WorldWideScience

Sample records for topological phase transition

  1. Photoinduced Topological Phase Transitions in Topological Magnon Insulators.

    Science.gov (United States)

    Owerre, S A

    2018-03-13

    Topological magnon insulators are the bosonic analogs of electronic topological insulators. They are manifested in magnetic materials with topologically nontrivial magnon bands as realized experimentally in a quasi-two-dimensional (quasi-2D) kagomé ferromagnet Cu(1-3, bdc), and they also possess protected magnon edge modes. These topological magnetic materials can transport heat as well as spin currents, hence they can be useful for spintronic applications. Moreover, as magnons are charge-neutral spin-1 bosonic quasiparticles with a magnetic dipole moment, topological magnon materials can also interact with electromagnetic fields through the Aharonov-Casher effect. In this report, we study photoinduced topological phase transitions in intrinsic topological magnon insulators in the kagomé ferromagnets. Using magnonic Floquet-Bloch theory, we show that by varying the light intensity, periodically driven intrinsic topological magnetic materials can be manipulated into different topological phases with different sign of the Berry curvatures and the thermal Hall conductivity. We further show that, under certain conditions, periodically driven gapped topological magnon insulators can also be tuned to synthetic gapless topological magnon semimetals with Dirac-Weyl magnon cones. We envision that this work will pave the way for interesting new potential practical applications in topological magnetic materials.

  2. Casimir amplitudes in topological quantum phase transitions.

    Science.gov (United States)

    Griffith, M A; Continentino, M A

    2018-01-01

    Topological phase transitions constitute a new class of quantum critical phenomena. They cannot be described within the usual framework of the Landau theory since, in general, the different phases cannot be distinguished by an order parameter, neither can they be related to different symmetries. In most cases, however, one can identify a diverging length at these topological transitions. This allows us to describe them using a scaling approach and to introduce a set of critical exponents that characterize their universality class. Here we consider some relevant models of quantum topological transitions associated with well-defined critical exponents that are related by a quantum hyperscaling relation. We extend to these models a finite-size scaling approach based on techniques for calculating the Casimir force in electromagnetism. This procedure allows us to obtain universal Casimir amplitudes at their quantum critical points. Our results verify the validity of finite-size scaling in these systems and confirm the values of the critical exponents obtained previously.

  3. Realization of a topological phase transition in a gyroscopic lattice

    Science.gov (United States)

    Mitchell, Noah P.; Nash, Lisa M.; Irvine, William T. M.

    2018-03-01

    Topological metamaterials exhibit unusual behaviors at their boundaries, such as unidirectional chiral waves, that are protected by a topological feature of their band structures. The ability to tune such a material through a topological phase transition in real time could enable the use of protected waves for information storage and readout. Here we dynamically tune through a topological phase transition by breaking inversion symmetry in a metamaterial composed of interacting gyroscopes. Through the transition, we track the divergence of the edge modes' localization length and the change in Chern number characterizing the topology of the material's band structure. This Rapid Communication provides a new axis with which to tune the response of mechanical topological metamaterials.

  4. Inverse participation ratio and localization in topological insulator phase transitions

    International Nuclear Information System (INIS)

    Calixto, M; Romera, E

    2015-01-01

    Fluctuations of Hamiltonian eigenfunctions, measured by the inverse participation ratio (IPR), turn out to characterize topological-band insulator transitions occurring in 2D Dirac materials like silicene, which is isostructural with graphene but with a strong spin–orbit interaction. Using monotonic properties of the IPR, as a function of a perpendicular electric field (which provides a tunable band gap), we define topological-like quantum numbers that take different values in the topological-insulator and band-insulator phases. (paper)

  5. Signatures of topological phase transitions in mesoscopic superconducting rings

    International Nuclear Information System (INIS)

    Pientka, Falko; Romito, Alessandro; Duckheim, Mathias; Oppen, Felix von; Oreg, Yuval

    2013-01-01

    We investigate Josephson currents in mesoscopic rings with a weak link which are in or near a topological superconducting phase. As a paradigmatic example, we consider the Kitaev model of a spinless p-wave superconductor in one dimension, emphasizing how this model emerges from more realistic settings based on semiconductor nanowires. We show that the flux periodicity of the Josephson current provides signatures of the topological phase transition and the emergence of Majorana fermions (MF) situated on both sides of the weak link even when fermion parity is not a good quantum number. In large rings, the MF hybridize only across the weak link. In this case, the Josephson current is h/e periodic in the flux threading the loop when fermion parity is a good quantum number but reverts to the more conventional h/2e periodicity in the presence of fermion-parity changing relaxation processes. In mesoscopic rings, the MF also hybridize through their overlap in the interior of the superconducting ring. We find that in the topological superconducting phase, this gives rise to an h/e-periodic contribution even when fermion parity is not conserved and that this contribution exhibits a peak near the topological phase transition. This signature of the topological phase transition is robust to the effects of disorder. As a byproduct, we find that close to the topological phase transition, disorder drives the system deeper into the topological phase. This is in stark contrast to the known behavior far from the phase transition, where disorder tends to suppress the topological phase. (paper)

  6. Interaction effects and quantum phase transitions in topological insulators

    International Nuclear Information System (INIS)

    Varney, Christopher N.; Sun Kai; Galitski, Victor; Rigol, Marcos

    2010-01-01

    We study strong correlation effects in topological insulators via the Lanczos algorithm, which we utilize to calculate the exact many-particle ground-state wave function and its topological properties. We analyze the simple, noninteracting Haldane model on a honeycomb lattice with known topological properties and demonstrate that these properties are already evident in small clusters. Next, we consider interacting fermions by introducing repulsive nearest-neighbor interactions. A first-order quantum phase transition was discovered at finite interaction strength between the topological band insulator and a topologically trivial Mott insulating phase by use of the fidelity metric and the charge-density-wave structure factor. We construct the phase diagram at T=0 as a function of the interaction strength and the complex phase for the next-nearest-neighbor hoppings. Finally, we consider the Haldane model with interacting hard-core bosons, where no evidence for a topological phase is observed. An important general conclusion of our work is that despite the intrinsic nonlocality of topological phases their key topological properties manifest themselves already in small systems and therefore can be studied numerically via exact diagonalization and observed experimentally, e.g., with trapped ions and cold atoms in optical lattices.

  7. Quantum phase transitions of a disordered antiferromagnetic topological insulator

    Science.gov (United States)

    Baireuther, P.; Edge, J. M.; Fulga, I. C.; Beenakker, C. W. J.; Tworzydło, J.

    2014-01-01

    We study the effect of electrostatic disorder on the conductivity of a three-dimensional antiferromagnetic insulator (a stack of quantum anomalous Hall layers with staggered magnetization). The phase diagram contains regions where the increase of disorder first causes the appearance of surface conduction (via a topological phase transition), followed by the appearance of bulk conduction (via a metal-insulator transition). The conducting surface states are stabilized by an effective time-reversal symmetry that is broken locally by the disorder but restored on long length scales. A simple self-consistent Born approximation reliably locates the boundaries of this so-called "statistical" topological phase.

  8. Topological defect densities in type-I superconducting phase transitions

    International Nuclear Information System (INIS)

    Paramos, J.; Bertolami, O.; Girard, T.A.; Valko, P.

    2003-01-01

    We examine the consequences of a cubic term added to the mean-field potential of Ginzburg-Landau theory to describe first-order superconducting phase transitions. Constraints on its existence are obtained from experiment, which are used to assess its impact on topological defect creation. We find no fundamental changes in either the Kibble-Zurek or Hindmarsh-Rajantie predictions

  9. Quantum Phase Transition and Entanglement in Topological Quantum Wires.

    Science.gov (United States)

    Cho, Jaeyoon; Kim, Kun Woo

    2017-06-05

    We investigate the quantum phase transition of the Su-Schrieffer-Heeger (SSH) model by inspecting the two-site entanglements in the ground state. It is shown that the topological phase transition of the SSH model is signified by a nonanalyticity of local entanglement, which becomes discontinuous for finite even system sizes, and that this nonanalyticity has a topological origin. Such a peculiar singularity has a universal nature in one-dimensional topological phase transitions of noninteracting fermions. We make this clearer by pointing out that an analogous quantity in the Kitaev chain exhibiting the identical nonanalyticity is the local electron density. As a byproduct, we show that there exists a different type of phase transition, whereby the pattern of the two-site entanglements undergoes a sudden change. This transition is characterised solely by quantum information theory and does not accompany the closure of the spectral gap. We analyse the scaling behaviours of the entanglement in the vicinities of the transition points.

  10. Complex Nonlinearity Chaos, Phase Transitions, Topology Change and Path Integrals

    CERN Document Server

    Ivancevic, Vladimir G

    2008-01-01

    Complex Nonlinearity: Chaos, Phase Transitions, Topology Change and Path Integrals is a book about prediction & control of general nonlinear and chaotic dynamics of high-dimensional complex systems of various physical and non-physical nature and their underpinning geometro-topological change. The book starts with a textbook-like expose on nonlinear dynamics, attractors and chaos, both temporal and spatio-temporal, including modern techniques of chaos–control. Chapter 2 turns to the edge of chaos, in the form of phase transitions (equilibrium and non-equilibrium, oscillatory, fractal and noise-induced), as well as the related field of synergetics. While the natural stage for linear dynamics comprises of flat, Euclidean geometry (with the corresponding calculation tools from linear algebra and analysis), the natural stage for nonlinear dynamics is curved, Riemannian geometry (with the corresponding tools from nonlinear, tensor algebra and analysis). The extreme nonlinearity – chaos – corresponds to th...

  11. Topological phase transitions in the gauged BPS baby Skyrme model

    International Nuclear Information System (INIS)

    Adam, C.; Naya, C.; Romanczukiewicz, T.; Sanchez-Guillen, J.; Wereszczynski, A.

    2015-01-01

    We demonstrate that the gauged BPS baby Skyrme model with a double vacuum potential allows for phase transitions from a non-solitonic to a solitonic phase, where the latter corresponds to a ferromagnetic liquid. Such a transition can be generated by increasing the external pressure P or by turning on an external magnetic field H. As a consequence, the topological phase where gauged BPS baby skyrmions exist, is a higher density phase. For smaller densities, obtained for smaller values of P and H, a phase without solitons is reached. We find the critical line in the P,H parameter space. Furthermore, in the soliton phase, we find the equation of state for the baby skyrmion matter V=V(P,H) at zero temperature, where V is the “volume”, i.e., area of the solitons.

  12. Topological phase transitions in the gauged BPS baby Skyrme model

    Energy Technology Data Exchange (ETDEWEB)

    Adam, C.; Naya, C. [Departamento de Física de Partículas, Universidad de Santiago de Compostela andInstituto Galego de Física de Altas Enerxias (IGFAE), Santiago de Compostela, E-15782 (Spain); Romanczukiewicz, T. [Institute of Physics, Jagiellonian University, Lojasiecza 11, Kraków, 30-348 (Poland); Sanchez-Guillen, J. [Departamento de Física de Partículas, Universidad de Santiago de Compostela andInstituto Galego de Física de Altas Enerxias (IGFAE), Santiago de Compostela, E-15782 (Spain); Wereszczynski, A. [Institute of Physics, Jagiellonian University, Lojasiecza 11, Kraków, 30-348 (Poland)

    2015-05-29

    We demonstrate that the gauged BPS baby Skyrme model with a double vacuum potential allows for phase transitions from a non-solitonic to a solitonic phase, where the latter corresponds to a ferromagnetic liquid. Such a transition can be generated by increasing the external pressure P or by turning on an external magnetic field H. As a consequence, the topological phase where gauged BPS baby skyrmions exist, is a higher density phase. For smaller densities, obtained for smaller values of P and H, a phase without solitons is reached. We find the critical line in the P,H parameter space. Furthermore, in the soliton phase, we find the equation of state for the baby skyrmion matter V=V(P,H) at zero temperature, where V is the “volume”, i.e., area of the solitons.

  13. Topological phase transitions from Harper to Fibonacci crystals

    Science.gov (United States)

    Amit, Guy; Dana, Itzhack

    2018-02-01

    Topological properties of Harper and generalized Fibonacci chains are studied in crystalline cases, i.e., for rational values of the modulation frequency. The Harper and Fibonacci crystals at fixed frequency are connected by an interpolating one-parameter Hamiltonian. As the parameter is varied, one observes topological phase transitions, i.e., changes in the Chern integers of two bands due to the degeneracy of these bands at some parameter value. For small frequency, corresponding to a semiclassical regime, the degeneracies are shown to occur when the average energy of the two bands is approximately equal to the energy of the classical separatrix. Spectral and topological features of the Fibonacci crystal for small frequency leave a clear imprint on the corresponding Hofstadter butterfly for arbitrary frequency.

  14. Strain-induced topological quantum phase transition in phosphorene oxide

    Science.gov (United States)

    Kang, Seoung-Hun; Park, Jejune; Woo, Sungjong; Kwon, Young-Kyun

    Using ab initio density functional theory, we investigate the structural stability and electronic properties of phosphorene oxides (POx) with different oxygen compositions x. A variety of configurations are modeled and optimized geometrically to search for the equilibrium structure for each x value. Our electronic structure calculations on the equilibrium configuration obtained for each x reveal that the band gap tends to increase with the oxygen composition of x 0.5. We further explore the strain effect on the electronic structure of the fully oxidized phosphorene, PO, with x = 1. At a particular strain without spin-orbit coupling (SOC) is observed a band gap closure near the Γ point in the k space. We further find the strain in tandem with SOC induces an interesting band inversion with a reopened very small band gap (5 meV), and thus gives rise to a topological quantum phase transition from a normal insulator to a topological insulator. Such a topological phase transition is confirmed by the wave function analysis and the band topology identified by the Z2 invariant calculation.

  15. Phase-Field Simulations of Topological Structures and Topological Phase Transitions in Ferroelectric Oxide Heterostructures

    Science.gov (United States)

    Zijian Hong

    Ferroelectrics are materials that exhibit spontaneous electric polarization which can be switched between energy-degenerated states by external stimuli (e.g., mechanical force and electric field) that exceeds a critical value. They have wide potential applications in memories, capacitors, piezoelectric and pyroelectric sensors, and nanomechanical systems. Topological structures and topological phase transitions have been introduced to the condensed matter physics in the past few decades and have attracted broad attentions in various disciplines due to the rich physical insights and broad potential applications. Ferromagnetic topological structures such as vortex and skyrmion are known to be stabilized by the antisymmetric chiral interaction (e.g., Dzyaloshinskii-Moriya interaction). Without such interaction, ferroelectric topological structures (i.e., vortex, flux-closure, skyrmions, and merons) have been studied only recently with other designing strategies, such as reducing the dimension of the ferroelectrics. The overarching goal of this dissertation is to investigate the topological structures in ferroelectric oxide perovskites as well as the topological phase transitions under external applied forces. Pb(Zr,Ti)O3 (PZT) with morphotropic phase boundary is widely explored for high piezoelectric and dielectric properties. The domain structure of PZT tetragonal/rhombohedral (T/R) bilayer is investigated. Strong interfacial coupling is shown, with large polarization rotation to a lower symmetry phase near the T/R interface. Interlayer domain growth can also be captured, with T-domains in the R layer and R-domains in the T layer. For thin PZT bilayer with 5nm of T-layer and 20 nm of R-layer, the a1/a 2 twin domain structure is formed in the top T layer, which could be fully switched to R domains under applied bias. While a unique flux-closure pattern is observed both theoretically and experimentally in the thick bilayer film with 50 nm of thickness for both T and R

  16. Unconventional transformation of spin Dirac phase across a topological quantum phase transition

    Science.gov (United States)

    Xu, Su-Yang; Neupane, Madhab; Belopolski, Ilya; Liu, Chang; Alidoust, Nasser; Bian, Guang; Jia, Shuang; Landolt, Gabriel; Slomski, Batosz; Dil, J. Hugo; Shibayev, Pavel P.; Basak, Susmita; Chang, Tay-Rong; Jeng, Horng-Tay; Cava, Robert J.; Lin, Hsin; Bansil, Arun; Hasan, M. Zahid

    2015-01-01

    The topology of a topological material can be encoded in its surface states. These surface states can only be removed by a bulk topological quantum phase transition into a trivial phase. Here we use photoemission spectroscopy to image the formation of protected surface states in a topological insulator as we chemically tune the system through a topological transition. Surprisingly, we discover an exotic spin-momentum locked, gapped surface state in the trivial phase that shares many important properties with the actual topological surface state in anticipation of the change of topology. Using a spin-resolved measurement, we show that apart from a surface bandgap these states develop spin textures similar to the topological surface states well before the transition. Our results offer a general paradigm for understanding how surface states in topological phases arise from a quantum phase transition and are suggestive for the future realization of Weyl arcs, condensed matter supersymmetry and other fascinating phenomena in the vicinity of a quantum criticality. PMID:25882717

  17. Phase transitions, double-scaling limit, and topological strings

    International Nuclear Information System (INIS)

    Caporaso, Nicola; Griguolo, Luca; Pasquetti, Sara; Marino, Marcos; Seminara, Domenico

    2007-01-01

    Topological strings on Calabi-Yau manifolds are known to undergo phase transitions at small distances. We study this issue in the case of perturbative topological strings on local Calabi-Yau threefolds given by a bundle over a two-sphere. This theory can be regarded as a q-deformation of Hurwitz theory, and it has a conjectural nonperturbative description in terms of q-deformed 2D Yang-Mills theory. We solve the planar model and find a phase transition at small radius in the universality class of 2D gravity. We give strong evidence that there is a double-scaled theory at the critical point whose all-genus free energy is governed by the Painleve I equation. We compare the critical behavior of the perturbative theory to the critical behavior of its nonperturbative description, which belongs to the universality class of 2D supergravity, and we comment on possible implications for nonperturbative 2D gravity. We also give evidence for a new open/closed duality relating these Calabi-Yau backgrounds to open strings with framing

  18. Dynamical Detection of Topological Phase Transitions in Short-Lived Atomic Systems

    OpenAIRE

    Setiawan, F.; Sengupta, K.; Spielman, I. B.; Sau, Jay D.

    2015-01-01

    We demonstrate that dynamical probes provide direct means of detecting the topological phase transition (TPT) between conventional and topological phases, which would otherwise be difficult to access because of loss or heating processes. We propose to avoid such heating by rapidly quenching in and out of the short-lived topological phase across the transition that supports gapless excitations. Following the quench, the distribution of excitations in the final conventional phase carries signat...

  19. Multiple topological phase transitions in a gyromagnetic photonic crystal

    KAUST Repository

    Chen, Zeguo; Mei, Jun; Sun, Xiao Cheng; Zhang, Xiujuan; Zhao, Jiajun; Wu, Ying

    2017-01-01

    reveals that the topological property is associated with the pseudospin orientations and that it is characterized by the spin Chern number. The emerging quantum anomalous Hall phase features a single helical edge state that is locked by a specific

  20. Topological phase transition in the quench dynamics of a one-dimensional Fermi gas

    OpenAIRE

    Wang, Pei; Yi, Wei; Xianlong, Gao

    2014-01-01

    We study the quench dynamics of a one-dimensional ultracold Fermi gas in an optical lattice potential with synthetic spin-orbit coupling. At equilibrium, the ground state of the system can undergo a topological phase transition and become a topological superfluid with Majorana edge states. As the interaction is quenched near the topological phase boundary, we identify an interesting dynamical phase transition of the quenched state in the long-time limit, characterized by an abrupt change of t...

  1. Strain-induced topological magnon phase transitions: applications to kagome-lattice ferromagnets

    Science.gov (United States)

    Owerre, S. A.

    2018-06-01

    A common feature of topological insulators is that they are characterized by topologically invariant quantity such as the Chern number and the index. This quantity distinguishes a nontrivial topological system from a trivial one. A topological phase transition may occur when there are two topologically distinct phases, and it is usually defined by a gap closing point where the topologically invariant quantity is ill-defined. In this paper, we show that the magnon bands in the strained (distorted) kagome-lattice ferromagnets realize an example of a topological magnon phase transition in the realistic parameter regime of the system. When spin–orbit coupling (SOC) is neglected (i.e. no Dzyaloshinskii–Moriya interaction), we show that all three magnon branches are dispersive with no flat band, and there exists a critical point where tilted Dirac and semi-Dirac point coexist in the magnon spectra. The critical point separates two gapless magnon phases as opposed to the usual phase transition. Upon the inclusion of SOC, we realize a topological magnon phase transition point at the critical strain , where D and J denote the perturbative SOC and the Heisenberg spin exchange interaction respectively. It separates two distinct topological magnon phases with different Chern numbers for and for . The associated anomalous thermal Hall conductivity develops an abrupt change at , due to the divergence of the Berry curvature in momentum space. The proposed topological magnon phase transition is experimentally feasible by applying external perturbations such as uniaxial strain or pressure.

  2. Multiple topological phase transitions in a gyromagnetic photonic crystal

    KAUST Repository

    Chen, Zeguo

    2017-04-19

    We present the design of a tunable two-dimensional photonic crystal that exhibits multiple topological phases, including a conventional insulator phase, a quantum spin Hall phase, and a quantum anomalous Hall phase under different combinations of geometric parameters and external magnetic fields. Our photonic crystal enables a platform to study the topology evolution attributed to the interplay between crystalline symmetry and time-reversal symmetry. A four-band tight-binding model unambiguously reveals that the topological property is associated with the pseudospin orientations and that it is characterized by the spin Chern number. The emerging quantum anomalous Hall phase features a single helical edge state that is locked by a specific pseudospin. Simulation results demonstrate that the propagation of such a single helical edge state is robust against magnetic impurities. Potential applications, such as spin splitters, are described.

  3. Topological quantum phase transitions and edge states in spin-orbital coupled Fermi gases.

    Science.gov (United States)

    Zhou, Tao; Gao, Yi; Wang, Z D

    2014-06-11

    We study superconducting states in the presence of spin-orbital coupling and Zeeman field. It is found that a phase transition from a Fulde-Ferrell-Larkin-Ovchinnikov state to the topological superconducting state occurs upon increasing the spin-orbital coupling. The nature of this topological phase transition and its critical property are investigated numerically. Physical properties of the topological superconducting phase are also explored. Moreover, the local density of states is calculated, through which the topological feature may be tested experimentally.

  4. Inflation and Topological Phase Transition Driven by Exotic Smoothness

    Directory of Open Access Journals (Sweden)

    Torsten Asselmeyer-Maluga

    2014-01-01

    Full Text Available We will discuss a model which describes the cause of inflation by a topological transition. The guiding principle is the choice of an exotic smoothness structure for the space-time. Here we consider a space-time with topology S3×ℝ. In case of an exotic S3×ℝ, there is a change in the spatial topology from a 3-sphere to a homology 3-sphere which can carry a hyperbolic structure. From the physical point of view, we will discuss the path integral for the Einstein-Hilbert action with respect to a decomposition of the space-time. The inclusion of the boundary terms produces fermionic contributions to the partition function. The expectation value of an area (with respect to some surface shows an exponential increase; that is, we obtain inflationary behavior. We will calculate the amount of this increase to be a topological invariant. Then we will describe this transition by an effective model, the Starobinski or R2 model which is consistent with the current measurement of the Planck satellite. The spectral index and other observables are also calculated.

  5. Electrically controlled band gap and topological phase transition in two-dimensional multilayer germanane

    International Nuclear Information System (INIS)

    Qi, Jingshan; Li, Xiao; Qian, Xiaofeng

    2016-01-01

    Electrically controlled band gap and topological electronic states are important for the next-generation topological quantum devices. In this letter, we study the electric field control of band gap and topological phase transitions in multilayer germanane. We find that although the monolayer and multilayer germananes are normal insulators, a vertical electric field can significantly reduce the band gap of multilayer germananes owing to the giant Stark effect. The decrease of band gap eventually leads to band inversion, transforming them into topological insulators with nontrivial Z_2 invariant. The electrically controlled topological phase transition in multilayer germananes provides a potential route to manipulate topologically protected edge states and design topological quantum devices. This strategy should be generally applicable to a broad range of materials, including other two-dimensional materials and ultrathin films with controlled growth.

  6. Valley polarized quantum Hall effect and topological insulator phase transitions in silicene

    KAUST Repository

    Tahir, M.; Schwingenschlö gl, Udo

    2013-01-01

    encountered for graphene, in particular the zero band gap and weak spin orbit interaction. We demonstrate a valley polarized quantum Hall effect and topological insulator phase transitions. We use the Kubo formalism to discuss the Hall conductivity and address

  7. Two Topologically Distinct Dirac-Line Semimetal Phases and Topological Phase Transitions in Rhombohedrally Stacked Honeycomb Lattices

    Science.gov (United States)

    Hyart, T.; Ojajärvi, R.; Heikkilä, T. T.

    2018-04-01

    Three-dimensional topological semimetals can support band crossings along one-dimensional curves in the momentum space (nodal lines or Dirac lines) protected by structural symmetries and topology. We consider rhombohedrally (ABC) stacked honeycomb lattices supporting Dirac lines protected by time-reversal, inversion and spin rotation symmetries. For typical band structure parameters there exists a pair of nodal lines in the momentum space extending through the whole Brillouin zone in the stacking direction. We show that these Dirac lines are topologically distinct from the usual Dirac lines which form closed loops inside the Brillouin zone. In particular, an energy gap can be opened only by first merging the Dirac lines going through the Brillouin zone in a pairwise manner so that they turn into closed loops inside the Brillouin zone, and then by shrinking these loops into points. We show that this kind of topological phase transition can occur in rhombohedrally stacked honeycomb lattices by tuning the ratio of the tunneling amplitudes in the directions perpendicular and parallel to the layers. We also discuss the properties of the surface states in the different phases of the model.

  8. Fermi points and topological quantum phase transitions in a multi-band superconductor.

    Science.gov (United States)

    Puel, T O; Sacramento, P D; Continentino, M A

    2015-10-28

    The importance of models with an exact solution for the study of materials with non-trivial topological properties has been extensively demonstrated. The Kitaev model plays a guiding role in the search for Majorana modes in condensed matter systems. Also, the sp-chain with an anti-symmetric mixing among the s and p bands is a paradigmatic example of a topological insulator with well understood properties. Interestingly, these models share the same universality class for their topological quantum phase transitions. In this work we study a two-band model of spinless fermions with attractive inter-band interactions. We obtain its zero temperature phase diagram, which presents a rich variety of phases including a Weyl superconductor and a topological insulator. The transition from the topological to the trivial superconducting phase has critical exponents different from those of Kitaev's model.

  9. Phase transitions and topological excitations in hypergauge theories

    International Nuclear Information System (INIS)

    Nencka-Ficek, H.

    1985-01-01

    The problems connected with the phase structure of antisymmetric tensor gauge fields are investigated. (s+1)-dimensional hyperloops cannot be constructed in (s+1)-dimensional lattices. This is the cause of a lack of phase transitions in the U(1) theories with fields being sth-kind gauge invariant in the (s+1)-dimensional lattice

  10. Quantum spin/valley Hall effect and topological insulator phase transitions in silicene

    KAUST Repository

    Tahir, M.

    2013-04-26

    We present a theoretical realization of quantum spin and quantum valley Hall effects in silicene. We show that combination of an electric field and intrinsic spin-orbit interaction leads to quantum phase transitions at the charge neutrality point. This phase transition from a two dimensional topological insulator to a trivial insulating state is accompanied by a quenching of the quantum spin Hall effect and the onset of a quantum valley Hall effect, providing a tool to experimentally tune the topological state of silicene. In contrast to graphene and other conventional topological insulators, the proposed effects in silicene are accessible to experiments.

  11. Quantum spin/valley Hall effect and topological insulator phase transitions in silicene

    KAUST Repository

    Tahir, M.; Manchon, Aurelien; Sabeeh, K.; Schwingenschlö gl, Udo

    2013-01-01

    We present a theoretical realization of quantum spin and quantum valley Hall effects in silicene. We show that combination of an electric field and intrinsic spin-orbit interaction leads to quantum phase transitions at the charge neutrality point. This phase transition from a two dimensional topological insulator to a trivial insulating state is accompanied by a quenching of the quantum spin Hall effect and the onset of a quantum valley Hall effect, providing a tool to experimentally tune the topological state of silicene. In contrast to graphene and other conventional topological insulators, the proposed effects in silicene are accessible to experiments.

  12. Dynamical Detection of Topological Phase Transitions in Short-Lived Atomic Systems

    Science.gov (United States)

    Setiawan, F.; Sengupta, K.; Spielman, I. B.; Sau, Jay D.

    2015-11-01

    We demonstrate that dynamical probes provide direct means of detecting the topological phase transition (TPT) between conventional and topological phases, which would otherwise be difficult to access because of loss or heating processes. We propose to avoid such heating by rapidly quenching in and out of the short-lived topological phase across the transition that supports gapless excitations. Following the quench, the distribution of excitations in the final conventional phase carries signatures of the TPT. We apply this strategy to study the TPT into a Majorana-carrying topological phase predicted in one-dimensional spin-orbit-coupled Fermi gases with attractive interactions. The resulting spin-resolved momentum distribution, computed by self-consistently solving the time-dependent Bogoliubov-de Gennes equations, exhibits Kibble-Zurek scaling and Stückelberg oscillations characteristic of the TPT. We discuss parameter regimes where the TPT is experimentally accessible.

  13. Exotic topological insulator states and topological phase transitions in Sb2Se3-Bi2Se3 heterostructures

    KAUST Repository

    Zhang, Qianfan

    2012-03-27

    Topological insulator is a new state of matter attracting tremendous interest due to its gapless linear dispersion and spin momentum locking topological states located near the surface. Heterostructures, which have traditionally been powerful in controlling the electronic properties of semiconductor devices, are interesting for topological insulators. Here, we studied the spatial distribution of the topological state in Sb 2Se 3-Bi 2Se 3 heterostructures by first-principle simulation and discovered that an exotic topological state exists. Surprisingly, the state migrates from the nontrivial Bi 2Se 3 into the trivial Sb 2Se 3 region and spreads across the entire Sb 2Se 3 slab, extending beyond the concept of "surface" state while preserving all of the topological surface state characteristics. This unusual topological state arises from the coupling between different materials and the modification of electronic structure near Fermi energy. Our study demonstrates that heterostructures can open up opportunities for controlling the real-space distribution of the topological state and inducing quantum phase transitions between topologically trivial and nontrivial states. © 2012 American Chemical Society.

  14. Critical current anomaly at the topological quantum phase transition in a Majorana Josephson junction

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Hong [School of Physics, Sun Yat-sen University, Guangzhou 510275 (China); Liang, Qi-Feng [Department of Physics, Shaoxing University, Shaoxing 312000 (China); Yao, Dao-Xin, E-mail: yaodaox@mail.sysu.edu.cn [School of Physics, Sun Yat-sen University, Guangzhou 510275 (China); Wang, Zhi, E-mail: physicswangzhi@gmail.com [School of Physics, Sun Yat-sen University, Guangzhou 510275 (China)

    2017-06-28

    Majorana bound states in topological Josephson junctions induce a 4π period current-phase relation. Direct detection of the 4π periodicity is complicated by the quasiparticle poisoning. We reveal that Majorana bound states are also signaled by the anomalous enhancement on the critical current of the junction. We show the landscape of the critical current for a nanowire Josephson junction under a varying Zeeman field, and reveal a sharp step feature at the topological quantum phase transition point, which comes from the anomalous enhancement of the critical current at the topological regime. In multi-band wires, the anomalous enhancement disappears for an even number of bands, where the Majorana bound states fuse into Andreev bound states. This anomalous critical current enhancement directly signals the existence of the Majorana bound states, and also provides a valid signature for the topological quantum phase transition. - Highlights: • We introduce the critical current step as a signal for the topological quantum phase transition. • We study the quantum phase transition in the topological nanowire under a rotating Zeeman field. • We show that the critical current anomaly gradually disappears for systems with more sub-bands.

  15. Simulating a topological transition in a superconducting phase qubit by fast adiabatic trajectories

    Science.gov (United States)

    Wang, Tenghui; Zhang, Zhenxing; Xiang, Liang; Gong, Zhihao; Wu, Jianlan; Yin, Yi

    2018-04-01

    The significance of topological phases has been widely recognized in the community of condensed matter physics. The well controllable quantum systems provide an artificial platform to probe and engineer various topological phases. The adiabatic trajectory of a quantum state describes the change of the bulk Bloch eigenstates with the momentum, and this adiabatic simulation method is however practically limited due to quantum dissipation. Here we apply the "shortcut to adiabaticity" (STA) protocol to realize fast adiabatic evolutions in the system of a superconducting phase qubit. The resulting fast adiabatic trajectories illustrate the change of the bulk Bloch eigenstates in the Su-Schrieffer-Heeger (SSH) model. A sharp transition is experimentally determined for the topological invariant of a winding number. Our experiment helps identify the topological Chern number of a two-dimensional toy model, suggesting the applicability of the fast adiabatic simulation method for topological systems.

  16. Unconventional Topological Phase Transition in Two-Dimensional Systems with Space-Time Inversion Symmetry

    Science.gov (United States)

    Ahn, Junyeong; Yang, Bohm-Jung

    2017-04-01

    We study a topological phase transition between a normal insulator and a quantum spin Hall insulator in two-dimensional (2D) systems with time-reversal and twofold rotation symmetries. Contrary to the case of ordinary time-reversal invariant systems, where a direct transition between two insulators is generally predicted, we find that the topological phase transition in systems with an additional twofold rotation symmetry is mediated by an emergent stable 2D Weyl semimetal phase between two insulators. Here the central role is played by the so-called space-time inversion symmetry, the combination of time-reversal and twofold rotation symmetries, which guarantees the quantization of the Berry phase around a 2D Weyl point even in the presence of strong spin-orbit coupling. Pair creation and pair annihilation of Weyl points accompanying partner exchange between different pairs induces a jump of a 2D Z2 topological invariant leading to a topological phase transition. According to our theory, the topological phase transition in HgTe /CdTe quantum well structure is mediated by a stable 2D Weyl semimetal phase because the quantum well, lacking inversion symmetry intrinsically, has twofold rotation about the growth direction. Namely, the HgTe /CdTe quantum well can show 2D Weyl semimetallic behavior within a small but finite interval in the thickness of HgTe layers between a normal insulator and a quantum spin Hall insulator. We also propose that few-layer black phosphorus under perpendicular electric field is another candidate system to observe the unconventional topological phase transition mechanism accompanied by the emerging 2D Weyl semimetal phase protected by space-time inversion symmetry.

  17. Exact phase boundaries and topological phase transitions of the X Y Z spin chain

    Science.gov (United States)

    Jafari, S. A.

    2017-07-01

    Within the block spin renormalization group, we give a very simple derivation of the exact phase boundaries of the X Y Z spin chain. First, we identify the Ising order along x ̂ or y ̂ as attractive renormalization group fixed points of the Kitaev chain. Then, in a global phase space composed of the anisotropy λ of the X Y interaction and the coupling Δ of the Δ σzσz interaction, we find that the above fixed points remain attractive in the two-dimesional parameter space. We therefore classify the gapped phases of the X Y Z spin chain as: (1) either attracted to the Ising limit of the Kitaev-chain, which in turn is characterized by winding number ±1 , depending on whether the Ising order parameter is along x ̂ or y ̂ directions; or (2) attracted to the charge density wave (CDW) phases of the underlying Jordan-Wigner fermions, which is characterized by zero winding number. We therefore establish that the exact phase boundaries of the X Y Z model in Baxter's solution indeed correspond to topological phase transitions. The topological nature of the phase transitions of the X Y Z model justifies why our analytical solution of the three-site problem that is at the core of the present renormalization group treatment is able to produce the exact phase boundaries of Baxter's solution. We argue that the distribution of the winding numbers between the three Ising phases is a matter of choice of the coordinate system, and therefore the CDW-Ising phase is entitled to host appropriate form of zero modes. We further observe that in the Kitaev-chain the renormalization group flow can be cast into a geometric progression of a properly identified parameter. We show that this new parameter is actually the size of the (Majorana) zero modes.

  18. Large magnetoresistance dips and perfect spin-valley filter induced by topological phase transitions in silicene

    Science.gov (United States)

    Prarokijjak, Worasak; Soodchomshom, Bumned

    2018-04-01

    Spin-valley transport and magnetoresistance are investigated in silicene-based N/TB/N/TB/N junction where N and TB are normal silicene and topological barriers. The topological phase transitions in TB's are controlled by electric, exchange fields and circularly polarized light. As a result, we find that by applying electric and exchange fields, four groups of spin-valley currents are perfectly filtered, directly induced by topological phase transitions. Control of currents, carried by single, double and triple channels of spin-valley electrons in silicene junction, may be achievable by adjusting magnitudes of electric, exchange fields and circularly polarized light. We may identify that the key factor behind the spin-valley current filtered at the transition points may be due to zero and non-zero Chern numbers. Electrons that are allowed to transport at the transition points must obey zero-Chern number which is equivalent to zero mass and zero-Berry's curvature, while electrons with non-zero Chern number are perfectly suppressed. Very large magnetoresistance dips are found directly induced by topological phase transition points. Our study also discusses the effect of spin-valley dependent Hall conductivity at the transition points on ballistic transport and reveals the potential of silicene as a topological material for spin-valleytronics.

  19. Phase transition for black holes with scalar hair and topological black holes

    International Nuclear Information System (INIS)

    Myung, Yun Soo

    2008-01-01

    We study phase transitions between black holes with scalar hair and topological black holes in asymptotically anti-de Sitter spacetimes. As the ground state solutions, we introduce the non-rotating BTZ black hole in three dimensions and topological black hole with hyperbolic horizon in four dimensions. For the temperature matching only, we show that the phase transition between black hole with scalar hair (Martinez-Troncoso-Zanelli black hole) and topological black hole is second-order by using differences between two free energies. However, we do not identify what order of the phase transition between scalar and non-rotating BTZ black holes occurs in three dimensions, although there exists a possible decay of scalar black hole to non-rotating BTZ black hole

  20. Topological phase transitions and quantum Hall effect in the graphene family

    Science.gov (United States)

    Ledwith, P.; Kort-Kamp, W. J. M.; Dalvit, D. A. R.

    2018-04-01

    Monolayer staggered materials of the graphene family present intrinsic spin-orbit coupling and can be driven through several topological phase transitions using external circularly polarized lasers and static electric or magnetic fields. We show how topological features arising from photoinduced phase transitions and the magnetic-field-induced quantum Hall effect coexist in these materials and simultaneously impact their Hall conductivity through their corresponding charge Chern numbers. We also show that the spectral response of the longitudinal conductivity contains signatures of the various phase-transition boundaries, that the transverse conductivity encodes information about the topology of the band structure, and that both present resonant peaks which can be unequivocally associated with one of the four inequivalent Dirac cones present in these materials. This complex optoelectronic response can be probed with straightforward Faraday rotation experiments, allowing the study of the crossroads between quantum Hall physics, spintronics, and valleytronics.

  1. Trivial topological phase of CaAgP and the topological nodal-line transition in CaAg (P1 -xA sx)

    Science.gov (United States)

    Xu, N.; Qian, Y. T.; Wu, Q. S.; Autès, G.; Matt, C. E.; Lv, B. Q.; Yao, M. Y.; Strocov, V. N.; Pomjakushina, E.; Conder, K.; Plumb, N. C.; Radovic, M.; Yazyev, O. V.; Qian, T.; Ding, H.; Mesot, J.; Shi, M.

    2018-04-01

    By performing angle-resolved photoemission spectroscopy and first-principles calculations, we address the topological phase of CaAgP and investigate the topological phase transition in CaAg (P1 -xA sx) . We reveal that in CaAgP, the bulk band gap and surface states with a large bandwidth are topologically trivial, in agreement with hybrid density functional theory calculations. The calculations also indicate that application of "negative" hydrostatic pressure can transform trivial semiconducting CaAgP into an ideal topological nodal-line semimetal phase. The topological transition can be realized by partial isovalent P/As substitution at x =0.38 .

  2. Topological phase transition of Dirac superconductors in the presence of pseudo-scalar pairings

    Science.gov (United States)

    Salehi, Morteza; Jafari, S. A.

    2018-06-01

    Motivated by recent developments in the field of topological superconductors, we show that there is a topological phase transition (TPT) for three dimensional Dirac superconductors (3DDS) in the presence of pseudo-scalar superconducting order parameter which leads to the appearance of a two dimensional Majorana sea (2DMS) on its surface. The perfect Andreev-Klein transmission, resonant peak with robust character in the differential conductance and 4π periodic Josephson current are experimental signatures of 2DMS.

  3. Spin Chern number and topological phase transition on the Lieb lattice with spin–orbit coupling

    International Nuclear Information System (INIS)

    Chen, Rui; Zhou, Bin

    2017-01-01

    We propose that quantum anomalous Hall effect may occur in the Lieb lattice, when Rashba spin–orbit coupling, spin-independent and spin-dependent staggered potentials are introduced into the lattice. It is found that spin Chern numbers of two degenerate flat bands change from 0 to ±2 due to Rashba spin–orbit coupling effect. The inclusion of Rashba spin–orbit coupling and two kinds of staggered potentials opens a gap between the two flat bands. The topological property of the gap is determined by the amplitudes of Rashba spin–orbit coupling and staggered potentials, and thus the topological phase transition from quantum anomalous Hall effect to normal insulator can occur. Finally, the topological phase transition from quantum spin Hall state to normal insulator is discussed when Rashba spin–orbit coupling and intrinsic spin–orbit coupling coexist in the Lieb lattice. - Highlights: • Spin Chern numbers of the bulk states on the Lieb lattice are calculated. • RSOC plays an important role on the topological phase transition on the Lieb lattice. • Quantum anomalous Hall effect can occur due to RSOC and staggered potentials. • Topological phase transition can occur when ISOC and RSOC coexist.

  4. Topology of event distributions as a generalized definition of phase transitions in finite systems

    International Nuclear Information System (INIS)

    Chomaz, Ph.; Duflot, V.; Gulminelli, F.; Duflot, V.

    2000-01-01

    We propose a definition of phase transitions in finite systems based on topology anomalies of the event distribution in the space of observations. This generalizes all the definitions based on the curvature anomalies of thermodynamical potentials and provides a natural definition of order parameters. It is directly operational from the experimental point of view. It allows to study phase transitions in Gibbs equilibria as well as in other ensembles such as the Tsallis ensemble. (author)

  5. Accounting for the contributions of topological excitations in phase transitions through dual actions

    International Nuclear Information System (INIS)

    Ramos, Rudnei O.

    2006-01-01

    Topological excitations are believed to play an important role in different areas of physics. For example, cases of topical interest are the study of contributions of nonhomogeneous field configurations, in particular those of topological nature (like kinks, vortices and monopoles) in phase transitions associated to spontaneous symmetry breaking, the use of topological excitations in dual models of QCD to understand properties of its vacuum and confinement through the condensation of magnetic monopoles and vortices and also the relevance of these nonhomogeneous type of configurations in cosmology, again associated to possible phase transitions that are expected to have happened in the early universe. Here we show a derivation of a model dual to the scalar Abelian Higgs model where its topological excitations, namely vortex-strings, become manifest and can be treated in a quantum field theory way. The contribution of these nontrivial vacuum excitations in the phase transition for the scalar Abelian Higgs model in a thermal background is then studied and the results interpreted from the computation of the partition function taking into account the vortice-strings in the functional integration. This is made possible from the derived dual action. The relevance of the obtained results in cosmology, the analogy with phase transitions in superconductors, the relevance also for the study of confinement and other extensions of our calculations are briefly discussed here. (author)

  6. Tunable spin-charge conversion through topological phase transitions in zigzag nanoribbons

    KAUST Repository

    Li, Hang

    2016-06-29

    We study spin-orbit torques and charge pumping in magnetic quasi-one-dimensional zigzag nanoribbons with a hexagonal lattice, in the presence of large intrinsic spin-orbit coupling. Such a system experiences a topological phase transition from a trivial band insulator to a quantum spin Hall insulator by tuning of either the magnetization direction or the intrinsic spin-orbit coupling. We find that the spin-charge conversion efficiency (i.e., spin-orbit torque and charge pumping) is dramatically enhanced at the topological transition, displaying a substantial angular anisotropy.

  7. Tunable spin-charge conversion through topological phase transitions in zigzag nanoribbons

    KAUST Repository

    Li, Hang; Manchon, Aurelien

    2016-01-01

    We study spin-orbit torques and charge pumping in magnetic quasi-one-dimensional zigzag nanoribbons with a hexagonal lattice, in the presence of large intrinsic spin-orbit coupling. Such a system experiences a topological phase transition from a trivial band insulator to a quantum spin Hall insulator by tuning of either the magnetization direction or the intrinsic spin-orbit coupling. We find that the spin-charge conversion efficiency (i.e., spin-orbit torque and charge pumping) is dramatically enhanced at the topological transition, displaying a substantial angular anisotropy.

  8. Series of topological phase transitions in TiTe2 under strain

    KAUST Repository

    Zhang, Qingyun

    2013-10-21

    First-principles calculations are performed to investigate the topological properties of TiTe2 under hydrostatic pressure, uniaxial strain, and biaxial strain. It is found that the system is unusually accessible to strain effects and the first compound that under hydrostatic pressure (up to experimentally reasonable 30 GPa) is subject to a series of four topological phase transitions, which are related to band inversions at different points of the Brillouin zone. Therefore, TiTe2 enables experimental access to all these transitions in a single compound.

  9. Series of topological phase transitions in TiTe2 under strain

    KAUST Repository

    Zhang, Qingyun; Cheng, Yingchun; Schwingenschlö gl, Udo

    2013-01-01

    First-principles calculations are performed to investigate the topological properties of TiTe2 under hydrostatic pressure, uniaxial strain, and biaxial strain. It is found that the system is unusually accessible to strain effects and the first compound that under hydrostatic pressure (up to experimentally reasonable 30 GPa) is subject to a series of four topological phase transitions, which are related to band inversions at different points of the Brillouin zone. Therefore, TiTe2 enables experimental access to all these transitions in a single compound.

  10. Detection of topological phase transitions through entropy measurements: The case of germanene

    Science.gov (United States)

    Grassano, D.; Pulci, O.; Shubnyi, V. O.; Sharapov, S. G.; Gusynin, V. P.; Kavokin, A. V.; Varlamov, A. A.

    2018-05-01

    We propose a characterization tool for studies of the band structure of new materials promising for the observation of topological phase transitions. We show that a specific resonant feature in the entropy per electron dependence on the chemical potential may be considered as a fingerprint of the transition between topological and trivial insulator phases. The entropy per electron in a honeycomb two-dimensional crystal of germanene subjected to the external electric field is obtained from the first-principles calculation of the density of electronic states and the Maxwell relation. We demonstrate that, in agreement with the recent prediction of the analytical model, strong spikes in the entropy per particle dependence on the chemical potential appear at low temperatures. They are observed at the values of the applied bias both below and above the critical value that corresponds to the transition between the topological insulator and trivial insulator phases, whereas the giant resonant feature in the vicinity of the zero chemical potential is strongly suppressed at the topological transition point, in the low-temperature limit. In a wide energy range, the van Hove singularities in the electronic density of states manifest themselves as zeros in the entropy per particle dependence on the chemical potential.

  11. Topological Quantum Phase Transitions in Two-Dimensional Hexagonal Lattice Bilayers

    Science.gov (United States)

    Zhai, Xuechao; Jin, Guojun

    2013-09-01

    Since the successful fabrication of graphene, two-dimensional hexagonal lattice structures have become a research hotspot in condensed matter physics. In this short review, we theoretically focus on discussing the possible realization of a topological insulator (TI) phase in systems of graphene bilayer (GBL) and boron nitride bilayer (BNBL), whose band structures can be experimentally modulated by an interlayer bias voltage. Under the bias, a band gap can be opened in AB-stacked GBL but is still closed in AA-stacked GBL and significantly reduced in AA- or AB-stacked BNBL. In the presence of spin-orbit couplings (SOCs), further demonstrations indicate whether the topological quantum phase transition can be realized strongly depends on the stacking orders and symmetries of structures. It is observed that a bulk band gap can be first closed and then reopened when the Rashba SOC increases for gated AB-stacked GBL or when the intrinsic SOC increases for gated AA-stacked BNBL. This gives a distinct signal for a topological quantum phase transition, which is further characterized by a jump of the ℤ2 topological invariant. At fixed SOCs, the TI phase can be well switched by the interlayer bias and the phase boundaries are precisely determined. For AA-stacked GBL and AB-stacked BNBL, no strong TI phase exists, regardless of the strength of the intrinsic or Rashba SOCs. At last, a brief overview is given on other two-dimensional hexagonal materials including silicene and molybdenum disulfide bilayers.

  12. Predicting a new phase (T'') of two-dimensional transition metal di-chalcogenides and strain-controlled topological phase transition

    Science.gov (United States)

    Ma, Fengxian; Gao, Guoping; Jiao, Yalong; Gu, Yuantong; Bilic, Ante; Zhang, Haijun; Chen, Zhongfang; Du, Aijun

    2016-02-01

    Single layered transition metal dichalcogenides have attracted tremendous research interest due to their structural phase diversities. By using a global optimization approach, we have discovered a new phase of transition metal dichalcogenides (labelled as T''), which is confirmed to be energetically, dynamically and kinetically stable by our first-principles calculations. The new T'' MoS2 phase exhibits an intrinsic quantum spin Hall (QSH) effect with a nontrivial gap as large as 0.42 eV, suggesting that a two-dimensional (2D) topological insulator can be achieved at room temperature. Most interestingly, there is a topological phase transition simply driven by a small tensile strain of up to 2%. Furthermore, all the known MX2 (M = Mo or W; X = S, Se or Te) monolayers in the new T'' phase unambiguously display similar band topologies and strain controlled topological phase transitions. Our findings greatly enrich the 2D families of transition metal dichalcogenides and offer a feasible way to control the electronic states of 2D topological insulators for the fabrication of high-speed spintronics devices.Single layered transition metal dichalcogenides have attracted tremendous research interest due to their structural phase diversities. By using a global optimization approach, we have discovered a new phase of transition metal dichalcogenides (labelled as T''), which is confirmed to be energetically, dynamically and kinetically stable by our first-principles calculations. The new T'' MoS2 phase exhibits an intrinsic quantum spin Hall (QSH) effect with a nontrivial gap as large as 0.42 eV, suggesting that a two-dimensional (2D) topological insulator can be achieved at room temperature. Most interestingly, there is a topological phase transition simply driven by a small tensile strain of up to 2%. Furthermore, all the known MX2 (M = Mo or W; X = S, Se or Te) monolayers in the new T'' phase unambiguously display similar band topologies and strain controlled topological

  13. Topological phase transition in the quench dynamics of a one-dimensional Fermi gas with spin–orbit coupling

    International Nuclear Information System (INIS)

    Wang, Pei; Yi, Wei; Xianlong, Gao

    2015-01-01

    We study the quench dynamics of a one-dimensional ultracold Fermi gas with synthetic spin-orbit coupling. At equilibrium, the ground state of the system can undergo a topological phase transition and become a topological superfluid with Majorana edge states. As the interaction is quenched near the topological phase boundary, we identify an interesting dynamical phase transition of the quenched state in the long-time limit, characterized by an abrupt change of the pairing gap at a critical quenched interaction strength. We further demonstrate the topological nature of this dynamical phase transition from edge-state analysis of the quenched states. Our findings provide interesting clues for the understanding of topological phase transitions in dynamical processes, and can be useful for the dynamical detection of Majorana edge states in corresponding systems. (paper)

  14. Topological phase transition in the quench dynamics of a one-dimensional Fermi gas with spin-orbit coupling

    Science.gov (United States)

    Wang, Pei; Yi, Wei; Xianlong, Gao

    2015-01-01

    We study the quench dynamics of a one-dimensional ultracold Fermi gas with synthetic spin-orbit coupling. At equilibrium, the ground state of the system can undergo a topological phase transition and become a topological superfluid with Majorana edge states. As the interaction is quenched near the topological phase boundary, we identify an interesting dynamical phase transition of the quenched state in the long-time limit, characterized by an abrupt change of the pairing gap at a critical quenched interaction strength. We further demonstrate the topological nature of this dynamical phase transition from edge-state analysis of the quenched states. Our findings provide interesting clues for the understanding of topological phase transitions in dynamical processes, and can be useful for the dynamical detection of Majorana edge states in corresponding systems.

  15. Nonlocal optical response in topological phase transitions in the graphene family

    Science.gov (United States)

    Rodriguez-Lopez, Pablo; Kort-Kamp, Wilton J. M.; Dalvit, Diego A. R.; Woods, Lilia M.

    2018-01-01

    We investigate the electromagnetic response of staggered two-dimensional materials of the graphene family, including silicene, germanene, and stanene, as they are driven through various topological phase transitions using external fields. Utilizing Kubo formalism, we compute their optical conductivity tensor taking into account the frequency and wave vector of the electromagnetic excitations, and study its behavior over the full electronic phase diagram of the materials. In particular, we find that the resonant behavior of the nonlocal Hall conductivity is strongly affected by the various topological phases present in these materials. We also consider the plasmon excitations in the graphene family and find that nonlocality in the optical response can affect the plasmon dispersion spectra of the various phases. We find a regime of wave vectors for which the plasmon relations for phases with trivial topology are essentially indistinguishable, while those for phases with nontrivial topology are distinct and are redshifted as the corresponding Chern number increases. The expressions for the conductivity components are valid for the entire graphene family and can be readily used by others.

  16. Quantum phase transitions between a class of symmetry protected topological states

    Energy Technology Data Exchange (ETDEWEB)

    Tsui, Lokman; Jiang, Hong-Chen; Lu, Yuan-Ming; Lee, Dung-Hai

    2015-07-01

    The subject of this paper is the phase transition between symmetry protected topological states (SPTs). We consider spatial dimension d and symmetry group G so that the cohomology group, Hd+1(G,U(1)), contains at least one Z2n or Z factor. We show that the phase transition between the trivial SPT and the root states that generate the Z2n or Z groups can be induced on the boundary of a (d+1)-dimensional View the MathML source-symmetric SPT by a View the MathML source symmetry breaking field. Moreover we show these boundary phase transitions can be “transplanted” to d dimensions and realized in lattice models as a function of a tuning parameter. The price one pays is for the critical value of the tuning parameter there is an extra non-local (duality-like) symmetry. In the case where the phase transition is continuous, our theory predicts the presence of unusual (sometimes fractionalized) excitations corresponding to delocalized boundary excitations of the non-trivial SPT on one side of the transition. This theory also predicts other phase transition scenarios including first order transition and transition via an intermediate symmetry breaking phase.

  17. Concavity anomalies, topology of events and phase transitions in finite systems

    International Nuclear Information System (INIS)

    Gulminelli, F.; Chomaz, P.H.

    2001-02-01

    We propose a definition of first order phase transitions in finite systems based on topology anomalies of the event distribution in the space of observations. This generalizes the definitions based on the curvature anomalies of thermodynamical potentials, provides a natural definition of order parameters and can be related to the Yang Lee theorem in the thermodynamical limit. It is directly operational from the experimental point of view. It allows to study phase transitions in Gibbs equilibria as well as in other ensembles such as the Tsallis ensemble. (authors)

  18. Pre-inflation: Origin of the Universe from a topological phase transition

    Directory of Open Access Journals (Sweden)

    Mauricio Bellini

    2017-08-01

    Full Text Available I study a model which describes the birth of the universe using a global topological phase transition with a complex manifold where the time, τ, is considered as a complex variable. Before the big bang τ is a purely imaginary variable so that the space can be considered as Euclidean. The phase transition from a pre-inflation to inflation is examined by studying the dynamical rotation of the time on the complex plane. Back-reaction effects are exactly calculated using Relativistic Quantum Geometry.

  19. Controlled Topological Transitions in Thin-Film Phase Separation

    KAUST Repository

    Hennessy, Matthew G.; Burlakov, Victor M.; Goriely, Alain; Wagner, Barbara; Mü nch, Andreas

    2015-01-01

    © 2015 Society for Industrial and Applied Mathematics. In this paper the evolution of a binary mixture in a thin-film geometry with a wall at the top and bottom is considered. By bringing the mixture into its miscibility gap so that no spinodal decomposition occurs in the bulk, a slight energetic bias of the walls toward each one of the constituents ensures the nucleation of thin boundary layers that grow until the constituents have moved into one of the two layers. These layers are separated by an interfacial region where the composition changes rapidly. Conditions that ensure the separation into two layers with a thin interfacial region are investigated based on a phase-field model. Using matched asymptotic expansions a corresponding sharp-interface problem for the location of the interface is established. It is then argued that this newly created two-layer system is not at its energetic minimum but destabilizes into a controlled self-replicating pattern of trapezoidal vertical stripes by minimizing the interfacial energy between the phases while conserving their area. A quantitative analysis of this mechanism is carried out via a thin-film model for the free interfaces, which is derived asymptotically from the sharp-interface model.

  20. Symmetry protected topological Luttinger liquids and the phase transition between them

    Energy Technology Data Exchange (ETDEWEB)

    None

    2018-01-01

    We show that a doped spin-1/2 ladder with antiferromagnetic intra-chain and ferromagnetic inter-chain coupling is a symmetry protected topologically non-trivial Luttinger liquid. Turning on a large easy-plane spin anisotropy drives the system to a topologically-trivial Luttinger liquid. Both phases have full spin gaps and exhibit power-law superconducting pair correlation. The Cooper pair symmetry is singlet $d_{xy}$ in the non-trivial phase and triplet $S_z=0$ in the trivial phase. The topologically non-trivial Luttinger liquid exhibits gapless spin excitations in the presence of a boundary, and it has no non-interacting or mean-field theory analog even when the fluctuating phase in the charge sector is pinned. As a function of the strength of spin anisotropy there is a topological phase transition upon which the spin gap closes. We speculate these Luttinger liquids are relevant to the superconductivity in metalized integer spin ladders or chains.

  1. Topological Aspects of Entropy and Phase Transition of Kerr Black Holes

    Institute of Scientific and Technical Information of China (English)

    YANG Guo-Hong; YAN Ji-Jiang; TIAN Li-Jun; DUAN Yi-Shi

    2005-01-01

    In the light of topological current and the relationship between the entropy and the Euler characteristic, the topological aspects of entropy and phase transition of Kerr black holes are studied. From Gauss-Bonnet-Chern theorem,it is shown that the entropy of Kerr black holes is determined by the singularities of the Killing vector field of spacetime.By calculating the Hopf indices and Brouwer degrees of the Killing vector field at the singularities, the entropy S = A/4for nonextreme Kerr black holes and S = 0 for extreme ones are obtained, respectively. It is also discussed that, with the change of the ratio of mass to angular momentum for unit mass, the Euler characteristic and the entropy of Kerr black holes will change discontinuously when the singularities on Cauchy horizon merge with the singularities on event horizon, which will lead to the first-order phase transition of Kerr black holes.

  2. Valley polarized quantum Hall effect and topological insulator phase transitions in silicene

    KAUST Repository

    Tahir, M.

    2013-01-25

    The electronic properties of silicene are distinct from both the conventional two dimensional electron gas and the famous graphene due to strong spin orbit interaction and the buckled structure. Silicene has the potential to overcome limitations encountered for graphene, in particular the zero band gap and weak spin orbit interaction. We demonstrate a valley polarized quantum Hall effect and topological insulator phase transitions. We use the Kubo formalism to discuss the Hall conductivity and address the longitudinal conductivity for elastic impurity scattering in the first Born approximation. We show that the combination of an electric field with intrinsic spin orbit interaction leads to quantum phase transitions at the charge neutrality point, providing a tool to experimentally tune the topological state. Silicene constitutes a model system for exploring the spin and valley physics not accessible in graphene due to the small spin orbit interaction.

  3. A study of topological quantum phase transition and Majorana localization length for the interacting helical liquid system

    International Nuclear Information System (INIS)

    Dey, Dayasindhu; Saha, Sudip Kumar; Deo, P. Singha; Kumar, Manoranjan; Sarkar, Sujit

    2017-01-01

    We study the topological quantum phase transition and also the nature of this transition using the density matrix renormalization group method. We observe the existence of topological quantum phase transition for repulsive interaction, however this phase is more stable for the attractive interaction. The length scale dependent study shows many new and important results and we show explicitly that the major contribution to the excitation comes from the edge of the system when the system is in the topological state. We also show the dependence of Majorana localization length for various values of chemical potential. (author)

  4. Phase transition and field effect topological quantum transistor made of monolayer MoS2

    Science.gov (United States)

    Simchi, H.; Simchi, M.; Fardmanesh, M.; Peeters, F. M.

    2018-06-01

    We study topological phase transitions and topological quantum field effect transistor in monolayer molybdenum disulfide (MoS2) using a two-band Hamiltonian model. Without considering the quadratic (q 2) diagonal term in the Hamiltonian, we show that the phase diagram includes quantum anomalous Hall effect, quantum spin Hall effect, and spin quantum anomalous Hall effect regions such that the topological Kirchhoff law is satisfied in the plane. By considering the q 2 diagonal term and including one valley, it is shown that MoS2 has a non-trivial topology, and the valley Chern number is non-zero for each spin. We show that the wave function is (is not) localized at the edges when the q 2 diagonal term is added (deleted) to (from) the spin-valley Dirac mass equation. We calculate the quantum conductance of zigzag MoS2 nanoribbons by using the nonequilibrium Green function method and show how this device works as a field effect topological quantum transistor.

  5. Topological phase transition in anisotropic square-octagon lattice with spin-orbit coupling and exchange field

    Science.gov (United States)

    Yang, Yuan; Yang, Jian; Li, Xiaobing; Zhao, Yue

    2018-03-01

    We investigate the topological phase transitions in an anisotropic square-octagon lattice in the presence of spin-orbit coupling and exchange field. On the basis of the Chern number and spin Chern number, we find a number of topologically distinct phases with tuning the exchange field, including time-reversal-symmetry-broken quantum spin Hall phases, quantum anomalous Hall phases and a topologically trivial phase. Particularly, we observe a coexistent state of both the quantum spin Hall effect and quantum anomalous Hall effect. Besides, by adjusting the exchange filed, we find the phase transition from time-reversal-symmetry-broken quantum spin Hall phase to spin-imbalanced and spin-polarized quantum anomalous Hall phases, providing an opportunity for quantum spin manipulation. The bulk band gap closes when topological phase transitions occur between different topological phases. Furthermore, the energy and spin spectra of the edge states corresponding to different topological phases are consistent with the topological characterization based on the Chern and spin Chern numbers.

  6. Triply degenerate nodal points and topological phase transitions in NaCu3Te2

    Science.gov (United States)

    Xia, Yunyouyou; Li, Gang

    2017-12-01

    Quasiparticle excitations of free electrons in condensed-matter physics, characterized by the dimensionality of the band crossing, can find their elementary-particle analogs in high-energy physics, such as Majorana, Weyl, and Dirac fermions, while crystalline symmetry allows more quasiparticle excitations and exotic fermions to emerge. Using symmetry analysis and ab initio calculations, we propose that the three-dimensional honeycomb crystal NaCu3Te2 hosts triply degenerate nodal points (TDNPs) residing at the Fermi level. Furthermore, in this system we find a tunable phase transition between a trivial insulator, a TDNP phase, and a weak topological insulator (TI), triggered by a symmetry-allowed perturbation and the spin-orbital coupling (SOC). Such a topological nontrivial ternary compound not only serves as a perfect candidate for studying three-component fermions, but also provides an excellent playground for understanding the topological phase transitions between TDNPs, TIs, and trivial insulators, which distinguishes this system from other TDNP candidates.

  7. Topological Phase Transitions in Zinc-Blende Semimetals Driven Exclusively by Electronic Temperature

    Science.gov (United States)

    Trushin, Egor; Görling, Andreas

    2018-04-01

    We show that electronic phase transitions in zinc-blende semimetals with quadratic band touching (QBT) at the center of the Brillouin zone, like GaBi, InBi, or HgTe, can occur exclusively due to a change of the electronic temperature without the need to involve structural transformations or electron-phonon coupling. The commonly used Kohn-Sham density-functional methods based on local and semilocal density functionals employing the local density approximation (LDA) or generalized gradient approximations (GGAs), however, are not capable of describing such phenomena because they lack an intrinsic temperature dependence and account for temperature only via the occupation of bands, which essentially leads only to a shift of the Fermi level without changing the shape or topology of bands. Kohn-Sham methods using the exact temperature-dependent exchange potential, not to be confused with the Hartree-Fock exchange potential, on the other hand, describe such phase transitions. A simple modeling of correlation effects can be achieved by screening of the exchange. In the considered zinc-blende compounds the QBT is unstable at low temperatures and a transition to electronic states without QBT takes place. In the case of HgTe and GaBi Weyl points of type I and type II, respectively, emerge during the transitions. This demonstrates that Kohn-Sham methods can describe such topological phase transitions provided they are based on functionals more accurate than those within the LDA or GGA. Moreover, the electronic temperature is identified as a handle to tune topological materials.

  8. Tuning topological phase transitions in hexagonal photonic lattices made of triangular rods

    Science.gov (United States)

    Chan, Hsun-Chi; Guo, Guang-Yu

    2018-01-01

    In this paper we study topological phases in a two-dimensional photonic crystal with broken time (T ) and parity (P ) symmetries by performing calculations of band structures, Berry curvatures, Chern numbers, edge states, and also numerical simulations of light propagation in the edge modes. Specifically, we consider a hexagonal lattice consisting of triangular gyromagnetic rods. Here the gyromagnetic material breaks T symmetry while the triangular rods break P symmetry. Interestingly, we find that the crystal could host quantum anomalous Hall (QAH) phases with different gap Chern numbers (Cg) including | Cg|>1 as well as quantum valley Hall (QVH) phases with contrasting valley Chern numbers (Cv), depending on the orientation of the triangular rods. Furthermore, phase transitions among these topological phases, such as from QAH to QVH and vice versa, can be engineered by a simple rotation of the rods. Our band theoretical analyses reveal that the Dirac nodes at the K and K' valleys in the momentum space are produced and protected by the mirror symmetry (my) instead of the P symmetry, and they become gapped when either T or my symmetry is broken, resulting in a QAH or QVH phase, respectively. Moreover, a high Chern number (Cg=-2 ) QAH phase is generated by gapping triply degenerate nodal points rather than pairs of Dirac points by breaking T symmetry. Our proposed photonic crystal thus provides a platform for investigating intriguing topological phenomena which may be challenging to realize in electronic systems, and also has promising potentials for device applications in photonics such as reflection-free one-way waveguides and topological photonic circuits.

  9. Entropic stabilisation of topologically close-packed phases in binary transition-metal alloys

    Energy Technology Data Exchange (ETDEWEB)

    Hammerschmidt, Thomas; Fries, Suzana G.; Steinbach, Ingo; Drautz, Ralf [ICAMS, Ruhr-Universitaet Bochum, Bochum (Germany); Seiser, Bernhard; Pettifor, David G. [Department of Materials, University of Oxford, Oxford (United Kingdom)

    2010-07-01

    The formation of topologically close-packed (tcp) phases in Ni-based superalloys leads to the degradation of the mechanical properties of the alloys. The precipitation of the tcp phases is attributed to refractory elements that are added in low concentration to improve creep resistance. It is well known that the structural stability of the tcp phases A15, {sigma} and {chi} is driven by the average d-band filling. For a direct comparison to experimental phase diagrams, we carried out extensive density-functional theory (DFT) calculations of the tcp phases A15, C14, C15, C36, {mu}, {sigma}, and {chi} in tcp-forming binary transition-metal (TM) systems. We observe several systems such as W-Re with positive values of the heat of formation for all tcp phases although some of the phases are observed experimentally. By combining our DFT total energies with the CALPHAD methodology, we can demonstrate that configurational entropy can stabilise the tcp phases in these systems.

  10. Topological phase transitions of (BixSb1-x)2Se3 alloys by density functional theory.

    Science.gov (United States)

    Abdalla, L B; Padilha José, E; Schmidt, T M; Miwa, R H; Fazzio, A

    2015-07-01

    We have performed an ab initio total energy investigation of the topological phase transition, and the electronic properties of topologically protected surface states of (BixSb1-x)2Se3 alloys. In order to provide an accurate alloy concentration for the phase transition, we have considered the special quasirandom structures to describe the alloy system. The trivial → topological transition concentration was obtained by (i) the calculation of the band gap closing as a function of Bi concentration (x), and (ii) the calculation of the Z2 topological invariant number. We show that there is a topological phase transition, for x around 0.4, verified for both procedures (i) and (ii). We also show that in the concentration range 0.4 x < 0.7, the alloy does not present any other band at the Fermi level besides the Dirac cone, where the Dirac point is far from the bulk states. This indicates that a possible suppression of the scattering process due to bulk states will occur.

  11. Rényi-Fisher entropy product as a marker of topological phase transitions

    Science.gov (United States)

    Bolívar, J. C.; Nagy, Ágnes; Romera, Elvira

    2018-05-01

    The combined Rényi-Fisher entropy product of electrons plus holes displays a minimum at the charge neutrality points. The Stam-Rényi difference and the Stam-Rényi uncertainty product of the electrons plus holes, show maxima at the charge neutrality points. Topological quantum numbers capable of detecting the topological insulator and the band insulator phases, are defined. Upper and lower bounds for the position and momentum space Rényi-Fisher entropy products are derived.

  12. Long-range string orders and topological quantum phase transitions in the one-dimensional quantum compass model.

    Science.gov (United States)

    Wang, Hai Tao; Cho, Sam Young

    2015-01-14

    In order to investigate the quantum phase transition in the one-dimensional quantum compass model, we numerically calculate non-local string correlations, entanglement entropy and fidelity per lattice site by using the infinite matrix product state representation with the infinite time evolving block decimation method. In the whole range of the interaction parameters, we find that four distinct string orders characterize the four different Haldane phases and the topological quantum phase transition occurs between the Haldane phases. The critical exponents of the string order parameters β = 1/8 and the cental charges c = 1/2 at the critical points show that the topological phase transitions between the phases belong to an Ising type of universality classes. In addition to the string order parameters, the singularities of the second derivative of the ground state energies per site, the continuous and singular behaviors of the Von Neumann entropy and the pinch points of the fidelity per lattice site manifest that the phase transitions between the phases are of the second-order, in contrast to the first-order transition suggested in previous studies.

  13. Accidental degeneracy in photonic bands and topological phase transitions in two-dimensional core-shell dielectric photonic crystals.

    Science.gov (United States)

    Xu, Lin; Wang, Hai-Xiao; Xu, Ya-Dong; Chen, Huan-Yang; Jiang, Jian-Hua

    2016-08-08

    A simple core-shell two-dimensional photonic crystal is studied where the triangular lattice symmetry and the C6 point group symmetry give rich physics in accidental touching points of photonic bands. We systematically evaluate different types of accidental nodal points at the Brillouin zone center for transverse-magnetic harmonic modes when the geometry and permittivity of the core-shell material are continuously tuned. The accidental nodal points can have different dispersions and topological properties (i.e., Berry phases). These accidental nodal points can be the critical states lying between a topological phase and a normal phase of the photonic crystal. They are thus very important for the study of topological photonic states. We show that, without breaking time-reversal symmetry, by tuning the geometry of the core-shell material, a phase transition into the photonic quantum spin Hall insulator can be achieved. Here the "spin" is defined as the orbital angular momentum of a photon. We study the topological phase transition as well as the properties of the edge and bulk states and their application potentials in optics.

  14. Strain engineering of topological phase transition in elemental gray tin: Dirac semimetal phase in the missing half of strain spectrum

    Science.gov (United States)

    Huang, Huaqing; Liu, Feng

    Gray tin was previously found to be a strong topological insulator under compressive uniaxial strain. Here, based on effective k . p analysis and first-principles calculations, we discover that gray tin becomes a Dirac semimetal in the other missing half of strain spectrum, under tensile uniaxial strain. In this newly found Dirac semimetal state, two Dirac points which are tunable by tensile [001] strains, lie in the kz axis and Fermi arcs appear in the (100) surface. A large negative magnetoresistance is anticipated in this half of strain spectrum, which shows as a strong signature of the chiral anomaly effect. Comparing to other Dirac semimetal materials, the proposed Dirac semimetal state in the nontoxic elemental gray tin can be more easily manipulated and accurately controlled. We envision that gray tin provides a perfect platform for strain engineering of topological phase transitions by sweeping through the strain spectrum from positive to negative and vice versa. This work was support by DOE-BES (Grant No. DE-FG02-04ER46148).

  15. Long-range Coulomb interaction effects on the topological phase transitions between semimetals and insulators

    Science.gov (United States)

    Han, SangEun; Moon, Eun-Gook

    2018-06-01

    Topological states may be protected by a lattice symmetry in a class of topological semimetals. In three spatial dimensions, the Berry flux around gapless excitations in momentum space concretely defines a chirality, so a protecting symmetry may be referred to as a chiral symmetry. Prime examples include a Dirac semimetal (DSM) in a distorted spinel, BiZnSiO4, protected by a mirror symmetry, and a DSM in Na3Bi , protected by a rotational symmetry. In these states, topology and chiral symmetry are intrinsically tied. In this Rapid Communication, the characteristic interplay between a chiral symmetry order parameter and an instantaneous long-range Coulomb interaction is investigated with the standard renormalization group method. We show that a topological transition associated with chiral symmetry is stable under the presence of a Coulomb interaction and the electron velocity always becomes faster than the one of a chiral symmetry order parameter. Thus, the transition must not be relativistic, which implies that supersymmetry is intrinsically forbidden by the long-range Coulomb interaction. Asymptotically exact universal ratios of physical quantities such as the energy gap ratio are obtained, and connections with experiments and recent theoretical proposals are also discussed.

  16. Quantum anomalous Hall effect and topological phase transition in two-dimensional antiferromagnetic Chern insulator NiOsCl6

    Science.gov (United States)

    Yang, Wei-Wei; Li, Lei; Zhao, Jing-Sheng; Liu, Xiao-Xiong; Deng, Jian-Bo; Tao, Xiao-Ma; Hu, Xian-Ru

    2018-05-01

    By doing calculations based on density functional theory, we predict that the two-dimensional anti-ferromagnetic (AFM) NiOsCl6 as a Chern insulator can realize the quantum anomalous Hall (QAH) effect. We investigate the magnetocrystalline anisotropy energies in different magnetic configurations and the Néel AFM configuration is proved to be ground state. When considering spin–orbit coupling (SOC), this layered material with spins perpendicular to the plane shows properties as a Chern insulator characterized by an inversion band structure and a nonzero Chern number. The nontrivial band gap is 37 meV and the Chern number C  =  ‑1, which are induced by a strong SOC and AFM order. With strong SOC, the NiOsCl6 system performs a continuous topological phase transition from the Chern insulator to the trivial insulator upon the increasing Coulomb repulsion U. The critical U c is indicated as 0.23 eV, at which the system is in a metallic phase with . Upon increasing U, the E g reduces linearly with C  =  ‑1 for 0    U c . At last we analysis the QAH properties and this continuous topological phase transition theoretically in a two-band model. This AFM Chern insulator NiOsCl6 proposes not only a promising way to realize the QAH effect, but also a new material to study the continuous topological phase transition.

  17. Exotic topological insulator states and topological phase transitions in Sb2Se3-Bi2Se3 heterostructures

    KAUST Repository

    Zhang, Qianfan; Zhang, Zhiyong; Zhu, Zhiyong; Schwingenschlö gl, Udo; Cui, Yi

    2012-01-01

    in controlling the electronic properties of semiconductor devices, are interesting for topological insulators. Here, we studied the spatial distribution of the topological state in Sb 2Se 3-Bi 2Se 3 heterostructures by first-principle simulation and discovered

  18. Quasar production: Topological defect formation due to a phase transition linked with massive neutrinos

    International Nuclear Information System (INIS)

    Singh, A.

    1994-01-01

    Recent observations of the space distribution of quasars indicate a very notable peak in space density at a redshift of 2 to 3. It is pointed out in this article that this may be the result of a phase transition which has a critical temperature of roughly a few meV (in the cosmological units h=c=k=1). It is further pointed out that such a phase transition is natural in the context of massive neutrinos. In fact, the neutrino masses required for quasar production and those required to solve the solar neutrino problem by the Mikheyev-Smirnov-Wolfenstein mechanism are consistent with each other

  19. Topological Phase Transition-Induced Triaxial Vector Magnetoresistance in (Bi1-xInx)2Se3 Nanodevices.

    Science.gov (United States)

    Zhang, Minhao; Wang, Huaiqiang; Mu, Kejun; Wang, Pengdong; Niu, Wei; Zhang, Shuai; Xiao, Guiling; Chen, Yequan; Tong, Tong; Fu, Dongzhi; Wang, Xuefeng; Zhang, Haijun; Song, Fengqi; Miao, Feng; Sun, Zhe; Xia, Zhengcai; Wang, Xinran; Xu, Yongbing; Wang, Baigeng; Xing, Dingyu; Zhang, Rong

    2018-02-27

    We report the study of a triaxial vector magnetoresistance (MR) in nonmagnetic (Bi 1-x In x ) 2 Se 3 nanodevices at the composition of x = 0.08. We show a dumbbell-shaped in-plane negative MR up to room temperature as well as a large out-of-plane positive MR. MR at three directions is about in a -3%:-1%:225% ratio at 2 K. Through both the thickness and composition-dependent magnetotransport measurements, we show that the in-plane negative MR is due to the topological phase transition enhanced intersurface coupling near the topological critical point. Our devices suggest the great potential for room-temperature spintronic applications in, for example, vector magnetic sensors.

  20. Topological Phase Transition in Layered GaS and GaSe

    KAUST Repository

    Zhu, Zhiyong; Cheng, Yingchun; Schwingenschlö gl, Udo

    2012-01-01

    By fully relativistic first principles calculations, we predict that appropriate strain engineering of layered GaX (X=S, Se) leads to a new class of three-dimensional topological insulators with an excitation gap of up to 135 meV. Our results provide a new perspective on the formation of three-dimensional topological insulators. Band inversion can be induced by strain only, without considering any spin-orbit coupling. The latter, however, is indispensable for the formation of local band gaps at the crossing points of the inverted bands. Our study indicates that three-dimensional topological insulators can also be realized in materials which comprise light elements only.

  1. Topological Phase Transition in Layered GaS and GaSe

    KAUST Repository

    Zhu, Zhiyong

    2012-06-29

    By fully relativistic first principles calculations, we predict that appropriate strain engineering of layered GaX (X=S, Se) leads to a new class of three-dimensional topological insulators with an excitation gap of up to 135 meV. Our results provide a new perspective on the formation of three-dimensional topological insulators. Band inversion can be induced by strain only, without considering any spin-orbit coupling. The latter, however, is indispensable for the formation of local band gaps at the crossing points of the inverted bands. Our study indicates that three-dimensional topological insulators can also be realized in materials which comprise light elements only.

  2. Quantum spin Hall effect and topological phase transition in InN x Bi y Sb1-x-y /InSb quantum wells

    Science.gov (United States)

    Song, Zhigang; Bose, Sumanta; Fan, Weijun; Zhang, Dao Hua; Zhang, Yan Yang; Shen Li, Shu

    2017-07-01

    Quantum spin Hall (QSH) effect, a fundamentally new quantum state of matter and topological phase transitions are characteristics of a kind of electronic material, popularly referred to as topological insulators (TIs). TIs are similar to ordinary insulator in terms of their bulk bandgap, but have gapless conducting edge-states that are topologically protected. These edge-states are facilitated by the time-reversal symmetry and they are robust against nonmagnetic impurity scattering. Recently, the quest for new materials exhibiting non-trivial topological state of matter has been of great research interest, as TIs find applications in new electronics and spintronics and quantum-computing devices. Here, we propose and demonstrate as a proof-of-concept that QSH effect and topological phase transitions can be realized in {{InN}}x{{Bi}}y{{Sb}}1-x-y/InSb semiconductor quantum wells (QWs). The simultaneous incorporation of nitrogen and bismuth in InSb is instrumental in lowering the bandgap, while inducing opposite kinds of strain to attain a near-lattice-matching conducive for lattice growth. Phase diagram for bandgap shows that as we increase the QW thickness, at a critical thickness, the electronic bandstructure switches from a normal to an inverted type. We confirm that such transition are topological phase transitions between a traditional insulator and a TI exhibiting QSH effect—by demonstrating the topologically protected edge-states using the bandstructure, edge-localized distribution of the wavefunctions and edge-state spin-momentum locking phenomenon, presence of non-zero conductance in spite of the Fermi energy lying in the bandgap window, crossover points of Landau levels in the zero-mode indicating topological band inversion in the absence of any magnetic field and presence of large Rashba spin-splitting, which is essential for spin-manipulation in TIs.

  3. Rotational symmetry breaking and topological phase transition in the exciton-polariton condensate of gapped 2D Dirac material

    Science.gov (United States)

    Lee, Ki Hoon; Lee, Changhee; Jeong, Jae-Seung; Min, Hongki; Chung, Suk Bum

    For the quantum well in an optical microcavity, the interplay of the Coulomb interaction and the electron-photon coupling can lead to the emergence of bosonic quasiparticles consisting of the exciton and the cavity photon known as polariton, which can form the Bose-Einstein condensate above a threshold density. Additional physics due to the nontrivial Berry phase comes into play when the quantum well consists of the gapped Dirac material such as the transition metal dichalcogenide (TMD) MoS2 or WTe2. Specifically, in forming excitons, the electron-photon coupling from the optical selection rule due to the Berry phase competes against, rather than cooperates with, the Coulomb interaction. We find that this competition gives rise to the spontaneous breaking of the rotational symmetry in the polariton condensate and also drives topological phase transition, both novel features in polariton condensation. We also investigate the possible detection of this competition through photoluminescence. This work was supported in part by the Institute for Basic Science of Korea (IBS) under Grant IBS-R009-Y1 and by the National Research Foundation of Korea (NRF) under the Basic Science Research Program Grant No. 2015R1D1A1A01058071.

  4. Phase transition and thermodynamic stability of topological black holes in Hořava-Lifshitz gravity

    Science.gov (United States)

    Ma, Meng-Sen; Zhao, Ren; Liu, Yan-Song

    2017-08-01

    On the basis of horizon thermodynamics, we study the thermodynamic stability and P-V criticality of topological black holes constructed in Hořava-Lifshitz (HL) gravity without the detailed-balance condition (with general ɛ). In the framework of horizon thermodynamics, we do not need the concrete black hole solution (the metric function) and the concrete matter fields. It is shown that the HL black hole for k=0 is always thermodynamically stable. For k=1 , the thermodynamic behaviors and P-V criticality of the HL black hole are similar to those of RN-AdS black hole for some \

  5. Butterfly magnetoresistance, quasi-2D Dirac Fermi surface and topological phase transition in ZrSiS.

    Science.gov (United States)

    Ali, Mazhar N; Schoop, Leslie M; Garg, Chirag; Lippmann, Judith M; Lara, Erik; Lotsch, Bettina; Parkin, Stuart S P

    2016-12-01

    Magnetoresistance (MR), the change of a material's electrical resistance in response to an applied magnetic field, is a technologically important property that has been the topic of intense study for more than a quarter century. We report the observation of an unusual "butterfly"-shaped titanic angular magnetoresistance (AMR) in the nonmagnetic Dirac material, ZrSiS, which we find to be the most conducting sulfide known, with a 2-K resistivity as low as 48(4) nΩ⋅cm. The MR in ZrSiS is large and positive, reaching nearly 1.8 × 10 5 percent at 9 T and 2 K at a 45° angle between the applied current ( I || a ) and the applied field (90° is H || c ). Approaching 90°, a "dip" is seen in the AMR, which, by analyzing Shubnikov de Haas oscillations at different angles, we find to coincide with a very sharp topological phase transition unlike any seen in other known Dirac/Weyl materials. We find that ZrSiS has a combination of two-dimensional (2D) and 3D Dirac pockets comprising its Fermi surface and that the combination of high-mobility carriers and multiple pockets in ZrSiS allows for large property changes to occur as a function of angle between applied fields. This makes it a promising platform to study the physics stemming from the coexistence of 2D and 3D Dirac electrons as well as opens the door to creating devices focused on switching between different parts of the Fermi surface and different topological states.

  6. Butterfly magnetoresistance, quasi-2D Dirac Fermi surface and topological phase transition in ZrSiS

    Science.gov (United States)

    Ali, Mazhar N.; Schoop, Leslie M.; Garg, Chirag; Lippmann, Judith M.; Lara, Erik; Lotsch, Bettina; Parkin, Stuart S. P.

    2016-01-01

    Magnetoresistance (MR), the change of a material’s electrical resistance in response to an applied magnetic field, is a technologically important property that has been the topic of intense study for more than a quarter century. We report the observation of an unusual “butterfly”-shaped titanic angular magnetoresistance (AMR) in the nonmagnetic Dirac material, ZrSiS, which we find to be the most conducting sulfide known, with a 2-K resistivity as low as 48(4) nΩ⋅cm. The MR in ZrSiS is large and positive, reaching nearly 1.8 × 105 percent at 9 T and 2 K at a 45° angle between the applied current (I || a) and the applied field (90° is H || c). Approaching 90°, a “dip” is seen in the AMR, which, by analyzing Shubnikov de Haas oscillations at different angles, we find to coincide with a very sharp topological phase transition unlike any seen in other known Dirac/Weyl materials. We find that ZrSiS has a combination of two-dimensional (2D) and 3D Dirac pockets comprising its Fermi surface and that the combination of high-mobility carriers and multiple pockets in ZrSiS allows for large property changes to occur as a function of angle between applied fields. This makes it a promising platform to study the physics stemming from the coexistence of 2D and 3D Dirac electrons as well as opens the door to creating devices focused on switching between different parts of the Fermi surface and different topological states. PMID:28028541

  7. Cosmological phase transitions

    International Nuclear Information System (INIS)

    Kolb, E.W.

    1987-01-01

    If the universe stated from conditions of high temperature and density, there should have been a series of phase transitions associated with spontaneous symmetry breaking. The cosmological phase transitions could have observable consequences in the present Universe. Some of the consequences including the formation of topological defects and cosmological inflation are reviewed here. One of the most important tools in building particle physics models is the use of spontaneous symmetry breaking (SSB). The proposal that there are underlying symmetries of nature that are not manifest in the vacuum is a crucial link in the unification of forces. Of particular interest for cosmology is the expectation that are the high temperatures of the big bang symmetries broken today will be restored, and that there are phase transitions to the broken state. The possibility that topological defects will be produced in the transition is the subject of this section. The possibility that the Universe will undergo inflation in a phase transition will be the subject of the next section. Before discussing the creation of topological defects in the phase transition, some general aspects of high-temperature restoration of symmetry and the development of the phase transition will be reviewed. 29 references, 1 figure, 1 table

  8. Phase transitions

    CERN Document Server

    Sole, Ricard V; Solé, Ricard V; Solé, Ricard V; Sol, Ricard V; Solé, Ricard V

    2011-01-01

    Phase transitions--changes between different states of organization in a complex system--have long helped to explain physics concepts, such as why water freezes into a solid or boils to become a gas. How might phase transitions shed light on important problems in biological and ecological complex systems? Exploring the origins and implications of sudden changes in nature and society, Phase Transitions examines different dynamical behaviors in a broad range of complex systems. Using a compelling set of examples, from gene networks and ant colonies to human language and the degradation of diverse ecosystems, the book illustrates the power of simple models to reveal how phase transitions occur. Introductory chapters provide the critical concepts and the simplest mathematical techniques required to study phase transitions. In a series of example-driven chapters, Ricard Solé shows how such concepts and techniques can be applied to the analysis and prediction of complex system behavior, including the origins of ...

  9. From phase transitions to the topological renaissance. Comment on "Topodynamics of metastable brains" by Arturo Tozzi et al.

    Science.gov (United States)

    Somogyvári, Zoltán; Érdi, Péter

    2017-07-01

    The neural topodynamics theory of Tozzi et al. [13] has two main foci: metastable brain dynamics and the topological approach based on the Borsuk-Ulam theorem (BUT). Briefly, metastable brain dynamics theory hypothesizes that temporary stable synchronization and desynchronization of large number of individual dynamical systems, formed by local neural circuits, are responsible for coding of complex concepts in the brain and sudden changes of these synchronization patterns correspond to operational steps. But what dynamical network could form the substrate for this metastable dynamics, capable of entering into a combinatorially high number of metastable synchronization patterns and exhibit rapid transient changes between them? The general problem is related to the discrimination between ;Black Swans; and ;Dragon Kings;. While BSs are related to the theory of self-organized criticality, and suggests that high-impact extreme events are unpredictable, Dragon-kings are associated with the occurrence of a phase transition, whose emergent organization is based on intermittent criticality [9]. Widening the limits of predictability is one of the big open problems in the theory and practice of complex systems (Sect. 9.3 of Érdi [2]).

  10. Topological phase transitions in an inverted InAs/GaSb quantum well driven by tilted magnetic fields

    Science.gov (United States)

    Hsu, Hsiu-Chuan; Jhang, Min-Jyun; Chen, Tsung-Wei; Guo, Guang-Yu

    2017-05-01

    The helical edge states in a quantum spin Hall insulator are presumably protected by time-reversal symmetry. However, even in the presence of magnetic field which breaks time-reversal symmetry, the helical edge conduction can still exist, dubbed as pseudo quantum spin Hall effect. In this paper, the effects of the magnetic fields on the pseudo quantum spin Hall effect and the phase transitions are studied. We show that an in-plane magnetic field drives a pseudo quantum spin Hall state to a metallic state at a high field. Moreover, at a fixed in-plane magnetic field, an increasing out-of-plane magnetic field leads to a reentrance of pseudo quantum spin Hall state in an inverted InAs/GaSb quantum well. The edge state probability distribution and Chern numbers are calculated to verify that the reentrant states are topologically nontrivial. The origin of the reentrant behavior is attributed to the nonmonotonic bending of Landau levels and the Landau level mixing caused by the orbital effect induced by the in-plane magnetic field. The robustness to disorder is demonstrated by the numerically calculated quantized conductance for disordered nanowires within Landauer-Büttiker formalism.

  11. Topological quantum phase transitions in the spin–singlet superconductor with Rashba and Dresselhaus (110) spin–orbit couplings

    Energy Technology Data Exchange (ETDEWEB)

    You, Jia-Bin, E-mail: jiabinyou@gmail.com [Centre for Quantum Technologies, National University of Singapore, 117543 (Singapore); Chan, A.H. [Department of Physics, National University of Singapore, 117542 (Singapore); Oh, C.H., E-mail: phyohch@nus.edu.sg [Centre for Quantum Technologies, National University of Singapore, 117543 (Singapore); Department of Physics, National University of Singapore, 117542 (Singapore); Vedral, Vlatko [Centre for Quantum Technologies, National University of Singapore, 117543 (Singapore); Department of Physics, National University of Singapore, 117542 (Singapore); Department of Physics, University of Oxford, Clarendon Laboratory, Oxford, OX1 3PU (United Kingdom)

    2014-10-15

    We examine the topological properties of a spin–singlet superconductor with Rashba and Dresselhaus (110) spin–orbit couplings. We demonstrate that there are several topological invariants in the Bogoliubov–de Gennes (BdG) Hamiltonian by symmetry analysis. In particular, the Pfaffian invariant P for the particle–hole symmetry can be used to demonstrate all the possible phase diagrams of the BdG Hamiltonian. We find that the edge spectrum is either Dirac cone or flat band which supports the emergence of the Majorana fermion in this system. For the Majorana flat bands, an edge index, namely the Pfaffian invariant P(k{sub y}) or the winding number W(k{sub y}), is needed to make them topologically stable. These edge indices can also be used in determining the location of the Majorana flat bands. - Highlights: • Majorana fermion can emerge in the spin–orbit coupled singlet superconductor. • Pfaffian invariant and 1D winding number can be used to identify the nontrivial topological phase where Majorana flat band exists. • All the possible phase diagrams in the spin–orbit coupled singlet superconductor are demonstrated. • Majorana flat band only exists in the y direction in our model. • Majorana flat band has a significant experimental signature in the tunneling conductance measurement.

  12. Topological phases of topological-insulator thin films

    Science.gov (United States)

    Asmar, Mahmoud M.; Sheehy, Daniel E.; Vekhter, Ilya

    2018-02-01

    We study the properties of a thin film of topological insulator material. We treat the coupling between helical states at opposite surfaces of the film in the properly-adapted tunneling approximation, and show that the tunneling matrix element oscillates as a function of both the film thickness and the momentum in the plane of the film for Bi2Se3 and Bi2Te3 . As a result, while the magnitude of the matrix element at the center of the surface Brillouin zone gives the gap in the energy spectrum, the sign of the matrix element uniquely determines the topological properties of the film, as demonstrated by explicitly computing the pseudospin textures and the Chern number. We find a sequence of transitions between topological and nontopological phases, separated by semimetallic states, as the film thickness varies. In the topological phase, the edge states of the film always exist but only carry a spin current if the edge potentials break particle-hole symmetry. The edge states decay very slowly away from the boundary in Bi2Se3 , making Bi2Te3 , where this scale is shorter, a more promising candidate for the observation of these states. Our results hold for free-standing films as well as heterostructures with large-gap insulators.

  13. Topological Phases in the Real World

    Science.gov (United States)

    Hsu, Yi-Ting

    The experimental discovery and subsequent theoretical understanding of the integer quantum Hall effect, the first known topological phase, has started a revolutionary breakthrough in understanding states of matter since its discovery four decades ago. Topological phases are predicted to have many generic signatures resulting from their underlying topological nature, such as quantized Hall transport, robust boundary states, and possible fractional excitations. The intriguing nature of these signatures and their potential applications in quantum computation has intensely fueled the efforts of the physics community to materialize topological phases. Among various topological phases initially predicted on theoretical grounds, chiral topological superconductors and time-reversal symmetric topological insulators (TI) in three dimension (3D) are two promising candidates for experimental realization and application. The family of materials, Bi2X3 (X = Se, Te), has been predicted and shown experimentally to be time-reversal symmetric 3D TIs through the observation of robust Dirac surface states with Rashba-type spin-winding. Due to their robust surface states with spin-windings, these 3D TIs are expected to be promising materials for producing large spin-transfer torques which are advantageous for spintronics application. As for topological superconductors, despite the exotic excitations that have been extensively proposed as qubits for topological quantum computing, materials hosting topological superconductivity are rare to date and the leading candidate in two dimensions (2D), Sr 2RuO4, has a low transition temperature (Tc ). The goal of my phd study is to push forward the current status of realization of topological phases by materializing higher Tc topological superconductors and investigating the stability of Dirac surface states in 3D TIs. In the first part of this thesis, I will discuss our double-pronged objective for topological superconductors: to propose how to

  14. Topological transitions in the theory of spacetime

    International Nuclear Information System (INIS)

    Konstantinov, M.Y.; Melnikov, V.N.

    1986-01-01

    Results of a realisation of the topological transitions hypothesis are presented. The basic difficulties in the construction of quantum topological transition theory are connected with a necessity to introduce a new non-local interaction defined on a space of topological states. So the general method of construction and study of topological transitions classical models is formulated as a necessary step towards a corresponding quantum description. Their local properties, including an asymptotic behaviour in the neighbourhood of the transition, are studied and applications to problems of gravitation and cosmology are given. The method used is shown to lead to a scalar-tensor theory of topological transitions. Different variants of this theory and its main features are discussed. (author)

  15. Exotic Lifshitz transitions in topological materials

    Science.gov (United States)

    Volovik, G. E.

    2018-01-01

    Topological Lifshitz transitions involve many types of topological structures in momentum and frequency-momentum spaces, such as Fermi surfaces, Dirac lines, Dirac and Weyl points, etc., each of which has its own stability-supporting topological invariant ( N_1, N_2, N_3, {\\tilde N}_3, etc.). The topology of the shape of Fermi surfaces and Dirac lines and the interconnection of objects of different dimensionalities produce a variety of Lifshitz transition classes. Lifshitz transitions have important implications for many areas of physics. To give examples, transition-related singularities can increase the superconducting transition temperature; Lifshitz transitions are the possible origin of the small masses of elementary particles in our Universe, and a black hole horizon serves as the surface of the Lifshitz transition between vacua with type-I and type-II Weyl points.

  16. The simplest classical models of topological transitions

    International Nuclear Information System (INIS)

    Konstantinov, M.Yu.

    1983-01-01

    It is shown that simplest classical models of topologigal transitions possess scalar singularity of curvature with a point carrier being a source of space-time incompleteness. It is also shown that the condition of energy dominance is broken near the topological transition, asymptotic behaviour of the curvature tensor (growth of curvature at approximation to the topological transition) and energy-momentum tensor of (breaking the condition of energy dominance) being a common property of the considered models and being completely determined by the type of topological transition

  17. First- and second-order metal-insulator phase transitions and topological aspects of a Hubbard-Rashba system

    Science.gov (United States)

    Marcelino, Edgar

    2017-05-01

    This paper considers a model consisting of a kinetic term, Rashba spin-orbit coupling and short-range Coulomb interaction at zero temperature. The Coulomb interaction is decoupled by a mean-field approximation in the spin channel using field theory methods. The results feature a first-order phase transition for any finite value of the chemical potential and quantum criticality for vanishing chemical potential. The Hall conductivity is also computed using the Kubo formula in a mean-field effective Hamiltonian. In the limit of infinite mass the kinetic term vanishes and all the phase transitions are of second order; in this case the spontaneous symmetry-breaking mechanism adds a ferromagnetic metallic phase to the system and features a zero-temperature quantization of the Hall conductivity in the insulating one.

  18. Symmetric Topological Phases and Tensor Network States

    Science.gov (United States)

    Jiang, Shenghan

    Classification and simulation of quantum phases are one of main themes in condensed matter physics. Quantum phases can be distinguished by their symmetrical and topological properties. The interplay between symmetry and topology in condensed matter physics often leads to exotic quantum phases and rich phase diagrams. Famous examples include quantum Hall phases, spin liquids and topological insulators. In this thesis, I present our works toward a more systematically understanding of symmetric topological quantum phases in bosonic systems. In the absence of global symmetries, gapped quantum phases are characterized by topological orders. Topological orders in 2+1D are well studied, while a systematically understanding of topological orders in 3+1D is still lacking. By studying a family of exact solvable models, we find at least some topological orders in 3+1D can be distinguished by braiding phases of loop excitations. In the presence of both global symmetries and topological orders, the interplay between them leads to new phases termed as symmetry enriched topological (SET) phases. We develop a framework to classify a large class of SET phases using tensor networks. For each tensor class, we can write down generic variational wavefunctions. We apply our method to study gapped spin liquids on the kagome lattice, which can be viewed as SET phases of on-site symmetries as well as lattice symmetries. In the absence of topological order, symmetry could protect different topological phases, which are often referred to as symmetry protected topological (SPT) phases. We present systematic constructions of tensor network wavefunctions for bosonic symmetry protected topological (SPT) phases respecting both onsite and spatial symmetries.

  19. Topological phases: Wormholes in quantum matter

    NARCIS (Netherlands)

    Schoutens, K.

    2009-01-01

    Proliferation of so-called anyonic defects in a topological phase of quantum matter leads to a critical state that can be visualized as a 'quantum foam', with topology-changing fluctuations on all length scales.

  20. Signature of Topological Phases in Zitterbewegung

    KAUST Repository

    Ghosh, Sumit; Manchon, Aurelien

    2016-01-01

    We have studied the Zitterbewegung effect on an infinite two-dimensional sheet with honeycomb lattice. By tuning the perpendicular electric field and the magnetization of the sheet, it can enter different topological phases. We have shown that the phase and magnitude of Zitterbewegung effect, i.e., the jittering motion of electron wavepackets, correlates with the various topological phases. The topological phase diagram can be reconstructed by analyzing these features. Our findings are applicable to materials like silicene, germanene, stanene, etc.

  1. Signature of Topological Phases in Zitterbewegung

    KAUST Repository

    Ghosh, Sumit

    2016-09-02

    We have studied the Zitterbewegung effect on an infinite two-dimensional sheet with honeycomb lattice. By tuning the perpendicular electric field and the magnetization of the sheet, it can enter different topological phases. We have shown that the phase and magnitude of Zitterbewegung effect, i.e., the jittering motion of electron wavepackets, correlates with the various topological phases. The topological phase diagram can be reconstructed by analyzing these features. Our findings are applicable to materials like silicene, germanene, stanene, etc.

  2. Anomalous second ferromagnetic phase transition in Co{sub 0.08}Bi{sub 1.92}Se{sub 3} topological insulator

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Min, E-mail: zmzmi1987@163.com; Liu, Ligang; Yang, Hui

    2016-09-05

    We report the observation of ferromagnetism in topological insulator Co{sub 0.08}Bi{sub 1.92}Se{sub 3} single crystal. The structural, magnetic, and microstructure properties of Co{sub 0.08}Bi{sub 1.92}Se{sub 3} are investigated. The existence of complicated ferromagnetic ordering, indicates the anomalous second ferromagnetic phase transition below 30 K. Well-defined ferromagnetic hysteresis in the magnetization was found in the sample. The origin of bulk ferromagnetism in Co{sub 0.08}Bi{sub 1.92}Se{sub 3} is concerned with three aspects: Co cluster, RKKY interactions, and the spin texture of Co impurities. - Highlights: • The bulk ferromagnetism have been found in the C{sub o0.08}Bi{sub 1.92}Se{sub 3} single crystal. • The anomalous second ferromagnetic phase transition is found below 30 K. • The origin of bulk ferromagnetism in Co{sub 0.08}Bi{sub 1.92}Se{sub 3} is concerned with three aspects.

  3. Emergence of topological and topological crystalline phases in TlBiS2 and TlSbS2

    KAUST Repository

    Zhang, Qingyun; Cheng, Yingchun; Schwingenschlö gl, Udo

    2015-01-01

    Using first-principles calculations, we investigate the band structure evolution and topological phase transitions in TlBiS2 and TlSbS2 under hydrostatic pressure as well as uniaxial and biaxial strain. The phase transitions are identified by parity analysis and by calculating the surface states. Zero, one, and four Dirac cones are found for the (111) surfaces of both TlBiS2 and TlSbS2 when the pressure grows, which confirms trivial-nontrivial-trivial phase transitions. The Dirac cones at the (M) over bar points are anisotropic with large out-of-plane component. TlBiS2 shows normal, topological, and topological crystalline insulator phases under hydrostatic pressure, thus being the first compound to exhibit a phase transition from a topological to a topological crystalline insulator.

  4. Emergence of topological and topological crystalline phases in TlBiS2 and TlSbS2

    KAUST Repository

    Zhang, Qingyun

    2015-02-11

    Using first-principles calculations, we investigate the band structure evolution and topological phase transitions in TlBiS2 and TlSbS2 under hydrostatic pressure as well as uniaxial and biaxial strain. The phase transitions are identified by parity analysis and by calculating the surface states. Zero, one, and four Dirac cones are found for the (111) surfaces of both TlBiS2 and TlSbS2 when the pressure grows, which confirms trivial-nontrivial-trivial phase transitions. The Dirac cones at the (M) over bar points are anisotropic with large out-of-plane component. TlBiS2 shows normal, topological, and topological crystalline insulator phases under hydrostatic pressure, thus being the first compound to exhibit a phase transition from a topological to a topological crystalline insulator.

  5. Equivariant topological quantum field theory and symmetry protected topological phases

    Energy Technology Data Exchange (ETDEWEB)

    Kapustin, Anton [Division of Physics, California Institute of Technology,1200 E California Blvd, Pasadena, CA, 91125 (United States); Turzillo, Alex [Simons Center for Geometry and Physics, State University of New York,Stony Brook, NY, 11794 (United States)

    2017-03-01

    Short-Range Entangled topological phases of matter are closely related to Topological Quantum Field Theory. We use this connection to classify Symmetry Protected Topological phases in low dimensions, including the case when the symmetry involves time-reversal. To accomplish this, we generalize Turaev’s description of equivariant TQFT to the unoriented case. We show that invertible unoriented equivariant TQFTs in one or fewer spatial dimensions are classified by twisted group cohomology, in agreement with the proposal of Chen, Gu, Liu and Wen. We also show that invertible oriented equivariant TQFTs in spatial dimension two or fewer are classified by ordinary group cohomology.

  6. Topological phase transition in the two-dimensional anisotropic Heisenberg model: A study using the Replica Exchange Wang-Landau sampling

    Science.gov (United States)

    Figueiredo, T. P.; Rocha, J. C. S.; Costa, B. V.

    2017-12-01

    Although the topological Berezinskii-Kosterlitz-Thouless transition was for the first time described by 40 years ago, it is still a matter of discussion. It has been used to explain several experiments in the most diverse physical systems. In contrast with the ordinary continuous phase transitions the BKT-transition does not break any symmetry. However, in some contexts it can easily be confused with other continuous transitions, in general due to an insufficient data analysis. The two-dimensional XY (or sometimes called planar rotator) spin model is the fruit fly model describing the BKT transition. As demonstrated by Bramwell and Holdsworth (1993) the finite-size effects are more important in two-dimensions than in others due to the logarithmic system size dependence of the properties of the system. Closely related is the anisotropic two dimensional Heisenberg model (AH). Although they have the same Hamiltonian the spin variable in the former has only two degrees of freedom while the AH has three. Many works treat the AH model as undergoing a transition in the same universality class as the XY model. However, its characterization as being in the BKT class of universality deserve some investigation. This paper has two goals. First, we describe an analytical evidence showing that the AH model is in the BKT class of universality. Second, we make an extensive simulation, using the numerical Replica Exchange Wang-Landau method that corroborate our analytical calculations. From our simulation we obtain the BKT transition temperature as TBKT = 0 . 6980(10) by monitoring the susceptibility, the two point correlation function and the helicity modulus. We discuss the misuse of the fourth order Binder's cumulant to locate the transition temperature. The specific heat is shown to have a non-critical behavior as expected in the BKT transition. An analysis of the two point correlation function at low temperature, C(r) ∝r - η(T), shows that the exponent, η, is consistent

  7. Tunable topological phases in photonic and phononic crystals

    KAUST Repository

    Chen, Zeguo

    2018-02-18

    Topological photonics/phononics, inspired by the discovery of topological insulators, is a prosperous field of research, in which remarkable one-way propagation edge states are robust against impurities or defect without backscattering. This dissertation discusses the implementation of multiple topological phases in specific designed photonic and phononic crystals. First, it reports a tunable quantum Hall phase in acoustic ring-waveguide system. A new three-band model focused on the topological transitions at the Γ point is studied, which gives the functionality that nontrivial topology can be tuned by changing the strengths of the couplings and/or the broken time-reversal symmetry. The resulted tunable topological edge states are also numerically verified. Second, based on our previous studied acoustic ring-waveguide system, we introduce anisotropy by tuning the couplings along different directions. We find that the bandgap topology is related to the frequency and directions. We report our proposal on a frequency filter designed from such an anisotropic topological phononic crystal. Third, motivated by the recent progress on quantum spin Hall phases, we propose a design of time-reversal symmetry broken quantum spin Hall insulators in photonics, in which a new quantum anomalous Hall phase emerges. It supports a chiral edge state with certain spin orientations, which is robust against the magnetic impurities. We also report the realization of the quantum anomalous Hall phase in phononics.

  8. From bosonic topological transition to symmetric fermion mass generation

    Science.gov (United States)

    You, Yi-Zhuang; He, Yin-Chen; Vishwanath, Ashvin; Xu, Cenke

    2018-03-01

    A bosonic topological transition (BTT) is a quantum critical point between the bosonic symmetry-protected topological phase and the trivial phase. In this work, we investigate such a transition in a (2+1)-dimensional lattice model with the maximal microscopic symmetry: an internal SO (4 ) symmetry. We derive a description for this transition in terms of compact quantum electrodynamics (QED) with four fermion flavors (Nf=4 ). Within a systematic renormalization group analysis, we identify the critical point with the desired O (4 ) emergent symmetry and all expected deformations. By lowering the microscopic symmetry, we recover the previous Nf=2 noncompact QED description of the BTT. Finally, by merging two BTTs we recover a previously discussed theory of symmetric mass generation, as an SU (2 ) quantum chromodynamics-Higgs theory with Nf=4 flavors of SU (2 ) fundamental fermions and one SU (2 ) fundamental Higgs boson. This provides a consistency check on both theories.

  9. Multiple topological phases in phononic crystals

    KAUST Repository

    Chen, Zeguo; Wu, Ying

    2017-01-01

    We report a new topological phononic crystal in a ring-waveguide acoustic system. In the previous reports on topological phononic crystals, there are two types of topological phases: quantum Hall phase and quantum spin Hall phase. A key point in achieving quantum Hall insulator is to break the time-reversal (TR) symmetry, and for quantum spin Hall insulator, the construction of pseudo-spin is necessary. We build such pseudo-spin states under particular crystalline symmetry (C-6v) and then break the degeneracy of the pseudo-spin states by introducing airflow to the ring. We study the topology evolution by changing both the geometric parameters of the unit cell and the strength of the applied airflow. We find that the system exhibits three phases: quantum spin Hall phase, conventional insulator phase and a new quantum anomalous Hall phase.

  10. Multiple topological phases in phononic crystals

    KAUST Repository

    Chen, Zeguo

    2017-11-20

    We report a new topological phononic crystal in a ring-waveguide acoustic system. In the previous reports on topological phononic crystals, there are two types of topological phases: quantum Hall phase and quantum spin Hall phase. A key point in achieving quantum Hall insulator is to break the time-reversal (TR) symmetry, and for quantum spin Hall insulator, the construction of pseudo-spin is necessary. We build such pseudo-spin states under particular crystalline symmetry (C-6v) and then break the degeneracy of the pseudo-spin states by introducing airflow to the ring. We study the topology evolution by changing both the geometric parameters of the unit cell and the strength of the applied airflow. We find that the system exhibits three phases: quantum spin Hall phase, conventional insulator phase and a new quantum anomalous Hall phase.

  11. Uncertainty relations and topological-band insulator transitions in 2D gapped Dirac materials

    International Nuclear Information System (INIS)

    Romera, E; Calixto, M

    2015-01-01

    Uncertainty relations are studied for a characterization of topological-band insulator transitions in 2D gapped Dirac materials isostructural with graphene. We show that the relative or Kullback–Leibler entropy in position and momentum spaces, and the standard variance-based uncertainty relation give sharp signatures of topological phase transitions in these systems. (paper)

  12. Fermi-Surface Topological Phase Transition and Horizontal Order-Parameter Nodes in CaFe2As2 Under Pressure

    Science.gov (United States)

    Gonnelli, R. S.; Daghero, D.; Tortello, M.; Ummarino, G. A.; Bukowski, Z.; Karpinski, J.; Reuvekamp, P. G.; Kremer, R. K.; Profeta, G.; Suzuki, K.; Kuroki, K.

    2016-05-01

    Iron-based compounds (IBS) display a surprising variety of superconducting properties that seems to arise from the strong sensitivity of these systems to tiny details of the lattice structure. In this respect, systems that become superconducting under pressure, like CaFe2As2, are of particular interest. Here we report on the first directional point-contact Andreev-reflection spectroscopy (PCARS) measurements on CaFe2As2 crystals under quasi-hydrostatic pressure, and on the interpretation of the results using a 3D model for Andreev reflection combined with ab-initio calculations of the Fermi surface (within the density functional theory) and of the order parameter symmetry (within a random-phase-approximation approach in a ten-orbital model). The almost perfect agreement between PCARS results at different pressures and theoretical predictions highlights the intimate connection between the changes in the lattice structure, a topological transition in the holelike Fermi surface sheet, and the emergence on the same sheet of an order parameter with a horizontal node line.

  13. Valley Topological Phases in Bilayer Sonic Crystals

    Science.gov (United States)

    Lu, Jiuyang; Qiu, Chunyin; Deng, Weiyin; Huang, Xueqin; Li, Feng; Zhang, Fan; Chen, Shuqi; Liu, Zhengyou

    2018-03-01

    Recently, the topological physics in artificial crystals for classical waves has become an emerging research area. In this Letter, we propose a unique bilayer design of sonic crystals that are constructed by two layers of coupled hexagonal array of triangular scatterers. Assisted by the additional layer degree of freedom, a rich topological phase diagram is achieved by simply rotating scatterers in both layers. Under a unified theoretical framework, two kinds of valley-projected topological acoustic insulators are distinguished analytically, i.e., the layer-mixed and layer-polarized topological valley Hall phases, respectively. The theory is evidently confirmed by our numerical and experimental observations of the nontrivial edge states that propagate along the interfaces separating different topological phases. Various applications such as sound communications in integrated devices can be anticipated by the intriguing acoustic edge states enriched by the layer information.

  14. Tensor Network Wavefunctions for Topological Phases

    Science.gov (United States)

    Ware, Brayden Alexander

    The combination of quantum effects and interactions in quantum many-body systems can result in exotic phases with fundamentally entangled ground state wavefunctions--topological phases. Topological phases come in two types, both of which will be studied in this thesis. In topologically ordered phases, the pattern of entanglement in the ground state wavefunction encodes the statistics of exotic emergent excitations, a universal indicator of a phase that is robust to all types of perturbations. In symmetry protected topological phases, the entanglement instead encodes a universal response of the system to symmetry defects, an indicator that is robust only to perturbations respecting the protecting symmetry. Finding and creating these phases in physical systems is a motivating challenge that tests all aspects--analytical, numerical, and experimental--of our understanding of the quantum many-body problem. Nearly three decades ago, the creation of simple ansatz wavefunctions--such as the Laughlin fractional quantum hall state, the AKLT state, and the resonating valence bond state--spurred analytical understanding of both the role of entanglement in topological physics and physical mechanisms by which it can arise. However, quantitative understanding of the relevant phase diagrams is still challenging. For this purpose, tensor networks provide a toolbox for systematically improving wavefunction ansatz while still capturing the relevant entanglement properties. In this thesis, we use the tools of entanglement and tensor networks to analyze ansatz states for several proposed new phases. In the first part, we study a featureless phase of bosons on the honeycomb lattice and argue that this phase can be topologically protected under any one of several distinct subsets of the crystalline lattice symmetries. We discuss methods of detecting such phases with entanglement and without. In the second part, we consider the problem of constructing fixed-point wavefunctions for

  15. Parametric disordering-driven topological transitions in a liquid metacrystal

    Science.gov (United States)

    Zharov, A. A.; Zharov, A. A.; Zharova, N. A.

    2018-03-01

    We show that an amplitude-modulated electromagnetic wave incident onto a liquid metacrystal (LMC) may cause parametric instability of meta-atoms' mechanical oscillations. It results in either phase-coherent motion of the meta-atoms (leading to time-dependent components of LMC dielectric tensor) or chaotic isotropization of the medium that can be treated in terms of effective temperature. Both scenarios enable switching of the sign of certain components of permittivity tensor that, in turn, modifies the topology of isofrequency surface. Thus, the topological transition in LMC is expected to have an oscillatory or quasi-thermal character depending on the parameters, but in any case the change of topology leads to dramatic changes of the medium properties, switching the LMC between the transparent and opaque states.

  16. Exploring topological phases with quantum walks

    International Nuclear Information System (INIS)

    Kitagawa, Takuya; Rudner, Mark S.; Berg, Erez; Demler, Eugene

    2010-01-01

    The quantum walk was originally proposed as a quantum-mechanical analog of the classical random walk, and has since become a powerful tool in quantum information science. In this paper, we show that discrete-time quantum walks provide a versatile platform for studying topological phases, which are currently the subject of intense theoretical and experimental investigations. In particular, we demonstrate that recent experimental realizations of quantum walks with cold atoms, photons, and ions simulate a nontrivial one-dimensional topological phase. With simple modifications, the quantum walk can be engineered to realize all of the topological phases, which have been classified in one and two dimensions. We further discuss the existence of robust edge modes at phase boundaries, which provide experimental signatures for the nontrivial topological character of the system.

  17. Electronic topological transitions in Zn under compression

    Science.gov (United States)

    Kechin, Vladimir V.

    2001-01-01

    The electronic structure of hcp Zn under pressure up to 10 GPa has been calculated self-consistently by means of the scalar relativistic tight-binding linear muffin-tin orbital method. The calculations show that three electronic topological transitions (ETT's) occur in Zn when the c/a axial ratio diminishes under compression. One transition occurs at c/a~=1.82 when the ``needles'' appear around the symmetry point K of the Brillouin zone. The other two transitions occur at c/a~=3, when the ``butterfly'' and ``cigar'' appear simultaneously both around the L point. It has been shown that these ETT's are responsible for a number of anomalies observed in Zn at compression.

  18. Topological phases in a three-dimensional topological insulator with a time-reversal invariant external field

    International Nuclear Information System (INIS)

    Guo, Xiaoyong; Ren, Xiaobin; Wang, Gangzhi; Peng, Jie

    2014-01-01

    We investigate the impact of a time-reversal invariant external field on the topological phases of a three-dimensional (3D) topological insulator. By taking the momentum k z as a parameter, we calculate the spin-Chern number analytically. It is shown that both the quantum spin Hall phase and the integer quantum Hall phase can be realized in our system. When the strength of the external field is varied, a series of topological phase transitions occurs with the closing of the energy gap or the spin-spectrum gap. In a tight-binding form, the surface modes are discussed numerically to confirm the analytically results. (paper)

  19. Quantum phase transitions

    International Nuclear Information System (INIS)

    Sachdev, S.

    1999-01-01

    Phase transitions are normally associated with changes of temperature but a new type of transition - caused by quantum fluctuations near absolute zero - is possible, and can tell us more about the properties of a wide range of systems in condensed-matter physics. Nature abounds with phase transitions. The boiling and freezing of water are everyday examples of phase transitions, as are more exotic processes such as superconductivity and superfluidity. The universe itself is thought to have passed through several phase transitions as the high-temperature plasma formed by the big bang cooled to form the world as we know it today. Phase transitions are traditionally classified as first or second order. In first-order transitions the two phases co-exist at the transition temperature - e.g. ice and water at 0 deg., or water and steam at 100 deg. In second-order transitions the two phases do not co-exist. In the last decade, attention has focused on phase transitions that are qualitatively different from the examples noted above: these are quantum phase transitions and they occur only at the absolute zero of temperature. The transition takes place at the ''quantum critical'' value of some other parameter such as pressure, composition or magnetic field strength. A quantum phase transition takes place when co-operative ordering of the system disappears, but this loss of order is driven solely by the quantum fluctuations demanded by Heisenberg's uncertainty principle. The physical properties of these quantum fluctuations are quite distinct from those of the thermal fluctuations responsible for traditional, finite-temperature phase transitions. In particular, the quantum system is described by a complex-valued wavefunction, and the dynamics of its phase near the quantum critical point requires novel theories that have no analogue in the traditional framework of phase transitions. In this article the author describes the history of quantum phase transitions. (UK)

  20. Cosmological phase transitions

    International Nuclear Information System (INIS)

    Kolb, E.W.

    1993-10-01

    If modern ideas about the role of spontaneous symmetry breaking in fundamental physics are correct, then the Universe should have undergone a series of phase transitions early in its history. The study of cosmological phase transitions has become an important aspect of early-Universe cosmology. In this lecture I review some very recent work on three aspects of phase transitions: the electroweak transition, texture, and axions

  1. Phase Diagram of a Simple Model for Fractional Topological Insulator

    Science.gov (United States)

    Chen, Hua; Yang, Kun

    2012-02-01

    We study a simple model of two species of (or spin-1/2) fermions with short-range intra-species repulsion in the presence of opposite (effetive) magnetic field, each at filling factor 1/3. In the absence of inter-species interaction, the ground state is simply two copies of the 1/3 Laughlin state, with opposite chirality. Due to the overall time-reversal symmetry, this is a fractional topological insulator. We show this phase is stable against moderate inter-species interactions. However strong enough inter-species repulsion leads to phase separation, while strong enough inter-species attraction drives the system into a superfluid phase. We obtain the phase diagram through exact diagonalization caluclations. Nature of the fractional topological insluator-superfluid phase transition is discussed using an appropriate Chern-Simons-Ginsburg-Landau effective field theory.

  2. Eigenstate Phase Transitions

    Science.gov (United States)

    Zhao, Bo

    Phase transitions are one of the most exciting physical phenomena ever discovered. The understanding of phase transitions has long been of interest. Recently eigenstate phase transitions have been discovered and studied; they are drastically different from traditional thermal phase transitions. In eigenstate phase transitions, a sharp change is exhibited in properties of the many-body eigenstates of the Hamiltonian of a quantum system, but not the thermal equilibrium properties of the same system. In this thesis, we study two different types of eigenstate phase transitions. The first is the eigenstate phase transition within the ferromagnetic phase of an infinite-range spin model. By studying the interplay of the eigenstate thermalization hypothesis and Ising symmetry breaking, we find two eigenstate phase transitions within the ferromagnetic phase: In the lowest-temperature phase the magnetization can macroscopically oscillate by quantum tunneling between up and down. The relaxation of the magnetization is always overdamped in the remainder of the ferromagnetic phase, which is further divided into phases where the system thermally activates itself over the barrier between the up and down states, and where it quantum tunnels. The second is the many-body localization phase transition. The eigenstates on one side of the transition obey the eigenstate thermalization hypothesis; the eigenstates on the other side are many-body localized, and thus thermal equilibrium need not be achieved for an initial state even after evolving for an arbitrary long time. We study this many-body localization phase transition in the strong disorder renormalization group framework. After setting up a set of coarse-graining rules for a general one dimensional chain, we get a simple "toy model'' and obtain an almost purely analytical solution to the infinite-randomness critical fixed point renormalization group equation. We also get an estimate of the correlation length critical exponent nu

  3. Topological phase in two flavor neutrino oscillations

    International Nuclear Information System (INIS)

    Mehta, Poonam

    2009-01-01

    We show that the phase appearing in neutrino flavor oscillation formulae has a geometric and topological contribution. We identify a topological phase appearing in the two flavor neutrino oscillation formula using Pancharatnam's prescription of quantum collapses between nonorthogonal states. Such quantum collapses appear naturally in the expression for appearance and survival probabilities of neutrinos. Our analysis applies to neutrinos propagating in vacuum or through matter. For the minimal case of two flavors with CP conservation, our study shows for the first time that there is a geometric interpretation of the neutrino oscillation formulae for the detection probability of neutrino species.

  4. Thermodynamics of phase transitions

    International Nuclear Information System (INIS)

    Cofta, H.

    1972-01-01

    The phenomenology of the phase transitions has been considered. The definitions of thermodynamic functions and parameters, as well as those of the phase transitions, are given and some of the relations between those quantities are discussed. The phase transitions classification proposed by Ehrenfest has been described. The most important features of phase transitions are discussed using the selected physical examples including the critical behaviour of ferromagnetic materials at the Curie temperature and antiferromagnetic materials at the Neel temperature. Some aspects of the Ehrenfest's equations, that have been derived, for the interfacial lines and surfaces are considered as well as the role the notion of interfaces. (S.B.)

  5. The topological Anderson insulator phase in the Kane-Mele model

    Science.gov (United States)

    Orth, Christoph P.; Sekera, Tibor; Bruder, Christoph; Schmidt, Thomas L.

    2016-04-01

    It has been proposed that adding disorder to a topologically trivial mercury telluride/cadmium telluride (HgTe/CdTe) quantum well can induce a transition to a topologically nontrivial state. The resulting state was termed topological Anderson insulator and was found in computer simulations of the Bernevig-Hughes-Zhang model. Here, we show that the topological Anderson insulator is a more universal phenomenon and also appears in the Kane-Mele model of topological insulators on a honeycomb lattice. We numerically investigate the interplay of the relevant parameters, and establish the parameter range in which the topological Anderson insulator exists. A staggered sublattice potential turns out to be a necessary condition for the transition to the topological Anderson insulator. For weak enough disorder, a calculation based on the lowest-order Born approximation reproduces quantitatively the numerical data. Our results thus considerably increase the number of candidate materials for the topological Anderson insulator phase.

  6. Orbital momentum and topological phase transformation

    Czech Academy of Sciences Publication Activity Database

    Středa, Pavel; Kučera, Jan

    2015-01-01

    Roč. 92, č. 23 (2015), "235152-1"-"235152-6" ISSN 1098-0121 R&D Projects: GA ČR GA15-13436S Institutional support: RVO:68378271 Keywords : orbital momentum * anomalous Hall effect * topological phase transformation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.736, year: 2014

  7. Topological analysis of nuclear pasta phases

    Science.gov (United States)

    Kycia, Radosław A.; Kubis, Sebastian; Wójcik, Włodzimierz

    2017-08-01

    In this article the analysis of the result of numerical simulations of pasta phases using algebraic topology methods is presented. These considerations suggest that some phases can be further split into subphases and therefore should be more refined in numerical simulations. The results presented in this article can also be used to relate the Euler characteristic from numerical simulations to the geometry of the phases. The Betti numbers are used as they provide finer characterization of the phases. It is also shown that different boundary conditions give different outcomes.

  8. Phase transitions in finite systems

    Energy Technology Data Exchange (ETDEWEB)

    Chomaz, Ph. [Grand Accelerateur National d' Ions Lourds (GANIL), DSM-CEA / IN2P3-CNRS, 14 - Caen (France); Gulminelli, F. [Caen Univ., 14 (France). Lab. de Physique Corpusculaire

    2002-07-01

    In this series of lectures we will first review the general theory of phase transition in the framework of information theory and briefly address some of the well known mean field solutions of three dimensional problems. The theory of phase transitions in finite systems will then be discussed, with a special emphasis to the conceptual problems linked to a thermodynamical description for small, short-lived, open systems as metal clusters and data samples coming from nuclear collisions. The concept of negative heat capacity developed in the early seventies in the context of self-gravitating systems will be reinterpreted in the general framework of convexity anomalies of thermo-statistical potentials. The connection with the distribution of the order parameter will lead us to a definition of first order phase transitions in finite systems based on topology anomalies of the event distribution in the space of observations. Finally a careful study of the thermodynamical limit will provide a bridge with the standard theory of phase transitions and show that in a wide class of physical situations the different statistical ensembles are irreducibly inequivalent. (authors)

  9. Phase transitions in finite systems

    International Nuclear Information System (INIS)

    Chomaz, Ph.; Gulminelli, F.

    2002-01-01

    In this series of lectures we will first review the general theory of phase transition in the framework of information theory and briefly address some of the well known mean field solutions of three dimensional problems. The theory of phase transitions in finite systems will then be discussed, with a special emphasis to the conceptual problems linked to a thermodynamical description for small, short-lived, open systems as metal clusters and data samples coming from nuclear collisions. The concept of negative heat capacity developed in the early seventies in the context of self-gravitating systems will be reinterpreted in the general framework of convexity anomalies of thermo-statistical potentials. The connection with the distribution of the order parameter will lead us to a definition of first order phase transitions in finite systems based on topology anomalies of the event distribution in the space of observations. Finally a careful study of the thermodynamical limit will provide a bridge with the standard theory of phase transitions and show that in a wide class of physical situations the different statistical ensembles are irreducibly inequivalent. (authors)

  10. Martensitic phase transitions

    International Nuclear Information System (INIS)

    Petry, W.; Neuhaus, J.

    1996-01-01

    Many elements transform from a high temperature bcc phase to a more dense packed temperature phase. The great majority of these transitions are of 1st order, displacive and reconstructive. The lattice potentials which govern these martensitic transitions can be probed by inelastic neutron scattering, thereby answering fundamental questions like : Will the transition be announced by dynamical or static fluctuations? What are the trajectories for the displacements needed for the transformation? Does the vibrational entropy stabilize the high temperature phase? Are the unusual transport properties in these materials related to their ability to transform? (author) 17 figs., 1 tab., 46 refs

  11. Martensitic phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Petry, W; Neuhaus, J [Techn. Universitaet Muenchen, Physik Department E13, Munich (Germany)

    1996-11-01

    Many elements transform from a high temperature bcc phase to a more dense packed temperature phase. The great majority of these transitions are of 1st order, displacive and reconstructive. The lattice potentials which govern these martensitic transitions can be probed by inelastic neutron scattering, thereby answering fundamental questions like : Will the transition be announced by dynamical or static fluctuations? What are the trajectories for the displacements needed for the transformation? Does the vibrational entropy stabilize the high temperature phase? Are the unusual transport properties in these materials related to their ability to transform? (author) 17 figs., 1 tab., 46 refs.

  12. Disorder-induced topological transitions in multichannel Majorana wires

    NARCIS (Netherlands)

    Pekerten, B.; Teker, A.; Bozat, Ö.; Wimmer, M.T.; Adagideli, I

    2017-01-01

    In this work, we investigate the effect of disorder on the topological properties of multichannel superconductor nanowires. While the standard expectation is that the spectral gap is closed and opened at transitions that change the topological index of the wire, we show that the closing and

  13. Phase transitions modern applications

    CERN Document Server

    Gitterman, Moshe

    2014-01-01

    This book provides a comprehensive review of the theory of phase transitions and its modern applications, based on the five pillars of the modern theory of phase transitions i.e. the Ising model, mean field, scaling, renormalization group and universality. This expanded second edition includes, along with a description of vortices and high temperature superconductivity, a discussion of phase transitions in chemical reaction and moving systems. The book covers a close connection between phase transitions and small world phenomena as well as scale-free systems such as the stock market and the Internet. Readership: Scientists working in different fields of physics, chemistry, biology and economics as well as teaching material for undergraduate and graduate courses.

  14. Globally symmetric topological phase: from anyonic symmetry to twist defect

    International Nuclear Information System (INIS)

    Teo, Jeffrey C Y

    2016-01-01

    Topological phases in two dimensions support anyonic quasiparticle excitations that obey neither bosonic nor fermionic statistics. These anyon structures often carry global symmetries that relate distinct anyons with similar fusion and statistical properties. Anyonic symmetries associate topological defects or fluxes in topological phases. As the symmetries are global and static, these extrinsic defects are semiclassical objects that behave disparately from conventional quantum anyons. Remarkably, even when the topological states supporting them are Abelian, they are generically non-Abelian and powerful enough for topological quantum computation. In this article, I review the most recent theoretical developments on symmetries and defects in topological phases. (topical review)

  15. Disorder-induced transitions in resonantly driven Floquet topological insulators

    Science.gov (United States)

    Titum, Paraj; Lindner, Netanel H.; Refael, Gil

    2017-08-01

    We investigate the effects of disorder in Floquet topological insulators (FTIs) occurring in semiconductor quantum wells. Such FTIs are induced by resonantly driving a transition between the valence and conduction bands. We show that when disorder is added, the topological nature of such FTIs persists as long as there is a mobility gap at the resonant quasienergy. For strong enough disorder, this gap closes and all the states become localized as the system undergoes a transition to a trivial insulator. Interestingly, the effects of disorder are not necessarily adverse: we show that in the same quantum well, disorder can also induce a transition from a trivial to a topological system, thereby establishing a Floquet topological Anderson insulator (FTAI). We identify the conditions on the driving field necessary for observing such a transition.

  16. Topological transitions at finite temperatures: A real-time numerical approach

    International Nuclear Information System (INIS)

    Grigoriev, D.Yu.; Rubakov, V.A.; Shaposhnikov, M.E.

    1989-01-01

    We study topological transitions at finite temperatures within the (1+1)-dimensional abelian Higgs model by a numerical simulation in real time. Basic ideas of the real-time approach are presented and some peculiarities of the Metropolis technique are discussed. It is argued that the processes leading to topological transitions are of classical origin; the transitions can be observed by solving the classical field equations in real time. We show that the topological transitions actually pass via the sphaleron configuration. The transition rate as a function of temperature is found to be in good agreement with the analytical predictions. No extra suppression of the rate is observed. The conditions of applicability of our approach are discussed. The temperature interval where the low-temperature broken phase persists is estimated. (orig.)

  17. Geometric phase topology in weak measurement

    Science.gov (United States)

    Samlan, C. T.; Viswanathan, Nirmal K.

    2017-12-01

    The geometric phase visualization proposed by Bhandari (R Bhandari 1997 Phys. Rep. 281 1-64) in the ellipticity-ellipse orientation basis of the polarization ellipse of light is implemented to understand the geometric aspects of weak measurement. The weak interaction of a pre-selected state, acheived via spin-Hall effect of light (SHEL), results in a spread in the polarization ellipticity (η) or ellipse orientation (χ) depending on the resulting spatial or angular shift, respectively. The post-selection leads to the projection of the η spread in the complementary χ basis results in the appearance of a geometric phase with helical phase topology in the η - χ parameter space. By representing the weak measurement on the Poincaré sphere and using Jones calculus, the complex weak value and the geometric phase topology are obtained. This deeper understanding of the weak measurement process enabled us to explore the techniques’ capabilities maximally, as demonstrated via SHEL in two examples—external reflection at glass-air interface and transmission through a tilted half-wave plate.

  18. Topological phase diagram of superconducting carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Milz, Lars; Marganska-Lyzniak, Magdalena; Grifoni, Milena [Institut I - Theoretische Physik Universitaet Regensburg (Germany)

    2016-07-01

    The topological superconducting phase diagram of superconducting carbon nanotubes is discussed. Under the assumption of a short-ranged pairing potential, there are two spin-singlet states: an s-wave and an exotic p + ip-wave that are possible because of the special structure of the honeycomb lattice. The consequences for the possible presence of Majorana edge states in carbon nanotubes are addressed. In particular, regions in the magnetic field-chemical potential plane possibly hosting localized Majorana modes are discussed.

  19. Electroweak phase transitions

    International Nuclear Information System (INIS)

    Anderson, G.W.

    1991-01-01

    An analytic treatment of the one Higgs doublet, electroweak phase transition is given. The phase transition is first order, occurs by the nucleation of thin walled bubbles and completes at a temperature where the order parameter, left-angle φ right-angle T is significantly smaller than it is when the origin becomes absolutely unstable. The rate of anomalous baryon number violation is an exponentially function of left-angle φ right-angle T . In very minimal extensions of the standard model it is quite easy to increase left-angle φ right-angle T so that anomalous baryon number violation is suppressed after completion of the phase transition. Hence baryogenesis at the electroweak phase transition is tenable in minimal of the standard model. In some cases additional phase transitions are possible. For a light Higgs boson, when the top quark mass is sufficiently large, the state where the Higgs field has a vacuum expectation value left-angle φ right-angle = 246 GeV is not the true minimum of the Higgs potential. When this is the case, and when the top quark mass exceeds some critical value, thermal fluctuations in the early universe would have rendered the state left-angle φ right-angle = 246 GeV unstable. The requirement that the state left-angle φ right-angle = 246 GeV is sufficiently long lived constrains the masses of the Higgs boson and the top quark. Finally, we consider whether local phase transitions can be induced by heavy particles which act as seeds for deformations in the scalar field

  20. Characterization of topological phases in models of interacting fermions

    International Nuclear Information System (INIS)

    Motruk, Johannes

    2016-01-01

    The concept of topology in condensed matter physics has led to the discovery of rich and exotic physics in recent years. Especially when strong correlations are included, phenomenons such as fractionalization and anyonic particle statistics can arise. In this thesis, we study several systems hosting topological phases of interacting fermions. In the first part, we consider one-dimensional systems of parafermions, which are generalizations of Majorana fermions, in the presence of a Z N charge symmetry. We classify the symmetry-protected topological (SPT) phases that can occur in these systems using the projective representations of the symmetries and find a finite number of distinct phases depending on the prime factorization of N. The different phases exhibit characteristic degeneracies in their entanglement spectrum (ES). Apart from these SPT phases, we report the occurrence of parafermion condensate phases for certain values of N. When including an additional Z N symmetry, we find a non-Abelian group structure under the addition of phases. In the second part of the thesis, we focus on two-dimensional lattice models of spinless fermions. First, we demonstrate the detection of a fractional Chern insulator (FCI) phase in the Haldane honeycomb model on an infinite cylinder by means of the density-matrix renormalization group (DMRG). We report the calculation of several quantities characterizing the topological order of the state, i.e., (i) the Hall conductivity, (ii) the spectral flow and level counting in the ES, (iii) the topological entanglement entropy, and (iv) the charge and topological spin of the quasiparticles. Since we have access to sufficiently large system sizes without band projection with DMRG, we are in addition able to investigate the transition from a metal to the FCI at small interactions which we find to be of first order. In a further study, we consider a time-reversal symmetric model on the honeycomb lattice where a Chern insulator (CI) induced

  1. Characterization of topological phases in models of interacting fermions

    Energy Technology Data Exchange (ETDEWEB)

    Motruk, Johannes

    2016-05-25

    The concept of topology in condensed matter physics has led to the discovery of rich and exotic physics in recent years. Especially when strong correlations are included, phenomenons such as fractionalization and anyonic particle statistics can arise. In this thesis, we study several systems hosting topological phases of interacting fermions. In the first part, we consider one-dimensional systems of parafermions, which are generalizations of Majorana fermions, in the presence of a Z{sub N} charge symmetry. We classify the symmetry-protected topological (SPT) phases that can occur in these systems using the projective representations of the symmetries and find a finite number of distinct phases depending on the prime factorization of N. The different phases exhibit characteristic degeneracies in their entanglement spectrum (ES). Apart from these SPT phases, we report the occurrence of parafermion condensate phases for certain values of N. When including an additional Z{sub N} symmetry, we find a non-Abelian group structure under the addition of phases. In the second part of the thesis, we focus on two-dimensional lattice models of spinless fermions. First, we demonstrate the detection of a fractional Chern insulator (FCI) phase in the Haldane honeycomb model on an infinite cylinder by means of the density-matrix renormalization group (DMRG). We report the calculation of several quantities characterizing the topological order of the state, i.e., (i) the Hall conductivity, (ii) the spectral flow and level counting in the ES, (iii) the topological entanglement entropy, and (iv) the charge and topological spin of the quasiparticles. Since we have access to sufficiently large system sizes without band projection with DMRG, we are in addition able to investigate the transition from a metal to the FCI at small interactions which we find to be of first order. In a further study, we consider a time-reversal symmetric model on the honeycomb lattice where a Chern insulator (CI

  2. Electronic phase transitions

    CERN Document Server

    Kopaev, YuV

    1992-01-01

    Electronic Phase Transitions deals with topics, which are presently at the forefront of scientific research in modern solid-state theory. Anderson localization, which has fundamental implications in many areas of solid-state physics as well as spin glasses, with its influence on quite different research activities such as neural networks, are two examples that are reviewed in this book. The ab initio statistical mechanics of structural phase transitions is another prime example, where the interplay and connection of two unrelated disciplines of solid-state theory - first principle ele

  3. Phase transitions in nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Moretto, L.G.; Phair, L.; Wozniak, G.J.

    1997-08-01

    A critical overview of the low energy phase transitions in nuclei is presented with particular attention to the 2nd (1st) order pairing phase transitions, and to the 1st order liquid-vapor phase transition. The role of fluctuations in washing out these transitions is discussed and illustrated with examples. A robust indicator of phase coexistence in multifragmentation is presented.

  4. Phase transitions in nuclear physics

    International Nuclear Information System (INIS)

    Moretto, L.G.; Phair, L.; Wozniak, G.J.

    1997-08-01

    A critical overview of the low energy phase transitions in nuclei is presented with particular attention to the 2nd (1st) order pairing phase transitions, and to the 1st order liquid-vapor phase transition. The role of fluctuations in washing out these transitions is discussed and illustrated with examples. A robust indicator of phase coexistence in multifragmentation is presented

  5. paraelectric phase transition

    Indian Academy of Sciences (India)

    The ferroelectric phase transition is diffuse in nature and broadening of the peak increases with La content. Keywords. PLZT ... Marssi et al (1998) concluded the PLZTs x/65/35 as a model. ∗ ... by analysing field cooled (FC) and zero field cooled (ZFC) dielectric ... material are fitted with universal dielectric behaviour within.

  6. Chiral topological phases from artificial neural networks

    Science.gov (United States)

    Kaubruegger, Raphael; Pastori, Lorenzo; Budich, Jan Carl

    2018-05-01

    Motivated by recent progress in applying techniques from the field of artificial neural networks (ANNs) to quantum many-body physics, we investigate to what extent the flexibility of ANNs can be used to efficiently study systems that host chiral topological phases such as fractional quantum Hall (FQH) phases. With benchmark examples, we demonstrate that training ANNs of restricted Boltzmann machine type in the framework of variational Monte Carlo can numerically solve FQH problems to good approximation. Furthermore, we show by explicit construction how n -body correlations can be kept at an exact level with ANN wave functions exhibiting polynomial scaling with power n in system size. Using this construction, we analytically represent the paradigmatic Laughlin wave function as an ANN state.

  7. Phase transitions and thermal entanglement of the distorted Ising-Heisenberg spin chain: topology of multiple-spin exchange interactions in spin ladders

    Science.gov (United States)

    Arian Zad, Hamid; Ananikian, Nerses

    2017-11-01

    We consider a symmetric spin-1/2 Ising-XXZ double sawtooth spin ladder obtained from distorting a spin chain, with the XXZ interaction between the interstitial Heisenberg dimers (which are connected to the spins based on the legs via an Ising-type interaction), the Ising coupling between nearest-neighbor spins of the legs and rungs spins, respectively, and additional cyclic four-spin exchange (ring exchange) in the square plaquette of each block. The presented analysis supplemented by results of the exact solution of the model with infinite periodic boundary implies a rich ground state phase diagram. As well as the quantum phase transitions, the characteristics of some of the thermodynamic parameters such as heat capacity, magnetization and magnetic susceptibility are investigated. We prove here that among the considered thermodynamic and thermal parameters, solely heat capacity is sensitive versus the changes of the cyclic four-spin exchange interaction. By using the heat capacity function, we obtain a singularity relation between the cyclic four-spin exchange interaction and the exchange coupling between pair spins on each rung of the spin ladder. All thermal and thermodynamic quantities under consideration should be investigated by regarding those points which satisfy the singularity relation. The thermal entanglement within the Heisenberg spin dimers is investigated by using the concurrence, which is calculated from a relevant reduced density operator in the thermodynamic limit.

  8. A time-reversal invariant topological phase at the surface of a 3D topological insulator

    International Nuclear Information System (INIS)

    Bonderson, Parsa; Nayak, Chetan; Qi, Xiao-Liang

    2013-01-01

    A 3D fermionic topological insulator has a gapless Dirac surface state protected by time-reversal symmetry and charge conservation symmetry. The surface state can be gapped by introducing ferromagnetism to break time-reversal symmetry, introducing superconductivity to break charge conservation, or entering a topological phase. In this paper, we construct a minimal gapped topological phase that preserves both time-reversal and charge conservation symmetries and supports Ising-type non-Abelian anyons. This phase can be understood heuristically as emerging from a surface s-wave superconducting state via the condensation of eight-vortex composites. The topological phase inherits vortices supporting Majorana zero modes from the surface superconducting state. However, since it is time-reversal invariant, the surface topological phase is a distinct phase from the Ising topological phase, which can be viewed as a quantum-disordered spin-polarized p x + ip y superconductor. We discuss the anyon model of this topological phase and the manner in which time-reversal symmetry is realized in it. We also study the interfaces between the topological state and other surface gapped phases. (paper)

  9. Transiting topological sectors with the overlap

    International Nuclear Information System (INIS)

    Creutz, Michael

    2003-01-01

    The overlap operator provides an elegant definition for the winding number of lattice gauge field configurations. Only for a set of configurations of measure zero is this procedure undefined. Without restrictions on the lattice fields, however, the space of gauge fields is simply connected. I present a simple low dimensional illustration of how the eigenvalues of a truncated overlap operator flow as one travels between different topological sectors

  10. Pressure controlled transition into a self-induced topological superconducting surface state

    KAUST Repository

    Zhu, Zhiyong; Cheng, Yingchun; Schwingenschlö gl, Udo

    2014-01-01

    Ab-initio calculations show a pressure induced trivial-nontrivial-trivial topological phase transition in the normal state of 1T-TiSe2. The pressure range in which the nontrivial phase emerges overlaps with that of the superconducting ground state. Thus, topological superconductivity can be induced in protected surface states by the proximity effect of superconducting bulk states. This kind of self-induced topological surface superconductivity is promising for a realization of Majorana fermions due to the absence of lattice and chemical potential mismatches. For appropriate electron doping, the formation of the topological superconducting surface state in 1T-TiSe 2 becomes accessible to experiments as it can be controlled by pressure.

  11. Pressure controlled transition into a self-induced topological superconducting surface state

    KAUST Repository

    Zhu, Zhiyong

    2014-02-07

    Ab-initio calculations show a pressure induced trivial-nontrivial-trivial topological phase transition in the normal state of 1T-TiSe2. The pressure range in which the nontrivial phase emerges overlaps with that of the superconducting ground state. Thus, topological superconductivity can be induced in protected surface states by the proximity effect of superconducting bulk states. This kind of self-induced topological surface superconductivity is promising for a realization of Majorana fermions due to the absence of lattice and chemical potential mismatches. For appropriate electron doping, the formation of the topological superconducting surface state in 1T-TiSe 2 becomes accessible to experiments as it can be controlled by pressure.

  12. Phase diagram and topological phases in the triangular lattice Kitaev-Hubbard model

    Science.gov (United States)

    Li, Kai; Yu, Shun-Li; Gu, Zhao-Long; Li, Jian-Xin

    2016-09-01

    We study the half-filled Hubbard model on a triangular lattice with spin-dependent Kitaev-like hopping. Using the variational cluster approach, we identify five phases: a metallic phase, a non-coplanar chiral magnetic order, a 120° magnetic order, a nonmagnetic insulator (NMI), and an interacting Chern insulator (CI) with a nonzero Chern number. The transition from CI to NMI is characterized by the change of the charge gap from an indirect band gap to a direct Mott gap. Based on the slave-rotor mean-field theory, the NMI phase is further suggested to be a gapless Mott insulator with a spinon Fermi surface or a fractionalized CI with nontrivial spinon topology, depending on the strength of the Kitaev-like hopping. Our work highlights the rising field in which interesting phases emerge from the interplay between band topology and Mott physics.

  13. Importance of correlation effects in hcp iron revealed by a pressure-induced electronic topological transition.

    Science.gov (United States)

    Glazyrin, K; Pourovskii, L V; Dubrovinsky, L; Narygina, O; McCammon, C; Hewener, B; Schünemann, V; Wolny, J; Muffler, K; Chumakov, A I; Crichton, W; Hanfland, M; Prakapenka, V B; Tasnádi, F; Ekholm, M; Aichhorn, M; Vildosola, V; Ruban, A V; Katsnelson, M I; Abrikosov, I A

    2013-03-15

    We discover that hcp phases of Fe and Fe(0.9)Ni(0.1) undergo an electronic topological transition at pressures of about 40 GPa. This topological change of the Fermi surface manifests itself through anomalous behavior of the Debye sound velocity, c/a lattice parameter ratio, and Mössbauer center shift observed in our experiments. First-principles simulations within the dynamic mean field approach demonstrate that the transition is induced by many-electron effects. It is absent in one-electron calculations and represents a clear signature of correlation effects in hcp Fe.

  14. Phase Transitions in Geomorphology

    Science.gov (United States)

    Ortiz, C. P.; Jerolmack, D. J.

    2015-12-01

    Landscapes are patterns in a dynamic steady-state, due to competing processes that smooth or sharpen features over large distances and times. Geomorphic transport laws have been developed to model the mass-flux due to different processes, but are unreasonably effective at recovering the scaling relations of landscape features. Using a continuum approximation to compare experimental landscapes and the observed landscapes of the earth, one finds they share similar morphodynamics despite a breakdown of classical dynamical similarity between the two. We propose the origin of this effectiveness is a different kind of dynamic similarity in the statistics of initiation and cessation of motion of groups of grains, which is common to disordered systems of grains under external driving. We will show how the existing data of sediment transport points to common signatures with dynamical phase transitions between "mobile" and "immobile" phases in other disordered systems, particularly granular materials, colloids, and foams. Viewing landscape evolution from the lens of non-equilibrium statistical physics of disordered systems leads to predictions that the transition of bulk measurements such as particle flux is continuous from one phase to another, that the collective nature of the particle dynamics leads to very slow aging of bulk properties, and that the dynamics are history-dependent. Recent results from sediment transport experiments support these predictions, suggesting that existing geomorphic transport laws may need to be replaced by a new generation of stochastic models with ingredients based on the physics of disordered phase transitions. We discuss possible strategies for extracting the necessary information to develop these models from measurements of geomorphic transport noise by connecting particle-scale collective dynamics and space-time fluctuations over landscape features.

  15. Numerical insights into the phase diagram of p-atic membranes with spherical topology

    DEFF Research Database (Denmark)

    Hansen, Allan Grønhøj; Ramakrishnan, N.; Sunil Kumar, P. B.

    2017-01-01

    Abstract.: The properties of self-avoiding p-atic membranes restricted to spherical topology have been studied by Monte Carlo simulations of a triangulated random surface model. Spherically shaped p-atic membranes undergo a Kosterlitz-Thouless transition as expected with topology induced mutually...... of disclinations. We confirm the proposed buckling of disclinations in the p-atic ordered phase, while the expected associated disordering (crumpling) transition at low bending rigidities is absent in the phase diagram. Graphical abstract: [Figure not available: see fulltext.]...

  16. Flow Topology Transition via Global Bifurcation in Thermally Driven Turbulence

    Science.gov (United States)

    Xie, Yi-Chao; Ding, Guang-Yu; Xia, Ke-Qing

    2018-05-01

    We report an experimental observation of a flow topology transition via global bifurcation in a turbulent Rayleigh-Bénard convection. This transition corresponds to a spontaneous symmetry breaking with the flow becomes more turbulent. Simultaneous measurements of the large-scale flow (LSF) structure and the heat transport show that the LSF bifurcates from a high heat transport efficiency quadrupole state to a less symmetric dipole state with a lower heat transport efficiency. In the transition zone, the system switches spontaneously and stochastically between the two long-lived metastable states.

  17. Anomalous Z2 antiferromagnetic topological phase in pressurized SmB6

    Science.gov (United States)

    Chang, Kai-Wei; Chen, Peng-Jen

    2018-05-01

    Antiferromagnetic materials, whose time-reversal symmetry is broken, can be classified into the Z2 topology if they respect some specific symmetry. Since the theoretical proposal, however, no materials have been found to host such Z2 antiferromagnetic topological (Z2-AFT ) phase to date. Here we demonstrate that the topological Kondo insulator SmB6 can be a Z2-AFT system when pressurized to undergo an antiferromagnetic phase transition. In addition to proposing the possible candidate for a Z2-AFT material, in this work we also illustrate the anomalous topological surface states of the Z2-AFT phase which have not been discussed before. Originating from the interplay between the topological properties and the antiferromagnetic surface magnetization, the topological surface states of the Z2-AFT phase behave differently as compared with those of a topological insulator. Besides, the Z2-AFT insulators are also found promising in the generation of tunable spin currents, which is an important application in spintronics.

  18. Phase transitions in Pareto optimal complex networks.

    Science.gov (United States)

    Seoane, Luís F; Solé, Ricard

    2015-09-01

    The organization of interactions in complex systems can be described by networks connecting different units. These graphs are useful representations of the local and global complexity of the underlying systems. The origin of their topological structure can be diverse, resulting from different mechanisms including multiplicative processes and optimization. In spatial networks or in graphs where cost constraints are at work, as it occurs in a plethora of situations from power grids to the wiring of neurons in the brain, optimization plays an important part in shaping their organization. In this paper we study network designs resulting from a Pareto optimization process, where different simultaneous constraints are the targets of selection. We analyze three variations on a problem, finding phase transitions of different kinds. Distinct phases are associated with different arrangements of the connections, but the need of drastic topological changes does not determine the presence or the nature of the phase transitions encountered. Instead, the functions under optimization do play a determinant role. This reinforces the view that phase transitions do not arise from intrinsic properties of a system alone, but from the interplay of that system with its external constraints.

  19. Universalities of thermodynamic signatures in topological phases

    NARCIS (Netherlands)

    Kempkes, S. N.; Quelle, A.; de Morais Smith, C.

    2016-01-01

    Topological insulators (superconductors) are materials that host symmetry-protected metallic edge states in an insulating (superconducting) bulk. Although they are well understood, a thermodynamic description of these materials remained elusive, firstly because the edges yield a non-extensive

  20. Two-Phase Equilibrium Properties in Charged Topological Dilaton AdS Black Holes

    Directory of Open Access Journals (Sweden)

    Hui-Hua Zhao

    2016-01-01

    Full Text Available We discuss phase transition of the charged topological dilaton AdS black holes by Maxwell equal area law. The two phases involved in the phase transition could coexist and we depict the coexistence region in P-v diagrams. The two-phase equilibrium curves in P-T diagrams are plotted, the Clapeyron equation for the black hole is derived, and the latent heat of isothermal phase transition is investigated. We also analyze the parameters of the black hole that could have an effect on the two-phase coexistence. The results show that the black holes may go through a small-large phase transition similar to that of a usual nongravity thermodynamic system.

  1. Late-time cosmological phase transitions

    International Nuclear Information System (INIS)

    Schramm, D.N.

    1990-11-01

    It is shown that the potential galaxy formation and large-scale structure problems of objects existing at high redshifts (Z approx-gt 5), structures existing on scales of 100M pc as well as velocity flows on such scales, and minimal microwave anisotropies (ΔT/T) approx-lt 10 -5 can be solved if the seeds needed to generate structure form in a vacuum phase transition after decoupling. It is argued that the basic physics of such a phase transition is no more exotic than that utilized in the more traditional GUT scale phase transitions, and that, just as in the GUT case, significant random gaussian fluctuations and/or topological defects can form. Scale lengths of ∼100M pc for large-scale structure as well as ∼1 M pc for galaxy formation occur naturally. Possible support for new physics that might be associated with such a late-time transition comes from the preliminary results of the SAGE solar neutrino experiment, implying neutrino flavor mixing with values similar to those required for a late-time transition. It is also noted that a see-saw model for the neutrino masses might also imply a tau neutrino mass that is an ideal hot dark matter candidate. However, in general either hot or cold dark matter can be consistent with a late-time transition. 47 refs., 2 figs

  2. Phase transition in finite systems

    International Nuclear Information System (INIS)

    Chomaz, Ph.; Duflot, V.; Duflot, V.; Gulminelli, F.

    2000-01-01

    In this paper we present a review of selected aspects of Phase transitions in finite systems applied in particular to the liquid-gas phase transition in nuclei. We show that the problem of the non existence of boundary conditions can be solved by introducing a statistical ensemble with an averaged constrained volume. In such an ensemble the microcanonical heat capacity becomes negative in the transition region. We show that the caloric curve explicitly depends on the considered transformation of the volume with the excitation energy and so does not bear direct informations on the characteristics of the phase transition. Conversely, partial energy fluctuations are demonstrated to be a direct measure of the equation of state. Since the heat capacity has a negative branch in the phase transition region, the presence of abnormally large kinetic energy fluctuations is a signal of the liquid gas phase transition. (author)

  3. Topological insulating phases of non-Abelian anyonic chains

    Energy Technology Data Exchange (ETDEWEB)

    DeGottardi, Wade

    2014-08-01

    Boundary conformal field theory is brought to bear on the study of topological insulating phases of non- Abelian anyonic chains. These phases display protected anyonic end modes. We consider spin-1/2 su(2)t chains at any level k, focusing on the most prominent examples: the case k = 2 describes Ising anyons (equivalent to Majorana fermions) and k = 3 corresponds to Fibonacci anyons. The method we develop is quite general and rests on a deep connection between boundary conformal field theory and topological symmetry. This method tightly constrains the nature of the topological insulating phases of these chains for general k. Emergent anyons which arise at domain walls are shown to have the same braiding properties as the physical quasiparticles. This suggests a "solid-stat.e" topological quantum computation scheme in which emergent anyons are braided by tuning the couplings of non-Abelian quasiparticles in a fixed network.

  4. Generalized definitions of phase transitions

    International Nuclear Information System (INIS)

    Chomaz, Ph.; Gulminelli, F.

    2001-09-01

    We define a first order phase transition as a bimodality of the event distribution in the space of observations and we show that this is equivalent to a curvature anomaly of the thermodynamical potential and that it implies the Yang Lee behavior of the zeros of the partition sum. Moreover, it allows to study phase transitions out of equilibrium. (authors)

  5. String-net condensation: A physical mechanism for topological phases

    International Nuclear Information System (INIS)

    Levin, Michael A.; Wen Xiaogang

    2005-01-01

    We show that quantum systems of extended objects naturally give rise to a large class of exotic phases--namely topological phases. These phases occur when extended objects, called ''string-nets,'' become highly fluctuating and condense. We construct a large class of exactly soluble 2D spin Hamiltonians whose ground states are string-net condensed. Each ground state corresponds to a different parity invariant topological phase. The models reveal the mathematical framework underlying topological phases: tensor category theory. One of the Hamiltonians--a spin-1/2 system on the honeycomb lattice--is a simple theoretical realization of a universal fault tolerant quantum computer. The higher dimensional case also yields an interesting result: we find that 3D string-net condensation naturally gives rise to both emergent gauge bosons and emergent fermions. Thus, string-net condensation provides a mechanism for unifying gauge bosons and fermions in 3 and higher dimensions

  6. Magnetic resonance of phase transitions

    CERN Document Server

    Owens, Frank J; Farach, Horacio A

    1979-01-01

    Magnetic Resonance of Phase Transitions shows how the effects of phase transitions are manifested in the magnetic resonance data. The book discusses the basic concepts of structural phase and magnetic resonance; various types of magnetic resonances and their underlying principles; and the radiofrequency methods of nuclear magnetic resonance. The text also describes quadrupole methods; the microwave technique of electron spin resonance; and the Mössbauer effect. Phase transitions in various systems such as fluids, liquid crystals, and crystals, including paramagnets and ferroelectrics, are also

  7. Driving protocol for a Floquet topological phase without static counterpart

    Science.gov (United States)

    Quelle, A.; Weitenberg, C.; Sengstock, K.; Morais Smith, C.

    2017-11-01

    Periodically driven systems play a prominent role in optical lattices. In these ultracold atomic systems, driving is used to create a variety of interesting behaviours, of which an important example is provided by topological states of matter. Such Floquet topological phases have a richer classification than their equilibrium counterparts. Although there exist analogues of the equilibrium topological phases that are characterised by a Chern number, the corresponding Hall conductivity, and protected edge states, there is an additional possibility. This is a phase that has a vanishing Chern number and no Hall conductivity, but nevertheless hosts anomalous topological edge states (Rudner et al (2013 Phys. Rev. X 3 031005)). Due to experimental difficulties associated with the observation of such a phase, it has not been experimentally realised in optical lattices so far. In this paper, we show that optical lattices prove to be a good candidate for its realisation and observation, because they can be driven in a controlled manner. Specifically, we present a simple shaking protocol that serves to realise this special Floquet phase, discuss the specific properties that it has, and propose a method to experimentally detect this fascinating topological phase that has no counterpart in equilibrium systems.

  8. Actively Controlling the Topological Transition of Dispersion Based on Electrically Controllable Metamaterials

    Directory of Open Access Journals (Sweden)

    Zhiwei Guo

    2018-04-01

    Full Text Available Topological transition of the iso-frequency contour (IFC from a closed ellipsoid to an open hyperboloid provides unique capabilities for controlling the propagation of light. However, the ability to actively tune these effects remains elusive, and the related experimental observations are highly desirable. Here, a tunable electric IFC in a periodic structure composed of graphene/dielectric multilayers is investigated by tuning the chemical potential of the graphene layer. Specially, we present the actively controlled transportation in two kinds of anisotropic zero-index media containing perfect electric conductor/perfect magnetic conductor impurities. Finally, by adding variable capacitance diodes into a two-dimensional transmission-line system, we present an experimental demonstration of the actively controlled magnetic topological transition of dispersion based on electrically controllable metamaterials. With the increase in voltage, we measure the different emission patterns from a point source inside the structure and observe the phase-transition process of IFCs. The realization of an actively tuned topological transition will open up a new avenue in the dynamical control of metamaterials.

  9. Non-equilibrium phase transitions

    CERN Document Server

    Henkel, Malte; Lübeck, Sven

    2009-01-01

    This book describes two main classes of non-equilibrium phase-transitions: (a) static and dynamics of transitions into an absorbing state, and (b) dynamical scaling in far-from-equilibrium relaxation behaviour and ageing. The first volume begins with an introductory chapter which recalls the main concepts of phase-transitions, set for the convenience of the reader in an equilibrium context. The extension to non-equilibrium systems is made by using directed percolation as the main paradigm of absorbing phase transitions and in view of the richness of the known results an entire chapter is devoted to it, including a discussion of recent experimental results. Scaling theories and a large set of both numerical and analytical methods for the study of non-equilibrium phase transitions are thoroughly discussed. The techniques used for directed percolation are then extended to other universality classes and many important results on model parameters are provided for easy reference.

  10. Topological defects in the second-class phase transformations

    International Nuclear Information System (INIS)

    Dobrowolski, T.

    2002-06-01

    The dynamics of systems during second-class phase transformations are presented.in a frame of quantum fields theory. It is shown that solutions of non-linear field equations generate some topological defects what result in symmetry breaking and field phase transformations

  11. Phase transitions in surfactant monolayers

    International Nuclear Information System (INIS)

    Casson, B.D.

    1998-01-01

    Two-dimensional phase transitions have been studied in surfactant monolayers at the air/water interface by sum-frequency spectroscopy and ellipsometry. In equilibrium monolayers of medium-chain alcohols C n H 2n+1 OH (n = 9-14) a transition from a two-dimensional crystalline phase to a liquid was observed at temperatures above the bulk melting point. The small population of gauche defects in the solid phase increased only slightly at the phase transition. A model of the hydrocarbon chains as freely rotating rigid rods allowed the area per molecule and chain tilt in the liquid phase to be determined. The area per molecule, chain tilt and density of the liquid phase all increased with increasing chain length, but for each chain length the density was higher than in a bulk liquid hydrocarbon. In a monolayer of decanol adsorbed at the air/water interface a transition from a two-dimensional liquid to a gas was observed. A clear discontinuity in the coefficient of ellipticity as a function of temperature showed that the transition is first-order. This result suggests that liquid-gas phase transitions in surfactant monolayers may be more widespread than once thought. A solid-liquid phase transition has also been studied in mixed monolayers of dodecanol with an anionic surfactant (sodium dodecyl sulphate) and with a homologous series of cationic surfactants (alkyltrimethylammonium bromides: C n TABs, n = 12, 14, 16). The composition and structure of the mixed monolayers was studied above and below the phase transition. At low temperatures the mixed monolayers were as densely packed as a monolayer of pure dodecanol in its solid phase. At a fixed temperature the monolayers under-went a first-order phase transition to form a phase that was less dense and more conformationally disordered. The proportion of ionic surfactant in the mixed monolayer was greatest in the high temperature phase. As the chain length of the C n TAB increased the number of conformational defects

  12. Phase transition in finite systems

    International Nuclear Information System (INIS)

    Chomaz, Ph.; Duflot, V.; Duflot, V.; Gulminelli, F.

    2000-01-01

    The general problem of the definition of a phase transition without employing the thermodynamical limit is addressed. Different necessary conditions are considered and illustrated with examples from different nuclear and general physics phenomenologies. (authors)

  13. Phase transitions and quantum entropy

    International Nuclear Information System (INIS)

    Arrachea, L.; Canosa, N.; Plastino, A.; Portesi, M.; Rossignoli, R.

    1990-01-01

    An examination is made of the possibility to predict phase transitions of the fundamental state of finite quantum system, knowing the quantum entropy of these states, defined on the basis of the information theory. (Author). 7 refs., 3 figs

  14. Phase transition in finite systems

    Energy Technology Data Exchange (ETDEWEB)

    Chomaz, Ph.; Duflot, V. [Grand Accelerateur National d' Ions Lourds (GANIL), 14 - Caen (France); Duflot, V.; Gulminelli, F. [Laboratoire de Physique Corpusculaire, LPC-ISMRa, CNRS-IN2P3, 14 - Caen (France)

    2000-07-01

    The general problem of the definition of a phase transition without employing the thermodynamical limit is addressed. Different necessary conditions are considered and illustrated with examples from different nuclear and general physics phenomenologies. (authors)

  15. Modern theories of phase transitions

    International Nuclear Information System (INIS)

    Rajaraman, R.

    1979-01-01

    Modern applications of the ideas of phase transitions to nuclear systems and the modern techniques as applied to familiar phase transitions in solid-state physics are discussed with illustrations. The phenomenon of pion condensation in nuclei and neutron stars, is presented as an example of phase transitions in nuclear systems. The central physical ideas behind this subject as well as techniques used to tackle it are broadly summarised. It is pointed out that unlike familiar examples of ferromagnetism or superconductivity, the order parameter here has spatial variation even in the ground state. Possible experimental consequences are discussed. As an example of the second category, the use of renormalisation group techniques in solid state physics is reviewed. The basic idea behind the renormalisation group in the infra-red (thermodynamic) limit is presented. The observed universality and scaling of critical exponents in second order phase transitions is explained in a model-independent way. (auth.)

  16. Phenomenology of cosmic phase transitions

    International Nuclear Information System (INIS)

    Kaempfer, B.; Lukacs, B.; Paal, G.

    1989-11-01

    The evolution of the cosmic matter from Planck temperature to the atomic combination temperature is considered from a phenomenological point of view. Particular emphasis is devoted to the sequence of cosmic phase transitions. The inflationary era at the temperature of the order of the grand unification energy scale and the quantum chromodynamic confinement transition are dealt with in detail. (author) 131 refs.; 26 figs

  17. Phase coherent transport in hybrid superconductor-topological insulator devices

    Science.gov (United States)

    Finck, Aaron

    2015-03-01

    Heterostructures of superconductors and topological insulators are predicted to host unusual zero energy bound states known as Majorana fermions, which can robustly store and process quantum information. Here, I will discuss our studies of such heterostructures through phase-coherent transport, which can act as a unique probe of Majorana fermions. We have extensively explored topological insulator Josephson junctions through SQUID and single-junction diffraction patterns, whose unusual behavior give evidence for low-energy Andreev bound states. In topological insulator devices with closely spaced normal and superconducting leads, we observe prominent Fabry-Perot oscillations, signifying gate-tunable, quasi-ballistic transport that can elegantly interact with Andreev reflection. Superconducting disks deposited on the surface of a topological insulator generate Aharonov-Bohm-like oscillations, giving evidence for unusual states lying near the interface between the superconductor and topological insulator surface. Our results point the way towards sophisticated interferometers that can detect and read out the state of Majorana fermions in topological systems. This work was done in collaboration with Cihan Kurter, Yew San Hor, and Dale Van Harlingen. We acknowledge funding from Microsoft Project Q.

  18. First order electroweak phase transition

    International Nuclear Information System (INIS)

    Buchmueller, W.; Fodor, Z.

    1993-01-01

    In this work, the authors have studied the phase transition in the SU(2)gauge theory at finite temperature. The authors' improved perturbative approach does not suffer from the infrared problems appearing in the ordinary loop expansion. The authors have calculated the effective potential up to cubic terms in the couplings. The higher order terms suggest that the method is reliable for Higgs masses smaller than 80 GeV. The authors have obtained a non-vanishing magnetic mass which further weakens the transitions. By use of Langer's theory of metastability, the authors have calculated the nucleation rate for critical bubbles and have discussed some cosmological consequences. For m H <80 GeV the phase transition is first order and proceeds via bubble nucleation and growth. The thin wall approximation is only marginally applicable. Since the phase transition is quite weak SM baryogenesis is unlikely. 8 refs., 5 figs

  19. Quarantine generated phase transition in epidemic spreading

    Science.gov (United States)

    Dicksion, Mark; Lagorio, Cecilia; Vazquez, F.; Braunstein, L.; Macri, P. A.; Migueles, M. V.; Havlin, S.; Stanley, H. E.

    2011-03-01

    We study the critical effect of quarantine on the propagation of epidemics on an adaptive network of social contacts. For this purpose, we analyze the susceptible-infected-recovered (SIR) model in the presence of quarantine, where susceptible individuals protect themselves by disconnecting their links to infected neighbors with probability w, and reconnecting them to other susceptible individuals chosen at random. Starting from a single infected individual, we show by an analytical approach and simulations that there is a phase transition at a critical rewiring (quarantine) threshold wc separating a phase (w =wc) where the disease does not spread out. We find that in our model the topology of the network strongly affects the size of the propagation, and that wc increases with the mean degree and heterogeneity of the network. We also find that wc is reduced if we perform a preferential rewiring, in which the rewiring probability is proportional to the degree of infected nodes.

  20. Phase transitions in field theory

    International Nuclear Information System (INIS)

    Carvalho, C.A.A. de; Bollini, C.G.; Giambiagi, J.J.

    1984-01-01

    By means of an example for which the effective potential is explicitly calculable (up to the one loop approximation), it is discussed how a phase transition takes place as the temperature is increased and pass from spontaneously broken symmetry to a phase in which the symmetry is restored. (Author) [pt

  1. Boundary fidelity and entanglement in the symmetry protected topological phase of the SSH model

    International Nuclear Information System (INIS)

    Sirker, J; Maiti, M; Konstantinidis, N P; Sedlmayr, N

    2014-01-01

    We present a detailed study of the fidelity, the entanglement entropy and the entanglement spectrum, for a dimerized chain of spinless fermions—a simplified Su–Schrieffer–Heeger (SSH) model—with open boundary conditions which is a well-known example for a model supporting a symmetry protected topological (SPT) phase. In the non-interacting case the Hamiltonian matrix is tridiagonal and the eigenvalues and vectors can be given explicitly as a function of a single parameter which is known analytically for odd chain lengths and can be determined numerically in the even length case. From a scaling analysis of these data for essentially semi-infinite chains we obtain the fidelity susceptibility and show that it contains a boundary contribution which is different in the topologically ordered than in the topologically trivial phase. For the entanglement spectrum and entropy we confirm predictions from massive field theory for a block in the middle of an infinite chain but also consider blocks containing the edge of the chain. For the latter case we show that in the SPT phase additional entanglement—as compared to the trivial phase—is present which is localized at the boundary. Finally, we extend our study to the dimerized chain with a nearest-neighbour interaction using exact diagonalization, Arnoldi and density-matrix renormalization group methods and show that a phase transition into a topologically trivial charge-density wave phase occurs. (paper)

  2. A Three-dimensional Topological Model of Ternary Phase Diagram

    International Nuclear Information System (INIS)

    Mu, Yingxue; Bao, Hong

    2017-01-01

    In order to obtain a visualization of the complex internal structure of ternary phase diagram, the paper realized a three-dimensional topology model of ternary phase diagram with the designed data structure and improved algorithm, under the guidance of relevant theories of computer graphics. The purpose of the model is mainly to analyze the relationship between each phase region of a ternary phase diagram. The model not only obtain isothermal section graph at any temperature, but also extract a particular phase region in which users are interested. (paper)

  3. Computational Power of Symmetry-Protected Topological Phases.

    Science.gov (United States)

    Stephen, David T; Wang, Dong-Sheng; Prakash, Abhishodh; Wei, Tzu-Chieh; Raussendorf, Robert

    2017-07-07

    We consider ground states of quantum spin chains with symmetry-protected topological (SPT) order as resources for measurement-based quantum computation (MBQC). We show that, for a wide range of SPT phases, the computational power of ground states is uniform throughout each phase. This computational power, defined as the Lie group of executable gates in MBQC, is determined by the same algebraic information that labels the SPT phase itself. We prove that these Lie groups always contain a full set of single-qubit gates, thereby affirming the long-standing conjecture that general SPT phases can serve as computationally useful phases of matter.

  4. Topological and statistical properties of quantum control transition landscapes

    International Nuclear Information System (INIS)

    Hsieh, Michael; Wu Rebing; Rabitz, Herschel; Rosenthal, Carey

    2008-01-01

    A puzzle arising in the control of quantum dynamics is to explain the relative ease with which high-quality control solutions can be found in the laboratory and in simulations. The emerging explanation appears to lie in the nature of the quantum control landscape, which is an observable as a function of the control variables. This work considers the common case of the observable being the transition probability between an initial and a target state. For any controllable quantum system, this landscape contains only global maxima and minima, and no local extrema traps. The probability distribution function for the landscape value is used to calculate the relative volume of the region of the landscape corresponding to good control solutions. The topology of the global optima of the landscape is analysed and the optima are shown to have inherent robustness to variations in the controls. Although the relative landscape volume of good control solutions is found to shrink rapidly as the system Hilbert space dimension increases, the highly favourable landscape topology at and away from the global optima provides a rationale for understanding the relative ease of finding high-quality, stable quantum optimal control solutions

  5. arXiv Gauge Topological Nature of the Superconductor-Insulator Transition

    CERN Document Server

    Diamantini, M.C.; Lukyanchuk, I.; Vinokur, V.M.

    It has long been believed that, at absolute zero, electrons can form only one quantum coherent state, a superconductor. Yet, several two dimensional superconducting systems were found to harbor the superinsulating state with infinite resistance, a mirror image of superconductivity, and a metallic state often referred to as Bose metal, characterized by finite longitudinal and vanishing Hall resistances. The nature of these novel and mysterious quantum coherent states is the subject of intense study.Here, we propose a topological gauge description of the superconductor-insulator transition (SIT) that enables us to identify the underlying mechanism of superinsulation as Polyakov's linear confinement of Cooper pairs via instantons. We find a criterion defining conditions for either a direct SIT or for the SIT via the intermediate Bose metal and demonstrate that this Bose metal phase is a Mott topological insulator in which the Cooper pair-vortex liquid is frozen by Aharonov-Bohm interactions.

  6. Incommensurate phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Currat, R [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1996-11-01

    We review the characteristic aspects of modulated crystals from the point of view of inelastic neutron scattering. We discuss the phenomenological Landau theory of the normal-to-incommensurate displacive instability and its predictions concerning the fluctuation spectrum of the modulated phase. General results on the form of the normal-mode eigenvectors and on the inelastic scattering channels through which they couple to the probe are established using the superspace approach. We illustrate these results on a simple discrete model symmetry and we review available inelastic neutron scattering data on several displacively modulated compounds. (author) 21 figs., 73 refs.

  7. The Topological Analysis of Urban Transit System as a Small-World Network

    OpenAIRE

    Zhaosheng Yang; Huxing Zhou; Peng Gao; Hong Chen; Nan Zhang

    2011-01-01

    This paper proposes a topological analysis of urban transit system based on a functional representation network constructed from the urban transit system in Beijing. The representation gives a functional view on nodes named a transit line. Statistical measures are computed and introduced in complex network analysis. It shows that the urban transit system forms small-world networks and exhibits properties different from random networks and regular networks. Furthermore, the topological propert...

  8. Phase transitions and neutron scattering

    International Nuclear Information System (INIS)

    Shirane, G.

    1993-01-01

    A review is given of recent advances in neutron scattering studies of solid state physics. I have selected the study of a structural phase transition as the best example to demonstrate the power of neutron scattering techniques. Since energy analysis is relatively easy, the dynamical aspects of a transition can be elucidated by the neutron probe. I shall discuss in some detail current experiments on the 100 K transition in SrTiO 3 , the crystal which has been the paradigm of neutron studies of phase transitions for many years. This new experiment attempts to clarify the relation between the neutron central peak, observed in energy scans, and the two length scales observed in recent x-ray diffraction studies where only scans in momentum space are possible. (author)

  9. Evaluation of Three-Phase Transformerless Photovoltaic Inverter Topologies

    DEFF Research Database (Denmark)

    Kerekes, Tamas; Liserre, Marco; Teodorescu, Remus

    2009-01-01

    This paper analyzes and compares three transformerless photovoltaic inverter topologies for three-phase grid connection with the main focus on the safety issues that result from the lack of galvanic isolation. A common-mode model, valid at frequencies lower than 50 kHz, is adopted to study...... the leakage current paths. The model is validated by both simulation and experimental results. These will be used to compare the selected topologies, and to explain the influence of system unbalance and the neutral conductor inductance on the leakage current. It will be demonstrated that the later has...... a crucial influence. Finally, a comparison of the selected topologies is carried out, based on the adopted modulation, connection of the neutral and its inductance, effects of unbalance conditions, component ratings, output voltage levels, and filter size....

  10. ATLAS calorimeter and topological trigger upgrades for Phase 1

    CERN Document Server

    Silverstein, S

    2011-01-01

    The ATLAS Level-1 Calorimeter Trigger (L1Calo) collaboration is pursuing two hardware upgrade programs for Phase 1 of the LHC upgrade. The first of these is development of a new mixed-signal multi-chip module (MCM) for the PreProcessor system. based on faster FADCs and a modern FPGA. Designed as a drop-in replacement for the existing MCM, the FPGA also enables future upgrades to the PreProcessor algorithms, including enhanced digital filtering and compensation for time-variation of pedestals. It is also planned to augment the current multiplicity-based trigger by adding topology-based algorithms. This is made possible by adding jet and EM/hadron Regions of Interest (ROIs) to the L1Calo real time data path. A synchronous, pipelined topological processor (TP) based on high-density FPGAs and multi-Gbit optical links gathers all ROI information and performs topological algorithms.

  11. Phase transitions in a gas of anyons

    International Nuclear Information System (INIS)

    MacKenzie, R.; Nebia-Rahal, F.; Paranjape, M. B.; Richer, J.

    2010-01-01

    We continue our numerical Monte Carlo simulation of a gas of closed loops on a 3 dimensional lattice, however, now in the presence of a topological term added to the action which corresponds to the total linking number between the loops. We compute the linking number using a novel approach employing certain notions from knot theory. Adding the topological term converts the particles into anyons. Interpreting the model as an effective theory that describes the 2+1-dimensional Abelian Higgs model in the asymptotic strong-coupling regime, the topological linking number simply corresponds to the addition to the action of the Chern-Simons term. The system continues to exhibit a phase transition as a function of the vortex mass as it becomes small. We find the following new results. The Chern-Simons term has no effect on the Wilson loop. On the other hand, it does effect the 't Hooft loop of a given configuration, adding the linking number of the 't Hooft loop with all of the dynamical vortex loops. We find the unexpected result that both the Wilson loop and the 't Hooft loop exhibit a perimeter law even though there are no massless particles in the theory, in both phases of the theory. It should be noted that our method suffers from numerical instabilities if the coefficient of the Chern-Simons term is too large; thus, we have restricted our results to small values of this parameter. Furthermore, interpreting the lattice loop gas as an effective theory describing the Abelian Higgs model is only known to be true in the infinite coupling limit; for strong but finite coupling this correspondence is only a conjecture, the validity of which is beyond the scope of this article.

  12. Phase transitions in nuclear matter

    International Nuclear Information System (INIS)

    Glendenning, N.K.

    1984-11-01

    The rather general circumstances under which a phase transition in hadronic matter at finite temperature to an abnormal phase in which baryon effective masses become small and in which copious baryon-antibaryon pairs appear is emphasized. A preview is also given of a soliton model of dense matter, in which at a density of about seven times nuclear density, matter ceases to be a color insulator and becomes increasingly color conducting. 22 references

  13. Topological phases in Ba-Borate glasses

    Science.gov (United States)

    Holbrook, Chad; Czaja, Andrew; Boolchand, Punit

    2015-03-01

    Twelve compositions in the (BaO)x(B2O3)100-x pseudo binary, in the 15% Modulated- DSC and Raman scattering experiments were undertaken systematically as function of BaO content (x). Calorimetric measurements reveal Tg(x) to show a broad maximum and the non-reversing enthalpy to show a Gaussian-like reversibility window2, both centered near x = 28%. Raman scattering displays rich lineshapes with modes similar to those observed in Na-Borates2. Modes near 808 cm-1, 770 cm-1, 740 cm-1 and 705 cm-1 are observed, and identified with breathing modes of pure and mixed rings from characteristic structural groupings2. These preliminary results suggest that glasses at x 30% in the flexible phase. Supported by NSF Grant DMR 08-53957.

  14. Towards laboratory detection of topological vortices in superfluid phases of QCD

    Science.gov (United States)

    Das, Arpan; Dave, Shreyansh S.; de, Somnath; Srivastava, Ajit M.

    2017-10-01

    Topological defects arise in a variety of systems, e.g. vortices in superfluid helium to cosmic strings in the early universe. There is an indirect evidence of neutron superfluid vortices from the glitches in pulsars. One also expects that the topological defects may arise in various high baryon density phases of quantum chromodynamics (QCD), e.g. superfluid topological vortices in the color flavor locked (CFL) phase. Though vastly different in energy/length scales, there are universal features in the formation of all these defects. Utilizing this universality, we investigate the possibility of detecting these topological superfluid vortices in laboratory experiments, namely heavy-ion collisions (HICs). Using hydrodynamic simulations, we show that vortices can qualitatively affect the power spectrum of flow fluctuations. This can give an unambiguous signal for superfluid transition resulting in vortices, allowing for the check of defect formation theories in a relativistic quantum field theory system, and the detection of superfluid phases of QCD. Detection of nucleonic superfluid vortices in low energy HICs will give opportunity for laboratory controlled study of their properties, providing crucial inputs for the physics of pulsars.

  15. Ring diagrams and phase transitions

    International Nuclear Information System (INIS)

    Takahashi, K.

    1986-01-01

    Ring diagrams at finite temperatures carry most infrared-singular parts among Feynman diagrams. Their effect to effective potentials are in general so significant that one must incorporate them as well as 1-loop diagrams. The author expresses these circumstances in some examples of supercooled phase transitions

  16. Phase transitions in light nuclei

    International Nuclear Information System (INIS)

    Dukelsky, J.; Poves, A.; Retamosa, J.

    1991-01-01

    The SU(3) Elliott model is used to study the thermal description of 20 Ne. This solvable model allows us to work in the canonical ensemble and still be able to define an order parameter, the expectation value of the intrinsic quadrupole moment, to investigate the occurrence of phase transitions

  17. Pressure induced Ag{sub 2}Te polymorphs in conjunction with topological non trivial to metal transition

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, J.; Zhang, S. J., E-mail: sjzhang@iphy.ac.cn, E-mail: jin@iphy.ac.cn; Yu, X. H.; Yu, R. C.; Jin, C. Q., E-mail: sjzhang@iphy.ac.cn, E-mail: jin@iphy.ac.cn; Dai, X.; Fang, Z. [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Oganov, A. R. [Department of Geosciences, University of New York at Stony Brook (United States); Feng, W. X.; Yao, Y. G. [Department of Physics, Beijing Institute of Technology, Beijing (China); Zhu, J. L. [High Pressure Science and Engineering Center, University of Nevada, Las Vegas, Nevada 89154 (United States); Zhao, Y. S. [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); South University of Science and Technology of China, Shenzhen, Guangdong (China)

    2016-08-15

    Silver telluride (Ag{sub 2}Te) is well known as superionic conductor and topological insulator with polymorphs. Pressure induced three phase transitions in Ag{sub 2}Te have been reported in previous. Here, we experimentally identified high pressure phase above 13 GPa of Ag{sub 2}Te by using high pressure synchrotron x ray diffraction method in combination with evolutionary crystal structure prediction, showing it crystallizes into a monoclinic structure of space group C2/m with lattice parameters a = 6.081Å, b = 5.744Å, c = 6.797 Å, β = 105.53°. The electronic properties measurements of Ag{sub 2}Te reveal that the topologically non-trivial semiconducting phase I and semimetallic phase II previously predicated by theory transformed into bulk metals for high pressure phases in consistent with the first principles calculations.

  18. Valleytronics and phase transition in silicene

    Energy Technology Data Exchange (ETDEWEB)

    Aftab, Tayyaba, E-mail: tayyaba.agha@gmail.com

    2017-03-11

    Highlights: • Energy shift in the Dirac points depending strongly on proximity exchange term. • Berry curvature is non-zero and valley dependent in silicene. • Orbital magnetic moments are opposite for each valley and tunable. • Charge carriers are polarized depending on valley and spin degree of freedom. • Interplay of electric field and spin orbit interaction causes phase transition. - Abstract: Magnetic and transport properties of silicene in the presence of perpendicular electromagnetic fields and a ferromagnetic material are studied. It is shown that for small exchange field, the magnetic moment associated with each valley is opposite for the other and it gives a shift in band energy, by a Zeeman-like coupling term. Thus opening a new horizon for valley–orbit coupling. Magnetic proximity effect is seen to adjust the spintronics of each valley. Valley polarization is calculated using the semi classical formulation of electron dynamics. It can be modified and measured due to its contribution in Hall conductivity. Quantum phase transitions are observed in silicene, providing a tool to control the topological state experimentally. The strong dependence of the physical properties on valley degree of freedom is an important step towards valleytronics.

  19. Phase transitions and critical phenomena

    CERN Document Server

    Domb, Cyril

    2001-01-01

    The field of phase transitions and critical phenomena continues to be active in research, producing a steady stream of interesting and fruitful results. It has moved into a central place in condensed matter studies.Statistical physics, and more specifically, the theory of transitions between states of matter, more or less defines what we know about 'everyday' matter and its transformations.The major aim of this serial is to provide review articles that can serve as standard references for research workers in the field, and for graduate students and others wishing to obtain reliable in

  20. Phase transitions in glassy systems via convolutional neural networks

    Science.gov (United States)

    Fang, Chao

    Machine learning is a powerful approach commonplace in industry to tackle large data sets. Most recently, it has found its way into condensed matter physics, allowing for the first time the study of, e.g., topological phase transitions and strongly-correlated electron systems. The study of spin glasses is plagued by finite-size effects due to the long thermalization times needed. Here we use convolutional neural networks in an attempt to detect a phase transition in three-dimensional Ising spin glasses. Our results are compared to traditional approaches.

  1. Yang-Lee zeros for a Potts model of helix-coil transition with nontrivial topology

    International Nuclear Information System (INIS)

    Ananikian, N.; Ananikyan, L.; Artuso, R.; Sargsyan, K.

    2007-07-01

    The Yang-Lee partition function zeros of the Q-state Potts model on a zigzag ladder are studied by a transfer-matrix approach. This Q-state model has a non-trivial topology induced by three-site interactions on a zigzag ladder and is proposed as a description of helix-coil transition in homo-polymers. The Yang-Lee zeros are associated to complex values of the solvent-related coupling constant K (magnetic field) and they are exactly derived for arbitrary values of the system parameters: Q, J (coupling constant of hydrogen binding) and temperature. It is shown that there is only a quasi-phase transition for all temperatures. The densities of the Yang-Lee zeros are singular at the edge singularity points and the critical exponent σ = -1/2. (author)

  2. Gauge-field topology in two dimensions: θ-vacuum, topological phases and composite fields

    International Nuclear Information System (INIS)

    Ilieva, N.; Pervushin, V.N.

    1990-06-01

    In the framework of the minimal quantization method, the residual 'longitudinal' vacuum dynamics of the Abelian gauge field, that is described by a new pair of canonical variables, is revealed. This dynamics is shown to give origin to the θ-vacuum, thus providing a field analogy of the Josephson effect. The destructive interference of the topological phases - that the fermion fields are shown to acquire - is considered as a reason for the charge screening in the two-dimensional massless QED. (author). 11 refs

  3. Phase transitions in dense matter

    Science.gov (United States)

    Dexheimer, Veronica; Hempel, Matthias; Iosilevskiy, Igor; Schramm, Stefan

    2017-11-01

    As the density of matter increases, atomic nuclei disintegrate into nucleons and, eventually, the nucleons themselves disintegrate into quarks. The phase transitions (PT's) between these phases can vary from steep first order to smooth crossovers, depending on certain conditions. First-order PT's with more than one globally conserved charge, so-called non-congruent PT's, have characteristic differences compared to congruent PT's. In this conference proceeding we discuss the non-congruence of the quark deconfinement PT at high densities and/or temperatures relevant for heavy-ion collisions, neutron stars, proto-neutron stars, supernova explosions, and compact-star mergers.

  4. Topology

    CERN Document Server

    Hocking, John G

    1988-01-01

    ""As textbook and reference work, this is a valuable addition to the topological literature."" - Mathematical ReviewsDesigned as a text for a one-year first course in topology, this authoritative volume offers an excellent general treatment of the main ideas of topology. It includes a large number and variety of topics from classical topology as well as newer areas of research activity.There are four set-theoretic chapters, followed by four primarily algebraic chapters. Chapter I covers the fundamentals of topological and metrical spaces, mappings, compactness, product spaces, the Tychonoff t

  5. Non-equilibrium phase transition

    International Nuclear Information System (INIS)

    Mottola, E.; Cooper, F.M.; Bishop, A.R.; Habib, S.; Kluger, Y.; Jensen, N.G.

    1998-01-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Non-equilibrium phase transitions play a central role in a very broad range of scientific areas, ranging from nuclear, particle, and astrophysics to condensed matter physics and the material and biological sciences. The aim of this project was to explore the path to a deeper and more fundamental understanding of the common physical principles underlying the complex real time dynamics of phase transitions. The main emphasis was on the development of general theoretical tools to deal with non-equilibrium processes, and of numerical methods robust enough to capture the time-evolving structures that occur in actual experimental situations. Specific applications to Laboratory multidivisional efforts in relativistic heavy-ion physics (transition to a new phase of nuclear matter consisting of a quark-gluon plasma) and layered high-temperature superconductors (critical currents and flux flow at the National High Magnetic Field Laboratory) were undertaken

  6. Relativized problems with abelian phase group in topological dynamics.

    Science.gov (United States)

    McMahon, D

    1976-04-01

    Let (X, T) be the equicontinuous minimal transformation group with X = pi(infinity)Z(2), the Cantor group, and S = [unk](infinity)Z(2) endowed with the discrete topology acting on X by right multiplication. For any countable group T we construct a function F:X x S --> T such that if (Y, T) is a minimal transformation group, then (X x Y, S) is a minimal transformation group with the action defined by (x, y)s = [xs, yF(x, s)]. If (W, T) is a minimal transformation group and varphi:(Y, T) --> (W, T) is a homomorphism, then identity x varphi:(X x Y, S) --> (X x W, S) is a homomorphism and has many of the same properties that varphi has. For this reason, one may assume that the phase group is abelian (or S) without loss of generality for many relativized problems in topological dynamics.

  7. Novel Topology of Three-Phase Electric Spring and Its Control

    DEFF Research Database (Denmark)

    Wang, Qingsong; Cheng, Ming; Jiang, Yunlei

    2017-01-01

    A novel topology is proposed for three-phase electric spring (TPES) to achieve specific functionalities. With respect to the existing one, the novel topology contains an additional three-phase transformer with the primaries located at the position of the non-critical three-phase load (NCL......) of the existing topology and its secondaries connected to the new three-phase NCL, thus forming a new three-phase smart load (SL). To control the novel topology, the so-called modified δ control utilized for the single-phase electric springs is extended to the three-phase case. Thanks to these solutions, TPES...

  8. Geometric Transitions, Topological Strings, and Generalized Complex Geometry

    International Nuclear Information System (INIS)

    Chuang, Wu-yen

    2007-01-01

    Mirror symmetry is one of the most beautiful symmetries in string theory. It helps us very effectively gain insights into non-perturbative worldsheet instanton effects. It was also shown that the study of mirror symmetry for Calabi-Yau flux compactification leads us to the territory of ''Non-Kaehlerity''. In this thesis we demonstrate how to construct a new class of symplectic non-Kaehler and complex non-Kaehler string theory vacua via generalized geometric transitions. The class admits a mirror pairing by construction. From a variety of sources, including super-gravity analysis and KK reduction on SU(3) structure manifolds, we conclude that string theory connects Calabi-Yau spaces to both complex non-Kaehler and symplectic non-Kaehler manifolds and the resulting manifolds lie in generalized complex geometry. We go on to study the topological twisted models on a class of generalized complex geometry, bi-Hermitian geometry, which is the most general target space for (2, 2) world-sheet theory with non-trivial H flux turned on. We show that the usual Kaehler A and B models are generalized in a natural way. Since the gauged supergravity is the low energy effective theory for the compactifications on generalized geometries, we study the fate of flux-induced isometry gauging in N = 2 IIA and heterotic strings under non-perturbative instanton effects. Interestingly, we find we have protection mechanisms preventing the corrections to the hyper moduli spaces. Besides generalized geometries, we also discuss the possibility of new NS-NS fluxes in a new doubled formalism

  9. Geometric Transitions, Topological Strings, and Generalized Complex Geometry

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, Wu-yen; /SLAC /Stanford U., Phys. Dept.

    2007-06-29

    Mirror symmetry is one of the most beautiful symmetries in string theory. It helps us very effectively gain insights into non-perturbative worldsheet instanton effects. It was also shown that the study of mirror symmetry for Calabi-Yau flux compactification leads us to the territory of ''Non-Kaehlerity''. In this thesis we demonstrate how to construct a new class of symplectic non-Kaehler and complex non-Kaehler string theory vacua via generalized geometric transitions. The class admits a mirror pairing by construction. From a variety of sources, including super-gravity analysis and KK reduction on SU(3) structure manifolds, we conclude that string theory connects Calabi-Yau spaces to both complex non-Kaehler and symplectic non-Kaehler manifolds and the resulting manifolds lie in generalized complex geometry. We go on to study the topological twisted models on a class of generalized complex geometry, bi-Hermitian geometry, which is the most general target space for (2, 2) world-sheet theory with non-trivial H flux turned on. We show that the usual Kaehler A and B models are generalized in a natural way. Since the gauged supergravity is the low energy effective theory for the compactifications on generalized geometries, we study the fate of flux-induced isometry gauging in N = 2 IIA and heterotic strings under non-perturbative instanton effects. Interestingly, we find we have protection mechanisms preventing the corrections to the hyper moduli spaces. Besides generalized geometries, we also discuss the possibility of new NS-NS fluxes in a new doubled formalism.

  10. Engineering topological phases with a three-dimensional nodal-loop semimetal

    Science.gov (United States)

    Li, Linhu; Yap, Han Hoe; Araújo, Miguel A. N.; Gong, Jiangbin

    2017-12-01

    A three-dimensional (3D) nodal-loop semimetal phase is exploited to engineer a number of intriguing phases featuring different peculiar topological surface states. In particular, by introducing various two-dimensional gap terms to a 3D tight-binding model of a nodal-loop semimetal, we obtain a rich variety of topological phases of great interest to ongoing theoretical and experimental studies, including a chiral insulator, degenerate-surface-loop insulator, and second-order topological insulator, as well as a Weyl semimetal with tunable Fermi arc profiles. The unique concept underlying our approach is to engineer topological surface states that inherit their dispersion relations from a gap term. The results provide one rather unified principle for the creation of novel topological phases and can guide the search for new topological materials. Two-terminal transport studies are also carried out to distinguish the engineered topological phases.

  11. Learning disordered topological phases by statistical recovery of symmetry

    Science.gov (United States)

    Yoshioka, Nobuyuki; Akagi, Yutaka; Katsura, Hosho

    2018-05-01

    We apply the artificial neural network in a supervised manner to map out the quantum phase diagram of disordered topological superconductors in class DIII. Given the disorder that keeps the discrete symmetries of the ensemble as a whole, translational symmetry which is broken in the quasiparticle distribution individually is recovered statistically by taking an ensemble average. By using this, we classify the phases by the artificial neural network that learned the quasiparticle distribution in the clean limit and show that the result is totally consistent with the calculation by the transfer matrix method or noncommutative geometry approach. If all three phases, namely the Z2, trivial, and thermal metal phases, appear in the clean limit, the machine can classify them with high confidence over the entire phase diagram. If only the former two phases are present, we find that the machine remains confused in a certain region, leading us to conclude the detection of the unknown phase which is eventually identified as the thermal metal phase.

  12. Fermion condensation quantum phase transition versus conventional quantum phase transitions

    International Nuclear Information System (INIS)

    Shaginyan, V.R.; Han, J.G.; Lee, J.

    2004-01-01

    The main features of fermion condensation quantum phase transition (FCQPT), which are distinctive in several aspects from that of conventional quantum phase transition (CQPT), are considered. We show that in contrast to CQPT, whose physics in quantum critical region is dominated by thermal and quantum fluctuations and characterized by the absence of quasiparticles, the physics of a Fermi system near FCQPT or undergone FCQPT is controlled by the system of quasiparticles resembling the Landau quasiparticles. Contrary to the Landau quasiparticles, the effective mass of these quasiparticles strongly depends on the temperature, magnetic fields, density, etc. This system of quasiparticles having general properties determines the universal behavior of the Fermi system in question. As a result, the universal behavior persists up to relatively high temperatures comparatively to the case when such a behavior is determined by CQPT. We analyze striking recent measurements of specific heat, charge and heat transport used to study the nature of magnetic field-induced QCP in heavy-fermion metal CeCoIn 5 and show that the observed facts are in good agreement with our scenario based on FCQPT and certainly seem to rule out the critical fluctuations related with CQPT. Our general consideration suggests that FCQPT and the emergence of novel quasiparticles near and behind FCQPT and resembling the Landau quasiparticles are distinctive features intrinsic to strongly correlated substances

  13. Topological Phase Diagrams of Bulk and Monolayer TiS2−xTex

    KAUST Repository

    Zhu, Zhiyong; Cheng, Yingchun; Schwingenschlö gl, Udo

    2013-01-01

    With the use of ab initio calculations, the topological phase diagrams of bulk and monolayer TiS2−xTex are established. Whereas bulk TiS2−xTex shows two strong topological phases [1;(000)] and [1;(001)] for 0.44topologically nontrivial for 0.48topologically nontrivial nature survives down to a monolayer, TiS2−xTex is a unique system for studying topological phases in three and two dimensions simultaneously.

  14. Topological Phase Diagrams of Bulk and Monolayer TiS2−xTex

    KAUST Repository

    Zhu, Zhiyong

    2013-02-12

    With the use of ab initio calculations, the topological phase diagrams of bulk and monolayer TiS2−xTex are established. Whereas bulk TiS2−xTex shows two strong topological phases [1;(000)] and [1;(001)] for 0.44topologically nontrivial for 0.48topologically nontrivial nature survives down to a monolayer, TiS2−xTex is a unique system for studying topological phases in three and two dimensions simultaneously.

  15. Gibbs measures and phase transitions

    CERN Document Server

    Georgii, Hans-Otto

    2011-01-01

    From a review of the first edition: ""This book […] covers in depth a broad range of topics in the mathematical theory of phase transition in statistical mechanics. […] It is in fact one of the author's stated aims that this comprehensive monograph should serve both as an introductory text and as a reference for the expert."" (F. Papangelou, Zentralblatt MATH) The second edition has been extended by a new section on large deviations and some comments on the more recent developments in the area.

  16. Phase transitions and critical phenomena

    CERN Document Server

    Domb, Cyril

    2000-01-01

    The field of phase transitions and critical phenomena continues to be active in research, producing a steady stream of interesting and fruitful results. No longer an area of specialist interest, it has acquired a central focus in condensed matter studies. The major aim of this serial is to provide review articles that can serve as standard references for research workers in the field, and for graduate students and others wishing to obtain reliable information on important recent developments.The two review articles in this volume complement each other in a remarkable way. Both deal with what m

  17. Light scattering near phase transitions

    CERN Document Server

    Cummins, HZ

    1983-01-01

    Since the development of the laser in the early 1960's, light scattering has played an increasingly crucial role in the investigation of many types of phase transitions and the published work in this field is now widely dispersed in a large number of books and journals.A comprehensive overview of contemporary theoretical and experimental research in this field is presented here. The reviews are written by authors who have actively contributed to the developments that have taken place in both Eastern and Western countries.

  18. Applications of Atomic Systems in Quantum Simulation, Quantum Computation and Topological Phases of Matter

    Science.gov (United States)

    Wang, Shengtao

    The ability to precisely and coherently control atomic systems has improved dramatically in the last two decades, driving remarkable advancements in quantum computation and simulation. In recent years, atomic and atom-like systems have also been served as a platform to study topological phases of matter and non-equilibrium many-body physics. Integrated with rapid theoretical progress, the employment of these systems is expanding the realm of our understanding on a range of physical phenomena. In this dissertation, I draw on state-of-the-art experimental technology to develop several new ideas for controlling and applying atomic systems. In the first part of this dissertation, we propose several novel schemes to realize, detect, and probe topological phases in atomic and atom-like systems. We first theoretically study the intriguing properties of Hopf insulators, a peculiar type of topological insulators beyond the standard classification paradigm of topological phases. Using a solid-state quantum simulator, we report the first experimental observation of Hopf insulators. We demonstrate the Hopf fibration with fascinating topological links in the experiment, showing clear signals of topological phase transitions for the underlying Hamiltonian. Next, we propose a feasible experimental scheme to realize the chiral topological insulator in three dimensions. They are a type of topological insulators protected by the chiral symmetry and have thus far remained unobserved in experiment. We then introduce a method to directly measure topological invariants in cold-atom experiments. This detection scheme is general and applicable to probe of different topological insulators in any spatial dimension. In another study, we theoretically discover a new type of topological gapless rings, dubbed a Weyl exceptional ring, in three-dimensional dissipative cold atomic systems. In the second part of this dissertation, we focus on the application of atomic systems in quantum computation

  19. Dynamical constraints on phase transitions

    International Nuclear Information System (INIS)

    Morawetz, K.

    2000-01-01

    The numerical solutions of nonlocal and local Boltzmann kinetic equations for the simulation of central heavy ion reactions are parameterized in terms of time dependent thermodynamical variables in the Fermi liquid sense. This allows to discuss dynamical trajectories in phase space. The nonequilibrium state is characterized by non-isobaric, non-isochoric etc conditions, called iso-nothing conditions. Therefore a combination of thermodynamical observables is constructed which allows to locate instabilities and points of possible phase transition in a dynamical sense. We find two different mechanisms of instability, a short time surface - dominated instability and later a spinodal - dominated volume instability. The latter one occurs only if the incident energies are not exceeding much the Fermi energy and might be attributed to spinodal decomposition. Oppositely the fast surface explosion occurs far outside the spinodal and pertains also in the cases where the system develops too fast for suffering the spinodal decomposition and where the system approaches equilibrium outside the spinodal. (author)

  20. Matrix product states and equivariant topological field theories for bosonic symmetry-protected topological phases in (1+1) dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Shiozaki, Ken [Department of Physics, University of Illinois at Urbana Champaign,1110 West Green Street, Urbana, IL 61801 (United States); Ryu, Shinsei [James Franck Institute and Kadanoff Center for Theoretical Physics, University of Chicago,5640 South Ellis Ave, Chicago, IL 60637 (United States)

    2017-04-18

    Matrix Product States (MPSs) provide a powerful framework to study and classify gapped quantum phases — symmetry-protected topological (SPT) phases in particular — defined in one dimensional lattices. On the other hand, it is natural to expect that gapped quantum phases in the limit of zero correlation length are described by topological quantum field theories (TFTs or TQFTs). In this paper, for (1+1)-dimensional bosonic SPT phases protected by symmetry G, we bridge their descriptions in terms of MPSs, and those in terms of G-equivariant TFTs. In particular, for various topological invariants (SPT invariants) constructed previously using MPSs, we provide derivations from the point of view of (1+1) TFTs. We also discuss the connection between boundary degrees of freedom, which appear when one introduces a physical boundary in SPT phases, and “open” TFTs, which are TFTs defined on spacetimes with boundaries.

  1. Symmetry and Phase Transitions in Nuclei

    International Nuclear Information System (INIS)

    Iachello, F.

    2009-01-01

    Phase transitions in nuclei have received considerable attention in recent years, especially after the discovery that, contrary to expectations, systems at the critical point of a phase transition display a simple structure. In this talk, quantum phase transitions (QPT), i.e. phase transitions that occur as a function of a coupling constant that appears in the quantum Hamiltonian, H, describing the system, will be reviewed and experimental evidence for their occurrence in nuclei will be presented. The phase transitions discussed in the talk will be shape phase transitions. Different shapes have different symmetries, classified by the dynamic symmetries of the Interacting Boson Model, U(5), SU(3) and SO(6). Very recently, the concept of Quantum Phase Transitions has been extended to Excited State Quantum Phase Transitions (ESQPT). This extension will be discussed and some evidence for incipient ESQPT in nuclei will be presented. Systems at the critical point of a phase transition are called 'critical systems'. Approximate analytic formulas for energy spectra and other properties of 'critical nuclei', in particular for nuclei at the critical point of the second order U(5)-SO(6) transition, called E(5), and along the line of first order U(5)-SU(3) transitions, called X(5), will be presented. Experimental evidence for 'critical nuclei' will be also shown. Finally, the microscopic derivation of shape phase transitions in nuclei within the framework of density functional methods will be briefly discussed.(author)

  2. Topology

    CERN Document Server

    Manetti, Marco

    2015-01-01

    This is an introductory textbook on general and algebraic topology, aimed at anyone with a basic knowledge of calculus and linear algebra. It provides full proofs and includes many examples and exercises. The covered topics include: set theory and cardinal arithmetic; axiom of choice and Zorn's lemma; topological spaces and continuous functions; connectedness and compactness; Alexandrov compactification; quotient topologies; countability and separation axioms; prebasis and Alexander's theorem; the Tychonoff theorem and paracompactness; complete metric spaces and function spaces; Baire spaces; homotopy of maps; the fundamental group; the van Kampen theorem; covering spaces; Brouwer and Borsuk's theorems; free groups and free product of groups; and basic category theory. While it is very concrete at the beginning, abstract concepts are gradually introduced. It is suitable for anyone needing a basic, comprehensive introduction to general and algebraic topology and its applications.

  3. Pitfalls and feedback when constructing topological pressure-temperature phase diagrams

    Science.gov (United States)

    Ceolin, R.; Toscani, S.; Rietveld, Ivo B.; Barrio, M.; Tamarit, J. Ll.

    2017-04-01

    The stability hierarchy between different phases of a chemical compound can be accurately reproduced in a topological phase diagram. This type of phase diagrams may appear to be the result of simple extrapolations, however, experimental complications quickly increase in the case of crystalline trimorphism (and higher order polymorphism). To ensure the accurate positioning of stable phase domains, a topological phase diagram needs to be consistent. This paper gives an example of how thermodynamic feedback can be used in the topological construction of phase diagrams to ensure overall consistency in a phase diagram based on the case of piracetam crystalline trimorphism.

  4. Li-ion batteries: Phase transition

    International Nuclear Information System (INIS)

    Hou Peiyu; Zhang Yantao; Zhang Lianqi; Chu Geng; Gao Jian

    2016-01-01

    Progress in the research on phase transitions during Li + extraction/insertion processes in typical battery materials is summarized as examples to illustrate the significance of understanding phase transition phenomena in Li-ion batteries. Physical phenomena such as phase transitions (and resultant phase diagrams) are often observed in Li-ion battery research and already play an important role in promoting Li-ion battery technology. For example, the phase transitions during Li + insertion/extraction are highly relevant to the thermodynamics and kinetics of Li-ion batteries, and even physical characteristics such as specific energy, power density, volume variation, and safety-related properties. (topical review)

  5. Deep learning the quantum phase transitions in random two-dimensional electron systems

    International Nuclear Information System (INIS)

    Ohtsuki, Tomoki; Ohtsuki, Tomi

    2016-01-01

    Random electron systems show rich phases such as Anderson insulator, diffusive metal, quantum Hall and quantum anomalous Hall insulators, Weyl semimetal, as well as strong/weak topological insulators. Eigenfunctions of each matter phase have specific features, but owing to the random nature of systems, determining the matter phase from eigenfunctions is difficult. Here, we propose the deep learning algorithm to capture the features of eigenfunctions. Localization-delocalization transition, as well as disordered Chern insulator-Anderson insulator transition, is discussed. (author)

  6. Momentum-space cigar geometry in topological phases

    Science.gov (United States)

    Palumbo, Giandomenico

    2018-01-01

    In this paper, we stress the importance of momentum-space geometry in the understanding of two-dimensional topological phases of matter. We focus, for simplicity, on the gapped boundary of three-dimensional topological insulators in class AII, which are described by a massive Dirac Hamiltonian and characterized by an half-integer Chern number. The gap is induced by introducing a magnetic perturbation, such as an external Zeeman field or a ferromagnet on the surface. The quantum Bures metric acquires a central role in our discussion and identifies a cigar geometry. We first derive the Chern number from the cigar geometry and we then show that the quantum metric can be seen as a solution of two-dimensional non-Abelian BF theory in momentum space. The gauge connection for this model is associated to the Maxwell algebra, which takes into account the Lorentz symmetries related to the Dirac theory and the momentum-space magnetic translations connected to the magnetic perturbation. The Witten black-hole metric is a solution of this gauge theory and coincides with the Bures metric. This allows us to calculate the corresponding momentum-space entanglement entropy that surprisingly carries information about the real-space conformal field theory describing the defect lines that can be created on the gapped boundary.

  7. Computer Based Porosity Design by Multi Phase Topology Optimization

    Science.gov (United States)

    Burblies, Andreas; Busse, Matthias

    2008-02-01

    A numerical simulation technique called Multi Phase Topology Optimization (MPTO) based on finite element method has been developed and refined by Fraunhofer IFAM during the last five years. MPTO is able to determine the optimum distribution of two or more different materials in components under thermal and mechanical loads. The objective of optimization is to minimize the component's elastic energy. Conventional topology optimization methods which simulate adaptive bone mineralization have got the disadvantage that there is a continuous change of mass by growth processes. MPTO keeps all initial material concentrations and uses methods adapted from molecular dynamics to find energy minimum. Applying MPTO to mechanically loaded components with a high number of different material densities, the optimization results show graded and sometimes anisotropic porosity distributions which are very similar to natural bone structures. Now it is possible to design the macro- and microstructure of a mechanical component in one step. Computer based porosity design structures can be manufactured by new Rapid Prototyping technologies. Fraunhofer IFAM has applied successfully 3D-Printing and Selective Laser Sintering methods in order to produce very stiff light weight components with graded porosities calculated by MPTO.

  8. Tunable topological phases in photonic and phononic crystals

    KAUST Repository

    Chen, Zeguo

    2018-01-01

    Topological photonics/phononics, inspired by the discovery of topological insulators, is a prosperous field of research, in which remarkable one-way propagation edge states are robust against impurities or defect without backscattering

  9. Sound speed during the QCD phase transition

    International Nuclear Information System (INIS)

    Nagasawa, Michiyasu; Yokoyama, Jun'ichi

    1998-01-01

    The Jeans scale is estimated during the coexistence epoch of quark-gluon and hadron phases in the first-order QCD phase transition. It is shown that, contrary to previous claims, reduction of the sound speed is so little that the phase transition does not affect evolution of cosmological density fluctuations appreciably. (author)

  10. Phase transition stability within ceramics

    International Nuclear Information System (INIS)

    Wang, E.; Wang, D.

    1992-01-01

    Irreversible thermodynamics is applied to analyse nucleation, both in metals and ceramics, in order to distinguish the stability of metastable under cooled melts. The hypothesis of local equilibrium has been used to apply research results from equilibrium thermodynamics, for the study of irreversible processes. The under cooling equation for homogenous nucleation only depends on a coefficient which is not related to the melting point of the material. The calculated critical under cooling values for metals are compared with experimental data. The metastable phase formation of plasma-sprayed alumina and zircon coatings has been discussed based on irreversible thermodynamics. A critical under cooling parameter (β) is defined. The metastable phase formation of plasma-sprayed alumina and zircon has been discussed. The analysis shows that γ-Al 2 O 3 is first formed in the coating since it has a lower β value than α-Al 2 O 3 . Zircon dissociates into ZrO 2 and SiO 2 , and rapid quenching of plasma spraying prevents their re association. The cooling rate determines whether t-ZrO 2 or c-ZrO 2 will form in the sprayed coating. It can be confirmed by the experiments that the content of t-ZrO 2 will increase correspondingly as the sprayed particle size decreases. At high transition temperatures, c-ZrO 2 will be formed because of the anisotropic thermal expansion behaviour in the crystal structure. 22 refs., 2 tabs

  11. The nuclear liquid gas phase transition and phase coexistence

    International Nuclear Information System (INIS)

    Chomaz, Ph.

    2001-01-01

    In this talk we will review the different signals of liquid gas phase transition in nuclei. From the theoretical side we will first discuss the foundations of the concept of equilibrium, phase transition and critical behaviors in infinite and finite systems. From the experimental point of view we will first recall the evidences for some strong modification of the behavior of hot nuclei. Then we will review quantitative detailed analysis aiming to evidence phase transition, to define its order and phase diagram. Finally, we will present a critical discussion of the present status of phase transitions in nuclei and we will draw some lines for future development of this field. (author)

  12. The nuclear liquid gas phase transition and phase coexistence

    Energy Technology Data Exchange (ETDEWEB)

    Chomaz, Ph

    2001-07-01

    In this talk we will review the different signals of liquid gas phase transition in nuclei. From the theoretical side we will first discuss the foundations of the concept of equilibrium, phase transition and critical behaviors in infinite and finite systems. From the experimental point of view we will first recall the evidences for some strong modification of the behavior of hot nuclei. Then we will review quantitative detailed analysis aiming to evidence phase transition, to define its order and phase diagram. Finally, we will present a critical discussion of the present status of phase transitions in nuclei and we will draw some lines for future development of this field. (author)

  13. Design of materials with extreme thermal expansion using a three-phase topology optimization method

    DEFF Research Database (Denmark)

    Sigmund, Ole; Torquato, S.

    1997-01-01

    Composites with extremal or unusual thermal expansion coefficients are designed using a three-phase topology optimization method. The composites are made of two different material phases and a void phase. The topology optimization method consists in finding the distribution of material phases...... materials having maximum directional thermal expansion (thermal actuators), zero isotropic thermal expansion, and negative isotropic thermal expansion. It is shown that materials with effective negative thermal expansion coefficients can be obtained by mixing two phases with positive thermal expansion...

  14. Effect of hyperons on nuclear phase transition

    International Nuclear Information System (INIS)

    Das, P.; Mallik, S.; Chaudhuri, G.

    2016-01-01

    Phase transition of nuclear system in heavy ion-collisions at intermediate energy has been studied well for many years and it has also been extended to strange nuclear matter. Recently, using the Canonical Thermodynamical Model (CTM), detailed work on multiplicity distribution of fragments produced from fragmentation of hypernuclear system shows the existence of phase transition or phase coexistence in strange system with Λ-hyperons. In present work we want to continue the investigation on phase transition with respect to some other thermodynamic observables like free energy, specific heat etc. in order to be confirmed about the nature of the transition

  15. Structural phase transitions and Huang scattering

    International Nuclear Information System (INIS)

    Yamada, Yasusada

    1980-01-01

    The usefulness of the application of the concept of Huang scattering to the understandings of the origin of diffuse scatterings near structural phase transitions are discussed. It is pointed out that in several phase transitions, the observed diffuse scatterings can not be interpreted in terms of critical fluctuations of the order parameters associated with the structural phase transitions, and that they are rather interpreted as Huang scattering due to random distribution of individual order parameter which is 'dressed' by strain fields. Examples to show effective applications of this concept to analyze the experimental X-ray data and whence to understand microscopic mechanisms of structural phase transitions are presented. (author)

  16. Simple solvable energy-landscape model that shows a thermodynamic phase transition and a glass transition.

    Science.gov (United States)

    Naumis, Gerardo G

    2012-06-01

    When a liquid melt is cooled, a glass or phase transition can be obtained depending on the cooling rate. Yet, this behavior has not been clearly captured in energy-landscape models. Here, a model is provided in which two key ingredients are considered in the landscape, metastable states and their multiplicity. Metastable states are considered as in two level system models. However, their multiplicity and topology allows a phase transition in the thermodynamic limit for slow cooling, while a transition to the glass is obtained for fast cooling. By solving the corresponding master equation, the minimal speed of cooling required to produce the glass is obtained as a function of the distribution of metastable states.

  17. Effect of Topology Structures on Synchronization Transition in Coupled Neuron Cells System

    International Nuclear Information System (INIS)

    Liang Li-Si; Zhang Ji-Qian; Xu Gui-Xia; Liu Le-Zhu; Huang Shou-Fang

    2013-01-01

    In this paper, by the help of evolutionary algorithm and using Hindmarsh—Rose (HR) neuron model, we investigate the effect of topology structures on synchronization transition between different states in coupled neuron cells system. First, we build different coupling structure with N cells, and found the effect of synchronized transition contact not only closely with the topology of the system, but also with whether there exist the ring structures in the system. In particular, both the size and the number of rings have greater effects on such transition behavior. Secondly, we introduce synchronization error to qualitative analyze the effect of the topology structure. Furthermore, by fitting the simulation results, we find that with the increment of the neurons number, there always exist the optimization structures which have the minimum number of connecting edges in the coupling systems. Above results show that the topology structures have a very crucial role on synchronization transition in coupled neuron system. Biological system may gradually acquire such efficient topology structures through the long-term evolution, thus the systems' information process may be optimized by this scheme. (interdisciplinary physics and related areas of science and technology)

  18. The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective

    International Nuclear Information System (INIS)

    Damski, Bogdan

    2005-01-01

    It can be shown that the dynamics of the Landau-Zener model can be accurately described in terms of the Kibble-Zurek theory of the topological defect production in nonequilibrium phase transitions. The simplest quantum model exhibiting the Kibble-Zurek mechanism is presented. A new intuitive description of Landau-Zener dynamics is found

  19. Quantum critical matter. Quantum phase transitions with multiple dynamics and Weyl superconductors

    International Nuclear Information System (INIS)

    Meng, Tobias

    2012-01-01

    In this PhD thesis, the physics of quantum critical matter and exotic quantum state close to quantum phase transitions is investigated. We will focus on three different examples that highlight some of the interesting phenomena related to quantum phase transitions. Firstly, we discuss the physics of quantum phase transitions in quantum wires as a function of an external gate voltage when new subbands are activated. We find that at these transitions, strong correlations lead to the formation of an impenetrable gas of polarons, and identify criteria for possible instabilities in the spin- and charge sectors of the model. Our analysis is based on the combination of exact resummations, renormalization group techniques and Luttinger liquid approaches. Secondly, we turn to the physics of multiple divergent time scales close to a quantum critical point. Using an appropriately generalized renormalization group approach, we identify that the presence of multiple dynamics at a quantum phase transition can lead to the emergence of new critical scaling exponents and thus to the breakdown of the usual scaling schemes. We calculate the critical behavior of various thermodynamic properties and detail how unusual physics can arise. It is hoped that these results might be helpful for the interpretation of experimental scaling puzzles close to quantum critical points. Thirdly, we turn to the physics of topological transitions, and more precisely the physics of Weyl superconductors. The latter are the superconducting variant of the topologically non-trivial Weyl semimetals, and emerge at the quantum phase transition between a topological superconductor and a normal insulator upon perturbing the transition with a time reversal symmetry breaking perturbation, such as magnetism. We characterize the topological properties of Weyl superconductors and establish a topological phase diagram for a particular realization in heterostructures. We discuss the physics of vortices in Weyl

  20. Phase transitions of quadrupolar fluids

    International Nuclear Information System (INIS)

    OShea, S.F.; Dubey, G.S.; Rasaiah, J.C.

    1997-01-01

    Gibbs ensemble simulations are reported for Lennard-Jones particles with embedded quadrupoles of strength Q * =Q/(εσ 5 ) 1/2 =2.0 where ε and σ are the Lennard-Jones parameters. Calculations revealing the effect of the dispersive forces on the liquid endash vapor coexistence were carried out by scaling the attractive r -6 term in the Lennard-Jones pair potential by a factor λ ranging from 0 to 1. Liquid endash vapor coexistence is observed for all values of λ including λ=0 for Q * =2.0, unlike the corresponding dipolar fluid studied by van Leeuwen and Smit et al. [Phys. Rev. Lett. 71, 3991 (1993)] which showed no phase transition below λ=0.35 when the reduced dipole moment μ * =2.0. The simulation data are analyzed to estimate the critical properties of the quadrupolar fluid and their dependence on the strength λ of the dispersive force. The critical temperature and pressure show a clear quadratic dependence on λ, while the density is less confidently identified as being linear in λ. The compressibility is roughly linear in λ. copyright 1997 American Institute of Physics

  1. Cloud regimes as phase transitions

    Science.gov (United States)

    Stechmann, Samuel; Hottovy, Scott

    2017-11-01

    Clouds are repeatedly identified as a leading source of uncertainty in future climate predictions. Of particular importance are stratocumulus clouds, which can appear as either (i) closed cells that reflect solar radiation back to space or (ii) open cells that allow solar radiation to reach the Earth's surface. Here we show that these clouds regimes - open versus closed cells - fit the paradigm of a phase transition. In addition, this paradigm characterizes pockets of open cells (POCs) as the interface between the open- and closed-cell regimes, and it identifies shallow cumulus clouds as a regime of higher variability. This behavior can be understood using an idealized model for the dynamics of atmospheric water as a stochastic diffusion process. Similar viewpoints of deep convection and self-organized criticality will also be discussed. With these new conceptual viewpoints, ideas from statistical mechanics could potentially be used for understanding uncertainties related to clouds in the climate system and climate predictions. The research of S.N.S. is partially supported by a Sloan Research Fellowship, ONR Young Investigator Award N00014-12-1-0744, and ONR MURI Grant N00014-12-1-0912.

  2. Topological phases of interacting fermions in one-dimensional superconductor - normal metal geometry

    Energy Technology Data Exchange (ETDEWEB)

    Meidan, Dganit [Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel); Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Freie Universitaet Berlin, 14195 Berlin (Germany); Romito, Alessandro; Brouwer, Piet W. [Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel)

    2015-07-01

    One-dimensional superconductors can be in non-trivial topological phases harboring Majorana end-states, which possess non-abelian statistics. It has been recently established that in the presence of interactions the classification of topological superconducting phases can be significantly altered. Specifically, for one-dimensional superconductors possessing a time reversal symmetry (BDI class), interactions reduce the infinitely many non-interacting phases (Z topological index) to eight distinct ones (Z{sub 8} topological index). In this talk I will consider multi-mode superconducting wires in such BDI class when probed by an external contact, and discuss their low temperature and voltage bias transport properties. I will first show that the Andreev reflection component of the scattering matrix of the probing lead provides a topological index, r=-4,.., 4, which distinguish the eight topological phases. The two topologically equivalent phases with r= 4,-4 support emergent many-body end states, which are identified to be a topologically protected Kondo-like resonance. The path in phase space that connects these equivalent phases crosses a non-fermi liquid fixed point where a multiple channel Kondo effect develops.

  3. Clapeyron equation and phase equilibrium properties in higher dimensional charged topological dilaton AdS black holes with a nonlinear source

    Energy Technology Data Exchange (ETDEWEB)

    Li, Huai-Fan; Zhao, Hui-Hua; Zhang, Li-Chun; Zhao, Ren [Shanxi Datong University, Institute of Theoretical Physics, Datong (China); Shanxi Datong University, Department of Physics, Datong (China)

    2017-05-15

    Using Maxwell's equal area law, we discuss the phase transition of higher dimensional charged topological dilaton AdS black hole with a nonlinear source. The coexisting region of the two phases is found and we depict the coexistence region in the P-v diagrams. The two-phase equilibrium curves in the P-T diagrams are plotted, and we take the first order approximation of volume v in the calculation. To better compare with a general thermodynamic system, the Clapeyron equation is derived for a higher dimensional charged topological black hole with a nonlinear source. The latent heat of an isothermal phase transition is investigated. We also study the effect of the parameters of the black hole on the region of two-phase coexistence. The results show that the black hole may go through a small-large phase transition similar to those of usual non-gravity thermodynamic systems. (orig.)

  4. Phase Coherence and Andreev Reflection in Topological Insulator Devices

    Directory of Open Access Journals (Sweden)

    A. D. K. Finck

    2014-11-01

    Full Text Available Topological insulators (TIs have attracted immense interest because they host helical surface states. Protected by time-reversal symmetry, they are robust to nonmagnetic disorder. When superconductivity is induced in these helical states, they are predicted to emulate p-wave pairing symmetry, with Majorana states bound to vortices. Majorana bound states possess non-Abelian exchange statistics that can be probed through interferometry. Here, we take a significant step towards Majorana interferometry by observing pronounced Fabry-Pérot oscillations in a TI sandwiched between a superconducting and a normal lead. For energies below the superconducting gap, we observe a doubling in the frequency of the oscillations, arising from an additional phase from Andreev reflection. When a magnetic field is applied perpendicular to the TI surface, a number of very sharp and gate-tunable conductance peaks appear at or near zero energy, which has consequences for interpreting spectroscopic probes of Majorana fermions. Our results demonstrate that TIs are a promising platform for exploring phase-coherent transport in a solid-state system.

  5. Phase transition in SO(3) gauge theory

    International Nuclear Information System (INIS)

    Datta, Saumen; Gavai, Rajiv V.

    1998-01-01

    The phase transition in SO(3) lattice gauge theory is investigated by Monte Carlo techniques with a view (i) to understand the relationship between the bulk transition and the deconfinement transition, and (ii) to resolve the current ambiguity about the nature of the high temperature phase. By introduction of a magnetic field, it was shown that the +ve and -ve values of a > correspond to the same phase. Studies on different sized lattices lead to the conclusion that in SO(3), there is only one transition, which is deconfining in nature. (author)

  6. Dynamics of a quantum phase transition

    International Nuclear Information System (INIS)

    Zurek, W.H.

    2005-01-01

    We present two approaches to the non-equilibrium dynamics of a quench-induced phase transition in quantum Ising model. First approach retraces steps of the standard calculation to thermodynamic second order phase transitions in the quantum setting. The second calculation is purely quantum, based on the Landau-Zener formula for transition probabilities in processes that involve avoided level crossings. We show that the two approaches yield compatible results for the scaling of the defect density with the quench rate. We exhibit similarities between them, and comment on the insights they give into dynamics of quantum phase transitions. (author)

  7. Late time phase transition as dark energy

    Indian Academy of Sciences (India)

    Abstract. We show that the dark energy field can naturally be described by the scalar condensates of a non-abelian gauge group. This gauge group is unified with the standard model gauge groups and it has a late time phase transition. The small phase transition explains why the positive acceleration of the universe is ...

  8. Phases and phase transitions of S=1 bosons

    Indian Academy of Sciences (India)

    smukerjee

    Quantum phases and phase transitions of bosons. Subroto Mukerjee. Dept. of Physics & Centre for Quantum. Information and Quantum Computing (CQIQC). Indian Institute of Science, Bangalore. 77th annual meeting of the IAS, Nov. 20 2011, PRL Ahmedabad ...

  9. Renormalization group approach to QCD phase transitions

    International Nuclear Information System (INIS)

    Midorikawa, S.; Yoshimoto, S.; So, H.

    1987-01-01

    Effective scalar theories for QCD are proposed to investigate the deconfining and chiral phase transitions. The orders of the phase transitions are determined by infrared stabilities of the fixed points. It is found that the transitions in SU(3) gauge theories are of 1st order for any number of massless flavors. The cases of SU(2) and SU(4) gauge theories are also discussed. (orig.)

  10. What's new with the electroweak phase transition?

    CERN Document Server

    Laine, M.

    1999-01-01

    We review the status of non-perturbative lattice studies of the electroweak phase transition. In the Standard Model, the complete phase diagram has been reliably determined, and the conclusion is that there is no phase transition at all for the experimentally allowed Higgs masses. In the Minimal Supersymmetric Standard Model (MSSM), in contrast, there can be a strong first order transition allowing for baryogenesis. Finally, we point out possibilities for future simulations, such as the problem of CP-violation at the MSSM electroweak phase boundary.

  11. Comments on the electroweak phase transition

    International Nuclear Information System (INIS)

    Dine, M.; Leigh, R.G.; Huet, P.; Linde, A.; Linde, D.

    1992-01-01

    We report on an investigation of various problems related to the theory of the electroweak phase transition. This includes a determination of the nature of the phase transition, a discussion of the possible role of higher order radiative corrections and the theory of the formation and evolution of the bubbles of the new phase. We find in particular that no dangerous linear terms appear in the effective potential. However, the strength of the first-order phase transition is 2/3 times less than what follows from the one-loop approximation. This rules out baryogenesis in the minimal version of the electroweak theory with light Higgs bosons. (orig.)

  12. Three-Phase Modulated Pole Machine Topologies Utilizing Mutual Flux Paths

    DEFF Research Database (Denmark)

    Washington, Jamie G.; Atkinson, Glynn J.; Baker, Nick J.

    2012-01-01

    This paper discusses three-phase topologies for modulated pole machines (MPMs). The authors introduce a new threephase topology, which takes advantage of mutual flux paths; this is analyzed using 3-D finite-element methods and compared to a three-phase topology using three single-phase units...... stacked axially. The results show that the new “combined-phase MPM” exhibits a greater torque density, while offering a reduction in the number of components. The results obtained from two prototypes are also presented to verify the concept; the results show that the “combined-phase” machine could provide...

  13. Deep Learning the Quantum Phase Transitions in Random Electron Systems: Applications to Three Dimensions

    Science.gov (United States)

    Ohtsuki, Tomi; Ohtsuki, Tomoki

    2017-04-01

    Three-dimensional random electron systems undergo quantum phase transitions and show rich phase diagrams. Examples of the phases are the band gap insulator, Anderson insulator, strong and weak topological insulators, Weyl semimetal, and diffusive metal. As in the previous paper on two-dimensional quantum phase transitions [J. Phys. Soc. Jpn. 85, 123706 (2016)], we use an image recognition algorithm based on a multilayered convolutional neural network to identify which phase the eigenfunction belongs to. The Anderson model for localization-delocalization transition, the Wilson-Dirac model for topological insulators, and the layered Chern insulator model for Weyl semimetal are studied. The situation where the standard transfer matrix approach is not applicable is also treated by this method.

  14. Pressure variation of Rashba spin splitting toward topological transition in the polar semiconductor BiTeI

    Science.gov (United States)

    Ideue, T.; Checkelsky, J. G.; Bahramy, M. S.; Murakawa, H.; Kaneko, Y.; Nagaosa, N.; Tokura, Y.

    2014-10-01

    BiTeI is a polar semiconductor with gigantic Rashba spin-split bands in bulk. We have investigated the effect of pressure on the electronic structure of this material via magnetotransport. Periods of Shubunikov-de Haas (SdH) oscillations originating from the spin-split outer Fermi surface and inner Fermi surface show disparate responses to pressure, while the carrier number derived from the Hall effect is unchanged with pressure. The associated parameters which characterize the spin-split band structure are strongly dependent on pressure, reflecting the pressure-induced band deformation. We find the SdH oscillations and transport response are consistent with the theoretically proposed pressure-induced band deformation leading to a topological phase transition. Our analysis suggests the critical pressure for the quantum phase transition near Pc=3.5 GPa.

  15. On the Axiomatization of Mathematical Understanding: Continuous Functions in the Transition to Topology

    Science.gov (United States)

    Cheshire, Daniel C.

    2017-01-01

    The introduction to general topology represents a challenging transition for students of advanced mathematics. It requires the generalization of their previous understanding of ideas from fields like geometry, linear algebra, and real or complex analysis to fit within a more abstract conceptual system. Students must adopt a new lexicon of…

  16. Hidden landscapes in thin film topological insulators: between order and disorder, 2D and 3D, normal and topological phases

    Science.gov (United States)

    Oh, Seongshik

    Topological insulator (TI) is one of the rare systems in the history of condensed matter physics that is initiated by theories and followed by experiments. Although this theory-driven advance helped move the field quite fast despite its short history, apparently there exist significant gaps between theories and experiments. Many of these discrepancies originate from the very fact that the worlds readily accessible to theories are often far from the real worlds that are available in experiments. For example, the very paradigm of topological protection of the surface states on Z2 TIs such as Bi2Se3, Bi2Te3, Sb2Te3, etc, is in fact valid only if the sample size is infinite and the crystal momentum is well-defined in all three dimensions. On the other hand, many widely studied forms of TIs such as thin films and nano-wires have significant confinement in one or more of the dimensions with varying level of disorders. In other words, many of the real world topological systems have some important parameters that are not readily captured by theories, and thus it is often questionable how far the topological theories are valid to real systems. Interestingly, it turns out that this very uncertainty of the theories provides additional control knobs that allow us to explore hidden topological territories. In this talk, I will discuss how these additional knobs in thin film topological insulators reveal surprising, at times beautiful, landscapes at the boundaries between order and disorder, 2D and 3D, normal and topological phases. This work is supported by Gordon and Betty Moore Foundation's EPiQS Initiative (GBMF4418).

  17. Phase transitions in solids under high pressure

    CERN Document Server

    Blank, Vladimir Davydovich

    2013-01-01

    Phase equilibria and kinetics of phase transformations under high pressureEquipment and methods for the study of phase transformations in solids at high pressuresPhase transformations of carbon and boron nitride at high pressure and deformation under pressurePhase transitions in Si and Ge at high pressure and deformation under pressurePolymorphic α-ω transformation in titanium, zirconium and zirconium-titanium alloys Phase transformations in iron and its alloys at high pressure Phase transformations in gallium and ceriumOn the possible polymorphic transformations in transition metals under pressurePressure-induced polymorphic transformations in АIBVII compoundsPhase transformations in AIIBVI and AIIIBV semiconductor compoundsEffect of pressure on the kinetics of phase transformations in iron alloysTransformations during deformation at high pressure Effects due to phase transformations at high pressureKinetics and hysteresis in high-temperature polymorphic transformations under pressureHysteresis and kineti...

  18. Unconventional phase transitions in liquid crystals

    Science.gov (United States)

    Kats, E. I.

    2017-12-01

    According to classical textbooks on thermodynamics or statistical physics, there are only two types of phase transitions: continuous, or second-order, in which the latent heat L is zero, and first-order, in which L ≠ 0. Present-day textbooks and monographs also mention another, stand-alone type—the Berezinskii-Kosterlitz-Thouless transition, which exists only in two dimensions and shares some features with first- and second-order phase transitions. We discuss examples of non-conventional thermodynamic behavior (i.e., which is inconsistent with the theoretical phase transition paradigm now universally accepted). For phase transitions in smectic liquid crystals, mechanisms for nonconventional behavior are proposed and the predictions they imply are examined.

  19. Topological superconductivity, topological confinement, and the vortex quantum Hall effect

    International Nuclear Information System (INIS)

    Diamantini, M. Cristina; Trugenberger, Carlo A.

    2011-01-01

    Topological matter is characterized by the presence of a topological BF term in its long-distance effective action. Topological defects due to the compactness of the U(1) gauge fields induce quantum phase transitions between topological insulators, topological superconductors, and topological confinement. In conventional superconductivity, because of spontaneous symmetry breaking, the photon acquires a mass due to the Anderson-Higgs mechanism. In this paper we derive the corresponding effective actions for the electromagnetic field in topological superconductors and topological confinement phases. In topological superconductors magnetic flux is confined and the photon acquires a topological mass through the BF mechanism: no symmetry breaking is involved, the ground state has topological order, and the transition is induced by quantum fluctuations. In topological confinement, instead, electric charge is linearly confined and the photon becomes a massive antisymmetric tensor via the Stueckelberg mechanism. Oblique confinement phases arise when the string condensate carries both magnetic and electric flux (dyonic strings). Such phases are characterized by a vortex quantum Hall effect potentially relevant for the dissipationless transport of information stored on vortices.

  20. Quantum phase transition with dissipative frustration

    Science.gov (United States)

    Maile, D.; Andergassen, S.; Belzig, W.; Rastelli, G.

    2018-04-01

    We study the quantum phase transition of the one-dimensional phase model in the presence of dissipative frustration, provided by an interaction of the system with the environment through two noncommuting operators. Such a model can be realized in Josephson junction chains with shunt resistances and resistances between the chain and the ground. Using a self-consistent harmonic approximation, we determine the phase diagram at zero temperature which exhibits a quantum phase transition between an ordered phase, corresponding to the superconducting state, and a disordered phase, corresponding to the insulating state with localized superconducting charge. Interestingly, we find that the critical line separating the two phases has a nonmonotonic behavior as a function of the dissipative coupling strength. This result is a consequence of the frustration between (i) one dissipative coupling that quenches the quantum phase fluctuations favoring the ordered phase and (ii) one that quenches the quantum momentum (charge) fluctuations leading to a vanishing phase coherence. Moreover, within the self-consistent harmonic approximation, we analyze the dissipation induced crossover between a first and second order phase transition, showing that quantum frustration increases the range in which the phase transition is second order. The nonmonotonic behavior is reflected also in the purity of the system that quantifies the degree of correlation between the system and the environment, and in the logarithmic negativity as an entanglement measure that encodes the internal quantum correlations in the chain.

  1. The quantum phase-transitions of water

    Science.gov (United States)

    Fillaux, François

    2017-08-01

    It is shown that hexagonal ices and steam are macroscopically quantum condensates, with continuous spacetime-translation symmetry, whereas liquid water is a quantum fluid with broken time-translation symmetry. Fusion and vaporization are quantum phase-transitions. The heat capacities, the latent heats, the phase-transition temperatures, the critical temperature, the molar volume expansion of ice relative to water, as well as neutron scattering data and dielectric measurements are explained. The phase-transition mechanisms along with the key role of quantum interferences and that of Hartley-Shannon's entropy are enlightened. The notions of chemical bond and force-field are questioned.

  2. Phase transition of aragonite in abalone nacre

    Science.gov (United States)

    An, Yuanlin; Liu, Zhiming; Wu, Wenjian

    2013-04-01

    Nacre is composed of about 95 vol.% aragonite and 5 vol.% biopolymer and famous for its "brick and mortar" microstructure. The phase transition temperature of aragonite in nacre is lower than the pure aragonite. In situ XRD was used to identify the phase transition temperature from aragonite to calcite in nacre, based on the analysis of TG-DSC of fresh nacre and demineralized nacre. The results indicate that the microstructure and biopolymer are the two main factors that influence the phase transition temperature of aragonite in nacre.

  3. A Generic Topology Derivation Method for Single-phase Converters with Active Capacitive DC-links

    DEFF Research Database (Denmark)

    Wang, Haoran; Wang, Huai; Zhu, Guorong

    2016-01-01

    capacitive DCDC- link solutions, but important aspects of the topology assess-ment, such as the total energy storage, overall capacitive energy buffer ratio, cost, and reliability are still not available. This paper proposes a generic topology derivation method of single-phase power converters...

  4. From topology to geometry

    International Nuclear Information System (INIS)

    Eberhart, M.

    1996-01-01

    A systematic study of the charge density topologies corresponding to a number of transition metal aluminides with the B2 structure indicates that unstable crystal structures are sometimes associated with uncharacteristic topologies. This observation invites the speculation that the distance to a topological instability might relate to a metals phase behavior. Following this speculation, a metric is imposed on the topological theory of Bader, producing a geometrical theory, where it is now possible to assign a distance from a calculated charge density topology to a topological instability. For the cubic transition metals, these distances are shown to correlate with single crystal elastic constants, where the metals that are furthest from an instability are observed to be the stiffest. (author). 16 refs., 1 tab., 9 figs

  5. Holographic entanglement entropy in superconductor phase transition with dark matter sector

    Directory of Open Access Journals (Sweden)

    Yan Peng

    2015-11-01

    Full Text Available In this paper, we investigate the holographic phase transition with dark matter sector in the AdS black hole background away from the probe limit. We discuss the properties of phases mostly from the holographic topological entanglement entropy of the system. We find the entanglement entropy is a good probe to the critical temperature and the order of the phase transition in the general model. The behaviors of entanglement entropy at large strip size suggest that the area law still holds when including dark matter sector. We also conclude that the holographic topological entanglement entropy is useful in detecting the stability of the phase transitions. Furthermore, we derive the complete diagram of the effects of coupled parameters on the critical temperature through the entanglement entropy and analytical methods.

  6. Topological transitions in unidirectional flow of nematic liquid crystal

    Science.gov (United States)

    Cummings, Linda; Anderson, Thomas; Mema, Ensela; Kondic, Lou

    2015-11-01

    Recent experiments by Sengupta et al. (Phys. Rev. Lett. 2013) revealed interesting transitions that can occur in flow of nematic liquid crystal under carefully controlled conditions within a long microfluidic channel of rectangular cross-section, with homeotropic anchoring at the walls. At low flow rates the director field of the nematic adopts a configuration that is dominated by the surface anchoring, being nearly parallel to the channel height direction over most of the cross-section; but at high flow rates there is a transition to a flow-dominated state, where the director configuration at the channel centerline is aligned with the flow (perpendicular to the channel height direction). We analyze simple channel-flow solutions to the Leslie-Ericksen model for nematics. We demonstrate that two solutions exist, at all flow rates, but that there is a transition between the elastic free energies of these solutions: the anchoring-dominated solution has the lowest energy at low flow rates, and the flow-dominated solution has lowest energy at high flow rates. NSF DMS 1211713.

  7. Electronic topological transition in zinc under pressure: An x-ray absorption spectroscopy study

    International Nuclear Information System (INIS)

    Aquilanti, G.; Trapananti, A.; Pascarelli, S.; Minicucci, M.; Principi, E.; Liscio, F.; Twarog, A.

    2007-01-01

    Zinc metal has been studied at high pressure using x-ray absorption spectroscopy. In order to investigate the role of the different degrees of hydrostaticity on the occurrence of structural anomalies following the electronic topological transition, two pressure transmitting media have been used. Results show that the electronic topological transition, if it exists, does not induce an anomaly in the local environment of compressed Zn as a function of hydrostatic pressure and any anomaly must be related to a loss of hydrostaticity of the pressure transmitting medium. The near-edge structures of the spectra, sensitive to variations in the electronic density of states above the Fermi level, do not show any evidence of electronic transition whatever pressure transmitting medium is used

  8. Role of Sn impurity on electronic topological transitions in 122 Fe-based superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Haranath, E-mail: hng@rrcat.gov.in [Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094 (India); Indus Synchrotrons Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Sen, Smritijit [Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094 (India); Indus Synchrotrons Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India)

    2016-08-25

    We show that only a few percentage of Sn doping at the Ba site on BaFe{sub 2}As{sub 2}, can cause electronic topological transition, namely, the Lifshitz transition. A hole like d{sub xy} band of Fe undergoes electron like transition due to 4% Sn doping. Lifshitz transition is found in BaFe{sub 2}As{sub 2} system around all the high symmetry points. Our detailed first principles simulation predicts absence of any Lifshitz transition in other 122 family compounds like SrFe{sub 2}As{sub 2}, CaFe{sub 2}As{sub 2} in agreement with experimental observations. This work bears practical significance due to the facts that a few percentage of Sn impurity is in-built in tin-flux grown single crystals method of synthesizing 122 materials and inter-relationship among the Lifshitz transition, magnetism and superconductivity. - Highlights: • Electronic topological transition due to Sn contamination in BaFe{sub 2}As{sub 2}. • Hole like Fe-d{sub xy} band converts into electron like in 3% Sn contaminated BaFe{sub 2}As{sub 2}. • Electron like Fe-d{sub xz}, d{sub yz} bands moves above Fermi Level at X,Y points. • No Lifshitz transition found in Sn-contaminated Sr-122, Ca-122 systems.

  9. Duality between the Deconfined Quantum-Critical Point and the Bosonic Topological Transition

    Directory of Open Access Journals (Sweden)

    Yan Qi Qin

    2017-09-01

    Full Text Available Recently, significant progress has been made in (2+1-dimensional conformal field theories without supersymmetry. In particular, it was realized that different Lagrangians may be related by hidden dualities; i.e., seemingly different field theories may actually be identical in the infrared limit. Among all the proposed dualities, one has attracted particular interest in the field of strongly correlated quantum-matter systems: the one relating the easy-plane noncompact CP^{1} model (NCCP^{1} and noncompact quantum electrodynamics (QED with two flavors (N=2 of massless two-component Dirac fermions. The easy-plane NCCP^{1} model is the field theory of the putative deconfined quantum-critical point separating a planar (XY antiferromagnet and a dimerized (valence-bond solid ground state, while N=2 noncompact QED is the theory for the transition between a bosonic symmetry-protected topological phase and a trivial Mott insulator. In this work, we present strong numerical support for the proposed duality. We realize the N=2 noncompact QED at a critical point of an interacting fermion model on the bilayer honeycomb lattice and study it using determinant quantum Monte Carlo (QMC simulations. Using stochastic series expansion QMC simulations, we study a planar version of the S=1/2 J-Q spin Hamiltonian (a quantum XY model with additional multispin couplings and show that it hosts a continuous transition between the XY magnet and the valence-bond solid. The duality between the two systems, following from a mapping of their phase diagrams extending from their respective critical points, is supported by the good agreement between the critical exponents according to the proposed duality relationships. In the J-Q model, we find both continuous and first-order transitions, depending on the degree of planar anisotropy, with deconfined quantum criticality surviving only up to moderate strengths of the anisotropy. This explains previous claims of no deconfined

  10. Topological Phases in Graphene Nanoribbons: Junction States, Spin Centers, and Quantum Spin Chains

    Science.gov (United States)

    Cao, Ting; Zhao, Fangzhou; Louie, Steven G.

    2017-08-01

    We show that semiconducting graphene nanoribbons (GNRs) of different width, edge, and end termination (synthesizable from molecular precursors with atomic precision) belong to different electronic topological classes. The topological phase of GNRs is protected by spatial symmetries and dictated by the terminating unit cell. We have derived explicit formulas for their topological invariants and shown that localized junction states developed between two GNRs of distinct topology may be tuned by lateral junction geometry. The topology of a GNR can be further modified by dopants, such as a periodic array of boron atoms. In a superlattice consisting of segments of doped and pristine GNRs, the junction states are stable spin centers, forming a Heisenberg antiferromagnetic spin 1 /2 chain with tunable exchange interaction. The discoveries here not only are of scientific interest for studies of quasi-one-dimensional systems, but also open a new path for design principles of future GNR-based devices through their topological characters.

  11. Phase transition phenomenon: A compound measure analysis

    Science.gov (United States)

    Kang, Bo Soo; Park, Chanhi; Ryu, Doojin; Song, Wonho

    2015-06-01

    This study investigates the well-documented phenomenon of phase transition in financial markets using combined information from both return and volume changes within short time intervals. We suggest a new measure for the phase transition behaviour of markets, calculated as a return distribution conditional on local variance in volume imbalance, and show that this measure successfully captures phase transition behaviour under various conditions. We analyse the intraday trade and quote dataset from the KOSPI 200 index futures, which includes detailed information on the original order size and the type of each initiating investor. We find that among these two competing factors, the submitted order size yields more explanatory power on the phenomenon of market phase transition than the investor type.

  12. Status of electroweak phase transition and baryogenesis

    Indian Academy of Sciences (India)

    It is possible that the universe has undergone a number of phase transitions, as illustrated in table 1. .... А, and perturbation theory breaks down for heavy Higgs bosons, ..... This is good news, since the neutron and electric dipole moment.

  13. Critical Line of the Deconfinement Phase Transitions

    Science.gov (United States)

    Gorenstein, Mark I.

    Phase diagram of strongly interacting matter is discussed within the exactly solvable statistical model of the quark-gluon bags. The model predicts two phases of matter: the hadron gas at a low temperature T and baryonic chemical potential μ B , and the quark-gluon gas at a high T and/or μ B . The nature of the phase transition depends on a form of the bag massvolume spectrum (its pre-exponential factor), which is expected to change with the μ B /T ratio. It is therefore likely that the line of the 1 st order transition at a high μ B/T ratio is followed by the line of the 2 nd order phase transition at an intermediate μ B/T, and then by the lines of "higher order transitions" at a low μ B /T. This talk is based on a recent paper (Gorenstein, Gaździcki, and Greiner, 2005).

  14. High temperature phase transitions without infrared divergences

    International Nuclear Information System (INIS)

    Tetradis, N.; Wetterich, C.

    1993-09-01

    The most commonly used method for the study of high temperature phase transitions is based on the perturbative evaluation of the temperature dependent effective potential. This method becomes unreliable in the case of a second order or weakly first order phase transition, due to the appearance of infrared divergences. These divergences can be controlled through the method of the effective average action which employs renormalization group ideas. We report on the study of the high temperature phase transition for the N-component φ 4 theory. A detailed quantitative picture of the second order phase transition is presented, including the critical exponents for the behaviour in the vicinity of the critical temperature. An independent check of the results is obtained in the large N limit, and contact with the perturbative approach is established through the study of the Schwinger-Dyson equations. (orig.)

  15. Locating phase transitions in computationally hard problems

    Indian Academy of Sciences (India)

    New applications of statistical mechanics; analysis of algorithms; heuristics; phase transitions and critical ...... KGaA, Weinheim, 2005). [12] S Zilberstein, AI Magazine 17, 73 (1996) ... versity Press Inc., New York, 1971). [17] F Baras, G Nicolis, ...

  16. Gravitationally self-induced phase transition

    International Nuclear Information System (INIS)

    Novello, M.; Duque, S.L.S.

    1990-01-01

    We propose a new mechanism by means of which a phase transition can be stimulated by self-gravitating matter. We suggest that this model could be used to explain the observed isotropy of the Universe. (orig.)

  17. Phase transition in the hadron gas model

    International Nuclear Information System (INIS)

    Gorenstein, M.I.; Petrov, V.K.; Zinov'ev, G.M.

    1981-01-01

    A class of statistical models of hadron gas allowing an analytical solution is considered. A mechanism of a possible phase transition in such a system is found and conditions for its occurence are determined [ru

  18. The Structural Phase Transition in Octaflournaphtalene

    DEFF Research Database (Denmark)

    Mackenzie, Gordon A.; Arthur, J. W.; Pawley, G. S.

    1977-01-01

    The phase transition in octafluoronaphthalene has been investigated by Raman scattering and neutron powder diffraction. The weight of the experimental evidence points to a unit cell doubling in the a direction, but with no change in space group symmetry. Lattice dynamics calculations support...... this evidence and indicate that the mechanism of the phase transition may well be the instability of a zone boundary acoustic mode of librational character. The structure of the low-temperature phase has been refined and the Raman spectra of the upper and lower phases are reported....

  19. Probing phase transitions via energetic nuclear collisions

    International Nuclear Information System (INIS)

    Lukacs, B.; Csernai, L.P.

    1983-07-01

    The possible effects of the nucleon-quark phase transition on the dynamics of heavy ion collisions are discussed. It is shown that the formation of the quark phase can be expected at recent experiments. Nevertheless, the compressibility of the two-phase mixture remains relatively low, thus the quark phase remains limited in both space and time, and the observables are not strongly affected. (author)

  20. Optical transitions in two-dimensional topological insulators with point defects

    Science.gov (United States)

    Sablikov, Vladimir A.; Sukhanov, Aleksei A.

    2016-12-01

    Nontrivial properties of electronic states in topological insulators are inherent not only to the surface and boundary states, but to bound states localized at structure defects as well. We clarify how the unusual properties of the defect-induced bound states are manifested in optical absorption spectra in two-dimensional topological insulators. The calculations are carried out for defects with short-range potential. We find that the defects give rise to the appearance of specific features in the absorption spectrum, which are an inherent property of topological insulators. They have the form of two or three absorption peaks that are due to intracenter transitions between electron-like and hole-like bound states.

  1. Topological phases in frustrated synthetic ladders with an odd number of legs

    Science.gov (United States)

    Barbarino, Simone; Dalmonte, Marcello; Fazio, Rosario; Santoro, Giuseppe E.

    2018-01-01

    The realization of the Hofstadter model in a strongly anisotropic ladder geometry has now become possible in one-dimensional optical lattices with a synthetic dimension. In this work, we show how the Hofstadter Hamiltonian in such ladder configurations hosts a topological phase of matter which is radically different from its two-dimensional counterpart. This topological phase stems directly from the hybrid nature of the ladder geometry and is protected by a properly defined inversion symmetry. We start our analysis by considering the paradigmatic case of a three-leg ladder which supports a topological phase exhibiting the typical features of topological states in one dimension: robust fermionic edge modes, a degenerate entanglement spectrum, and a nonzero Zak phase; then, we generalize our findings—addressable in the state-of-the-art cold-atom experiments—to ladders with a higher number of legs.

  2. Experiments on Quantum Hall Topological Phases in Ultra Low Temperatures

    International Nuclear Information System (INIS)

    Du, Rui-Rui

    2015-01-01

    This project is to cool electrons in semiconductors to extremely low temperatures and to study new states of matter formed by low-dimensional electrons (or holes). At such low temperatures (and with an intense magnetic field), electronic behavior differs completely from ordinary ones observed at room temperatures or regular low temperature. Studies of electrons at such low temperatures would open the door for fundamental discoveries in condensed matter physics. Present studies have been focused on topological phases in the fractional quantum Hall effect in GaAs/AlGaAs semiconductor heterostructures, and the newly discovered (by this group) quantum spin Hall effect in InAs/GaSb materials. This project consists of the following components: 1) Development of efficient sample cooling techniques and electron thermometry: Our goal is to reach 1 mK electron temperature and reasonable determination of electron temperature; 2) Experiments at ultra-low temperatures: Our goal is to understand the energy scale of competing quantum phases, by measuring the temperature-dependence of transport features. Focus will be placed on such issues as the energy gap of the 5/2 state, and those of 12/5 (and possible 13/5); resistive signature of instability near 1/2 at ultra-low temperatures; 3) Measurement of the 5/2 gaps in the limit of small or large Zeeman energies: Our goal is to gain physics insight of 5/2 state at limiting experimental parameters, especially those properties concerning the spin polarization; 4) Experiments on tuning the electron-electron interaction in a screened quantum Hall system: Our goal is to gain understanding of the formation of paired fractional quantum Hall state as the interaction pseudo-potential is being modified by a nearby screening electron layer; 5) Experiments on the quantized helical edge states under a strong magnetic field and ultralow temperatures: our goal is to investigate both the bulk and edge states in a quantum spin Hall insulator under

  3. Electrostatic Effects in Phase Transitions of Biomembranes between Cubic Phases and Lamellar Liquid-Crystalline (Lα) phase

    Science.gov (United States)

    Masum, Shah Md.; Li, Shu Jie; Tamba, Yukihiro; Yamashita, Yuko; Yamazaki, Masahito

    2004-04-01

    Elucidation of the mechanisms of transitions between cubic phase and liquid-crystalline (Lα) phase, and between different IPMS cubic phases, are essential for understanding of dynamics of biomembranes and topological transformation of lipid membranes. Recently, we found that electrostatic interactions due to surface charges of lipid membranes induce transition between cubic phase and Lα phase, and between different IPMS cubic phases. As electrostatic interactions increase, the most stable phase of a monoolein (MO) membrane changes: Q224 ⇒ Q229 ⇒ Lα. We also found that a de novo designed peptide partitioning into electrically neutral lipid membrane changed the phase stability of the MO membranes. As peptide-1 concentration increased, the most stable phase of a MO membrane changes: Q224 ⇒ Q229 ⇒Lα. In both cases, the increase in the electrostatic repulsive interaction greatly reduced the absolute value of spontaneous curvature of the MO monolayer membrane. We also investigated factors such as poly (L-lysine) and osmotic stress to control structure and phase stability of DOPA/MO membranes. Based on these results, we discuss the mechanism of the effect of electrostatic interactions on the stability of cubic phase.

  4. Phase transitions in two dimensions

    International Nuclear Information System (INIS)

    Henderson, D.

    1980-01-01

    Although a two-dimensional solid with long-range translational order cannot existin the thermodynamic limit (N → ∞, V →∞, N/V finite) macroscopic samples of two-dimensional solids can exist. In this work, stability of the phase was determined by the usuar method of equating the pressure and chemical potential of the phases. (A.C.A.S.) [pt

  5. Characterization of topological phases of dimerized Kitaev chain via edge correlation functions

    Science.gov (United States)

    Wang, Yucheng; Miao, Jian-Jian; Jin, Hui-Ke; Chen, Shu

    2017-11-01

    We study analytically topological properties of a noninteracting modified dimerized Kitaev chain and an exactly solvable interacting dimerized Kitaev chain under open boundary conditions by analyzing two introduced edge correlation functions. The interacting dimerized Kitaev chain at the symmetry point Δ =t and the chemical potential μ =0 can be exactly solved by applying two Jordan-Wigner transformations and a spin rotation, which permits us to calculate the edge correlation functions analytically. We demonstrate that the two edge correlation functions can be used to characterize the trivial, Su-Schrieffer-Heeger-like topological and topological superconductor phases of both the noninteracting and interacting systems and give their phase diagrams.

  6. Quarantine-generated phase transition in epidemic spreading

    Science.gov (United States)

    Lagorio, C.; Dickison, M.; Vazquez, F.; Braunstein, L. A.; Macri, P. A.; Migueles, M. V.; Havlin, S.; Stanley, H. E.

    2011-02-01

    We study the critical effect of quarantine on the propagation of epidemics on an adaptive network of social contacts. For this purpose, we analyze the susceptible-infected-recovered model in the presence of quarantine, where susceptible individuals protect themselves by disconnecting their links to infected neighbors with probability w and reconnecting them to other susceptible individuals chosen at random. Starting from a single infected individual, we show by an analytical approach and simulations that there is a phase transition at a critical rewiring (quarantine) threshold wc separating a phase (wspread out. We find that in our model the topology of the network strongly affects the size of the propagation and that wc increases with the mean degree and heterogeneity of the network. We also find that wc is reduced if we perform a preferential rewiring, in which the rewiring probability is proportional to the degree of infected nodes.

  7. Quarantine-generated phase transition in epidemic spreading.

    Science.gov (United States)

    Lagorio, C; Dickison, M; Vazquez, F; Braunstein, L A; Macri, P A; Migueles, M V; Havlin, S; Stanley, H E

    2011-02-01

    We study the critical effect of quarantine on the propagation of epidemics on an adaptive network of social contacts. For this purpose, we analyze the susceptible-infected-recovered model in the presence of quarantine, where susceptible individuals protect themselves by disconnecting their links to infected neighbors with probability w and reconnecting them to other susceptible individuals chosen at random. Starting from a single infected individual, we show by an analytical approach and simulations that there is a phase transition at a critical rewiring (quarantine) threshold w(c) separating a phase (wspread out. We find that in our model the topology of the network strongly affects the size of the propagation and that w(c) increases with the mean degree and heterogeneity of the network. We also find that w(c) is reduced if we perform a preferential rewiring, in which the rewiring probability is proportional to the degree of infected nodes. ©2011 American Physical Society

  8. An absorbing phase transition from a structured active particle phase

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Cristobal [Instituto Mediterraneo de Estudios Avanzados IMEDEA (CSIC-UIB), Campus de la Universidad de las Islas Baleares, E-07122 Palma de Mallorca (Spain); Ramos, Francisco [Departamento de Electromagnetismo y Fisica de la Materia and Instituto de Fisica Teorica y Computacional Carlos I, Facultad de Ciencias, Universidad de Granada, 18071 Granada (Spain); Hernandez-GarcIa, Emilio [Instituto Mediterraneo de Estudios Avanzados IMEDEA (CSIC-UIB), Campus de la Universidad de las Islas Baleares, E-07122 Palma de Mallorca (Spain)

    2007-02-14

    In this work we study the absorbing state phase transition of a recently introduced model for interacting particles with neighbourhood-dependent reproduction rates. The novelty of the transition is that as soon as the active phase is reached by increasing a control parameter a periodically arranged structure of particle clusters appears. A numerical study in one and two dimensions shows that the system falls into the directed percolation universality class.

  9. Phase transition from strong-coupling expansion

    International Nuclear Information System (INIS)

    Polonyi, J.; Szlachanyi, K.

    1982-01-01

    Starting with quarkless SU(2) lattice gauge theory and using the strong-coupling expansion we calculate the action of the effective field theory which corresponds to the thermal Wilson loop. This effective action makes evident that the quark liberating phase transition traces back to the spontaneous breaking of a global Z(2) symmetry group. It furthermore describes both phases qualitatively. (orig.)

  10. The Structural Phase Transition in Solid DCN

    DEFF Research Database (Denmark)

    Dietrich, O. W.; Mackenzie, Gordon A.; Pawley, G. S.

    1975-01-01

    Neutron scattering measurements on deuterated hydrogen cyanide have shown that the structural phase change from a tetragonal to an orthorhombic form at 160K is a first-order transition. A transverse acoustic phonon mode, which has the symmetry of the phase change, was observed at very low energies...

  11. Entropy-driven phase transitions

    NARCIS (Netherlands)

    Frenkel, D.

    1999-01-01

    Increase in visible order can be associated with an increase in microscopic disorder. This phenomenon leads to many counter-intuitive phenomena such as entropy driven crystallization and phase separation. I devote special attention to the entropic depletion interaction as a means to tune the range

  12. Phase transitions in polymer monolayers

    NARCIS (Netherlands)

    Deschênes, Louise; Lyklema, J.; Danis, Claude; Saint-Germain, François

    2015-01-01

    In this paper we investigate the application of the two-dimensional Clapeyron law to polymer monolayers. This is a largely unexplored area of research. The main problems are (1) establishing if equilibrium is reached and (2) if so, identifying and defining phases as functions of the temperature.

  13. Quantum trajectory phase transitions in the micromaser.

    Science.gov (United States)

    Garrahan, Juan P; Armour, Andrew D; Lesanovsky, Igor

    2011-08-01

    We study the dynamics of the single-atom maser, or micromaser, by means of the recently introduced method of thermodynamics of quantum jump trajectories. We find that the dynamics of the micromaser displays multiple space-time phase transitions, i.e., phase transitions in ensembles of quantum jump trajectories. This rich dynamical phase structure becomes apparent when trajectories are classified by dynamical observables that quantify dynamical activity, such as the number of atoms that have changed state while traversing the cavity. The space-time transitions can be either first order or continuous, and are controlled not just by standard parameters of the micromaser but also by nonequilibrium "counting" fields. We discuss how the dynamical phase behavior relates to the better known stationary-state properties of the micromaser.

  14. Microgravity Two-Phase Flow Transition

    Science.gov (United States)

    Parang, M.; Chao, D.

    1999-01-01

    Two-phase flows under microgravity condition find a large number of important applications in fluid handling and storage, and spacecraft thermal management. Specifically, under microgravity condition heat transfer between heat exchanger surfaces and fluids depend critically on the distribution and interaction between different fluid phases which are often qualitatively different from the gravity-based systems. Heat transfer and flow analysis in two-phase flows under these conditions require a clear understanding of the flow pattern transition and development of appropriate dimensionless scales for its modeling and prediction. The physics of this flow is however very complex and remains poorly understood. This has led to various inadequacies in flow and heat transfer modeling and has made prediction of flow transition difficult in engineering design of efficient thermal and flow systems. In the present study the available published data for flow transition under microgravity condition are considered for mapping. The transition from slug to annular flow and from bubbly to slug flow are mapped using dimensionless variable combination developed in a previous study by the authors. The result indicate that the new maps describe the flow transitions reasonably well over the range of the data available. The transition maps are examined and the results are discussed in relation to the presumed balance of forces and flow dynamics. It is suggested that further evaluation of the proposed flow and transition mapping will require a wider range of microgravity data expected to be made available in future studies.

  15. Phase transitions in multiplicative competitive processes

    International Nuclear Information System (INIS)

    Shimazaki, Hideaki; Niebur, Ernst

    2005-01-01

    We introduce a discrete multiplicative process as a generic model of competition. Players with different abilities successively join the game and compete for finite resources. Emergence of dominant players and evolutionary development occur as a phase transition. The competitive dynamics underlying this transition is understood from a formal analogy to statistical mechanics. The theory is applicable to bacterial competition, predicting novel population dynamics near criticality

  16. Nonequilibrium Phase Transitions in Supercooled Water

    Science.gov (United States)

    Limmer, David; Chandler, David

    2012-02-01

    We present results of a simulation study of water driven out of equilibrium. Using transition path sampling, we can probe stationary path distributions parameterize by order parameters that are extensive in space and time. We find that by coupling external fields to these parameters, we can drive water through a first order dynamical phase transition into amorphous ice. By varying the initial equilibrium distributions we can probe pathways for the creation of amorphous ices of low and high densities.

  17. A perturbative RS I cosmological phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Bunk, Don [Skidmore College, Department of Physics, Saratoga Springs, NY (United States); Hubisz, Jay [Syracuse University, Department of Physics, Syracuse, NY (United States); Jain, Bithika [Korea Institute for Advanced Study, School of Physics, Seoul (Korea, Republic of)

    2018-01-15

    We identify a class of Randall-Sundrum type models with a successful first order cosmological phase transition during which a 5D dual of approximate conformal symmetry is spontaneously broken. Our focus is on soft-wall models that naturally realize a light radion/dilaton and suppressed dynamical contribution to the cosmological constant. We discuss phenomenology of the phase transition after developing a theoretical and numerical analysis of these models both at zero and finite temperature. We demonstrate a model with a TeV-Planck hierarchy and with a successful cosmological phase transition where the UV value of the curvature corresponds, via AdS/CFT, to an N of 20, where 5D gravity is expected to be firmly in the perturbative regime. (orig.)

  18. Friction forces on phase transition fronts

    International Nuclear Information System (INIS)

    Mégevand, Ariel

    2013-01-01

    In cosmological first-order phase transitions, the microscopic interaction of the phase transition fronts with non-equilibrium plasma particles manifests itself macroscopically as friction forces. In general, it is a nontrivial problem to compute these forces, and only two limits have been studied, namely, that of very slow walls and, more recently, ultra-relativistic walls which run away. In this paper we consider ultra-relativistic velocities and show that stationary solutions still exist when the parameters allow the existence of runaway walls. Hence, we discuss the necessary and sufficient conditions for the fronts to actually run away. We also propose a phenomenological model for the friction, which interpolates between the non-relativistic and ultra-relativistic values. Thus, the friction depends on two friction coefficients which can be calculated for specific models. We then study the velocity of phase transition fronts as a function of the friction parameters, the thermodynamic parameters, and the amount of supercooling

  19. Analyzing phase diagrams and phase transitions in networked competing populations

    Science.gov (United States)

    Ni, Y.-C.; Yin, H. P.; Xu, C.; Hui, P. M.

    2011-03-01

    Phase diagrams exhibiting the extent of cooperation in an evolutionary snowdrift game implemented in different networks are studied in detail. We invoke two independent payoff parameters, unlike a single payoff often used in most previous works that restricts the two payoffs to vary in a correlated way. In addition to the phase transition points when a single payoff parameter is used, phase boundaries separating homogeneous phases consisting of agents using the same strategy and a mixed phase consisting of agents using different strategies are found. Analytic expressions of the phase boundaries are obtained by invoking the ideas of the last surviving patterns and the relative alignments of the spectra of payoff values to agents using different strategies. In a Watts-Strogatz regular network, there exists a re-entrant phenomenon in which the system goes from a homogeneous phase into a mixed phase and re-enters the homogeneous phase as one of the two payoff parameters is varied. The non-trivial phase diagram accompanying this re-entrant phenomenon is quantitatively analyzed. The effects of noise and cooperation in randomly rewired Watts-Strogatz networks are also studied. The transition between a mixed phase and a homogeneous phase is identify to belong to the directed percolation universality class. The methods used in the present work are applicable to a wide range of problems in competing populations of networked agents.

  20. Reconstructive structural phase transitions in dense Mg

    International Nuclear Information System (INIS)

    Yao Yansun; Klug, Dennis D

    2012-01-01

    The question raised recently about whether the high-pressure phase transitions of Mg follow a hexagonal close-packed (hcp) → body centered cubic (bcc) or hcp → double hexagonal close-packed (dhcp) → bcc sequence at room temperature is examined by the use of first principles density functional methods. Enthalpy calculations show that the bcc structure replaces the hcp structure to become the most stable structure near 48 GPa, whereas the dhcp structure is never the most stable structure in the pressure range of interest. The characterized phase-transition mechanisms indicate that the hcp → dhcp transition is also associated with a higher enthalpy barrier. At room temperature, the structural sequence hcp → bcc is therefore more energetically favorable for Mg. The same conclusion is also reached from the simulations of the phase transitions using metadynamics methods. At room temperature, the metadynamics simulations predict the onset of a hcp → bcc transition at 40 GPa and the transition becomes more prominent upon further compression. At high temperatures, the metadynamics simulations reveal a structural fluctuation among the hcp, dhcp, and bcc structures at 15 GPa. With increasing pressure, the structural evolution at high temperatures becomes more unambiguous and eventually settles to a bcc structure once sufficient pressure is applied. (paper)

  1. Topological phases in the Haldane model with spin–spin on-site interactions

    Science.gov (United States)

    Rubio-García, A.; García-Ripoll, J. J.

    2018-04-01

    Ultracold atom experiments allow the study of topological insulators, such as the non-interacting Haldane model. In this work we study a generalization of the Haldane model with spin–spin on-site interactions that can be implemented on such experiments. We focus on measuring the winding number, a topological invariant, of the ground state, which we compute using a mean-field calculation that effectively captures long-range correlations and a matrix product state computation in a lattice with 64 sites. Our main result is that we show how the topological phases present in the non-interacting model survive until the interactions are comparable to the kinetic energy. We also demonstrate the accuracy of our mean-field approach in efficiently capturing long-range correlations. Based on state-of-the-art ultracold atom experiments, we propose an implementation of our model that can give information about the topological phases.

  2. Phase transition of KCl under shock compression

    CERN Document Server

    Mashimo, T; Tsumoto, K; Zhang, Y; Ando, S; Tonda, H

    2002-01-01

    It had been reported that for potassium chloride (KCl) the B1-B2 phase transition (PT) occurs under shock and static compressions, but the measured transition points showed large scatter. In this study, Hugoniot measurement experiments were performed on KCl single crystals by the inclined-mirror method combined with use of a powder gun. The anisotropic Hugoniot elastic limits and PT points were observed. The PT points along the (100), (110) and (111) axis directions were determined as 2.5, 2.2 and 2.1 GPa, respectively. The anisotropic transition was reasonably explained in terms of the displacement mechanism along the (111) axis direction.

  3. Effect of strong disorder on three-dimensional chiral topological insulators: Phase diagrams, maps of the bulk invariant, and existence of topological extended bulk states

    Science.gov (United States)

    Song, Juntao; Fine, Carolyn; Prodan, Emil

    2014-11-01

    The effect of strong disorder on chiral-symmetric three-dimensional lattice models is investigated via analytical and numerical methods. The phase diagrams of the models are computed using the noncommutative winding number, as functions of disorder strength and model's parameters. The localized/delocalized characteristic of the quantum states is probed with level statistics analysis. Our study reconfirms the accurate quantization of the noncommutative winding number in the presence of strong disorder, and its effectiveness as a numerical tool. Extended bulk states are detected above and below the Fermi level, which are observed to undergo the so-called "levitation and pair annihilation" process when the system is driven through a topological transition. This suggests that the bulk invariant is carried by these extended states, in stark contrast with the one-dimensional case where the extended states are completely absent and the bulk invariant is carried by the localized states.

  4. Exceptional Points and Dynamical Phase Transitions

    Directory of Open Access Journals (Sweden)

    I. Rotter

    2010-01-01

    Full Text Available In the framework of non-Hermitian quantum physics, the relation between exceptional points,dynamical phase transitions and the counter intuitive behavior of quantum systems at high level density is considered. The theoretical results obtained for open quantum systems and proven experimentally some years ago on a microwave cavity, may explain environmentally induce deffects (including dynamical phase transitions, which have been observed in various experimental studies. They also agree(qualitatively with the experimental results reported recently in PT symmetric optical lattices.

  5. Dimension changing phase transitions in instanton crystals

    International Nuclear Information System (INIS)

    Kaplunovsky, Vadim; Sonnenschein, Jacob

    2014-01-01

    We investigate lattices of instantons and the dimension-changing transitions between them. Our ultimate goal is the 3D→4D transition, which is holographically dual to the phase transition between the baryonic and the quarkyonic phases of cold nuclear matter. However, in this paper (just as in http://dx.doi.org/10.1007/JHEP11(2012)047) we focus on lower dimensions — the 1D lattice of instantons in a harmonic potential V∝M 2 2 x 2 2 +M 3 2 x 2 2 +M 4 2 x 4 2 , and the zigzag-shaped lattice as a first stage of the 1D→2D transition. We prove that in the low- and moderate-density regimes, interactions between the instantons are dominated by two-body forces. This drastically simplifies finding the ground state of the instantons’ orientations, so we made a numeric scan of the whole orientation space instead of assuming any particular ansatz. We find that depending on the M 2 /M 3 /M 4 ratios, the ground state of instanton orientations can follow a wide variety of patterns. For the straight 1D lattices, we found orientations periodically running over elements of a ℤ 2 , Klein, prismatic, or dihedral subgroup of the SU(2)/ℤ 2 , as well as irrational but link-periodic patterns. For the zigzag-shaped lattices, we detected 4 distinct orientation phases — the anti-ferromagnet, another abelian phase, and two non-abelian phases. Allowing the zigzag amplitude to vary as a function of increasing compression force, we obtained the phase diagrams for the straight and zigzag-shaped lattices in the (force,M 3 /M 4 ), (chemical potential,M 3 /M 4 ), and (density,M 3 /M 4 ) planes. Some of the transitions between these phases are second-order while others are first-order. Our techniques can be applied to other types of non-abelian crystals

  6. Translational Symmetry and Microscopic Constraints on Symmetry-Enriched Topological Phases: A View from the Surface

    Directory of Open Access Journals (Sweden)

    Meng Cheng

    2016-12-01

    Full Text Available The Lieb-Schultz-Mattis theorem and its higher-dimensional generalizations by Oshikawa and Hastings require that translationally invariant 2D spin systems with a half-integer spin per unit cell must either have a continuum of low energy excitations, spontaneously break some symmetries, or exhibit topological order with anyonic excitations. We establish a connection between these constraints and a remarkably similar set of constraints at the surface of a 3D interacting topological insulator. This, combined with recent work on symmetry-enriched topological phases with on-site unitary symmetries, enables us to develop a framework for understanding the structure of symmetry-enriched topological phases with both translational and on-site unitary symmetries, including the effective theory of symmetry defects. This framework places stringent constraints on the possible types of symmetry fractionalization that can occur in 2D systems whose unit cell contains fractional spin, fractional charge, or a projective representation of the symmetry group. As a concrete application, we determine when a topological phase must possess a “spinon” excitation, even in cases when spin rotational invariance is broken down to a discrete subgroup by the crystal structure. We also describe the phenomena of “anyonic spin-orbit coupling,” which may arise from the interplay of translational and on-site symmetries. These include the possibility of on-site symmetry defect branch lines carrying topological charge per unit length and lattice dislocations inducing degeneracies protected by on-site symmetry.

  7. Transitional region of phase transitions in nuclear models

    Energy Technology Data Exchange (ETDEWEB)

    Kotze, A A

    1988-01-01

    The phase transition in an exactly solvable nuclear model, the Lipkin model, is scrutinised, first using Hartree-Fock methods or the plain mean flield approximation, and then using projected wave functions. It turns out that the plain mean field is not reliable in the transitional region. Although the projection methods give better resutls in the transitional region, it leads to spurious singularities. While the energy of the projection before variation is slightly better than its projection after variation counterpart, the perfomance of the wave function is considerably worse in the transitional region. The model's wave function undergoes dramatic changes in the transitional region. The mechanism that brings about these changes is studied within a model Hamiltonian that can reproduce the Lipkin model mathematically. It turns out that the numerous exceptional points found in the transitional region, bring about the change of the ground state wave function. Exceptional points are associated with level crossings in the complex plane. These level crossings can be seen as level repulsions in the spectrum. Level repulsion and a sensitive dependence of the system on some external parameter are characteristics of chaotic behaviour. These two features are found in the transitional region of the Lipkin model. In order to study chaos, one has to resort to a statistical analysis. A measure of the chaotic behaviour of systems, the ..delta../sub 3/ statistic, is introduced. The results show that the Lipkin model is harmonic, even in the transitional region. For the Lipkin model the exceptional points are regularly distributed in the complex plane. In a total chaotic system the points would be randomly distributed.

  8. The transitional region of phase transitions in nuclear models

    International Nuclear Information System (INIS)

    Kotze, A.A.

    1988-01-01

    The phase transition in an exactly solvable nuclear model, the Lipkin model, is scrutinised, first using Hartree-Fock methods or the plain mean flield approximation, and then using projected wave functions. It turns out that the plain mean field is not reliable in the transitional region. Although the projection methods give better resutls in the transitional region, it leads to spurious singularities. While the energy of the projection before variation is slightly better than its projection after variation counterpart, the perfomance of the wave function is considerably worse in the transitional region. The model's wave function undergoes dramatic changes in the transitional region. The mechanism that brings about these changes is studied within a model Hamiltonian that can reproduce the Lipkin model mathematically. It turns out that the numerous exceptional points found in the transitional region, bring about the change of the ground state wave function. Exceptional points are associated with level crossings in the complex plane. These level crossings can be seen as level repulsions in the spectrum. Level repulsion and a sensitive dependence of the system on some external parameter are characteristics of chaotic behaviour. These two features are found in the transitional region of the Lipkin model. In order to study chaos, one has to resort to a statistical analysis. A measure of the chaotic behaviour of systems, the Δ 3 statistic, is introduced. The results show that the Lipkin model is harmonic, even in the transitional region. For the Lipkin model the exceptional points are regularly distributed in the complex plane. In a total chaotic system the points would be randomly distributed

  9. Evaluation of Low-Cost Topologies for Two-Phase Induction Motor Drives, in Industrial Applications

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Lungeanu, Florin; Skaug, Kenneth

    2002-01-01

    on the other side. Another contradiction comes from the benefits as well as from the drawbacks related with the ac running capacitor. It is concluded that the two-phase induction motor drives are more depending on the load characteristic than the three-phase motor drives, while the best topology...

  10. Phase Transitions in Algebraic Cluster Models

    International Nuclear Information System (INIS)

    Yepez-Martinez, H.; Cseh, J.; Hess, P.O.

    2006-01-01

    Complete text of publication follows. Phase transitions in nuclear systems are of utmost interest. An interesting class of phase transitions can be seen in algebraic models of nuclear structure. They are called shapephase transitions due to the following reason. These models have analytically solvable limiting cases, called dynamical symmetries, which are characterized by a chain of nested subgroups. They correspond to well-defined geometrical shape and behaviour, e.g. to rotation of an ellipsoid, or spherical vibration. The general case of the model, which includes interactions described by more than one groupchain, breaks the symmetry, and changing the relative strengths of these interactions, one can go from one shape to the other. In doing so a phase-transition can be seen. A phase transition is defined as a discontinuity of some quantity as a function of the control parameter, which gives the relative strength of the interactions of different symmetries. Real phase transitions can take place only in infinite systems, like in the classical limits of these algebraic models, when the particle number N is very large: N → ∞. For finite N the discontinuities are smoothed out, nevertheless, some indications of the phase-transitions can still be there. A controlled way of breaking the dynamical symmetries may reveal another very interesting phenomenon, i.e. the appearance of a quasidynamical (or effective) symmetry. This rather general symmetry-concept of quantum mechanics corresponds to a situation, in which the symmetry-breaking interactions are so strong that the energy-eigenfunctions are not symmetric, i.e. are not basis states of an irreducible representation of the symmetry group, rather they are linear combinations of these basis states. However, they are very special linear combinations in the sense that their coefficients are (approximately) identical for states with different spin values. When this is the case, then the underlying intrinsic state is the

  11. Phase Transitions, Diffraction Studies and Marginal Dimensionality

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage

    1985-01-01

    Continuous phase transitions and the associated critical phenomena have been one of the most active areas of research in condensed matter physics for several decades. This short review is only one cut through this huge subject and the author has chosen to emphasize diffraction studies as a basic ...

  12. Vol. 3: Statistical Physics and Phase Transitions

    International Nuclear Information System (INIS)

    Sitenko, A.

    1993-01-01

    Problems of modern physics and the situation with physical research in Ukraine are considered. Programme of the conference includes scientific and general problems. Its proceedings are published in 6 volumes. The papers presented in this volume refer to statistical physics and phase transition theory

  13. Entropy-driven phase transitions of entanglement

    Science.gov (United States)

    Facchi, Paolo; Florio, Giuseppe; Parisi, Giorgio; Pascazio, Saverio; Yuasa, Kazuya

    2013-05-01

    We study the behavior of bipartite entanglement at fixed von Neumann entropy. We look at the distribution of the entanglement spectrum, that is, the eigenvalues of the reduced density matrix of a quantum system in a pure state. We report the presence of two continuous phase transitions, characterized by different entanglement spectra, which are deformations of classical eigenvalue distributions.

  14. Hysteresis in the phase transition of chocolate

    Science.gov (United States)

    Ren, Ruilong; Lu, Qunfeng; Lin, Sihua; Dong, Xiaoyan; Fu, Hao; Wu, Shaoyi; Wu, Minghe; Teng, Baohua

    2016-01-01

    We designed an experiment to reproduce the hysteresis phenomenon of chocolate appearing in the heating and cooling process, and then established a model to relate the solidification degree to the order parameter. Based on the Landau-Devonshire theory, our model gave a description of the hysteresis phenomenon in chocolate, which lays the foundations for the study of the phase transition behavior of chocolate.

  15. Phase transitions and baryogenesis from decays

    Science.gov (United States)

    Shuve, Brian; Tamarit, Carlos

    2017-10-01

    We study scenarios in which the baryon asymmetry is generated from the decay of a particle whose mass originates from the spontaneous breakdown of a symmetry. This is realized in many models, including low-scale leptogenesis and theories with classical scale invariance. Symmetry breaking in the early universe proceeds through a phase transition that gives the parent particle a time-dependent mass, which provides an additional departure from thermal equilibrium that could modify the efficiency of baryogenesis from out-of-equilibrium decays. We characterize the effects of various types of phase transitions and show that an enhancement in the baryon asymmetry from decays is possible if the phase transition is of the second order, although such models are typically fine-tuned. We also stress the role of new annihilation modes that deplete the parent particle abundance in models realizing such a phase transition, reducing the efficacy of baryogenesis. A proper treatment of baryogenesis in such models therefore requires the inclusion of the effects we study in this paper.

  16. Dynamical quantum phase transitions: a review

    Science.gov (United States)

    Heyl, Markus

    2018-05-01

    Quantum theory provides an extensive framework for the description of the equilibrium properties of quantum matter. Yet experiments in quantum simulators have now opened up a route towards the generation of quantum states beyond this equilibrium paradigm. While these states promise to show properties not constrained by equilibrium principles, such as the equal a priori probability of the microcanonical ensemble, identifying the general properties of nonequilibrium quantum dynamics remains a major challenge, especially in view of the lack of conventional concepts such as free energies. The theory of dynamical quantum phase transitions attempts to identify such general principles by lifting the concept of phase transitions to coherent quantum real-time evolution. This review provides a pedagogical introduction to this field. Starting from the general setting of nonequilibrium dynamics in closed quantum many-body systems, we give the definition of dynamical quantum phase transitions as phase transitions in time with physical quantities becoming nonanalytic at critical times. We summarize the achieved theoretical advances as well as the first experimental observations, and furthermore provide an outlook to major open questions as well as future directions of research.

  17. Two phase transitions in Nuclear Physics

    International Nuclear Information System (INIS)

    Bes, D.R.

    1985-01-01

    The status of the art of the problem associated with two phase transitions in the nuclear matter, viz.: the disappearance of the nuclear superfluiditiy with the raising of the rotation velocity and the appearance of an octupolar deformation in the actinide zone, is presented. (L.C.) [pt

  18. Problem of phase transitions in nuclear structure

    International Nuclear Information System (INIS)

    Scharff-Goldhaber, G.

    1980-01-01

    Phase transitions between rotational and vibrational nuclei are discussed from the point of view of the variable moment of inertia model. A three-dimensional plot of the ground-state moments of inertia of even-even nuclei vs N and Z is shown. 3 figures

  19. Dynamical quantum phase transitions: a review.

    Science.gov (United States)

    Heyl, Markus

    2018-05-01

    Quantum theory provides an extensive framework for the description of the equilibrium properties of quantum matter. Yet experiments in quantum simulators have now opened up a route towards the generation of quantum states beyond this equilibrium paradigm. While these states promise to show properties not constrained by equilibrium principles, such as the equal a priori probability of the microcanonical ensemble, identifying the general properties of nonequilibrium quantum dynamics remains a major challenge, especially in view of the lack of conventional concepts such as free energies. The theory of dynamical quantum phase transitions attempts to identify such general principles by lifting the concept of phase transitions to coherent quantum real-time evolution. This review provides a pedagogical introduction to this field. Starting from the general setting of nonequilibrium dynamics in closed quantum many-body systems, we give the definition of dynamical quantum phase transitions as phase transitions in time with physical quantities becoming nonanalytic at critical times. We summarize the achieved theoretical advances as well as the first experimental observations, and furthermore provide an outlook to major open questions as well as future directions of research.

  20. Magnesium hydrides and their phase transitions

    Czech Academy of Sciences Publication Activity Database

    Paidar, Václav

    2016-01-01

    Roč. 41, č. 23 (2016), s. 9769-9773 ISSN 0360-3199 R&D Projects: GA MŠk(CZ) LD13069 Institutional support: RVO:68378271 Keywords : hydrogen * magnesium and transition metal hydrides * crystal structure stability * displacive phase transformations Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.582, year: 2016

  1. Quantum phase transitions in atomic nuclei

    International Nuclear Information System (INIS)

    Zamfir, N.V.

    2005-01-01

    Studies of quantum phase transitions in mesoscopic systems and applications to atomic nuclei are presented. Analysis in terms of the Interacting Boson Model shows that the main features persist even for moderate number of particles. Experimental evidence in rare-earth nuclei is discussed. New order and control parameters for systems with the same number of particles are proposed. (author)

  2. The Physics of Structural Phase Transitions

    CERN Document Server

    Fujimoto, Minoru

    2005-01-01

    Phase transitions in which crystalline solids undergo structural changes present an interesting problem in the interplay between the crystal structure and the ordering process that is typically nonlinear. Intended for readers with prior knowledge of basic condensed-matter physics, this book emphasizes the physics behind spontaneous structural changes in crystals. Starting with the relevant thermodynamic principles, the text discusses the nature of order variables in collective motion in structural phase transitions, where a singularity in such a collective mode is responsible for lattice instability as revealed by soft phonons. In this book, critical anomalies at second-order structural transitions are first analyzed with the condensate model. Discussions on the nonlinear ordering mechanism are followed with the soliton theory, thereby interpreting the role of long-range order. Relevant details for nonlinear mathematics are therefore given for minimum necessity. The text also discusses experimental methods fo...

  3. Phase transition to QGP matter : confined vs deconfined matter

    CERN Multimedia

    Maire, Antonin

    2015-01-01

    Simplified phase diagram of the nuclear phase transition, from the regular hadronic matter to the QGP phase. The sketch is meant to describe the transition foreseen along the temperature axis, at low baryochemical potential, µB.

  4. A New Topology for Interline Dynamic Voltage Restorer Based on Direct Three-Phase Converter

    Directory of Open Access Journals (Sweden)

    E. Babaei

    2016-03-01

    Full Text Available In this paper, a new topology for Interline Dynamic Voltage Restorer (IDVR is proposed. This topology contains two direct three-phase converters which have been connected together by a common fictitious dc-link. According to the kind of the disturbances, both of the converters can be employed as a rectifier or inverter. The converters receive the required compensation energy from the gird through the direct link which is provided by the dual-proposed switches. Due to the lack of the huge storage elements, the practical prototype of the proposed topology is more economical in comparison with the traditional structure. Moreover, compensating for long time duration is possible due to the unlimited eternal energy which is provided from the grids. The low volume, cost and weight are the additional features of the proposed topology in comparison with traditional types. This topology is capable to compensate both of the balanced and unbalanced disturbances. Furthermore, restoring the deep sags and power outages will be possible with the support from the other grid. Unlike the conventional topologies, the capability of compensation is independent from the power flow and the power factor of each grid. The performance of the proposed IDVR topology is validated by computer simulation with PSCAD/EMTDC software.

  5. Markov transition probability-based network from time series for characterizing experimental two-phase flow

    International Nuclear Information System (INIS)

    Gao Zhong-Ke; Hu Li-Dan; Jin Ning-De

    2013-01-01

    We generate a directed weighted complex network by a method based on Markov transition probability to represent an experimental two-phase flow. We first systematically carry out gas—liquid two-phase flow experiments for measuring the time series of flow signals. Then we construct directed weighted complex networks from various time series in terms of a network generation method based on Markov transition probability. We find that the generated network inherits the main features of the time series in the network structure. In particular, the networks from time series with different dynamics exhibit distinct topological properties. Finally, we construct two-phase flow directed weighted networks from experimental signals and associate the dynamic behavior of gas-liquid two-phase flow with the topological statistics of the generated networks. The results suggest that the topological statistics of two-phase flow networks allow quantitative characterization of the dynamic flow behavior in the transitions among different gas—liquid flow patterns. (general)

  6. Structural Phase Transition Nomenclature, Report of an IUCr Working Group on Phase Transition Nomenclature

    NARCIS (Netherlands)

    Toleddano, J.C.; Glazer, A.M.; Hahn, Th.; Parthe, E.; Roth, R.S.; Berry, R.S.; Metselaar, R.; Abrahams, S.C.

    1998-01-01

    A compact and intuitive nomenclature is recommended for naming each phase formed by a given material in a sequence of phase transitions as a function of temperature and/or pressure. The most commonly used label for each phase in a sequence, such as [alpha], [beta], ..., I, II, ... etc., is included

  7. Phenomenology of polymorphism: The topological pressure-temperature phase relationships of the dimorphism of finasteride

    Energy Technology Data Exchange (ETDEWEB)

    Gana, Ines [EAD Physico-chimie Industrielle du Medicament (EA 4066), Faculte de Pharmacie, Universite Paris Descartes, 4 Avenue de l' Observatoire, 75006 Paris (France) and Etablissement pharmaceutique de l' Assistance Publique - Hopitaux de Paris, Agence Generale des Equipements et Produits de Sante, 7 Rue du Fer a moulin, 75005 Paris (France); Ceolin, Rene [EAD Physico-chimie Industrielle du Medicament (EA 4066), Faculte de Pharmacie, Universite Paris Descartes, 4 Avenue de l' Observatoire, 75006 Paris (France); Rietveld, Ivo B., E-mail: ivo.rietveld@parisdescartes.fr [EAD Physico-chimie Industrielle du Medicament (EA 4066), Faculte de Pharmacie, Universite Paris Descartes, 4 Avenue de l' Observatoire, 75006 Paris (France)

    2012-10-20

    Highlights: Black-Right-Pointing-Pointer The topological pressure-temperature phase diagram for the dimorphism of finasteride. Black-Right-Pointing-Pointer Pressure affects phase equilibria: an enantiotropic phase relationship turning monotropic at high pressure. Black-Right-Pointing-Pointer The influence of pressure on phase behavior inferred from data obtained under ordinary conditions. - Abstract: Knowledge of the phase behavior in the solid state of active pharmaceutical ingredients is important for the development of stable drug formulations. The topological method for the construction of pressure-temperature phase diagrams has been applied to study the phase behavior of finasteride. It is demonstrated that with basic calorimetric measurements and X-ray diffraction sufficient data can be obtained to construct a complete topological pressure-temperature phase diagram. The dimorphism observed for finasteride gives rise to a phase diagram similar to the paradigmatic diagram of sulfur. The solid-solid phase relationship is enantiotropic at ordinary pressure and becomes monotropic at elevated pressure, where solid I is the only stable phase.

  8. Phenomenology of polymorphism: The topological pressure–temperature phase relationships of the dimorphism of finasteride

    International Nuclear Information System (INIS)

    Gana, Inès; Céolin, René; Rietveld, Ivo B.

    2012-01-01

    Highlights: ► The topological pressure–temperature phase diagram for the dimorphism of finasteride. ► Pressure affects phase equilibria: an enantiotropic phase relationship turning monotropic at high pressure. ► The influence of pressure on phase behavior inferred from data obtained under ordinary conditions. - Abstract: Knowledge of the phase behavior in the solid state of active pharmaceutical ingredients is important for the development of stable drug formulations. The topological method for the construction of pressure–temperature phase diagrams has been applied to study the phase behavior of finasteride. It is demonstrated that with basic calorimetric measurements and X-ray diffraction sufficient data can be obtained to construct a complete topological pressure–temperature phase diagram. The dimorphism observed for finasteride gives rise to a phase diagram similar to the paradigmatic diagram of sulfur. The solid–solid phase relationship is enantiotropic at ordinary pressure and becomes monotropic at elevated pressure, where solid I is the only stable phase.

  9. Computational advances in transition phase analysis

    International Nuclear Information System (INIS)

    Morita, K.; Kondo, S.; Tobita, Y.; Shirakawa, N.; Brear, D.J.; Fischer, E.A.

    1994-01-01

    In this paper, historical perspective and recent advances are reviewed on computational technologies to evaluate a transition phase of core disruptive accidents in liquid-metal fast reactors. An analysis of the transition phase requires treatment of multi-phase multi-component thermohydraulics coupled with space- and energy-dependent neutron kinetics. Such a comprehensive modeling effort was initiated when the program of SIMMER-series computer code development was initiated in the late 1970s in the USA. Successful application of the latest SIMMER-II in USA, western Europe and Japan have proved its effectiveness, but, at the same time, several areas that require further research have been identified. Based on the experience and lessons learned during the SIMMER-II application through 1980s, a new project of SIMMER-III development is underway at the Power Reactor and Nuclear Fuel Development Corporation (PNC), Japan. The models and methods of SIMMER-III are briefly described with emphasis on recent advances in multi-phase multi-component fluid dynamics technologies and their expected implication on a future reliable transition phase analysis. (author)

  10. Phase transitions in a lattice population model

    International Nuclear Information System (INIS)

    Windus, Alastair; Jensen, Henrik J

    2007-01-01

    We introduce a model for a population on a lattice with diffusion and birth/death according to 2A→3A and A→Φ for a particle A. We find that the model displays a phase transition from an active to an absorbing state which is continuous in 1 + 1 dimensions and of first-order in higher dimensions in agreement with the mean field equation. For the (1 + 1)-dimensional case, we examine the critical exponents and a scaling function for the survival probability and show that it belongs to the universality class of directed percolation. In higher dimensions, we look at the first-order phase transition by plotting a histogram of the population density and use the presence of phase coexistence to find an accurate value for the critical point in 2 + 1 dimensions

  11. Miscibility phase diagram of ring-polymer blends: A topological effect.

    Science.gov (United States)

    Sakaue, Takahiro; Nakajima, Chihiro H

    2016-04-01

    The miscibility of polymer blends, a classical problem in polymer science, may be altered, if one or both of the component do not have chain ends. Based on the idea of topological volume, we propose a mean-field theory to clarify how the topological constraints in ring polymers affect the phase behavior of the blends. While the large enhancement of the miscibility is expected for ring-linear polymer blends, the opposite trend toward demixing, albeit comparatively weak, is predicted for ring-ring polymer blends. Scaling formulas for the shift of critical point for both cases are derived. We discuss the valid range of the present theory, and the crossover to the linear polymer blends behaviors, which is expected for short chains. These analyses put forward a view that the topological constraints could be represented as an effective excluded-volume effects, in which the topological length plays a role of the screening factor.

  12. Unidirectional transmission in 1D nonlinear photonic crystal based on topological phase reversal by optical nonlinearity

    Directory of Open Access Journals (Sweden)

    Chong Li

    2017-02-01

    Full Text Available We propose a scheme of unidirectional transmission in a 1D nonlinear topological photonic crystal based on the topological edge state and three order optical nonlinearity. The 1D photonic crystals consists of a nonlinear photonic crystal L and a linear photonic crystal R. In the backward direction, light is totally reflected for the photons transmission prohibited by the bandgap. While in the forward direction, light interacts with the nonlinear photonic crystal L by optical Kerr effect, bringing a topological phase reversal and results the topological edge mode arising at the interface which could transmit photons through the bandgaps both of the photonic crystal L and R. When the signal power intensity larger than a moderate low threshold value of 10.0 MW/cm2, the transmission contrast ratio could remain at 30 steadily.

  13. Phase transitions in scale-free neural networks: Departure from the standard mean-field universality class

    International Nuclear Information System (INIS)

    Aldana, Maximino; Larralde, Hernan

    2004-01-01

    We investigate the nature of the phase transition from an ordered to a disordered state that occurs in a family of neural network models with noise. These models are closely related to the majority voter model, where a ferromagneticlike interaction between the elements prevails. Each member of the family is distinguished by the network topology, which is determined by the probability distribution of the number of incoming links. We show that for homogeneous random topologies, the phase transition belongs to the standard mean-field universality class, characterized by the order parameter exponent β=1/2. However, for scale-free networks we obtain phase transition exponents ranging from 1/2 to infinity. Furthermore, we show the existence of a phase transition even for values of the scale-free exponent in the interval (1.5,2], where the average network connectivity diverges

  14. Energy transition and phasing out nuclear

    International Nuclear Information System (INIS)

    Laponche, Bernard

    2013-05-01

    In the first part of this report, the author outlines and comments the need of an energy transition in the world: overview of world challenges (world energy consumption and its constraints, a necessary energy transition, new actors and new responsibilities), and describes the German example of an energy transition policy. In the second part, he presents and discusses the main reasons for phasing out nuclear: description of a nuclear plant operation (fission and chain reaction, heat production, production of radioactive elements, how to stop a nuclear reactor), safety and risk issues (protection arrangements, risk and consequence of a nuclear accident), issue of radioactive wastes, relationship between civil techniques and proliferation of nuclear weapons. In a third part, the author proposes an overview of the energy issue in France: final energy consumption, electricity production and consumption, primary energy consumption, characteristics of the French energy system (oil dependency, electricity consumption, and high share of nuclear energy in electricity production). In a last part, the author addresses the issue of energy transition in a perspective of phasing out nuclear: presentation of the Negawatt scenario, assessments made by Global Chance, main programmes of energy transition

  15. Phase transitions in nonequilibrium traffic theory

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, H.M.

    2000-02-01

    This paper uses the center difference scheme of Lax-Friedrichs to numerically solve a newly developed continuum traffic flow theory and the kinematic theory of Lighthill and Whitham, and Richards, and it studies the flow-concentration phase transitions in flow containing both shock and rarefaction waves. A homogeneous road with finite length was modeled by both theories. Numerical simulations show that both theories yield nearly identical results for two representative Riemann problems--one has a shock solution and the other a rarefaction wave solution. Their phase transition curves, however, are different: those derived from the new theory have two branches--one for acceleration flow and one for deceleration flow, whereas those derived from the LWR theory comprise a single curve--the equilibrium curve. The phase transition curves in the shock case agree well with certain experimental observations but disagree with others. This disagreement may be resolved by studying transitions among nonequilibrium states, which awaits further development of a more accurate finite difference approximation of the nonequilibrium theory.

  16. Phase transition signals of finite systems

    International Nuclear Information System (INIS)

    Duflot-Flandrois, Veronique

    2001-01-01

    Phase transitions are universal properties of interacting matter. They are well described if the considered system is infinite, by using standard thermodynamics. But in the case of small systems like atomic nuclei, this formalism cannot be applied anymore. Our aim is to propose a statistical mechanics approach in order to define the thermodynamical features of small open systems subject to non-saturating forces. We concentrate in particular on the definition and characterization for such systems of phase transitions belonging to the liquid gas universality class. Theoretical and experimental observables are defined to signal the occurrence and the order of this transition without any ambiguity. One of the most relevant and experimentally accessible observables consists in the study of kinetic energy fluctuations for a fixed value of the total deposited energy. In a first order phase transition such fluctuations become anomaly high and at the same time the size distribution appears to behave critically. All our results are obtained within numerical simulations of the lattice gas model with a nearest neighbors attractive interaction. Finally we check the influence of non-saturating forces, developing the specific example of the Coulomb interaction in the nucleus. Future improvements and perspectives at this work consist in the analysis of specific effects occurring in nuclei: isospin and quantum mechanics. (author) [fr

  17. Phase transition in a spatial Lotka-Volterra model

    International Nuclear Information System (INIS)

    Szabo, Gyorgy; Czaran, Tamas

    2001-01-01

    Spatial evolution is investigated in a simulated system of nine competing and mutating bacterium strains, which mimics the biochemical war among bacteria capable of producing two different bacteriocins (toxins) at most. Random sequential dynamics on a square lattice is governed by very symmetrical transition rules for neighborhood invasions of sensitive strains by killers, killers by resistants, and resistants by sensitives. The community of the nine possible toxicity/resistance types undergoes a critical phase transition as the uniform transmutation rates between the types decreases below a critical value P c above that all the nine types of strains coexist with equal frequencies. Passing the critical mutation rate from above, the system collapses into one of three topologically identical (degenerated) states, each consisting of three strain types. Of the three possible final states each accrues with equal probability and all three maintain themselves in a self-organizing polydomain structure via cyclic invasions. Our Monte Carlo simulations support that this symmetry-breaking transition belongs to the universality class of the three-state Potts model

  18. Thermoelectric power and topological transitions in quasi-two-dimensional electronic systems

    International Nuclear Information System (INIS)

    Blanter, Ya.M.; Pantsulaya, A.V.; Varlamov, A.A.

    1991-05-01

    Electron-impurity relaxation time and the thermoelectric power (TEP) of quasi-two-dimensional electron gas are calculated. Two cases are discussed: the isotropic spectrum and the electronic topological transition (ETT) of the ''neck-breaking'' type. Methods of thermal diagramatic technique are used for the calculation. It is found that the TEP in the vicinity of the ETT greatly exceeds its background value. The results of experimental investigations of the TEP in the metal-oxide-semiconductor structures are compared with the predictions of the proposed theory. (author). 17 refs, 5 figs

  19. Simulations of phase transitions in ionic systems

    International Nuclear Information System (INIS)

    Panagiotopoulos, A Z

    2005-01-01

    A review of recent simulation work in the area of phase transitions in ionic systems is presented. The vapour-liquid transition for the restricted primitive model has been studied extensively in the past decade. The critical temperature is now known to excellent accuracy and the critical density to moderate accuracy. There is also strong simulation-based evidence that the model is in the Ising universality class. Discretized lattice versions of the model are reviewed. Other systems covered are size- and charge-asymmetric electrolytes, colloid-salt mixtures, realistic salt models and charged chains. Areas of future research needs are briefly discussed

  20. News and views in discontinuous phase transitions

    Science.gov (United States)

    Nagler, Jan

    2014-03-01

    Recent progress in the theory of discontinuous percolation allow us to better understand the the sudden emergence of large-scale connectedness both in networked systems and on the lattice. We analytically study mechanisms for the amplification of critical fluctuations at the phase transition point, non-self-averaging and power law fluctuations. A single event analysis allow to establish criteria for discontinuous percolation transitions, even on the high-dimensional lattice. Some applications such as salad bowl percolation, and inverse fragmentation are discussed.

  1. The transition to chaotic phase synchronization

    DEFF Research Database (Denmark)

    Mosekilde, E.; Laugesen, J. L.; Zhusubaliyev, Zh. T.

    2012-01-01

    The transition to chaotic phase synchronization for a periodically driven spiral-type chaotic oscillator is known to involve a dense set of saddle-node bifurcations. By following the synchronization transition through the cascade of period-doubling bifurcations in a forced Ro¨ssler system...... to the torus doubling bifurcations that take place outside this domain. By examining a physiology-based model of the blood flow regulation to the individual functional unit (nephron) of the kidney we demonstrate how a similar bifurcation structure may arise in this system as a response to a periodically...

  2. About the dynamics of structural phase transitions

    International Nuclear Information System (INIS)

    Medeiros, J.T.N.

    1975-01-01

    The dynamics of structural phase transitions with a fourth order interaction between the soft phonon fields is studied in the 1/n approximation, using many body methods at finite temperatures. Two limits are considered: high transition temperature T sub(c) (classical limit) and T sub(c) = 0 (quantum limit). The dynamical contribution to the critical coefficient eta of the correlation function is calculated in these limits. It is found that there is no dynamical contribution to eta in the classical limit, whereas in the quantum limit eta is non-zero only for dimensions of the system d [pt

  3. Dynamical phase transitions in quantum mechanics

    International Nuclear Information System (INIS)

    Rotter, Ingrid

    2012-01-01

    1936 Niels Bohr: In the atom and in the nucleus we have indeed to do with two extreme cases of mechanical many-body problems for which a procedure of approximation resting on a combination of one-body problems, so effective in the former case, loses any validity in the latter where we, from the very beginning, have to do with essential collective aspects of the interplay between the constituent particles. 1963: Maria Goeppert-Mayer and J. Hans D. Jensen received the Nobel Prize in Physics for their discoveries concerning nuclear shell structure. State of the art 2011: - The nucleus is an open quantum system described by a non-Hermitian Hamilton operator with complex eigenvalues. The eigenvalues may cross in the complex plane ('exceptional points'), the phases of the eigenfunctions are not rigid in approaching the crossing points and the widths bifurcate. By this, a dynamical phase transition occurs in the many-level system. The dynamical phase transition starts at a critical value of the level density. Hence the properties of he low-lying nuclear states (described well by the shell model) and those of highly excited nuclear states (described by random ensembles) differ fundamentally from one another. The statement of Niels Bohr for compound nucleus states at high level density is not in contradiction to the shell-model description of nuclear (and atomic) states at low level density. Dynamical phase transitions are observed experimentally in different systems, including PT-symmetric ones, by varying one or more parameters

  4. Maxwell rigidity and topological constraints in amorphous phase-change networks

    International Nuclear Information System (INIS)

    Micoulaut, M.; Otjacques, C.; Raty, J.-Y.; Bichara, C.

    2011-01-01

    By analyzing first-principles molecular-dynamics simulations of different telluride amorphous networks, we develop a method for the enumeration of radial and angular topological constraints, and show that the phase diagram of the most popular system Ge-Sb-Te can be split into two compositional elastic phases: a tellurium rich flexible phase and a stressed rigid phase that contains most of the materials used in phase-change applications. This sound atomic scale insight should open new avenues for the understanding of phase-change materials and other complex amorphous materials from the viewpoint of rigidity.

  5. Link between the photonic and electronic topological phases in artificial graphene

    Science.gov (United States)

    Lannebère, Sylvain; Silveirinha, Mário G.

    2018-04-01

    In recent years the study of topological phases of matter has emerged as a very exciting field of research, both in photonics and in electronics. However, up to now the electronic and photonic properties have been regarded as totally independent. Here we establish a link between the electronic and the photonic topological phases of the same material system and theoretically demonstrate that they are intimately related. We propose a realization of the Haldane model as a patterned two-dimensional electron gas and determine its optical response using the Kubo formula. It is shown that the electronic and photonic phase diagrams of the patterned electron gas are strictly related. In particular, the system has a trivial photonic topology when the inversion symmetry is the prevalent broken symmetry, whereas it has a nontrivial photonic topology for a dominant broken time-reversal symmetry, similar to the electronic case. To confirm these predictions, we numerically demonstrate the emergence of topologically protected unidirectional electromagnetic edge states at the interface with a trivial photonic material.

  6. Transition phase in LMFBR hypothetical accidents

    International Nuclear Information System (INIS)

    Ostensen, R.W.; Henninger, R.J.; Jackson, J.F.

    1976-01-01

    Mechanistic analyses of transient-under-cooling accidents have led in some cases to a mild initiating phase instead of a direct hydrodynamic disassembly of the core. The fuel is then trapped in the core by the strong mechanical surroundings and blockages formed by refrozen cladding steel and/or fuel. The formation of fuel blockages has been verified experimentally. The bottled-up core will boil on fission and decay heat, with steel as the working fluid. Boil-up in a churn turbulent flow regime may prevent recriticality due to fuel recompaction. Ultimate fuel removal from the core is probably by a two-phase blow-down after permanent leakage paths are opened. However, a vigorous recriticality can not be precluded. Reactors with void coefficients larger than that in CRBR are more likely to disassemble in the initiating phase, so the transition phase may be unique to small cores

  7. Phase transition in the countdown problem

    Science.gov (United States)

    Lacasa, Lucas; Luque, Bartolo

    2012-07-01

    We present a combinatorial decision problem, inspired by the celebrated quiz show called Countdown, that involves the computation of a given target number T from a set of k randomly chosen integers along with a set of arithmetic operations. We find that the probability of winning the game evidences a threshold phenomenon that can be understood in the terms of an algorithmic phase transition as a function of the set size k. Numerical simulations show that such probability sharply transitions from zero to one at some critical value of the control parameter, hence separating the algorithm's parameter space in different phases. We also find that the system is maximally efficient close to the critical point. We derive analytical expressions that match the numerical results for finite size and permit us to extrapolate the behavior in the thermodynamic limit.

  8. Gravitational Waves from a Dark Phase Transition.

    Science.gov (United States)

    Schwaller, Pedro

    2015-10-30

    In this work, we show that a large class of models with a composite dark sector undergo a strong first order phase transition in the early Universe, which could lead to a detectable gravitational wave signal. We summarize the basic conditions for a strong first order phase transition for SU(N) dark sectors with n_{f} flavors, calculate the gravitational wave spectrum and show that, depending on the dark confinement scale, it can be detected at eLISA or in pulsar timing array experiments. The gravitational wave signal provides a unique test of the gravitational interactions of a dark sector, and we discuss the complementarity with conventional searches for new dark sectors. The discussion includes the twin Higgs and strongly interacting massive particle models as well as symmetric and asymmetric composite dark matter scenarios.

  9. Electroweak monopoles and the electroweak phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Arunasalam, Suntharan; Kobakhidze, Archil [The University of Sydney, ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics, Sydney, NSW (Australia)

    2017-07-15

    We consider an isolated electroweak monopole solution within the Standard Model with a nonlinear Born-Infeld extension of the hypercharge gauge field. Monopole (and dyon) solutions in such an extension are regular and their masses are predicted to be proportional to the Born-Infeld mass parameter. We argue that cosmological production of electroweak monopoles may delay the electroweak phase transition and make it more strongly first order for monopole masses M >or similar 9.3 . 10{sup 3} TeV, while the nucleosynthesis constraints on the abundance of relic monopoles impose the bound M phase transition. (orig.)

  10. A Novel Concept for Three-Phase Cascaded Multilevel Inverter Topologies

    Directory of Open Access Journals (Sweden)

    Md Mubashwar Hasan

    2018-01-01

    Full Text Available One of the key challenges in multilevel inverters (MLIs design is to reduce the number of components used in the implementation while maximising the number of output voltage levels. This paper proposes a new concept that facilitates a device count reduction technique of existing cascaded MLIs. Moreover, the proposed concept can be utilised to extend existing single phase cascaded MLI topologies to three-phase structure without tripling the number of semiconductor components and input dc-supplies as per the current practice. The new generalized concept involves two stages; namely, cascaded stage and phase generator stage. The phase generator stage is a combination of a conventional three-phase two level inverter and three bi-directional switches while the cascaded stage can employ any existing cascaded topology. A laboratory prototype model is built and extensive experimental analyses are conducted to validate the feasibility of the proposed cascaded MLI concept.

  11. Structural phase transitions in niobium oxide nanocrystals

    Science.gov (United States)

    Yuvakkumar, R.; Hong, Sun Ig

    2015-09-01

    Niobium oxide nanocrystals were successfully synthesized employing the green synthesis method. Phase formation, microstructure and compositional properties of 1, 4 and 7 days incubation treated samples after calcinations at 450 °C were examined using X-ray diffraction, Raman, photoluminescence (PL), infrared, X-ray photoelectron spectra and transmission electron microscopic characterizations. It was observed that phase formation of Nb2O5 nanocrystals was dependent upon the incubation period required to form stable metal oxides. The characteristic results clearly revealed that with increasing incubation and aging, the transformation of cubic, orthorhombic and monoclinic phases were observed. The uniform heating at room temperature (32 °C) and the ligation of niobium atoms due to higher phenolic constituents of utilized rambutan during aging processing plays a vital role in structural phase transitions in niobium oxide nanocrystals. The defects over a period of incubation and the intensities of the PL spectra changing over a period of aging were related to the amount of the defects induced by the phase transition.

  12. Extracellular ice phase transitions in insects.

    Science.gov (United States)

    Hawes, T C

    2014-01-01

    At temperatures below their temperature of crystallization (Tc), the extracellular body fluids of insects undergo a phase transition from liquid to solid. Insects that survive the transition to equilibrium (complete freezing of the body fluids) are designated as freeze tolerant. Although this phenomenon has been reported and described in many Insecta, current nomenclature and theory does not clearly delineate between the process of transition (freezing) and the final solid phase itself (the frozen state). Thus freeze tolerant insects are currently, by convention, described in terms of the temperature at which the crystallization of their body fluids is initiated, Tc. In fact, the correct descriptor for insects that tolerate freezing is the temperature of equilibrium freezing, Tef. The process of freezing is itself a separate physical event with unique physiological stresses that are associated with ice growth. Correspondingly there are a number of insects whose physiological cryo-limits are very specifically delineated by this transitional envelope. The distinction also has considerable significance for our understanding of insect cryobiology: firstly, because the ability to manage endogenous ice growth is a fundamental segregator of cryotype; and secondly, because our understanding of internal ice management is still largely nascent.

  13. Nonequilibrium Phase Transitions Associated with DNA Replication

    Science.gov (United States)

    2011-02-11

    polymerases) catalyzing the growth of a DNA primer strand (the nascent chain of nucleotides complementary to the template strand) based on the Watson ...the fraction (error rate) of monomers for which y, where y is the correct Watson - Crick complementary base of , can be obtained by ¼ X...Nonequilibrium Phase Transitions Associated with DNA Replication Hyung-June Woo* and Anders Wallqvist Biotechnology High Performance Computing

  14. Phase transitions in ternary caesium lead bromide

    Czech Academy of Sciences Publication Activity Database

    Rodová, Miroslava; Brožek, J.; Knížek, Karel; Nitsch, Karel

    2003-01-01

    Roč. 71, - (2003), s. 667-673 ISSN 1388-6150 R&D Projects: GA AV ČR IAA2010926; GA ČR GA203/02/0436 Institutional research plan: CEZ:AV0Z1010914 Keywords : DSC * high temperature X-ray diffraction * phase transitions * CsPbBr 3 * thermal expansion coefficient * TMA Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.094, year: 2003

  15. Phase transitions and elementary-particle physics

    International Nuclear Information System (INIS)

    Creutz, M.

    1981-01-01

    The reason physicists have recently taken an intense interest in the statistical mechanics of certain lattice models is reviewed. Phase transitions in these systems are of direct relevance to whether the gauge theory of interacting quarks and gluons can prevent the quark as appearing as a free isolated object. Monte Carlo simulation techniques have given the strongest evidence for the confinement phenomenon and are beginning to make numerical predictions in strong interaction physics

  16. Gravitation, phase transitions, and the big bang

    International Nuclear Information System (INIS)

    Krauss, L.M.

    1982-01-01

    Introduced here is a model of the early universe based on the possibility of a first-order phase transition involving gravity, and arrived at by a consideration of instabilities in the semiclassical theory. The evolution of the system is very different from the standard Friedmann-Robertson-Walker big-bang scenario, indicating the potential importance of semiclassical finite-temperature gravitational effects. Baryosynthesis and monopole production in this scenario are also outlined

  17. Superconducting phase transition in STM tips

    Energy Technology Data Exchange (ETDEWEB)

    Eltschka, Matthias; Jaeck, Berthold; Assig, Maximilian; Etzkorn, Markus; Ast, Christian R. [Max Planck Institute for Solid State Research, Stuttgart (Germany); Kern, Klaus [Max Planck Institute for Solid State Research, Stuttgart (Germany); Ecole Polytechnique Federale de Lausanne (Switzerland)

    2015-07-01

    The superconducting properties of systems with dimensions comparable to the London penetration depth considerably differ from macroscopic systems. We have studied the superconducting phase transition of vanadium STM tips in external magnetic fields. Employing Maki's theory we extract the superconducting parameters such as the gap or the Zeeman splitting from differential conductance spectra. While the Zeeman splitting follows the theoretical description of a system with s=1/2 and g=2, the superconducting gaps as well as the critical fields depend on the specific tip. For a better understanding of the experimental results, we solve a one dimensional Usadel equation modeling the superconducting tip as a cone with the opening angle α in an external magnetic field. We find that only a small region at the apex of the tip is superconducting in high magnetic fields and that the order of the phase transition is directly determined by α. Further, the spectral broadening increases with α indicating an intrinsic broadening mechanism due to the conical shape of the tip. Comparing these calculations to our experimental results reveals the order of the superconducting phase transition of the STM tips.

  18. Design of materials with extreme thermal expansion using a three-phase topology optimization method

    DEFF Research Database (Denmark)

    Sigmund, Ole; Torquato, S.

    1997-01-01

    We show how composites with extremal or unusual thermal expansion coefficients can be designed using a numerical topology optimization method. The composites are composed of two different material phases and void. The optimization method is illustrated by designing materials having maximum therma...

  19. Entanglement entropy of gapped phase and topological order in three dimensions

    NARCIS (Netherlands)

    Grover, T.; Turner, A.M.; Vishwanath, A.

    2011-01-01

    We discuss entanglement entropy of gapped ground states in different dimensions, obtained on partitioning space into two regions. For trivial phases without topological order, we argue that the entanglement entropy may be obtained by integrating an ‘entropy density’ over the partition boundary that

  20. Effect of disorders on topological phases in one-dimensional optical superlattices

    International Nuclear Information System (INIS)

    Wang Zhizhou; Wu Yidong; Du Huijing; Jing Xili

    2016-01-01

    In a recent paper, Lang et al. proposed that edge states and topological phases can be observed in one-dimensional optical superlattices. They showed that the topological phases can be revealed by observing the density profile of a trapped fermion system, which displays plateaus with their positions. However, disorders are not considered in their model. To study the effect of disorders on the topological phases, we introduce random potentials to the model for optical superlattcies. Our calculations show that edge states are robust against the disorders. We find the edge states are very sensitive to the number of the sites in the optical superlattice and we propose a simple rule to describe the relationship between the edge states and the number of sites. The density plateaus are also robust against weak disorders provided that the average density is calculated over a long interval. The widths of the plateaus are proportional to the widths of the bulk energy gaps when there are disorders. The disorders can diminish the bulk energy gaps. So the widths of the plateaus decrease with the increase of disorders and the density plateaus disappear when disorders are too strong. The results in our paper can be used to guide the experimental detection of topological phases in one-dimensional systems. (paper)

  1. Final Report: Identification and Manipulation of Novel Topological Phases

    Science.gov (United States)

    2016-02-09

    Massachusetts Institute of Technology ( MIT ) 77 Massachusetts Ave. NE18-901 Cambridge, MA 02139 -4307 9-Aug-2015 ABSTRACT Number of Papers published in peer...Professorship (2012-2015) Plenary Speaker, 3rd. International Conference in Superconductivity and Magnetism (ICSM2012) Alfred P. Sloan Fellowship (2012...transition ( MIT ) is discontinuous and occurs at temperatures greater or equal to TN , a Slater-type MIT is continuous and occurs exactly atTN .15 Therefore

  2. Compact Stars with Sequential QCD Phase Transitions

    Science.gov (United States)

    Alford, Mark; Sedrakian, Armen

    2017-10-01

    Compact stars may contain quark matter in their interiors at densities exceeding several times the nuclear saturation density. We explore models of such compact stars where there are two first-order phase transitions: the first from nuclear matter to a quark-matter phase, followed at a higher density by another first-order transition to a different quark-matter phase [e.g., from the two-flavor color-superconducting (2SC) to the color-flavor-locked (CFL) phase]. We show that this can give rise to two separate branches of hybrid stars, separated from each other and from the nuclear branch by instability regions, and, therefore, to a new family of compact stars, denser than the ordinary hybrid stars. In a range of parameters, one may obtain twin hybrid stars (hybrid stars with the same masses but different radii) and even triplets where three stars, with inner cores of nuclear matter, 2SC matter, and CFL matter, respectively, all have the same mass but different radii.

  3. Phase transitions of fluids in heterogeneous pores

    Directory of Open Access Journals (Sweden)

    A. Malijevský

    2016-03-01

    Full Text Available We study phase behaviour of a model fluid confined between two unlike parallel walls in the presence of long range (dispersion forces. Predictions obtained from macroscopic (geometric and mesoscopic arguments are compared with numerical solutions of a non-local density functional theory. Two capillary models are considered. For a capillary comprising two (differently adsorbing walls we show that simple geometric arguments lead to the generalized Kelvin equation locating very accurately capillary condensation, provided both walls are only partially wet. If at least one of the walls is in complete wetting regime, the Kelvin equation should be modified by capturing the effect of thick wetting films by including Derjaguin's correction. Within the second model, we consider a capillary formed of two competing walls, so that one tends to be wet and the other dry. In this case, an interface localized-delocalized transition occurs at bulk two-phase coexistence and a temperature T*(L depending on the pore width L. A mean-field analysis shows that for walls exhibiting first-order wetting transition at a temperature T_{w}, T_{s} > T*(L > T_{w}, where the spinodal temperature Ts can be associated with the prewetting critical temperature, which also determines a critical pore width below which the interface localized-delocalized transition does not occur. If the walls exhibit critical wetting, the transition is shifted below Tw and for a model with the binding potential W(l=A(Tl-2+B(Tl-3+..., where l is the location of the liquid-gas interface, the transition can be characterized by a dimensionless parameter κ=B/(AL, so that the fluid configuration with delocalized interface is stable in the interval between κ=-2/3 and κ ~ -0.23.

  4. Magnetocaloric materials and first order phase transitions

    DEFF Research Database (Denmark)

    Neves Bez, Henrique

    and magnetocaloric regenerative tests. The magnetic, thermal and structural properties obtained from such measurements are then evaluated through different models, i.e. the Curie-Weiss law, the Bean-Rodbell model, the free electron model and the Debye model.The measured magnetocaloric properties of La0.67Ca0.33MnO3...... heat capacity, magnetization and entropy change measurements. By measuring bulky particles (with a particle size in the range of 5001000 μm) of La(Fe,Mn,Si)13Hz with first order phase transition, it was possible to observe very sharp transitions. This is not the case for finer ground particles which......This thesis studies the first order phase transitions of the magnetocaloric materials La0.67Ca0.33MnO3 and La(Fe,Mn,Si)13Hz trying to overcome challenges that these materials face when applied in active magnetic regenerators. The study is done through experimental characterization and modelling...

  5. Phase transitions and dark matter problems

    International Nuclear Information System (INIS)

    Schramm, D.N.

    1984-10-01

    The possible relationships between phase transitions in the early universe and dark matter problems are discussed. It is shown that there are at least 3 distinct cosmological dark matter problems: (1) halos; (2) galaxy formation and clustering; and (3) Ω = 1, each emphasizing different attributes for the dark matter. At least some of the dark matter must be baryonic but if problems 2 and 3 are real they seem to also require non-baryonic material. However, if seeds are generated at the quark-hardon-chiral symmetry transition then alternatives to the standard scenarios may occur. At present no simple simultaneous solution (neither hot, warm, nor cold) exists for all 3 problems, but non-standard solutions with strings, decaying particles or light not tracing to mass may work. An alternative interpretation of the relationship of the cluster-cluster and galaxy-galaxy correlation functions using renormalized scaling is mentioned. In this interpretation galaxies are more strongly correlated and the cluster-cluster function is not expected to go negative until greater than or equal to 200 Mpc. Possible phase transition origins for the cluster-cluster renormalized scale are presented as ways to obtain a dimension 1.2 fractal. 64 references

  6. Holography and the Electroweak Phase Transition

    CERN Document Server

    Creminelli, Paolo; Rattazzi, Riccardo; Creminelli, Paolo; Nicolis, Alberto; Rattazzi, Riccardo

    2002-01-01

    We study through holography the compact Randall-Sundrum (RS) model at finite temperature. In the presence of radius stabilization, the system is described at low enough temperature by the RS solution. At high temperature it is described by the AdS-Schwarzshild solution with an event horizon replacing the TeV brane. We calculate the transition temperature T_c between the two phases and we find it to be somewhat smaller than the TeV scale. Assuming that the Universe starts out at T >> T_c and cools down by expansion, we study the rate of the transition to the RS phase. We find that the transition is too slow and the Universe ends up in an old inflation scenario unless tight bounds are satisfied by the model parameters. In particular we find that the AdS curvature must be comparable to the 5D Planck mass and that the radius stabilization mechanism must lead to a sizeable distortion of the basic RS metric.

  7. Rules for Phase Shifts of Quantum Oscillations in Topological Nodal-Line Semimetals

    Science.gov (United States)

    Li, Cequn; Wang, C. M.; Wan, Bo; Wan, Xiangang; Lu, Hai-Zhou; Xie, X. C.

    2018-04-01

    Nodal-line semimetals are topological semimetals in which band touchings form nodal lines or rings. Around a loop that encloses a nodal line, an electron can accumulate a nontrivial π Berry phase, so the phase shift in the Shubnikov-de Haas (SdH) oscillation may give a transport signature for the nodal-line semimetals. However, different experiments have reported contradictory phase shifts, in particular, in the WHM nodal-line semimetals (W =Zr /Hf , H =Si /Ge , M =S /Se /Te ). For a generic model of nodal-line semimetals, we present a systematic calculation for the SdH oscillation of resistivity under a magnetic field normal to the nodal-line plane. From the analytical result of the resistivity, we extract general rules to determine the phase shifts for arbitrary cases and apply them to ZrSiS and Cu3 PdN systems. Depending on the magnetic field directions, carrier types, and cross sections of the Fermi surface, the phase shift shows rich results, quite different from those for normal electrons and Weyl fermions. Our results may help explore transport signatures of topological nodal-line semimetals and can be generalized to other topological phases of matter.

  8. Phase stability of transition metals and alloys

    International Nuclear Information System (INIS)

    Hixson, R.S.; Schiferl, D.; Wills, J.M.; Hill, M.A.

    1997-01-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project was focused on resolving unexplained differences in calculated and measured phase transition pressures in transition metals. Part of the approach was to do new, higher accuracy calculations of transmission pressures for group 4B and group 6B metals. Theory indicates that the transition pressures for these baseline metals should change if alloyed with a d-electron donor metal, and calculations done using the Local Density Approximation (LDA) and the Virtual Crystal Approximation (VCA) indicate that this is true. Alloy systems were calculated for Ti, Zr and Hf based alloys with various solute concentrations. The second part of the program was to do new Diamond Anvil Cell (DAC) measurements to experimentally verify calculational results. Alloys were prepared for these systems with grain size suitable for Diamond Anvil Cell experiments. Experiments were done on pure Ti as well as Ti-V and Ti-Ta alloys. Measuring unambiguous transition pressures for these systems proved difficult, but a new technique developed yielded good results

  9. Phase transitions in least-effort communications

    International Nuclear Information System (INIS)

    Prokopenko, Mikhail; Ay, Nihat; Obst, Oliver; Polani, Daniel

    2010-01-01

    We critically examine a model that attempts to explain the emergence of power laws (e.g., Zipf's law) in human language. The model is based on the principle of least effort in communications—specifically, the overall effort is balanced between the speaker effort and listener effort, with some trade-off. It has been shown that an information-theoretic interpretation of this principle is sufficiently rich to explain the emergence of Zipf's law in the vicinity of the transition between referentially useless systems (one signal for all referable objects) and indexical reference systems (one signal per object). The phase transition is defined in the space of communication accuracy (information content) expressed in terms of the trade-off parameter. Our study explicitly solves the continuous optimization problem, subsuming a recent, more specific result obtained within a discrete space. The obtained results contrast Zipf's law found by heuristic search (that attained only local minima) in the vicinity of the transition between referentially useless systems and indexical reference systems, with an inverse-factorial (sub-logarithmic) law found at the transition that corresponds to global minima. The inverse-factorial law is observed to be the most representative frequency distribution among optimal solutions

  10. High pressure phase transitions in Europous oxide

    International Nuclear Information System (INIS)

    Kremser, D.T.

    1982-01-01

    The pressure-volume relationship for EuO was investigated to 630 kilobars at room temperature with a diamond-anvil, high-pressure cell. Volumes were determined by x-ray diffraction; pressures were determined by the ruby R 1 fluorescence method. The preferred interpretation involves normal compression behavior for EuO, initially in the B1 (NaCl-type) structure, to about 280 kilobars. Between approx. =280 and approx. =350 kilobars a region of anomalous compressibility in which the volume drops continuously by approximately 2% is observed. A second-order electronic transition is proposed with the 6s band overlapping with the 4f levels, thereby reducing the volume of EuO without changing the structure. This is not a semiconductor-to-metal transition. In reflected light, this transition is correlated with a subtle and continuous change in color from brown-black to a light brown. The collapsed B1 phase (postelectronic transition) is stable between approx. =350 and approx. =400 kilobars. At about 400 kilobars the collapsed B1 structure transforms to the B2 (CsCl-type) structure, with a zero pressure-volume change of approximately 12 +/- 1.5%

  11. Topological Properties and the Dynamical Crossover from Mixed-Valence to Kondo-Lattice Behavior in the Golden Phase of SmS.

    Science.gov (United States)

    Kang, Chang-Jong; Choi, Hong Chul; Kim, Kyoo; Min, B I

    2015-04-24

    We have investigated temperature-dependent behaviors of electronic structure and resistivity in a mixed-valent golden phase of SmS, based on the dynamical mean-field-theory band-structure calculations. Upon cooling, the coherent Sm 4f bands are formed to produce the hybridization-induced pseudogap near the Fermi level, and accordingly the topology of the Fermi surface is changed to exhibit a Lifshitz-like transition. The surface states emerging in the bulk gap region are found to be not topologically protected states but just typical Rashba spin-polarized states, indicating that SmS is not a topological Kondo semimetal. From the analysis of anomalous resistivity behavior in SmS, we have identified universal energy scales, which characterize the Kondo-mixed-valent semimetallic systems.

  12. Topological phases in superconductor-noncollinear magnet interfaces with strong spin-orbit coupling

    Energy Technology Data Exchange (ETDEWEB)

    Menke, H.; Schnyder, A.P. [Max-Planck-Institut fuer Festkoerperforschung, Heisenbergstrasse 1, 70569 Stuttgart (Germany); Toews, A. [Max-Planck-Institut fuer Festkoerperforschung, Heisenbergstrasse 1, 70569 Stuttgart (Germany); Quantum Matter Institute, University of British Columbia, Vancouver, BC (Canada)

    2016-07-01

    Majorana fermions are predicted to emerge at interfaces between conventional s-wave superconductors and non-collinear magnets. In these heterostructures, the spin moments of the non-collinear magnet induce a low-energy band of Shiba bound states in the superconductor. Depending on the type of order of the magnet, the band structure of these bound states can be topologically nontrivial. Thus far, research has focused on systems where the influence of spin-orbit coupling can be neglected. Here, we explore the interplay between non-collinear (or non-coplanar) spin textures and Rashba-type spin-orbit interaction. This situation is realized, for example, in heterostructures between helical magnets and heavy elemental superconductors, such as Pb. Using a unitary transformation in spin space, we show that the effects of Rashba-type spin-orbit coupling are equivalent to the effects of the non-collinear spin texture of the helical magnet. We explore the topological phase diagram as a function of spin-orbit coupling, spin texture, and chemical potential, and find many interesting topological phases, such as p{sub x}-, (p{sub x} + p{sub y})-, and (p{sub x} + i p{sub y})-wave states. Conditions for the formation and the nature of Majorana edge channels are examined. Furthermore, we study the topological edge currents of these phases.

  13. Nonequilibrium thermodynamic fluctuations and phase transition in black holes

    International Nuclear Information System (INIS)

    Su, R.; Cai, R.; Yu, P.K.N.

    1994-01-01

    Landau nonequilibrium fluctuation and phase transition theory is applied to the discussion of the phase transition of black holes. Some second moments of relevant thermodynamical quantities for Kerr-Newman black holes are estimated. A theorem governing the divergence of some second moments and the occurrence of the phase transition in black holes is given

  14. Edge-entanglement spectrum correspondence in a nonchiral topological phase and Kramers-Wannier duality

    Science.gov (United States)

    Ho, Wen Wei; Cincio, Lukasz; Moradi, Heidar; Gaiotto, Davide; Vidal, Guifre

    2015-03-01

    In a system with chiral topological order, there is a remarkable correspondence between the edge and entanglement spectra: the low-energy spectrum of the system in the presence of a physical edge coincides with the lowest part of the entanglement spectrum (ES) across a virtual cut of the system into two parts, up to rescaling and shifting. This correspondence is believed to be due to the existence of protected gapless edge modes. In this paper, we explore whether the edge-entanglement spectrum correspondence extends to nonchiral topological phases, where there are no protected gapless edge modes. Specifically, we consider the Wen-plaquette model, which is equivalent to the Kitaev toric code model and has Z2 topological order (quantum double of Z2) . The unperturbed Wen-plaquette model displays an exact correspondence: both the edge and entanglement spectra within each topological sector a (a =1 ,⋯,4 ) are flat and equally degenerate. Here, we show, through a detailed microscopic calculation, that in the presence of generic local perturbations: (i) the effective degrees of freedom for both the physical edge and the entanglement cut consist of a (spin-1 /2 ) spin chain, with effective Hamiltonians Hedgea and Henta, respectively, both of which have a Z2 symmetry enforced by the bulk topological order; (ii) there is in general no match between the low-energy spectra of Hedgea and Henta, that is, there is no edge-ES correspondence. However, if supplement the Z2 topological order with a global symmetry (translational invariance along the edge/entanglement cut), i.e., by considering the Wen-plaquette model as a symmetry-enriched topological phase (SET), then there is a finite domain in Hamiltonian space in which both Hedgea and Henta realize the critical Ising model, whose low-energy effective theory is the c =1 /2 Ising CFT. This is achieved because the presence of the global symmetry implies that the effective degrees of freedom of both the edge and entanglement

  15. Phase Transitions of the Polariton Condensate in 2D Dirac Materials.

    Science.gov (United States)

    Lee, Ki Hoon; Lee, Changhee; Min, Hongki; Chung, Suk Bum

    2018-04-13

    For the quantum well in an optical microcavity, the interplay of the Coulomb interaction and the electron-photon (e-ph) coupling can lead to the hybridizations of the exciton and the cavity photon known as polaritons, which can form the Bose-Einstein condensate above a threshold density. Additional physics due to the nontrivial Berry phase comes into play when the quantum well consists of the gapped two-dimensional Dirac material such as the transition metal dichalcogenide MoS_{2} or WSe_{2}. Specifically, in forming the polariton, the e-ph coupling from the optical selection rule due to the Berry phase can compete against the Coulomb electron-electron (e-e) interaction. We find that this competition gives rise to a rich phase diagram for the polariton condensate involving both topological and symmetry breaking phase transitions, with the former giving rise to the quantum anomalous Hall and the quantum spin Hall phases.

  16. Phase Transitions of the Polariton Condensate in 2D Dirac Materials

    Science.gov (United States)

    Lee, Ki Hoon; Lee, Changhee; Min, Hongki; Chung, Suk Bum

    2018-04-01

    For the quantum well in an optical microcavity, the interplay of the Coulomb interaction and the electron-photon (e -ph) coupling can lead to the hybridizations of the exciton and the cavity photon known as polaritons, which can form the Bose-Einstein condensate above a threshold density. Additional physics due to the nontrivial Berry phase comes into play when the quantum well consists of the gapped two-dimensional Dirac material such as the transition metal dichalcogenide MoS2 or WSe2 . Specifically, in forming the polariton, the e -ph coupling from the optical selection rule due to the Berry phase can compete against the Coulomb electron-electron (e -e ) interaction. We find that this competition gives rise to a rich phase diagram for the polariton condensate involving both topological and symmetry breaking phase transitions, with the former giving rise to the quantum anomalous Hall and the quantum spin Hall phases.

  17. Topological spin transport of photons: the optical Magnus effect and Berry phase

    International Nuclear Information System (INIS)

    Bliokh, K.Yu.; Bliokh, Yu.P.

    2004-01-01

    The Letter develops a modified geometrical optics (GO) of smoothly inhomogeneous isotropic medium, which takes into account two topological phenomena: Berry phase and the optical Magnus effect. Taking into account the correspondence between a quasi-classical motion of a quantum particle with a spin and GO of an electromagnetic wave in smoothly inhomogeneous media, we have introduced the standard gauge potential associated with the degeneracy in the wave momentum space. This potential corresponds to the magnetic-monopole-like field (Berry curvature), which causes the topological spin (polarization) transport of photons. The deviations of waves of right-hand and left-hand polarization occur in the opposite directions and orthogonally to the principal direction of motion. This produces a spin current directed across the principal motion. The situation is similar to the anomalous Hall effect for electrons. In addition, a simple scheme of the experiment allowing one to observe the topological spin splitting of photons has been suggested

  18. Kuramoto-type phase transition with metronomes

    International Nuclear Information System (INIS)

    Boda, Sz; Ujvári, Sz; Tunyagi, A; Néda, Z

    2013-01-01

    Metronomes placed on the perimeter of a disc-shaped platform, which can freely rotate in a horizontal plane, are used for a simple classroom illustration of the Kuramoto-type phase transition. The rotating platform induces a global coupling between the metronomes, and the strength of this coupling can be varied by tilting the metronomes’ swinging plane relative to the radial direction on the disc. As a function of the tilting angle, a transition from spontaneously synchronized to unsynchronized states is observable. By varying the number of metronomes on the disc, finite-size effects are also exemplified. A realistic theoretical model is introduced and used to reproduce the observed results. Computer simulations of this model allow a detailed investigation of the emerging collective behaviour in this system. (paper)

  19. Quantum Phase Transitions in Matrix Product States

    International Nuclear Information System (INIS)

    Jing-Min, Zhu

    2008-01-01

    We present a new general and much simpler scheme to construct various quantum phase transitions (QPTs) in spin chain systems with matrix product ground states. By use of the scheme we take into account one kind of matrix product state (MPS) QPT and provide a concrete model. We also study the properties of the concrete example and show that a kind of QPT appears, accompanied by the appearance of the discontinuity of the parity absent block physical observable, diverging correlation length only for the parity absent block operator, and other properties which are that the fixed point of the transition point is an isolated intermediate-coupling fixed point of renormalization flow and the entanglement entropy of a half-infinite chain is discontinuous

  20. Quantum phase transitions in matrix product states

    International Nuclear Information System (INIS)

    Zhu Jingmin

    2008-01-01

    We present a new general and much simpler scheme to construct various quantum phase transitions (QPTs) in spin chain systems with matrix product ground states. By use of the scheme we take into account one kind of matrix product state (MPS) QPT and provide a concrete model. We also study the properties of the concrete example and show that a kind of QPT appears, accompanied by the appearance of the discontinuity of the parity absent block physical observable, diverging correlation length only for the parity absent block operator, and other properties which are that the fixed point of the transition point is an isolated intermediate-coupling fixed point of renormalization flow and the entanglement entropy of a half-infinite chain is discontinuous. (authors)

  1. Scale invariance from phase transitions to turbulence

    CERN Document Server

    Lesne, Annick

    2012-01-01

    During a century, from the Van der Waals mean field description (1874) of gases to the introduction of renormalization group (RG techniques 1970), thermodynamics and statistical physics were just unable to account for the incredible universality which was observed in numerous critical phenomena. The great success of RG techniques is not only to solve perfectly this challenge of critical behaviour in thermal transitions but to introduce extremely useful tools in a wide field of daily situations where a system exhibits scale invariance. The introduction of scaling, scale invariance and universality concepts has been a significant turn in modern physics and more generally in natural sciences. Since then, a new "physics of scaling laws and critical exponents", rooted in scaling approaches, allows quantitative descriptions of numerous phenomena, ranging from phase transitions to earthquakes, polymer conformations, heartbeat rhythm, diffusion, interface growth and roughening, DNA sequence, dynamical systems, chaos ...

  2. Soft modes and structural phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Venkataraman, G [Reactor Research Centre, Kalpakkam (India)

    1979-12-01

    A survey of soft modes and their relationship to structural phase transitions is presented. After introducing the concept of a soft mode, the origin of softening is considered from a lattice-dynamical point. The Landau theory approach to structural transitions is then discussed, followed by a generalisation of the soft-mode concept through the use of the dynamic order-parameter susceptibility. The relationship of soft modes to broken symmetry is also examined. Experimental results for several classes of crystals are next presented, bringing out various features such as the co-operative Jahn-Teller effect. The survey concludes with a discussion of the central peak, touching upon both the experimental results and the theoretical speculations.

  3. Phases and phase transitions in the algebraic microscopic shell model

    Directory of Open Access Journals (Sweden)

    Georgieva A. I.

    2016-01-01

    Full Text Available We explore the dynamical symmetries of the shell model number conserving algebra, which define three types of pairing and quadrupole phases, with the aim to obtain the prevailing phase or phase transition for the real nuclear systems in a single shell. This is achieved by establishing a correspondence between each of the pairing bases with the Elliott’s SU(3 basis that describes collective rotation of nuclear systems. This allows for a complete classification of the basis states of different number of particles in all the limiting cases. The probability distribution of the SU(3 basis states within theirs corresponding pairing states is also obtained. The relative strengths of dynamically symmetric quadrupole-quadrupole interaction in respect to the isoscalar, isovector and total pairing interactions define a control parameter, which estimates the importance of each term of the Hamiltonian in the correct reproduction of the experimental data for the considered nuclei.

  4. Phase transitions in huddling emperor penguins

    Science.gov (United States)

    Richter, S.; Gerum, R.; Winterl, A.; Houstin, A.; Seifert, M.; Peschel, J.; Fabry, B.; Le Bohec, C.; Zitterbart, D. P.

    2018-05-01

    Emperor penguins (Aptenodytes forsteri) are highly adapted to the harsh conditions of the Antarctic winter: they are able to fast for up to 134 days during breeding. To conserve energy, emperor penguins form tight groups (huddles), which is key for their reproductive success. The effect of different meteorological factors on the huddling behaviour, however, is not well understood. Using time-lapse image recordings of an emperor penguin colony, we show that huddling can be described as a phase transition from a fluid to a solid state. We use the colony density as order parameter, and an apparent temperature that is perceived by the penguins as the thermodynamic variable. We approximate the apparent temperature as a linear combination of four meteorological parameters: ambient temperature, wind speed, global radiation and relative humidity. We find a wind chill factor of  ‑2.9 , a humidity chill factor of  ‑0.5 rel. humidity, and a solar radiation heating factor of 0.3 . In the absence of wind, humidity and solar radiation, the phase transition temperature (50% huddling probability) is  ‑48.2 °C for the investigated time period (May 2014). We propose that higher phase transition temperatures indicate a shrinking thermal insulation and thus can serve as a proxy for lower energy reserves of the colony, integrating pre-breeding foraging success at sea and energy expenditure at land due to environmental conditions. As current global change is predicted to have strong detrimental effects on emperor penguins within the next decades, our approach may thus contribute towards an urgently needed long-term monitoring system for assessing colony health.

  5. Phase transitions in blends functionalized thermoplastics

    International Nuclear Information System (INIS)

    Grigoryeva, O.; Sergeeva, L.; Starostenko, O.; Pissis, P.

    2001-01-01

    Phase transitions, morphology and structure-property relationships in polymer blends based on functionalized thermoplastics, i.e. widely used polyurethanes and styrene-acrylic acid copolymers, were investigated by means of inter-expletive non-destructive methods. Wide and small angle X-ray scattering (WAXS and SAXS), dynamic mechanical thermal analysis, thermally stimulated depolarization currents techniques, dielectric relaxation spectroscopy and several physico-mechanical characterization techniques were used. The results obtained by the various techniques were critically compared to each other. (author)

  6. Phase transitions in de Sitter space

    Directory of Open Access Journals (Sweden)

    Alexander Vilenkin

    1983-10-01

    Full Text Available An effective potential in de Sitter space is calculated for a model of two interacting scalar fields in one-loop approximation and in a self-consistent approximation which takes into account an infinite set of diagrams. Various approaches to renormalization in de Sitter space are discussed. The results are applied to analyze the phase transition in the Hawking-Moss version of the inflationary universe scenario. Requiring that inflation is sufficiently large, we derive constraints on the parameters of the model.

  7. A Note on Holography and Phase Transitions

    Directory of Open Access Journals (Sweden)

    Marc Bellon

    2011-01-01

    Full Text Available Focusing on the connection between the Landau theory of second-order phase transitions and the holographic approach to critical phenomena, we study diverse field theories in an anti de Sitter black hole background. Through simple analytical approximations, solutions to the equations of motion can be obtained in closed form which give rather good approximations of the results obtained using more involved numerical methods. The agreement we find stems from rather elementary considerations on perturbation of Schrödinger equations.

  8. Traders' behavioral coupling and market phase transition

    Science.gov (United States)

    Ma, Rong; Zhang, Yin; Li, Honggang

    2017-11-01

    Traditional economic theory is based on the assumption that traders are completely independent and rational; however, trading behavior in the real market is often coupled by various factors. This paper discusses behavioral coupling based on the stock index in the stock market, focusing on the convergence of traders' behavior, its effect on the correlation of stock returns and market volatility. We find that the behavioral consensus in the stock market, the correlation degree of stock returns, and the market volatility all exhibit significant phase transitions with stronger coupling.

  9. Machine learning topological states

    Science.gov (United States)

    Deng, Dong-Ling; Li, Xiaopeng; Das Sarma, S.

    2017-11-01

    Artificial neural networks and machine learning have now reached a new era after several decades of improvement where applications are to explode in many fields of science, industry, and technology. Here, we use artificial neural networks to study an intriguing phenomenon in quantum physics—the topological phases of matter. We find that certain topological states, either symmetry-protected or with intrinsic topological order, can be represented with classical artificial neural networks. This is demonstrated by using three concrete spin systems, the one-dimensional (1D) symmetry-protected topological cluster state and the 2D and 3D toric code states with intrinsic topological orders. For all three cases, we show rigorously that the topological ground states can be represented by short-range neural networks in an exact and efficient fashion—the required number of hidden neurons is as small as the number of physical spins and the number of parameters scales only linearly with the system size. For the 2D toric-code model, we find that the proposed short-range neural networks can describe the excited states with Abelian anyons and their nontrivial mutual statistics as well. In addition, by using reinforcement learning we show that neural networks are capable of finding the topological ground states of nonintegrable Hamiltonians with strong interactions and studying their topological phase transitions. Our results demonstrate explicitly the exceptional power of neural networks in describing topological quantum states, and at the same time provide valuable guidance to machine learning of topological phases in generic lattice models.

  10. Transitional Phenomena on Phase Change Materials

    Directory of Open Access Journals (Sweden)

    Wójcik Tadeusz M.

    2014-03-01

    Full Text Available One of the most significant problem with technology development is transferring of large heat fluxes, which requires constant heat transfer temperature (in the specified temperature range. This problem concern mainly the nuclear energetics, space technologies, military technologies and most of all electronics containing integrated circuits with very large scale of integrations. Intensive heat transfer and thermal energy storage are possible by the use of phase change materials (PCMs. In the paper there are presented preliminary results of research on the use of liquid-gas (L-G PCMs and solid-solid phase change materials (S-S PCMs. For L-G PCMs the boiling characteristics were determined by increasing and decreasing the heat flux, which for certain sets of structural parameters of the heating surface and the physical properties of the liquid induce a variety of forms of transitional phenomena. Thermal energy storage is much more effective when using PCMs than sensible heat.

  11. Phase transitions and structures of methylammonium compounds

    International Nuclear Information System (INIS)

    Yamamuro, Osamu; Onoda-Yamamuro, Noriko; Matsuo, Takasuke; Suga, Hiroshi; Kamiyama, Takashi; Asano, Hajime; Ibberson, R.M.; David, W.I.F.

    1993-01-01

    The structures of CD 3 ND 3 Cl, CD 3 ND 3 I, CD 3 ND 3 BF 4 , (CD 3 ND 3 ) 2 SnCl 6 , and CD 3 ND 3 SnBr 3 crystals were studied with time-of-flight type high-resolution powder diffractometers using spallation pulsed neutron sources. The orientations of the CD 3 ND 3 cations, including the positions of the D atoms, were determined at all the room temperature phases and at the low temperature phases of CD 3 ND 3 I and (CD 3N D 3 ) 2 SnCl 6 . The heat capacity experiments were also performed for both protonated and deuterated analogs of these compounds. From both structural and thermodynamic points of view, it was found that the transitions are mainly associated with the order-disorder change of the orientations of the CD 3 ND 3 cations. (author)

  12. Miscellaneous results on the electroweak phase transition

    International Nuclear Information System (INIS)

    Ilgenfritz, E.M.; Schiller, A.

    1994-12-01

    We present new 4-D Monte Carlo results characterizing the strength of the finite temperature phase transition for Higgs/W mass ratios 1.0 and 0.6, obtained on isotropic lattices mainly with N s = 16, N t = 2. We discuss the distribution of a gauge invariant block spin order parameter, estimating the Higgs condensate Φ c at T c . We use the Potvin/Rebbi method in order to find the interface tension α/T c 3 . We demonstrate how the multi-histogram method (giving free energy differences) can be used to avoid the limiting procedure δ K → 0. From pure-phase histograms at K c , extrapolated with the help of this method, we estimate the latent heat Δε/T c 4 . Actual time series at lower Higgs mass require blocking in order to determine the jump of the lattice observables. (orig.)

  13. Phase Transition in Protocols Minimizing Work Fluctuations

    Science.gov (United States)

    Solon, Alexandre P.; Horowitz, Jordan M.

    2018-05-01

    For two canonical examples of driven mesoscopic systems—a harmonically trapped Brownian particle and a quantum dot—we numerically determine the finite-time protocols that optimize the compromise between the standard deviation and the mean of the dissipated work. In the case of the oscillator, we observe a collection of protocols that smoothly trade off between average work and its fluctuations. However, for the quantum dot, we find that as we shift the weight of our optimization objective from average work to work standard deviation, there is an analog of a first-order phase transition in protocol space: two distinct protocols exchange global optimality with mixed protocols akin to phase coexistence. As a result, the two types of protocols possess qualitatively different properties and remain distinct even in the infinite duration limit: optimal-work-fluctuation protocols never coalesce with the minimal-work protocols, which therefore never become quasistatic.

  14. A semi-Dirac point and an electromagnetic topological transition in a dielectric photonic crystal

    KAUST Repository

    Wu, Ying

    2014-01-01

    Accidental degeneracy in a photonic crystal consisting of a square array of elliptical dielectric cylinders leads to both a semi-Dirac point at the center of the Brillouin zone and an electromagnetic topological transition (ETT). A perturbation method is deduced to affirm the peculiar linear-parabolic dispersion near the semi-Dirac point. An effective medium theory is developed to explain the simultaneous semi-Dirac point and ETT and to show that the photonic crystal is either a zero-refractive-index material or an epsilon-near-zero material at the semi-Dirac point. Drastic changes in the wave manipulation properties at the semi-Dirac point, resulting from ETT, are described.©2014 Optical Society of America.

  15. Raman spectra of MgB2 at high pressure and topological electronic transition

    International Nuclear Information System (INIS)

    Meletov, K.P.; Kulakov, M.P.; Kolesnikov, N.N.; Arvanitidis, J.; Kourouklis, G.A.

    2002-01-01

    Raman spectra of the MgB 2 ceramic samples were measured as a function of pressure up to 32 GPa at room temperature. The spectrum at normal conditions contains a very broad peak at ∼ 590 cm -1 related to the E 2g phonon mode. The frequency of this mode exhibits a strong linear dependence in the pressure region from 5 to 18 GPa, whereas beyond this region the slope of the pressure-induced frequency shift is reduced by about a factor of two. The pressure dependence of the phonon mode up to ∼ 5 GPa exhibits a change in the slope as well as a hysteresis effect in the frequency vs. pressure behavior. These singularities in the E 2g mode behavior under pressure support the suggestion that MgB 2 may undergo a pressure-induced topological electronic transition [ru

  16. Classification of quantum phases and topology of logical operators in an exactly solved model of quantum codes

    International Nuclear Information System (INIS)

    Yoshida, Beni

    2011-01-01

    Searches for possible new quantum phases and classifications of quantum phases have been central problems in physics. Yet, they are indeed challenging problems due to the computational difficulties in analyzing quantum many-body systems and the lack of a general framework for classifications. While frustration-free Hamiltonians, which appear as fixed point Hamiltonians of renormalization group transformations, may serve as representatives of quantum phases, it is still difficult to analyze and classify quantum phases of arbitrary frustration-free Hamiltonians exhaustively. Here, we address these problems by sharpening our considerations to a certain subclass of frustration-free Hamiltonians, called stabilizer Hamiltonians, which have been actively studied in quantum information science. We propose a model of frustration-free Hamiltonians which covers a large class of physically realistic stabilizer Hamiltonians, constrained to only three physical conditions; the locality of interaction terms, translation symmetries and scale symmetries, meaning that the number of ground states does not grow with the system size. We show that quantum phases arising in two-dimensional models can be classified exactly through certain quantum coding theoretical operators, called logical operators, by proving that two models with topologically distinct shapes of logical operators are always separated by quantum phase transitions.

  17. The infinite limit as an eliminable approximation for phase transitions

    Science.gov (United States)

    Ardourel, Vincent

    2018-05-01

    It is generally claimed that infinite idealizations are required for explaining phase transitions within statistical mechanics (e.g. Batterman 2011). Nevertheless, Menon and Callender (2013) have outlined theoretical approaches that describe phase transitions without using the infinite limit. This paper closely investigates one of these approaches, which consists of studying the complex zeros of the partition function (Borrmann et al., 2000). Based on this theory, I argue for the plausibility for eliminating the infinite limit for studying phase transitions. I offer a new account for phase transitions in finite systems, and I argue for the use of the infinite limit as an approximation for studying phase transitions in large systems.

  18. Observation of Kosterlitz-Thouless phase transition in the composite superconductor (NbTi)-Cu

    International Nuclear Information System (INIS)

    Fischer, E.; Khukhareva, I.S.

    1989-01-01

    Results are reported of an experimental investigation of the resistive behavior of a composite superconductor carrying a current perpendicular to the superconducting filaments. The sample resistance exhibits in this case, depending on the temperature and on the measurement current, a number of peculiarities, and in particular a two-step transition to the superconducting state. On the basis of an analysis of the laws governing these peculiarities, a model is developed for topological Kosterlitz-Thouless phase transitions in bulk systems. Topological defects of a new type, current-stimulated excitations, are considered. The deduced empirical relations scale with var-epsilon = I/I c . A correlation is established between the characteristic values for two- and three-dimensional systems

  19. Phase transitions and doping in semiconductor nanocrystals

    Science.gov (United States)

    Sahu, Ayaskanta

    impurities (or doping) allows further control over the electrical and optical properties of nanocrystals. However, while impurity doping in bulk semiconductors is now routine, doping of nanocrystals remains challenging. In particular, evidence for electronic doping, in which additional electrical carriers are introduced into the nanocrystals, has been very limited. Here, we adopt a new approach to electronic doping of nanocrystals. We utilize a partial cation exchange to introduce silver impurities into cadmium selenide (CdSe) and lead selenide (PbSe) nanocrystals. Results indicate that the silver-doped CdSe nanocrystals show a significant increase in fluorescence intensity, as compared to pure CdSe nanocrystals. We also observe a switching from n- to p-type doping in the silver-doped CdSe nanocrystals with increased silver amounts. Moreover, the silver-doping results in a change in the conductance of both PbSe and CdSe nanocrystals and the magnitude of this change depends on the amount of silver incorporated into the nanocrystals. In the bulk, silver chalcogenides (Ag2E, E=S, Se, and Te) possess a wide array of intriguing properties, including superionic conductivity. In addition, they undergo a reversible temperature-dependent phase transition which induces significant changes in their electronic and ionic properties. While most of these properties have been examined extensively in bulk, very few studies have been conducted at the nanoscale. We have recently developed a versatile synthesis that yields colloidal silver chalcogenide nanocrystals. Here, we study the size dependence of their phase-transition temperatures. We utilize differential scanning calorimetry and in-situ X-ray diffraction analyses to observe the phase transition in nanocrystal assemblies. We observe a significant deviation from the bulk alpha (low-temperature) to beta (high-temperature) phase-transition temperature when we reduce their size to a few nanometers. Hence, these nanocrystals provide great

  20. Gravitational waves from the electroweak phase transition

    International Nuclear Information System (INIS)

    Leitao, Leonardo; Mégevand, Ariel; Sánchez, Alejandro D.

    2012-01-01

    We study the generation of gravitational waves in the electroweak phase transition. We consider a few extensions of the Standard Model, namely, the addition of scalar singlets, the minimal supersymmetric extension, and the addition of TeV fermions. For each model we consider the complete dynamics of the phase transition. In particular, we estimate the friction force acting on bubble walls, and we take into account the fact that they can propagate either as detonations or as deflagrations preceded by shock fronts, or they can run away. We compute the peak frequency and peak intensity of the gravitational radiation generated by bubble collisions and turbulence. We discuss the detectability by proposed spaceborne detectors. For the models we considered, runaway walls require significant fine tuning of the parameters, and the gravitational wave signal from bubble collisions is generally much weaker than that from turbulence. Although the predicted signal is in most cases rather low for the sensitivity of LISA, models with strongly coupled extra scalars reach this sensitivity for frequencies f ∼ 10 −4 Hz, and give intensities as high as h 2 Ω GW ∼ 10 −8

  1. Heat capacity characterization at phase transition temperature of Agl superionic

    International Nuclear Information System (INIS)

    Widowati, Arie

    2000-01-01

    The phase transition of Agl superionic conductor was investigated by calorometric. A single phase transition was found at (153±5) o C which corresponds to the α - β transition. Calorimetric measurement showed an anomalously high heat capacity with a large discontinues change in the Arrhenius plot, was found above the transition temperature of β - α phase. The maximum heat capacity was found to be ±19.7 cal/gmol. Key words : superionic conductor, thermal capacity

  2. Quark–hadron phase transition in massive gravity

    Energy Technology Data Exchange (ETDEWEB)

    Atazadeh, K., E-mail: atazadeh@azaruniv.ac.ir

    2016-11-15

    We study the quark–hadron phase transition in the framework of massive gravity. We show that the modification of the FRW cosmological equations leads to the quark–hadron phase transition in the early massive Universe. Using numerical analysis, we consider that a phase transition based on the chiral symmetry breaking after the electroweak transition, occurred at approximately 10 μs after the Big Bang to convert a plasma of free quarks and gluons into hadrons.

  3. Global Anomaly Detection in Two-Dimensional Symmetry-Protected Topological Phases

    Science.gov (United States)

    Bultinck, Nick; Vanhove, Robijn; Haegeman, Jutho; Verstraete, Frank

    2018-04-01

    Edge theories of symmetry-protected topological phases are well known to possess global symmetry anomalies. In this Letter we focus on two-dimensional bosonic phases protected by an on-site symmetry and analyze the corresponding edge anomalies in more detail. Physical interpretations of the anomaly in terms of an obstruction to orbifolding and constructing symmetry-preserving boundaries are connected to the cohomology classification of symmetry-protected phases in two dimensions. Using the tensor network and matrix product state formalism we numerically illustrate our arguments and discuss computational detection schemes to identify symmetry-protected order in a ground state wave function.

  4. Sensing of phase transition in medium with terahertz pulsed spectroscopy

    International Nuclear Information System (INIS)

    Zaytsev, Kirill I; Fokina, Irina N; Fedorov, Aleksey K; Yurchenko, Stanislav O

    2014-01-01

    Phase state identification and phase transition registration in condensed matter are significant applications of terahertz spectroscopy. A set of fundamental and applied problems are associated with the phase state problem. Our report is devoted to the experimental analysis of the spectral characteristics of water and water solution during the phase transition from the solid state to the liquid state via the method of terahertz pulsed spectroscopy. In this work transformation of the sample spectral characteristics during the phase transition were observed and discussed. Possible application of terahertz pulsed spectroscopy as an effective instrument for phase transition sensing was considered

  5. High-pressure phase transitions of strontianite

    Science.gov (United States)

    Speziale, S.; Biedermann, N.; Reichmann, H. J.; Koch-Mueller, M.; Heide, G.

    2015-12-01

    Strontianite (SrCO3) is isostructural to aragonite, a major high-pressure polymorph of calcite. Thus it is a material of interest to investigate the high-pressure phase behavior of aragonite-group minerals. SrCO3 is a common component of natural carbonates and knowing its physical properties at high pressures is necessary to properly model the thermodynamic properties of complex carbonates, which are major crustal minerals but are also present in the deep Earth [Brenker et al., 2007] and control carbon cycling in the Earth's mantle. The few available high-pressure studies of SrCO3 disagree regarding both pressure stability and structure of the post-aragonite phase [Lin & Liu, 1997; Ono et al., 2005; Wang et al. 2015]. To clarify such controversies we investigated the high-pressure behavior of synthetic SrCO3 by Raman spectroscopy. Using a diamond anvil cell we compressed single-crystals or powder of strontianite (synthesized at 4 GPa and 1273 K for 24h in a multi anvil apparatus), and measured Raman scattering up to 78 GPa. SrCO3 presents a complex high-pressure behavior. We observe mode softening above 20 GPa and a phase transition at 25 - 26.9 GPa, which we interpret due to the CO3 groups rotation, in agreement with Lin & Liu [1997]. The lattice modes in the high-pressure phase show dramatic changes which may indicate a change from 9-fold coordinated Sr to a 12-fold-coordination [Ono, 2007]. Our results confirm that the high-pressure phase of strontianite is compatible with Pmmn symmetry. References Brenker, F.E. et al. (2007) Earth and Planet. Sci. Lett., 260, 1; Lin, C.-C. & Liu, L.-G. (1997) J. Phys. Chem. Solids, 58, 977; Ono, S. et al. (2005) Phys. Chem. Minerals, 32, 8; Ono, S. (2007) Phys. Chem. Minerals, 34, 215; Wang, M. et al. (2015) Phys Chem Minerals 42, 517.

  6. Wilson loop's phase transition probed by non-local observable

    Directory of Open Access Journals (Sweden)

    Hui-Ling Li

    2018-04-01

    Full Text Available In order to give further insights into the holographic Van der Waals phase transition, it would be of great interest to investigate the behavior of Wilson loop across the holographic phase transition for a higher dimensional hairy black hole. We offer a possibility to proceed with a numerical calculation in order to discussion on the hairy black hole's phase transition, and show that Wilson loop can serve as a probe to detect a phase structure of the black hole. Furthermore, for a first order phase transition, we calculate numerically the Maxwell's equal area construction; and for a second order phase transition, we also study the critical exponent in order to characterize the Wilson loop's phase transition.

  7. Modification of electronic structure, magnetic structure, and topological phase of bismuthene by point defects

    Science.gov (United States)

    Kadioglu, Yelda; Kilic, Sevket Berkay; Demirci, Salih; Aktürk, O. Üzengi; Aktürk, Ethem; Ciraci, Salim

    2017-12-01

    This paper reveals how the electronic structure, magnetic structure, and topological phase of two-dimensional (2D), single-layer structures of bismuth are modified by point defects. We first showed that a free-standing, single-layer, hexagonal structure of bismuth, named h-bismuthene, exhibits nontrivial band topology. We then investigated interactions between single foreign adatoms and bismuthene structures, which comprise stability, bonding, electronic structure, and magnetic structures. Localized states in diverse locations of the band gap and resonant states in band continua of bismuthene are induced upon the adsorption of different adatoms, which modify electronic and magnetic properties. Specific adatoms result in reconstruction around the adsorption site. Single vacancies and divacancies can form readily in bismuthene structures and remain stable at high temperatures. Through rebondings, Stone-Whales-type defects are constructed by divacancies, which transform into a large hole at high temperature. Like adsorbed adatoms, vacancies induce also localized gap states, which can be eliminated through rebondings in divacancies. We also showed that not only the optical and magnetic properties, but also the topological features of pristine h-bismuthene can be modified by point defects. The modification of the topological features depends on the energies of localized states and also on the strength of coupling between point defects.

  8. Thermal equilibrium during the electroweak phase transition

    International Nuclear Information System (INIS)

    Tetradis, N.

    1991-12-01

    The effective potential for the standard model develops a barrier, at temperatures around the electroweak scale, which separates the minimum at zero field and a deeper non-zero minimum. This could create out of equilibrium conditions by inducing the localization of the Higgs field in a metastable state around zero. In this picture vacuum decay would occur through bubble nucleation. I show that there is an upper bound on the Higgs mass for the above scenario to be realized. The barrier must be high enough to prevent thermal fluctuations of the Higgs expectation value from establishing thermal equilibrium between the two minima. The upper bound is estimated to be lower than the experimental lower limit. This is also imposes constraints on extensions of the standard model constructed in order to generate a strongly first order phase transition. (orig.)

  9. Deep Neural Network Detects Quantum Phase Transition

    Science.gov (United States)

    Arai, Shunta; Ohzeki, Masayuki; Tanaka, Kazuyuki

    2018-03-01

    We detect the quantum phase transition of a quantum many-body system by mapping the observed results of the quantum state onto a neural network. In the present study, we utilized the simplest case of a quantum many-body system, namely a one-dimensional chain of Ising spins with the transverse Ising model. We prepared several spin configurations, which were obtained using repeated observations of the model for a particular strength of the transverse field, as input data for the neural network. Although the proposed method can be employed using experimental observations of quantum many-body systems, we tested our technique with spin configurations generated by a quantum Monte Carlo simulation without initial relaxation. The neural network successfully identified the strength of transverse field only from the spin configurations, leading to consistent estimations of the critical point of our model Γc = J.

  10. Characterizing quantum phase transition by teleportation

    Science.gov (United States)

    Wu, Meng-He; Ling, Yi; Shu, Fu-Wen; Gan, Wen-Cong

    2018-04-01

    In this paper we provide a novel way to explore the relation between quantum teleportation and quantum phase transition. We construct a quantum channel with a mixed state which is made from one dimensional quantum Ising chain with infinite length, and then consider the teleportation with the use of entangled Werner states as input qubits. The fidelity as a figure of merit to measure how well the quantum state is transferred is studied numerically. Remarkably we find the first-order derivative of the fidelity with respect to the parameter in quantum Ising chain exhibits a logarithmic divergence at the quantum critical point. The implications of this phenomenon and possible applications are also briefly discussed.

  11. Kinetics of the chiral phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Hees, Hendrik van [Johann-Wolfgang-Goethe-Universitaet Frankfurt, Institut fuer Theoretische Physik, Frankfurt (Germany); Frankfurt Institute for Advanced Studies (FIAS), Frankfurt (Germany); Wesp, Christian; Meistrenko, Alex; Greiner, Carsten [Johann-Wolfgang-Goethe-Universitaet Frankfurt, Institut fuer Theoretische Physik, Frankfurt (Germany)

    2016-07-01

    We simulate the kinetics of the chiral phase transition in hot and dense strongly interacting matter within a novel kinetic-theory approach. Employing an effective linear σ model for quarks, σ mesons, and pions we treat the quarks within a test-particle ansatz for solving the Boltzmann transport equation and the mesons in terms of classical fields. The decay-recombination processes like σ <-> anti q+q are treated using a kind of wave-particle dualism using the exact conservation of energy and momentum. After demonstrating the correct thermodynamic limit for particles and fields in a ''box calculation'' we apply the simulation to the dynamics of an expanding fireball similar to the medium created in ultrarelativistic heavy-ion collisions.

  12. Phase transitions in the Hubbard Hamiltonian

    International Nuclear Information System (INIS)

    Chaves, C.M.; Lederer, P.; Gomes, A.A.

    1977-05-01

    Phase transition in the isotropic non-degenerate Hubbard Hamiltonian within the renormalization group techniques is studied, using the epsilon = 4 - d expansion to first order in epsilon. The functional obtained from the Hubbard Hamiltonian displays full rotation symmetry and describes two coupled fields: a vector spin field, with n components and a non-soft scalar charge field. This coupling is pure imaginary, which has interesting consequences on the critical properties of this coupled field system. The effect of simple constraints imposed on the charge field is considered. The relevance of the coupling between the fields in producing Fisher renormalization of the critical exponents is discussed. The possible singularities introduced in the charge-charge correlation function by the coupling are also discussed

  13. Complex quantum network geometries: Evolution and phase transitions

    Science.gov (United States)

    Bianconi, Ginestra; Rahmede, Christoph; Wu, Zhihao

    2015-08-01

    Networks are topological and geometric structures used to describe systems as different as the Internet, the brain, or the quantum structure of space-time. Here we define complex quantum network geometries, describing the underlying structure of growing simplicial 2-complexes, i.e., simplicial complexes formed by triangles. These networks are geometric networks with energies of the links that grow according to a nonequilibrium dynamics. The evolution in time of the geometric networks is a classical evolution describing a given path of a path integral defining the evolution of quantum network states. The quantum network states are characterized by quantum occupation numbers that can be mapped, respectively, to the nodes, links, and triangles incident to each link of the network. We call the geometric networks describing the evolution of quantum network states the quantum geometric networks. The quantum geometric networks have many properties common to complex networks, including small-world property, high clustering coefficient, high modularity, and scale-free degree distribution. Moreover, they can be distinguished between the Fermi-Dirac network and the Bose-Einstein network obeying, respectively, the Fermi-Dirac and Bose-Einstein statistics. We show that these networks can undergo structural phase transitions where the geometrical properties of the networks change drastically. Finally, we comment on the relation between quantum complex network geometries, spin networks, and triangulations.

  14. Phase transitions in a vortex gas

    International Nuclear Information System (INIS)

    Shah, P.A.

    1995-01-01

    It has been shown recently that the motion of solitons at couplings around a critical coupling can be reduced to the dynamics of particles (the zeros of the Higgs field) on a curved manifold with potential. The curvature gives a velocity-dependent force, and the magnitude of the potential is proportional to the distance from a critical coupling. In this paper we apply this approximation to determining the equation of state of a gas of vortices in the abelian Higgs model. We derive a virial expansion using certain known integrals of the metric, and the second virial coefficient is calculated, determining the behaviour of the gas at low densities. A formula for determining higher-order coefficients is given. At low densities and temperatures T >>λ the equation of state is of the Van der Waals form (P+b N 2 /A 2 )(A-aN) = NT with a=4π and b=-4.89πλ where λ is a measure of the distance from critical coupling. It is found that there is no phase transition in a low-density type-II gas, but there is a transition in the type-I case between a condensed and gaseous state. We conclude with a discussion of the relation of our results to vortex behaviour in superconductors. ((orig.))

  15. Entanglement in a simple quantum phase transition

    International Nuclear Information System (INIS)

    Osborne, Tobias J.; Nielsen, Michael A.

    2002-01-01

    What entanglement is present in naturally occurring physical systems at thermal equilibrium? Most such systems are intractable and it is desirable to study simple but realistic systems that can be solved. An example of such a system is the one-dimensional infinite-lattice anisotropic XY model. This model is exactly solvable using the Jordan-Wigner transform, and it is possible to calculate the two-site reduced density matrix for all pairs of sites. Using the two-site density matrix, the entanglement of formation between any two sites is calculated for all parameter values and temperatures. We also study the entanglement in the transverse Ising model, a special case of the XY model, which exhibits a quantum phase transition. It is found that the next-nearest-neighbor entanglement (though not the nearest-neighbor entanglement) is a maximum at the critical point. Furthermore, we show that the critical point in the transverse Ising model corresponds to a transition in the behavior of the entanglement between a single site and the remainder of the lattice

  16. Formamidinium iodide: crystal structure and phase transitions

    Directory of Open Access Journals (Sweden)

    Andrey A. Petrov

    2017-04-01

    Full Text Available At a temperature of 100 K, CH5N2+·I− (I, crystallizes in the monoclinic space group P21/c. The formamidinium cation adopts a planar symmetrical structure [the r.m.s. deviation is 0.002 Å, and the C—N bond lengths are 1.301 (7 and 1.309 (8 Å]. The iodide anion does not lie within the cation plane, but deviates from it by 0.643 (10 Å. The cation and anion of I form a tight ionic pair by a strong N—H...I hydrogen bond. In the crystal of I, the tight ionic pairs form hydrogen-bonded zigzag-like chains propagating toward [20-1] via strong N—H...I hydrogen bonds. The hydrogen-bonded chains are further packed in stacks along [100]. The thermal behaviour of I was studied by different physicochemical methods (thermogravimetry, differential scanning calorimetry and powder diffraction. Differential scanning calorimetry revealed three narrow endothermic peaks at 346, 387 and 525 K, and one broad endothermic peak at ∼605 K. The first and second peaks are related to solid–solid phase transitions, while the third and fourth peaks are attributed to the melting and decomposition of I. The enthalpies of the phase transitions at 346 and 387 K are estimated as 2.60 and 2.75 kJ mol−1, respectively. The X-ray powder diffraction data collected at different temperatures indicate the existence of I as the monoclinic (100–346 K, orthorhombic (346–387 K and cubic (387–525 K polymorphic modifications.

  17. Pressure induced phase transition behaviour in -electron based ...

    Indian Academy of Sciences (India)

    The present review on the high pressure phase transition behaviour of ... For instance, closing of energy gaps lead to metal–insulator transitions [4], shift in energy ... systematic study of the pressure induced structural sequences has become ...

  18. Mixed-order phase transition in a colloidal crystal.

    Science.gov (United States)

    Alert, Ricard; Tierno, Pietro; Casademunt, Jaume

    2017-12-05

    Mixed-order phase transitions display a discontinuity in the order parameter like first-order transitions yet feature critical behavior like second-order transitions. Such transitions have been predicted for a broad range of equilibrium and nonequilibrium systems, but their experimental observation has remained elusive. Here, we analytically predict and experimentally realize a mixed-order equilibrium phase transition. Specifically, a discontinuous solid-solid transition in a 2D crystal of paramagnetic colloidal particles is induced by a magnetic field [Formula: see text] At the transition field [Formula: see text], the energy landscape of the system becomes completely flat, which causes diverging fluctuations and correlation length [Formula: see text] Mean-field critical exponents are predicted, since the upper critical dimension of the transition is [Formula: see text] Our colloidal system provides an experimental test bed to probe the unconventional properties of mixed-order phase transitions.

  19. Mixed-order phase transition in a colloidal crystal

    Science.gov (United States)

    Alert, Ricard; Tierno, Pietro; Casademunt, Jaume

    2017-12-01

    Mixed-order phase transitions display a discontinuity in the order parameter like first-order transitions yet feature critical behavior like second-order transitions. Such transitions have been predicted for a broad range of equilibrium and nonequilibrium systems, but their experimental observation has remained elusive. Here, we analytically predict and experimentally realize a mixed-order equilibrium phase transition. Specifically, a discontinuous solid-solid transition in a 2D crystal of paramagnetic colloidal particles is induced by a magnetic field H. At the transition field Hs, the energy landscape of the system becomes completely flat, which causes diverging fluctuations and correlation length ξ∝|H2-Hs2|-1/2. Mean-field critical exponents are predicted, since the upper critical dimension of the transition is du=2. Our colloidal system provides an experimental test bed to probe the unconventional properties of mixed-order phase transitions.

  20. Topological insulators and topological superconductors

    CERN Document Server

    Bernevig, Andrei B

    2013-01-01

    This graduate-level textbook is the first pedagogical synthesis of the field of topological insulators and superconductors, one of the most exciting areas of research in condensed matter physics. Presenting the latest developments, while providing all the calculations necessary for a self-contained and complete description of the discipline, it is ideal for graduate students and researchers preparing to work in this area, and it will be an essential reference both within and outside the classroom. The book begins with simple concepts such as Berry phases, Dirac fermions, Hall conductance and its link to topology, and the Hofstadter problem of lattice electrons in a magnetic field. It moves on to explain topological phases of matter such as Chern insulators, two- and three-dimensional topological insulators, and Majorana p-wave wires. Additionally, the book covers zero modes on vortices in topological superconductors, time-reversal topological superconductors, and topological responses/field theory and topolo...

  1. Floquet Symmetry-Protected Topological Phases in Cold-Atom Systems

    Science.gov (United States)

    Potirniche, I.-D.; Potter, A. C.; Schleier-Smith, M.; Vishwanath, A.; Yao, N. Y.

    2017-09-01

    We propose and analyze two distinct routes toward realizing interacting symmetry-protected topological (SPT) phases via periodic driving. First, we demonstrate that a driven transverse-field Ising model can be used to engineer complex interactions which enable the emulation of an equilibrium SPT phase. This phase remains stable only within a parametric time scale controlled by the driving frequency, beyond which its topological features break down. To overcome this issue, we consider an alternate route based upon realizing an intrinsically Floquet SPT phase that does not have any equilibrium analog. In both cases, we show that disorder, leading to many-body localization, prevents runaway heating and enables the observation of coherent quantum dynamics at high energy densities. Furthermore, we clarify the distinction between the equilibrium and Floquet SPT phases by identifying a unique micromotion-based entanglement spectrum signature of the latter. Finally, we propose a unifying implementation in a one-dimensional chain of Rydberg-dressed atoms and show that protected edge modes are observable on realistic experimental time scales.

  2. Floquet Symmetry-Protected Topological Phases in Cold-Atom Systems.

    Science.gov (United States)

    Potirniche, I-D; Potter, A C; Schleier-Smith, M; Vishwanath, A; Yao, N Y

    2017-09-22

    We propose and analyze two distinct routes toward realizing interacting symmetry-protected topological (SPT) phases via periodic driving. First, we demonstrate that a driven transverse-field Ising model can be used to engineer complex interactions which enable the emulation of an equilibrium SPT phase. This phase remains stable only within a parametric time scale controlled by the driving frequency, beyond which its topological features break down. To overcome this issue, we consider an alternate route based upon realizing an intrinsically Floquet SPT phase that does not have any equilibrium analog. In both cases, we show that disorder, leading to many-body localization, prevents runaway heating and enables the observation of coherent quantum dynamics at high energy densities. Furthermore, we clarify the distinction between the equilibrium and Floquet SPT phases by identifying a unique micromotion-based entanglement spectrum signature of the latter. Finally, we propose a unifying implementation in a one-dimensional chain of Rydberg-dressed atoms and show that protected edge modes are observable on realistic experimental time scales.

  3. An enhanced electronic topology aimed at improving the phase sensitivity of GMI sensors

    International Nuclear Information System (INIS)

    Costa Silva, E; Gusmão, L A P; Hall Barbosa, C R; Costa Monteiro, E

    2014-01-01

    The giant magnetoimpedance effect (GMI) is used in the most recent technologies developed for the detection of magnetic fields, showing potential to be applied in the measurement of ultra-weak fields. GMI samples exhibit a huge dependency of their electrical impedance on the magnetic field, which makes them excellent magnetic sensors. In spite of GMI magnetometers being mostly based on magnitude impedance characteristics, it was previously verified that sensitivity could be significantly increased by reading the impedance phase. Pursuing this idea, a phase-based GMI magnetometer has been already developed as well as an electronic configuration capable of improving the phase sensitivity of GMI samples. However, when using this topology, it was noted that the sensitivity improvement comes at the cost of reduced voltage levels in the reading terminal, degrading the signal-to-noise ratio. Another drawback of the electronic configuration was that it was not capable of enforcing a linear behavior of the impedance phase in the function of the magnetic field in a given operation region. Aiming at overcoming those issues and then optimizing the behavior of the circuit developed to improve the phase sensitivity, this paper mathematically describes a completely new methodology, presents an enhanced newly developed electronic topology and exemplifies its application. (paper)

  4. Gravitational waves from global second order phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Jr, John T. Giblin [Department of Physics, Kenyon College, 201 North College Rd, Gambier, OH 43022 (United States); Price, Larry R.; Siemens, Xavier; Vlcek, Brian, E-mail: giblinj@kenyon.edu, E-mail: larryp@caltech.edu, E-mail: siemens@gravity.phys.uwm.edu, E-mail: bvlcek@uwm.edu [Center for Gravitation and Cosmology, Department of Physics, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, WI 53201 (United States)

    2012-11-01

    Global second-order phase transitions are expected to produce scale-invariant gravitational wave spectra. In this manuscript we explore the dynamics of a symmetry-breaking phase transition using lattice simulations. We explicitly calculate the stochastic gravitational wave background produced during the transition and subsequent self-ordering phase. We comment on this signal as it compares to the scale-invariant spectrum produced during inflation.

  5. Isostructural magnetic phase transition and magnetocaloric effect in Ising antiferromagnet

    International Nuclear Information System (INIS)

    Lavanov, G.Yu; Kalita, V.M.; Loktev, V.M.

    2014-01-01

    It is shown that the external magnetic field induced isostructural I st order magnetic phase transition between antiferromagnetic phases with different antiferromagnetic vector values is associated with entropy. It is found, that depending on temperature the entropy jump and the related heat release change their sign at this transition point. In the low-temperature region of metamagnetic I st order phase tensition the entropy jump is positive, and in the triple point region this jump for isostructural magnetic transition is negative

  6. Compact ASD Topologies for Single-Phase Integrated Motor Drives with Sinusoidal Input Current

    DEFF Research Database (Denmark)

    Klumpner, Christian; Blaabjerg, Frede; Thoegersen, Paul

    2005-01-01

    of the induction motor as a boost inductor for a PFC (Power Factor Correction) stage controlled by the inverter zero-sequence voltage component. By determining how much energy is possible to store in a corner inductor, it is proven that integrating the magnetics into the stator yoke is a feasible solution......, investigating the physical removal of power inductors from the converter enclosure in conjunction with reducing the number of semiconductor active devices. There are two ways to do that: to integrate the inductors in the unused area of the stator yoke of the motor or to use the leakage inductance....... Topologies of single-phase converters that take advantage of the motor leakage inductance are analyzed. The installed power in silicon active devices of these topologies is compared with a standard situation, showing that this will involve higher cost. As the iron core of the inductors is not suitable...

  7. EXAFS Phase Retrieval Solution Tracking for Complex Multi-Component System: Synthesized Topological Inverse Computation

    International Nuclear Information System (INIS)

    Lee, Jay Min; Yang, Dong-Seok; Bunker, Grant B

    2013-01-01

    Using the FEFF kernel A(k,r), we describe the inverse computation from χ(k)-data to g(r)-solution in terms of a singularity regularization method based on complete Bayesian statistics process. In this work, we topologically decompose the system-matched invariant projection operators into two distinct types, (A + AA + A) and (AA + AA + ), and achieved Synthesized Topological Inversion Computation (STIC), by employing a 12-operator-closed-loop emulator of the symplectic transformation. This leads to a numerically self-consistent solution as the optimal near-singular regularization parameters are sought, dramatically suppressing instability problems connected with finite precision arithmetic in ill-posed systems. By statistically correlating a pair of measured data, it was feasible to compute an optimal EXAFS phase retrieval solution expressed in terms of the complex-valued χ(k), and this approach was successfully used to determine the optimal g(r) for a complex multi-component system.

  8. Online Open Circuit Fault Diagnosis for Rail Transit Traction Converter Based on Object-Oriented Colored Petri Net Topology Reasoning

    Directory of Open Access Journals (Sweden)

    Lei Wang

    2016-01-01

    Full Text Available For online open circuit fault diagnosis of the traction converter in rail transit vehicles, conventional approaches depend heavily on component parameters and circuit layouts. For better universality and less parameter sensitivity during the diagnosis, this paper proposes a novel topology analysis approach to diagnose switching device open circuit failures. During the diagnosis, the topology is analyzed with fault reasoning mechanism, which is based on object-oriented Petri net (OOCPN. The OOCPN model takes in digitalized current inputs as fault signatures, and dynamical transitions between discrete switching states of a circuit with broken device are symbolized with the dynamical transitions of colored tokens in OOCPN. Such transitions simulate natural reasoning process of an expert’s brain during diagnosis. The dependence on component parameters and on circuit layouts is finally eliminated by such circuit topology reasoning process. In the last part, the proposed online reasoning and diagnosis process is exemplified with the case of a certain switching device failure in the power circuit of traction converter.

  9. Topology optimization of piezo modal transducers with null-polarity phases

    DEFF Research Database (Denmark)

    Donoso, A.; Sigmund, O.

    2016-01-01

    Piezo modal transducers in 2d can be designed theoretically by tailoring polarity of the surface electrodes. However, it is also necessary to include null-polarity phases of known width separating areas of opposite polarity in the manufacturing process in order to avoid short-circuiting. Otherwise...... the performance of such devices could be spoiled. In this work, we propose an appropriate topology optimization interpolation function for the electrode profile such that the effect of this new phase (hereafter gap-phase) is included in the formulation of the design problem. The approach is density-based, where...... the interface is controlled by including the gradient norm in the electrode profile interpolation. Through a detailed case study in 1d, conclusions on how to control the width of this gap-phase are extracted, and subsequently extended to the 2d case....

  10. Conditions and Linear Stability Analysis at the Transition to Synchronization of Three Coupled Phase Oscillators in a Ring

    Science.gov (United States)

    El-Nashar, Hassan F.

    2017-06-01

    We consider a system of three nonidentical coupled phase oscillators in a ring topology. We explore the conditions that must be satisfied in order to obtain the phases at the transition to a synchrony state. These conditions lead to the correct mathematical expressions of phases that aid to find a simple analytic formula for critical coupling when the oscillators transit to a synchronization state having a common frequency value. The finding of a simple expression for the critical coupling allows us to perform a linear stability analysis at the transition to the synchronization stage. The obtained analytic forms of the eigenvalues show that the three coupled phase oscillators with periodic boundary conditions transit to a synchrony state when a saddle-node bifurcation occurs.

  11. Pressure induced phase transitions in ceramic compounds containing tetragonal zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Sparks, R.G.; Pfeiffer, G.; Paesler, M.A.

    1988-12-01

    Stabilized tetragonal zirconia compounds exhibit a transformation toughening process in which stress applied to the material induces a crystallographic phase transition. The phase transition is accompanied by a volume expansion in the stressed region thereby dissipating stress and increasing the fracture strength of the material. The hydrostatic component of the stress required to induce the phase transition can be investigated by the use of a high pressure technique in combination with Micro-Raman spectroscopy. The intensity of Raman lines characteristic for the crystallographic phases can be used to calculate the amount of material that has undergone the transition as a function of pressure. It was found that pressures on the order of 2-5 kBar were sufficient to produce an almost complete transition from the original tetragonal to the less dense monoclinic phase; while a further increase in pressure caused a gradual reversal of the transition back to the original tetragonal structure.

  12. Quantum phase transitions of strongly correlated electron systems

    International Nuclear Information System (INIS)

    Imada, Masatoshi

    1998-01-01

    Interacting electrons in solids undergo various quantum phase transitions driven by quantum fluctuations. The quantum transitions take place at zero temperature by changing a parameter to control quantum fluctuations rather than thermal fluctuations. In contrast to classical phase transitions driven by thermal fluctuations, the quantum transitions have many different features where quantum dynamics introduces a source of intrinsic fluctuations tightly connected with spatial correlations and they have been a subject of recent intensive studies as we see below. Interacting electron systems cannot be fully understood without deep analyses of the quantum phase transitions themselves, because they are widely seen and play essential roles in many phenomena. Typical and important examples of the quantum phase transitions include metal-insulator transitions, (2, 3, 4, 5, 6, 7, 8, 9) metal-superconductor transitions, superconductor-insulator transitions, magnetic transitions to antiferromagnetic or ferromagnetic phases in metals as well as in Mott insulators, and charge ordering transitions. Here, we focus on three different types of transitions

  13. Coherent structures and flow topology of transitional separated-reattached flow over two and three dimensional geometrical shapes

    Science.gov (United States)

    Diabil, Hayder Azeez; Li, Xin Kai; Abdalla, Ibrahim Elrayah

    2017-09-01

    Large-scale organized motions (commonly referred to coherent structures) and flow topology of a transitional separated-reattached flow have been visualised and investigated using flow visualisation techniques. Two geometrical shapes including two-dimensional flat plate with rectangular leading edge and three-dimensional square cylinder are chosen to shed a light on the flow topology and present coherent structures of the flow over these shapes. For both geometries and in the early stage of the transition, two-dimensional Kelvin-Helmholtz rolls are formed downstream of the leading edge. They are observed to be twisting around the square cylinder while they stay flat in the case of the two-dimensional flat plate. For both geometrical shapes, the two-dimensional Kelvin-Helmholtz rolls move downstream of the leading edge and they are subjected to distortion to form three-dimensional hairpin structures. The flow topology in the flat plate is different from that in the square cylinder. For the flat plate, there is a merging process by a pairing of the Kelvin-Helmholtz rolls to form a large structure that breaks down directly into many hairpin structures. For the squire cylinder case, the Kelvin-Helmholtz roll evolves topologically to form a hairpin structure. In the squire cylinder case, the reattachment length is much shorter and a forming of the three-dimensional structures is closer to the leading edge than that in the flat plate case.

  14. Van der Waals phase transition in the framework of holography

    International Nuclear Information System (INIS)

    Zeng, Xiao-Xiong; Li, Li-Fang

    2017-01-01

    Phase structure of the quintessence Reissner–Nordström–AdS black hole is probed by the nonlocal observables such as holographic entanglement entropy and two point correlation function. Our result shows that, as the case of the thermal entropy, both the observables exhibit the Van der Waals-like phase transition. To reinforce this conclusion, we further check the equal area law for the first order phase transition and critical exponent of the heat capacity for the second order phase transition. We also discuss the effect of the state parameter on the phase structure of the nonlocal observables.

  15. Van der Waals phase transition in the framework of holography

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Xiao-Xiong, E-mail: xxzeng@itp.ac.cn [State School of Material Science and Engineering, Chongqing Jiaotong University, Chongqing 400074 (China); Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); Li, Li-Fang, E-mail: lilf@itp.ac.cn [State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190 (China)

    2017-01-10

    Phase structure of the quintessence Reissner–Nordström–AdS black hole is probed by the nonlocal observables such as holographic entanglement entropy and two point correlation function. Our result shows that, as the case of the thermal entropy, both the observables exhibit the Van der Waals-like phase transition. To reinforce this conclusion, we further check the equal area law for the first order phase transition and critical exponent of the heat capacity for the second order phase transition. We also discuss the effect of the state parameter on the phase structure of the nonlocal observables.

  16. Van der Waals phase transition in the framework of holography

    Directory of Open Access Journals (Sweden)

    Xiao-Xiong Zeng

    2017-01-01

    Full Text Available Phase structure of the quintessence Reissner–Nordström–AdS black hole is probed by the nonlocal observables such as holographic entanglement entropy and two point correlation function. Our result shows that, as the case of the thermal entropy, both the observables exhibit the Van der Waals-like phase transition. To reinforce this conclusion, we further check the equal area law for the first order phase transition and critical exponent of the heat capacity for the second order phase transition. We also discuss the effect of the state parameter on the phase structure of the nonlocal observables.

  17. Topological order, entanglement, and quantum memory at finite temperature

    International Nuclear Information System (INIS)

    Mazáč, Dalimil; Hamma, Alioscia

    2012-01-01

    We compute the topological entropy of the toric code models in arbitrary dimension at finite temperature. We find that the critical temperatures for the existence of full quantum (classical) topological entropy correspond to the confinement–deconfinement transitions in the corresponding Z 2 gauge theories. This implies that the thermal stability of topological entropy corresponds to the stability of quantum (classical) memory. The implications for the understanding of ergodicity breaking in topological phases are discussed. - Highlights: ► We calculate the topological entropy of a general toric code in any dimension. ► We find phase transitions in the topological entropy. ► The phase transitions coincide with the appearance of quantum/classical memory.

  18. ATLAS Transition Region Upgrade at Phase-1

    CERN Document Server

    Song, H; The ATLAS collaboration

    2014-01-01

    This report presents the L1 Muon trigger transition region (1.0<|ƞ|<1.3) upgrade of ATLAS Detector at phase-1. The high fake trigger rate in the Endcap region 1.0<|ƞ|<2.4 would become a serious problem for the ATLAS L1 Muon trigger system at high luminosity. For the region 1.3<|ƞ|<2.4, covered by the Small Wheel, ATLAS is enhancing the present muon trigger by adding local fake rejection and track angle measurement capabilities. To reduce the rate in the remaining ƞ interval it has been proposed a similar enhancement by adding at the edge of the inner barrel a structure of 3-layers RPCs of a new generation. These RPCs will be based on a thinner gas gap and electrodes with respect to the ATLAS standards, a new high performance Front End, integrating fast TDC capabilities, and a new low profile and light mechanical structure allowing the installation in the tiny space available.This design effectively suppresses fake triggers by making the coincidence with both end-cap and interaction point...

  19. Thermodynamics of pairing phase transition in nuclei

    International Nuclear Information System (INIS)

    Karim, Afaque; Ahmad, Shakeb

    2014-01-01

    The pairing gaps, pairing energy, heat capacity and entropy are calculated within BCS (Bardeen- Cooper-Schrieffer) based quasi particle approach, including thermal fluctuations on pairing field within pairing model for all nuclei (light, medium, heavy and super heavy nuclei). Quasi particles approach in BCS theory was introduced and reformulated to study various properties. For thermodynamic behavior of nuclei at finite temperatures, the anomalous averages of creation and annihilation operators are introduced. It is solved self consistently at finite temperatures to obtain BCS Hamiltonian. After doing unitary transformation, we obtained the Hamiltonian in the diagonal form. Thus, one gets temperature dependence gap parameter and pairing energy for nuclei. Moreover, the energy at finite temperatures is the sum of the condensation energy and the thermal energy of fermionic quasi particles. With the help of BCS Hamiltonian, specific heat, entropy and free energy are calculated for different nuclei. In this paper the gap parameter occupation number and pairing energy as a function of temperature which is important for all the light, medium, heavy and super heavy nuclei is calculated. Moreover, the various thermo dynamical quantities like specific heat, entropy and free energy is also obtained for different nuclei. Thus, the thermodynamics of pairing phase transition in nuclei is studied

  20. Unconventional phase transitions in a constrained single polymer chain

    International Nuclear Information System (INIS)

    Klushin, L I; Skvortsov, A M

    2011-01-01

    Phase transitions were recognized among the most fascinating phenomena in physics. Exactly solved models are especially important in the theory of phase transitions. A number of exactly solved models of phase transitions in a single polymer chain are discussed in this review. These are three models demonstrating the second order phase transitions with some unusual features: two-dimensional model of β-structure formation, the model of coil–globule transition and adsorption of a polymer chain grafted on the solid surface. We also discuss models with first order phase transitions in a single macromolecule which admit not only exact analytical solutions for the partition function with explicit finite-size effects but also the non-equilibrium free energy as a function of the order parameter (Landau function) in closed analytical form. One of them is a model of mechanical desorption of a macromolecule, which demonstrates an unusual first order phase transition with phase coexistence within a single chain. Features of first and second order transitions become mixed here due to phase coexistence which is not accompanied by additional interfacial free energy. Apart from that, there exist several single-chain models belonging to the same class (adsorption of a polymer chain tethered near the solid surface or liquid–liquid interface, and escape transition upon compressing a polymer between small pistons) that represent examples of a highly unconventional first order phase transition with several inter-related unusual features: no simultaneous phase coexistence, and hence no phase boundary, non-concave thermodynamic potential and non-equivalence of conjugate ensembles. An analysis of complex zeros of partition functions upon approaching the thermodynamic limit is presented for models with and without phase coexistence. (topical review)

  1. Quantum phase transitions driven by rhombic-type single-ion anisotropy in the S =1 Haldane chain

    Science.gov (United States)

    Tzeng, Yu-Chin; Onishi, Hiroaki; Okubo, Tsuyoshi; Kao, Ying-Jer

    2017-08-01

    The spin-1 Haldane chain is an example of the symmetry-protected-topological (SPT) phase in one dimension. Experimental realization of the spin chain materials usually involves both the uniaxial-type, D (Sz)2 , and the rhombic-type, E [(Sx)2-(Sy)2] , single-ion anisotropies. Here, we provide a precise ground-state phase diagram for a spin-1 Haldane chain with these single-ion anisotropies. Using quantum numbers, we find that the Z2 symmetry breaking phase can be characterized by double degeneracy in the entanglement spectrum. Topological quantum phase transitions take place on particular paths in the phase diagram, from the Haldane phase to the large-Ex, large-Ey, or large-D phases. The topological critical points are determined by the level spectroscopy method with a newly developed parity technique in the density matrix renormalization group [Phys. Rev. B 86, 024403 (2012), 10.1103/PhysRevB.86.024403], and the Haldane-large-D critical point is obtained with an unprecedented precision, (D/J ) c=0.9684713 (1 ) . Close to this critical point, a small rhombic single-ion anisotropy |E |/J ≪1 can destroy the Haldane phase and bring the system into a y -Néel phase. We propose that the compound [Ni (HF2) (3-Clpy ) 4] BF4 is a candidate system to search for the y -Néel phase.

  2. Fermionic phase transition induced by the effective impurity in holography

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Li-Qing [IFSA Collaborative Innovation Center, Department of Physics and Astronomy,Shanghai Jiao Tong University, Shanghai 200240 (China); School of Physics and Electronic Information, Shangrao Normal University,Shangrao 334000 (China); Kuang, Xiao-Mei [Department of Physics, National Technical University of Athens,GR-15780 Athens (Greece); Instituto de Física, Pontificia Universidad Católica de Valparaíso,Casilla 4059, Valparaíso (Chile); Wang, Bin [IFSA Collaborative Innovation Center, Department of Physics and Astronomy,Shanghai Jiao Tong University, Shanghai 200240 (China); Wu, Jian-Pin [Institute of Gravitation and Cosmology, Department of Physics,School of Mathematics and Physics, Bohai University, Jinzhou 121013 (China); State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics,Chinese Academy of Sciences, Beijing 100190 (China)

    2015-11-20

    We investigate the holographic fermionic phase transition induced by the effective impurity in holography, which is introduced by massless scalar fields in Einstein-Maxwell-massless scalar gravity. We obtain a phase diagram in (α,T) plane separating the Fermi liquid phase and the non-Fermi liquid phase.

  3. Moessbauer study of phase transitions under high hydrostatic pressures. 1

    International Nuclear Information System (INIS)

    Kapitanov, E.V.; Yakovlev, E.N.

    1979-01-01

    Experimental results of the hydrostatic pressure influence on Moessbauer spectrum parameters are obtained over the pressure range including the area of structural phase transition. A linear increase of the Moessbauer effect probability (recoilless fraction) is accompanied by a linear decrease of the electron density at tin nuclei within the pressure range foregoing the phase transition. The electric resistance and the recoilless fraction of the new phase of Mg 2 Sn are lower, but the electron density at tin nuclei is greater than the initial phase ones. Hydrostatic conditions allow to fix clearly the diphasic transition area and to determine the influence of the pressure on the Moessbauer line position and on the recoilless fraction of the high pressure phase. The phase transition heat Q = 415 cal mol -1 is calculated using recoilless fractions of the high and low pressure phases at 25 kbar. The present results are qualitatively and quantitatively different from the results, obtained at nonhydrostatic conditions. (author)

  4. A grain boundary phase transition in Si–Au

    International Nuclear Information System (INIS)

    Ma, Shuailei; Meshinchi Asl, Kaveh; Tansarawiput, Chookiat; Cantwell, Patrick R.; Qi, Minghao; Harmer, Martin P.; Luo, Jian

    2012-01-01

    A grain boundary transition from a bilayer to an intrinsic (nominally clean) boundary is observed in Si–Au. An atomically abrupt transition between the two complexions (grain boundary stabilized phases) implies the occurrence of a first-order interfacial phase transition associated with a discontinuity in the interfacial excess. This observation supports a grain-boundary complexion theory with broad applications. This transition is atypical in that the monolayer complexion is absent. A model is proposed to explain the bilayer stabilization and the origin of this complexion transition.

  5. Entraining the topology and the dynamics of a network of phase oscillators

    Science.gov (United States)

    Sendiña-Nadal, I.; Leyva, I.; Buldú, J. M.; Almendral, J. A.; Boccaletti, S.

    2009-04-01

    We show that the topology and dynamics of a network of unsynchronized Kuramoto oscillators can be simultaneously controlled by means of a forcing mechanism which yields a phase locking of the oscillators to that of an external pacemaker in connection with the reshaping of the network’s degree distribution. The entrainment mechanism is based on the addition, at regular time intervals, of unidirectional links from oscillators that follow the dynamics of a pacemaker to oscillators in the pristine graph whose phases hold a prescribed phase relationship. Such a dynamically based rule in the attachment process leads to the emergence of a power-law shape in the final degree distribution of the graph whenever the network is entrained to the dynamics of the pacemaker. We show that the arousal of a scale-free distribution in connection with the success of the entrainment process is a robust feature, characterizing different networks’ initial configurations and parameters.

  6. Topological phases of silicene and germanene in an external magnetic field: Quantitative results

    KAUST Repository

    Singh, Nirpendra; Schwingenschlö gl, Udo

    2014-01-01

    We investigate the topological phases of silicene and germanene that arise due to the strong spin-orbit interaction in an external perpendicular magnetic field. Below and above a critical field of 10 T, respectively, we demonstrate for silicene under 3% tensile strain quantum spin Hall and quantum anomalous Hall phases. Not far above the critical field, and therefore in the experimentally accessible regime, we obtain an energy gap in the meV range, which shows that the quantum anomalous Hall phase can be realized experimentally in silicene, in contrast to graphene (tiny energy gap) and germanene (enormous field required). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Topological phases of silicene and germanene in an external magnetic field: Quantitative results

    KAUST Repository

    Singh, Nirpendra

    2014-03-17

    We investigate the topological phases of silicene and germanene that arise due to the strong spin-orbit interaction in an external perpendicular magnetic field. Below and above a critical field of 10 T, respectively, we demonstrate for silicene under 3% tensile strain quantum spin Hall and quantum anomalous Hall phases. Not far above the critical field, and therefore in the experimentally accessible regime, we obtain an energy gap in the meV range, which shows that the quantum anomalous Hall phase can be realized experimentally in silicene, in contrast to graphene (tiny energy gap) and germanene (enormous field required). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Two kinds of Phase transitions in a Voting model

    OpenAIRE

    Hisakado, Masato; Mori, Shintaro

    2012-01-01

    In this paper, we discuss a voting model with two candidates, C_0 and C_1. We consider two types of voters--herders and independents. The voting of independents is based on their fundamental values; on the other hand, the voting of herders is based on the number of previous votes. We can identify two kinds of phase transitions. One is an information cascade transition similar to a phase transition seen in Ising model. The other is a transition of super and normal diffusions. These phase trans...

  9. Liquid-liquid phase transition in Stillinger-Weber silicon

    International Nuclear Information System (INIS)

    Beaucage, Philippe; Mousseau, Normand

    2005-01-01

    It was recently demonstrated that Stillinger-Weber silicon undergoes a liquid-liquid first-order phase transition deep into the supercooled region (Sastry and Angell 2003 Nat. Mater. 2 739). Here we study the effects of perturbations on this phase transition. We show that the order of the liquid-liquid transition changes with negative pressure. We also find that the liquid-liquid transition disappears when the three-body term of the potential is strengthened by as little as 5%. This implies that the details of the potential could affect strongly the nature and even the existence of the liquid-liquid phase

  10. Multipartite entanglement characterization of a quantum phase transition

    Science.gov (United States)

    Costantini, G.; Facchi, P.; Florio, G.; Pascazio, S.

    2007-07-01

    A probability density characterization of multipartite entanglement is tested on the one-dimensional quantum Ising model in a transverse field. The average and second moment of the probability distribution are numerically shown to be good indicators of the quantum phase transition. We comment on multipartite entanglement generation at a quantum phase transition.

  11. Multipartite entanglement characterization of a quantum phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Costantini, G [Dipartimento di Fisica, Universita di Bari, I-70126 Bari (Italy); Facchi, P [Istituto Nazionale di Fisica Nucleare, Sezione di Bari, I-70126 Bari (Italy); Florio, G [Dipartimento di Fisica, Universita di Bari, I-70126 Bari (Italy); Pascazio, S [Dipartimento di Fisica, Universita di Bari, I-70126 Bari (Italy)

    2007-07-13

    A probability density characterization of multipartite entanglement is tested on the one-dimensional quantum Ising model in a transverse field. The average and second moment of the probability distribution are numerically shown to be good indicators of the quantum phase transition. We comment on multipartite entanglement generation at a quantum phase transition.

  12. Microscopic origin of black hole reentrant phase transitions

    Science.gov (United States)

    Zangeneh, M. Kord; Dehyadegari, A.; Sheykhi, A.; Mann, R. B.

    2018-04-01

    Understanding the microscopic behavior of the black hole ingredients has been one of the important challenges in black hole physics during the past decades. In order to shed some light on the microscopic structure of black holes, in this paper, we explore a recently observed phenomenon for black holes namely reentrant phase transition, by employing the Ruppeiner geometry. Interestingly enough, we observe two properties for the phase behavior of small black holes that leads to reentrant phase transition. They are correlated and they are of the interaction type. For the range of pressure in which the system underlies reentrant phase transition, it transits from the large black holes phase to the small one which possesses higher correlation than the other ranges of pressures. On the other hand, the type of interaction between small black holes near the large/small transition line differs for usual and reentrant phase transitions. Indeed, for the usual case, the dominant interaction is repulsive whereas for the reentrant case we encounter an attractive interaction. We show that in the reentrant phase transition case, the small black holes behave like a bosonic gas whereas in the usual phase transition case, they behave like a quantum anyon gas.

  13. Phase transitions in liquids with directed intermolecular bonding

    OpenAIRE

    Son, L.; Ryltcev, R.

    2005-01-01

    Liquids with quasi - chemical bonding between molecules are described in terms of vertex model. It is shown that this bonding results in liquid - liquid phase transition, which occurs between phases with different mean density of intermolecular bonds. The transition may be suggested to be a universal phenomena for those liquids.

  14. Finite temperature susy GUT phase transitions determined by radiative corrections

    International Nuclear Information System (INIS)

    Kripfganz, J.; Perlt, H.

    1983-02-01

    Studying the 2-loop perturbative contribution to the free energy of grand unified theories a sequence of phase transitions is found, with SU(3)xSU(2)xU(1) being the prefered low temperature phase. The transition temperatures are still within the weak coupling regime. (author)

  15. Model for pairing phase transition in atomic nuclei

    International Nuclear Information System (INIS)

    Schiller, A.; Guttormsen, M.; Hjorth-Jensen, M.; Rekstad, J.; Siem, S.

    2002-01-01

    A model is developed which allows the investigation and classification of the pairing phase transition in atomic nuclei. The regions of the parameter space are discussed for which a pairing phase transition can be observed. The model parameters include number of particles, attenuation of pairing correlations with increasing seniority, single-particle level spacing, and pairing gap parameter

  16. Two kinds of phase transitions in a voting model

    Science.gov (United States)

    Hisakado, M.; Mori, S.

    2012-08-01

    In this paper, we discuss a voting model with two candidates, C0 and C1. We consider two types of voters—herders and independents. The voting of independents is based on their fundamental values, while the voting of herders is based on the number of previous votes. We can identify two kinds of phase transitions. One is an information cascade transition similar to a phase transition seen in the Ising model. The other is a transition of super and normal diffusions. These phase transitions coexist. We compared our results to the conclusions of experiments and identified the phase transitions in the upper limit of the time t by using the analysis of human behavior obtained from experiments.

  17. Ultracold Field Gradient Magnetometry and Transport to Study Correlated Topological Phases

    Science.gov (United States)

    2016-10-01

    MIT) 77 Massachusetts Ave. NE18-901 Cambridge , MA 02139 -4307 ABSTRACT Number of Papers published in peer-reviewed journals: Number of Papers published...group of the PI and the subfield of new correlated topological phases. List of Illustrations Figure 1 – View of MBE and Glovebox System Figure... Illustrations   Figure 1 – View of MBE and Glovebox System  Figure 2 – View of Glovebox, MBE, and Dilution Refrigerator System    Statement of Problems Studied  To

  18. Phase-Field Relaxation of Topology Optimization with Local Stress Constraints

    DEFF Research Database (Denmark)

    Stainko, Roman; Burger, Martin

    2006-01-01

    inequality constraints. We discretize the problem by finite elements and solve the arising finite-dimensional programming problems by a primal-dual interior point method. Numerical experiments for problems with local stress constraints based on different criteria indicate the success and robustness......We introduce a new relaxation scheme for structural topology optimization problems with local stress constraints based on a phase-field method. In the basic formulation we have a PDE-constrained optimization problem, where the finite element and design analysis are solved simultaneously...

  19. Thermodynamic phase transition of a black hole in rainbow gravity

    Directory of Open Access Journals (Sweden)

    Zhong-Wen Feng

    2017-09-01

    Full Text Available In this letter, using the rainbow functions that were proposed by Magueijo and Smolin, we investigate the thermodynamics and the phase transition of rainbow Schwarzschild black hole. First, we calculate the rainbow gravity corrected Hawking temperature. From this modification, we then derive the local temperature, free energy, and other thermodynamic quantities in an isothermal cavity. Finally, we analyze the critical behavior, thermodynamic stability, and phase transition of the rainbow Schwarzschild black hole. The results show that the rainbow gravity can stop the Hawking radiation in the final stages of black holes' evolution and lead to the remnants of black holes. Furthermore, one can observe that the rainbow Schwarzschild black hole has one first-order phase transition, two second-order phase transitions, and three Hawking–Page-type phase transitions in the framework of rainbow gravity theory.

  20. Influence of external magnetic field, finite-size effects and chemical potential on the phase transition of a complex scalar field

    Energy Technology Data Exchange (ETDEWEB)

    Cavalcanti, E.; Castro, E.; Malbouisson, A.P.C. [Centro Brasileiro de Pesquisas Fisicas/MCTI, Rio de Janeiro, RJ (Brazil); Linhares, C.A. [Universidade do Estado do Rio de Janeiro, Instituto de Fisica, Rio de Janeiro, RJ (Brazil)

    2017-10-15

    A scalar model is built, as a quantum field theory defined on a toroidal topology, to describe a phase transition in films subjected to periodic boundary conditions and influenced by an external and constant magnetic field. Criticality is studied and the relations between the critical temperature, the film thickness, the magnetic field strength and the chemical potential are investigated. Since the model describes a second-order phase transition a comparison with the Ginzburg-Landau theory is made. (orig.)

  1. Partial inertia induces additional phase transition in the majority vote model.

    Science.gov (United States)

    Harunari, Pedro E; de Oliveira, M M; Fiore, C E

    2017-10-01

    Explosive (i.e., discontinuous) transitions have aroused great interest by manifesting in distinct systems, such as synchronization in coupled oscillators, percolation regime, absorbing phase transitions, and more recently, the majority-vote model with inertia. In the latter, the model rules are slightly modified by the inclusion of a term depending on the local spin (an inertial term). In such a case, Chen et al. [Phys Rev. E 95, 042304 (2017)2470-004510.1103/PhysRevE.95.042304] have found that relevant inertia changes the nature of the phase transition in complex networks, from continuous to discontinuous. Here we give a further step by embedding inertia only in vertices with degree larger than a threshold value 〈k〉k^{*}, 〈k〉 being the mean system degree and k^{*} the fraction restriction. Our results, from mean-field analysis and extensive numerical simulations, reveal that an explosive transition is presented in both homogeneous and heterogeneous structures for small and intermediate k^{*}'s. Otherwise, a large restriction can sustain a discontinuous transition only in the heterogeneous case. This shares some similarities with recent results for the Kuramoto model [Phys. Rev. E 91, 022818 (2015)PLEEE81539-375510.1103/PhysRevE.91.022818]. Surprisingly, intermediate restriction and large inertia are responsible for the emergence of an extra phase, in which the system is partially synchronized and the classification of phase transition depends on the inertia and the lattice topology. In this case, the system exhibits two phase transitions.

  2. Phase transitions and domain structures in multiferroics

    Science.gov (United States)

    Vlahos, Eftihia

    2011-12-01

    Thin film ferroelectrics and multiferroics are two important classes of materials interesting both from a scientific and a technological prospective. The volatility of lead and bismuth as well as environmental issues regarding the toxicity of lead are two disadvantages of the most commonly used ferroelectric random access memory (FeRAM) materials such as Pb(Zr,Ti)O3 and SrBi2Ta2O9. Therefore lead-free thin film ferroelectrics are promising substitutes as long as (a) they can be grown on technologically important substrates such as silicon, and (b) their T c and Pr become comparable to that of well established ferroelectrics. On the other hand, the development of functional room temperature ferroelectric ferromagnetic multiferroics could lead to very interesting phenomena such as control of magnetism with electric fields and control of electrical polarization with magnetic fields. This thesis focuses on the understanding of material structure-property relations using nonlinear optical spectroscopy. Nonlinear spectroscopy is an excellent tool for probing the onset of ferroelectricity, and domain dynamics in strained ferroelectrics and multiferroics. Second harmonic generation was used to detect ferroelectricity and the antiferrodistortive phase transition in thin film SrTiO3. Incipient ferroelectric CaTiO3 has been shown to become ferroelectric when strained with a combination of SHG and dielectric measurements. The tensorial nature of the induced nonlinear polarization allows for probing of the BaTiO3 and SrTiO3 polarization contributions in nanoscale BaTiO3/SrTiO3 superlattices. In addition, nonlinear optics was used to demonstrate ferroelectricity in multiferroic EuTiO3. Finally, confocal SHG and Raman microscopy were utilized to visualize polar domains in incipient ferroelectric and ferroelastic CaTiO3.

  3. Baryon inhomogeneity from the cosmic quark-hadron phase transition

    International Nuclear Information System (INIS)

    Kurki-Suonio, H.

    1991-01-01

    We discuss the generation of inhomogeneity in the baryon-number density during the cosmic quark-hadron phase transition. We use a simple model with thin-wall phase boundaries and ideal-gas equations of state. The nucleation of the phase transition introduces a new distance scale into the universe which will be the scale of the generated inhomogeneity. We review the estimate of this scale. During the transition baryon number is likely to collect onto a layer at the phase boundary. These layers may in the end be deposited as small regions of very high baryon density. 21 refs., 1 fig

  4. Instanton-dyon ensembles reproduce deconfinement and chiral restoration phase transitions

    Science.gov (United States)

    Shuryak, Edward

    2018-03-01

    Paradigm shift in gauge topology at finite temperatures, from the instantons to their constituents - instanton-dyons - has recently lead to studies of their ensembles and very significant advances. Like instantons, they have fermionic zero modes, and their collectivization at suffciently high density explains the chiral symmetry breaking transition. Unlike instantons, these objects have electric and magnetic charges. Simulations of the instanton-dyon ensembles have demonstrated that their back reaction on the Polyakov line modifies its potential and generates the deconfinement phase transition. For the Nc = 2 gauge theory the transition is second order, for QCD-like theory with Nc = 2 and two light quark flavors Nf = 2 both transitions are weak crossovers at happening at about the same condition. Introduction of quark-flavor-dependent periodicity phases (imaginary chemical potentials) leads to drastic changes in both transitions. In particulaly, in the so called Z(Nc) - QCD model the deconfinement transforms to strong first order transition, while the chiral condensate does not disappear at all. The talk will also cover more detailed studies of correlations between the dyons, effective eta' mass and other screening masses.

  5. Interictal to Ictal Phase Transition in a Small-World Network

    Science.gov (United States)

    Nemzer, Louis; Cravens, Gary; Worth, Robert

    Real-time detection and prediction of seizures in patients with epilepsy is essential for rapid intervention. Here, we perform a full Hodgkin-Huxley calculation using n 50 in silico neurons configured in a small-world network topology to generate simulated EEG signals. The connectivity matrix, constructed using a Watts-Strogatz algorithm, admits randomized or deterministic entries. We find that situations corresponding to interictal (non-seizure) and ictal (seizure) states are separated by a phase transition that can be influenced by congenital channelopathies, anticonvulsant drugs, and connectome plasticity. The interictal phase exhibits scale-free phenomena, as characterized by a power law form of the spectral power density, while the ictal state suffers from pathological synchronization. We compare the results with intracranial EEG data and show how these findings may be used to detect or even predict seizure onset. Along with the balance of excitatory and inhibitory factors, the network topology plays a large role in determining the overall characteristics of brain activity. We have developed a new platform for testing the conditions that contribute to the phase transition between non-seizure and seizure states.

  6. The influence of passenger flow on the topology characteristics of urban rail transit networks

    Science.gov (United States)

    Hu, Yingyue; Chen, Feng; Chen, Peiwen; Tan, Yurong

    2017-05-01

    Current researches on the network characteristics of metro networks are generally carried out on topology networks without passenger flows running on it, thus more complex features of the networks with ridership loaded on it cannot be captured. In this study, we incorporated the load of metro networks, passenger volume, into the exploration of network features. Thus, the network can be examined in the context of operation, which is the ultimate purpose of the existence of a metro network. To this end, section load was selected as an edge weight to demonstrate the influence of ridership on the network, and a weighted calculation method for complex network indicators and robustness were proposed to capture the unique behaviors of a metro network with passengers flowing in it. The proposed method was applied on Beijing Subway. Firstly, the passenger volume in terms of daily origin and destination matrix was extracted from exhausted transit smart card data. Using the established approach and the matrix as weighting, common indicators of complex network including clustering coefficient, betweenness and degree were calculated, and network robustness were evaluated under potential attacks. The results were further compared to that of unweighted networks, and it suggests indicators of the network with consideration of passenger volumes differ from that without ridership to some extent, and networks tend to be more vulnerable than that without load on it. The significance sequence for the stations can be changed. By introducing passenger flow weighting, actual operation status of the network can be reflected more accurately. It is beneficial to determine the crucial stations and make precautionary measures for the entire network’s operation security.

  7. Generic features of vacuum phase transitions in the early universe

    International Nuclear Information System (INIS)

    Kephart, T.W.; Weiler, T.J.; Yuan, T.C.

    1990-01-01

    A simple Higgs model is utilized to show the occurrence of a four-phase pattern of vacuum symmetry. As temperature changes, an interplay of spontaneous symmetry breaking and spontaneous symmetry restoration ensues, and resonant field interchange occurs. The generality of models which may contain a sequence of vacuum phase transitions is emphasized. The laboratory for these multi-phase transitions is the early Universe. (orig.)

  8. Quarks-bags phase transition in quantum chromodynamics

    International Nuclear Information System (INIS)

    Gorenshtejn, M.I.

    1981-01-01

    Phase transitions in the quark-gluon plasma are considered at finite temperatures and chemical potentials. A phenomenological account for a complicated structure of the QCD vacuum results in the necessity to use the formalism of isobaric ensembles to describe the system. The phase transition curve separating the regions of the quark-gluon plasma and the hadronic bag phase in the μT plane is calculated [ru

  9. Photoinduced charge transfer phase transition in cesium manganese hexacyanoferrate

    International Nuclear Information System (INIS)

    Matsuda, Tomoyuki; Tokoro, Hiroko; Hashimoto, Kazuhito; Ohkoshi, Shin-ichi

    2007-01-01

    Cesium manganese hexacyanoferrate, Cs 1.51 Mn[Fe(CN) 6 ], shows a thermal phase transition between Mn II -NC-Fe III [high-temperature (HT) phase] and Mn III -NC-Fe II [low-temperature (LT) phase] with phase transition temperatures of 170 K (HT→LT) and 230 K (LT→HT). The LT phase shows ferromagnetism with Curie temperature of 7 K and coercive field of 60 Oe. Irradiating with 532 nm laser light converts the LT phase into the photoinduced (PI) phase, which does not have spontaneous magnetization. The electronic state of the PI phase corresponds to that of the HT phase and the relaxation temperature from the PI to the LT phase is observed at 90 K

  10. Explosive transitions to synchronization in networks of phase oscillators.

    Science.gov (United States)

    Leyva, I; Navas, A; Sendiña-Nadal, I; Almendral, J A; Buldú, J M; Zanin, M; Papo, D; Boccaletti, S

    2013-01-01

    The emergence of dynamical abrupt transitions in the macroscopic state of a system is currently a subject of the utmost interest. The occurrence of a first-order phase transition to synchronization of an ensemble of networked phase oscillators was reported, so far, for very particular network architectures. Here, we show how a sharp, discontinuous transition can occur, instead, as a generic feature of networks of phase oscillators. Precisely, we set conditions for the transition from unsynchronized to synchronized states to be first-order, and demonstrate how these conditions can be attained in a very wide spectrum of situations. We then show how the occurrence of such transitions is always accompanied by the spontaneous setting of frequency-degree correlation features. Third, we show that the conditions for abrupt transitions can be even softened in several cases. Finally, we discuss, as a possible application, the use of this phenomenon to express magnetic-like states of synchronization.

  11. Phase Fluctuations and the Absence of Topological Defects in Photo-excited Charge Ordered Nickelate

    Energy Technology Data Exchange (ETDEWEB)

    Lee, W.S.; Chuang, Y.D.; Moore, R.G.; Zhu, Y.; Patthey, L.; Trigo, M.; Lu, D.H.; Kirchmann, P.S.; Krupin, O.; Yi, M.; Langner, M.; Huse, N.; Robinson, J.S.; Chen, Y.; Zhou, S.Y.; Coslovich, G.; Huber, B.; Reis, D.A.; Kaindl, R.A.; Schoenlein, R.W.; Doering, D.

    2012-05-15

    The dynamics of an order parameter's amplitude and phase determines the collective behaviour of novel states emerging in complex materials. Time- and momentum-resolved pump-probe spectroscopy, by virtue of measuring material properties at atomic and electronic time scales out of equilibrium, can decouple entangled degrees of freedom by visualizing their corresponding dynamics in the time domain. Here we combine time-resolved femotosecond optical and resonant X-ray diffraction measurements on charge ordered La{sub 1.75}Sr{sub 0.25}NiO{sub 4} to reveal unforeseen photoinduced phase fluctuations of the charge order parameter. Such fluctuations preserve long-range order without creating topological defects, distinct from thermal phase fluctuations near the critical temperature in equilibrium. Importantly, relaxation of the phase fluctuations is found to be an order of magnitude slower than that of the order parameter's amplitude fluctuations, and thus limits charge order recovery. This new aspect of phase fluctuations provides a more holistic view of the phase's importance in ordering phenomena of quantum matter.

  12. An extended topological Yang-Mills theory

    International Nuclear Information System (INIS)

    Deguchi, Shinichi

    1992-01-01

    Introducing infinite number of fields, we construct an extended version of the topological Yang-Mills theory. The properties of the extended topological Yang-Mills theory (ETYMT) are discussed from standpoint of the covariant canonical quantization. It is shown that the ETYMT becomes a cohomological topological field theory or a theory equivalent to a quantum Yang-Mills theory with anti-self-dual constraint according to subsidiary conditions imposed on state-vector space. On the basis of the ETYMT, we may understand a transition from an unbroken phase to a physical phase (broken phase). (author)

  13. Discontinuity of maximum entropy inference and quantum phase transitions

    International Nuclear Information System (INIS)

    Chen, Jianxin; Ji, Zhengfeng; Yu, Nengkun; Zeng, Bei; Li, Chi-Kwong; Poon, Yiu-Tung; Shen, Yi; Zhou, Duanlu

    2015-01-01

    In this paper, we discuss the connection between two genuinely quantum phenomena—the discontinuity of quantum maximum entropy inference and quantum phase transitions at zero temperature. It is shown that the discontinuity of the maximum entropy inference of local observable measurements signals the non-local type of transitions, where local density matrices of the ground state change smoothly at the transition point. We then propose to use the quantum conditional mutual information of the ground state as an indicator to detect the discontinuity and the non-local type of quantum phase transitions in the thermodynamic limit. (paper)

  14. High-pressure phase transitions - Examples of classical predictability

    Science.gov (United States)

    Celebonovic, Vladan

    1992-09-01

    The applicability of the Savic and Kasanin (1962-1967) classical theory of dense matter to laboratory experiments requiring estimates of high-pressure phase transitions was examined by determining phase transition pressures for a set of 19 chemical substances (including elements, hydrocarbons, metal oxides, and salts) for which experimental data were available. A comparison between experimental and transition points and those predicted by the Savic-Kasanin theory showed that the theory can be used for estimating values of transition pressures. The results also support conclusions obtained in previous astronomical applications of the Savic-Kasanin theory.

  15. Scaling Concepts in Describing Continuous Phase Transitions

    Indian Academy of Sciences (India)

    The behaviour near such a continuous transition point displays many remarkable .... for the free energy, and the remaining statements can be obtained from thermodynamic ... axis are close to zero, leading to a 2D-spin system. Theoretically ...

  16. Do phase transitions survive binomial reducibility and thermal scaling?

    Energy Technology Data Exchange (ETDEWEB)

    Moretto, L.G.; Phair, L.; Wozniak, G.J.

    1996-05-01

    First order phase transitions are described in terms of the microcanonical and canonical ensemble, with special attention to finite size effects. Difficulties in interpreting a `caloric curve` are discussed. A robust parameter indicating phase coexistence (univariance) or single phase (bivariance) is extracted for charge distributions. 9 refs., 4 figs.

  17. Generalized Modular Transformations in (3+1D Topologically Ordered Phases and Triple Linking Invariant of Loop Braiding

    Directory of Open Access Journals (Sweden)

    Shenghan Jiang

    2014-09-01

    Full Text Available In topologically ordered quantum states of matter in (2+1D (spacetime dimensions, the braiding statistics of anyonic quasiparticle excitations is a fundamental characterizing property that is directly related to global transformations of the ground-state wave functions on a torus (the modular transformations. On the other hand, there are theoretical descriptions of various topologically ordered states in (3+1D, which exhibit both pointlike and looplike excitations, but systematic understanding of the fundamental physical distinctions between phases, and how these distinctions are connected to quantum statistics of excitations, is still lacking. One main result of this work is that the three-dimensional generalization of modular transformations, when applied to topologically ordered ground states, is directly related to a certain braiding process of looplike excitations. This specific braiding surprisingly involves three loops simultaneously, and can distinguish different topologically ordered states. Our second main result is the identification of the three-loop braiding as a process in which the worldsheets of the three loops have a nontrivial triple linking number, which is a topological invariant characterizing closed two-dimensional surfaces in four dimensions. In this work, we consider realizations of topological order in (3+1D using cohomological gauge theory in which the loops have Abelian statistics and explicitly demonstrate our results on examples with Z_{2}×Z_{2} topological order.

  18. Problem-Solving Phase Transitions During Team Collaboration.

    Science.gov (United States)

    Wiltshire, Travis J; Butner, Jonathan E; Fiore, Stephen M

    2018-01-01

    Multiple theories of problem-solving hypothesize that there are distinct qualitative phases exhibited during effective problem-solving. However, limited research has attempted to identify when transitions between phases occur. We integrate theory on collaborative problem-solving (CPS) with dynamical systems theory suggesting that when a system is undergoing a phase transition it should exhibit a peak in entropy and that entropy levels should also relate to team performance. Communications from 40 teams that collaborated on a complex problem were coded for occurrence of problem-solving processes. We applied a sliding window entropy technique to each team's communications and specified criteria for (a) identifying data points that qualify as peaks and (b) determining which peaks were robust. We used multilevel modeling, and provide a qualitative example, to evaluate whether phases exhibit distinct distributions of communication processes. We also tested whether there was a relationship between entropy values at transition points and CPS performance. We found that a proportion of entropy peaks was robust and that the relative occurrence of communication codes varied significantly across phases. Peaks in entropy thus corresponded to qualitative shifts in teams' CPS communications, providing empirical evidence that teams exhibit phase transitions during CPS. Also, lower average levels of entropy at the phase transition points predicted better CPS performance. We specify future directions to improve understanding of phase transitions during CPS, and collaborative cognition, more broadly. Copyright © 2017 Cognitive Science Society, Inc.

  19. Quantum phase transitional patterns of nuclei

    International Nuclear Information System (INIS)

    Dai Lianrong; Wang Lixing; Pan Feng; Zhong Weiwei; Liu Qi

    2013-01-01

    With the framework of Interacting Boson Model (IBM), transitional patterns from the spherical to the axially deformed limit of the IBM with a schematic Hamiltonian are studied by replacing the SU (3) quadrupole-quadrupole term with O (6) cubic interaction. But, we use the two schemes to investigate some energy ratios and B (E2) ratios for different bosons N = 8 and N = 20. The results show that with the increasing of the numbers of bosons, the transitional behaviors can be enhanced; the transitional behaviors are very similar in the two schemes. However, there are some distinctive differences for some quantities across the entire transitional region, such as energy levels and ratios, B (E2) values and ratios, and expectation values of the shape variables. Generally speaking, the transition is smoother and the nuclear shape is less well defined in the new scheme. Then we apply the two schemes to the critical point symmetry candidate, such as 152 Sm, and find the overall fitting quality of the UQ scheme is better than that of the U (5)-SU (3) scheme, especially for the inter-band E2 transitions in 152 Sm. (authors)

  20. The high temperature phase transition for the φ4 theory

    International Nuclear Information System (INIS)

    Tetradis, N.

    1994-01-01

    The use of the perturbative temperature dependent effective potential for the study of second order or weakly first order phase transitions is problematic, due to the appearance of infrared divergences. These divergences can be controlled through the method of the effective average action which employs renormalization group ideas. I review work done with C. Wetterich on the study of the high temperature phase transition for the N-component Φ 4 theory. A detailed quantitative picture of the second order phase transition is presented, including the critical exponents for the behaviour in the vicinity of the critical temperature. (orig.)

  1. Novel phase transitions in B-site doped manganites

    International Nuclear Information System (INIS)

    Popovic, Z.V.; Cantarero, A.; Thijssen, W.H.A.; Paunovic, N.; Dohcevic-Mitrovic, Z.; Sapina, F.

    2005-01-01

    We have examined the infrared reflectivity and the electrical resistivity of La 1- x [Sr(Ba)] x Mn 1- z [Cu(Zn)] z O 3 samples in ferromagnetic metallic and insulator regime. Several phase transitions are observed, the most obvious being the transition from a ferromagnetic metallic to a ferromagnetic insulator phase that is related to the formation of short-range orbitally ordered domains. The temperature T 1 of the phase transition is dependent on doping concentration and for optimally doped samples (∼32% of Mn 4+ ions) we have found T 1 ∼0.93 T C

  2. Phase transition in a modified square Josephson-junction array

    CERN Document Server

    Han, J

    1999-01-01

    We study the phase transition in a modified square proximity-coupled Josephson-junction array with small superconducting islands at the center of each plaquette. We find that the modified square array undergoes a Kosterlitz-Thouless-Berezinskii-like phase transition, but at a lower temperature than the simple square array with the same single-junction critical current. The IV characteristics, as well as the phase transition, resemble qualitatively those of a disordered simple square array. The effects of the presence of the center islands in the modified square array are discussed.

  3. Notes on Phase Transition of Nonsingular Black Hole

    International Nuclear Information System (INIS)

    Ma Meng-Sen; Zhao Ren

    2015-01-01

    On the belief that a black hole is a thermodynamic system, we study the phase transition of nonsingular black holes. If the black hole entropy takes the form of the Bekenstein—Hawking area law, the black hole mass M is no longer the internal energy of the black hole thermodynamic system. Using the thermodynamic quantities, we calculate the heat capacity, thermodynamic curvature and free energy. It is shown that there will be a larger black hole/smaller black hole phase transition for the nonsingular black hole. At the critical point, the second-order phase transition appears. (paper)

  4. On the chiral phase transition in the linear sigma model

    International Nuclear Information System (INIS)

    Tran Huu Phat; Nguyen Tuan Anh; Le Viet Hoa

    2003-01-01

    The Cornwall- Jackiw-Tomboulis (CJT) effective action for composite operators at finite temperature is used to investigate the chiral phase transition within the framework of the linear sigma model as the low-energy effective model of quantum chromodynamics (QCD). A new renormalization prescription for the CJT effective action in the Hartree-Fock (HF) approximation is proposed. A numerical study, which incorporates both thermal and quantum effect, shows that in this approximation the phase transition is of first order. However, taking into account the higher-loop diagrams contribution the order of phase transition is unchanged. (author)

  5. Multiple phase transitions in the generalized Curie-Weiss model

    International Nuclear Information System (INIS)

    Eisele, T.; Ellis, R.S.

    1988-01-01

    The generalized Curie-Weiss model is an extension of the classical Curie-Weiss model in which the quadratic interaction function of the mean spin value is replaced by a more general interaction function. It is shown that the generalized Curie-Weiss model can have a sequence of phase transitions at different critical temperatures. Both first-order and second-order phase transitions can occur, and explicit criteria for the two types are given. Three examples of generalized Curie-Weiss models are worked out in detail, including one example with infinitely many phase transitions. A number of results are derived using large-deviation techniques

  6. Role of multistability in the transition to chaotic phase synchronization

    DEFF Research Database (Denmark)

    Postnov, D.E.; Vadivasova, T.E.; Sosnovtseva, Olga

    1999-01-01

    In this paper we describe the transition to phase synchronization for systems of coupled nonlinear oscillators that individually follow the Feigenbaum route to chaos. A nested structure of phase synchronized regions of different attractor families is observed. With this structure, the transition...... to nonsynchronous behavior is determined by the loss of stability for the most stable synchronous mode. It is shown that the appearance of hyperchaos and the transition from lag synchronization to phase synchronization are related to the merging of chaotic attractors from different families. Numerical examples...

  7. How to quantify the transition phase during golf swing performance: Torsional load affects low back complaints during the transition phase.

    Science.gov (United States)

    Sim, Taeyong; Choi, Ahnryul; Lee, Soeun; Mun, Joung Hwan

    2017-10-01

    The transition phase of a golf swing is considered to be a decisive instant required for a powerful swing. However, at the same time, the low back torsional loads during this phase can have a considerable effect on golf-related low back pain (LBP). Previous efforts to quantify the transition phase were hampered by problems with accuracy due to methodological limitations. In this study, vector-coding technique (VCT) method was proposed as a comprehensive methodology to quantify the precise transition phase and examine low back torsional load. Towards this end, transition phases were assessed using three different methods (VCT, lead hand speed and X-factor stretch) and compared; then, low back torsional load during the transition phase was examined. As a result, the importance of accurate transition phase quantification has been documented. The largest torsional loads were observed in healthy professional golfers (10.23 ± 1.69 N · kg -1 ), followed by professional golfers with a history of LBP (7.93 ± 1.79 N · kg -1 ), healthy amateur golfers (1.79 ± 1.05 N · kg -1 ) and amateur golfers with a history of LBP (0.99 ± 0.87 N · kg -1 ), which order was equal to that of the transition phase magnitudes of each group. These results indicate the relationship between the transition phase and LBP history and the dependency of the torsional load magnitude on the transition phase.

  8. Current Harmonics Cancellation in Three-Phase Four-Wire Systems by Using a Four-Branch Star Filtering Topology

    DEFF Research Database (Denmark)

    Rodriguez, Pedro; Candela, J. I.; Luna, A.

    2009-01-01

    This paper presents a new solution for filtering current harmonics in three-phase four-wire networks. The original four-branch star (FBS) filter topology presented in this paper is characterized by a particular layout of single-phase inductances and capacitors, without using any transformer......, a specific implementation of a three-phase four-wire hybrid power filter is presented as an illustrative application of the filtering topology. An extensive evaluation using simulation and experimental results from a DSP-based laboratory prototype is conducted in order to verify and validate the good...... only passive components are employed, or as a hybrid filter, when its behavior is improved by integrating a power converter into the filter structure. The paper analyzes the proposed topology, and derives fundamental concepts about the control of the resulting hybrid power filter. From this analysis...

  9. Phase transitions in two-dimensional uniformly frustrated XY models. II. General scheme

    International Nuclear Information System (INIS)

    Korshunov, S.E.

    1986-01-01

    For two-dimensional uniformly frustrated XY models the group of symmetry spontaneously broken in the ground state is a cross product of the group of two-dimensional rotations by some discrete group of finite order. Different possibilities of phase transitions in such systems are investigated. The transition to the Coulomb gas with noninteger charges is widely used when analyzing the properties of relevant topological excitations. The number of these excitations includes not only domain walls and traditional (integer) vortices, but also vortices with a fractional number of circulation quanta which are to be localized at bends and intersections of domain walls. The types of possible phase transitions prove to be dependent on their relative sequence: in the case the vanishing of domain wall free energy occurs earlier (at increasing temperature) than the dissociation of pairs of ordinary vortices, the second phase transition is to be associated with dissociation of pairs of fractional vortices. The general statements are illustrated with a number of examples

  10. Behavior of quasinormal modes and Van der Waals-like phase transition of charged AdS black holes in massive gravity

    Energy Technology Data Exchange (ETDEWEB)

    Zou, De-Cheng; Yue, Ruihong [Yangzhou University, Center for Gravitation and Cosmology, College of Physical Science and Technology, Yangzhou (China); Liu, Yunqi [Huazhong University of Science and Technology, School of Physics, Wuhan (China)

    2017-06-15

    In this work, we utilize the quasinormal modes (QNMs) of a massless scalar perturbation to probe the Van der Waals-like small and large black holes (SBH/LBH) phase transition of charged topological Anti-de Sitter (AdS) black holes in four-dimensional massive gravity. We find that the signature of this SBH/LBH phase transition is detected in the isobaric as well as in the isothermal process. This further supports the idea that the QNMs can be an efficient tool to investigate the thermodynamical phase transition. (orig.)

  11. Quantum phase transitions in random XY spin chains

    International Nuclear Information System (INIS)

    Bunder, J.E.; McKenzie, R.H.

    2000-01-01

    Full text: The XY spin chain in a transverse field is one of the simplest quantum spin models. It is a reasonable model for heavy fermion materials such as CeCu 6-x Au x . It has two quantum phase transitions: the Ising transition and the anisotropic transition. Quantum phase transitions occur at zero temperature. We are investigating what effect the introduction of randomness has on these quantum phase transitions. Disordered systems which undergo quantum phase transitions can exhibit new universality classes. The universality class of a phase transition is defined by the set of critical exponents. In a random system with quantum phase transitions we can observe Griffiths-McCoy singularities. Such singularities are observed in regions which have no long range order, so they are not classified as critical regions, yet they display phenomena normally associated with critical points, such as a diverging susceptibility. Griffiths-McCoy phases are due to rare regions with stronger than! average interactions and may be present far from the quantum critical point. We show how the random XY spin chain may be mapped onto a random Dirac equation. This allows us to calculate the density of states without making any approximations. From the density of states we can describe the conditions which should allow a Griffiths-McCoy phase. We find that for the Ising transition the dynamic critical exponent, z, is not universal. It is proportional to the disorder strength and inversely proportional to the energy gap, hence z becomes infinite at the critical point where the energy gap vanishes

  12. Floquet engineering of Haldane Chern insulators and chiral bosonic phase transitions

    Science.gov (United States)

    Plekhanov, Kirill; Roux, Guillaume; Le Hur, Karyn

    2017-01-01

    The realization of synthetic gauge fields has attracted a lot of attention recently in relation to periodically driven systems and the Floquet theory. In ultracold atom systems in optical lattices and photonic networks, this allows one to simulate exotic phases of matter such as quantum Hall phases, anomalous quantum Hall phases, and analogs of topological insulators. In this paper, we apply the Floquet theory to engineer anisotropic Haldane models on the honeycomb lattice and two-leg ladder systems. We show that these anisotropic Haldane models still possess a topologically nontrivial band structure associated with chiral edge modes. Focusing on (interacting) boson systems in s -wave bands of the lattice, we show how to engineer through the Floquet theory, a quantum phase transition (QPT) between a uniform superfluid and a Bose-Einstein condensate analog of Fulde-Ferrell-Larkin-Ovchinnikov states, where bosons condense at nonzero wave vectors. We perform a Ginzburg-Landau analysis of the QPT on the graphene lattice, and compute observables such as chiral currents and the momentum distribution. The results are supported by exact diagonalization calculations and compared with those of the isotropic situation. The validity of high-frequency expansion in the Floquet theory is also tested using time-dependent simulations for various parameters of the model. Last, we show that the anisotropic choice for the effective vector potential allows a bosonization approach in equivalent ladder (strip) geometries.

  13. Non-equilibrium phase transitions in complex plasma

    International Nuclear Information System (INIS)

    Suetterlin, K R; Raeth, C; Ivlev, A V; Thomas, H M; Khrapak, S; Zhdanov, S; Rubin-Zuzic, M; Morfill, G E; Wysocki, A; Loewen, H; Goedheer, W J; Fortov, V E; Lipaev, A M; Molotkov, V I; Petrov, O F

    2010-01-01

    Complex plasma being the 'plasma state of soft matter' is especially suitable for investigations of non-equilibrium phase transitions. Non-equilibrium phase transitions can manifest in dissipative structures or self-organization. Two specific examples are lane formation and phase separation. Using the permanent microgravity laboratory PK-3 Plus, operating onboard the International Space Station, we performed unique experiments with binary mixtures of complex plasmas that showed both lane formation and phase separation. These observations have been augmented by comprehensive numerical and theoretical studies. In this paper we present an overview of our most important results. In addition we put our results in context with research of complex plasmas, binary systems and non-equilibrium phase transitions. Necessary and promising future complex plasma experiments on phase separation and lane formation are briefly discussed.

  14. A strictly hyperbolic equilibrium phase transition model

    International Nuclear Information System (INIS)

    Allaire, G; Faccanoni, G; Kokh, S.

    2007-01-01

    This Note is concerned with the strict hyperbolicity of the compressible Euler equations equipped with an equation of state that describes the thermodynamical equilibrium between the liquid phase and the vapor phase of a fluid. The proof is valid for a very wide class of fluids. The argument only relies on smoothness assumptions and on the classical thermodynamical stability assumptions, that requires a definite negative Hessian matrix for each phase entropy as a function of the specific volume and internal energy. (authors)

  15. Discontinuous structural phase transition of liquid metal and alloys (2)

    International Nuclear Information System (INIS)

    Wang, Li; Liu, Jiantong

    2004-01-01

    The diameter (d f ) of diffusion fluid cluster before and after phase transition has been calculated in terms of the paper ''Discontinuous structural phase transition of liquid metal and alloy (1)'' Physics Letters. A 326 (2004) 429-435, to verify quantitatively the discontinuity of structural phase transition; the phenomena of thermal contraction and thermal expansion during the phase transition, together with the evolution model of discontinuous structural phase transition are also discussed in this Letter to explore further the nature of structural transition; In addition, based on the viscosity experimental result mentioned in paper [Y. Waseda, The Structure of Non-Crystalline Materials--Liquids and Amorphous Solids, McGraw-Hill, New York, 1980], we present an approach to draw an embryo of the liquid-liquid (L-L) phase diagram for binary alloys above liquidus in the paper, expecting to guide metallurgy process so as to improve the properties of alloys. The idea that controls amorphous structure and its properties by means of the L-L phase diagram for alloys and by the rapid cooling technique to form the amorphous alloy has been brought forward in the end

  16. Scaling theory and the classification of phase transitions

    International Nuclear Information System (INIS)

    Hilfer, R.

    1992-01-01

    In this paper, the recent classification theory for phase transitions and its relation with the foundations of statistical physics is reviewed. First it is outlined how Ehrenfests classification scheme can be generalized into a general thermodynamic classification theory for phase transitions. The classification theory implies scaling and multiscaling thereby eliminating the need to postulate the scaling hypothesis as a fourth law of thermodynamics. The new classification has also led to the discovery and distinction of nonequilibrium transitions within equilibrium statistical physics. Nonequilibrium phase transitions are distinguished from equilibrium transitions by orders less than unity and by the fact the equilibrium thermodynamics and statistical mechanics become inapplicable at the critical point. The latter fact requires a change in the Gibbs assumption underlying the canonical and grandcanonical ensembles in order to recover the thermodynamic description in the critical limit

  17. Global monopoles can change Universe's topology

    International Nuclear Information System (INIS)

    Marunović, Anja; Prokopec, Tomislav

    2016-01-01

    If the Universe undergoes a phase transition, at which global monopoles are created or destroyed, topology of its spatial sections can change. More specifically, by making use of Myers' theorem, we show that, after a transition in which global monopoles form, spatial sections of a spatially flat, infinite Universe becomes finite and closed. This implies that global monopoles can change the topology of Universe's spatial sections (from infinite and open to finite and closed). Global monopoles cannot alter the topology of the space-time manifold.

  18. (3+1)-dimensional topological phases and self-dual quantum geometries encoded on Heegaard surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Dittrich, Bianca [Perimeter Institute for Theoretical Physics,31 Caroline Street North, Waterloo, Ontario N2L 2Y5 (Canada)

    2017-05-22

    We apply the recently suggested strategy to lift state spaces and operators for (2+1)-dimensional topological quantum field theories to state spaces and operators for a (3+1)-dimensional TQFT with defects. We start from the (2+1)-dimensional Turaev-Viro theory and obtain a state space, consistent with the state space expected from the Crane-Yetter model with line defects. This work has important applications for quantum gravity as well as the theory of topological phases in (3+1) dimensions. It provides a self-dual quantum geometry realization based on a vacuum state peaked on a homogeneously curved geometry. The state spaces and operators we construct here provide also an improved version of the Walker-Wang model, and simplify its analysis considerably. We in particular show that the fusion bases of the (2+1)-dimensional theory lead to a rich set of bases for the (3+1)-dimensional theory. This includes a quantum deformed spin network basis, which in a loop quantum gravity context diagonalizes spatial geometry operators. We also obtain a dual curvature basis, that diagonalizes the Walker-Wang Hamiltonian. Furthermore, the construction presented here can be generalized to provide state spaces for the recently introduced dichromatic four-dimensional manifold invariants.

  19. A Bayesian Interpretation of First-Order Phase Transitions

    Science.gov (United States)

    Davis, Sergio; Peralta, Joaquín; Navarrete, Yasmín; González, Diego; Gutiérrez, Gonzalo

    2016-03-01

    In this work we review the formalism used in describing the thermodynamics of first-order phase transitions from the point of view of maximum entropy inference. We present the concepts of transition temperature, latent heat and entropy difference between phases as emergent from the more fundamental concept of internal energy, after a statistical inference analysis. We explicitly demonstrate this point of view by making inferences on a simple game, resulting in the same formalism as in thermodynamical phase transitions. We show that analogous quantities will inevitably arise in any problem of inferring the result of a yes/no question, given two different states of knowledge and information in the form of expectation values. This exposition may help to clarify the role of these thermodynamical quantities in the context of different first-order phase transitions such as the case of magnetic Hamiltonians (e.g. the Potts model).

  20. Structure determination at room temperature and phase transition ...

    Indian Academy of Sciences (India)

    Unknown

    Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, India. MS received 9 May 2002 ... exhibit a ferroelectric–paraelectric phase transition at ele- ..... The pattern decomposition and peak extraction methods ...