System and method of operating toroidal magnetic confinement devices
Chance, M.S.; Jardin, S.C.; Stix, T.H.; Grimm, R.C.; Manickam, J.; Okabayashi, M.
1984-08-30
This invention pertains to methods and arrangements for attaining high beta values in plasma confinement devices. More specifically, this invention pertains to methods for accessing the second stability region of operation in toroidal magnetic confinement devices.
Pinch effects and chaotic motion in toroidal confinement devices
Energy Technology Data Exchange (ETDEWEB)
Spizzo, G.; White, R. B.; Cappello, S.; Marrelli, L.; Sattin, F.
2007-07-01
Particle transport in toroidal confinement devices is often described in terms of a diffusion constant and an inward pinch velocity: this phenomenological description can be justified by a probabilistic approach (random walk) that simplifies the particle dynamics when the orbits are small enough compared to the system size. This results in a diffusive expression for particle flux. Then, the convective part of the particle flux can be related, for example, to spatial inhomogeneities in temperature or field curvature. When magnetic chaos is present, but the system is not too far from the stochastic threshold, diffusion and pinch can be actually an expression of the sub diffusive nature of the transport, brought about by the presence of a spectrum of long-distance Levy flights. This effect is shown by numerical modelling of the magnetic structure and associated particle transport in conditions relevant for the reversed-field pinch experiment RFX-mod based at Consorzio RFX, Padova. Simulations reproduce the particle motion through guiding center calculations of particle orbits embedded in the magnetic topology, obtained by 3D MHD simulations (code SpeCyl). Results have been used to produce the probability distribution functions (p.d.f.) of jump lengths and waiting times, providing the kernel to integrate in the Montroll equation, which governs the evolution of particle density in the Continuous-time random walk (CTRW) approach. This means that we obtain a transport equation using the knowledge of the kernel which comes directly from the actual particle dynamics. The difference of behavior between trapped and passing particles has also been considered, and has a relevance comparable to sub diffusion in determining the pinch effect. Similar results can be applied to other systems with chaos induces particle transport, e.g. electron transport in Tokamaks. This work was partially supported by DoE contract No. DE-FG03-94ER54271. (Author)
Effect of loss cone on confinement in toroidal helical device
International Nuclear Information System (INIS)
Itoh, K.; Itoh, S.-I.; Fukuyama, A.; Hanatani, K.
1988-12-01
Analytical estimation is given on the loss cone in the toroidal helical devices in the presence of the radial electric field and the modulation of the helical ripple. The minimum energy of particles entering the loss cone is calculated. The modulation is not always effective in reducing the loss in the presence of the radial electric field. The plasma loss due to the loss cone is estimated in the collisionless limit. The radial electric field is estimated in the presence of the loss cone. It is found that the transition to the solution with positive radial electric field, which is necessary to achieve the high-ion-temperature mode, becomes difficult. This difficulty is large for the systems with the small helical ripple. (author)
Kumar, Umesh; Ganesh, R.; Saxena, Y. C.; Thatipamula, Shekar G.; Sathyanarayana, K.; Raju, Daniel
2017-10-01
In magnetized toroidal devices without rotational transform also known as Simple Magnetized Torus (SMT). The device BETA at the IPR is one such SMT with a major radius of 45 cm, minor radius of 15 cm and a maximum toroidal field of 0.1 Tesla. Understanding confinement in such helical configurations is an important problem both for fundamental plasma physics and for Tokamak edge physics. In a recent series of experiments it was demonstrated experimentally that the mean plasma profiles, fluctuation, flow and turbulence depend crucially on the parallel connection length, which was controlled by external vertical field. In the present work, we report our experimental findings, wherein we measure the particle confinement time for hot cathode discharge and ECRH discharge, with variation in parallel connection length. As ECRH plasma don't have mean electric field and hence the poloidal rotation of plasma is absent. However, in hot cathode discharge, there exist strong poloidal flows due to mean electric field. An experimental comparison of these along with theoretical model with variation in connection length will be presented. We also present experimental measurements of variation of plasma confinement time with mass as well as the ratio of vertical field to toroidal magnetic field.
Next generation toroidal devices
International Nuclear Information System (INIS)
Yoshikawa, Shoichi
1998-10-01
A general survey of the possible approach for the next generation toroidal devices was made. Either surprisingly or obviously (depending on one's view), the technical constraints along with the scientific considerations lead to a fairly limited set of systems for the most favorable approach for the next generation devices. Specifically if the magnetic field strength of 5 T or above is to be created by superconducting coils, it imposes minimum in the aspect ratio for the tokamak which is slightly higher than contemplated now for ITER design. The similar technical constraints make the minimum linear size of a stellarator large. Scientifically, it is indicated that a tokamak of 1.5 times in the linear dimension should be able to produce economically, especially if a hybrid reactor is allowed. For the next stellarator, it is strongly suggested that some kind of helical axis is necessary both for the (almost) absolute confinement of high energy particles and high stability and equilibrium beta limits. The author still favors a heliac most. Although it may not have been clearly stated in the main text, the stability afforded by the shearless layer may be exploited fully in a stellarator. (author)
International Nuclear Information System (INIS)
Dumont, R.J.; Phillips, C.K.; Smithe, D.N.
2003-01-01
Auxiliary heating supplied by externally launched electromagnetic waves is commonly used in toroidal magnetically confined fusion experiments for profile control via localized heating, current drive and perhaps flow shear. In these experiments, the confined plasma is often characterized by the presence of a significant population of non-thermal species arising from neutral beam injection, from acceleration of the particles by the applied waves, or from copious fusion reactions in future devices. Such non-thermal species may alter the wave propagation as well as the wave absorption dynamics in the plasma.Previous studies have treated the corresponding velocity distributions as either equivalent Maxwellian, or else have included realistic distributions only in the finite Larmor radius limit. In this work, the hot plasma dielectric response of the plasma has been generalized to treat arbitrary distribution functions in the non-relativistic limit. The generalized dielectric tensor has been incorporated into a one-dimensional full wave all-orders kinetic field code. Initial comparative studies of ion cyclotron range of frequency wave propagation and heating in plasmas with non-thermal species, represented by realistic distribution functions or by appropriately defined equivalent Maxwellian, have been completed for more specific experiments and are presented. (authors)
Toroidal nuclear fusion device
International Nuclear Information System (INIS)
Ito, Yutaka; Kasahara, Tatsuo; Takizawa, Teruhiro.
1975-01-01
Object: To design a device so as to be formed into a large-size and to arrange ports, through which neutral particles enter, in inclined fashion. Structure: Toroidal coils are wound about vacuum vessels which are divided into plural number. In the outer periphery of the vacuum vessels, ports are disposed inclined in the peripheral direction of the vacuum vessels and communicated with the vacuum vessels, and wall surfaces opposed to the ports of the toroidal coils adjacent at least the inclined sides of the ports are inclined substantially simularly to the port wall surfaces. (Kamimura, M.)
Transport in the high temperature core of toroidal confinement systems
International Nuclear Information System (INIS)
Weiland, J.
1994-01-01
Recent theoretical and experimental results on confinement of hot plasmas in toroidal devices, particularly tokamaks, are discussed from general principal points of view and related to predictions from a toroidal drift wave model using a full transport matrix including off diagonal terms. A reactive fluid model corresponding to a two pole approximation of the kinetic response is used. This model has the ability to reproduce both adiabatic and isothermal limits of the perpendicular dynamics. 106 refs, 8 figs, 1 tab
Stellarator approach to toroidal plasma confinement
International Nuclear Information System (INIS)
Johnson, J.L.
1981-12-01
An overview is presented of the development and current status of the stellarator approach to controlled thermonuclear confinement. Recent experimental, theoretical, and systems developments have made this concept a viable option for the evolution of the toroidal confinement program. Some experimental study of specific problems associated with departure from two-dimensional symmetry must be undertaken before the full advantages and opportunities of steady-state, net-current-free operation can be realized
Device for supporting a toroidal coil in a toroidal type nuclear fusion device
International Nuclear Information System (INIS)
Kitazawa, Hakaru; Sato, Hiroshi.
1975-01-01
Object: To easily manufacture a center block having a strength sufficient to withstand an electromagnetic force exerted on the center of toroidal of a toroidal coil and to increase its reliability. Structure: In a device for supporting toroidal coils wherein the electromagnetic force exerted on the center of toroidal of a plurality of toroidal coils arranged in toroidal fashion, the contact surface between the toroidal coil and the center block is arranged parallel to the center axis of toroidal so as to receive the electromagnetic force exerted on the center of toroidal of the toroidal coil as the component of force in a radial direction. (Taniai, N.)
The theory of toroidally confined plasmas
White, Roscoe B
2014-01-01
This graduate level textbook develops the theory of magnetically confined plasma, with the aim of bringing the reader to the level of current research in the field of thermonuclear fusion. It begins with the basic concepts of magnetic field description, plasma equilibria and stability, and goes on to derive the equations for guiding center particle motion in an equilibrium field. Topics include linear and nonlinear ideal and resistive modes and particle transport. It is of use to workers in the field of fusion both for its wide-ranging account of tokamak physics and as a kind of handbook or formulary. This edition has been extended in a number of ways. The material on mode-particle interactions has been reformulated and much new information added, including methodology for Monte Carlo implementation of mode destabilization. These results give explicit means of carrying out mode destabilization analysis, in particular for the dangerous fishbone mode. A new chapter on cyclotron motion in toroidal geometry has ...
Nonideal magnetohydrodynamic instabilities and toroidal magnetic confinement
Energy Technology Data Exchange (ETDEWEB)
Furth, H.P.
1985-05-01
The marked divergence of experimentally observed plasma instability phenomena from the predictions of ideal magnetohydrodynamics led in the early 1960s to the formulations of finite-resistivity stability theory. Beginning in the 1970s, advanced plasma diagnostics have served to establish a detailed correspondence between the predictions of the finite-resistivity theory and experimental plasma behavior - particularly in the case of the resistive kink mode and the tokamak plasma. Nonlinear resistive-kink phenomena have been found to govern the transport of magnetic flux and plasma energy in the reversed-field pinch. The other predicted finite-resistivity instability modes have been more difficult to identify directly and their implications for toroidal magnetic confinement are still unresolved.
Transport mechanisms acting in toroidal devices: a theoretician's view
International Nuclear Information System (INIS)
Carreras, B.A.
1992-01-01
Understanding the basic mechanisms of transport in toroidal confinement devices remains one of the more challenging scientific issues in magnetic confinement. At the same time, it is a critical issue for the magnetic fusion program. Recent progress in understanding fluctuations and transport has been fostered by the development and use of new diagnostics, bringing new perspectives on these studies. This has stimulated new theoretical developments. A view of the most recent issues and progress in this area is given. The role of long wavelengths in core transport and the relation between shear flows and turbulence at the plasma edge are the primary topics considered. (Author)
Plasma confinement of Nagoya high beta toroidal pinch experiments
International Nuclear Information System (INIS)
Hirano, K.; Kitagawa, S.; Wakatani, M.; Kita, Y.; Yamada, S.; Yamaguchi, S.; Sato, K.; Aizawa, T.; Osanai, Y.; Noda, N.
1976-01-01
Two different types of high β toroidal pinch experiments, STP and CCT, have been done to study the confinement of the plasma produced by theta-pinch. The STP is an axisymmetric toroidal pinch of high β tokamak type, while the CCT is multiply connected periodic toroidal traps. Internal current carrying copper rings are essential to the CCT. Since both apparatuses use the same fast capacitor bank system, they produce not so different plasma temperatures and densities. The observed laser scattering temperature and density is about 50 eV and 4 x 10 15 /cm 3 , respectively, when the filling pressure is 5 m torr. In the experiment of STP, strong correlations are found between the βsub(p) value and the amplitude of m = 2 mode. It has a minimum around the value of βsub(p) of 0.8. The disruptive instability is observed to expand the pinched plasma column without lowering the plasma temperature. Just before the distruption begins, the q value around the magnetic axis becomes far less than 1 and an increase of the amplitude of m = 2 mode is seen. The CCT also shows rapid plasma expansion just before the magnetic field reaches its maximum. Then the trap is filled up with the plasma by this irreversible expansion and the stable plasma confinement is achieved. The energy confinement time of the CCT is found to be about 35 μsec. (orig.) [de
Alpha heating in toroidal devices
Energy Technology Data Exchange (ETDEWEB)
Miley, G.H.
1978-01-01
Ignition (or near-ignition) by alpha heating is a key objective for the achievement of economic fusion reactors. While good confinement of high-energy alphas appears possible in larger reactors, near-term tokamak-type ignition experiments as well as some concepts for small reactors (e.g., the Field-Reversed Mirror or FRM) potentially face marginal situations. Consequently, there is a strong motivation to develop methods to evaluate alpha losses and heating profiles in some detail. Such studies for a TFTR-size tokamak and for a small FRM are described here.
Current disruption in toroidal devices
International Nuclear Information System (INIS)
1979-07-01
Attempts at raising the density or the plasma current in a tokamak above certain critical values generally result in termination of the discharge by a disruption. This sudden end of the plasma current and plasma confinement is accompanied by large induced voltages and currents in the outer structures which, in large tokamaks, can only be handled with considerable effort, and which will probably only be tolerable in reactors as rare accidents. Because of its crucial importance for the construction and operation of tokamaks, this phenomenon and its theoretical interpretation were the subject of a three-day symposium organized by the International Atomic Energy Agency and Max-Planck-Institut fuer Plasmaphysik at Garching from February 14 to 16. (orig./HT)
Roles of electric field on toroidal magnetic confinement
International Nuclear Information System (INIS)
Itoh, Kimitaka; Itoh, Sanae; Sanuki, Heiji; Fukuyama, Atsushi.
1992-11-01
Theoretical research on the influence of the electric field on the toroidal magnetic confinement is surveyed. The static electric field is first described. Physics pictures on the generation of the radial electric field and the influence on the confinement are shown. Neoclassical effects as well as the nonclassical processes are discussed. Emphasis is made on the connection with the improved confinement. Convective cell, i.e. the nonuniform potential on the magnetic surface is also discussed. The roles of the fluctuating electric field are then reviewed. The progress in the recent theories on the anomalous transport is addressed. Through these surveys, the impact of the experiments using the heavy ion beam probes on the modern plasma physics is illustrated. (author) 66 refs
Defects in an active nematic confined to a toroid
Ellis, Perry; Pearce, Dan; Giomi, Luca; Fernandez-Nieves, Alberto
Active materials are driven far from the ground state by the motion of their constituent particles, thereby making them inherently non-equilibrium materials. For an active nematic, this results in a continuous creation and annihilation of +/- 1 / 2 defect pairs. Here, we confine an active nematic to the surface of a toroid and show that the topological charge of the defects couples to the Gaussian curvature of the underlying surface. However, in our experiments this defect unbinding happens on average, illustrating that despite subtle differences, the role of activity is reminiscent of the role of temperature in conventional nematics. This is confirmed by computer simulations which clearly illustrate that defect unbinding depends on activity. Overall, our results illustrate the role of confinement and curvature on the defect behavior of active nematic liquid crystals. PWE is supported by FLAMEL under Grant NSF 1258425.
Application of plasma focus device to compression of toroidal plasma
International Nuclear Information System (INIS)
Ikuta, Kazunari
1980-01-01
A new concept of compressing a toroidal plasma using a plasma focus device is considered. Maximum compression ratio of toroidal plasma is determined merely by the initial density ratio of the toroidal plasma to a sheet plasma in a focus device because of the Rayleigh-Taylor instability. An initiation senario of plasma-linear is also proposed with a possible application of this concepts to the creation of a burning plasma in reversed field configurations, i.e., burning plasma vortex. (author)
Woolley, Robert D.
2002-01-01
A system for forming a thick flowing liquid metal, in this case lithium, layer on the inside wall of a toroid containing the plasma of a deuterium-tritium fusion reactor. The presence of the liquid metal layer or first wall serves to prevent neutron damage to the walls of the toroid. A poloidal current in the liquid metal layer is oriented so that it flows in the same direction as the current in a series of external magnets used to confine the plasma. This current alignment results in the liquid metal being forced against the wall of the toroid. After the liquid metal exits the toroid it is pumped to a heat extraction and power conversion device prior to being reentering the toroid.
System and method for generating steady state confining current for a toroidal plasma fusion reactor
International Nuclear Information System (INIS)
Bers, A.
1981-01-01
A system for generating steady state confining current for a toroidal plasma fusion reactor providing steady-state generation of the thermonuclear power. A dense, hot toroidal plasma is initially prepared with a confining magnetic field with toroidal and poloidal components. Continuous wave rf energy is injected into said plasma to estalish a spectrum of traveling waves in the plasma, where the traveling waves have momentum components substantially either all parallel, or all anti-parallel to the confining magnetic field. The injected rf energy is phased to couple to said traveling waves with both a phase velocity component and a wave momentum component in the direction of the plasma traveling wave components. The injected rf energy has a predetermined spectrum selected so that said traveling waves couple to plasma electrons having velocities in a predetermined range delta . The velocities in the range are substantially greater than the thermal electron velocity of the plasma. In addition, the range is sufficiently broad to produce a raised plateau having width delta in the plasma electron velocity distribution so that the plateau electrons provide steady-state current to generate a poloidal magnetic field component sufficient for confining the plasma. In steady state operation of the fusion reactor, the fusion power density in the plasma exceeds the power dissipated inthe plasma
System and method for generating steady state confining current for a toroidal plasma fusion reactor
International Nuclear Information System (INIS)
Fisch, N.J.
1981-01-01
A system for generating steady state confining current for a toroidal plasma fusion reactor providing steady-state generation of the thermonuclear power. A dense, hot toroidal plasma is initially prepared with a confining magnetic field with toroidal and poloidal components. Continuous wave rf energy is injected into said plasma to establish a spectrum of traveling waves in the plasma, where the traveling waves have momentum components substantially either all parallel, or all anti-parallel to the confining magnetic field. The injected rf energy is phased to couple to said traveling waves with both a phase velocity component and a wave momentum component in the direction of the plasma traveling wave components. The injected rf energy has a predetermined spectrum selected so that said traveling waves couple to plasma electrons having velocities in a predetermined range delta . The velocities in the range are substantially greater than the thermal electron velocity of the plasma. In addition, the range is sufficiently broad to produce a raised plateau having width delta in the plasma electron velocity distribution so that the plateau electrons provide steady-state current to generate a poloidal magnetic field component sufficient for confining the plasma. In steady state operation of the fusion reactor, the fusion power density in the plasma exceeds the power dissipated in the plasma
Plasma confinement of Nagoya high-beta toroidal-pinch experiments
International Nuclear Information System (INIS)
Hirano, K.; Kitagawa, S.; Wakatani, M.; Kita, Y.; Yamada, S.; Yamaguchi, S.; Sato, K.; Aizawa, T.; Osanai, Y.; Noda, N.
1977-01-01
Two different types of high-β toroidal pinch experiments, STP [1] and CCT [2,3], have been done to study the confinement of the plasma produced by a theta-pinch. The STP is an axisymmetric toroidal pinch of high-β tokamak type, while the CCT consists of multiply connected periodic toroidal traps. Internal current-carrying copper rings are essential to the CCT. Since both apparatuses use the same fast capacitor bank system, they produce rather similar plasma temperatures and densities. The observed laser scattering temperature and density is about 50 eV and 4x10 15 cm -3 , respectively, when the filling pressure is 5 mtorr. In the STP experiment, strong correlations are found between the βsub(p) value and the amplitude of m=2 mode. It has a minimum around the value of βsub(p) of 0.8. The disruptive instability is observed to expand the pinched plasma column without lowering the plasma temperature. Just before the disruption begins, the q value around the magnetic axis becomes far less than 1 and an increase of the amplitude of m=2 mode is seen. The CCT also shows rapid plasma expansion just before the magnetic field reaches its maximum. Then the trap is filled up with the plasma by this irreversible expansion and stable plasma confinement is achieved. The energy confinement time of the CCT is found to be about 35 μs. (author)
International Nuclear Information System (INIS)
1974-11-01
The lectures of a Varenna Summer School about the theme Instabilities and Confinement in toroidal Plasmas are given. The topics included are: high-beta toroidal pinches, non-MHD instabilities and anomalous transport, analogy between turbulent transfer in velocity space and plasma collisioned transport in real space, the magnetohydrodynamic approach of plasma confinement in closed magnetic configurations, properties of isodynamical equilibrium configurations and their generalization, transport theory for toroidal plasmas, plasma physics, low-β toroidal machines, the neoclassical theory of transit time magnetic pumping, radio frequency heating of toroidal plasmas, plasma heating at lower hybrid frequency, RF-plasma heating with L-structures, numerical simulation, dynamical stabilization of low frequency waves in inhomogeneous plasmas, dynamic and feedback stabilization of plasmas and problems with nuclear fusion reactors
Study of plasma equilibrium in toroidal fusion devices using mesh-free numerical calculation method
Energy Technology Data Exchange (ETDEWEB)
Rasouli, C.; Abbasi Davani, F. [Radiation Application Department, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Rokrok, B. [Nuclear Safety and Radiological Protection Group, Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of)
2016-08-15
Plasma confinement using external magnetic field is one of the successful ways leading to the controlled nuclear fusion. Development and validation of the solution process for plasma equilibrium in the experimental toroidal fusion devices is the main subject of this work. Solution of the nonlinear 2D stationary problem as posed by the Grad-Shafranov equation gives quantitative information about plasma equilibrium inside the vacuum chamber of hot fusion devices. This study suggests solving plasma equilibrium equation which is essential in toroidal nuclear fusion devices, using a mesh-free method in a condition that the plasma boundary is unknown. The Grad-Shafranov equation has been solved numerically by the point interpolation collocation mesh-free method. Important features of this approach include truly mesh free, simple mathematical relationships between points and acceptable precision in comparison with the parametric results. The calculation process has been done by using the regular and irregular nodal distribution and support domains with different points. The relative error between numerical and analytical solution is discussed for several test examples such as small size Damavand tokamak, ITER-like equilibrium, NSTX-like equilibrium, and typical Spheromak.
Inertial Electrostatic Confinement (IEC) devices
International Nuclear Information System (INIS)
Nebel, R.A.; Turner, L.; Tiouririne, T.N.; Barnes, D.C.; Nystrom, W.D.; Bussard, R.W.; Miley, G.H.; Javedani, J.; Yamamoto, Y.
1994-01-01
Inertial Electrostatic Confinement (IEC) is one of the earliest plasma confinement concepts, having first been suggested by P. T. Farnsworth in the 1950s. The concept involves a simple apparatus of concentric spherical electrostatic grids or a combination of grids and magnetic fields. An electrostatic structure is formed from the confluence of electron or ion beams. Gridded IEC systems have demonstrated neutron yields as high as 2 * 10 10 neutrons/sec. These systems have considerable potential as small, inexpensive, portable neutron sources for assaying applications. Neutron tomography is also a potential application. Atomic physics effects strongly influence the performance of all of these systems. Important atomic effects include elastic scattering, ionization, excitation, and charge exchange. This paper discusses how an IEC system is influenced by these effects and how to design around them. Theoretical modeling and experimental results are presented
International Nuclear Information System (INIS)
Kovrizhnykh, L.M.
1984-01-01
The paper constitutes a review of the neoclassical theory of transport processes in the different types of toroidal magnetic configuration now being used to study the possibility of producing a controlled thermonuclear reaction. Owing to the abundance of the material that has accumulated in recent years and the large number of parameters involved in the problem, it has not been possible to present all the mathematical calculations in detail while confining the results to a few definitive expressions. The general approach to a solution of the problem and its key aspects have been discussed as fully as possible, and a number of definitive results are presented. In the review, a history of the subject and an account of its present status are given, the problem itself is formulated, the basic equations are discussed and analytical solution methods are described. Definitive expressions are given for cross-field particle and energy fluxes, the bootstrap current and conductivity, all of which are required to solve the particle and heat balance equations in magnetic confinement devices. The results are presented in a relatively simple form which is convenient for analysis of the experimental data and are accompanied by tables containing numerical values for the universal coefficients in the definitive expressions. The review is aimed at both theoreticians and experimenters working in high-temperature plasma physics and controlled thermonuclear fusion. (author)
Toroidal coil for torus type nuclear fusion device
International Nuclear Information System (INIS)
Nagata, Daisaburo; Jinbo, Kensaku.
1976-01-01
Object: To facilitate clamping operation in the joint section of a toroidal coil in the nuclear fusion device even if the device has a narrow central space. Structure: A clamp bolt for joining upper and lower coil conductors comprises a first bolt, which is provided in one end portion with a thread for fitting a clamp nut, has a hollow intermediate portion and is provided at the other end with an opening of a smaller diameter than that of the hollow intermediate portion and also with an inner receiving surface, and a second bolt, which is provided in one end portion with a thread for fitting a clamp nut and in the other end portion with a raised portion and is adapted to be inserted on the raised portion side into the hollow intermediate portion of the first bolt such that it is extendable in the axial direction. When inserting this clamp bolt into a see-through hole in the conductor joint section its length is reduced, and at the time of clamping it is extended with the raised portion of the second bolt locked by the receiving surface of the first bolt. (Horiuchi, T.)
Impurity toroidal rotation and transport in Alcator C-Mod ohmic high confinement mode plasmas
International Nuclear Information System (INIS)
Rice, J. E.; Goetz, J. A.; Granetz, R. S.; Greenwald, M. J.; Hubbard, A. E.; Hutchinson, I. H.; Marmar, E. S.; Mossessian, D.; Pedersen, T. Sunn; Snipes, J. A.
2000-01-01
Central toroidal rotation and impurity transport coefficients have been determined in Alcator C-Mod [I. H. Hutchinson et al., Phys. Plasmas 1, 1511 (1994)] Ohmic high confinement mode (H-mode) plasmas from observations of x-ray emission following impurity injection. Rotation velocities up to 3x10 4 m/sec in the co-current direction have been observed in the center of the best Ohmic H-mode plasmas. Purely ohmic H-mode plasmas display many characteristics similar to ion cyclotron range of frequencies (ICRF) heated H-mode plasmas, including the scaling of the rotation velocity with plasma parameters and the formation of edge pedestals in the electron density and temperature profiles. Very long impurity confinement times (∼1 sec) are seen in edge localized mode-free (ELM-free) Ohmic H-modes and the inward impurity convection velocity profile has been determined to be close to the calculated neoclassical profile. (c) 2000 American Institute of Physics
Plasmas physics research in the MST toroidal confinement device
International Nuclear Information System (INIS)
1992-01-01
Summaries of work completed during this report period are given for the following: (1) anomalous ion heating and dynamo fluctuations, (2) current density fluctuations and ambipolarity of transport, (3) measurement of nonlinear coupling of tearing fluctuations, (4) soft x-ray observation of tearing mode phase-locking, (5) locked modes, sawteeth, and field errors in MST, and (6) boronization using a boron- carbide limiter
Zocco, A.; Xanthopoulos, P.; Doerk, H.; Connor, J. W.; Helander, P.
2018-02-01
The threshold for the resonant destabilisation of ion-temperature-gradient (ITG) driven instabilities that render the modes ubiquitous in both tokamaks and stellarators is investigated. We discover remarkably similar results for both confinement concepts if care is taken in the analysis of the effect of the global shear . We revisit, analytically and by means of gyrokinetic simulations, accepted tokamak results and discover inadequacies of some aspects of their theoretical interpretation. In particular, for standard tokamak configurations, we find that global shear effects on the critical gradient cannot be attributed to the wave-particle resonance destabilising mechanism of Hahm & Tang (Phys. Plasmas, vol. 1, 1989, pp. 1185-1192), but are consistent with a stabilising contribution predicted by Biglari et al. (Phys. Plasmas, vol. 1, 1989, pp. 109-118). Extensive analytical and numerical investigations show that virtually no previous tokamak theoretical predictions capture the temperature dependence of the mode frequency at marginality, thus leading to incorrect instability thresholds. In the asymptotic limit , where is the rotational transform, and such a threshold should be solely determined by the resonant toroidal branch of the ITG mode, we discover a family of unstable solutions below the previously known threshold of instability. This is true for a tokamak case described by a local local equilibrium, and for the stellarator Wendelstein 7-X, where these unstable solutions are present even for configurations with a small trapped-particle population. We conjecture they are of the Floquet type and derive their properties from the Fourier analysis of toroidal drift modes of Connor & Taylor (Phys. Fluids, vol. 30, 1987, pp. 3180-3185), and to Hill's theory of the motion of the lunar perigee (Acta Math., vol. 8, 1886, pp. 1-36). The temperature dependence of the newly determined threshold is given for both confinement concepts. In the first case, the new temperature
Toroidal rotation studies in KSTAR
Lee, S. G.; Lee, H. H.; Yoo, J. W.; Kim, Y. S.; Ko, W. H.; Terzolo, L.; Bitter, M.; Hill, K.; KSTAR Team
2014-10-01
Investigation of the toroidal rotation is one of the most important topics for the magnetically confined fusion plasma researches since it is essential for the stabilization of resistive wall modes and its shear plays an important role to improve plasma confinement by suppressing turbulent transport. The most advantage of KSTAR tokamak for toroidal rotation studies is that it equips two main diagnostics including the high-resolution X-ray imaging crystal spectrometer (XICS) and charge exchange spectroscopy (CES). Simultaneous core toroidal rotation and ion temperature measurements of different impurity species from the XICS and CES have shown in reasonable agreement with various plasma discharges in KSTAR. It has been observed that the toroidal rotation in KSTAR is faster than that of other tokamak devices with similar machine size and momentum input. This may due to an intrinsically low toroidal field ripple and error field of the KSTAR device. A strong braking of the toroidal rotation by the n = 1 non-resonant magnetic perturbations (NRMPs) also indicates these low toroidal field ripple and error field. Recently, it has been found that n = 2 NRMPs can also damp the toroidal rotation in KSTAR. The detail toroidal rotation studies will be presented. Work supported by the Korea Ministry of Science, ICT and Future Planning under the KSTAR project.
Feedback control of resistive wall modes in toroidal devices
International Nuclear Information System (INIS)
Liu, Y.Q.
2002-01-01
Active feedback of resistive wall modes is investigated using cylindrical theory and toroidal calculations. For tokamaks, good performance is obtained by using active coils with one set of coils in the poloidal direction and sensors detecting the poloidal field inside the first wall, located at the outboard mid-plane. With suitable width of the feedback coil such a system can give robust control with respect to variations in plasma current, pressure and rotation. Calculations are shown for ITER-like geometry with a double wall. The voltages and currents in the active coils are well within the design limits for ITER. Calculations for RFP's are presented for a finite number of coils both in the poloidal and toroidal directions. With 4 coils in the poloidal and 24 coils in the toroidal direction, all non-resonant modes can be stabilized both at high and low theta. Several types of sensors, including radial and internal poloidal or toroidal sensors, can stabilize the RWM, but poloidal sensors give the most robust performance. (author)
International Nuclear Information System (INIS)
Peter, W.; Faehl, R.J.
1983-01-01
A new concept for a small compact multimegajoule energy storage device utilizing relativistically densified electron beam circulating in a torus is presented. The electron cloud is produced through inductive charge injection by a travelling magnetic wave circulating the torus. Parameters are given for two representative toroidal energy storage devices, consisting of 1 m and 32 m in radius respectively, which could store more than 4 x 10 17 electrons and 30' MJ in energy. The concept utilizes the idea that large electric and magnetic fields can be produced by a partially space-charge neutralized intense relativistic electron beam which could become many orders of magnitude greater than the externally applied field confining the beam. In the present approach, the electron cloud densification can be achieved gradually by permitting multiple traversals of the magnetic wave around the torus. The magnetic mirror force acts on the orbital magnetic electron dipole moment and completely penetrates the entire electron cloud. As the electrons gain relativistic energies, the beam can be continuously densified at the front of the travelling wave, where the magnetic field is rising with time. The use of travelling magnetic wave to accelerate an electron cloud and the use of large electric field at the thusly accelerated cloud form the basis for a high beam intensity and hence high energy storage. Technical considerations and several potential applications, which include the driving of a powerful gyrotron, are discussed
Theory of the rippling instability in toroidal devices
International Nuclear Information System (INIS)
Rogister, A.
1985-04-01
The theory of the rippling instability is developed for axisymmetric toroidal plasmas including ion viscosity and parallel electron heat conduction, but assuming that the growth rate is small compared to the wave angular frequency. Parallel electron heat conduction is stabilizing but ion viscosity broadens the instability domain. Under certain conditions, an important top-bottom asymmetry of the density fluctuation spectrum may arise. (orig./GG)
Behavior of Compact Toroid Injected into C-2U Confinement Vessel
Matsumoto, Tadafumi; Roche, T.; Allrey, I.; Sekiguchi, J.; Asai, T.; Conroy, M.; Gota, H.; Granstedt, E.; Hooper, C.; Kinley, J.; Valentine, T.; Waggoner, W.; Binderbauer, M.; Tajima, T.; the TAE Team
2016-10-01
The compact toroid (CT) injector system has been developed for particle refueling on the C-2U device. A CT is formed by a magnetized coaxial plasma gun (MCPG) and the typical ejected CT/plasmoid parameters are as follows: average velocity 100 km/s, average electron density 1.9 ×1015 cm-3, electron temperature 30-40 eV, mass 12 μg . To refuel particles into FC plasma the CT must penetrate the transverse magnetic field that surrounds the FRC. The kinetic energy density of the CT should be higher than magnetic energy density of the axial magnetic field, i.e., ρv2 / 2 >=B2 / 2μ0 , where ρ, v, and B are mass density, velocity, and surrounded magnetic field, respectively. Also, the penetrated CT's trajectory is deflected by the transverse magnetic field (Bz 1 kG). Thus, we have to estimate CT's energy and track the CT trajectory inside the magnetic field, for which we adopted a fast-framing camera on C-2U: framing rate is up to 1.25 MHz for 120 frames. By employing the camera we clearly captured the CT/plasmoid trajectory. Comparisons between the fast-framing camera and some other diagnostics as well as CT injection results on C-2U will be presented.
Using Quantum Confinement to Uniquely Identify Devices
Roberts, J.; Bagci, I. E.; Zawawi, M. A. M.; Sexton, J.; Hulbert, N.; Noori, Y. J.; Young, M. P.; Woodhead, C. S.; Missous, M.; Migliorato, M. A.; Roedig, U.; Young, R. J.
2015-11-01
Modern technology unintentionally provides resources that enable the trust of everyday interactions to be undermined. Some authentication schemes address this issue using devices that give a unique output in response to a challenge. These signatures are generated by hard-to-predict physical responses derived from structural characteristics, which lend themselves to two different architectures, known as unique objects (UNOs) and physically unclonable functions (PUFs). The classical design of UNOs and PUFs limits their size and, in some cases, their security. Here we show that quantum confinement lends itself to the provision of unique identities at the nanoscale, by using fluctuations in tunnelling measurements through quantum wells in resonant tunnelling diodes (RTDs). This provides an uncomplicated measurement of identity without conventional resource limitations whilst providing robust security. The confined energy levels are highly sensitive to the specific nanostructure within each RTD, resulting in a distinct tunnelling spectrum for every device, as they contain a unique and unpredictable structure that is presently impossible to clone. This new class of authentication device operates with minimal resources in simple electronic structures above room temperature.
Fueling of magnetic-confinement devices
International Nuclear Information System (INIS)
Milora, S.L.
1981-01-01
A general overview of the fueling of magnetic confinement devices is presented, with particular emphasis on recent experimental results. Various practical fueling mechanisms are considered, such as cold gas inlet (or plasma edge fueling), neutral beam injection, and injection of high speed cryogenic hydrogen pellets. The central role played by charged particle transport and recycle of plasma particles from material surfaces in contact with the plasma is discussed briefly. The various aspects of hydrogen pellet injection are treated in detail, including applications to the production of high purity startup plasmas for stellarators and other devices, refueling of tokamak plasmas, pellet ablation theory, and the technology and performance characteristics of low and high speed pellet injectors
Ultra-Compact Electrostatic Confinement Fusion Device
Young, Garrett
2017-10-01
A unique, linear dual-beam configuration with an internal volume of 144 cc was simulated and operated. Deuteron ion paths were simulated using Mathematica and the electric field distribution was optimized relative to convergence density, potential well efficiency, and confinement time. The resulting cathode design is a departure from conventional systems, with gradual conical surfaces. The simulated trajectories correlated well to the observed operation, evidenced by two principle factors. First, the high transparency of the cathode due to the focused beams allowed for >1 kW operation without duration-limiting temperature rise. Second, when compared to inertial electrostatic configurations, the constructed device achieved record steady-state D-D fusion rates per internal volume including 3.7E +4 fusions/sec/cc at 52 kV applied potential and 28 mTorr operating pressure.
Linear theory of the tearing instability in axisymmetric toroidal devices
International Nuclear Information System (INIS)
Rogister, A.; Singh, R.
1988-08-01
We derive a very general kinetic equation describing the linear evolution of low m/l modes in axisymmetric toroidal plasmas with arbitrary cross sections. Included are: Ion sound, inertia, diamagnetic drifts, finite poloidal beta, and finite ion Larmor radius effects. Assuming the magnetic surfaces to form a set of nested tori with circular cross sections of shifted centers, and introducing adequate simplifications justified by our knowledge of experimental tokamak plasmas, we then obtain explicitely the sets of equations describing the coupling of the quasimodes 0/1, 1/1, 2/1, and, for m≥2, m/1, (m+1)/1. By keeping finite aspect ratio effects into account when calculating the jump of the derivative of the eigenfunction, it is shown that the theory can explain the rapid evolution, within one sawtooth period, of the growth rate of the sawteeth precursors from resistive values to magnetohydrodynamic ones. The characteristics thus theoretically required from current profiles in sawtoothing discharges have clearly been observed. Other aspects of the full theory could be relevant to the phenomenon of major disruptions. (orig.)
Air core poloidal magnetic field system for a toroidal plasma producing device
International Nuclear Information System (INIS)
Marcus, F.B.
1978-01-01
A poloidal magnetics system for a plasma producing device of toroidal configuration is provided that reduces both the total volt-seconds requirement and the magnitude of the field change at the toroidal field coils. The system utilizes an air core transformer wound between the toroidal field (TF) coils and the major axis outside the TF coils. Electric current in the primary windings of this transformer is distributed and the magnetic flux returned by air core windings wrapped outside the toroidal field coils. A shield winding that is closely coupled to the plasma carries a current equal and opposite to the plasma current. This winding provides the shielding function and in addition serves in a fashion similar to a driven conducting shell to provide the equilibrium vertical field for the plasma. The shield winding is in series with a power supply and a decoupling coil located outside the TF coil at the primary winding locations. The present invention requires much less energy than the usual air core transformer and is capable of substantially shielding the toroidal field coils from poloidal field flux
Glass solidification material confinement test device
International Nuclear Information System (INIS)
Namiki, Shigekazu.
1997-01-01
In a device for confining glass solidification materials, a pipeline connecting a detection vessel and a detector is formed to have a double walled structure, and air blowing holes are formed on the wall of the inner pipe, and an air supply mechanism is connected to inner and outer pipes for supplying blowing air thereby preventing deposition on the inner pipe wall. The air blowing holes are formed by constituting the pipe by using a porous sintered material and porous portions thereof are defined as the air blowing holes, or holes are formed on the pipe wall made of a metal by machining. A blowing boundary layer is formed by blowing the supplied air along the pipe wall of the inner pipe, by which deposition of the sucked materials to the inner wall of the inner pipe is prevented, and all of the materials sucked from the detection vessel are collected to the detector. In addition, an air exit pipe is formed into a double walled structure so as to be supplied blowing air from the air supply mechanism thereby enabling to prevent deposition of sucked materials more reliably. (N.H.)
Edge plasma on the toroidal screw pinch device (TPE-2)
International Nuclear Information System (INIS)
Kiyama, Hiroko
1992-01-01
Helium discharge cleaning just before every screw pinch discharge was effective to produce low q, high density and reproducible plasmas and to improve energy confinement. The specific length of edge density, λ n is the same order to that of small tokamak plasmas and the particle diffusion is the order of Bohm diffusion. The particle confinement time is shorter as the core plasma density increases and q I decreases. The edge density can be changed by helium, deuterium or hydrogen discharge cleaning. In the low recycling plasma (R=0.3∼0.4), just after the helium discharge cleaning, the ion saturation current of the electrostatic probes of edge plasma, j-bar s , is proportional to square of the average core density, n-bar e , in high q plasma (q I ∼3). j-bar s is proportional to n-bar e in low q plasma (q I ∼1.5). Then, the edge density, n e (a)∝n-bar e 2∼2.5 in high q plasma and n e (a)∝n-bar e 1∼1.5 in low q plasma. In the high recycling plasma (R=0.6∼0.8), just after hydrogen or deuterium discharge cleaning, j-bar s is proportional to n-bar e in high q and low q plasma. Then, n e (a)∝n-bar e 1∼1.5 in low q and high q plasma. j-bar s is proportional to q I inversely in the low recycling plasma. As the recycling increases, j-bar s is large and the dependence of j-bar s on q I becomes weak. This dependence coincides with the dependence of density profile of core plasma on q I . The core density profile depends on q I and the profile peaks with increasing of core density in low q plasma or simple theta pinch plasma, in the low recycling plasma. As the recycling increases, the profile becomes broader and the dependence on q I and n-bar e becomes weak. (author)
Magnetic confinement in plasmas in nuclear devices
International Nuclear Information System (INIS)
Tull, C.G.
1979-01-01
The main emphasis of the magnetic fusion energy research program today lies in the development of two types of confinement schemes: magnetic mirrors and tokamaks. Experimental programs for both of these confinement schemes have shown steady progress toward achieving fusion power breakeven. The scaling of the current machines to a reactor operating regime and newly developed methods for plasma heating will very likely produce power breakeven within the next decade. Predictions are that the efficiency in a fusion power plant should exceed 32%
DEFF Research Database (Denmark)
Thrysøe, Alexander Simon; Løiten, M.; Madsen, J.
2018-01-01
The conditions in the edge and scrape-off layer (SOL) of magnetically confined plasmas determine the overall performance of the device, and it is of great importance to study and understand the mechanics that drive transport in those regions. If a significant amount of neutral molecules and atoms...
MHD instabilities and their effects on plasma confinement in the large helical device plasmas
Energy Technology Data Exchange (ETDEWEB)
Toi, K.; Ohdachi, S. [National Inst. for Fusion Science, Toki, Gifu (Japan); Yamamoto, S. [Nagoya Univ., Dept. of Energy Engineering and Science, Nagoya, Aichi (JP)] [and others
2002-10-01
Characteristics of MHD instabilities and their impacts on plasma confinement are studied in current free plasmas of the Large Helical Device (LHD). Spontaneous L-H transition is often observed in high beta plasmas in the range of 2% averaged beta at low toroidal field (B{sub t} {<=} 0.6 T). The stored energy rapidly rises by the transition, but quickly saturates by the growth of m=2/n=3 and m=2/n=2 modes (m and n: poloidal and toroidal mode numbers) excited in the plasma edge region. Even low beta plasmas, ELM like activities are sometimes induced in high performance plasmas with high edge pressure pedestal, and transiently reduce the stored energy by about 10%. Energetic ion driven MHD modes such as Alfven eigenmodes are studied in the very wide parameter range of the averaged beta of energetic ions <{beta}{sub b} sub (parallel)> up to 5% and the ratio of energetic ion velocity to the Alfven velocity V{sub b} sub (parallel)/V{sub A} up to 2.5. In addition to the observation of toroidicity induced Alfven eigenmodes (TAEs), coherent magnetic fluctuations of helicity induced Alfven eigenmodes (HAEs) have been observed for the first time in NBI heated plasmas. Transition of TAE to global Alfven eigenmode (GAE) is also observed in a discharge with temporal evolution of the rotational transform profile, having a similarity to the phenomenon in a reversed shear tokamak. At the low magnetic field, bursting TAEs enhance energetic ion loss transiently, but lead to the transient improvement of bulk plasma confinement in the plasma central region. (author)
MHD instabilities and their effects on plasma confinement in the large helical device plasmas
Energy Technology Data Exchange (ETDEWEB)
Toi, K.; Ohdachi, S. [National Inst. for Fusion Science, Toki, Gifu (Japan); Yamamoto, S. [Nagoya Univ., Dept. of Energy Engineering and Science, Nagoya, Aichi (JP)] [and others
2002-11-01
Characteristics of MHD instabilities and their impacts on plasma confinement are studied in current free plasmas of the Large Helical Device (LHD). Spontaneous L-H transition is often observed in high beta plasmas in the range of 2% averaged beta at low toroidal field (B{sub t} {<=} 0.6T). The stored energy rapidly rises with the transition, but quickly saturates due to the growth of m=2/n=3 and m=2/n=2 modes (m and n: poloidal and toroidal mode numbers) excited in the plasma edge region. Even in low beta plasmas, ELM activities are sometimes induced in high performance plasmas with a steep edge pressure gradient, and transiently reduce the stored energy by about 10%. Energetic ion driven MHD modes such as Alfven eigenmodes are studied in the very wide range of characteristic parameters: the averaged beta of energetic ions <{beta}{sub b//}> up to 5% and the ratio of energetic ion velocity to the Alfven velocity V{sub b//}/V{sub A} up to 2.5. In addition to the observation of toroidicity induced Alfven eigenmodes (TAEs), coherent magnetic fluctuations of helicity induced Alfven eigenmodes (HAEs) have been observed for the first time in NBI heated plasmas. The transition of the TAE to the global Alfven eigenmode (GAE) is also observed in a discharge with temporal evolution of the rotational transform profile, having a similarity to the phenomenon in a reversed shear tokamak. At low magnetic field, bursting TAEs transiently induce a significant loss of energetic ions, but lead to the transient improvement of bulk plasma confinement in the plasma central region. (author)
Investigation of the toroidal dependence of first wall conditions in the Large Helical Device
International Nuclear Information System (INIS)
Hino, T.; Ashikawa, N.; Masuzaki, S.; Sagara, A.; Komori, A.; Yamauchi, Y.; Nobuta, Y.; Matsunaga, Y.
2010-11-01
The non-uniform wall conditions such as the fuel hydrogen retention and the erosion/deposition have been investigated in the Large Helical Device (LHD) by using toroidally and poloidally distributed material probes. They were installed in every experimental campaign from 2003 to 2010, and the evolutions of the wall conditions were clearly obtained. The wall conditions significantly depended on the operational procedures and the positions of in-vessel devices such as anodes for glow discharge and the ICRF antennas. The toroidal profiles for the amounts of retained hydrogen and helium, and the depth of wall erosion, were systematically measured. The hydrogen, helium and neon glow discharges have been conducted by using two anodes before and after the hydrogen or helium main discharges. The amount of retained hydrogen was large in the vicinity of the anodes, and drastically decreased as increase of the campaign number. This reduction well corresponds to the time period used for the hydrogen glow discharge conditioning. The erosion depth was large at the walls relatively close to the anodes, which is owing to the sputtering during the helium and neon glow discharges. The depositions of carbon and boron also depended on the positions of NBI and diborane gas inlet used for boronization, respectively. The amount of the retained helium was large at the walls close to the anodes owing to the helium glow discharge. The amount of retained helium became large at the walls close to the ICRF antennas owing to the implantation of high energy helium during the helium main discharge with the ICRF heating. In the present study, the toroidal dependences of the gas retention and the erosion/deposition in LHD were obtained, and the effects of the in-vessel devices on these plasma wall interactions were clarified. (author)
Far-infrared laser scattering in the ACT-I toroidal device
Energy Technology Data Exchange (ETDEWEB)
Goree, J.; Mansfield, D.K.; Ono, M.; Wong, K.L.
1984-12-01
A far-infrared laser scattering diagnostic has been built for the ACT-I toroidal device. The optical system uses a passively stabilized 447-..mu..m CH/sub 3/I laser. A polyethylene etalon is the beam splitter. The vacuum windows are plastic (TPX), which we found has the vacuum property Q 6.5 x 10/sup -9/ torr-liter/sec/cm/sup 2/. Using paraboloidal and ellipsoidal mirrors for detection optics improves the signal strength and allows a better rf enclosure design for the detector. The diagnostic was tested by scattering from an ion Bernstein wave, a technique which can be used for ion temperature diagnostics.
Fast mega pixels video imaging of a toroidal plasma in KT5D device
International Nuclear Information System (INIS)
Xu Min; Wang Zhijiang; Lu Ronghua; Sun Xiang; Wen Yizhi; Yu Changxuan; Wan Shude; Liu Wandong; Wang Jun; Xiao Delong; Yu Yi; Zhu Zhenghua; Hu Linyin
2005-01-01
A direct imaging system, viewing visible light emission from plasmas tangentially or perpendicularly, has been set up on the KT5D toroidal device to monitor the real two-dimensional profiles of purely ECR generated plasmas. This system has a typical spatial resolution of 0.2 mm (1280x1024 pixels) when imaging the whole cross section. Interesting features of ECR plasmas have been found. Different from what classical theories have expected, a resonance layer with two or three bright spots, rather than an even vertical band, has been observed. In addition, images also indicate an intermittent splitting and drifting character of the plasmas
Optimization of confinement in a toroidal plasma subject to strong radial electric fields
International Nuclear Information System (INIS)
Roth, J.R.
1977-01-01
A preliminary report on the identification and optimization of independent variables which affect the ion density and confinement time in a bumpy torus plasma is presented. The independent variables include the polarity, position, and number of the midplane electrode rings, the method of gas injection, and the polarity and strength of a weak vertical magnetic field. Some characteristic data taken under condition when most of the independent variables were optimized are presented. The highest value of the electron number density on the plasma axis is 3.2 x 10 to the 12th power/cc, the highest ion heating efficiency is 47 percent, and the longest particle containment time is 2.0 milliseconds
Tokamak with liquid metal toroidal field coil
International Nuclear Information System (INIS)
Ohkawa, T.; Schaffer, M.J.
1981-01-01
Tokamak apparatus includes a pressure vessel for defining a reservoir and confining liquid therein. A toroidal liner disposed within the pressure vessel defines a toroidal space within the liner. Liquid metal fills the reservoir outside said liner. Electric current is passed through the liquid metal over a conductive path linking the toroidal space to produce a toroidal magnetic field within the toroidal space about the major axis thereof. Toroidal plasma is developed within the toroidal space about the major axis thereof
Frassinetti, L.; Yagi, Y.; Koguchi, H.; Shimada, T.; Hirano, Y.; Sakakita, H.
2006-04-01
The pulsed poloidal current drive technique reduces the magnetic chaos that characterizes reversed-field pinch configurations and produces a regime with an improved confinement. In this paper, we describe that, in TPE-RX [Y. Yagi et al., Fusion Eng. Des. 45, 409 (1999)], the termination phase of this regime is due to the increase of the slinky structure that creates a stochastic region and produces the expulsion of energy in a localized toroidal position. Before the plasma reaches the improved confinement regime, the slinky distorts the chain of m =0 islands on the reversal surface. During this regime, the magnetic activity and the phase locking decrease, the distortion in the island chain disappears, and the confinement increases. At the termination of this regime the magnetic activity markedly increases, as well as the phase locking, recreating the distortion in the m =0 magnetic island chain. As a consequence, at the position of the distortion the plasma region inside the reversal surface is characterized by a rapid energy loss, and outside the reversal surface a toroidally localized energy expulsion is induced.
International Nuclear Information System (INIS)
Frassinetti, L.; Yagi, Y.; Koguchi, H.; Shimada, T.; Hirano, Y.; Sakakita, H.
2006-01-01
The pulsed poloidal current drive technique reduces the magnetic chaos that characterizes reversed-field pinch configurations and produces a regime with an improved confinement. In this paper, we describe that, in TPE-RX [Y. Yagi et al., Fusion Eng. Des. 45, 409 (1999)], the termination phase of this regime is due to the increase of the slinky structure that creates a stochastic region and produces the expulsion of energy in a localized toroidal position. Before the plasma reaches the improved confinement regime, the slinky distorts the chain of m=0 islands on the reversal surface. During this regime, the magnetic activity and the phase locking decrease, the distortion in the island chain disappears, and the confinement increases. At the termination of this regime the magnetic activity markedly increases, as well as the phase locking, recreating the distortion in the m=0 magnetic island chain. As a consequence, at the position of the distortion the plasma region inside the reversal surface is characterized by a rapid energy loss, and outside the reversal surface a toroidally localized energy expulsion is induced
International Nuclear Information System (INIS)
Chen Wenge; Pan Yannian; Chen Zuoming; Wei Jin
2008-01-01
The toroidal field (TF) magnet system of EAST (HT-7U), which consists of 16 superconducting coils enclosed in steel cases, has been manufactured to generate the magnetic field of 3.5 T at the plasma center to maintain plasma in a tokamak configuration with a current up to 1 MA. The TF coils have an approximately D-shape geometry of 2.6 m wide and 4.0 m high, and operate at a maximum field of 5.8 T. The conductor used in the TF coil is NbTi/Cu cable-in conduit (CIC) conductor, and its operating current is 14.3 kA. In March 2006, the first cooling down of the EAST device has been carried out successfully. The total of TF magnet system has been cooled down from room temperature to 4.5 K, and the TF system has been energized up to 8.2 kA with 5 A/s ramp rate. In September 2006, full performances of the TF magnet system have been reached, and the device of EAST has delivered its first plasma. In addition, the TF magnet system has been routinely operated with a current maintained constant on a whole day basis, for a preliminary program of more than 500 shots. In this paper, the main parts of the design, developmental tests, and the fabrication and assembly of TF coils are described in detail
Code improvements and applications of a two-dimensional edge plasma model for toroidal devices
International Nuclear Information System (INIS)
Baelmans, M.
1994-03-01
This thesis focuses mainly on plasma behaviour in boundary layers of magnetically confined plasmas. Increasing emphasis has been put on edge studies during the last decade, as it became evident that some aspects of Tokamak operations are largely controlled, or even dominated, by edge processes. Therefore, the motivation for this research is to improve understanding of plasma behaviour in general, and edge plasma behaviour in particular, firstly in present experiments, and also to predict edge plasma conditions in future nuclear fusion devices. In a first section some fundamental concepts and principles of controlled fusion are described. Two different types of plasma confinement concepts which have promising features with regard to the above mentioned goal are outlined in a next section, 1.2. In section 1.3 an introduction to plasma edge phenomena is given. In a last section, 1.4, the outline of the thesis is described. (orig.)
Alternative approaches to plasma confinement
Roth, J. R.
1978-01-01
The paper discusses 20 plasma confinement schemes each representing an alternative to the tokamak fusion reactor. Attention is given to: (1) tokamak-like devices (TORMAC, Topolotron, and the Extrap concept), (2) stellarator-like devices (Torsatron and twisted-coil stellarators), (3) mirror machines (Astron and reversed-field devices, the 2XII B experiment, laser-heated solenoids, the LITE experiment, the Kaktus-Surmac concept), (4) bumpy tori (hot electron bumpy torus, toroidal minimum-B configurations), (5) electrostatically assisted confinement (electrostatically stuffed cusps and mirrors, electrostatically assisted toroidal confinement), (6) the Migma concept, and (7) wall-confined plasmas. The plasma parameters of the devices are presented and the advantages and disadvantages of each are listed.
Current generation by unidirectional lower hybrid waves in the ACT-1 toroidal device
International Nuclear Information System (INIS)
Wong, K.L.; Horton, R.; Ono, M.
1980-05-01
An unambiguious experimental observation of current generation by unidirectional lower hybrid waves in a toroidal plasma is reported. Up to 10 amperes of current was driven by 500 watts of rf power at 160 MHz
Formation of a compact toroid for enhanced efficiency
Energy Technology Data Exchange (ETDEWEB)
Mozgovoy, A. G. [P.N. Lebedev Physical Institute, Moscow 119991 (Russian Federation); Romadanov, I. V.; Ryzhkov, S. V., E-mail: ryzhkov@power.bmstu.ru [Bauman Moscow State Technical University, Moscow 105005 (Russian Federation)
2014-02-15
We report here our results on the formation of a plasma configuration with the generic name of compact toroid (CT). A method of compact toroid formation to confine, heat and compress a plasma is investigated. Formation of a compact torus using an additional toroidal magnetic field helps to increase the plasma current to a maintainable level of the original magnetic field. We design the Compact Toroid Challenge (CTC) experiment in order to improve the magnetic flux trapping during field reversal in the formation of a compact toroid. The level of the magnetic field immersed in the plasma about 70% of the primary field is achieved. The CTC device and scheme of high level capturing of magnetic flux are presented.
Characterization of local turbulence in magnetic confinement devices
International Nuclear Information System (INIS)
Rajkovic, Milan; Skoric, Milos; Solna, Knut; Antar, Ghassan
2007-07-01
A multifractal analysis based on evaluation and interpretation of Large Deviation spectra is applied to plasma edge turbulence data from different devices (MAST and Tore Supra). It is demonstrated that in spite of some universal features there are unique characteristics for each device as well as for different confinement regimes. In the second part of the exposition the issue of estimating the variable power law behavior of spectral densities is addressed. The analysis of this issue is performed using fractional Brownian motion (fBm) as the underlying stochastic model whose parameters are estimated locally in time by wavelet scale spectra. In such a manner information about the inertial range as well as variability of the fBm parameters is obtained giving more information important for understanding edge turbulence and intermittency. (author)
Directory of Open Access Journals (Sweden)
Yoder Alberto Suaza
2014-01-01
Full Text Available Se calcula la estructura de energía de un ión D - , es decir dos electrones ligados a una impureza donadora fija, encarcelada en un anillo cuántico toroidal cuando el sistema completo está simultáneamente bajo la presencia de un campo de presión hidrostática y de un campo magnético. Con el propósito de estudiar las propiedades del ión D - , nosotros asumimos que los anillos cuánticos son muy estrechos, lo cual nos permitirá usar la bien conocida aproximación adiabática para desacoplar el movimiento rápido en direcciones radial y axial del movimiento lento de rotación. Se estudian los cambios en el ordenamiento de los niveles y el cruce entre las curvas como una función de la línea central del anillo, posición de la donadora, y del campo magnético para diferentes valores de presión hidrostática. Finalmente, nosotros comparamos los resultados con aquellos previamente reportados para casos límites. A partir de estas comparaciones es posible establecer un excelente acuerdo entre los diferentes resultados, lo cual demuestra la calidad del modelo implementado en este trabajo.
Pedrosa, M. A.; Hidalgo, C.; Carreras, B. A.; Balbín, R.; García-Cortés, I.; Newman, D.; van Milligen, B.; Sánchez, E.; Bleuel, J.; Endler, M.; Davies, S.; Matthews, G. F.
1999-05-01
Frequency spectra of fluctuations of the ion saturation current, floating potential, and turbulent transport measured in the plasma edge of different fusion devices (tokamaks and stellarators) have been compared. All of the spectra show the same behavior over the whole frequency range investigated, which supports universality of plasma turbulence or turbulent transport. The results obtained are an indication of edge-plasma turbulence evolving into a critical state, independent of the size and plasma characteristics of the device.
Kuroda, Kengoh; Wada, Manato; Uchida, Masaki; Tanaka, Hitoshi; Maekawa, Takashi
2016-02-01
In toroidal electron cyclotron resonance (ECR) plasmas under a weak external vertical field {{B}\\text{V}} a part of the pressure driven vertical charge separation current returns along the helical field lines, generating a toroidal current. The rest circulates via the conducting vacuum vessel. Only the toroidal current contributes to the production of a closed flux surface. Both the toroidal and vertical currents are an equilibrium current that provides a radial force by the interaction with the vertical field and the toroidal field, respectively, to counter-balance the outward pressure ballooning force. We have done experiments using 2.45 GHz microwaves in the low aspect ratio torus experiment (LATE) device to investigate in what way and how much the toroidal current is generated towards the initiation of a closed flux surface. In steady discharges by {{P}\\text{inj}}=1.5 kW under various {{B}\\text{V}} both the pressure and the toroidal current become large with {{B}\\text{V}} . When {{B}\\text{V}}=6.8 G, a toroidal current of 290 A is generated and the vertical field is reduced to 1.2 G inside the current channel, being close to the initiation of a closed flux surface. In this plasma the return current does not obey Ohm’s law. Instead, the return current flows so that the electric force on the electron fluid is balanced with the pressure gradient along the field lines. Near the top and bottom boundaries superthermal electrons flow beyond the potential barrier onto the walls along the field lines. In another discharge by the low power of {{P}\\text{inj}}=1.0 kW under {{B}\\text{V}}=8.3 G, both the toroidal current and the pressure steadily increase for an initial duration of 1.1 s and then abruptly jump, generating an initial closed flux surface. While the counter force from the vertical current is initially dominant, that from the toroidal current gradually increases and becomes four times larger than that from the vertical current just before the initiation
International Nuclear Information System (INIS)
Mai, L.P.; Malick, F.S.
1981-01-01
The mechanical, structural, thermal, electrical, and vacuum design of a magnetic toroidal divertor system for the Elmo Bumpy Torus (EBT-S) is presented. The EBT-S is a toroidal magnetic fusion device located at the ORNL that operates under steady state conditions. The engineering of the divertor was performed during the second of three phases of a program aimed at the selection, design, fabrication, and installation of a magnetic divertor for EBT-S. The magnetic analysis of the toroidal divertor was performed during Phase I of the program and has been reported in a separate document. In addition to the details of the divertor design, the modest modifications that are required to the EBT-S device and facility to accommodate the divertor system are presented
Turbulent and neoclassical toroidal momentum transport in tokamak plasmas
International Nuclear Information System (INIS)
Abiteboul, J.
2012-10-01
The goal of magnetic confinement devices such as tokamaks is to produce energy from nuclear fusion reactions in plasmas at low densities and high temperatures. Experimentally, toroidal flows have been found to significantly improve the energy confinement, and therefore the performance of the machine. As extrinsic momentum sources will be limited in future fusion devices such as ITER, an understanding of the physics of toroidal momentum transport and the generation of intrinsic toroidal rotation in tokamaks would be an important step in order to predict the rotation profile in experiments. Among the mechanisms expected to contribute to the generation of toroidal rotation is the transport of momentum by electrostatic turbulence, which governs heat transport in tokamaks. Due to the low collisionality of the plasma, kinetic modeling is mandatory for the study of tokamak turbulence. In principle, this implies the modeling of a six-dimensional distribution function representing the density of particles in position and velocity phase-space, which can be reduced to five dimensions when considering only frequencies below the particle cyclotron frequency. This approximation, relevant for the study of turbulence in tokamaks, leads to the so-called gyrokinetic model and brings the computational cost of the model within the presently available numerical resources. In this work, we study the transport of toroidal momentum in tokamaks in the framework of the gyrokinetic model. First, we show that this reduced model is indeed capable of accurately modeling momentum transport by deriving a local conservation equation of toroidal momentum, and verifying it numerically with the gyrokinetic code GYSELA. Secondly, we show how electrostatic turbulence can break the axisymmetry and generate toroidal rotation, while a strong link between turbulent heat and momentum transport is identified, as both exhibit the same large-scale avalanche-like events. The dynamics of turbulent transport are
Experimental progress on zonal flow physics in toroidal plasmas
International Nuclear Information System (INIS)
Fujisawa, A.; Ido, T.; Shimizu, A.; Okamura, S.; Matsuoka, K.; Hamada, Y.; Nakano, H.; Ohshima, S.; Hoshino, Katsumichi; Shinohara, Koji; Miura, Yukitoshi
2006-10-01
Present status of experiments on zonal flows is overviewed. Innovative use of traditional and modern diagnostics has revealed unambiguously the existence of zonal flows, their spatio-temporal characteristics, their relationship with turbulence, and their effects on confinement. Particularly, a number of observations have been accumulated on the oscillatory branch of zonal flows, dubbed geodesic acoustic modes, suggesting necessity of theories to give their proper description. In addition to these basic properties of zonal flows, several new methods have elucidated the zonal flow generation processes from turbulence. Further investigation of relationship between zonal flows and confinement is strongly encouraged as cross-device activity including low temperature toroidal and linear devices. (author)
Energy Technology Data Exchange (ETDEWEB)
Crotinger, J.A.; LoDestro, L.; Pearlstein, L.D.; Tarditi, A.; Casper, T.A.; Hooper, E.B.
1997-03-21
In 1992, our group began exploring the requirements for a comprehensive simulation code for toroidal magnetic fusion experiments. There were several motivations for taking this step. First, the new machines being designed were much larger and more expensive than current experiments. Second, these new designs called for much more sophisticated control of the plasma shape and position, as well as the distributions of energy, mass, and current within the plasma. These factors alone made it clear that a comprehensive simulation capability would be an extremely valuable tool for machine design. The final motivating factor was that the national Numerical Tokamak Project (NTP) had recently received High Performance Computing and Communications (HPCC) Grand Challenge funding to model turbulent transport in tokamaks, raising the possibility that first-principles simulations of this process might be practical in the near future. We felt that the best way to capitalize on this development was to integrate the resulting turbulence simulation codes into a comprehensive simulation. Such simulations must include the effects of many microscopic length- and time-scales. In order to do a comprehensive simulation efficiently, the length- and time- scale disparities must be exploited. We proposed to do this by coupling the average or quasistatic effects from the fast time-scales to a slow-time-scale transport code for the macroscopic plasma evolution. In FY93-FY96 we received funding to investigate algorithms for computationally coupling such disparate-scale simulations and to implement these algorithms in a prototype simulation code, dubbed CORSICA. Work on algorithms and test cases proceeded in parallel, with the algorithms being incorporated into CORSICA as they became mature. In this report we discuss the methods and algorithms, the CORSICA code, its applications, and our plans for the future.
Excitation and propagation of modified fluctuation in a toroidal plasma in KT-5C device
International Nuclear Information System (INIS)
Sun Xuan; Wang Zhijiang; Lu Ronghua; Wen Yizhi; Wan Shude; Yu Changxuan; Liu Wandong; Wang Cheng; Pan Gesheng; Wang Wenhao; Wang Jun
2002-01-01
Understanding the propagation of the turbulent perturbation in the tokamak edge plasma is an important issue to actively modify or control the turbulence, reduce the anomalous transport and improve plasma confinement. To realize active modification of the edge perturbation, a high dynamic output, broad-band, low-cost power amplifier is set up, and used to drive the active probes in the experiments on KT-5C Tokamak. By using small-size magnetic probes together with Langmiur probes. It is observed that the modified perturbation by the active probes with sufficiently driving power may spread with electrostatic mode, and electromagnetic mode as well
Collisional boundary layer analysis for neoclassical toroidal plasma viscosity in tokamaks
Czech Academy of Sciences Publication Activity Database
Shaing, K.C.; Cahyna, Pavel; Bécoulet, M.; Park, J.-K.; Sabbagh, S.A.; Chu, M.S.
2008-01-01
Roč. 15, č. 8 (2008), 082506-1-7 ISSN 1070-664X Institutional research plan: CEZ:AV0Z20430508 Keywords : plasma boundary layers * plasma toroidal confinement * Tokamak devices Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.427, year: 2008 http://dx.doi.org/10.1063/1.2969434
Matsumoto, T; Sekiguchi, J; Asai, T; Gota, H; Garate, E; Allfrey, I; Valentine, T; Morehouse, M; Roche, T; Kinley, J; Aefsky, S; Cordero, M; Waggoner, W; Binderbauer, M; Tajima, T
2016-05-01
A compact toroid (CT) injector was developed for the C-2 device, primarily for refueling of field-reversed configurations. The CTs are formed by a magnetized coaxial plasma gun (MCPG), which consists of coaxial cylindrical electrodes and a bias coil for creating a magnetic field. First, a plasma ring is generated by a discharge between the electrodes and is accelerated by Lorenz self-force. Then, the plasma ring is captured by an interlinkage flux (poloidal flux). Finally, the fully formed CT is ejected from the MCPG. The MCPG described herein has two gas injection ports that are arranged tangentially on the outer electrode. A tungsten-coated inner electrode has a head which can be replaced with a longer one to extend the length of the acceleration region for the CT. The developed MCPG has achieved supersonic CT velocities of ∼100 km/s. Plasma parameters for electron density, electron temperature, and the number of particles are ∼5 × 10(21) m(-3), ∼40 eV, and 0.5-1.0 × 10(19), respectively.
Energy Technology Data Exchange (ETDEWEB)
Matsumoto, T., E-mail: cstd14003@g.nihon-u.ac.jp; Sekiguchi, J.; Asai, T. [College of Science and Technology, Nihon University, 1-8-14 Kanda, Chiyoda-ku, Tokyo 1018308 (Japan); Gota, H.; Garate, E.; Allfrey, I.; Valentine, T.; Morehouse, M.; Roche, T.; Kinley, J.; Aefsky, S.; Cordero, M.; Waggoner, W.; Binderbauer, M. [Tri Alpha Energy, Inc., P.O. Box 7010 Rancho Santa Margarita, California 92688 (United States); Tajima, T. [Tri Alpha Energy, Inc., P.O. Box 7010 Rancho Santa Margarita, California 92688 (United States); Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States)
2016-05-15
A compact toroid (CT) injector was developed for the C-2 device, primarily for refueling of field-reversed configurations. The CTs are formed by a magnetized coaxial plasma gun (MCPG), which consists of coaxial cylindrical electrodes and a bias coil for creating a magnetic field. First, a plasma ring is generated by a discharge between the electrodes and is accelerated by Lorenz self-force. Then, the plasma ring is captured by an interlinkage flux (poloidal flux). Finally, the fully formed CT is ejected from the MCPG. The MCPG described herein has two gas injection ports that are arranged tangentially on the outer electrode. A tungsten-coated inner electrode has a head which can be replaced with a longer one to extend the length of the acceleration region for the CT. The developed MCPG has achieved supersonic CT velocities of ∼100 km/s. Plasma parameters for electron density, electron temperature, and the number of particles are ∼5 × 10{sup 21} m{sup −3}, ∼40 eV, and 0.5–1.0 × 10{sup 19}, respectively.
An assessment of relativistic electron beam for plasma heating in magnetically confined devices
International Nuclear Information System (INIS)
Paithankar, A.S.; Rohatgi, V.K.
1979-01-01
The status and progress of various techniques employed for heating the plasma to thermonuclear temperature in magnetically confined devices are presented. The merits and demerits of each technique are critically studied with a view to assess the potential of Relativistic Electron Beam (REB) heating technique, which is a new comer in the field. It has been concluded that REB heating is very much suitable for linear solenoidal reactor devices and is also a potential future candidate for plasma heating for torodial devices. (auth.)
Quantum confined laser devices optical gain and recombination in semiconductors
Blood, Peter
2015-01-01
The semiconductor laser, invented over 50 years ago, has had an enormous impact on the digital technologies that now dominate so many applications in business, commerce and the home. The laser is used in all types of optical fibre communication networks that enable the operation of the internet, e-mail, voice and skype transmission. Approximately one billion are produced each year for a market valued at around $5 billion. Nearly all semiconductor lasers now use extremely thin layers of light emitting materials (quantum well lasers). Increasingly smaller nanostructures are used in the form of quantum dots. The impact of the semiconductor laser is surprising in the light of the complexity of the physical processes that determine the operation of every device. This text takes the reader from the fundamental optical gain and carrier recombination processes in quantum wells and quantum dots, through descriptions of common device structures to an understanding of their operating characteristics. It has a consistent...
Advanced neutral gas diagnostics for magnetic confinement devices
Wenzel, U.; Kremeyer, T.; Schlisio, G.; Marquardt, M.; Pedersen, T. S.; Schmitz, O.; Mackie, B.; Maisano-Brown, J.; the W7-X Team
2017-09-01
For the study of particle exhaust in nuclear fusion devices the neutral pressure must be measured in strong magnetic fields. We describe as an example the neutral pressure gauges in the Wendelstein 7-X stellarator. Two types are used: hot cathode ionization gauges (or ASDEX pressure gauges) and Penning gauges. We show some results from the first experimental campaign. The main problems were runtime effects and the failure of some ASDEX pressure gauges. To improve the reliability we integrated a new LaB6 electron emitter into the ASDEX pressure gauges. In addition, a special Penning gauge without permanent magnets was developed in order to operate Penning gauges near the plasma edge. These new pressure gauges will be used in the upcoming campaign of Wendelstein 7-X.
Torus type thermonuclear device
International Nuclear Information System (INIS)
Imura, Yasuya.
1979-01-01
Purpose: To attain supporting effect against electromagnetic force and moderate the inner stress applied to toroidal coils due to thermal expansion by intervening a stress relaxation member between the outer circumferential side of a torus and a support device in toroidal coils. Constitution: Toroidal coils for confining a plasma within a torus vacuum container is supported on a support secured to upper and lower bases. A thermoplastic stress relaxation material of a low young's modulus is put between the outer circumferential side of the torus container and the torus outer circumferential side of the support in the toroidal coil. Thermoplastic resin is best suited to the stress relaxation substance, although tetrafluoro resin may be used as the stress relaxation substance while packing non-woven tetron fabric or non-woven glass fabric impregnated with varnish in a gap between the stress relaxation substance and the support or the toroidal coils. (Seki, T.)
Measurements of neutron flux from an inertial-electrostatic confinement device
International Nuclear Information System (INIS)
Westenskow, G.A.
1975-08-01
A neutron-detection system was built for the purpose of measuring the neutron flux from an Inertial-Electrostatic Confinement Device located at Brigham Young University. A BF 3 proportional counter was used for absolute flux measurements and a pair of scintillation detectors was used to compare neutron output under different operating conditions. The detectors were designed to be compatible with the operating conditions of the device and to be able to measure small changes in neutron output. The detectors were calibrated using a Pu-Be source with corrections made for laboratory conditions. Performance of the counting system was checked and data were collected on the neutron flux from the device
Spaleta, Jeffrey Dario
Experimentally constrained equilibrium reconstructions are an important analysis tool used to understand the physics of magnetically confined plasmas. This thesis describes the first ever calculations of equilibrium reconstructions for spherical tokamak plasmas in the presence of lithium coated plasma facing components (PFC's) in the Current Drive eXperiment - Upgrade (CDX-U) device. Equilibria were calculated using a modified version of the Equilibrium and Stability Code (ESC), and were constrained by measurements made from a collection of magnetic field diagnostics. The ESC was modified to incorporate the first ever implementation of a novel response function technique for magnetic field diagnostic calibration. The technique is well suited for situations where the assumption of toroidal symmetry of the magnetic field is invalid, or when wall eddy currents are too large to neglect. Also included is a detailed discussion of the calculation of energy confinement time from power balance arguments, using parameters obtained from equilibrium reconstructions. The energy confinement time, as derived from plasma equilibria, was as large as 6 milliseconds for plasmas in the presence of both solid and liquid lithium PFC's. This represents a significant improvement over baseline plasmas, which typically had energy confinement times of 1 millisecond or less. The energy confinement for plasmas with lithium PFC's also showed an improvement over that expected from the ITER98y1 confinement scaling, which is derived from a database of earlier tokamak results. The improvement in confinement over this scaling correlates with the observed increase in density "pump-out", which is indicative of low wall-recycling. Traditionally, plasma fueling has been dominated by wall-recycling, with 90% or more of the fuel coming from recycling sources instead of externally controlled means, such as gas puffing or pellet injection. Previous lithium wall coating experiments on the Tokamak Fusion Test
Bölükdemir, A. S.; Akgün, Y.; Alaçakır, A.
2013-10-01
In this study, Turkey's first low pressure inertial electrostatic confinement (IEC) device, constructed at the Saraykoy Nuclear Research and Training Center (SNRTC-IEC), is introduced and the first results are reported. This device was designed for neutronic fusion studies in terms of D-D reaction. The SNRTC-IEC device consists of spherical chamber 300 mm in diameter and a grid-type spherical cathode in which high negative voltage is applied at the center of chamber. The outer surface of the device held at ground potential has 10 ports to connect the vacuum pump, high voltage load, residual gas analyzer, ion sources and other peripherals. Cathode voltage is 85 kV and it is particularly emphasized that the SNRTC-IEC device is studied at low pressure (1-10 × 10-4 mbar). The maximum total neutron production rate is measured at around 2.4 × 104 neutrons per second for the medium grid cathode.
International Nuclear Information System (INIS)
Yagi, Yasuomi; Takahashi, Ken; Hashimoto, Hiroshi.
1984-01-01
Purpose: To improve the plasma confining performances by bringing the irregular magnetic fields nearly to zero and decreasing the absolute value of the irregular magnetic fields at every positions. Constitution: The winding direction of a plurality of coil elements, for instance, double pan cake coils of toroidal coils in a torus type or mirror type thermonuclear device are reversed to each other in their laminating direction, whereby the irregular magnetic fields due to the coil-stepped portions in each toroidal coils are brought nearly to zero. This enables to bring the average irregular magnetic fields as a whole in the thermonuclear device nearly to zero, as well as, decrease the absolute value of the irregular magnetic fields in each positions. Thus, the plasma confining performances can be improved. (Moriyama, K.)
International Nuclear Information System (INIS)
Ida, Katsumi
2001-01-01
The structure of the radial electric field and toroidal/poloidal flow is discussed for the high temperature plasma in toroidal systems, tokamak and Heliotron type magnetic configurations. The spontaneous toroidal and poloidal flows are observed in the plasma with improved confinement. The radial electric field is mainly determined by the poloidal flow, because the contribution of toroidal flow to the radial electric field is small. The jump of radial electric field and poloidal flow are commonly observed near the plasma edge in the so-called high confinement mode (H-mode) plasmas in tokamaks and electron root plasma in stellarators including Heliotrons. In general the toroidal flow is driven by the momentum input from neutral beam injected toroidally. There is toroidal flow not driven by neutral beam in the plasma and it will be more significant in the plasma with large electric field. The direction of these spontaneous toroidal flows depends on the symmetry of magnetic field. The spontaneous toroidal flow driven by the ion temperature gradient is in the direction to increase the negative radial electric field in tokamak. The direction of spontaneous toroidal flow in Heliotron plasmas is opposite to that in tokamak plasma because of the helicity of symmetry of the magnetic field configuration. (author)
A comparison between linear and toroidal Extrap systems
International Nuclear Information System (INIS)
Lehnert, B.
1988-09-01
The Extrap scheme consists of a Z-pinch immersed in an octupole field generated by currents in a set of external conductors. A comparison between linear and toroidal Extrap geometry is made in this paper. As compared to toroidal systems, linear geometry has the advantages of relative simplicity and of a current drive by means of electrodes. Linear devices are convenient for basic studies of Extrap, at moderately high pinch currents and plasma temperatures. Within the parameter ranges of experiments at high pinch currents and plasma temperatures, linear systems have on the other hand some substantial disadvantages, on account of the plasma interaction with the end regions. This results in a limitation of the energy confinement time, and leads in the case of an ohmically heated plasma to excessively high plasma densities and small pinch radii which also complicate the introduction of the external conductors. (author)
Spherical ion oscillations in a positive polarity gridded inertial-electrostatic confinement device
Bandara, R.; Khachan, J.
2013-07-01
A pulsed, positive polarity gridded inertial electrostatic confinement device has been investigated experimentally, using a differential emissive probe and potential traces as primary diagnostics. Large amplitude oscillations in the plasma current and plasma potential were observed within a microsecond of the discharge onset, which are indicative of coherent ion oscillations about a temporarily confined excess of recirculating electron space charge. The magnitude of the depth of the potential well in the established virtual cathode was determined using a differential emissive Langmuir probe, which correlated well to the potential well inferred from the ion oscillation frequency for both hydrogen and argon experiments. It was found that the timescale for ion oscillation dispersion is strongly dependent on the neutral gas density, and weakly dependent on the peak anode voltage. The cessation of the oscillations was found to be due to charge exchange processes converting ions to high velocity neutrals, causing the abrupt de-coherence of the oscillations through an avalanche dispersion in phase space.
Spherical ion oscillations in a positive polarity gridded inertial-electrostatic confinement device
Energy Technology Data Exchange (ETDEWEB)
Bandara, R.; Khachan, J. [Plasma Physics, School of Physics, University of Sydney, Camperdown, New South Wales 2006 (Australia)
2013-07-15
A pulsed, positive polarity gridded inertial electrostatic confinement device has been investigated experimentally, using a differential emissive probe and potential traces as primary diagnostics. Large amplitude oscillations in the plasma current and plasma potential were observed within a microsecond of the discharge onset, which are indicative of coherent ion oscillations about a temporarily confined excess of recirculating electron space charge. The magnitude of the depth of the potential well in the established virtual cathode was determined using a differential emissive Langmuir probe, which correlated well to the potential well inferred from the ion oscillation frequency for both hydrogen and argon experiments. It was found that the timescale for ion oscillation dispersion is strongly dependent on the neutral gas density, and weakly dependent on the peak anode voltage. The cessation of the oscillations was found to be due to charge exchange processes converting ions to high velocity neutrals, causing the abrupt de-coherence of the oscillations through an avalanche dispersion in phase space.
Effects of orbit squeezing on neoclassical toroidal plasma viscosity in tokamaks
Czech Academy of Sciences Publication Activity Database
Shaing, K.C.; Sabbagh, S.A.; Chu, M.S.; Bécoulet, M.; Cahyna, Pavel
2008-01-01
Roč. 15, č. 8 (2008), 082505-1-082505-8 ISSN 1070-664X Institutional research plan: CEZ:AV0Z20430508 Keywords : plasma boundary layers * plasma instability * plasma magnetohydrodynamics * plasma toroidal confinement * plasma transport processes * Tokamak devices Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.427, year: 2008 http://dx.doi.org/10.1063/1.2965146
MHD instabilities and their effects on plasma confinement in the large helical device plasmas
International Nuclear Information System (INIS)
Toi, K.
2002-01-01
MHD stability of NBI heated plasmas and impacts of MHD modes on plasma confinement are intensively studied in the Large Helical Device (LHD). Three characteristic MHD instabilities were observed, that is, (1) pressure driven modes excited in the plasma edge, (2) pressure driven mode in the plasma core, and (3) Alfven eigenmodes (AEs) driven by energetic ions. MHD mode excited in the edge region accompanies multiple satellites, and is called Edge Harmonic Modes (EHMs). EHM sometimes has a bursting character. The bursting EHM transiently decreases the stored energy by about 15 percent. In the plasma core region, m=2/n=1 pressure driven mode is typically destabilized. The mode often induces internal collapse in the higher beta regime more than 1 percent. The internal collapse appreciably affects the global confinement. Energetic ion driven AEs are often detected in NBI-heated LHD plasmas. Particular AE with the frequency 8-10 times larger than TAE-frequency was detected in high beta plasmas more than 2 percent. The AE may be related to helicity-induced AE. Excitation of these three types of MHD instabilities and their impacts on plasma confinement are discussed. (author)
International Nuclear Information System (INIS)
Baxter, D.C.; Stuart, G.W.
1982-01-01
In 1967, R. L. Hirsch [J. Appl. Phys. 38, 4522 (1967)] reported neutron production rates of 10 10 neutrons per second from an electrostatic inertial confinement device. The device consisted of six ion guns injecting deuterium or a mixture of deuterium and tritium ions into an evacuated cathode chamber at 30--150 keV. No previous theoretical model for this experiment has adequately explained the observed neutron fluxes. A new model that includes the effects of charge exchange and ionization in the ion guns is analyzed. This model predicts three main features of the observed neutron flux: Neutron output proportional to gun current, neutron production localized at the center of the evacuated chamber, and neutron production decreasing with increasing neutral background gas density. Previous analysis modelled the ion guns as being monoenergetic. In this study, the ion gun output is modelled as a mixture of ions and fast neutrals with energies ranging from zero to the maximum gun energy. Using this theoretical model, a survey of the possible operating parameters indicates that the device was probably operated at or near the most efficient combined values of voltage and background pressure. Applications of the theory to other devices are discussed
Janjua, Bilal
2017-04-01
III–V nitride quantum-confined structures embedded in nanowires (NWs), also known as quantum-disks-in-nanowires (Qdisks-in-NWs), have recently emerged as a new class of nanoscale materials exhibiting outstanding properties for optoelectronic devices and systems. It is promising for circumventing the technology limitation of existing planar epitaxy devices, which are bounded by the lattice-, crystal-structure-, and thermal- matching conditions. This work presents significant advances in the growth of good quality GaN, InGaN and AlGaN Qdisks-in-NWs based on careful optimization of the growth parameters, coupled with a meticulous layer structure and active region design. The NWs were grown, catalyst-free, using plasma assisted molecular beam epitaxy (PAMBE) on silicon (Si) substrates. A 2-step growth scheme was developed to achieve high areal density, dislocation free and vertically aligned NWs on Ti/Si substrates. Numerical modeling of the NWs structures, using the nextnano3 software, showed reduced polarization fields, and, in the presence of Qdisks, exhibited improved quantum-confinement; thus contributing to high carrier radiative-recombination rates. As a result, based on the growth and device structure optimization, the technologically challenging orange and yellow NWs light emitting devices (LEDs) targeting the ‘green-yellow’ gap were demonstrated on scalable, foundry compatible, and low-cost Ti coated Si substrates. The NWs work was also extended to LEDs emitting in the ultraviolet (UV) range with niche applications in environmental cleaning, UV-curing, medicine, and lighting. In this work, we used a Ti (100 nm) interlayer and Qdisks to achieve good quality AlGaN based UV-A (320 - 400 nm) device. To address the issue of UV-absorbing polymer, used in the planarization process, we developed a pendeo-epitaxy technique, for achieving an ultra-thin coalescence of the top p-GaN contact layer, for a self-planarized Qdisks-in-NWs UV-B (280 – 320 nm) LED grown
3D electro-thermal Monte Carlo study of transport in confined silicon devices
Mohamed, Mohamed Y.
The simultaneous explosion of portable microelectronics devices and the rapid shrinking of microprocessor size have provided a tremendous motivation to scientists and engineers to continue the down-scaling of these devices. For several decades, innovations have allowed components such as transistors to be physically reduced in size, allowing the famous Moore's law to hold true. As these transistors approach the atomic scale, however, further reduction becomes less probable and practical. As new technologies overcome these limitations, they face new, unexpected problems, including the ability to accurately simulate and predict the behavior of these devices, and to manage the heat they generate. This work uses a 3D Monte Carlo (MC) simulator to investigate the electro-thermal behavior of quasi-one-dimensional electron gas (1DEG) multigate MOSFETs. In order to study these highly confined architectures, the inclusion of quantum correction becomes essential. To better capture the influence of carrier confinement, the electrostatically quantum-corrected full-band MC model has the added feature of being able to incorporate subband scattering. The scattering rate selection introduces quantum correction into carrier movement. In addition to the quantum effects, scaling introduces thermal management issues due to the surge in power dissipation. Solving these problems will continue to bring improvements in battery life, performance, and size constraints of future devices. We have coupled our electron transport Monte Carlo simulation to Aksamija's phonon transport so that we may accurately and efficiently study carrier transport, heat generation, and other effects at the transistor level. This coupling utilizes anharmonic phonon decay and temperature dependent scattering rates. One immediate advantage of our coupled electro-thermal Monte Carlo simulator is its ability to provide an accurate description of the spatial variation of self-heating and its effect on non
Confinement characteristics of high-energy ions produced by ICRF heating in the large helical device
International Nuclear Information System (INIS)
Kumazawa, R; Saito, K; Torii, Y; Mutoh, T; Seki, T; Watari, T; Osakabe, M; Murakami, S; Sasao, M; Watanabe, T; Yamamoto, T; Notake, T; Takeuchi, N; Saida, T; Shimpo, F; Nomura, G; Yokota, M; Kato, A; Zao, Y; Okada, H; Isobe, M; Ozaki, T; Narihara, K; Nagayama, Y; Inagaki, S; Morita, S; Krasilnikov, A V; Idei, H; Kubo, S; Ohkubo, K; Sato, M; Shimozuma, T; Yoshimura, Y; Ikeda, K; Nagaoka, K; Oka, Y; Takeiri, Y; Tsumori, K; Ashikawa, N; Emoto, M; Funaba, H; Goto, M; Ida, K; Kobuchi, T; Liang, Y; Masuzaki, S; Minami, T; Miyazawa, J; Morisaki, T; Muto, S; Nakamura, Y; Nakanishi, H; Nishimura, K; Noda, N; Ohdachi, S; Peterson, B J; Sagara, A; Sakakibara, S; Sakamoto, R; Sato, K; Shoji, M; Suzuki, H; Tanaka, K; Toi, K; Tokuzawa, T; Watanabe, K Y; Yamada, I; Yamamoto, S; Yoshinuma, M; Yokoyama, M; Watanabe, K-Y; Kaneko, O; Kawahata, K; Komori, A; Ohyabu, N; Yamada, H; Yamazaki, K; Sudo, S; Matsuoka, K; Hamada, Y; Motojima, O; Fujiwara, M
2003-01-01
The behaviour of high-energy ions accelerated by an ion cyclotron range of frequency (ICRF) electric field in the large helical device (LHD) is discussed. A better confinement performance of high-energy ions in the inward-shifted magnetic axis configuration was experimentally verified by measuring their energy spectrum and comparing it with the effective temperature determined by an electron slowing down process. In the standard magnetic axis configuration a saturation of the measured tail temperature was observed as the effective temperature was increased. The ratio between these two quantities is a measure of the quality of transfer efficiency from high-energy ions to a bulk plasma; when this efficiency was compared with Monte Carlo simulations the results agreed fairly well. The ratio of the stored energy of the high-energy ions to that of the bulk plasma was measured using an ICRF heating power modulation method; it was deduced from phase differences between total and bulk plasma stored energies and the modulated ICRF heating power. The measured high energy fraction agreed with that calculated using the injected ICRF heating power, the transfer efficiency determined in the experiment and the confinement scaling of the LHD plasma
Influence of toroidal rotation on tearing modes
Cai, Huishan; Cao, Jintao; Li, Ding
2017-10-01
Tearing modes stability analysis including toroidal rotation is studied. It is found that rotation affects the stability of tearing modes mainly through the interaction with resistive inner region of tearing mode. The coupling of magnetic curvature with centrifugal force and Coriolis force provides a perturbed perpendicular current, and a return parallel current is induced to affect the stability of tearing modes. Toroidal rotation plays a stable role, which depends on the magnitude of Mach number and adiabatic index Γ, and is independent on the direction of toroidal rotation. For Γ >1, the scaling of growth rate is changed for typical Mach number in present tokamaks. For Γ = 1 , the scaling keeps unchanged, and the effect of toroidal rotation is much less significant, compared with that for Γ >1. National Magnetic Confinement Fusion Science Program and National Science Foundation of China under Grants No. 2014GB106004, No. 2013GB111000, No. 11375189, No. 11075161 and No. 11275260, and Youth Innovation Promotion Association CAS.
Curvature-induced electrostatic drift modes in a toroidal plasma
International Nuclear Information System (INIS)
Venema, M.
1985-01-01
This thesis deals with a number of problems in the theory of linear stability of a hot, fully ionized plasma immersed in a strong magnetic field. The most widely used system to magnetically confine a plasma is the tokamak. This is a toroidal, current carrying device with a strong, externally imposed, magnetic field. The author discusses the linear theory of unstable, low-frequency waves in the gradient region, restricted to electrostatic waves. In that case the resulting radial fluxes of particles and energy are due to electric cross-field drifts. In the presence of magnetic fluctuations and small-scale reconnection phenomena, radial transport could also be predominantly along field lines. At present, it is not clear which of the two mechanisms is the dominant feature of the observed anomalous transport. First, the author introduces the theory of drift waves in toroidal geometry. Next, the electrostratic drift modes in toroidal geometry (weakly collisional regime), the equations for low-frequency waves in the strongly collisional regime and the electrostatic drift modes (strongly collisional regime) are discussed. (Auth.)
Experimental studies of compact toroids
International Nuclear Information System (INIS)
1991-01-01
The Berkeley Compact Toroid Experiment (BCTX) device is a plasma device with a Marshall-gun generated, low aspect ratio toroidal plasma. The device is capable of producing spheromak-type discharges and may, with some modification, produce low-aspect ratio tokamak configurations. A unique aspect of this experimenal devie is its large lower hybrid (LH) heating system, which consists of two 450MHz klystron tubes generating 20 megawatts each into a brambilla-type launching structure. Successful operation with one klystron at virtually full power (18 MW) has been accomplished with 110 μs pulse length. A second klystron is currently installed in its socket and magnet but has not been added to the RF drive system. This report describes current activities and accomplishments and describes the anticipated results of next year's activity
Mode dynamics and confinement in the reversed field pinch
International Nuclear Information System (INIS)
Brunsell, P.R.; Bergsaker, H.; Brzozowski, J.H.; Cecconello, M.; Drake, J.R.; Malmberg, J.-A.; Scheffel, J.; Schnack, D.D.
2001-01-01
Tearing mode dynamics and toroidal plasma flow in the RFP has been experimentally studied in the Extrap T2 device. A toroidally localised, stationary magnetic field perturbation, the 'slinky mode' is formed in nearly all discharges. There is a tendency of increased phase alignment of different toroidal Fourier modes, resulting in higher localised mode amplitudes, with higher magnetic fluctuation level. The fluctuation level increases slightly with increasing plasma current and plasma density. The toroidal plasma flow velocity and the ion temperature has been measured with Doppler spectroscopy. Both the toroidal plasma velocity and the ion temperature clearly increase with I/N. Initial, preliminary experimental results obtained very recently after a complete change of the Extrap T2 front-end system (first wall, shell, TF coil), show that an operational window with mode rotation most likely exists in the rebuilt device, in contrast to the earlier case discussed above. A numerical code DEBSP has been developed to simulate the behaviour of RFP confinement in realistic geometry, including essential transport physics. Resulting scaling laws are presented and compared with results from Extrap T2 and other RFP experiments. (author)
Numerical determination of axisymmetric toroidal magnetohydrodynamic equilibria
International Nuclear Information System (INIS)
Johnson, J.L.; Dalhed, H.E.; Greene, J.M.
1978-07-01
Numerical schemes for the determination of stationary axisymmetric toroidal equilibria appropriate for modeling real experimental devices are given. Iterative schemes are used to solve the elliptic nonlinear partial differential equation for the poloidal flux function psi. The principal emphasis is on solving the free boundary (plasma-vacuum interface) equilibrium problem where external current-carrying toroidal coils support the plasma column, but fixed boundary (e.g., conducting shell) cases are also included. The toroidal current distribution is given by specifying the pressure and either the poloidal current or the safety factor profiles as functions of psi. Examples of the application of the codes to tokamak design at PPPL are given
Collapse analysis of toroidal shell
International Nuclear Information System (INIS)
Pomares, R.J.
1990-01-01
This paper describes a study performed to determine the collapse characteristics of a toroidal shell using finite element method (FEM) analysis. The study also included free drop testing of a quarter scale prototype to verify the analytical results. The full sized toroidal shell has a 24-inch toroidal diameter with a 24-inch tubal diameter. The shell material is type 304 strainless steel. The toroidal shell is part of the GE Model 2000 transportation packaging, and acts as an energy absorbing device. The analyses performed were on a full sized and quarter scaled models. The finite element program used in all analyses was the LIBRA code. The analytical procedure used both the elasto-plastic and large displacement options within the code. The loading applied in the analyses corresponded to an impact of an infinite rigid plane oriented normal to the drop direction vector. The application of the loading continued incrementally until the work performed by the deforming structure equalled the kinetic energy developed in the free fall. The comparison of analysis and test results showed a good correlation
Duffield, Rob; Reid, Machar; Baker, John; Spratford, Wayne
2010-09-01
The aim of this study was to assess the accuracy and reliability of global positioning system (GPS) measures of distance and speed, compared to a high-resolution motion analysis system, for confined movement patterns used in many court-based sports. A single male participant performed 10 repetitions of four respective drills replicating court-based movement patterns and six repetitions of a random movement drill that replicated tennis match-play movement patterns. Two 1Hz and two 5Hz GPS devices concurrently measured distance covered and speed of all court-based drills. A 22 camera VICON motion analysis system, operating at 100Hz, tracked the position of an 18mm reflective marker affixed to one of the GPS devices to provide the criterion movement data. Results indicated that both 1 and 5Hz GPS devices under reported distance covered as well as both mean and peak speed compared to the VICON system (PGPS devices for distance and speed measures ranged between 4 and 25%. Further, the faster the speed and more repetitive the movement pattern (over a similar location), the greater the measurement error. The inter-unit reliability for distance and speed measures of both 1 and 5Hz systems for movements in confined spaces was generally low to moderate (r=0.10-0.70). In conclusion, for court-based sports or movements in confined spaces, GPS technology under reports distance covered and both mean and peak speed of movement.
High-speed repetitive pellet injector for plasma fueling of magnetic confinement fusion devices
International Nuclear Information System (INIS)
Combs, S.K.; Baylor, L.R.; Foust, C.R.
1993-01-01
The projected fueling requirements of future magnetic confinement devices for controlled thermonuclear research [e.g., the International Thermonuclear Experimental Reactor (ITER)] indicate that a flexible plasma fueling capability is required. This includes a mix of traditional gas puffing and low- and high-velocity deuterium-tritium pellets. Conventional pellet injectors (based on light gas guns or centrifugal accelerators) can reliably provide frozen hydrogen pellets (1- to 6-mm-diam sizes tested) up to ∼1.3-km/s velocity at the appropriate pellet fueling rates (1 to 10 Hz or greater). For long-pulse operation in a higher velocity regime (>2 km/s), an experiment in collaboration between Oak Ridge National Laboratory (ORNL) and ENEA Frascati is under way. This activity will be carried out in the framework of a collaborative agreement between the US Department of Energy and European Atomic Energy Community -- ENEA Association. In this experiment, an existing ORNL hydrogen extruder (equipped with a pellet chambering mechanism/gun barrel assembly) and a Frascati two-stage light gas gun driver have been combined on a test facility at ORNL. Initial testing has been carried out with single deuterium pellets accelerated up to 2.05 km/s with the two-stage driver; in addition, some preliminary repetitive testing (to commission the diagnostics) was performed at reduced speeds, including sequences at 0.5 to 1 Hz and 10 to 30 pellets. The primary objective of this study is to demonstrate repetitive operation (up to ∼1 Hz) with speeds in the 2- to 3-km/s range. In addition, the strength of extruded hydrogen ice as opposed to that produced in situ by direct condensation in pipe guns can be investigated. The equipment and initial experimental results are described
Toroidal and poloidal momentum transport studies in Tokamaks
DEFF Research Database (Denmark)
Tala, T.; Andrew, Y.; Giroud, C.
2007-01-01
The present status of understanding of toroidal and poloidal momentum transport in tokamaks is presented in this paper. Similar energy confinement and momentum confinement times, i.e. τE/τφ ≈ 1 have been reported on several tokamaks. It is more important though, to study the local transport both ...
Toroidal and poloidal momentum transport studies in JET
DEFF Research Database (Denmark)
Tala, T.; Andrew, Y.; Crombe, K.
2007-01-01
This paper reports on the recent studies of toroidal and poloidal momentum transport in JET. The ratio of the global energy confinement time to the momentum confinement is found to be close to tau(E)/tau(phi) = 1 except for the low density or low collisionality discharges where the ratio is tau(E...
Toroidal and poloidal momentum transport studies in tokamaks
DEFF Research Database (Denmark)
Tala, T.; Crombé, K.; Vries, P.C. de
2007-01-01
The present status of understanding of toroidal and poloidal momentum transport in tokamaks is presented in this paper. Similar energy confinement and momentum confinement times, i.e. τE/τφ ≈ 1 have been reported on several tokamaks. It is more important though, to study the local transport both ...
Energy Technology Data Exchange (ETDEWEB)
Goumiri, I. R. [Princeton Univ., NJ (United States). Mechanical and Aerospace Dept.; Rowley, C. W. [Princeton Univ., NJ (United States). Mechanical and Aerospace Dept.; Sabbagh, S. A. [Columbia Univ., New York, NY (United States). Dept. of Applied Physics and Applied Mathematics; Gates, D. A. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Gerhardt, S. P. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Boyer, M. D. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Andre, R. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Kolemen, E. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Taira, K. [Florida State Univ, Dept Mech Engn, Tallahassee, FL USA.
2016-02-19
A model-based feedback system is presented to control plasma rotation in a magnetically confined toroidal fusion device, to maintain plasma stability for long-pulse operation. This research uses experimental measurements from the National Spherical Torus Experiment (NSTX) and is aimed at controlling plasma rotation using two different types of actuation: momentum from injected neutral beams and neoclassical toroidal viscosity generated by three-dimensional applied magnetic fields. Based on the data-driven model obtained, a feedback controller is designed, and predictive simulations using the TRANSP plasma transport code show that the controller is able to attain desired plasma rotation profiles given practical constraints on the actuators and the available measurements of rotation.
Diocotron and Trivelpiece-Gould mode behavior in toroidal electron plasma
Stoneking, M. R.; Darrell, J. W.; Exarhos, S. A.; Patterson, A. S.; Price, M. J.; Wright, A. H.
2013-03-01
Electron plasma confined in a purely toroidal magnetic field supports analogs of the electrostatic normal modes observed in cylindrical traps - namely diocotron and Trivelpiece-Gould waves. The Lawrence Non-neutral Torus II (LNT II) device is used to study such waves. Electron plasma with densities in the range of 107 cm-3 persisting for about 1 second are produced in LNT II with high vacuum conditions (G. The plasma is diagnosed by monitoring image charge flow to sectors of the symmetric conducting boundary (major radius of 18 cm and minor radius of 3.8 cm). Damping of the m=1 (k=0) diocotron mode is explored to assess the extent to which rotational and/or magnetic pumping transport mechanisms are operative in toroidal electron plasma. Resonant standing wave plasma modes (m=0) are excited in order to determine the Trivelpiece-Gould dispersion relation. This work is supported by the National Science Foundation Grant PHY-0812893.
International Nuclear Information System (INIS)
Bauer, T. H.; Wigeland, R. A.
1999-01-01
Fundamental physics issues facing development of fusion power on a small-scale are assessed with emphasis on the idea of Inertial Electrostatic Confinement (IEC). The authors propose a new concept of accelerator-driven IEC fusion, termed Converging Beam Inertial Electrostatic Confinement (CB-IEC). CB-IEC offers a number of innovative features that make it an attractive pathway toward resolving fundamental physics issues and assessing the ultimate viability of the IEC concept for power generation
2002-01-01
Because of its exceptional size, it was not feasible to assemble and test the Barrel Toroid - made of eight coils - as an integrated toroid on the surface, prior to its final installation underground in LHC interaction point 1. It was therefore decided to test these eight coils individually in a dedicated test facility.
International Nuclear Information System (INIS)
Kucinski, M.Y.; Caldas, I.L.
1986-08-01
Using the conventional toroidal coordinate system Laplace's equation for the magnetic scalar potential due to toroidal helical currents is solved. The potential is written as a sum of an infinite series of functions. Each partial sum represents the potential within some accuracy. The effect of the winding law is analysed in the case of small curvature. (Author) [pt
Hedberg V
On the 15th of June 2001 the EB approved a new conceptual design for the toroid shield. In the old design, shown in the left part of the figure above, the moderator part of the shielding (JTV) was situated both in the warm and cold areas of the forward toroid. It consisted both of rings of polyethylene and hundreds of blocks of polyethylene (or an epoxy resin) inside the toroid vacuum vessel. In the new design, shown to the right in the figure above, only the rings remain inside the toroid. To compensate for the loss of moderator in the toroid, the copper plug (JTT) has been reduced in radius so that a layer of borated polyethylene can be placed around it (see figure below). The new design gives significant cost-savings and is easier to produce in the tight time schedule of the forward toroid. Since the amount of copper is reduced the weight that has to be carried by the toroid is also reduced. Outgassing into the toroid vacuum was a potential problem in the old design and this is now avoided. The main ...
Samus Toroid Installation Fixture
Energy Technology Data Exchange (ETDEWEB)
Stredde, H.; /Fermilab
1990-06-27
The SAMUS (Small Angle Muon System) toroids have been designed and fabricated in the USSR and delivered to D0 ready for installation into the D0 detector. These toroids will be installed into the aperture of the EF's (End Toroids). The aperture in the EF's is 72-inch vertically and 66-inch horizontally. The Samus toroid is 70-inch vertically by 64-inch horizontally by 66-inch long and weighs approximately 38 tons. The Samus toroid has a 20-inch by 20-inch aperture in the center and it is through this aperture that the lift fixture must fit. The toroid must be 'threaded' through the EF aperture. Further, the Samus toroid coils are wound about the vertical portion of the aperture and thus limit the area where a lift fixture can make contact and not damage the coils. The fixture is designed to lift along a surface adjacent to the coils, but with clearance to the coil and with contact to the upper steel block of the toroid. The lift and installation will be done with the 50 ton crane at DO. The fixture was tested by lifting the Samus Toroid 2-inch off the floor and holding the weight for 10 minutes. Deflection was as predicted by the design calculations. Enclosed are sketches of the fixture and it relation to both Toroids (Samus and EF), along with hand calculations and an Finite Element Analysis. The PEA work was done by Kay Weber of the Accelerator Engineering Department.
Perspectives on confinement in helical systems
International Nuclear Information System (INIS)
Itoh, Kimitaka; Itoh, Sanae
1989-01-01
A review on recent experimental results and theoretical models on anomalous transport and density limit in toroidal helical devices is presented. Importance of transport problems is discussed. Experiments on Heliotron-E, Wendelstein-VIIA and new devices, i.e., ATF, Wendelstein-VIIAS and CHS, are reviewed and an overview on confinement property is given. From recent experimental results one sees that there are anomalous transport, which increases with temperature, and density limit, and that they limit the energy confinement time as well as the attainable beta value. The confinement characteristics of the scrape off layer plasma and loss cone loss are discussed, and perspectives on the high temperature plasma are given. These anomalous transport and density limit will be difficult obstacles in realizing a reactor grade plasma in helical systems. It is an urgent task to draw a realistic picture of the confinement based on the present data base. The relevant knowledge now would be critically essential for the successful development of the research in 1990's. (author) 102 refs
Alderson, Eric C.
This work extends the recent (2008) UW-Madison discovery of a substantial current of negative deuterium ions produced in an Inertial Electrostatic Confinement (IEC) fusion device. Investigation was carried out both through empirical measurement and computational modeling. Measurements of the negative ion current were performed with a compact Faraday cup mounted on motion stages to produce radial and azimuthal spatial profiles of the negative ion current density in an IEC device. The azimuthal profiles represent the first spatially resolved measurements of the shape of a 'plasma jet' produced by perturbations in the electrostatic potential at the cathode of the IEC device. Further, these measurements confirm the existence of these jets at low pressure when they are not observable by light emission. This work demonstrates that the magnitude of the negative ion current and the profile of the plasma jet are dependent on the potential and current supplied to the IEC device cathode. A comparison of the production of negative ions by a single reaction versus a chain of reactions was carried out by deriving the analog to the mean free path for a sequence of reactions. This analysis can be adapted to a variety of applications if it is useful to know the length scale of a chain of reactions occurs in. The capability to simulate the production and propagation of negative ion current was added to the UW-IEC modeling program, Volterra Integral Code for Transport in Electrostatic Reactors (VICTER). This 1D code predicts the negative ion energy spectrum at all radii in the IEC device. Comparing trends in measurements and VICTER simulations was utilized to validate elements of the VICTER code. VICTER was further utilized to understand the relative importance of the reactions that produce negative ions in an IEC device and illustrate how the energy spectrum evolves as negative ions travel through the IEC device.
IAEA technical committee meeting on research using small fusion devices (abstracts)
International Nuclear Information System (INIS)
1999-12-01
The thirteenth IAEA technical committee meeting on research using small fusion devices are held in Chengdu, P. R. China on 18-20 Oct. , 1999. 41 articles are received and the content includes toroidal systems, helical systems, plasma focus, diagnostic systems, theory and modeling, improving confinement, numerical simulation, innovative concepts and others
Anomalous transport in toroidal plasmas
International Nuclear Information System (INIS)
Punjabi, A.
1989-12-01
When the magnetic moment of particle is conserved, there are three mechanisms which cause anomalous transport. These are: variation of magnetic field strength in flux surface, variation of electrostatic potential in flux surface, and destruction of flux surface. The anomalous transport of different groups of particles resulting from each of these mechanisms is different. This fact can be exploited to determine the cause of transport operative in an experimental situation. This approach can give far more information on the transport than the standard confinement time measurements. To implement this approach, we have developed Monte Carlo codes for toroidal geometries. The equations of motion are developed in a set of non-canonical, practical Boozer co-ordinates by means of Jacobian transformations of the particle drift Hamiltonian equations of motion. Effects of collisions are included by appropriate stochastic changes in the constants of motion. Effects of the loop voltage on particle motions are also included. We plan to apply our method to study two problems: the problem of the hot electron tail observed in edge region of ZT-40, and the energy confinement time in TOKAPOLE II. For the ZT-40 problem three situations will be considered: a single mode in the core, a stochastic region that covers half the minor radius, a stochastic region that covers the entire plasma. A turbulent spectrum of perturbations based on the experimental data of TOKAPOLE II will be developed. This will be used to simulate electron transport resulting from ideal instabilities and resistive instabilities in TOKAPOLE II
Energy Technology Data Exchange (ETDEWEB)
Burrell, K.H.
1996-11-01
One of the scientific success stories of fusion research over the past decade is the development of the ExB shear stabilization model to explain the formation of transport barriers in magnetic confinement devices. This model was originally developed to explain the transport barrier formed at the plasma edge in tokamaks after the L (low) to H (high) transition. This concept has the universality needed to explain the edge transport barriers seen in limiter and divertor tokamaks, stellarators, and mirror machines. More recently, this model has been applied to explain the further confinement improvement from H (high)-mode to VH (very high)-mode seen in some tokamaks, where the edge transport barrier becomes wider. Most recently, this paradigm has been applied to the core transport barriers formed in plasmas with negative or low magnetic shear in the plasma core. These examples of confinement improvement are of considerable physical interest; it is not often that a system self-organizes to a higher energy state with reduced turbulence and transport when an additional source of free energy is applied to it. The transport decrease that is associated with ExB velocity shear effects also has significant practical consequences for fusion research. The fundamental physics involved in transport reduction is the effect of ExB shear on the growth, radial extent and phase correlation of turbulent eddies in the plasma. The same fundamental transport reduction process can be operational in various portions of the plasma because there are a number ways to change the radial electric field Er. An important theme in this area is the synergistic effect of ExB velocity shear and magnetic shear. Although the ExB velocity shear appears to have an effect on broader classes of microturbulence, magnetic shear can mitigate some potentially harmful effects of ExB velocity shear and facilitate turbulence stabilization.
Toroidal drift magnetic pumping
International Nuclear Information System (INIS)
Canobbio, E.
1977-01-01
A set of azimuthal coils which carry properly dephased rf-currents in the KHz frequency range can be used to heat toroidal plasmas by perpendicular Landau damping of subsonic Alfven waves. The heating mechanism and the rf-field structure are discussed in some detail
Ryu, Seong Ho; Gim, Min-Jun; Lee, Wonsuk; Choi, Suk-Won; Yoon, Dong Ki
2017-01-25
Photonic crystals (PCs) have recently attracted considerable attention, with much effort devoted to photonic bandgap (PBG) control for varying the reflected color. Here, fabrication of a modulated one-dimensional (1D) anodic aluminum oxide (AAO) PC with a periodic porous structure is reported. The PBG of the fabricated PC can be reversibly changed by switching the ultraviolet (UV) light on/off. The AAO nanopores contain a mixture of photoresponsive liquid crystals (LCs) with irradiation-activated cis/trans photoisomerizable azobenzene. The resultant mixture of LCs in the porous AAO film exhibits a reversible PBG, depending on the cis/trans configuration of azobenzene molecules. The PBG switching is reliable over many cycles, suggesting that the fabricated device can be used in optical and photonic applications such as light modulators, smart windows, and sensors.
Energy Technology Data Exchange (ETDEWEB)
Kaehr, Bryan James
2011-09-01
This is the final report for the President Harry S. Truman Fellowship in National Security Science and Engineering (LDRD project 130813) awarded to Dr. Bryan Kaehr from 2008-2011. Biological chemistries, cells, and integrated systems (e.g., organisms, ecologies, etc.) offer important lessons for the design of synthetic strategies and materials. The desire to both understand and ultimately improve upon biological processes has been a driving force for considerable scientific efforts worldwide. However, to impart the useful properties of biological systems into modern devices and materials requires new ideas and technologies. The research herein addresses aspects of these issues through the development of (1) a rapid-prototyping methodology to build 3D bio-interfaces and catalytic architectures, (2) a quantitative method to measure cell/material mechanical interactions in situ and at the microscale, and (3) a breakthrough approach to generate functional biocomposites from bacteria and cultured cells.
Lu, Huijie; Peng, Zhangli
2017-11-01
Our goal is to develop a high-efficiency multiscale modeling method to predict the stress and deformation of cells during the interactions with their microenvironments in microcirculation and microfluidic devices, including red blood cells (RBCs) and circulating tumor cells (CTCs). There are more than 1 billion people in the world suffering from RBC diseases, e.g. anemia, sickle cell diseases, and malaria. The mechanical properties of RBCs are changed in these diseases due to molecular structure alternations, which is not only important for understanding the disease pathology but also provides an opportunity for diagnostics. On the other hand, the mechanical properties of cancer cells are also altered compared to healthy cells. This can lead to acquired ability to cross the narrow capillary networks and endothelial gaps, which is crucial for metastasis, the leading cause of cancer mortality. Therefore, it is important to predict the deformation and stress of RBCs and CTCs in microcirculations. We are developing a high-efficiency multiscale model of cell-fluid interaction to study these two topics.
Kang, Dun-Yen; Liou, Kai-Hsin; Chang, Wei-Lun
2015-01-01
The expansion or compression of gas confined in a piston-and-cylinder device is a classic working example used for illustrating the First and Second Laws of Thermodynamics. The balance of energy and entropy enables the estimation of a number of thermodynamic properties. The entropy generation (also called entropy production) resulting from this…
Quantum electron transport in toroidal carbon nanotubes
Jack, Mark; Encinosa, Mario
2008-03-01
Electron transport under bias is treated in tight-binding approximation using a non-equilibrium Green's function approach. Density-of-states D(E), transmissivity T(E), and current ISD are calculated through a (3,3) armchair nanotorus with laterally attached metallic leads and a magnetic field penetrating the toroidal plane. Plateaus in T(E) through the torus are observed as a function of both the relative angle between leads and magnetic flux. Initial computational studies performed with 1800 atoms and attached leads show substantial computational slowdown when increasing the system size by a factor of two. Results are generated by inverting the device Hamiltonian with a standard recursion method extended to account for unit cell toroidal closure. Significant computational speed-up is expected for a parallelized code on a multiprocessor computer cluster. The dependence of electronic features on torus size and torus curvature is tested for three tori with 900, 1800 and 3600 carbon atoms, respectively. References: 1. M. Jack and M. Encinosa, Quantum electron transport in toroidal carbon nanotubes with metallic leads. ArXiv: quant-ph/0709.0760. 2. M. Encinosa and M. Jack, Dipole and solenoidal magnetic moments of electronic surface currents on toroidal nanostructures. J. Comp.-Aided Mat. Design (Springer), 14 (1) (2007) 65 -- 71.
International Nuclear Information System (INIS)
Sugama, H.; Horton, W.
1996-08-01
Transport processes and resultant entropy production in magnetically confined plasmas are studied in detail for toroidally rotating systems with electrostatic turbulence. A new gyrokinetic equation is derived for rotating plasmas with large flow velocities on the order of the ion thermal speed. Neoclassical and anomalous transport of particles, energy, and toroidal momentum are systematically formulated from the ensemble-averaged kinetic equation with the gyrokinetic equation. As a conjugate pair of the thermodynamic force and the transport flux, the shear of the toroidal flow, which is caused by the radial electric field shear, and the toroidal viscosity enter both the neoclassical and anomalous entropy production. The interaction between the fluctuations and the sheared toroidal flow is self-consistently described by the gyrokinetic equation containing the flow shear as the thermodynamic force and by the toroidal momentum balance equation including the anomalous viscosity. Effects of the toroidal flow shear on the toroidal ion temperature gradient driven modes are investigated. Linear and quasilinear analyses of the modes show that the toroidal flow shear decreases the growth rates and reduces the anomalous toroidal viscosity. (author)
Dynamics of spheromak-like compact toroids in a drift tube
International Nuclear Information System (INIS)
Suzuki, Y.; Kishimoto, Y.; Hayashi, T.
2001-01-01
In order to supply plasma fuel confined in spheromak-like compact toroids (SCTs) to a fusion device, the SCTs must be successfully guided through a drift tube region, in which they might be influenced by the magnetic field leaking from the fusion device. To reveal the SCT dynamics in a drift tube, MHD numerical simulations, where the SCTs are accelerated in a co-axial perfectly conducting cylinder with an external magnetic field, are carried out. In addition, the effect of an extended central electrode is examined by changing the length of the inner conducting cylinder. It is revealed that the SCT penetration depth is shorter than that estimated from the conventional conducting sphere model and that the SCTs are further decelerated by extending the inner conducting cylinder. These results are consistent with the results of the compact toroid injection experiment performed on the TEXT Upgrade tokamak. Finally, the deceleration mechanism of the SCTs is discussed by comparing the simulation result with the proposed theoretical model. (author)
Dynamics of spheromak-like compact toroids in a drift tube
Suzuki, Y.; Hayashi, T.; Kishimoto, Y.
2001-06-01
In order to supply plasma fuel confined in spheromak-like compact toroids (SCTs) to a fusion device, the SCTs must be successfully guided through a drift tube region, in which they might be influenced by the magnetic field leaking from the fusion device. To reveal the SCT dynamics in a drift tube, MHD numerical simulations, where the SCTs are accelerated in a co-axial perfectly conducting cylinder with an external magnetic field, are carried out. In addition, the effect of an extended central electrode is examined by changing the length of the inner conducting cylinder. It is revealed that the SCT penetration depth is shorter than that estimated from the conventional conducting sphere model and that the SCTs are further decelerated by extending the inner conducting cylinder. These results are consistent with the results of the compact toroid injection experiment performed on the TEXT Upgrade tokamak. Finally, the deceleration mechanism of the SCTs is discussed by comparing the simulation result with the proposed theoretical model.
Toroidal simulation magnet tests
International Nuclear Information System (INIS)
Walstrom, P.L.; Domm, T.C.
1975-01-01
A number of different schemes for testing superconducting coils in a simulated tokamak environment are analyzed for their merits relative to a set of test criteria. Two of the concepts are examined in more detail: the so-called cluster test scheme, which employs two large background field coils, one on either side of the test coil, and the compact torus, a low-aspect ratio toroidal array of a small number of coils in which all of the coils are essentially test coils. Simulation of the pulsed fields of the tokamak is discussed briefly
Fixed boundary toroidal plasma equilibria with toroidal flows
Energy Technology Data Exchange (ETDEWEB)
Hu, Yanqiang [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); University of Science and Technology of China, Hefei 230026 (China); Center for Magnetic Fusion Theory, Chinese Academy of Sciences, Hefei 230031 (China); Hu, Yemin; Xiang, Nong [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Center for Magnetic Fusion Theory, Chinese Academy of Sciences, Hefei 230031 (China)
2016-04-15
The fixed boundary toroidal plasma equilibria with toroidal flows are investigated by solving the modified Grad-Shafranov equation numerically in the cylindrical coordinate system. For normal equilibrium configurations with geometry and profiles similar to usual tokamaks with no flow, it is found that the effect of flow is to lead to an outward shift of the magnetic flux surfaces, together with the profiles of pressure, and mass and current densities. The shifts could become significant when the toroidal flow Mach number exceeds 0.5. For non-conventional current profiles, even for the usual tokamak geometry, novel current reversal equilibrium configurations may result, sometimes with changed topology in the poloidal flux function. This change in the topology of plasma equilibrium can be attributed to the large toroidal flow. The computed results may correspond to situations of intense tangential injection during the low toroidal current phase in expected experimental situations.
International Nuclear Information System (INIS)
1995-01-01
The Fusion Research Center (FRC) at the University Texas will operate the tokamak TEXT-U and its associated systems for experimental research in basic plasma physics. While the tokamak is not innovative, the research program, diagnostics and planned experiments are. The fusion community will reap the benefits of the success in completing the upgrades (auxiliary heating, divertor, diagnostics, wall conditioning), developing diverted discharges in both double and single null configurations, exploring improved confinement regimes including a limiter H-mode, and developing unique, critical turbulence diagnostics. With these new regimes, the authors are poised to perform the sort of turbulence and transport studies for which the TEXT group has distinguished itself and for which the upgrade was intended. TEXT-U is also a facility for collaborators to perform innovative experiments and develop diagnostics before transferring them to larger machines. The general philosophy is that the understanding of plasma physics must be part of any intelligent fusion program, and that basic experimental research is the most important part of any such program. The emphasis of the proposed research is to provide well-documented plasmas which will be used to suggest and evaluate theories, to explore control techniques, to develop advanced diagnostics and analysis techniques, and to extend current drive techniques. Up to 1 MW of electron cyclotron heating (ECH) will be used not only for heating but as a localized, perturbative tool. Areas of proposed research are: (1) core turbulence and transport; (2) edge turbulence and transport; (3) turbulence analysis; (4) improved confinement; (5) ECH physics; (6) Alfven wave current drive; and (7) diagnostic development
Energy Technology Data Exchange (ETDEWEB)
NONE
1995-06-12
The Fusion Research Center (FRC) at the University Texas will operate the tokamak TEXT-U and its associated systems for experimental research in basic plasma physics. While the tokamak is not innovative, the research program, diagnostics and planned experiments are. The fusion community will reap the benefits of the success in completing the upgrades (auxiliary heating, divertor, diagnostics, wall conditioning), developing diverted discharges in both double and single null configurations, exploring improved confinement regimes including a limiter H-mode, and developing unique, critical turbulence diagnostics. With these new regimes, the authors are poised to perform the sort of turbulence and transport studies for which the TEXT group has distinguished itself and for which the upgrade was intended. TEXT-U is also a facility for collaborators to perform innovative experiments and develop diagnostics before transferring them to larger machines. The general philosophy is that the understanding of plasma physics must be part of any intelligent fusion program, and that basic experimental research is the most important part of any such program. The emphasis of the proposed research is to provide well-documented plasmas which will be used to suggest and evaluate theories, to explore control techniques, to develop advanced diagnostics and analysis techniques, and to extend current drive techniques. Up to 1 MW of electron cyclotron heating (ECH) will be used not only for heating but as a localized, perturbative tool. Areas of proposed research are: (1) core turbulence and transport; (2) edge turbulence and transport; (3) turbulence analysis; (4) improved confinement; (5) ECH physics; (6) Alfven wave current drive; and (7) diagnostic development.
International Nuclear Information System (INIS)
Garabedian, P.R.
1991-08-01
At high collisionality the neoclassical theory of transport in tokamaks predicts that the electron confinement time τ e will exceed the ion confinement time τ i by a factor roughly equal to the square root of the mass ratio m i /m e . If the energy confinement time τ E is calculated from the normalized particle confinement time τ through division by an emperical factor of three times the magnetic field strength B, then the theoretical confinement time of the ions exceeds experimental measurements by a factor of as much as three. The prediction that the electron confinement time will be two orders of magnitude larger is referred to as anomalous electron transport. We assert that the anomaly can be explained by imposing a strict requirement of quasineutrality to determine the electric potential instead of allowing it to be found from conservation of momentum. Numerical evidence for this contention is provided by performing Monte Carlo calculations based on a fast new computer code called TRAN
Quantum mechanics of toroidal anions
International Nuclear Information System (INIS)
Afanas'ev, G.N.
1990-01-01
We consider a toroidal solenoid with an electric charge attached to it. It turns out that statistical properties of the wave function describing interacting toroidal anions depend on both their relative position and orientation. The influence of the particular gauge choice on the exchange properties of the wave function is studied. 30 refs.; 6 figs
Tokamak confinement scaling laws
International Nuclear Information System (INIS)
Connor, J.
1998-01-01
The scaling of energy confinement with engineering parameters, such as plasma current and major radius, is important for establishing the size of an ignited fusion device. Tokamaks exhibit a variety of modes of operation with different confinement properties. At present there is no adequate first principles theory to predict tokamak energy confinement and the empirical scaling method is the preferred approach to designing next step tokamaks. This paper reviews a number of robust theoretical concepts, such as dimensional analysis and stability boundaries, which provide a framework for characterising and understanding tokamak confinement and, therefore, generate more confidence in using empirical laws for extrapolation to future devices. (author)
International Nuclear Information System (INIS)
Diaz, J. I.; Galiano, G.; Padial, J. F.
1999-01-01
We study the uniqueness of solutions of a semilinear elliptic problem obtained from an inverse formulation when the nonlinear terms of the equation are prescribed in a general class of real functions. The inverse problem arises in the modeling of the magnetic confinement of a plasma in a Stellarator device. The uniqueness proof relies on an L ∞ -estimate on the solution of an auxiliary nonlocal problem formulated in terms of the relative rearrangement of a datum with respect to the solution
Toroidal Plasma Thruster for Interplanetary and Interstellar Space Flights
International Nuclear Information System (INIS)
Gorelenkov, N.N.; Zakharov, L.E.; Gorelenkova, M.V.
2001-01-01
This work involves a conceptual assessment for using the toroidal fusion reactor for deep space interplanetary and interstellar missions. Toroidal thermonuclear fusion reactors, such as tokamaks and stellarators, are unique for space propulsion, allowing for a design with the magnetic configuration localized inside toroidal magnetic field coils. Plasma energetic ions, including charged fusion products, can escape such a closed configuration at certain conditions, a result of the vertical drift in toroidal rippled magnetic field. Escaping particles can be used for direct propulsion (since toroidal drift is directed one way vertically) or to create and heat externally confined plasma, so that the latter can be used for propulsion. Deuterium-tritium fusion neutrons with an energy of 14.1 MeV also can be used for direct propulsion. A special design allows neutrons to escape the shield and the blanket of the tokamak. This provides a direct (partial) conversion of the fusion energy into the directed motion of the propellant. In contrast to other fusion concepts proposed for space propulsion, this concept utilizes the natural drift motion of charged particles out of the closed magnetic field configuration
Energy Technology Data Exchange (ETDEWEB)
Chavez A, E.; Melendez L, L.; Colunga S, S.; Valencia A, R.; Lopez C, R.; Gaytan G, E
1991-07-15
The charged particles that constitute the plasma in the tokamaks are located in magnetic fields that determine its behavior. The poloidal magnetic field of the plasma current and the toroidal magnetic field of the tokamak possess relatively big gradients, which produce drifts on these particles. These drifts are largely the cause of the continuous lost of particles and of energy of the confinement region. In this work the results of numerical calculations of a modification to the 'traditional' toroidal magnetic field that one waits it diminishes the drifts by gradient and improve the confinement properties of the tokamaks. (Author)
Magnetohydrodynamic equilibrium of axisymmetric systems with toroidal rotation
International Nuclear Information System (INIS)
Mansur, N.L.P.
1986-01-01
A model for studying magnetohydrodynamic equilibrium of axisymetrically confined plasma with toroidal rotation, extended to the Grad. Shafranov equation is presented. The expression used for the scalar pressure is modifiec, and the influence of toroidal magnetic field is included, The equation for general motion of axisymetrically confined plasma, particularizing for rotation movements is described. Two cases are compared: one supposes the entropy as a function of poloidal magnetic flux and other supposes the temperature as a function of flux. The equations for these two cases obtaining a simplified expression by others approximations are established. The proposed model is compared with Shibata model, which uses density as function of flux, and with the ideal spheromak model. A set of cases taking in account experimental data is studied. (M.C.K.) [pt
CPRF/ZTH toroidal conducting shell design and fabrication considerations
International Nuclear Information System (INIS)
Ballard, E.O.; Gomez, T.; Smith, R.L.; Weldon, D.M.
1987-01-01
The authors discuss design in progress of a new generation Reversed Field Pinch (RFP) machine to be fabricated and assembled at Los Alamos National Laboratory during FY 86-92. The Confinement Physics Research Facility (CPRF) houses the front-end ZTH torus. The ZTH consists oof an Inconel 625 vacuum liner supported by an external electrically conducting shell. The shell also supports 48 toroidal field coils that are mounted to the shells external surface
International Nuclear Information System (INIS)
1988-01-01
Critical issues for the steady state operation of plasma confinement devices exist in both the physics and technology fields of fusion research. Due to the wide range and number of these issues, this technical assessment has focused on the crucial issues associated with the plasma physics and the plasma interactive components. The document provides information on the problem areas that affect the design and operation of a steady state ETR or ITER type confinement device. It discusses both tokamaks and alternative concepts, and provides a survey of existing and planned confinement machines and laboratory facilities that can address the identified issues. A universal definition of steady state operation is difficult to obtain. From a physics point of view, steady state is generally achieved when the time derivatives approach zero and the operation time greatly exceeds the characteristic time constants of the device. Steady state operation for materials depends on whether thermal stress, creep, fatigue, radiation damage, or power removal are being discussed. For erosion issues, the fluence and availability of the machine for continuous operation are important, assuming that transient events such as disruptions do not limit the component lifetimes. The panel suggests, in general terms, that steady state requires plasma operation from 100 to 1000 seconds and an availability of more than a few percent, which is similar to the expectations for an ETR type device. The assessment of critical issues for steady state operation is divided into four sections: physics issues; technology issues; issues in alternative concepts; and devices and laboratory facilities that can address these problems
Energy Technology Data Exchange (ETDEWEB)
1988-01-01
Critical issues for the steady state operation of plasma confinement devices exist in both the physics and technology fields of fusion research. Due to the wide range and number of these issues, this technical assessment has focused on the crucial issues associated with the plasma physics and the plasma interactive components. The document provides information on the problem areas that affect the design and operation of a steady state ETR or ITER type confinement device. It discusses both tokamaks and alternative concepts, and provides a survey of existing and planned confinement machines and laboratory facilities that can address the identified issues. A universal definition of steady state operation is difficult to obtain. From a physics point of view, steady state is generally achieved when the time derivatives approach zero and the operation time greatly exceeds the characteristic time constants of the device. Steady state operation for materials depends on whether thermal stress, creep, fatigue, radiation damage, or power removal are being discussed. For erosion issues, the fluence and availability of the machine for continuous operation are important, assuming that transient events such as disruptions do not limit the component lifetimes. The panel suggests, in general terms, that steady state requires plasma operation from 100 to 1000 seconds and an availability of more than a few percent, which is similar to the expectations for an ETR type device. The assessment of critical issues for steady state operation is divided into four sections: physics issues; technology issues; issues in alternative concepts; and devices and laboratory facilities that can address these problems.
Ohdachi, S.
2016-11-01
A new type of wavelet-based analysis for the magnetic fluctuations by which toroidal mode number can be resolved is proposed. By using a wavelet, having a different phase toroidally, a spectrogram with a specific toroidal mode number can be obtained. When this analysis is applied to the measurement of the fluctuations observed in the large helical device, MHD activities having similar frequency in the laboratory frame can be separated from the difference of the toroidal mode number. It is useful for the non-stationary MHD activity. This method is usable when the toroidal magnetic probes are not symmetrically distributed.
Energy Technology Data Exchange (ETDEWEB)
Shishkin, Alexander A. [Institute of Plasma Physics, National Science Center, Kharkov Institute of Physics and Technology, Kharkov (Ukraine)
2001-02-01
A new method of particle motion control in toroidal magnetic traps with rotational transform using the estafette of drift resonances and stochasticity of particle trajectories is proposed. The use of the word estafette' here means that the particle passes through a set of resonances in consecutive order from one to another during its motion. The overlapping of adjacent resonances can be moved radially from the center to the edge of the plasma by switching on the corresponding perturbations in accordance with a particular rule in time. In this way particles (e.g. cold alpha-particle) can be removed from the center of the confinement volume to the plasma periphery. For the analytical treatment of the stochastic behaviour of particle motion the stochastic diffusion coefficients D{sub r,}r, D{sub r,{theta}}, D{sub {theta}}{sub ,{theta}} are introduced. The new approach is demonstrated by numerical computations of the test helium particle trajectories in the toroidal trap Large Helical Device. (author)
General Atomic's superconducting toroidal field coil concept
International Nuclear Information System (INIS)
Alcorn, J.; Purcell, J.
1978-01-01
General Atomic's concept for a superconducting toroidal field coil is presented. The concept is generic for large tokamak devices, while a specific design is indicated for a 3.8 meter (major radius) ignition/burn machine. The concept utilizes bath cooled NbTi conductor to generate a peak field of 10 tesla at 4.2 K. The design is simple and straightforward, requires a minimum of developmental effort, and draws extensively upon the perspective of past experience in the design and construction of large superconducting magnets for high energy physics. Thus, the primary emphasis is upon economy, reliability, and expeditious construction scheduling. (author)
Compact toroid development, activity plan for spheromaks
International Nuclear Information System (INIS)
1984-06-01
This document contains the description, goals, status, plans, and approach for the investigation of the properties of a magnetic configuration for plasma confinement identified as the spheromak. This component of the magnetic fusion development program has been characterized by its potential for physical compactness and a flexible range of output power. The included material represents the second phase of spheromak program planning. The first was completed in February 1983 and was reported in DOE/ER-0160, Compact Toroid Development. This planning builds on that previous report and concentrates on the detailed plans for the next several years of the current DOE sponsored program. It has been deliberately restricted to the experimental and theoretical efforts possible within the present scale of effort. A third phase of this planning exercise will examine the subsequent effort and resources needed to achieve near-term (1987 to 1990) spheromak technical objectives
Equivelar toroids with few flag-orbits
Collins, José; Montero, Antonio
2018-01-01
An $(n+1)$-toroid is a quotient of a tessellation of the $n$-dimensional Euclidean space with a lattice group. Toroids are generalizations of maps in the torus on higher dimensions and also provide examples of abstract polytopes. Equivelar toroids are those that are induced by regular tessellations. In this paper we present a classification of equivelar $(n+1)$-toroids with at most $n$ flag-orbits; in particular, we discuss a classification of $2$-orbit toroids of arbitrary dimension.
Summary of US-Japan Exchange 2004 New Directions and Physics for Compact Toroids
Energy Technology Data Exchange (ETDEWEB)
Intrator, T; Nagata, M; Hoffman, A; Guo, H; Steinhauer, L; Ryutov, D; Miller, R; Okada, S
2005-08-15
This exchange workshop was an open meeting coordinated by the P-24 Plasma Physics Group at Los Alamos National Laboratory. We brought together scientists from institutions in the US and Japan who are researching the various and complementary types of Compact Toroids (CT). Many concepts, including both experimental and theoretical investigations, are represented. The range spans Field Reversed Configuration (FRC), spheromak, Reversed Field Pinch (RFP), spherical tokamaks, linear devices dedicated to fundamental physics studies, and hybrid transitions that bridge multiple configurations. The participants represent facilities on which significant experiments are now underway: FRC Injection experiment (FIX), Translation Confinement experiment (TCS), Nihon-University Compact Torus Experiment (NUCTE), HITSI (Helicity Injection experiment, Steady Inductive Helicity Injection (HIT-SIHI)), Field Reversed Configuration experiment-Liner (FRX-L), TS-3/4, Sustained Spheromak Experiment (SSPX), Relaxation Scaling Experiment (RSX), HIST, Caltech Spheromak, or in the design process such as MRX-FRC (PPPL), Pulsed High Density experiment (PHD at UW). Several new directions and results in compact toroid (CT) research have recently emerged, including neutral-beam injection, rotating magnetic fields, flux build up from Ohmic boost coils, electrostatic helicity injection techniques, CT injection into other large devices, and high density configurations for applications to magnetized target fusion and translational compression of CT's. CT experimental programs in both the US and Japan have also shown substantial progress in the control and sustainment of CT's. Both in theory and experiment, there is increased emphasis on 3D dynamics, which is also related to astrophysical and space physics issues. 3D data visualization is now frequently used for experimental data display. There was much discussion of the effects of weak toroidal fields in FRC's and possible implications
El-Atab, Nazek; Nayfeh, Ammar
2016-07-08
ZnO nanoparticles (NPs) have attracted considerable interest from industry and researchers due to their excellent properties with applications in optoelectronic devices, sunscreens, photocatalysts, sensors, biomedical sciences, etc. However, the agglomeration of NPs is considered to be a limiting factor since it can affect the desirable physical and electronic properties of the NPs. In this work, 1-5 nm ZnO NPs deposited by spin- and dip-coating techniques are studied. The electronic and physical properties of the resulting agglomerations of NPs are studied using UV-vis-NIR spectroscopy, atomic force microscopy (AFM), and transmission electron microscopy (TEM), and their application in metal-oxide-semiconductor (MOS) memory devices is analyzed. The results show that both dip- and spin-coating techniques lead to agglomerations of the NPs mostly in the horizontal direction. However, the width of the ZnO clusters is larger with dip-coating which leads to 1D quantum confinement, while the smaller ZnO clusters obtained by spin-coating enable 3D quantum confinement in ZnO. The ZnO NPs are used as the charge-trapping layer of a MOS-memory structure and the analysis of the high-frequency C-V measurements allow further understanding of the electronic properties of the ZnO agglomerations. A large memory window is achieved in both devices which confirms that ZnO NPs provide large charge-trapping density. In addition, ZnO confined in 3D allows for a larger memory window at lower operating voltages due to the Poole-Frenkel charge-emission mechanism.
El-Atab, Nazek; Nayfeh, Ammar
2016-07-01
ZnO nanoparticles (NPs) have attracted considerable interest from industry and researchers due to their excellent properties with applications in optoelectronic devices, sunscreens, photocatalysts, sensors, biomedical sciences, etc. However, the agglomeration of NPs is considered to be a limiting factor since it can affect the desirable physical and electronic properties of the NPs. In this work, 1-5 nm ZnO NPs deposited by spin- and dip-coating techniques are studied. The electronic and physical properties of the resulting agglomerations of NPs are studied using UV-vis-NIR spectroscopy, atomic force microscopy (AFM), and transmission electron microscopy (TEM), and their application in metal-oxide-semiconductor (MOS) memory devices is analyzed. The results show that both dip- and spin-coating techniques lead to agglomerations of the NPs mostly in the horizontal direction. However, the width of the ZnO clusters is larger with dip-coating which leads to 1D quantum confinement, while the smaller ZnO clusters obtained by spin-coating enable 3D quantum confinement in ZnO. The ZnO NPs are used as the charge-trapping layer of a MOS-memory structure and the analysis of the high-frequency C-V measurements allow further understanding of the electronic properties of the ZnO agglomerations. A large memory window is achieved in both devices which confirms that ZnO NPs provide large charge-trapping density. In addition, ZnO confined in 3D allows for a larger memory window at lower operating voltages due to the Poole-Frenkel charge-emission mechanism.
Structural analysis of TFTR toroidal field coil conceptual design
International Nuclear Information System (INIS)
Smith, R.A.
1975-10-01
The conceptual design evaluation of the V-shaped toroidal field coils on the Tokamak Fusion Test Reactor has been performed by detailed structural analysis with the finite element method. The innovation provided by this design and verified in this work is the capability to support toroidal field loads while simultaneously performing the function of twist restraint against the device axial torques resulting from the vertical field loads. The evaluations made for the conceptual design provide predictions for coil deflections and stresses. The results are available for the separate effects from toroidal fields, poloidal fields, and the thermal expansion of the coils as well as for the superposition of the primary loads and the primary plus thermal loads
Modal analysis of a stiffened toroidal shell sector
International Nuclear Information System (INIS)
Cerreta, R.; Di Pietro, E.; Pizzuto, A.
1987-01-01
This paper presents the results of the modal analysis of a sector of the toroidal vacuum vessel of a new experimental machine for research in the field of controlled thermonuclear fusion (FTU - Frascati Tokamak Upgrade). The vacuum vessel, one of the most critical components of the experimental device, consist of 12 stainless steel toroidal sectors, and it is designed to withstand pulsed electromagnetic loads during operation. Results of the modal analysis of the stiffened toroidal shell sector are compared and discussed with regard to the experimental data. Theoretical eigenvalues and eigenvectors have been predicted by means of ABAQUS finite element code. Experimental analysis has been carried out on a full scale model and natural frequencies have been measured. Satisfactory agreement between experimental and theoretical eigenvalues has been found
Program for development of toroidal superconducting magnets for fusion research, May 1975
International Nuclear Information System (INIS)
Long, H.M.; Lubell, M.S.
1975-11-01
The objective of this program is a tested magnet design which demonstrates the suitability and reliability needed to qualify toroidal superconducting magnets for fusion research devices in a time compatible with the D-T burning experiments time frame. The overall applied development program including tasks, manpower, and cost estimates is detailed here, but for the full toroidal system only the cost and time frame are outlined to show compatibility with the present program. The details of the full toroidal system fall under major device fabrication and will be included in a subsequent document
Toroidal helical quartz forming machine
International Nuclear Information System (INIS)
Hanks, K.W.; Cole, T.R.
1977-01-01
The Scyllac fusion experimental machine used 10 cm diameter smooth bore discharge tubes formed into a simple toroidal shape prior to 1974. At about that time, it was discovered that a discharge tube was required to follow the convoluted shape of the load coil. A machine was designed and built to form a fused quartz tube with a toroidal shape. The machine will accommodate quartz tubes from 5 cm to 20 cm diameter forming it into a 4 m toroidal radius with a 1 to 5 cm helical displacement. The machine will also generate a helical shape on a linear tube. Two sets of tubes with different helical radii and wavelengths have been successfully fabricated. The problems encountered with the design and fabrication of this machine are discussed
Toroidal Trivelpiece-Gould modes
International Nuclear Information System (INIS)
Stoessel, F.P.
1979-01-01
Electron plasma waves are treated in quasi-electrostatic approximation in a toroidal cavity of rectangular cross-section in an infinitely strong azimuthal magnetic field. The differential equation for the electrostatic potential, derived from fluid equations, can be separated using cylindrical coordinates. The eigenvalue problem for the radial dependence is solved numerically by a shooting method. Eigenvalues are given for different aspect ratios. Comparison with appropriate modes of the straight geometry shows that the toroidal frequencies generally lie some percent above those for the straight case. Plots of the eigenfunctions demonstrate clearly the influence of toroidicity. The deviation from symmetry (which should appear for straight geometry) depends not only on the aspect ratio but also strongly on the mode numbers. (author)
Energy Technology Data Exchange (ETDEWEB)
Podesta, M; Fredrickson, E D; Gorelenkov, N N; LeBlanc, B P; Heidbrink, W W; Crocker, N A; Kubota, S
2010-08-19
The effects of a sheared toroidal rotation on the dynamics of bursting Toroidicity-induced Alfven eigenmodes are investigated in neutral beam heated plasmas on the National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40 557 (2000)]. The modes have a global character, extending over most of the minor radius. A toroidal rotation shear layer is measured at the location of maximum drive for the modes. Contrary to results from other devices, no clear evidence of increased damping is found. Instead, experiments with simultaneous neutral beam and radio-frequency auxiliary heating show a strong correlation between the dynamics of the modes and the instability drive. It is argued that kinetic effects involving changes in the mode drive and damping mechanisms other than rotation shear, such as continuum damping, are mostly responsible for the bursting dynamics of the modes.
International Nuclear Information System (INIS)
Podesta, M.; Bell, R.E.; Fredrickson, E.D.; Gorelenkov, N.N.; LeBlanc, B.P.; Heidbrink, W.W.; Crocker, N.A.; Kubota, S.; Yuh, H.
2010-01-01
The effects of a sheared toroidal rotation on the dynamics of bursting Toroidicity-induced Alfven eigenmodes are investigated in neutral beam heated plasmas on the National Spherical Torus Experiment (NSTX) (M. Ono et al., Nucl. Fusion 40 557 (2000)). The modes have a global character, extending over most of the minor radius. A toroidal rotation shear layer is measured at the location of maximum drive for the modes. Contrary to results from other devices, no clear evidence of increased damping is found. Instead, experiments with simultaneous neutral beam and radio-frequency auxiliary heating show a strong correlation between the dynamics of the modes and the instability drive. It is argued that kinetic effects involving changes in the mode drive and damping mechanisms other than rotation shear, such as continuum damping, are mostly responsible for the bursting dynamics of the modes.
International Nuclear Information System (INIS)
Tezuka, Masaru.
1993-01-01
Protrusions and recesses are formed to a vacuum vessel and toroidal magnetic coils, and they are engaged. Since the vacuum vessel is generally supported firmly by a rack or the like by support legs, the toroidal magnetic field coils can be certainly supported against tumbling force. Then, there can be attained strong supports for the toroidal magnetic field coils, in addition to support by wedges on the side of inboard and support by share panels on the side of outboard, capable of withstanding great electromagnetic forces which may occur in large-scaled next-generation devices. That is, toroidal magnetic field coils excellent from a view point of deformation and stress can be obtained, to provide a thermonuclear device of higher reliability. (N.H.)
Calculation of modification to the toroidal magnetic field of the Tokamak Novillo. Part II
International Nuclear Information System (INIS)
Melendez L, L.; Chavez A, E.; Colunga S, S.; Valencia A, R.; Lopez C, R.; Gaytan G, E.
1992-03-01
In a cylindrical magnetic topology. the confined plasma experiences 'classic' collisional transport phenomena. When bending the cylinder with the purpose of forming a toro, the magnetic field that before was uniform now it has a radial gradient which produces an unbalance in the magnetic pressure that is exercised on the plasma in the transverse section of the toro. This gives place to transport phenomena call 'neo-classicist'. In this work the structure of the toroidal magnetic field produced by toroidal coils of triangular form, to which are added even of coils of compensation with form of half moon is analyzed. With this type of coils it is looked for to minimize the radial gradient of the toroidal magnetic field. The values and characteristics of B (magnetic field) in perpendicular planes to the toro in different angular positions in the toroidal direction, looking for to cover all the cases of importance are exhibited. (Author)
The complex and unique ATLAS Toroid family
2002-01-01
Big parts for the toroid magnets that will be used in the ATLAS experiment have been continuously arriving at CERN since March. These structures will create the largest superconducting toroid magnet ever.
An experiment to test centrifugal confinement for fusion
International Nuclear Information System (INIS)
Ellis, R.F.; Hassam, A.B.; Messer, S.; Osborn, B.R.
2001-01-01
The basic idea of centrifugal confinement is to use centrifugal forces from supersonic rotation to augment conventional magnetic confinement. Optimizing this 'knob' results in a fusion device that features four advantages: steady state, no disruptions, superior cross-field confinement, and a simpler coil configuration. The idea rests on two prongs: first, centrifugal forces can confine plasmas to desired regions of shaped magnetic fields; second, the accompanying large velocity shear can stabilize even magnetohydrodynamic (MHD) instabilities. A third feature is that the velocity shear also viscously heats the plasma; no auxiliary heating is necessary to reach fusion temperatures. Regarding transport, the velocity shear can also quell microturbulence, leading to fully classical confinement, as there are no neoclassical effects. Classical parallel electron transport then sets the confinement time. These losses are minimized by a large Pastukhov factor resulting from the deep centrifugal potential well: at Mach 4-5, the Lawson criterion is accessible. One key issue is whether velocity shear will be sufficient by itself to stabilize MHD interchanges. Numerical simulations indicate that laminar equilibria can be obtained at Mach numbers of 4-5 but that the progression toward laminarity with increasing Mach number is accompanied by residual convection from the interchanges. The central goal of the Maryland Centrifugal Torus (MCT) [R. F. Ellis et al., Bull. Am. Phys. Soc. 44, 48 (1998)] is to obtain MHD stability from velocity shear. As an assist to accessing laminarity, MCT will incorporate two unique features: plasma elongation and toroidal magnetic field. The former raises velocity shear efficiency, and modest magnetic shear should suppress residual convection
International Nuclear Information System (INIS)
2016-12-01
The IAEA actively promotes the development of controlled fusion as a source of energy. Through its coordinated research activities, the IAEA helps Member States to exchange and establish scientific and technical knowledge required for the design, construction and operation of a fusion reactor. Due to their compactness, flexibility and low operation costs, small fusion devices are a great resource for supporting and accelerating the development of mainstream fusion research on large fusion devices such as the International Thermonuclear Experimental Reactor. They play an important role in investigating the physics of controlled fusion, developing innovative technologies and diagnostics, testing new materials, training highly qualified personnel for larger fusion facilities, and supporting educational programmes for young scientists. This publication reports on the research work accomplished within the framework of the Coordinated Research Project (CRP) on Utilization of the Network of Small Magnetic Confinement Fusion Devices for Mainstream Fusion Research, organized and conducted by the IAEA in 2011–2016. The CRP has contributed to the coordination of a network of research institutions, thereby enhancing international collaboration through scientific visits, joint experiments and the exchange of information and equipment. A total of 16 institutions and 14 devices from 13 Member States participated in this CRP (Belgium, Bulgaria, Canada, China, Costa Rica, the Czech Republic, the Islamic Republic of Iran, Kazakhstan, Pakistan, Portugal, the Russian Federation, Ukraine and the United Kingdom).
HIDRA: A new device for PFC and PMI development
Andruczyk, Daniel; Ruzic, David N.; Allain, Jean Paul; Curreli, Davide; HIDRA Team
2014-10-01
A toroidal plasma device is being constructed at the University of Illinois dedicated in part as a toroidal liquid-metal PFC technology test bench. The Hybrid Illinois stellarator/tokamak Device for Research and Applications (HIDRA) is a medium sized classical stellarator (previously WEGA, IPP Greifswald) with, R = 0.72 m, a = 0.19 m, B < 0.5 T and will be able to reach Te = 10-50 eV, ne = 1017--1018 m-3 with plasmas running up to several minutes. A critical knowledge gap for liquid-metal PFCs is their integration and performance in asymmetric confinement fusion environments. HIDRA will be used to evaluate technologies such as TEMHD driven flows for the first wall, help address key questions including whether a full toroidal liquid-metal loop can operate in a toroidal machine, test low recycling regimes and whether D can be removed and recycled easily. Also, UIUC's experience with in-situ diagnostics will open up new opportunities for innovative Material Application Testing (HIDRA-MAT).
Lowering the first ATLAS toroid
Maximilien Brice
2004-01-01
The ATLAS detector on the LHC at CERN will consist of eight toroid magnets, the first of which was lowered into the cavern in these images on 26 October 2004. The coils are supported on platforms where they will be attached to form a giant torus. The platforms will hold about 300 tonnes of ATLAS' muon chambers and will envelop the inner detectors.
RF breakdown by toroidal helicons
Indian Academy of Sciences (India)
Abstract. Bounded whistlers are well-known for their efficient plasma production capabilities in thin cylindrical tubes. In this paper we shall present their radio frequency (RF) breakdown and discharge sustaining capabilities in toroidal systems. Pulsed RF power in the electronmagnetohy- drodynamic (EMHD) frequency ...
RF breakdown by toroidal helicons
Indian Academy of Sciences (India)
Bounded whistlers are well-known for their efﬁcient plasma production capabilities in thin cylindrical tubes. In this paper we shall present their radio frequency (RF) breakdown and discharge sustaining capabilities in toroidal systems. Pulsed RF power in the electronmagnetohydrodynamic (EMHD) frequency regime is fed to ...
Onsager relaxation of toroidal plasmas
International Nuclear Information System (INIS)
Samain, A.; Nguyen, F.
1997-01-01
The slow relaxation of isolated toroidal plasmas towards their thermodynamical equilibrium is studied in an Onsager framework based on the entropy metric. The basic tool is a variational principle, equivalent to the kinetic equation, involving the profiles of density, temperature, electric potential, electric current. New minimization procedures are proposed to obtain entropy and entropy production rate functionals. (author)
Hybrid winding concept for toroids
DEFF Research Database (Denmark)
Schneider, Henrik; Andersen, Thomas; Knott, Arnold
2013-01-01
and placement machinery. This opens up the possibility for both an automated manufacturing process and an automated production process of toroidal magnetics such as power inductors, filtering inductors, air core inductors, transformers etc. Both the proposed hybrid and the common wire wound winding...
l=1 helical axis heliotron device in Kyoto university
International Nuclear Information System (INIS)
Nagasaki, K.; Sano, F.; Mizuuchi, T.; Hanatani, K.; Okada, H.; Obiki, T.
1999-01-01
Helical systems are an attractive candidate for magnetic fusion reactor. Recently, there has been great progress in theoretical research of three dimensional magnetic field structures, resulting in several kinds of confinement optimization being proposed for toroidal magnetic confinement system. For example, some sophisticated ideas have appeared on stage such as quasi-helical symmetry and quasi-isodynamic system. To find experimentally which way is the best Optimisation, a new helical axis heliotron device, so called 'Heliotron J', is under construction in the Institute of Advanced Energy, Kyoto University, Japan. In this conference, the basic concept and the present status will be presented. In the conventional plane axis helical system, it was difficult to have both good particle confinement and good MHD stability simultaneously. The goal of Heliotron J project is to clarify their compatibility in the spatial axis toroidal device. The best way for Optimising the helical magnetic field configuration will be explored by investigating the plasma response to the change in the field components. The main subjects for plasma experiment are: demonstration of the existence of good magnetic flux surfaces, reduction of neoclassical transport in collisionless regime, MHD Stabilisation in high β plasma, controllability of bootstrap current, good confinement of high energy particles
Vortex-vortex interactions in toroidally trapped Bose-Einstein condensates
Schulte, T.; Santos, L.; Sanpera, A.; Lewenstein, M.
2002-01-01
We analyze the vortex dynamics and vortex-vortex interactions in Bose-Einstein condensates confined in toroidal traps. We show that this particular geometry strongly distorts the vortex dynamics. The numerically calculated vortex trajectories are well explained by an analytical calculation based on image method and conformal mapping. Finally, the dissipation effects are discussed.
Performance assessment and optimization of the ITER toroidal field coil joints
Rolando, G.; Foussat, A.; Knaster, J.; Ilyin, Y.; Nijhuis, Arend
2013-01-01
The ITER toroidal field (TF) system features eighteen coils that will provide the magnetic field necessary to confine the plasma. Each winding pack is composed of seven double pancakes (DP) connected through praying hands joints. Shaking hands joints are used to interface the terminals of the
Torus type thermonuclear device
International Nuclear Information System (INIS)
Kitazawa, Hakaru; Saito, Ryusei.
1981-01-01
Purpose: To obtain toroidal coil supports structures capable of coping with the changes in the elasticity distribution due to thermal expansion and performing elastic support function corresponding to the distribution of stresses exerted on the toroidal coils, by providing elastic function to the inner circumference side of the coil support structures. Constitution: Support structures for supporting toroidal coils from above and below are formed at the torus inner circumference side thereof with ribs in contact with a central block and having elasticity coefficient corresponding to the distribution of stresses exerted on the toroidal coils, and the stresses exerted on the toroidal coils are elastically supported on the ribs. Accordingly, if the stress distribution varies due to the thermal expansion or the like, adequate supporting function can be obtained well-corresponding to such changes, whereby effective plasma confinement can be attained. (Moriyama, K.)
Implications of polarized DT plasmas for toroidal fusion reactors
International Nuclear Information System (INIS)
Micklich, B.J.; Jassby, D.L.
1983-05-01
Spin polarization of the deuterons and tritons in a reacting plasma can result in an increase in the fusion reactivity and variation of the angular distribution of emission of the fusion neutrons. The increased fusion reactivity relaxes the confinement-temperature conditions for breakeven and ignition. We have determined the effect of varying the angular distribution of the fusion neutrons on the spatial distribution of fusion neturon current and flux at the first wall, on the global tritium breeding ratio, and on the first-wall radiation damage in low-aspect-ratio toroidal geometry
Petascale Parallelization of the Gyrokinetic Toroidal Code
Energy Technology Data Exchange (ETDEWEB)
Ethier, Stephane; Adams, Mark; Carter, Jonathan; Oliker, Leonid
2010-05-01
The Gyrokinetic Toroidal Code (GTC) is a global, three-dimensional particle-in-cell application developed to study microturbulence in tokamak fusion devices. The global capability of GTC is unique, allowing researchers to systematically analyze important dynamics such as turbulence spreading. In this work we examine a new radial domain decomposition approach to allow scalability onto the latest generation of petascale systems. Extensive performance evaluation is conducted on three high performance computing systems: the IBM BG/P, the Cray XT4, and an Intel Xeon Cluster. Overall results show that the radial decomposition approach dramatically increases scalability, while reducing the memory footprint - allowing for fusion device simulations at an unprecedented scale. After a decade where high-end computing (HEC) was dominated by the rapid pace of improvements to processor frequencies, the performance of next-generation supercomputers is increasingly differentiated by varying interconnect designs and levels of integration. Understanding the tradeoffs of these system designs is a key step towards making effective petascale computing a reality. In this work, we examine a new parallelization scheme for the Gyrokinetic Toroidal Code (GTC) [?] micro-turbulence fusion application. Extensive scalability results and analysis are presented on three HEC systems: the IBM BlueGene/P (BG/P) at Argonne National Laboratory, the Cray XT4 at Lawrence Berkeley National Laboratory, and an Intel Xeon cluster at Lawrence Livermore National Laboratory. Overall results indicate that the new radial decomposition approach successfully attains unprecedented scalability to 131,072 BG/P cores by overcoming the memory limitations of the previous approach. The new version is well suited to utilize emerging petascale resources to access new regimes of physical phenomena.
Classification of symmetric toroidal orbifolds
Energy Technology Data Exchange (ETDEWEB)
Fischer, Maximilian; Ratz, Michael; Torrado, Jesus [Technische Univ. Muenchen, Garching (Germany). Physik-Department; Vaudrevange, Patrick K.S. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2012-09-15
We provide a complete classification of six-dimensional symmetric toroidal orbifolds which yield N{>=}1 supersymmetry in 4D for the heterotic string. Our strategy is based on a classification of crystallographic space groups in six dimensions. We find in total 520 inequivalent toroidal orbifolds, 162 of them with Abelian point groups such as Z{sub 3}, Z{sub 4}, Z{sub 6}-I etc. and 358 with non-Abelian point groups such as S{sub 3}, D{sub 4}, A{sub 4} etc. We also briefly explore the properties of some orbifolds with Abelian point groups and N=1, i.e. specify the Hodge numbers and comment on the possible mechanisms (local or non-local) of gauge symmetry breaking.
INSTABILITY OF NON-UNIFORM TOROIDAL MAGNETIC FIELDS IN ACCRETION DISKS
Energy Technology Data Exchange (ETDEWEB)
Hirabayashi, Kota; Hoshino, Masahiro, E-mail: hirabayashi-k@eps.s.u-tokyo.ac.jp [Department of Earth and Planetary Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)
2016-05-10
We present a new type of instability that is expected to drive magnetohydrodynamic (MHD) turbulence from a purely toroidal magnetic field in an accretion disk. It is already known that in a differentially rotating system, the uniform toroidal magnetic field is unstable due to magnetorotational instability (MRI) under a non-axisymmetric and vertical perturbation, while it is stable under a purely vertical perturbation. Contrary to the previous study, this paper proposes an unstable mode completely confined to the equatorial plane, driven by the expansive nature of the magnetic pressure gradient force under a non-uniform toroidal field. The basic nature of this growing eigenmode, which we name “magneto-gradient driven instability,” is studied using linear analysis, and the corresponding nonlinear evolution is then investigated using two-dimensional ideal MHD simulations. Although a single localized magnetic field channel alone cannot provide sufficient Maxwell stress to contribute significantly to the angular momentum transport, we find that the mode coupling between neighboring toroidal fields under multiple localized magnetic field channels drastically generates a highly turbulent state and leads to the enhanced transport of angular momentum, which is comparable to the efficiency seen in previous studies on MRIs. This horizontally confined mode may play an important role in the saturation of an MRI through complementray growth with the toroidal MRIs and coupling with magnetic reconnection.
Transporting the first ATLAS toroid
Maximilien Brice
2004-01-01
The first coil for the ATLAS toroid magnet is transported from its assembly hall at the CERN Meyrin site to the storage hall above the ATLAS cavern. This involves driving the massive transportation vehicle first through the Meyrin site and then across a main road only metres from the France-Swiss border. Eight magnets in total will be transported in this way before being lowered into the experimental cavern where they will be mounted in a huge ring surrounding the detector.
Transport and Dynamics in Toroidal Fusion Systems
Energy Technology Data Exchange (ETDEWEB)
Schnack, Dalton D
2006-05-16
This document reports the successful completion of the OFES Theory Milestone for FY2005, namely, Perform parametric studies to better understand the edge physics regimes of laboratory experiments. Simulate at increased resolution (up to 20 toroidal modes), with density evolution, late into the nonlinear phase and compare results from different types of edge modes. Simulate a single case including a study of heat deposition on nearby material walls. The linear stability properties and nonlinear evolution of Edge Localized Modes (ELMs) in tokamak plasmas are investigated through numerical computation. Data from the DIII-D device at General Atomics (http://fusion.gat.com/diii-d/) is used for the magnetohydrodynamic (MHD) equilibria, but edge parameters are varied to reveal important physical effects. The equilibrium with very low magnetic shear produces an unstable spectrum that is somewhat insensitive to dissipation coefficient values. Here, linear growth rates from the non-ideal NIMROD code (http://nimrodteam.org) agree reasonably well with ideal, i.e. non-dissipative, results from the GATO global linear stability code at low toroidal mode number (n) and with ideal results from the ELITE edge linear stability code at moderate to high toroidal mode number. Linear studies with a more realistic sequence of MHD equilibria (based on DIII-D discharge 86166) produce more significant discrepancies between the ideal and non-ideal calculations. The maximum growth rate for the ideal computations occurs at toroidal mode index n=10, whereas growth rates in the non-ideal computations continue to increase with n unless strong anisotropic thermal conduction is included. Recent modeling advances allow drift effects associated with the Hall electric field and gyroviscosity to be considered. A stabilizing effect can be observed in the preliminary results, but while the distortion in mode structure is readily apparent at n=40, the growth rate is only 13% less than the non-ideal MHD
Toroidal plasma reactor with low external magnetic field
International Nuclear Information System (INIS)
Beklemishev, A.D.; Khayrutdinov, R.R.; Petviashvili, V.I.; Tajima, T.; Gordin, V.A.; Tajima, T.
1991-01-01
A toroidal pinch configuration with safety factor q < 0.5 decreasing from the center to periphery without field reversal is proposed. This is capable of containing high pressure plasma with only small toroidal external magnetic field. Sufficient conditions for magnetohydrodynamic stability are fulfilled in this configuration. The stability is studied by constructing the Lyapunov functional and investigating its extrema both analytically and numerically. Comparison of the Lyapunov stability conditions with the conventional linear theory is carried out. Stable configurations are found with average β near 15%, with magnetic field associated mainly with plasma current. The β value calculated with the external magnetic field can be over 100%. Fast charged particles produced by fusion reactions are asymmetrically confined by the poloidal magnetic field (and due to the lack of strong toroidal field). They thus generate a current in the noncentral part of plasma to reinforce the poloidal field. This current drive can sustain the monotonic decrease of q with radius. 20 refs., 9 figs
Goya - an MHD equilibrium code for toroidal plasmas
International Nuclear Information System (INIS)
Scheffel, J.
1984-09-01
A description of the GOYA free-boundary equilibrium code is given. The non-linear Grad-Shafranov equation of ideal MHD is solved in a toroidal geometry for plasmas with purely poloidal magnetic fields. The code is based on a field line-tracing procedure, making storage of a large amount of information on a grid unnecessary. Usage of the code is demonstrated by computations of equi/libria for the EXTRAP-T1 device. (Author)
Compact toroid injection into C-2U
Roche, Thomas; Gota, H.; Garate, E.; Asai, T.; Matsumoto, T.; Sekiguchi, J.; Putvinski, S.; Allfrey, I.; Beall, M.; Cordero, M.; Granstedt, E.; Kinley, J.; Morehouse, M.; Sheftman, D.; Valentine, T.; Waggoner, W.; the TAE Team
2015-11-01
Sustainment of an advanced neutral beam-driven FRC for a period in excess of 5 ms is the primary goal of the C-2U machine at Tri Alpha Energy. In addition, a criteria for long-term global sustainment of any magnetically confined fusion reactor is particle refueling. To this end, a magnetized coaxial plasma-gun has been developed. Compact toroids (CT) are to be injected perpendicular to the axial magnetic field of C-2U. To simulate this environment, an experimental test-stand has been constructed. A transverse magnetic field of B ~ 1 kG is established (comparable to the C-2U axial field) and CTs are fired across it. As a minimal requirement, the CT must have energy density greater than that of the magnetic field it is to penetrate, i.e., 1/2 ρv2 >=B2 / 2μ0 . This criteria is easily met and indeed the CTs traverse the test-stand field. A preliminary experiment on C-2U shows the CT also capable of penetrating into FRC plasmas and refueling is observed resulting in a 20 - 30% increase in total particle number per single-pulsed CT injection. Results from test-stand and C-2U experiments will be presented.
International Nuclear Information System (INIS)
Rogister, A.; Hasselberg, G.; Waelbroeck, F.; Weiland, J.
1987-12-01
A self-consistent transport code is used to evaluate how plasma confinement in tokamaks is influenced by the microturbulent fields which are excited by the dissipative trapped electron (DTE) instability. As shown previously, the saturation theory on which the code is based has been developed from first principles. The toroidal coupling resulting from the ion magnetic drifts is neglected; arguments are presented to justify this approximation. The numerical results reproduce well the neo-Alcator scaling law observed experimentally - e.g. in TEXTOR - in non detached ohmic discharges, the confinement degradation which results when auxiliary heating is applied, as well as a large number of other experimental observations. We also assess the possible impact of the toroidal ion temperature gradient mode on energy confinement by estimating the ion thermal flux with the help of the mixing length approximation. (orig./GG)
Directory of Open Access Journals (Sweden)
Ap Kuiroukidis
2018-01-01
Full Text Available We consider a generalized Grad–Shafranov equation (GGSE in a triangularity-deformed axisymmetric toroidal coordinate system and solve it numerically for the generic case of ITER-like and JET-like equilibria with non-parallel flow. It turns out that increase of the triangularity improves confinement by leading to larger values of the toroidal beta and the safety factor. This result is supported by the application of a criterion for linear stability valid for equilibria with flow parallel to the magnetic field. Also, the parallel flow has a weaker stabilizing effect.
International Nuclear Information System (INIS)
Joos, H.
1976-07-01
The main topics of these lectures are: phenomenological approach to quark confinement, standard Lagrangian of hadrondynamics, Lagrangian field theory and quark confinement, classical soliton solutions in a simple model, quantization of extended systems, colour charge screening and quantization on a lattice and remarks on applications. A survey of the scientific publications listed according to the topics until 26 March 1976 is supplemented. (BJ) [de
Heating of toroidal plasmas by neutral injection
International Nuclear Information System (INIS)
Stix, T.H.
1971-08-01
This paper presents a brief review of the physics of ion acceleration, charge exchange and ionization, trajectories for fast ions in toroidal magnetic fields, and fast-ion thermalization. The injection of fast atoms is found to be a highly competitive method both for heating present-day experimental toroidal plasmas and for bringing full-scale toroidal CTR plasmas to low-density ignition. 13 refs., 9 figs
Control and monitoring of the Tore Supra toroidal superconducting coils
International Nuclear Information System (INIS)
Prou, M.
1989-07-01
Light nuclei controlled fusion reactions are seen as a possible way to produce nuclear energy. For this reason, the interest in hot plasma researches in tokamaks has increased. The Tore Supra main characteristic is related to the superconducting magnet coils. They allow a suitable energy balance, however, they require an accurate and preventive fault detection. The Tore Supra machine and the different methods to detect a transition (from superconducting to normal mode) in the toroidal coils are described. The voltage of the coils, the pressure of the helium superfluid at 1.8 K and the electric current in the circuit parallel resistances, are measured. A computer aided control system allows the toroidal field monitoring (current in the coils, fault detection). The superconducting magnet configuration chosen for Tore Supra seems to be suitable for future large Tokamak devices [fr
Ogawa, K.; Isobe, M.; Kawase, H.; Nishitani, T.; Seki, R.; Osakabe, M.; LHD Experiment Group
2018-04-01
The effect of the helically-trapped energetic-ion-driven resistive interchange modes (EICs) on energetic ion confinement is studied in the Large Helical Device deuterium plasmas. Neutron diagnostics such as the neutron flux monitor and the vertical neutron camera (VNC) are used in order to measure neutrons mainly created by beam-plasma reactions. The line-integrated neutron profiles are obtained by VNC in magnetohydrodynamic-quiet plasma with various neutral beam (NB) injection patterns. The profiles are consistent with that expected by the beam ion density calculated using orbit-following simulations. Significant decreases of the total neutron emission rate (S n) and the neutron counting rate of the VNC (C n) in central cords are observed to be synchronized with EIC bursts with perpendicular-NB injection. The drop rates of both S n and C n increase with EIC amplitude and reach around 50%. The line-integrated neutron profiles before and after EIC burst show that in the central cords, C n decrease due to EIC burst whereas there is almost no change in the other cords. The experimental results suggests that the effect of EIC on helically-trapped beam ion is substantial, however the effect of passing beam ion is not significant.
Hazeltine, R D
2003-01-01
Detailed and authoritative, this volume examines the essential physics underlying international research in magnetic confinement fusion. It offers readable, thorough accounts of the fundamental concepts behind methods of confining plasma at or near thermonuclear conditions. Designed for a one- or two-semester graduate-level course in plasma physics, it also represents a valuable reference for professional physicists in controlled fusion and related disciplines.
International Nuclear Information System (INIS)
Sprott, J.G.
1978-05-01
A discussion is given of the design and operation of the Tokapole II device. The following topics are considered: physics considerations, vacuum vessel, poloidal field, ring and support design, toroidal field, vacuum system, initial results, and future plans
Fast Dump of the ATLAS Toroids
Dudarev, A; Volpini, Giovanni; Dudarev, Alexey; Kate, Herman Ten
2010-01-01
The toroidal magnet system of the ATLAS Detector at CERN consists of a Barrel Toroid (BT) and two End Cap Toroids (ECT-A and ECT-C). Each toroid is built up from eight racetrack coils wound with an aluminum stabilized NbTi conductor and indirectly cooled by forced flow liquid helium. The three toroids operate in series at 20.5 kA with a total stored energy of 1.5 GJ. In order to verify the reliability and effectiveness of the quench protection system, series of fast dump tests have been performed first of the single toroids and finally of the entire toroidal magnet system. In this paper a model to simulate the fast dump of the ATLAS toroids in single mode operation and in full system configuration is presented. The model is validated through comparison with measured data extracted from the ramp-and-quench runs. The calculated energy dissipation in the various coils is in very good agreement (within 1-2\\%) with the enthalpy changes estimated from the temperature measurements of the different parts of the cold ...
Electrostatics of a Family of Conducting Toroids
Lekner, John
2009-01-01
An exact solution is found for the electrostatic potential of a family of conducting charged toroids. The toroids are characterized by two lengths "a" and "b", with "a" greater than or equal to "2b". They are closed, with no hole in the "doughnut". The results are obtained by considering the potential of two equal charges, displaced from the…
Toroidally Resolved Structure of Divertor Heat Flux in RMP H-mode Discharges on DIII-D
International Nuclear Information System (INIS)
Jakubowski, M.W.; Evans, T.E.; Fenstermacher, M.E.; Lasnier, C.J.; Wolf, R.C.; Baylor, Larry R.; Boedo, J.A.; Burrell, K.H.; DeGrassie, J.S.; Gohil, P.; Mordijck, S.; Laengner, R.; Leonard, A.W.; Moyer, R.A.; Petrie, T.W.; Petty, C.C.; Pinsker, R.I.; Rhodes, T.L.; Schaffer, M.J.; Schmitz, O.; Snyder, P.B.; Stoschus, H.; Osborne, T.H.; Orlov, D.M.; Unterberg, Ezekial A.; Watkins, J.G.
2011-01-01
As shown on DIII-D edge localized modes (ELMs) can be either completely eliminated or mitigated with resonant magnetic perturbation (RMP) fields. Two infrared cameras, separated 105 degrees toroidally, were used to make simultaneous measurements of ELM heat loads with high frame rates. Without the RMP fields ELMs display a variety of different heat load dynamics and a range of toroidal variability that is characteristic of their 3D structure. Comparing radial averages there is no asymmetry between two toroidal locations. With RMP-mitigated ELMs, the variability in the radially averaged power loads is significantly reduced and toroidal asymmetries in power loads are introduced. In addition to RMP ELM suppression scenarios an RMP scenario with only very small ELMs and very good confinement has been achieved.
Toroidal effects on drift wave turbulence
Energy Technology Data Exchange (ETDEWEB)
LeBrun, M.J.; Tajima, T.; Gray, M.G.; Furnish, G.; Horton, W.
1992-09-23
The universal drift instability and other drift instabilities driven by density and temperature gradients in a toroidal system are investigated in both linear and nonlinear regimes via particle simulation. Runs in toroidal and cylindrical geometry show dramatic differences in plasma behavior, primarily due to the toroidicity-induced coupling of rational surfaces through the poloidal mode number m. In the toroidal system studied, the eigenmodes are seen to possess (i) an elongated, nearly global radial extent (ii) a higher growth rate than in the corresponding cylindrical system, (iii) an eigenfrequency nearly constant with radius, (iv) a global temperature relaxation and enhancement of thermal heat conduction. Most importantly, the measured Xi shows an increase with radius and an absolute value on the order of that observed in experiment. On the basis of our observations, we argue that the increase in Xi with radius observed in experiment is caused by the global nature of heat convection in the presence of toroidicity-induced mode coupling.
Toroidally symmetric/asymmetric effect on the divertor flux due to neon/nitrogen seeding in LHD
Directory of Open Access Journals (Sweden)
H. Tanaka
2017-08-01
Full Text Available Toroidal distributions of divertor particle flux during neon (Ne and nitrogen (N2 seeded discharges were investigated in the Large Helical Device (LHD. By using 14 toroidally distributed divertor probe arrays, which were positioned at radially inner side where the divertor flux concentrates in the inward-shifted magnetic axis configuration, it is found that Ne puffing leads to toroidally quasi-uniform reduction of divertor particle fluxes; whereas toroidally localized reductions were observed with N2 puffing. The toroidally asymmetric reduction pattern with N2 puffing is strongly related to the magnetic field structure around the N2 puffing port. Assuming that nitrogen particles do not recycle, EMC3-EIRENE simulation shows similar reduction pattern with the experiment around the N2 puffing port.
Development of Toroidal Core Transformers
Energy Technology Data Exchange (ETDEWEB)
de Leon, Francisco [New York Univ. (NYU), Brooklyn, NY (United States). Dept. of Electrical and Computer Engineering
2014-08-01
The original objective of this project was to design, build and test a few prototypes of single-phase dry-type distribution transformers of 25 kVA, 2.4 kV primary to 120 V transformers using cores made of a continuous steel strip shaped like a doughnut (toroid). At different points during the development of the project, the scope was enhanced to include the more practical case of a 25 kVA transformer for a 13.8 kV primary system voltage. Later, the scope was further expanded to design and build a 50 kVA unit to transformer voltage from 7.62 kV to 2x120 V. This is a common transformer used by Con Edison of New York and they are willing to test it in the field. The project officially started in September 2009 and ended in May 2014. The progress was reported periodically to DOE in eighteen quarterly reports. A Continuation Application was submitted to DOE in June 2010. In May 2011 we have requested a non-cost extension of the project. In December 2011, the Statement of Project Objectives (SOPO) was updated to reflect the real conditions and situation of the project as of 2011. A second Continuation Application was made and funding was approved in 2013 by DOE and the end date was extended to May 2014. The technical challenges that were overcome in this project include: the development of the technology to pass the impulse tests, derive a model for the thermal performance, produce a sound mechanical design, and estimate the inrush current. However, the greatest challenge that we faced during the development of the project was the complications of procuring the necessary parts and materials to build the transformers. The actual manufacturing process is relatively fast, but getting all parts together is a very lengthy process. The main products of this project are two prototypes of toroidal distribution transformers of 7.62 kV (to be used in a 13.8 kV system) to 2x120 V secondary (standard utilization voltage); one is rated at 25 kVA and the other at 50 kVA. The 25 k
Quasistatic evolution of compact toroids
International Nuclear Information System (INIS)
Sgro, A.G.; Spencer, R.L.; Lilliequist, C.
1981-01-01
Some results are presented of simulations of the post formation evolution of compact toroids. The simulations were performed with a 1-1/2 D transport code. Such a code makes explicit use of the fact that the shapes of the flux surfaces in the plasma change much more slowly than do the profiles of the physical variables across the flux surfaces. Consequently, assuming that the thermodynamic variables are always equilibrated on a flux surface, one may calculate the time evolution of these profiles as a function of a single variable that labels the flux surfaces. Occasionally, during the calculation these profiles are used to invert the equilibrium equation to update the shapes of the flux surfaces. In turn, these shapes imply certain geometric cofficients, such as A = 2 >, which contain the geometric information required by the 1-D equations
A Dip Structure in the Intrinsic Toroidal Rotation Near the Edge of the Ohmic Plasmas in EAST
DEFF Research Database (Denmark)
Xu, Guosheng; Naulin, Volker; Wan, Baonian
2011-01-01
Ion's toroidal velocity, vt, in both the outermost 4 cm of the confined region and the scrap-off layer of Ohmic L-mode plasmas in EAST was measured using Mach probes. At about 1 cm inside the separatrix a local minimum in vt was observed, from which a cocurrent rotation increased both inwards and...
NOVA: a nonvariational code for solving MHD stability of axisymmetric toroidal plasmas
International Nuclear Information System (INIS)
Cheng, C.Z.; Chance, M.S.
1986-04-01
A nonvariational approach for determining the ideal MHD stability of axisymmetric toroidal confinement systems is presented. The code (NOVA) employs cubic B-spline finite elements and Fourier expansion in a general flux coordinate (psi, theta, zeta) system. Better accuracy and faster convergence were obtained in comparison with the variational PEST and ERATO codes. The nonvariational approach can be extended to problems having non-Hermitian eigenmode equations where variational energy principles cannot be obtained
Fuelling effect of tangential compact toroid injection in STOR-M Tokamak
Energy Technology Data Exchange (ETDEWEB)
Onchi, T.; Liu, Y., E-mail: tao668@mail.usask.ca [Univ. of Saskatchewan, Dept. of Physics and Engineering Physics, Saskatoon, Saskatchewan (Canada); Dreval, M. [Univ. of Saskatchewan, Dept. of Physics and Engineering Physics, Saskatoon, Saskatchewan (Canada); Inst. of Plasma Physics NSC KIPT, Kharkov (Ukraine); McColl, D. [Univ. of Saskatchewan, Dept. of Physics and Engineering Physics, Saskatoon, Saskatchewan (Canada); Asai, T. [Inst. of Plasma Physics NSC KIPT, Kharkov (Ukraine); Wolfe, S. [Nihon Univ., Dept. of Physics, Tokyo (Japan); Xiao, C.; Hirose, A. [Univ. of Saskatchewan, Saskatoon, Saskatchewan (Canada)
2012-07-01
Compact torus injection (CTI) is the only known candidate for directly fuelling the core of a tokamak fusion reactor. Compact torus (CT) injection into the STOR-M tokamak has induced improved confinement accompanied by an increase in the electron density, reduction in Hα emission, and suppression of the saw-tooth oscillations. The measured change in the toroidal flow velocity following tangential CTI has demonstrated momentum injection into the STOR-M plasma. (author)
International Nuclear Information System (INIS)
Mazzucato, E.
2000-01-01
The next step in the demonstration of the scientific feasibility of a tokamak fusion reactor is a DT burning plasma experiment for the study and control of self-heated plasmas. In this paper, the authors examine the role of the toroidal magnetic field on the confinement of a tokamak plasma in the ELMy H-mode regime--the operational regime foreseen for ITER
Investigation of spheromak configuration generated by inductive methods in the S-1 device
International Nuclear Information System (INIS)
Yamada, M.; Janos, A.C.; Ellis, R.A. Jr.
1988-08-01
This paper summarizes the characteristics of the spheromak plasmas obtained during the past five-year operation period of S-1 experiments. The S-1 Spheromak device, which began operation in 1983, generates a compact toroid in which the self-generated toroidal field in the plasma is comparable to the poloidal field. The S-1 experiment is unique in that spheromak plasmas are formed by inductive transfer of magnetic flux from a toroidal-shaped ''flux core,'' and plasma stability is maintained by shaping of the externally applied equilibrium field and using loose-fitting passive conductors. The most important objective for the S-1 experiment is to investigate the confinement feature of the spheromak configuration. With a rather extensive diagnostic system for this size device, the transport characteristics of the S-1 spheromak have been measured for plasmas with 10 /approx lt/ T/sub e/ ≤ 130 eV and 2 /approx lt/ n/sub e/ /approx lt/ 15 /times/ 10 13 cm/sup /minus/3/. The scaling of electron temperature T/sub e/ and density n/sub e/ with plasma current density has been obtained in a wide operation regime. The most important finding is that the peak electron pressure scales as n/sub eo/T/sub eo/ /proportional to/ j/sub o/ 2 (j/sub o/ = peak toroidal current density) with T/sub eo/ /proportinal to/ j/sub o/ 2 and n/sub eo/ ≅ constant. These scaling results, which are similar to those obtained in the reversed-field pinch device, suggest that β = constant. Energy and particle confinement times are determined. 44 refs., 35 figs
High Explosive Detonation–Confiner Interactions
Short, Mark; Quirk, James J.
2018-01-01
The primary purpose of a detonation in a high explosive (HE) is to provide the energy to drive a surrounding confiner, typically for mining or munitions applications. The details of the interaction between an HE detonation and its confinement are essential to achieving the objectives of the explosive device. For the high pressures induced by detonation loading, both the solid HE and confiner materials will flow. The structure and speed of a propagating detonation, and ultimately the pressures generated in the reaction zone to drive the confiner, depend on the induced flow both within the confiner and along the HE–confiner material interface. The detonation–confiner interactions are heavily influenced by the material properties and, in some cases, the thickness of the confiner. This review discusses the use of oblique shock polar analysis as a means of characterizing the possible range of detonation–confiner interactions. Computations that reveal the fluid mechanics of HE detonation–confiner interactions for finite reaction-zone length detonations are discussed and compared with the polar analysis. This includes cases of supersonic confiner flow; subsonic, shock-driven confiner flow; subsonic, but shockless confiner flow; and sonic flow at the intersection of the detonation shock and confiner material interface. We also summarize recent developments, including the effects of geometry and porous material confinement, on detonation–confiner interactions.
Toroidal field ripple effects in large tokamaks
International Nuclear Information System (INIS)
Uckan, N.A.; Tsang, K.T.; Callen, J.D.
1975-01-01
In an experimental power reactor, the ripple produced by the finite number of toroidal field coils destroys the ideal axisymmetry of the configuration and is responsible for additional particle trapping, loss regions and plasma transport. The effects of toroidal field ripple on the plasma transport coefficient, the loss of alpha particles and energetic injection ions, and the relaxation of toroidal flows are investigated in a new and systematic way. The relevant results are applied to the ORNL-EPR reference design; the maximum ripple there of about 2.2 percent at the outer edge of the plasma column is found to be tolerable from plasma physics considerations
Rotating bubble and toroidal nuclei and fragmentation
International Nuclear Information System (INIS)
Royer, G.; Haddad, F.; Jouault, B.
1995-01-01
The energy of rotating bubble and toroidal nuclei predicted to be formed in central heavy-ion collisions at intermediate energies is calculated within the generalized rotating liquid drop model. The potential barriers standing in these exotic deformation paths are compared with the three dimensional and plane fragmentation barriers. In the toroidal deformation path of the heaviest systems exists a large potential pocket localised below the plane fragmentation barriers. This might allow the temporary survival of heavy nuclear toroids before the final clusterization induced by the surface and proximity tension. (author)
System design of toroidal field power supply of CDD tokamak
Energy Technology Data Exchange (ETDEWEB)
Liu, Zheng Zhi
1996-12-01
This report deals with system design of Toroidal Field Power Supply of CDD tokamak (CDD-TFPS). The general design philosophy and design variations are introduced. After the outline of CDD-TFPS, the short-circuit calculation, the evaluation of converter parameters, the compatibility of converter and line are carried out. the specifications of major components, semi-conductor devices and accessories are given. High attention is paid to protection system. The design of sub-control and grounding system are described too. Some more general material for power supply design are attached in appendices for reference. (author). 30 tabs., 21 figs.
LASL toroidal reversed-field pinch programme
International Nuclear Information System (INIS)
Baker, D.A.; Buchenauer, C.J.; Burkhardt, L.C.
1979-01-01
The determination of the absolute energy loss due to radiation from impurities in the LASL toroidal reversed-field pinch experiment ZT-S is reported. The measurements show that over half the energy loss is accounted for by this mechanism. Thomson-scattering electron density measurements indicate only a gradual increase in temperature as the filling pressure is reduced, indicating an increased energy loss at lower pressures. Cylindrical and toroidal simulations of the experiment indicate either that a highly radiative pinch boundary or anomalous transport is needed to match the experimental results. New effects on the equilibrium due to plasma flows induced by the toroidal geometry are predicted by the toroidal simulations. The preliminary results on the low-temperature discharge cleaning of the ZT-S torus are reported. A description of the upgrade of the ZT-S experiment and the objectives, construction and theoretical predictions for the new ZT-40 experiment are given. (author)
Steady state compact toroidal plasma production
Turner, William C.
1986-01-01
Apparatus and method for maintaining steady state compact toroidal plasmas. A compact toroidal plasma is formed by a magnetized coaxial plasma gun and held in close proximity to the gun electrodes by applied magnetic fields or magnetic fields produced by image currents in conducting walls. Voltage supply means maintains a constant potential across the electrodes producing an increasing magnetic helicity which drives the plasma away from a minimum energy state. The plasma globally relaxes to a new minimum energy state, conserving helicity according to Taylor's relaxation hypothesis, and injecting net helicity into the core of the compact toroidal plasma. Controlling the voltage so as to inject net helicity at a predetermined rate based on dissipative processes maintains or increases the compact toroidal plasma in a time averaged steady state mode.
Toroidal and poloidal momentum transport studies in JET
Tala, T.; Andrew, Y.; Crombé, K.; de Vries, P. C.; Garbet, X.; Hawkes, N.; Nordman, H.; Rantamäki, K.; Strand, P.; Thyagaraja, A.; Weiland, J.; Asp, E.; Baranov, Y.; Challis, C.; Corrigan, G.; Eriksson, A.; Giroud, C.; Hua, M.-D.; Jenkins, I.; Knoops, H. C. M.; Litaudon, X.; Mantica, P.; Naulin, V.; Parail, V.; Zastrow, K.-D.; contributors, JET-EFDA
2007-08-01
This paper reports on the recent studies of toroidal and poloidal momentum transport in JET. The ratio of the global energy confinement time to the momentum confinement is found to be close to τE/τphi = 1 except for the low density or low collisionality discharges where the ratio is τE/τphi = 2-3. On the other hand, local transport analysis of around 40 discharges shows that the ratio of the local effective momentum diffusivity to the ion heat diffusivity is χphi/χi ap 0.1-0.4 (averaged over the radial region r/a = 0.4-0.7) rather than unity, as expected from the global confinement times and used often in ITER predictions. The apparent discrepancy in the global and local momentum versus ion heat transport can be at least partly explained by the fact that momentum confinement within edge pedestal is worse than that of the ion heat and thus, momentum pedestal is weaker than that of ion temperature. In addition, while the ion temperature profile shows clearly strong profile stiffness, the toroidal velocity profile does not exhibit stiffness, as exemplified here during a giant ELM crash. Predictive transport simulations with the self-consistent modelling of toroidal velocity using the Weiland model and GLF23 also confirm that the ratio χphi/χi ap 0.4 reproduces the core toroidal velocity profiles well and similar accuracy with the ion temperature profiles. Concerning poloidal velocities on JET, the experimental measurements show that the carbon poloidal velocity can be an order of magnitude above the neo-classical estimate within the ITB. This significantly affects the calculated radial electric field and therefore, the E × B flow shear used for example in transport simulations. Both the Weiland model and GLF23 reproduce the onset, location and strength of the ITB well when the experimental poloidal velocity is used while they do not predict the formation of the ITB using the neo-classical poloidal velocity in time-dependent transport simulation. The most
Bow-shaped toroidal field coils
International Nuclear Information System (INIS)
Bonanos, P.
1981-05-01
Design features of Bow-Shaped Toroidal Field Coils are described and compared with circular and D shaped coils. The results indicate that bow coils can produce higher field strengths, store more energy and be made demountable. The design offers the potential for the production of ultrahigh toroidal fields. Included are representative coil shapes and their engineering properties, a suggested structural design and an analysis of a specific case
Relationships between solid spherical and toroidal harmonics
Majic, Matt; Ru, Eric C. Le
2018-01-01
We derive new relationships expressing solid spherical harmonics as series of toroidal harmonics and vice versa. The expansions include regular and irregular spherical harmonics, ring and axial toroidal harmonics of even and odd parity about the plane of the torus. The expansion coefficients are given in terms of a recurrence relation. As an example application we apply one of the expansions to express the potential of a charged conducting torus on a basis of spherical harmonics.
Low-n shear Alfven spectra in axisymmetric toroidal plasmas
Energy Technology Data Exchange (ETDEWEB)
Cheng, C.Z.; Chance, M.S.
1985-11-01
In toroidal plasmas, the toroidal magnetic field is nonuniform over a magnetic surface and causes coupling of different poloidal harmonics. It is shown both analytically and numerically that the toroidicity not only breaks up the shear Alfven continuous spectrum, but also creates new, discrete, toroidicity-induced shear Alfven eigenmodes with frequencies inside the continuum gaps. Potential applications of the low-n toroidicity-induced shear Alfven eigenmodes on plasma heating and instabilities are addressed. 17 refs., 4 figs.
Low-n shear Alfven spectra in axisymmetric toroidal plasmas
International Nuclear Information System (INIS)
Cheng, C.Z.; Chance, M.S.
1985-11-01
In toroidal plasmas, the toroidal magnetic field is nonuniform over a magnetic surface and causes coupling of different poloidal harmonics. It is shown both analytically and numerically that the toroidicity not only breaks up the shear Alfven continuous spectrum, but also creates new, discrete, toroidicity-induced shear Alfven eigenmodes with frequencies inside the continuum gaps. Potential applications of the low-n toroidicity-induced shear Alfven eigenmodes on plasma heating and instabilities are addressed. 17 refs., 4 figs
Observation of a new toroidally localized kink mode and its role in reverse-field--pinch plasmas
International Nuclear Information System (INIS)
Tamano, T.; Bard, W.D.; Chu, C.; Kondoh, Y.; La Haye, R.J.; Lee, P.S.; Saito, M.; Schaffer, M.J.; Taylor, P.L.
1987-01-01
A new type of toroidally localized kink instability, which we named the ''slinky mode,'' was observed in a reversed-field--pinch plasma in the OHTE (Ohmic heating toroidal experiment) device. It is found that the slinky mode is the result of the phase locking of several internal kink modes due to nonlinear coupling and is an effective way to approach the Taylor relaxed state
Celebrating the Barrel Toroid commissioning
Peter Jenni
ATLAS invited Funding Agency representatives and Laboratory Heads directly related to the funding and construction of the Barrel Toroid for a small ceremony on 13th December 2006 at Point 1, in order to mark the successful first full excitation of the BT (see last eNews). On that date, which was during the December CERN Council week, several of the Funding Agency Heads or their representatives could be present, representing CEA France, INFN Italy, BMBF Germany, Spain, Sweden, Switzerland, Russia, JINR Dubna and CERN. Speeches were delivered by the ATLAS spokesperson Peter Jenni thanking the Funding Partners in the name of the Collaboration, by Magnet Project Leader Herman ten Kate tracing the BT construction history, and by the CERN Director-General Robert Aymar congratulating all those who have contributed to the successful project. Herman ten Kate addressing the delegates. The text of the introductory address by Peter Jenni is reproduced here. "It is a great pleasure for me to welcome you all here...
Toroidal field coil torque structure
International Nuclear Information System (INIS)
Gaines, A.L.
1983-01-01
A torque structure is disclosed particularly suitable for utilization in a power reactor of the Tokamak-type, and operable therein for purposes of providing support for the toroidal field (TF) coils that comprise one of the major operating components of such a Tokamak power reactor. The subject torque structure takes the form of a frame structure that is operable to enable torque loads acting on the TF coils to be equilibrated as close to the area of force application as feasible. The aforesaid torque structure includes an intercoil structure composed of spacer wedges that are interposed between each adjacent pair of TF coils. The spacer wedges, in turn, consist of bearing plates positioned between the TF coils so as to be in contacting relation therewith and a number of cross plates that are cooperatively associated with the bearing plates so as to form therewith a rigid assembly. The intercoil structure is affixed to a segmented, membrane shell that surrounds, encloses and supports the TF coil frames. Access is had to the interior of the shell through an opening formed for this purpose in a reinforced portion of the shell. Eddy current losses are minimized by insulating the joints formed at the juncture of adjoining segments of the shell
Ion thermal confinement in the TFTR enhanced confinement regime
Energy Technology Data Exchange (ETDEWEB)
Fonck, R.J.; Howell, R.; Jaehnig, K.; Roquemore, L.; Schilling, G.; Scott, S.; Zarnstorff, M.C.; Bitter, M.; Bush, C.; Goldston, R.
1988-12-01
Measurements of the plasma ion temperature and toroidal rotation speed profiles have allowed the study of ion thermal transport in the TFTR hot ion enhanced confinement regime. Central ion temperatures up to 30 keV and rotation speeds up to 8 x 10/sup 5/ m/sec have been confirmed with new diagnostic measurements, and the ion thermal diffusivity is found to be non-neoclassical and comparable to the anomalous electron thermal diffusivity. The dominant effects of strong rotation are the down-shifting of the neutral beam energies in the plasma frame, which results in reduced ion and electron heating on axis, and the presence of off-axis ion heating from viscous damping of the plasma rotation. 14 refs., 3 figs.
Toroidal and poloidal momentum transport studies in tokamaks
Energy Technology Data Exchange (ETDEWEB)
Tala, T [Association EURATOM-Tekes, VTT, PO Box 1000, FIN-02044 VTT (Finland); Crombe, K [Department of Applied Physics, Ghent University (Belgium); Vries, P C de [EURATOM/UKAEA Fusion Association, Culham Science Centre, Oxon, OX14 3DB (United Kingdom)] (and others)
2007-12-15
The present status of understanding of toroidal and poloidal momentum transport in tokamaks is presented in this paper. Similar energy confinement and momentum confinement times, i.e. {tau}{sub E}/{tau}{sub {phi}} {approx} 1 have been reported on several tokamaks. It is more important though, to study the local transport both in the core and edge plasma separately as, for example, in the core plasma, a large scatter in the ratio of the local effective momentum diffusivity to the ion heat diffusivity {chi}{sub {phi}}{sub eff}/{chi}{sub i,eff} among different tokamaks can be found. For example, the value of effective Prandtl number is typically around {chi}{sub {phi}}{sub eff}/{chi}{sub i,eff} {approx} 0.2 on JET while still {tau}{sub E}/{tau}{sub {phi}} {approx} 1 holds. Perturbative NBI modulation experiments on JET have shown, however, that a Prandtl number {chi}{sub {phi}}{sub /}{chi}{sub i} of around 1 is valid if there is an additional, significant inward momentum pinch which is required to explain the amplitude and phase behaviour of the momentum perturbation. The experimental results, i.e. the high Prandtl number and pinch, are in good qualitative and to some extent also in quantitative agreement with linear gyro-kinetic simulations. In contrast to the toroidal momentum transport which is clearly anomalous, the poloidal velocity is usually believed to be neo-classical. However, experimental measurements on JET show that the carbon poloidal velocity can be an order of magnitude above the predicted value by the neo-classical theory within the ITB. These large measured poloidal velocities, employed for example in transport simulations, significantly affect the calculated radial electric field and therefore the E x B flow shear and hence modify and can significantly improve the simulation predictions. Several fluid turbulence codes have been used to identify the mechanism driving the poloidal velocity to such high values. CUTIE and TRB turbulence codes and also
Toroidal and poloidal momentum transport studies in tokamaks
Tala, T.; Crombé, K.; de Vries, P. C.; Ferreira, J.; Mantica, P.; Peeters, A. G.; Andrew, Y.; Budny, R.; Corrigan, G.; Eriksson, A.; Garbet, X.; Giroud, C.; Hua, M.-D.; Nordman, H.; Naulin, V.; Nave, M. F. F.; Parail, V.; Rantamäki, K.; Scott, B. D.; Strand, P.; Tardini, G.; Thyagaraja, A.; Weiland, J.; Zastrow, K.-D.; Contributors, JET-EFDA
2007-12-01
The present status of understanding of toroidal and poloidal momentum transport in tokamaks is presented in this paper. Similar energy confinement and momentum confinement times, i.e. τE/τphi ≈ 1 have been reported on several tokamaks. It is more important though, to study the local transport both in the core and edge plasma separately as, for example, in the core plasma, a large scatter in the ratio of the local effective momentum diffusivity to the ion heat diffusivity χphieff/χi,eff among different tokamaks can be found. For example, the value of effective Prandtl number is typically around χphieff/χi,eff ≈ 0.2 on JET while still τE/τphi ≈ 1 holds. Perturbative NBI modulation experiments on JET have shown, however, that a Prandtl number χphi/χi of around 1 is valid if there is an additional, significant inward momentum pinch which is required to explain the amplitude and phase behaviour of the momentum perturbation. The experimental results, i.e. the high Prandtl number and pinch, are in good qualitative and to some extent also in quantitative agreement with linear gyro-kinetic simulations. In contrast to the toroidal momentum transport which is clearly anomalous, the poloidal velocity is usually believed to be neo-classical. However, experimental measurements on JET show that the carbon poloidal velocity can be an order of magnitude above the predicted value by the neo-classical theory within the ITB. These large measured poloidal velocities, employed for example in transport simulations, significantly affect the calculated radial electric field and therefore the E × B flow shear and hence modify and can significantly improve the simulation predictions. Several fluid turbulence codes have been used to identify the mechanism driving the poloidal velocity to such high values. CUTIE and TRB turbulence codes and also the Weiland model predict the existence of an anomalous poloidal velocity, peaking in the vicinity of the ITB and driven dominantly
Hamiltonian guiding center drift orbit calculation for toroidal plasmas of arbitrary cross section
Energy Technology Data Exchange (ETDEWEB)
White, R.B.; Chance, M.S.
1984-02-01
A Hamiltonian guiding center drift orbit formalism is developed which permits the efficient calculation of particle trajectories in toroidal devices of arbitrary cross section with arbitrary plasma ..beta... The magnetic field is assumed to be a small perturbation from a zero order toroidal equilibrium field possessing either axial or helical symmetry. The equilibrium field can be modelled analytically or obtained numerically from equilibrium codes. A numerical code based on the formalism is used to study particle orbits in circular and bean-shaped tokamak configurations.
International Nuclear Information System (INIS)
Yeh, H.T.
1976-03-01
A preliminary comparison of several different coil protection and electrical connection schemes for large superconducting toroidal magnet systems (STMS) is carried out. The tentative recommendation is to rely on external dump resistors for coil protection and to connect the coils in the toroidal magnet in several parallel loops (e.g., every fourth coil is connected into a single series loop). For the fault condition when a single coil quenches, the quenched coil should be isolated from its loop by switching devices. The magnet, as a whole, should probably be discharged if more than a few coils have quenched
Long-wavelength microinstabilities in toroidal plasmas
International Nuclear Information System (INIS)
Tang, W.W.; Rewoldt, G.
1993-01-01
Realistic kinetic toroidal eigenmode calculations have been carried out to support a proper assessment of the influence of long-wavelength microturbulence on transport in tokamak plasmas. In order to efficiently evaluate large-scale kinetic behavior extending over many rational surfaces, significant improvements have been made to a toroidal finite element code used to analyze the fully two-dimensional (r,θ) mode structures of trapped-ion and toroidal ion temperature gradient (ITG) instabilities. It is found that even at very long wavelengths, these eigenmodes exhibit a strong ballooning character with the associated radial structure relatively insensitive to ion Landau damping at the rational surfaces. In contrast to the long-accepted picture that the radial extent of trapped-ion instabilities is characterized by the ion-gyroradius-scale associated with strong localization between adjacent rational surfaces, present results demonstrate that under realistic conditions, the actual scale is governed by the large-scale variations in the equilibrium gradients. Applications to recent measurements of fluctuation properties in TFTR L-mode plasmas indicate that the theoretical trends appear consistent with spectral characteristics as well as rough heuristic estimates of the transport level. Benchmarking calculations in support of the development of a three-dimensional toroidal gyrokinetic code indicate reasonable agreement with respect to both the properties of the eigenfunctions and the magnitude of the eigenvalues during the linear phase of the simulations of toroidal ITG instabilities
Observations of toroidal and poloidal rotation in the high beta tokamak Torus II
International Nuclear Information System (INIS)
Kostek, C.A.
1983-01-01
The macroscopic rotation of plasma in a toroidal containment device is an important feature of the equilibrium. Toroidal and poloidal rotation in the high beta tokamak Torus II is measured experimentally by examining the Doppler shift of the 4685.75 A He II line emitted from the plasma. The toroidal flow at an average velocity of 1.6 x 10 6 cm/sec, a small fraction of the ion thermal speed, moves in the same direction as the toroidal plasma current. The poloidal flow follows the ion diamagnetic current direction, also at an average speed of 1.6 x 10 6 cm/sec. In view of certain ordering parameters, the toroidal flow is compared with predictions from neoclassical theory in the collosional, Pfirsch-Schluter regime. The poloidal motion, however results from an E x B drift in a positive radial electric field, approaching a stable ambipolar state. This radial electric field is determined from theory by using the measured poloidal velocity. Mechanisms for the time evolution of rotation are also examined. It appears that the circulation damping is governed by a global decay of the temperature and density gradients which, in turn, may be functions of radiative cooling, loss of equilibrium due to external field decay, or the emergence of a growing instability, occasionally observed in CO 2 interferometry measurements
Effects of toroidicity on resistive tearing modes
International Nuclear Information System (INIS)
Izzo, R.; Monticello, D.A.; Manickam, J.; Strauss, H.R.; Grimm, R.; McGuire, K.
1983-03-01
A reduced set of resistive MHD equations is solved numerically in three dimensions to study the stability of tokamak plasmas. Toroidal effects are included self-consistently to leading and next order in inverse aspect ratio, epsilon. The equations satisfy an energy integral. In addition, the momentum equation yields the Grad-Shafranov equation correct to all orders in epsilon. Low beta plasma are studied using several different q-profiles. In all cases, the linear growth rates are reduced by finite toroidicity. Excellent agreement with resistive PEST is obtianed. In some cases, toroidal effects lead to complete stabilization of the mode. Nonlinear results show smaller saturated island widths for finite aspect ratio compared to the cylindrical limit. If the current channel is wide enough so as to produce steep gradients towards the outside of the plasma, both the finite aspect ratio cases and cylindrical cases disrupt
PDX toroidal field coils stress analysis
International Nuclear Information System (INIS)
Nikodem, Z.D.; Smith, R.A.
1975-01-01
A method used in the stress analysis of the PDX toroidal field coil is developed. A multilayer coil design of arbitrary dimensions in the shape of either a circle or an oval is considered. The analytical model of the coil and the supporting coil case with connections to the main support structure is analyzed using the finite element technique. The three dimensional magnetic fields and the non-uniform body forces which are a loading condition on a coil due to toroidal and poloidal fields are calculated. The method of analysis permits rapid and economic evaluations of design changes in coil geometry as well as in coil support structures. Some results pertinent to the design evolution and their comparison are discussed. The results of the detailed stress analysis of the final coil design due to toroidal field, poloidal field and temperature loads are presented
Current control necessary for toroidal plasma equilibrium
International Nuclear Information System (INIS)
Nagao, S.
1987-01-01
It is shown that a significant amount of dipole current is necessary for the plasma equilibrium of toroidal configurations in general. Through the vector product with the poloidal field, this dipole current force has to balance with the hoop force of plasma pressure itself of the annular shape. The measurement of such a current of dipole type may be interesting for the confirmation of the plasma equilibrium in the toroidal system. Moreover it is certained that there is a new mode of a tokamak operation with such a dipole current component and with smaller vertical field than that based on the classical tokamak theory. (author) [pt
Models for large superconducting toroidal magnet systems
International Nuclear Information System (INIS)
Arendt, F.; Brechna, H.; Erb, J.; Komarek, P.; Krauth, H.; Maurer, W.
1976-01-01
Prior to the design of large GJ toroidal magnet systems it is appropriate to procure small scale models, which can simulate their pertinent properties and allow to investigate their relevant phenomena. The important feature of the model is to show under which circumstances the system performance can be extrapolated to large magnets. Based on parameters such as the maximum magnetic field and the current density, the maximum tolerable magneto-mechanical stresses, a simple method of designing model magnets is presented. It is shown how pertinent design parameters are changed when the toroidal dimensions are altered. In addition some conductor cost estimations are given based on reactor power output and wall loading
Toroidal Precession as a Geometric Phase
Energy Technology Data Exchange (ETDEWEB)
J.W. Burby and H. Qin
2012-09-26
Toroidal precession is commonly understood as the orbit-averaged toroidal drift of guiding centers in axisymmetric and quasisymmetric configurations. We give a new, more natural description of precession as a geometric phase effect. In particular, we show that the precession angle arises as the holonomy of a guiding center's poloidal trajectory relative to a principal connection. The fact that this description is physically appropriate is borne out with new, manifestly coordinate-independent expressions for the precession angle that apply to all types of orbits in tokamaks and quasisymmetric stellarators alike. We then describe how these expressions may be fruitfully employed in numerical calculations of precession.
The effect of sheared toroidal rotation on pressure driven magnetic islands in toroidal plasmas
Energy Technology Data Exchange (ETDEWEB)
Hegna, C. C. [Departments of Engineering Physics and Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)
2016-05-15
The impact of sheared toroidal rotation on the evolution of pressure driven magnetic islands in tokamak plasmas is investigated using a resistive magnetohydrodynamics model augmented by a neoclassical Ohm's law. Particular attention is paid to the asymptotic matching data as the Mercier indices are altered in the presence of sheared flow. Analysis of the nonlinear island Grad-Shafranov equation shows that sheared flows tend to amplify the stabilizing pressure/curvature contribution to pressure driven islands in toroidal tokamaks relative to the island bootstrap current contribution. As such, sheared toroidal rotation tends to reduce saturated magnetic island widths.
Bykov, Igor
2014-01-01
During several decades of research and development in the field of Magnetically Confined Fusion (MCF) the preferred selection of materials for Plasma Facing Components (PFC) has changed repeatedly. Without doubt, endurance of the first wall will decide research availability and lifespan of the first International Thermonuclear Research Reactor (ITER). Materials erosion, redeposition and mixing in the reactor are the critical processes responsible for modification of materials properties under...
Offset linear scaling for H-mode confinement
International Nuclear Information System (INIS)
Miura, Yukitoshi; Tamai, Hiroshi; Suzuki, Norio; Mori, Masahiro; Matsuda, Toshiaki; Maeda, Hikosuke; Takizuka, Tomonori; Itoh, Sanae; Itoh, Kimitaka.
1992-01-01
An offset linear scaling for the H-mode confinement time is examined based on single parameter scans on the JFT-2M experiment. Regression study is done for various devices with open divertor configuration such as JET, DIII-D, JFT-2M. The scaling law of the thermal energy is given in the MKSA unit as W th =0.0046R 1.9 I P 1.1 B T 0.91 √A+2.9x10 -8 I P 1.0 R 0.87 P√AP, where R is the major radius, I P is the plasma current, B T is the toroidal magnetic field, A is the average mass number of plasma and neutral beam particles, and P is the heating power. This fitting has a similar root mean square error (RMSE) compared to the power law scaling. The result is also compared with the H-mode in other configurations. The W th of closed divertor H-mode on ASDEX shows a little better values than that of open divertor H-mode. (author)
New material equations for electromagnetism with toroid polarizations
International Nuclear Information System (INIS)
Dubovik, V.M.; Martsenyuk, M.A.; Saha, B.
1999-09-01
With regard to the toroid contributions, a modified system of equations of electrodynamics moving continuous media has been obtained. Alternative formalisms to introduce the toroid moment contributions in the equations of electromagnetism has been worked out. The two four-potential formalism has been developed. Lorentz transformation laws for the toroid polarizations has been given. Covariant form of equations of electrodynamics of continuous media with toroid polarizations has been written. (author)
Toroidal groups line bundles, cohomology and quasi-Abelian varieties
Kopfermann, Klaus
2001-01-01
Toroidal groups are the connecting link between torus groups and any complex Lie groups. Many properties of complex Lie groups such as the pseudoconvexity and cohomology are determined by their maximal toroidal subgroups. Quasi-Abelian varieties are meromorphically separable toroidal groups. They are the natural generalisation of the Abelian varieties. Nevertheless, their behavior can be completely different as the wild groups show.
Studies of plasma self-organization in toroidal pinches
International Nuclear Information System (INIS)
Tamano, T.; Bard, W.D.; LaHaye, R.J.; Schaffer, M.J.; Taylor, P.L.
1987-01-01
Plasma self-organizations of toroidal pinch plasmas were observed in the OHTE device. The reversed field pinch discharges were sustained for about 15 ms longer than the shell time constant of 1.5 ms although linear MHD theories predict that MHD instabilities grow on the resistive shell time scale. Detailed studies of MHD activities led to the discovery of a toroidally localized kink mode. The slinky mode is the result of the phase locking of several internal kink modes due to non-linear coupling, and plays an important role in achieving the Taylor relaxed state. This is described in the first part of this lecture. Such phase lockings were observed not only for poloidal mode number m = -1 modes, but also for m = 0 and m = 1 modes. This provides some insight into how a tangled discharge can be formed. Tangled discharge models have been discussed by Rusbridge and others. However, the models do not provide a clean picture. The introduction of localized plasma deformation due to phase locking gives a simplified view of a tangled discharge. This is discussed in the second part of this lecture. The third part of this lecture describes another interesting plasma self-organization observed in the ultra low q regime. The plasma tend to maintain a constant current and shows a ''staircase''-like current behavior. 9 refs., 10 figs
Protection of toroidal field coils using multiple circuits
International Nuclear Information System (INIS)
Thome, R.J.; Langton, W.G.; Mann, W.R.; Pillsbury, R.D.; Tarrh, J.M.
1983-01-01
The protection of toroidal field (TF) coils using multiple circuits is described. The discharge of a single-circuit TF system is given for purposes of definition. Two-circuit TF systems are analyzed and the results presented analytically and graphically. Induced currents, maximum discharge voltages, and discharge time constants are compared to the single-circuit system. Three-circuit TF systems are analyzed. In addition to induced currents, maximum discharge voltages, and time constants, several different discharge scenarios are included. The impacts of having discharge rates versus final maximum coil temperatures as requirements are examined. The out-of-plane forces which occur in the three-circuit system are analyzed using an approximate model. The analysis of multiplecircuit TF systems is briefly described and results for a Toroidal Fusion Core Experiment (TFCX) scale device are given based on computer analysis. The advantages and disadvantages of using multiple-circuit systems are summarized and discussed. The primary disadvantages of multiple circuits are the increased circuit complexity and potential for out-of-plane forces. These are offset by the substantial reduction in maximum discharge voltages, as well as other design options which become available when using multiple circuits
ALT-II toroidal belt pump limiter performance in TEXTOR
Energy Technology Data Exchange (ETDEWEB)
Goebel, D.M.; Conn, R.W.; Corbett, W.J.; Moyer, R.; Dippel, K.H.; Finken, K.H.; Hardtke, A.; Kohlhaas, W.; Wolf, G.; Gauster, W.B.
1989-04-01
The Advanced Limiter Test (ALT-II) is a toroidal belt pump limiter in the TEXTOR tokamak. ALT-II is composed of 8 blade segments which form an axisymmetric toroidal belt of 3.4 m/sup 2/ exposed surface area, located on the outside of the torus at 45/sup 0/ below the horizontal midplane. Ohmic plasma operation with ALT-II as the main limiter is characterized by a line-averaged density range of 5x10/sup 12/ to 5.5x10/sup 13/ cm/sup -3/ at B/sub T/=2 T and I/sub p/=340 kA, Z/sub eff/=1.1 to 2 and typically 40 to 95% of the power radiated depending on the plasma density. ICRH heating of the plasma with up to 2.6 MW of incident power has been achieved, which modifies the scrape-off layer (SOL) and the pump limiter performance. The recycling coefficient in TEXTOR is normally close to one, but helium RG conditioning and baking of the limiter at 400/sup 0/C is found to lower the recycling coefficient to 0.8 for the order of 10 shots. Measurements by arrays of probes in the SOL and thermocouples in the limiter tiles indicate the flow to the limiter is toroidally symmetric and poloidally asymmetric. The asymmetries result in different power and particle fluxes to the ion and electron drift sides of the limiter. The density and power scrape-off lengths are on the order of 1 cm and significantly longer on the outside of the torus. In spite of the flow asymmetry favoring the ion drift side near the tangency point, the longer e-folding lengths on the electron side in the SOL result in equal or higher particle collection by the electron side. The probe arrays indicate that during ohmic heating a total of 15 to 20% of the core efflux is incident on the neutralizer plates located in scoops beneath the blades. More particles are collected during ICRH auxiliary heating due to changes in the SOL profiles and shorter particle confinement times. (Abstract Truncated)
Instability of Toroidal Magnetic Field in Jets and Plerions
Begelman, Mitchell C.
1998-01-01
Astrophysical jets and pulsar-fed supernova remnants (plerions) are expected to develop highly organized magnetic structures dominated by concentric loops of toroidal field, Bφ. It has been argued that such structures could explain the polarization properties of some jets and contribute to their lateral confinement through magnetic tension forces. A concentric toroidal field geometry is also central to the Rees-Gunn model for the Crab Nebula, the archetypal plerion, and leads to the deduction that the Crab pulsar's wind must have a weak magnetic field. Yet this kind of equilibrium between magnetic and gas pressure forces, the ``equilibrium Z-pinch'' of the controlled fusion literature, is well known to be susceptible to disruptive localized instabilities, even when the magnetic field is weak and/or boundary conditions (e.g., a dense external medium) slow or suppress global modes. Thus, the magnetic field structures imputed to the interiors of jets and plerions are unlikely to persist for very long. To determine the growth rates of Z-pinch instabilities under astrophysical conditions, I derive a dispersion relation that is valid for the relativistic fluids of which jets and plerions may be composed, in the ideal magnetohydrodynamics (MHD) limit. The dominant instabilities are kink (m = 1) and pinch (m = 0) modes. The former generally dominate, destroying the concentric field structure and probably driving the system toward a more chaotic state in which the mean field strength is independent of radius (and in which resistive dissipation of the field may be enhanced). I estimate the timescales over which the field structure is likely to be rearranged and relate these to distances along relativistic jets and radii from the central pulsar in a plerion. I conclude that the central tenet of the Rees-Gunn model for the Crab Nebula, the existence of a concentric toroidal field well outside the pulsar wind's termination shock, is physically unrealistic. With this assumption
On the stabilization of toroidal pinches by finite larmor radius effects and toroidal magnetic field
International Nuclear Information System (INIS)
Singh, R.; Weiland, J.
1989-01-01
The radial eigenvalue problem for internal modes in a large aspect ratio toriodal pinch has been solved. A particularly stable regime for a weak but nonzero toroidal magnetic field has been found. (31 refs.)
ATLAS: Full power for the toroid magnet
2006-01-01
The 9th of November was a memorable day for ATLAS. Just before midnight, the gigantic Barrel toroid magnet reached its nominal field of 4 teslas in the coil windings, with an electrical current of 21000 amperes (21 kA) passing through the eight superconducting coils (as seen on the graph). This achievement was obtained after several weeks of commissioning. The ATLAS Barrel Toroid was first cooled down for about six weeks in July-August to -269Â°C (4.8 K) and then powered up step-by-step in successive test sessions to 21 kA. This is 0.5 kA above the current required to produce the nominal magnetic field. Afterwards, the current was safely switched off and the stored magnetic energy of 1.1 gigajoules was dissipated in the cold mass, raising its temperature to a safe -218Â°C (55 K). 'We can now say that the ATLAS Barrel Toroid is ready for physics,' said Herman ten Kate, project leader for the ATLAS magnet system. The ATLAS barrel toroid magnet is the result of a close collaboration between the magnet la...
Celebration for the ATLAS Barrel Toroid magnet
2007-01-01
Representatives from Funding Agencies and Barrel Toroid Magnet Laboratories during the ceremony. From left to right: Jean Zinn-Justin (Head of DAPNIA/CEA/Saclay), CERN Director-General Robert Aymar, and Roberto Petronzio (President INFN).Allan Clark (DPNC University Geneva) and Enrique Fernandez (IFAE Barcelona) were among the guests visiting the ATLAS cavern. The barrel toroid is visible in the background. A celebration took place at Point 1 on 13 December to toast the recent powering-up of the ATLAS barrel toroid magnet to full field (Bulletin No. 47-48/06). About 70 guests were invited to attend, mainly composed of representatives from funding partners and key members of the laboratory management teams of the barrel toroid magnet, representing CEA France, INFN Italy, BMBF Germany, Spain, Sweden, Switzerland, Russia, JINR Dubna and CERN. An introductory speech by ATLAS spokesperson Peter Jenni the scene for evening. This was followed by the ATLAS magnet system project leader Herman Ten Kate's account of the...
ATLAS Barrel Toroid magnet reached nominal field
2006-01-01
Â OnÂ 9 November the barrel toroid magnet reached its nominal field of 4 teslas, with an electrical current of 21 000 amperes (21 kA) passing through the eight superconducting coils as shown on this graph
Design of the TPX outboard toroidal limiters
International Nuclear Information System (INIS)
Schaubel, K.M.; Anderson, P.M.; Baxi, C.B.
1995-01-01
The Tokamak Physics Experiment outboard limiter system incorporates the passive stabilizer plates, the ripple armor, the toroidal break and the support structures. These components are designed to withstand substantial steady state heat loads and high mechanical forces caused by plasma disruptions. The design of these components has been developed to deal with the challenging thermal, structural and remote handling requirements
Curvature driven instabilities in toroidal plasmas
International Nuclear Information System (INIS)
Andersson, P.
1986-11-01
The electromagnetic ballooning mode, the curvature driven trapped electron mode and the toroidally induced ion temperature gradient mode have been studies. Eigenvalue equations have been derived and solved both numerically and analytically. For electromagnetic ballooning modes the effects of convective damping, finite Larmor radius, higher order curvature terms, and temperature gradients have been investigated. A fully toroidal fluid ion model has been developed. It is shown that a necessary and sufficient condition for an instability below the MHD limit is the presence of an ion temperature gradient. Analytical dispersion relations giving results in good agreement with numerical solutions are also presented. The curvature driven trapped electron modes are found to be unstable for virtually all parameters with growth rates of the order of the diamagnetic drift frequency. Studies have been made, using both a gyrokinetic ion description and the fully toroidal ion model. Both analytical and numerical results are presented and are found to be in good agreement. The toroidally induced ion temperature gradients modes are found to have a behavior similar to that of the curvature driven trapped electron modes and can in the electrostatic limit be described by a simple quadratic dispersion equation. (author)
Toroidal 12 cavity klystron : a novel approach
International Nuclear Information System (INIS)
Hazarika, A.B.R.
2013-01-01
A toroidal 12 cavity klystron is designed to provide with high energy power with the high frequency microwave RF- plasma generated from it. The cavities are positioned in clock hour positions. The theoretical modeling and designing is done to study the novel approach. (author)
Toroidal Dipole Moment of a Massless Neutrino
International Nuclear Information System (INIS)
Cabral-Rosetti, L. G.; Mondragon, M.; Perez, E. Reyes
2009-01-01
We obtain the toroidal dipole moment of a massless neutrino τ v l M using the results for the anapole moment of a massless Dirac neutrino a v l D , which was obtained in the context of the Standard Model of the electroweak interactions (SM)SU(2) L x U(1) Y .
Transport and Dynamics in Toroidal Fusion Systems
International Nuclear Information System (INIS)
Sovinec, Carl
2016-01-01
The study entitled, 'Transport and Dynamics in Toroidal Fusion Systems,' (TDTFS) applied analytical theory and numerical computation to investigate topics of importance to confining plasma, the fourth state of matter, with magnetic fields. A central focus of the work is how non-thermal components of the ion particle distribution affect the 'sawtooth' collective oscillation in the core of the tokamak magnetic configuration. Previous experimental and analytical research had shown and described how the oscillation frequency decreases and amplitude increases, leading to 'monster' or 'giant' sawteeth, when the non-thermal component is increased by injecting particle beams or by exciting ions with imposed electromagnetic waves. The TDTFS study applied numerical computation to self-consistently simulate the interaction between macroscopic collective plasma dynamics and the non-thermal particles. The modeling used the NIMROD code [Sovinec, Glasser, Gianakon, et al., J. Comput. Phys. 195, 355 (2004)] with the energetic component represented by simulation particles [Kim, Parker, Sovinec, and the NIMROD Team, Comput. Phys. Commun. 164, 448 (2004)]. The computations found decreasing growth rates for the instability that drives the oscillations, but they were ultimately limited from achieving experimentally relevant parameters due to computational practicalities. Nonetheless, this effort provided valuable lessons for integrated simulation of macroscopic plasma dynamics. It also motivated an investigation of the applicability of fluid-based modeling to the ion temperature gradient instability, leading to the journal publication [Schnack, Cheng, Barnes, and Parker, Phys. Plasmas 20, 062106 (2013)]. Apart from the tokamak-specific topics, the TDTFS study also addressed topics in the basic physics of magnetized plasma and in the dynamics of the reversed-field pinch (RFP) configuration. The basic physics work contributed to a study of two
Transport and Dynamics in Toroidal Fusion Systems
Energy Technology Data Exchange (ETDEWEB)
Sovinec, Carl [Univ. of Wisconsin, Madison, WI (United States)
2016-09-07
The study entitled, "Transport and Dynamics in Toroidal Fusion Systems," (TDTFS) applied analytical theory and numerical computation to investigate topics of importance to confining plasma, the fourth state of matter, with magnetic fields. A central focus of the work is how non-thermal components of the ion particle distribution affect the "sawtooth" collective oscillation in the core of the tokamak magnetic configuration. Previous experimental and analytical research had shown and described how the oscillation frequency decreases and amplitude increases, leading to "monster" or "giant" sawteeth, when the non-thermal component is increased by injecting particle beams or by exciting ions with imposed electromagnetic waves. The TDTFS study applied numerical computation to self-consistently simulate the interaction between macroscopic collective plasma dynamics and the non-thermal particles. The modeling used the NIMROD code [Sovinec, Glasser, Gianakon, et al., J. Comput. Phys. 195, 355 (2004)] with the energetic component represented by simulation particles [Kim, Parker, Sovinec, and the NIMROD Team, Comput. Phys. Commun. 164, 448 (2004)]. The computations found decreasing growth rates for the instability that drives the oscillations, but they were ultimately limited from achieving experimentally relevant parameters due to computational practicalities. Nonetheless, this effort provided valuable lessons for integrated simulation of macroscopic plasma dynamics. It also motivated an investigation of the applicability of fluid-based modeling to the ion temperature gradient instability, leading to the journal publication [Schnack, Cheng, Barnes, and Parker, Phys. Plasmas 20, 062106 (2013)]. Apart from the tokamak-specific topics, the TDTFS study also addressed topics in the basic physics of magnetized plasma and in the dynamics of the reversed-field pinch (RFP) configuration. The basic physics work contributed to a study of two-fluid effects on interchange dynamics, where
Energy Technology Data Exchange (ETDEWEB)
Batistoni, Paola; De Marco, Francesco; Pieroni, Leonardo (ed.)
2005-07-01
The Frascati Tokamak Upgrade (FTU) is a compact, high-magnetic-field tokamak capable of operating at density and magnetic field values similar to, or even encompassing, those of International Thermonuclear Experimental Reactor (ITER) and therefore provides a unique opportunity to explore physics issues that are directly relevant to ITER. During 2004 the experimental activities were focussed on fully exploiting the lower hybrid system (for generating and controlling the plasma current) and the electron cyclotron heating system (joint experiment with the Institute of Plasma Physics of the National Research Council, Milan). With all four gyrotrons in operation, full electron cyclotron power was achieved up to a record level of 1.5 MW. By simultaneously injecting lower hybrid waves, to tailor the plasma current radial profile, and electron cyclotron waves, to heat the plasma centre, good confinement regimes with internal transport barriers were obtained at the highest plasma density values ever achieved for this operation regime (n {approx}1.5X10{sup 20}m{sup -3}). Specific studies were devoted to optimising the coupling of lower hybrid waves to the plasma (by real-time control of the plasma position) and to generating current by electron cyclotron current drive. The new scanning CO{sub 2} interferometer (developed by the Reversed Field Experiment Consortium) for high spatial and time resolution (1 cm/50 {mu}s) density profile measurements was extensively used. The Thomson scattering diagnostic was upgraded and enabled observation of scattered signals associated with the Confinement background plasma dynamics. As for theoretical studies on the dynamics of turbulence in plasmas, the transition from Bohm-like scaling to gyro-Bohm scaling of the local plasma diffusivity was demonstrated on the basis of a generalised four wave model (joint collaboration with Princeton Plasma Physics Laboratory and the University of California at Irvine). The transition from weak to strong
International Nuclear Information System (INIS)
Batistoni, Paola; De Marco, Francesco; Pieroni, Leonardo
2005-01-01
The Frascati Tokamak Upgrade (FTU) is a compact, high-magnetic-field tokamak capable of operating at density and magnetic field values similar to, or even encompassing, those of International Thermonuclear Experimental Reactor (ITER) and therefore provides a unique opportunity to explore physics issues that are directly relevant to ITER. During 2004 the experimental activities were focussed on fully exploiting the lower hybrid system (for generating and controlling the plasma current) and the electron cyclotron heating system (joint experiment with the Institute of Plasma Physics of the National Research Council, Milan). With all four gyrotrons in operation, full electron cyclotron power was achieved up to a record level of 1.5 MW. By simultaneously injecting lower hybrid waves, to tailor the plasma current radial profile, and electron cyclotron waves, to heat the plasma centre, good confinement regimes with internal transport barriers were obtained at the highest plasma density values ever achieved for this operation regime (n ∼1.5X10 20 m -3 ). Specific studies were devoted to optimising the coupling of lower hybrid waves to the plasma (by real-time control of the plasma position) and to generating current by electron cyclotron current drive. The new scanning CO 2 interferometer (developed by the Reversed Field Experiment Consortium) for high spatial and time resolution (1 cm/50 μs) density profile measurements was extensively used. The Thomson scattering diagnostic was upgraded and enabled observation of scattered signals associated with the Confinement background plasma dynamics. As for theoretical studies on the dynamics of turbulence in plasmas, the transition from Bohm-like scaling to gyro-Bohm scaling of the local plasma diffusivity was demonstrated on the basis of a generalised four wave model (joint collaboration with Princeton Plasma Physics Laboratory and the University of California at Irvine). The transition from weak to strong energetic particle
Commercial tokamak reactors with resistive toroidal field magnets
International Nuclear Information System (INIS)
Bombery, L.; Cohn, D.R.; Jassby, D.L.
1984-01-01
Scaling relations and design concepts are developed for commercial tokamak reactors that use watercooled copper toroidal field (TF) magnets. Illustrative parameters are developed for reactors that are scaled up in size from LITE test reactor designs, which use quasi-continuous copper plate magnets. Acceptably low magnet power requirements may be attainable in a moderate beta (β = 0.065) commercial reactor with a major radius of 6.2 m. The shielding thickness and magnet size are substantially reduced relative to values in commercial reactors with superconducting magnets. Operation at high beta (β = 0.14) leads to a reduction in reactor size, magnet-stored energy, and recirculating power. Reactors using resistive TF magnets could provide advantages of physically smaller devices, improved maintenance features, and increased ruggedness and reliability
Elastomer seal for a large toroidal vacuum chamber
International Nuclear Information System (INIS)
Skellett, S.; Casey, F.; Blake, H.
1978-07-01
An aluminium toroidal vacuum chamber for use at 10(-6) torr, whose overall diameter is in the region of 5 metres, was built from 4 component parts which resulted in joint lines in the horizontal and vertical planes crossing each other in 4 places. A viton seal was developed which allows a vacuum tight joint to be made without the need for tightly toleranced fitting of the mating faces and also overcomes the difficulty of ensuring a reliable seal at cross-over joints. Ease of maintenance and repair in situ are important factors of the design. An assembly which presented the geometry of the sealing problem was tested and is described here. Various adhesives for bonding viton were examined for the manufacture of the seal. The most suitable adhesive was found to be Loctite S496, chosen for its bond strength and convenience in use. A device for preparing and bonding the viton in situ is described. (author)
The essential spectrum of an operator relative to the stability of a toroidal plasma
Descloux, J.; Geymonat, G.
1980-05-01
The essential spectrum of the self-adjoint Hilbert space operator of the linearized equations of ideal magnetohydrodynamics which determines equilibrium stability is analyzed for the case of a toroidally confined plasma. The essential spectrum relative to the magnetohydrodynamic and kinetic energy equations is defined in terms of an isolated eigenvalue of finite multiplicity, and the solution of the eigenvalue problem of a system of two second-order ordinary differential equations with periodic boundary conditions is shown to correspond to the essential spectrum.
Energy confinement of tokamak plasma with consideration of bootstrap current effect
International Nuclear Information System (INIS)
Yuan Ying; Gao Qingdi
1992-01-01
Based on the η i -mode induced anomalous transport model of Lee et al., the energy confinement of tokamak plasmas with auxiliary heating is investigated with consideration of bootstrap current effect. The results indicate that energy confinement time increases with plasma current and tokamak major radius, and decreases with heating power, toroidal field and minor radius. This is in reasonable agreement with the Kaye-Goldston empirical scaling law. Bootstrap current always leads to an improvement of energy confinement and the contraction of inversion radius. When γ, the ratio between bootstrap current and total plasma current, is small, the part of energy confinement time contributed from bootstrap current will be about γ/2
International Nuclear Information System (INIS)
Ida, Katsumi; Miura, Yukitoshi; Itoh, Sanae
1994-10-01
Radial structures of plasma rotation and radial electric field are experimentally studied in tokamak, heliotron/torsatron and stellarator devices. The perpendicular and parallel viscosities are measured. The parallel viscosity, which is dominant in determining the toroidal velocity in heliotron/torsatron and stellarator devices, is found to be neoclassical. On the other hand, the perpendicular viscosity, which is dominant in dictating the toroidal rotation in tokamaks, is anomalous. Even without external momentum input, both a plasma rotation and a radial electric field exist in tokamaks and heliotrons/torsatrons. The observed profiles of the radial electric field do not agree with the theoretical prediction based on neoclassical transport. This is mainly due to the existence of anomalous perpendicular viscosity. The shear of the radial electric field improves particle and heat transport both in bulk and edge plasma regimes of tokamaks. (author) 95 refs
Shielding and synchrotron radiation in toroidal waveguide
Directory of Open Access Journals (Sweden)
G. V. Stupakov
2003-03-01
Full Text Available We develop a new approach to the calculation of the synchrotron radiation in a toroidal vacuum chamber. Using a small parameter ϵ=sqrt[a/R], where a is the characteristic size of the cross section of the toroid and R is the bending radius, we simplify Maxwell’s equations assuming that the characteristic frequency of the modes ω∼c/aϵ and neglect terms of higher order in ϵ. For a rectangular cross section of the waveguide, we find an analytical solution of the equations and analyze their asymptotics at very high frequency. We then obtain an equation which gives radiation into each synchronous mode. We demonstrate the flexibility of the new method by calculating the frequencies and the loss factors for the lowest modes in square and round waveguides.
Form coefficient of helical toroidal solenoids
International Nuclear Information System (INIS)
Amelin, V.Z.; Kunchenko, V.B.
1982-01-01
For toroidal solenoids with continuous spiral coil, winded according to the laws of equiinclined and simple cylindrical spirals with homogeneous, linearly increasing to the coil periphery and ''Bitter'' distribution of current density, the analytical expressions for the dependence between capacity consumed and generated magnetic field, expressions for coefficients of form similar to Fabry coefficient for cylindrical solenoids are obtained and dependence of the form coefficient and relative volume of solenoid conductor on the number of revolutions of screw line per one circumvention over the large torus radius is also investigated. Analytical expressions of form coefficients and graphical material permit to select the optimum geometry as to capacity consumed both for spiral (including ''force-free'') and conventional toroidal solenoids of magnetic systems in thermonulear installations
Toroidal plasma response to external fields
International Nuclear Information System (INIS)
Storer, R.G.
1998-01-01
Toroidal plasmas respond to external driving fields in a way which is determined by the coupling of these fields to the spectrum of the plasma. We have extended the toroidal resistive magnetohydrodynamic spectral code, SPECTOR, to include the effects of external fields on tokamak-like plasmas. The code is capable of determining both the stable and unstable modes and also the response to helical applied fields with arbitrary mode structure. Resistivity changes the continuous regions of the ideal MHD spectrum into a set of discrete eigenvalues lying along lines in the complex frequency plane with a spacing which is related to the inverse of the square root of the magnetic Reynolds number. Results are presented which relate the spectral distribution to the plasma response as a function of frequency. (author)
METHODS TO DEVELOP A TOROIDAL SURFACE
Directory of Open Access Journals (Sweden)
DANAILA Ligia
2017-05-01
Full Text Available The paper work presents two practical methods to draw the development of a surface unable to be developed applying classical methods of Descriptive Geometry, the toroidal surface, frequently met in technical practice. The described methods are approximate ones; the development is obtained with the help of points. The accuracy of the methods is given by the number of points used when drawing. As for any other approximate method, when practically manufactured the development may need to be adjusted on site.
Kinetic Damping of Toroidal Alfven Eigenmodes
International Nuclear Information System (INIS)
Fu, G.Y.; Berk, H.L.; Pletzer, A.
2005-01-01
The damping of Toroidal Alfven Eigenmodes in JET plasmas is investigated by using a reduced kinetic model. Typically no significant damping is found to occur near the center of the plasma due to mode conversion to kinetic Alfven waves. In contrast, continuum damping from resonance near the plasma edge may be significant, and when it is, it gives rise to damping rates that are compatible with the experimental observations
Mirror theory applied to toroidal systems
International Nuclear Information System (INIS)
Cohen, R.H.
1987-01-01
Central features of a mirror plasma are strong departures from Maxwellian distribution functions, ambipolar potentials and densities which vary along a field line, end losses, and the mirror field itself. To examine these features, mirror theorists have developed analytical and numerical techniques to solve the Fokker-Planck equation, evaluate the potentials consistent with the resulting distribution functions, and assess the microstability of these distributions. Various combinations of mirror-plasma features are present and important in toroidal plasmas as well, particularly in the edge region and in plasmas with strong rf heating. In this paper we survey problems in toroidal plasmas where mirror theory and computational techniques are applicable, and discuss in more detail three specific examples: calculation of the toroidal generalization of the Spitzer-Haerm distribution function (from which trapped-particle effects on current drive can be calculated), evaluation of the nonuniform potential and density set up by pulsed electron-cyclotron heating, and calculation of steady-state distribution functions in the presence of strong rf heating and collisions. 37 refs
ISX toroidal field coil design and analysis
International Nuclear Information System (INIS)
Hussung, R.O.; Lousteau, D.C.; Johnson, N.E.; Weed, R.A.
1975-01-01
Structural design and analysis aspects of the toroidal field coils for the Impurity Study Experiment (ISX) tokamak are discussed. The overall mechanical design of ISX is predicated on the ability to remove the upper segment of the toroidal field coils to allow access to the toroidal vacuum vessel. The high current, 120 kA, capability of the new 74 MW power supply, coupled with the modest field requirement of ISX, allows the use of room temperature copper coils. Seventy-two turns, grouped into 18 coils, generate a magnet field of 18 kG at the major radius of 90 cm. Finite element structural analysis codes were utilized to determine the distribution of stresses and deflections around a typical turn. Initial material distribution on a coil was sized using the two-dimensional program FEATS. The resulting coil design was then coupled to the center bucking and out-of-plane restraint systems utilizing the NASTRAN code. The boundary conditions for the analytical models used in the two programs were then iterated, reaching satisfactory agreement as to stress contours and location for the joints
Comments on confinement criteria
International Nuclear Information System (INIS)
Kurak, V.; Schroer, B.; Swieca, J.A.
1977-01-01
For a QED 2 model with SU(n) flavour, the nature of the physical states space is more subtle than one expects on the basis of the loop criterion for confinement. One may have colour confinement without confinement of the fundamental flavour representation. Attempts to formulate confinement criteria in which the quark fields play a more fundamental role are discussed [pt
Thermostating highly confined fluids.
Bernardi, Stefano; Todd, B D; Searles, Debra J
2010-06-28
In this work we show how different use of thermostating devices and modeling of walls influence the mechanical and dynamical properties of confined nanofluids. We consider a two dimensional fluid undergoing Couette flow using nonequilibrium molecular dynamics simulations. Because the system is highly inhomogeneous, the density shows strong fluctuations across the channel. We compare the dynamics produced by applying a thermostating device directly to the fluid with that obtained when the wall is thermostated, considering also the effects of using rigid walls. This comparison involves an analysis of the chaoticity of the fluid and evaluation of mechanical properties across the channel. We look at two thermostating devices with either rigid or vibrating atomic walls and compare them with a system only thermostated by conduction through vibrating atomic walls. Sensitive changes are observed in the xy component of the pressure tensor, streaming velocity, and density across the pore and the Lyapunov localization of the fluid. We also find that the fluid slip can be significantly reduced by rigid walls. Our results suggest caution in interpreting the results of systems in which fluid atoms are thermostated and/or wall atoms are constrained to be rigid, such as, for example, water inside carbon nanotubes.
Superconducting toroidal field coil current densities for the TFCX
International Nuclear Information System (INIS)
Kalsi, S.S.; Hooper, R.J.
1985-04-01
A major goal of the Tokamak Fusion Core Experiment (TFCX) study was to minimize the size of the device and achieve lowest cost. Two key factors influencing the size of the device employing superconducting magnets are toroidal field (TF) winding current density and its nuclear heat load withstand capability. Lower winding current density requires larger radial build of the winding pack. Likewise, lower allowable nuclear heating in the winding requires larger shield thickness between the plasma and coil. In order to achieve a low-cost device, it is essential to maximize the winding's current density and nuclear heating withhstand capability. To meet the above objective, the TFCX design specification adopted as goals a nominal winding current density of 3500 A/cm 2 with 10-T peak field at the winding and peak nuclear heat load limits of 1 MW/cm 3 for the nominal design and 50 MW/cm 3 for an advanced design. This study developed justification for these current density and nuclear heat load limits
Computer simulation of containment of electron clouds in a toroidal magnetic field
International Nuclear Information System (INIS)
Abe, H.
1977-01-01
The quiescent confinement of non-neutral electron clouds in a toroidal magnetic field is confirmed by a computer simulation using a finite-sized particle model. For a uniform density, we obtain 0.08 as the maximum of the ratio q(ω 2 sub(p)/ω 2 sub(c)). This value is larger by a factor of 4 than that achieved in experiments and reasonable from the theoretical and empirical evidence. The stable l =1 dioctron modes, the amplitudes of which can be controlled by the initial conditions, are observed to spoil the confinement time. Various physical quantities such as electrostatic potentials, decay times, and kinetic temperatures are measured and compared with the equilibrium theory. (author)
A 'rational' explanation of resonant surfaces in toroidal plasmas
International Nuclear Information System (INIS)
Cross, R.C.
1983-05-01
Resonant surfaces are of fundamental importance in toroidal plasmas, particularly in relation to stability theory. A simple explanation as to why these surfaces are 'resonant' is given in terms of the propagation of localized torsional Alfven and ion acoustic wave packets. These packets are guided along helical field lines in toroidal plasmas, leading to the formation of unstable standing waves on those field lines which close on themselves after one or more toroidal revolutions
Parametric design studies of toroidal magnetic energy storage units
International Nuclear Information System (INIS)
Herring, J.S.
1990-01-01
Superconducting magnetic energy storage (SMES) units have a number of advantages as storage devices. Electrical current is the input, output and stored medium, allowing for completely solid-state energy conversion. The magnets themselves have no moving parts. The round-trip efficiency is higher than those for batteries, compressed air or pumped hydro. Output power can be very high, allowing complete discharge of the unit within a few seconds. Finally, the unit can be designed for a very large number of cycles, limited basically by fatigue in the structural components. A small systems code has been written to produce and evaluate self-consistent designs for toroidal superconducting energy storage units. The units can use either low temperature or high temperature superconductors. The coils have 'D' shape where the conductor and its stabilizer/structure is loaded only in tension and the centering forces are borne by a bucking cylinder. The coils are convectively cooled from a cryogenic reservoir in the bore of the coils. The coils are suspended in a cylindrical metal shell which protects the magnet during rail, automotive or shipboard use. It is important to note that the storage unit does not rely on its surroundings for structural support, other than normal gravity and inertial loads. This paper presents designs for toroidal energy storage units produced by the systems code. A wide range of several parameters have been considered, resulting in units storing from 1 MJ to 72 GJ. Maximum fields range from 5 t to 20 T. The masses and volumes of the coils, bucking cylinder, coolant, insulation and outer shell are calculated. For unattended use, the allowable operating time using only the boiloff of the cryogenic fluid for refrigeration is calculated. For larger units, the coils have been divided into modules suitable for normal truck or rail transport. 8 refs., 5 tabs
Toroidal fusion reactor design based on the reversed-field pinch
International Nuclear Information System (INIS)
Hagenson, R.L.
1978-07-01
The toroidal reversed-field pinch (RFP) achieves gross equilibrium and stability with a combination of high shear and wall stabilization, rather than the imposition of tokamak-like q-constraints. Consequently, confinement is provided primarily by poloidal magnetic fields, poloidal betas as large as approximately 0.58 are obtainable, the high ohmic-heating (toroidal) current densities promise a sole means of heating a D-T plasma to ignition, and the plasma aspect ratio is not limited by stability/equilibrium constraints. A reactor-like plasma model has been developed in order to quantify and to assess the general features of a power system based upon RFP confinement. An ''operating point'' has been generated on the basis of this plasma model and a relatively detailed engineering energy balance. These results are used to generate a conceptual engineering model of the reversed-field pinch reactor (RFPR) which includes a general description of a 750 MWe power plant and the preliminary consideration of vacuum/fueling, first wall, blanket, magnet coils, iron core, and the energy storage/transfer system
Toroidal magnetic detector for high resolution measurement of muon momenta
Bonanos, Peter
1992-01-01
A muon detector system including central and end air-core superconducting toroids and muon detectors enclosing a central calorimeter/detector. Muon detectors are positioned outside of toroids and all muon trajectory measurements are made in a nonmagnetic environment. Internal support for each magnet structure is provided by sheets, located at frequent and regularly spaced azimuthal planes, which interconnect the structural walls of the toroidal magnets. In a preferred embodiment, the shape of the toroidal magnet volume is adjusted to provide constant resolution over a wide range of rapidity.
Electrical disruption in toroidal plasma of hydrogen
International Nuclear Information System (INIS)
Roberto, M.; Silva, C.A.B.; Goes, L.C.S.; Sudano, J.P.
1991-01-01
The initial phase of ionization of a toroidal plasma produced in hydrogen was investigated using zero-dimensional model. The model describes the temporal evolution of plasma by spatial medium of particle density and temperature, on whole plasma volume. The energy and particle (electrons and ions) balance equations are considered. The electron loss is due to ambipolar diffusion in the presence of magnetic field. The electron energy loss involves ionization, Coulomb interaction and diffusion. The ohmic heating converter gives the initial voltage necessary to disruption. (M.C.K.)
3D Printing the ATLAS' barrel toroid
Goncalves, Tiago Barreiro
2016-01-01
The present report summarizes my work as part of the Summer Student Programme 2016 in the CERN IR-ECO-TSP department (International Relations – Education, Communication & Outreach – Teacher and Student Programmes). Particularly, I worked closely with the S’Cool LAB team on a science education project. This project included the 3D designing, 3D printing, and assembling of a model of the ATLAS’ barrel toroid. A detailed description of the project' development is presented and a short manual on how to use 3D printing software and hardware is attached.
Highlights from the assembly of the helical field coils for the Advanced Toroidal Facility
International Nuclear Information System (INIS)
Benson, R.D.
1985-01-01
The helical field (HF) coils in the Advanced Toroidal Facility (ATF) device consist of a set of 24 identical segments connected to form a continuous pair of helical coils wrapped around a toroidal vacuum vessel. Each segment weighs approximately 1364 kg (3000 lb) and is composed of 14 water-cooled copper plate conductors bolted to a cast stainless steel structural support member with a T-shape cross section (known as the structural tee). The segment components are electrically insulated with Kapton adhesive tape, G-10, Tefzel, and rubber to withstand 2.5 kV. As a final insulator and structural support, the entire segment is vacuum impregnated with epoxy. This paper offers a brief overview of the processes used to assemble the component parts into a completed segment, including identification of items that required special attention. 4 figs
Compact toroid formation, compression, and acceleration
International Nuclear Information System (INIS)
Degnan, J.H.; Bell, D.E.; Baca, G.P.; Dearborn, M.E.; Douglas, M.R.; Englert, S.E.; Englert, T.J.; Holmes, J.H.; Hussey, T.W.; Kiuttu, G.F.; Lehr, F.M.; Marklin, G.J.; Mullins, B.W.; Peterkin, R.E.; Price, D.W.; Roderick, N.F.; Ruden, E.L.; Turchi, P.J.; Coffey, S.K.; Seiler, S.W.; Bird, G.
1992-01-01
Research on the formation, compression, and acceleration of milligram Compact Toroids (CTs) will be discussed. This includes experiments with 2-stage coaxial gun discharges and calculations including 2D- MHD. The CTs are formed by 110 μf, 70 KV, 2 MA, 3 μs rise time discharges into 2 mg gas puffs in a 90 cm inner diameter, 7.6 cm gap coaxial gun with approximately 0.15 Tesla of radial-axial initial magnetic field. Reconnection at the neck of the toroidal magnetized plasma bubble extracted from the first stage gun forms the CT. Trapping, relaxation to a minimum energy Taylor state is observed with magnetic probe arrays. Low energy (few hundred KJ, 2 MA) acceleration in straight coaxial geometry, and high energy acceleration using a conical compression stage are discussed. The Phillips Laboratory 1,300 μf, 120 KV, 9.4 MJ SHIVA STAR capacitor bank is used for the acceleration discharge. The charging and triggering of the 36-module bank has been modified to permit use of any multiple of three modules. Highlights of fast photography, current, voltage, magnetic probe array, optical spectroscopy, interferometry, VUV, and higher energy radiation data and 2D-MHD calculations will be presented. Considerably more detail is presented in companion papers
Toroidal asymmetries in divertor impurity influxes in NSTX
Directory of Open Access Journals (Sweden)
F. Scotti
2017-08-01
Full Text Available Toroidal asymmetries in divertor carbon and lithium influxes were observed in NSTX, due to toroidal differences in surface composition, tile leading edges, externally-applied three-dimensional (3D fields and toroidally-localized edge plasma modifications due to radio frequency heating. Understanding toroidal asymmetries in impurity influxes is critical for the evaluation of total impurity sources, often inferred from measurements with a limited toroidal coverage. The toroidally-asymmetric lithium deposition induced asymmetries in divertor lithium influxes. Enhanced impurity influxes at the leading edge of divertor tiles were the main cause of carbon toroidal asymmetries and were enhanced during edge localized modes. Externally-applied 3D fields led to strike point splitting and helical lobes observed in divertor impurity emission, but marginal changes to the toroidally-averaged impurity influxes. Power coupled to the scrape-off layer SOL plasma during radio frequency (RF heating of H-mode discharges enhanced impurity influxes along the non-axisymmetric divertor footprint of flux tubes connecting to plasma in front of the RF antenna.
Low-frequency fluctuations in a pure toroidal magnetized plasma
Indian Academy of Sciences (India)
Abstract. A magnetized, low-β plasma in pure toroidal configuration is formed and ex- tensively studied with ion mass as control parameter. Xenon, krypton and argon plasmas are formed at a fixed toroidal magnetic field of 0.024 T, with a peak density of ~1011 cm−3, ~4 × 1010 cm −3 and ~2 × 1010 cm −3 respectively.
Confinement of nonneutral plasma in unconventional geometries
International Nuclear Information System (INIS)
Turner, L.
1990-01-01
Our interest in efficient storage of cold, nonneutral plasma has been motivated by the elegant studies on cryogenic nonneutral electron plasmas at UCSD and by the remarkable results obtained from the laser-cooled ion plasmas at the NIST, Boulder, Colorado. Also motivating our study is the perceived need to develop the most expedient means of storing antimatter, whether it be antiprotons for gravitational studies or positrons for a variety of physics experiments and diagnostic purposes. One of the most explored technologies of confining nonneutral plasmas is the Penning trap. The maximum number density of cold nonneutral plasma that can be stored in such a trap is B 2 /2μ 0 mc 2 , in which B 2 /2μ 0 is the (homogeneous) magnetic energy density and mc 2 is the rest energy of the stored charges. In this paper, we shall present a synopsis of the results of our theoretical exploration of the effect on this hydrostatic limit, the so-called ''Brillouin'' limit, of altering the geometry of the confining vacuum magnetic field while maintaining the field's azimuthal symmetry. In particular, we shall analyze equilibrium confinement by, first, a poloidal magnetic field, B 4 (r,z)r + B z (r,z)z, and second, a toroidal magnetic field, along with the concomitant electrostatic fields
Improved confinement and β in an RFP with reduced turbulence
International Nuclear Information System (INIS)
Anderson, J.; Chapman, B.E.; Chiang, C.S.
1997-01-01
Improved confinement has been obtained in the Madison Symmetric Torus (MST) reversed field pinch (RFP) (1) by application of current profile control, (2) spontaneously, subject to constraints on toroidal field-reversal and plasma density, and (3) by application of electrostatic biasing. In all three cases, either or both magnetic and electrostatic fluctuations are reduced. Improved confinement coinciding with reduced turbulence in the RFP is expected, since magnetic fluctuations have been measured to produce large particle and energy transport in the RFP core (roughly defined interior to the reversal surface), while electrostatic fluctuations produce large particle transport in the edge. (The cause of energy transport in the edge remains unidentified.) Here we briefly describe the important observations for each of these three cases of improved confinement in MST
Energy Technology Data Exchange (ETDEWEB)
Besse, Nicolas, E-mail: Nicolas.Besse@oca.eu [Laboratoire J.-L. Lagrange, UMR CNRS/OCA/UCA 7293, Université Côte d’Azur, Observatoire de la Côte d’Azur, Bd de l’Observatoire CS 34229, 06304 Nice Cedex 4 (France); Institut Jean Lamour, UMR CNRS/UL 7198, Université de Lorraine, BP 70239 54506 Vandoeuvre-lès-Nancy Cedex (France); Coulette, David, E-mail: David.Coulette@ipcms.unistra.fr [Institut Jean Lamour, UMR CNRS/UL 7198, Université de Lorraine, BP 70239 54506 Vandoeuvre-lès-Nancy Cedex (France); Institut de Physique et Chimie des Matériaux de Strasbourg, UMR CNRS/US 7504, Université de Strasbourg, 23 Rue du Loess, 67034 Strasbourg (France)
2016-08-15
Achieving plasmas with good stability and confinement properties is a key research goal for magnetic fusion devices. The underlying equations are the Vlasov–Poisson and Vlasov–Maxwell (VPM) equations in three space variables, three velocity variables, and one time variable. Even in those somewhat academic cases where global equilibrium solutions are known, studying their stability requires the analysis of the spectral properties of the linearized operator, a daunting task. We have identified a model, for which not only equilibrium solutions can be constructed, but many of their stability properties are amenable to rigorous analysis. It uses a class of solution to the VPM equations (or to their gyrokinetic approximations) known as waterbag solutions which, in particular, are piecewise constant in phase-space. It also uses, not only the gyrokinetic approximation of fast cyclotronic motion around magnetic field lines, but also an asymptotic approximation regarding the magnetic-field-induced anisotropy: the spatial variation along the field lines is taken much slower than across them. Together, these assumptions result in a drastic reduction in the dimensionality of the linearized problem, which becomes a set of two nested one-dimensional problems: an integral equation in the poloidal variable, followed by a one-dimensional complex Schrödinger equation in the radial variable. We show here that the operator associated to the poloidal variable is meromorphic in the eigenparameter, the pulsation frequency. We also prove that, for all but a countable set of real pulsation frequencies, the operator is compact and thus behaves mostly as a finite-dimensional one. The numerical algorithms based on such ideas have been implemented in a companion paper [D. Coulette and N. Besse, “Numerical resolution of the global eigenvalue problem for gyrokinetic-waterbag model in toroidal geometry” (submitted)] and were found to be surprisingly close to those for the original
Mechanical Commissioning of the ATLAS Barrel Toroid Magnet
Foussat, A; Dudarev, A; Bajas, H; Védrine, P; Berriaud, C; Sun, Z; Sorbi, M
2008-01-01
ATLAS is a general-purpose detector designed to run at the highest luminosity at the CERN Large Hadron Collider. Its features include the 4 T Barrel Toroid magnet, the largest superconducting magnet (25 m long, 20 m diameter) that provides the magnetic field for the ATLAS muon spectrometer. The coils integrated at CERN, were tested individually at maximum current of 22 kA in 2005. Following the mechanical assembly of the Barrel Toroid in the ATLAS underground cavern, the test of the full Barrel Toroid was performed in October 2006. Further tests are foreseen at the end 2007 when the system will include the two End Cap Toroids (ECT). The paper gives an overview of the good mechanical test results achieved in comparison with model predictions and the experience gained in the mechanical behavior of the ATLAS Toroidal coils is discussed.
Equilibrium and stability MHD in the magnetic confinement for thermonuclear fusion
International Nuclear Information System (INIS)
Otero, Dino; Proto, A.N.
1979-08-01
A survey of the mayor systems for magnetic confinement of plasmas is made. The basic concepts are reviewed briefly. The equilibrium and stability conditions for open systems (mirrors, magnetic wells, Z and Theta-pinches), for toroidal axisymmetric (Z-Pinch, Screw-Pinch, Belt-Pinch and Tokamak) and toroidal non-axisymmetric systems (High-β Stellarator and low-β Theta-Pinch) are discussed. A comparative analysis between the diferent systems is made. In the conclusions, the author's opinions about future developments in the field are included. (author) [es
Plasma confinement in a magnetic dipole
International Nuclear Information System (INIS)
Kesner, J.; Bromberg, L.; Garnier, D.; Mauel, M.
2001-01-01
A dipole fusion confinement device is stable to MHD interchange and ballooning modes when the pressure profile is sufficiently gentle. The plasma can be confined at high beta, is steady state and disruption free. Theory indicates that when the pressure gradient is sufficiently gentle to satisfy MHD requirements drift waves will also be stable. The dipole approach is particularly applicable for advanced fuels. A new experimental facility is presently being built to test the stability and transport properties of a dipole-confined plasma. (author)
Plasma confinement in a magnetic dipole
International Nuclear Information System (INIS)
Kesner, J.; Bromberg, L.; Garnier, D.; Mauel, M.
1999-01-01
A dipole fusion confinement device is stable to MHD interchange and ballooning modes when the pressure profile is sufficiently gentle. The plasma can be confined at high beta, is steady state and disruption free. Theory indicates that when the pressure gradient is sufficiently gentle to satisfy MHD requirements drift waves will also be stable. The dipole approach is particularly applicable for advanced fuels. A new experimental facility is presently being built to test the stability and transport properties of a dipole-confined plasma. (author)
Inductive Eigenmodes of a resistive toroidal surface in vacuum
International Nuclear Information System (INIS)
Lo Surdo, C.
1999-01-01
In this paper it has been studied the Electro-Magnetic (EM) Eigenmodes, sufficiently slow as to legitimate the pre-Maxwell approximation of Maxwell's system (or inductive Eigenmodes), of a given smooth, toroidal-unknotted, electrically resistive surface Τ with given smooth (surface) resistivity 0 d egree 3 . Within the above limitations (to be made more precise), the geometry of Τ is arbitrary. With the eigenvalue associated with the generic Eigenmode being defined as the opposite of its logarithmic time-derivative, one expects that the resulting spectrum be discrete and strictly positive. It shall be interested into the degenerate case where Τ be cut (i.e. electrically broken) along one or more of its irreducible cycles. This case will be analyzed autonomously, rather than as a limit (for ρ d egree → ∞ along the cuts) of the regular case. Without cuts, the Eigenproblem under consideration is nothing but the two-dimensional (2-dim) generalization of the classical case of a smooth, unknotted, electrically conductive, simple coil in infinite vacuum. Its analysis hinges on the classical potential theory, and turns out to be a special application of the linear, integrodifferential (elliptic) equation theory on a compact, multiply connected, 2-dim manifold. The attention and approach will be confined to strong (or classical) solutions, both in Τ and C Τ = R 3 / Τ. This study is divided in two parts: a General Part (Sects 1 divided 4) is devoted to the case of generic Τ and ρ d egree (within the convenient smoothness requirements), whereas a Special Part (Sects 5 divided 7) deals with the (more or less formal) discussion of a couple of particular cases (Τ ≡ a canonical torus), both of which with uniform ρ d egree. Some propaedeutical/supplementary information is provided in a number of Appendices [it
Perturbing macroscopic magnetohydrodynamic stability for toroidal plasmas
Comer, Kathryn J.
We have introduced a new perturbative technique to rapidly explore the dependence of long wavelength ideal magnetohydrodynamic (MHD) instabilities on equilibrium profiles, shaping properties, and wall parameters. Traditionally, these relations are studied with numerical parameter scans using computationally intensive stability codes. Our perturbative technique first finds the equilibrium and stability using traditional methods. Subsequent small changes in the original equilibrium parameters change the stability. We quickly find the new stability with an expansion of the energy principle, rather than with another run of the stability codes. We first semi-analytically apply the technique to the screw pinch after eliminating compressional Alfven wave effects. The screw pinch results validate the approach, but also indicate that allowable perturbations to equilibria with certain features may be restricted. Next, we extend the approach to toroidal geometry using experimental equilibria and a simple constructed equilibrium, with the ideal MHD stability code GATO. Stability properties are successfully predicted from perturbed toroidal equilibria when only the vacuum beyond the plasma is perturbed (through wall parameter variations), rather than the plasma itself. Small plasma equilibrium perturbations to both experimental and simple equilibria result in very large errors to the predicted stability, and valid results are found only over a narrow range of most perturbations. Despite the large errors produced when changing plasma parameters, the wall perturbations revealed two useful applications of this technique. Because the calculations are non-iterative matrix multiplications, the convergence issues that can disrupt a full MHD stability code are absent. Marginal stability, therefore, is much easier to find with the perturbative technique. Also, the perturbed results can be input as the initial guess for the eigenvalue for a full stability code, and improve subsequent
Energy Technology Data Exchange (ETDEWEB)
Romadanov, I.V.; Ryzhkov, S.V., E-mail: ryzhkov@power.bmstu.ru
2014-12-15
Highlights: • Compact torus formation method with high level of magnetic flux is proposed. • A compact torus is produced in a theta-pinch-coil with pulse mode of operation. • Key feature is a pulse of current in an axial direction. • We report a level of linked magnetic flux is higher than theta-pinch results. - Abstract: The present work reports on compact toroid hydrogen plasma creation by means of a specially designed discharge system and results of magnetic fields introduction. Experiments in the compact toroid challenge (CTC) device at P.N. Lebedev Physical Institute (FIAN) have been conducted since 2005. The CTC device differs from the conventional theta-pinch formation in the use of an axial current for enhanced efficiency. We have used a novel technique to maximize the flux linked to the plasma. The purpose of this method is to increase the energy input into the plasma and the level of trapped magnetic flux using an additional toroidal magnetic field. A study of compact torus formation with axial and toroidal currents was done and a new method is proposed and implemented.
Gow, J.D.; Wilcox, J.M.
1961-12-26
A device is designed for producing and confining highenergy plasma from which neutrons are generated in copious quantities. A rotating sheath of electrons is established in a radial electric field and axial magnetic field produced within the device. The electron sheath serves as a strong ionizing medium to gas introdueed thereto and also functions as an extremely effective heating mechanism to the resulting plasma. In addition, improved confinement of the plasma is obtained by ring magnetic mirror fields produced at the ends of the device. Such ring mirror fields are defined by the magnetic field lines at the ends of the device diverging radially outward from the axis of the device and thereafter converging at spatial annular surfaces disposed concentrically thereabout. (AFC)
ATF [Advanced Toroidal Facility] data management
International Nuclear Information System (INIS)
Kannan, K.L.; Baylor, L.R.
1988-01-01
Data management for the Advanced Toroidal Facility (ATF), a stellarator located at Oak Ridge National Laboratory (ORNL), is provided by DMG, a locally developed, VAX-based software system. DMG is a data storage and retrieval software system that provides the user interface to ATF raw and analyzed data. Data are described in terms of data models and data types and are organized as signals into files, which are internally documented. The system was designed with user accessibility, software maintainability, and extensibility as primary goals. Extensibility features include compatibility with ATF as it moves from pulsed to steady-state operation and capability for use of the DMG system with experiments other than ATF. DMG is implemented as a run-time library of routines available as a shareable image. General-purpose and specialized data acquisition and analysis applications have been developed using the DMG system. This paper describes the DMG system and the interfaces to it. 4 refs., 2 figs
Isomorphic routing on a toroidal mesh
Mao, Weizhen; Nicol, David M.
1993-01-01
We study a routing problem that arises on SIMD parallel architectures whose communication network forms a toroidal mesh. We assume there exists a set of k message descriptors (xi, yi), where (xi, yi) indicates that the ith message's recipient is offset from its sender by xi hops in one mesh dimension, and yi hops in the other. Every processor has k messages to send, and all processors use the same set of message routing descriptors. The SIMD constraint implies that at any routing step, every processor is actively routing messages with the same descriptors as any other processor. We call this isomorphic routing. Our objective is to find the isomorphic routing schedule with least makespan. We consider a number of variations on the problem, yielding complexity results from O(k) to NP-complete. Most of our results follow after we transform the problem into a scheduling problem, where it is related to other well-known scheduling problems.
Distance statistics in large toroidal maps
Guitter, E.
2010-04-01
We compute a number of distance-dependent universal scaling functions characterizing the distance statistics of large maps of genus one. In particular, we obtain explicitly the probability distribution for the length of the shortest non-contractible loop passing via a random point in the map, and that for the distance between two random points. Our results are derived in the context of bipartite toroidal quadrangulations, using their coding by well-labeled 1-trees, which are maps of genus one with a single face and appropriate integer vertex labels. Within this framework, the distributions above are simply obtained as scaling limits of appropriate generating functions for well-labeled 1-trees, all expressible in terms of a small number of basic scaling functions for well-labeled plane trees.
Advanced toroidal facility vaccuum vessel stress analyses
International Nuclear Information System (INIS)
Hammonds, C.J.; Mayhall, J.A.
1987-01-01
The complex geometry of the Advance Toroidal Facility (ATF) vacuum vessel required special analysis techniques in investigating the structural behavior of the design. The response of a large-scale finite element model was found for transportation and operational loading. Several computer codes and systems, including the National Magnetic Fusion Energy Computer Center Cray machines, were implemented in accomplishing these analyses. The work combined complex methods that taxed the limits of both the codes and the computer systems involved. Using MSC/NASTRAN cyclic-symmetry solutions permitted using only 1/12 of the vessel geometry to mathematically analyze the entire vessel. This allowed the greater detail and accuracy demanded by the complex geometry of the vessel. Critical buckling-pressure analyses were performed with the same model. The development, results, and problems encountered in performing these analyses are described. 5 refs., 3 figs
Advanced Toroidal Facility vacuum vessel stress analyses
International Nuclear Information System (INIS)
Hammonds, C.J.; Mayhall, J.A.
1987-01-01
The complex geometry of the Advanced Toroidal Facility (ATF) vacuum vessel required special analysis techniques in investigating the structural behavior of the design. The response of a large-scale finite element model was found for transportation and operational loading. Several computer codes and systems, including the National Magnetic Fusion Energy Computer Center Cray machines, were implemented in accomplishing these analyses. The work combined complex methods that taxed the limits of both the codes and the computer systems involved. Using MSC/NASTRAN cyclic-symmetry solutions permitted using only 1/12 of the vessel geometry to mathematically analyze the entire vessel. This allowed the greater detail and accuracy demanded by the complex geometry of the vessel. Critical buckling-pressure analyses were performed with the same model. The development, results, and problems encountered in performing these analyses are described
Shear-dependant toroidal vortex flow
Energy Technology Data Exchange (ETDEWEB)
Khorasani, Nariman Ashrafi; Haghighi, Habib Karimi [Payame Noor University, Tehran (Iran, Islamic Republic of)
2013-01-15
Pseudoplastic circular Couette flow in annulus is investigated. The flow viscosity is dependent on the shear rate, which directly affects the conservation equations that are solved in the present study by the spectral method in the present study. The pseudoplastic model adopted here is shown to be a suitable representative of nonlinear fluids. Unlike the previous studies, where only the square of shear rate term in the viscosity expression was considered to ease the numerical manipulations, in the present study takes the term containing the quadratic power into account. The curved streamlines of the circular Couette flow can cause a centrifugal instability leading to toroidal vortices, known as Taylor vortices. It is further found that the critical Taylor number becomes lower as the pseudoplastic effect increases. Comparison with existing measurements on pseudoplastic circular Couette flow results in good agreement.
Design considerations for ITER toroidal field coils
International Nuclear Information System (INIS)
Kalsi, S.S.; Lousteau, D.C.; Miller, J.R.
1987-01-01
The International Thermonuclear Experimental Reactor (ITER) is a new tokamak design project with joint participation from Europe, Japan, the Union of Soviet Socialist Republics (U.S.S.R.), and the United States. This paper describes a magnetic and mechanical design methodology for toroidal field (TF) coils that employs Nb 3 Sn superconductor technology. Coil winding is sized by using conductor concepts developed for the U.S. TIBER concept. Manifold concepts are presented for the complete cooling system. Also included are concepts for the coil structural arrangement. The effects of in-plane and out-of-plane loads are included in the design considerations for the windings and case. Concepts are presented for reacting these loads with a minimum amount of additional structural material. Concepts discussed in this paper could be considered for the ITER TF coils
Toroidal microinstability studies of high temperature tokamaks
International Nuclear Information System (INIS)
Rewoldt, G.; Tang, W.M.
1989-07-01
Results from comprehensive kinetic microinstability calculations are presented showing the effects of toroidicity on the ion temperature gradient mode and its relationship to the trapped-electron mode in high-temperature tokamak plasmas. The corresponding particle and energy fluxes have also been computed. It is found that, although drift-type microinstabilities persist over a wide range of values of the ion temperature gradient parameter η i ≡ (dlnT i /dr)/(dlnn i /dr), the characteristic features of the dominant mode are those of the η i -type instability when η i > η ic ∼1.2 to 1.4 and of the trapped-electron mode when η i ic . 16 refs., 7 figs
Progress on large superconducting toroidal field coils
International Nuclear Information System (INIS)
Haubenreich, P.N.; Luton, J.N.; Thompson, P.B.; Beard, D.S.
1979-01-01
Large superconducting toroidal field coils of competing designs are being produced by six major industrial teams. In the US, teams headed by General Dynamics Convair, General Electric, and Westinghouse are under contract to design and fabricate one coil each to specifications established by the Large Coil Program. A facility for testing 6 coils in a toroidal array at fields to 8 to 12 tesla is under construction at Oak Ridge. Through an international agreement, EURATOM, Japan, and Switzerland will produce one coil each for testing with the US coils. Each test coil will have a 2.5 x 3.5 m D-shape winding bore and is designed to operate at a current of 10 to 18 kA at a peak field of 8T while subjected to pulsed fields of 0.14 T applied in 1.0 s. There are significant differences among the six coil designs: five use NbTi, one Nb 3 Sn; three are cooled by pool boiling helium, three by forced flow; five have welded or bolted stainless steel coil cases, one has aluminum plate structure. All are designed to be cryostable at 8T, with structural margin for extended operation. The three US coil teams are almost or completely finished with detailed design and are now procuring materials and setting up manufacturing equipment. The non-US teams are at various stages of verification testing and design. The GDC and GE coils are scheduled for delivery in the spring of 1981 and the others will be completed a year later. The 11-m diameter vessel at the test facility has been completed and major components of the test stand are being procured. Engineering and procurement to upgrade the helium liquifier-refrigerator system are under way
Investigation of diocotron modes in toroidally trapped electron plasmas using non-destructive method
Lachhvani, Lavkesh; Pahari, Sambaran; Sengupta, Sudip; Yeole, Yogesh G.; Bajpai, Manu; Chattopadhyay, P. K.
2017-10-01
Experiments with trapped electron plasmas in a SMall Aspect Ratio Toroidal device (SMARTEX-C) have demonstrated a flute-like mode represented by oscillations on capacitive (wall) probes. Although analogous to diocotron mode observed in linear electron traps, the mode evolution in toroids can have interesting consequences due to the presence of in-homogeneous magnetic field. In SMARTEX-C, the probe signals are observed to undergo transition from small, near-sinusoidal oscillations to large amplitude, non-linear "double-peaked" oscillations. To interpret the wall probe signal and bring forth the dynamics, an expression for the induced current on the probe for an oscillating charge is derived, utilizing Green's Reciprocation Theorem. Equilibrium position, poloidal velocity of the charge cloud, and charge content of the cloud, required to compute the induced current, are estimated from the experiments. Signal through capacitive probes is thereby computed numerically for possible charge cloud trajectories. In order to correlate with experiments, starting with an intuitive guess of the trajectory, the model is evolved and tweaked to arrive at a signal consistent with experimentally observed probe signals. A possible vortex like dynamics is predicted, hitherto unexplored in toroidal geometries, for a limited set of experimental observations from SMARTEX-C. Though heuristic, a useful interpretation of capacitive probe data in terms of charge cloud dynamics is obtained.
International Nuclear Information System (INIS)
Kobayashi, Noriyuki.
1994-01-01
In a thermonuclear device, a protrusion is protruded the direction to point X of a separatrix of magnetic fields and oscillated. Further, a protrusion continuous in the toroidal direction is formed from a first wall toward the point X and the position for the point X is oscillated in perpendicular to the divertor. If moving widths are compared for the shape of each of the divertors, it is longest in the case of the protruded shape, and a sweeping speed in a collision region is greatest in a case of the protruded shape and the moving width can be increased for the moving time and moving width of the identical point X. Accordingly, fluctuation of the magnetic fields of the divertor coils can relatively be reduced. A high heat receiving portion of the surface of the divertor can be made sufficiently great and moved rapidly with less oscillation width for the point X, thereby enabling to suppress AC loss of superconductors of toroidal coils and keep a stable superconductive state. Further, the divertor can be kept from melting, to attain a reliable thermonuclear device. (I.S.)
Commissioning Test of ATLAS End-Cap Toroidal Magnets
Dudarev, A; Foussat, A; Benoit, P; Jeckel, M; Olyunin, A; Kopeykin, N; Stepanov, V; Deront, L; Olesen, G; Ponts, X; Ravat, S; Sbrissa, K; Barth, J; Bremer, J; Delruelle, J; Metselaar, J; Pengo, R; Pirotte, O; Buskop, J; Baynham, D E; Carr, F S; Holtom, E
2009-01-01
The system of superconducting toroids in the ATLAS experiment at CERN consists of three magnets. The Barrel Toroid was assembled and successfully tested in 2006. Next, two End-Cap Toroids have been tested on surface at 77 K and installed in the cavern, 100-m underground. The End Cap Toroids are based on Al stabilized Nb-Ti/Cu Rutherford cables, arranged in double pancake coils and conduction cooled at 4.6 K. The nominal current is 20.5 kA at 4.1 T peak field in the windings and the stored energy is 250 MJ per toroid. Prior to final testing of the entire ATLAS Toroidal system, each End Cap Toroid passed a commissioning test up to 21 kA to guarantee a reliable performance in the final assembly. In this paper the test results are described. It includes the stages of test preparation, isolation vacuum pumping and leak testing, cooling down, step-by-step charging to full current, training quenches and quench recovery. By fast discharges the quench detection and protection system was checked to demonstrate a safe e...
Energy Technology Data Exchange (ETDEWEB)
Flanagan, C.A. (ed.)
1984-10-01
This document is a design overview that describes the scoping studies and preconceptual design effort performed in FY 1983 on the Tokamak Fusion Core Experiment (TFCX) class of device. These studies focussed on devices with all-superconducting toroidal field (TF) coils and on devices with superconducting TF coils supplemented with copper TF coil inserts located in the bore of the TF coils in the shield region. Each class of device is designed to satisfy the mission of ignition and long pulse equilibrium burn. Typical design parameters are: major radius = 3.75 m, minor radius = 1.0 m, field on axis = 4.5 T, plasma current = 7.0 MA. These designs relay on lower hybrid (LHRH) current rampup and heating to ignition using ion cyclotron range of frequency (ICRF). A pumped limiter has been assumed for impurity control. The present document is a design overview; a more detailed design description is contained in a companion document.
MHD simulation study of compact toroid injection into magnetized plasmas
Energy Technology Data Exchange (ETDEWEB)
Suzuki, Yoshio; Kishimoto, Yasuaki [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Hayashi, Takaya [National Inst. for Fusion Science, Toki, Gifu (Japan)
2000-06-01
To understand the fuelling process in a fusion device by a compact toroid (CT) plasmoid injection method, we have carried out MHD numerical simulations where a spheromak-like CT (SCT) is injected into a magnetized target plasma region. So far, we revealed that the penetration depth of the SCT plasma becomes shorter than that estimated from the conducting sphere (CS) model, because in the simulation the Lorentz force of the target magnetic field sequentially decelerates the injected SCT while in the CS model only the magnetic pressure force acts as the deceleration mechanism. In this study, we represent the new theoretical model where the injected SCT is decelerated by both the magnetic pressure force and the magnetic tension force (we call it the non-slipping sphere (NS) model) and investigate in detail the deceleration mechanism of the SCT by comparison with simulation results. As a result, it is found that the decrease of the SCT kinetic energy in the simulation coincides with that in the NS model more than in the CS model. It means that not only the magnetic pressure force but also the magnetic tension force acts as the deceleration mechanism of the SCT. Furthermore, it is revealed that magnetic reconnection between the SCT magnetic field and the target magnetic field plays a role to relax the SCT deceleration. (author)
Development of Compact Toroid Injector for C-2 FRCs
Matsumoto, Tadafumi; Sekiguchi, Junichi; Asai, Tomohiko; Gota, Hiroshi; Garate, Eusebio; Allfrey, Ian; Valentine, Travis; Smith, Brett; Morehouse, Mark; TAE Team
2014-10-01
Collaborative research project with Tri Alpha Energy has been started and we have developed a new compact toroid (CT) injector for the C-2 device, mainly for fueling field-reversed configurations (FRCs). The CT is formed by a magnetized coaxial plasma-gun (MCPG), which consists of coaxial cylinder electrodes; a spheromak-like plasma is generated by discharge and pushed out from the gun by Lorentz force. The inner diameter of outer electrode is 83.1 mm and the outer diameter of inner electrode is 54.0 mm. The surface of the inner electrode is coated with tungsten in order to reduce impurities coming out from the electrode. The bias coil is mounted inside of the inner electrode. We have recently conducted test experiments and achieved a supersonic CT translation speed of up to ~100 km/s. Other typical plasma parameters are as follows: electron density ~ 5 × 1021 m-3, electron temperature ~ 40 eV, and the number of particles ~0.5-1.0 × 1019. The CT injector is now planned to be installed on C-2 and the first CT injection experiment will be conducted in the near future. The detailed MCPG design as well as the test experimental results will be presented.
Energy confinement scaling from the international stellarator database
Energy Technology Data Exchange (ETDEWEB)
Stroth, U. [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); Murakami, M.; Dory, R.A.; Yamada, H.; Okamura, S.; Sano, F.; Obiki, T.
1995-09-01
An international stellarator database on global energy confinement is presented comprising data from the ATF, CHS and Heliotron E heliotron/torsatrons and the W7-A and W7-AS shearless stellarators. Regression expressions for the energy confinement time are given for the individual devices and the combined dataset. A comparison with tokamak L mode confinement is discussed on the basis of various scaling expressions. In order to make this database available to interested colleagues, the structure of the database and the parameter list are explained in detail. More recent confinement results incorporating data from enhanced confinement regimes such as H mode are reported elsewhere. (author).
Radiation control in fusion plasmas by magnetic confinement
International Nuclear Information System (INIS)
Dachicourt, R.
2012-10-01
The present work addresses two important issues for the industrial use of fusion: plasma radiation control, as a part of the more general power handling issue, and high density tokamak operation. These two issues will be most critical in the demonstration reactor, called DEMO, intermediate step between ITER and a future commercial reactor. For DEMO, the need to radiate a large fraction of the power so as to limit the peak power load on the divertor will be a key constraint. High confinement will have to be combined with high radiated power fraction, and the required level of plasma purity. The main achievement of this thesis is to have shown experimental evidence of the existence of a stable plasma regime meeting the most critical requirements of a DEMO scenario: an electron density up to 40% above the Greenwald value, together with a fraction of radiated power close to 80%, with a good energy confinement and limited dilution. The plasma is additionally heated with ion cyclotron waves in a central electron heating scenario, featuring alpha particle heating. The original observations reported in this work bring highly valuable new pieces of information both to the physics of the tokamak edge layer and to the construction of an 'integrated operational scenario' required to successfully operate fusion devices. In the way for getting high density plasmas, the new observations involve the following topics. First, the formation of a poloidal asymmetry in the edge electron density profile, with a maximum density located close to toroidal pumped limiter. This asymmetry occurs inside the separatrix, with a constant plasma pressure on magnetic surfaces. Secondly, a correlative decrease of the electron temperature in the same edge region. Thirdly, the excellent coupling capabilities of the ICRH waves, up to a central line averaged electron density of 1.4 times the Greenwald density. Fourthly, a poloidally asymmetric edge radiation region, providing the dissipation of 80% of
International Nuclear Information System (INIS)
Callen, J.D.
1982-08-01
The research on this contract over the past year has concentrated on some key tandem mirror confinement and heating issues (barrier trapping current, rf heating, low mode number stability) and on developing a comprehensive neoclassical transport theory for nonaxisymmetric toroidal plasmas (e.g., stellarators). Progress in these and some other miscellaneous areas are summarized briefly in this progress report
1D equation for toroidal momentum transport in a tokamak
International Nuclear Information System (INIS)
Rozhansky, V A; Senichenkov, I Yu
2010-01-01
A 1D equation for toroidal momentum transport is derived for a given set of turbulent transport coefficients. The averaging is performed taking account of the poloidal variation of the toroidal fluxes and is based on the ambipolar condition of the zero net radial current through the flux surface. It is demonstrated that taking account of the Pfirsch-Schlueter fluxes leads to a torque in the toroidal direction which is proportional to the gradient of the ion temperature. This effect is new and has not been discussed before. The boundary condition at the separatrix, which is based on the results of the 2D simulations of the edge plasma, is formulated.
Performance of a Folded-Strip Toroidally Wound Induction Machine
DEFF Research Database (Denmark)
Jensen, Bogi Bech; Jack, Alan G.; Atkinson, Glynn J.
2011-01-01
This paper presents the measured experimental results from a four-pole toroidally wound induction machine, where the stator is constructed as a pre-wound foldable strip. It shows that if the machine is axially restricted in length, the toroidally wound induction machine can have substantially...... shorter stator end-windings than conventionally wound induction machines, and hence that a toroidally wound induction machine can have lower losses and a higher efficiency. The paper also presents the employed construction method, which emphasizes manufacturability, and highlights the advantages...
Deformation energy of a toroidal nucleus and plane fragmentation barriers
International Nuclear Information System (INIS)
Fauchard, C.; Royer, G.
1996-01-01
The path leading to pumpkin-like configurations and toroidal shapes is investigated using a one-parameter shape sequence. The deformation energy is determined within the analytical expressions obtained for the various shape-dependent functions and the generalized rotating liquid drop model taking into account the proximity energy and the temperature. With increasing mass and angular momentum, a potential well appears in the toroidal shape path. For the heaviest systems, the pocket is large and locally favourable with respect to the plane fragmentation barriers which might allow the formation of evanescent toroidal systems which would rapidly decay in several fragments to minimize the surface tension. (orig.)
Progress in gyrokinetic simulations of toroidal ITG turbulence
International Nuclear Information System (INIS)
Nevins, W.M.; Dimits, A.M.; Cohen, B.I.; Shumaker, D.E.
2001-01-01
The 3-D nonlinear toroidal gyrokinetic simulation code PG3EQ is used to study toroidal ion temperature gradient (ITG) driven turbulence - a key cause of the anomalous transport that limits tokamak plasma performance. Systematic studies of the dependence of ion thermal transport on various parameters and effects are presented, including dependence on E-vectorxB-vector and toroidal velocity shear, sensitivity to the force balance in simulations with radial temperature gradient variation, and the dependences on magnetic shear and ion temperature gradient. (author)
Laser-induced production of large carbon-based toroids
International Nuclear Information System (INIS)
Lyn, M. Elizabeth; He Jibao; Koplitz, Brent
2005-01-01
We report on the production of large carbon-based toroids (CBTs) from fullerenes. The process involves two-step laser irradiation of a mixed fullerene target (76% C 60 , 22% C 70 ). Transmission electron microscopy (TEM) clearly identifies toroidal-shaped structures as well as Q-shaped constructs. The typical diameters of the CBTs are ∼0.2-0.3 μm with tubular diameters of ∼50-100 nm, but toroids as wide as 0.5 μm are observed making them nanostructures on the verge of being microstructures
Generation and heating of toroidally confined overdense plasmas with 2.45 GHz microwaves
Energy Technology Data Exchange (ETDEWEB)
Koehn, A; Birkenmeier, G; Holzhauer, E; Ramisch, M; Stroth, U, E-mail: koehn@ipf.uni-stuttgart.d [Institut fuer Plasmaforschung, Universitaet Stuttgart, 70569 Stuttgart (Germany)
2010-03-15
In the stellarator TJ-K, overdense low-temperature plasmas are created by means of microwaves at 2.45 GHz. Extensive studies have been carried out to understand the heating process. The plasma breakdown at the cyclotron resonance layer has been directly observed with a multiple Langmuir probe array. Profile measurements indicate power deposition at the plasma boundary, where the upper hybrid resonance (UHR) is located. This result is confirmed by full-wave simulations which emphasize the importance of the vacuum vessel to increase the absorbed microwave power due to multiple reflections. Further indications for heating at the UHR layer are found by measurements of the wave electric field of the incident microwave and by power-modulation experiments. In contrast to similar experiments, no indication for heating by electron Bernstein waves was found.
Mcdonough, T. R.
1974-01-01
The trapping of Titan's escaping atmosphere in the Saturnian system by a toroidal ring is discussed. The radius of the toroid is comparable to Titan's orbit, or about ten times larger than the visible rings. Theoretical atmospheric models are formulated that consider Saturn's gravitational attraction and magnetospheric properties in forming this toroid and in protecting toroid particles from direct ionization by solar wind particles.
Compact magnetic confinement fusion: Spherical torus and compact torus
Directory of Open Access Journals (Sweden)
Zhe Gao
2016-05-01
Full Text Available The spherical torus (ST and compact torus (CT are two kinds of alternative magnetic confinement fusion concepts with compact geometry. The ST is actually a sub-category of tokamak with a low aspect ratio; while the CT is a toroidal magnetic configuration with a simply-connected geometry including spheromak and field reversed pinch. The ST and CT have potential advantages for ultimate fusion reactor; while at present they can also provide unique fusion science and technology contributions for mainstream fusion research. However, some critical scientific and technology issues should be extensively investigated.
Entropy production and onsager symmetry in neoclassical transport processes of toroidal plasmas
Energy Technology Data Exchange (ETDEWEB)
Sugama, H.; Horton, W.
1995-07-01
Entropy production and Onsager symmetry in neoclassical transport processes of magnetically confined plasmas are studied in detail for general toroidal systems including nonaxisymmetric configurations. We find that the flux surface average of the entropy production defined from the linearized collision operator and the gyroangle-averaged distribution function coincides with the sum of the inner products of the thermodynamic forces and the conjugate fluxes consisting of the Pfirsch-Schlueter, banana-plateau, nonaxisymmetric parts of the neoclassical radial fluxes and the parallel current. We prove from the self-adjointness of the linearized collision operator that the Onsager symmetry is robustly valid for the neoclassical transport equations in the cases of general toroidal plasmas consisting of electrons and multi-species ions with arbitrary collision frequencies. It is shown that the Onsager symmetry holds whether or not the ambipolarity condition is used to reduce the number of the conjugate pairs of the transport fluxes and the thermodynamic forces. We also derive the full transport coefficients for the banana-plateau and nonaxisymmetric parts, separately, and investigate their symmetry properties. The nonaxisymmetric transport equations are obtained for arbitrary collision frequencies in the Pfirsch-Schlueter and plateau regimes, and it is directly confirmed that the total banana-plateau and nonaxisymmetric transport equations satisfy the Onsager symmetry. (author).
Influence of toroidal rotation on resistive tearing modes in tokamaks
International Nuclear Information System (INIS)
Wang, S.; Ma, Z. W.
2015-01-01
Influence of toroidal equilibrium plasma rotation on m/n = 2/1 resistive tearing modes is studied numerically using a 3D toroidal MHD code (CLT). It is found that the toroidal rotation with or without shear can suppress the tearing instability and the Coriolis effect in the toroidal geometry plays a dominant role on the rotation induced stabilization. For a high viscosity plasma (τ R /τ V ≫ 1, where τ R and τ V represent resistive and viscous diffusion time, respectively), the effect of the rotation shear combined with the viscosity appears to be stabilizing. For a low viscosity plasmas (τ R /τ V ≪ 1), the rotation shear shows a destabilizing effect when the rotation is large
Influence of toroidal rotation on resistive tearing modes in tokamaks
Energy Technology Data Exchange (ETDEWEB)
Wang, S.; Ma, Z. W., E-mail: zwma@zju.edu.cn [Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027 (China)
2015-12-15
Influence of toroidal equilibrium plasma rotation on m/n = 2/1 resistive tearing modes is studied numerically using a 3D toroidal MHD code (CLT). It is found that the toroidal rotation with or without shear can suppress the tearing instability and the Coriolis effect in the toroidal geometry plays a dominant role on the rotation induced stabilization. For a high viscosity plasma (τ{sub R}/τ{sub V} ≫ 1, where τ{sub R} and τ{sub V} represent resistive and viscous diffusion time, respectively), the effect of the rotation shear combined with the viscosity appears to be stabilizing. For a low viscosity plasmas (τ{sub R}/τ{sub V} ≪ 1), the rotation shear shows a destabilizing effect when the rotation is large.
Toroidal and rotating bubble nuclei and the nuclear fragmentation
International Nuclear Information System (INIS)
Royer, G.; Fauchard, C.; Haddad, F.; Jouault, B.
1997-01-01
The energy of rotating bubble and toroidal nuclei predicted to be formed in central heavy ion collisions at intermediate energies is calculated within the generalized rotating liquid drop model. Previously, a one-parameter shape sequence has been defined to describe the path leading to pumpkin-like configurations and toroidal shapes. New analytical expressions for the shape dependent functions have been obtained. The potential barriers standing in these exotic deformation paths are compared with the three-dimensional and plane-fragmentation barriers. Metastable bubble-like minima only appear at very high angular momentum and above the three dimensional fragmentation barriers. In the toroidal deformation path of the heaviest systems exists a large potential pocket localized below the plane-fragmentation barriers. This might allow the temporary survival of heavy nuclear toroids before the final clusterization induced by the surface and proximity tension
Effect of toroidicity during lower hybrid mode conversion
International Nuclear Information System (INIS)
Riyopoulos, S.; Mahajan, S.
1985-11-01
The effect of toroidicity during lower hybrid mode conversion is examined by treating the wave propagation in an inhomogeneous medium as an eigenvalue problem for ω 2 (m,n),m,n poloidal and toroidal wave numbers. Since the frequency regime near ω 2 = ω/sub LH/ 2 is an accumulation point for the eigenvalue spectrum, the degenerate perturbation technique must be applied. The toroidal eigenmodes are constructed by a zeroth order superposition of monochromatic solutions with different poloidal dependence m, thus they generically exhibit a wide spectrum in k/sub parallel/ for given fixed ω 2 even for small inverse aspect ratio epsilon. In case that the average is in the neighborhood of k/sub min/, the minimum wave number for accessibility of the mode conversion regime, it is expected that excitation of toroidal modes rather than geometric optics will determine the wave coupling to the plasma
Structural design of the superconducting toroidal field coils for ITER
International Nuclear Information System (INIS)
Wong, F.M.G.; Sborchia, C.; Thome, R.J.; Malkov, A.; Titus, P.H.
1995-01-01
Structural design issues and features of the superconducting toroidal field (TF) coils for the International Thermonuclear Experimental Reactor (ITER) will be discussed. Selected analyses of the structural and mechanical behavior of the ITER TF coils will also be presented. (orig.)
Extension of improved particle and energy confinement regime in the core of LHD plasma
International Nuclear Information System (INIS)
Kaneko, Osamu; Yokoyama, Masayuki; Yoshinuma, Mikiro
2009-01-01
Recent two major topics of Large Helical Device (LHD) towards fusion relevant conditions, high-density operation and high-ion-temperature operation, are reported. Super dense core plasma was obtained by the combination of repetitive hydrogen ice pellet injection and high power neutral beam injection (NBI) heating. A very peaked density profile with the highest central density of 1.1x10 21 m -3 was produced showing that the particle transport was suppressed very well in the plasma core. The spatial density varies as the position of magnetic axis (R ax ), and the steepest profile is obtained at R ax =3.95 m. The highest central ion temperature of 5.6 keV was obtained in hydrogen plasma at electron density of 1.6 x 10 19 m -3 by NBI, where a peaked ion-temperature profile with internal ion energy transport barrier was observed. The profile of electron temperature did not change much and was broad even when the ion temperature had a peaked profile. The central ion temperature is higher than the electron temperature, which is a new operation regime of LHD. High central ion temperature accompanied strong toroidal rotation and an extreme hollow profile of carbon ions (impurity hole). These steep temperature profiles were obtained so far at around R ax =3.6 m. The compatibility between particle and energy confinement is a new issue of LHD to explore a new operation regime for attractive fusion reactor. (author)
A computational model for the confinement and performance of circular and D-shaped Tokamak plasmas
International Nuclear Information System (INIS)
Nicolai, A.; Boerner, P.
1987-10-01
A combined one-dimensional and two-dimensional description of toroidal and axisymmetric plasmas is presented which is based essentially on an equilibrium solver resorting to the fast Buneman invertor and two one-dimensional transport codes describing the protium, deuterium, tritium, and plasma energy inventory and accounting for three impurity species; it is employed to compute the time evolution of Tokamak plasmas. The attempt was made to achieve a consistent modelling of the transport and equilibrium phenomena in a plasma which interacts with the peripheral devices for e.g. confinement, plasma heating and limitation of the plasma aperture. The equilibrium solver is connected to a coil submodule computing the poloidal field coil currents maintaining the designed plasma shape approximately. A surface current density standing for the magnetization of the iron core and the yokes is calculated by means of the module for the transformer iron. This module is linked to the equilibrium solver as well so that consistency between the coil currents, the plasma current distribution and the magnetization of the transformer iron is achieved. (orig./GG)
Toroidal high-spin isomers in the nucleus 304120
Staszczak, A.; Wong, Cheuk-Yin; Kosior, A.
2017-05-01
Background: Strongly deformed oblate superheavy nuclei form an intriguing region where the toroidal nuclear structures may bifurcate from the oblate spheroidal shape. The bifurcation may be facilitated when the nucleus is endowed with a large angular moment about the symmetry axis with I =Iz . The toroidal high-K isomeric states at their local energy minima can be theoretically predicted using the cranked self-consistent Skyrme-Hartree-Fock method. Purpose: We use the cranked Skyrme-Hartree-Fock method to predict the properties of the toroidal high-spin isomers in the superheavy nucleus 120304184. Method: Our method consists of three steps: First, we use the deformation-constrained Skyrme-Hartree-Fock-Bogoliubov approach to search for the nuclear density distributions with toroidal shapes. Next, using these toroidal distributions as starting configurations, we apply an additional cranking constraint of a large angular momentum I =Iz about the symmetry z axis and search for the energy minima of the system as a function of the deformation. In the last step, if a local energy minimum with I =Iz is found, we perform at this point the cranked symmetry- and deformation-unconstrained Skyrme-Hartree-Fock calculations to locate a stable toroidal high-spin isomeric state in free convergence. Results: We have theoretically located two toroidal high-spin isomeric states of 120304184 with an angular momentum I =Iz=81 ℏ (proton 2p-2h, neutron 4p-4h excitation) and I =Iz=208 ℏ (proton 5p-5h, neutron 8p-8h) at the quadrupole moment deformations Q20=-297.7 b and Q20=-300.8 b with energies 79.2 and 101.6 MeV above the spherical ground state, respectively. The nuclear density distributions of the toroidal high-spin isomers 120304184(Iz=81 ℏ and 208 ℏ ) have the maximum density close to the nuclear matter density, 0.16 fm-3, and a torus major to minor radius aspect ratio R /d =3.25 . Conclusions: We demonstrate that aligned angular momenta of Iz=81 ℏ and 208 ℏ arising from
Grid-based Parallel Data Streaming Implemented for the Gyrokinetic Toroidal Code
International Nuclear Information System (INIS)
Klasky, S.; Ethier, S.; Lin, Z.; Martins, K.; McCune, D.; Samtaney, R.
2003-01-01
We have developed a threaded parallel data streaming approach using Globus to transfer multi-terabyte simulation data from a remote supercomputer to the scientist's home analysis/visualization cluster, as the simulation executes, with negligible overhead. Data transfer experiments show that this concurrent data transfer approach is more favorable compared with writing to local disk and then transferring this data to be post-processed. The present approach is conducive to using the grid to pipeline the simulation with post-processing and visualization. We have applied this method to the Gyrokinetic Toroidal Code (GTC), a 3-dimensional particle-in-cell code used to study microturbulence in magnetic confinement fusion from first principles plasma theory
Characterization of compact-toroid injection during formation, translation, and field penetration
Energy Technology Data Exchange (ETDEWEB)
Matsumoto, T., E-mail: cstd14003@g.nihon-u.ac.jp; Sekiguchi, J.; Asai, T. [Nihon University, Chiyoda-ku, Tokyo 101-8308 (Japan); Roche, T.; Allfrey, I.; Gota, H.; Cordero, M.; Garate, E.; Kinley, J.; Valentine, T.; Waggoner, W.; Binderbauer, M. [Tri Alpha Energy, Inc., P.O. Box 7010, Rancho Santa Margarita, California 92688 (United States); Tajima, T. [Tri Alpha Energy, Inc., P.O. Box 7010, Rancho Santa Margarita, California 92688 (United States); Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States)
2016-11-15
We have developed a compact toroid (CT) injector system for particle refueling of the advanced beam-driven C-2U field-reversed configuration (FRC) plasma. The CT injector is a magnetized coaxial plasma gun (MCPG), and the produced CT must cross the perpendicular magnetic field surrounding the FRC for the refueling of C-2U. To simulate this environment, an experimental test stand has been constructed. A transverse magnetic field of ∼1 kG is established, which is comparable to the C-2U axial magnetic field in the confinement section, and CTs are fired across it. On the test stand we have been characterizing and studying CT formation, ejection/translation from the MCPG, and penetration into transverse magnetic fields.
Characterization of compact-toroid injection during formation, translation, and field penetration
Matsumoto, T.; Roche, T.; Allfrey, I.; Sekiguchi, J.; Asai, T.; Gota, H.; Cordero, M.; Garate, E.; Kinley, J.; Valentine, T.; Waggoner, W.; Binderbauer, M.; Tajima, T.
2016-11-01
We have developed a compact toroid (CT) injector system for particle refueling of the advanced beam-driven C-2U field-reversed configuration (FRC) plasma. The CT injector is a magnetized coaxial plasma gun (MCPG), and the produced CT must cross the perpendicular magnetic field surrounding the FRC for the refueling of C-2U. To simulate this environment, an experimental test stand has been constructed. A transverse magnetic field of ˜1 kG is established, which is comparable to the C-2U axial magnetic field in the confinement section, and CTs are fired across it. On the test stand we have been characterizing and studying CT formation, ejection/translation from the MCPG, and penetration into transverse magnetic fields.
Inductive Eigenmodes of a resistive toroidal surface in vacuum
Energy Technology Data Exchange (ETDEWEB)
Lo Surdo, C. [ENEA, Centro Ricerche Frascati, Rome (Italy). Dipt. Innovazione
1999-07-01
In this paper it has been studied the Electro-Magnetic (EM) Eigenmodes, sufficiently slow as to legitimate the pre-Maxwell approximation of Maxwell's system (or inductive Eigenmodes), of a given smooth, toroidal-un knotted, electrically resistive surface {tau} with given smooth (surface) resistivity 0 < {rho}{sub d}egree < {infinity}, and lying in the (empty) R{sup 3}. Within the above limitations (to be made more precise), the geometry of {tau} is arbitrary. With the eigenvalue associated with the generic Eigenmode being defined as the opposite of its logarithmic time-derivative, one expects that the resulting spectrum be discrete and strictly positive. It shall be interested into the degenerate case where {tau} be cut (i.e. electrically broken) along one or more of its irreducible cycles. This case will be analyzed autonomously, rather than as a limit (for {rho}{sub d}egree {yields} {infinity} along the cuts) of the regular case. Without cuts, the Eigenproblem under consideration is nothing but the two-dimensional (2-dim) generalization of the classical case of a smooth, unknotted, electrically conductive, simple coil in infinite vacuum. Its analysis hinges on the classical potential theory, and turns out to be a special application of the linear, integrodifferential (elliptic) equation theory on a compact, multiply connected, 2-dim manifold. The attention and approach will be confined to strong (or classical) solutions, both in {tau} and C {tau} = R{sup 3} / {tau}. This study is divided in two parts: a General Part (Sects 1 divided 4) is devoted to the case of generic {tau} and {rho}{sub d}egree (within the convenient smoothness requirements), whereas a Special Part (Sects 5 divided 7) deals with the (more or less formal) discussion of a couple of particular cases ({tau} {identical_to} a canonical torus), both of which with uniform {rho}{sub d}egree. Some propaedeutical/supplementary information is provided in a number of Appendices. [Italian] Il presente
Polymer- and salt-induced toroids of hexagonal DNA.
Ubbink, J; Odijk, T
1995-01-01
A model is proposed for polymer- and salt-induced toroidal condensates of DNA, based on a recent theory of the undulation enhancement of the electrostatic interaction in the bulk hexagonal phase of semiflexible polyions. In a continuum approximation, the thermodynamic potential of a monomolecular toroid may be split up in bulk, surface, and curvature contributions. With the help of an approximate analytical minimization procedure, the optimal torus dimensions are calculated as a function of t...
Dynamics in geometrical confinement
Kremer, Friedrich
2014-01-01
This book describes the dynamics of low molecular weight and polymeric molecules when they are constrained under conditions of geometrical confinement. It covers geometrical confinement in different dimensionalities: (i) in nanometer thin layers or self supporting films (1-dimensional confinement) (ii) in pores or tubes with nanometric diameters (2-dimensional confinement) (iii) as micelles embedded in matrices (3-dimensional) or as nanodroplets.The dynamics under such conditions have been a much discussed and central topic in the focus of intense worldwide research activities within the last two decades. The present book discusses how the resulting molecular mobility is influenced by the subtle counterbalance between surface effects (typically slowing down molecular dynamics through attractive guest/host interactions) and confinement effects (typically increasing the mobility). It also explains how these influences can be modified and tuned, e.g. through appropriate surface coatings, film thicknesses or pore...
Elastic membranes in confinement.
Bostwick, J B; Miksis, M J; Davis, S H
2016-07-01
An elastic membrane stretched between two walls takes a shape defined by its length and the volume of fluid it encloses. Many biological structures, such as cells, mitochondria and coiled DNA, have fine internal structure in which a membrane (or elastic member) is geometrically 'confined' by another object. Here, the two-dimensional shape of an elastic membrane in a 'confining' box is studied by introducing a repulsive confinement pressure that prevents the membrane from intersecting the wall. The stage is set by contrasting confined and unconfined solutions. Continuation methods are then used to compute response diagrams, from which we identify the particular membrane mechanics that generate mitochondria-like shapes. Large confinement pressures yield complex response diagrams with secondary bifurcations and multiple turning points where modal identities may change. Regions in parameter space where such behaviour occurs are then mapped. © 2016 The Author(s).
An important step for the ATLAS toroid magnet
2000-01-01
The ATLAS experiment's prototype toroid coil arrives at CERN from the CEA laboratory in Saclay on 6 October. The world's largest superconducting toroid magnet is under construction for the ATLAS experiment. A nine-metre long fully functional prototype coil was delivered to CERN at the beginning of October and has since been undergoing tests in the West Area. Built mainly by companies in France and Italy under the supervision of engineers from the CEA-Saclay laboratory near Paris and Italy's INFN-LASA, the magnet is a crucial step forward in the construction of the ATLAS superconducting magnet system. Unlike any particle detector that has gone before, the ATLAS detector's magnet system consists of a large toroidal system enclosing a small central solenoid. The barrel part of the toroidal system will use eight toroid coils, each a massive 25 metres in length. These will dwarf the largest toroids in the world when ATLAS was designed, which measure about six metres. So the ATLAS collaboration decided to build a...
Dynamics of accelerated compact toroidal plasmas
International Nuclear Information System (INIS)
McLean, H.S.; Eddleman, J.L.; Hammer, J.H.; Hartman, C.W.; Molvik, A.W.
1990-01-01
Previous work on the RACE experiment has demonstrated acceleration and focusing of spheromak-type compact toroids of low mass (10 μg), low density (10 13 cm -3 ), and low magnetic field (2 KG). Computer modeling and measurements give reasonably good accounting of ring mass, momentum, and energy. Present work has been toward increasing the ring magnetic field and utilizing inductive storage by compressing similar plasma rings prior to acceleration. The precompression, followed by acceleration has been performed. Ring density and magnetic field have increased (n e ∼ 10 15 cm -3 , B ∼ 4 KG) in the precompression cone, and magnetic field increases (B ∼ 8--12 KG) after compression and during acceleration, however, trajectory measurements have shown an increase in drag or possibly ring mass above that accounted for by the density measurements in the precompression cone. For the low mass/density/field rings, drag forces did not need to be invoked for agreement between modeling and experiment and mass was consistent with electron density measurements. Drag and/or mass change is now apparently important in this higher mass/density/field regime
Toroidal regularization of the guiding center Lagrangian
Burby, J. W.; Ellison, C. L.
2017-11-01
In the Lagrangian theory of guiding center motion, an effective magnetic field B*=B +(m /e )v∥∇× b appears prominently in the equations of motion. Because the parallel component of this field can vanish, there is a range of parallel velocities where the Lagrangian guiding center equations of motion are either ill-defined or very badly behaved. Moreover, the velocity dependence of B* greatly complicates the identification of canonical variables and therefore the formulation of symplectic integrators for guiding center dynamics. This letter introduces a simple coordinate transformation that alleviates both these problems simultaneously. In the new coordinates, the Liouville volume element is equal to the toroidal contravariant component of the magnetic field. Consequently, the large-velocity singularity is completely eliminated. Moreover, passing from the new coordinate system to canonical coordinates is extremely simple, even if the magnetic field is devoid of flux surfaces. We demonstrate the utility of this approach in regularizing the guiding center Lagrangian by presenting a new and stable one-step variational integrator for guiding centers moving in arbitrary time-dependent electromagnetic fields.
Issues in tokamak/stellarator transport and confinement enhancement mechanisms
Energy Technology Data Exchange (ETDEWEB)
Perkins, F.W.
1990-08-01
At present, the mechanism for anomalous energy transport in low-{beta} toroidal plasmas -- tokamaks and stellarators -- remains unclear, although transport by turbulent E {times} B velocities associated with nonlinear, fine-scale microinstabilities is a leading candidate. This article discusses basic theoretical concepts of various transport and confinement enhancement mechanisms as well as experimental ramifications which would enable one to distinguish among them and hence identify a dominant transport mechanism. While many of the predictions of fine-scale turbulence are born out by experiment, notable contradictions exist. Projections of ignition margin rest both on the scaling properties of the confinement mechanism and on the criteria for entering enhanced confinement regimes. At present, the greatest uncertainties lie with the basis for scaling confinement enhancement criteria. A series of questions, to be answered by new experimental/theoretical work, is posed to resolve these outstanding contradictions (or refute the fine-scale turbulence model) and to establish confinement enhancement criteria. 73 refs., 4 figs., 5 tabs.
Plasma confinement in a magnetic field of the internal ring current
International Nuclear Information System (INIS)
Shafranov, Vitaly; Popovich, Paul; Samitov, Marat
2000-01-01
Plasma confinement in compact region surrounding an internal ring current is considered. As the limiting case of large aspect ratio system the cylindrical plasma is considered initially. Analysis of the cylindrical tubular plasma equilibrium and stability against the most dangerous flute (m=0) and kink (m=1) modes revealed the possibility of the MHD stable plasma confined by magnetic field of the internal rod current, with rather peaked plasma pressure and maximal local beta β(γ)=0.4. In case of the toroidal internal ring system an additional external magnetic field creates the boundary separatrix witch limits the plasma volume. The dependence of the plasma pressure profiles, marginally stable with respect to the flute modes, from the shape of the external plasma boundary (separatrix) in such kind closed toroidal systems is investigated. The internal ring system with circular poloidal magnetic mirror, where the ring supports could be placed, is proposed. (author)
Banana fluxes in the plateau regime for a nonaxisymmetrically confined plasma
International Nuclear Information System (INIS)
Balescu, R.; Fantechi, S.
1990-01-01
The banana (or banana-plateau) fluxes, related to the generalized stresses left-angle B·∇·π α(n) right-angle, left-angle B T ·∇·π α(n) right-angle have been determined in the plateau regime, for a plasma confined by a toroidal magnetic field of arbitrary geometry. The complete set of transport coefficients for both the ''parallel'' (ambipolar) and ''toroidal'' (nonambipolar) banana fluxes was obtained in the 13-moment (13M) approximation, going beyond the previously known expressions in the nonaxisymmetric case. The main emphasis is laid on the structure of the transport matrix and of its coefficients. It is shown that the Onsager symmetry of this matrix partly breaks down (for the mixed electron--ion coefficients) in a nonaxisymmetrically confined plasma
Transport and dynamics in toroidal fusion systems. Report of second year progress, 1993--1994
International Nuclear Information System (INIS)
Schnack, D.D.
1994-01-01
In this document the author describes an extension of the spatial gridding techniques to an MHD model suitable for the description of the dynamics of toroidal fusion devices. Since the dominant MHD modes in these devices have relatively long toroidal wavelength, the toroidal coordinate is approximated with finite Fourier series. The unstructured, triangular mesh is used to describe the details of the poloidal geometry. With some exceptions, the hydrodynamic variables are treated in a manner analogous to that used in CFD. These quantities (mass, energy, and momentum) are volume based densities that satisfy scalar or vector conservation laws. The electromagnetic variables (the magnetic flux density B and the electric current density J) are area based densities that satisfy pseudo-vector conservation laws, and have no counterpart in fluid dynamics. These variables are also constrained to remain solenoidal. These quantities are represented on the triangular mesh in a new manner that is an extension of that used on rectangular, structured meshes. In this work the author has chosen to solve the primitive MHD equations in order to make the resulting codes and techniques more generally applicable to problems beyond the narrow scope of tokamak plasmas. The temporal stiffness problems inherent in this description of tokamak dynamics that motivate the reduced MHD model are addressed here with the semi-implicit method of time integration. Finally, the author remarks that, while the present work deals strictly with the MHD equations, other volume based fluid descriptions, such as diffusive transport could easily be adapted to these techniques and coupled with the description of the electromagnetic field presented here
BOOK REVIEW: Instabilities in a confined plasma
Glasser, A. H.
1999-05-01
, at least in the USA, to encounter this material first in a course on general relativity, which they might not have taken previously when specializing in plasma physics. While good efforts are made by the author to provide an intuitive understanding of the many analytical results, this is often done with such brevity that a substantial level of maturity is required to comprehend the ideas. Another quote from the preface is, ``The book is based on analytical approaches and should therefore be useful for everybody who is interested in the topic.'' In a field where complex geometry and dynamics and the importance of practical results have required much novel and creative computational work over the past 25 years, there is no mention, no acknowledgment, no hint of its importance. The analytical approach presented here certainly fills an important need, and there is no need for the same work to cover numerical work in depth, but some recognition of the importance of numerical work and its relationship with the analytical side of the theory might have been justified. Despite these shortcomings, this book is a major and welcome addition to the literature on plasma instabilities which I heartily recommend. Contents: 1. Equilibrium of a plasma in toroidal confinement systems; 2. Internal magnetohydrodynamic modes in the cylindrical approximation; 3. Small-scale magnetohydrodynamic instabilities in toroidal confinement systems; 4. Magnetohydrodynamic internal kink modes in toroidal geometry; 5. Magnetohydrodynamic modes in collisionless and neoclassical regimes; 6. Drift-magnetohydrodynamic modes; 7. External kink modes; 8. Alfvén eigenmodes and their interaction with high-energy particles; References; Index.
International Nuclear Information System (INIS)
Seiler, E.
1985-01-01
Confinement of quarks is sometimes taken as some kind of dogma in the contemporary theory of strong interactions - quantum chromo-dynamics (QCD). Scientists should not be content with that. What is meant by ''permanent confinement'' should be formulated more precisely to see whether the theory has this property or not. The author looks at some possible interpretations of ''confinement'' and their shortcomings and then turns to the most widely used rather pragmatic definition based on the somewhat unphysical notion of infinitely heavy external sources. He describes what is known about the problem and tries to bring into focus some aspects that are insufficiently understood in his opinion
Toroidal reactor designs as a function of aspect ratio
International Nuclear Information System (INIS)
Wong, C.P.C.; Wesley, J.C.; Stambaugh, R.D.; Cheng, E.T.
2001-01-01
This paper presents a 'common basis' systems study of superconducting (SC) and normal-conducting (NC) DT-burning fusion power and materials testing reactor designs. Figures-of-merit for power and materials-testing reactors are respectively; projected cost-of-electricity (COE) and direct cost (DC). A common 0-D plasma modeling basis is used and the plasma geometry and engineering aspects of the SC and NC designs are treated in an equivalent manner that is consistent with the limitations of their respective magnet technologies and other design constraints. Aspect ratios A in the range 1.2≤A≤6 and plasma elongations in the range 1≤κ≤3 are explored and a MHD stability (beta limit) physics basis that accurately describes the increase of normalized beta β N and toroidal beta β T with a decreasing A and/or increasing κ is incorporated. With this MHD basis taken into account and with the usual reactor geometry, physics and engineering constraints and costing bases applied, the results of the study show that for power reactors the minimum COE is pointing towards lower A∼2 than generally found in previous studies. The minimum is broader with higher κ. For test reactors with similar fusion power output, the direct cost for NC options is significantly lower than for SC coil options. With the NC category, testing designs that combine intermediate A and higher elongation show promise as a D-T burn next step device that could provide scientific and testing data to support future SC and NC reactors. For example, a NC coil design with A∼2, κ=3 could produce 200 MW fusion power at 1.23MW/m 2 average neutron wall loading at a total direct cost of about $643 M. This NC design with a fissile blanket could also convert ∼1270kg of fission reactor waste per full power year. (author)
Kiritsis, E; Nitti, F
2014-01-01
We extend the holographic trailing string picture of a heavy quark to the case of a bulk geometry dual to a confining gauge theory. We compute the classical trailing confining string solution for a static as well as a uniformly moving quark. The trailing string is infinitely extended and approaches a confining horizon, situated at a critical value of the radial coordinate, along one of the space-time directions, breaking boundary rotational invariance. We compute the equations for the fluctuations around the classical solutions, which are used to obtain boundary force correlators controlling the Langevin dynamics of the quark. The imaginary part of the correlators has a non-trivial low-frequency limit, which gives rise to a viscous friction coefficient induced by the confining vacuum. The vacuum correlators are used to define finite-temperature dressed Langevin correlators with an appropriate high-frequency behavior.
Energy Technology Data Exchange (ETDEWEB)
Kiritsis, Elias [APC, Université Paris 7, CNRS/IN2P3, CEA/IRFU, Obs. de Paris, Sorbonne Paris Cité,Bâtiment Condorcet, F-75205, Paris Cedex 13 (UMR du CNRS 7164) (France); Theory Group, Physics Department, CERN,CH-1211, Geneva 23 (Switzerland); Crete Center for Theoretical Physics, Department of Physics, University of Crete,71003 Heraklion (Greece); Mazzanti, Liuba [Institute for Theoretical Physics and Spinoza Institute, Utrecht University,3508 TD Utrecht (Netherlands); Nitti, Francesco [APC, Université Paris 7, CNRS/IN2P3, CEA/IRFU, Obs. de Paris, Sorbonne Paris Cité,Bâtiment Condorcet, F-75205, Paris Cedex 13 (UMR du CNRS 7164) (France)
2014-02-19
We extend the holographic trailing string picture of a heavy quark to the case of a bulk geometry dual to a confining gauge theory. We compute the classical trailing confining string solution for a static as well as a uniformly moving quark. The trailing string is infinitely extended and approaches a confining horizon, situated at a critical value of the radial coordinate, along one of the space-time directions, breaking boundary rotational invariance. We compute the equations for the fluctuations around the classical solutions, which are used to obtain boundary force correlators controlling the Langevin dynamics of the quark. The imaginary part of the correlators has a non-trivial low-frequency limit, which gives rise to a viscous friction coefficient induced by the confining vacuum. The vacuum correlators are used to define finite-temperature dressed Langevin correlators with an appropriate high-frequency behavior.
International Nuclear Information System (INIS)
Swieca, J.A.
1976-01-01
Some aspects of two recent developments in quantum field theory are discussed. First, related with 'extended particles' such as soliton, kink and the 't Hooft monopole. Second, with confinement of particles which are realized in the Schwinger model [pt
Confinement characteristics of ECH plasmas in Heliotron J
International Nuclear Information System (INIS)
Obiki, T.; Mizuuchi, T.; Okada, H.
2003-01-01
Studies of global energy confinement and toroidal plasma current behavior for the second harmonic 70GHz ECH at B = 1-1.5 T are described with emphasis on the magnetic configuration effects in the helical-axis heliotron 'Heliotron J'. At low densities of n-bar e 19 m -3 , the electron temperature reached T e ∼ 1 keV in the core region, indicating the production of the collision-less plasmas of the electron collisionality e /πR 0 q). For medium densities of 0.5x10 19 m -3 e 19 m -3 , the preferable energy confinement time, about 1.5 times larger than that of the ISS95 scaling, was obtained under the condition of localized central heating at B ∼ 1.25 T for the standard configuration of Heliotron J. The measurements of the toroidal current under perpendicular microwave injection revealed the change of the current flow direction as a function of the poloidal magnetic field. The measured current behavior was found to be qualitatively consistent with that of the bootstrap current predicted from neoclassical theory. The observed flow reversal showed that a proper selection of the field configuration could control the bootstrap current in the helical-axis heliotron. In addition, the current control through the electron cyclotron current drive scenario with oblique injection of microwave was experimentally demonstrated. (author)
International Nuclear Information System (INIS)
Marino, R.
1975-11-01
The assembly of the PLT device began in June 1974 with a preassembly of the mechanical structure at a remote site. The preassembly sequence incorporated final fabrication procedures with an initial staging operation. This successful staging/fabrication procedure proved to be an invaluable asset when the final assembly was started in August 1974. The assembly continued with the initial reassembly of the previously tested structural components at the final machine site. Construction was interrupted at several points to allow for toroidal field coil, vacuum vessel, and poloidal coil installation. Two phases of toroidal field coil power tests were included in the assembly sequence prior to, and just after the vacuum vessel insertion
Energy Technology Data Exchange (ETDEWEB)
Berk, H.L.
1992-08-06
An overview is presented of the principles of magnetic confinement of plasmas for the purpose of achieving controlled fusion conditions. Sec. 1 discusses the different nuclear fusion reactions which can be exploited in prospective fusion reactors and explains why special technologies need to be developed for the supply of tritium or {sup 3}He, the probable fuels. In Sec. 2 the Lawson condition, a criterion that is a measure of the quality of confinement relative to achieving fusion conditions, is explained. In Sec. 3 fluid equations are used to describe plasma confinement. Specific confinement configurations are considered. In Sec. 4 the orbits of particle sin magneti and electric fields are discussed. In Sec. 5 stability considerations are discussed. It is noted that confinement systems usually need to satisfy stability constraints imposed by ideal magnetohydrodynamic (MHD) theory. The paper culminates with a summary of experimental progress in magnetic confinement. Present experiments in tokamaks have reached the point that the conditions necessary to achieve fusion are being satisfied.
Electromagnetic force support for thermonuclear device
International Nuclear Information System (INIS)
Sugimoto, Makoto; Yoshida, Kiyoshi; Tachikawa, Nobuo; Omori, Junji.
1992-01-01
The device of the present invention certainly supports electromagnetic force exerted on toroidal magnetic field coils. That is, a pair of support members are disposed being abutted against each other between toroidal magnetic field coils disposed radially in the torus direction of a vacuum vessel. Both of the support members are connected under an insulative state by way of an insulative structural portion having an insulation key. In addition, each of the support members and each of the toroidal magnetic field coils are connected by electromagnetic force support portions having a metal taper key and a metal spacer and supporting the electromagnetic force. With such a constitution, the electromagnetic force exerted on the toroidal magnetic field coils is supported by the electromagnetic force support portion having the metal taper key and the metal spacer. As a result, stable electromagnetic force support can be attained. Further, since the insulative structural portion has the insulation key, it can be assembled easily. (I.S.)
Measurement of CO2 laser small angle Thomson scattering on a magnetically confined plasma
Richards, R. K.; Hutchinson, D. P.; Bennett, C. A.; Hunter, H. T.; Ma, C. H.
1993-01-01
We report the first successful small-angle (less than 1°) Thomson scattering measurement of 10 μm radiation from a magnetically confined toroidal plasma. This represents a proof-of-principle demonstration of a new diagnostic technique for confined deuterium-tritium fusion-product alpha particles in future fusion reactors. This result was achieved by detecting scattered CO2 laser light from the plasma of the ATF torsatron at an angle of 0.86° using a novel heterodyne receiver scheme. A predicted resonance in the scattered power as a function of plasma electron density is clearly resolved in the measurements.
International Nuclear Information System (INIS)
Ernst, D.R.; Beer, M.; Batha, S.
2001-01-01
Turbulence suppression by radial electric field shear (E r ) is shown to be important in the enhanced confinement of TFTR supershot plasmas. Simulations of supershot ion temperature profiles are performed using an existing parameterization of transport due to toroidal ion temperature gradient modes, extended to include suppression by E r shear. New spectroscopic measurements of E r differ significantly from prior neoclassical estimates. Supershot temperature profiles appear to be consistent with a criterion describing near-complete turbulence suppression by intrinsically generated E r shear. Helium spoiling and xenon puffing experiments are simulated to illustrate the role of E r shear in the confinement changes observed. (author)
International Nuclear Information System (INIS)
Ernst, D.R.; Beer, M.; Batha, S.
1999-01-01
Turbulence suppression by radial electric field shear (E r ) is shown to be important in the enhanced confinement of TFTR supershot plasmas. Simulations of supershot ion temperature profiles are performed using an existing parameterization of transport due to toroidal ion temperature gradient modes, extended to include suppression by E r shear. New spectroscopic measurements of E r differ significantly from prior neoclassical estimates. Supershot temperature profiles appear to be consistent with a criterion describing near-complete turbulence suppression by intrinsically generated E r shear. Helium spoiling and xenon puffing experiments are simulated to illustrate the role of E r shear in the confinement changes observed. (author)
Physics models in the toroidal transport code PROCTR
Energy Technology Data Exchange (ETDEWEB)
Howe, H.C.
1990-08-01
The physics models that are contained in the toroidal transport code PROCTR are described in detail. Time- and space-dependent models are included for the plasma hydrogenic-ion, helium, and impurity densities, the electron and ion temperatures, the toroidal rotation velocity, and the toroidal current profile. Time- and depth-dependent models for the trapped and mobile hydrogenic particle concentrations in the wall and a time-dependent point model for the number of particles in the limiter are also included. Time-dependent models for neutral particle transport, neutral beam deposition and thermalization, fusion heating, impurity radiation, pellet injection, and the radial electric potential are included and recalculated periodically as the time-dependent models evolve. The plasma solution is obtained either in simple flux coordinates, where the radial shift of each elliptical, toroidal flux surface is included to maintain an approximate pressure equilibrium, or in general three-dimensional torsatron coordinates represented by series of helical harmonics. The detailed coupling of the plasma, scrape-off layer, limiter, and wall models through the neutral transport model makes PROCTR especially suited for modeling of recycling and particle control in toroidal plasmas. The model may also be used in a steady-state profile analysis mode for studying energy and particle balances starting with measured plasma profiles.
Improved confinement in L-mode JET plasmas
International Nuclear Information System (INIS)
Jones, T.T.C.; Balet, B.; Bhatnagar, V.; Bures, M.; Campbell, D.J.; Christiansen, J.P.; Cordey, J.G.; Core, W.F.; Corti, S.; Costley, A.E.; Cottrell, G.A.; Edwards, A.; Ehrenberg, J.; Jacquinot, J.; Lallia, P.; Lomas, P.J.; Lowry, C.; Malacarne, M.; Muir, D.G.; Nave, M.F.; Nielsen, P.; Sack, C.; Sadler, G.; Start, D.F.H.; Taroni, A.; Thomas, P.R.; Thomsen, K.
1989-01-01
The JET confinement data show considerable variations of stored plasma energy W (thermal + fast ions) at fixed input power P, plasma current I, toroidal field B and plasma configuration C. The data on confinement properties, e.g. the confinement time τ E or its incremental value τ E (inc), derived from variations of P at fixed I, B, C thus exhibit scatter which makes the scaling of τ E with P, I, B, C difficult to establish. The effects from sawteeth, from variations in the power deposition profiles and from plasma edge physics on confinement do not depend on P, I, B, C in any simple way which would permit a deduced scaling law to be identified with a single (or more) physics loss mechanism(s). In this paper we examine the response of confinement to variations in plasma configuration at fixed I and B (3 MA and 3 T). Results from global and local transport analysis are discussed in sections 2 and 3; section 4 describes the role of fast ions produced by ICRF and NBI heating. High confinement in the L-mode regime at increased plasma currents up to 6 MA is also studied, in particular the effects from sawteeth on stored energy W. Such effects increase with current and presently only predictive transport studies (section 5) can estimate what may be achieved at high current without sawteeth effects. The predictive studies also assess the benefits which may arise from an increase of the neutral beam energy at high plasma currents (section 6). The conclusions are based on extensive study of data from JET pulses with up to 14 MW of ICRH, 21 MW of NBI and 6 MW of ohmic power. None of the pulses included in the study show the sudden reduction of D α emission characteristic of the L to H mode transition of confinement. 7 refs., 4 figs
Vlasov tokamak equilibria with sheared toroidal flow and anisotropic pressure
Energy Technology Data Exchange (ETDEWEB)
Kuiroukidis, Ap, E-mail: kouirouki@astro.auth.gr [Technological Education Institute of Serres, 62124 Serres (Greece); Throumoulopoulos, G. N., E-mail: gthroum@uoi.gr [Department of Physics, University of Ioannina, GR 451 10 Ioannina (Greece); Tasso, H., E-mail: het@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, D-85748 Garching (Germany)
2015-08-15
By choosing appropriate deformed Maxwellian ion and electron distribution functions depending on the two particle constants of motion, i.e., the energy and toroidal angular momentum, we reduce the Vlasov axisymmetric equilibrium problem for quasineutral plasmas to a transcendental Grad-Shafranov-like equation. This equation is then solved numerically under the Dirichlet boundary condition for an analytically prescribed boundary possessing a lower X-point to construct tokamak equilibria with toroidal sheared ion flow and anisotropic pressure. Depending on the deformation of the distribution functions, these steady states can have toroidal current densities either peaked on the magnetic axis or hollow. These two kinds of equilibria may be regarded as a bifurcation in connection with symmetry properties of the distribution functions on the magnetic axis.
Toroidal Superheavy Nuclei in Skyrme-Hartree-Fock Approach
International Nuclear Information System (INIS)
Staszczak, A.; Wong, Cheuk-Yin
2009-01-01
Within the self-consistent constraint Skyrme-Hartree-Fock+BCS model (SHF+BCS), we found equilibrium toroidal nuclear density distributions in the region of superheavy elements. For nuclei with a sufficient oblate deformation (Q 20 < -200 b), it becomes energetically favorable to change the genus of nuclear surface from 0 to 1, i.e., to switch the shape from a biconcave disc to a torus. The energy of the toroidal (genus=1) SHF+BCS solution relative to the compact (genus=0) ground state energy is strongly dependent both on the atomic number Z and the mass number A. We discuss the region of Z and A where the toroidal SHF+BCS total energy begins to be a global minimum
Linear wave propagation in a hot axisymmetric toroidal plasma
Energy Technology Data Exchange (ETDEWEB)
Jaun, A. [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP)
1995-03-01
Kinetic effects on the propagation of the Alfven wave are studied for the first time in a toroidal plasma relevant for experiments. This requires the resolution of a set of coupled partial differential equations whose coefficients depend locally on the plasma parameters. For this purpose, a numerical wave propagation code called PENN has been developed using either a bilinear or a bicubic Hermite finite element discretization. It solves Maxwell`s equations in toroidal geometry, with a dielectric tensor operator that takes into account the linear response of the plasma. Two different models have been implemented and can be used comparatively to describe the same physical case: the first treats the plasma as resistive fluids and gives results which are in good agreement with toroidal fluid codes. The second is a kinetic model and takes into account the finite size of the Larmor radii; it has successfully been tested against a kinetic plasma model in cylindrical geometry. New results have been obtained when studying kinetic effects in toroidal geometry. Two different conversion mechanisms to the kinetic Alfven wave have been described: one occurs at toroidally coupled resonant surfaces and is the kinetic counterpart of the fluid models` resonance absorption. The other has no such correspondence and results directly from the toroidal coupling between the kinetic Alfven wave and the global wavefield. An analysis of a heating scenario suggests that it might be difficult to heat a plasma with Alfven waves up to temperatures that are relevant for a tokamak reactor. Kinetic effects are studied for three types of global Alfven modes (GAE, TAE, BAE) and a new class of kinetic eigenmodes is described which appear inside the fluid gap: it could be related to recent observations in the JET (Joint European Torus) tokamak. (author) 56 figs., 6 tabs., 58 refs.
Toroidal Variable-Line-Space Gratings: The Good, the Bad and The Ugly
West, Edward A.; Kobayashi, Ken; Cirtain, Jonathan; Gary, Allen; Davis, John; Reader, Joseph
2009-01-01
Toroidal variable-line-space (VLS) gratings are an important factor in the design of an efficient VUV solar telescope that will measure the CIV (155nm) and MgII (280nm) emissions lines in the Sun's transition region. In 1983 Kita and Harada described spherical VLS gratings but the technology to commercially fabricate these devices is a recent development, especially for toroidal surfaces. This paper will describe why this technology is important in the development of the Solar Ultraviolet Magnetograph Investigation (SUMI) sounding rocket program (the good), the delays due to the conversion between the TVLS grating design and the optical fabrication (the bad), and finally the optical testing, alignment and tolerancing of the gratings (the ugly). The Solar Ultraviolet Magnetograph Investigation, SUMI, has been reported in several papers since this program began in 2000. The emphasis of this paper is to describe SUMI's Toroidal Variable-Line-Space (TVLS) gratings. These gratings help SUMI meet its scientific goals which require both high spectral resolution and high optical efficiency for magnetic field measurements in the vacuum ultraviolet wavelength band of the solar spectrum (the good). Unfortunately, the technology readiness level of these gratings has made their implementation difficult, especially for a sounding rocket payload (the bad). Therefore, this paper emphasizes the problems and solutions that were developed to use these gratings in SUMI (the ugly). Section 2 contains a short review of the scientific goals of SUMI and why this mission is important in the understanding of the 3D structure of the magnetic field on the Sun. The flight hardware that makes up the SUMI payload is described in Section 3 with emphasis on those components that affect the TVLS gratings. Section 4 emphasizes the alignment, testing and optical modeling that were developed to optimize the performance of these gratings.
Helical type thermonuclear device and control method
International Nuclear Information System (INIS)
Ishigaki, Yukio.
1990-01-01
In a conventional helical type thermonuclear device, electric current flows in the toroidal direction under magnetic fields of helical coils and vertical magnetic coils, by which a circulating electric field is caused. Therefore, there is a problem that electrons as a seed are generated by cosmic rays, etc., the electrons are confined in a magnetic field boundary, are accelerated by the circulating electric field, to reach a high energy level, collide against structures in a vacuum vessel and emit a great amount of X-rays. Then, compensation coils for offsetting the magnetic fields generated upon energization and deenergization of the vertical magnetic coils and the power source therefor are disposed at the positions opposing to each other on both sides of the vertical magnetic coils for controlling the variation coefficient rate of electric current upon energization and deenergization of the vertical magnetic coils. Since the compensation coils also offset the magnetic field generated upon energization and deenergization of the vertical magnetic field coils by this control, the circulating magnetic field is not caused in the vacuum vessel to reduce the X-ray radiation by electrons at high energy level. (N.H.)
Induction Motor with Switchable Number of Poles and Toroidal Winding
Directory of Open Access Journals (Sweden)
MUNTEANU, A.
2011-05-01
Full Text Available This paper presents a study of an induction motor provided with toroidal stator winding. The ring-type coils offer a higher versatility in obtaining a different number of pole pairs by means of delta/star and series/parallel connections respectively. As consequence, the developed torque can vary within large limits and the motor can be utilized for applications that require, for example, high load torque values for a short time. The study involves experimental tests and FEM simulation for an induction machine with three configurations of pole pairs. The conclusions attest the superiority of the toroidal winding for certain applications such as electric vehicles or lifting machines.
On the longitudinal coupling impedance of a toroidal beam tube
International Nuclear Information System (INIS)
Hahn, H.; Tepikian, S.
1990-01-01
In this paper, the longitudinal coupling impedance of a smooth toroidal beam tube is derived. By treating the torus as a slow-wave structure, the well-known method of describing the impedance in terms of cavity resonances can be used. A simple analytical expression for the coupling impedance of a toroidal beam tube with square cross section valid in the low-frequency limit is obtained. The results from the present study are compared with previously published solutions and qualitative differences are pointed out. 16 refs., 3 figs., 1 tab
Tokamak configuration analysis with the method of toroidal multipoles
International Nuclear Information System (INIS)
Micozzi, P.; Alladio, F.; Crisanti, F.; Marinucci, M.; Tanga, A.
1989-01-01
In the study of tokamak machines able to sustain plasmas of thermonuclear interest (JIT, IGNITOR, NET, CIT, ET), there is a strong quest for engineering optimization of the circuital components close to the plasma. We have developed a semianalytical axisymmetric MHD equilibrium code based on the technique of the poloidal ψ flux function expansion in toroidal harmonic series. This code is able to optimize the necessary currents in the poloidal circuits in order to sustain a plasma of fixed shape (also x-point configuration), toroidal current and poloidal β. (author) 4 refs., 4 figs
Development and verification of printed circuit board toroidal transformer model
DEFF Research Database (Denmark)
Pejtersen, Jens; Mønster, Jakob Døllner; Knott, Arnold
2013-01-01
by comparing calculated parameters with 3D finite element simulations and experimental measurement results. The developed transformer model shows good agreement with the simulated and measured results. The model can be used to predict the parameters of printed circuit board toroidal transformer configurations......An analytical model of an air core printed circuit board embedded toroidal transformer configuration is presented. The transformer has been developed for galvanic isolation of very high frequency switch-mode dc-dc power converter applications. The theoretical model is developed and verified...
Heat removal in INTOR via a toroidal limiter
International Nuclear Information System (INIS)
Mioduszewski, P.
1981-01-01
In the present paper the potential of removing about 100 MW of thermal plasma power via a toroidal limiter in INTOR is studied. The heat flux distributions on various limiter configurations are calculated and the thermal response of a graphite tile limiter is estimated on the base of a one-dimensional heat conduction approach. The evaporation rates which have to be expected for the given energy flux densities and radiation cooled graphite tiles are evaluated. According to the present understanding it should be possible to remove 100 MW power from the INTOR plasma via a radiation cooled toroidal limiter. (author)
Neoclassical diffusion in toroidal three-cut magnetic field
International Nuclear Information System (INIS)
Nemov, V.V.; Shishkin, A.A.
1975-01-01
Quasi-classical diffusion is investigated in the regime of toroidal drift of 'bananas' in a three cut magnetic field. Unlike previous papers, it is supposed that the inhomogeneity of a helical magnetic field epsilonsub(k) is of the same order or less than that of the toroidal inhomogeneity epsilonsub(t). The case is considered when the efficient frequency of particle collisions exceeds that of the 'banana' precession around the magnetic axis. Expressions for diffusion flows and coefficients are obtained that transform into available ones at epsilonsub(h) > > epsilonsub(t) [ru
A direct calculation of current drive in toroidal geometry
International Nuclear Information System (INIS)
Wright, J.C.; Phillips, C.K.; Bonoli, P.T.
1998-01-01
The magnitude and radial profiles of noninductive currents driven by fast magnetosonic waves in tokamaks have been calculated directly from the wave-induced quasilinear flux in a toroidal geometry and a Green's function for the current. An expression for the quasilinear flux has been derived which accounts for coupling between modes in the spectrum of waves launched from the antenna. A Fokker-Planck code for the Green's function and a full wave code for the electric field in the quasilinear flux are used to evaluate the current in a specified toroidal geometry
Current drive by asymmetrical heating in a toroidal plasma
International Nuclear Information System (INIS)
Gahl, J.M.
1986-01-01
This report describes the first experimental observation of current generation by asymmetrical heating of ions. A unidirectional fast Alfven wave launched by a slow-wave antenna inside the Texas Tech Tokamak, asymmetrically heated the ions. Measurements of the asymmetry of the toroidal plasma current with probes at the top and bottom of the toroidal plasma column confirmed the current generation indirectly. Current generation, obtained in a one-species, hydrogen plasma, is a phenomenon which had not been predicted previously. Calculations of the dispersion relation for the fast Alfven wave near the fundamental cyclotron resonance in a one-species, hydrogen plasma, using warm plasma theory, support the experimental results
Initial temperature profiles of the PDX inner toroidal limiter
International Nuclear Information System (INIS)
Ulrickson, M.; Kugel, H.W.
1983-01-01
The temperature profiles resulting from plasma operation on the PDX vertical, large area, inner toroidal limiter have been measured during both ohmic and neutral beam heated discharges using a scanning infrared camera. An asymmetric double peaked temperature profile is seen after neutral beam heated discharges. Disruptions in ohmically heated discharges are found to be preceded by a single peaked deposition and succeeded by a initially symmetric double peaked deposition. The results were compared with the Schmidt model for scrapeoff at a toroidal limiter and it was found that the measured double peaked temperature profiles yielded scrape-off lengths consistent with previous measurements
Effects of 3D magnetic perturbations on toroidal plasmas
International Nuclear Information System (INIS)
Callen, J.D.
2011-01-01
Small three-dimensional (3D) magnetic field perturbations have many interesting and possibly useful effects on tokamak and quasi-symmetric stellarator plasmas. Plasma transport equations that include these effects, most notably on diamagnetic-level toroidal plasma flows, have recently been developed. The 3D field perturbations and their plasma effects can be classified according to their toroidal mode number n: low n (say 1-5) resonant (with field line pitch, q = m/n) and non-resonant fields, medium n (∼20, due to toroidal field ripple) and high n (due to microturbulence). Low n non-resonant fields induce a neoclassical toroidal viscosity (NTV) that damps toroidal rotation throughout the plasma towards an offset rotation in the counter-current direction. Recent tokamak experiments have generally confirmed and exploited these predictions by applying external low n non-resonant magnetic perturbations. Medium n toroidal field ripple produces similar effects plus possible ripple-trapping NTV effects and ion direct losses in the edge. A low n (e.g. n = 1) resonant field is mostly shielded by the toroidally rotating plasma at and inside the resonant (rational) surface. If it is large enough it can stop plasma rotation at the rational surface, facilitate magnetic reconnection there and lead to a growing stationary magnetic island (locked mode), which often causes a plasma disruption. Externally applied 3D magnetic perturbations usually have many components. In the plasma their lowest n (e.g. n = 1) externally resonant components can be amplified by kink-type plasma responses, particularly at high β. Low n plasma instabilities (e.g. resistive wall modes, neoclassical tearing modes) cause additional 3D magnetic perturbations in tokamak plasmas. Tearing modes in their nonlinear (Rutherford) regime bifurcate the topology and form magnetic islands. Finally, multiple resonant magnetic perturbations (RMPs) can, if not shielded by plasma rotation effects, cause local magnetic
Electron diamagnetism and toroidal coupling of tearing modes
International Nuclear Information System (INIS)
Cowley, S.C.; Hastie, R.J.
1987-10-01
Using a simple model for the layer of the tearing mode, we demonstrate that toroidally coupled tearing modes with two rational surfaces are most unstable when the ω*'s of the electrons at the rational surfaces are equal. The onset of instability may then occur because of the tuning of ω* rather than the passage of Δ'-like quantities through zero. This mechanism for the onset of instability is sharp since the resonance is narrow. The effect of toroidal rotation is also discussed. 7 refs., 2 figs
Compression of toroidal plasma by imploding plasma-liner
International Nuclear Information System (INIS)
Ikuta, Kazunari.
1979-07-01
A new concept of compressing a plasma in a closed magnetic configuration by a version of liner implosion flux compression technique is considered. The liner consists of a dense plasma cylinder, i.e. the plasma-liner. Maximum compression ratio of toroidal plasma is determined just by the initial density ratio of the toroidal plasma to the liner plasma because of the Rayleigh-Taylor instability. A start-up senario of plasma-liner is also proposed with a possible application of this concept to the creation of a burning plasma in reversed field configurations, i.e. burning plasma vortex. (author)
Transient eddy currents on finite plane and toroidal conducting surfaces
Energy Technology Data Exchange (ETDEWEB)
Weissenburger, D.W.; Christensen, U.R.
1979-04-01
this report applies a previously presented mesh analysis method to calculate transient eddy currents in conducting surfaces. Example calculations are presented for a planar conducting sheet of finite dimensions and also for a toroidal conducting surface which represents the vacuum vessel of the TFTR. For the toroidal sheet, branch inductances are initially calculated by num erically integrating the vector potential function, then the branch matrix is transformed into a mesh matrix. For the flat sheet, an analytic expression is given which enables direct calculation of the mesh inductance matrix. Streamline plots of the eddy current distributions are shown at successive time steps for each example.
ATR confinement leakage determination
International Nuclear Information System (INIS)
Kuan, P.; Buescher, B.J.
1998-01-01
The air leakage rate from the Advanced Test Reactor (ATR) confinement is an important parameter in estimating hypothesized accidental releases of radiation to the environment. The leakage rate must be determined periodically to assure that the confinement has not degraded with time and such determination is one of the technical safety requirements of ATR operation. This paper reviews the methods of confinement leakage determination and presents an analysis of leakage determination under windy conditions, which can complicate the interpretation of the determined leakage rates. The paper also presents results of analyses of building air exchange under windy conditions. High wind can enhance air exchange and this could increase the release rates of radioisotopes following an accident
Status of global energy confinement studies
International Nuclear Information System (INIS)
Kaye, S.M.; Bell, M.G.; DeBoo, J.C.; Waltz, R.; Greenwald, M.; Sigmar, D.
1990-02-01
Empirical scaling expressions, reflecting the parametric dependence of the L-mode energy confinement time, have been used not only as benchmarks for tokamak operation and theories of energy transport, but for predicting the performance of proposed tokamak devices. Several scaling expressions based on data from small-and medium-sized devices have done well in predicting performance in larger devices, although great uncertainty exists in extrapolating yet farther, into the ignition regime. Several approaches exist for developing higher confidence scaling expressions. These include reducing the statistical uncertainty by identifying and filling in gaps in the present database, making use of more sophisticated statistical techniques, and developing scalings for confinement regimes within which future devices will operate. Confidence in the scaling expressions will be increased still if the expressions can be more directly tied to transport physics theory. This can be done through the use of dimensionless parameters, better describing the edge and core confinement regimes separately, and by incorporating transport models directly into the scaling expressions. 50 refs., 5 figs., 3 tabs
Kamanzi, Albert; Leith, Jason S.; Sean, David; Berard, Daniel; Guthrie, Andrew C.; McFaul, Christopher M. J.; Slater, Gary W.; de Haan, Hendrick W.; Leslie, Sabrina R.; McGill University Team; University of Ottawa, University of Ontario Collaboration
We directly measure the free energy of confinement for semi-flexible polymers from the nanoscale to bulk regimes in slit-like confinement. We use Convex Lens-induced Confinement (CLiC) microscopy of DNA to load and directly count molecules at equilibrium in a single chamber of smoothly increasing height. CLiC microscopy allows for direct visualization of polymers in free solution over long periods, as a function of tunable vertical confinement - from the millimeter to the nanometer scale, and within a single device. Our direct characterization of the free energy of confinement, across several orders of magnitude of applied confinement, agree with new simulations established in this work. We compare experimental results to the ``de Gennes blob model'', to theory published by Casassa, as well as to simulations by Chen and Sullivan, in appropriate regimes. This work establishes a robust platform for understanding and manipulating polymers at the nanoscale, with a wide range of applications to biomedical technologies.
Energy Technology Data Exchange (ETDEWEB)
Caldino H, U.; Francois L, J. L., E-mail: ucaldino@outlook.com [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Paseo Cuauhnahuac 8532, 62550 Jiutepec, Morelos (Mexico)
2014-10-15
The TPM1 is a small Tokamak that belongs to the Centro de Investigacion en Ciencias Aplicadas y Tecnologia Avanzada of Instituto Politecnico Nacional (CICATA-IPN); the project is under construction. Currently it has the vacuum chamber, and is intended that the machine can operate with electric pulses of 10 ms to study the behavior of plasmas in order to provide knowledge in the field of nuclear fusion by magnetic confinement. To achieve this goal is necessary to design the toroidal field coils which operate the Tokamak. This paper presents an analysis which was performed to obtain the correct configuration of coils depending on design parameters for operation of the machine. Once determined this configuration, an analysis of electromagnetic forces present in normal machine operation on one coil was conducted, this to know the stresses in the encapsulation of the same. Considering the pulsed operation, a thickness of 5 mm is determined in the encapsulated, considering fatigue failure based on studies of fatigue failures in epoxy resins. (Author)
Resonant Transparency and Non-Trivial Non-Radiating Excitations in Toroidal Metamaterials
Fedotov, V. A.; Rogacheva, A. V.; Savinov, V.; Tsai, D. P.; Zheludev, N. I.
2013-01-01
Engaging strongly resonant interactions allows dramatic enhancement of functionalities of many electromagnetic devices. However, resonances can be dampened by Joule and radiation losses. While in many cases Joule losses may be minimized by the choice of constituting materials, controlling radiation losses is often a bigger problem. Recent solutions include the use of coupled radiant and sub-radiant modes yielding narrow asymmetric Fano resonances in a wide range of systems, from defect states in photonic crystals and optical waveguides with mesoscopic ring resonators to nanoscale plasmonic and metamaterial systems exhibiting interference effects akin to electromagnetically-induced transparency. Here we demonstrate theoretically and confirm experimentally a new mechanism of resonant electromagnetic transparency, which yields very narrow isolated symmetric Lorentzian transmission lines in toroidal metamaterials. It exploits the long sought non-trivial non-radiating charge-current excitation based on interfering electric and toroidal dipoles that was first proposed by Afanasiev and Stepanovsky in [J. Phys. A Math. Gen. 28, 4565 (1995)]. PMID:24132231
Whole Device Modeling of Compact Tori: Stability and Transport Modeling of C-2W
Dettrick, Sean; Fulton, Daniel; Lau, Calvin; Lin, Zhihong; Ceccherini, Francesco; Galeotti, Laura; Gupta, Sangeeta; Onofri, Marco; Tajima, Toshiki; TAE Team
2017-10-01
Recent experimental evidence from the C-2U FRC experiment shows that the confinement of energy improves with inverse collisionality, similar to other high beta toroidal devices, NSTX and MAST. This motivated the construction of a new FRC experiment, C-2W, to study the energy confinement scaling at higher electron temperature. Tri Alpha Energy is working towards catalysing a community-wide collaboration to develop a Whole Device Model (WDM) of Compact Tori. One application of the WDM is the study of stability and transport properties of C-2W using two particle-in-cell codes, ANC and FPIC. These codes can be used to find new stable operating points, and to make predictions of the turbulent transport at those points. They will be used in collaboration with the C-2W experimental program to validate the codes against C-2W, mitigate experimental risk inherent in the exploration of new parameter regimes, accelerate the optimization of experimental operating scenarios, and to find operating points for future FRC reactor designs.
Stability and {alpha}-particle confinement in the Sphellamak reactor concept
Energy Technology Data Exchange (ETDEWEB)
Cooper, W. Anthony; Fischer, Olivier [Ecole Polytechnique Federale de Lausanne, Centre de Recherches en Physique des Plasmas (CRPP), CH-1015 Lausanne (Switzerland)
2000-10-01
The Sphellamak is a coreless hybrid system with Tokamak, Stellarator and Spheromak features.The absence of a central conductor permits the realisation of a compact toroidal system, as internal shielding becomes un- necessary. With a peaked toroidal current profile, a sequence of reactor-sized Sphellamak equilibria is computed numerically in which the current in the helical coils I{sub hc} is varied while the toroidal plasma current I{sub p} = -30 MA and the volume average {beta} = 7.3% remain fixed. Ideal global external kink modes are weakly unstable but indicate stability for I{sub hc} > 138 MA. The local ideal magnetohydrodynamic stability criteria are satisfied in the range 42 MA < I{sub hc} < 122 MA. The peaked toroidal current generates local maximal of the modulus of the magnetic field strength in the central region of the plasma, which has very favourable implications for energetic and thermal particle confinement. This is confirmed through the computation of a very small {alpha}-particle guiding centre orbit loss fraction. (author) [French] Le Sphellamak est un systeme hybride sans noyau central compose par des elements de Tokamak, de Stellerateur et de Spheromak. L'absence de colonne centrale permet la realisation d 'un systeme toroidal compact puisque le manteau de protection interne ne devient plus necessaire. Avec un profil de courant pique, une sequence d 'equilibres Sphellamak de dimension reacteur est calculee numeriquement en variant le courant des bobines helicoidales I{sub hc} tout en fixant le courant toroidal du plasma I{sub p} = -30 MA ainsi que la moyenne volumique {beta} = 7.3%. Les modes globaux externes du type kink sont faiblement instables mais suffisent a garantir la stabilite pour I{sub hc} > 138 MA. Les criteres de stabilite magnetohydrodynamique ideale locale sont realises pour des courants de 42 MA < I{sub hc} < 122 MA. Le courant toroidal pique pro- duit localement des valeurs maximales pour le module du champs
Confinement contains condensates
DEFF Research Database (Denmark)
Brodsky, S. J.; Roberts, C. D.; Shrock, R.
2012-01-01
Dynamical chiral symmetry breaking and its connection to the generation of hadron masses has historically been viewed as a vacuum phenomenon. We argue that confinement makes such a position untenable. If quark-hadron duality is a reality in QCD, then condensates, those quantities that have common...... evidence and incidentally expose misconceptions in a recent Comment....
DEFF Research Database (Denmark)
Kipnusu, Wycliffe K.; Elsayed, Mohamed; Kossack, Wilhelm
2015-01-01
Broadband dielectric spectroscopy and positron annihilation lifetime spectroscopy are employed to study the molecular dynamics and effective free volume of 2-ethyl-1-hexanol (2E1H) in the bulk state and when confined in unidirectional nanopores with average diameters of 4, 6, and 8 nm. Enhanced α...
The Superconducting Toroid for the New International AXion Observatory (IAXO)
Shilon, I.; Silva, H.; Wagner, U.; ten Kate, H.H.J.
2013-01-01
IAXO, the new International AXion Observatory, will feature the most ambitious detector for solar axions to date. Axions are hypothetical particles which were postulated to solve one of the puzzles arising in the standard model of particle physics, namely the strong CP (Charge conjugation and Parity) problem. This detector aims at achieving a sensitivity to the coupling between axions and photons of one order of magnitude beyond the limits of the current detector, the CERN Axion Solar Telescope (CAST). The IAXO detector relies on a high-magnetic field distributed over a very large volume to convert solar axions to detectable X-ray photons. Inspired by the ATLAS barrel and end-cap toroids, a large superconducting toroid is being designed. The toroid comprises eight, one meter wide and twenty one meters long racetrack coils. The assembled toroid is sized 5.2 m in diameter and 25 m in length and its mass is about 250 tons. The useful field in the bores is 2.5 T while the peak magnetic field in the windings is 5....
Toroidal bubbles with circulation in ideal hydrodynamics: A variational approach
DEFF Research Database (Denmark)
Ruban, V.P.; Juul Rasmussen, J.
2003-01-01
Incompressible, inviscid, irrotational, unsteady flows with circulation Gamma around a distorted toroidal bubble are considered. A general variational principle that determines the evolution of the bubble shape is formulated. For a two-dimensional (2D) cavity with a constant area A, exact...
Preparing an ATLAS toroid magnet end-cap for lowering
Claudia Marcelloni
2007-01-01
One of the two 13-m high toroid magnet end-caps for the ATLAS experiment being transported from the construction hall to the experimental area. The end-cap will be lowered into the ATLAS cavern and attached to an end of the detector.
First ATLAS Barrel Toroid coil casing arrives at CERN
2002-01-01
The first of eight 25-metre long coil casings for the ATLAS experiment's barrel toroid magnet system arrived at CERN on Saturday 2 March by road from Heidelberg. This structure will be part of the largest superconducting toroid magnet ever made. The first coil casing for the toroidal magnets of Atlas arrives at Building 180. This is the start of an enormous three-dimensional jigsaw puzzle. Each of the eight sets of double pancake coils will be housed inside aluminium coil casings, which in turn will be held inside a stainless steel vacuum vessel. A huge construction, the casing that arrived at CERN measures 25 metres in length and 5 metres in width. It weighs 20 tones. And this is just the beginning of the toroid jigsaw: by early April a batch of four double pancake coils, which altogether weighs 65 tones, will arrive from Ansaldo in Italy. The first vacuum vessel will also be arriving from Felguera in Spain this month. It will take about two years for all these 25 m long structures of casings, coils a...
The problem of evolution of toroidal plasma equilibrium
International Nuclear Information System (INIS)
Kostomarov, D.; Zaitsev, F.; Shishkin, A.
1999-03-01
This paper is devoted to an advanced mathematical model for a self-consistent description of the evolution of free boundary toroidal plasmas, with a description of numerical algorithms for the solution of the appropriate non-linear system of integro-differential equations, and discussion of some results from the model. (author)
Barrel Toroid fully charged to nominal field, and it works!
Herman ten Kate
After a few weeks of testing up to intermediate currents, finally, on Thursday evening November 9, the current in the Barrel Toroid was pushed up to its nominal value of 20500 A and even 500 A beyond this value to prove that we have some margin. It went surprisingly well. Of course, the 8 coils forming the toroid were already tested individually at the surface but still, some surprise may have come from those parts added to the toroid in the cavern for the first time like the 8 cryoring sections linking the coils as well as the valve box at the bottom in sector 13 regulating the helium flow or the current lead cryostat on the top in sector 5. No training quenches, nothing to worry about, and the test was concluded with a fast dump triggered at 00:40 in the very early morning of November 10. (left) The toroid current during the evening and night of November 9. (right) The test crew oscillated between fear and hope while looking at the control panels as the current approached 21kA. Big relief was in the...
Low-frequency fluctuations in a pure toroidal magnetized plasma
Indian Academy of Sciences (India)
Xenon, krypton and argon plasmas are formed at a fixed toroidal magnetic field of 0.024 T, with a peak density of ~1011 cm−3, ~4 × 1010 cm −3 and ~2 × 1010 cm −3 respectively. The experimental investiga- tion of time-averaged plasma parameter reveals that their profiles remain insensitive to ion mass and suggests that ...
Construction and initial operation of the Advanced Toroidal Facility
Energy Technology Data Exchange (ETDEWEB)
Lyon, J.F.; Bigelow, T.S.; Colchin, R.J.; Crume, E.C.; Dunlop, J.L.; England, A.C.; Glowienka, J.C.; Goulding, R.H.; Harris, J.H.; Hills, D.L.; Hiroe, S.; Horton, L.D.; Howe, H.C.; Isler, R.C.; Jernigan, T.C.; Langley, R.A.; Menon, M.M.; Mioduszewski, P.K.; Murakami, M.; Neilson, G.H.; Rasmussen, D.A.; Rome, J.A.; Saltmarsh, M.J.; White, T.L.; Wilgen, J.B.; Wing, W.R. (Oak Ridge National Lab., TN (USA)); Bell, G.L. (Auburn Univ., AL (USA)); Bell, J.D.; Morris, R.N.; Whitson, J.C. (Martin Marietta Energy Systems, Inc., Computing and Telecommunications Div., Oak Ridge, TN (US)); Benson, R.D.; Chipley, K.K.; Cole, M.J.; Johnson, R.L.; Nelson, B.E.; Thompson, P.B.; White, J.A. (Martin Marietta Energy Systems, Inc., Engineering Div., Oak Ridge, TN (US)); Wade, M.R. (Georgia Inst. of Tech., Atlanta, GA (USA))
1990-01-01
The Advanced Toroidal Facility (ATF) torsatron was designed on a physics basis for access to the second stability regime and on an engineering basis for independent fabrication of high-accuracy components. The actual construction, assembly, and initial operation of ATF are compared with the characteristics expected during the design phase.
Evidence of Inward Toroidal Momentum Convection in the JET Tokamak
DEFF Research Database (Denmark)
Tala, T.; Zastrow, K.-D.; Ferreira, J.
2009-01-01
Experiments have been carried out on the Joint European Torus tokamak to determine the diffusive and convective momentum transport. Torque, injected by neutral beams, was modulated to create a periodic perturbation in the toroidal rotation velocity. Novel transport analysis shows the magnitude an...
Theoretical studies of non inductive current drive in compact toroids
Farengo, R; Lifschitz, AF; Caputi, KI; Arista, NR; Clemente, RA
Three non inductive current drive methods that can be applied to compact toroids axe studied. The use of neutral beams to drive current in field reversed configurations and spheromaks is studied using a Monte Carlo code that includes a complete ionization package and follows the exact particle
Calculation of quasispherical liner compression in a compact toroid
International Nuclear Information System (INIS)
Belikov, V.V.; Goloviznin, V.M.; Kurtmullaev, R.Kh.; Semenov, V.N.
This work considers the evolution of a compact toroid as the volume and shape of the cavity changes, all the way up to the values of the degree of compression K which are of practical interest, i.e., K approx. = 1000, at which thermonuclear plasma parameters can be achieved
Dynamical conservation of invariants by toroidal trajectories of guiding centres
International Nuclear Information System (INIS)
Misguich, J.H.
1992-03-01
The classical problem of calculating toroidal trajectories is treated here by comparing the results of two different methods in a given magnetic configuration, a standard divergence-free magnetic field model. The present work consists of adapting the analytical criteria of MERCIER et al. for classical toroidal trajectories, and to examine numerically the dynamical conservation of the toroidal invariant. The first method is based on the evolution equations for the guiding centres. These equations are then solved numerically (code TRATORIA) and the trajectories are drawn for different initial conditions. We use a modified standard model for the magnetic field, which insures a manifestly divergence-free field. Moreover we take into account the contribution of the poloidal field to the total strength of the magnetic field. These corrections contribute to the analytical expression of the conserved toroidal momentum. The latter is verified to be conserved by the present numerical simulation with a precision generally of the order of 10 -14 . The second method is based on the analytical treatment of the invariants to yield a semi-analytical (semi graphical) determination of the intersection point of a given trajectory with the equatorial plane. Both methods allows one to recover well-known toroidal trajectories with passing and trapped particles (bananas). The present analysis brings a clear description of some other, less well-known types of trajectories, namely the stagnation orbits, the smallest D-shape banana, some small circulating de-flated bananas, some huge classical bananas (potatoes), and the largest puffed bananas which exhibit only local mirroring, along with several kind of escaping or open trajectories which are of importance for fast ion losses and target damages in the machines
Block copolymers confined in a nanopore: Pathfinding in a curving and frustrating flatland
Sevink, G. J. A.; Zvelindovsky, A. V.
2008-02-01
We have studied structure formation in a confined block copolymer melt by means of dynamic density functional theory. The confinement is two dimensional, and the confined geometry is that of a cylindrical nanopore. Although the results of this study are general, our coarse-grained molecular model is inspired by an experimental lamella-forming polysterene-polybutadiene diblock copolymer system [K. Shin et al., Science 306, 76 (2004)], in which an exotic toroidal structure was observed upon confinement in alumina nanopores. Our computational study shows that a zoo of exotic structures can be formed, although the majority, including the catenoid, helix, and double helix that were also found in Monte Carlo nanopore studies, are metastable states. We introduce a general classification scheme and consider the role of kinetics and elongational pressure on stability and formation pathway of both equilibrium and metastable structures in detail. We find that helicity and threefold connections mediate structural transitions on a larger scale. Moreover, by matching the remaining parameter in our mesoscopic method, the Flory-Huggins parameter χ, to the experimental system, we obtain a structure that resembles the experimental toroidal structure in great detail. Here, the most important factor seems to be the roughness of the pore, i.e., small variations of the pore radius on a scale that is larger than the characteristic size in the system.
International Nuclear Information System (INIS)
1976-12-01
Research progress during the year is described for the following subject areas: (1) toroidal confinement experiments, (2) toroidal device fabrication and device studies, (3) theory, (4) small-machine experiments, (5) engineering and development, and (6) fusion reactor design
Topological confinement and superconductivity
Energy Technology Data Exchange (ETDEWEB)
Al-hassanieh, Dhaled A [Los Alamos National Laboratory; Batista, Cristian D [Los Alamos National Laboratory
2008-01-01
We derive a Kondo Lattice model with a correlated conduction band from a two-band Hubbard Hamiltonian. This mapping allows us to describe the emergence of a robust pairing mechanism in a model that only contains repulsive interactions. The mechanism is due to topological confinement and results from the interplay between antiferromagnetism and delocalization. By using Density-Matrix-Renormalization-Group (DMRG) we demonstrate that this mechanism leads to dominant superconducting correlations in aID-system.
Innovative confinement concepts workshop
International Nuclear Information System (INIS)
Kirkpatrick, R.C.
1998-01-01
The Innovative Confinement Concepts Workshop occurred in California during the week preceding the Second Symposium on Current Trends in International Fusion Research. An informal report was made to the Second Symposium. A summary of the Workshop concluded that some very promising ideas were presented, that innovative concept development is a central element of the restructured US DOE. Fusion Energy Sciences program, and that the Workshop should promote real scientific progress in fusion
Energy confinement in tokamaks
International Nuclear Information System (INIS)
Sugihara, M.; Singer, C.
1986-08-01
A straightforward generalization is made of the ohmic heating energy confinement scalings of Pfeiffer and Waltz and Blackwell et. al. The resulting model is systematically calibrated to published data from limiter tokamaks with ohmic, electron cyclotron, and neutral beam heating. With considerably fewer explicitly adjustable free parameters, this model appears to give a better fit to the available data for limiter discharges than the combined ohmic/auxiliary heating model of Goldston
International Nuclear Information System (INIS)
Torres, Clivia M.S.
1998-01-01
Full text: In this work, the exciton is considered as a sensor of the electronic and optical properties of materials such as semiconductors, which have size compared to the exciton De Broglie wavelength, approximately 20 nm, depending on the semiconductor. Examples of electron-phonon, electron-electron, photon-electron, exciton-polariton, phonon-plasmon, are presented, under different confinement conditions such as quantum wells, superlattices
Achieving a high-Q response in metamaterials by manipulating the toroidal excitations
Fan, Yuancheng; Zhang, Fuli; Shen, Nian-Hai; Fu, Quanhong; Wei, Zeyong; Li, Hongqiang; Soukoulis, Costas M.
2018-03-01
The excitation of toroidal multipoles in metamaterials is investigated for a high-Q response at a subwavelength scale. In this paper, we explore the optimization of toroidal excitations in a planar metamaterial comprised of asymmetric split ring resonators (ASRRs). It is found that the scattering power of a toroidal dipole can be remarkably strengthened by adjusting the characteristic parameter of ASRRs: an asymmetric factor. Interestingly, the improvement in toroidal excitation accompanies an increment of the Q factor of the toroidal metamaterial; it is shown that both the scattering power of the toroidal dipole and the Q factor increase more than one order by changing the asymmetric factor of ASRRs. The optimization in the excitation of a toroidal multipole provides an opportunity to further increase the Q factor of the metamaterial and boost light-matter interactions at the subwavelength scale for potential applications in low-power nonlinear processing and sensitive photonic applications.
International Nuclear Information System (INIS)
Macdonald, D.; Watkin, D.C.; Hollis, M.J.; DePew, R.E.; Kuban, D.P.
1990-01-01
The use of deuterium-tritium fuel in the Compact Ignition Tokamak will require applying remote handling technology for ex-vessel maintenance and replacement of machine components. Highly activated and contaminated components of the fusion devices auxiliary systems, such as diagnostics and RF heating, must be replaced using remotely operated maintenance equipment in the test cell. In-vessel remote maintenance included replacement of divertor and first wall hardware, faraday shields, and for an in-vessel inspection system. Provision for remote replacement of a vacuum vessel sector, toroidal field coil or poloidal field ring coil was not included in the project baseline. As a result of recent coil failures experienced at a number of facilities, the CIT project decided to reconsider the question of remote recovery from a coil failure and, in January of 1990, initiated a coil replacement study. This study focused on the technical requirements and impact on fusion machine design associated with remote recovery from any coil failure
Tomography of a simply magnetized toroidal plasma
Ruggero, BARNI; Stefano, CALDIROLA; Luca, FATTORINI; Claudia, RICCARDI
2018-02-01
Optical emission spectroscopy is a passive diagnostic technique, which does not perturb the plasma state. In particular, in a hydrogen plasma, Balmer-alpha (H α ) emission can be easily measured in the visible range along a line of sight from outside the plasma vessel. Other emission lines in the visible spectral range from hydrogen atoms and molecules can be exploited too, in order to gather complementary pieces of information on the plasma state. Tomography allows us to capture bi-dimensional structures. We propose to adopt an emission spectroscopy tomography for studying the transverse profiles of magnetized plasmas when Abel inversion is not exploitable. An experimental campaign was carried out at the Thorello device, a simple magnetized torus. The characteristics of the profile extraction method, which we implemented for this purpose are discussed, together with a few results concerning the plasma profiles in a simply magnetized torus configuration.
International Nuclear Information System (INIS)
Xu Liqing; Hu Liqun
2015-01-01
Repetitive impurity snake-modes have been observed after H-L mode transitions (high to low confinement modes) in EAST plasmas exhibiting multiple H-L-H transitions. Such snake-modes have been observed to lower the core plasma toroidal rotation. A critical impurity strength factor associated with snake-mode formation has been estimated to be as high as α Z,c =n Z,c Z 2 / n e ∼0.75. These observations have implications for ITER H-mode sustainability when the heating power is only slightly above the H-mode power threshold. (author)
Configuration control for the confinement improvement in Heliotron J
Energy Technology Data Exchange (ETDEWEB)
Mizuuchi, T.; Sano, F.; Kondo, K.; Nagasaki, K.; Okada, H.; Kobayashi, S.; Torii, Y.; Yamamoto, S.; Hanatani, K.; Nakamura, Y.; Kaneko, M.; Arimoto, H.; Motojima, G.; Fujikawa, S.; Kitagawa, H.; Nakamura, H.; Tsuji, T.; Uno, M.; Yabutani, H.; Watanabe, S.; Matsuoka, S.; Nosaku, M.; Watanabe, N.; Ijiri, Y.; Senju, T.; Yaguchi, K.; Sakamoto, K.; Toshi, K.; Shibano, M.; Murakami, S.; Suzuki, Y.; Yokoyama, M.
2005-07-01
In the helical-axis heliotron configuration, bumpiness of the Fourier components in Boozer coordinates is introduced as a third knob to control the neo-classical transport. Effects of the bumpiness control on the plasma performance (non-inductive currents, fast ions behavior and global energy confinement) have been investigated in Heliotron J by selecting three configurations with different bumpiness (B04/B00 = 0.01, 0.06 and 0.15 at ? 2/3), almost the same edge rotational transform and plasma volume. The dependence of non-inductive toroidal currents is qualitatively consistent with the neoclassical prediction for the bootstrap current. The high bumpiness configuration seems to be preferable for the confinement of fast ions. However, the longer global energy confinement time is observed not in the highest bumpiness configuration (B04/B00 = 0.15) but in the configuration with the minimum effective ripple modulation amplitude, where B04/B00 is 0.06. (Author)
Thermal analysis of toroidal field coil in EAST at 3.7 K
International Nuclear Information System (INIS)
Yi, Shi; Wu, Yu; Liu, Bo.; Long, Feng; Hao, Qiang W.
2014-01-01
Highlights: • In this study, the thermal performance of toroidal field (TF) coil is studied at 3.7 K in Experimental Advanced Superconducting Tokamak device (EAST) to obtain the higher stability. • The structure and cooling process design of TF coil and case is described and the helium temperature in the cable-in-conduit conductor (CICC) and case is evaluated during the 1.5 MA plasma disruptions. • Then, the experimental results of TF coil cooled at 3.7 K and discharged in 10 kA are shown including the thermal loss evaluation. • Finally, the thermal stability performance of TF coil is analyzed at 1.5 MA plasma current operations. - Abstract: The thermal performance of toroidal field (TF) coil is studied at 3.7 K in Experimental Advanced Superconducting Tokamak device (EAST) to obtain the higher stability for the higher plasma parameters operation. It is a good way to lower the operating temperature of TF coil to acquire the higher stability margin. This paper describes the structure and cooling process design of TF coil and case firstly. Based on the thermal load in the case, the thermal performance of the TF coil is performed at the plasma disruption state. The helium temperature in the cable-in-conduit conductor (CICC) and case is evaluated during the 1.5 MA plasma disruptions. Then, the experimental results of TF coil which has been cooled at 3.7 K and discharged in 10 kA are shown including the thermal loss evaluation. Finally, the thermal stability performance of TF coil is analyzed according to the 3.7 K experimental results and the stability prediction is performed at 1.5 MA plasma current operations
International Nuclear Information System (INIS)
Gao, Q. D.; Budny, R. V.
2015-01-01
By using gyro-Landau fluid transport model (GLF23), time-dependent integrated modeling is carried out using TRANSP to explore the dynamic process of internal transport barrier (ITB) formation in the neutral beam heating discharges. When the current profile is controlled by LHCD (lower hybrid current drive), with appropriate neutral beam injection, the nonlinear interplay between the transport determined gradients in the plasma temperature (T i,e ) and toroidal velocity (V ϕ ) and the E×B flow shear (including q-profile) produces transport bifurcations, generating spontaneously a stepwise growing ITB. In the discharge, the constraints imposed by the wave propagation condition causes interplay of the LH driven current distribution with the plasma configuration modification, which constitutes non-linearity in the LH wave deposition. The non-linear effects cause bifurcation in LHCD, generating two distinct quasi-stationary reversed magnetic shear configurations. The change of current profile during the transition period between the two quasi-stationary states results in increase of the E×B shearing flow arising from toroidal rotation. The turbulence transport suppression by sheared E×B flow during the ITB development is analysed, and the temporal evolution of some parameters characterized the plasma confinement is examined. Ample evidence shows that onset of the ITB development is correlated with the enhancement of E×B shearing rate caused by the bifurcation in LHCD. It is suggested that the ITB triggering is associated with the non-linear effects of the LH power deposition
Full-f gyrokinetic simulation over a confinement time
International Nuclear Information System (INIS)
Idomura, Yasuhiro
2014-01-01
A long time ion temperature gradient driven turbulence simulation over a confinement time is performed using the full-f gyrokinetic Eulerian code GT5D. The convergence of steady temperature and rotation profiles is examined, and it is shown that the profile relaxation can be significantly accelerated when the simulation is initialized with linearly unstable temperature profiles. In the steady state, the temperature profile and the ion heat diffusivity are self-consistently determined by the power balance condition, while the intrinsic rotation profile is sustained by complicated momentum transport processes without momentum input. The steady turbulent momentum transport is characterized by bursty non-diffusive fluxes, and the resulting turbulent residual stress is consistent with the profile shear stress theory [Y. Camenen et al., “Consequences of profile shearing on toroidal momentum transport,” Nucl. Fusion 51, 073039 (2011)] in which the residual stress depends not only on the profile shear and the radial electric field shear but also on the radial electric field itself. Based on the toroidal angular momentum conservation, it is found that in the steady null momentum transport state, the turbulent residual stress is cancelled by the neoclassical counterpart, which is greatly enhanced in the presence of turbulent fluctuations
Sustained spheromaks with ideal n = 1 kink stability and pressure confinement
Energy Technology Data Exchange (ETDEWEB)
Victor, B. S., E-mail: bvictor@uw.edu; Jarboe, T. R.; Hansen, C. J.; Akcay, C.; Morgan, K. D.; Hossack, A. C.; Nelson, B. A. [University of Washington, Seattle, Washington (United States)
2014-08-15
Increasing the helicity injector drive frequency up to 68.5 kHz on the Helicity Injected Torus-Steady Inductive (HIT-SI) experiment has produced spheromaks with current amplifications of 3.8, ideal n = 1 kink stability, improved toroidal symmetry and pressure confinement. Current centroid calculations from surface magnetic probes show an outward shift in the magnetic field at frequencies above 50 kHz. Grad-Shafranov equilibria indicate pressure confinement at higher injector operating frequencies. The minimum characteristic frequency needed to achieve this confining effect on HIT-SI plasmas is found to be approximately 30 kHz by analysis of the density fluctuations.
Stabilization of ballooning modes with sheared toroidal rotation
International Nuclear Information System (INIS)
Miller, R.L.; Waelbroeck, F.L.; Hassam, A.B.; Waltz, R.E.
1995-01-01
Stabilization of magnetohydrodynamic ballooning modes by sheared toroidal rotation is demonstrated using a shifted circle equilibrium model. A generalized ballooning mode representation is used to eliminate the fast Alfven wave, and an initial value code solves the resulting equations. The s-α diagram (magnetic shear versus pressure gradient) of ballooning mode theory is extended to include rotational shear. In the ballooning representation, the modes shift periodically along the field line to the next point of unfavorable curvature. The shift frequency (dΩ/dq, where Ω is the angular toroidal velocity and q is the safety factor) is proportional to the rotation shear and inversely proportional to the magnetic shear. Stability improves with increasing shift frequency and direct stable access to the second stability regime occurs when this frequency is approximately one-quarter to one-half the Alfven frequency, ω A =V A /qR. copyright 1995 American Institute of Physics
Shock absorbing properties of toroidal shells under compression, 3
International Nuclear Information System (INIS)
Sugita, Yuji
1985-01-01
The author has previously presented the static load-deflection relations of a toroidal shell subjected to axisymmetric compression between rigid plates and those of its outer half when subjected to lateral compression. In both these cases, the analytical method was based on the incremental Rayleigh-Ritz method. In this paper, the effects of compression angle and strain rate on the load-deflection relations of the toroidal shell are investigated for its use as a shock absorber for the radioactive material shipping cask which must keep its structural integrity even after accidental falls at any angle. Static compression tests have been carried out at four angles of compression, 10 0 , 20 0 , 50 0 , 90 0 and the applications of the preceding analytical method have been discussed. Dynamic compression tests have also been performed using the free-falling drop hammer. The results are compared with those in the static compression tests. (author)
Toroidal coupling in the kinetic response to edge magnetic perturbations
Spizzo, G.; Agostini, M.; Scarin, P.; White, R. B.; Schmitz, O.; Spolaore, M.; Terranova, D.; Veranda, M.; Vianello, N.
2017-12-01
The magnetic topology of the stochastic edge of a helical reversed-field pinch, with helicity m/n , shows to be deeply influenced by higher harmonics (m +/- 1)/ n , with the same n, due to toroidal coupling. As a consequence, by measuring kinetic quantities in a particular θ, φ location, one can incur in substantial errors or mis-interpretations of the kinetic plasma response: only a full 3D coverage of θ, φ angles can reveal the real topology of the plasma. This can be a caveat for MP application in tokamaks, because it shows that toroidal and poloidal sidebands, though smaller than the base mode by a factor ∼ \
Compact toroid injection experiment in JFT-2M
International Nuclear Information System (INIS)
Ogawa, T.; Fukumoto, N.; Nagata, M.
2001-01-01
Compact toroid (CT)injection experiments with H-mode plasmas were carried out for the first time in JFT-2M. The soft x-ray emission profile shows central penetration of CT in H-mode plasma heated by 1.2 MW NBI as well as in OH plasmas, with toroidal magnetic field of 0.8 T. The line-averaged electron density rapidly increased by Δn-bar e ∝0.2x10 19 m -3 at a rate of 4x10 21 m -3 /s in H-mode and the fuelling efficiency was roughly 20%.The asymmetrical radial profile in the soft x-ray emission was produced for ∝ 50 μs by the central penetration of CT. (author)
A toroidal inductor integrated in a standard CMOS process
DEFF Research Database (Denmark)
Vandi, Luca; Andreani, Pietro; Temporiti, Enrico
2007-01-01
This paper presents a toroidal inductor integrated in a standard 0.13 um CMOS process. Finite-elements preliminary simulations are provided to prove the validity of the concept. In order to extract fundamental parameters by means of direct calculations, two different and well-known approaches are......H and 1.1 nH up to 20 GHz (physical limit for the measurement equipment) and a quality factor approaching 10 at 15 GHz. No self-resonance is observed within the measurement range.......This paper presents a toroidal inductor integrated in a standard 0.13 um CMOS process. Finite-elements preliminary simulations are provided to prove the validity of the concept. In order to extract fundamental parameters by means of direct calculations, two different and well-known approaches...
Kinetic global analysis of Alfven eigenmodes in toroidal plasmas
International Nuclear Information System (INIS)
Fukuyama, A.
2002-01-01
Systematic study on low to medium n (toroidal mode number) Alfven eigenmodes (AE) in tokamaks and helical systems is presented. Linear stability of AE in the presence of energetic ions was studied using the kinetic full-wave code TASK/WM.We have reproduced the destabilizing effect of toroidal co-rotation on TAE for JT-60U parameters. We have found the existence of reversed-shear-induced Alfven eigenmode (RSAE) which localizes near the q minimum in a reversed magnetic shear configuration. Two kinds of mode structures are identified for energetic particle mode (EPM) below the TAE frequency gap. The coupling to lower-frequency modes such as drift waves and MHD modes as well as the effect of trapped particles are also taken into account. For a helical plasma, the existence of GAE in the central region and TAE in the off-axis region was confirmed. (author)
ATLAS barrel toroid integration and test area in building 180
Maximilien Brice
2003-01-01
The ATLAS barrel toroid system consists of eight coils, each of axial length 25.3 m, assembled radially and symmetrically around the beam axis. The coils are of a flat racetrack type with two 'double-pancake' windings made of 20.5 kA aluminium-stabilized niobium-titanium superconductor. The barrel toroid is being assembled in building 180 on the Meyrin site. In the first phase of assembly, the coils are packed into their aluminium-alloy casing. These photos show the double-pancake coils from ANSALDO and the coil casings from ALSTOM. In the foreground is the tooling from COSMI used to turn over the coil casings during this first phase. In the right background is the yellow lifting gantry manufactured at JINR-Dubna, Russia which will transport the coil casings to a heating table for prestressing. Two test benches with magnetic mirror are also visible.
Generation of DC toroidal current by a travelling wave
International Nuclear Information System (INIS)
Matsuura, K.; Fukuda, M.; Hirano, K.; Mohri, A.; Fukao, M.; Midzuno, Y.
1974-01-01
An rf field travelling along the torus is observed to induce a dc toroidal current in a magnetized plasma. The travelling field is applied to the plasma by employing a delay-line wound around the toroidal glass discharge tube. The phase velocity of the field is approximately equal to the electron thermal velocity. The direction of the current is opposite to that of the wave, indicating that the electrons are trapped in the magnetic mirrors composed of the travelling wave. The density of the trapped electrons reaches 10 percent of the background plasma density at an optimum condition. On the basis of the electron trapping model, the required rf power for current sustaining in a Tokamak fusion reactor is estimated and found to be reasonably small in comparison with the output power of the reactor
Broadening of the lower hybrid kparallel spectrum by toroidal effects
International Nuclear Information System (INIS)
Barbato, E.; Romanelli, F.
1990-01-01
Toroidal geometry affects the evolution of k parallel (the component of the wave vector parallel to the magnetic field) along the lower hybrid, (LH) wave trajectories. In this paper such variations are investigated both analytically and numerically. The main parameters governing this phenomenon are found and how k parallel upshift can occur within this scheme is elucidated. As a figure of merit a k parallel - upshift factor is defined and discussed in a dimensionless parameter space in which all the LH experiments can be represented. Finally, a discussion of whether and when toroidal effects can fill the gap between the high phase velocity of the injected LH waves and the electron thermal velocity is presented by analyzing different experimental situations
Non-resonant Nanoscale Extreme Light Confinement
Energy Technology Data Exchange (ETDEWEB)
Subramania, Ganapathi Subramanian [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Huber, Dale L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2014-09-01
A wide spectrum of photonics activities Sandia is engaged in such as solid state lighting, photovoltaics, infrared imaging and sensing, quantum sources, rely on nanoscale or ultrasubwavelength light-matter interactions (LMI). The fundamental understanding in confining electromagnetic power and enhancing electric fields into ever smaller volumes is key to creating next generation devices for these programs. The prevailing view is that a resonant interaction (e.g. in microcavities or surface-plasmon polaritions) is necessary to achieve the necessary light confinement for absorption or emission enhancement. Here we propose new paradigm that is non-resonant and therefore broadband and can achieve light confinement and field enhancement in extremely small areas [~(λ/500)^2 ]. The proposal is based on a theoretical work[1] performed at Sandia. The paradigm structure consists of a periodic arrangement of connected small and large rectangular slits etched into a metal film named double-groove (DG) structure. The degree of electric field enhancement and power confinement can be controlled by the geometry of the structure. The key operational principle is attributed to quasistatic response of the metal electrons to the incoming electromagnetic field that enables non-resonant broadband behavior. For this exploratory LDRD we have fabricated some test double groove structures to enable verification of quasistatic electronic response in the mid IR through IR optical spectroscopy. We have addressed some processing challenges in DG structure fabrication to enable future design of complex sensor and detector geometries that can utilize its non-resonant field enhancement capabilities.].
Variation of magnetic properties of toroidal cores with magnetizing frequency
International Nuclear Information System (INIS)
Derebasi, N.; Rygal, R.; Moses, A.J.; Fox, D.
2000-01-01
AC magnetic properties of toroidal cores made from six different soft magnetic materials were measured. A solid steel core exhibited the highest remanance, coercivity and core loss as expected whereas a nanocrystalline core had the lowest remanance of the cores tested. Increase in dynamic core loss with frequency in steel particle and iron powder cores was low compared with the other cores but was low in permeability
Force-free field inside a toroidal magnetic cloud
Czech Academy of Sciences Publication Activity Database
Romashets, E. P.; Vandas, Marek
2003-01-01
Roč. 30, č. 20 (2003), s. 2065, /SSC 8-1 - SSC 8-4/ ISSN 0094-8276 R&D Projects: GA AV ČR IBS1003006; GA ČR GA205/03/0953 Institutional research plan: CEZ:AV0Z1003909 Keywords : magnetic clouds * toroid al flux rope * analytical solution Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 2.422, year: 2003
A numerical solution for a toroidal plasma in equilibrium
International Nuclear Information System (INIS)
Hintz, E.; Sudano, J.P.
1982-01-01
The iterative techniques alternating direction implicit (ADI), sucessive ove-relaxation (SOR) and Gauss-Seidel are applied to a nonlinear elliptical second order differential equation (Grand-Shafranov). This equation was solve with the free boundary conditions plasma-vacuum interface over a rectangular section in cylindrical coordinates R and Z. The current density profile, plasma pressure profile, magnetic and isobaric surfaces are numerically determined for a toroidal plasma in equilibrium. (L.C.) [pt
Operating tokamaks with steady-state toroidal current
International Nuclear Information System (INIS)
Fisch, N.J.
1981-04-01
Continuous operation of a tokamak requires, among other things, a means of continuously providing the toroidal current. Various methods have been proposed to provide this current including methods which utilize radio-frequency waves in any of several frequency regimes. Here we elaborate on the prospects of incorporating these current-drive techniques in tokamak reactors, concentrating on the theoretical minimization of the power requirements
Modular invariant partition functions for toroidally compactified bosonic string
International Nuclear Information System (INIS)
Ardalan, F.; Arfaei, H.
1988-06-01
We systematically find all the modular invariant partition functions for the toroidally compactified closed bosonic string defined on a subset of a simply laced simple Lie algebra lattice, or equivalently for the closed bosonic string moving on a group manifold with the WZW coefficient k=1. We examine the relation between modular invariance of partition function and the possibility of describing it by an even Lorentzian self dual lattice in our context. (author). 23 refs
The control system of the RFX toroidal power supply
International Nuclear Information System (INIS)
Toigo, V.; Piovan, R.; Zanotto, L.; Perna, M.; Coffetti, A.; Freghieri, M.; Povolero, M.
2005-01-01
This paper describes the control system of the toroidal power supply of the RFX experiment and outlines its specific hardware and software structure, which allowed to cope with the numerous requirements of the application with a compact hardware arrangement. The active fault protection strategies, implemented in the control system, are also discussed; finally, a special part of the control, which greatly simplified the long and complex commissioning of the power section of the system, is described
Miniature anastigmatic spectrometer design with a concave toroidal mirror.
Dong, Jianing; Chen, He; Zhang, Yinchao; Chen, Siying; Guo, Pan
2016-03-01
An advanced optical design for a low-cost and astigmatism-corrected spectrometer with a high resolution is presented. The theory and method of astigmatism correction are determined with the use of a concave toroidal mirror. The performances of a modified spectrometer and a traditional spectrometer are compared, and the analysis is verified. Experimentally, the limiting resolution of our spectrometer is 0.1 nm full width at half-maximum, as measured for 579.1 nm.
International Nuclear Information System (INIS)
EVANS, TE; MOYER, RA; THOMAS, PR; WATKINS, JG; OSBORNE, TH; BOEDO, JA; FENSTERMACHER, ME; FINKEN, KH; GROEBNER, RJ; GROTH, M; HARRIS, JH; LAHAYE, RJ; LASNIER, CJ; MASUZAKI, S; OHYABU, N; PRETTY, D; RHODES, TL; REIMERDES, H; RUDAKOV, DL; SCHAFFER, MJ; WANG, G; ZENG, L.
2003-01-01
OAK-B135 A stochastic magnetic boundary, produced by an externally applied edge resonant magnetic perturbation, is used to suppress large edge localized modes (ELMs) in high confinement (H-mode) plasmas. The resulting H-mode displays rapid, small oscillations with a bursty character modulated by a coherent 130 Hz envelope. The H-mode transport barrier is unaffected by the stochastic boundary. The core confinement of these discharges is unaffected, despite a three-fold drop in the toroidal rotation in the plasma core. These results demonstrate that stochastic boundaries are compatible with H-modes and may be attractive for ELM control in next-step burning fusion tokamaks
Toroidal Continuously Variable Transmission Systems: Terminology and Present Studies
Directory of Open Access Journals (Sweden)
Ahmet YILDIZ
2014-04-01
Full Text Available The use of continuously variable transmission systems in many different areas such as aerospace, robotics, machinery and automotive industries as an alternative to conventional speed changers with constant ratio becomes widely.Especially in the automotive industry, these systems have been used increasingly, since they enable that internal combustion engines in vehicles run at optimal speeds, and consequently provide considerable fuel savings and therefore lower emission values and also they provide powerful acceleration and quiet working. CVT systems have several constructive variants such as belted, chained, balled, toroidal etc. In this paper, toroidal CVT systems based on elastohydrodynamic principles are concerned with, and fundamental works of last two decades in this field are reviewed. However, the relevant terminology and dynamics along with the control of these systems are briefly treated for better understanding of the literature mentioned. Attention is drawn to the lack of some significant issues in present research works, and potential future works are pointed out. This paper, to the authors’ knowledge, will be the first review on toroidal CVT systems in Turkish literature
Muñoz-Castro, Alvaro
2011-10-06
Relativistic density functional calculations were carried out on several nickel toroid mercaptides of the general formula [Ni(μ-SR)(2)](n), with the aim to characterize and analyze their stability and magnetic response properties, in order to gain more insights into their stabilization and size-dependent behavior. The Ni-ligand interaction has been studied by means projected density of states and energy decomposition analysis, which denotes its stabilizing character. The graphical representation of the response to an external magnetic field is applied for the very first time taking into account the spin-orbit term. This map allows one to clearly characterize the magnetic behavior inside and in the closeness of the toroid structure showing the prescence of paratropic ring currents inside the Ni(n) ring, and by contrast, diatropic currents confined in each Ni(2)S(2) motif denoting an aromatic behavior (in terms of magnetic criteria). The calculated data suggests that the Ni(2)S(2) moiety can be regarded as a stable constructing block, which can afford several toroid structures of different nuclearities in agreement with that reported in the experimental literature. In addition, the effects of the relativistic treatment over the magnetic response properties on these lighter compounds are denoted by comparing nonrelativistic, scalar relativistic, and scalar plus spin-orbit relativistic treatments, showing their acting, although nonpronunced, role.
Inertial confinement fusion (ICF)
International Nuclear Information System (INIS)
Nuckolls, J.
1977-01-01
The principal goal of the inertial confinement fusion program is the development of a practical fusion power plant in this century. Rapid progress has been made in the four major areas of ICF--targets, drivers, fusion experiments, and reactors. High gain targets have been designed. Laser, electron beam, and heavy ion accelerator drivers appear to be feasible. Record-breaking thermonuclear conditions have been experimentally achieved. Detailed diagnostics of laser implosions have confirmed predictions of the LASNEX computer program. Experimental facilities are being planned and constructed capable of igniting high gain fusion microexplosions in the mid 1980's. A low cost long lifetime reactor design has been developed
Hadrosynthesis and Quark Confinement
Directory of Open Access Journals (Sweden)
Satz Helmut
2014-04-01
Full Text Available Multihadron production in high energy collisions, from e+e− annihilation to heavy ion interactions, shows remarkable thermal behaviour, specified by a universal “Hagedorn” temperature. We argue that this hadronic radiation is formed by tunnelling through the event horizon of colour confinement, i.e., that it is the QCD counterpart of Hawking-Unruh radiation from black holes. It is shown to be emitted at a universal temperature TH ≃ (σ/2π1/2, where σ denotes the string tension. Since the event horizon does not allow information transfer, the radiation is thermal “at birth”.
CERN. Geneva
2014-01-01
In this talk I will survey a connection between two very challenging problems, one in physics and one in math. The physics problem involves quantitative understanding of confinement in a system with least amount of supersymmetry that has been studied so far and that has a wide range of applications, from semi-realistic string models to qualitatively new examples of gauge-gravity duality. Surprisingly, the rich physics of this system translates into incredibly rich mathematics of the only remaining unsolved case of the Poincare conjecture.
International Nuclear Information System (INIS)
Cherepanov, K.V.; Kukushkin, A.B.
2005-01-01
Numerical studies of the contribution of suprathermal electrons to electron cyclotron radiation (ECR) transport in hot (Te > 10 keV) plasmas confined by a strong toroidal magnetic field (B > 5 T) are reported. The respective code (Proc. 14th IAEA Conf. PPCF, Wuerzburg, 1992, v.2, p.35) which, for maxwellian electron velocity distribution (EVD) with inhomogeneous temperature/density, has been tested against well-known numerical and semi-analytical codes by S. Tamor, is now applied to solving the following two problems for ITER-like conditions. (1) Spatial profile of the net radiated power density, P EC (r), is found to be strongly sensitive to the presence of suprathermal electrons. This enables us to evaluate allowable limits for local rise of effective temperature/density of suprathermal electrons (in terms of bi-maxwellian EVD). (2) Self-consistent modeling of the ECR transport and the kinetics of suprathermal electrons gives spatial profile of deviations from maxwellian EVD, caused by the transport of plasma's self EC radiation. These kinetic effects work ultimately for the global flattening of the P EC (r) profile: a lowering, in the core, and a rise, in the periphery. For ITER-like conditions, these effects upon P EC (r) appear to be small. The results of treating the above two tasks suggest the necessity of solving self-consistently the problems of (i) ECRH and ECCD optimization and (ii) ECR transport in the entire range of radiation frequency, when strong enough suprathermals may be produced. (author)
Resolving the effects of toroidal and poloidal coupling on resistive modes in Heliotron E and LHD
International Nuclear Information System (INIS)
McMillan, B.F.; Dewar, R.L.; Storer, R.G.
2003-01-01
In general, stellarators are less subject than axisymmetric configurations to the most dangerous of instabilities, which lead to disruption of the plasma. For example, the LHD experiment has been shown to be remarkably stable to large scale instabilities, even where analysis suggests the presence of (unstable) ballooning modes. This may not be the case for configurations which contain large parallel currents, where possible kink and tearing modes might lead to unfavourable confinement or even disruptions. These effects can only be approximately modelled while averaging over poloidal and/or toroidal angles, so a complete study would include both a full 3D resistive linear stability analysis and a determination of the non-linear behaviour of the plasma. We have developed a linear, fully 3D resistive MHD code, Spector3D, to examine the stable and unstable wavemodes in a plasma. As verification of the applicability and correctness of the code, we have checked our results against resistive codes of lower dimensionality, and we present here a comparsion with published ideal MHD results for LHD and Heliotron E. As an application of the code, we then determine the stability of current-carrying Heliotron E plasmas against resistive tearing modes under the variation of plasma current and pressure. (orig.)
Mechanical design of the coils encapsulated of toroidal field of Tokamak TPM1
International Nuclear Information System (INIS)
Caldino H, U.; Francois L, J. L.
2014-10-01
The TPM1 is a small Tokamak that belongs to the Centro de Investigacion en Ciencias Aplicadas y Tecnologia Avanzada of Instituto Politecnico Nacional (CICATA-IPN); the project is under construction. Currently it has the vacuum chamber, and is intended that the machine can operate with electric pulses of 10 ms to study the behavior of plasmas in order to provide knowledge in the field of nuclear fusion by magnetic confinement. To achieve this goal is necessary to design the toroidal field coils which operate the Tokamak. This paper presents an analysis which was performed to obtain the correct configuration of coils depending on design parameters for operation of the machine. Once determined this configuration, an analysis of electromagnetic forces present in normal machine operation on one coil was conducted, this to know the stresses in the encapsulation of the same. Considering the pulsed operation, a thickness of 5 mm is determined in the encapsulated, considering fatigue failure based on studies of fatigue failures in epoxy resins. (Author)
Performance assessment and optimization of the ITER toroidal field coil joints
Rolando, G.; Foussat, A.; Knaster, J.; Ilin, Y.; Nijhuis, A.
2013-08-01
The ITER toroidal field (TF) system features eighteen coils that will provide the magnetic field necessary to confine the plasma. Each winding pack is composed of seven double pancakes (DP) connected through praying hands joints. Shaking hands joints are used to interface the terminals of the conductor with the feeder and inter-coil U-shaped bus bars. The feasibility of operating plasma scenarios depends on the ability of the magnets to retain sufficient temperature and current margins. In this respect, the joints represent a possible critical region due to the combination of steady state Joule heating in the resistance of the joint and coupling losses and currents in ramped operation. The temperature and current margins of both DP and terminal joints are analysed during the 15 and 17 MA plasma scenarios. The effect on the joint performance of feasible optimization solutions, such as rotation of the terminal joints and sole RRR increase, is explored. The characterization of the TF coil joints is completed by the estimation of the coupling loss time constant for different inter-strand and strand-to-joint resistance values. The study is carried out with the code JackPot-ACDC, allowing the analysis of lap-type joints with a strand-level detail.
Improved Density Control in the Pegasus Toroidal Experiment using Internal Fueling
Thome, K. E.; Bongard, M. W.; Cole, J. A.; Fonck, R. J.; Redd, A. J.; Winz, G. R.
2012-10-01
Routine density control up to and exceeding the Greenwald limit is critical to key Pegasus operational scenarios, including non-solenoidal startup plasmas created using single-point helicity injection and high β Ohmic plasmas. Confinement scalings suggest it is possible to achieve very high β plasmas in Pegasus by lowering the toroidal field and increasing ne/ng. In the past, Pegasus achieved β ˜ 20% in high recycling Ohmic plasmas without running into any operational boundaries.footnotetext Garstka, G.D. et al., Phys. Plasmas 10, 1705 (2003) However, recent Ohmic experiments have demonstrated that Pegasus currently operates in an extremely low-recycling regime with R pumping. Hence, it is difficult to achieve ne/ng> 0.3 with these improved wall conditions. Presently, gas is injected using low-field side (LFS) modified PV-10 valves. To attain high ne/ng operation and coincidentally separate core plasma and local current source fueling two new gas fueling capabilities are under development. A centerstack capillary injection system has been commissioned and is undergoing initial tests. A LFS movable midplane needle gas injection system is currently under design and will reach r/a ˜ 0.25. Initial results from both systems will be presented.
't Hooft, Gerardus
QCD was proposed as a theory for the strong interactions long before we had any idea as to how it could be that its fundamental constituents, the quarks, are never seen as physical particles. Massless gluons also do not exist as free particles. How can this be explained? The first indication that this question had to be considered in connection with the topological structure of a gauge theory came when Nielsen and Olesen observed the occurrence of stable magnetic vortex structures [1] in the Abelian Higgs model. Expanding on such ideas, the magnetic monopole solution was found [2]. Other roundabout attempts to understand confinement involve instantons. Today, we have better interpretations of these topological structures, including a general picture of the way they do lead to unbound potentials confining quarks. It is clear that these unbound potentials can be ascribed to a string-like structure of the vortices formed by the QCD field lines. Can string theory be used to analyze QCD? Many researchers think so. The leading expert on this is Sacha Polyakov. In his instructive account he adds how he experienced the course of events in Gauge Theory, emphasizing the fact that quite a few discoveries often ascribed to researchers from the West, actually were made independently by scientists from the Soviet Union…
Confinement from correlation functions
Fister, Leonard; Pawlowski, Jan M.
2013-08-01
We compute the Polyakov loop potential in Yang-Mills theory from the fully dressed primitively divergent correlation functions only. This is done in a variety of functional approaches ranging from functional renormalization group equations over Dyson-Schwinger equations to two-particle irreducible functionals. We present a confinement criterion that links the infrared behavior of propagators and vertices to the Polyakov loop expectation value. The present work extends the works of [J. Braun , Phys. Lett. B 684, 262 (2010)PYLBAJ0370-2693; F. Marhauser and J. M. Pawlowski, arXiv:0812.1144; J. Braun , Eur. Phys. J. C 70, 689 (2010)EPCFFB1434-6044] to general functional methods and sharpens the confinement criterion presented there. The computations are based on the thermal correlation functions in the Landau gauge calculated in [L. Fister and J. M. Pawlowski, arXiv:1112.5440; L. Fister and J. M. Pawlowski, arXiv:1112.5429; L. Fister, Ph.D. thesis, Heidelberg University, 2012].
International Nuclear Information System (INIS)
Trevorrow, L.E.; Schubert, J.P.
1989-01-01
Greater-confinement disposal (GCD) is a general term for low-level waste (LLW) disposal technologies that employ natural and/or engineered barriers and provide a degree of confinement greater than that of shallow-land burial (SLB) but possibly less than that of a geologic repository. Thus GCD is associated with lower risk/hazard ratios than SLB. Although any number of disposal technologies might satisfy the definition of GCD, eight have been selected for consideration in this discussion. These technologies include: (1) earth-covered tumuli, (2) concrete structures, both above and below grade, (3) deep trenches, (4) augered shafts, (5) rock cavities, (6) abandoned mines, (7) high-integrity containers, and (8) hydrofracture. Each of these technologies employ several operations that are mature,however, some are at more advanced stages of development and demonstration than others. Each is defined and further described by information on design, advantages and disadvantages, special equipment requirements, and characteristic operations such as construction, waste emplacement, and closure
The confinement of dilute populations of beam ions in the national spherical torus experiment
International Nuclear Information System (INIS)
Heidbrink, W.W.; Miah, M.; Darrow, D.; Le Blanc, B.; Medley, S.; Roquemore, A.L.; Cecil, F.E.
2003-01-01
Short ∼3 ms pulses of 80 keV deuterium neutrals are injected at three different tangency radii into the national spherical torus experiment. The confinement is studied as a function of tangency radius, plasma current (between 0.4 and 1.0 MA), and toroidal field (between 2.5 and 5.0 kG). The jump in neutron emission during the pulse is used to infer prompt losses of beam ions. In the absence of MHD, the neutron data show the expected dependences on beam angle and plasma current; the average jump in the neutron signal is 88±39% of the expected jump. The decay of the neutron and neutral particle signals following the blip are compared to the expected classical deceleration to detect losses on a 10 ms timescale. The temporal evolution of these signals are consistent with Coulomb scattering rates, implying an effective beam-ion confinement time > or ∼ 100 ms. The confinement is insensitive to the toroidal field despite large values of ρ∇B/B < or ∼(0.25), so any effects of non-conservation of the adiabatic invariant μ are smaller than the experimental error. (author)
Investigation of impurity confinement in lower hybrid wave heated plasma on EAST tokamak
Xu, Z.; Wu, Z. W.; Zhang, L.; Gao, W.; Ye, Y.; Chen, K. Y.; Yuan, Y.; Zhang, W.; Yang, X. D.; Chen, Y. J.; Zhang, P. F.; Huang, J.; Wu, C. R.; Morita, S.; Oishi, T.; Zhang, J. Z.; Duan, Y. M.; Zang, Q.; Ding, S. Y.; Liu, H. Q.; Chen, J. L.; Hu, L. Q.; Xu, G. S.; Guo, H. Y.; the EAST Team
2018-01-01
The transient perturbation method with metallic impurities such as iron (Fe, Z = 26) and copper (Cu, Z = 29) induced in plasma-material interaction (PMI) procedure is used to investigate the impurity confinement characters in lower hybrid wave (LHW) heated EAST sawtooth-free plasma. The dependence of metallic impurities confinement time on plasma parameters (e.g. plasma current, toroidal magnetic field, electron density and heating power) are investigated in ohmic and LHW heated plasma. It is shown that LHW heating plays an important role in the reduction of the impurity confinement time in L-mode discharges on EAST. The impurity confinement time scaling is given as 42IP0.32Bt0.2\\overline{n}e0.43Ptotal-0.4~ on EAST, which is close to the observed scaling on Tore Supra and JET. Furthermore, the LHW heated high-enhanced-recycling (HER) H-mode discharges with ~25 kHz edge coherent modes (ECM), which have lower impurity confinement time and higher energy confinement time, provide promising candidates for high performance and steady state operation on EAST.
Virtual cathode in a spherical inertial electrostatic confinement
International Nuclear Information System (INIS)
Momota, Hiromu; Miley, G.H.
1999-01-01
Spherical inertial electrostatic confinement (SIEC) was proposed as a fusion device. Its best feature is that confinement scheme does not need any magnetic field. Ion orbits pass through the center of the device, and thus the resulting ion density profile shows strong peaking. On the other hand, electron orbits are sensitive to the electrostatic self-field. Complete solution of particle orbits and of self-field is difficult to obtain. In the present paper steady-state solutions are obtained for two extreme cases. The first case assumes no electron collision, and the second case frequent electron collisions, and thus electrons are described by the Boltzmann law. (M. Tanaka)
Development of a tokamak plasma optimized for stability and confinement
International Nuclear Information System (INIS)
Politzer, P.A.
1995-02-01
Design of an economically attractive tokamak fusion reactor depends on producing steady-state plasma operation with simultaneous high energy density (β) and high energy confinement (τ E ); either of these, by itself, is insufficient. In operation of the DIII-D tokamak, both high confinement enhancement (H≡ τ E /τ ITER-89P = 4) and high normalized β (β N ≡ β/(I/aB) = 6%-m-T/MA) have been obtained. For the present, these conditions have been produced separately and in transient discharges. The DIII-D advanced tokamak development program is directed toward developing an understanding of the characteristics which lead to high stability and confinement, and to use that understanding to demonstrate stationary, high performance operation through active control of the plasma shape and profiles. The authors have identified some of the features of the operating modes in DIII-D that contribute to better performance. These are control of the plasma shape, control of both bulk plasma rotation and shear in the rotation and Er profiles, and particularly control of the toroidal current profiles. In order to guide their future experiments, they are developing optimized scenarios based on their anticipated plasma control capabilities, particularly using fast wave current drive (on-axis) and electron cyclotron current drive (off-axis). The most highly developed model is the second-stable core VH-mode, which has a reversed magnetic shear safety factor profile [q(O) = 3.9, q min = 2.6, and q 95 = 6]. This model plasma uses profiles which the authors expect to be realizable. At β N ≥ 6, it is stable to n=l kink modes and ideal ballooning modes, and is expected to reach H ≥ 3 with VH-mode-like confinement
Tobias, B. J.
2015-11-01
The dynamic, nonlinear evolution of tearing instabilities on DIII-D reveals a coupling of rational surfaces that can lead to phase-locking amongst multiple rotating magnetic island chains. This loss of flow shear increases disruptivity, particularly at the low level of rotation expected in ITER. Bifurcation of differential mode frequency and fluid rotation in hybrid scenario discharges has been interpreted by comparison to a recently developed theory of nonlinear mode coupling. Magnetic islands of different toroidal mode number couple to flatten the toroidal rotation profile, and the resulting phase-locked state is similar to the so-called ``slinky'' mode observed in reversed field pinch devices. Reduction of the edge safety factor increases the momentum transport, easily overwhelming the local torque density available from neutral beam injection. In discharges with q95 ~ 4.5, however, the participating modes do not remain phase-locked. In these cases, ECE-Imaging data have been used to show that the poloidal rotation of the composite, multi-helicity structure exceeds that of the measured carbon (and estimated deuterium) fluid flow. The present model of nonlinear 3-wave mode coupling does not generate the forces required to drive this rotation. Therefore, flow shear inversion represents a transition from phase-locking to a new regime of convective momentum transport in which additional mechanisms become important. These results highlight the importance of controlling multi-mode interactions in order to maintain stabilizing flow shear. Supported by US DOE DE-AC02-09CH11466, DE-FC02-04ER54698, DE-FG02-07ER54917, DE-FG02-92-ER54141.
Section 1. Confinement systems
International Nuclear Information System (INIS)
Anon.
1975-01-01
Major experimental and theoretical results achieved by the Controlled Thermonuclear Research (CTR) program at Lawrence Livermore Laboratory during FY 1975 gave the greatest encouragement to date that the ultimate goal of a deuterium-tritium-fueled mirror reactor can be reached. In the experimental program, the year was characterized by unusually important physics results from the 2XIIB experiment and by significant steps in the plan to change the Baseball II mode of operation. The stabilization of ion-cyclotron instabilities in the 2XIIB experiment by the introduction of an auxiliary warm plasma permitted the buildup of a high-temperature, high-density plasma with an n tau parameter an order of magnitude larger than the 2XII experiment.I In the Baseball II experiment, preliminary tests and computer predictions indicated that a dense, transient, target plasma can be created by laser irradiation of a pellet in midflight through the center of the Baseball confinement zone
Confinement effects in sesquioxydes
Energy Technology Data Exchange (ETDEWEB)
Mercier, B. [Laboratoire de Physico-Chimie des Materiaux Luminescents, UMR 5620 du CNRS, Universite Claude Bernard Lyon I, 10 rue A.M. Ampere 69622 Villeurbanne Cedex (France); Dujardin, C. [Laboratoire de Physico-Chimie des Materiaux Luminescents, UMR 5620 du CNRS, Universite Claude Bernard Lyon I, 10 rue A.M. Ampere 69622 Villeurbanne Cedex (France); Ledoux, G. [Laboratoire de Physico-Chimie des Materiaux Luminescents, UMR 5620 du CNRS, Universite Claude Bernard Lyon I, 10 rue A.M. Ampere 69622 Villeurbanne Cedex (France)]. E-mail: ledoux@pcml.univ-lyon1.fr; Louis, C. [Laboratoire de Physico-Chimie des Materiaux Luminescents, UMR 5620 du CNRS, Universite Claude Bernard Lyon I, 10 rue A.M. Ampere 69622 Villeurbanne Cedex (France); Tillement, O. [Laboratoire de Physico-Chimie des Materiaux Luminescents, UMR 5620 du CNRS, Universite Claude Bernard Lyon I, 10 rue A.M. Ampere 69622 Villeurbanne Cedex (France); Perriat, P. [Groupe d' Etude de Metallurgie Physique et de Physique des Materiaux, UMR 5510 du CNRS, INSA de Lyon, 69622 Villeurbanne Cedex (France)
2006-07-15
When the size of a particle is decreased to nano-scales, confinement effects induce strong changes. The luminescence of Eu{sup 3+}-doped Gd{sub 2}O{sub 3} nanoparticles has been studied as a function of both the temperature and the size of the nanoparticles. Two consequences of the small sizes in Eu{sup 3+}-doped Gd{sub 2}O{sub 3} are observed. First the linewidth of the Eu{sup 3+} transitions are inhomogeneously broadened at low temperature, and second the population of the ground and the first excited state of Eu{sup 3+} as a function of temperature differs depending on the size: at low temperatures, the smaller the particles, the less populated the first excited state is. The explanation of this second phenomenon could be the absence of very low-energy phonons in small particles.
A wearable multiplexed silicon nonvolatile memory array using nanocrystal charge confinement
Kim, Jaemin; Son, Donghee; Lee, Mincheol; Song, Changyeong; Song, Jun-Kyul; Koo, Ja Hoon; Lee, Dong Jun; Shim, Hyung Joon; Kim, Ji Hoon; Lee, Minbaek; Hyeon, Taeghwan; Kim, Dae-Hyeong
2016-01-01
Strategies for efficient charge confinement in nanocrystal floating gates to realize high-performance memory devices have been investigated intensively. However, few studies have reported nanoscale experimental validations of charge confinement in closely packed uniform nanocrystals and related device performance characterization. Furthermore, the system-level integration of the resulting devices with wearable silicon electronics has not yet been realized. We introduce a wearable, fully multi...
Microscopic Description of Electric and Magnetic Toroidal Multipoles in Hybrid Orbitals
Hayami, Satoru; Kusunose, Hiroaki
2018-03-01
We derive the quantum-mechanical operator expressions of multipoles under the space-time inversion group. We elucidate that electric and magnetic toroidal multipoles, in addition to ordinary non-toroidal ones, are fundamental pieces to express arbitrary electronic degrees of freedom. We show that electric (magnetic) toroidal multipoles higher than the dipole (monopole) can become active in a hybridized-orbital system. We also demonstrate emergent cross-correlated couplings between the electric, magnetic, and elastic degrees of freedom, such as magneto-electric and magneto(electro)-elastic coupling, under toroidal multipole orders.
The comparative analysis of the different mechanisms of toroidal rotation in tokamaks
Energy Technology Data Exchange (ETDEWEB)
Sabot, R. [Association Euratom-CEA, Centre d`Etudes Nucleaires de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Parail, V. [Kurchatov Institute, Moscow (Russian Federation)
1994-07-01
The toroidal plasma rotation appears as one the possible mechanism for suppression of plasma turbulence. Several mechanisms are believed to contribute to the toroidal plasma rotation. The results of numerical simulation of the toroidal rotation on JET are presented, where are taken into consideration the following effects: the neoclassical viscosity due to banana and ripple trapped particles, the anomalous viscosity due to plasma turbulence, the momentum input by NBI (neutron beam injection) and ion momentum loss near the separatrix due to prompt ion losses. The NBI appeared to be the principal source of toroidal plasma rotation. 6 refs., 2 figs.
Modeling the shape of a noncircular toroidal field coil
International Nuclear Information System (INIS)
Shah, V.N.; Marshall, N.H.
1983-01-01
Operating and transient forces acting on toroidal field coils may cause conductors and insulation to slide or break and may lead to quenching of the coil. Therefore, it is essential that each individual turn of the coil be modeled for detailed analysis of the coil structure. For this, a special purpose computer program is needed. As a first step in developing such a computer program, the authors present a finite element analysis of a turn of noncircular coil subjected to electromagnetic loading. A turn of superconducting coil is represented by a thin ring modeled by curved finite elements. Of the several curved beam elements reported in the literature, the strain element with two nodes, six degrees-of-freedom, and constant radius of curvature converges fastest for thin-deep arches whose geometrical characteristics are similar to those of a turn of toroidal field coil. They present an algorithm to model a noncircular ring using the number of strain elements satisfying the continuity of slopes at their nodes. This paper verifies the finite element model of a coil shape subjected to a toroidal magnetic field by solving three problems: circular and elliptic coils with the same inner and outer radii, a D-shaped coil, and a compound coil consisting of C- and D-shaped segments. The first problem shows that the resultant vertical force in the upper half of the coil is independent of coil shape. The remaining two problems calculate stresses that represent the constant tension in the D-shaped coil and in each segment of the compound coil. The results of the three problems compare well with the analytical results
Direct measurement of the damping of toroidicity induced Alfven eigenmodes
International Nuclear Information System (INIS)
Fasoli, A.; Lister, J.B.; Moret, J.M.; Lavanchy, P.; Marmillod, P.; Sharapov, S.; Borba, D.; Bosia, G.; Campbell, D.J.; Dobbing, J.A.; Gormezano, C.; Jacquinot, J.; Santagiustina, A.
1995-01-01
This paper presents the first direct experimental measurements of the damping of toroidicity induced Alfven eigenmodes (TAE), carried out in the JET tokamak. These measurements were obtained during the first experiments to drive these modes with antennas external to a tokamak plasma. Different regimes corresponding to different dominant TAE absorption mechanisms with a wide range of damping rates, 10 -3 ≤γ/ω≤10 -1 , have been identified in ohmically heated plasma discharges using this new active diagnostic for Alfven eigenmodes. (author) 5 figs., tabs., 25 refs
Simulated and experimental compression of a compact toroid
Energy Technology Data Exchange (ETDEWEB)
Johnson, J N; Hwang, D Q; Horton, R D; Evans, R W; Owen, J M
2009-05-06
We present simulation results and experimental data for the compression of a compact toroid by a conducting nozzle without a center electrode. In both simulation and experiment, the flow of the plasma is greatly obstructed by even modest magnetic fields. A simple mechanism for this obstruction is suggested by our simulations. In particular, the configuration of the plasmoid's magnetic field plays a significant role in the success of the experiment. We analyze two types of plasma configurations under compression and demonstrate that the results from the simulations matches those from the experiments, and that the mechanism predicts the different behaviors observed in the two cases.
Toroidal transformer design program with application to inverter circuitry
Dayton, J. A., Jr.
1972-01-01
Estimates of temperature, weight, efficiency, regulation, and final dimensions are included in the output of the computer program for the design of transformers for use in the basic parallel inverter. The program, written in FORTRAN 4, selects a tape wound toroidal magnetic core and, taking temperature, materials, core geometry, skin depth, and ohmic losses into account, chooses the appropriate wire sizes and number of turns for the center tapped primary and single secondary coils. Using the program, 2- and 4-kilovolt-ampere transformers are designed for frequencies from 200 to 3200 Hz and the efficiency of a basic transistor inverter is estimated.
Analytical solution of the toroidal constant tension solenoid
International Nuclear Information System (INIS)
Gralnick, S.L.; Tenney, F.H.
1975-01-01
The coil shape is determined by requiring that the curvature of the flexible conductor be proportional to the distance from the toroidal axis. The resulting second order differential equation for the coil coordinates can be integrated once but for the second and final integration no closed form has been found and the integration has been done numerically. This solution of this differential equation is analytical in terms of an absolutely and uniformly convergent infinite series. The series converges quite rapidly and in practice ignoring all but the first five terms of the series introduces an error of less than 2 percent
Theory and application of maximum magnetic energy in toroidal plasmas
International Nuclear Information System (INIS)
Chu, T.K.
1992-02-01
The magnetic energy in an inductively driven steady-state toroidal plasma is a maximum for a given rate of dissipation of energy (Poynting flux). A purely resistive steady state of the piecewise force-free configuration, however, cannot exist, as the periodic removal of the excess poloidal flux and pressure, due to heating, ruptures the static equilibrium of the partitioning rational surfaces intermittently. The rupture necessitates a plasma with a negative q'/q (as in reverse field pinches and spheromaks) to have the same α in all its force-free regions and with a positive q'/q (as in tokamaks) to have centrally peaked α's
Position indicating split toroid for the RACE experiment
International Nuclear Information System (INIS)
Hurst, B.; Folkman, K.
2007-01-01
Aspects of the recent reactor accelerator coupled experiments (RACE) carried out at University of Texas Nuclear Engineering Teaching Laboratory will be discussed. In particular, a compact instrument that allowed a continuous non-invasive means of determining the relative electron beam position was developed. The operation of the instrument is similar to an inductive current pick up toroid except that the core is sectioned radially, which allows spatial information to be derived from the induced voltages. Results of initial tests, both in beam and with a pulser, will be presented along with plans to optimize future designs
Fluctuations and stability in the Advanced Toroidal Facility (ATF) torsatron
International Nuclear Information System (INIS)
Harris, J.H.; Charlton, L.A.; Bell, J.D.; Bigelow, T.S.; Carreras, B.A.; Colchin, R.J.; Crume, E.C.; Dominguez, N.; Dunlap, J.L.; Dyer, G.R.; England, A.C.; Glowienka, J.C.; Hillis, D.L.; Hiroe, S.; Horton, L.D.; Howe, H.C.; Isler, R.C.; Jernigan, T.C.; Leboeuf, J.N.; Lee, D.K.; Lynch, V.E.; Lyon, J.F.; Menon, M.M.; Murakami, M.; Rasmussen, D.A.; Uckan, T.; Wilgen, J.B.; Wing, W.R.; Bell, G.L.; Crocker, N.A.; Hanson, G.R.; Thomas, C.E.; Wade, M.R.; Ritz, C.P.
1990-01-01
We present the results of experimental and theoretical studies of fluctuations and instabilities in the ATF torsatron, a type of stellarator. Measurements of globally coherent magnetic fluctuations in high-β plasmas with narrow pressure profiles produced by a field error show evidence of self-stabilization ('second stability'); the trends are compatible with theoretical analysis of self-stabilization of resistive curvature-driven instabilities, but there are discrepancies between the absolute experimental and theoretical fluctuation amplitudes. Fluctuation measurements in plasma with broad pressure profiles reveal new phenomena--specifically, toroidally localized magnetic fluctuations, whose amplitudes increase with plasma pressure, and coherent density fluctuations with significant radial width
Atomic physics effects on dissipative toroidal drift wave stability
International Nuclear Information System (INIS)
Beer, M.A.; Hahm, T.S.
1992-02-01
The effects of atomic physics processes such as ionization, charge exchange, and radiation on the linear stability of dissipative drift waves are investigated in toroidal geometry both numerically and analytically. For typical TFTR and TEXT edge parameters, overall linear stability is determined by the competition between the destabilizing influence of ionization and the stabilizing effect due to the electron temperature gradient. An analytical expression for the linear marginal stability condition, η e crit , is derived. The instability is most likely to occur at the extreme edge of tokamaks with a significant ionization source and a steep electron density gradient
Components and system tests on the RFX toroidal power supply
International Nuclear Information System (INIS)
Toigo, V.; Zanotto, L.; Gaio, E.; Perna, M.; Bordignon, P.; Coffetti, A.; Novaro, R.; Bertolotto, P.; Rinaldi, E.; Villa, G.
2005-01-01
The paper deals with the component and system tests performed on the new toroidal power supply system of the RFX experiment. The high technological innovation of the system required a deep experimental characterization and validation campaign; special factory tests were performed on prototypes of single components aimed at verifying the most critical design aspects. Consequently an articulated series of tests were performed, based on a step-by-step approach to achieve the desired coordinate operation of the whole system. The test procedures and the most significant results are described in the paper
Toroidal mesoporous silica nanoparticles (TMSNPs) and related protocells
Energy Technology Data Exchange (ETDEWEB)
Brinker, C. Jeffrey; Lin, Yu-Shen
2018-01-02
In one aspect, the invention provides novel monodisperse, colloidally-stable, toroidal mesoporous silica nanoparticles (TMSNPs) which are synthesized from ellipsoid-shaped mesoporous silica nanoparticles (MSNPs) which are prepared using an ammonia basecatalyzed method under a low surfactant conditions. Significantly, the TMSNPs can be loaded simultaneously with a small molecule active agent, a siRNA, a mRNA, a plasmid and other cargo and can be used in the diagnosis and/or treatment of a variety of disorders, including a cancer, a bacterial infection and/or a viral infection, among others. Related protocells, pharmaceutical compositions and therapeutic and diagnostic methods are also provided.
Nonlinear hybrid simulation of toroidicity-induced alfven eigenmode
International Nuclear Information System (INIS)
Fu, G.Y.; Park, W.
1994-11-01
Gyrokinetic/Magnetohydrodynamics hybrid simulations have been carried out using MH3D-K code to study the nonlinear saturation of the toroidicity-induced Alfven eigenmode driven by energetic particles in a tokamak plasma. It is shown that the wave particle trapping is the nonlinear saturation mechanism for the parameters considered. The corresponding density profile flattening of hot particles is observed. The saturation amplitude is proportional to the square of linear growth rate. In addition to TAE modes, a new n = 1, m = 0 global Alfven eigenmode is shown to be excited by the energetic particles
Coupling to fast MHD eigenmodes in a toroidal cavity
International Nuclear Information System (INIS)
Paoloni, F.J.
1975-05-01
The coupling to fast MHD waves in toroidal-like geometry is calculated when eigenmodes exist in the plasma. The torus is considered to be a resonant cavity into which energy is coupled by a half turn loop. The cavity Q is calculated for the minority heating process, for cyclotron harmonic damping, electron transit-time magnetic pumping, wall loading, and Coulomb collisional damping. The problem of sustaining the eigenmode as the plasma conditions change with time is also discussed. One method that seems to be practical is a feedback scheme that varies the plasma major radius by a small amount as the conditions change. (U.S.)
Acquisition system for the diagnostics data from a toroidal machine
International Nuclear Information System (INIS)
Moulin, B.
1976-01-01
The data acquisition system 'ARIANE' has been conceived by the SIG (Service d'Ionique Generale), for physical measurements on the toroidal machines PETULA and WEGA, which were designed to study the H.F. heating of pulsed plasmas. These systems are constitued of electronic modules which permit them to be adapted to different kinds of measurements, either by analogue channels or by pulse counting. The programmation of these systems, are achieved, either by multiswitches accessible manually on front panels, or by a computer which performs the numerical computations [fr
Toroidal Dipole Moment of the Lightest Neutralino in the MSSM
International Nuclear Information System (INIS)
Cabral-Rosetti, L G; Mondragon, M; Perez, E Reyes
2011-01-01
In order to characterize one of the most favored candidates for dark matter, we calculate the anapole form factor of the lightest neutralino in the Minimal Supersymmetric Standard Model (MSSM) at the one-loop level. As a Majorana fermion, this particle only shows one electromagnetic property, the toroidal dipole moment, which is directly related to the anapole form factor. We obtain the result analitically in terms of two- and three-points Passarino-Veltman scalar functions and evaluate it for a given spectrum of supersymmetric masses and matrix elements. This work is part of a broader project still in progress.
Universal evaporation dynamics of a confined sessile droplet
Bansal, Lalit; Hatte, Sandeep; Basu, Saptarshi; Chakraborty, Suman
2017-09-01
Droplet evaporation under confinement is ubiquitous to multitude of applications such as microfluidics, surface patterning, and ink-jet printing. However, the rich physics governing the universality in the underlying dynamics remains grossly elusive. Here, we bring out hitherto unexplored universal features of the evaporation dynamics of a sessile droplet entrapped in a 3D confined fluidic environment. We show, through extensive set of experiments and theoretical formulations, that the evaporation timescale for such a droplet can be represented by a unique function of the initial conditions. Moreover, using same theoretical considerations, we are able to trace and universally merge the volume evolution history of the droplets along with evaporation lifetimes, irrespective of the extent of confinement. We also showcase the internal flow transitions caused by spatio-temporal variation of evaporation flux due to confinement. These findings may be of profound importance in designing functionalized droplet evaporation devices for emerging engineering and biomedical applications.
Quantum Confined Semiconductors for High Efficiency Photovoltaics
Beard, Matthew
2014-03-01
Semiconductor nanostructures, where at least one dimension is small enough to produce quantum confinement effects, provide new pathways for controlling energy flow and therefore have the potential to increase the efficiency of the primary photon-to-free energy conversion step. In this discussion, I will present the current status of research efforts towards utilizing the unique properties of colloidal quantum dots (NCs confined in three dimensions) in prototype solar cells and demonstrate that these unique systems have the potential to bypass the Shockley-Queisser single-junction limit for solar photon conversion. The solar cells are constructed using a low temperature solution based deposition of PbS or PbSe QDs as the absorber layer. Different chemical treatments of the QD layer are employed in order to obtain good electrical communication while maintaining the quantum-confined properties of the QDs. We have characterized the transport and carrier dynamics using a transient absorption, time-resolved THz, and temperature-dependent photoluminescence. I will discuss the interplay between carrier generation, recombination, and mobility within the QD layers. A unique aspect of our devices is that the QDs exhibit multiple exciton generation with an efficiency that is ~ 2 to 3 times greater than the parental bulk semiconductor.
International Nuclear Information System (INIS)
Lee, V.D.
1987-01-01
The Fusion Engineering Design Center (FEDC) is part of a national design team that is developing the conceptual design of the Compact Ignition Tokamak (CIT). To achieve a compact device with the minimum major radius, a vertical preload system is being developed to react the vertical separating force normally carried by the inboard leg of the toroidal field (TF) coils. The preload system is in the form of a hydraulic press. Challenges in the design include the development of hydraulic and structural systems for very large force requirements, which could interface with the CIT machine, while allowing maximum access to the top, bottom, and radial periphery of the machine. Maximum access is necessary for maintenance, diagnostics, instrumentation, and control systems. Materials used in the design must function in the nuclear environment and in the presence of high magnetic fields. This paper presents the configuration development of the hydraulic press used to vertically preload the CIT device
Size scaling of turbulent transport in magnetically confined plasmas
International Nuclear Information System (INIS)
Lin, Z.; Ethier, S.; Hahm, T.S.; Tang, W.M.
2002-01-01
Transport scaling with respect to device size in magnetically confined plasmas is critically examined for electrostatic ion-temperature-gradient turbulence using global gyrokinetic particle simulations. It is found, by varying device size normalized by ion gyroradius while keeping other dimensionless plasma parameters fixed, that fluctuation scale length is microscopic in the presence of zonal flows. The local transport coefficient exhibits a gradual transition from a Bohm-like scaling for device sizes corresponding to present-day experiments to a gyro-Bohm scaling for future larger devices
Size Scaling of Turbulent Transport in Magnetically Confined Plasmas
International Nuclear Information System (INIS)
Z. Lin; S. Ethier; T.S. Hahm; W.M. Tang
2002-04-01
Transport scaling with respect to device size in magnetically confined plasmas is critically examined for electrostatic ion temperature gradient turbulence using global gyrokinetic particle simulations. It is found, by varying device size normalized by ion gyroradius while keeping other dimensionless plasma parameters fixed, that fluctuation scale length is microscopic in the presence of zonal flows. The local transport coefficient exhibits a gradual transition from a Bohm-like scaling for device sizes corresponding to present-day experiments to a gyro-Bohm scaling for future larger devices
New results on structure of low beta confinement Polywell cusps simulated by comsol multiphysics
Directory of Open Access Journals (Sweden)
B. Mahdavipour
Full Text Available The Inertial electrostatic confinement (IEC is one of the ways for fusion approaches. It is one of the various methods which can be used to confine hot fusion plasma. The advantage of IEC is that the IEC experiments could be done in smaller size facilities than ITER or NIF, costing less money and moving forward faster. In IEC fusion, we need to trap adequate electrons to confine the desired ion density which is needed for a fusion reactor. Polywell is a device which uses the magnetic cusp system and traps the required amount of electrons for fusion reactions. The purpose of this device is to create a virtual cathode in order to achieve nuclear fusion using inertial electrostatic confinement (Miley and Krupakar Murali, 2014. In this paper, we have simulated the low beta Polywell. Then, we examined the effects of coil spacing, coils current, electron injection energy on confinement time. Keywords: Low beta confinement, Polywell, IEC, Comsol multiphysics
Equilibria, Stability, and Transport of AN Ion Ring Confined Plasma.
Sparks, Lawrence Craig
This thesis studies various aspects of a fusion plasma magnetically confined in an axisymmetric field reversed geometry with no toroidal field, where part of the total azimuthal current is carried by a ring of energetic large orbit ions: (1) Two new methods are presented for efficiently computing ion ring equilibria in parameter regimes of physical interest. (2) Ideal magnetodydrodynamic stability is analyzed in the high toroidal mode number limit, where the ion ring can be taken to be noninteracting. A numerical study of field reversed configurations both with and without ring currents shows that plasma compression can stabilize interchange perturbations. High (beta) interchange stability is found to favor a peaked ring current density profile rather than one which is hollowed out in the region of plasma confinement. Stability to perturbations which bend magnetic field lines (e.g., ballooning modes) is also found to improve as the ring current density profile becomes more peaked. (3) The equations of motion for incompressible mode perturbations in the vicinity of the vortex point are solved analytically to obtain the ballooning stability condition F > (1 + (VBAR)(epsilon)(VBAR))/2 where F is the fraction of the current density carried by the ring ions and (epsilon) is the flux surface ellipticity. Higher order corrections to the eigenfrequencies due to compressional effects are obtained in the limit of circular flux surfaces. (4) Modeling the ring as an exponential rigid rotor, an iterative procedure is used to obtain optimal values of E(,P)/E(,R), the ratio of the total energy of the confined plasma to the total ring energy. Magnetohydrodynamically stable equilibria are obtained with E(,P)/E(,R(, )) (where B(,o) is the magnitude of the applied field and brackets indicate a volume average) varies between 1 and 7. (5) Classical mass and heat transport on time scales short compared to the ring decay time are analyzed using simple, steady state models. Mass flow is
International Nuclear Information System (INIS)
Nuckolls, J.H.; Wood, L.L.
1988-01-01
Edward Teller has been a strong proponent of harnessing nuclear explosions for peaceful purposes. There are two approaches: Plowshare, which utilizes macro- explosions, and inertial confinement fusion, which utilizes microexplosions. The development of practical fusion power plants is a principal goal of the inertial program. It is remarkable that Teller's original thermonuclear problem, how to make super high yield nuclear explosions, and the opposite problem, how to make ultra low yield nuclear explosions, may both be solved by Teller's radiation implosion scheme. This paper reports on the essential physics of these two thermonuclear domains, which are separated by nine orders of magnitude in yield, provided by Teller's similarity theorem and its exceptions. Higher density makes possible thermonuclear burn of smaller masses of fuel. The leverage is high: the scale of the explosion diminishes with the square of the increase in density. The extraordinary compressibility of matter, first noticed by Teller during the Los Alamos atomic bomb program, provides an almost incredible opportunity to harness fusion. The energy density of thermonuclear fuels isentropically compressed to super high-- -densities---even to ten thousand times solid density---is small compared to the energy density at thermonuclear ignition temperatures. In small masses of fuel imploded to these super high matter densities, the energy required to achieve ignition may be greatly reduced by exploiting thermonuclear propagation from a relatively small hot spot
Gravitationally confined relativistic neutrinos
Vayenas, C. G.; Fokas, A. S.; Grigoriou, D.
2017-09-01
Combining special relativity, the equivalence principle, and Newton’s universal gravitational law with gravitational rather than rest masses, one finds that gravitational interactions between relativistic neutrinos with kinetic energies above 50 MeV are very strong and can lead to the formation of gravitationally confined composite structures with the mass and other properties of hadrons. One may model such structures by considering three neutrinos moving symmetrically on a circular orbit under the influence of their gravitational attraction, and by assuming quantization of their angular momentum, as in the Bohr model of the H atom. The model contains no adjustable parameters and its solution, using a neutrino rest mass of 0.05 eV/c2, leads to composite state radii close to 1 fm and composite state masses close to 1 GeV/c2. Similar models of relativistic rotating electron - neutrino pairs give a mass of 81 GeV/c2, close to that of W bosons. This novel mechanism of generating mass suggests that the Higgs mass generation mechanism can be modeled as a latent gravitational field which gets activated by relativistic neutrinos.
Plasma heating and confinement at the GOL-3-II facility
International Nuclear Information System (INIS)
Arzhannikov, A.V.; Astrelin, V.T.; Burdakov, A.V.; Koidan, V.S.
2000-01-01
Results of experiments on plasma heating and confinement in multi mirror open GOL-3-II are presented.This facility is intended for heating and confinement of a relatively dense (10 15 - 10 17 cm -3 ) plasma in axially-symmetrical magnetic system.The plasma heating is provided by a high-power electron beam (1MeV, 30 kA, 8μs,200 kJ).Results of the experiments with multi mirror configuration of the device indicate that the confinement time of the plasma with n e approx (0.5/5)centre dot 10 15 cm -3 and T e approx 1 keV increases more than order of magnitude in comparison with single mirror device
Divertors for Helical Devices: Concepts, Plans, Results, and Problems
International Nuclear Information System (INIS)
Koenig, R.; Grigull, P.; McCormick, K.
2004-01-01
With Large Helical Device (LHD) and Wendelstein 7-X (W7-X), the development of helical devices is now taking a large step forward on the path to a steady-state fusion reactor. Important issues that need to be settled in these machines are particle flux and heat control and the impact of divertors on plasma performance in future continuously burning fusion plasmas. The divertor concepts that will initially be explored in these large machines were prepared in smaller-scale devices like Heliotron E, Compact Helical System (CHS), and Wendelstein 7-AS (W7-AS). While advanced divertor scenarios relevant for W7-X were already studied in W7-AS, other smaller-scale experiments like Heliotron-J, CHS, and National Compact Stellarator Experiment will be used for the further development of divertor concepts. The two divertor configurations that are being investigated are the helical and the island divertor, as well as the local island divertor, which was successfully demonstrated on CHS and just went into operation on LHD. At present, on its route to a fully closed helical divertor, LHD operates in an open helical divertor configuration. W7-X will be equipped right from the start with an actively cooled discrete island divertor that will allow quasi-continuous operation. The divertor design is very similar to the one explored on W7-AS. For sufficiently large island sizes and not too long field line connection lengths, this divertor gives access to a partially detached quasi-steady-state operating scenario in a newly found high-density H-mode operating regime, which benefits from high energy and low impurity confinement times, with edge radiation levels of up to 90% and sufficient neutral compression in the subdivertor region (>10) for active pumping. The basic physics of the different divertor concepts and associated implementation problems, like asymmetries due to drifts, accessibility of essential operating scenarios, toroidal asymmetries due to symmetry breaking error fields
Compact toroid injection system for JFT-2M
Energy Technology Data Exchange (ETDEWEB)
Fukumoto, N. [University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280 (Japan)]. E-mail: fukumotn@eng.u-hyogo.ac.jp; Ogawa, H. [Japan Atomic Energy Agency (JAEA), 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan); Nagata, M. [University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280 (Japan); Uyama, T. [University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280 (Japan); Shibata, T. [Japan Atomic Energy Agency (JAEA), 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan); Kashiwa, Y. [Japan Atomic Energy Agency (JAEA), 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan); Suzuki, S. [Japan Atomic Energy Agency (JAEA), 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan); Kusama, Y. [Japan Atomic Energy Agency (JAEA), 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan)
2006-11-15
The compact toroid (CT) injection system for JFT-2M is composed of a CT injector, a gas delivery and vacuum system, a power supply system, and a diagnostics system. In particular, the power supply system delivers high performance for CT formation and acceleration. The CT formation capacitor bank unit achieved a formation current of 350 kA with a rise time less than 10 {mu}s. Although the CT acceleration bank units are equipped with 14 ignitron switches instead of gap switches to attenuate the discharge noise level, an acceleration current of 400 kA with a short rise time of 9 {mu}s is controlled within a jitter of much less than 1 {mu}s. The resulting CT velocity and mass density satisfy the requirements for CT penetration into the tokamak plasma core at a toroidal field of 1 T. This CT injection system is thus suitable for CT injection in a middle-sized tokamak plasma such as the JFT-2M tokamak.
Pareto optimal design of sectored toroidal superconducting magnet for SMES
International Nuclear Information System (INIS)
Bhunia, Uttam; Saha, Subimal; Chakrabarti, Alok
2014-01-01
Highlights: • The optimization approach minimizes both the magnet size and necessary cable length of a sectored toroidal SMES unit. • Design approach is suitable for low temperature superconducting cable suitable for medium size SMES unit. • It investigates coil parameters with respect to practical engineering aspects. - Abstract: A novel multi-objective optimization design approach for sectored toroidal superconducting magnetic energy storage coil has been developed considering the practical engineering constraints. The objectives include the minimization of necessary superconductor length and torus overall size or volume, which determines a significant part of cost towards realization of SMES. The best trade-off between the necessary conductor length for winding and magnet overall size is achieved in the Pareto-optimal solutions, the compact magnet size leads to increase in required superconducting cable length or vice versa The final choice among Pareto optimal configurations can be done in relation to other issues such as AC loss during transient operation, stray magnetic field at outside the coil assembly, and available discharge period, which is not considered in the optimization process. The proposed design approach is adapted for a 4.5 MJ/1 MW SMES system using low temperature niobium–titanium based Rutherford type cable. Furthermore, the validity of the representative Pareto solutions is confirmed by finite-element analysis (FEA) with a reasonably acceptable accuracy
Absence of toroidal moments in 'aromagnetic' anthracene
Energy Technology Data Exchange (ETDEWEB)
Alborghetti, S; Coey, J M D [School of Physics, Trinity College, Dublin 2 (Ireland); Puppin, E; Brenna, M; Pinotti, E; Zanni, P [Dipartimento di Fisica, Politecnico di Milano, Milano (Italy)], E-mail: alborgs@tcd.ie
2008-06-15
Colloidal suspensions of anthracene and other aromatic compounds have been shown to respond to a magnetic field as if they possessed a permanent magnetic moment. This phenomenon was named 'aromagnetism' by Spartakov and Tolstoi, and it was subsequently attributed to the interaction of an electric toroidal moment with a time-varying magnetic field. However, there has been no independent confirmation of the original work. Here, we have selected purified anthracene crystallites which respond to a low magnetic field and investigate how this response depends on the gradient and the time derivative of the field. We conclude that the anomaly cannot be attributed to a toroidal interaction but is due to a constant magnetic moment of the particles. Close examinations using magnetometry and scanning electron microscopy reveal metallic clusters of Fe and Ni up to a few hundred nanometres in size embedded in the anomalous crystallites. These inclusions represent 1.8 ppm by weight of the sample. The observed presence of ferromagnetic inclusions in the ppm range is sufficient to explain the anomalous magnetic properties of micron-sized anthracene crystals, including the reported optical properties of the colloidal suspensions.
Influence of toroidal magnetic field in multi-accreting tori
Pugliese, D.; Montani, G.
2018-02-01
We analyzed the effects of a toroidal magnetic field in the formation of several magnetized accretion tori, dubbed as ringed accretion disks (RADs), orbiting around one central Kerr supermassive Black Hole (SMBH) in AGNs, where both corotating and counterotating disks are considered. Constraints on tori formation and emergence of RADs instabilities, accretion onto the central attractor and tori collision emergence, are investigated. The results of this analysis show that the role of the central BH spin-mass ratio, the magnetic field and the relative fluid rotation and tori rotation with respect the central BH, are crucial elements in determining the accretion tori features, providing ultimately evidence of a strict correlation between SMBH spin, fluid rotation and magnetic fields in RADs formation and evolution. More specifically we proved that magnetic field and disks rotation are in fact strongly constrained, as tori formation and evolution in RADs depend on the toroidal magnetic fields parameters. Eventually this analysis identifies specific classes of tori, for restrict ranges of magnetic field parameter, that can be observed around some specific SMBHs identified by their dimensionless spin.
Last End Cap Toroid installation : The Pharaonic enterprise
Arnaud Foussat
After the successful and impressive transport feat from Building 191 to Point 1 was carried out by the Friderici crew on 28th June, the second and last Toroid End Cap, ECT-C, was transferred into the surface building, SX1, on 2nd July. The ECT-C was installed in the ATLAS cavern on the C-side on 12th July. As the person responsible for the project, in my opinion, one of the crucial points of this project was to design all the tooling and installation sequences taking into account the building infrastructure dimensional constraints. View of the ECT installation tooling and preparation for the ECT-C descent into the ATLAS 80m-shaft by the ATLAS magnet group and DBS teams. The movement of the 240-ton magnet and 12-m diameter toroid end-cap was achieved in collaboration with SCALES, a subcontractor company, using a hydraulic gantry able to lower the ECT inside the shaft by 5m below the floor level . This allowed the DBS team to attach the end-cap with the 2 x 140 tons overhead crane and lower it onto the c...
The toroidal field magnet concept of ASDEX Upgrade
International Nuclear Information System (INIS)
Jandl, O.; Kollotzek, H.; Springmann, E.; Streibl, B.
1983-01-01
ASDEX Upgrade (UG), a divertor tokamak with a minor plasma radius of a = 0.5 m and a plasma current of 1.2 to 1.5 MA, is intended to succeed ASDEX. A major target of this experiment is to investigate a reactor-compatible plasma boundary. This requires according to a toroidal field (B 0 ) at the plasma centre normalized to the aspect ratio (A) of B 0 /A approximately = 1.2. The optimum with due allowance for physical requirements and technical constraints of the complete tokamak system was obtained in this case for B 0 = 3.9 T (A = 3.25) and a plasma radius of 1.63 m. The toroidal field (TF) magnet designed to meet these requirements is presented. Aspects of its turnover structure such as force transfer, coil housing and access to the plasma vessel are described. The coil concept developed in collaboration with industry is also presented, in particular the conductor concept and the current terminals and water manifold designs. Finally, the results of the cooling and stress analysis are summarized. (author)
Cryogenic Characteristics of the ATLAS Barrel Toroid Superconducting Magnet
Pengo, R; Delruelle, N; Pezzetti, M; Pirotte, O; Passardi, Giorgio; Dudarev, A; ten Kate, H
2008-01-01
ATLAS, one of the experiments of the LHC accelerator under commissioning at CERN, is equipped with a large superconducting magnet the Barrel Toroid (BT) that has been tested at nominal current (20500 A). The BT is composed of eight race-track superconducting coils (each one weights about 45 tons) forming the biggest air core toroidal magnet ever built. By means of a large throughput centrifugal pump, a forced flow (about 10 liter/second at 4.5 K) provides the indirect cooling of the coils in parallel. The paper describes the results of the measurements carried out on the complete cryogenic system assembled in the ATLAS cavern situated 100 m below the ground level. The measurements include, among other ones, the static heat loads, i.e., with no or constant current in the magnet, and the dynamic ones, since additional heat losses are produced, during the current ramp-up or slow dump, by eddy currents induced on the coil casing.
Advanced transport modeling of toroidal plasmas with transport barriers
International Nuclear Information System (INIS)
Fukuyama, A.; Murakami, S.; Honda, M.; Izumi, Y.; Yagi, M.; Nakajima, N.; Nakamura, Y.; Ozeki, T.
2005-01-01
Transport modeling of toroidal plasmas is one of the most important issue to predict time evolution of burning plasmas and to develop control schemes in reactor plasmas. In order to describe the plasma rotation and rapid transition self-consistently, we have developed an advanced scheme of transport modeling based on dynamical transport equation and applied it to the analysis of transport barrier formation. First we propose a new transport model and examine its behavior by the use of conventional diffusive transport equation. This model includes the electrostatic toroidal ITG mode and the electromagnetic ballooning mode and successfully describes the formation of internal transport barriers. Then the dynamical transport equation is introduced to describe the plasma rotation and the radial electric field self-consistently. The formation of edge transport barriers is systematically studied and compared with experimental observations. The possibility of kinetic transport modeling in velocity space is also examined. Finally the modular structure of integrated modeling code for tokamaks and helical systems is discussed. (author)
Photoelastic analyses of stresses in toroidal magnetic field coils
International Nuclear Information System (INIS)
Pih, H.
1977-02-01
Several two-dimensional photoelastic stress analyses were made on models of circular and oval toroidal magnetic field coils for fusion reactors. The circumferential variation of each coil's in-plane magnetic force was simulated by applying different pressures to 16 segmented regions of the inner surface of the models. One special loading fixture was used for the model of each shape and size. Birefringence and isoclinic angles were measured in a transmission polariscope at selected points on the loaded model. Boundary stresses in the cases of known boundary conditions were determined directly from the isochromatics. Separate principal stresses were calculated using the combination of photoelastic information and isopachic data obtained by the electrical analogy method from the solution of Laplace's equation. Comparisons were made between experimental results and those computed using the finite element method. The stress distribution between theoretical and experimental agrees very well, although the finite element method yielded slightly higher stresses than the photoelastic method; further work is needed to resolve this difference. In this investigation several variations of coil geometry and methods of support were evaluated. Based on experimental results, optimum structural designs of toroidal field coils were recommended
The physics of magnetic confinement configurations : Tokamak theory and experiment
International Nuclear Information System (INIS)
Robinson, D.C.
1982-01-01
Several aspects, both theoretical and experimental, in plasma physics are discussed. The problem of magnetic confinement in Tokamak devices is treated. A discussion on the history of the development and on the future problems to be solved in Tokamaks is made. (L.C.) [pt
Self-organized structures in soft confined thin films
Indian Academy of Sciences (India)
These very small scale, highly confined systems are inherently unstable and thus self-organize into ordered structures which can be exploited for MEMS, sensors, opto-electronic devices and a host of other nanotechnology applications. In particular, mesomechanics requires incorporation of intermolecular interactions and ...
Effects of electrode polarization and particle deposition profile on TJ-I plasma confinement
International Nuclear Information System (INIS)
Zurro, B.; Tabares, F.; Pardo, C.; Tafalla, D.; Cal, E. de la; Garcia-Castaner, B.; Pedrosa, M.A.; Sanchez, J.; Rodriguez-Yunta, A.
1991-01-01
The role of self-created radial electric field on particle confinement in TJ-I plasmas was addressed using plasma rotation data in conjunction with particle confinement times measured by laser ablation. In this paper following the pioneer work of Taylor, we have started to study the influence of a polarized electrode inserted into the plasma on particle confinement and plasma rotation in this ohmically heated tokamak. To have a supportive frame of reference, the confinement time of background particles and their transport into plasma without electrode, has been studied by measuring with space-time resolution the H α emission on varying plasma conditions. These experiments have been carried out in ohmically heated discharges of the TJ-I tokamak (R 0 =30 cm, a=10 cm) which was operated with plasma currents between 20 and 45 kA and a toroidal field ranging from 0.8 to 1.5 T. In this paper, firstly the experimental plasma and specific diagnostics are described, secondly, the parametric dependence of the particle confinement time and radial transport of background plasma is presented and finally, the influence of polarizing an inserted electrode on a particular discharge is given and discussed in the context of other polarization experiments. (author) 7 refs., 4 figs
Radiofrequency-heated enhanced confinement modes in the Alcator C-Mod tokamak
International Nuclear Information System (INIS)
Takase, Y.; Boivin, R.L.; Bombarda, F.; Bonoli, P.T.; Christensen, C.; Fiore, C.; Garnier, D.; Goetz, J.A.; Golovato, S.N.; Granetz, R.; Greenwald, M.; Horne, S.F.; Hubbard, A.; Hutchinson, I.H.; Irby, J.; LaBombard, B.; Lipschultz, B.; Marmar, E.; May, M.; Mazurenko, A.; McCracken, G.; OShea, P.; Porkolab, M.; Reardon, J.; Rice, J.; Rost, C.; Schachter, J.; Snipes, J.A.; Stek, P.; Terry, J.; Watterson, R.; Welch, B.; Wolfe, S.
1997-01-01
Enhanced confinement modes up to a toroidal field of B T =8T have been studied with up to 3.5 MW of radiofrequency (rf) heating power in the ion cyclotron range of frequencies (ICRF) at 80 MHz. H-mode is observed when the edge temperature exceeds a threshold value. The high confinement mode (H-mode) with higher confinement enhancement factors (H) and longer duration became possible after boronization by reducing the radiated power from the main plasma. A quasi-steady state with high confinement (H=2.0), high normalized beta (β N =1.5), low radiated power fraction (P rad main /P loss =0.3), and low effective charge (Z eff =1.5) has been obtained in Enhanced D α H-mode. This type of H-mode has enhanced levels of continuous D α emission and very little or no edge localized mode (ELM) activity, and reduced core particle confinement time relative to ELM-free H-mode. The pellet enhanced performance (PEP) mode is obtained by combining core fueling with pellet injection and core heating. A highly peaked pressure profile with a central value of 8 atmospheres was observed. The steep pressure gradient drives off-axis bootstrap current, resulting in a shear reversed safety factor (q) profile. Suppression of sawteeth appears to be important in maintaining the highly peaked pressure profile. Lithium pellets were found to be more effective than deuterium pellets in raising q 0 . copyright 1997 American Institute of Physics
Directory of Open Access Journals (Sweden)
Javad Khazaei
2016-09-01
Full Text Available Helical piles are environmentally friendly and economical deep foundations that, due to environmental considerations, are excellent additions to a variety of deep foundation alternatives available to the practitioner. Helical piles performance depends on soil properties, the pile geometry and soil-pile interaction. Helical piles can be a proper alternative in sensitive environmental sites if their bearing capacity is sufficient to support applied loads. The failure capacity of helical piles in this study was measured via an experimental research program that was carried out by Frustum Confining Vessel (FCV. FCV is a frustum chamber by approximately linear increase in vertical and lateral stresses along depth from top to bottom. Due to special geometry and applied bottom pressure, this apparatus is a proper choice to test small model piles which can simulate field stress conditions. Small scale helical piles are made with either single helix or more helixes and installed in fine grained sand with three various densities. Axial loading tests including compression and tension tests were performed to achieve pile ultimate capacity. The results indicate the helical piles behavior depends essentially on pile geometric characteristics, i.e. helix configuration and soil properties. According to the achievements, axial uplift capacity of helical model piles is about equal to usual steel model piles that have the helixes diameter. Helical pile compression bearing capacity is too sufficient to act as a medium pile, thus it can be substituted other piles in special geoenvironmental conditions. The bearing capacity also depends on spacing ratio, S/D, and helixes diameter.
Computational Support for Alternative Confinement Concepts Basic Plasma Science
Energy Technology Data Exchange (ETDEWEB)
Dalton D. Schnack
2002-12-09
within the radius for perfectly conducting wall stabilization of these modes. In this work we consider cases with up to two resistive walls. Moreover the feedback system is assumed to react to any given Fourier harmonic with an ideal response, in the sense that no spurious harmonics are generated. Successful feedback schemes are shown to be possible. However, a careful choice of the gains, along with the simultaneous feedback on at least 4 or 5 modes, is found to be necessary. (3) Studies of a stable rampdown operating regime for the RFP were performed in collaboration with Los Alamos National Laboratory and the University of Wisconsin. It was found that completely stable mean profiles can be obtained by properly tailoring the decaying time dependence of the toroidal current and magnetic flux. Deviations from optimal decay rates were shown to lead to single helicity (SH) and quasi-single helicity (QSH) states. In all cases the prospects for improved confinement properties were obtained. These results may account for the experimental observation of QSH states when the toroidal current is allowed to decay.
Toroidal hollow-core microcavities produced by self-rolling of strained polymer bilayer films
Luchnikov, V.; Kumar, K.; Stamm, M.
2008-03-01
Hollow-core toroidal micro-cavities are obtained by self-rolling of double-layer (polyvinyl pyridine/polystyrole) polymer films. Rolling of the bilayer is due to preferential swelling of polyvinyl pyridine in water solution of dodecyl benzene sulfonic acid. The tube formation proceeds from a circular opening in the film made by photolithography or by mechanical scratching. Toroid equilibrium dimensions are determined by the balance of the elastic energy relaxation via the film scrolling and the work of the in-plane stretching that is due to increasing radius of the toroid. The principle features of the micro-toroid formation process are captured by a simple analytical model. The inner walls of the cavities can be made metal coated. For this aim, the polymer bilayer can be metallized by vacuum sputtering prior to lithographic patterning and rolling of the bilayer. The toroids with metallic inner surfaces are promising for the future research as IR-frequency range resonators.
Energy confinement and magnetic field generation in the SSPX spheromak
Energy Technology Data Exchange (ETDEWEB)
Hudson, B; McLean, H S; Wood, R D; Hooper, E B; Hill, D N; Jayakumar, J; Moller, J; Romero-Talamas, C; Casper, T A; LoDestro, L L; Pearlstein, L D; Johnson, III, J A; Mezonlin, E
2008-02-11
The Sustained Spheromak Physics Experiment (SSPX) [E.B. Hooper, et. al., Nuclear Fusion, Vol. 39, No. 7] explores the physics of efficient magnetic field buildup and energy confinement, both essential parts of advancing the spheromak concept. Extending the spheromak formation phase increases the efficiency of magnetic field generation with the maximum edge magnetic field for a given injector current (B/I) from 0.65 T/MA previously to 0.9 T/MA. We have achieved the highest electron temperatures (T{sub e}) recorded for a spheromak with T{sub e} > 500 eV, toroidal magnetic field {approx}1 T and toroidal current ({approx}1 MA) [R.D. Wood, D.N. Hill, H.S. McLean, E.B. Hooper, B.F. Hudson, J.M. Moller, 'Improved magnetic field generation efficiency and higher temperature spheromak plasmas', submitted to Physical Review Letters]. Extending the sustainment phase to > 8 ms extends the period of low magnetic fluctuations (< 1 %) by 50%. The NIMROD 3-D resistive MHD code [C.R. Sovinec, T.A. Gianakon, E.D. Held, S.E. Kruger and D.D. Schnack, The NIMROD Team, Phys. Plasmas 10, 1727 (2003)] reproduces the observed flux amplification {Psi}{sub pol}/{Psi}{sub gun}. Successive gun pulses are demonstrated to maintain the magnetic field in a quasi-steady state against resistive decay. Initial measurements of neutral particle flux in multi-pulse operation show charge-exchange power loss < 1% of gun input power and dominantly collisional majority ion heating. The evolution of electron temperature shows a distinct and robust feature of spheromak formation: a hollow-to-peaked T{sub e}(r) associated with q {approx} 1/2.
International Nuclear Information System (INIS)
Siemon, R.E.
1981-03-01
This document contains papers contributed by the participants of the Third Symposium on Physics and Technology of Compact Toroids in the Magnetic Fusion Energy Program. Subjects include reactor aspects of compact toroids, energetic particle rings, spheromak configurations (a mixture of toroidal and poloidal fields), and field-reversed configurations
Assessing confinement in coastal lagoons.
Canu, Donata Melaku; Solidoro, Cosimo; Umgiesser, Georg; Cucco, Andrea; Ferrarin, Christian
2012-11-01
Measures of transport scale in aquatic systems can contribute to the formulation of definitions of indicators of the system's ecological properties. This paper addresses confinement, a specific transport scale proposed by biological scientists as a parameter that can capture and synthesize the principal properties that determine the spatial structure of biological communities in transitional environments. Currently, there is no direct experimental measure of confinement. In this study, a methodology based on the accumulation rate within a lagoon of a passive tracer of marine origin is proposed, the influences of different factors in the calculation of confinement are analyzed, and general recommendations are derived. In particular, we analyze the spatial and the temporal variability of confinement and its sensitivity to the seasonal variability of climatic forcing, the inputs from rivers and the parameterization of the tidal exchanges. The Lagoon of Venice is used as a case study. Copyright © 2012 Elsevier Ltd. All rights reserved.
Impurities confined in quantum structures
Holtz, Per Olof
2004-01-01
The introduction of impurities, even in very small concentrations, in a semiconductor can change its optical and electrical properties entirely. This attribute of the semiconductor is utilized in the manifoldness of their applications. In this book, the progress on elucidating the physical properties of impurities confined in quantum structures are reviewed with an emphasis on the experimental aspects. The major results of various kinds of characterization, such as infrared spectroscopy, Raman measurements, luminescence characterization, perturbation spectroscopy and dynamical studies of the confined impurities are reviewed, but also the theoretical basis to calculate the electronic structure of the confined donors and acceptors are presented. This monograph also describes more specific aspects of the confined impurities such as the properties in the high doping regime and the effects of hydrogen passivation.
Infrared slavery and quark confinement
Alabiso, C
1976-01-01
The question is considered of whether the so-called infrared slavery mechanism as, e.g., being manifest in non-Abelian gauge theories, necessarily confines quarks. Making a specific ansatz for the long- range forces, the Schwinger-Dyson equation is solved for the quark Green function. Besides having a confining solution, it appears that quarks may by-pass the long-range forces and be produced. (20 refs).
Ballooning instabilities in tokamaks with sheared toroidal flows
International Nuclear Information System (INIS)
Waelbroeck, F.L.; Chen, L.
1990-11-01
The stability of ballooning modes in the presence of sheared toroidal flows is investigated. The eigenmodes are shown to be related by a Fourier transformation to the non-exponentially growing Floquet solutions found by Cooper. It is further shown that the problem cannot be reduced further than to a two dimensional partial differential equation. Next, the generalized ballooning equation is solved analytically for a circular tokamak equilibrium with sonic flows, but with a small rotation shear compared to the sound speed. With this ordering, the centrifugal forces are comparable to the pressure gradient forces driving the instability, but coupling of the mode with the sound wave is avoided. A new stability criterion is derived which explicitly demonstrates that flow shear is stabilizing at constant centrifugal force gradient. 34 refs
Fabrication of the KSTAR toroidal field coil structure
International Nuclear Information System (INIS)
Choi, C.H.; Sa, J.W.; Park, H.K.; Hong, K.H.; Shin, H.; Kim, H.T.; Bak, J.S.; Lee, G.S.; Kwak, J.H.; Moon, H.G.; Yoon, H.H.; Lee, J.W.; Lee, S.K.; Song, J.Y.; Nam, K.M.; Byun, S.E.; Kim, H.C.; Ha, E.T.; Ahn, H.J.; Kim, D.S.; Lee, J.S.; Park, K.H.; Hong, C.D.
2005-01-01
The KSTAR toroidal field (TF) coil structure is under fabrication upon completion of engineering design and prototype construction. The prototype TF coil structure has been fabricated within allowable tolerances. Encasing of the prototype TF coil (TF00) in the prototype structure has been carried out through major processes involving a coil encasing, an enclosing weld, a vacuum pressure impregnation, and an outer surface machining. During the enclosing weld of the TF00 coil structure, we have measured temperatures and stresses on the coil surface. Assembly test had been performed with the TF00 coil structure. We have chosen Type 316LN as material of the TF coil structure. We used the narrow-gap TIG welding method. Doosan Heavy Industries and Construction Company (DHI) will complete the fabrication of the TF coil structure in Feb. 2006. (author)
MHD Stability of Free Boundary Toroidal Z Pinch
Sugisaki, Kiwamu
1990-06-01
The Magnetohydrodynamic (MHD) stability of a free boundary toroidal Z pinch plasma is investigated. Equilibrium field profiles are chosen so that μ is nearly uniform in the central region, μ and dμ/dr vanish on the boundary and Suydam’s criterion is satisfied throughout the plasma. The stability of the equilibrium is examined for the ratio b of the conducting wall radius to the plasma radius and plasma pressure. The stability of non-resonant ideal modes is determined mainly from the safty factor on the axis. Non-resonant modes are dominant for low plasma pressure, whereas resonant modes are dominant for high plasma pressure. Tearing modes are stable only for b below 1.04. The width of the magnetic islands produced from the tearing modes is evaluated. As b increases, overlap of the magnetic islands occurs over a wide area in the plasma.
Electron cyclotron heating and current drive in toroidal geometry
Energy Technology Data Exchange (ETDEWEB)
Kritz, A.H.
1993-03-01
The Principal Investigator has continued to work on problems associated both with the deposition and with the emission of electron cyclotron heating power electron cyclotron heating in toroidal plasmas. Inparticular, the work has focused on the use of electron cyclotron heating to stabilize q = 1 and q = 2 instabilities in tokamaks and on the use of electron cyclotron emission as a plasma diagnostic. The research described in this report has been carried out in collaboration with scientists at Princeton, MIT and Livermore. The Principal Investigator is now employed at Lehigh University, and a small group effort on electron cyclotron heating in plasmas has begun to evolve at Lehigh involving undergraduate and graduate students. Work has also been done in support of the electron cyclotron heating and current drive program at the Center for Research in Plasma Physics in Lausanne, Switzerland.
Interactions of toroidally coupled tearing modes in the KSTAR tokamak
Kim, Gnan; Yun, Gunsu S.; Woo, Minho; Park, Hyeon K.; KSTAR team2, the
2018-03-01
The evolutions of toroidally coupled radially-distant and radially-adjacent tearing modes are visualized in 2D in detail on the Korea superconducting tokamak for advanced research. The coupled tearing modes are in-phase on the out-board mid-plane and become destabilized or compete with each other depending on their spatial separation. When two coupled tearing modes are far apart, both are increasingly destabilized. On the other hand, when they become close to each other, one becomes stabilized while the other becomes destabilized. In such cases, an additional tearing mode is often formed on outer rational flux surface and the three tearing modes compete. The competitions suggest that spatial overlap (merging) of coupled magnetic islands is difficult.
Characteristics of toroidal energy deposition asymmetries in ASDEX
International Nuclear Information System (INIS)
Evans, T.E.; Neuhauser, J.; Leuterer, F.; Mueller, E.R.
1990-01-01
Large toroidal and poloidal asymmetries with characteristics which are sensitively dependent on q a , the vertical position of the plasma, and the type of additional heating are observed in the energy flow to the ASDEX divertor target plates. The largest asymmetries and total energy depositions are observed during lower hybrid wave injection experiments with approximately 50% of the input energy going to the combined divertor targets and shields. A maximum localized energy density loading of 10 MJ/m 2 is typical under these conditions. Measurements of the asymmetries are consistent with a model in which magnetic islands and ergodicity due to intrinsic magnetic perturbations dominate the energy transpot across the primary magnetic separatrix. The results emphasize the essential role of resonant magnetic perturbations in determining the performance of tokamaks and demonstrate that non-axisymmetric effects caused by small perturbations become increasingly important in determining the transport properties as the injected power is increased. (orig.)
Manufacturing aspects of toroidal field magnets for tokamak power reactors
International Nuclear Information System (INIS)
Smith, G.E.
1977-01-01
The manufacturing aspects of two different toroidal field (TF) coils are discussed briefly. The first of these is the Tokamak Fusion Test Reactor (TFTR) TF coil, which is presently in the design phase at the Princeton Plasma Physics Laboratory. The second coil configuration reflects a reference design for a large experimental power reactor (EPR) which originated at the Oak Ridge National Laboratory. This configuration was used by the Grumman Aerospace Corporation of Bethpage, N.Y. as the basis for an investigation of the manufacturing aspects of a large superconducting TF coil, the results of which are summarized. For each of these coils, the major characteristics of the design are first briefly described and the significant manufacturing aspects are then summarized
Manufacturing aspects of the ATLAS barrel toroid double pancakes
Drago, G; Gagliardi, P; Laurenti, A; Marabotto, R; Penco, R
2002-01-01
In 1999 INFN (Istituto Nazionale di Fisica Nucleare) ordered to ANSALDO the manufacturing of 16 double pancakes for the ATLAS BARREL TOROID. In July 2001 four Double Pancakes have already been completed and shipped to the integration site. In this paper the main aspects of the manufacturing of the largest superconducting coils ever built (5*25 m) are described. The main phases of the manufacturing procedure are reviewed starting from the conductor preparation to the VPI impregnation, including references to the materials used as well as to the relevant customer's requirements. In particular the special winding form and the winding technique are treated. For each phase the most critical aspects and the relevant solutions are pointed out. Particular details about the technical solutions adopted for the impregnation and curing of the Double Pancake, which could not be performed inside an autoclave due to the huge dimension of the coil itself, are reported. Finally the methods used for the dimensional and electri...
First assembly phase for the ATLAS toroid coils
Maximilien Brice
2003-01-01
The ATLAS barrel toroid system consists of eight coils, each of axial length 25.3 m, assembled radially and symmetrically around the beam axis. The coils are of a flat racetrack type with two double-pancake windings made of 20.5 kA aluminium-stabilized niobium-titanium superconductor. In the first phase of assembly, the two 'pancakes' are packed into their vacuum vessel. This is done using bladders filled with resin and glass microbeads under pressure. The resin is heated and, once cooled, holds the pancakes in place. The operation has to be performed on both sides of the coil, which necessitated a special technique to turn the coils over and then transport them to the heating table. Photos 01, 02, 03: Transporting the coil to the heating table using a special lifting gantry manufactured at JINR-Dubna, Russia in preparation for the 'bladderisation' operation.
Density Measurement of Compact Toroid with Mach-Zehnder Interferometer
Laufman-Wollitzer, Lauren; Endrizzi, Doug; Brookhart, Matt; Flanagan, Ken; Forest, Cary
2016-10-01
Utilizing a magnetized coaxial plasma gun (MCPG) built by Tri Alpha Energy, a dense compact toroid (CT) is created and injected at high speed into the Wisconsin Plasma Astrophysics Laboratory (WiPAL) vessel. A modified Mach-Zehnder interferometer from the Line-Tied Reconnection Experiment (LTRX) provides an absolute measurement of electron density. The interferometer is located such that the beam intersects the plasma across the diameter of the MCPG drift region before the CT enters the vessel. This placement ensures that the measurement is taken before the CT expand. Results presented will be used to further analyze characteristics of the CT. Funding provided by DoE, NSF, and WISE Summer Research.
Overview, Progress, and Plans for the Compact Toroidal Hybrid Experiment
Hartwell, G. J.; Allen, N. R.; Ennis, D. A.; Hanson, J. D.; Howell, E. C.; Johnson, C. A.; Knowlton, S. F.; Kring, J. D.; Ma, X.; Maurer, D. A.; Ross, K. G.; Schmitt, J. C.; Traverso, P. J.; Williamson, E. N.
2017-10-01
The Compact Toroidal Hybrid (CTH) is an l = 2 , m = 5 torsatron/tokamak hybrid (R0 = 0.75 m, ap 0.2 m, and | B | plasma current for heating and disruption studies. The main goals of the CTH experiment are to study disruptive behavior as a function of applied 3D magnetic shaping, and to test and advance the V3FIT reconstruction code and NIMROD modeling of CTH. The disruptive density limit is observed to exceed the Greenwald limit as the vacuum transform is increased with no observed threshold for avoidance. Low-q operations (1.1 eliminate the vertical drift of elongated discharges. Internal SXR diagnostics, in conjunction with external magnetics, extend the range of reconstruction accuracy into the plasma core. This work is supported by U.S. Department of Energy Grant No. DE-FG02-00ER54610.
Toroidal deuteron accelerator for Mo-98 neutron activation
Energy Technology Data Exchange (ETDEWEB)
Araujo, Wagner L., E-mail: wagner.leite@ifnmg.edu.br, E-mail: tprcampos@pq.cnpq.br [Instituto Federal do Norte de Minas Gerais (IFN-MG), Montes Claros, MG (Brazil); Campos, Tarcisio P.R. Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear
2017-07-01
The radionuclide Tc-{sup 99m} is the most useful radioisotope in nuclear medicine. It can be produced by the Mo-99 beta minus decay. Mo-99 has often been produced in a high- flux nuclear reactor through radioactive neutron capture reactions on Mo-98. The present paper provides a preliminary design of a toroidal transmutation system (TTS) based on a toroidal compact deuteron accelerator, which can provide the Mo-98 transmutation into Mo-99. This system is essentially composed of a multi-aperture plasma electrode and a target, submitted to 180 kV, where a positive deuteron beam is accelerated toward a titanium-target loaded with deuterium in which nuclear d-d fusion reactions are induced. The Particle Studio package of the Computer Simulation Technology (CST) software was applied to design, simulate and optimize the deuteron beam on the target. MCNP code provided to neutronic analysis. Based on electromagnetic and neutronic simulations, the neutron yield and reaction rates were estimated. The simulated data allowed appraising the Mo-99 activity. A TTS, in a specific configuration, could produce a total deuterium current of 1.6 A at the target and a neutron yield of 10{sup 13} n.s{sup -1}. In a arrangement of 30 column samples, TTS provides 230 mCi s{sup -1} Mo{sup 99} in each column, which represents 80% of Tc-99m in secular equilibrium. As conclusion, the system holds potential for generating Mo-99 and Tc-99m in a suitable activity in secular equilibrium. (author)
A compliant mechanism for inspecting extremely confined spaces
Mascareñas, David; Moreu, Fernando; Cantu, Precious; Shields, Daniel; Wadden, Jack; El Hadedy, Mohamed; Farrar, Charles
2017-11-01
We present a novel, compliant mechanism that provides the capability to navigate extremely confined spaces for the purpose of infrastructure inspection. Extremely confined spaces are commonly encountered during infrastructure inspection. Examples of such spaces can include pipes, conduits, and ventilation ducts. Often these infrastructure features go uninspected simply because there is no viable way to access their interior. In addition, it is not uncommon for extremely confined spaces to possess a maze-like architecture that must be selectively navigated in order to properly perform an inspection. Efforts by the imaging sensor community have resulted in the development of imaging sensors on the millimeter length scale. Due to their compact size, they are able to inspect many extremely confined spaces of interest, however, the means to deliver these sensors to the proper location to obtain the desired images are lacking. To address this problem, we draw inspiration from the field of endoscopic surgery. Specifically we consider the work that has already been done to create long flexible needles that are capable of being steered through the human body. These devices are typically referred to as ‘steerable needles.’ Steerable needle technology is not directly applicable to the problem of navigating maze-like arrangements of extremely confined spaces, but it does provide guidance on how this problem should be approached. Specifically, the super-elastic nitinol tubing material that allows steerable needles to operate is also appropriate for the problem of navigating maze-like arrangements of extremely confined spaces. Furthermore, the portion of the mechanism that enters the extremely confined space is completely mechanical in nature. The mechanical nature of the device is an advantage when the extremely confined space features environmental hazards such as radiation that could degrade an electromechanically operated mechanism. Here, we present a compliant mechanism
A Review of Quantum Confinement
Connerade, Jean-Patrick
2009-12-01
A succinct history of the Confined Atom problem is presented. The hydrogen atom confined to the centre of an impenetrable sphere counts amongst the exactly soluble problems of physics, alongside much more noted exact solutions such as Black Body Radiation and the free Hydrogen atom in absence of any radiation field. It shares with them the disadvantage of being an idealisation, while at the same time encapsulating in a simple way particular aspects of physical reality. The problem was first formulated by Sommerfeld and Welker [1]—henceforth cited as SW—in connection with the behaviour of atoms at very high pressures, and the solution was published on the occasion of Pauli's 60th birthday celebration. At the time, it seemed that there was not much other connection with physical reality beyond a few simple aspects connected to the properties of atoms in solids, for which more appropriate models were soon developed. Thus, confined atoms attracted little attention until the advent of the metallofullerene, which provided the first example of a confined atom with properties quite closely related to those originally considered by SW. Since then, the problem has received much more attention, and many more new features of quantum confinement, quantum compression, the quantum Faraday cage, electronic reorganisation, cavity resonances, etc have been described, which are relevant to real systems. Also, a number of other situations have been uncovered experimentally to which quantum confinement is relevant. Thus, studies of the confined atom are now more numerous, and have been extended both in terms of the models used and the systems to which they can be applied. Connections to thermodynamics are explored through the properties of a confined two-level atom adapted from Einstein's celebrated model, and issues of dynamical screening of electromagnetic radiation by the confining shell are discussed in connection with the Faraday cage produced by a confining conducting shell
Highly Confined Electronic and Ionic Conduction in Oxide Heterostructures
DEFF Research Database (Denmark)
Pryds, Nini
2015-01-01
The conductance confined at the interface of complex oxide heterostructures provides new opportunities to explore nanoelectronic as well as nanoionic devices. In this talk I will present our recent results both on ionic and electronic conductivity at different heterostructures systems. In the first...... unattainable for Bi2O3-based materials, is achieved[1]. These confined heterostructures provide a playground not only for new high ionic conductivity phenomena that are sufficiently stable but also uncover a large variety of possible technological perspectives. At the second part, I will discuss and show our...
The Properties of Confined Water and Fluid Flow at the Nanoscale
Energy Technology Data Exchange (ETDEWEB)
Schwegler, E; Reed, J; Lau, E; Prendergast, D; Galli, G; Grossman, J C; Cicero, G
2009-03-09
This project has been focused on the development of accurate computational tools to study fluids in confined, nanoscale geometries, and the application of these techniques to probe the structural and electronic properties of water confined between hydrophilic and hydrophobic substrates, including the presence of simple ions at the interfaces. In particular, we have used a series of ab-initio molecular dynamics simulations and quantum Monte Carlo calculations to build an understanding of how hydrogen bonding and solvation are modified at the nanoscale. The properties of confined water affect a wide range of scientific and technological problems - including protein folding, cell-membrane flow, materials properties in confined media and nanofluidic devices.