously from nuclear fissile material. The numerical simulation tests show that this method can extract the purely original information needed for nondestructive assay method by the γ-ray spectra to be measured, even though the geometric shape of the sample and materials between sample and detector are not known in advance. (author)

  1. Absorption of gamma-ray photons in a vacuum neutron star magnetosphere: II. The formation of “lightnings”

    International Nuclear Information System (INIS)

    Istomin, Ya. N.; Sob’yanin, D. N.

    2011-01-01

    The absorption of a high-energy photon from the external cosmic gamma-ray background in the inner neutron star magnetosphere triggers the generation of a secondary electron-positron plasma and gives rise to a lightning—a lengthening and simultaneously expanding plasma tube. It propagates along magnetic fields lines with a velocity close to the speed of light. The high electron-positron plasma generation rate leads to dynamical screening of the longitudinal electric field that is provided not by charge separation but by electric current growth in the lightning. The lightning radius is comparable to the polar cap radius of a radio pulsar. The number of electron-positron pairs produced in the lightning in its lifetime reaches 10 28 . The density of the forming plasma is comparable to or even higher than that in the polar cap regions of ordinary pulsars. This suggests that the radio emission from individual lightnings can be observed. Since the formation time of the radio emission is limited by the lightning lifetime, the possible single short radio bursts may be associated with rotating radio transients (RRATs).

  2. Absorption of gamma-ray photons in a vacuum neutron star magnetosphere: II. The formation of "lightnings"

    Science.gov (United States)

    Istomin, Ya. N.; Sob'yanin, D. N.

    2011-10-01

    The absorption of a high-energy photon from the external cosmic gamma-ray background in the inner neutron star magnetosphere triggers the generation of a secondary electron-positron plasma and gives rise to a lightning—a lengthening and simultaneously expanding plasma tube. It propagates along magnetic fields lines with a velocity close to the speed of light. The high electron-positron plasma generation rate leads to dynamical screening of the longitudinal electric field that is provided not by charge separation but by electric current growth in the lightning. The lightning radius is comparable to the polar cap radius of a radio pulsar. The number of electron-positron pairs produced in the lightning in its lifetime reaches 1028. The density of the forming plasma is comparable to or even higher than that in the polar cap regions of ordinary pulsars. This suggests that the radio emission from individual lightnings can be observed. Since the formation time of the radio emission is limited by the lightning lifetime, the possible single short radio bursts may be associated with rotating radio transients (RRATs).

  3. GAMMA–GAMMA ABSORPTION IN THE BROAD LINE REGION RADIATION FIELDS OF GAMMA-RAY BLAZARS

    Energy Technology Data Exchange (ETDEWEB)

    Böttcher, Markus; Els, Paul, E-mail: Markus.Bottcher@nwu.ac.za [Centre for Space Research, North-West University, Potchefstroom, 2531 (South Africa)

    2016-04-20

    The expected level of γγ absorption in the Broad Line Region (BLR) radiation field of γ -ray loud Flat Spectrum Radio Quasars (FSRQs) is evaluated as a function of the location of the γ -ray emission region. This is done self-consistently with parameters inferred from the shape of the spectral energy distribution (SED) in a single-zone leptonic EC-BLR model scenario. We take into account all geometrical effects both in the calculation of the γγ opacity and the normalization of the BLR radiation energy density. As specific examples, we study the FSRQs 3C279 and PKS 1510-089, keeping the BLR radiation energy density at the location of the emission region fixed at the values inferred from the SED. We confirm previous findings that the optical depth due to γγ absorption in the BLR radiation field exceeds unity for both 3C279 and PKS 1510-089 for locations of the γ -ray emission region inside the inner boundary of the BLR. It decreases monotonically, with distance from the central engine and drops below unity for locations within the BLR. For locations outside the BLR, the BLR radiation energy density required for the production of GeV γ -rays rapidly increases beyond observational constraints, thus making the EC-BLR mechanism implausible. Therefore, in order to avoid significant γγ absorption by the BLR radiation field, the γ -ray emission region must therefore be located near the outer boundary of the BLR.

  4. Total photon absorption

    International Nuclear Information System (INIS)

    Carlos, P.

    1985-06-01

    The present discussion is limited to a presentation of the most recent total photonuclear absorption experiments performed with real photons at intermediate energy, and more precisely in the region of nucleon resonances. The main sources of real photons are briefly reviewed and the experimental procedures used for total photonuclear absorption cross section measurements. The main results obtained below 140 MeV photon energy as well as above 2 GeV are recalled. The experimental study of total photonuclear absorption in the nuclear resonance region (140 MeV< E<2 GeV) is still at its beginning and some results are presented

  5. Determination of total fluorine in five coal reference materials by proton-induced gamma-ray emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Roelandts, I.; Robaye, G.; Delbrouck-Habaru, J.M.; Weber, G. [University of Liege, Sart (Belgium). Dept. of Geology, Petrology and Geochemistry

    1996-03-01

    The direct non-destructive proton-induced gamma-ray emission (PIGE) technique with a germanium detector was applied to the determination of total fluorine concentration in five coal reference materials (BCR 30, NIST 1632b, NIST 1635, SARM 20 and USGS CLB-1). Duplicate analyses were made from five randomly selected bottles of each coal. Individual data are presented and some problems (calibration, proton stopping power, effects of sample heating by the proton beam, background estimation) which were encountered during this study are discussed. Sensitivity and reproducibility of the determinations, and homogeneity of the coal samples with respect to fluorine contents by analysis of variance were investigated. The present data are also compared with the few published values for these reference samples, including other PIGE data. The use of synthetic standards and spiked samples in the present study suggested that the PIGE method was more accurate than other techniques.

  6. Gamma-ray energy absorption and exposure buildup factor studies in some human tissues with endometriosis

    Energy Technology Data Exchange (ETDEWEB)

    Kurudirek, Murat, E-mail: mkurudirek@gmail.co [Faculty of Science, Department of Physics, Ataturk University, 25240 Erzurum (Turkey); Dogan, Bekir [Faculty of Science, Department of Physics, Ataturk University, 25240 Erzurum (Turkey); Ingec, Metin [Faculty of Medicine, Department of Obstetrics and Gynecology, Ataturk University, 25240 Erzurum (Turkey); Ekinci, Neslihan; Ozdemir, Yueksel [Faculty of Science, Department of Physics, Ataturk University, 25240 Erzurum (Turkey)

    2011-02-15

    Human tissues with endometriosis have been analyzed in terms of energy absorption (EABF) and exposure (EBF) buildup factors using the five-parameter geometric progression (G-P) fitting formula in the energy region 0.015-15 MeV up to a penetration depth of 40 mfp (mean free path). Chemical compositions of the tissue samples were determined using a wavelength dispersive X-ray fluorescence spectrometer (WDXRFS). Possible conclusions were drawn due to significant variations in EABF and EBF for the selected tissues when photon energy, penetration depth and chemical composition changed. Buildup factors so obtained may be of use when the method of choice for treatment of endometriosis is radiotherapy.

  7. A new method for the direct measurement of the energy absorption coefficient of gamma rays

    International Nuclear Information System (INIS)

    Bradley, D.A.; Chong, C.S.; Shukri, A.; Tajuddin, A.A.; Ghose, A.M.

    1988-01-01

    The most important primary interaction cross section of gamma radiation which is of interest in radiation dosimetry and health physics is the energy absorption coefficient μ en of the medium under study. Direct measurement of μ en is, however, difficult and recourse is t aken to theoretical computations for its estimation. In this study a new, simple and direct method for the determination of μ en is reported. The method is based on paraxial sphere transmission using a proportional-response gamma detector. The bremsstrahlung originating from photoelectrons in the absorbing medium and fluorescence radiations from shielding etc. have been suppressed by using suitable filters. The effects of nonparaxiality of finite sample thickness have been accounted for, using extrapolation procedures. The deviation from nonproportionality and other corrections have been shown to be small. The measured value of μ en for paraffin has been determined as (3.3+-0.2)x10 -3 m 2 /Kg. This compares favourably with the theoretically computed value of 3.35 x 10 -3 m 2 /Kg given by Hubbell et al [pt

  8. Gamma ray generator

    Science.gov (United States)

    Firestone, Richard B; Reijonen, Jani

    2014-05-27

    An embodiment of a gamma ray generator includes a neutron generator and a moderator. The moderator is coupled to the neutron generator. The moderator includes a neutron capture material. In operation, the neutron generator produces neutrons and the neutron capture material captures at least some of the neutrons to produces gamma rays. An application of the gamma ray generator is as a source of gamma rays for calibration of gamma ray detectors.

  9. Total photon absorption

    International Nuclear Information System (INIS)

    Carlos, P.

    1985-01-01

    Experimental methods using real photon beams for measurements of total photonuclear absorption cross section σ(Tot : E/sub γ/) are recalled. Most recent σ(Tot : E/sub γ/)results for complex nuclei and in the nucleon resonance region are presented

  10. A fast neutron and dual-energy gamma-ray absorption method (NEUDEG) for investigating materials using a 252Cf source

    International Nuclear Information System (INIS)

    Bartle, C. Murray

    2014-01-01

    DEXA (dual-energy X-ray absorption) is widely used in airport scanners, industrial scanners and bone densitometers. DEXA determines the properties of materials by measuring the absorption differences of X-rays from a bremsstrahlung tube source with and without filtering. Filtering creates a beam with a higher mean energy, which causes lower material absorption. The absorption difference between measurements (those with a filter subtracted from those without a filter) is a positive number that increases with the effective atomic number of the material. In this paper, the concept of using a filter to create a dual beam and an absorption difference in materials is applied to radiation from a 252 Cf source, called NEUDEG (neutron and dual-energy gamma absorption). NEUDEG includes absorptions for fast neutrons as well as the dual photon beams and thus an incentive for developing the method is that, unlike DEXA, it is inherently sensitive to the hydrogen content of materials. In this paper, a model for the absorption difference and absorption sum in NEUDEG is presented using the combined gamma ray and fast neutron mass attenuation coefficients. Absorption differences can be either positive or negative in NEUDEG, increasing with increases in the effective atomic number and decreasing with increases in the hydrogen content. Sample sets of absorption difference curves are calculated for materials with typical gamma-ray and fast neutron mass attenuation coefficients. The model, which uses tabulated mass attenuated coefficients, agrees with experimental data for porcelain tiles and polyethylene sheets. The effects of “beam hardening” are also investigated. - Highlights: • Creation of a dual neutron/gamma beam from 252 Cf is described. • An absorption model is developed using mass attenuation coefficients. • A graphical method is used to show sample results from the model. • The model is successfully compared with experimental results. • The importance of

  11. Monte Carlo simulation of gamma-ray total counting efficiency for a Phoswich detector

    Energy Technology Data Exchange (ETDEWEB)

    Yalcin, S. [Education Faculty, Kastamonu University, 37200 Kastamonu (Turkey)], E-mail: syalcin@kastamonu.edu.tr; Gurler, O. [Department of Physics, Faculty of Arts and Sciences, Uludag University, Gorukle Campus, 16059 Bursa (Turkey); Gundogdu, O. [Department of Physics, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, GU2 7XH (United Kingdom); NCCPM, Medical Physics, Royal Surrey County Hospital, Guildford, GU2 7XX (United Kingdom); Kaynak, G. [Department of Physics, Faculty of Arts and Sciences, Uludag University, Gorukle Campus, 16059 Bursa (Turkey)

    2009-01-15

    The LB 1000-PW detector is mainly used for determining total alpha, beta and gamma activity of low activity natural sources such as water, soil, air filters and any other environmental sources. Detector efficiency needs to be known in order to measure the absolute activity of such samples. This paper presents results on the total gamma counting efficiency of a Phoswich detector from point and disk sources. The directions of photons emitted from the source were determined by Monte Carlo techniques and the true path lengths in the detector were determined by analytical equations depending on photon directions. Results are tabulated for various gamma energies.

  12. Monte Carlo simulation of gamma-ray total counting efficiency for a Phoswich detector

    International Nuclear Information System (INIS)

    Yalcin, S.; Gurler, O.; Gundogdu, O.; Kaynak, G.

    2009-01-01

    The LB 1000-PW detector is mainly used for determining total alpha, beta and gamma activity of low activity natural sources such as water, soil, air filters and any other environmental sources. Detector efficiency needs to be known in order to measure the absolute activity of such samples. This paper presents results on the total gamma counting efficiency of a Phoswich detector from point and disk sources. The directions of photons emitted from the source were determined by Monte Carlo techniques and the true path lengths in the detector were determined by analytical equations depending on photon directions. Results are tabulated for various gamma energies

  13. Total Absorption Spectroscopy

    International Nuclear Information System (INIS)

    Rubio, B.; Gelletly, W.

    2007-01-01

    The problem of determining the distribution of beta decay strength (B(GT)) as a function of excitation energy in the daughter nucleus is discussed. Total Absorption Spectroscopy is shown to provide a way of determining the B(GT) precisely. A brief history of such measurements and a discussion of the advantages and disadvantages of this technique, is followed by examples of two recent studies using the technique. (authors)

  14. Neutron total, scattering and inelastic gamma-ray cross sections of yttrium at few MeV energies

    International Nuclear Information System (INIS)

    Budtz-Joergensen, C.; Guenther, P.; Smith, A.; Whalen, J.; McMurray, W.R.; Renan, M.J.; Heerden, I.J. van

    1984-01-01

    Neutron total, scattering and (n; n', γ) cross sections of elemental yttrium ( 89 Y) were measured in the few-MeV region. The neutron total-cross-section measurements were made with broad resolutions from approx.=0.5 to 4.2 MeV in steps of < or approx.0.1 MeV. Neutron elastic- and inelastic-scattering cross sections were measured from approx.=1.5 to 4.0 MeV, at incident-neutron energy intervals of approx.=50 keV and at ten or more scattering angles distributed between 20 and 160 degrees using neutron detection. Inelastic-scattering cross sections were also determined using the (n; n', γ) reaction at incident energies from 1.6 to 3.8 MeV at intervals of 0.1 MeV. Gamma-rays and/or inelastically-scattered neutrons were observed corresponding to the excitation of levels at: 909.0+-0.5, 1,507.4+-0.3, 1,744.5+-0.3, 2,222.6+-0.5, 2,530+-0.8, 2,566.4+-1.0, 2,622.5+-1.0, 2,871.9+-1.5, 2,880.6+-2.0, 3,067.0+-2.0, 3,107.0+-2.0, 3,140.0+-2.0, 3,410.0+-2.0, 3,450.0+-2.0, 3,504.0+-1.5, 3,514.0+-2.0, 3,556.0+-2.0, 3,619.0+-3.0, 3,629.0+-3.0 and 3,715.0+-3.0 keV. The experimental results are discussed in terms of the spherical-optical-statistical, coupled-channels, and core-coupling models, and in the context of previously reported excited-level structure. (orig.)

  15. Gamma-ray burst spectra

    International Nuclear Information System (INIS)

    Teegarden, B.J.

    1982-01-01

    A review of recent results in gamma-ray burst spectroscopy is given. Particular attention is paid to the recent discovery of emission and absorption features in the burst spectra. These lines represent the strongest evidence to date that gamma-ray bursts originate on or near neutron stars. Line parameters give information on the temperature, magnetic field and possibly the gravitational potential of the neutron star. The behavior of the continuum spectrum is also discussed. A remarkably good fit to nearly all bursts is obtained with a thermal-bremsstrahlung-like continuum. Significant evolution is observed of both the continuum and line features within most events

  16. Total integrated dose testing of solid-state scientific CD4011, CD4013, and CD4060 devices by irradiation with CO-60 gamma rays

    Science.gov (United States)

    Dantas, A. R. V.; Gauthier, M. K.; Coss, J. R.

    1985-01-01

    The total integrated dose response of three CMOS devices manufactured by Solid State Scientific has been measured using CO-60 gamma rays. Key parameter measurements were made and compared for each device type. The data show that the CD4011, CD4013, and CD4060 produced by this manufacturers should not be used in any environments where radiation levels might exceed 1,000 rad(Si).

  17. Cosmic gamma-ray burst

    International Nuclear Information System (INIS)

    Yamagami, Takamasa

    1985-01-01

    Ballon experiments for searching gamma-ray burst were carried out by employing rotating-cross modulation collimators. From a very long observation of total 315 hours during 1975 to 1979, three gamma-ray intensity anomalies were observed which were speculated as a gamma-ray burst. As for the first gamma-ray intensity anomaly observed in 1975, the burst source could be located precisely but the source, heavenly body, could not be specified. Gamma-ray burst source estimation was made by analyzing distribution of burst source in the celestial sphere, burst size distribution, and burst peak. Using the above-mentioned data together with previously published ones, apparent inconsistency was found between the observed results and the adopted theory that the source was in the Galaxy, and this inconsistency was found due to the different time profiles of the burst observed with instruments of different efficiency. It was concluded by these analysis results that employment of logN - logP (relation between burst frequency and burst count) was better than that of logN - logS (burst size) in the examination of gamma-ray burst because the former was less uncertain than the latter. Analyzing the author's observed gamma-ray burst data and the related published data, it was clarified that the burst distribution was almost P -312 for the burst peak value larger than 10 -6 erg/cm 2 .sec. The author could indicate that the calculated celestial distribution of burst source was consistent with the observed results by the derivation using the logN - logP relationship and that the burst larger than 10 -6 erg/cm 2 .sec happens about one thousand times a year, about ten times of the previous value. (Takagi, S.)

  18. Application of gamma ray spectrometry and atomic absorption spectrometry for monitoring some radionuclides and heavy metals in sediments from the sudanese red sea coast

    International Nuclear Information System (INIS)

    Idris, A. M.; Eltayeb, M. A.

    2004-01-01

    A total of 31 surface sediment samples were collected from port-sudan harbour, sawakin harbour and the fringing reefs area that are located along the Sudanese coast of the red sea. The sampling was performed to provide good spatial coverage taking into account man's activity in port-sudan harbour and the fringing reefs area. the bulk samples were analyzed for some natural and anthropogenic radionuclides ( 226 Ra, 228 Ra, 40 K, 137 Cs) using direct gamma-ray spectrometry. Concentration of some heavy metals were determined in five fractions with grain-size of 1.000-0.500 m lm, 0.500-0.250 m lm, 0.250-0.125 m lm, 0.125-0.063 m lm and less than 0.063 m lm. The fractionation process was performed using dry sieving method. A total of 155 sub-samples (fractions) were digested by wet digestion method and analyzed for Mn, Fe, Ni, Cu, Zn, and Pb using flame atomic absorption spectrometry. Quality assurance of the obtained data was achieved through the analysis of certified reference materials. the radioactivity concentration ranges of ( 226 Ra, 228 Ra, and 40 K,) are 2.5-25.1b/kg, 2.1-13.1b q/kg,21.6- 429 Bq/kg, respectively. For ( 137 Cs)measurements, the highest value is 8.3 Bq/kg while most of samples were below the detection limits of the system. The concentration ranges of Mn, Fe, Cu, Zn, and Pb are 53.3-819 mg/kg, 1.4-51 mg/g, 8-131 mg/kg 9.5-113 mg/kg, 18.4-142 mg/kg, and 4.0-26.6 mg/kg, respectively. The granulometric normalization shows that some samples were subjected to anthropogenic activities. This finding was reinforced by results that were obtained from enrichment factor calculations and statistical multivariate analysis that is principal component analysis (Pca), also the Pca indicates that silt/clay fraction (>0.063 m lm ) is the dominant source for the emission of anthropogenic activities. From viewpoint of mineralogical composition the cluster analysis has distributed the samples into tow clusters. Dominant elements in sediments (Mn and Fe ) recorded

  19. Gamma ray astronomy

    International Nuclear Information System (INIS)

    Fichtel, C.E.

    1975-01-01

    The first certain detection of celestial high energy gamma rays came from a satellite experiment flown on the third Orbiting Solar Observatory (OSO-111). A Gamma ray spark chamber telescope with substantively greater sensitivity and angular resolution (a few degrees) flown on the second Small Astronomy Satellite (SAS-II) has now provided a better picture of the gamma ray sky, and particularly the galactic plane and pulsars. This paper will summarize the present picture of gamma ray astronomy as it has developed at this conference from measurements made with experiments carried out on balloons, those remaining on the ground, and ones flown on satellites. (orig.) [de

  20. Gamma-ray sources

    International Nuclear Information System (INIS)

    Hermsen, W.

    1980-01-01

    Results are presented from an analysis of the celestial gamma-ray fine-scale structure based on over half of the data which may ultimately be available from the COS-B satellite. A catalogue consisting of 25 gamma-ray sources measured at energies above 100 MeV is presented. (Auth.)

  1. Gamma ray astronomy

    International Nuclear Information System (INIS)

    Hillier, R.

    1984-01-01

    The book reviews the development of gamma ray astronomy over the past twenty five years. A large section of the book is devoted to the problems of background radiation and the design of detectors. Gamma rays from the sun, the galactic disc, the galaxy, and extra galactic sources; are also discussed. (U.K.)

  2. $\\beta$-decay studies using total-absorption spectroscopy

    CERN Document Server

    Algora, A; García-Borge, M J; Cano-Ott, D; Collatz, R; Courtin, S; Dessagne, P; Fraile-Prieto, L M; Gadea, A; Gelletly, W; Hellström, M; Janas, Z; Jungclaus, A; Kirchner, R; Karny, M; Le Scornet, G; Miehé, C; Maréchal, F; Moroz, F; Nacher, E; Poirier, E; Roeckl, E; Rubio, B; Rykaczewski, K; Taín, J L; Tengblad, O; Wittmann, V

    2004-01-01

    $\\beta$-decay experiments are a primary source of information for nuclear-structure studies and at the same time complementary to in- beam investigations of nuclei far from stability. Although both types of experiment are mainly based on $\\gamma$-ray spectroscopy, they face different experimental problems. The so-called " Pandemonium effect " is a critical problem in $\\beta$-decay if we are to test theoretically calculated transition probabilities. In this contribution we will present a solution to this problem using total absorption spectroscopy methods. We will also present some examples of experiments carried out with the Total Absorption Spectrometer (TAS) at GSI and describe a new device LUCRECIA recently installed at CERN.

  3. Basics of Gamma Ray Detection

    Energy Technology Data Exchange (ETDEWEB)

    Stinnett, Jacob [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Venkataraman, Ram [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-13

    The objective of this training is to explain the origin of x-rays and gamma rays, gamma ray interactions with matter, detectors and electronics used in gamma ray-spectrometry, and features of a gamma-ray spectrum for nuclear material that is safeguarded.

  4. Gamma-ray Output Spectra from 239 Pu Fission

    International Nuclear Information System (INIS)

    Ullmann, John

    2015-01-01

    Gamma-ray multiplicities, individual gamma-ray energy spectra, and total gamma energy spectra following neutron-induced fission of 239 Pu were measured using the DANCE detector at Los Alamos. Corrections for detector response were made using a forward-modeling technique based on propagating sets of gamma rays generated from a paramaterized model through a GEANT model of the DANCE array and adjusting the parameters for best fit to the measured spectra. The results for the gamma-ray spectrum and multiplicity are in general agreement with previous results, but the measured total gamma-ray energy is about 10% higher. A dependence of the gamma-ray spectrum on the gamma-ray multplicity was also observed. Global model calculations of the multiplicity and gamma energy distributions are in good agreement with the data, but predict a slightly softer total-energy distribution

  5. The effects of proton-beam quality on the production of gamma rays for nuclear resonance absorption in nitrogen

    International Nuclear Information System (INIS)

    Graybill, R.; Morgado, R.E.; Cappiello, C.C.

    1994-05-01

    The authors describe a method for performing nuclear-resonance absorption with the proton beam from a radio-frequency quadrupole (RFQ) linear accelerator. The objective was to assess the suitability of the pulsed beam from an RFQ to image nitrogen compared to electrostatic accelerators. This choice of accelerator results in trade-offs in performance and complexity, in return for the prospect of higher average current. In spite of a reduced resonance attenuation coefficient in nitrogen, they successfully produced three-dimensional tomographic images of real explosives in luggage the first time the unoptimized system was operated. The results and assessments of the initial laboratory measurements are reported

  6. The effects of proton-beam quality on the production of gamma rays for nuclear resonance absorption in nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Graybill, R. [ed.; Morgado, R.E.; Cappiello, C.C. [and others

    1994-05-01

    The authors describe a method for performing nuclear-resonance absorption with the proton beam from a radio-frequency quadrupole (RFQ) linear accelerator. The objective was to assess the suitability of the pulsed beam from an RFQ to image nitrogen compared to electrostatic accelerators. This choice of accelerator results in trade-offs in performance and complexity, in return for the prospect of higher average current. In spite of a reduced resonance attenuation coefficient in nitrogen, they successfully produced three-dimensional tomographic images of real explosives in luggage the first time the unoptimized system was operated. The results and assessments of the initial laboratory measurements are reported.

  7. Catalog of gamma-rays unplaced in radioactive decay schemes

    International Nuclear Information System (INIS)

    Narita, Tsutomu; Kitao, Kensuke.

    1991-03-01

    A catalog is made for gamma-rays emitted in decay of radioactive nuclides but not placed in their decay schemes. It consists of two tables. In Table 1, the number of these unplaced gamma-ray components by a nuclide is given together with the fraction of total intensity of these gamma-rays to that of all observed gamma-rays. In Table 2, the unplaced gamma-rays are arranged in order of increasing energy. Each line of this table contains the gamma-ray energy, intensity, nuclide identification, and energies and intensities of the most prominent gamma-rays from the decay of the radionuclides. This catalog is a compilation from Evaluated Nuclear Structure Data File (ENSDF) maintained by National Nuclear Data Center at Brookhaven National Laboratory, of at February 1990. (author)

  8. Gamma-Ray Bursts

    Science.gov (United States)

    Pellizza, L. J.

    Gamma-ray bursts are the brightest transient sources in the gamma-ray sky. Since their discovery in the late 1960s, the investigation of the astrophysical sys- tems in which these phenomena take place, and the physical mechanisms that drive them, has become a vast and prolific area of modern astrophysics. In this work I will briefly describe the most relevant observations of these sources, and the models that describe their nature, emphasizing on the in- vestigations about the progenitor astrophysical systems. FULL TEXT IN SPANISH

  9. Gamma Ray Bursts

    Science.gov (United States)

    Gehrels, Neil; Meszaros, Peter

    2012-01-01

    Gamma-ray bursts (GRBs) are bright flashes of gamma-rays coming from the cosmos. They occur roughly once per day ,last typically lOs of seconds and are the most luminous events in the universe. More than three decades after their discovery, and after pioneering advances from space and ground experiments, they still remain mysterious. The launch of the Swift and Fermi satellites in 2004 and 2008 brought in a trove of qualitatively new data. In this review we survey the interplay between these recent observations and the theoretical models of the prompt GRB emission and the subsequent afterglows.

  10. CAMAC gamma ray scanning system

    International Nuclear Information System (INIS)

    Moss, C.E.; Pratt, J.C.; Shunk, E.R.

    1981-01-01

    A flexible gamma-ray scanning system, based on a LeCroy 3500 multichannel analyzer and CAMAC modules, is described. The system is designed for making simultaneous passive and active scans of objects of interest to nuclear safeguards. The scanner is a stepping-motor-driven carriage; the detectors, a bismuth-germanate scintillator and a high-purity germanium detector. A total of sixteen peaks in the two detector-produced spectra can be integrated simultaneously, and any scan can be viewed during data acquisition. For active scanning, the 2615-keV gamma-ray line from a 232 U source and the 4439-keV gamma-ray line from 9 Be(α,n) 12 C were selected. The system can be easily reconfigured to accommodate up to seven detectors because it is based on CAMAC modules and FORTRAN. The system is designed for field use and is easily transported. Examples of passive and active scans are presented

  11. Gamma ray astronomy

    International Nuclear Information System (INIS)

    Broomhead, Laurent.

    1980-01-01

    The nuclear gamma astronomy is presented, in particular the Gamma Ray Observatory, an enormous eight tonnes machine fitted with gamma telescopes, scheduled for launching around 1985. It is thereby hoped to study the natural nuclear reactions which occur when stars explode [fr

  12. Gamma ray calibration system

    International Nuclear Information System (INIS)

    Rosauer, P.J.; Flaherty, J.J.

    1981-01-01

    This invention is in the field of gamma ray inspection devices for tubular products and the like employing an improved calibrating block which prevents the sensing system from being overloaded when no tubular product is present, and also provides the operator with a means for visually detecting the presence of wall thicknesses which are less than a required minimum. (author)

  13. Jet simulations and gamma-ray burst afterglow jet breaks

    NARCIS (Netherlands)

    van Eerten, H.J.; Meliani, Z.; Wijers, R.A.M.J.; Keppens, R.

    2011-01-01

    The conventional derivation of the gamma-ray burst afterglow jet break time uses only the blast wave fluid Lorentz factor and therefore leads to an achromatic break. We show that in general gamma-ray burst afterglow jet breaks are chromatic across the self-absorption break. Depending on

  14. Jet simulations and gamma-ray burst afterglow jet breaks

    NARCIS (Netherlands)

    van Eerten, H. J.; Meliani, Z.; Wijers, R.A.M.J.; Keppens, R.

    2010-01-01

    The conventional derivation of the gamma-ray burst afterglow jet break time uses only the blast wave fluid Lorentz factor and therefore leads to an achromatic break. We show that in general gamma-ray burst afterglow jet breaks are chromatic across the self-absorption break. Depending on

  15. Monte Carlo calculation of the total probability for gamma-Ray interaction in toluene; Aplicacion del metodo de Monte Carlo al calcu lo de la probabilidad de interaccion fotonica en tolueno

    Energy Technology Data Exchange (ETDEWEB)

    Grau Malonda, A; Garcia-Torano, E

    1983-07-01

    Interaction and absorption probabilities for gamma-rays with energies between 1 and 1000 KeV have been computed and tabulated. Toluene based scintillator solution has been assumed in the computation. Both, point sources and homogeneously dispersed radioactive material have been assumed. These tables may be applied to cylinders with radii between 1.25 cm and 0.25 cm and heights between 4.07 cm and 0.20 cm. (Author) 26 refs.

  16. Gamma-ray bursts

    CERN Document Server

    Wijers, Ralph A M J; Woosley, Stan

    2012-01-01

    Cosmic gamma ray bursts (GRBs) have fascinated scientists and the public alike since their discovery in the late 1960s. Their story is told here by some of the scientists who participated in their discovery and, after many decades of false starts, solved the problem of their origin. Fourteen chapters by active researchers in the field present a detailed history of the discovery, a comprehensive theoretical description of GRB central engine and emission models, a discussion of GRB host galaxies and a guide to how GRBs can be used as cosmological tools. Observations are grouped into three sets from the satellites CGRO, BeppoSAX and Swift, and followed by a discussion of multi-wavelength observations. This is the first edited volume on GRB astrophysics that presents a fully comprehensive review of the subject. Utilizing the latest research, Gamma-ray Bursts is an essential desktop companion for graduate students and researchers in astrophysics.

  17. Gamma ray camera

    International Nuclear Information System (INIS)

    Wang, S.-H.; Robbins, C.D.

    1979-01-01

    An Anger gamma ray camera is improved by the substitution of a gamma ray sensitive, proximity type image intensifier tube for the scintillator screen in the Anger camera. The image intensifier tube has a negatively charged flat scintillator screen, a flat photocathode layer, and a grounded, flat output phosphor display screen, all of which have the same dimension to maintain unit image magnification; all components are contained within a grounded metallic tube, with a metallic, inwardly curved input window between the scintillator screen and a collimator. The display screen can be viewed by an array of photomultipliers or solid state detectors. There are two photocathodes and two phosphor screens to give a two stage intensification, the two stages being optically coupled by a light guide. (author)

  18. Gamma ray emission from pulsars

    International Nuclear Information System (INIS)

    Salvati, M.; Massaro, E.

    1978-01-01

    A model for the production of gamma rays in a pulsar environment is presented, together with numerical computations fitted to the observations of PSR 0833-45. It is assumed that the primary particles are accelerated close to the star surface and then injected along the open field lines, which cause them to emit curvature radiation. The equation describing the particles' braking is integrated exactly up to the first order in the pulsar rotational frequency, and the transfer problem for the curvature photons is solved with the aberration, the Doppler shif, and the pair production absorption being taken into account. The latter effect is due not only to the transverse component of the magnetic field, but also to the electric field induced by the rotation. The synchrotron radiation emitted by the secondary particles is also included, subject to the 'on-the-spot' approximation. It is found that the observed gamma rays originate in the innermost regions of the magnetosphere, where the open lines' bundle is narrow and the geometrical beaming is effective. As shown by the computed pulse profiles, the duty cycle turns out to be equal to a few percent, comparable to the one of PSR 0833-45. The averaged spectra indicate that a substantial fraction of the primary photons do outlive the interaction with the magnetisphere; furthermore, the agreement in shape with the observational curves suggests that the acceleration output is fiarly close to a monoenergetic beam of particles. (orig.) [de

  19. $\\beta$-decay studies using total absorption techniques some recent results

    CERN Document Server

    Algora, A; García-Borge, M J; Cano-Ott, D; Collatz, R; Courtin, S; Dessagne, P; Fraile-Prieto, L M; Gadea, A; Gelletly, W; Hellström, M; Janas, Z; Jungclaus, A; Karny, M; Kirchner, R; Maréchal, F; Miehé, C; Moroz, F; Nacher, E; Poirier, E; Roeckl, E; Rubio, B; Rykaczewski, K; Scornet, G L; Taín, J L; Tengblad, O; Wittmann, V

    2004-01-01

    $\\beta$-decay experiments, are a primary source of information for nuclear structure studies and at the same time complementary to in-beam investigations far from stability. Although both types of experiment are mainly based on $\\gamma$-ray spectroscopy, they face different experimental problems. The so-called $\\textit{Pandemonium effect}$ is a critical problem in $\\beta$-decay. In this contribution we will present a solution to this problem using total absorption spectroscopy methods. We will also present some examples of experiments carried out with the total absorption spectrometers TAS at GSI and Lucrecia recently installed at CERN. (25 refs).

  20. Beta-decay studies using total absorption techniques: some recent results

    Energy Technology Data Exchange (ETDEWEB)

    Algora, A.; Rubio, B.; Nacher, E.; Cano O, D.; Tain, J.L.; Gadea, A. [lnstituto de Fisica Corpuscular, Apartado Oficial 22085, 46071 Valencia (Spain); Batist, L.; Moroz, F.; Wittmann, V. [St. Petersburg Nuclear Physics Institute, RU-188-350 Gatchina, (Russian Federation); Borge, M.J.G.; Jungclaus, A.; Tengblad, O. [Instituto Estructura de la Materia, E-28006 Madrid (Spain); Collatz, R.; Hellstrom, M.; Kirchner, R.; Roeckl, E. [Gesellschaft fur Schwerionenforschung, D-64291 Darmstadt (Germany); Courtin, H.; Dessagne, Ph.; Miehe, C.; Marechal, F.; Poirier, E. [lnstitut de Recherches Subatomiques, IN2P3-CNRS, F-67037 Strassbourg Cedex 2 (France); Fraile, L.M. [ISOLDE, Division EP, CERN, CH-1211 Geneva (Switzerland); Gelletly, W. [University of Surrey, Guildford GU2 7XH (United Kingdom); Janas, Z.; Karny, M.; Rykaczewski, K. [University of Warsaw, PL-00-681, Warsaw (Poland); Le Scornet, G. [CSNSM, 91405 Orsay (France)

    2004-12-01

    Beta-decay experiments are a primary source of information for nuclear structure studies and at the same time complementary to in-beam investigations far from stability. Although both types of experiment are mainly based on {gamma} ray spectroscopy, they face different experimental problems. The so called Pandemonium effect [1] is a critical problem in {beta}-decay. In this contribution we will present a solution to this problem using total absorption spectroscopy methods. We will also present some examples of experiments carried out with the total absorption spectrometers TAS at GSI and Lucrecia recently installed at CERN. (Author) 25 refs., 4 figs.

  1. Observation of gamma-ray bursts with GINGA

    International Nuclear Information System (INIS)

    Murakami, Toshio; Fujii, Masami; Nishimura, Jun

    1989-01-01

    Gamma-ray Burst Detector System (GBD) on board the scientific satellite 'GINGA' which was launched on Feb. 5, 1987, was realized as an international cooperation between ISAS and LANL. It has recorded more than 40 Gamma-Ray Burst candidates during 20 months observation. Although many observational evidences were accumulated in past 20 years after the discovery of gamma-ray burst by LANL scientists, there are not enough evidence to determine the origin and the production mechanism of the gamma-ray burst. GBD consists of a proportional counter and a NaI scintillation counter so that it became possible to observe energy spectrum of the gamma-ray burst with high energy resolution over wide range of energy (1.5-380 keV) together with high time resolution. As the result of observation, the following facts are obtained: (1) A large fraction of observed gamma-ray bursts has a long X-ray tail after the harder part of gamma-ray emission has terminated. (2) Clear spectral absorption features with harmonic in energy was observed in some of the energy spectrum of gamma-ray bursts. These evidences support the hypothesis that the strongly magnetized neutron star is the origin of gamma-ray burst. (author)

  2. GAMMA RAYS FROM STAR FORMATION IN CLUSTERS OF GALAXIES

    International Nuclear Information System (INIS)

    Storm, Emma M.; Jeltema, Tesla E.; Profumo, Stefano

    2012-01-01

    Star formation in galaxies is observed to be associated with gamma-ray emission, presumably from non-thermal processes connected to the acceleration of cosmic-ray nuclei and electrons. The detection of gamma rays from starburst galaxies by the Fermi Large Area Telescope (LAT) has allowed the determination of a functional relationship between star formation rate and gamma-ray luminosity. Since star formation is known to scale with total infrared (8-1000 μm) and radio (1.4 GHz) luminosity, the observed infrared and radio emission from a star-forming galaxy can be used to quantitatively infer the galaxy's gamma-ray luminosity. Similarly, star-forming galaxies within galaxy clusters allow us to derive lower limits on the gamma-ray emission from clusters, which have not yet been conclusively detected in gamma rays. In this study, we apply the functional relationships between gamma-ray luminosity and radio and IR luminosities of galaxies derived by the Fermi Collaboration to a sample of the best candidate galaxy clusters for detection in gamma rays in order to place lower limits on the gamma-ray emission associated with star formation in galaxy clusters. We find that several clusters have predicted gamma-ray emission from star formation that are within an order of magnitude of the upper limits derived in Ackermann et al. based on non-detection by Fermi-LAT. Given the current gamma-ray limits, star formation likely plays a significant role in the gamma-ray emission in some clusters, especially those with cool cores. We predict that both Fermi-LAT over the course of its lifetime and the future Cerenkov Telescope Array will be able to detect gamma-ray emission from star-forming galaxies in clusters.

  3. Lunar based gamma ray astronomy

    International Nuclear Information System (INIS)

    Haymes, R.C.

    1985-01-01

    Gamma ray astronomy represents the study of the universe on the basis of the electromagnetic radiation with the highest energy. Gamma ray astronomy provides a crucial tool for the understanding of astronomical phenomena, taking into account nucleosynthesis in supernovae, black holes, active galaxies, quasars, the sources of cosmic rays, neutron stars, and matter-antimatter annihilation. Difficulties concerning the conduction of studies by gamma ray astronomy are related to the necessity to perform such studies far from earth because the atmosphere is a source of gamma rays. Studies involving the use of gamma ray instruments in earth orbit have been conducted, and more gamma ray astronomy observations are planned for the future. Imperfections of studies conducted in low earth orbit could be overcome by estalishing an observatory on the moon which represents a satellite orbiting at 60 earth radii. Details concerning such an observatory are discussed. 5 references

  4. Gamma ray beam transmutation

    International Nuclear Information System (INIS)

    Imasaki, K.; Li, D.; Miyamoto, S.; Amano, S.; Motizuki, T.

    2007-01-01

    We have proposed a new approach to nuclear transmutation by a gamma ray beam of Compton scattered laser photon. We obtained 20 MeV gamma ray in this way to obtain transmutation rates with the giant resonance of 1 97Au and 1 29Iodine. The rate of the transmutation agreed with the theoretical calculation. Experiments on energy spectrum of positron, electron and neutron from targets were performed for the energy balance and design of the system scheme. The reaction rate was about 1.5∼4% for appropriate photon energies and neutron production rate was up to 4% in the measurements. We had stored laser photon more than 5000 times in a small cavity which implied for a significant improvement of system efficiency. Using these technologies, we have designed an actual transmutation system for 1 29Iodine which has a 16 million year's activity. In my presentation, I will address the properties of this scheme, experiments results and transmutation system for iodine transmutation

  5. Observational techniques of gamma rays astronomy in low energy

    International Nuclear Information System (INIS)

    Costa, J.M. da.

    1982-02-01

    Due to the absorption of great part of the gamma-ray spectrum of cosmic origin, by the earth's atmosphere at heights above 20Km, gamma-ray astronomy achieved its full development only after the advent of the space age. Ballons and satellites are the space vehicles which have been used to transport gamma-ray telescopes to observational heights in the atmosphere, or out of it. The results of these experiments can determine the sources, the energy spectra and the intensities of the cosmic gamma-rays, and provide other important information of astrophysical interest. The detection of gamma-rays of cosmic origin is very difficult. The observational techniques used in gamma-ray astronomy are dependent on the energy range of the gamma-rays which one desires to detect. The most common telescopes of low energy gamma-ray astronomy (50KeV - 20MeV) use NaI(Tl) scintillators, or germanium diodes, as principal detectors, surrounded by an active shield (anticoincidence) of organic or inorganic scintillators. (Author) [pt

  6. Gamma Ray Bursts - Observations

    Science.gov (United States)

    Gehrels, N.; Cannizzo, J. K.

    2010-01-01

    We are in an exciting period of discovery for gamma-ray bursts. The Swift observatory is detecting 100 bursts per year, providing arcsecond localizations and sensitive observations of the prompt and afterglow emission. The Fermi observatory is observing 250 bursts per year with its medium-energy GRB instrument and about 10 bursts per year with its high-energy LAT instrument. In addition, rapid-response telescopes on the ground are providing new capabilities to study optical emission during the prompt phase and spectral signatures of the host galaxies. The combined data set is enabling great advances in our understanding of GRBs including afterglow physics, short burst origin, and high energy emission.

  7. Gamma ray induced fruit quality variations in banana variety Nendran (Musa Paradasiaca L.)

    International Nuclear Information System (INIS)

    Radha Devi, D.S.; Nayer, N.K.

    1992-01-01

    Gamma ray induced fruit quality variation was envisaged to analyse the direct effect of Co 60 gamma rays in banana variety Nendran. Fruit quality analysis showed that the total soluble solids and acidity decreased and total sugar and sugar acid ratio increased with increase in dose of gamma ray exposures. (author). 5 refs., 1 tab

  8. Found: A Galaxy's Missing Gamma Rays

    Science.gov (United States)

    Kohler, Susanna

    2016-04-01

    Recent reanalysis of data from the Fermi Gamma-ray Space Telescope has resulted in the first detection of high-energy gamma rays emitted from a nearby galaxy. This discovery reveals more about how supernovae interact with their environments.Colliding Supernova RemnantAfter a stellar explosion, the supernovas ejecta expand, eventually encountering the ambient interstellar medium. According to models, this generates a strong shock, and a fraction of the kinetic energy of the ejecta is transferred into cosmic rays high-energy radiation composed primarily of protons and atomic nuclei. Much is still unknown about this process, however. One open question is: what fraction of the supernovas explosion power goes into accelerating these cosmic rays?In theory, one way to answer this is by looking for gamma rays. In a starburst galaxy, the collision of the supernova-accelerated cosmic rays with the dense interstellar medium is predicted to produce high-energy gamma rays. That radiation should then escape the galaxy and be visible to us.Pass 8 to the RescueObservational tests of this model, however, have beenstumped by Arp 220. This nearby ultraluminous infrared galaxy is the product of a galaxy merger ~700 million years ago that fueled a frenzy of starbirth. Due to its dusty interior and extreme levels of star formation, Arp 220 has long been predicted to emit the gamma rays produced by supernova-accelerated cosmic rays. But though weve looked, gamma-ray emission has never been detected from this galaxy until now.In a recent study, a team of scientists led by Fang-Kun Peng (Nanjing University) reprocessed 7.5 years of Fermi observations using the new Pass 8 analysis software. The resulting increase in resolution revealed the first detection of GeV emission from Arp 220!Acceleration EfficiencyGamma-ray luminosity vs. total infrared luminosity for LAT-detected star-forming galaxies and Seyferts. Arp 220s luminosities are consistent with the scaling relation. [Peng et al. 2016

  9. Technical Aspect on Procedure of Gamma-Ray Pipeline Inspection

    International Nuclear Information System (INIS)

    Rasif Mohd Zain; Ainul Mardhiah Terry; Norman Shah Dahing

    2015-01-01

    The main problems happen in industrial pipelines are deposit build-up, blockage, corrosion and erosion. These effects will give a constraint in transporting refined products to process or production points and cause a major problem in production. One of the techniques to inspect the problem is using gamma-ray pipe scans. The principle of the technique is gamma-ray absorption technique. In this paper describes on the technical aspect to perform the pipe inspection in laboratory work. (author)

  10. Slow neutrons and secondary gamma ray distributions in concrete shields followed by reflecting layers

    International Nuclear Information System (INIS)

    Makarious, A.S.; Swilem, Y.I.; Awwad, Z.; Bayomy, T.

    1993-01-01

    Slow neutrons and secondary gamma ray distributions in concrete shields with and without a reflecting layer behind layer behind the concrete shield have been investigated first in case of using a bare reactor beam and then on using a B-4 C filtered beam. The total and capture secondary gamma ray coefficient (B gamma and B gamma C ), the ratio of the reflected thermal neutron (gamma) the ratio of the secondary gamma rays caused by reflected neutrons to those caused transmitted neutrons (Th I gamma/F I gamma) and the effect of inserting a blocking layer (a B-4 C layer) between the concrete shield and the reflector on the suppression of the produced secondary gamma rays have been investigated. It was found that the presence of the reflector layer behind the concrete shield reflects some thermal neutrons back to the concrete shields and so it increases the number of thermal neutrons at the interface between the concrete shield and the reflector. Also the capture secondary gamma rays was increased at the interface between the two medii due to the capture of the reflected thermal neutrons in the concrete shields. It was shown that B-gamma is higher than and that B g amma B gamma C and I gamma T h/ I gamma i f for the different concrete types is higher in case of using the graphite reflector than that in using either water or paraffin reflectors. Putting a blocking layer (B 4 C layer) between the concrete shield and the reflector decreases the produced secondary gamma rays due to the absorption of the reflected thermal neutrons. 17 figs

  11. Apparatus for gamma ray radiography

    International Nuclear Information System (INIS)

    Kobayashi, Masatoshi; Enomoto, Shigemasa; Oga, Hiroshi

    1979-01-01

    This is the standard of Japan Non-Destructive Inspection Society, NDIS 1101-79, which stipulates on the design, construction and testing method of the apparatuses for gamma ray radiography used for taking industrial radiograms. The gamma ray apparatuses stipulated in this standard are those containing sealed radioactive isotopes exceeding 100 μCi, which emit gamma ray. The gamma ray apparatuses are classified into three groups according to their movability. The general design conditions, the irradiation dose rate and the sealed radiation sources for the gamma ray apparatuses are stipulated. The construction of the gamma ray apparatuses must be in accordance with the notification No. 52 of the Ministry of Labor, and safety devices and collimators must be equipped. The main bodies of the gamma ray apparatuses must pass the vibration test, penetration test, impact test and shielding efficiency test. The method of each test is described. The attached equipments must be also tested. The tests according to this standard are carried out by the makers of the apparatuses. The test records must be made when the apparatuses have passed the tests, and the test certificates are attached. The limit of guarantee by the endurance test must be clearly shown. The items to be shown on the apparatuses are stipulated. (Kako, I.)

  12. Applied gamma-ray spectrometry

    CERN Document Server

    Dams, R; Crouthamel, Carl E

    1970-01-01

    Applied Gamma-Ray Spectrometry covers real life application of the gamma-ray and the devices used in their experimental studies. This book is organized into 9 chapters, and starts with discussions of the various decay processes, the possible interaction mechanisms of gamma radiation with matter, and the intrinsic and extrinsic variables, which affect the observed gamma-ray and X-ray spectra. The subsequent chapters deal with the properties and fabrication of scintillation detectors, semiconductor detectors, and proportional gas counters. These chapters present some of the most widely utilized

  13. Increase in compton scattering of gamma rays passing along metal surface

    International Nuclear Information System (INIS)

    Grigor'ev, A.N.; Bilyk, Z.V.; Sakun, A.V.; Marushchenko, V.V.; Chernyavskij, O.Yu.; Litvinov, Yu.V.

    2014-01-01

    The paper considers experimental study of changes in energy of 137 Cs gamma source as gamma rays pass along metal surface. Decrease in gamma energy was examined by reducing the number of gamma rays in the complete absorption peak to the Compton length level and increasing the Compton effect. The number of gamma rays in the complete absorption peak decreases by 3.5 times in the angle range under study

  14. Multiwavelength Study of Gamma-Ray Bright Blazars

    Science.gov (United States)

    Morozova, Daria; Larionov, V. M.; Hagen-Thorn, V. A.; Jorstad, S. G.; Marscher, A. P.; Troitskii, I. S.

    2011-01-01

    We investigate total intensity radio images of 6 gamma-ray bright blazars (BL Lac, 3C 279, 3C 273, W Com, PKS 1510-089, and 3C 66A) and their optical and gamma-ray light curves to study connections between gamma-ray and optical brightness variations and changes in the parsec-scale radio structure. We use high-resolution maps obtained by the BU group at 43 GHz with the VLBA, optical light curves constructed by the St.Petersburg State U. (Russia) team using measurements with the 0.4 m telescope of St.Petersburg State U. (LX200) and the 0.7 m telescope of the Crimean Astrophysical Observatory (AZT-8), and gamma-ray light curves, which we have constructed with data provided by the Fermi Large Area Telescope. Over the period from August 2008 to November 2009, superluminal motion is found in all 6 objects with apparent speed ranging from 2c to 40c. The blazars with faster apparent speeds, 3C 273, 3C 279, PKS 1510-089, and 3C 66A, exhibit stronger variability of the gamma-ray emission. There is a tendency for sources with sharply peaked gamma-ray flares to have faster jet speed than sources with gamma-ray light curves with no sharp peaks. Gamma-ray light curves with sharply peaked gamma-ray flares possess a stronger gamma-ray/optical correlations. The research at St.Petersburg State U. was funded by the Minister of Education and Science of the Russian Federation (state contract N#P123). The research at BU was funded in part by NASA Fermi Guest Investigator grant NNX08AV65G and by NSF grant AST-0907893. The VLBA is an instrument of the National Radio Astronomy Observatory, a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

  15. Gamma rays at airplane altitudes

    International Nuclear Information System (INIS)

    Iwai, J.; Koss, T.; Lord, J.; Strausz, S.; Wilkes, J.; Woosley, J.

    1990-01-01

    An examination of the gamma ray flux above 1 TeV in the atmosphere is needed to better understand the anomalous showers from point sources. Suggestions are made for future experiments on board airplanes

  16. AGIS -- the Advanced Gamma-ray Imaging System

    Science.gov (United States)

    Krennrich, Frank

    2009-05-01

    The Advanced Gamma-ray Imaging System, AGIS, is envisioned to become the follow-up mission of the current generation of very high energy gamma-ray telescopes, namely, H.E.S.S., MAGIC and VERITAS. These instruments have provided a glimpse of the TeV gamma-ray sky, showing more than 70 sources while their detailed studies constrain a wealth of physics and astrophysics. The particle acceleration, emission and absorption processes in these sources permit the study of extreme physical conditions found in galactic and extragalactic TeV sources. AGIS will dramatically improve the sensitivity and angular resolution of TeV gamma-ray observations and therefore provide unique prospects for particle physics, astrophysics and cosmology. This talk will provide an overview of the science drivers, scientific capabilities and the novel technical approaches that are pursued to maximize the performance of the large array concept of AGIS.

  17. About cosmic gamma ray lines

    Science.gov (United States)

    Diehl, Roland

    2017-06-01

    Gamma ray lines from cosmic sources convey the action of nuclear reactions in cosmic sites and their impacts on astrophysical objects. Gamma rays at characteristic energies result from nuclear transitions following radioactive decays or high-energy collisions with excitation of nuclei. The gamma-ray line from the annihilation of positrons at 511 keV falls into the same energy window, although of different origin. We present here the concepts of cosmic gamma ray spectrometry and the corresponding instruments and missions, followed by a discussion of recent results and the challenges and open issues for the future. Among the lessons learned are the diffuse radioactive afterglow of massive-star nucleosynthesis in 26Al and 60Fe gamma rays, which is now being exploited towards the cycle of matter driven by massive stars and their supernovae; large interstellar cavities and superbubbles have been recognised to be of key importance here. Also, constraints on the complex processes making stars explode as either thermonuclear or core-collapse supernovae are being illuminated by gamma-ray lines, in this case from shortlived radioactivities from 56Ni and 44Ti decays. In particular, the three-dimensionality and asphericities that have recently been recognised as important are enlightened in different ways through such gamma-ray line spectroscopy. Finally, the distribution of positron annihilation gamma ray emission with its puzzling bulge-dominated intensity disctribution is measured through spatially-resolved spectra, which indicate that annihilation conditions may differ in different parts of our Galaxy. But it is now understood that a variety of sources may feed positrons into the interstellar medium, and their characteristics largely get lost during slowing down and propagation of positrons before annihilation; a recent microquasar flare was caught as an opportunity to see positrons annihilate at a source.

  18. Radio Flares from Gamma-ray Bursts

    Science.gov (United States)

    Kopač, D.; Mundell, C. G.; Kobayashi, S.; Virgili, F. J.; Harrison, R.; Japelj, J.; Guidorzi, C.; Melandri, A.; Gomboc, A.

    2015-06-01

    We present predictions of centimeter and millimeter radio emission from reverse shocks (RSs) in the early afterglows of gamma-ray bursts (GRBs) with the goal of determining their detectability with current and future radio facilities. Using a range of GRB properties, such as peak optical brightness and time, isotropic equivalent gamma-ray energy, and redshift, we simulate radio light curves in a framework generalized for any circumburst medium structure and including a parameterization of the shell thickness regime that is more realistic than the simple assumption of thick- or thin-shell approximations. Building on earlier work by Mundell et al. and Melandri et al. in which the typical frequency of the RS was suggested to lie at radio rather than optical wavelengths at early times, we show that the brightest and most distinct RS radio signatures are detectable up to 0.1-1 day after the burst, emphasizing the need for rapid radio follow-up. Detection is easier for bursts with later optical peaks, high isotropic energies, lower circumburst medium densities, and at observing frequencies that are less prone to synchrotron self-absorption effects—typically above a few GHz. Given recent detections of polarized prompt gamma-ray and optical RS emission, we suggest that detection of polarized radio/millimeter emission will unambiguously confirm the presence of low-frequency RSs at early time.

  19. RADIO FLARES FROM GAMMA-RAY BURSTS

    International Nuclear Information System (INIS)

    Kopač, D.; Mundell, C. G.; Kobayashi, S.; Virgili, F. J.; Harrison, R.; Japelj, J.; Gomboc, A.; Guidorzi, C.; Melandri, A.

    2015-01-01

    We present predictions of centimeter and millimeter radio emission from reverse shocks (RSs) in the early afterglows of gamma-ray bursts (GRBs) with the goal of determining their detectability with current and future radio facilities. Using a range of GRB properties, such as peak optical brightness and time, isotropic equivalent gamma-ray energy, and redshift, we simulate radio light curves in a framework generalized for any circumburst medium structure and including a parameterization of the shell thickness regime that is more realistic than the simple assumption of thick- or thin-shell approximations. Building on earlier work by Mundell et al. and Melandri et al. in which the typical frequency of the RS was suggested to lie at radio rather than optical wavelengths at early times, we show that the brightest and most distinct RS radio signatures are detectable up to 0.1–1 day after the burst, emphasizing the need for rapid radio follow-up. Detection is easier for bursts with later optical peaks, high isotropic energies, lower circumburst medium densities, and at observing frequencies that are less prone to synchrotron self-absorption effects—typically above a few GHz. Given recent detections of polarized prompt gamma-ray and optical RS emission, we suggest that detection of polarized radio/millimeter emission will unambiguously confirm the presence of low-frequency RSs at early time

  20. Limits on the space density of gamma-ray burst sources

    International Nuclear Information System (INIS)

    Epstein, R.I.

    1985-01-01

    Gamma-ray burst spectra which extend to several MeV without significant steepening indicate that there is negligible degradation due to two-photon pair production. The inferred low rate of photon-photon reactions is used to give upper limits to the distances to the sources and to the intensity of the radiation from the sources. These limits are calculated under the assumptions that the bursters are neutron stars which emit uncollimated gamma rays. The principal results are that the space density of the gamma-ray burst sources exceeds approx.10 -6 pc -3 if the entire surface of the neutron star radiates and exceeds approx.10 -3 pc -3 if only a small cap or thin strip in the stellar surface radiates. In the former case the density of gamma-ray bursters is approx.1% of the inferred density of extinct pulsars, and in the latter case the mean mass density of burster sources is a few percent of the density of unidentified dark matter in the solar neighborhood. In both cases the X-ray intensity of the sources is far below the Rayleigh-Jeans limit, and the total flux is at most comparable to the Eddington limit. This implies that low-energy self-absorption near 10 keV is entirely negligible and that radiation-driven explosions are just barely possible

  1. Compton Gamma-Ray Observatory

    Science.gov (United States)

    1991-01-01

    This photograph shows the Compton Gamma-Ray Observatory (GRO) being deployed by the Remote Manipulator System (RMS) arm aboard the Space Shuttle Atlantis during the STS-37 mission in April 1991. The GRO reentered Earth atmosphere and ended its successful mission in June 2000. For nearly 9 years, the GRO Burst and Transient Source Experiment (BATSE), designed and built by the Marshall Space Flight Center (MSFC), kept an unblinking watch on the universe to alert scientists to the invisible, mysterious gamma-ray bursts that had puzzled them for decades. By studying gamma-rays from objects like black holes, pulsars, quasars, neutron stars, and other exotic objects, scientists could discover clues to the birth, evolution, and death of stars, galaxies, and the universe. The gamma-ray instrument was one of four major science instruments aboard the Compton. It consisted of eight detectors, or modules, located at each corner of the rectangular satellite to simultaneously scan the entire universe for bursts of gamma-rays ranging in duration from fractions of a second to minutes. In January 1999, the instrument, via the Internet, cued a computer-controlled telescope at Las Alamos National Laboratory in Los Alamos, New Mexico, within 20 seconds of registering a burst. With this capability, the gamma-ray experiment came to serve as a gamma-ray burst alert for the Hubble Space Telescope, the Chandra X-Ray Observatory, and major gound-based observatories around the world. Thirty-seven universities, observatories, and NASA centers in 19 states, and 11 more institutions in Europe and Russia, participated in the BATSE science program.

  2. Attenuation of the gamma rays in tissues

    International Nuclear Information System (INIS)

    Arcos P, A.; Rodriguez N, S.; Pinedo S, A.; Amador V, P.; Chacon R, A.; Vega C, H.R.

    2005-01-01

    The mass and lineal attenuation coefficient and of hepatic tissue, muscular, osseous and of brain before gamma rays of 10 -3 to 10 5 MeV were calculated. For the case of the osseous tissue the calculation was made for the cartilage, the cortical tissue and the bone marrow. During the calculations the elementary composition of the tissues of human origin was used. The calculations include by separate the Photoelectric effect, the Compton scattering and the Pair production, as well as the total. For to establish a comparison with the attenuation capacities, the coefficients of the water, the aluminum and the lead also were calculated. The study was complemented measuring the attenuation coefficient of hepatic tissue of bovine before gamma rays of 0.662 MeV of a source of 137 Cs. The measurement was made through of an experiment of photons transmission through samples frozen of hepatic tissue and with a Geiger-Mueller detector. (Author)

  3. Extragalactic Gamma-Ray Astrophysics

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    During the last decades, various classes of radio-loud active galactic nuclei have been established as sources of high-energy radiation extending over a very broad range from soft gamma-rays (photon energies E~MeV) up to very-high-energy gamma-rays (E>100 GeV). These include blazars of different types, as well as young and evolved radio galaxies. The observed gamma-ray emission from such implies efficient particle acceleration processes taking place in highly magnetized and relativistic jets produced by supermassive black holes, processes that have yet to be identified and properly understood. In addition, nearby starforming and starburst galaxies, some of which host radio-quiet Seyfert-type nuclei, have been detected in the gamma-ray range as well. In their cases, the observed gamma-ray emission is due to non-thermal activity in the interstellar medium, possibly including also a contribution from accretion disks and nuclear outflows. Finally, the high-energy emission from clusters of galaxies remains elusive...

  4. Comptonization of gamma rays by cold electrons

    International Nuclear Information System (INIS)

    Xu, Yueming; Ross, R.R.; Mccray, R.

    1991-01-01

    An analytic method is developed for calculating the emergent spectrum of gamma-rays and X-rays scattered in a homogeneous medium with low-temperature electrons. The Klein-Nishina corrections of the scattering cross section and absorption processes are taken in account. The wavelength relaxation and the spatial diffusion problems are solved separately, and the emergent spectrum is calculated by convolving the evolution function of the spectrum in an infinite medium with the photon luminosity resulting from the spatial diffusion in a finite sphere. The analytic results are compared with that of Monte Carlo calculations and it is concluded that the analytic result is quite accurate. 9 refs

  5. Terrestrial gamma-ray flashes

    Science.gov (United States)

    Marisaldi, Martino; Fuschino, Fabio; Labanti, Claudio; Tavani, Marco; Argan, Andrea; Del Monte, Ettore; Longo, Francesco; Barbiellini, Guido; Giuliani, Andrea; Trois, Alessio; Bulgarelli, Andrea; Gianotti, Fulvio; Trifoglio, Massimo

    2013-08-01

    Lightning and thunderstorm systems in general have been recently recognized as powerful particle accelerators, capable of producing electrons, positrons, gamma-rays and neutrons with energies as high as several tens of MeV. In fact, these natural systems turn out to be the highest energy and most efficient natural particle accelerators on Earth. Terrestrial Gamma-ray Flashes (TGFs) are millisecond long, very intense bursts of gamma-rays and are one of the most intriguing manifestation of these natural accelerators. Only three currently operative missions are capable of detecting TGFs from space: the RHESSI, Fermi and AGILE satellites. In this paper we review the characteristics of TGFs, including energy spectrum, timing structure, beam geometry and correlation with lightning, and the basic principles of the associated production models. Then we focus on the recent AGILE discoveries concerning the high energy extension of the TGF spectrum up to 100 MeV, which is difficult to reconcile with current theoretical models.

  6. Terrestrial gamma-ray flashes

    International Nuclear Information System (INIS)

    Marisaldi, Martino; Fuschino, Fabio; Labanti, Claudio; Tavani, Marco; Argan, Andrea; Del Monte, Ettore; Longo, Francesco; Barbiellini, Guido; Giuliani, Andrea; Trois, Alessio; Bulgarelli, Andrea; Gianotti, Fulvio; Trifoglio, Massimo

    2013-01-01

    Lightning and thunderstorm systems in general have been recently recognized as powerful particle accelerators, capable of producing electrons, positrons, gamma-rays and neutrons with energies as high as several tens of MeV. In fact, these natural systems turn out to be the highest energy and most efficient natural particle accelerators on Earth. Terrestrial Gamma-ray Flashes (TGFs) are millisecond long, very intense bursts of gamma-rays and are one of the most intriguing manifestation of these natural accelerators. Only three currently operative missions are capable of detecting TGFs from space: the RHESSI, Fermi and AGILE satellites. In this paper we review the characteristics of TGFs, including energy spectrum, timing structure, beam geometry and correlation with lightning, and the basic principles of the associated production models. Then we focus on the recent AGILE discoveries concerning the high energy extension of the TGF spectrum up to 100 MeV, which is difficult to reconcile with current theoretical models

  7. The Gamma-ray Sky with Fermi

    Science.gov (United States)

    Thompson, David

    2012-01-01

    Gamma rays reveal extreme, nonthermal conditions in the Universe. The Fermi Gamma-ray Space Telescope has been exploring the gamma-ray sky for more than four years, enabling a search for powerful transients like gamma-ray bursts, novae, solar flares, and flaring active galactic nuclei, as well as long-term studies including pulsars, binary systems, supernova remnants, and searches for predicted sources of gamma rays such as dark matter annihilation. Some results include a stringent limit on Lorentz invariance derived from a gamma-ray burst, unexpected gamma-ray variability from the Crab Nebula, a huge gamma-ray structure associated with the center of our galaxy, surprising behavior from some gamma-ray binary systems, and a possible constraint on some WIMP models for dark matter.

  8. Airborne gamma-ray spectrometry

    DEFF Research Database (Denmark)

    Hovgaard, Jens

    A new method - Noise Adjusted Singular Value Decomposition, NASVD - for processing gamma-ray spectra has been developed as part of a Ph.D. project. By using this technique one is able to decompose a large set of data - for example from airborne gamma-ray surveys - into a few spectral components....... By knowing the spectral components and their amplitudes in each of the measured spectra one is able to extract more information from the data than possible with the methods used otherwise....

  9. Gamma-ray Imaging Methods

    Energy Technology Data Exchange (ETDEWEB)

    Vetter, K; Mihailescu, L; Nelson, K; Valentine, J; Wright, D

    2006-10-05

    In this document we discuss specific implementations for gamma-ray imaging instruments including the principle of operation and describe systems which have been built and demonstrated as well as systems currently under development. There are several fundamentally different technologies each with specific operational requirements and performance trade offs. We provide an overview of the different gamma-ray imaging techniques and briefly discuss challenges and limitations associated with each modality (in the appendix we give detailed descriptions of specific implementations for many of these technologies). In Section 3 we summarize the performance and operational aspects in tabular form as an aid for comparing technologies and mapping technologies to potential applications.

  10. Balloon observation of gamma-ray burst

    International Nuclear Information System (INIS)

    Nishimura, Jun; Fujii, Masami; Yamagami, Takamasa; Oda, Minoru; Ogawara, Yoshiaki

    1978-01-01

    Cosmic gamma-ray burst is an interesting high energy astrophysical phenomenon, but the burst mechanism has not been well understood. Since 1975, long duration balloon flight has been conducted to search for gamma-ray bursts and to determine the source locations. A rotating cross-modulation collimator was employed to determine the locations of sources, and four NaI(Tl) scintillation counters were employed to detect hard X-ray with energy from 20 to 200 keV. The balloon light was performed at altitude of 8.3 mb from September 28, 1977, and the observation time of 79 hours was achieved. In this experiment, the monitor counter was not mounted. The count increase was observed at 16 h 22 m 31 s JST on October 1, 1977. The event disappeared after 1 sec. The total flux is estimated to be 1.6 x 10 -6 erg/cm 2 sec at the top of the atmosphere. When this event was observed, the solar-terrestrial environment was also quiet. Thus, this event was attributed to a small gamma-ray burst. Unfortunately, the duration of the burst was so short that the position of the burst source was not able to be determined. (Yoshimori, M.)

  11. Optical observations of Gamma-Ray Bursts

    International Nuclear Information System (INIS)

    Hjorth, J.; Pian, E.; Fynbo, J.P.U.

    2004-01-01

    We briefly review the status and recent progress in the field of optical observations of gamma-ray burst afterglows. We will focus on the fundamental observational evidence for the relationship between gamma-ray bursts and the final evolutionary phases of massive stars. In particular, we will address (i) gamma-ray burst host galaxies, (ii) optically dark gamma-ray burst afterglows, (iii) the gamma-ray burst-supernova connection, and (iv) the relation between X-ray flashes, gamma-ray bursts, and supernovae

  12. Equipment for x- and gamma ray radiography

    International Nuclear Information System (INIS)

    Abd Nasir Ibrahim; Azali Muhammad; Ab Razak Hamzah; Abd Aziz Mohamed; Mohammad Pauzi Ismail

    2004-01-01

    The following topics related to the equipment for x - and gamma ray radiography are discussed in this chapter. The topics are x-ray source for Industrial Radiography: properties of x-ray, generation of x-ray, mechanism of x-ray production, x-ray equipment, power supply, distribution of x-ray intensity along the tube: gamma ray source for Industrial Radiography: properties of gamma rays, gamma ray sources, gamma ray projectors on cameras, source changing. Care of Radiographic Equipments: Merits and Demerits of x and Gamma Rays

  13. A study on gamma rays from electrochemical cells

    International Nuclear Information System (INIS)

    Shin, Seung Ai

    1993-01-01

    The energies and intensities of gamma rays emitted from 3 cells with Pd-cathodes of φ 1mm x 10mm, φ 2mm x 20mm, φ 1mm x 10mm were determined using HPGe-detector system and compared with Pd-neutron capture model. Very strong gamma rays of 512keC, 622keC, 1051keC and 8 more important ones were found to be identical with characteristic gamma rays of 106 Pd and 109 Pd. It is likely that the neutron capture reaction, A PD(n, γ) A+1 Pd, occurred in the cell and the neutrons came from the fusion reaction of two deutrons. It is necessary, however, to retest the model since another strong 84keV-gamma rays do not belong to any A+1 Pd-gamma spectra and two important 106 Pd-gamma rays 717keV, 1046KeV were not detected. Total amount of emitted gamma rays was large when the size of the Pd-cathod was large. Its depedence on the time of measurement and the preheating period did not have any regularities. Thus the replication is not an easy thing. (Author)

  14. The Gamma-ray Universe through Fermi

    Science.gov (United States)

    Thompson, David J.

    2012-01-01

    Gamma rays, the most powerful form of light, reveal extreme conditions in the Universe. The Fermi Gamma-ray Space Telescope and its smaller cousin AGILE have been exploring the gamma-ray sky for several years, enabling a search for powerful transients like gamma-ray bursts, novae, solar flares, and flaring active galactic nuclei, as well as long-term studies including pulsars, binary systems, supernova remnants, and searches for predicted sources of gamma rays such as dark matter annihilation. Some results include a stringent limit on Lorentz invariance derived from a gamma-ray burst, unexpected gamma-ray variability from the Crab Nebula, a huge ga.nuna-ray structure associated with the center of our galaxy, surprising behavior from some gamma-ray binary systems, and a possible constraint on some WIMP models for dark matter.

  15. Influence of gamma rays colimation on Mosbauer lines

    International Nuclear Information System (INIS)

    Flores-Llamas, H.; Jimenez-Dominguez, Homero

    1989-01-01

    The effect of gamma rays collimation in Mossbauer absorption spectra was investigated when thin absorbers are used. A simple model is proposed to study shift and broadening of spectral lines. This model along with some approximations, makes the calculations easily done. The results are in good agreement with those in the literature. (author)

  16. Multifrequency Observations of Gamma-Ray Burst

    OpenAIRE

    Greiner, J.

    1995-01-01

    Neither a flaring nor a quiescent counterpart to a gamma-ray burst has yet been convincingly identified at any wavelength region. The present status of the search for counterparts of classical gamma-ray bursts is given. Particular emphasis is put on the search for flaring counterparts, i.e. emission during or shortly after the gamma-ray emission.

  17. Stellar Sources of Gamma-ray Bursts

    OpenAIRE

    Luchkov, B. I.

    2011-01-01

    Correlation analysis of Swift gamma-ray burst coordinates and nearby star locations (catalog Gliese) reveals 4 coincidences with good angular accuracy. The random probability is 4\\times 10^{-5}, so evidencing that coincident stars are indeed gamma-ray burst sources. Some additional search of stellar gamma-ray bursts is discussed.

  18. Gamma-rays from deep inelastic collisions

    International Nuclear Information System (INIS)

    Stephens, F.S.

    1981-01-01

    My objective in this talk is to consider the question: 'What can be learned about deep inelastic collisions (DIC) from studying the associated gamma-rays'. First, I discuss the origin and nature of the gamma-rays from DIC, then the kinds of information gamma-ray spectra contain, and finally come to the combination of these two subjects. (orig./HSI)

  19. Airborne gamma ray spectrometer surveying

    International Nuclear Information System (INIS)

    1991-01-01

    The International Atomic Energy Agency (IAEA) in its role as collector and disseminator of information on nuclear techniques has long had an interest in gamma ray spectrometer methods and has published a number of Technical Reports on various aspects of the subject. At an Advisory Group Meeting held in Vienna in November 1986 to review appropriate activities the IAEA could take following the Chernobyl accident, it was recommended that preparation begin on a new Technical Report on airborne gamma ray spectrometer surveying, taking into account the use of the technique for environmental monitoring as well as for nuclear emergency response requirements. Shortly thereafter the IAEA became the lead organization in the Radioelement Geochemical Mapping section of the International Geological Correlation Programme/United Nations Educational, Scientific and Cultural Organization (UNESCO) Project on International Geochemical Mapping. These two factors led to the preparation of the present Technical Report. 18 figs, 4 tabs

  20. Compton suppression gamma ray spectrometry

    International Nuclear Information System (INIS)

    Landsberger, S.; Iskander, F.Y.; Niset, M.; Heydorn, K.

    2002-01-01

    In the past decade there have been many studies to use Compton suppression methods in routine neutron activation analysis as well as in the traditional role of low level gamma ray counting of environmental samples. On a separate path there have been many new PC based software packages that have been developed to enhance photopeak fitting. Although the newer PC based algorithms have had significant improvements, they still suffer from being effectively used in weak gamma ray lines in natural samples or in neutron activated samples that have very high Compton backgrounds. We have completed a series of experiments to show the usefulness of Compton suppression. As well we have shown the pitfalls when using Compton suppression methods for high counting deadtimes as in the case of neutron activated samples. We have also investigated if counting statistics are the same both suppressed and normal modes. Results are presented in four separate experiments. (author)

  1. Inverse Compton gamma-rays from pulsars

    International Nuclear Information System (INIS)

    Morini, M.

    1983-01-01

    A model is proposed for pulsar optical and gamma-ray emission where relativistic electrons beams: (i) scatter the blackbody photons from the polar cap surface giving inverse Compton gamma-rays and (ii) produce synchrotron optical photons in the light cylinder region which are then inverse Compton scattered giving other gamma-rays. The model is applied to the Vela pulsar, explaining the first gamma-ray pulse by inverse Compton scattering of synchrotron photons near the light cylinder and the second gamma-ray pulse partly by inverse Compton scattering of synchrotron photons and partly by inverse Compton scattering of the thermal blackbody photons near the star surface. (author)

  2. Synergistic effects of neutron and gamma ray irradiation of a commercial CHMOS microcontroller

    International Nuclear Information System (INIS)

    Xiao-Ming, Jin; Ru-Yu, Fan; Wei, Chen; Dong-Sheng, Lin; Shan-Chao, Yang; Xiao-Yan, Bai; Yan, Liu; Xiao-Qiang, Guo; Gui-Zhen, Wang

    2010-01-01

    This paper presents the experimental results of a combined irradiation environment of neutron and gamma rays on 80C196KC20, which is a 16-bit high performance member of the MCS96 microcontroller family. The electrical and functional tests were made in three irradiation environments: neutron, gamma rays, combined irradiation of neutron and gamma rays. The experimental results show that the neutron irradiation can affect the total ionizing dose behaviour. Compared with the single radiation environment, the microcontroller exhibits considerably more severe degradation in neutron and gamma ray synergistic irradiation. This phenomenon may cause a significant hardness assurance problem. (condensed matter: structure, thermal and mechanical properties)

  3. Space instrumentation for gamma-ray astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Teegarden, B.J

    1999-02-11

    The decade of the 1990s has witnessed a renaissance in the field of gamma-ray astronomy. The seminal event was the launch of the Compton Gamma-Ray Observatory (CGRO) in April 1991. There have been a flood of major discoveries from CGRO including breakthroughs in gamma-ray bursts, annihilation radiation, and blazars. The Italian SAX satellite was launched in April 1996. Although not primarily a gamma-ray mission, it has added a new dimension to our understanding of gamma-ray bursts. Along with these new discoveries a firm groundwork has been laid for missions and new technology development that should maintain a healthy and vigorous field throughout most of the next decade. These include the ESA INTEGRAL mission (INTErnational Gamma-Ray Astrophysics Laboratory, to be launched in mid-2001) and the NASA GLAST mission (Gamma-Ray Large Area Space Telescope) with a likely launch in the middle of the next decade. These two missions will extend the observational capabilities well beyond those of CGRO. New technologies (to gamma-ray astronomy), such as cooled germanium detectors, silicon strip detectors, and CdTe detectors are planned for these new missions. Additional promising new technologies such as CdZnTe strip detectors, scintillator fibers, and a gamma-ray lens for future gamma-ray astronomy missions are under development in laboratories around the world.

  4. Space instrumentation for gamma-ray astronomy

    International Nuclear Information System (INIS)

    Teegarden, B.J.

    1999-01-01

    The decade of the 1990s has witnessed a renaissance in the field of gamma-ray astronomy. The seminal event was the launch of the Compton Gamma-Ray Observatory (CGRO) in April 1991. There have been a flood of major discoveries from CGRO including breakthroughs in gamma-ray bursts, annihilation radiation, and blazars. The Italian SAX satellite was launched in April 1996. Although not primarily a gamma-ray mission, it has added a new dimension to our understanding of gamma-ray bursts. Along with these new discoveries a firm groundwork has been laid for missions and new technology development that should maintain a healthy and vigorous field throughout most of the next decade. These include the ESA INTEGRAL mission (INTErnational Gamma-Ray Astrophysics Laboratory, to be launched in mid-2001) and the NASA GLAST mission (Gamma-Ray Large Area Space Telescope) with a likely launch in the middle of the next decade. These two missions will extend the observational capabilities well beyond those of CGRO. New technologies (to gamma-ray astronomy), such as cooled germanium detectors, silicon strip detectors, and CdTe detectors are planned for these new missions. Additional promising new technologies such as CdZnTe strip detectors, scintillator fibers, and a gamma-ray lens for future gamma-ray astronomy missions are under development in laboratories around the world

  5. Continued Development of a Soft Gamma-Ray Concentrator

    Science.gov (United States)

    Bloser, Peter

    We propose to continue our development of a concept for a soft gamma-ray (E > 100 keV) concentrator using thin-film multilayer structures. Alternating layers of low- and high-density materials will channel soft gamma-ray photons via total external reflection. A suitable arrangement of bent structures will then concentrate the incident radiation to a point. Gamma-ray optics made in this way offer the potential for soft gamma-ray telescopes with focal lengths of less than 10 m, removing the need for formation flying spacecraft and opening the field up to balloon-borne instruments. Under previous APRA funding we have been investigating methods for efficiently producing such multilayer structures and modeling their performance. We now propose to pursue magnetron sputtering (MS) techniques to quickly produce structures with the required smoothness and thickness, to measure their channeling efficiency and compare with calculations, and to design a "lens" with optimized bandpass and throughput and predict its scientific performance. If successful, this work will confirm that this innovative optics concept is suitable for a balloon-born soft gamma-ray telescope with unprecedented sensitivity.

  6. Coincidence gamma-ray spectrometry

    DEFF Research Database (Denmark)

    Markovic, Nikola; Roos, Per; Nielsen, Sven Poul

    2017-01-01

    Gamma-ray spectrometry with high-purity germanium (HPGe) detectors is often the technique of choice in an environmental radioactivity laboratory. When measuring environmental samples associated activities are usually low so an important parameter that describes the performance of the spectrometer...... for a nuclide of interest is the minimum detectable activity (MDA). There are many ways for lowering the MDAs in gamma spectrometry. Recently, developments of fast and compact digital acquisition systems have led to growing number of multiple HPGe detector spectrometers. In these applications all detected...

  7. Cosmic gamma-ray bursts

    International Nuclear Information System (INIS)

    Hurley, K.

    1989-01-01

    This paper reviews the essential aspects of the gamma-ray burst (GRB) phenomenon, with emphasis on the more recent results. GRBs are introduced by their time histories, which provide some evidence for a compact object origin. The energy spectra of bursts are presented and they are seen to demonstrate practically unambiguously that the origin of some GRBs involves neutron stars. Counterpart searches are reviewed briefly and the statistical properties of bursters treated. This paper presents a review of the three known repeating bursters (the Soft Gamma Repeaters). Extragalactic and galactic models are discussed and future prospects are assessed

  8. Gamma-ray burst polarimeter (GAP)

    International Nuclear Information System (INIS)

    Mihara, Tatehiro; Murakami, Toshio; Yonetoku, Daisuke; Gunji, Shuichi; Kubo, Shin

    2013-01-01

    The gamma-ray burst polarimeter (GAP: GAmma-ray burst Polarimeter), which had been almost handcrafted by scientists, has succeeded in working normally in interplanetary space, and in detecting the polarization of the gamma-ray from a mysterious astronomical object 'gamma-ray burst'. It is the first result of the detectors in the world exclusively aiming at detecting gamma-ray polarization. We mainly describe the hardware of our GAP equipment and show the method of preparing equipment to work in the cosmic space with a tight budget. The mechanical structure, the electronic circuits, the software on the equipment, the data analysis on the earth, and the scientific results gained by the observation just over one year, are presented after explaining the principle of gamma-ray polarization detection. Our design to protect equipment against mechanical shock and cosmic radiation may provide useful information for future preparation of compact satellite. (J.P.N.)

  9. Study of the texture of porous solids using a technique of {gamma} ray absorption; Application de l'absorption du rayonnement {gamma} a l'etude de la texture des solides poreux

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, M. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1967-01-01

    A technique, which enables us to measure locally total porosity, open porosity and pore size distribution is developed. The total porosity is calculated from the bulk density. A gamma absorption gauge is set up fitted with a Cs137 source. This enables the determination of the density by layers of carbonaceous samples in a practically automatic way. By taking adequate precautions it is possible to obtain the density with a maximum error {delta}{rho} {<=} 0,005 g/cm{sup 3}. The open porosity is evaluated by the absorption method after impregnation with bromoform. A new mercury porosimeter is developed using the absorption probe for the measurement of mercury infiltrated into the porous sample. Due to the localized character of exploration by this technique, the variations of porous texture in a heterogeneous sample can be studied. Used as a classical porosimeter, in the case of homogeneous samples, this apparatus is capable of exploring the equivalent diameters of pores between 500 {mu} and 0.14 {mu} with a maximum error {delta}P {<=} 0.002. The possibility of exploration of heterogeneous samples, with the facility of determination of porosities due to macro-pores combined with the non-limiting character of the method in the field of high pressures differentiates this apparatus from all the porosimeters of former conception. Examples of utilization of this technique in the case of graphite-gas reactions are presented. (author) [French] On a developpe une technique permettant la mesure localisee de la porosite totale, de la porosite ouverte et de la repartition de la taille de pores. La porosite totale est calculee a partir de la densite apparente. On a mis au point une jauge d'absorption du rayonnement gamma munie d'une source de Cs137. Celle-ci nous a permis de determiner la densite par couches d'echantillons cylindriques carbones d'une facon pratiquement automatique. En prenant les precautions adequates, il est possible d'obtenir la densite

  10. Study of the texture of porous solids using a technique of {gamma} ray absorption; Application de l'absorption du rayonnement {gamma} a l'etude de la texture des solides poreux

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, M [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1967-01-01

    A technique, which enables us to measure locally total porosity, open porosity and pore size distribution is developed. The total porosity is calculated from the bulk density. A gamma absorption gauge is set up fitted with a Cs137 source. This enables the determination of the density by layers of carbonaceous samples in a practically automatic way. By taking adequate precautions it is possible to obtain the density with a maximum error {delta}{rho} {<=} 0,005 g/cm{sup 3}. The open porosity is evaluated by the absorption method after impregnation with bromoform. A new mercury porosimeter is developed using the absorption probe for the measurement of mercury infiltrated into the porous sample. Due to the localized character of exploration by this technique, the variations of porous texture in a heterogeneous sample can be studied. Used as a classical porosimeter, in the case of homogeneous samples, this apparatus is capable of exploring the equivalent diameters of pores between 500 {mu} and 0.14 {mu} with a maximum error {delta}P {<=} 0.002. The possibility of exploration of heterogeneous samples, with the facility of determination of porosities due to macro-pores combined with the non-limiting character of the method in the field of high pressures differentiates this apparatus from all the porosimeters of former conception. Examples of utilization of this technique in the case of graphite-gas reactions are presented. (author) [French] On a developpe une technique permettant la mesure localisee de la porosite totale, de la porosite ouverte et de la repartition de la taille de pores. La porosite totale est calculee a partir de la densite apparente. On a mis au point une jauge d'absorption du rayonnement gamma munie d'une source de Cs137. Celle-ci nous a permis de determiner la densite par couches d'echantillons cylindriques carbones d'une facon pratiquement automatique. En prenant les precautions adequates, il est possible d'obtenir la densite avec une erreur maximale

  11. Gamma-Ray Astronomy Technology Needs

    Science.gov (United States)

    Gehrels, N.; Cannizzo, J. K.

    2012-01-01

    In recent decades gamma-ray observations have become a valuable tool for studying the universe. Progress made in diverse 8re1lS such as gamma-ray bursts (GRBs), nucleosynthesis, and active galactic nuclei (AGNs) has complimented and enriched our astrophysical understanding in many ways. We present an overview of current and future planned space y-ray missions and discussion technology needs for- the next generation of space gamma-ray instruments.

  12. Gamma-ray burst models.

    Science.gov (United States)

    King, Andrew

    2007-05-15

    I consider various possibilities for making gamma-ray bursts, particularly from close binaries. In addition to the much-studied neutron star+neutron star and black hole+neutron star cases usually considered good candidates for short-duration bursts, there are also other possibilities. In particular, neutron star+massive white dwarf has several desirable features. These systems are likely to produce long-duration gamma-ray bursts (GRBs), in some cases definitely without an accompanying supernova, as observed recently. This class of burst would have a strong correlation with star formation and occur close to the host galaxy. However, rare members of the class need not be near star-forming regions and could have any type of host galaxy. Thus, a long-duration burst far from any star-forming region would also be a signature of this class. Estimates based on the existence of a known progenitor suggest that this type of GRB may be quite common, in agreement with the fact that the absence of a supernova can only be established in nearby bursts.

  13. Dark gamma-ray bursts

    Science.gov (United States)

    Brdar, Vedran; Kopp, Joachim; Liu, Jia

    2017-03-01

    Many theories of dark matter (DM) predict that DM particles can be captured by stars via scattering on ordinary matter. They subsequently condense into a DM core close to the center of the star and eventually annihilate. In this work, we trace DM capture and annihilation rates throughout the life of a massive star and show that this evolution culminates in an intense annihilation burst coincident with the death of the star in a core collapse supernova. The reason is that, along with the stellar interior, also its DM core heats up and contracts, so that the DM density increases rapidly during the final stages of stellar evolution. We argue that, counterintuitively, the annihilation burst is more intense if DM annihilation is a p -wave process than for s -wave annihilation because in the former case, more DM particles survive until the supernova. If among the DM annihilation products are particles like dark photons that can escape the exploding star and decay to standard model particles later, the annihilation burst results in a flash of gamma rays accompanying the supernova. For a galactic supernova, this "dark gamma-ray burst" may be observable in the Čerenkov Telescope Array.

  14. Relativistic motion in gamma-ray bursts

    International Nuclear Information System (INIS)

    Krolik, J.H.; Pier, E.A.

    1991-01-01

    Three fundamental problems affect models of gamma-ray bursts, i.e., the energy source, the ability of high-energy photons to escape the radiation region, and the comparative weakness of X-ray emission. It is indicated that relativistic bulk motion of the gamma-ray-emitting plasma generically provides a solution to all three of these problems. Results show that, if the plasma that produces gamma-ray bursts has a bulk relativistic velocity with Lorentz factor gamma of about 10, several of the most troubling problems having to do with gamma-ray bursts are solved. 42 refs

  15. Radio Observations of Gamma-ray Novae

    Science.gov (United States)

    Linford, Justin D.; Chomiuk, L.; Ribeiro, V.; project, E.-Nova

    2014-01-01

    Recent detection of gamma-ray emission from classical novae by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope surprised many in the astronomical community. We present results from radio observations, obtained using the Karl G. Jansky Very Large Array (VLA), of three gamma-ray novae: Mon2012, Sco2012, and Del2013. Radio observations allow for the calculation of ejecta masses, place limits on the distances, and provide information about the gamma-ray emission mechanism for these sources.

  16. Correction for gamma-ray self-attenuation in regular heterogeneous materials

    International Nuclear Information System (INIS)

    Parker, J.L.

    1981-09-01

    A procedure for determining the total correction factor for gamma-ray self-attenuation in regular heterogeneous materials is derived and discussed. The result of a practical application of the procedure to the passive gamma-ray assay of the 235 U content of high-temperature gas reactor fuel is presented

  17. Qβ measurements with a total absorption detector

    International Nuclear Information System (INIS)

    Shibata, Michihiro; Kawade, Kiyoshi; Shindou, Terumasa; Kojima, Yasuaki; Taniguchi, Akihiro; Kawase, Yoichi; Ichikawa, Shin-ichi

    2003-01-01

    For Q β determination, we have developed a newly total absorption detector that can detect almost all radiation from the radioactive nuclei. The detector is composed of large volume and low background twin BGO scintillation detectors. The estimated efficiency is more than two orders of magnitude larger than those of Ge or Si detectors. The Q β s of some fission products of 235 U were successfully measured using an on-line mass separator for the first time (KUR-ISOL). We have proposed the possibility of determination Q β up to about 10 MeV using the detector without the knowledge of the decay scheme. (author)

  18. Gravitational Waves versus X and Gamma Ray Emission in a Short Gamma-Ray Burst

    OpenAIRE

    Oliveira, F. G.; Rueda, Jorge A.; Ruffini, Remo

    2012-01-01

    The recent progress in the understanding the physical nature of neutron star equilibrium configurations and the first observational evidence of a genuinely short gamma-ray burst, GRB 090227B, allows to give an estimate of the gravitational waves versus the X and Gamma-ray emission in a short gamma-ray burst.

  19. Egg weight and gamma-rays effects. Pt. 3

    International Nuclear Information System (INIS)

    Shebaita, M.K.; Kamar, G.A.R.; Salem, M.A.I.; Ezzat, I.E.

    1979-01-01

    A total of 180 roosters at 36 weeks old were used to find out the effects of egg weight and gamma-rays on blood, carcass and meat analysis. The data revealed that radiation induced anemia and increased meat production. The different parameters under study were discussed in details. (orig.) [de

  20. Characterizing the source properties of terrestrial gamma ray flashes

    Science.gov (United States)

    Dwyer, Joseph R.; Liu, Ningyu; Eric Grove, J.; Rassoul, Hamid; Smith, David M.

    2017-08-01

    Monte Carlo simulations are used to determine source properties of terrestrial gamma ray flashes (TGFs) as a function of atmospheric column depth and beaming geometry. The total mass per unit area traversed by all the runaway electrons (i.e., the total grammage) during a TGF, Ξ, is introduced, defined to be the total distance traveled by all the runaway electrons along the electric field lines multiplied by the local air mass density along their paths. It is shown that key properties of TGFs may be directly calculated from Ξ and its time derivative, including the gamma ray emission rate, the current moment, and the optical power of the TGF. For the calculations presented in this paper, a standard TGF gamma ray fluence, F0 = 0.1 cm-2 above 100 keV for a spacecraft altitude of 500 km, and a standard total grammage, Ξ0 = 1018 g/cm2, are introduced, and results are presented in terms of these values. In particular, the current moments caused by the runaway electrons and their accompanying ionization are found for a standard TGF fluence, as a function of source altitude and beaming geometry, allowing a direct comparison between the gamma rays measured in low-Earth orbit and the VLF-LF radio frequency emissions recorded on the ground. Such comparisons should help test and constrain TGF models and help identify the roles of lightning leaders and streamers in the production of TGFs.

  1. Determination of 222Rn in water by absorption in polydimethylsiloxane mixed with activated carbon and gamma-ray spectrometry: An example application in the radon budget of Paterno submerged sinkhole (Central Italy)

    International Nuclear Information System (INIS)

    Voltaggio, M.; Spadoni, M.

    2013-01-01

    Highlights: ► Polydimethylsiloxane and Activated Carbon were used as passive gas accumulator. ► Water-impermeable properties of PDMS combine with adsorptive properties of AC. ► PDMS–AC accumulators can be used to study 222 Rn in water. ► Measured 222 Rn specific activity in PDMS–AC matches the theoretical results. ► We used PDMS–AC in the radon budget of a submerged sinkhole. - Abstract: Passive gas accumulators made of polydimethylsiloxane (PDMS) mixed with activated C (AC) were studied to measure their efficiency for sampling Rn in water. In this composite the water-impermeable properties of PDMS act synergistically with adsorptive properties of AC, even when the accumulators are immersed in water for many days. A series of tests where cylindrical shaped PDMS–AC disks were exposed to different 222 Rn-enriched waters showed that measured 222 Rn specific activity matches the theoretical results coming from the equation that describes the process of internal diffusion integrated with the Rn decay term. The linear relationship between 222 Rn in water and the accumulation process in PDMS–AC, the influence of temperature and the different sensitivity of the composite and its components were also studied and discussed. The high Rn volumetric enrichment factor in PDMS–AC disks respect to water resulted in about 206: 1, so lowering detection limits for 222 Rn in water to 20 Bq m −3 when the total activity of Rn progeny in disks is measured by high resolution gamma-ray spectrometry. The use of PDMS–AC accumulators was tested at the Paterno submerged sinkhole, in central Italy. This study allowed the production of a detailed synchronous vertical profile of the Rn content in the middle of the lake and to define the Rn balance by assessing the discharge rate of submerged springs and the average residence time of the lake water

  2. Handbook on Mobile Gamma-ray Spectrometry

    DEFF Research Database (Denmark)

    Aage, Helle Karina; Korsbech, Uffe C C

    2003-01-01

    Basic physics and mathematics for Airborne and Car-borne Gamma-ray Spectrometry supplemented with practical examples and methods for advanced data processing......Basic physics and mathematics for Airborne and Car-borne Gamma-ray Spectrometry supplemented with practical examples and methods for advanced data processing...

  3. Gamma-Ray Interactions for Reachback Analysts

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Myers, Steven Charles [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-02

    This presentation is a part of the DHS LSS spectroscopy training course and presents an overview of the following concepts: identification and measurement of gamma rays; use of gamma counts and energies in research. Understanding the basic physics of how gamma rays interact with matter can clarify how certain features in a spectrum were produced.

  4. Gamma ray astronomy from satellites and balloons

    International Nuclear Information System (INIS)

    Schoenfelder, V.

    1986-01-01

    A survey is given of gamma ray astronomy topics presented at the Cosmic Ray Conference. The major conclusions at the Cosmic Ray Conference in the field of gamma ray astronomy are given. (1) MeV-emission of gamma-ray bursts is a common feature. Variations in duration and energy spectra from burst to burst may explain the discrepancy between the measured log N - log S dependence and the observed isotropy of bursts. (2) The gamma-ray line at 1.809 MeV from Al(26) is the first detected line from a radioactive nucleosynthesis product. In order to understand its origin it will be necessary to measure its longitude distribution in the Milky Way. (3) The indications of a gamma-ray excess found from the direction of Loop I is consistent with the picture that the bulk of cosmic rays below 100 GeV is produced in galactic supernova remnants. (4) The interpretation of the large scale distribution of gamma rays in the Milky Way is controversial. At present an extragalactic origin of the cosmic ray nuclei in the GeV-range cannot be excluded from the gamma ray data. (5) The detection of MeV-emission from Cen A is a promising step towards the interesting field of extragalactic gamma ray astronomy

  5. Prompt gamma-ray activation analysis (PGAA)

    Energy Technology Data Exchange (ETDEWEB)

    Kern, J [Fribourg Univ. (Switzerland). Inst. de Physique

    1996-11-01

    The paper deals with a brief description of the principles of prompt gamma-ray activation analysis (PGAA), with the detection of gamma-rays, the PGAA project at SINQ and with the expected performances. 8 figs., 3 tabs., 10 refs.

  6. Prompt gamma-ray activation analysis (PGAA)

    International Nuclear Information System (INIS)

    Kern, J.

    1996-01-01

    The paper deals with a brief description of the principles of prompt gamma-ray activation analysis (PGAA), with the detection of gamma-rays, the PGAA project at SINQ and with the expected performances. 8 figs., 3 tabs., 10 refs

  7. A high energy gamma ray astronomy experiment

    International Nuclear Information System (INIS)

    Hofstadter, R.

    1988-01-01

    The author describes work involving NASA's Gamma Ray Observatory (GRO). GRO exemplifies the near zero principle because it investigates new gamma ray phenomena by relying on the space program to take us into the region of zero interference above the earth's atmosphere. In its present form GRO has four experiments

  8. Intercomparison of gamma ray analysis software packages

    International Nuclear Information System (INIS)

    1998-04-01

    The IAEA undertook an intercomparison exercise to review available software for gamma ray spectra analysis. This document describes the methods used in the intercomparison exercise, characterizes the software packages reviewed and presents the results obtained. Only direct results are given without any recommendation for a particular software or method for gamma ray spectra analysis

  9. Very high-energy gamma rays from gamma-ray bursts.

    Science.gov (United States)

    Chadwick, Paula M

    2007-05-15

    Very high-energy (VHE) gamma-ray astronomy has undergone a transformation in the last few years, with telescopes of unprecedented sensitivity having greatly expanded the source catalogue. Such progress makes the detection of a gamma-ray burst at the highest energies much more likely than previously. This paper describes the facilities currently operating and their chances for detecting gamma-ray bursts, and reviews predictions for VHE gamma-ray emission from gamma-ray bursts. Results to date are summarized.

  10. Observations of the highest energy gamma-rays from gamma-ray bursts

    International Nuclear Information System (INIS)

    Dingus, Brenda L.

    2001-01-01

    EGRET has extended the highest energy observations of gamma-ray bursts to GeV gamma rays. Such high energies imply the fireball that is radiating the gamma-rays has a bulk Lorentz factor of several hundred. However, EGRET only detected a few gamma-ray bursts. GLAST will likely detect several hundred bursts and may extend the maximum energy to a few 100 GeV. Meanwhile new ground based detectors with sensitivity to gamma-ray bursts are beginning operation, and one recently reported evidence for TeV emission from a burst

  11. Gamma ray attenuation studies in concrete reinforced with coconut shells

    International Nuclear Information System (INIS)

    Vishnu, C.V.; Joseph, Antony

    2017-01-01

    Gamma ray absorption studies on wood in general is an area of interest. In Kerala, though coconut tree is a common plantation, a systematic study of gamma ray attenuation in coconut shell has not been reported. In the present study, we have made an attempt to carry out such measurements on coconut shells collected from Trichur district. Coconut shells in to the size of 4cm × 4cm was used in these studies and 662 KeV gamma ray counts were measured using 8K channel NaI(Tl) detector. Subsequently we extended these studies by reinforcing concrete with crushed coconut shells, arranged in a layer by layer fashion. Concrete is usually a choice for shielding nuclear radiations. The effect of reinforcing them with coconut shell is also an area of interest. We have carried out absorption studies by using two types of sand also in the concrete mixture. Common sand is not amply available and people use M-sand (Manufactured sand) instead. In the concrete blocks we selectively used common sand and m-sand and its effects on gamma absorption were also investigated. We have estimated both linear and mass attenuation coefficients and the half value layer (HVL) parameter was determined from them. We have noticed an increase in µ/ρ with increase in density of concrete, achieved through the reinforcement. (author)

  12. Sample analysis using gamma ray induced fluorescent X-ray emission

    Energy Technology Data Exchange (ETDEWEB)

    Sood, B S; Allawadhi, K L; Gandhi, R; Batra, O P; Singh, N [Punjabi Univ., Patiala (India). Nuclear Science Labs.

    1983-01-01

    A non-destructive method for the analysis of materials using gamma ray-induced fluorescent x-ray emission has been developed. In this method, special preparation of very thin samples in which the absorption of the incident gamma rays and the emitted fluorescent x-rays is negligible, is not needed, and the absorption correction is determined experimentally. A suitable choice of the incident gamma ray energies is made to minimise enhancement effects through selective photoionization of the elements in the sample. The method is applied to the analysis of a typical sample of the soldering material using 279 keV and 59.5 keV gamma rays from /sup 203/Hg and /sup 241/Am radioactive sources respectively. The results of the analysis are found to agree well with those obtained from the chemical analysis.

  13. Activation of wine bentonite with gamma rays

    International Nuclear Information System (INIS)

    Goranov, N.; Antonov, M.

    1997-01-01

    The action of gamma rays on wine bentonite as well as influence of its adsorption and technologic qualities on the composition and stability of wines against protein darkening and precipitation has been studied. The experiments were carried out with wine bentonite produced in the firm Bentonite and irradiated with doses of 0.4, 0.6, 0.8 and 1.0 MR. White and red wines have been treated with irradiated bentonite under laboratory conditions at 1.0 g/dm 3 . All samples are treated at the same conditions. The flocculation rate of the sediment was determined visually. Samples have been taken 24 h later from the cleared wine layers. The following parameters have been determined: clarification, filtration rate, phenolic compounds, calcium, colour intensity, total extracted substances, etc. The volume of the sediment has been determined also. The control samples have been taken from the same unirradiated wines. The results showed better and faster clarification in on the third, the 20th and the 24th hours with using of gamma-irradiated at doses 0.8 and 1.0 MR. The sediment was the most compact and its volume - the smallest compared to the samples treated with bentonite irradiated with doses of 0.6 and 0.4 MR. This ensures a faster clarification and better filtration of treated wines. The bentonite activated with doses of 0.8 and 1.0 MR adsorbs the phenolic compounds and the complex protein-phenolic molecules better. In the same time it adsorbs less extracted substances compared to untreated bentonite and so preserves all organoleptic properties of wine. The irradiated bentonite adsorbs less the monomers of anthocyan compounds which ensures brighter natural colour of wine. The gamma-rays activation consolidates calcium in the crystal lattice of bentonite particles and in this way eliminates the formation of crystal precipitates

  14. Future prospects for. gamma. -ray astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Fichtel, C [National Aeronautics and Space Administration, Greenbelt, MD (USA). Goddard Space Flight Center

    1981-06-30

    As ..gamma..-ray astronomy moves from the discovery to the exploratory phase, the promise of ..gamma..-ray astrophysics noted by theorists in the late 1940s and 1950s is beginning to be realized. In the future, satellites should carry instruments that will have over an order of magnitude greater sensitivity than those flown thus far, and, for at least some portions of the ..gamma..-ray energy range, these detectors will also have substantially improved energy and angular resolution. The information to be obtained from these experiments should greatly enhance our knowledge of several astrophysical phenomena including the very energetic and nuclear processes associated with compact objects, astrophysical nucleosynthesis, solar particle acceleration, the chemical composition of the planets and other bodies of the Solar System, the structure of our Galaxy, the origin and dynamic pressure effects of the cosmic rays, high energy particles and energetic processes in other galaxies especially active ones, and the degree of matter-antimatter symmetry of the Universe. The ..gamma..-ray results of the forthcoming programs such as Gamma-I, the Gamma Ray Observatory, the ..gamma..-ray burst network, Solar Polar, and very high energy ..gamma..-ray telescopes on the ground will almost certainly provide justification for more sophisticated telescopes. These advanced instruments might be placed on the Space Platform currently under study by N.A.S.A.

  15. Gamma ray attenuation coefficient measurement for neutron-absorbent materials

    International Nuclear Information System (INIS)

    Jalali, Majid; Mohammadi, Ali

    2008-01-01

    The compounds Na 2 B 4 O 7 , H 3 BO 3 , CdCl 2 and NaCl and their solutions attenuate gamma rays in addition to neutron absorption. These compounds are widely used in the shielding of neutron sources, reactor control and neutron converters. Mass attenuation coefficients of gamma related to the four compounds aforementioned, in energies 662, 778.9, 867.38, 964.1, 1085.9, 1173, 1212.9, 1299.1,1332 and 1408 keV, have been determined by the γ rays transmission method in a good geometry setup; also, these coefficients were calculated by MCNP code. A comparison between experiments, simulations and Xcom code has shown that the study has potential application for determining the attenuation coefficient of various compound materials. Experiment and computation show that H 3 BO 3 with the lowest average Z has the highest gamma ray attenuation coefficient among the aforementioned compounds

  16. On Gamma-Ray Bursts

    CERN Document Server

    Ruffini, Remo; Bianco, Carlo Luciano; Caito, Letizia; Chardonnet, Pascal; Cherubini, Christian; Dainotti, Maria Giovanna; Fraschetti, Federico; Geralico, Andrea; Guida, Roberto; Patricelli, Barbara; Rotondo, Michael; Hernandez, Jorge Armando Rueda; Vereshchagin, Gregory; Xue, She-Sheng

    2008-01-01

    (Shortened) We show by example how the uncoding of Gamma-Ray Bursts (GRBs) offers unprecedented possibilities to foster new knowledge in fundamental physics and in astrophysics. After recalling some of the classic work on vacuum polarization in uniform electric fields by Klein, Sauter, Heisenberg, Euler and Schwinger, we summarize some of the efforts to observe these effects in heavy ions and high energy ion collisions. We then turn to the theory of vacuum polarization around a Kerr-Newman black hole, leading to the extraction of the blackholic energy, to the concept of dyadosphere and dyadotorus, and to the creation of an electron-positron-photon plasma. We then present a new theoretical approach encompassing the physics of neutron stars and heavy nuclei. It is shown that configurations of nuclear matter in bulk with global charge neutrality can exist on macroscopic scales and with electric fields close to the critical value near their surfaces. These configurations may represent an initial condition for the...

  17. Spectra of gamma-ray bursts at high energies

    International Nuclear Information System (INIS)

    Matz, S.M.

    1986-01-01

    Between 1980 February and 1983 August the Gamma-Ray Spectrometer (GRS) on the Solar Maximum Mission satellite (SMM) observed 71 gamma-ray bursts. These events form a representative subset of the class of classical gamma-ray bursts. Since their discovery more than 15 years ago, hundreds of gamma-ray bursts have been detected; however, most observations have been limited to an energy range of roughly 30 keV-1 MeV. The large sensitive area and spectral range of the GRS allow, for the first time, an investigation of the high energy (>1 MeV) behavior of a substantial number of gamma-ray bursts. It is found that high-energy emission is seen in a large fraction of all events and that the data are consistent with all bursts emitting to at least 5 MeV with no cut-offs. Further, no burst spectrum measured by GRS has a clear high-energy cut-off. The high-energy emission can be a significant part of the total burst energy on the average about 30% of the observed energy above 30 keV is contained in the >1 MeV photons. The fact that the observations are consistent with the presence of high-energy emission in all events implies a limit on the preferential beaming of high-energy photons, from any mechanism. Single-photon pair-production in a strong magnetic field produces such beaming; assuming that the low-energy emission is isotropic, the data imply an upper limit of 1 x 10 12 G on the typical magnetic field at burst radiation sites

  18. Neutron detection gamma ray sensitivity criteria

    International Nuclear Information System (INIS)

    Kouzes, Richard T.; Ely, James H.; Lintereur, Azaree T.; Mace, Emily K.; Stephens, Daniel L.; Woodring, Mitchell L.

    2011-01-01

    The shortage of 3 He has triggered the search for effective alternative neutron detection technologies for national security and safeguards applications. Any new detection technology must satisfy two basic criteria: (1) it must meet a neutron detection efficiency requirement, and (2) it must be insensitive to gamma-ray interference at a prescribed level, while still meeting the neutron detection requirement. It is the purpose of this paper to define measureable gamma ray sensitivity criteria for neutron detectors. Quantitative requirements are specified for: intrinsic gamma ray detection efficiency and gamma ray absolute rejection. The gamma absolute rejection ratio for neutrons (GARRn) is defined, and it is proposed that the requirement for neutron detection be 0.9 3 He based neutron detector is provided showing that this technology can meet the stated requirements. Results from tests of some alternative technologies are also reported.

  19. Gamma-Ray Pulsar Studies With GLAST

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, D.J.; /NASA, Goddard

    2011-11-23

    Some pulsars have their maximum observable energy output in the gamma-ray band, offering the possibility of using these high-energy photons as probes of the particle acceleration and interaction processes in pulsar magnetospheres. After an extended hiatus between satellite missions, the recently-launched AGILE mission and the upcoming Gamma-ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT) will allow gamma-ray tests of the theoretical models developed based on past discoveries. With its greatly improved sensitivity, better angular resolution, and larger energy reach than older instruments, GLAST LAT should detect dozens to hundreds of new gamma-ray pulsars and measure luminosities, light curves, and phase-resolved spectra with unprecedented resolution. It will also have the potential to find radio-quiet pulsars like Geminga, using blind search techniques. Cooperation with radio and X-ray pulsar astronomers is an important aspect of the LAT team's planning for pulsar studies.

  20. Processing of gamma-ray spectrometric logs

    International Nuclear Information System (INIS)

    Umiastowski, K.; Dumesnil, P.

    1984-10-01

    CEA (Commissariat a l'Energie Atomique) has developped a gamma-ray spectrometric tool, containing an analog-to-digital converter. This new tool permits to perform very precise uranium logs (natural gamma-ray spectrometry), neutron activation logs and litho-density logs (gamma-gamma spectrometric logs). Specific processing methods were developped to treate the particular problems of down-hole gamma-ray spectrometry. Extraction of the characteristic gamma-ray peak, even if they are superposed on the background radiation of very high intensity, is possible. This processing methode enables also to obtain geological informations contained in the continuous background of the spectrum. Computer programs are written in high level language for SIRIUS (VICTOR) and APOLLO computers. Exemples of uranium and neutron activation logs treatment are presented [fr

  1. Gamma ray astronomy with COS-B

    International Nuclear Information System (INIS)

    Swanenburg, B.N.

    1981-01-01

    Observational results in the field of gamma-ray astronomy that have been obtained to date with the COS-B satellite are discussed and questions raised by these observations are summarized. Following a brief review of the instrumental characteristics of COS-B and the extent of COS-B gamma-ray coverage of the sky, particular attention is given to the questions raised by the discovery of many unidentified gamma-ray sources with no apparent optical, X-ray or radio counterparts and the detection of high-energy gamma radiation from the quasar 3C 273, which suggests the role of gamma-ray emission in the creation of other radiation

  2. Thermal neutron capture gamma-rays

    International Nuclear Information System (INIS)

    Tuli, J.K.

    1983-01-01

    The energy and intensity of gamma rays as seen in thermal neutron capture are presented. Only those (n,α), E = thermal, reactions for which the residual nucleus mass number is greater than or equal to 45 are included. These correspond to evaluations published in Nuclear Data Sheets. The publication source data are contained in the Evaluated Nuclear Structure Data File (ENSDF). The data presented here do not involve any additional evaluation. Appendix I lists all the residual nuclides for which the data are included here. Appendix II gives a cumulated index to A-chain evaluations including the year of publication. The capture gamma ray data are given in two tables - the Table 1 is the list of all gamma rays seen in (n,#betta#) reaction given in the order of increasing energy; the Table II lists the gamma rays according to the nuclide

  3. Observations of gamma-ray bursts

    International Nuclear Information System (INIS)

    Strong, I.B.; Klebesadel, R.W.; Evans, W.D.

    1975-01-01

    Observational data on gamma-ray bursts are reviewed. Information is grouped into temporal properties, energy fluxes and spectral properties, and directions and distributions of the sources in space. (BJG)

  4. Gamma-rays from decaying dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Bertone, G. [Paris-6 Univ., 75 (France). Inst. d' Astrophysique; Buchmueller, W.; Covi, L.; Ibarra, A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2007-10-15

    We study the prospects for detecting gamma-rays from decaying Dark Matter (DM), focusing in particular on gravitino DM in R-parity breaking vacua. Given the substantially different angular distribution of the predicted gamma-ray signal with respect to the case of annihilating DM, and the relatively poor (of order 0.1 ) angular resolution of gamma-ray detectors, the best strategy for detection is in this case to look for an exotic contribution to the gamma-ray flux at high galactic latitudes, where the decaying DM contribution would resemble an astrophysical extragalactic component, similar to the one inferred by EGRET observations. Upcoming experiments such as GLAST and AMS-02 may identify this exotic contribution and discriminate it from astrophysical sources, or place significant constraints on the mass and lifetime of DM particles. (orig.)

  5. Studies on the influences of. gamma. -ray irradiation upon food additives, (6). Radiolysis of monosodium glutamate due to. gamma. -ray irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, M [Shimonoseki Univ. of Fisheries, Yamaguchi (Japan); Gohya, Y; Ishio, S

    1981-08-01

    The effect of ..gamma..-ray irradiation on monosodium glutamate (MSG) in aqueous solution and in ''kamaboko'' was investigated to evaluate the rate of decomposition of MSG and to elucidate the safety of the decomposed products, under the concentration of 106.9 mmol/l aqueous solution and 1% content of MSG in ''kamaboko''. In aqueous solution, MSG was decomposed by ..gamma..-ray irradiation, and G value was estimated to be 1.24. The decomposition of MSG resulted from deamination reaction was estimated to be 40% of the total decomposition. Glutamic acid content decreased as the dose of ..gamma..-ray increased in MSG-enriched ''kamaboko'', while it increased as the dose of ..gamma..-ray increased in MSG-free ''kamaboko''. Glutamic acid was liberated from the protein in ''kamaboko'', therefore the apparent decomposition rate of MSG in ''kamaboko'' was regarded as lower than actual.

  6. Possible galactic origin of. gamma. -ray bursts

    Energy Technology Data Exchange (ETDEWEB)

    Manchanda, R K; Ramsden, D [Southampton Univ. (UK). Dept. of Physics

    1977-03-31

    It is stated that extragalactic models for the origin of non-solar ..gamma..-ray bursts include supernova bursts in remote galaxies, and the collapse of the cores of active stars, whilst galactic models are based on flare stars, thermonuclear explosions in neutron stars and the sudden accretion of cometary gas on to neutron stars. The acceptability of any of these models may be tested by the observed size spectrum of the ..gamma..-ray bursts. The extragalactic models predict a power law spectrum with number index -1.5, whilst for the galactic models the number index will be -1. Experimental data on ..gamma..-ray bursts is, however, still meagre, and so far only 44 confirmed events have been recorded by satellite-borne instruments. The number spectrum of the observed ..gamma..-ray bursts indicates that the observed distribution for events with an energy < 10/sup -4/ erg/cm/sup 2/ is flat; this makes the choice of any model completely arbitrary. An analysis of the observed ..gamma..-ray events is here presented that suggests very interesting possibilities for their origin. There appears to be a preferred mean energy for ..gamma..-ray bursts; some 90% of the recorded events show a mean energy between 5 x 10/sup -5/ and 5 x 10/sup -4/ erg/cm/sup 2/, contrary to the predicted characteristics of the number spectrum of various models. A remarkable similarity is found between the distribution of ..gamma..-ray bursts and that of supernova remnants, suggesting a genetic relationship between the two and the galactic origin of the ..gamma..-ray bursts, and the burst source could be identified with completely run down neutron stars, formed during supernova explosions.

  7. Magic gamma rays, extra-atmospheric source

    International Nuclear Information System (INIS)

    Bolufer, P.

    2010-01-01

    Without the atmospheric layer, the cosmos radiation would kill every living, our planet would be like the moon. The cosmic gamma ray to collide with gases in land cover, as it is disintegrated. They are harmless, they form a cone of light that points to the cosmic source comes from. On April 25, 2009 was born on the island of Palma Magic II and Magic I the best observer of atmospheric gamma rays of low intensity. (Author)

  8. Total absorption by degenerate critical coupling

    Energy Technology Data Exchange (ETDEWEB)

    Piper, Jessica R., E-mail: jrylan@stanford.edu; Liu, Victor; Fan, Shanhui, E-mail: shanhui@stanford.edu [Ginzton Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States)

    2014-06-23

    We consider a mirror-symmetric resonator with two ports. We show that, when excited from a single port, complete absorption can be achieved through critical coupling to degenerate resonances with opposite symmetry. Moreover, any time two resonances with opposite symmetry are degenerate in frequency and absorption is always significantly enhanced. In contrast, when two resonances with the same symmetry are nearly degenerate, there is no absorption enhancement. We numerically demonstrate these effects using a graphene monolayer on top of a photonic crystal slab, illuminated from a single side in the near-infrared.

  9. Gamma Ray Bursts-Afterglows and Counterparts

    Science.gov (United States)

    Fishman, Gerald J

    1998-01-01

    Several breakthrough discoveries were made last year of x-ray, optical and radio afterglows and counterparts to gamma-ray bursts, and a redshift has been associated with at least one of these. These discoveries were made possible by the fast, accurate gamma-ray burst locations of the BeppoSAX satellite. It is now generally believed that the burst sources are at cosmological distances and that they represent the most powerful explosions in the Universe. These observations also open new possibilities for the study of early star formation, the physics of extreme conditions and perhaps even cosmology. This session will concentrate on recent x-ray, optical and radio afterglow observations of gamma-ray bursts, associated redshift measurements, and counterpart observations. Several review and theory talks will also be presented, along with a summary of the astrophysical implications of the observations. There will be additional poster contributions on observations of gamma-ray burst source locations at wavelengths other than gamma rays. Posters are also solicited that describe new observational capabilities for rapid follow-up observations of gamma-ray bursts.

  10. Gamma ray attenuation coefficient measurement for neutron-absorbent materials

    Energy Technology Data Exchange (ETDEWEB)

    Jalali, Majid [Isfahan Nuclear Science and Technology Research Institute (NSTRT), Reactor and Accelerators Research and Development School, Atomic Energy Organization (Iran, Islamic Republic of)], E-mail: m_jalali@entc.org.ir; Mohammadi, Ali [Faculty of Science, Department of Physics, University of Kashan, Km. 6, Ravand Road, Kashan (Iran, Islamic Republic of)

    2008-05-15

    The compounds Na{sub 2}B{sub 4}O{sub 7}, H{sub 3}BO{sub 3}, CdCl{sub 2} and NaCl and their solutions attenuate gamma rays in addition to neutron absorption. These compounds are widely used in the shielding of neutron sources, reactor control and neutron converters. Mass attenuation coefficients of gamma related to the four compounds aforementioned, in energies 662, 778.9, 867.38, 964.1, 1085.9, 1173, 1212.9, 1299.1,1332 and 1408 keV, have been determined by the {gamma} rays transmission method in a good geometry setup; also, these coefficients were calculated by MCNP code. A comparison between experiments, simulations and Xcom code has shown that the study has potential application for determining the attenuation coefficient of various compound materials. Experiment and computation show that H{sub 3}BO{sub 3} with the lowest average Z has the highest gamma ray attenuation coefficient among the aforementioned compounds.

  11. Gamma ray lines from a universal extra dimension

    Energy Technology Data Exchange (ETDEWEB)

    Bertone, Gianfranco; Jackson, C. B.; Shaughnessy, Gabe; Tait, Tim M.P.; Vallinotto, Alberto

    2012-03-01

    Indirect Dark Matter searches are based on the observation of secondary particles produced by the annihilation or decay of Dark Matter. Among them, gamma-rays are perhaps the most promising messengers, as they do not suffer deflection or absorption on Galactic scales, so their observation would directly reveal the position and the energy spectrum of the emitting source. Here, we study the detailed gamma-ray energy spectrum of Kaluza--Klein Dark Matter in a theory with 5 Universal Extra Dimensions. We focus in particular on the two body annihilation of Dark Matter particles into a photon and another particle, which produces monochromatic photons, resulting in a line in the energy spectrum of gamma rays. Previous calculations in the context of the five dimensional UED model have computed the line signal from annihilations into \\gamma \\gamma, but we extend these results to include \\gamma Z and \\gamma H final states. We find that these spectral lines are subdominant compared to the predicted \\gamma \\gamma signal, but they would be important as follow-up signals in the event of the observation of the \\gamma \\gamma line, in order to distinguish the 5d UED model from other theoretical scenarios.

  12. Porosity measurement of amorphous materials by gamma ray transmission

    International Nuclear Information System (INIS)

    Poettker, Walmir Eno

    2000-01-01

    In this work it is presented the measurement of the total porosity of TRe soil, Sandstone Berea rocks and porous ceramics samples. For the determination of the total porosity, the Arquimedes method (conventional) and the gamma ray transmission methodology were employed. The porosity measurement using the gamma methodology has a significant advantage respect to the conventional method due to the fast and non-destructive determination, and also for supplying results with a greater characterization in small scales, in relation to the heterogeneity of the porosity. The conventional methodology presents good results only for homogeneous samples. The experimental set up for the gamma ray transmission technique consisted of a 241 Am source (59,53 keV), a NaI (Tl) scintillation detector, collimators, a XYZ, micrometric table and standard gamma spectrometry electronics connected to a multichannel analyser. (author)

  13. Abstracts of papers to be presented at the fifth symposium on x- and gamma-ray sources and applications

    International Nuclear Information System (INIS)

    1981-01-01

    The program and abstracts of papers are presented. Topics include radiation sources, radiation detectors, mathematical models and data analysis, gamma-ray spectroscopy, instrumentation, applications of x-ray fluorescence, PIXE, and x-ray absorption

  14. Abstracts of papers to be presented at the fifth symposium on x- and gamma-ray sources and applications

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    The program and abstracts of papers are presented. Topics include radiation sources, radiation detectors, mathematical models and data analysis, gamma-ray spectroscopy, instrumentation, applications of x-ray fluorescence, PIXE, and x-ray absorption. (ACR)

  15. Astrophysical applications of Delbrück scattering: Dust scattered gamma radiation from gamma ray bursts

    International Nuclear Information System (INIS)

    Kunwar, B.; Bhadra, A.; Gupta, S.K. Sen

    2014-01-01

    A preliminary, and perhaps the first, study of astrophysical applications of Delbrück scattering in a gamma-ray emitting celestial object like a gamma-ray burst (GRB) has been made. At energies≥100 MeV the elastic scattering of gamma-ray photons off the molecular dust surrounding the GRB site is dominated by Delbrück scattering. Expressions for Delbrück-scattered gamma-ray flux as a function of time has been obtained for a few selected energies by assuming a simple model of GRB. These are compared with Compton-scattered flux. At certain situations, interestingly, the former is found to exceed the latter for the first few milliseconds of the burst. The issue of detectability of Delbrück-scattered gamma-ray echo from the cloud of a GRB is discussed. Although it is observed that the detection of such an echo is not within the capability of the presently operating gamma-ray missions such as Fermi LAT, a rough estimate shows that one can be optimistic that future generation gamma-ray telescopes might be able to see such photons' contribution to the total flux. - Highlights: ► Astrophysical application of Delbrück scattering in a GRB has been made. ► Initially, the Delbrück scattering may dominate the scattering of GeV γ-rays. ► The issue of detectability of such radiations is discussed

  16. The Gamma-Ray Imager GRI

    Science.gov (United States)

    Wunderer, Cornelia B.; GRI Collaboration

    2008-03-01

    Observations of the gamma-ray sky reveal the most powerful sources and the most violent events in the Universe. While at lower wavebands the observed emission is generally dominated by thermal processes, the gamma-ray sky provides us with a view on the non-thermal Universe. Here particles are accelerated to extreme relativistic energies by mechanisms which are still poorly understood, and nuclear reactions are synthesizing the basic constituents of our world. Cosmic accelerators and cosmic explosions are major science themes that are addressed in the gamma-ray regime. ESA's INTEGRAL observatory currently provides the astronomical community with a unique tool to investigate the sky up to MeV energies and hundreds of sources, new classes of objects, extraordinary views of antimatter annihilation in our Galaxy, and fingerprints of recent nucleosynthesis processes have been discovered. NASA's GLAST mission will similarly take the next step in surveying the high-energy ( GeV) sky, and NuSTAR will pioneer focusing observations at hard X-ray energies (to 80 keV). There will be clearly a growing need to perform deeper, more focused investigations of gamma-ray sources in the 100-keV to MeV regime. Recent technological advances in the domain of gamma-ray focusing using Laue diffraction and multilayer-coated mirror techniques have paved the way towards a gamma-ray mission, providing major improvements compared to past missions regarding sensitivity and angular resolution. Such a future Gamma-Ray Imager will allow the study of particle acceleration processes and explosion physics in unprecedented detail, providing essential clues on the innermost nature of the most violent and most energetic processes in the Universe.

  17. Localization of Gamma-Ray Bursts Using the Fermi Gamma-Ray Burst Monitor

    NARCIS (Netherlands)

    Connaughton, V.; Briggs, M.S.; Goldstein, A.; Meegan, C.A.; Paciesas, W.S.; Preece, R.D.; Wilson-Hodge, C.A.; Gibby, M.H.; Greiner, J.; Gruber, D.; Jenke, P.; Kippen, R.M.; Pelassa, V.; Xiong, S.; Yu, H-F.; Bhat, P.N.; Burgess, J.M.; Byrne, D.; Fitzpatrick, G.; Foley, S.; Giles, M.M.; Guiriec, S.; van der Horst, A.J.; von Kienlin, A.; McBreen, S.; McGlynn, S.; Tierney, D.; Zhang, B..B.

    2015-01-01

    The Fermi Gamma-ray Burst Monitor (GBM) has detected over 1400 gamma-ray bursts (GRBs) since it began science operations in 2008 July. We use a subset of over 300 GRBs localized by instruments such as Swift, the Fermi Large Area Telescope, INTEGRAL, and MAXI, or through triangulations from the

  18. Gamma-Ray Lenses for Astrophysics-and the Gamma-Ray Imager Mission GRI

    DEFF Research Database (Denmark)

    Wunderer, C. B.; Ballmoos, P. V.; Barriere, N.

    2009-01-01

    Observations of the gamma-ray sky reveal the most powerful sources and the most violent events in the Universe. While at lower wavebands the observed emission is generally dominated by thermal processes, the gamma-ray sky provides us with a view on the non-thermal Universe. Here particles are acc...

  19. Effect of /sup 60/Co. gamma. -rays on polyphenyl methacrylate obtained by. gamma. -ray irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Raghunath, S.; Rao, M.H.; Rao, K.N. (Bhabha Atomic Research Centre, Bombay (India). Chemistry Div.)

    1983-01-01

    Polyphenyl methacrylate of different molecular weights Msub(n) 13000, 34500 and crosslinked polymer prepared by /sup 60/Co ..gamma..-irradiation has been irradiated with /sup 60/Co ..gamma..-rays at 300 K. G(scission) of the 13000 molecular weight polymer was 15. The crosslinked polymer undergoes both degradation and crosslinking. G(x) value determined for that polymer is approx. 9. The gaseous product consists largely of CO with some CO/sub 2/ and H/sub 2/. Hydrocarbon gases were not detected. The yield of H/sub 2/ is only to the extent of 2 to 5% of the total gas and it is assumed that majority of scission takes place at the ester linkage. On the basis of the estimation of phenol and benzene, a mechanism for degradation and crosslinking is proposed.

  20. Grafting study of polysulfone polymeric membranes by gamma ray irradiation

    International Nuclear Information System (INIS)

    Furtado Filho, Acacio A.M.; Gomes, Ailton de S.

    2011-01-01

    Radiation-induced grafting of styrene poli sulfone films were investigated by simultaneous method in solution using gamma-ray from a radio nuclide 60 Co source. The gamma-ray energy of high intensity induced breaking of chemical bonds leading to free radical formation. The radical start a conventional polymerization sequence comparable with that obtained with a chemical catalyst acting as initiator. The effects of grafting conditions such as irradiation total dose, dose rate and addition of cross linking agent, were studied by means of morphology analysis, thermal degradation and crystallinity. After the grafting reaction, the membranes were submitted to an exhaustive extraction with solvent to remove the polystyrene homopolymer formed. The degree of grafting (DOG) was analyzed by percentage of weight increase. As a result, the reaction always follows the same pattern: DOG increases rapidly initially whilst propagation is the main reaction, then more slowly as termination becomes more frequent. (author)

  1. Effect of spirit irradiation with 60Co gamma-rays

    International Nuclear Information System (INIS)

    Gwardys, S.

    1975-01-01

    A few sorts of spirit were irradiated with a dose of 1 or 5 Mrad of 60 Co gamma-rays. Then the chemical composition of spirits was investigated. It was found that as a result of irradiation the content of acids, esters, acetal aldehydes and methanol increases, while the strength of higher alcohols decreases slightly. The changes of compounds content in particular spirits are dependent on radiation doses and chemical composition before irradiation. It was also discovered that spirit irradiation causes decrease or even disappearance of characteristic - for given spirits - maxima of UV absorption. (Z.M.)

  2. Outcrop Gamma-ray Analysis of the Cretaceous mesaverde Group: Jicarilla Apache Indian Reservation, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Ridgley, Jennie; Dunbar, Robyn Wright

    2001-04-25

    This report presents the results of an outcrop gamma-ray survey of six selected measured sections included in the original report. The primary objective of this second study is to provide a baseline to correlate from the outcrop and reservoir model into Mesaverde strata in the San Juan Basin subsurface. Outcrop logs were generated using a GAD-6 gamma-ray spectrometer that simultaneously recorded total counts, potassium, uranium, and thorium data.

  3. Fuzzy correlations of gamma-ray bursts

    International Nuclear Information System (INIS)

    Hartmann, D.H.; Linder, E.V.; Blumenthal, G.R.

    1991-01-01

    The origin of gamma-ray bursts is not known, both in the sense of the nature of the source emitting the radiation and literally, the position of the burst on the sky. Lacking unambiguously identified counterparts in any wavelength band studied to date, statistical approaches are required to determine the burster distance scale. Angular correlation analysis is one of the most powerful tools in this regard. However, poor detector resolution gives large localization errors, effectively beam smearing the positions. The resulting fuzzy angular correlation function is investigated and the generic isotropization that smearing induces on any intrinsic clustering is discussed. In particular, the extent to which gamma-ray burst observations by the BATSE detector aboard the Gamma-Ray Observatory might recover an intrinsic source correlation is investigated. 16 refs

  4. Prompt Gamma Ray Spectroscopy for process monitoring

    International Nuclear Information System (INIS)

    Zoller, W.H.; Holmes, J.L.

    1991-01-01

    Prompt Gamma Ray Spectroscopy (PGRS) is a very powerful analytical technique able to measure many metallic, contamination problem elements. The technique involves measurement of gamma rays that are emitted by nuclei upon capturing a neutron. This method is sensitive not only to the target element but also to the particular isotope of that element. PGRS is capable of measuring dissolved metal ions in a flowing system. In the field, isotopic neutron sources are used to produce the desired neutron flux ( 252 Cf can produce neutron flux of the order of 10 8 neutrons/cm 2 --sec.). Due to high penetrating power of gamma radiation, high efficiency gamma ray detectors can be placed in an appropriate geometry to maximize sensitivity, providing real-time monitoring with low detection level capabilities

  5. Librarian driven analysis of gamma ray spectra

    International Nuclear Information System (INIS)

    Kondrashov, V.; Petersone, I.

    2002-01-01

    For a set of a priori given radionuclides extracted from a general nuclide data library, the authors use median estimates of the gamma-peak areas and estimates of their errors to produce a list of possible radionuclides matching gamma ray line(s). The identification of a given radionuclide is obtained by searching for a match with the energy information of a database. This procedure is performed in an interactive graphic mode by markers that superimpose, on the spectral data, the energy information and yields provided by a general gamma ray data library. This library of experimental data includes approximately 17,000 gamma ray energy lines related to 756 known gamma emitter radionuclides listed by the ICRP. (author)

  6. Technology Needs for Gamma Ray Astronomy

    Science.gov (United States)

    Gehrels, Neil

    2011-01-01

    Gamma ray astronomy is currently in an exciting period of multiple missions and a wealth of data. Results from INTEGRAL, Fermi, AGILE, Suzaku and Swift are making large contributions to our knowledge of high energy processes in the universe. The advances are due to new detector and imaging technologies. The steps to date have been from scintillators to solid state detectors for sensors and from light buckets to coded aperture masks and pair telescopes for imagers. A key direction for the future is toward focusing telescopes pushing into the hard X-ray regime and Compton telescopes and pair telescopes with fine spatial resolution for medium and high energy gamma rays. These technologies will provide finer imaging of gamma-ray sources. Importantly, they will also enable large steps forward in sensitivity by reducing background.

  7. Very high energy gamma-ray astronomy

    International Nuclear Information System (INIS)

    Weekes, T.C.

    1988-01-01

    Current interest in gamma-ray astronomy at energies above 100 GeV comes from the identification of Cygnus X-3 and other X-ray binaries as sources. In addition there are reports of emission from radio pulsars and a variety of other objects. The statistical significance of many of the observations is not high and many reported effects await confirmation, but there are a sufficient number of independent reports that very high energy gamma-ray astronomy must now be considered to have an observational basis. The observations are summarized with particular emphasis on those reported since 1980. The techniques used - the detection of small air showers using the secondary photons and particles at ground level - are unusual and are described. Future prospects for the field are discussed in relation to new ground-based experiments, satellite gamma-ray studies and proposed neutrino astronomy experiments. (orig.) With 296 refs

  8. Evaluation of gamma-ray intensities

    International Nuclear Information System (INIS)

    Yoshizawa, Yasukazu; Inoue, Hikaru; Hoshi, Masaharu; Shizuma, Kiyoshi; Iwata, Yosei.

    1980-04-01

    Relative intensities and intensities per decay of gamma rays were evaluated for 16 nuclides, 22 Na, 24 Na, 46 Sc, 54 Mn, 60 Co, 85 Sr, 88 Y, 95 Nb, sup(108m)Ag, 134 Cs, 133 Ba, 139 Ce, sup(180m)Hf, 198 Au, 203 Hg and 207 Bi. For most of these nuclides disintegration rates can be determined by means of β-γ or X-γ coincidence method. Since decay schemes of these nuclides are established, intensities per decay of strong gamma rays were accurately evaluated by using weak beta-ray branching ratios, relative gamma-ray intensities and internal conversion coefficients. Half-lives of the nuclides were also evaluated. Use of the nuclides, therefore, are recommended for precision intensity calibration of the detectors. (author)

  9. gamma. -ray. Present status and problems

    Energy Technology Data Exchange (ETDEWEB)

    Okudaira, K [Rikkyo Univ., Tokyo (Japan). Faculty of Science

    1975-01-01

    As ..gamma..-ray advances straightly through space, the study on cosmic ..gamma..-ray will give the information concerning the origin directly. However, the intensity is weak, and the avoidance of background is a serious problem. The wide-spread components were studied by OSO-3. The intensity of the galactic disc component around 100 MeV was reported as (3.4+-1.0)x10/sup -5/ photons (cm/sup 2/, radian, sec)/sup -1/ by OSO-3 and 0.2x10/sup -4/ photons (cm/sup 2/, radian sec)/sup -1/ by SAS-2, and corresponds to the calculated ..gamma.. yield from ..pi../sup 0/. The strong disc component, so-called galactic center region, has been observed, and is due to the mixture of ..gamma..-ray from ..pi../sup 0/ and inverse Compton ..gamma..-ray. A peak at 476+-24 KeV was found as well as the continuous component. Special care must be taken for the observation of isotropic component, since it is hardly distinguished from the background. It is considered that the isotropic component is due to the inverse Compton scattering of 3/sup 0/K radiation in super-galactic space and the contribution from outer galaxy. The nearest point source of ..gamma..-ray is the sun. Among the other point sources, the crab nebula is the most reliable one. The energy flux of pulse component showed the spectrum of E/sup -1/. ..gamma..-ray bursts were observed by man-made satellites Vela-5 and 6. Theoretical explanation is still incomplete regarding the bursts. (Kato, T.).

  10. Gamma-ray standards for detector calibration

    International Nuclear Information System (INIS)

    Lorenz, A.

    1985-10-01

    The proceeedings are reported of a Consultants' Meeting on Gamma-ray Standards for Detector Calibration, held at the CEN, Grenoble in France, from 30-31 May 1985. The meeting provided a forum to assess the requirements for a suitable file to be used internationally for the calibration of X- and gamma-ray detectors. A provisional list of nuclides was drawn up, and an initial assessment of the status of the required data was agreed to be performed by the participants before the end of 1985. (author)

  11. Very high energy gamma ray astrophysics

    International Nuclear Information System (INIS)

    Lamb, R.C.; Lewis, D.A.

    1991-01-01

    The Whipple Observatory High Resolution Camera will be used in a vigorous program of observations to search for new sources of very-high-energy gamma rays. In addition, a search for antimatter using the moon-earth system as an ion spectrometer will be begun. The first phase of GRANITE, the new 37-element 11-m camera, will be concluded with first light scheduled for September, 1991. The two cameras will operate in support of the Gamma Ray Observatory mission in the winter of 1991/2

  12. Gamma ray spectroscopy monitoring method and apparatus

    Science.gov (United States)

    Stagg, William R; Policke, Timothy A

    2017-05-16

    The present invention relates generally to the field of gamma ray spectroscopy monitoring and a system for accomplishing same to monitor one or more aspects of various isotope production processes. In one embodiment, the present invention relates to a monitoring system, and method of utilizing same, for monitoring one or more aspects of an isotope production process where the monitoring system comprises: (A) at least one sample cell; (B) at least one measuring port; (C) at least one adjustable collimator device; (D) at least one shutter; and (E) at least one high resolution gamma ray spectrometer.

  13. Gamma ray energy tracking in GRETINA

    Science.gov (United States)

    Lee, I. Y.

    2011-10-01

    The next generation of stable and exotic beam accelerators will provide physics opportunities to study nuclei farther away from the line of stability. However, these experiments will be more demanding on instrumentation performance. These come from the lower production rate for more exotic beams, worse beam impurities, and large beam velocity from the fragmentation and inverse reactions. Gamma-ray spectroscopy will be one of the most effective tools to study exotic nuclei. However, to fully exploit the physics reach provided by these new facilities, better gamma-ray detector will be needed. In the last 10 years, a new concept, gamma-ray energy tracking array, was developed. Tracking arrays will increase the detection sensitivity by factors of several hundred compared to current arrays used in nuclear physics research. Particularly, the capability of reconstructing the position of the interaction with millimeters resolution is needed to correct the Doppler broadening of gamma rays emitted from high velocity nuclei. GRETINA is a gamma-ray tracking array which uses 28 Ge crystals, each with 36 segments, to cover ¼ of the 4 π of the 4 π solid angle. The gamma ray tracking technique requires detailed pulse shape information from each of the segments. These pulses are digitized using 14-bit 100 MHz flash ADCs, and digital signal analysis algorithms implemented in the on-board FPGAs provides energy, time and selection of pulse traces. A digital trigger system, provided flexible trigger functions including a fast trigger output, and also allows complicated trigger decisions to be made up to 20 microseconds. Further analyzed, carried out in a computer cluster, determine the energy, time, and three-dimensional positions of all gamma-ray interactions in the array. This information is then utilized, together with the characteristics of Compton scattering and pair-production processes, to track the scattering sequences of the gamma rays. GRETINA construction is completed in

  14. VHE Gamma-ray Supernova Remnants

    Energy Technology Data Exchange (ETDEWEB)

    Funk, Stefan; /KIPAC, Menlo Park

    2007-01-22

    Increasing observational evidence gathered especially in X-rays and {gamma}-rays during the course of the last few years support the notion that Supernova remnants (SNRs) are Galactic particle accelerators up to energies close to the ''knee'' in the energy spectrum of Cosmic rays. This review summarizes the current status of {gamma}-ray observations of SNRs. Shell-type as well as plerionic type SNRs are addressed and prospect for observations of these two source classes with the upcoming GLAST satellite in the energy regime above 100 MeV are given.

  15. Gamma-ray lasers or grasers

    International Nuclear Information System (INIS)

    Wilson, G.V.H.; George, E.P.; Hora, H.

    1976-01-01

    A method is described for controlling the emission and direction of gamma rays from excited nuclei contained in a sample source of suitable geometry having its major axis parallel to the proposed direction of gamma ray emission, comprising subjecting said sample source to thermal or dynamic polarization at temperatures approaching absolute zero in the presence of a strong magnetic field, and when a pulse of coherent gamma radiation is required along said major axis rotating the active nuclei through 90 0 by employing a short pulse of radio frequency oscillations in an auxilliary coil around the sample source

  16. Nuclear Forensics using Gamma-ray Spectroscopy

    Directory of Open Access Journals (Sweden)

    Norman E. B.

    2016-01-01

    Full Text Available Much of George Dracoulis’s research career was devoted to utilising gamma-ray spectroscopy in fundamental studies in nuclear physics. This same technology is useful in a wide range of applications in the area of nuclear forensics. Over the last several years, our research group has made use of both high- and low-resolution gamma-ray spectrometers to: identify the first sample of plutonium large enough to be weighed; determine the yield of the Trinity nuclear explosion; measure fission fragment yields as a function of target nucleus and neutron energy; and observe fallout in the U. S. from the Fukushima nuclear reactor accident.

  17. Gamma-ray surveys in uranium exploration

    International Nuclear Information System (INIS)

    1979-01-01

    This report is intended to provide newcomers to uranium exploration with an up-to-date statement of the principal factors to be considered in planning and using gamma-ray surveys. Since the report incorporates the results of recent research, and since its preparation was influenced by the cumulative experience of its contributors, it should also be useful to those who already have some knowledge of radioactivity surveys and methods. The intention is that the information and explanations given in the report will make it possible for gamma-ray surveys to be used in the most efficient way for a given exploration task

  18. Neutron Capture Gamma-Ray Libraries for Nuclear Applications

    International Nuclear Information System (INIS)

    Sleaford, B. W.; Summers, N.; Escher, J.; Firestone, R. B.; Basunia, S.; Hurst, A.; Krticka, M.; Molnar, G.; Belgya, T.; Revay, Z.; Choi, H. D.

    2011-01-01

    The neutron capture reaction is useful in identifying and analyzing the gamma-ray spectrum from an unknown assembly as it gives unambiguous information on its composition. This can be done passively or actively where an external neutron source is used to probe an unknown assembly. There are known capture gamma-ray data gaps in the ENDF libraries used by transport codes for various nuclear applications. The Evaluated Gamma-ray Activation file (EGAF) is a new thermal neutron capture database of discrete line spectra and cross sections for over 260 isotopes that was developed as part of an IAEA Coordinated Research Project. EGAF is being used to improve the capture gamma production in ENDF libraries. For medium to heavy nuclei the quasi continuum contribution to the gamma cascades is not experimentally resolved. The continuum contains up to 90% of all the decay energy and is modeled here with the statistical nuclear structure code DICEBOX. This code also provides a consistency check of the level scheme nuclear structure evaluation. The calculated continuum is of sufficient accuracy to include in the ENDF libraries. This analysis also determines new total thermal capture cross sections and provides an improved RIPL database. For higher energy neutron capture there is less experimental data available making benchmarking of the modeling codes more difficult. We are investigating the capture spectra from higher energy neutrons experimentally using surrogate reactions and modeling this with Hauser-Feshbach codes. This can then be used to benchmark CASINO, a version of DICEBOX modified for neutron capture at higher energy. This can be used to simulate spectra from neutron capture at incident neutron energies up to 20 MeV to improve the gamma-ray spectrum in neutron data libraries used for transport modeling of unknown assemblies.

  19. Neutron Capture Gamma-Ray Libraries for Nuclear Applications

    International Nuclear Information System (INIS)

    Sleaford, B.W.; Firestone, R.B.; Summers, N.; Escher, J.; Hurst, A.; Krticka, M.; Basunia, S.; Molnar, G.; Belgya, T.; Revay, Z.; Choi, H.D.

    2010-01-01

    The neutron capture reaction is useful in identifying and analyzing the gamma-ray spectrum from an unknown assembly as it gives unambiguous information on its composition. this can be done passively or actively where an external neutron source is used to probe an unknown assembly. There are known capture gamma-ray data gaps in the ENDF libraries used by transport codes for various nuclear applications. The Evaluated Gamma-ray Activation file (EGAF) is a new thermal neutron capture database of discrete line spectra and cross sections for over 260 isotopes that was developed as part of an IAEA Coordinated Research project. EGAF is being used to improve the capture gamma production in ENDF libraries. For medium to heavy nuclei the quasi continuum contribution to the gamma cascades is not experimentally resolved. The continuum contains up to 90% of all the decay energy and is modeled here with the statistical nuclear structure code DICEBOX. This code also provides a consistency check of the level scheme nuclear structure evaluation. The calculated continuum is of sufficient accuracy to include in the ENDF libraries. This analysis also determines new total thermal capture cross sections and provides an improved RIPL database. For higher energy neutron capture there is less experimental data available making benchmarking of the modeling codes more difficult. They are investigating the capture spectra from higher energy neutrons experimentally using surrogate reactions and modeling this with Hauser-Feshbach codes. This can then be used to benchmark CASINO, a version of DICEBOX modified for neutron capture at higher energy. This can be used to simulate spectra from neutron capture at incident neutron energies up to 20 MeV to improve the gamma-ray spectrum in neutron data libraries used for transport modeling of unknown assemblies.

  20. Capture Gamma-Ray Libraries for Nuclear Applications

    International Nuclear Information System (INIS)

    Sleaford, B.W.; Firestone, Richard B.; Summers, N.; Escher, J.; Hurst, A.; Krticka, M.; Basunia, S.; Molnar, G.; Belgya, T.; Revay, Z.; Choi, H.D.

    2010-01-01

    The neutron capture reaction is useful in identifying and analyzing the gamma-ray spectrum from an unknown assembly as it gives unambiguous information on its composition. This can be done passively or actively where an external neutron source is used to probe an unknown assembly. There are known capture gamma-ray data gaps in the ENDF libraries used by transport codes for various nuclear applications. The Evaluated Gamma-ray Activation file (EGAF) is a new thermal neutron capture database of discrete line spectra and cross sections for over 260 isotopes that was developed as part of an IAEA Coordinated Research Project. EGAF has been used to improve the capture gamma production in ENDF libraries. For medium to heavy nuclei the quasi continuum contribution to the gamma cascades is not experimentally resolved. The continuum contains up to 90% of all the decay energy an is modeled here with the statistical nuclear structure code DICEBOX. This code also provides a consistency check of the level scheme nuclear structure evaluation. The calculated continuum is of sufficient accuracy to include in the ENDF libraries. This analysis also determines new total thermal capture cross sections and provides an improved RIPL database. For higher energy neutron capture there is less experimental data available making benchmarking of the modeling codes more difficult. We use CASINO, a version of DICEBOX that is modified for this purpose. This can be used to simulate the neutron capture at incident neutron energies up to 20 MeV to improve the gamma-ray spectrum in neutron data libraries used for transport modelling of unknown assemblies.

  1. Gamma ray energy spectrum of a buried radioactive source

    Energy Technology Data Exchange (ETDEWEB)

    Massey, N B

    1957-07-01

    Because of current attempts to utilize airborne gamma-ray scintillation spectrometers as a means of detecting and identifying buried radioactive mineral deposits, it has become important to study the effects of multiple scattering on the gamma-ray energy spectrum of a source buried in a semi-infinite medium. A series of ten experiments was made. First a scintillation detector was located in air at a fixed distance above a 250 microcurie cobalt-60 source suspended in a large tank. The level of water was raised from 25 cm below the source to 50 cm above, and the gamma-ray energy spectrum was observed. It was found that the high energy portion of the cobalt-60 spectrum remained identifiable even when the source was submerged more than five half-lengths. Further, the ratio of the counting rate of the total incident gamma radiation to the counting rate of the primary 1.33 MeV radiation was found to be very nearly linearly proportional to the depth of water cover. This leads to an empirical method for determining the depth of burial of a cobalt-60 point source. (author)

  2. The evaluated gamma-ray activation file (EGAF)

    International Nuclear Information System (INIS)

    Firestone, R.B.; Molnar, G.L.; Revay, Zs.; Belgya, T.; McNabb, D.P.; Sleaford, B.W.

    2004-01-01

    The Evaluated Gamma-ray Activation File (EGAF), a new database of prompt and delayed neutron capture g-ray cross sections, has been prepared as part of an International Atomic Energy Agency (IAEA) Coordinated Research Project to develop a ''Database of Prompt Gamma-rays from Slow Neutron Capture for Elemental Analysis.'' Recent elemental g-ray cross-section measurements performed with the guided neutron beam at the Budapest Reactor have been combined with data from the literature to produce the EGAF database. EGAF contains thermal cross sections for ∼ 35,000 prompt and delayed g-rays from 262 isotopes. New precise total thermal radiative cross sections have been derived for many isotopes from the primary and secondary gamma-ray cross sections and additional level scheme data. An IAEA TECDOC describing the EGAF evaluation and tabulating the most prominent g-rays will be published in 2004. The TECDOC will include a CD-ROM containing the EGAF database in both ENSDF and tabular formats with an interactive viewer for searching and displaying the data. The Isotopes Project, Lawrence Berkeley National Laboratory continues to maintain and update the EGAF file. These data are available on the Internet from both the IAEA and Isotopes Project websites

  3. Gamma ray and neutron shielding properties of some concrete materials

    International Nuclear Information System (INIS)

    Yilmaz, E.; Baltas, H.; Kiris, E.; Ustabas, I.; Cevik, U.; El-Khayatt, A.M.

    2011-01-01

    Highlights: → This study sheds light on the shielding properties of gamma-rays and neutrons for some concrete samples. → The experimental mass attenuation coefficients values were compared with theoretical values obtained using WinXCom. → Moreover, neutron shielding has been treated in terms of macroscopic removal cross-section (Σ R , cm -1 ) concept. → The NXcom program was employed to calculate the attenuation coefficients values of neutrons. → These values showed a change with energy and composition of the concrete samples. - Abstract: Shielding of gamma-rays and neutrons by 12 concrete samples with and without mineral additives has been studied. The total mass attenuation and linear attenuation coefficients, half-value thicknesses, effective atomic numbers, effective electron densities and atomic cross-sections at photons energies of 59.5 and 661 keV have been measured and calculated. The measured and calculated values were compared and a reasonable agreement has been observed. Also the recorded values showed a change with energy and composition of the concrete samples. In addition, neutron shielding has been treated in terms of macroscopic removal cross-section (Σ R , cm -1 ) concept. The WinXCom and NXcom programs were employed to calculate the attenuation coefficients of gamma-rays and neutrons, respectively.

  4. Recent improvements in plutonium gamma-ray analysis using MGA

    International Nuclear Information System (INIS)

    Ruhter, W.D.; Gunnink, R.

    1992-06-01

    MGA is a gamma-ray spectrum analysis program for determining relative plutonium isotopic abundances. It can determine plutonium isotopic abundances better than 1% using a high-resolution, low-energy, planar germanium detector and measurement times ten minutes or less. We have modified MGA to allow determination of absolute plutonium isotopic abundances in solutions. With calibration of a detector using a known solution concentration in a well-defined sample geometry, plutonium solution concentrations can be determined. MGA can include analysis of a second spectrum of the high-energy spectrum to include determination of fission product abundances relative to total plutonium. For the high-energy gamma-ray measurements we have devised a new hardware configuration, so that both the low- and high-energy gamma-ray detectors are mounted in a single cryostat thereby reducing weight and volume of the detector systems. We describe the detector configuration, and the performance of the MGA program for determining plutonium concentrations in solutions and fission product abundances

  5. ICIT contribution to JET gamma-ray diagnostics enhancement

    International Nuclear Information System (INIS)

    Soare, S.; Curuia, M.; Zoita, V.

    2010-01-01

    Full text: Gamma-ray emission of tokamak plasmas is the result of the interaction of fast ions (fusion reaction products, including alpha particles, NBI ions, ICRH-accelerated ions) with main plasma impurities (e.g., carbon, beryllium). Gamma-ray diagnostics involve both gamma-ray imaging (cameras) and gamma-ray spectrometry (spectrometers). For the JET tokamak, gamma-ray diagnostics have been used to provide information on the characteristics of the fast ion population in plasmas. Two gamma-ray diagnostics enhancements project have been launched by JET and the MEdC/EURATOM Association has agreed to lead both of them with ICIT as projects leader. (authors)

  6. Gamma-ray effect on sweet potato

    International Nuclear Information System (INIS)

    Ferdes, O.; Ciofu, R.; Stroia, L.; Ghering, A.; Ferdes, M.

    1994-01-01

    The paper presents the results on modification occurred in biochemical properties of sweet potato (Ipomea batatus L.) after gamma irradiation. Two varieties, named Victoria Ianb (a white variety) and Portocaliu (a red variety), were selected and acclimatized for the agrometeorological conditions of Romania. The samples consist of roots from both usual and experimental crops. They were irradiated in batch, one week after harvesting, with a ICPR Co-60 gamma-ray source by approx. 370 TBq, dose range 100-500 Gy, dose rate 100±5 Gy/hour, dose uniformity ±5%, temperature 10 o C, 80±5% relative humidity (rh). The irradiation doses received were checked using the Fricke ferrous sulphate dosimeter procedure. The roots were kept two months at relative darkness, 6-11 o C, 60-75% rh and analyzed from time to time (initial, 5, 7, 14, 30 and 60 days). The following parameters are analyzed by conventional methods: total and reducing sugars (in De equivalent, %, on dry weight basis), starch content and the activities of sugar metabolizing enzymes. The red variety had a better behaviour towards irradiation that the white one. The sugar contents (both total and reducing), as well as starch, varied more in the white variety. The sugar metabolizing enzyme activities were influenced by both irradiation and storage conditions. Their activities were maximal at 200 and 300 Gy, and decreased significantly at higher doses. The activities also decreased in time, their variations being higher at lower doses (100 and 200 Gy). The results showed no significant influence of gamma irradiation on storage life. The modifications induced in sugar contents and enzyme activities had maximal effects at 200-300 Gy. (author)

  7. On the origin of gamma rays in Fermi blazars: beyond the broad line region.

    Science.gov (United States)

    Costamante, L.; Cutini, S.; Tosti, G.; Antolini, E.; Tramacere, A.

    2018-05-01

    The gamma-ray emission in broad-line blazars is generally explained as inverse Compton (IC) radiation of relativistic electrons in the jet scattering optical-UV photons from the Broad Line Region (BLR), the so-called BLR External Compton scenario. We test this scenario on the Fermi gamma-ray spectra of 106 broad-line blazars detected with the highest significance or largest BLR, by looking for cut-off signatures at high energies compatible with γ-γ interactions with BLR photons. We do not find evidence for the expected BLR absorption. For 2/3 of the sources, we can exclude any significant absorption (τmax 5). We conclude that for 9 out of 10 objects, the jet does not interact with BLR photons. Gamma-rays seem either produced outside the BLR most of the time, or the BLR is ˜100 × larger than given by reverberation mapping. This means that i) External Compton on BLR photons is disfavoured as the main gamma-ray mechanism, vs IC on IR photons from the torus or synchrotron self-Compton; ii) the Fermi gamma-ray spectrum is mostly intrinsic, determined by the interaction of the particle distribution with the seed-photons spectrum; iii) without suppression by the BLR, broad-line blazars can become copious emitters above 100 GeV, as demonstrated by 3C 454.3. We expect the CTA sky to be much richer of broad-line blazars than previously thought.

  8. Gamma ray observations of the solar system

    International Nuclear Information System (INIS)

    1981-01-01

    Two general categories are discussed concerning the evolution of the solar system: the dualistic view, the planetesimal approach and the monistic view, the nebular hypothesis. The major points of each view are given and the models that are developed from these views are described. Possible applications of gamma ray astronomical observations to the question of the dynamic evolution of the solar system are discussed

  9. Gamma ray observations of the solar system

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    Two general categories are discussed concerning the evolution of the solar system: the dualistic view, the planetesimal approach and the monistic view, the nebular hypothesis. The major points of each view are given and the models that are developed from these views are described. Possible applications of gamma ray astronomical observations to the question of the dynamic evolution of the solar system are discussed.

  10. Gamma ray observations of the solar system

    Science.gov (United States)

    1981-01-01

    Two general categories are discussed concerning the evolution of the solar system: the dualistic view, the planetesimal approach; and the monistic view, the nebular hypothesis. The major points of each view are given and the models that are developed from these views are described. Possible applications of gamma ray astronomical observations to the question of the dynamic evolution of the solar system are discussed.

  11. Black Hole Accretion in Gamma Ray Bursts

    Directory of Open Access Journals (Sweden)

    Agnieszka Janiuk

    2017-02-01

    Full Text Available We study the structure and evolution of the hyperaccreting disks and outflows in the gamma ray bursts central engines. The torus around a stellar mass black hole is composed of free nucleons, Helium, electron-positron pairs, and is cooled by neutrino emission. Accretion of matter powers the relativistic jets, responsible for the gamma ray prompt emission. The significant number density of neutrons in the disk and outflowing material will cause subsequent formation of heavier nuclei. We study the process of nucleosynthesis and its possible observational consequences. We also apply our scenario to the recent observation of the gravitational wave signal, detected on 14 September 2015 by the two Advanced LIGO detectors, and related to an inspiral and merger of a binary black hole system. A gamma ray burst that could possibly be related with the GW150914 event was observed by the Fermi satellite. It had a duration of about 1 s and appeared about 0.4 s after the gravitational-wave signal. We propose that a collapsing massive star and a black hole in a close binary could lead to the event. The gamma ray burst was powered by a weak neutrino flux produced in the star remnant’s matter. Low spin and kick velocity of the merged black hole are reproduced in our simulations. Coincident gravitational-wave emission originates from the merger of the collapsed core and the companion black hole.

  12. Swift: A gamma ray burst MIDEX

    International Nuclear Information System (INIS)

    Barthelmy, Scott

    2001-01-01

    Swift is a first of its kind multiwavelength transient observatory for gamma-ray burst astronomy. It has the optimum capabilities for the next breakthroughs in determining the origin of gamma-ray bursts and their afterglows as well as using bursts to probe the early Universe. Swift will also perform the first sensitive hard X-ray survey of the sky. The mission is being developed by an international collaboration and consists of three instruments, the Burst Alert Telescope (BAT), the X-ray Telescope (XRT), and the Ultraviolet and Optical Telescope (UVOT). The BAT, a wide-field gamma-ray detector, will detect ∼1 gamma-ray burst per day with a sensitivity 5 times that of BATSE. The sensitive narrow-field XRT and UVOT will be autonomously slewed to the burst location in 20 to 70 seconds to determine 0.3-5.0 arcsec positions and perform optical, UV, and X-ray spectrophotometry. On-board measurements of redshift will also be done for hundreds of bursts. Swift will incorporate superb, low-cost instruments using existing flight-spare hardware and designs. Strong education/public outreach and follow-up programs will help to engage the public and astronomical community. Swift has been selected by NASA for development and launch in late 2003

  13. Gamma-ray bursts at high redshift

    NARCIS (Netherlands)

    Wijers, R.A.M.J.

    1999-01-01

    Gamma-ray bursts are much brighter than supernovae, and could therefore possibly probe the Universe to high redshift. The presently established GRB redshifts range from 0.83 to 5, and quite possibly even beyond that. Since most proposed mechanisms for GRB link them closely to deaths of massive

  14. Coakial gamma ray detector and method therefor

    International Nuclear Information System (INIS)

    Harchol, M.

    1977-01-01

    A coaxial gamma ray detector is fabricated using intrinsic Ge semiconductor material in a geometry whereby full depletion of electrical carriers is prevented within a small region proximate the point of electrical contact thereby allowing greater biasing potentials across the detector and, consequently, providing reduced electronic noise and increased energy resolution

  15. Effects of Shielding on Gamma Rays

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-13

    The interaction of gamma rays with matter results in an effect we call attenuation (i.e. ‘shielding’). Attenuation can dramatically alter the appearance of a spectrum. Attenuating materials may actually create features in a spectrum via x-ray fluorescence

  16. Developments in mercuric iodide gamma ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Patt, B E; Beyerle, A G; Dolin, R C; Ortale, C [EG and G Energy Measurements, Inc., Goleta, CA (USA). Santa Barbara Operations

    1989-11-01

    A mercuric iodide (HgI{sub 2}) gamma ray imaging array and camera system previously described have been characterized for spatial and energy resolution. Based on these data a new camera is being developed to more fully exploit the potential of the array. Characterization results and design criteria for the new camera will be presented. (orig.).

  17. Current segmented gamma-ray scanner technology

    International Nuclear Information System (INIS)

    Bjork, C.W.

    1987-01-01

    A new generation of segmented gamma-ray scanners has been developed at Los Alamos for scrap and waste measurements at the Savannah River Plant and the Los Alamos Plutonium Facility. The new designs are highly automated and exhibit special features such as good segmentation and thorough shielding to improve performance

  18. Gamma-Ray Telescope and Uncertainty Principle

    Science.gov (United States)

    Shivalingaswamy, T.; Kagali, B. A.

    2012-01-01

    Heisenberg's Uncertainty Principle is one of the important basic principles of quantum mechanics. In most of the books on quantum mechanics, this uncertainty principle is generally illustrated with the help of a gamma ray microscope, wherein neither the image formation criterion nor the lens properties are taken into account. Thus a better…

  19. Gamma-ray astronomy: A historical perspective

    International Nuclear Information System (INIS)

    Lingenfelter, R.E.

    1988-01-01

    This is a brief review of the course theoretical gamma-ray astronomy has taken over the past thirty years. An examination is given of what the theoretical expectations were; to what extent they were realized; how well they anticipated new directions of research; and alternatively, how often were new directions unexpected

  20. Gamma-ray Emission from Globular Clusters

    Directory of Open Access Journals (Sweden)

    Pak-Hin T. Tam

    2016-03-01

    Full Text Available Over the last few years, the data obtained using the Large Area Telescope (LAT aboard the Fermi Gamma-ray Space Telescope has provided new insights on high-energy processes in globular clusters, particularly those involving compact objects such as MilliSecond Pulsars (MSPs. Gamma-ray emission in the 100 MeV to 10 GeV range has been detected from more than a dozen globular clusters in our galaxy, including 47 Tucanae and Terzan 5. Based on a sample of known gammaray globular clusters, the empirical relations between gamma-ray luminosity and properties of globular clusters such as their stellar encounter rate, metallicity, and possible optical and infrared photon energy densities, have been derived. The measured gamma-ray spectra are generally described by a power law with a cut-off at a few gigaelectronvolts. Together with the detection of pulsed γ-rays from two MSPs in two different globular clusters, such spectral signature lends support to the hypothesis that γ-rays from globular clusters represent collective curvature emission from magnetospheres of MSPs in the clusters. Alternative models, involving Inverse-Compton (IC emission of relativistic electrons that are accelerated close to MSPs or pulsar wind nebula shocks, have also been suggested. Observations at >100 GeV by using Fermi/LAT and atmospheric Cherenkov telescopes such as H.E.S.S.-II, MAGIC-II, VERITAS, and CTA will help to settle some questions unanswered by current data.

  1. Comparison between poly(ethylene naphthalate) and poly(ethylene terephthalate) in terms of gamma-ray irradiation on their dielectric properties

    Science.gov (United States)

    Miyamoto, Maki; Ohki, Yoshimichi

    2017-06-01

    The effects of gamma-rays on the complex permittivity (\\varepsilon '\\text{r} and \\varepsilon ''\\text{r}) and electrical conductivity were compared between poly(ethylene naphthalate) (PEN) and poly(ethylene terephthalate) (PET). Although both \\varepsilon '\\text{r} and \\varepsilon ''\\text{r} increase in PET with an increase in the total dose of gamma irradiation, such increases are hardly observed in PEN. The conductivity is always smaller in PEN than in PET. Therefore, it has been confirmed that charge transport is less activated by gamma irradiation in PEN than in PET. Together with experimental results obtained by ultraviolet-visible absorption spectroscopy and thermogravimetric analysis, it can be concluded that PEN has a superior anti-gamma-ray dielectric property to PET.

  2. Gamma ray bursts of black hole universe

    Science.gov (United States)

    Zhang, T. X.

    2015-07-01

    Slightly modifying the standard big bang theory, Zhang recently developed a new cosmological model called black hole universe, which has only a single postulate but is consistent with Mach's principle, governed by Einstein's general theory of relativity, and able to explain existing observations of the universe. In the previous studies, we have explained the origin, structure, evolution, expansion, cosmic microwave background radiation, quasar, and acceleration of black hole universe, which grew from a star-like black hole with several solar masses through a supermassive black hole with billions of solar masses to the present state with hundred billion-trillions of solar masses by accreting ambient matter and merging with other black holes. This study investigates gamma ray bursts of black hole universe and provides an alternative explanation for the energy and spectrum measurements of gamma ray bursts according to the black hole universe model. The results indicate that gamma ray bursts can be understood as emissions of dynamic star-like black holes. A black hole, when it accretes its star or merges with another black hole, becomes dynamic. A dynamic black hole has a broken event horizon and thus cannot hold the inside hot (or high-frequency) blackbody radiation, which flows or leaks out and produces a GRB. A star when it collapses into its core black hole produces a long GRB and releases the gravitational potential energy of the star as gamma rays. A black hole that merges with another black hole produces a short GRB and releases a part of their blackbody radiation as gamma rays. The amount of energy obtained from the emissions of dynamic star-like black holes are consistent with the measurements of energy from GRBs. The GRB energy spectra derived from this new emission mechanism are also consistent with the measurements.

  3. Gamma-ray production cross sections for MeV neutrons

    International Nuclear Information System (INIS)

    Kitazawa, Hideo; Harima, Yoshiko; Yamakoshi, Hisao; Sano, Yuji; Kobayashi, Tsuguyuki.

    1979-01-01

    Gamma-ray production cross section and spectra for 1- to 20-MeV neutrons were theoretically obtained, which were requested for heating calculations, for shielding design calculations, and for material damage estimates. Calculations were carried out for Al, Si, Ca, Fe, Ni, Cu, Nb, Ta, Au, and Pb, using a spin-dependent evaporation model without the parity conservation and including the dipole and quardupole gamma-ray transitions. The results were compared with the experimental data measured in ORNL to confirm the availability of this model in applications. In addition, the effects on the gamma-ray production cross section of the optical potential, level density, yrast level, and radiation width were investigated in detail. The conclusions are: 1) the use of the optical potential which gives the correct total reaction cross section is essential to gamma-ray production calculations, 2) the gamma-ray production cross section is not so sensitive to the choice of level density parameters, 3) the inclusion of yrast levels is necessary in dealing with the competition of the neutron and gamma-ray emissions from highly excited states, and 4) the Brink-Axel type's radiation width is unsuitable to be applied to radiative capture processes. (author)

  4. Applications of outcrop gamma-ray logging to field development and exploration

    International Nuclear Information System (INIS)

    Jordan, D.W.; Slatt, R.M.; Gillespie, R.H.; D'Agostino, A.E.; Scheihing, M.H.

    1991-01-01

    Gamma-ray logs of outcrops have been generated using two techniques. These techniques demonstrate the applicability of outcrop logging to better understand reservoir facies architecture and exploration type problems. The first logging technique employs the use of a standard logging truck and gamma-ray sonde. The truck is positioned near the top of the cliff face and the sonde is lowered to the bottom of the cliff. Gamma-ray counts are recorded as the sonde is raised at a constant rate. The second logging technique employs the use of a commercially available, hand-held, gamma-ray scintillometer. The tool measures total radiation at the outcrop. Equally-spaced measurements are made along the section and are displayed as a function of depth below a reference point. In this paper examples of gamma-ray logging experiments conducted on turbidities of the Jackfork Group (Pennsylvanian) in central and southern Arkansas are discussed, as are application of outcrop gamma-ray logging in the Long Beach Unit of Wilmington Oil Field, California, and Point Mugu (Santa Barbara Channel), California

  5. Matrix of response functions for xenon gamma-ray detector

    International Nuclear Information System (INIS)

    Shustov, A.E.; Vlasik, K.F.; Grachev, V.M.; Dmitrenko, V.V.; Novikov, A.S.; P'ya, S.N.; Ulin, S.E.; Uteshev, Z.M.; Chernysheva, I.V.

    2014-01-01

    An approach of creation of response matrix using simulation GEANT4 gamma-ray Monte-Carlo method has been described for gamma-ray spectrometer based on high pressure xenon impulse ionization chamber with a shielding grid [ru

  6. Cosmic gamma-ray background radiation. Current understandings and problems

    International Nuclear Information System (INIS)

    Inoue, Yoshiyuki

    2015-01-01

    The cosmic gamma-ray background radiation is one of the most fundamental observables in the gamma-ray band. Although the origin of the cosmic gamma-ray background radiation has been a mystery for a long time, the Fermi gamma-ray space telescope has recently measured it at 0.1-820 GeV and revealed that the cosmic GeV gamma-ray background is composed of blazars, radio galaxies, and star-forming galaxies. However, Fermi still leaves the following questions. Those are dark matter contribution, origins of the cosmic MeV gamma-ray background, and the connection to the IceCube TeV-PeV neutrino events. In this proceeding, I will review the current understandings of the cosmic gamma-ray background and discuss future prospects of cosmic gamma-ray background radiation studies. (author)

  7. Parsec-Scale Properties of Gamma-Ray Bright Blazars

    Science.gov (United States)

    Linford, Justin Dee

    The parsec-scale radio properties of blazars detected by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope have been investigated using observations with the Very Long Baseline Array (VLBA). Comparisons between LAT and non-LAT detected samples were made using both archival and contemporaneous data. In total, 244 sources were used in the LAT-detected sample. This very large, radio flux-limited sample of active galactic nuclei (AGN) provides insights into the mechanism that produces strong gamma-ray emission. It has been found that LAT-detected BL Lac objects are very similar to the non-LAT BL Lac objects in most properties, although LAT BL Lac objects may have longer jets. The LAT flat spectrum radio quasars (FSRQs) are significantly different from non-LAT FSRQs and are likely extreme members of the FSRQ population. Archival radio data indicated that there was no significant correlation between radio flux density and gamma-ray flux, especially at lower flux levels. However, contemporaneous observations showed a strong correlation. Most of the differences between the LAT and non-LAT populations are related to the cores of the sources, indicating that the gamma-ray emission may originate near the base of the jets (i.e., within a few pc of the central engine). There is some indication that LAT-detected sources may have larger jet opening angles than the non-LAT sources. Strong core polarization is significantly more common among the LAT sources, suggesting that gamma-ray emission is related to strong, uniform magnetic fields at the base of the jets of the blazars. Observations of sources in two epochs indicate that core fractional polarization was higher when the objects were detected by the LAT. The low-synchrotron peaked (LSP) BL Lac object sample shows indications of contamination by FSRQs which happen to have undetectable emission lines. There is evidence that the LSP BL Lac objects are more strongly beamed than the rest of the BL Lac

  8. High-energy Emission from Nonrelativistic Radiative Shocks: Application to Gamma-Ray Novae

    Science.gov (United States)

    Vurm, Indrek; Metzger, Brian D.

    2018-01-01

    The observation of GeV gamma-rays from novae by Fermi/LAT demonstrates that the nonrelativistic radiative shocks in these systems can accelerate particles to energies of at least ∼10 GeV. The low-energy extension of the same nonthermal particle distribution inevitably gives rise to emission in the hard X-ray band. Above ≳ 10 {keV}, this radiation can escape the system without significant absorption/attenuation, and can potentially be detected by NuSTAR. We present theoretical models for hard X-ray and gamma-ray emission from radiative shocks in both leptonic and hadronic scenarios, accounting for the rapid evolution of the downstream properties due to the fast cooling of thermal plasma. We find that due to strong Coulomb losses, only a fraction of {10}-4{--}{10}-3 of the gamma-ray luminosity is radiated in the NuSTAR band; nevertheless, this emission could be detectable simultaneously with the LAT emission in bright gamma-ray novae with a ∼50 ks exposure. The spectral slope in hard X-rays is α ≈ 0 for typical nova parameters, thus serving as a testable prediction of the model. Our work demonstrates how combined hard X-ray and gamma-ray observations can be used to constrain properties of the nova outflow (velocity, density, and mass outflow rate) and particle acceleration at the shock. A very low X-ray to gamma-ray luminosity ratio ({L}{{X}}/{L}γ ≲ 5× {10}-4) would disfavor leptonic models for the gamma-ray emission. Our model can also be applied to other astrophysical environments with radiative shocks, including SNe IIn and colliding winds in massive star binaries.

  9. Applications of Monte Carlo simulations of gamma-ray spectra

    International Nuclear Information System (INIS)

    Clark, D.D.

    1995-01-01

    A short, convenient computer program based on the Monte Carlo method that was developed to generate simulated gamma-ray spectra has been found to have useful applications in research and teaching. In research, we use it to predict spectra in neutron activation analysis (NAA), particularly in prompt gamma-ray NAA (PGNAA). In teaching, it is used to illustrate the dependence of detector response functions on the nature of gamma-ray interactions, the incident gamma-ray energy, and detector geometry

  10. Interstellar medium structure and content and gamma ray astronomy

    International Nuclear Information System (INIS)

    Lebrun, F.

    1982-05-01

    A general description of gamma-ray astronomy is presented with special emphasis on the study of diffuse gamma-ray emission. This is followed by a collection of reflections and observations on the structure and the gas and dust content of the local interstellar medium. Results of gamma-ray observations on the local interstellar medium are given. The last part is devoted to the whole of the galactic gamma-ray emission and its interpretation [fr

  11. Gamma-ray Background Spectrum and Annihilation Rate in the Baryon-symmetric Big-bang Cosmology

    Science.gov (United States)

    Puget, J. L.

    1973-01-01

    An attempt was made to acquire experimental information on the problem of baryon symmetry on a large cosmological scale by observing the annihilation products. Data cover absorption cross sections and background radiation due to other sources for the two main products of annihilation, gamma rays and neutrinos. Test results show that the best direct experimental test for the presence of large scale antimatter lies in the gamma ray background spectrum between 1 and 70 MeV.

  12. Dust extinction in high-z galaxies with gamma-ray burst afterglow spectroscopy

    DEFF Research Database (Denmark)

    Elíasdóttir, Á.; Fynbo, J. P. U.; Hjorth, J.

    2009-01-01

    We report the clear detection of the 2175 Å dust absorption feature in the optical afterglow spectrum of the gamma-ray burst (GRB) GRB 070802 at a redshift of z = 2.45. This is the highest redshift for a detected 2175 Å dust bump to date, and it is the first clear detection of the 2175 Å bump...

  13. Gamma-ray burst observations: the present situation

    International Nuclear Information System (INIS)

    Vedrenne, G.

    1984-01-01

    Recent results in gamma ray burst investigations concerning the spectral variability on a short time scale, precise locations, and the discovery of optical flashes in gamma ray burst positions on archival plates are presented. The implications of optical and X-ray observations of gamma ray burst error boxes are also discussed. 72 references

  14. Egret observations of the extragalactic gamma-ray emission

    DEFF Research Database (Denmark)

    Sreekumar, P.; Bertsch, D.L.; Dingus, B.L.

    1998-01-01

    The all-sky survey in high-energy gamma rays (E > 30 MeV) carried out by EGRET aboard the Compton Gamma Ray Observatory provides a unique opportunity to examine in detail the diffuse gamma-ray emission. The observed diffuse emission has a Galactic component arising from cosmic-ray interactions wi...

  15. Natural background gamma-ray spectrum. List of gamma-rays ordered in energy from natural radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Ichimiya, Tsutomu [Japan Radioisotope Association, Tokyo (Japan); Narita, Tsutomu; Kitao, Kensuke

    1998-03-01

    A quick index to {gamma}-rays and X-rays from natural radionuclides is presented. In the list, {gamma}-rays are arranged in order of increasing energy. The list also contains {gamma}-rays from radioactive nuclides produced in a germanium detector and its surrounding materials by interaction with cosmic neutrons, as well as direct {gamma}-rays from interaction with the neutrons. Artificial radioactive nuclides emitting {gamma}-rays with same or near energy value as that of the natural {gamma}-rays and X-rays are also listed. In appendix, {gamma}-ray spectra from a rock, uranium ore, thorium, monazite and uraninite and also background spectra obtained with germanium detectors placed in iron or lead shield have been given. The list is designed for use in {gamma}-ray spectroscopy under the conditions of highly natural background, such as in-situ environmental radiation monitoring or low-level activity measurements, with a germanium detector. (author)

  16. Spectrum, time structure and direction of incidence of the August 16, 1976 gamma ray burst

    International Nuclear Information System (INIS)

    Sommer, H.; Mueller, D.; Horstman, H.; Bassani, L.

    1977-01-01

    Two major bursts of energetic photons have been recorded with a new balloon-borne instrument during the second transatlantic flight in 1976: One in coincidence with a type III solar radio burst on August 16 and a very energetic gamma ray burst of non-solar origin starting at 16:15.5 UT of August 16. Spectral information of the gamma ray burst has been obtained up to 2 MeV. A crude position of the burst source has been derived from data of a directional detector array after correcting for absorption and scattering in the earth's atmosphere. (author)

  17. Responses of wild husk tomato, Physalis angulata L. to growth regulators and gamma rays on chlorophyll content and fruit yield

    International Nuclear Information System (INIS)

    Raghava, R.P.; Raghava, Nisha

    1994-01-01

    Effect of different growth regulators and gamma rays on the total chlorophyll content and fruit yield were studied in wild species of husk tomato and concluded that indole-3-acetic acid (IAA) 200 and kinetin (KIN) 10 ppm showed remarkable enhancement in both total chlorophyll content and fruit yield, while maleic hydrazide (MH) 100, 200 ppm and coumarin (COU) in all the treatments enhanced total chlorophyll content. Gamma ray treatments significantly enhanced both the parameters. Amongst all the treatments maximum fruit yield was in 20 kR of gamma rays. (author). 31 refs., 1 tab

  18. SEARCH FOR GAMMA-RAYS FROM THE UNUSUALLY BRIGHT GRB 130427A WITH THE HAWC GAMMA-RAY OBSERVATORY

    Energy Technology Data Exchange (ETDEWEB)

    Abeysekara, A. U. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI (United States); Alfaro, R. [Instituto de Física, Universidad Nacional Autónoma de México, México D. F. (Mexico); Alvarez, C.; Arceo, R. [CEFyMAP, Universidad Autónoma de Chiapas, Tuxtla Gutiérrez, Chiapas (Mexico); Álvarez, J. D.; Arteaga-Velázquez, J. C.; Cotti, U.; De León, C. [Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán (Mexico); Solares, H. A. Ayala [Department of Physics, Michigan Technological University, Houghton, MI (United States); Barber, A. S. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT (United States); Baughman, B. M.; Braun, J. [Department of Physics, University of Maryland, College Park, MD (United States); Bautista-Elivar, N. [Universidad Politécnica de Pachuca, Municipio de Zempoala, Hidalgo (Mexico); BenZvi, S. Y. [Department of Physics and Astronomy, University of Rochester, Rochester, NY (United States); Rosales, M. Bonilla; Carramiñana, A. [Instituto Nacional de Astrofísica, Óptica y Electrónica, Tonantzintla, Puebla (Mexico); Caballero-Mora, K. S. [Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México D. F. (Mexico); Castillo, M.; Cotzomi, J. [Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, Puebla (Mexico); De la Fuente, E., E-mail: dirk.lennarz@gatech.edu [Departamento de Física, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara (Mexico); Collaboration: HAWC collaboration; and others

    2015-02-20

    The first limits on the prompt emission from the long gamma-ray burst (GRB) 130427A in the >100 GeV energy band are reported. GRB 130427A was the most powerful burst ever detected with a redshift z ≲ 0.5 and featured the longest lasting emission above 100 MeV. The energy spectrum extends at least up to 95 GeV, clearly in the range observable by the High Altitude Water Cherenkov (HAWC) Gamma-Ray Observatory, a new extensive air shower detector currently under construction in central Mexico. The burst occurred under unfavorable observation conditions, low in the sky and when HAWC was running 10% of the final detector. Based on the observed light curve at MeV-GeV energies, eight different time periods have been searched for prompt and delayed emission from this GRB. In all cases, no statistically significant excess of counts has been found and upper limits have been placed. It is shown that a similar GRB close to zenith would be easily detected by the full HAWC detector, which will be completed soon. The detection rate of the full HAWC detector may be as high as one to two GRBs per year. A detection could provide important information regarding the high energy processes at work and the observation of a possible cut-off beyond the Fermi Large Area Telescope energy range could be the signature of gamma-ray absorption, either in the GRB or along the line of sight due to the extragalactic background light.

  19. Relativistic effects in gamma-ray bursts

    International Nuclear Information System (INIS)

    Eriksen, Erik; Groen, Oeyvind

    1999-01-01

    According to recent models of the sources of gamma-ray bursts the extremely energetic emission is caused by shells expanding with ultrarelativistic velocity. With the recent identification of optical sources at the positions of some gamma-ray bursts these ''fireball'' models have acquired an actuality that invites to use them as a motivating application when teaching special relativity. We demonstrate several relativistic effects associated with these models which are very pronounced due to the great velocity of the shell. For example a burst lasting for a month in the rest frame of an element of the shell lasts for a few seconds only, in the rest frame of our detector. It is shown how the observed properties of a burst are modified by aberration and the Doppler effect. The apparent luminosity as a function of time is calculated. Modifications due to the motion of the star away from the observer are calculated. (Author)

  20. Fissile interrogation using gamma rays from oxygen

    Science.gov (United States)

    Smith, Donald; Micklich, Bradley J.; Fessler, Andreas

    2004-04-20

    The subject apparatus provides a means to identify the presence of fissionable material or other nuclear material contained within an item to be tested. The system employs a portable accelerator to accelerate and direct protons to a fluorine-compound target. The interaction of the protons with the fluorine-compound target produces gamma rays which are directed at the item to be tested. If the item to be tested contains either a fissionable material or other nuclear material the interaction of the gamma rays with the material contained within the test item with result in the production of neutrons. A system of neutron detectors is positioned to intercept any neutrons generated by the test item. The results from the neutron detectors are analyzed to determine the presence of a fissionable material or other nuclear material.

  1. Environmental Effects of Gamma Ray Bursts

    International Nuclear Information System (INIS)

    Martin, Osmel; Zarauza, Dario; Cardenas, Rolando

    2007-01-01

    Gamma rays bursts, coming from very massive stars, are the most powerful explosions in our Universe. Some authors have linked them to some of the climatic changes and consequent biological mass extinctions of the Phanerozoic eon. However, the consequences of their direct impact on primitive Earth, is today a hot topic of debate. On the other hand, it is usually assumed that they were more common in earlier stages of our galaxy. So it is important to evaluate its potential effects on terrestrial paleoenvironments. We outline some simple models to estimate their influence mainly on the primordial atmospheric chemistry of Earth and on the climate in general. To do that, we consider different scenarios where the atmospheric composition diverges substantially from the atmosphere today, and compute the evolution of principal chemical species under the intense radiational stress of a gamma ray burst. Furthermore, the possible impact on the isotopic composition, geochemistry and the biosphere are mentioned in general way

  2. TeV gamma-ray astronomy

    International Nuclear Information System (INIS)

    Cui Wei

    2009-01-01

    The field of ground-based gamma-ray astronomy has enjoyed rapid growth in recent years. As an increasing number of sources are detected at TeV energies, the field has matured and become a viable branch of modern astronomy. Lying at the uppermost end of the electromagnetic rainbow, TeV photons are always preciously few in number but carry essential information about the particle acceleration and radiative processes involved in extreme astronomical settings. Together with observations at longer wavelengths, TeV gamma-ray observations have drastically improved our view of the universe. In this review, we briefly describe recent progress in the field. We will conclude by providing a personal perspective on the future of the field, in particular, on the significant roles that China could play in advancing this young but exciting field. (invited reviews)

  3. Real time gamma-ray signature identifier

    Science.gov (United States)

    Rowland, Mark [Alamo, CA; Gosnell, Tom B [Moraga, CA; Ham, Cheryl [Livermore, CA; Perkins, Dwight [Livermore, CA; Wong, James [Dublin, CA

    2012-05-15

    A real time gamma-ray signature/source identification method and system using principal components analysis (PCA) for transforming and substantially reducing one or more comprehensive spectral libraries of nuclear materials types and configurations into a corresponding concise representation/signature(s) representing and indexing each individual predetermined spectrum in principal component (PC) space, wherein an unknown gamma-ray signature may be compared against the representative signature to find a match or at least characterize the unknown signature from among all the entries in the library with a single regression or simple projection into the PC space, so as to substantially reduce processing time and computing resources and enable real-time characterization and/or identification.

  4. The Future of Gamma Ray Astrophysics

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    Over the past decade, gamma ray astrophysics has entered the astrophysical mainstream. Extremely successful space-borne (GeV) and ground-based (TeV) detectors, combined with a multitude of partner telescopes, have revealed a fascinating “astroscape" of active galactic nuclei, pulsars, gamma ray bursts, supernova remnants, binary stars, star-forming galaxies, novae much more, exhibiting major pathways along which large energy releases can flow. From  a basic physics perspective, exquisitely sensitive measurements have constrained the nature of dark matter, the cosmological origin of magnetic field and the properties of black holes. These advances have motivated the development of new facilities, including HAWC, DAMPE, CTA and SVOM, which will further our understanding of the high energy universe. Topics that will receive special attention include merging neutron star binaries, clusters of galaxies, galactic cosmic rays and putative, TeV dark matter.

  5. Advances in gamma-ray burst astronomy

    International Nuclear Information System (INIS)

    Cline, T.L.; Desai, U.D.

    1976-01-01

    Work at Goddard is presently being carried out in three major areas of gamma-ray burst research: (1) A pair of simultaneously operating 0.8-m 2 burst detectors were successfully balloon-borne at locations 800 miles apart on 9 May, 1975, each to atmospheric depths of 3 to 4 g cm -2 , for a 20-h period of coincident data coverage. This experiment investigates the size spectrum of bursts in the 10 -7 to 10 -6 erg cm -2 size region where dozens of events per day are expected on a -1.5 index integral power-law extrapolation. Considerable separation in latitude was used to avoid possible atmospheric and auroral secondary effects. Its results are not yet available. (2) A deep-space burst detector, the first spacecraft instrument built specifically for gamma-ray burst studies, was recently successfully integrated into the Helios-B space probe. Its use at distances of up to 2 AU will make possible the first high-resolution directional study of gamma-ray burst source locations. Similar modifications to several other space vehicles are also being prepared. (3) The gamma-ray instrument on the IMP-7 satellite is presently the most sensitive burst detector still operating in orbit. Its results have shown that all measured event-average energy spectra are consistent with being alike. Using this characteristic spectrum to select IMP-7 candidate events of smaller size than those detected using other spacecraft in coincidence, a size spectrum is constructed which fits the -1.5 index power law down to 2.5 x 10 -5 erg cm -2 per event, at an occurrence rate of about once per month. (Auth.)

  6. Nature of gamma-ray burst sources

    International Nuclear Information System (INIS)

    Ventura, J.

    1983-01-01

    Observational evidence suggests that gamma ray bursts have a local galactic origin involving neutron stars. In this light we make a critical review of physics of the thermonuclear runaway model placing emphasis on self-consistency. We further show that some of the proposed models can be observationally excluded in the light of existing data from the Einstein Observatory. The possibility of gamma bursts arising in low mass binaries is finally discussed in the light of evolutionary scenarios leading to low luminosity systems

  7. Evaluation of gamma-ray intensities

    International Nuclear Information System (INIS)

    Yoshizawa, Yasukazu; Inoue, Hikaru; Hoshi, Masaharu; Shizuma, Kiyoshi; Iwata, Yosei.

    1978-03-01

    Results of literature survey and evaluation of relative intensities and intensities per decay of gamma rays are presented. Evaluations were made for 22 Na, 24 Na, 46 Sc, 48 Sc, 48 V, 54 Mn, 57 Co, 60 Co, 85 Sr, 88 Y, 95 Nb, 95 Zr, sup(108m)Ag, 134 Cs, 137 Cs, 144 Ce, 144 Pr, 203 Hg, and 207 Bi. For eight of the nuclides, the half-lives were also evaluated. (auth.)

  8. Gamma-ray standards for detector calibration

    International Nuclear Information System (INIS)

    Christmas, P.; Nichols, A.L.; Lorenz, A.

    1987-09-01

    The first official meeting of the IAEA Coordinated Research Programme on the Measurement and Evaluation of X- and Gamma-ray Standards for Detector Calibration was held in Rome from 11 to 13 June 1987. Work undertaken by the CRP members was reviewed in detail: specific problems in the evaluations were identified and actions placed on the participants to resolve these issues. (author). 3 tabs

  9. Gamma-ray bursts - a critical review

    International Nuclear Information System (INIS)

    Tudose, Valeriu; Biermann, Peter

    2003-01-01

    We present a short general introduction into the field of gamma-ray bursts (GRBs) research, summarizing the past and the present status. We give an general view of the GRBs observations to date, both in the prompt emission phase as well as in the afterglow phase, and a brief primer into the theory, mainly in the frame-work of the fireball model. (authors)

  10. Use of total organic carbon, spectral gamma ray and bioturbation as tools in the identification of source rock; Carbono organico total, gamaespectrometria e bioturbacao como ferramentas na busca de possiveis horizontes geradores de hidrocarbonetos

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Anderson S.; Pereira, Egberto [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Faculdade de Geologia. Dept. de Estratigrafia e Paleontologia

    2008-07-01

    This work presents the result obtained for the gamaespectrometric study of a borehole situated in north of Parana Basin, concerning sediments of the Ponta Grossa Formation. The Total Radioactivity data and the concentrations of Potassium (K), Uranium (U), Thorium (Th) have been compared to the Total Organic Carbon (TOC) and to the degree of bioturbation intensity. The mentioned formation is composed of basal sandstones deposited in shoreface conditions, which pass to siltstones and black shales deposited in offshore conditions. Nine sedimentary facies were identified based on sedimentological characteristics and sedimentary structures. The bioturbation intensity indicates the modification degree of the initial arrangement of sedimentary beds by the action of organisms. High TOC values in the intervals in addition to the increase of the radioactivity values indicate anoxic conditions. These conditions are ideal for the organic matter concentration and preservation, reflecting favorable intervals to the hydrocarbons (HC) generation. Thus, with the integrated use of diverse tools it was possible to confirm that the Givetian-Frasnian interval of the Ponta Grossa Formation presents the best potential of HC generation of the section analyzed. (author)

  11. Status of development of the Gamma Ray Energy Tracking Array (GRETA)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, I.Y.; Schmid, G.J.; Vetter, K. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1996-12-31

    The current generation of large gamma-ray detector arrays, Gammasphere, Eurogam and GASP, are based on modules of Compton suppressed Ge detectors. Due to the solid angle occupied by the Compton shields and to gamma rays escaping the detector, the total peak efficiency of such a design is limited to about 20% for a 1.3 MeV gamma ray. A shell consisting of closely packed Ge detectors has been suggested as the solution to the efficiency limitation. In this case, the entire solid angle is covered by Ge detectors, and by adding the signal from neighboring detectors, the escaped energy is recovered and much higher efficiency can be achieved (e.g. 60% for a 1.3 MeV gamma ray). However, for high multiplicity cascades, the summing of two gamma rays hitting neighboring detectors reduces the efficiency and increases the background. In order to reduce this summing, a large number of detectors is required. For example, with a multiplicity of 25, one needs about 1500 detectors to keep the probability of false summing below 10% and the cost of such a detector array will be prohibitive. Rather than such an approach, the authors are developing a new concept for a gamma-ray array; a shell of closely-packed Ge detectors consisting of 100-200 highly-segmented elements. The high granularity of the segmented Ge detector enables the authors to resolve each of the scattering interactions and determine its position and energy. A tracking algorithm, using the position and energy information, will then identify the interactions belonging to a particular gamma ray and its energy is obtained by summing only these interactions. Such an array can reach a total efficiency about 60%, with a resolving power 1000 times higher than that of current arrays.

  12. Prompt Gamma Ray Analysis of Soil Samples

    Energy Technology Data Exchange (ETDEWEB)

    Naqvi, A.A.; Khiari, F.Z.; Haseeb, S.M.A.; Hussein, Tanvir; Khateeb-ur-Rehman [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Isab, A.H. [Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia)

    2015-07-01

    Neutron moderation effects were measured in bulk soil samples through prompt gamma ray measurements from water and benzene contaminated soil samples using 14 MeV neutron inelastic scattering. The prompt gamma rays were measured using a cylindrical 76 mm x 76 mm (diameter x height) LaBr{sub 3}:Ce detector. Since neutron moderation effects strongly depend upon hydrogen concentration of the sample, for comparison purposes, moderation effects were studied from samples containing different hydrogen concentrations. The soil samples with different hydrogen concentration were prepared by mixing soil with water as well as benzene in different weight proportions. Then, the effects of increasing water and benzene concentrations on the yields of hydrogen, carbon and silicon prompt gamma rays were measured. Moderation effects are more pronounced in soil samples mixed with water as compared to those from soil samples mixed with benzene. This is due to the fact that benzene contaminated soil samples have about 30% less hydrogen concentration by weight than the water contaminated soil samples. Results of the study will be presented. (authors)

  13. AGILE: A gamma-ray mission

    International Nuclear Information System (INIS)

    Tavani, M.; Caraveo, P.; Mereghetti, S.; Perotti, F.; Vercellone, S.; Barbiellini, G.; Budini, G.; Longo, F.; Prest, M.; Vallazza, E.; Cocco, V.; Morselli, A.; Picozza, P.; Pittori, C.; Costa, E.; Feroci, M.; Lapshov, I.; Morelli, E.; Rubini, A.; Soffitta, P.

    2000-01-01

    AGILE is an innovative, cost-effective gamma-ray mission selected by the Italian Space Agency for a Program of Small Scientific Missions. The AGILE gamma-ray imaging detector (GRID, made of a Silicon tracker and CsI Mini-Calorimeter) is designed to detect and image photons in the 30 MeV-50 GeV energy band with good sensitivity and very large field of view (FOV ∼3 sr). The X-ray detector, Super-AGILE, sensitive in the 10-40 keV band and integrated on top of the GRID gamma-ray tracker will provide imaging (1-3 arcmin) and moderate spectroscopy. For selected sky areas, AGILE might achieve a flux sensitivity (above 100 MeV) better than 5x10 -8 ph cm 2 s -1 at the completion of its scientific program. AGILE will operate as an Observatory open to the international community and is planned to be operational during the year 2002 for a nominal 2-year mission. It will be an ideal 'bridge' between EGRET and GLAST, and the only mission entirely dedicated to high-energy astrophysics above 30 MeV during that period

  14. Gamma ray irradiation characteristics of SM fibers

    International Nuclear Information System (INIS)

    Ito, Ryuichi; Okano, Hiroaki; Hashiba, Keichi; Nakai, Hisanori

    1987-01-01

    1.3 μm range single mode (SM) optical fibers have been used for wide application of mainly long distance communication. At present, in order to realize the larger capacity and longer distance between relay points, the development of 1.5 μm range SM fibers of low dispersion and small loss has been actively promoted. As for the radiation withstanding property of SM fibers, report is scarce. The authors reported on the gamma ray irradiation characteristics of 1.3 μm range SM fibers, but since 1.5 μm range SM fibers are designed with the different structure from that of 1.3 μm fibers, it is necessary to evaluate from new viewpoint. In this report, mainly on the structure having triangular distribution, the effect that the manufacturing condition and the structural defects of glass exert on the gamma ray irradiation characteristics is described. The specimens were mainly dispersion shift type fibers (DSF), and for comparison, single window, double window and 1.3 μm SM fibers were examined. Co-60 gamma ray was irradiated, and the optical loss and electron spin resonance were measured. By low temperature and low speed drawing, the good result in the optical loss was obtained. The presence of oxygen at the time of sintering materials had no effect. The dependence of the ESR on the drawing condition was not very remarkable. (Kako, I.)

  15. A gamma-ray discriminating neutron scintillator

    International Nuclear Information System (INIS)

    Eschbach, P.A.; Miller, S.D.; Cole, M.C.

    1994-01-01

    A neutron scintillator has been developed at Pacific Northwest Laboratory which responds directly to as little as 10 mrem/hour dose equivalent rate fast neutron fields. The scintillator is composed of CaF 2 :Eu or of NaI grains within a silicone rubber or polystyrene matrix, respectively. Neutrons colliding with the plastic matrix provide knockon protons, which in turn deposit energy within the grains of phosphor to produce pulses of light. Neutron interactions are discriminated from gamma-ray events on the basis of pulse height. Unlike NE-213 liquid scintillators, this solid scintillator requires no pulseshape discrimination and therefore requires less hardware. Neutron events are anywhere from two to three times larger than the gamma-ray exposures are compared to 0.7 MeV gamma-ray exposures. The CaF 2 :Eu/silicone rubber scintillator is nearly optically transparent, and can be made into a very sizable detector (4 cm x 1.5 cm) without degrading pulse height. This CaF 2 :Eu scintillator has been observed to have an absolute efficiency of 0.1% when exposed to 5-MeV accelerator-generated neutrons (where the absolute efficiency is the ratio of observed neutron events divided by the number of fast neutrons striking the detector)

  16. Gamma-Ray Pulsars Models and Predictions

    CERN Document Server

    Harding, A K

    2001-01-01

    Pulsed emission from gamma-ray pulsars originates inside the magnetosphere, from radiation by charged particles accelerated near the magnetic poles or in the outer gaps. In polar cap models, the high energy spectrum is cut off by magnetic pair production above an energy that is dependent on the local magnetic field strength. While most young pulsars with surface fields in the range B = 10^{12} - 10^{13} G are expected to have high energy cutoffs around several GeV, the gamma-ray spectra of old pulsars having lower surface fields may extend to 50 GeV. Although the gamma-ray emission of older pulsars is weaker, detecting pulsed emission at high energies from nearby sources would be an important confirmation of polar cap models. Outer gap models predict more gradual high-energy turnovers at around 10 GeV, but also predict an inverse Compton component extending to TeV energies. Detection of pulsed TeV emission, which would not survive attenuation at the polar caps, is thus an important test of outer gap models. N...

  17. Gamma rays from the interstellar medium

    International Nuclear Information System (INIS)

    Bloemen, J.B.G.M.

    1985-01-01

    This thesis describes new gamma-ray views on cosmic rays and the interstellar medium. The author describes the COS-B data base and the pre-launch and in-flight calibration data used for all analyses. Diffuse galactic gamma radiation (> 50 MeV) may be either a result of cosmic-ray-matter interactions, or of the cosmic-ray electrons with the interstellar radiation field (mainly at optical and infrared wavelengths), through the inverse-Compton process. A detailed comparison between the gamma-ray observations of the large complex of interstellar clouds in Orion and Monoceros and the CO and HI surveys of this region is given. It gives insight into the cloud penetration of cosmic rays and in the relation between CO detections and molecular hydrogen column densities. Next, the radial distribution of gamma rays in the Galaxy is studied, as well as the galactic centre (more precisely, the central 400 pc), which contains a large concentration of CO molecules. The H 2 /CO abundance and the cosmic-ray density in the galactic centre are discussed and compared to the findings for the galactic disk. In various analyses in this thesis a likelihood-ratio method is applied for parameter estimation and hypothesis testing. A general description of this method is added as an appendix. (Auth.)

  18. Continuum gamma-ray spectroscopy

    International Nuclear Information System (INIS)

    Diamond, R.M.

    1981-06-01

    When angular momentum is added to a nucleus, it is, of course, carried by the individual nucleons, but two limiting types of behavior may be distinguished: (1) a small number of high-j particles align with the rotation axis and (2) the nucleus is deformed and rotates as a whole. At high spin all nuclei seem to show a compromise utilizing both motions. The excited nuclei left as products of (HI,xn) reactions have so many pathways down that none of the γ-ray transitions have enough intensity to be seen individually until the population gathers near the yrast line. This occurs usually between spin 20 to 40 h-bar. All our information on the higher states comes from their continuum spectra. With the new techniques that are developing, including the use of multiplicity filters, total-energy spectrometers, energy correlation studies, crystal balls, and observation of giant dipole resonances in the continuum spectra, there is hope to learn much about the nature of the high-spin states

  19. Lunar occultations for gamma-ray source measurements

    Science.gov (United States)

    Koch, David G.; Hughes, E. B.; Nolan, Patrick L.

    1990-01-01

    The unambiguous association of discrete gamma-ray sources with objects radiating at other wavelengths, the separation of discrete sources from the extended emission within the Galaxy, the mapping of gamma-ray emission from nearby galaxies and the measurement of structure within a discrete source cannot presently be accomplished at gamma-ray energies. In the past, the detection processes used in high-energy gamma-ray astronomy have not allowed for good angular resolution. This problem can be overcome by placing gamma-ray detectors on the moon and using the horizon as an occulting edge to achieve arcsec resolution. For purposes of discussion, this concept is examined for gamma rays above 100 MeV for which pair production dominates the detection process and locally-generated nuclear gamma rays do not contribute to the background.

  20. Physical constraints on models of gamma-ray bursters

    International Nuclear Information System (INIS)

    Epstein, R.I.

    1985-01-01

    This report deals with the constraints that can be placed on models of gamma-ray burst sources based on only the well-established observational facts and physical principles. The premise is developed that the very hard x-ray and gamma-ray continua spectra are well-established aspects of gamma-ray bursts. Recent theoretical work on gamma-ray bursts are summarized with emphasis on the geometrical properties of the models. Constraints on the source models which are implied by the x-ray and gamma-ray spectra are described. The allowed ranges for the luminosity and characteristic dimension for gamma-ray burst sources are shown. Some of the deductions and inferences about the nature of the gamma-ray burst sources are summarized. 67 refs., 3 figs

  1. Responses of commercial broiler chicks to 60Co gamma-rays

    International Nuclear Information System (INIS)

    Shebaita, M.K.; Kamar, G.A.R.; El-Barkouky, E.E.M.

    1981-01-01

    A total of 360 chicks of Nichols line at one-day old were used in this study. Within each sex, the chicks were divided into three exposure treatments (non-irradiated, 400 rads and 800 rads). The source of irradiation was 60 Co gamma-rays. The results can be summarized as follows: Of the 360 chicks used in this study, only 10 chicks died during the experimental period. Radiation induced a reduction in body weight in both sexes during the growth period. Gamma-rays reduce the feed intake in both sexes. Moreover, the feed conversion ratio for the irradiated chicks was higher than that the non-irradiated birds. While red blood cells and hemoglobin content were higher in the irradiated chicks, white blood cells count and especially lymphocytes did not affect by 60 Co gamma-rays. Gamma-rays had no effect on carcass, bone, meat and giblets as fractions of body weight in both sexes. Moreover, meat water content decreased and meat fat content increased in irradiated chicks. The total length and the total weight of the GI tract decreased due to 60 Co gamma-rays. The response of the different regions of the GI tract to this rays is different. Moreover, the effect of this radiation on the GI tract is dependent upon the body weight irrespective of the sex. (orig./MG) [de

  2. Responses of commercial broiler chicks to /sup 60/Co gamma-rays

    Energy Technology Data Exchange (ETDEWEB)

    Shebaita, M.K.; Kamar, G.A.R.; El-Barkouky, E.E.M.

    1981-12-01

    A total of 360 chicks of Nichols line at one-day old were used in this study. Within each sex, the chicks were divided into three exposure treatments (non-irradiated, 400 rads and 800 rads). The source of irradiation was /sup 60/Co gamma rays. The results can be summarized as follows: Of the 360 chicks used in this study, only 10 chicks died during the experimental period. Radiation induced a reduction in body weight in both sexes during the growth period. Gamma rays reduce the feed intake in both sexes. Moreover, the feed conversion ratio for the irradiated chicks was higher than that the non-irradiated birds. While red blood cells and hemoglobin content were higher in the irradiated chicks, white blood cells count and especially lymphocytes were not affected by /sup 60/Co gamma rays. Gamma rays had no effect on carcass, bone, meat and giblets as fractions of body weight in both sexes. Moreover, meat water content decreased and meat fat content increased in irradiated chicks. The total length and the total weight of the GI tract decreased due to /sup 60/Co gamma rays. The response of the different regions of the GI tract to these rays is different. Moreover, the effect of this radiation on the GI tract is dependent upon the body weight irrespective of the sex.

  3. A link between prompt optical and prompt gamma-ray emission in gamma-ray bursts.

    Science.gov (United States)

    Vestrand, W T; Wozniak, P R; Wren, J A; Fenimore, E E; Sakamoto, T; White, R R; Casperson, D; Davis, H; Evans, S; Galassi, M; McGowan, K E; Schier, J A; Asa, J W; Barthelmy, S D; Cummings, J R; Gehrels, N; Hullinger, D; Krimm, H A; Markwardt, C B; McLean, K; Palmer, D; Parsons, A; Tueller, J

    2005-05-12

    The prompt optical emission that arrives with the gamma-rays from a cosmic gamma-ray burst (GRB) is a signature of the engine powering the burst, the properties of the ultra-relativistic ejecta of the explosion, and the ejecta's interactions with the surroundings. Until now, only GRB 990123 had been detected at optical wavelengths during the burst phase. Its prompt optical emission was variable and uncorrelated with the prompt gamma-ray emission, suggesting that the optical emission was generated by a reverse shock arising from the ejecta's collision with surrounding material. Here we report prompt optical emission from GRB 041219a. It is variable and correlated with the prompt gamma-rays, indicating a common origin for the optical light and the gamma-rays. Within the context of the standard fireball model of GRBs, we attribute this new optical component to internal shocks driven into the burst ejecta by variations of the inner engine. The correlated optical emission is a direct probe of the jet isolated from the medium. The timing of the uncorrelated optical emission is strongly dependent on the nature of the medium.

  4. Displacement damage caused by gamma-rays and neutrons on Au and Se.

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, Barney Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-11-01

    This report documents theoretical calculations of displacement damage produced by gamma rays and neutrons on various materials. The average energy of the gamma rays was 1.24 MeV and 1.0 MeV for the neutrons. The fluence of the gamma rays was 1.2e14 γ/cm2 , for the neutrons it was 1.0e12 n/cm2. The initial materials of interest were Au and Se. The total doses of the gamma ray exposures were in the 100 kRad range for both elements. An equivalent electron fluence was approximated to be the same as the gamma ray fluence over one gamma ray attenuation length in both materials and at the same 1.24 MeV energy. The maximum recoil energy of the Au and Se for these electrons was calculated relativisticaly to be 29 and 72 eV respectively. The relativisitic McKinley and Feshbach theory for the atomic recoil cross sections produced by the electrons were in the 10s of mbarn range and an upper limit for the concentration of Frenkel pairs for the gamma ray exposures for both elements was in the ppb range. The Robinson Energy Partioning Theory for non-ionizing energy loss (NIEL) of ions in solids was used to calculate the concentration of Frenkel pairs produced by the 1 MeV neutrons, and this concentration was also in the ppb range for both Au and Se. Low damage levels like this can have effects on minority carrier recombination in semiconductors, but are not expected to have any effect on metals like Au, or metalloids such as Se.

  5. Mapping of radiation anomalies using UAV mini-airborne gamma-ray spectrometry.

    Science.gov (United States)

    Šálek, Ondřej; Matolín, Milan; Gryc, Lubomír

    2018-02-01

    Localization of size-limited gamma-ray anomalies plays a fundamental role in uranium prospecting and environmental studies. Possibilities of a newly developed mini-airborne gamma-ray spectrometric equipment were tested on a uranium anomaly near the village of Třebsko, Czech Republic. The measurement equipment was based on a scintillation gamma-ray spectrometer specially developed for unmanned aerial vehicles (UAV) mounted on powerful hexacopter. The gamma-ray spectrometer has two 103 cm 3 BGO scintillation detectors of relatively high sensitivity. The tested anomaly, which is 80 m by 40 m in size, was investigated by ground gamma-ray spectrometric measurement in a detail rectangular measurement grid. Average uranium concentration is 25 mg/kg eU attaining 700 mg/kg eU locally. The mini-airborne measurement across the anomaly was carried out on three 100 m long parallel profiles at eight flight altitudes from 5 to 40 m above the ground. The resulting 1 s 1024 channel gamma-ray spectra, recorded in counts per second (cps), were processed to concentration units of K, U and Th, while total count (TC) was reported in cps. Increased gamma ray intensity of the anomaly was indicated by mini-airborne measurement at all profiles and altitudes, including the highest altitude of 40 m, at which the recorded intensity is close to the natural radiation background. The reported instrument is able to record data with comparable quality as standard airborne survey, due to relative sensitive detector, lower flight altitude and relatively low flight speed of 1 m/s. The presented experiment brings new experience with using unmanned semi-autonomous aerial vehicles and the latest mini-airborne radiometric instrument. The experiment has demonstrated the instrument's ability to localize size-limited uranium anomalies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Local gamma ray events as tests of the antimatter theory of gamma ray bursts

    International Nuclear Information System (INIS)

    Sofia, S.; Wilson, R.E.

    1976-01-01

    Nearby examples of the antimatter 'chunks' postulated by Sofia and Van Horn to explain the cosmic gamma ray bursts may produce detectable gamma ray events when struck by solar system meteoroids. These events would have a much shorter time scale and higher energy spectrum than the bursts already observed. In order to have a reasonably high event rate, the local meteoroid population must extend to a distance from the Sun of the order of 0.1 pc, but the required distance could become much lower if the instrumental threshold is improved. The expected gamma ray flux for interaction of the antimatter bodies with the solar wind is also examined, and found to be far below present instrumental capabilities. (Auth.)

  7. Gamma Ray Bursts as Cosmological Probes with EXIST

    Science.gov (United States)

    Hartmann, Dieter; EXIST Team

    2006-12-01

    The EXIST mission, studied as a Black Hole Finder Probe within NASA's Beyond Einstein Program, would, in its current design, trigger on 1000 Gamma Ray Bursts (GRBs) per year (Grindlay et al, this meeting). The redshift distribution of these GRBs, using results from Swift as a guide, would probe the z > 7 epoch at an event rate of > 50 per year. These bursts trace early cosmic star formation history, point to a first generation of stellar objects that reionize the universe, and provide bright beacons for absorption line studies with groundand space-based observatories. We discuss how EXIST, in conjunction with other space missions and future large survey programs such as LSST, can be utilized to advance our understanding of cosmic chemical evolution, the structure and evolution of the baryonic cosmic web, and the formation of stars in low metallicity environments.

  8. ICF ignition capsule neutron, gamma ray, and high energy x-ray images

    Science.gov (United States)

    Bradley, P. A.; Wilson, D. C.; Swenson, F. J.; Morgan, G. L.

    2003-03-01

    Post-processed total neutron, RIF neutron, gamma-ray, and x-ray images from 2D LASNEX calculations of burning ignition capsules are presented. The capsules have yields ranging from tens of kilojoules (failures) to over 16 MJ (ignition), and their implosion symmetry ranges from prolate (flattest at the hohlraum equator) to oblate (flattest towards the laser entrance hole). The simulated total neutron images emphasize regions of high DT density and temperature; the reaction-in-flight neutrons emphasize regions of high DT density; the gamma rays emphasize regions of high shell density; and the high energy x rays (>10 keV) emphasize regions of high temperature.

  9. Uranium enrichment measurements without calibration using gamma rays above 100 keV

    International Nuclear Information System (INIS)

    Ruhter, Wayne D.; Lanier, Robert G.; Hayden, Catherine F.

    2001-01-01

    Full text: The verification of UF6 shipping cylinders is an important activity in routine safeguards inspections. Current measurement methods using either sodium-iodide or high-purity germanium detectors requires calibrations that are not always appropriate for field measurements, because of changes in geometry or container wall thickness. The introduction of the MGAU code demonstrated the usefulness of intrinsically calibrated measurements for inspections. MGAU uses the 100-keV region of the uranium gamma-ray spectrum. The thick walls of UF6 shipping cylinders preclude the routine use of MGAU for these measurements. We have developed a uranium enrichment measurement method for measurements using high- purity germanium detectors, which do not require calibration and uses uranium gamma rays above 100 keV. The method uses seven gamma rays from U-235 and U-238 to determine their relative detection efficiency intrinsically and with an additional gamma ray from U-234 the relative abundance of these three uranium isotopes. The method uses a function that describes the basic physical processes that predominately determine the relative detection efficiency curve, These are the detector efficiency, the absorption by the cylinder wall, and the self-absorption by the UF6 contents. We will describe this model and its performance on various uranium materials and detector types. (author)

  10. Improving gross count gamma-ray logging in uranium mining with the NGRS probe

    Directory of Open Access Journals (Sweden)

    Carasco C.

    2018-01-01

    Full Text Available AREVA Mines and the Nuclear Measurement Laboratory of CEA Cadarache are collaborating to improve the sensitivity and precision of uranium concentration measurement by means of gamma ray logging. The determination of uranium concentration in boreholes is performed with the Natural Gamma Ray Sonde (NGRS based on a NaI(Tl scintillation detector. The total gamma count rate is converted into uranium concentration using a calibration coefficient measured in concrete blocks with known uranium concentration in the AREVA Mines calibration facility located in Bessines, France. Until now, to take into account gamma attenuation in a variety of boreholes diameters, tubing materials, diameters and thicknesses, filling fluid densities and compositions, a semi-empirical formula was used to correct the calibration coefficient measured in Bessines facility. In this work, we propose to use Monte Carlo simulations to improve gamma attenuation corrections. To this purpose, the NGRS probe and the calibration measurements in the standard concrete blocks have been modeled with MCNP computer code. The calibration coefficient determined by simulation, 5.3 s-1.ppmU-1 ± 10%, is in good agreement with the one measured in Bessines, 5.2 s-1.ppmU-1. Based on the validated MCNP model, several parametric studies have been performed. For instance, the rock density and chemical composition proved to have a limited impact on the calibration coefficient. However, gamma self-absorption in uranium leads to a nonlinear relationship between count rate and uranium concentration beyond approximately 1% of uranium weight fraction, the underestimation of the uranium content reaching more than a factor 2.5 for a 50 % uranium weight fraction. Next steps will concern parametric studies with different tubing materials, diameters and thicknesses, as well as different borehole filling fluids representative of real measurement conditions.

  11. Improving gross count gamma-ray logging in uranium mining with the NGRS probe

    Science.gov (United States)

    Carasco, C.; Pérot, B.; Ma, J.-L.; Toubon, H.; Dubille-Auchère, A.

    2018-01-01

    AREVA Mines and the Nuclear Measurement Laboratory of CEA Cadarache are collaborating to improve the sensitivity and precision of uranium concentration measurement by means of gamma ray logging. The determination of uranium concentration in boreholes is performed with the Natural Gamma Ray Sonde (NGRS) based on a NaI(Tl) scintillation detector. The total gamma count rate is converted into uranium concentration using a calibration coefficient measured in concrete blocks with known uranium concentration in the AREVA Mines calibration facility located in Bessines, France. Until now, to take into account gamma attenuation in a variety of boreholes diameters, tubing materials, diameters and thicknesses, filling fluid densities and compositions, a semi-empirical formula was used to correct the calibration coefficient measured in Bessines facility. In this work, we propose to use Monte Carlo simulations to improve gamma attenuation corrections. To this purpose, the NGRS probe and the calibration measurements in the standard concrete blocks have been modeled with MCNP computer code. The calibration coefficient determined by simulation, 5.3 s-1.ppmU-1 ± 10%, is in good agreement with the one measured in Bessines, 5.2 s-1.ppmU-1. Based on the validated MCNP model, several parametric studies have been performed. For instance, the rock density and chemical composition proved to have a limited impact on the calibration coefficient. However, gamma self-absorption in uranium leads to a nonlinear relationship between count rate and uranium concentration beyond approximately 1% of uranium weight fraction, the underestimation of the uranium content reaching more than a factor 2.5 for a 50 % uranium weight fraction. Next steps will concern parametric studies with different tubing materials, diameters and thicknesses, as well as different borehole filling fluids representative of real measurement conditions.

  12. Measurement of prompt fission gamma-ray spectra in fast neutron-induced fission

    International Nuclear Information System (INIS)

    Laborie, J.M.; Belier, G.; Taieb, J.

    2012-01-01

    Knowledge of prompt fission gamma-ray emission has been of major interest in reactor physics for a few years. Since very few experimental spectra were ever published until now, new measurements would be also valuable to improve our understanding of the fission process. An experimental method is currently being developed to measure the prompt fission gamma-ray spectrum from some tens keV up to 10 MeV at least. The mean multiplicity and total energy could be deduced. In this method, the gamma-rays are measured with a bismuth germanate (BGO) detector which has the advantage to present a high P/T ratio and a high efficiency compared to other gamma-ray detectors. The prompt fission neutrons are rejected by the time of flight technique between the BGO detector and a fission trigger given by a fission chamber or a scintillating active target. Energy and efficiency calibration of the BGO detector were carried out up to 10.76 MeV by means of the Al-27(p, gamma) reaction. First prompt fission gamma-ray spectrum measurements performed for the spontaneous fission of Cf-252 and for 1.7 and 15.6 MeV neutron-induced fission of U-238 at the CEA, DAM, DIF Van de Graaff accelerator, will be presented. (authors)

  13. Electrical characteristics of {sup 60}Co {gamma}-ray irradiated MIS Schottky diodes

    Energy Technology Data Exchange (ETDEWEB)

    Tataroglu, A. [Department of Physics, Faculty of Arts and Sciences, Gazi University, 06500 Ankara (Turkey)]. E-mail: ademt@gazi.edu.tr; Altindal, S. [Department of Physics, Faculty of Arts and Sciences, Gazi University, 06500 Ankara (Turkey)

    2006-11-15

    In order to interpret the effect of {sup 60}Co {gamma}-ray irradiation dose on the electrical characteristics of MIS Schottky diodes, they were stressed with a zero bias at 1 MHz in dark and room temperature during {gamma}-ray irradiation and the total dose range was 0-450 kGy. The effect of {gamma}-ray exposure on the electrical characteristics of MIS Schottky diodes has been investigated using C-V and G/{omega}-V measurements at room temperature. Experimental results show that {gamma}-ray irradiation induces a decrease in the barrier height {phi} {sub B} and series resistance R {sub s}, decreasing with increasing dose rate. Also, the acceptor concentration N {sub A} increases with increasing radiation dose. The C-V characteristics prove that there is a reaction for extra recombination centers in case of MIS Schottky diodes exposed to {gamma}-ray radiation. Furthermore, the density of interface states N {sub ss} by Hill-Coleman method increases with increasing radiation dose. Experimental results indicate that the interface-trap formation at high irradiation dose is reduced due to positive charge build-up in the Si/SiO{sub 2} interface (due to the trapping of holes) that reduces the flow rate of subsequent holes and protons from the bulk of the insulator to the Si/SiO{sub 2} interface.

  14. Dose Rate and Mass Attenuation Coefficients of Gamma Ray for Concretes

    CERN Document Server

    Abdel-Latif, A A; Kansouh, W A; El-Sayed, F H

    2003-01-01

    This work is concerned with the study of the leakage gamma ray dose and mass attenuation coefficients for ordinary, basalt and dolomite concretes made from local ores. Concretes under investigation were constructed from gravel, basalt and dolomite ores, and then reconstructed with the addition of 3% steel fibers by weight. Measurements were carried out using a collimated beam from sup 6 sup 0 Co gamma ray source and sodium iodide (3x3) crystal with the genie 2000 gamma spectrometer. The obtained fluxes were transformed to gamma ray doses and displayed in the form of gamma ray dose rates distribution. The displayed curves were used to estimate the linear attenuation coefficients (mu), the relaxation lengths (lambda), half value layer (t sub 1 /2) and tenth value layer (t sub 1 /10). Also, The total mass attenuation coefficients of gamma ray have been calculated to the concerned concretes using XCOM (version 3.1) program and database elements cross sections from Z=1 to 100 at energies from 10 keV to 100 MeV. In...

  15. Common Gamma-ray Glows above Thunderclouds

    Science.gov (United States)

    Kelley, Nicole; Smith, David; Dwyer, Joseph; Hazelton, Bryna; Grefenstette, Brian; Lowell, Alex; Splitt, Michael; Lazarus, Steven; Rassoul, Hamid

    2013-04-01

    Gamma-ray glows are continuous, long duration gamma- and x-ray emission seen coming from thunderclouds. The Airborne for Energetic Lightning Emissions (ADELE) observed 12 gamma-ray glows during its summer 2009 flight campaign over the areas of Colorado and Florida in the United States. For these glows we shall present their spectra, relationship to lightning activity and how their duration and size changes as a function of distance. Gamma-ray glows follow the relativistic runaway electron avalanche (RREA) spectrum and have been previously measured from the ground and inside the cloud. ADELE measured most glows as it flew above the screening layer of the cloud. During the brightest glow on August 21, 2009, we can show that we are flying directly into a downward facing relativistic runaway avalanche, indicative of flying between the upper positive and negative screening layer of the cloud. In order to explain the brightness of this glow, RREA with an electric field approaching the limit for relativistic feedback must be occurring. Using all 12 glows, we show that lightning activity diminishes during the onset of the glow. Using this along with the fact that glows occur as the field approaches the level necessary for feedback, we attempt to distinguish between two possibilities: that glows are evidence that RREA with feedback, rather than lightning, is sometimes the primary channel for discharging the cloud, or else that the overall discharging is still controlled by lightning, with glows simply appearing during times when a subsidence of lightning allows the field to rise above the threshold for RREA.

  16. Variable code gamma ray imaging system

    International Nuclear Information System (INIS)

    Macovski, A.; Rosenfeld, D.

    1979-01-01

    A gamma-ray source distribution in the body is imaged onto a detector using an array of apertures. The transmission of each aperture is modulated using a code such that the individual views of the source through each aperture can be decoded and separated. The codes are chosen to maximize the signal to noise ratio for each source distribution. These codes determine the photon collection efficiency of the aperture array. Planar arrays are used for volumetric reconstructions and circular arrays for cross-sectional reconstructions. 14 claims

  17. Detection circuit for gamma-ray burst

    International Nuclear Information System (INIS)

    Murakami, Hiroyuki; Yamagami, Takamasa; Mori, Kunishiro; Uchiyama, Sadayuki.

    1982-01-01

    A new gamma-ray burst detection system is described. The system was developed as an environmental monitor of an accelerator, and can be used as the burst detection system. The system detects the arrival time of burst. The difference between the arrival times detected at different places will give information on the burst source. The frequency of detecting false burst was estimated, and the detection limit under the estimated frequency of false burst was also calculated. Decision whether the signal is false or true burst was made by the statistical treatment. (Kato, T.)

  18. Very high energy gamma ray astrophysics

    International Nuclear Information System (INIS)

    Lamb, R.C.; Lewis, D.A.

    1986-01-01

    The Whipple Observatory's atmospheric Cerenkov camera has detected TeV radiation from four galactic sources: the Crab Nebula, Cygnus X-3, Hercules X-1, and 4U0115+63. Recent simulations encourage the view that unwanted cosmic-ray background showers may be suppressed by a large factor. Emphasis in the coming year will be on determining optimum selection criteria for enhancing gamma-ray signals and in developing a prototype camera with finer angular resolution as a first step towards implementation of the HERCULES concept

  19. Gamma ray induced decomposition of lanthanide nitrates

    International Nuclear Information System (INIS)

    Joshi, N.G.; Garg, A.N.

    1992-01-01

    Gamma ray induced decomposition of the lanthanide nitrates, Ln(NO 3 ) 3 .xH 2 O where Ln=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Tm and Yb has been studied at different absorbed doses up to 600 kGy. G(NO 2 - ) values depend on the absorbed dose and the nature of the outer cation. It has been observed that those lanthanides which exhibit variable valency (Ce and Eu) show lower G-values. An attempt has been made to correlate thermal and radiolytic decomposition processes. (author). 20 refs., 3 figs., 1 tab

  20. Very high energy gamma-ray astronomy

    International Nuclear Information System (INIS)

    Weekes, T.C.

    1989-01-01

    It is apparent that very high gamma-ray astronomy, at the very end of the electromagnetic spectrum, is just at the threshold of becoming an important channel of astronomical information. The author discusses how, to fully develop, it requires telescopes with improved minimum flux sensitivity; development of techniques that characterize the nature of the primary; more overlapping observations to remove any question of the reality of the detected phenomenon; more consistency in the application of statistics among experimenters and more openness about methods used; development of models that will predict the phenomenon to be expected rather than explain what has been observed; and more accurate calibrations to determine absolute fluxes and energies

  1. Gamma-Ray Spectrum Analysis Software GDA

    International Nuclear Information System (INIS)

    Wanabongse, P.

    1998-01-01

    The developmental work on computer software for gamma-ray spectrum analysis has been completed as a software package version 1.02 named GDA, which is an acronym for Gamma-spectrum Deconvolution and Analysis. The software package consists of three 3.5-inch diskettes for setup and a user's manual. GDA software can be installed for using on a personal computer with Windows 95 or Windows NT 4.0 operating system. A computer maybe the type of 80486 CPU with 8 megabytes of memory

  2. Gamma ray bursts from extragalactic sources

    Science.gov (United States)

    Hoyle, Fred; Burbidge, Geoffrey

    1992-01-01

    The properties of gamma ray bursts of classical type are found to be explicable in terms of high speed collisions between stars. A model is proposed in which the frequency of such collisions can be calculated. The model is then applied to the nuclei of galaxies in general on the basis that galaxies, or at least some fraction of them, originate in the expulsion of stars from creation centers. Evidence that low level activity of this kind is also taking place at the center of our own Galaxy is discussed. The implications for galactic evolution are discussed and a negative view of black holes is taken.

  3. Gamma ray thermometrical facility for nuclear reactor

    International Nuclear Information System (INIS)

    Smith, R.D.; Regazzoni, Pierre.

    1981-01-01

    This invention concerns a gamma ray thermometer for nuclear reactors, fitted with a thermal bridge for use as a centring device. In accordance with the invention, an elastic device fills all the annular space between the gamma thermometer and the orifice through which the thermometer is introduced. This elastic device has the two-fold role of providing a thermal bridge at the gamma thermometer location suitable as a heat well, and of acting as a device for centring the thermometer in the orifice into which it has been introduced [fr

  4. Principles and techniques of gamma ray tracers

    International Nuclear Information System (INIS)

    Claxton, K.T.

    1978-01-01

    Radioactive tracer techniques provide a very sensitive means of studying physical and chemical processes in a whole variety of different media. Some of the techniques and principles of radioactive tracers and their application to practical engineering systems are discussed. Information which has been found useful in the design of high temperature liquid sodium facilities employing radio-tracers, is presented. The report deals solely with the use of gamma-emitting species as the tracer. These find particular application for in-situ studies on engineering systems where the highly penetrating properties of gamma rays are needed for detection through strongly absorbent media such as stainless steel pepe walls. (author)

  5. Gamma ray constraints on decaying dark matter

    DEFF Research Database (Denmark)

    Cirelli, M.; Moulin, E.; Panci, P.

    2012-01-01

    We derive new bounds on decaying dark matter from the gamma ray measurements of (i) the isotropic residual (extragalactic) background by Fermi and (ii) the Fornax galaxy cluster by H.E.S.S. We find that those from (i) are among the most stringent constraints currently available, for a large range...... of dark matter masses and a variety of decay modes, excluding half-lives up to similar to 10(26) to few 10(27) seconds. In particular, they rule out the interpretation in terms of decaying dark matter of the e(+/-) spectral features in PAMELA, Fermi and H.E.S.S., unless very conservative choices...

  6. Gamma ray spectroscopy with Arduino UNO

    Science.gov (United States)

    Lavelle, C. M.

    2018-05-01

    We review a simple gamma ray spectrometer constructed on a solderless breadboard. The spectrometer's detector consists of a CsI(Tl) scintillator and silicon photomultiplier (SiPM) and its readout is facilitated by an Arduino UNO. The system is low cost and utilizes a minimum of components while still achieving satisfactory charge linearity and noise levels. This instrument can be used in instructional laboratories to introduce both radiation detection and analog signal processing concepts. We also expect it will be of interest to those seeking to introduce gamma spectroscopy to the expanding ecosystem of Arduino hardware.

  7. Recent developments in airborne gamma ray surveying

    International Nuclear Information System (INIS)

    Grasty, Robert L.

    1999-01-01

    Standardized procedures have been developed for converting airborne gamma ray measurements to ground concentrations of potassium, uranium and thorium. These procedures make use of an airborne calibration range whose ground concentrations should be measured with a calibrated portable spectrometer rather than by taking geochemical samples. Airborne sensitivities and height attenuation coefficients are normally determined from flights over the calibration range but may not be applicable in mountainous areas. Mathematical techniques have been now developed to reduce statistical noise in the airborne measurements by utilizing up to 256 channels of spectral information. (author)

  8. Contribution to gamma ray transport calculation in heterogeneous media

    International Nuclear Information System (INIS)

    Bourdet, L.

    1985-04-01

    This thesis presents the development of gamma transport calculation codes in three dimension heterogeneous geometries. These codes allow us to define the protection against gamma-rays or verify their efficiency. The laws that govern the interactions of gamma-rays with matters are briefly revised. A library with the all necessary constants for these codes is created. TRIPOLI-2, a code that treats in exact way the neutron transport in matters using Monte-Carlo method, has been adapted to deal with the transport of gamma-rays in matters as well. TRINISHI, a code which considers only one collision, has been realized to treat heterogeneous geometries containing voids. Elaborating a formula that calculates the albedo for gamma-ray reflection (the code ALBANE) allows us to solve the problem of gamma-ray reflection on plane surfaces. NARCISSE-2 deals with gamma-rays that suffer only one reflection on the inner walls of any closed volume (rooms, halls...) [fr

  9. Review of GRANAT observations of gamma-ray bursts

    DEFF Research Database (Denmark)

    Terekhov, O.; Denissenko, D.; Sunyaev, R.

    1995-01-01

    The GRANAT observatory was launched into a high apogee orbit on 1 December, 1989. Three instruments onboard GRANAT - PHEBUS, WATCH and SIGMA are able to detect gamma-ray bursts in a very broad energy range from 6 keV up to 100 MeV. Over 250 gamma-ray bursts were detected. We discuss the results...... of the observations of the time histories and spectral evolution of the detected events provided by the different instruments in different energy ranges. Short Gamma-Ray Bursts ( 2 s) events. Evidence of the existence...... of four differently behaving componenents in gamma-ray burst spectra is discussed. Statistical properties of the gamma-ray burst sources based on the 5 years of observations with (∼ 10−6 erg/cm2) sensitivity as well as the results of high sensitivity (∼ 10−8 erg/cm2) search for Gamma-Ray Bursts within...

  10. Highlights of GeV Gamma-Ray Astronomy

    Science.gov (United States)

    Thompson, David J.

    2010-01-01

    Because high-energy gamma rays are primarily produced by high-energy particle interactions, the gamma-ray survey of the sky by the Fermi Gamma-ray Space Telescope offers a view of sites of cosmic ray production and interactions. Gamma-ray bursts, pulsars, pulsar wind nebulae, binary sources, and Active Galactic Nuclei are all phenomena that reveal particle acceleration through their gamma-ray emission. Diffuse Galactic gamma radiation, Solar System gamma-ray sources, and energetic radiation from supernova remnants are likely tracers of high-energy particle interactions with matter and photon fields. This paper will present a broad overview of the constantly changing sky seen with the Large Area Telescope (LAT) on the Fermi spacecraft.

  11. Microwave-gamma ray water in crude monitor

    International Nuclear Information System (INIS)

    Paap, H.J.

    1984-01-01

    A microwave-gamma ray water-in-crude monitoring system measures the percent quantity of fresh water or salt water in crude oil flowing in a pipe line. The system includes a measuring cell arranged with the pipe line so that the crude oil flows through the measuring cell. A microwave transmitter subsystem and a gamma ray source are arranged with the measuring cell so that microwave energy and gamma rays are transmitted through the measuring cell. A microwave receiving subsystem and a gamma ray detector provide signals corresponding to received microwave energy and to the received gamma rays, respectively. Apparatus connected to the microwave receiver and to the gamma ray detector provides an indication of the percentage of water in the crude oil

  12. The Animated Gamma-ray Sky Revealed by the Fermi Gamma-ray Space Telescope

    International Nuclear Information System (INIS)

    Grenier, Isabelle

    2009-01-01

    The Fermi Gamma-ray Space Telescope has been observing the sky in gamma-rays since August 2008. In addition to breakthrough capabilities in energy coverage (20 MeV-300 GeV) and angular resolution, the wide field of view of the Large Area Telescope enables observations of 20% of the sky at any instant, and of the whole sky every three hours. It has revealed a very animated sky with bright gamma-ray bursts flashing and vanishing in minutes, powerful active galactic nuclei flaring over hours and days, many pulsars twinkling in the Milky Way, and X-ray binaries shimmering along their orbit. Most of these variable sources had not been seen by the Fermi predecessor, EGRET, and the wealth of new data already brings important clues to the origin of the high-energy emission and particles powered by the compact objects. The telescope also brings crisp images of the bright gamma-ray emission produced by cosmic-ray interactions in the interstellar medium, thus allowing to measure the cosmic nuclei and electron spectra across the Galaxy, to weigh interstellar clouds, in particular in the dark-gas phase. The telescope sensitivity at high energy will soon provide useful constraints on dark-matter annihilations in a variety of environments. I will review the current results and future prospects of the Fermi mission.

  13. Collimatorless imaging of gamma rays with help of gamma-ray tracking

    CERN Document Server

    Marel, J V D

    2001-01-01

    In many gamma-ray detector systems that are built for imaging purposes Compton scattered photons are suppressed as much as possible. However, the information from photons that scattered inside a detector system can be used to reconstruct the tracks of the photons with help of gamma-ray tracking. Estimates of the incident directions of the photons can be made and an image can be created. Examples of potential applications for this technique are the use as a gamma-camera in medical imaging (e.g. SPECT) or as a detector for PET. Due to the omission of collimators, much higher detection efficiencies can be achieved, reducing the doses required for an image. A gamma-ray tracking method, called backtracking, has been developed for nuclear spectroscopy. The method tracks gamma-rays originating from a point source in the center of a spherical detector system consisting of position-sensitive germanium detectors. This method can also be used as a tracking technique for imaging of an unknown source distribution. With he...

  14. SYSTEMATIC STUDY OF GAMMA-RAY-BRIGHT BLAZARS WITH OPTICAL POLARIZATION AND GAMMA-RAY VARIABILITY

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Ryosuke; Fukazawa, Yasushi; Kanda, Yuka; Shiki, Kensei; Kawabata, Miho; Nakaoka, Tatsuya; Takaki, Katsutoshi; Takata, Koji; Ui, Takahiro [Department of Physical Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Nalewajko, Krzysztof; Madejski, Greg M. [Kavli Institute for Particle Astrophysics and Cosmology, SLAC National Accelerator Laboratory, Stanford University, 2575 Sand Hill Road M/S 29, Menlo Park, CA 94025 (United States); Uemura, Makoto; Tanaka, Yasuyuki T.; Kawabata, Koji S.; Akitaya, Hiroshi; Ohsugi, Takashi [Hiroshima Astrophysical Science Center, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Schinzel, Frank K. [Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131 (United States); Moritani, Yuki [Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Kashiwa, Chiba 277-8583 (Japan); Sasada, Mahito [Institute for Astrophysical Research, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States); Yamanaka, Masayuki, E-mail: itoh@hep01.hepl.hiroshima-u.ac.jp, E-mail: itoh@hp.phys.titech.ac.jp [Department of Physics, Faculty of Science and Engineering, Konan University, Okamoto, Kobe, Hyogo 658-8501 (Japan); and others

    2016-12-10

    Blazars are highly variable active galactic nuclei that emit radiation at all wavelengths from radio to gamma rays. Polarized radiation from blazars is one key piece of evidence for synchrotron radiation at low energies, and it also varies dramatically. The polarization of blazars is of interest for understanding the origin, confinement, and propagation of jets. However, even though numerous measurements have been performed, the mechanisms behind jet creation, composition, and variability are still debated. We performed simultaneous gamma-ray and optical photopolarimetry observations of 45 blazars between 2008 July and 2014 December to investigate the mechanisms of variability and search for a basic relation between the several subclasses of blazars. We identify a correlation between the maximum degree of optical linear polarization and the gamma-ray luminosity or the ratio of gamma-ray to optical fluxes. Since the maximum polarization degree depends on the condition of the magnetic field (chaotic or ordered), this result implies a systematic difference in the intrinsic alignment of magnetic fields in parsec-scale relativistic jets between different types of blazars (flat-spectrum radio quasars vs. BL Lacs) and consequently between different types of radio galaxies (FR I versus FR II).

  15. On The Utilization of (1-X)Cu-X Pb) Alloys for Gamma-Rays Shielding

    International Nuclear Information System (INIS)

    Abd El-Latif, A.A.; Saeid, Kh.S.; Abd El-Latif, A.A.

    2011-01-01

    The present work deals with the study of the attenuation properties of gamma rays for [(1-X) Cu -X Pb] alloys where, x=10%, 20%, 30%, and 40% Pb waste by weight. Investigation has been performed by measuring the transmitted gamma ray spectra behind cylindrical samples of [(1-X) Cu - X Pb] alloys of different thicknesses. A collimated beam of gamma ray measured by using γ - ray spectrometer NaI(Tl) Scintillation detector with multichannel analyzer (MCA) cassy. Total mass attenuation coefficients (μ/ρ) of γ-ray have been evaluated and calculated using measured results and XCOM code respectively . Comparison between measured and calculated results shows a reasonable divergence at 0.511 MeV ,and 0.662 MeV γ-ray energies, in addition there is a convergence at 1.17 MeV, 1.274 MeV, and 1.3 MeV γ-ray energies

  16. An MS-DOS-based program for analyzing plutonium gamma-ray spectra

    International Nuclear Information System (INIS)

    Ruhter, W.D.; Buckley, W.M.

    1989-01-01

    A plutonium gamma-ray analysis system that operates on MS-DOS-based computers has been developed for the International Atomic Energy Agency (IAEA) to perform in-field analysis of plutonium gamma-ray spectra for plutonium isotopics. The program titled IAEAPU consists of three separate applications: a data-transfer application for transferring spectral data from a CICERO multichannel analyzer to a binary data file, a data-analysis application to analyze plutonium gamma-ray spectra, for plutonium isotopic ratios and weight percents of total plutonium, and a data-quality assurance application to check spectral data for proper data-acquisition setup and performance. Volume 3 contains the software listings for these applications

  17. An MS-DOS-based program for analyzing plutonium gamma-ray spectra

    International Nuclear Information System (INIS)

    Ruhter, W.D.; Buckley, W.M.

    1989-01-01

    A plutonium gamma-ray analysis system that operates on MS-DOS-based computers has been developed for the International Atomic Energy Agency (IAEA) to perform in-field analysis of plutonium gamma-ray spectra for plutonium isotopics. The program titled IAEAPU consists of three separate applications: (1) a data-transfer application for transferring spectral data from a CICERO multichannel analyzer to a binary data file, (2) a data-analysis application to analyze plutonium gamma-ray spectra for plutonium isotopic ratios and weight percents of total plutonium, (3) and a data-quality assurance application to check spectral data for proper data-acquisition setup and performance. Volume 2 describes the operations of these applications and the installation and maintenance of the software

  18. SEARCH FOR PULSED {gamma}-RAY EMISSION FROM GLOBULAR CLUSTER M28

    Energy Technology Data Exchange (ETDEWEB)

    Wu, J. H. K.; Kong, A. K. H.; Huang, R. H. H.; Tam, P. H. T. [Institute of Astronomy and Department of Physics, National Tsing Hua University, Hsinchu, Taiwan (China); Hui, C. Y. [Department of Astronomy and Space Science, Chungnam National University, Daejeon (Korea, Republic of); Wu, E. M. H.; Takata, J.; Cheng, K. S., E-mail: wuhkjason@gmail.com, E-mail: cyhui@cnu.ac.kr [Department of Physics, University of Hong Kong, Pokfulam Road (Hong Kong)

    2013-03-10

    Using the data from the Large Area Telescope on board the Fermi Gamma-ray Space Telescope, we have searched for {gamma}-ray pulsations from the direction of the globular cluster M28 (NGC 6626). We report the discovery of a signal with a frequency consistent with that of the energetic millisecond pulsar (MSP) PSR B1821-24 in M28. A weighted H-test test statistic of 28.8 is attained, which corresponds to a chance probability of {approx}10{sup -5} (4.3{sigma} detection). With a phase-resolved analysis, the pulsed component is found to contribute {approx}25% of the total observed {gamma}-ray emission from the cluster. However, the unpulsed level provides a constraint for the underlying MSP population and the fundamental plane relations for the scenario of inverse Compton scattering. Follow-up timing observations in radio/X-ray are encouraged to further investigate this periodic signal candidate.

  19. Near stellar sources of gamma-ray bursts

    OpenAIRE

    Luchkov, B. I.; Markin, P. D.

    2012-01-01

    Correlation analysis of gamma-ray burst coordinates and nearby stars, registered on 2008-2011, revealed 5 coincidences with angular accuracy better than 0.1 degree. The random probability is $7\\times 10^{-7}$, so evidencing that coincident stars are indeed gamma-ray burst sources. The proposed method should be continued in order to provide their share in common balance of cosmic gamma-ray bursts.

  20. Fermi GBM Observations of Terrestrial Gamma-Ray Flashes

    Science.gov (United States)

    Wilson-Hodge, Colleen A.; Briggs, M. S.; Connaughton, V.; Fishman, G. J.; Bhat, P. N.; Paciesas, W. S.; Preece, R.; Kippen, R. M.; vonKienlin, A.; Dwyer, J. R.; hide

    2010-01-01

    This slide presentation explores the relationship between Terrestrial Gamma-Ray Flashes (TGF) and lightning. Using data from the World-Wide Lightning Location Network (WWLLN), and the gamma ray observations from Fermi's Gamma-ray Burst Monitor (GBM), the study reviews any causal relationship between TGFs and lightning. The conclusion of the study is that the TGF and lightning are simultaneous with out a causal relationship.

  1. Sensitivity of Gamma-Ray Detectors to Polarization

    OpenAIRE

    Yadigaroglu, I. -A.

    1996-01-01

    Previous studies have shown that the largest gamma-ray detector to date, EGRET, does not have useful polarization sensitivity. We have explored here some improved approaches to analyzing gamma-ray pair production events, leading to important gains in sensitivity to polarization. The performance of the next generation gamma-ray instrument GLAST is investigated using a detailed Monte Carlo simulation of the complete detector.

  2. Gamma-ray transients and related astrophysical phenomena

    International Nuclear Information System (INIS)

    Lingenfelter, R.E.; Hudson, H.S.; Worrall, D.M.

    1982-01-01

    The workshop covered the study of the explosive phenomena responsible for the various gamma ray transients. X-ray burster observations and theories were also reviewed with emphasis on their relationship to gamma ray bursts. Recent observational data, particularly from the SMM, HEAO, and VENERA satellites made the workshop especially timely. Major headings include: gamma-ray transients, x-ray bursts, solar transients, and instrumental concepts. Individual items from the workshop were prepared separately for the data base

  3. Bright x-ray flares in gamma-ray burst afterglows.

    Science.gov (United States)

    Burrows, D N; Romano, P; Falcone, A; Kobayashi, S; Zhang, B; Moretti, A; O'brien, P T; Goad, M R; Campana, S; Page, K L; Angelini, L; Barthelmy, S; Beardmore, A P; Capalbi, M; Chincarini, G; Cummings, J; Cusumano, G; Fox, D; Giommi, P; Hill, J E; Kennea, J A; Krimm, H; Mangano, V; Marshall, F; Mészáros, P; Morris, D C; Nousek, J A; Osborne, J P; Pagani, C; Perri, M; Tagliaferri, G; Wells, A A; Woosley, S; Gehrels, N

    2005-09-16

    Gamma-ray burst (GRB) afterglows have provided important clues to the nature of these massive explosive events, providing direct information on the nearby environment and indirect information on the central engine that powers the burst. We report the discovery of two bright x-ray flares in GRB afterglows, including a giant flare comparable in total energy to the burst itself, each peaking minutes after the burst. These strong, rapid x-ray flares imply that the central engines of the bursts have long periods of activity, with strong internal shocks continuing for hundreds of seconds after the gamma-ray emission has ended.

  4. Numerical study on determining formation porosity using a boron capture gamma ray technique and MCNP.

    Science.gov (United States)

    Liu, Juntao; Zhang, Feng; Wang, Xinguang; Han, Fei; Yuan, Zhelong

    2014-12-01

    Formation porosity can be determined using the boron capture gamma ray counting ratio with a near to far detector in a pulsed neutron-gamma element logging tool. The thermal neutron distribution, boron capture gamma spectroscopy and porosity response for formations with different water salinity and wellbore diameter characteristics were simulated using the Monte Carlo method. We found that a boron lining improves the signal-to-noise ratio and that the boron capture gamma ray counting ratio has a higher sensitivity for determining porosity than total capture gamma. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Very high energy gamma ray astrophysics

    International Nuclear Information System (INIS)

    Lamb, R.C.; Lewis, D.A.

    1990-02-01

    Our scientific goal is to discover and study by means of gamma-ray astronomy those regions of the universe where particles are accelerated to extreme energies. The atmospheric Cherenkov technique provides a unique and potentially sensitive window in the region of 10 11 to approximately 10 14 eV for this purpose. The Whipple Observatory Collaboration is currently engaged in the development of a Cherenkov camera which has the ultimate capability of distinguishing gamma-ray showers from the numerous cosmic-ray background showers by imaging the Cherenkov light from each shower. We have recently demonstrated the potential of the imaging technique with our 18 sigma detection of TeV photons from the Crab Nebula using a camera of 10 elements, pixel spacing 0.25 degrees. This detection represents a factor of 10 improvement in sensitivity compared to a non-imaging detector. The next step in the development of the detector is to obtain a second large reflector, similar to the present 10 meter instrument, for stereoscopic viewing of showers. This project, named GRANITE, is now approved by DOE. With GRANITE it should be possible to probe more deeply in space by a factor of 7, and to fully investigate the possibility of new physics which has been suggested by reports of anomalous radiation from Hercules X-1. 18 refs

  6. Gamma rays from pulsar outer gaps

    International Nuclear Information System (INIS)

    Chiang, J.; Romani, R.W.; Cheng Ho

    1993-01-01

    We describe a gamma ray pulsar code which computes the high energy photon emissivities from vacuum gaps in the outer magnetosphere, after the model outlined by Cheng, Ho and Ruderman (1986) and Ho (1989). Pair-production due to photon-photon interactions and radiation processes including curvature, synchrotron and inverse Compton processes are computed with an iterative scheme which converges to self-consistent photon and particle distributions for a sampling of locations in the outer magnetosphere. We follow the photons from these distributions as they propagate through the pulsar magnetosphere toward a distant observer. We include the effects of relativistic aberration, time-of-flight delays and reabsorption by photon-photon pair-production to determine an intensity map of the high energy pulsar emission on the sky. Using data from radio and optical observations to constrain the geometry of the magnetosphere as well as the possible observer viewing angles, we derive light curves and phase dependent spectra which can be directly compared to data from the Compton Observatory. Observations for Crab, Vela and the recently identified gamma ray pulsars Geminga, PSR1706-44 aNd PSR 1509-58 will provide important tests of our model calculations, help us to improve our picture of the relevant physics at work in pulsar magnetospheres and allow us to comment on the implications for future pulsar discoveries

  7. Spectra of {gamma} rays feeding superdeformed bands

    Energy Technology Data Exchange (ETDEWEB)

    Lauritsen, T.; Khoo, T.L.; Henry, R.G. [and others

    1995-08-01

    The spectrum of {gamma}rays coincident with SD transitions contains the transitions which populate the SD band. This spectrum can provide information on the feeding mechanism and on the properties (moment of inertia, collectivity) of excited SD states. We used a model we developed to explain the feeding of SD bands, to calculate the spectrum of feeding {gamma}rays. The Monte Carlo simulations take into account the trigger conditions present in our Eurogam experiment. Both experimental and theoretical spectra contain a statistical component and a broad E2 peak (from transitions occurring between excited states in the SD well). There is good resemblance between the measured and calculated spectra although the calculated multiplicity of an E2 bump is low by {approximately}30%. Work is continuing to improve the quality of the fits, which will result in a better understanding of excited SD states. In addition, a model for the last steps, which cool the {gamma} cascade into the SD yrast line, needs to be developed. A strong M1/E2 low-energy component, which we believe is responsible for this cooling, was observed.

  8. GRAP, Gamma-Ray Level-Scheme Assignment

    International Nuclear Information System (INIS)

    Franklyn, C.B.

    2002-01-01

    1 - Description of program or function: An interactive program for allocating gamma-rays to an energy level scheme. Procedure allows for searching for new candidate levels of the form: 1) L1 + G(A) + G(B) = L2; 2) G(A) + G(B) = G(C); 3) G(A) + G(B) = C (C is a user defined number); 4) L1 + G(A) + G(B) + G(C) = L2. Procedure indicates intensity balance of feed and decay of each energy level. Provides for optimization of a level energy (and associated error). Overall procedure allows for pre-defining of certain gamma-rays as belonging to particular regions of the level scheme, for example, high energy transition levels, or due to beta- decay. 2 - Method of solution: Search for cases in which the energy difference between two energy levels is equal to a gamma-ray energy within user-defined limits. 3 - Restrictions on the complexity of the problem: Maximum number of gamma-rays: 999; Maximum gamma ray energy: 32000 units; Minimum gamma ray energy: 10 units; Maximum gamma-ray intensity: 32000 units; Minimum gamma-ray intensity: 0.001 units; Maximum number of levels: 255; Maximum level energy: 32000 units; Minimum level energy: 10 units; Maximum error on energy, intensity: 32 units; Minimum error on energy, intensity: 0.001 units; Maximum number of combinations: 6400 (ca); Maximum number of gamma-ray types : 127

  9. High-energy gamma-ray emission in compact binaries

    International Nuclear Information System (INIS)

    Cerutti, Benoit

    2010-01-01

    Four gamma-ray sources have been associated with binary systems in our Galaxy: the micro-quasar Cygnus X-3 and the gamma-ray binaries LS I +61 degrees 303, LS 5039 and PSR B1259-63. These systems are composed of a massive companion star and a compact object of unknown nature, except in PSR B1259-63 where there is a young pulsar. I propose a comprehensive theoretical model for the high-energy gamma-ray emission and variability in gamma-ray emitting binaries. In this model, the high-energy radiation is produced by inverse Compton scattering of stellar photons on ultra-relativistic electron-positron pairs injected by a young pulsar in gamma-ray binaries and in a relativistic jet in micro-quasars. Considering anisotropic inverse Compton scattering, pair production and pair cascade emission, the TeV gamma-ray emission is well explained in LS 5039. Nevertheless, this model cannot account for the gamma-ray emission in LS I +61 degrees 303 and PSR B1259-63. Other processes should dominate in these complex systems. In Cygnus X-3, the gamma-ray radiation is convincingly reproduced by Doppler-boosted Compton emission of pairs in a relativistic jet. Gamma-ray binaries and micro-quasars provide a novel environment for the study of pulsar winds and relativistic jets at very small spatial scales. (author)

  10. Gamma-ray spectroscopy on irradiated fuel rods

    International Nuclear Information System (INIS)

    Terremoto, Luis Antonio Albiac

    2009-01-01

    The recording of gamma-ray spectra along an irradiated fuel rod allows the fission products to be qualitatively and quantitatively examined. Among all nondestructive examinations performed on irradiated fuel rods by gamma-ray spectroscopy, the most comprehensive one is the average burnup measurement, which is quantitative. Moreover, burnup measurements by means of gamma-ray spectroscopy are less time-consuming and waste-generating than burnup measurements by radiochemical, destructive methods. This work presents the theoretical foundations and experimental techniques necessary to measure, using nondestructive gamma-ray spectroscopy, the average burnup of irradiated fuel rods in a laboratory equipped with hot cells. (author)

  11. X-ray echoes from gamma-ray bursts

    International Nuclear Information System (INIS)

    Dermer, C.D.; Hurley, K.C.; Hartmann, D.H.

    1991-01-01

    The identification of an echo of reflected radiation in time histories of gamma-ray burst spectra can provide important information about the existence of binary companions or accretion disks in gamma-ray burst systems. Because of the nature of Compton scattering, the spectrum of the echo will be attenuated at gamma-ray energies compared with the spectrum of the primary burst emission. The expected temporal and spectral signatures of the echo and a search for such echoes are described, and implications for gamma-ray burst models are discussed. 35 refs

  12. Fermi Large Area Telescope Bright Gamma-ray Source List

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, Aous A.; /Naval Research Lab, Wash., D.C.; Ackermann, M.; /KIPAC, Menlo Park /SLAC; Ajello, M.; /KIPAC, Menlo Park /SLAC; Atwood, W.B.; /UC, Santa Cruz; Axelsson, M.; /Stockholm U., OKC /Stockholm U.; Baldini, L.; /INFN, Pisa; Ballet, J.; /DAPNIA, Saclay; Band, D.L.; /NASA, Goddard /NASA, Goddard; Barbiellini, Guido; /INFN, Trieste /Trieste U.; Bastieri, Denis; /INFN, Padua /Padua U.; Bechtol, K.; /KIPAC, Menlo Park /SLAC; Bellazzini, R.; /INFN, Pisa; Berenji, B.; /KIPAC, Menlo Park /SLAC; Bignami, G.F.; /Pavia U.; Bloom, Elliott D.; /KIPAC, Menlo Park /SLAC; Bonamente, E.; /INFN, Perugia /Perugia U.; Borgland, A.W.; /KIPAC, Menlo Park /SLAC; Bregeon, J.; /INFN, Pisa; Brigida, M.; /Bari U. /INFN, Bari; Bruel, P.; /Ecole Polytechnique; Burnett, Thompson H.; /Washington U., Seattle /Bari U. /INFN, Bari /KIPAC, Menlo Park /SLAC /IASF, Milan /IASF, Milan /DAPNIA, Saclay /ASDC, Frascati /INFN, Perugia /Perugia U. /KIPAC, Menlo Park /SLAC /George Mason U. /Naval Research Lab, Wash., D.C. /NASA, Goddard /KIPAC, Menlo Park /SLAC /INFN, Perugia /Perugia U. /KIPAC, Menlo Park /SLAC /Montpellier U. /Sonoma State U. /Stockholm U., OKC /Royal Inst. Tech., Stockholm /Stockholm U. /KIPAC, Menlo Park /SLAC /ASDC, Frascati /NASA, Goddard /Maryland U. /Naval Research Lab, Wash., D.C. /INFN, Trieste /Pavia U. /Bari U. /INFN, Bari /KIPAC, Menlo Park /SLAC /UC, Santa Cruz /KIPAC, Menlo Park /SLAC /KIPAC, Menlo Park /SLAC /KIPAC, Menlo Park /SLAC /Montpellier U. /Bari U. /INFN, Bari /Ecole Polytechnique /NASA, Goddard; /more authors..

    2009-05-15

    Following its launch in 2008 June, the Fermi Gamma-ray Space Telescope (Fermi) began a sky survey in August. The Large Area Telescope (LAT) on Fermi in three months produced a deeper and better resolved map of the {gamma}-ray sky than any previous space mission. We present here initial results for energies above 100 MeV for the 205 most significant (statistical significance greater than {approx}10{sigma}) {gamma}-ray sources in these data. These are the best characterized and best localized point-like (i.e., spatially unresolved) {gamma}-ray sources in the early mission data.

  13. A DETAILED STUDY OF THE MOLECULAR AND ATOMIC GAS TOWARD THE {gamma}-RAY SUPERNOVA REMNANT RX J1713.7-3946: SPATIAL TeV {gamma}-RAY AND INTERSTELLAR MEDIUM GAS CORRESPONDENCE

    Energy Technology Data Exchange (ETDEWEB)

    Fukui, Y.; Sano, H.; Sato, J.; Torii, K.; Horachi, H.; Hayakawa, T.; Inutsuka, S.; Kawamura, A.; Yamamoto, H.; Okuda, T.; Mizuno, N.; Onishi, T. [Department of Physics and Astrophysics, Nagoya University, Nagoya, Aichi 464-8601 (Japan); McClure-Griffiths, N. M. [CSIRO Astronomy and Space Science, Epping NSW 1710 (Australia); Rowell, G. [School of Chemistry and Physics, University of Adelaide, Adelaide 5005 (Australia); Inoue, T. [Department of Physics and Mathematics, Aoyama Gakuin University, Sagamihara, Kanagawa 252-5258 (Japan); Mizuno, A. [Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya, Aichi 464-8601 (Japan); Ogawa, H., E-mail: fukui@a.phys.nagoya-u.ac.jp [Department of Astrophysics, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan)

    2012-02-10

    RX J1713.7-3946 is the most remarkable TeV {gamma}-ray supernova remnant (SNR) that emits {gamma}-rays in the highest energy range. We have made a new combined analysis of CO and H I in the SNR and derived the total protons in the interstellar medium (ISM). We have found that the inclusion of the H I gas provides a significantly better spatial match between the TeV {gamma}-rays and ISM protons than the H{sub 2} gas alone. In particular, the southeastern rim of the {gamma}-ray shell has a counterpart only in the H I. The finding shows that the ISM proton distribution is consistent with the hadronic scenario that cosmic-ray (CR) protons react with ISM protons to produce the {gamma}-rays. This provides another step forward for the hadronic origin of the {gamma}-rays by offering one of the necessary conditions missing in the previous hadronic interpretations. We argue that the highly inhomogeneous distribution of the ISM protons is crucial in the origin of the {gamma}-rays. Most of the neutral gas was likely swept up by the stellar wind of an OB star prior to the supernova (SN) explosion to form a low-density cavity and a swept-up dense wall. The cavity explains the low-density site where the diffusive shock acceleration of charged particles takes place with suppressed thermal X-rays, whereas the CR protons can reach the target protons in the wall to produce the {gamma}-rays. The present finding allows us to estimate the total CR proton energy to be {approx}10{sup 48} erg, 0.1% of the total energy of the SN explosion.

  14. Is the Universe More Transparent to Gamma Rays than Previously Thought?

    Science.gov (United States)

    Stecker, Floyd W.; Scully, Sean T.

    2009-01-01

    The MAGIC collaboration has recently reported the detection of the strong gamma-ray blazar 3C279 during a 1-2 day flare. They have used their spectral observations to draw conclusions regarding upper limits on the opacity of the Universe to high energy gamma-rays and, by implication, upper limits on the extragalactic mid-infrared background radiation. In this paper we examine the effect of gamma-ray absorption by the extragalactic infrared radiation on intrinsic spectra for this blazar and compare our results with the observational data on 3C279. We find agreement with our previous results, contrary to the recent assertion of the MAGIC group that the Universe is more transparent to gamma-rays than our calculations indicate. Our analysis indicates that in the energy range between approx. 80 and approx. 500 GeV, 3C279 has a best-fit intrinsic spectrum with a spectral index approx. 1.78 using our fast evolution model and approx. 2.19 using our baseline model. However, we also find that spectral indices in the range of 1.0 to 3.0 are almost as equally acceptable as the best fit spectral indices. Assuming the same intrinsic spectral index for this flare as for the 1991 flare from 3C279 observed by EGRET, viz., 2.02, which lies between our best fit indeces, we estimate that the MAGIC flare was approx.3 times brighter than the EGRET flare observed 15 years earlier.

  15. Gamma ray astronomy above 30 TeV and the IceCube results

    Directory of Open Access Journals (Sweden)

    Vernetto Silvia

    2017-01-01

    Full Text Available The study of the diffuse Galactic gamma ray emission is of fundamental importance to understand the properties of cosmic ray propagation in the Milky Way, and extending the measurements to E ≳ 30 TeV is of great interest. In the same energy range the IceCube detector has also recently observed a flux of astrophysical neutrinos, and it is important to test experimentally if the neutrino production is accompanied by a comparable emission of high energy photons. For E ≳ 30 TeV, the absorption effects due to e+e− pair production when the high energy photons interact with radiation fields present in space are not negligible and must be taken into account. Gamma rays, in good approximation, are completely absorbed if they have an extragalactic origin, but the absorption is significant also for Galactic photons. In this case the size and angular dependence of the absorption depends on the space distribution of the emission. In this work we estimate the absorption for different models of the space distribution of the gamma ray emission, and discuss the potential of future detectors.

  16. Observation of solar gamma-ray by Hinotori

    International Nuclear Information System (INIS)

    Yoshimori, Masato; Okudaira, Kiyoaki; Hirashima, Yo; Kondo, Ichiro.

    1982-01-01

    The solar gamma-ray emitted by solar flare was observed. The gamma-ray is the electromagnetic radiation with the energy more than 300 keV. The line gamma-ray intensity and the time profile were observed. The gamma-ray detector CsI (Tl) was loaded on Hinotori, and the observed gamma-ray was analyzed by a multi-channel analyzer. The observed line gamma-ray was the radiation from Fe-56 and Ne-20. The line gamma-ray from C-12 and O-16 was also seen. These gamma-ray is the direct evidence of the nuclear reaction on the sun. The observed spectrum suggested the existence of the lines from Mg-24 and Si-28. The intensity of the 2.22 MeV gamma-line was small. This fact showed that the origin of this line was different from other nuclear gamma-ray. Two kinds of hard X-ray bursts were detected. The one was impulsive burst, and the other was gradual burst. There was no time difference between the hard X-ray and the gamma-ray of the impulsive burst. The impulsive burst may be explained by the beam model. The delay of time profile in the high energy gamma-ray of the gradual burst was observed. This means that the time when accelerated electrons cause bremsstrahlung depends on the electron energy. The long trapping of electrons at the top of magnetic loop is suggested. (Kato, T.)

  17. GROSS- GAMMA RAY OBSERVATORY ATTITUDE DYNAMICS SIMULATOR

    Science.gov (United States)

    Garrick, J.

    1994-01-01

    The Gamma Ray Observatory (GRO) spacecraft will constitute a major advance in gamma ray astronomy by offering the first opportunity for comprehensive observations in the range of 0.1 to 30,000 megaelectronvolts (MeV). The Gamma Ray Observatory Attitude Dynamics Simulator, GROSS, is designed to simulate this mission. The GRO Dynamics Simulator consists of three separate programs: the Standalone Profile Program; the Simulator Program, which contains the Simulation Control Input/Output (SCIO) Subsystem, the Truth Model (TM) Subsystem, and the Onboard Computer (OBC) Subsystem; and the Postprocessor Program. The Standalone Profile Program models the environment of the spacecraft and generates a profile data set for use by the simulator. This data set contains items such as individual external torques; GRO spacecraft, Tracking and Data Relay Satellite (TDRS), and solar and lunar ephemerides; and star data. The Standalone Profile Program is run before a simulation. The SCIO subsystem is the executive driver for the simulator. It accepts user input, initializes parameters, controls simulation, and generates output data files and simulation status display. The TM subsystem models the spacecraft dynamics, sensors, and actuators. It accepts ephemerides, star data, and environmental torques from the Standalone Profile Program. With these and actuator commands from the OBC subsystem, the TM subsystem propagates the current state of the spacecraft and generates sensor data for use by the OBC and SCIO subsystems. The OBC subsystem uses sensor data from the TM subsystem, a Kalman filter (for attitude determination), and control laws to compute actuator commands to the TM subsystem. The OBC subsystem also provides output data to the SCIO subsystem for output to the analysts. The Postprocessor Program is run after simulation is completed. It generates printer and CRT plots and tabular reports of the simulated data at the direction of the user. GROSS is written in FORTRAN 77 and

  18. Observation of early photons from gamma-ray bursts with the Lomonosov / UFFO-pathfinder

    DEFF Research Database (Denmark)

    Jeong, S.; Brandt, Søren; Budtz-Jørgensen, Carl

    2014-01-01

    UFFO-pathfinder is a pioneering space mission to observe the early evolution of Gamma-ray Bursts using a fast slewing strategy. It consists of the Slewing Mirror Telescope, for rapid pointing at UV/optical wavelengths and the UFFO Burst Alert and Trigger Telescope. It has a total weight of ~ 20 k...

  19. High resolution gamma-ray spectroscopy applied to bulk sample analysis

    International Nuclear Information System (INIS)

    Kosanke, K.L.; Koch, C.D.; Wilson, R.D.

    1980-01-01

    A high resolution Ge(Li) gamma-ray spectrometer has been installed and made operational for use in routine bulk sample analysis by the Bendix Field Engineering Corporation (BFEC) geochemical analysis department. The Ge(Li) spectrometer provides bulk sample analyses for potassium, uranium, and thorium that are superior to those obtained by the BFEC sodium iodide spectrometer. The near term analysis scheme permits a direct assay for uranium that corrects for bulk sample self-absorption effects and is independent of the uranium/radium disequilibrium condition of the sample. A more complete analysis scheme has been developed that fully utilizes the gamma-ray data provided by the Ge(Li) spectrometer and that more properly accounts for the sample self-absorption effect. This new analysis scheme should be implemented on the BFEC Ge(Li) spectrometer at the earliest date

  20. Cosmological Gamma-Ray Bursts and Hypernovae Conclusively Linked

    Science.gov (United States)

    2003-06-01

    Clearest-Ever Evidence from VLT Spectra of Powerful Event Summary A very bright burst of gamma-rays was observed on March 29, 2003 by NASA's High Energy Transient Explorer (HETE-II) , in a sky region within the constellation Leo. Within 90 min, a new, very bright light source (the "optical afterglow") was detected in the same direction by means of a 40-inch telescope at the Siding Spring Observatory (Australia) and also in Japan. The gamma-ray burst was designated GRB 030329 , according to the date. And within 24 hours, a first, very detailed spectrum of this new object was obtained by the UVES high-dispersion spectrograph on the 8.2-m VLT KUEYEN telescope at the ESO Paranal Observatory (Chile). It allowed to determine the distance as about 2,650 million light-years (redshift 0.1685). Continued observations with the FORS1 and FORS2 multi-mode instruments on the VLT during the following month allowed an international team of astronomers [1] to document in unprecedented detail the changes in the spectrum of the optical afterglow of this gamma-ray burst . Their detailed report appears in the June 19 issue of the research journal "Nature". The spectra show the gradual and clear emergence of a supernova spectrum of the most energetic class known, a "hypernova" . This is caused by the explosion of a very heavy star - presumably over 25 times heavier than the Sun. The measured expansion velocity (in excess of 30,000 km/sec) and the total energy released were exceptionally high, even within the elect hypernova class. From a comparison with more nearby hypernovae, the astronomers are able to fix with good accuracy the moment of the stellar explosion. It turns out to be within an interval of plus/minus two days of the gamma-ray burst. This unique conclusion provides compelling evidence that the two events are directly connected. These observations therefore indicate a common physical process behind the hypernova explosion and the associated emission of strong gamma-ray

  1. The Protective Role of Tempol Against Oxidative Stress-Related Renal Impairment Induced by Gamma Rays in Rats

    International Nuclear Information System (INIS)

    Mekawy, H.M.S.; Elkhouly, W.A.; Tawfik, S.S.

    2015-01-01

    Tempol (4-hydroxy-2,2,6,6-tetramethyl-piperidine-1 oxyl) is a naturally occurring substance that counteracts the harmful and damaging effects of oxidation in animal tissues and has been reported to permeate the biological membranes. In this study, tempol with dose of 18 mg/kg/day for 2 weeks has been shown to be effective in preventing several of the adverse consequences of oxidative stress and inflammation that underlie radiation damage. Adult rats were exposed to a total dose of 6 Gy gamma rays to determine the protective role of tempol on the biochemistry of the injured kidney because gamma rays displayed significant augmentation in renal oxidative modifications markers.The results indicated that plasma renal function tests; urea (Ur), creatinine (Cr), uric acid (UA) and sodium (Na), and plasma renal tubular injury markers; γ -glutamyltransferase ( γ -GT), aspartate aminotransferase (AST), creatine phosphokinase (CPK) and lactate dehydrogenase (LDH), were increased significantly in gamma rays group. In addition, the renal oxidative stress parameters; malondialdehyde (MDA), total cholesterol (TC) and protein carbonyl (PC), were increased significantly, and reduced glutathione (GSH) was decreased significantly in gamma rays group. Moreover, the levels of renal antioxidant enzymes; superoxide dismutase (SOD) and catalase (CAT), were decreased significantly, and myeloperoxidase (MPO) was in creased significantly in gamma rays group.The antioxidant treatment with tempol ameliorates gamma rays-induced biochemical alterations and dysfunction of kidney.Tempol, at levels within tolerable nutritional strategy, reduced the oxidative modification-related renal impairment induced by gamma radiation in rats.

  2. Operating experience with gamma ray irradiators

    International Nuclear Information System (INIS)

    Fraser, F.M.; Ouwerkerk, T.

    1980-01-01

    The experience of Atomic Energy of Canada, Limited (AECL) with radioisotopes dates back to the mid-1940s when radium was marketed for medical purposes. Cobalt-60 came on the scene in 1949 and within a few years a thriving business in cancer teletherapy machines and research irradiators was developed. AECL's first full-scale cobalt-60 gamma ray sterilizer for medical products was installed in 1964. AECL now has over 50 plants and 30 million curies in service around the world. Sixteen years of design experience in cobalt-60 sources, radiation shielding, safety interlock systems, and source pass mechanisms have made gamma irradiators safe, reliable, and easy to operate. This proven technology is being applied in promising new fields such as sludge treatment and food preservation. Cesium-137 is expected to be extensively utilized as the gamma radiation source for these applications

  3. Gravitational wave: gamma-ray burst connections.

    Science.gov (United States)

    Hough, Jim

    2007-05-15

    After 35 years of experimental research, we are rapidly approaching the point at which gravitational waves (GWs) from astrophysical sources may be directly detected by the long-baseline detectors LIGO (USA), GEO 600 (Germany/UK), VIRGO (Italy/France) and TAMA 300 (Japan), which are now in or coming into operation.A promising source of GWs is the coalescence of compact binary systems, events which are now believed to be the origin of short gamma-ray bursts (GRBs). In this paper, a brief review of the state of the art in detector development and exploitation will be given, with particular relevance to a search for signals associated with GRBs, and plans for the future will be discussed.

  4. Gamma-ray burst theory after Swift.

    Science.gov (United States)

    Piran, Tsvi; Fan, Yi-Zhong

    2007-05-15

    Afterglow observations in the pre-Swift era confirmed to a large extend the relativistic blast wave model for gamma-ray bursts (GRBs). Together with the observations of properties of host galaxies and the association with (type Ic) SNe, this has led to the generally accepted collapsar origin of long GRBs. However, most of the afterglow data was collected hours after the burst. The X-ray telescope and the UV/optical telescope onboard Swift are able to slew to the direction of a burst in real time and record the early broadband afterglow light curves. These observations, and in particular the X-ray observations, resulted in many surprises. While we have anticipated a smooth transition from the prompt emission to the afterglow, many observed that early light curves are drastically different. We review here how these observations are changing our understanding of GRBs.

  5. New possibilities in prompt gamma ray spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Borderie, B; Barrandon, J N [Centre National de la Recherche Scientifique, 45 - Orleans-la-Source (France). Lab. du cyclotron; Pinault, J L [Bureau de Recherches Geologiques et Minieres (BRGM), 45 - Orleans (France)

    1977-01-01

    Prompt gamma ray spectrometry has been used as an analytical tool for many years. The high level of background noise does, however, remain a major problem with this technique. From simple theoretical consideration, conditions (particle, energy) were determined to reduce significantly the background noise under irradiation. Alpha particles of 3.5 MeV were chosen. Some fifty elements were studied, of which 24 gave interesting results. The detection limits obtained for a sample of niobium were as follows: approximately 1 ppm (10/sup -6/g/g) for the light elements Li, B, F and Na, and between 50 ppm and 1% for the others. Numerous applications may be envisaged in the geo- and cosmo-sciences.

  6. Dosimetry for terrestrial gamma-ray sources

    International Nuclear Information System (INIS)

    Abdullah, S.A.; Dickson, H.W.; Kerr, G.D.; Miah, M.F.K.; Perdue, P.T.

    1975-01-01

    Dose rates from natural radionuclides and 137 Cs in soils of the Oak Ridge area have been determined from in situ and core sample measurements. Information on soil composition, density, and moisture content and on the distribution of cesium in the soil was obtained from the core samples. Measurements of radionuclide concentrations in the samples were made with a 4 x 4 in. NaI detector. Gamma-ray spectroscopy using a lithium-drifted germanium (GeLi) detector has been applied to the determination of radionuclide concentrations in soil and the associated gamma dose rates above the earth plane. An unshielded GeLi detector placed about 1 m above the earth detects gamma radiation from an area of about 100 m 2 . The equipment and data processing procedure are briefly described

  7. New lithology compensated capture gamma ray system

    International Nuclear Information System (INIS)

    Peatross, R.F.

    1976-01-01

    The results of the HYDROCARBON* log after a series of field tests in which gamma rays resulting from thermal neutron capture were measured utilizing an energy analyzer and a scintillation counter of unique construction are reported. A brief discussion covers the nuclear physics required for an understanding of gamma spectral logging. Included in the explanation will be the effects of different atoms on neutrons and photons. The HYDROCARBON log utilizes these nuclear principles to record cased hole measurements and quantitatively distinguish possible productive zones from non-productive zones. Different field examples are illustrated showing the response to shaly sands, porosity and water salinity. Interpretation techniques are discussed both qualitatively and quantitatively. The HYDROCARBON log has proven to be a reliable device in the determination of water saturation in sands behind casing even when shale content and porosity are not well known. This technique is also valuable in the location of the present position of gas--oil contacts and water levels

  8. A review of gamma ray bursts

    CERN Document Server

    Rees, Martin J

    2000-01-01

    Gamma-ray bursts, an enigma for more than 25 years, are now coming into focus. They involve extraordinary power outputs, and highly relativistic dynamics. The 'trigger' involves stellar-mass compact objects. The most plausible progenitors, ranging from neutron star binary mergers to collapsars (sometimes called 'hypernovae') eventually lead to the formation of a black hole with a torus of hot neutron-density material around it, the extractable energy being up to 10 sup 5 sup 4 ergs. Magnetic fields may exceed 10 sup 1 sup 5 G and particles may be accelerated up to > or approx. 10 sup 2 sup 0 eV. Details of the afterglow may be easier to understand than the initial trigger. Bursts at very high redshift can be astronomically-important as probes of the distant universe.

  9. Gamma-ray induced doppler broadening

    International Nuclear Information System (INIS)

    Robinson, S.J.

    1992-01-01

    The ultra high resolving power of the GAMS4 double-flat crystal spectrometer (M.S. Dewey et al Nucl. Instrum. Methods A 284 (1989) 151.) has been used to observe the Doppler broadening of gamma-rays emitted by nuclei recoiling at speeds as low as 10 -6 c. Such recoils may be induced by the previous emission of gamma-radiation following thermal neutron capture. If the population mechanism of an excited state is known (or can be approximated) and the slowing down mechanism can be modeled, then this technique can be used to extract the lifetime of excited nuclear states. The combination of this technique and the neutron capture reaction allows the study of states which cannot necessarily be accessed by other means. This has allowed the resolution of a number of long standing questions in low-spin nuclear structure. The basis of the technique is discussed and a number of examples given

  10. Gamma-Ray Bursts: A Radio Perspective

    Directory of Open Access Journals (Sweden)

    Poonam Chandra

    2016-01-01

    Full Text Available Gamma-ray bursts (GRBs are extremely energetic events at cosmological distances. They provide unique laboratory to investigate fundamental physical processes under extreme conditions. Due to extreme luminosities, GRBs are detectable at very high redshifts and potential tracers of cosmic star formation rate at early epoch. While the launch of Swift and Fermi has increased our understanding of GRBs tremendously, many new questions have opened up. Radio observations of GRBs uniquely probe the energetics and environments of the explosion. However, currently only 30% of the bursts are detected in radio bands. Radio observations with upcoming sensitive telescopes will potentially increase the sample size significantly and allow one to follow the individual bursts for a much longer duration and be able to answer some of the important issues related to true calorimetry, reverse shock emission, and environments around the massive stars exploding as GRBs in the early Universe.

  11. Gamma-Rays from Galactic Compact Sources

    Science.gov (United States)

    Kaaret, Philip

    2007-04-01

    Recent discoveries have revealed many sources of TeV photons in our Mikly Way galaxy powered by compact objects, either neutron stars or black holes. These objects must be powerful particle accelerators, some with peak energies of at least 100 TeV, and may be neutrino, as well as photon, sources. Future TeV observations will enable us to address key questions concerning particle acceleration by compact objects including the fraction of energy which accreting black holes channel into relativstic jet production, whether the compact object jets are leptonic or hadronic, and the mechanism by which pulsar winds accelerate relativistic particles. We report on work done related to compact Galactic objects in preparation of a White Paper on the status and future of ground-based gamma-ray astronomy requested by the Division of Astrophysics of the American Physical Society.

  12. Gamma-Ray Burst Prompt Correlations

    Directory of Open Access Journals (Sweden)

    M. G. Dainotti

    2018-01-01

    Full Text Available The mechanism responsible for the prompt emission of gamma-ray bursts (GRBs is still a debated issue. The prompt phase-related GRB correlations can allow discriminating among the most plausible theoretical models explaining this emission. We present an overview of the observational two-parameter correlations, their physical interpretations, and their use as redshift estimators and possibly as cosmological tools. The nowadays challenge is to make GRBs, the farthest stellar-scaled objects observed (up to redshift z=9.4, standard candles through well established and robust correlations. However, GRBs spanning several orders of magnitude in their energetics are far from being standard candles. We describe the advances in the prompt correlation research in the past decades, with particular focus paid to the discoveries in the last 20 years.

  13. Nuclear gamma ray lines from supernovae

    International Nuclear Information System (INIS)

    Jardim, J.O.D.

    1980-01-01

    From theoretical considerations of the behaviour of gamma ray line fluxes occurring after a supernova explosion, the 1.156 and 0.847 MeV lines are seen to be the most likely to be observed. The 1.156 MeV line has been previously observed by other investigators. Observations of the 0.847 MeV line, and 1.332, 1.173 and 0.059 MeV lines using a Ge(Li) telescope aboard a stratospheric balloon which was flown in Brazil in 1977 are reported. The observation using a NaI(Tl) detector of a line in the energy interval 1.5 - 1.6 MeV, which may be due to 0 18 (p,p') 0 18 sup (*) reaction is also reported. (Author) [pt

  14. Theoretical Study of Gamma-ray Pulsars

    Directory of Open Access Journals (Sweden)

    Kwong Sang Cheng

    2016-06-01

    Full Text Available We use the non-stationary three dimensional two-layer outer gap model to explain gamma-ray emissions from a pulsar magnetosphere. We found out that for some pulsars like the Geminga pulsar, it was hard to explain emissions above a level of around 1 GeV. We then developed the model into a non-stationary model. In this model we assigned a power-law distribution to one or more of the spectral parameters proposed in the previous model and calculated the weighted phaseaveraged spectrum. Though this model is suitable for some pulsars, it still cannot explain the high energy emission of the Geminga pulsar. An Inverse-Compton Scattering component between the primary particles and the radio photons in the outer magnetosphere was introduced into the model, and this component produced a sufficient number of GeV photons in the spectrum of the Geminga pulsar.

  15. Gamma ray induced somatic mutations in rose

    International Nuclear Information System (INIS)

    Datta, S.K.

    1989-01-01

    Budwood of 32 rose cultivars (Rosa spp.) was exposed to 3-4 krad of gamma rays and eyes were grafted on Rosa indica var. odorata root stock. Radiosensitivity with respect to sprouting, survival and plant height, and mutation frequency varied with the cultivar and dose of gamma rays. Somatic mutations in flower colour/shape were detected as chimera in 21 cultivars. The size of the mutant sector varied from a narrow streak on a petal to a whole flower and from a portion of a branch to an entire branch. 14 mutants were detected in M 1 V 1 , four in M 1 V 2 and three in M 1 V 3 . Maximum number of mutations was detected following 3 krad treatment. Eyes from mutant branches were grafted again on root stock and non-chimeric mutants were aimed at by vegetative propagation. Mutants from 11 cultivars only could be isolated in pure form. Isolation of non-chimeric mutants sometimes is difficult due to weak growth of a mutant branch. In such a case, all normal looking branches are removed to force a better growth of the mutant branch. It is advisable to maintain irradiated plants at least for four years with drastic pruning in each year. Nine mutants viz. 'Sharada', 'Sukumari', 'Tangerine Contempo', 'Yellow Contempo', 'Pink Contempo', 'Striped Contempo', 'Twinkle', 'Curio' and 'Light Pink Prize' have already been released as new cultivars for commercialization [ref. MBNL No. 23 and 31] and others are being multiplied and assessed. The mutation spectrum appears to be wider for the cultivars 'Contempo' and 'Imperator'. Pigment composition of the original variety is relevant for the kind of flower colour mutations that can be induced

  16. High dose gamma-ray standard

    International Nuclear Information System (INIS)

    Macrin, R.; Moraru, R.

    1999-01-01

    The high gamma-ray doses produced in a gamma irradiator are used, mainly, for radiation processing, i.e. sterilization of medical products, processing of food, modifications of polymers, irradiation of electronic devices, a.s.o. The used absorbed doses depend on the application and cover the range 10 Gy to 100 MGy. The regulations in our country require that the response of the dosimetry systems, used for the irradiation of food and medical products, be calibrated and traceable to the national standards. In order to be sure that the products receive the desired absorbed dose, appropriate dosimetric measurements must be performed, including the calibration of the dosemeters and their traceability to the national standards. The high dose gamma-ray measurements are predominantly based on the use of reference radiochemical dosemeters. Among them the ferrous sulfate can be used as reference dosemeter for low doses (up to 400 Gy) but due to its characteristics it deserves to be considered a standard dosemeter and to be used for transferring the conventional absorbed dose to other chemical dosemeters used for absorbed doses up to 100 MGy. The study of the ferrous sulfate dosemeter consisted in preparing many batches of solution by different operators in quality assurance conditions and in determining for all batches the linearity, the relative intrinsic error, the repeatability and the reproducibility. The principal results are the following: the linear regression coefficient: 0.999, the relative intrinsic error: max.6 %, the repeatability (for P* = 95 %): max.3 %, the reproducibility (P* = 95%): max.5 %. (authors)

  17. A new processing technique for airborne gamma-ray data

    DEFF Research Database (Denmark)

    Hovgaard, Jens

    1997-01-01

    The mathematical-statistical background for at new technique for processing gamma-ray spectra is presented. The technique - Noise Adjusted Singular Value Decomposition - decomposes at set of gamma-ray spectra into a few basic spectra - the spectral components. The spectral components can be proce...

  18. Pulser injection with subsequent removal for gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Hartwell, J.K.; Goodwin, S.G.; Johnson, L.O.; Killian, E.W.

    1990-01-01

    This patent describes a module for use with a gamma-ray spectroscopy system. The system includes a gamma-ray detector for detecting gamma-ray events and producing a signal representing the gamma-ray events, a converter responsive to the detector and capable of converting the signal to a spectrum, a storage memory responsive to the converter and capable of storing the spectrum at address locations in memory, and a pulser capable of injecting pulses into the signal produced by the detector. The module comprises: means for generating a logic pulse for controlling the pulser, the controlling means adapted for coupling to the pulser; means for generating separation of events logic to isolate the components of a combined gamma-ray---pulse spectrum, the separation of events logic means adapted for coupling to the converter and the storage memory with the capability of storing pulses at address locations in the storage memory separate from the gamma-ray events; means for receiving an imitating signal from the converter to generate a plurality of operations by the module; means for tracking variations in a gamma-ray---pulse spectrum brought on by external parameter changes; and means for interfacing with commercially developed gamma-ray spectrometry equipment

  19. Effectiveness of gamma ray irradiation and ethyl methane ...

    African Journals Online (AJOL)

    Survival rate and plantlet performance of DNKW001 in gamma ray + EMS 7uM treatment declined profoundly with increasing doses and LD50 was lower (104 Gy) than LD50 in gamma ray irradiation (177 Gy) alone. Variants of plantlets were detected in pre (white streaked leaf and bigger petiole with distorted leaf) and post ...

  20. Wolf-Rayet stars as gamma-ray burst progenitors

    NARCIS (Netherlands)

    Langer, N.; van Marle, A. -J; Yoon, S.C.

    2010-01-01

    It became clear in the last few years that long gamma-ray bursts are associated with the endpoints of massive star evolution. They occur in star forming regions at cosmological distances (Jakobsson et al., 2005), and are associated with supernova-type energies. The collapsar model explains gamma-ray

  1. The First Fermi-LAT Gamma-Ray Burst Catalog

    NARCIS (Netherlands)

    Ackermann, M.; et al., [Unknown; van der Horst, A.J.

    2013-01-01

    In three years of observations since the beginning of nominal science operations in 2008 August, the Large Area Telescope (LAT) on board the Fermi Gamma-Ray Space Telescope has observed high-energy (gsim 20 MeV) γ-ray emission from 35 gamma-ray bursts (GRBs). Among these, 28 GRBs have been detected

  2. Gamma ray bursts observed with WATCH‐EURECA

    DEFF Research Database (Denmark)

    Brandt, Søren; Lund, Niels; Castro-Tirado, A. J.

    1994-01-01

    The WATCH wide field x‐ray monitor has the capability of independently locating bright Gamma Ray Bursts to 1° accuracy. We report the preliminary positions of 12 Gamma Ray Bursts observed with the WATCH monitor flown on the ES spacecraft EURECA during its 11 month mission. Also the recurrence...

  3. The many phases of gamma-ray burst afterglows

    NARCIS (Netherlands)

    Leventis, K.

    2013-01-01

    Gamma-ray bursts are the brightest sources in the universe. Their afterglows have been observed for about 15 years now, and their study has greatly advanced our understanding of these, mysterious until recently, events. In a way, gamma-ray bursts can be seen as huge cosmic bombs which convert

  4. Gamma ray bursts: Current status of observations and theory

    International Nuclear Information System (INIS)

    Meegan, C.A.

    1990-04-01

    Gamma ray bursts display a wide range of temporal and spectral characteristics, but typically last several seconds and emit most of their energy in a low energy, gamma ray region. The burst sources appear to be isotropically distributed on the sky. Several lines of evidence suggest magnetic neutron stars as sources for bursts. A variety of energy sources and emission mechanisms are proposed

  5. Supernova sheds light on gamma-ray bursts

    CERN Multimedia

    2003-01-01

    On 29 March the HETE-II satellite detected the most violent explosion in the universe to date - an enormous burst of gamma rays. Observers across the world recorded and studied the event. It appears to prove that gamma ray bursts originate in supernovae (1 page)

  6. X and gamma ray backgroud observations in Antarctic

    International Nuclear Information System (INIS)

    Jayanthi, U.B.

    1988-01-01

    Atmospheric X amd gamma rays are products of complex electromagnetic interation between charged particles and atmospheric constituents. The latitudinal dependence of the cosmic rays secondaries, auroral and South Atlantic Anomaly phenomena produce flux variations, especially the later temporal flux variations. We propose to discuss these variations in relevance to balloon flight observations of X and gamma ray atmospheric background at polar latitudes. (author) [pt

  7. Gamma Ray Tomographic Scan Method for Large Scale Industrial Plants

    International Nuclear Information System (INIS)

    Moon, Jin Ho; Jung, Sung Hee; Kim, Jong Bum; Park, Jang Geun

    2011-01-01

    The gamma ray tomography systems have been used to investigate a chemical process for last decade. There have been many cases of gamma ray tomography for laboratory scale work but not many cases for industrial scale work. Non-tomographic equipment with gamma-ray sources is often used in process diagnosis. Gamma radiography, gamma column scanning and the radioisotope tracer technique are examples of gamma ray application in industries. In spite of many outdoor non-gamma ray tomographic equipment, the most of gamma ray tomographic systems still remained as indoor equipment. But, as the gamma tomography has developed, the demand on gamma tomography for real scale plants also increased. To develop the industrial scale system, we introduced the gamma-ray tomographic system with fixed detectors and rotating source. The general system configuration is similar to 4 th generation geometry. But the main effort has been made to actualize the instant installation of the system for real scale industrial plant. This work would be a first attempt to apply the 4th generation industrial gamma tomographic scanning by experimental method. The individual 0.5-inch NaI detector was used for gamma ray detection by configuring circular shape around industrial plant. This tomographic scan method can reduce mechanical complexity and require a much smaller space than a conventional CT. Those properties make it easy to get measurement data for a real scale plant

  8. Bulk density calculations from prompt gamma ray yield

    International Nuclear Information System (INIS)

    Naqvi, A.A.; Nagadi, M.M.; Al-Amoudi, O.S.B.; Maslehuddin, M.

    2006-01-01

    Full text: The gamma ray yield from a Prompt Gamma ray Neutron Activation Analysis (PGNAA) setup is a linear function of element concentration and neutron flux in a the sample with constant bulk density. If the sample bulk density varies as well, then the element concentration and the neutron flux has a nonlinear correlation with the gamma ray yield [1]. The measurement of gamma ray yield non-linearity from samples and a standard can be used to estimate the bulk density of the samples. In this study the prompt gamma ray yield from Blast Furnace Slag, Fly Ash, Silica Fumes and Superpozz cements samples have been measured as a function of their calcium and silicon concentration using KFUPM accelerator-based PGNAA setup [2]. Due to different bulk densities of the blended cement samples, the measured gamma ray yields have nonlinear correlation with calcium and silicon concentration of the samples. The non-linearity in the yield was observed to increase with gamma rays energy and element concentration. The bulk densities of the cement samples were calculated from ratio of gamma ray yield from blended cement and that from a Portland cement standard. The calculated bulk densities have good agreement with the published data. The result of this study will be presented

  9. Discoveries by the Fermi Gamma Ray Space Telescope

    Science.gov (United States)

    Gehrels, Neil

    2011-01-01

    Fermi is a large space gamma-ray mission developed by NASA and the DOE with major contributions from France, Germany, Italy, Japan and Sweden. It was launched in June 2008 and has been performing flawlessly since then. The main instrument is the Large Area Telescope (LAT) operating in the 20 MeV to 300 GeV range and a smaller monitor instrument is the Gamma-ray Burst Monitor (GBM) operating in the 8 keV to 40 MeV range. New findings are occurring every week. Some of the key discoveries are: 1) Discovery of many new gamma-ray pulsars, including gamma-ray only and millisecond pulsars. 2) Detection of high energy gamma-ray emission from globular clusters, most likely due to summed emission from msec pulsars. 3) Discovery of delayed and extended high energy gamma-ray emission from short and long gamma-ray busts. 4) Detection of approximately 250 gamma-ray bursts per year with the GBM instrument. 5) Most accurate measurement of the cosmic ray electron spectrum between 30 GeV and 1 TeV, showing some excess above the conventional diffusion model. The talk will present the new discoveries and their implications.

  10. MAGNETIC STRUCTURES IN GAMMA-RAY BURST JETS PROBED BY GAMMA-RAY POLARIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Yonetoku, Daisuke; Murakami, Toshio; Morihara, Yoshiyuki; Takahashi, Takuya; Wakashima, Yudai; Yonemochi, Hajime; Sakashita, Tomonori; Fujimoto, Hirofumi; Kodama, Yoshiki [College of Science and Engineering, School of Mathematics and Physics, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192 (Japan); Gunji, Shuichi; Toukairin, Noriyuki [Department of Physics, Faculty of Science, Yamagata University, 1-4-12, Koshirakawa, Yamagata, Yamagata 990-8560 (Japan); Mihara, Tatehiro [Cosmic Radiation Laboratory, RIKEN, 2-1, Hirosawa, Wako City, Saitama 351-0198 (Japan); Toma, Kenji, E-mail: yonetoku@astro.s.kanazawa-u.ac.jp [Department of Earth and Space Science, Osaka University, Toyonaka 560-0043 (Japan)

    2012-10-10

    We report polarization measurements in two prompt emissions of gamma-ray bursts, GRB 110301A and GRB 110721A, observed with the gamma-ray burst polarimeter (GAP) on borad the IKAROS solar sail mission. We detected linear polarization signals from each burst with polarization degree of {Pi} = 70 {+-} 22% with statistical significance of 3.7{sigma} for GRB 110301A, and {Pi} = 84{sup +16}{sub -28}% with 3.3{sigma} confidence level for GRB 110721A. We did not detect any significant change of polarization angle. These two events had shorter durations and dimmer brightness compared with GRB 100826A, which showed a significant change of polarization angle, as reported in Yonetoku et al. Synchrotron emission model can be consistent with the data of the three GRBs, while the photospheric quasi-thermal emission model is not favored. We suggest that magnetic field structures in the emission region are globally ordered fields advected from the central engine.

  11. Total Absorption Spectroscopy Study of the Beta Decay of 60Mn to Constrain the Neutron Capture Rate of 60Fe

    Science.gov (United States)

    Richman, Debra; Spyrou, Artemis; Dombos, Alex; Couture, Aaron; e15034 Collaboration

    2017-09-01

    Interest in 60Fe, a long lived radioisotope synthesized in massive stars, has recently peaked. The signature of its decay allows us to probe astrophysical processes, events such as the early formation of the solar system and nucleosynthesis. To understand these observations a complete understanding of the creation, destruction and nuclear properties of 60Fe in the astrophysical environment are required. Using the beta decay of 60Mn in conjunction with total absorption spectroscopy (TAS), made possible by the high efficiency gamma ray calorimeter SuN (Summing NaI detector) at the National Superconducting Cyclotron Laboratory (NSCL), to study the distribution of beta-decay intensity over the daughter-nucleus 60Fe, provides information about the structure of the daughter and improves the predictive power of astrophysical models. In addition to the ongoing TAS analysis, The Beta-Oslo method will be used to extract the nuclear level density and gamma-strength function of 60Fe providing much needed constraints on the neutron capture reaction rate responsible for the creation of this nucleus.

  12. Regional radiometric map of Syria, using gamma-ray spectrometer

    International Nuclear Information System (INIS)

    Aissa, M.; Al-Hent, R.; Nasser, R.

    2005-01-01

    The regional radiometric gamma-ray spectrometry map of Syria, scaled 1/1000000, for surficial concentration of the total radioactivity (Ur), eU, eTh and %K was completely achieved after normalizing the airborne and carbon data sets to match each other. It worthy notice that, the anomalies found to be closely related to either phosphate and/or glauconite deposits. It is worth mentioning that throughout the survey work many scattered occurrences of secondary uranium mineralization were found as spots in some formations and phosphate rocks. Where this phenomena attributes to chemical and physical disseminating instead of accumulating the radioelements. So, that leads to a weak expectation for usual surface uranium deposits where attributed to the oxidizing condition. Then this expectation remains, as an open question requires answering through planning to subsurface prospecting. (Author)

  13. Plutonium isotopic measurements by gamma-ray spectroscopy

    International Nuclear Information System (INIS)

    Gunnink, R.

    1973-11-01

    A method is reported for analysis of isotopic and total plutonium by detecting and analyzing gamma rays emitted by the sample. A computerized prototype-system was developed and is now being routinely used at the Savannah River Plant for the nondestructive assay of solution samples. The analyses for 238 Pu, 239 Pu, 240 Pu, 241 Pu, and for 241 Am, when it is present, can be made in counting times as short as 10 to 15 minutes under optimum conditions. Comparison of isotopic ratio values with mass spectrometry generally shows agreement within 0.1 percent for 239 Pu and about 1 percent for 240 Pu and 241 Pu. Some preliminary isotopic measurements on solids are also discussed. (U.S.)

  14. Energy budget in collimated gamma-ray bursts

    International Nuclear Information System (INIS)

    Tudose, Valeriu; Biermann, Peter

    2003-01-01

    There is increasing evidence for the existence of collimation in some, if not most, of the gamma-ray bursts. This would have direct implications, for instance, on the energy budget, the rate of events, but also indirect consequences for the theoretical models because it provides a tool to differentiate between their predictions. We consider the case of a structured jet, i.e. we assume the energy within the jet varies as a power-law, being a function of the angle between the jet axis and an arbitrary direction. We analyze first the situation in which the jet axis and the line of sight have a particular orientation, then we relax this assumption by allowing for an arbitrary viewing angle with respect to the symmetry axis of the jet. A qualitative study of the total energy content of the jet is performed. It turns out that the 'real' energy could be higher than what is inferred from observations. (authors)

  15. The supernova-gamma-ray burst-jet connection.

    Science.gov (United States)

    Hjorth, Jens

    2013-06-13

    The observed association between supernovae and gamma-ray bursts represents a cornerstone in our understanding of the nature of gamma-ray bursts. The collapsar model provides a theoretical framework for this connection. A key element is the launch of a bipolar jet (seen as a gamma-ray burst). The resulting hot cocoon disrupts the star, whereas the (56)Ni produced gives rise to radioactive heating of the ejecta, seen as a supernova. In this discussion paper, I summarize the observational status of the supernova-gamma-ray burst connection in the context of the 'engine' picture of jet-driven supernovae and highlight SN 2012bz/GRB 120422A--with its luminous supernova but intermediate high-energy luminosity--as a possible transition object between low-luminosity and jet gamma-ray bursts. The jet channel for supernova explosions may provide new insights into supernova explosions in general.

  16. Gamma-Ray Bursts: 4th Huntsville Symposium. Proceedings

    International Nuclear Information System (INIS)

    Meegan, C.A.; Preece, R.D.; Koshut, T.M.

    1998-01-01

    These proceedings represent papers presented at the Fourth Huntsville Gamma-Ray Bursts Symposium held in September, 1997 in Huntsville, Alabama, USA. This conference occurred at a crucial time in the history of the gamma-ray burst research. In early 1997, 30 years after the detection of the first gamma-ray burst by the Vela satellites, counterparts to bursts were finally detected at optical and radio wavelengths. The symposium attracted about 200 scientists from 16 countries. Some of the topics discussed include gamma-ray burst spectra, x-ray observations, optical observations, radio observations, host galaxies, shocks and afterglows and models of gamma-ray bursts. There were 183 papers presented, out of these, 16 have been abstracted for the Energy Science and Technology database

  17. Recent achievements in the field of gamma-ray bursts

    International Nuclear Information System (INIS)

    Lu Tan; Dai Zigao

    2001-01-01

    Recent progresses in the field of gamma-ray bursts is briefly introduced. Gamma-ray bursts are the most energetic explosion since the Big Bang of the universe. Within a few tens of seconds, the energy released in gamma-ray bursts could be several hundred times larger than that released form the sun in its whole life (about 10 billion years). The authors will first briefly discuss the observational facts, based on which the authors will discuss the standard fireball model, the dynamical behavior and evolution of gamma-ray bursts and their afterglows. Then, various observational phenomena that contradict the standard model are given and the importance of these post-standard effects are pointed out. The questions related to the energy source of gamma-ray bursts are still unanswered, and other important questions also remain to be solved

  18. Multiplate ionization total absorption spectrometer with a compressed gas

    International Nuclear Information System (INIS)

    Baskakov, V.I.; Dolgoshein, B.A.; Kantserov, V.A.

    1978-01-01

    The characteristics of a multiplate total absorption spectrometer working with the compressed xenon (up to 25 atm) containing up to 23 radiation lengths of matter are studied. The dependence of the spectrometer energy resolution on the detecting matter density, on the material and thickness of the absorber plates has been studied. The ability of the spectrometer with a tungsten absorber to select hadrons and electrons with P=6 GeV/c by total energy release and characteristics of the cascade longitudinal development has been also studied. The gas spectrometer as it is shown differs quite slightly from the similar spectrometer with liquid argon as for its time resolution it is much better

  19. Gamma-ray Full Spectrum Analysis for Environmental Radioactivity by HPGe Detector

    Science.gov (United States)

    Jeong, Meeyoung; Lee, Kyeong Beom; Kim, Kyeong Ja; Lee, Min-Kie; Han, Ju-Bong

    2014-12-01

    Odyssey, one of the NASA¡¯s Mars exploration program and SELENE (Kaguya), a Japanese lunar orbiting spacecraft have a payload of Gamma-Ray Spectrometer (GRS) for analyzing radioactive chemical elements of the atmosphere and the surface. In these days, gamma-ray spectroscopy with a High-Purity Germanium (HPGe) detector has been widely used for the activity measurements of natural radionuclides contained in the soil of the Earth. The energy spectra obtained by the HPGe detectors have been generally analyzed by means of the Window Analysis (WA) method. In this method, activity concentrations are determined by using the net counts of energy window around individual peaks. Meanwhile, an alternative method, the so-called Full Spectrum Analysis (FSA) method uses count numbers not only from full-absorption peaks but from the contributions of Compton scattering due to gamma-rays. Consequently, while it takes a substantial time to obtain a statistically significant result in the WA method, the FSA method requires a much shorter time to reach the same level of the statistical significance. This study shows the validation results of FSA method. We have compared the concentration of radioactivity of 40K, 232Th and 238U in the soil measured by the WA method and the FSA method, respectively. The gamma-ray spectrum of reference materials (RGU and RGTh, KCl) and soil samples were measured by the 120% HPGe detector with cosmic muon veto detector. According to the comparison result of activity concentrations between the FSA and the WA, we could conclude that FSA method is validated against the WA method. This study implies that the FSA method can be used in a harsh measurement environment, such as the gamma-ray measurement in the Moon, in which the level of statistical significance is usually required in a much shorter data acquisition time than the WA method.

  20. Gamma-ray Full Spectrum Analysis for Environmental Radioactivity by HPGe Detector

    Directory of Open Access Journals (Sweden)

    Meeyoung Jeong

    2014-12-01

    Full Text Available Odyssey, one of the NASA’s Mars exploration program and SELENE (Kaguya, a Japanese lunar orbiting spacecraft have a payload of Gamma-Ray Spectrometer (GRS for analyzing radioactive chemical elements of the atmosphere and the surface. In these days, gamma-ray spectroscopy with a High-Purity Germanium (HPGe detector has been widely used for the activity measurements of natural radionuclides contained in the soil of the Earth. The energy spectra obtained by the HPGe detectors have been generally analyzed by means of the Window Analysis (WA method. In this method, activity concentrations are determined by using the net counts of energy window around individual peaks. Meanwhile, an alternative method, the so-called Full Spectrum Analysis (FSA method uses count numbers not only from full-absorption peaks but from the contributions of Compton scattering due to gamma-rays. Consequently, while it takes a substantial time to obtain a statistically significant result in the WA method, the FSA method requires a much shorter time to reach the same level of the statistical significance. This study shows the validation results of FSA method. We have compared the concentration of radioactivity of 40K, 232Th and 238U in the soil measured by the WA method and the FSA method, respectively. The gamma-ray spectrum of reference materials (RGU and RGTh, KCl and soil samples were measured by the 120% HPGe detector with cosmic muon veto detector. According to the comparison result of activity concentrations between the FSA and the WA, we could conclude that FSA method is validated against the WA method. This study implies that the FSA method can be used in a harsh measurement environment, such as the gamma-ray measurement in the Moon, in which the level of statistical significance is usually required in a much shorter data acquisition time than the WA method.

  1. Gamma-Ray imaging for nuclear security and safety: Towards 3-D gamma-ray vision

    Science.gov (United States)

    Vetter, Kai; Barnowksi, Ross; Haefner, Andrew; Joshi, Tenzing H. Y.; Pavlovsky, Ryan; Quiter, Brian J.

    2018-01-01

    The development of portable gamma-ray imaging instruments in combination with the recent advances in sensor and related computer vision technologies enable unprecedented capabilities in the detection, localization, and mapping of radiological and nuclear materials in complex environments relevant for nuclear security and safety. Though multi-modal imaging has been established in medicine and biomedical imaging for some time, the potential of multi-modal data fusion for radiological localization and mapping problems in complex indoor and outdoor environments remains to be explored in detail. In contrast to the well-defined settings in medical or biological imaging associated with small field-of-view and well-constrained extension of the radiation field, in many radiological search and mapping scenarios, the radiation fields are not constrained and objects and sources are not necessarily known prior to the measurement. The ability to fuse radiological with contextual or scene data in three dimensions, in analog to radiological and functional imaging with anatomical fusion in medicine, provides new capabilities enhancing image clarity, context, quantitative estimates, and visualization of the data products. We have developed new means to register and fuse gamma-ray imaging with contextual data from portable or moving platforms. These developments enhance detection and mapping capabilities as well as provide unprecedented visualization of complex radiation fields, moving us one step closer to the realization of gamma-ray vision in three dimensions.

  2. Characteristics of the telescope for high energy gamma-ray astronomy selected for definition studies on the Gamma Ray Observatory

    Science.gov (United States)

    Hughes, E. B.; Hofstadter, R.; Rolfe, J.; Johansson, A.; Bertsch, D. L.; Cruickshank, W. J.; Ehrmann, C. H.; Fichtel, C. E.; Hartman, R. C.; Kniffen, D. A.

    1980-01-01

    The high energy gamma-ray telescope selected for definition studies on the Gamma Ray Observatory provides a substantial improvement in observational capability over earlier instruments. It will have about 20 times more sensitivity, cover a much broader energy range, have considerably better energy resolution and provide a significantly improved angular resolution. The design and performance are described.

  3. Inverse Compton gamma-rays from galactic dark matter annihilation. Anisotropy signatures

    International Nuclear Information System (INIS)

    Zhang, Le; Sigl, Guenter; Miniati, Francesco

    2010-08-01

    High energy electrons and positrons from annihilating dark matter can imprint unique angular anisotropies on the diffuse gamma-ray flux by inverse Compton scattering off the interstellar radiation field. We develop a numerical tool to compute gamma-ray emission from such electrons and positrons diffusing in the smooth host halo and in substructure halos with masses down to 10 -6 M s un. We show that, unlike the total gamma-ray angular power spectrum observed by Fermi-LAT, the angular power spectrum from inverse Compton scattering is exponentially suppressed below an angular scale determined by the diffusion length of electrons and positrons. For TeV scale dark matter with a canonical thermal freeze-out cross section 3 x 10 -26 cm 3 /s, this feature may be detectable by Fermi-LAT in the energy range 100-300 GeV after more sophisticated foreground subtraction. We also find that the total flux and the shape of the angular power spectrum depends sensitively on the spatial distribution of subhalos in the Milky Way. Finally, the contribution from the smooth host halo component to the gamma-ray mean intensity is negligibly small compared to subhalos. (orig.)

  4. Effect of gamma-ray on olive fruits quality, enzyme activities and issued oil

    International Nuclear Information System (INIS)

    Mejri, Sonia

    2007-01-01

    The results described in the present work concern the study of changes in gamma ray irradiated olive fruit (Tunisian variety: C hemlali ) quality along the storage time processing and the quality of olive oil issued. The study focused on the changes related to the microbiological, physico-chemical properties, as well as pectinase activities in olive after irradiation. We also have been interested in the final product quality after oil extraction. The results of non irradiated olives were presented for comparative purposes. Mature olive fruits were treated with 0.5, 1 and 1.5 kGy gamma ray radiation. Olive fruits were then stored for one month. Irradiation at 1.5 kGy allows the almost total destruction of the total aerobic germs, yeasts and moulds. Concerning physico-chemical parameters, the increase of the dose level generated an improvement in water retention capacity and decreased the rate of polysaccharides hydrolyzes olives. Moreover, the irradiation dose of 0.5 kGy induced the increase in pectinase activities thanks to the improvement of the protein extraction yield. The gamma ray irradiation of olive fruit seems to not decrease olive oil oxidative stability in the studied samples. Finally, gamma ray radiation was able to improve the yield of extraction of the oil and insaponifiable fraction as polyphenols and beta carotenes. (Author)

  5. Inverse Compton gamma-rays from galactic dark matter annihilation. Anisotropy signatures

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Le; Sigl, Guenter [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Miniati, Francesco [ETH Zuerich (Switzerland). Physics Dept.

    2010-08-15

    High energy electrons and positrons from annihilating dark matter can imprint unique angular anisotropies on the diffuse gamma-ray flux by inverse Compton scattering off the interstellar radiation field. We develop a numerical tool to compute gamma-ray emission from such electrons and positrons diffusing in the smooth host halo and in substructure halos with masses down to 10{sup -6}M{sub s}un. We show that, unlike the total gamma-ray angular power spectrum observed by Fermi-LAT, the angular power spectrum from inverse Compton scattering is exponentially suppressed below an angular scale determined by the diffusion length of electrons and positrons. For TeV scale dark matter with a canonical thermal freeze-out cross section 3 x 10{sup -26} cm{sup 3}/s, this feature may be detectable by Fermi-LAT in the energy range 100-300 GeV after more sophisticated foreground subtraction. We also find that the total flux and the shape of the angular power spectrum depends sensitively on the spatial distribution of subhalos in the Milky Way. Finally, the contribution from the smooth host halo component to the gamma-ray mean intensity is negligibly small compared to subhalos. (orig.)

  6. Gamma-rays attenuation of zircons from Cambodia and South Africa at different energies: A new technique for identifying the origin of gemstone

    International Nuclear Information System (INIS)

    Limkitjaroenporn, P.; Kaewkhao, J.

    2014-01-01

    In this work, the gamma-rays interaction properties of zircons from Cambodia and South Africa have been studied. The densities of Cambodian and South African’s zircons are 4.6716±0.0040 g/cm 3 and 4.5505±0.0018 g/cm 3 , respectively. The mass attenuation coefficient and the effective atomic number of gemstones were measured with the gamma-ray in energies range 223–662 keV using the Compton scattering technique. The mass attenuation coefficients of both zircons decreased with the increasing of gamma-rays energies. The different mass attenuation coefficients between the two zircons observed at gamma-ray energies below 400 keV are attributed to the differences in the photoelectric interaction. The effective atomic number of zircons was decreased with the increasing of gamma-ray energies and showed totally different values between the Cambodia and South Africa sources. The origins of the two zircons could be successfully identified by the method based on gamma-rays interaction with matter with advantage of being a non-destructive testing. - Highlights: • Gamma-rays interaction of zircons from Cambodia and South Africa studied. • Measured energy is during 223–662 keV. • Different μ m between the two zircons observed at gamma-ray energies below 400 keV. • The origins the two zircons could be successfully identified

  7. The 2HWC HAWC Observatory Gamma-Ray Catalog

    Energy Technology Data Exchange (ETDEWEB)

    Abeysekara, A. U.; Barber, A. S. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT (United States); Albert, A. [Physics Division, Los Alamos National Laboratory, Los Alamos, NM (United States); Alfaro, R.; Becerril, A.; Belmont-Moreno, E. [Instituto de Física, Universidad Nacional Autónoma de México, Mexico City (Mexico); Alvarez, C.; Arceo, R.; Caballero-Mora, K. S. [Universidad Autónoma de Chiapas, Tuxtla Gutiérrez, Chiapas (Mexico); Álvarez, J. D.; Arteaga-Velázquez, J. C. [Universidad Michoacana de San Nicolás de Hidalgo, Morelia (Mexico); Solares, H. A. Ayala; Brisbois, C. [Department of Physics, Michigan Technological University, Houghton, MI (United States); Baughman, B.; Berley, D. [Department of Physics, University of Maryland, College Park, MD (United States); Bautista-Elivar, N. [Universidad Politecnica de Pachuca, Pachuca, Hidalgo (Mexico); Gonzalez, J. Becerra [NASA Goddard Space Flight Center, Greenbelt, MD (United States); BenZvi, S. Y. [Department of Physics and Astronomy, University of Rochester, Rochester, NY (United States); Bernal, A. [Instituto de Astronomía, Universidad Nacional Autónoma de México, Mexico City (Mexico); Braun, J., E-mail: riviere@umdgrb.umd.edu [Department of Physics, University of Wisconsin-Madison, Madison, WI (United States); and others

    2017-07-01

    We present the first catalog of TeV gamma-ray sources realized with data from the newly completed High Altitude Water Cherenkov Observatory (HAWC). It is the most sensitive wide field-of-view TeV telescope currently in operation, with a one-year survey sensitivity of ∼5%–10% of the flux of the Crab Nebula. With an instantaneous field of view >1.5 sr and >90% duty cycle, it continuously surveys and monitors the sky for gamma-ray energies between hundreds of GeV and tens of TeV. HAWC is located in Mexico, at a latitude of 19° N, and was completed in 2015 March. Here, we present the 2HWC catalog, which is the result of the first source search performed with the complete HAWC detector. Realized with 507 days of data, it represents the most sensitive TeV survey to date for such a large fraction of the sky. A total of 39 sources were detected, with an expected number of false detections of 0.5 due to background fluctuation. Out of these sources, 19 are new sources that are not associated with previously known TeV sources (association criteria: <0.°5 away). The source list, including the position measurement, spectrum measurement, and uncertainties, is reported, then each source is briefly discussed. Of the 2HWC associated sources, 10 are reported in TeVCat as PWN or SNR: 2 as blazars and the remaining eight as unidentified.

  8. Use of airborne gamma-ray spectrometry for kaolin exploration

    Science.gov (United States)

    Tourlière, B.; Perrin, J.; Le Berre, P.; Pasquet, J. F.

    2003-08-01

    Airborne gamma-ray spectrometry was used to define targets with kaolin potential in the Armorican Massif of Brittany, France. This exploration method is based on the principle that kaolinite, an aluminosilicate clay mineral constituting kaolin, is formed by the hydrolysis of potash feldspar with the elimination of potassium. Therefore, potassium contrast between favourable host-rock such as a leucogranite and kaolin occurrence is likely a significant pathfinder. As the relationship between the potassium-40 recorded by an airborne gamma-ray spectrometer and total potassium is constant, such data provide us a direct measurement of the potassium content of the ground flown over. Our study tested this by calculating, for each geological unit, the difference between the measured and average potassium content calculated for a given geological formation. The study was based on (i) a recent (1998) high-definition airborne geophysical survey over the Armorican Massif undertaken on behalf of the French Government, and (ii) new geological compilation maps covering the same region. Depleted zones, where the measured potassium is less than the average potassium content calculated target areas with high potential of containing kaolin, provided that the unit was originally rich in potash feldspar. By applying this method to the entire Armorican Massif, it was possible to identify 150 potassium-depleted zones, including 115 that were subjected to rapid field checks and 36 that contained kaolin (21 new discoveries). This method, which is both safe for the environment and easy to use, is therefore a good tool for rapidly defining targets with kaolin potential at a regional scale. The method may also have possibilities in exploring for other types of deposit characterised by an enrichment or depletion in U, K and/or Th.

  9. Direction-Sensitive Hand-Held Gamma-Ray Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, S.

    2012-10-04

    A novel, light-weight, hand-held gamma-ray detector with directional sensitivity is being designed. The detector uses a set of multiple rings around two cylindrical surfaces, which provides precise location of two interaction points on two concentric cylindrical planes, wherefrom the source location can be traced back by back projection and/or Compton imaging technique. The detectors are 2.0 × 2.0 mm europium-doped strontium iodide (SrI2:Eu2+) crystals, whose light output has been measured to exceed 120,000 photons/MeV, making it one of the brightest scintillators in existence. The crystal’s energy resolution, less than 3% at 662 keV, is also excellent, and the response is highly linear over a wide range of gamma-ray energies. The emission of SrI2:Eu2+ is well matched to both photo-multiplier tubes and blue-enhanced silicon photodiodes. The solid-state photomultipliers used in this design (each 2.0 × 2.0 mm) are arrays of active pixel sensors (avalanche photodiodes driven beyond their breakdown voltage in reverse bias); each pixel acts as a binary photon detector, and their summed output is an analog representation of the total photon energy, while the individual pixel accurately defines the point of interaction. A simple back-projection algorithm involving cone-surface mapping is being modeled. The back projection for an event cone is a conical surface defining the possible location of the source. The cone axis is the straight line passing through the first and second interaction points.

  10. Gamma ray sensitivity of superheated liquid

    International Nuclear Information System (INIS)

    Sawamura, Teruko; Sugiyama, Noriyuki; Narita, Masakuni

    2000-01-01

    The superheated drop detector (SDD) is composed of droplets of sensitive liquid with a low-boiling point and a medium supporting the dispersed droplets throughout the medium. The SDD has been mainly used for neutron dosimetry and recently also for gamma-rays. While for neutrons the conditions for bubble formation have been discussed, there has been little work for gamma-rays. We investigated the conditions for low LET radiation, such as protons and gamma-rays, and showed octafluoropropane (C 3 F 8 , boiling point -36.7degC) as advantageous liquid. The bubble formation condition is given by the energy density imparted from the charged particle to the sensitive liquid. The energy density requirement means that the energy must be deposited over a definite region length, effective to produce the vapor nucleus that becomes the visible bubble. Recently for γ-rays, Evans and Wang proposed the model that the vaporization was triggered by the energy deposition in a 'cluster' including many events in proximity in a superheated liquid. Measurements of the γ-ray sensitivity have not been sufficiently carried out and therefore the effective length or the cluster model has not been well-established. In this study the detection sensitivity was evaluated by measuring the life time of a liquid drop exposed to γ-rays. We developed a device trapping a superheated drop, where a single drop of test liquid was trapped and decompressed by an acoustic standing wave field. When a liquid drop with volume V[cm 3 ] is exposed to a γ-ray flux φ γ [cm -2 s -1 ], the average evaporation rate λ(T, P) [s -1 ] (T: temperature, P: decompressed pressure) is expressed as λ(T, P)=K γ Vφ γ (1), K γ [cm -1 ] is the γ-ray detection sensitivity per unit volume of the sensitive liquid and unit fluence. If the average rate of spontaneous evaporation is λ 0 (T, P), then the probability distribution of the life time t, the probability that t > τ, is expressed by X(τ)=exp{-(λ+λ 0 )

  11. ICF gamma-ray reaction history diagnostics

    International Nuclear Information System (INIS)

    Herrmann, H W; Young, C S; Mack, J M; Kim, Y H; McEvoy, A; Evans, S; Sedillo, T; Batha, S; Schmitt, M; Wilson, D C; Langenbrunner, J R; Malone, R; Kaufman, M I; Cox, B C; Frogget, B; Tunnell, T W; Miller, E K; Ali, Z A; Stoeffl, W; Horsfield, C J

    2010-01-01

    Reaction history measurements, such as nuclear bang time and burn width, are fundamental components of diagnosing ICF implosions and will be employed to help steer the National Ignition Facility (NIF) towards ignition. Fusion gammas provide a direct measure of nuclear interaction rate (unlike x-rays) without being compromised by Doppler spreading (unlike neutrons). Gas Cherenkov Detectors that convert fusion gamma rays to UV/visible Cherenkov photons for collection by fast optical recording systems have established their usefulness in illuminating ICF physics in several experimental campaigns at OMEGA. In particular, bang time precision better than 25 ps has been demonstrated, well below the 50 ps accuracy requirement defined by the NIF. NIF Gamma Reaction History (GRH) diagnostics are being developed based on optimization of sensitivity, bandwidth, dynamic range, cost, and NIF-specific logistics, requirements and extreme radiation environment. Implementation will occur in two phases. The first phase consists of four channels mounted to the outside of the target chamber at ∼6 m from target chamber center (GRH-6m) coupled to ultra-fast photo-multiplier tubes (PMT). This system is intended to operate in the 10 13 -10 17 neutron yield range expected during the early THD campaign. It will have high enough bandwidth to provide accurate bang times and burn widths for the expected THD reaction histories (> 80 ps fwhm). Successful operation of the first GRH-6m channel has been demonstrated at OMEGA, allowing a verification of instrument sensitivity, timing and EMI/background suppression. The second phase will consist of several channels located just inside the target bay shield wall at 15 m from target chamber center (GRH-15m) with optical paths leading through the cement shield wall to well-shielded streak cameras and PMTs. This system is intended to operate in the 10 16 -10 20 yield range expected during the DT ignition campaign, providing higher temporal resolution

  12. ICF gamma-ray reaction history diagnostics

    Science.gov (United States)

    Herrmann, H. W.; Young, C. S.; Mack, J. M.; Kim, Y. H.; McEvoy, A.; Evans, S.; Sedillo, T.; Batha, S.; Schmitt, M.; Wilson, D. C.; Langenbrunner, J. R.; Malone, R.; Kaufman, M. I.; Cox, B. C.; Frogget, B.; Miller, E. K.; Ali, Z. A.; Tunnell, T. W.; Stoeffl, W.; Horsfield, C. J.; Rubery, M.

    2010-08-01

    Reaction history measurements, such as nuclear bang time and burn width, are fundamental components of diagnosing ICF implosions and will be employed to help steer the National Ignition Facility (NIF) towards ignition. Fusion gammas provide a direct measure of nuclear interaction rate (unlike x-rays) without being compromised by Doppler spreading (unlike neutrons). Gas Cherenkov Detectors that convert fusion gamma rays to UV/visible Cherenkov photons for collection by fast optical recording systems have established their usefulness in illuminating ICF physics in several experimental campaigns at OMEGA. In particular, bang time precision better than 25 ps has been demonstrated, well below the 50 ps accuracy requirement defined by the NIF. NIF Gamma Reaction History (GRH) diagnostics are being developed based on optimization of sensitivity, bandwidth, dynamic range, cost, and NIF-specific logistics, requirements and extreme radiation environment. Implementation will occur in two phases. The first phase consists of four channels mounted to the outside of the target chamber at ~6 m from target chamber center (GRH-6m) coupled to ultra-fast photo-multiplier tubes (PMT). This system is intended to operate in the 1013-1017 neutron yield range expected during the early THD campaign. It will have high enough bandwidth to provide accurate bang times and burn widths for the expected THD reaction histories (> 80 ps fwhm). Successful operation of the first GRH-6m channel has been demonstrated at OMEGA, allowing a verification of instrument sensitivity, timing and EMI/background suppression. The second phase will consist of several channels located just inside the target bay shield wall at 15 m from target chamber center (GRH-15m) with optical paths leading through the cement shield wall to well-shielded streak cameras and PMTs. This system is intended to operate in the 1016-1020 yield range expected during the DT ignition campaign, providing higher temporal resolution for the

  13. Terrestrial gamma-ray flash production by lightning

    Science.gov (United States)

    Carlson, Brant E.

    Terrestrial gamma-ray flashes (TGFs) are brief flashes of gamma-rays originating in the Earth's atmosphere and observed by satellites. First observed in 1994 by the Burst And Transient Source Experiment on board the Compton Gamma-Ray Observatory, TGFs consist of one or more ˜1 ms pulses of gamma-rays with a total fluence of ˜1/cm2, typically observed when the satellite is near active thunderstorms. TGFs have subsequently been observed by other satellites to have a very hard spectrum (harder than dN/d E ∝ 1/ E ) that extends from below 25 keV to above 20 MeV. When good lightning data exists, TGFs are closely associated with measurable lightning discharge. Such discharges are typically observed to occur within 300 km of the sub-satellite point and within several milliseconds of the TGF observation. The production of these intense energetic bursts of photons is the puzzle addressed herein. The presence of high-energy photons implies a source of bremsstrahlung, while bremsstrahlung implies a source of energetic electrons. As TGFs are associated with lightning, fields produced by lightning are naturally suggested to accelerate these electrons. Initial ideas about TGF production involved electric fields high above thunderstorms as suggested by upper atmospheric lightning research and the extreme energies required for lower-altitude sources. These fields, produced either quasi-statically by charges in the cloud and ionosphere or dynamically by radiation from lightning strokes, can indeed drive TGF production, but the requirements on the source lightning are too extreme and therefore not common enough to account for all existing observations. In this work, studies of satellite data, the physics of energetic electron and photon production, and consideration of lightning physics motivate a new mechanism for TGF production by lightning current pulses. This mechanism is then developed and used to make testable predictions. TGF data from satellite observations are compared

  14. Determining the solar-flare photospheric scale height from SMM gamma-ray measurements

    Science.gov (United States)

    Lingenfelter, Richard E.

    1991-01-01

    A connected series of Monte Carlo programs was developed to make systematic calculations of the energy, temporal and angular dependences of the gamma-ray line and neutron emission resulting from such accelerated ion interactions. Comparing the results of these calculations with the Solar Maximum Mission/Gamma Ray Spectrometer (SMM/GRS) measurements of gamma-ray line and neutron fluxes, the total number and energy spectrum of the flare-accelerated ions trapped on magnetic loops at the Sun were determined and the angular distribution, pitch angle scattering, and mirroring of the ions on loop fields were constrained. Comparing the calculations with measurements of the time dependence of the neutron capture line emission, a determination of the He-3/H ratio in the photosphere was also made. The diagnostic capabilities of the SMM/GRS measurements were extended by developing a new technique to directly determine the effective photospheric scale height in solar flares from the neutron capture gamma-ray line measurements, and critically test current atmospheric models in the flare region.

  15. Cytochrome C effect on gamma-ray efficiency on barley seeds at different metabolic states

    International Nuclear Information System (INIS)

    Yankulov, M.

    1981-01-01

    Radiobiological studies of the effect of gamma-rays on the barley seeds were performed. It was shown that the different metabolic states of the seeds do not modify the effect of the independent treatment with cytochrome C, while the action of the gamma-rays is markedly modified. With the increase in the preliminary seed soaking time in H 2 O, the total lethality in the case of irradiated treatments rises from 54.10% to 91.00% and that of sterility to 13.13 and 57.44% for 12 and 72 hrs, respectively. The preliminary and post-irradiation treatment of seeds with cytochrome C markedly reduces the effect of gamma-rays, calculated by the criteria of general lethality and sterility, the trend towards an increase in the sensitivity with the increase in the extention of the preliminary soaking time of seeds in water being preserved. Preliminary soaking in the seeds in water also modifies the mutagenic effect of gamma-rays to a considerable extent. (author)

  16. Very Strong TeV Emission as $\\gamma$-Ray Burst Afterglows

    CERN Document Server

    Totani, T

    1998-01-01

    Gamma-ray bursts (GRBs) and following afterglows are considered to be produced by dissipation of kinetic energy of a relativistic fireball and radiation process is widely believed as synchrotron radiation or inverse Compton scattering of electrons. We argue that the transfer of kinetic energy of ejecta into electrons may be inefficient process and hence the total energy released by a GRB event is much larger than that emitted in soft gamma-rays, by a factor of \\sim (m_p/m_e). We show that, in this case, very strong emission of TeV gamma-rays is possible due to synchrotron radiation of protons accelerated up to \\sim 10^{21} eV, which are trapped in the magnetic field of afterglow shock and radiate their energy on an observational time scale of \\sim day. This suggests a possibility that GRBs are most energetic in TeV range and such TeV gamma-rays may be detectable from GRBs even at cosmological distances, i.e., z gives a quantitative explanation for the famous long-duration GeV photons detected from GRB940217. ...

  17. Prompt gamma-ray analysis of steel slag in concrete

    International Nuclear Information System (INIS)

    Naqvi, Akhtar Abbas; Garwan, Muhammad Ahmad; Nagadi, Mahmoud Mohammad; Rehman, Khateeb-ur; Raashid, Mohammad; Masalehuddin Mohiuddin, Mohammad; Al-Amoudi, Omar Saeed Baghabra

    2009-01-01

    Blast furnace slag (BFS) is added to Portland cement concrete to increase its durability, particularly its corrosion resistance. Monitoring the concentration of BFS in concrete for quality control purposes is desired. In this study, the concentration of BFS in concrete was measured by utilizing an accelerator-based prompt gamma-ray neutron activation analysis (PGNAA) setup. The optimum size of the BFS cement concrete specimen that produces the maximum intensity of gamma rays at the detector location was calculated through Monte Carlo simulations. The simulation results were experimentally validated through the gamma-ray yield measurement from BFS cement concrete specimens having different radii. The concentration of BFS in the cement concrete specimens was assessed through calcium and silicon gamma-ray yield measurement from cement concrete specimens containing 5 to 80 wt% BFS. The yield of calcium gamma rays decreases with increasing BFS concentration in concrete while the yield of silicon gamma rays increases with increasing BFS concentration in concrete. The calcium-to-silicon gamma-ray yield ratio has an inverse relation with BFS concentration in concrete. (author)

  18. Guidelines for radioelement mapping using gamma ray spectrometry data

    International Nuclear Information System (INIS)

    2003-07-01

    The purpose of the report is to provide an up-to-date review on the use of gamma ray spectrometry for radioelement mapping and, where appropriate, provide guidelines on the correct application of the method. It is a useful training guide for those new to the method. It gives a broad coverage of all aspects of the gamma ray method and provides a comprehensive list of references. The report gives an overview of the theoretical background to radioactivity and the gamma ray spectrometric method followed by a review of the application of the method to mapping the radiation environment. A brief outline is presented of the principles of radioactivity, the interaction of gamma rays with matter, instrumentation applied to the measurement of gamma rays, and the quantities and units in contemporary use in gamma ray spectrometry. This is followed by a review of the fundamentals of gamma ray spectrometry, and its application to ground and airborne mapping. Covered are also all aspects of the calibration and data processing procedures required for estimating the ground concentrations of the radioelements. The procedures required for the recovery of older survey data are also presented as well as an overview of data presentation and integration for mapping applications

  19. Design Study for Direction Variable Compton Scattering Gamma Ray

    Science.gov (United States)

    Kii, T.; Omer, M.; Negm, H.; Choi, Y. W.; Kinjo, R.; Yoshida, K.; Konstantin, T.; Kimura, N.; Ishida, K.; Imon, H.; Shibata, M.; Shimahashi, K.; Komai, T.; Okumura, K.; Zen, H.; Masuda, K.; Hori, T.; Ohgaki, H.

    2013-03-01

    A monochromatic gamma ray beam is attractive for isotope-specific material/medical imaging or non-destructive inspection. A laser Compton scattering (LCS) gamma ray source which is based on the backward Compton scattering of laser light on high-energy electrons can generate energy variable quasi-monochromatic gamma ray. Due to the principle of the LCS gamma ray, the direction of the gamma beam is limited to the direction of the high-energy electrons. Then the target object is placed on the beam axis, and is usually moved if spatial scanning is required. In this work, we proposed an electron beam transport system consisting of four bending magnets which can stick the collision point and control the electron beam direction, and a laser system consisting of a spheroidal mirror and a parabolic mirror which can also stick the collision point. Then the collision point can be placed on one focus of the spheroid. Thus gamma ray direction and collision angle between the electron beam and the laser beam can be easily controlled. As the results, travelling direction of the LCS gamma ray can be controlled under the limitation of the beam transport system, energy of the gamma ray can be controlled by controlling incident angle of the colliding beams, and energy spread can be controlled by changing the divergence of the laser beam.

  20. Impurities in semiconductors: total energy and infrared absorption calculations

    International Nuclear Information System (INIS)

    Yndurain, F.

    1987-01-01

    A new method to calculate the electronic structure of infinite nonperiodic system is discussed. The calculations are performed using atomic pseudopotentials and a basis of atomic Gaussiam wave functions. The Hartree-Fock self consistent equations are solved in the cluster-Bethe lattice system. Electron correlation is partially included in second order pertubation approximation. The formalism is applied to hydrogenated amorphous silicon. Total energy calculations of finite clusters of silicon atom in the presence of impurities, are also presented. The results show how atomic oxygen breaks the covalent silicon silicon bond forming a local configuration similar to that of SiO 2 . Calculations of the infrared absorption due to the presence of atomic oxygen in cristalline silicon are presented. The Born Hamiltonian to calculate the vibrational modes of the system and a simplied model to describe the infrared absorption mechanism are used. The interstitial and the the substitutional cases are considered and analysed. The position of the main infrared absorption peak, their intensities and their isotope shifts are calculated. The results are satisfactory agreement with the available data. (author) [pt

  1. Achieving Higher Accuracy in the Gamma-Ray Spectrocopic Assay of Holdup

    International Nuclear Information System (INIS)

    Russo, P.A.; Wenz, T.R.; Smith, S.E.; Harris, J.F.

    2000-01-01

    Gamma-ray spectroscopy is an important technique for the measurement of quantities of nuclear material holdup in processing equipment. Because the equipment in large facilities dedicated to uranium isotopic enrichment, uranium/plutonium scrap recovery or various stages of fuel fabrication is extensive, the total holdup may be large by its distribution alone, even if deposit thicknesses are small. Good accountability practices require unbiased measurements with uncertainties that are as small as possible. This paper describes new procedures for use with traditional holdup analysis methods based on gamma-ray spectroscopy. The procedures address the two sources of bias inherent in traditional gamma-ray measurements of holdup. Holdup measurements are performed with collimated, shielded gamma-ray detectors. The measurement distance is chosen to simplify the deposit geometry to that of a point, line or area. The quantitative holdup result is based on the net count rate of a representative gamma ray. This rate is corrected for contributions from room background and for attenuation by the process equipment. Traditional holdup measurements assume that the width of the point or line deposit is very small compared to the measurement distance, and that the self-attenuation effects can be neglected. Because each point or line deposit has a finite width and because self-attenuation affects all measurements, bias is incurred in both assumptions. In both cases the bias is negative, explaining the systematically low results of gamma-ray holdup measurements. The new procedures correct for bias that arises from both the finite-source effects and the gamma-ray self-attenuation. The procedures used to correct for both of these effects apply to the generalized geometries. One common empirical parameter is used for both corrections. It self-consistently limits the total error incurred (from uncertain knowledge of this parameter) in the combined correction process, so that it is

  2. The Imprint of the Extragalactic Background Light in the Gamma-Ray Spectra of Blazars

    Science.gov (United States)

    Ackermann, M.; Ajello, M.; Allafort, A.; Schady, P.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bellazzini, R; Blandford, R. D.; hide

    2012-01-01

    The light emitted by stars and accreting compact objects through the history of the universe is encoded in the intensity of the extragalactic background light (EBL). Knowledge of the EBL isimportant to understand the nature of star formation and galaxy evolution, but direct measurements of the EBL are limited by galactic and other foreground emissions. Here, we report an absorption feature seen in the combined spectra of a sample of gamma-ray blazars out to a redshift of z approx. 1.6. This feature is caused by attenuation of gamma rays by the EBL at optical to ultraviolet frequencies and allowed us to measure the EBL flux density in this frequency band.

  3. The LASL gamma-ray burst astronomy program

    International Nuclear Information System (INIS)

    Klebesadel, R.W.; Evans, W.D.; Laros, J.G.

    1981-01-01

    Gamma-ray burst observations performed by LASL began with the identification and initial report of the phenomenon from data acquired by the Vela satellites. The Vela instruments have recorded responses to 73 gamma-ray bursts over a ten-year interval, and are continuing to contribute toward these observations. Similar instrumentation was included aboard the NRL SOLRAD 11 spacecraft. These performed well but suffered an early demise. Recently, the LASL gamma-ray burst astronomy program has been enhanced through the implementation of experiments aboard the Pioneer Venus Orbiter and ISEF-C spacecraft. Both of these experiments are continuing to contribute data vital to trigonometric directional analyses. (orig.)

  4. Evaluation of effective dose equivalent from environmental gamma rays

    International Nuclear Information System (INIS)

    Saito, K.; Tsutsumi, M.; Moriuchi, S.; Petoussi, N.; Zankl, M.; Veit, R.; Jacob, P.; Drexler, G.

    1991-01-01

    Organ doses and effective dose equivalents for environmental gamma rays were calculated using human phantoms and Monte Carlo methods accounting rigorously the environmental gamma ray fields. It was suggested that body weight is the dominant factor to determine organ doses. The weight function expressing organ doses was introduced. Using this function, the variation in organ doses due to several physical factors were investigated. A detector having gamma-ray response similar to that of human bodies has been developed using a NaI(Tl) scintillator. (author)

  5. Gamma-ray bursts from black hole accretion disks

    International Nuclear Information System (INIS)

    Strong, I.B.

    1975-01-01

    The suggestion was first made more than a year ago that gamma-ray bursts might originate in the neighborhood of black holes, based on some rather circumstantial evidence linking Cygnus X-1, the prime black-hole candidate, with two of the then-known gamma-ray bursts. Since then additional evidence makes the idea still more plausible. The evidence is summarized briefly, a physical model for production of gamma-ray bursts is given, and several of the more interesting consequences of such an origin are pointed out. (orig.) [de

  6. Cellular response to low Gamma-ray doses

    Energy Technology Data Exchange (ETDEWEB)

    Manzanares A, E; Vega C, H R; Leon, L.C. de . [Unidades Academicas de Estudios Nucleares, Universidad Autonoma de Zacatecas, A.P. 336, 98000 Zacatecas (Mexico); Rebolledo D, O; Radillo J, F [Facultad de Ciencias Biologicas y Agropecuarias de la Universidad de Colima, Colima (Mexico)

    2002-07-01

    Lymphocytes, obtained from healthy donors, were exposed to a low strength gamma-ray field to determine heat shock protein expression in function of radiation dose. Protein identification was carried out using mAb raised against Hsp70 and Hsc70.Hsp70 protein was detected after lymphocyte irradiation. In all cases, an increasing trend of relative amounts of Hsp70 in function to irradiation time was observed. After 1.25 c Gy gamma-ray dose, lymphocytes expressed Hsp70 protein, indicating a threshold response to gamma rays. (Author)

  7. High energy photons and neutrinos from gamma ray bursts

    International Nuclear Information System (INIS)

    Dar, A.

    1998-01-01

    The Hubble space telescope has recently discovered thousands of gigantic comet-like objects in a ring around the central star in the nearest planetary nebula. It is suggested that such circumstellar rings exist around most of stars. Collisions of the relativistic debris from gamma ray bursts in dense stellar regions with such gigantic comet-like objects, which have been stripped off from the circumstellar rings by gravitational perturbations, produce detectable fluxes of high energy gamma-rays and neutrinos from gamma ray bursts

  8. Analytical applications of neutron capture gamma-rays

    International Nuclear Information System (INIS)

    Lindstrom, R.M.; Paul, R.L.; Anderson, D.L.; Paul, R.L.

    1997-01-01

    Field and industrial applications of neutron capture gamma-ray spectrometry with isotopic sources or neutron generators are economically important. Geochemical exploration in boreholes is done routinely with neutron probes. Coal and ores are assayed with analyzers adjacent to a conveyor belt in dozens of industrial facilities. The use of capture gamma rays for explosives detection has been described in the literature, both for scanning airline baggage and for characterizing obsolete munitions; a packaged system for the latter is available commercially. Generalizations are drawn from the history of the field, and predictions are made about the future usefulness of capture gamma rays. (author)

  9. Optical telescope BIRT in ORIGIN for gamma ray burst observing

    DEFF Research Database (Denmark)

    Content, Robert; Content, Robert; Sharples, Ray

    2012-01-01

    The ORIGIN concept is a space mission with a gamma ray, an X-ray and an optical telescope to observe the gamma ray bursts at large Z to determine the composition and density of the intergalactic matter in the line of sight. It was an answer to the ESA M3 call for proposal. The optical telescope i...... length. All 3 instruments use the same 2k x 2k detector simultaneously so that telescope pointing and tip-tilt control of a fold mirror permit to place the gamma ray burst on the desired instrument without any other mechanism. © 2012 SPIE....

  10. Cellular response to low Gamma-ray doses

    International Nuclear Information System (INIS)

    Manzanares A, E.; Vega C, H.R.; Leon, L.C. de; Rebolledo D, O.; Radillo J, F.

    2002-01-01

    Lymphocytes, obtained from healthy donors, were exposed to a low strength gamma-ray field to determine heat shock protein expression in function of radiation dose. Protein identification was carried out using mAb raised against Hsp70 and Hsc70.Hsp70 protein was detected after lymphocyte irradiation. In all cases, an increasing trend of relative amounts of Hsp70 in function to irradiation time was observed. After 1.25 c Gy gamma-ray dose, lymphocytes expressed Hsp70 protein, indicating a threshold response to gamma rays. (Author)

  11. Gamma ray astronomy and search for antimatter in the universe

    International Nuclear Information System (INIS)

    Schoenfelder, V.

    1989-01-01

    Gamma ray astronomy provides a powerful tool for searching antimatter in the universe; it probably provides the only means to determine, if the universe has baryon symmetry. Presently existing gamma-ray observations can be interpreted without postulating the existence of antimatter. However, the measurements are not precise enough to definitely exclude the possibility of its existence. The search for antimatter belongs to one of the main scientific objectives of the Gamma Ray Observatory GRO of NASA, which will be launched in 1990 by the Space Shuttle. (orig.)

  12. Gamma ray induced mutants in Coleus

    International Nuclear Information System (INIS)

    Vasudevan, K.; Jos, J.S.

    1988-01-01

    The germplasm collection of Chinese potato (Coleus parviflorus Benth) contains almost no variation for yield contributing traits. The crop does not produce seeds. Treatment of underground tubers with 1 kR, 2 kR, 3 kR and 4 kR gamma rays resulted in 50 morphologically different mutants which are maintained as mutant clones. In the M 1 V 1 generation, suspected mutant sprouts, were carefully removed and grown separately. The most interesting mutant types are the following: (i) erect mutant with spoon shaped light green leaves, 30 cm long inflorescences against 20 cm in the control, cylindrical tubers measuring ca. 7.0 cm long and 3 cm girth against 4 cm and 2.5 cm in the control (ii) early mutants 1 and 2, one having less leaf serration, the other having light green small leaves and dwarf type (iii) fleshy leaf mutant, dark green, thick and smooth leaves. Control plants spread almost in 1 m 2 area and bear tubers from the nodes of branches. In the early mutants tuber formation is mainly restricted to the base of the plant, which makes harvest easier. The crop usually matures within 150 - 160 days, the early mutants are ready for harvest 100 days after planting. As the mutants are less spreading, the yield could be increased by closer spacing

  13. Observations of short gamma-ray bursts.

    Science.gov (United States)

    Fox, Derek B; Roming, Peter W A

    2007-05-15

    We review recent observations of short-hard gamma-ray bursts and their afterglows. The launch and successful ongoing operations of the Swift satellite, along with several localizations from the High-Energy Transient Explorer mission, have provoked a revolution in short-burst studies: first, by quickly providing high-quality positions to observers; and second, via rapid and sustained observations from the Swift satellite itself. We make a complete accounting of Swift-era short-burst localizations and proposed host galaxies, and discuss the implications of these observations for the distances, energetics and environments of short bursts, and the nature of their progenitors. We then review the physical modelling of short-burst afterglows: while the simplest afterglow models are inadequate to explain the observations, there have been several notable successes. Finally, we address the case of an unusual burst that threatens to upset the simple picture in which long bursts are due to the deaths of massive stars, and short bursts to compact-object merger events.

  14. Gamma ray induced mutants in Coleus

    Energy Technology Data Exchange (ETDEWEB)

    Vasudevan, K; Jos, J S [Central Tuber Crops Research Institute, Trivandrum, Kerala (India)

    1988-07-01

    The germplasm collection of Chinese potato (Coleus parviflorus Benth) contains almost no variation for yield contributing traits. The crop does not produce seeds. Treatment of underground tubers with 1 kR, 2 kR, 3 kR and 4 kR gamma rays resulted in 50 morphologically different mutants which are maintained as mutant clones. In the M{sub 1}V{sub 1} generation, suspected mutant sprouts, were carefully removed and grown separately. The most interesting mutant types are the following: (i) erect mutant with spoon shaped light green leaves, 30 cm long inflorescences against 20 cm in the control, cylindrical tubers measuring ca. 7.0 cm long and 3 cm girth against 4 cm and 2.5 cm in the control (ii) early mutants 1 and 2, one having less leaf serration, the other having light green small leaves and dwarf type (iii) fleshy leaf mutant, dark green, thick and smooth leaves. Control plants spread almost in 1 m{sup 2} area and bear tubers from the nodes of branches. In the early mutants tuber formation is mainly restricted to the base of the plant, which makes harvest easier. The crop usually matures within 150 - 160 days, the early mutants are ready for harvest 100 days after planting. As the mutants are less spreading, the yield could be increased by closer spacing.

  15. Portable high energy gamma ray imagers

    International Nuclear Information System (INIS)

    Guru, S.V.; Squillante, M.R.

    1996-01-01

    To satisfy the needs of high energy gamma ray imagers for industrial nuclear imaging applications, three high energy gamma cameras are presented. The RMD-Pinhole camera uses a lead pinhole collimator and a segmented BGO detector viewed by a 3 in. square position sensitive photomultiplier tube (PSPMT). This pinhole gamma camera displayed an energy resolution of 25.0% FWHM at the center of the camera at 662 keV and an angular resolution of 6.2 FWHM at 412 keV. The fixed multiple hole collimated camera (FMCC), used a multiple hole collimator and a continuous slab of NaI(Tl) detector viewed by the same PSPMT. The FMCC displayed an energy resolution of 12.4% FWHM at 662 keV at the center of the camera and an angular resolution of 6.0 FWHM at 412 keV. The rotating multiple hole collimated camera (RMCC) used a 180 antisymmetric rotation modulation collimator and CsI(Tl) detectors coupled to PIN silicon photodiodes. The RMCC displayed an energy resolution of 7.1% FWHM at 662 keV and an angular resolution of 4.0 FWHM at 810 keV. The performance of these imagers is discussed in this paper. (orig.)

  16. Uses Of Gamma Rays In Peas Breeding

    International Nuclear Information System (INIS)

    Ghunim, A.; Mobakher, H.; Salman, S.

    2004-01-01

    Most of peas varieties grown in Syria are introduced and they have variable characteristics and unstable in the productivity. Therefore this study aims to utilize physical mutagens as the developed technology in plant breeding to obtain high, stable productivity and suitable for human consumption and processing. Two green peas vars (onward, local homsi) were used in this study, and their dry seeds were subjected to different doses of Gamma rays (5.0,7.5,10.0) KR and planted conventional used methods at AL Taibba searching station (20 Km from Damascus) in 1985/1986 season. Individual selection from M2 was practiced based on yield traits. Starting from 1991/1992 season the best selected mutants were used in yield trials to be compared with the best common cultivars. After/3/years of yield trials, the advanced lines were incorporated into field test trials. Some morphological and phonological scores, i.e. green pods yield, dry seeds yield per area were achieved in addition to lab tests. Some strains have advanced in yield of green pods and dry seeds per area compared with the local check. Some other strains. Showed an increase in earliness, length of pods, number of seeds per pod, and number of pods per plant than the local check. Therefore these can be called promising strains and as nucleus for new vars. will be used into verifiable fields, and in large-scale cultivation in order to be released. (Authors)

  17. The destructive degradation of some organic textile dye compounds using gamma ray irradiation

    International Nuclear Information System (INIS)

    Abdel-Gawad Emara, A.S.; Abdel-Fattah, A.A.; Ebraheem, S.E.; Ali, Z.I.; Gad, H.

    2001-01-01

    The destructive degradation of 8 coloured reactive and direct dye compounds currently used in the textile industry has been investigated. These dyes are: Levafix Blue ERA (LB), Levafix Brilliant Red E4BA (LBR), Levafix Brilliant Yellow EGA (LBY), Drimarene Scarlet F3G (DS), Drimarene Brilliant Green X3G (DBG), Fast Yellow RL (FY), Fast Violet 2RL (FV) and Fast Orange 3R (FO). The process of degradation of the respective dye has been followed spectrophotometrically at the characteristic lmax. The variation of the colour intensity of aerated aqueous solution of the investigated dyes has been measured as a function of gamma irradiation dose. In all cases, the amplitude of the absorption bands of the dye compound was found to decrease with the increase of the gamma dose. Irradiation was carried out for actual waste and distilled water. By comparing the heights of the absorption maxima in both the visible and ultraviolet ranges, it was found that complete decolouration is attained at lower doses than that needed for the process of degradation of the dye. The kinetics of the degradation process has been traced and the kinetic constant, k 1 , was calculated and found to be concentration dependent indicating a first order reaction in all cases. The radiation-chemical yield (G-value) as a measure of the efficiency of gamma ray to degrade the respective dye was calculated for all dye compounds and it was found that the G-value in all cases increases exponentially for low radiation doses and changes linearly for high radiation doses. Also the K* value (the efficiency coefficient of dye radiolysis) was calculated and compared for the different dye compounds e.g. for FO, FY and FV dyes, the K* values were found to range from 5.5x10 9 to 1.92x10 -7 mol·L -1 '·cm -1 . In addition to the study of a single dye compound in solution, mixtures of different dyes (3 dyes) were also subjected to g-ray irradiation simulating more closely actual waste effluents. Also the effect of some

  18. Gamma-ray bursts, QSOs and active galaxies.

    Science.gov (United States)

    Burbidge, Geoffrey

    2007-05-15

    The similarity of the absorption spectra of gamma-ray burst (GRB) sources or afterglows with the absorption spectra of quasars (QSOs) suggests that QSOs and GRB sources are very closely related. Since most people believe that the redshifts of QSOs are of cosmological origin, it is natural to assume that GRBs or their afterglows also have cosmological redshifts. For some years a few of us have argued that there is much optical evidence suggesting a very different model for QSOs, in which their redshifts have a non-cosmological origin, and are ejected from low-redshift active galaxies. In this paper I extend these ideas to GRBs. In 2003, Burbidge (Burbidge 2003 Astrophys. J. 183, 112-120) showed that the redshift periodicity in the spectra of QSOs appears in the redshift of GRBs. This in turn means that both the QSOs and the GRB sources are similar objects ejected from comparatively low-redshift active galaxies. It is now clear that many of the GRBs of low redshift do appear in, or very near, active galaxies.A new and powerful result supporting this hypothesis has been produced by Prochter et al. (Prochter et al. 2006 Astrophys. J. Lett. 648, L93-L96). They show that in a survey for strong MgII absorption systems along the sightlines to long-duration GRBs, nearly every sightline shows at least one absorber. If the absorbers are intervening clouds or galaxies, only a small fraction should show absorption of this kind. The number found by Prochter et al. is four times higher than that normally found for the MgII absorption spectra of QSOs. They believe that this result is inconsistent with the intervening hypothesis and would require a statistical fluctuation greater than 99.1% probability. This is what we expect if the absorption is intrinsic to the GRBs and the redshifts are not associated with their distances. In this case, the absorption must be associated with gas ejected from the QSO. This in turn implies that the GRBs actually originate in comparatively low

  19. A serendipitous observation of the gamma-ray burst GRB 921013b field with EUVE

    DEFF Research Database (Denmark)

    Castro-Tirado, A.J.; Gorosabel, J.; Bowyer, S.

    1999-01-01

    hours after the burst is 1.8 x10(-16) erg s(-1) cm(-2) after correction for absorption by the Galactic interstellar medium. Even if we exclude an intrinsic absorption, this is well below the detection limit of the EUVE measurement. Although it is widely accepted that gamma-ray bursts are at cosmological......We report a serendipitous extreme ultraviolet observation by EUVE of the field containing GRB 921013b, similar to 11 hours after its occurrence. This burst was detected on 1992 October 13 by the WATCH and PHEBUS on Granat, and by the GRB experiment on Ulysses. The lack of any transient (or...

  20. Water radiolysis in a crack tip under gamma ray irradiation

    International Nuclear Information System (INIS)

    Satoh, Tomonori; Uchida, Shunsuke; Satoh, Yoshiyuki

    2002-01-01

    Under a non-irradiation condition, oxidant, e.g., O 2 and H 2 O 2 , in a crack tip is supplied from the bulk water. But under irradiation conditions, even if the diffusion of radiolytic species is not sufficient, direct radiolysis in the crack tip causes high concentrations of radiolytic species. As a result of measurements and Monte Carlo calculation of gamma ray energy deposition, it has been confirmed that the energy deposition rate in the gap water is larger than that in the bulk water. The energy absorption rate increases as the gap width decreases and reaches 1.3 times that in the bulk water. In order to evaluate crack propagation rate for irradiation assisted stress corrosion cracking (IASCC) of stainless steel, a water radiolysis model in a crevice is proposed. A larger energy deposition rate in the crevice water produces many more radiolytic species, which causes high oxidant concentrations in spite of enhanced recombination of the species at the crevice inner surface. So, for IASCC evaluation, crevice water chemistry plays an important role to determine the crack propagation rate under irradiation. (authors)

  1. Parsec-Scale Radio Properties of Gamma-ray Bright Blazars

    Science.gov (United States)

    Linford, Justin

    2012-01-01

    The parsec-scale radio properties of blazars detected by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope have been investigated using observations with the Very Long Baseline Array (VLBA). Comparisons between LAT and non-LAT detected samples were made using both archival and contemporaneous data. In total, 244 sources were used in the LAT-detected sample. This very large, radio flux-limited sample of active galactic nuclei (AGN) provides insights into the mechanism that produces strong gamma-ray emission. It has been found that LAT-detected BL Lac objects are very similar to the non-LAT BL Lac objects in most properties, although LAT BL Lac objects may have longer jets. The LAT flat spectrum radio quasars (FSRQs) are significantly different from non-LAT FSRQs and are likely extreme members of the FSRQ population. Archival radio data indicated that there was no significant correlation between radio flux density and gamma-ray flux, especially at lower flux levels. However, contemporaneous observations showed a strong correlation. Most of the differences between the LAT and non-LAT populations are related to the cores of the sources, indicating that the gamma-ray emission may originate near the base of the jets (i.e., within a few pc of the central engine). There is some indication that LAT-detected sources may have larger jet opening angles than the non-LAT sources. Strong core polarization is significantly more common among the LAT sources, suggesting that gamma-ray emission is related to strong, uniform magnetic fields at the base of the jets of the blazars. Observations of sources in two epochs indicate that core fractional polarization was higher when the objects were detected by the LAT. Included in our sample are several non-blazar AGN such as 3C84, M82, and NGC 6251.

  2. An Artificial Intelligence Classification Tool and Its Application to Gamma-Ray Bursts

    Science.gov (United States)

    Hakkila, Jon; Haglin, David J.; Roiger, Richard J.; Giblin, Timothy; Paciesas, William S.; Pendleton, Geoffrey N.; Mallozzi, Robert S.

    2004-01-01

    Despite being the most energetic phenomenon in the known universe, the astrophysics of gamma-ray bursts (GRBs) has still proven difficult to understand. It has only been within the past five years that the GRB distance scale has been firmly established, on the basis of a few dozen bursts with x-ray, optical, and radio afterglows. The afterglows indicate source redshifts of z=1 to z=5, total energy outputs of roughly 10(exp 52) ergs, and energy confined to the far x-ray to near gamma-ray regime of the electromagnetic spectrum. The multi-wavelength afterglow observations have thus far provided more insight on the nature of the GRB mechanism than the GRB observations; far more papers have been written about the few observed gamma-ray burst afterglows in the past few years than about the thousands of detected gamma-ray bursts. One reason the GRB central engine is still so poorly understood is that GRBs have complex, overlapping characteristics that do not appear to be produced by one homogeneous process. At least two subclasses have been found on the basis of duration, spectral hardness, and fluence (time integrated flux); Class 1 bursts are softer, longer, and brighter than Class 2 bursts (with two second durations indicating a rough division). A third GRB subclass, overlapping the other two, has been identified using statistical clustering techniques; Class 3 bursts are intermediate between Class 1 and Class 2 bursts in brightness and duration, but are softer than Class 1 bursts. We are developing a tool to aid scientists in the study of GRB properties. In the process of developing this tool, we are building a large gamma-ray burst classification database. We are also scientifically analyzing some GRB data as we develop the tool. Tool development thus proceeds in tandem with the dataset for which it is being designed. The tool invokes a modified KDD (Knowledge Discovery in Databases) process, which is described as follows.

  3. Gamma-Ray Imaging Spectrometer (GRIS): a new balloon-borne experiment for gamma-ray line astronomy

    International Nuclear Information System (INIS)

    Teegarden, B.J.; Cline, T.L.; Gehrels, N.; Porreca, G.; Tueller, J.; Leventhal, M.; Huters, A.F.; Maccallum, C.J.; Stang, P.D.; Sandia Labs., Albuquerque, NM)

    1985-01-01

    High resolution gamma-ray spectroscopy is a relatively new field that holds great promise for further understanding of high energy astrophysical processes. When the high resolution gamma-ray spectrometer (GRSE) was removed from the GRO payload, a balloon program was initiated to permit continued development and improvement of instrumentation in this field, as well as continued scientific observations. The Gamma-Ray Imaging Spectrometer (GRIS) is one of the experiments selected as part of this program. The instrument contains a number of new and innovative features that are expected to produce a significant improvement in source location accuracy and sensitivity over previous balloon and satellite experiments

  4. NO CORRELATION BETWEEN HOST GALAXY METALLICITY AND GAMMA-RAY ENERGY RELEASE FOR LONG-DURATION GAMMA-RAY BURSTS

    International Nuclear Information System (INIS)

    Levesque, Emily M.; Kewley, Lisa J.; Soderberg, Alicia M.; Berger, Edo

    2010-01-01

    We compare the redshifts, host galaxy metallicities, and isotropic (E γ,iso ) and beaming-corrected (E γ ) gamma-ray energy release of 16 long-duration gamma-ray bursts (LGRBs) at z γ,iso , or E γ . These results are at odds with previous theoretical and observational predictions of an inverse correlation between gamma-ray energy release and host metallicity, as well as the standard predictions of metallicity-driven wind effects in stellar evolutionary models. We consider the implications that these results have for LGRB progenitor scenarios, and discuss our current understanding of the role that metallicity plays in the production of LGRBs.

  5. Gamma-Ray Instrument for Polarimetry, Spectroscopy and Imaging (GIPSI)

    National Research Council Canada - National Science Library

    Kroeger, R. A; Johnson, W. N; Kinzer, R. L; Kurfess, J. D; Inderhees, S. E; Phlips, B. F; Graham, B. L

    1996-01-01

    .... Gamma-ray polarimetry in the energy band around 60-300 keV is an interesting area of high energy astrophysics where observations have not been possible with the technologies employed in current and past space missions...

  6. Gamma-ray emission profile measurements during JET ICRH discharges

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, O N; Marcus, F B; Sadler, G; Van Belle, P [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Howarth, P J.A. [Birmingham Univ. (United Kingdom); Adams, J M; Bond, D S [UKAEA Harwell Lab. (United Kingdom). Energy Technology Div.

    1994-07-01

    Gamma-ray emission from plasma-impurity reactions caused by minority ICRH accelerating fuel ions to MeV energies has been measured using the JET neutron profile monitor. A successful data analysis technique has been used to isolate the RF-induced gamma-ray emission that was detected, enabling profiles of gamma-ray emission to be obtained. The 2-d gamma-ray emission profiles show that virtually all the radiation originates from the low field side of the RF resonance layer, as expected from RF-induced pitch angle diffusion. The emission profiles indicate the presence of a small population of resonant {sup 3}He ions that possess orbits lying near the passing-trapped boundary. 6 refs., 4 figs.

  7. Gamma-ray flares from the Crab Nebula.

    Science.gov (United States)

    Abdo, A A; Ackermann, M; Ajello, M; Allafort, A; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bouvier, A; Brandt, T J; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Cannon, A; Caraveo, P A; Casandjian, J M; Çelik, Ö; Charles, E; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Costamante, L; Cutini, S; D'Ammando, F; Dermer, C D; de Angelis, A; de Luca, A; de Palma, F; Digel, S W; do Couto e Silva, E; Drell, P S; Drlica-Wagner, A; Dubois, R; Dumora, D; Favuzzi, C; Fegan, S J; Ferrara, E C; Focke, W B; Fortin, P; Frailis, M; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guiriec, S; Hadasch, D; Hanabata, Y; Harding, A K; Hayashi, K; Hayashida, M; Hays, E; Horan, D; Itoh, R; Jóhannesson, G; Johnson, A S; Johnson, T J; Khangulyan, D; Kamae, T; Katagiri, H; Kataoka, J; Kerr, M; Knödlseder, J; Kuss, M; Lande, J; Latronico, L; Lee, S-H; Lemoine-Goumard, M; Longo, F; Loparco, F; Lubrano, P; Madejski, G M; Makeev, A; Marelli, M; Mazziotta, M N; McEnery, J E; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Naumann-Godo, M; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Okumura, A; Omodei, N; Ormes, J F; Ozaki, M; Paneque, D; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Pierbattista, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Ray, P S; Razzano, M; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Romani, R W; Sadrozinski, H F-W; Sanchez, D; Saz Parkinson, P M; Scargle, J D; Schalk, T L; Sgrò, C; Siskind, E J; Smith, P D; Spandre, G; Spinelli, P; Strickman, M S; Suson, D J; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J B; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Troja, E; Uchiyama, Y; Vandenbroucke, J; Vasileiou, V; Vianello, G; Vitale, V; Wang, P; Wood, K S; Yang, Z; Ziegler, M

    2011-02-11

    A young and energetic pulsar powers the well-known Crab Nebula. Here, we describe two separate gamma-ray (photon energy greater than 100 mega-electron volts) flares from this source detected by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. The first flare occurred in February 2009 and lasted approximately 16 days. The second flare was detected in September 2010 and lasted approximately 4 days. During these outbursts, the gamma-ray flux from the nebula increased by factors of four and six, respectively. The brevity of the flares implies that the gamma rays were emitted via synchrotron radiation from peta-electron-volt (10(15) electron volts) electrons in a region smaller than 1.4 × 10(-2) parsecs. These are the highest-energy particles that can be associated with a discrete astronomical source, and they pose challenges to particle acceleration theory.

  8. Some deficiencies and solutions in gamma ray spectrometry

    International Nuclear Information System (INIS)

    Westmeier, W.

    1998-01-01

    A number of problems in high-resolution gamma ray spectrometry as well as some deficiencies of existing computer programs for the quantitative evaluation of spectra are discussed and some practical solutions are proposed. (author)

  9. Multidimensional analysis of high resolution. gamma. -ray data

    Energy Technology Data Exchange (ETDEWEB)

    Flibotte, S.; Huettmeier, U.J.; France, G. de; Haas, B.; Romain, P.; Theisen, C.; Vivien, J.P.; Zen, J. (Centre de Recherches Nucleaires, 67 - Strasbourg (France)); Bednarczyk, P. (Inst. of Nuclear Physics, Krakow (Poland))

    1992-08-15

    Algorithms are developed to analyze high-fold {gamma}-ray coincidences. Performances of the programs have been tested in 3, 4 and 5 dimensions using events generated with a Monte Carlo simulation. (orig.).

  10. A new measurement-while-drilling gamma ray log calibrator

    International Nuclear Information System (INIS)

    Meisner, J.; Brooks, A.; Wisniewski, W.

    1985-01-01

    Many of the present methods of calibration for both wireline and MWD gamma ray detectors use a point source at a fixed distance from the detector. MWD calibration errors are introduced from scattering effects, from spectral differences, from position sensitivity and form lack of cylindrical geometry. A new method has been developed at Exploration Logging INc. (EXLOG) that eliminates these errors. The method uses a wrap-around or annular calibrator, referenced to the University of Houston gamma ray API pit. The new calibrator is designed to simulate the API pit's gamma ray emission spectrum with a finite amount of natural source material in the annular shape. Because of the thickness of steel between the MWD gamma ray detector and the formation, there is theoretical necessity for spectral matching. A simple theoretical approach was used to calibrate the new calibrator. Spectral matching allows a closer approximation to wireline logs and makes it possible to estimate the relative spectral content of a formation

  11. Saccharification of gamma-ray and alkali pretreated lignocellulosics

    International Nuclear Information System (INIS)

    Begum, A.; Choudhury, N.

    1988-01-01

    Enzymic saccharification of gamma ray and alkali pretreated sawdust, rice straw, and sugar cane bagasse showed higher release of reducing sugar from pretreated substrates. By gamma ray treatment alone (500 kGy) reducing sugar release of 2.8, 9.2, and 10 g/l was obtained from 7.5% (w/v) sawdust, rice straw, and bagasse and the same substrates showed reducing sugar release of 4.2, 30, and 20 g/l respectively when treated with alkali (0.1 g/g). Combination of gamma ray with alkali treatment further increased the reducing sugar release to 10.2, 33, and 36 g/l from sawdust, rice straw, and bagasse respectively. The effects of gamma ray and alkali treatment on saccharification varied with the nature of the substrate

  12. Very high energy gamma ray astronomy from Hanle

    International Nuclear Information System (INIS)

    Chitnis, Varsha R.

    2015-01-01

    Over a past decade very high energy (VHE) gamma ray astronomy has emerged as a major astronomical discipline. In India, we have a long tradition of experiments in this field. Few years ago, multi-institutional Himalayan Gamma Ray Observatory (HiGRO) collaboration was formed to set up VHE gamma rays experiments at Hanle, a high altitude location in Himalayas. HAGAR, the first phase of this collaboration is operational since 2008. HAGAR has successfully detected VHE gamma ray emission from some of the extragalactic objects like Mrk 421, Mrk 501 as well as galactic sources including Crab nebula/pulsar. Details of HAGAR telescope system and results obtained will be discussed. HiGRO is now gearing up for the next phase, i.e. 21 m diameter MACE telescope, which is being installed at Hanle at present. Details of MACE telescope system and future plans will be discussed. (author)

  13. Gamma-ray dosimetry measurements of the Little Boy replica

    International Nuclear Information System (INIS)

    Plassmann, E.A.; Pederson, R.A.

    1984-01-01

    We present the current status of our gamma-ray dosimetry results for the Little Boy replica. Both Geiger-Mueller and thermoluminescent detectors were used in the measurements. Future work is needed to test assumptions made in data analysis

  14. Gamma-ray spectroscopy with relativistic exotic heavy-ions

    Indian Academy of Sciences (India)

    Abstract. Feasibility of gamma-ray spectroscopy at relativistic energies with exotic heavy-ions and new generation of germanium detectors (segmented Clover) is discussed. An experiment with such detector array and radioactive is discussed.

  15. Generation of laser Compton gamma-rays using Compact ERL

    International Nuclear Information System (INIS)

    Shizuma, Toshiyuki; Hajima, Ryoichi; Nagai, Ryoji; Hayakawa, Takehito; Mori, Michiaki; Seya, Michio

    2015-01-01

    Nondestructive isotope-specific assay system using nuclear resonance fluorescence has been developed at JAEA. In this system, intense, mono-energetic laser Compton scattering (LCS) gamma-rays are generated by combining an energy recovery linac (ERL) and laser enhancement cavity. As technical development for such an intense gamma-ray source, we demonstrated generation of LCS gamma-rays using Compact ERL (supported by the Ministry of Education, Culture, Sports, Science and Technology) developed in collaboration with KEK. We also measured X-ray fluorescence for elements near iron region by using mono-energetic LCS gamma-rays. In this presentation, we will show results of the experiment and future plan. (author)

  16. Secondary gamma-ray data for shielding calculation

    International Nuclear Information System (INIS)

    Miyasaka, Sunichi

    1979-01-01

    In deep penetration transport calculations, the integral design parameters is determined mainly by secondary particles which are produced by interactions of the primary radiation with materials. The shield thickness and the biological dose rate at a given point of a bulk shield are determined from the contribution from secondary gamma rays. The heat generation and the radiation damage in the structural and shield materials depend strongly on the secondary gamma rays. In this paper, the status of the secondary gamma ray data and its further problems are described from the viewpoint of shield design. The secondary gamma-ray data in ENDF/B-IV and POPOP4 are also discussed based on the test calculations made for several shield assemblies. (author)

  17. Public List of LAT-Detected Gamma-Ray Pulsars

    Data.gov (United States)

    National Aeronautics and Space Administration — The following is a compilation of all publicly-announced gamma-ray pulsars detected using the Fermi LAT. Each of the detections has been vetted by the LAT team,...

  18. High energy astrophysics with ground-based gamma ray detectors

    International Nuclear Information System (INIS)

    Aharonian, F; Buckley, J; Kifune, T; Sinnis, G

    2008-01-01

    Recent advances in ground-based gamma ray astronomy have led to the discovery of more than 70 sources of very high energy (E γ ≥ 100 GeV) gamma rays, falling into a number of source populations including pulsar wind nebulae, shell type supernova remnants, Wolf-Rayet stars, giant molecular clouds, binary systems, the Galactic Center, active galactic nuclei and 'dark' (yet unidentified) galactic objects. We summarize the history of TeV gamma ray astronomy up to the current status of the field including a description of experimental techniques and highlight recent astrophysical results. We also discuss the potential of ground-based gamma ray astronomy for future discoveries and describe possible directions for future instrumental developments

  19. Gamma-ray flares from the Crab nebula

    International Nuclear Information System (INIS)

    Abdo, A.A.; Ackermann, M.; Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Casandjian, J.M.; Grenier, I.A.; Naumann-Godo, M.; Pierbattista, M.; Tibaldo, L.

    2011-01-01

    A young and energetic pulsar powers the well-known Crab Nebula. Here, we describe two separate gamma-ray (photon energy greater than 100 mega-electron volts) flares from this source detected by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. The first flare occurred in February 2009 and lasted approximately 16 days. The second flare was detected in September 2010 and lasted approximately 4 days. During these outbursts, the gamma-ray flux from the nebula increased by factors of four and six, respectively. The brevity of the flares implies that the gamma rays were emitted via synchrotron radiation from peta-electron-volt (10 15 electron volts) electrons in a region smaller than 1.4 * 10 -2 parsecs. These are the highest-energy particles that can be associated with a discrete astronomical source, and they pose challenges to particle acceleration theory. (authors)

  20. Exploring the extreme gamma-ray sky with HESS

    International Nuclear Information System (INIS)

    Sol, Helene

    2006-01-01

    The international HESS experiment. High Energy Stereoscopic System, fully operational since January 2004, is opening a new era for extreme gamma-ray astronomy. Located in Namibia, it is now the most sensitive detector for cosmic sources of very high energy (VHE) gamma-rays, in the tera-electron-volt (TeV) range. In July 2005, it had already more than double the number of sources detected at such energies, with the discovery of several active galactic nuclei (AGN), supernova remnants and plerions, a binary pulsar system, a microquasar candidate, and a sample of yet unidentified sources. HESS has also provide for the first time gamma-ray images of extended sources with the first astrophysical jet resolved in gamma-rays, and the first mapping of a shell supernova remnant, which proves the efficiency of in situ acceleration of particles up to 100 TeV and beyond

  1. Gamma-ray astronomy and cosmic-ray origin theory

    International Nuclear Information System (INIS)

    Ginzburg, V.L.

    1973-01-01

    A theory of the origin of cosmic radiation is discussed in light of the advances made in gamma-ray astronomy. Arguments against metagalactic models for the origin of cosmic rays are emphasized. (U.S.)

  2. Upgrade of the JET gamma-ray cameras

    International Nuclear Information System (INIS)

    Soare, S.; Curuia, M.; Anghel, M.; Constantin, M.; David, E.; Craciunescu, T.; Falie, D.; Pantea, A.; Tiseanu, I.; Kiptily, V.; Prior, P.; Edlington, T.; Griph, S.; Krivchenkov, Y.; Loughlin, M.; Popovichev, S.; Riccardo, V; Syme, B.; Thompson, V.; Lengar, I.; Murari, A.; Bonheure, G.; Le Guern, F.

    2007-01-01

    Full text: The JET gamma-ray camera diagnostics have already provided valuable information on the gamma-ray imaging of fast ion in JET plasmas. The applicability of gamma-ray imaging to high performance deuterium and deuterium-tritium JET discharges is strongly dependent on the fulfilment of rather strict requirements for the characterisation of the neutron and gamma-ray radiation fields. These requirements have to be satisfied within very stringent boundary conditions for the design, such as the requirement of minimum impact on the co-existing neutron camera diagnostics. The JET Gamma-Ray Cameras (GRC) upgrade project deals with these issues with particular emphasis on the design of appropriate neutron/gamma-ray filters ('neutron attenuators'). Several design versions have been developed and evaluated for the JET GRC neutron attenuators at the conceptual design level. The main design parameter was the neutron attenuation factor. The two design solutions, that have been finally chosen and developed at the level of scheme design, consist of: a) one quasi-crescent shaped neutron attenuator (for the horizontal camera) and b) two quasi-trapezoid shaped neutron attenuators (for the vertical one). The second design solution has different attenuation lengths: a short version, to be used together with the horizontal attenuator for deuterium discharges, and a long version to be used for high performance deuterium and DT discharges. Various neutron-attenuating materials have been considered (lithium hydride with natural isotopic composition and 6 Li enriched, light and heavy water, polyethylene). Pure light water was finally chosen as the attenuating material for the JET gamma-ray cameras. The neutron attenuators will be steered in and out of the detector line-of-sight by means of an electro-pneumatic steering and control system. The MCNP code was used for neutron and gamma ray transport in order to evaluate the effect of the neutron attenuators on the neutron field of the

  3. The Advanced Gamma-ray Imaging System (AGIS): Simulation Studies

    Science.gov (United States)

    Fegan, Stephen; Buckley, J. H.; Bugaev, S.; Funk, S.; Konopelko, A.; Maier, G.; Vassiliev, V. V.; Simulation Studies Working Group; AGIS Collaboration

    2008-03-01

    The Advanced Gamma-ray Imaging System (AGIS) is a concept for the next generation instrument in ground-based very high energy gamma-ray astronomy. It has the goal of achieving significant improvement in sensitivity over current experiments. We present the results of simulation studies of various possible designs for AGIS. The primary characteristics of the array performance, collecting area, angular resolution, background rejection, and sensitivity are discussed.

  4. The Advanced Gamma-ray Imaging System (AGIS): Simulation Studies

    OpenAIRE

    Maier, G.; Collaboration, for the AGIS

    2009-01-01

    The Advanced Gamma-ray Imaging System (AGIS) is a next-generation ground-based gamma-ray observatory being planned in the U.S. The anticipated sensitivity of AGIS is about one order of magnitude better than the sensitivity of current observatories, allowing it to measure gammaray emmission from a large number of Galactic and extra-galactic sources. We present here results of simulation studies of various possible designs for AGIS. The primary characteristics of the array performance - collect...

  5. Significant gamma-ray lines from dark matter annihilation

    Energy Technology Data Exchange (ETDEWEB)

    Duerr, Michael [DESY, Notkestrasse 85, 22607 Hamburg (Germany); Fileviez Perez, Pavel; Smirnov, Juri [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany)

    2016-07-01

    Gamma-ray lines from dark matter annihilation are commonly seen as a ''smoking gun'' for the particle nature of dark matter. However, in many dark matter models the continuum background from tree-level annihilations makes such a line invisible. I present two simple extensions of the Standard Model where the continuum contributions are suppressed and the gamma-ray lines are easily visible over the continuum background.

  6. Gamma-ray bursts: astrophysical puzzle of the century

    International Nuclear Information System (INIS)

    Hudec, R.

    1998-01-01

    An overview is given of the problems of gamma-ray bursts /GRB/. As GRB became one of the greatest mysteries in modern astrophysics, this field of astrophysics is a subject of intensive research. The article covers some topical aspects of experiments related to the indentification of gamma-ray bursts. The preparation and results of experiments in the Astronomical Institute of the Academy of Sciences of the Czech Republic are described. (Z.J.)

  7. Extragalactic Gamma Ray Excess from Coma Supercluster Direction

    Indian Academy of Sciences (India)

    More precise analysis of EGRET data however, makes it possible to estimate the diffuse gamma ray in Coma supercluster (i.e., Coma\\A1367 supercluster) direction with a value of ( > 30MeV) ≃ 1.9 × 10-6 cm-2 s-1, which is considered to be an upper limit for the diffuse gamma ray due to Coma supercluster. The related ...

  8. Population Studies of Radio and Gamma-Ray Pulsars

    Science.gov (United States)

    Harding, Alice K; Gonthier, Peter; Coltisor, Stefan

    2004-01-01

    Rotation-powered pulsars are one of the most promising candidates for at least some of the 40-50 EGRET unidentified gamma-ray sources that lie near the Galactic plane. Since the end of the EGRO mission, the more sensitive Parkes Multibeam radio survey has detected mere than two dozen new radio pulsars in or near unidentified EGRET sources, many of which are young and energetic. These results raise an important question about the nature of radio quiescence in gamma-ray pulsars: is the non-detection of radio emission a matter of beaming or of sensitivity? The answer is very dependent on the geometry of the radio and gamma-ray beams. We present results of a population synthesis of pulsars in the Galaxy, including for the first time the full geometry of the radio and gamma-ray beams. We use a recent empirically derived model of the radio emission and luminosity, and a gamma-ray emission geometry and luminosity derived theoretically from pair cascades in the polar slot gap. The simulation includes characteristics of eight radio surveys of the Princeton catalog plus the Parkes MB survey. Our results indicate that EGRET was capable of detecting several dozen pulsars as point sources, with the ratio of radio-loud to radio-quiet gamma-ray pulsars increasing significantly to about ten to one when the Parkes Survey is included. Polar cap models thus predict that many of the unidentified EGRET sources could be radio-loud gamma- ray pulsars, previously undetected as radio pulsars due to distance, large dispersion and lack of sensitivity. If true, this would make gamma-ray telescopes a potentially more sensitive tool for detecting distant young neutron stars in the Galactic plane.

  9. GLAST, the Gamma-ray Large Area Space Telescope

    CERN Document Server

    De Angelis, A

    2001-01-01

    GLAST, a detector for cosmic gamma rays in the range from 20 MeV to 300 GeV, will be launched in space in 2005. Breakthroughs are expected in particular in the study of particle acceleration mechanisms in space and of gamma ray bursts, and maybe on the search for cold dark matter; but of course the most exciting discoveries could come from the unexpected.

  10. Measuring The Variability Of Gamma-Ray Sources With AGILE

    International Nuclear Information System (INIS)

    Chen, Andrew W.; Vercellone, Stefano; Pellizzoni, Alberto; Tavani, Marco

    2005-01-01

    Variability in the gamma-ray flux above 100 MeV at various time scales is one of the primary characteristics of the sources detected by EGRET, both allowing the identification of individual sources and constraining the unidentified source classes. We present a detailed simulation of the capacity of AGILE to characterize the variability of gamma-ray sources, discussing the implications for source population studies

  11. Physics and astrophysics with gamma-ray telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Vandenbroucke, J. [Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States)

    2012-08-15

    In the past few years gamma-ray astronomy has entered a golden age. A modern suite of telescopes is now scanning the sky over both hemispheres and over six orders of magnitude in energy. At {approx}TeV energies, only a handful of sources were known a decade ago, but the current generation of ground-based imaging atmospheric Cherenkov telescopes (H.E.S.S., MAGIC, and VERITAS) has increased this number to nearly one hundred. With a large field of view and duty cycle, the Tibet and Milagro air shower detectors have demonstrated the promise of the direct particle detection technique for TeV gamma rays. At {approx}GeV energies, the Fermi Gamma-ray Space Telescope has increased the number of known sources by nearly an order of magnitude in its first year of operation. New classes of sources that were previously theorized to be gamma-ray emitters have now been confirmed observationally. Moreover, there have been surprise discoveries of GeV gamma-ray emission from source classes for which no theory predicted it was possible. In addition to elucidating the processes of high-energy astrophysics, gamma-ray telescopes are making essential contributions to fundamental physics topics including quantum gravity, gravitational waves, and dark matter. I summarize the current census of astrophysical gamma-ray sources, highlight some recent discoveries relevant to fundamental physics, and describe the synergetic connections between gamma-ray and neutrino astronomy. This is a brief overview intended in particular for particle physicists and neutrino astronomers, based on a presentation at the Neutrino 2010 conference in Athens, Greece. I focus in particular on results from Fermi (which was launched soon after Neutrino 2008), and conclude with a description of the next generation of instruments, namely HAWC and the Cherenkov Telescope Array.

  12. The MAGIC gamma-ray telescope: status and first results

    International Nuclear Information System (INIS)

    Fernandez, Enrique

    2006-01-01

    MAGIC, a 17 m diameter Cherenkov telescope for gamma ray astronomy, has recently been commissioned at the Roque de los Muchachos site in the Island of La Palma, of the Canary Islands. The telescope was proposed in 1998 with the goal of lowering the threshold of observation of gamma rays by ground detectors to 20-30 GeV energies. This paper describes its main design features, its physics objectives and its first operations

  13. Catalogue of gamma rays from radionuclides ordered by nuclide

    International Nuclear Information System (INIS)

    Ekstroem, L.P.; Andersson, P.; Sheppard, H.M.

    1984-01-01

    A catalogue of about 28500 gamma-ray energies from 2338 radionuclides is presented. The nuclides are listed in order of increasing (A,Z) of the daughter nuclide. In addition the gamma-ray intensity per 100 decays of the parent (if known) and the decay half-life are given. All data are from a computer processing of a recent ENSDF (Evaluated Nuclear Structure Data File) file. (authors)

  14. Computers in activation analysis and gamma-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, B. S.; D' Agostino, M. D.; Yule, H. P. [eds.

    1979-01-01

    Seventy-three papers are included under the following session headings: analytical and mathematical methods for data analysis; software systems for ..gamma..-ray and x-ray spectrometry; ..gamma..-ray spectra treatment, peak evaluation; least squares; IAEA intercomparison of methods for processing spectra; computer and calculator utilization in spectrometer systems; and applications in safeguards, fuel scanning, and environmental monitoring. Separate abstracts were prepared for 72 of those papers. (DLC)

  15. Terrestrial gamma ray flash production by lightning current pulses

    OpenAIRE

    İnan, Umran Savaş; Carlson, B. E.; Lehtinen, N. G.

    2017-01-01

    Terrestrial gamma ray flashes (TGFs) are brief bursts of gamma rays observed by satellites, typically in coincidence with detectable lightning. We incorporate TGF observations and the key physics behind current TGF production theories with lightning physics to produce constraints on TGF production mechanisms. The combined constraints naturally suggest a mechanism for TGF production by current pulses in lightning leader channels. The mechanism involves local field enhancements due to charge re...

  16. Gamma-Ray Imager With High Spatial And Spectral Resolution

    Science.gov (United States)

    Callas, John L.; Varnell, Larry S.; Wheaton, William A.; Mahoney, William A.

    1996-01-01

    Gamma-ray instrument developed to enable both two-dimensional imaging at relatively high spatial resolution and spectroscopy at fractional-photon-energy resolution of about 10 to the negative 3rd power in photon-energy range from 10 keV to greater than 10 MeV. In its spectroscopic aspect, instrument enables identification of both narrow and weak gamma-ray spectral peaks.

  17. A directional gamma-ray detector based on scintillator plates

    Energy Technology Data Exchange (ETDEWEB)

    Hanna, D., E-mail: hanna@physics.mcgill.ca; Sagnières, L.; Boyle, P.J.; MacLeod, A.M.L.

    2015-10-11

    A simple device for determining the azimuthal location of a source of gamma radiation, using ideas from astrophysical gamma-ray burst detection, is described. A compact and robust detector built from eight identical modules, each comprising a plate of CsI(Tl) scintillator coupled to a photomultiplier tube, can locate a point source of gamma rays with degree-scale precision by comparing the count rates in the different modules. Sensitivity to uniform environmental background is minimal.

  18. Heterogeneity in Short Gamma-Ray Bursts

    Science.gov (United States)

    Norris, Jay P.; Gehrels Neil; Scargle, Jeffrey D.

    2011-01-01

    We analyze the Swift/BAT sample of short gamma-ray bursts, using an objective Bayesian Block procedure to extract temporal descriptors of the bursts' initial pulse complexes (IPCs). The sample comprises 12 and 41 bursts with and without extended emission (EE) components, respectively. IPCs of non-EE bursts are dominated by single pulse structures, while EE bursts tend to have two or more pulse structures. The medians of characteristic timescales - durations, pulse structure widths, and peak intervals - for EE bursts are factors of approx 2-3 longer than for non-EE bursts. A trend previously reported by Hakkila and colleagues unifying long and short bursts - the anti-correlation of pulse intensity and width - continues in the two short burst groups, with non-EE bursts extending to more intense, narrower pulses. In addition we find that preceding and succeeding pulse intensities are anti-correlated with pulse interval. We also examine the short burst X-ray afterglows as observed by the Swift/XRT. The median flux of the initial XRT detections for EE bursts (approx 6 X 10(exp -10) erg / sq cm/ s) is approx > 20 x brighter than for non-EE bursts, and the median X-ray afterglow duration for EE bursts (approx 60,000 s) is approx 30 x longer than for non-EE bursts. The tendency for EE bursts toward longer prompt-emission timescales and higher initial X-ray afterglow fluxes implies larger energy injections powering the afterglows. The longer-lasting X-ray afterglows of EE bursts may suggest that a significant fraction explode into more dense environments than non-EE bursts, or that the sometimes-dominant EE component efficiently p()wers the afterglow. Combined, these results favor different progenitors for EE and non-EE short bursts.

  19. HETEROGENEITY IN SHORT GAMMA-RAY BURSTS

    International Nuclear Information System (INIS)

    Norris, Jay P.; Gehrels, Neil; Scargle, Jeffrey D.

    2011-01-01

    We analyze the Swift/BAT sample of short gamma-ray bursts, using an objective Bayesian Block procedure to extract temporal descriptors of the bursts' initial pulse complexes (IPCs). The sample is comprised of 12 and 41 bursts with and without extended emission (EE) components, respectively. IPCs of non-EE bursts are dominated by single pulse structures, while EE bursts tend to have two or more pulse structures. The medians of characteristic timescales-durations, pulse structure widths, and peak intervals-for EE bursts are factors of ∼2-3 longer than for non-EE bursts. A trend previously reported by Hakkila and colleagues unifying long and short bursts-the anti-correlation of pulse intensity and width-continues in the two short burst groups, with non-EE bursts extending to more intense, narrower pulses. In addition, we find that preceding and succeeding pulse intensities are anti-correlated with pulse interval. We also examine the short burst X-ray afterglows as observed by the Swift/X-Ray Telescope (XRT). The median flux of the initial XRT detections for EE bursts (∼6x10 -10 erg cm -2 s -1 ) is ∼>20x brighter than for non-EE bursts, and the median X-ray afterglow duration for EE bursts (∼60,000 s) is ∼30x longer than for non-EE bursts. The tendency for EE bursts toward longer prompt-emission timescales and higher initial X-ray afterglow fluxes implies larger energy injections powering the afterglows. The longer-lasting X-ray afterglows of EE bursts may suggest that a significant fraction explode into denser environments than non-EE bursts, or that the sometimes-dominant EE component efficiently powers the afterglow. Combined, these results favor different progenitors for EE and non-EE short bursts.

  20. Gamma ray transitions in de-excitation of 252Cf spontaneous fission fragments

    International Nuclear Information System (INIS)

    Khan, N.A.; Rashid, K.; Ahmad, M.; Qureshi, I.E.; Alam, G.D.; Ali, A.; Bhatti, N.; Horsch, F.

    1983-11-01

    Gamma rays in the range from 60 keV to 730 keV have been observed following the spontaneous fission of 252 Cf, with high resolution Ge(Li) detector, full width at half maximum (FWHM) of 700 eV at 122 keV, in coincidence with the two fission fragments observed with surface barrier detectors. A total number of 18, 636, 549 events were recorded over a run period of about 150 hours stretching over three weeks. The events were sorted to generate gamma ray spectra belonging to 2 amu intervals gamma of the fragment masses and 6 MeV intervals of the total kinetic energy released. Some of the prominent gamma lines belonging to various masses of the fission fragments have been identified. For some gamma lines, the intensities have been evaluated as a function of the total kinetic energy of the fission fragments. (authors)

  1. A study of gamma-ray bursts and a new detector for gamma-ray astronomy

    International Nuclear Information System (INIS)

    Carter, J.N.

    1979-09-01

    Three gamma-ray experiments flown on balloons between August 1975 and August 1976 are described in detail. The successful Transatlantic balloon flight enabled a rate of 3 bursts year -1 with energies > 7 x 10 -7 ergs cm -2 to be established. This result is discussed in the light of other work. The choice of γ-ray detector for optimum sensitivity is presented. In addition various techniques for determining the arrival direction of gamma-ray bursts are compared. A new balloon borne γ-ray burst telescope is proposed. The design, testing and results of the beam calibration of a new drift chamber detector system for high energy (> 50 MeV) γ-rays are presented. A projected angular resolution of 0.8 0 was obtained at 300 MeV. Techniques for the measurement of γ-ray energies are discussed in relation to this instrument. Finally the use of drift chambers in an integrated free flying satellite is illustrated, and the expected performance is presented. (author)

  2. The Fermi Gamma-ray Burst Monitor (GBM) Terrestrial Gamma-ray Flash (TGF) Catalog

    Science.gov (United States)

    Briggs, M. S.; Roberts, O.; Fitzpatrick, G.; Stanbro, M.; Cramer, E.; Mailyan, B. G.; McBreen, S.; Connaughton, V.; Grove, J. E.; Chekhtman, A.; Holzworth, R.

    2017-12-01

    The revised Second Fermi GBM TGF catalog includes data on 4144 TGFs detected by the Fermi Gamma-ray Burst Monitor through 2016 July 31. The catalog includes 686 bright TGFs there were detected in orbit and 4135 TGFs that were discovered by ground analysis of GBM data (the two samples overlap). Thirty of the events may have been detected as electrons and positrons rather than gamma-rays: Terrestrial Electron Beams (TEBs). We also provide results from correlating the GBM TGFs with VLF radio detections of the World Wide Lightning Location Network (WWLLN). TGFs with WWLLN associations have their localization uncertainties improved from 800 to 10 km, making it possible to identify specific thunderstorms responsible for the TGFs and opening up new types of scientific investigations. There are 1544 TGFs with WWLLN associations; maps are provided for these and the other TGFs of the catalog. The data tables of the catalog are available for use by the scientific community at the Fermi Science Support Center, at https://fermi.gsfc.nasa.gov/ssc/data/access/gbm/tgf/.

  3. LOCALIZATION OF GAMMA-RAY BURSTS USING THE FERMI GAMMA-RAY BURST MONITOR

    Energy Technology Data Exchange (ETDEWEB)

    Connaughton, V.; Briggs, M. S.; Burgess, J. M. [CSPAR and Physics Department, University of Alabama in Huntsville, 320 Sparkman Drive, Huntsville, AL 35899 (United States); Goldstein, A.; Wilson-Hodge, C. A. [Astrophysics Office, ZP12, NASA/Marshall Space Flight Center, Huntsville, AL 35812 (United States); Meegan, C. A.; Jenke, P.; Pelassa, V.; Xiong, S.; Bhat, P. N. [CSPAR, University of Alabama in Huntsville, 320 Sparkman Drive, Huntsville, AL 35899 (United States); Paciesas, W. S. [Universities Space Research Association, Huntsville, AL (United States); Preece, R. D. [Department of Space Science, University of Alabama in Huntsville, 320 Sparkman Drive, Huntsville, AL 35899 (United States); Gibby, M. H. [Jacobs Technology, Inc., Huntsville, AL (United States); Greiner, J.; Yu, H.-F. [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching (Germany); Gruber, D. [Planetarium Südtirol, Gummer 5, I-39053 Karneid (Italy); Kippen, R. M. [Los Alamos National Laboratory, NM 87545 (United States); Byrne, D.; Fitzpatrick, G.; Foley, S., E-mail: valerie@nasa.gov [School of Physics, University College Dublin, Belfield, Stillorgan Road, Dublin 4 (Ireland); and others

    2015-02-01

    The Fermi Gamma-ray Burst Monitor (GBM) has detected over 1400 gamma-ray bursts (GRBs) since it began science operations in 2008 July. We use a subset of over 300 GRBs localized by instruments such as Swift, the Fermi Large Area Telescope, INTEGRAL, and MAXI, or through triangulations from the InterPlanetary Network, to analyze the accuracy of GBM GRB localizations. We find that the reported statistical uncertainties on GBM localizations, which can be as small as 1°, underestimate the distance of the GBM positions to the true GRB locations and we attribute this to systematic uncertainties. The distribution of systematic uncertainties is well represented (68% confidence level) by a 3.°7 Gaussian with a non-Gaussian tail that contains about 10% of GBM-detected GRBs and extends to approximately 14°. A more complex model suggests that there is a dependence of the systematic uncertainty on the position of the GRB in spacecraft coordinates, with GRBs in the quadrants on the Y axis better localized than those on the X axis.

  4. CENTRAL ENGINE MEMORY OF GAMMA-RAY BURSTS AND SOFT GAMMA-RAY REPEATERS

    International Nuclear Information System (INIS)

    Zhang, Bin-Bin; Castro-Tirado, Alberto J.; Zhang, Bing

    2016-01-01

    Gamma-ray bursts (GRBs) are bursts of γ-rays generated from relativistic jets launched from catastrophic events such as massive star core collapse or binary compact star coalescence. Previous studies suggested that GRB emission is erratic, with no noticeable memory in the central engine. Here we report a discovery that similar light curve patterns exist within individual bursts for at least some GRBs. Applying the Dynamic Time Warping method, we show that similarity of light curve patterns between pulses of a single burst or between the light curves of a GRB and its X-ray flare can be identified. This suggests that the central engine of at least some GRBs carries “memory” of its activities. We also show that the same technique can identify memory-like emission episodes in the flaring emission in soft gamma-ray repeaters (SGRs), which are believed to be Galactic, highly magnetized neutron stars named magnetars. Such a phenomenon challenges the standard black hole central engine models for GRBs, and suggest a common physical mechanism behind GRBs and SGRs, which points toward a magnetar central engine of GRBs

  5. Spatial distribution of reflected gamma rays by Monte Carlo simulation

    International Nuclear Information System (INIS)

    Jehouani, A.; Merzouki, A.; Boutadghart, F.; Ghassoun, J.

    2007-01-01

    In nuclear facilities, the reflection of gamma rays of the walls and metals constitutes an unknown origin of radiation. These reflected gamma rays must be estimated and determined. This study concerns reflected gamma rays on metal slabs. We evaluated the spatial distribution of the reflected gamma rays spectra by using the Monte Carlo method. An appropriate estimator for the double differential albedo is used to determine the energy spectra and the angular distribution of reflected gamma rays by slabs of iron and aluminium. We took into the account the principal interactions of gamma rays with matter: photoelectric, coherent scattering (Rayleigh), incoherent scattering (Compton) and pair creation. The Klein-Nishina differential cross section was used to select direction and energy of scattered photons after each Compton scattering. The obtained spectra show peaks at 0.511 * MeV for higher source energy. The Results are in good agreement with those obtained by the TRIPOLI code [J.C. Nimal et al., TRIPOLI02: Programme de Monte Carlo Polycinsetique a Trois dimensions, CEA Rapport, Commissariat a l'Energie Atomique.

  6. Self-powered neutron and gamma-ray flux detector

    International Nuclear Information System (INIS)

    Allan, C.J.; Shields, R.B.; Lynch, G.F.; Cuttler, J.M.

    1980-01-01

    A new type of self-powered neutron detector was developed which is sensitive to both the neutron and gamma-ray fluxes. The emitter comprises two parts. The central emitter core is made of materials that generate high-energy electrons on exposure to neutrons. The outer layer acts as a gamma-ray/electron converter, and since it has a higher atomic number and higher back-scattering coefficient than the collector, increases the net outflow or emmission of electrons. The collector, which is around the emitter outer layer, is insulated from the outer layer electrically with dielectric insulation formed from compressed metal-oxide powder. The fraction of electrons given off by the emitter that is reflected back by the collector is less than the fraction of electrons emitted by the collector that is reflected back by the emitter. The thickness of the outer layer needed to achieve this result is very small. A detector of this design responds to external reactor gamma-rays as well as to neutron capture gamma-rays from the collector. The emitter core is either nickel, iron or titanium, or alloys based on these metals. The outer layer is made of platinum, tantalum, osmium, molybdenum or cerium. The detector is particularly useful for monitoring neutron and gamma ray flux intensities in nuclear reactor cores in which the neutron and gamma ray flux intensities are closely proportional, are unltimately related to the fission rate, and are used as measurements of nuclear reactor power. (DN)

  7. Gamma-ray emission profile measurements during JET ICRH discharges

    Energy Technology Data Exchange (ETDEWEB)

    Howarth, P.J.A. [Birmingham Univ. (United Kingdom); Adams, J.M.; Bond, D.S.; Watkins, N. [AEA Technology, Harwell (United Kingdom); Jarvis, O.N.; Marcus, F.B.; Sadler, G.; Belle, P. van [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking

    1994-12-31

    Ion Cyclotron Resonant Heating (ICRH) that is tuned to minority fuel ions can induce an energy diffusion of the heated species and create high energy tail temperatures of {approx} 1 MeV. The most energetic of these accelerated minority ions can undergo nuclear reactions with impurity Be and C that produces {gamma}-ray emission from the decay of the excited product nuclei. This RF-induced {gamma}-ray emission has been recorded using the JET neutron emission profile diagnostic which is capable of distinguishing neutrons and {gamma}-rays. Appropriate data processing has enabled the RF-induced {gamma}-ray emission signals to be isolated from the {gamma}-ray emission signals associated with neutron interactions in the material surrounding the profile monitor. The 2-d {gamma}-ray emission profiles show that virtually all the radiation originates from the low field side of the RF resonance layer, as expected from RF-induced pitch angle diffusion. The emission profiles indicate the presence of a small population of resonant {sup 3}He ions that possess orbits lying near the passing-trapped boundary. (author) 6 refs., 4 figs.

  8. Scintillating glasses for total absorption dual readout calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Bonvicini, V. [INFN, Trieste; Driutti, A. [Udine U.; Cauz, D. [Udine U.; Pauletta, G. [Udine U.; Rubinov, P. [Fermilab; Santi, L. [Udine U.; Wenzel, H. [Fermilab

    2012-01-01

    Scintillating glasses are a potentially cheaper alternative to crystal - based calorimetry with common problems related to light collection, detection and processing. As such, their use and development are part of more extensive R&D aimed at investigating the potential of total absorption, combined with the readout (DR) technique, for hadron calorimetry. A recent series of measurements, using cosmic and particle beams from the Fermilab test beam facility and scintillating glass with the characteristics required for application of the DR technique, serve to illustrate the problems addressed and the progress achieved by this R&D. Alternative solutions for light collection (conventional and silicon photomultipliers) and signal processing are compared, the separate contributions of scintillation and Cherenkov processes to the signal are evaluated and results are compared to simulation.

  9. Electron-positron pair production by gamma-rays in an anisotropic flux of soft photons, and application to pulsar polar caps

    Science.gov (United States)

    Voisin, Guillaume; Mottez, Fabrice; Bonazzola, Silvano

    2018-02-01

    Electron-positron pair production by collision of photons is investigated in view of application to pulsar physics. We compute the absorption rate of individual gamma-ray photons by an arbitrary anisotropic distribution of softer photons, and the energy and angular spectrum of the outgoing leptons. We work analytically within the approximation that 1 ≫ mc2/E > ɛ/E, with E and ɛ the gamma-ray and soft-photon maximum energy and mc2 the electron mass energy. We give results at leading order in these small parameters. For practical purposes, we provide expressions in the form of Laurent series which give correct reaction rates in the isotropic case within an average error of ˜ 7 per cent. We apply this formalism to gamma-rays flying downward or upward from a hot neutron star thermally radiating at a uniform temperature of 106 K. Other temperatures can be easily deduced using the relevant scaling laws. We find differences in absorption between these two extreme directions of almost two orders of magnitude, much larger than our error estimate. The magnetosphere appears completely opaque to downward gamma-rays while there are up to ˜ 10 per cent chances of absorbing an upward gamma-ray. We provide energy and angular spectra for both upward and downward gamma-rays. Energy spectra show a typical double peak, with larger separation at larger gamma-ray energies. Angular spectra are very narrow, with an opening angle ranging from 10-3 to 10-7 radians with increasing gamma-ray energies.

  10. Yield and Chemical Composition of Cucumber Treated by Nitrogen Levels and Doses of Gamma Rays

    International Nuclear Information System (INIS)

    Fath El-Bab, T.Sh.; Abo El-Khier, Om.M.; Abdallah, A.A.G.

    2013-01-01

    Two field experiments were performed at the Atomic Energy Authority, Experimental farm, Inshas, Egypt during 2010 and 2011 summer growing seasons in sandy soil. The experiments were conducted to study the effect of pre-sowing seeds which treated by gamma irradiation with different doses of 0, 2, 4 and 6 Gy. This was in combination with three rates of nitrogen, fertilizer i.e., 30, 60 and 90 Kg N/fed. The experiments were laid out using drip irrigation system. The obtained results indicated that gamma rays doses showed significant differences on cucumber yield per plot or per Fed., increasing doses of gamma rays gradually increased cucumber yield per plot up to highest dose, i.e., (6 Gy). The highest value of total yield was obtained with the highest nitrogen rate (90 Kg N/fed.). Doses of gamma rays significantly increased total soluble solids (T.S.S.), total Carbohydrates, fats, total protein, NPK and Ca of cucumber fruits. Application of 60 Kg N/fed. recorded the highest values of all above mentioned chemical characters except of total protein with 90 kg N/fed. every all dose treatments. The effect of interaction between doses and fertilizer levels on chemical characters were significant therefore, the highest values was found at 4 Gy and 60 Kg N/fed. treatment for protein, fat, nitrogen and potassium contents while the carbohydrate and calcium contents had the highest value with the treatment of 6 Gy and 60 Kg N/fed

  11. Search for Gamma-Ray Bursts with the ARGO-YBJ Detector in Shower Mode

    Energy Technology Data Exchange (ETDEWEB)

    Bartoli, B.; Catalanotti, S.; Piazzoli, B. D’Ettorre; Girolamo, T. Di [Dipartimento di Fisica dell’Universitá di Napoli “Federico II,” Complesso Universitario di Monte Sant’Angelo, via Cinthia, I-80126 Napoli (Italy); Bernardini, P.; D’Amone, A.; Mitri, I. De [Dipartimento Matematica e Fisica “Ennio De Giorgi,” Universitá del Salento, via per Arnesano, I-73100 Lecce (Italy); Bi, X. J.; Cao, Z.; Chen, S. Z.; Feng, Zhaoyang; Gao, W.; Gou, Q. B. [Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, P.O. Box 918, 100049 Beijing (China); Chen, T. L.; Danzengluobu [Tibet University, 850000 Lhasa, Xizang (China); Cui, S. W. [Hebei Normal University, 050024 Shijiazhuang Hebei (China); Dai, B. Z. [Yunnan University, 2 North Cuihu Road, 650091 Kunming, Yunnan (China); Sciascio, G. Di [Istituto Nazionale di Fisica Nucleare, Sezione di Roma Tor Vergata, via della Ricerca Scientifica 1, I-00133 Roma (Italy); Feng, C. F. [Shandong University, 250100 Jinan, Shandong (China); Feng, Zhenyong, E-mail: chensz@ihep.ac.cn, E-mail: zhouxx@swjtu.edu.cn [Southwest Jiaotong University, 610031 Chengdu, Sichuan (China); Collaboration: ARGO-YBJ Collaboration; and others

    2017-06-10

    The ARGO-YBJ detector, located at the Yangbajing Cosmic Ray Laboratory (4300 m a. s. l., Tibet, China), was a “full coverage” (central carpet with an active area of ∼93%) air shower array dedicated to gamma-ray astronomy and cosmic-ray studies. The wide field of view (∼2 sr) and high duty cycle (>86%), made ARGO-YBJ suitable to search for short and unexpected gamma-ray emissions like gamma-ray bursts (GRBs). Between 2007 November 6 and 2013 February 7, 156 satellite-triggered GRBs (24 of them with known redshift) occurred within the ARGO-YBJ field of view (zenith angle θ ≤ 45°). A search for possible emission associated with these GRBs has been made in the two energy ranges 10–100 GeV and 10–1000 GeV. No significant excess has been found in time coincidence with the satellite detections nor in a set of different time windows inside the interval of one hour after the bursts. Taking into account the EBL absorption, upper limits to the energy fluence at a 99% confidence level have been evaluated, with values ranging from ∼10{sup −5} erg cm{sup −2} to ∼10{sup −1} erg cm{sup −2}. The Fermi -GBM burst GRB 090902B, with a high-energy photon of 33.4 GeV detected by Fermi -LAT, is discussed in detail.

  12. Development of portable gamma ray tomography for imaging corrosion under insulation

    International Nuclear Information System (INIS)

    Rasif Mohd Zain; Roslan Yahya

    2009-01-01

    Corrosion under insulation (CUI) on the external wall of steel pipes is a common problem in many types of industrial plants. This is mainly due to the presence of moisture or water in the insulation materials. This type of corrosion can cause failures in areas that are normally of a primary concern to an inspection program. The failures are often the result of localized corrosion and not general wasting over large area. These failures can tee catastrophic in nature at least have an adverse economic effect in terms of downtime and repairs. There are number of techniques used today for CUI investigations. The main ones are profile radiography, pulse eddy current (PEC), ultrasonic spot readings and insulation removal. A new system that has been developed is gamma-ray computer tomography. The system is based on parallel-beam gamma ray absorption technique using NaI(Tl) 1 ' x 1 ' scintillation detectors. This paper describes the development of gamma ray tomography system. (author)

  13. Gamma-ray emission from internal shocks in novae

    Science.gov (United States)

    Martin, P.; Dubus, G.; Jean, P.; Tatischeff, V.; Dosne, C.

    2018-04-01

    Context. Gamma-ray emission at energies ≥100 MeV has been detected from nine novae using the Fermi Large Area Telescope (LAT), and can be explained by particle acceleration at shocks in these systems. Eight out of these nine objects are classical novae in which interaction of the ejecta with a tenuous circumbinary material is not expected to generate detectable gamma-ray emission. Aim. We examine whether particle acceleration at internal shocks can account for the gamma-ray emission from these novae. The shocks result from the interaction of a fast wind radiatively-driven by nuclear burning on the white dwarf with material ejected in the initial runaway stage of the nova outburst. Methods: We present a one-dimensional model for the dynamics of a forward and reverse shock system in a nova ejecta, and for the associated time-dependent particle acceleration and high-energy gamma-ray emission. Non-thermal proton and electron spectra are calculated by solving a time-dependent transport equation for particle injection, acceleration, losses, and escape from the shock region. The predicted emission is compared to LAT observations of V407 Cyg, V1324 Sco, V959 Mon, V339 Del, V1369 Cen, and V5668 Sgr. Results: The ≥100 MeV gamma-ray emission arises predominantly from particles accelerated up to 100 GeV at the reverse shock and undergoing hadronic interactions in the dense cooling layer downstream of the shock. The emission rises within days after the onset of the wind, quickly reaches a maximum, and its subsequent decrease reflects mostly the time evolution of the wind properties. Comparison to gamma-ray data points to a typical scenario where an ejecta of mass 10-5-10-4 M⊙ expands in a homologous way with a maximum velocity of 1000-2000 km s-1, followed within a day by a wind with a velocity values of which result in the majority of best-fit models having gamma-ray spectra with a high-energy turnover below 10 GeV. Our typical model is able to account for the main

  14. Early Fermi Gamma-ray Space Telescope Observations of the Quasar 3C454.3

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, A

    2009-05-07

    This is the first report of Fermi Gamma-ray Space Telescope observations of the quasar 3C 454.3, which has been undergoing pronounced long-term outbursts since 2000. The data from the Large Area Telescope (LAT), covering 2008 July 7-October 6, indicate strong, highly variable {gamma}-ray emission with an average flux of {approx} 3 x 10{sup -6} photons cm{sup -2} s{sup -1}, for energies > 100 MeV. The {gamma}-ray flux is variable, with strong, distinct, symmetrically-shaped flares for which the flux increases by a factor of several on a time scale of about three days. This variability indicates a compact emission region, and the requirement that the source is optically thin to pair-production implies relativistic beaming with Doppler factor {delta} > 8, consistent with the values inferred from VLBI observations of superluminal expansion ({delta} {approx} 25). The observed {gamma}-ray spectrum is not consistent with a simple power-law, but instead steepens strongly above {approx} 2 GeV, and is well described by a broken power-law with photon indices of {approx} 2.3 and {approx} 3.5 below and above the break, respectively. This is the first direct observation of a break in the spectrum of a high luminosity blazar above 100 MeV, and it is likely direct evidence for an intrinsic break in the energy distribution of the radiating particles. Alternatively, the spectral softening above 2GeV could be due to -ray absorption via photonphoton pair production on the soft X-ray photon field of the host AGN, but such an interpretation would require the dissipation region to be located very close ({approx}< 100 gravitational radii) to the black hole, which would be inconsistent with the X-ray spectrum of the source.

  15. NEW FERMI-LAT EVENT RECONSTRUCTION REVEALS MORE HIGH-ENERGY GAMMA RAYS FROM GAMMA-RAY BURSTS

    Energy Technology Data Exchange (ETDEWEB)

    Atwood, W. B. [Santa Cruz Institute for Particle Physics, Department of Physics and Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); Baldini, L. [Universita di Pisa and Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Bregeon, J.; Pesce-Rollins, M.; Sgro, C.; Tinivella, M. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Bruel, P. [Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, Palaiseau (France); Chekhtman, A. [Center for Earth Observing and Space Research, College of Science, George Mason University, Fairfax, VA 22030 (United States); Cohen-Tanugi, J. [Laboratoire Univers et Particules de Montpellier, Universite Montpellier 2, CNRS/IN2P3, F-34095 Montpellier (France); Drlica-Wagner, A.; Omodei, N.; Rochester, L. S.; Usher, T. L. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Granot, J. [Department of Natural Sciences, The Open University of Israel, 1 University Road, P.O. Box 808, Ra' anana 43537 (Israel); Longo, F. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Razzaque, S. [Department of Physics, University of Johannesburg, Auckland Park 2006 (South Africa); Zimmer, S., E-mail: melissa.pesce.rollins@pi.infn.it, E-mail: nicola.omodei@stanford.edu, E-mail: granot@openu.ac.il [Department of Physics, Stockholm University, AlbaNova, SE-106 91 Stockholm (Sweden)

    2013-09-01

    Based on the experience gained during the four and a half years of the mission, the Fermi-LAT Collaboration has undertaken a comprehensive revision of the event-level analysis going under the name of Pass 8. Although it is not yet finalized, we can test the improvements in the new event reconstruction with the special case of the prompt phase of bright gamma-ray bursts (GRBs), where the signal-to-noise ratio is large enough that loose selection cuts are sufficient to identify gamma rays associated with the source. Using the new event reconstruction, we have re-analyzed 10 GRBs previously detected by the Large Area Telescope (LAT) for which an X-ray/optical follow-up was possible and found four new gamma rays with energies greater than 10 GeV in addition to the seven previously known. Among these four is a 27.4 GeV gamma ray from GRB 080916C, which has a redshift of 4.35, thus making it the gamma ray with the highest intrinsic energy ({approx}147 GeV) detected from a GRB. We present here the salient aspects of the new event reconstruction and discuss the scientific implications of these new high-energy gamma rays, such as constraining extragalactic background light models, Lorentz invariance violation tests, the prompt emission mechanism, and the bulk Lorentz factor of the emitting region.

  16. Attenuation of neutrons and gamma-rays in homogeneous and multilayered shields

    International Nuclear Information System (INIS)

    Abdo, A.E.; Megahid, R.M.

    1997-01-01

    Measurements were carried-out to compare the attenuation properties of homogeneous shields and shields of two layers and three layers for fast neutrons and total gamma-rays. These were performed by measuring the fast neutron and total gamma-ray spectra behind homogeneous shields of magnetite-limonite, ilmenite-ilmenite and magnetite-magnetite concretes. The two layers assembly consists of iron and one of the above mentioned concretes, while the three layers shield consists of water, iron and one of the previously mentioned concretes. All measurements were carried-out using a neutron-gamma spectrometer with stilbene scintillator coupled to a fast photo multi player tube. Separation between pulses of recoil protons and recoil electrons was achieved by a pulse shape discrimination technique. 3 tabs., 10 figs., 13 refs

  17. Improved soil particle-size analysis by gamma-ray attenuation

    International Nuclear Information System (INIS)

    Oliveira, J.C.M.; Vaz, C.M.P.; Reichardt, K.; Swartzendruber, D.

    1997-01-01

    The size distribution of particles is useful for physical characterization of soil. This study was conducted to determine whether a new method of soil particle-size analysis by gamma-ray attenuation could be further improved by changing the depth and time of measurement of the suspended particle concentration during sedimentation. In addition to the advantage of nondestructive, undisturbed measurement by gamma-ray attenuation, as compared with conventional pipette or hydrometer methods, the modifications here suggested and employed do substantially decrease the total time for analysis, and will also facilitate total automation and generalize the method for other sedimentation studies. Experimental results are presented for three different Brazilian soil materials, and illustrate the nature of the fine detail provided in the cumulative particle-size distribution as given by measurements obtained during the relatively short time period of 28 min

  18. Measurement of the porosity of amorphous materials by gamma ray transmission methodology

    International Nuclear Information System (INIS)

    Pottker, Walmir Eno; Appoloni, Carlos Roberto

    2000-01-01

    In this work it is presented the measurement of the total porosity of TRe soil, Sandstone Berea rocks and porous ceramics samples. For the determination of the total porosity, the Arquimedes method (conventional) and the gamma ray transmission methodology were employed. The porosity measurement using the gamma methodology has a significant advantage respect to the conventional method due to the fast and non-destructive determination, and also for supplying results with a greater characterization in small scales, in relation to the heterogeneity of the porosity. The conventional methodology presents good results only for homogeneous samples. The experimental set up for the gamma ray transmission technique consisted of a 241 Am source (59,53 keV ), a NaI(Tl) scintillation detector, collimators, a XYZ micrometric table and standard gamma spectrometry electronics connected to a multichannel analyser. (author)

  19. Factors influencing in situ gamma-ray measurements

    Science.gov (United States)

    Loonstra, E. H.; van Egmond, F. M.

    2009-04-01

    Introduction In situ passive gamma-ray sensors are very well suitable for mapping physical soil properties. In order to make a qualitative sound soil map, high quality input parameters for calibration are required. This paper will focus on the factors that affect the output of in situ passive gamma-ray sensors, the primary source, soil, not taken into account. Factors The gamma-ray spectrum contains information of naturally occurring nuclides 40K, 238U and 232Th and man-made nuclides like 137Cs, as well as the total count rate. Factors that influence the concentration of these nuclides and the count rate can be classified in 3 categories. These are sensor design, environmental conditions and operational circumstances. Sensor design The main elements of an in situ gamma-ray sensor that influence the outcome and quality of the output are the crystal and the spectrum analysis method. Material and size of the crystal determine the energy resolution. Though widely used, NaI crystals are not the most efficient capturer of gamma radiation. Alternatives are BGO and CsI. BGO has a low peak resolution, which prohibits use in cases where man-made nuclides are subject of interest. The material is expensive and prone to temperature instability. CsI is robust compared to NaI and BGO. The density of CsI is higher than NaI, yielding better efficiency, especially for smaller crystal sizes. More volume results in higher energy efficiency. The reduction of the measured spectral information into concentration of radionuclides is mostly done using the Windows analysis method. In Windows, the activities of the nuclides are found by summing the intensities of the spectrum found in a certain interval surrounding a peak. A major flaw of the Windows method is the limited amount of spectral information that is incorporated into the analysis. Another weakness is the inherent use of ‘stripping factors' to account for contributions of radiation from nuclide A into the peak of nuclide B. This

  20. Gamma rays application in veterinary immunology

    International Nuclear Information System (INIS)

    Bulkhanov, R.U.; Butaev, M.K.; Mirzaev, B.Sh.; Ryasnyanskiy, I.V.; Yuldashev, R.Yu.

    2005-01-01

    Full text: The process based on stimulated action of ionized radiation, change of quality of agricultural goods and row materials, biocides including bactericide action of ionized radiation are among the methods of radiation biotechnology, which can be applied in agriculture. We used the bactericide action of ionized radiation in technological process for creation of fundamentally new preparation possessed by by immunogenic properties and named as 'radio vaccine'. This term is well known and frequently used in scientific papers in the field of applied radiobiology. It is well known that physical (thermal) and chemical actions are used for preparation of vaccine for veterinary. It was noted that this process resulted in destruction of antigenic structure of bacteria cells, with are responsible for immunity creation. The possibility of virulence reduction at constant immunogenic properties of microorganism and keeping its antigenic structure can be achieved by using ionized radiation as one of the factor, which influences on bacteria. Taking into account the necessity of vaccine improvement and increase of quantity of associated vaccine one of the most important problems of veterinary science and particle is creation of vaccines of new generation which are characterized by the ability to form immunity against several diseases of agricultural animals. As a result of many-years investigations using gamma rays radiations in UzSRIV (laboratory of radiobiology) the radiation biotechnology of vaccine preparation was developed. These vaccines are necessary for practical application. Radiation biotechnology allows to prepare high-effective mono-, associated and polyvalent radio vaccines against widespread infection diseases of agricultural animals especially cubs (calves, lambs, young pigs). On the basis of developed radiation biotechnology there were prepared the following vaccines: 'Associated radio vaccine against colibacteriosis and salmonellosis of small horned cattle

  1. The Advanced Gamma-ray Imageing System (AGIS): Simulation Design Studies

    Science.gov (United States)

    Bugaev, V.; Buckley, J.; Digel, S.; Fegan, S.; Funk, S.; Konopelko, A.; Krawczynski, H.; Lebohec, S.; Maier, G.; Vassiliev, V.

    2008-04-01

    We present design studies for AGIS, a proposed array of ˜100 imaging atmospheric Cherenkov telescopes for gamma-rays astronomy in the 40GeV to 100 TeV energy regime. We describe optimization studies for the array configuration, pixel size and field of view aimed at achieving the best sensitivity over the entire energy range and best angular resolution for a fixed project total cost.

  2. Airborne gamma-ray spectrometer and magnetometer survey, Sagavanirktok Quadrangle, Alaska. Volume I. Final report

    International Nuclear Information System (INIS)

    1981-03-01

    The results obtained from an airborne high sensitivity gamma-ray spectrometer and magnetometer survey over the Sagavanirktok map area of Alaska are presented. Based on the criteria outlined in the general section on interpretation, a total of eight uranium anomalies have been outlined on the interpretation map. However, all of these zones are only weakly to moderately anomalous. None are thought to be indicative of local enrichment of uranium to economically significant levels. No follow-up work is recommended

  3. Protective Role of Emodin in Reducing The Gamma Rays Induced Hazardous Effects On The Tongue of Diabetic or Normoglycaemic Mice

    International Nuclear Information System (INIS)

    Haggag, M.G.; Kazem, H.H.

    2013-01-01

    Ionizing radiation leads to damage at various cellular and sub-cellular levels and can be prevented by radio protectors. There is a need for natural prospective radio protectors that protect normal tissues from ionizing radiation in patients receiving high doses of radiation for treating malignant neoplasms. The study aimed to evaluate the potential protective role of emodin in reducing the severity of gamma rays-induced hazardous damage in the tongue of normoglycaemic and diabetic mice. Sixty-four male mice were randomly divided into 8 experimental groups: control group received vehicle, emodin group received daily emodin dose of 4g/kg orally for a week, diabetes mellitus (DM) group in which DM was induced by streptozotocin (STZ) treatment, emodin + DM received emodin for a week + STZ treatment, irradiated group submitted to 4 Gy of gamma rays and received vehicle for a week, gamma rays + DM group received gamma rays + STZ treatment, gamma rays + emodin group received gamma rays + emodin for a week, and gamma rays + DM + emodin group received gamma rays + STZ treatment + emodin for a week. Tongue and serum of mice were biochemically examined for screening gamma radiation and diabetic damages and the efficacy of emodin in ameliorating these damaging effects. The levels of cellular thiols such as reduced glutathione (GSH), oxidized glutathione (GSSG), total thiols (TT) and lipid peroxidation products; malondialdehyde (MDA) and conjugated dienes (CD), were assessed in tongue tissues. Tongue antioxidant enzymes; gamma glutamyl transferase (GGT), glutathione peroxidase (GPx), glutathione-S-transferase (GST) and glucose-6-phosphatase (G-6-P), were measured and serum glucose level was estimated. The results revealed alterations of the levels of cellular thiols and antioxidant enzymes in tongue and the level of glucose in serum of gamma irradiated diabetic mice were ameliorated in mice groups received emodin treatment. The results suggest that emodin treatment (4 g

  4. Utilization of ilmenite/epoxy composite for neutrons and gamma rays attenuation

    Energy Technology Data Exchange (ETDEWEB)

    El-Sayed Abdo, A. E-mail: attiaabdo11@hotmail.com; El-Sarraf, M.A.; Gaber, F.A

    2003-01-01

    This work deals with the study of ilmenite/epoxy composite as an injecting mortar for cracks developed in biological concrete shields, as well as, neutrons and gamma rays attenuation. Effects of the particle size on the mechanical strengths have been studied for epoxy resin filled with crushed ilmenite with different maximum particle sizes ranging from 32 to 500 {mu}m. Thermal neutrons and gamma rays attenuation in ilmenite/epoxy composites with 75 and 80 wt.% of ilmenite concentration have been investigated. The total mass attenuation coefficients {mu}/{rho} (cm{sup 2} g{sup -1}) of gamma ray for five ilmenite/epoxy composites have been calculated using the XCOM program (version 3.1) at energies from 10 keV to 100 MeV. Also, the total mass attenuation coefficients ({mu}/{rho}) have estimated based on the measured total linear attenuation coefficients ({mu}) and compared with the calculated results where, a reasonable agreement was found.

  5. The measurement of gamma ray induced heating in a mixed neutron and gamma ray environment

    International Nuclear Information System (INIS)

    Chiu, H.K.

    1991-10-01

    The problem of measuring the gamma heating in a mixed DT neutron and gamma ray environment was explored. A new detector technique was developed to make this measurement. Gamma heating measurements were made in a low-Z assembly irradiated with 14-Mev neutrons and (n, n') gammas produced by a Texas Nuclear Model 9400 neutron generator. Heating measurements were made in the mid-line of the lattice using a proportional counter operating in the Continuously-varied Bias-voltage Acquisition mode. The neutron-induced signal was separated from the gamma-induced signal by exploiting the signal rise-time differences inherent to radiations of different linear energy transfer coefficient, which are observable in a proportional counter. The operating limits of this measurement technique were explored by varying the counter position in the low-Z lattice, hence changing the irradiation spectrum observed. The experiment was modelled numerically to help interpret the measured results. The transport of neutrons and gamma rays in the assembly was modelled using the one- dimensional radiation transport code ANISN/PC. The cross-section set used for these calculations was derived from the ENDF/B-V library using the code MC 2 -2 for the case of DT neutrons slowing down in a low-Z material. The calculated neutron and gamma spectra in the slab and the relevant mass-stopping powers were used to construct weighting factors which relate the energy deposition in the counter fill-gas to that in the counter wall and in the surrounding material. The gamma energy deposition at various positions in the lattice is estimated by applying these weighting factors to the measured gamma energy deposition in the counter at those locations

  6. THE ORIGIN OF GAMMA RAYS FROM GLOBULAR CLUSTERS

    International Nuclear Information System (INIS)

    Cheng, K. S.; Chernyshov, D. O.; Dogiel, V. A.; Hui, C. Y.; Kong, A. K. H.

    2010-01-01

    Fermi has detected gamma-ray emission from eight globular clusters (GCs). It is commonly believed that the energy sources of these gamma rays are millisecond pulsars (MSPs) inside GCs. Also it has been standard to explain the spectra of most Fermi Large Area Telescope pulsars including MSPs resulting from the curvature radiation (CR) of relativistic electrons/positrons inside the pulsar magnetosphere. Therefore, gamma rays from GCs are expected to be the collection of CR from all MSPs inside the clusters. However, the angular resolution is not high enough to pinpoint the nature of the emission. In this paper, we calculate the gamma rays produced by the inverse Compton (IC) scattering between relativistic electrons/positrons in the pulsar wind of MSPs in the GCs and background soft photons including cosmic microwave/relic photons, background star lights in the clusters, the galactic infrared photons, and the galactic star lights. We show that the gamma-ray spectrum from 47 Tucanae can be explained equally well by upward scattering of either the relic photons, the galactic infrared photons, or the galactic star lights, whereas the gamma-ray spectra from the other seven GCs are best fitted by the upward scattering of either the galactic infrared photons or the galactic star lights. We also find that the observed gamma-ray luminosity is correlated better with the combined factor of the encounter rate and the background soft photon energy density. Therefore, the IC scattering may also contribute to the observed gamma-ray emission from GCs detected by Fermi in addition to the standard CR process. Furthermore, we find that the emission region of high-energy photons from GCs produced by the IC scattering is substantially larger than the cores of GCs with a radius >10 pc. The diffuse radio and X-rays emitted from GCs can also be produced by the synchrotron radiation and IC scattering, respectively. We suggest that future observations including radio, X-rays, and gamma rays

  7. Gamma-ray tracking - A new detector concept for nuclear spectroscopy

    International Nuclear Information System (INIS)

    Gast, W.

    2001-01-01

    In the framework of an European collaboration the nest generation of large efficiency, high resolution spectrometers for nuclear spectroscopy is under development. The new spectrometers are large volume, segmented Ge-detectors featuring 3D position sensitivity in order to allow Gamma-Ray Tracking. That is, knowing the interaction positions and the energies released at each interaction, the track each gamma-ray follows during its scattering process inside the detector volume can be reconstructed on basis of the Compton-scattering formula. The resulting high add-back efficiency an effective granularity significantly improves peak-to-total ratio, efficiency, and Doppler-broadening of the spectrometer. In this contribution the states of the project concerning detector design and development of digital signal processing techniques to achieve an optimal 3D position sensitivity is presented. (authors)

  8. Attenuation of the gamma rays in tissues; Atenuacion de los rayos gamma en tejidos

    Energy Technology Data Exchange (ETDEWEB)

    Arcos P, A.; Rodriguez N, S.; Pinedo S, A.; Amador V, P.; Chacon R, A.; Vega C, H.R. [Unidad Academica de Estudios Nucleares, Cipres 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2005-07-01

    The mass and lineal attenuation coefficient and of hepatic tissue, muscular, osseous and of brain before gamma rays of 10{sup -3} to 10{sup 5} MeV were calculated. For the case of the osseous tissue the calculation was made for the cartilage, the cortical tissue and the bone marrow. During the calculations the elementary composition of the tissues of human origin was used. The calculations include by separate the Photoelectric effect, the Compton scattering and the Pair production, as well as the total. For to establish a comparison with the attenuation capacities, the coefficients of the water, the aluminum and the lead also were calculated. The study was complemented measuring the attenuation coefficient of hepatic tissue of bovine before gamma rays of 0.662 MeV of a source of {sup 137} Cs. The measurement was made through of an experiment of photons transmission through samples frozen of hepatic tissue and with a Geiger-Mueller detector. (Author)

  9. Using airborne GAMMA-ray spectrometry (uranium, thorium, potassium) to quantify weathering and erosion processes

    International Nuclear Information System (INIS)

    Carrier, F.

    2005-01-01

    The airborne gamma-ray spectrometry survey carried out on the Armorican Massif provided soil contents in U, Th and K in ppm. Chemical and mechanical erosion processes within a homogeneous geological unit have been estimated using their variations and those of the 137 Cs. Our new approach, based on a multivariate analysis (hierarchic ascending classification), integrates the airborne gamma-ray spectrometry data, with their broad spatial distribution, together with precisely located station data (major elements, traces and isotopic geochemistry) resulting from a soil and river water erosion products survey. The total export of potassium was estimated in any point of an area catchment (50-m resolution) until 17+2 t/km 2 /a for a 50-m thick weathering profile. Erosion study by river sampling provide important biases, for the perennial river does not integrate the whole range of erosion products: the geochemical signature of the valleys is currently more represented than plateau areas. (author)

  10. Implications of the IRAS data for galactic gamma-ray astronomy and EGRET

    International Nuclear Information System (INIS)

    Stecker, F.W.

    1990-01-01

    Using the results of gamma-ray, millimeter wave and far infrared surveys of the galaxy, one can derive a logically consistent picture of the large scale distribution of galactic gas and cosmic rays, one tied to the overall processes of stellar birth and destruction on a galactic scale. Using the results of the IRAS far-infrared survey of the galaxy, the large scale radial distributions of galactic far-infrared emission were obtained independently for both the northern and southern hemisphere sides of the Galaxy. It was found that the dominant feature in these distributions to be a broad peak coincident with the 5 kpc molecular gas cloud ring. Also found was evidence of spiral arm features. Strong correlations are evident between the large scale galactic distributions of far infrared emission, gamma-ray emission and total CO emission. There is a particularly tight correlation between the distribution of warm molecular clouds and far-infrared emission on a galactic scale

  11. Evaluation of neutron and gamma-ray-production cross-section data for lead

    International Nuclear Information System (INIS)

    Fu, C.Y.; Perey, F.G.

    1975-01-01

    A survey was made of the available information on neutron and gamma-ray-production cross-section measurements of lead. From these and from relevant nuclear-structure information on the Pb isotopes, recommended neutron cross-section data sets for lead covering the neutron energy range from 0.00001 eV to 20.0 MeV have been prepared. The cross sections are derived from experimental results available to February 1972 and from calculations based on optical-model, DWBA, and Hauser--Feshbach theories. Comparisons which show good agreement between theoretical and experimental values are displayed in a number of graphs. Also presented graphically are smoothed total cross sections, Legendre coefficients for angular distributions, and a representative energy distribution of gamma rays from resonance capture. 15 tables, 36 figures, 104 references

  12. MODELING EXTRAGALACTIC EXTINCTION THROUGH GAMMA-RAY BURST AFTERGLOWS

    Energy Technology Data Exchange (ETDEWEB)

    Zonca, Alberto; Mulas, Giacomo; Casu, Silvia; Aresu, Giambattista [INAF—Osservatorio Astronomico di Cagliari, Via della Scienza 5, I-09047 Selargius (Italy); Cecchi-Pestellini, Cesare, E-mail: azonca@oa-cagliari.inaf.it, E-mail: gmulas@oa-cagliari.inaf.it, E-mail: silvia@oa-cagliari.inaf.it, E-mail: garesu@oa-cagliari.inaf.it, E-mail: cecchi-pestellini@astropa.inaf.it [INAF—Osservatorio Astronomico di Palermo, P.za Parlamento 1, I-90134 Palermo (Italy)

    2016-09-20

    We analyze extragalactic extinction profiles derived through gamma-ray burst afterglows, using a dust model specifically constructed on the assumption that dust grains are not immutable but respond, time-dependently, to the local physics. Such a model includes core-mantle spherical particles of mixed chemical composition (silicate core, sp{sup 2}, and sp{sup 3} carbonaceous layers), and an additional molecular component in the form of free-flying polycyclic aromatic hydrocarbons. We fit most of the observed extinction profiles. Failures occur for lines of sight, presenting remarkable rises blueward of the bump. We find a tendency for the carbon chemical structure to become more aliphatic with the galactic activity, and to some extent with increasing redshifts. Moreover, the contribution of the molecular component to the total extinction is more important in younger objects. The results of the fitting procedure (either successes and failures) may be naturally interpreted through an evolutionary prescription based on the carbon cycle in the interstellar medium of galaxies.

  13. Gamma-ray-induced bold seeded early maturing groundnut selections

    Energy Technology Data Exchange (ETDEWEB)

    Manoharan, V; Thangavelu, S [Regional Research Station, Vriddhachalam, Tamil Nadu (India)

    1990-07-01

    Full text: ''Chico'' is an early maturing (85-90 days) erect groundnut (Arachis hypogaea L.) genotype utilised in groundnut improvement to incorporate earliness in high yielding varieties. Though it has high shelling out-turn, its yield potential is low since it has small seeds. Mutation breeding was started with the objective of improving the seed size. In a preliminary experiment, dry seeds were treated with 20, 30, 40 or 50 kR of gamma rays. The M{sub 1} generation was grown during the post rainy season of 1988-1989. The M{sub 2} generation was planted as individual plant progeny rows during the rainy season of 1989. 105 progeny rows were studied, the total number of M{sub 2} plants being 1,730. All the M{sub 2} plants were harvested 90 days after sowing. Seven mutants with bold seed size were obtained. The mutants had 100 kernel weight ranging from 22.2 to 40.4 g compared to 21.1 g of control. The study is in progress. (author)

  14. Bacteriostatic activity of various antibiotics after gamma-ray irradiation

    International Nuclear Information System (INIS)

    Fleurette, J.; Madier, S.; Transy, M.J.

    1975-01-01

    The purpose of the work described was to discover whether the antibiotics used in medicine can be sterilized by gamma rays; in this preliminary study, only the antimicrobic activity - the principal criterion for this type of medicament - was evaluated. Thirty-three products belonging to the various families of antibacterial and antifungic antibiotics were studied. The substances were irradiated in the dry state and in an aqueous solution, using a caesium-137 irradiator. The antibacterial and antifungic activity before and after irradiation was investigated by the method of diffusion in gelose. When irradiated in the dry state, 14 antibiotics preserve normal activity up to a dose of 10 Mrad; at doses between 5 and 10 Mrad, 15 other antibiotics are subject to a variable, but moderate, loss activity; and four register a slight loss of activity at a dose of 2.5 Mrad. In an aqueous solution all but two of the antibiotics suffer total loss of activity at a dose of 2.5 Mrad. As most commercial antibiotics are supplied in the dry state, gamma irradiation may be a useful sterilization process. However, preparations such as eye lotions, suspensions, ointments, etc. should be excepted

  15. Gamma-ray-induced bold seeded early maturing groundnut selections

    International Nuclear Information System (INIS)

    Manoharan, V.; Thangavelu, S.

    1990-01-01

    Full text: ''Chico'' is an early maturing (85-90 days) erect groundnut (Arachis hypogaea L.) genotype utilised in groundnut improvement to incorporate earliness in high yielding varieties. Though it has high shelling out-turn, its yield potential is low since it has small seeds. Mutation breeding was started with the objective of improving the seed size. In a preliminary experiment, dry seeds were treated with 20, 30, 40 or 50 kR of gamma rays. The M 1 generation was grown during the post rainy season of 1988-1989. The M 2 generation was planted as individual plant progeny rows during the rainy season of 1989. 105 progeny rows were studied, the total number of M 2 plants being 1,730. All the M 2 plants were harvested 90 days after sowing. Seven mutants with bold seed size were obtained. The mutants had 100 kernel weight ranging from 22.2 to 40.4 g compared to 21.1 g of control. The study is in progress. (author)

  16. Proton current measurements using the prompt gamma ray diagnostic technique

    International Nuclear Information System (INIS)

    Leeper, R.J.; Burns, E.J.T.; Johnson, D.J.; McMurtry, W.M.

    1981-01-01

    Prompt gamma ray signals from the nuclear reaction 7 Li(p,γ) 8 Be have been used to make time resolved proton current measurements. In these measurements, the proton beam was allowed to strike cylindrical thick lithium metal targets. The time integrated proton current was measured using gamma activation of copper via the reaction 63 Cu(γ,n) 62 Cu(β+). The positron activity of the copper sample was easily measured using coincidence counting techniques. The number of 62 Cu atoms produced per proton incident on a thick Li metal target was determined with separate calibration runs performed on the Sandia 2.5 MeV Van de Graaff accelerator. The time history of the prompt gamma production was measured using six EGG NPM-54 scintillator photomultiplier combinations shielded by 96.5 cm of concrete and 5.1 cm of Pb. The use of six scintillator photomultiplier combinations was necessary to increase the statistical precision of the data. The normalization of the prompt gamma time history data with the total time integrated proton-current measurement yielded the absolute time resolved proton current on target. Data from runs performed on the Sandia Proto I accelerator will be presented

  17. Gamma-ray pulsars: Emission zones and viewing geometries

    Science.gov (United States)

    Romani, Roger W.; Yadigaroglu, I.-A.

    1995-01-01

    There are now a half-dozen young pulsars detected in high-energy photons by the Compton Gamma-Ray Observatory (CGRO), showing a variety of emission efficiencies and pulse profiles. We present here a calculation of the pattern of high-energy emission on the sky in a model which posits gamma-ray production by charge-depleted gaps in the outer magnetosphere. This model accounts for the radio to gamma-ray pulse offsets of the known pulsars, as well as the shape of the high-energy pulse profiles. We also show that about one-third of emitting young radio pulsars will not be detected due to beaming effects, while approximately 2.5 times the number of radio-selected gamma-ray pulsars will be viewed only high energies. Finally we compute the polarization angle variation and find that the previously misunderstood optical polarization sweep of the Crab pulsar arises naturally in this picture. These results strongly support an outer magnetosphere location for the gamma-ray emission.

  18. TL detectors for gamma ray dose measurements in criticality accidents

    International Nuclear Information System (INIS)

    Miljanic, S.; Zorko, B.; Gregori, B.; Knezevic, Z.

    2007-01-01

    Determination of gamma ray dose in mixed neutron + gamma ray fields is still a demanding task. Dosemeters used for gamma ray dosimetry are usually in some extent sensitive to neutrons and their response variations depend on neutron energy i.e., on neutron spectra. Besides, it is necessary to take into account the energy dependence of dosemeter responses to gamma rays. In this work, several types of thermoluminescent detectors (TLD) placed in different holders used for gamma ray dose determination in the mixed fields were examined. Dosemeters were from three different institutions: Ruder Boskovic Inst. (RBI), Croatia, Jozef Stefan Inst. (JSI), Slovenia and Autoridad Regulatoria Nuclear (ARN), Argentina. All dosemeters were irradiated during the International Intercomparison of Criticality Accident Dosimetry Systems at the SILENE Reactor, Valduc, June 2002. Three accidental scenarios were reproduced and in each irradiation the dosemeters were exposed placed on the front of phantom and 'free in air'. Following types of TLDs were used: 7 LiF (TLD-700), CaF 2 :Mn and Al2 O3 :Mg,Y - all from RBI; CaF 2 :Mn from JSI and 7 LiF (TLD-700) from ARN. Reported doses were compared with the reference values as well as with the values obtained from the results of all participants. The results show satisfactory agreement with other dosimetry systems used in the Intercomparison. The influence of different types of holders and applied corrections of dosemeters' readings are discussed. (authors)

  19. TL detectors for gamma ray dose measurements in criticality accidents.

    Science.gov (United States)

    Miljanić, Saveta; Zorko, Benjamin; Gregori, Beatriz; Knezević, Zeljka

    2007-01-01

    Determination of gamma ray dose in mixed neutron+gamma ray fields is still a demanding task. Dosemeters used for gamma ray dosimetry are usually in some extent sensitive to neutrons and their response variations depend on neutron energy i.e., on neutron spectra. Besides, it is necessary to take into account the energy dependence of dosemeter responses to gamma rays. In this work, several types of thermoluminescent detectors (TLD) placed in different holders used for gamma ray dose determination in the mixed fields were examined. Dosemeters were from three different institutions: Ruder Bosković Institute (RBI), Croatia, JoZef Stefan Institute (JSI), Slovenia and Autoridad Regulatoria Nuclear (ARN), Argentina. All dosemeters were irradiated during the International Intercomparison of Criticality Accident Dosimetry Systems at the SILENE Reactor, Valduc, June 2002. Three accidental scenarios were reproduced and in each irradiation the dosemeters were exposed placed on the front of phantom and 'free in air'. Following types of TLDs were used: 7LiF (TLD-700), CaF2:Mn and Al2O3:Mg,Y-all from RBI; CaF2:Mn from JSI and 7LiF (TLD-700) from ARN. Reported doses were compared with the reference values as well as with the values obtained from the results of all participants. The results show satisfactory agreement with other dosimetry systems used in the Intercomparison. The influence of different types of holders and applied corrections of dosemeters' readings are discussed.

  20. Timing of gamma rays in coaxial germanium detector systems

    International Nuclear Information System (INIS)

    El-Ibiary, M.Y.

    1979-01-01

    A study is reported on the timing uncertainty in gamma ray coaxial germanium detector systems. The work deals with the zero cross over method which is widely used to reduce the dependence of the instant of timing on the radiation energy absorbed and on the position within the detector at which absorption takes place. It is found that the amplitude risetime compensated (ARC) method gives, under normal conditions, the best resolution at a specific energy. For higher energies, the resolution improves and there is no shift of the mean instant of timing. The method is therefore well suited for wide energy coverage. The parameters involved in implementing an ARC system for optimum performance at a specific energy are identified in terms of the preamplifier noise level and risetime. A trade off can be made between the resolutions at high and at low energies. The time resolution attained is given by means of a series of charts which use normalized dimensionless variables for ready application to any given case. Lithium compensated Ge detectors which normally operate under conditions of velocity saturation of the charge carriers by applying sufficient bias voltage create an electric field in excess of 1 kV/cm throughout the depleted region. High purity Ge detectors where velocity saturation may not be reached within certain parts of the depleted region are studied. Special attention is given to the probability of pulses being incorrectly timed because of their slow rise or small magnitude. Such incorrect timing is energy-dependent and results in a noticeable distortion of the timing spectrum that relates to a wide energy range. Limitations on system parameters to keep the probability of incorrect timing below a specified fraction are given

  1. Application of bootstrap sampling in gamma-ray astronomy: Time variability in pulsed emission from crab pulsar

    International Nuclear Information System (INIS)

    Ozel, M.E.; Mayer-Hasselwander, H.

    1985-01-01

    This paper discusses the bootstrap scheme which fits well for many astronomical applications. It is based on the well-known sampling plan called ''sampling with replacement''. Digital computers make the method very practical for the investigation of various trends present in a limited set of data which is usually a small fraction of the total population. The authors attempt to apply the method and demonstrate its feasibility. The study indicates that the discrete nature of high energy gamma-ray data makes the bootstrap method especially attractive for gamma-ray astronomy. Present analysis shows that the ratio of pulse strengths is variable with a 99.8% confidence

  2. Influence of gamma-ray irradiation on Faraday effect of Cu-doped germano-silicate optical fiber

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Youngwoong; Ju, Seongmin; Jeong, Seongmook; Jang, Myoung-Jin [Department of Physics and Photon Science, School of Information and Communications, Gwangju Institute of Science and Technology, 261 Cheomdan-gwagiro, Buk-Gu, Gwangju 500-712 (Korea, Republic of); Kim, Jong-Yeol; Lee, Nam-Ho; Jung, Hyun-Kyu [Nuclear Convergence Technology Development Department, Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong-gu, Daejeon (Korea, Republic of); Han, Won-Taek, E-mail: wthan@gist.ac.kr [Department of Physics and Photon Science, School of Information and Communications, Gwangju Institute of Science and Technology, 261 Cheomdan-gwagiro, Buk-Gu, Gwangju 500-712 (Korea, Republic of)

    2015-02-01

    Influence of gamma-ray irradiation on the Faraday effect of the Cu-doped germano-silicate optical fiber was investigated. The Verdet constant of the gamma-ray irradiated optical fiber at 660 nm was measured to be 3.07 rad T{sup −1} m{sup −1}, 1.46 times larger than that of before the irradiation at total dose of 1200 Gy. Cu-related radiation-induced defect centers and Cu metal particles which were reduced from Cu{sup 2+} ions by the irradiation are thought to be responsible for the increase in the Verdet constant of the optical fiber.

  3. Neutron and gamma-ray emission in the proton induced fission of {sup 238}U and {sup 242}Pu

    Energy Technology Data Exchange (ETDEWEB)

    Kniajeva, G.N.; Krupa, L.; Bogachev, A.A.; Chubarian, G.G.; Dorvaux, O.; Itkis, I.M.; Itkis, M.G.; Kliman, J.; Khlebnikov, S.; Kondratiev, N.A.; Kozulin, E.M.; Lyapin, V.; Materna, T.; Pokrovsky, I.V.; Rubchenya, V.A.; Trzaska, W.H.; Vakhtin, D.; Voskressenski, V.M

    2004-04-05

    Average prescission M{sup pre}{sub n} and postscission M{sup post}{sub n} neutron multiplicities as well as average {gamma}-ray multiplicity , average energy emitted by {gamma}-rays as a function of mass and total kinetic energy (TKE) of fission fragments were measured in proton induced reactions p+{sup 242}Pu{yields}{sup 243}Am, p+{sup 238}U{yields}{sup 239}Np at proton energy E{sub p}=13, 20 and 55 MeV.

  4. Gamma-ray spectroscopy applications in radiation control and environmental monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Manushev, B [Sofia Univ. (Bulgaria). Fizicheski Fakultet; Koleva, K [National Metrology Centre, Sofia (Bulgaria)

    1996-12-31

    A method for stabilization of gamma-ray spectrometers energy calibration is proposed. It is based on recalibration of the spectrum by numerical filtration. The possibility of efficiency auto-calibration is considered in the case when a reference source with appropriate shape is unavailable. The method is tested by estimation of the effective thickness of a lead plate (self-absorption). Potential applications include the evaluation of surface pollution infiltration depth as well as the development of pure beta sources (e.g. Sr-90) using the registration of their Bremsstrahlung. 6 refs.

  5. Measurement of secondary gamma-ray skyshine and groundshine from intense 14 MeV neutron source facility

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Shigeo; Morotomi, Ryutaro; Kondo, Tetsuo; Murata, Isao; Takahashi, Akito [Osaka Univ., Suita (Japan). Dept. of Nuclear Engineering

    2000-03-01

    Secondary gamma-ray skyshine and groundshine, including the direct contribution from the facility building, have been measured with an Hp-Ge detector and an NaI(Tl) detector at the Intense 14 MeV Neutron Source Facility OKTAVIAN of Osaka University, Japan. The mechanism of secondary gamma-rays propagation were analyzed with the measured spectrum with the Hp-Ge detector. The contribution of the skyshine was shown to be a continuum spectrum that was composed of mainly Compton scattered high energy secondary gamma-rays generated in the facility building created by (n, {gamma}) reaction. The contribution of the groundshine considerably contained secondary gamma-rays generated by {sup nat}Si (n, {gamma}) reaction in soil, including the albedo contribution from the ground. And the total contribution contained capture gamma-rays from iron (Fe) and other nuclides. The measurements with the NaI(Tl) detector as well as the Hp-Ge detector were carried out to investigate the dependence of gamma-ray dose as a function of distance from the neutron source up to hundreds meters. Consequently, it was found that the dependence could be fitted with the function of const.{center_dot}exp(-r/{lambda})/r{sup n}, where n values were around 2 except for the skyshine (n {approx} 1). It was thus indicated that the contribution of the skyshine could be propagated farther downfield than the direct contribution from the facility. The measured ratios of the three contributions (skyshine, groundshine, and direct contributions) and the distance dependence in each path were shown to be in good agreement with calculated results by the Monte Carlo transport code MCNP-4A. And the total contributions for the two detectors of NaI(Tl) and Hp-Ge agree excellently with each other. (author)

  6. Gamma ray polarimetry using a position sensitive germanium detector

    CERN Document Server

    Kroeger, R A; Kurfess, J D; Phlips, B F

    1999-01-01

    Imaging gamma-ray detectors make sensitive polarimeters in the Compton energy regime by measuring the scatter direction of gamma rays. The principle is to capitalize on the angular dependence of the Compton scattering cross section to polarized gamma rays and measure the distribution of scatter directions within the detector. This technique is effective in a double-sided germanium detector between roughly 50 keV and 1 MeV. This paper reviews device characteristics important to the optimization of a Compton polarimeter, and summarizes measurements we have made using a device with a 5x5 cm active area, 1 cm thickness, and strip-electrodes on a 2 mm pitch.

  7. Observation of cosmic gamma ray burst by Hinotori

    International Nuclear Information System (INIS)

    Okudaira, Kiyoaki; Yoshimori, Masato; Hirashima, Yo; Kondo, Ichiro.

    1982-01-01

    The solar gamma ray detecor (SGR) on Hinotori has no collimator, and the collimator of a hard X-ray monitor is not effective for gamma ray with energy more than 100 KeV. Accordingly, the detection system can detect cosmic gamma ray burst, and two bursts were observed. The first burst was detected on February 28, 1981, and the source of the burst was in the direction of 81 degree from Venus. The time profile and the spectrum were observed. In July 21, 1981, the second burst was detected. The time profile obtained with the SGR was compared with those of PVO (Pioneer Venus Orbiter) and LASL-ISEE. The time difference among the data of time profiles indicated that the source of the burst was not the sun. The spectrum was also measured. (Kato, T.)

  8. Detection of pseudo gamma-ray bursts of long duration

    International Nuclear Information System (INIS)

    Frontera, F.; Fuligni, F.; Morelli, E.; Pizzichini, G.; Ventura, G.

    1981-01-01

    It is known that the counting rate of both Na I and Cs I hard X-ray detectors can have intense enhancements of brief (< 1 s) duration, which appear like very short cosmic gamma-ray bursts but probably are due to phosphorescence in the detector itself. Unfortunately, this problem is not limited to short bursts. We present here three much longer (up to 80 s) pseudo-gamma-ray bursts observed during a transatlantic balloon flight. We conclude that detections of gamma-ray bursts (and probably also of hard X-ray source flares) based only on a rate increase by a single scintillator should always be confirmed by at least one other instrument. (orig.)

  9. Calibration and control modules for gamma-ray borehole loggers

    International Nuclear Information System (INIS)

    1983-01-01

    A calibration pad for quantitative evaluation of gamma-ray logs, developed and constructed by CNEA is described. The facility is composed of a set of mineralized modules with which it is intended to reproduce the natural variable conditions found in boreholes drilled for uranium mineral exploration, such as the ore concentration, rock's density and porosity, water content, etc. The facility is able to operate under different radiometric models, as follow: 1) gross-count gamma-ray models; 2) gamma-spectrometer models; 3) neutronic-fission models, and 4) models for determination of magnetic susceptibility, density, neutron-neutron, etc. The gathered information allows the adequate quantitative radiometric evaluation of the ore bodies crossed by exploration holes, and also allows the correlation of gamma-ray logs obtained by different logger-equipments. The paper includes the description of the project development and the standards established for the facility's operation. (M.E.L.) [es

  10. Gamma-ray spectrometer utilizing xenon at high pressure

    International Nuclear Information System (INIS)

    Smith, G.C.; Mahler, G.J.; Yu, B.; Kane, W.R.; Markey, J.K.

    1994-01-01

    A prototype gamma-ray spectrometer utilizing xenon gas near the critical point (166 degrees C, 58 atm) is under development. The spectrometer will function as a room-temperature ionization chamber detecting gamma rays in the energy range 100 keV2 MeV, with an energy resolution intermediate between semiconductor (Ge) and scintillation (NaI) spectrometers. The energy resolution is superior to that of a NaI scintillation spectrometer by a substantial margin (approximately a factor 5), and accordingly, much more information can be extracted from a given gamma-ray spectrum. Unlike germanium detectors, the spectrometer possesses the capability for sustained operation under ambient temperature conditions without a requirement for liquid nitrogen

  11. In situ measurements of dose rates from terrestrial gamma rays

    International Nuclear Information System (INIS)

    Horng, M.C.; Jiang, S.H.

    2002-01-01

    A portable, high purity germanium (HPGe) detector was employed for the performance of in situ measurements of radionuclide activity concentrations in the ground in Taiwan, at altitudes ranging from sea level to 3900 m. The absolute peak efficiency of the HPGe detector for a gamma-ray source uniformly distributed in the semi-infinite ground was determined using a semi-empirical method. The gamma-ray dose rates from terrestrial radionuclides were calculated from the measured activity levels using recently published dose rate conversion factors. The absorbed dose rate in air due to cosmic rays was derived by subtracting the terrestrial gamma-ray dose rate from the overall absorbed dose rate in air measured using a high-pressure ionization chamber. The cosmic-ray dose rate calculated as a function of altitude, was found to be in good agreement with the data reported by UNSCEAR. (orig.)

  12. Laser Compton Scattering Gamma Ray Induced Photo-Trasmutation

    CERN Document Server

    Li, Dazhi

    2004-01-01

    High brightness beams of gamma rays produced with laser Compton scattering have the potential to realize photo-transmutation through (γ,n) reaction, implying an efficient method to dispose long-lived fission products. Preliminary investigations have been carried out in understanding the feasibility of development of a transmutation facility to repose nuclear waste. A laser Compton scattering experimental setup based on a storage ring started to generate gamma-ray beams for studying the coupling of gamma photons and nuclear giant resonance. This paper demonstrates the dependency of nuclear transmutation efficiency on target dimensions and gamma ray features. 197Au sample was adopted in our experiment, and experimental results correspond to the theoretical estimations.

  13. Response of human lymphocytes to low gamma ray doses

    International Nuclear Information System (INIS)

    Vega Carrillo, HR; Banuelos Valenzuela, R; Manzanares Acuna, E; Sanchez-Rodriguez, S.H

    2001-01-01

    Radiation and non-radiation workers lymphocytes were exposed to a low strength gamma-ray field to determine heat shock protein expression in function of radiation dose. Protein identification was carried out using mAb raised against Hsp25, Hsp60, Hsp70 and Hsp90; from these, only Hsp70 protein was detected before and after lymphocyte irradiation. In all cases, an increasing trend of relative amounts of Hsp70 in function to irradiation time was observed. After 70.5 mGy gamma-ray dose, radiation worker's lymphocytes expressed more Hsp70 protein, than non-radiation workers' lymphocytes, indicating a larger tolerance to gamma rays (gamma tolerance), due to an adaptation process developed by their labor condition (Au)

  14. Characteristics of environmental gamma-rays and dose assessment

    International Nuclear Information System (INIS)

    Saito, Kimiaki; Moriuchi, Shigeru

    1986-01-01

    Environmental radioactivity has attracted much attention in terms of exposure to the population, although its exposure doses are minimal. This paper presents problems encountered in the assessment of exposure doses using model and monitoring systems, focusing on the characteristics, such as energy distribution, direction distribution, and site, of environmental gamma-rays. The assessment of outdoor and indoor exposure doses of natural gamma-rays is discussed in relation to the shielding effect of the human body. In the assessment of artificial gamma-rays, calculation of exposure doses using build-up factor, the shielding effect of the human body, and energy dependency of the measuring instrument are covered. A continuing elucidation about uncertainties in dose assessment is emphasized. (Namekawa, K.)

  15. Gamma ray induced chromophore modification of softwood thermomechanical pulp

    International Nuclear Information System (INIS)

    Robert, S.; Daneault, C.; Viel, C.; Lepine, F.

    1992-01-01

    This study focuses on bleaching a softwood (black spruce, balsam fur) thermomechanical pulp with gamma rays. Gamma rays are known for their enormous penetrating power, along with their ionizing properties. They can generate highly energetic radicals capable of oxidizing lignin chromophores. The authors studied the influence of isopropyl alcohol, sodium borohydride, oxygen, hydrogen peroxide, nitrogen dioxide and water along with gamma ray irradiation of the pulps. The authors measured the optimal dose and dose rate, along with the influence of the radical scavengers like oxygen on the bleaching effect of gamma irradiated pulps. They observe various degrees of bleaching of these pulps. Evidence relates this bleaching to the generation of perhydroxyl anions upon irradiation of water. Also, they were able to pinpoint the influence of the dose rate on the rate of formation and disappearance of these perhydroxyl anions and their influence on bleaching kinetics. Stability toward photoyellowing, and photoyellowing's kinetic of papers from these pulps was also studied

  16. On response operator in semiconductor gamma ray spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Krnac, S [Slovak Technical Univ., Bratislava (Slovakia); Povinec, P [International Atomic Energy Agency, Monaco (Monaco). MEL; Ragan, R [Inst. of Preventive and Clinical Medicine, Bratislava (Slovakia)

    1996-12-31

    Some results of the scaling confirmation factor analysis (SCFA) application in semiconductor gamma-ray spectrometry presented in this contribution points out to a new ground for evaluation the gamma-ray spectra. This whole-spectrum processing approach considerably increases detection sensitivity, especially, if significant interferences being present in the measured spectrum. Precision of the SCFA method is determined by choice of a sufficient number of suitable calibration gamma-ray sources in the energy region of interest, by setting up an acceptable latent hypothesis and by chosen experimental quantification of spectra. The SCFA method is very advantageous to use, for instance, in ultra low-level gamma-spectrometry where counting rates in full energy peaks are extremely low as compared with background interferences. It enables to increase of the sensitivity by the 5-10 times in comparison with the traditional full energy peak net area method (J.K.). 1 fig., 2 tabs., 6 refs.

  17. Monte Carlo simulations of plutonium gamma-ray spectra

    International Nuclear Information System (INIS)

    Koenig, Z.M.; Carlson, J.B.; Wang, Tzu-Fang; Ruhter, W.D.

    1993-01-01

    Monte Carlo calculations were investigated as a means of simulating the gamma-ray spectra of Pu. These simulated spectra will be used to develop and evaluate gamma-ray analysis techniques for various nondestructive measurements. Simulated spectra of calculational standards can be used for code intercomparisons, to understand systematic biases and to estimate minimum detection levels of existing and proposed nondestructive analysis instruments. The capability to simulate gamma-ray spectra from HPGe detectors could significantly reduce the costs of preparing large numbers of real reference materials. MCNP was used for the Monte Carlo transport of the photons. Results from the MCNP calculations were folded in with a detector response function for a realistic spectrum. Plutonium spectrum peaks were produced with Lorentzian shapes, for the x-rays, and Gaussian distributions. The MGA code determined the Pu isotopes and specific power of this calculated spectrum and compared it to a similar analysis on a measured spectrum

  18. On response operator in semiconductor gamma ray spectrometry

    International Nuclear Information System (INIS)

    Krnac, S.; Povinec, P.

    1995-01-01

    Some results of the scaling confirmation factor analysis (SCFA) application in semiconductor gamma-ray spectrometry presented in this contribution points out to a new ground for evaluation the gamma-ray spectra. This whole-spectrum processing approach considerably increases detection sensitivity, especially, if significant interferences being present in the measured spectrum. Precision of the SCFA method is determined by choice of a sufficient number of suitable calibration gamma-ray sources in the energy region of interest, by setting up an acceptable latent hypothesis and by chosen experimental quantification of spectra. The SCFA method is very advantageous to use, for instance, in ultra low-level gamma-spectrometry where counting rates in full energy peaks are extremely low as compared with background interferences. It enables to increase of the sensitivity by the 5-10 times in comparison with the traditional full energy peak net area method (J.K.). 1 fig., 2 tabs., 6 refs

  19. Gamma-ray spectrometry applied to down-hole logging

    International Nuclear Information System (INIS)

    Dumesnil, P.; Umiastowsky, K.

    1983-11-01

    Gamma-ray spectrometry permits to improve the accuracy of natural gamma, gamma-gamma and neutron-gamma geophysical measurements. The probe developed at Centre d'Etudes Nucleaires de Saclay allows down-hole gamma-ray spectrometry. Among others, this probe can be applied to the uranium content determination by selective natural gamma method, down-hole determination of the ash content in the coal by gamma-gamma selective method and elemental analysis by neutron-gamma method. For the calibration and an exact interpretation of the measurements it is important to know the gamma-ray and neutron characteristics of the different kinds of rocks considered as probabilistic variables

  20. Miniature gamma-ray camera for tumor localization

    International Nuclear Information System (INIS)

    Lund, J.C.; Olsen, R.W.; James, R.B.; Cross, E.

    1997-08-01

    The overall goal of this LDRD project was to develop technology for a miniature gamma-ray camera for use in nuclear medicine. The camera will meet a need of the medical community for an improved means to image radio-pharmaceuticals in the body. In addition, this technology-with only slight modifications-should prove useful in applications requiring the monitoring and verification of special nuclear materials (SNMs). Utilization of the good energy resolution of mercuric iodide and cadmium zinc telluride detectors provides a means for rejecting scattered gamma-rays and improving the isotopic selectivity in gamma-ray images. The first year of this project involved fabrication and testing of a monolithic mercuric iodide and cadmium zinc telluride detector arrays and appropriate collimators/apertures. The second year of the program involved integration of the front-end detector module, pulse processing electronics, computer, software, and display