WorldWideScience

Sample records for topological cluster state

  1. Quantum picturalism for topological cluster-state computing

    International Nuclear Information System (INIS)

    Horsman, Clare

    2011-01-01

    Topological quantum computing (QC) is a way of allowing precise quantum computations to run on noisy and imperfect hardware. One implementation uses surface codes created by forming defects in a highly-entangled cluster state. Such a method of computing is a leading candidate for large-scale QC. However, there has been a lack of sufficiently powerful high-level languages to describe computing in this form without resorting to single-qubit operations, which quickly become prohibitively complex as the system size increases. In this paper, we apply the category-theoretic work of Abramsky and Coecke to the topological cluster-state model of QC to give a high-level graphical language that enables direct translation between quantum processes and physical patterns of measurement in a computer-a 'compiler language'. We give the equivalence between the graphical and topological information flows, and show the applicable rewrite algebra for this computing model. We show that this gives us a native graphical language for the design and analysis of topological quantum algorithms, and finish by discussing the possibilities for automating this process on a large scale.

  2. Architectural design for a topological cluster state quantum computer

    International Nuclear Information System (INIS)

    Devitt, Simon J; Munro, William J; Nemoto, Kae; Fowler, Austin G; Stephens, Ashley M; Greentree, Andrew D; Hollenberg, Lloyd C L

    2009-01-01

    The development of a large scale quantum computer is a highly sought after goal of fundamental research and consequently a highly non-trivial problem. Scalability in quantum information processing is not just a problem of qubit manufacturing and control but it crucially depends on the ability to adapt advanced techniques in quantum information theory, such as error correction, to the experimental restrictions of assembling qubit arrays into the millions. In this paper, we introduce a feasible architectural design for large scale quantum computation in optical systems. We combine the recent developments in topological cluster state computation with the photonic module, a simple chip-based device that can be used as a fundamental building block for a large-scale computer. The integration of the topological cluster model with this comparatively simple operational element addresses many significant issues in scalable computing and leads to a promising modular architecture with complete integration of active error correction, exhibiting high fault-tolerant thresholds.

  3. Machine learning topological states

    Science.gov (United States)

    Deng, Dong-Ling; Li, Xiaopeng; Das Sarma, S.

    2017-11-01

    Artificial neural networks and machine learning have now reached a new era after several decades of improvement where applications are to explode in many fields of science, industry, and technology. Here, we use artificial neural networks to study an intriguing phenomenon in quantum physics—the topological phases of matter. We find that certain topological states, either symmetry-protected or with intrinsic topological order, can be represented with classical artificial neural networks. This is demonstrated by using three concrete spin systems, the one-dimensional (1D) symmetry-protected topological cluster state and the 2D and 3D toric code states with intrinsic topological orders. For all three cases, we show rigorously that the topological ground states can be represented by short-range neural networks in an exact and efficient fashion—the required number of hidden neurons is as small as the number of physical spins and the number of parameters scales only linearly with the system size. For the 2D toric-code model, we find that the proposed short-range neural networks can describe the excited states with Abelian anyons and their nontrivial mutual statistics as well. In addition, by using reinforcement learning we show that neural networks are capable of finding the topological ground states of nonintegrable Hamiltonians with strong interactions and studying their topological phase transitions. Our results demonstrate explicitly the exceptional power of neural networks in describing topological quantum states, and at the same time provide valuable guidance to machine learning of topological phases in generic lattice models.

  4. Analyzing Dynamic Probabilistic Risk Assessment Data through Topology-Based Clustering

    Energy Technology Data Exchange (ETDEWEB)

    Diego Mandelli; Dan Maljovec; BeiWang; Valerio Pascucci; Peer-Timo Bremer

    2013-09-01

    We investigate the use of a topology-based clustering technique on the data generated by dynamic event tree methodologies. The clustering technique we utilizes focuses on a domain-partitioning algorithm based on topological structures known as the Morse-Smale complex, which partitions the data points into clusters based on their uniform gradient flow behavior. We perform both end state analysis and transient analysis to classify the set of nuclear scenarios. We demonstrate our methodology on a dataset generated for a sodium-cooled fast reactor during an aircraft crash scenario. The simulation tracks the temperature of the reactor as well as the time for a recovery team to fix the passive cooling system. Combined with clustering results obtained previously through mean shift methodology, we present the user with complementary views of the data that help illuminate key features that may be otherwise hidden using a single methodology. By clustering the data, the number of relevant test cases to be selected for further analysis can be drastically reduced by selecting a representative from each cluster. Identifying the similarities of simulations within a cluster can also aid in the drawing of important conclusions with respect to safety analysis.

  5. Complex brain networks: From topological communities to clustered

    Indian Academy of Sciences (India)

    Complex brain networks: From topological communities to clustered dynamics ... Recent research has revealed a rich and complicated network topology in the cortical connectivity of mammalian brains. ... Pramana – Journal of Physics | News.

  6. Topological defect clustering and plastic deformation mechanisms in functionalized graphene

    Science.gov (United States)

    Nunes, Ricardo; Araujo, Joice; Chacham, Helio

    2011-03-01

    We present ab initio results suggesting that strain plays a central role in the clustering of topological defects in strained and functionalized graphene models. We apply strain onto the topological-defect graphene networks from our previous work, and obtain topological-defect clustering patterns which are in excellent agreement with recent observations in samples of reduced graphene oxide. In our models, the graphene layer, containing an initial concentration of isolated topological defects, is covered by hydrogen or hydroxyl groups. Our results also suggest a rich variety of plastic deformation mechanism in functionalized graphene systems. We acknowledge support from the Brazilian agencies: CNPq, Fapemig, and INCT-Materiais de Carbono.

  7. Topological cell clustering in the ATLAS calorimeters and its performance in LHC Run 1

    Energy Technology Data Exchange (ETDEWEB)

    Aad, G. [CPPM, Aix-Marseille Univ. et CNRS/IN2P3, Marseille (France); Abbott, B. [Oklahoma Univ., Norman, OK (United States). Homer L. Dodge Dept. of Physics and Astronomy; Abdallah, J. [Academia Sinica, Taipei (China). Inst. of Physics; Collaboration: ATLAS Collaboration; and others

    2017-07-15

    The reconstruction of the signal from hadrons and jets emerging from the proton-proton collisions at the Large Hadron Collider (LHC) and entering the ATLAS calorimeters is based on a three-dimensional topological clustering of individual calorimeter cell signals. The cluster formation follows cell signal-significance patterns generated by electromagnetic and hadronic showers. In this, the clustering algorithm implicitly performs a topological noise suppression by removing cells with insignificant signals which are not in close proximity to cells with significant signals. The resulting topological cell clusters have shape and location information, which is exploited to apply a local energy calibration and corrections depending on the nature of the cluster. Topological cell clustering is established as a well-performing calorimeter signal definition for jet and missing transverse momentum reconstruction in ATLAS. (orig.)

  8. Topological charges and convergence of the cluster expansion

    International Nuclear Information System (INIS)

    Simonov, Yu.A.

    1989-01-01

    Cluster expansion of Wilson loops is shown to diverge for the QCD vacuum populated by topological objects (instantons, magnetic monopoles). Using simple models the total sum of the cluster expansion for the string tension is calculated and found to be zero for instantons and nonzero for magnetic monopoles. 14 refs

  9. Topological orders in rigid states

    International Nuclear Information System (INIS)

    Wen, X.G.

    1990-01-01

    The authors study a new kind of ordering topological order in rigid states (the states with no local gapless excitations). This paper concentrates on characterization of the different topological orders. As an example the authors discuss in detail chiral spin states of 2+1 dimensional spin systems. Chiral spin states are described by the topological Chern-Simons theories in the continuum limit. The authors show that the topological orders can be characterized by a non-Abelian gauge structure over the moduli space which parametrizes a family of the model Hamiltonians supporting topologically ordered ground states. In 2 + 1 dimensions, the non-Abelian gauge structure determines possible fractional statistics of the quasi-particle excitations over the topologically ordered ground states. The dynamics of the low lying global excitations is shown to be independent of random spatial dependent perturbations. The ground state degeneracy and the non-Abelian gauge structures discussed in this paper are very robust, even against those perturbations that break translation symmetry. The authors also discuss the symmetry properties of the degenerate ground states of chiral spin states. The authors find that some degenerate ground states of chiral spin states on torus carry non-trivial quantum numbers of the 90 degrees rotation

  10. Topological surface states in nodal superconductors.

    Science.gov (United States)

    Schnyder, Andreas P; Brydon, Philip M R

    2015-06-24

    Topological superconductors have become a subject of intense research due to their potential use for technical applications in device fabrication and quantum information. Besides fully gapped superconductors, unconventional superconductors with point or line nodes in their order parameter can also exhibit nontrivial topological characteristics. This article reviews recent progress in the theoretical understanding of nodal topological superconductors, with a focus on Weyl and noncentrosymmetric superconductors and their protected surface states. Using selected examples, we review the bulk topological properties of these systems, study different types of topological surface states, and examine their unusual properties. Furthermore, we survey some candidate materials for topological superconductivity and discuss different experimental signatures of topological surface states.

  11. Topological surface states in nodal superconductors

    International Nuclear Information System (INIS)

    Schnyder, Andreas P; Brydon, Philip M R

    2015-01-01

    Topological superconductors have become a subject of intense research due to their potential use for technical applications in device fabrication and quantum information. Besides fully gapped superconductors, unconventional superconductors with point or line nodes in their order parameter can also exhibit nontrivial topological characteristics. This article reviews recent progress in the theoretical understanding of nodal topological superconductors, with a focus on Weyl and noncentrosymmetric superconductors and their protected surface states. Using selected examples, we review the bulk topological properties of these systems, study different types of topological surface states, and examine their unusual properties. Furthermore, we survey some candidate materials for topological superconductivity and discuss different experimental signatures of topological surface states. (topical review)

  12. A Cluster-Based Dual-Adaptive Topology Control Approach in Wireless Sensor Networks.

    Science.gov (United States)

    Gui, Jinsong; Zhou, Kai; Xiong, Naixue

    2016-09-25

    Multi-Input Multi-Output (MIMO) can improve wireless network performance. Sensors are usually single-antenna devices due to the high hardware complexity and cost, so several sensors are used to form virtual MIMO array, which is a desirable approach to efficiently take advantage of MIMO gains. Also, in large Wireless Sensor Networks (WSNs), clustering can improve the network scalability, which is an effective topology control approach. The existing virtual MIMO-based clustering schemes do not either fully explore the benefits of MIMO or adaptively determine the clustering ranges. Also, clustering mechanism needs to be further improved to enhance the cluster structure life. In this paper, we propose an improved clustering scheme for virtual MIMO-based topology construction (ICV-MIMO), which can determine adaptively not only the inter-cluster transmission modes but also the clustering ranges. Through the rational division of cluster head function and the optimization of cluster head selection criteria and information exchange process, the ICV-MIMO scheme effectively reduces the network energy consumption and improves the lifetime of the cluster structure when compared with the existing typical virtual MIMO-based scheme. Moreover, the message overhead and time complexity are still in the same order of magnitude.

  13. A Cluster-Based Dual-Adaptive Topology Control Approach in Wireless Sensor Networks

    Science.gov (United States)

    Gui, Jinsong; Zhou, Kai; Xiong, Naixue

    2016-01-01

    Multi-Input Multi-Output (MIMO) can improve wireless network performance. Sensors are usually single-antenna devices due to the high hardware complexity and cost, so several sensors are used to form virtual MIMO array, which is a desirable approach to efficiently take advantage of MIMO gains. Also, in large Wireless Sensor Networks (WSNs), clustering can improve the network scalability, which is an effective topology control approach. The existing virtual MIMO-based clustering schemes do not either fully explore the benefits of MIMO or adaptively determine the clustering ranges. Also, clustering mechanism needs to be further improved to enhance the cluster structure life. In this paper, we propose an improved clustering scheme for virtual MIMO-based topology construction (ICV-MIMO), which can determine adaptively not only the inter-cluster transmission modes but also the clustering ranges. Through the rational division of cluster head function and the optimization of cluster head selection criteria and information exchange process, the ICV-MIMO scheme effectively reduces the network energy consumption and improves the lifetime of the cluster structure when compared with the existing typical virtual MIMO-based scheme. Moreover, the message overhead and time complexity are still in the same order of magnitude. PMID:27681731

  14. A Cluster-Based Dual-Adaptive Topology Control Approach in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jinsong Gui

    2016-09-01

    Full Text Available Multi-Input Multi-Output (MIMO can improve wireless network performance. Sensors are usually single-antenna devices due to the high hardware complexity and cost, so several sensors are used to form virtual MIMO array, which is a desirable approach to efficiently take advantage of MIMO gains. Also, in large Wireless Sensor Networks (WSNs, clustering can improve the network scalability, which is an effective topology control approach. The existing virtual MIMO-based clustering schemes do not either fully explore the benefits of MIMO or adaptively determine the clustering ranges. Also, clustering mechanism needs to be further improved to enhance the cluster structure life. In this paper, we propose an improved clustering scheme for virtual MIMO-based topology construction (ICV-MIMO, which can determine adaptively not only the inter-cluster transmission modes but also the clustering ranges. Through the rational division of cluster head function and the optimization of cluster head selection criteria and information exchange process, the ICV-MIMO scheme effectively reduces the network energy consumption and improves the lifetime of the cluster structure when compared with the existing typical virtual MIMO-based scheme. Moreover, the message overhead and time complexity are still in the same order of magnitude.

  15. A dynamical topology for the space of states

    International Nuclear Information System (INIS)

    Dittrich, J.

    1979-01-01

    A new topology is introduced for the space of states of a physical system. This topology is given by dynamics, every state has a neighbourhood consisting of states connected by the time evolution only. With respect to the new topology, all conservation laws can be treated as topological laws. (author)

  16. Geometric entanglement in topologically ordered states

    International Nuclear Information System (INIS)

    Orús, Román; Wei, Tzu-Chieh; Buerschaper, Oliver; Nest, Maarten Van den

    2014-01-01

    Here we investigate the connection between topological order and the geometric entanglement, as measured by the logarithm of the overlap between a given state and its closest product state of blocks. We do this for a variety of topologically ordered systems such as the toric code, double semion, colour code and quantum double models. As happens for the entanglement entropy, we find that for sufficiently large block sizes the geometric entanglement is, up to possible sub-leading corrections, the sum of two contributions: a bulk contribution obeying a boundary law times the number of blocks and a contribution quantifying the underlying pattern of long-range entanglement of the topologically ordered state. This topological contribution is also present in the case of single-spin blocks in most cases, and constitutes an alternative characterization of topological order for these quantum states based on a multipartite entanglement measure. In particular, we see that the topological term for the two-dimensional colour code is twice as much as the one for the toric code, in accordance with recent renormalization group arguments (Bombin et al 2012 New J. Phys. 14 073048). Motivated by these results, we also derive a general formalism to obtain upper- and lower-bounds to the geometric entanglement of states with a non-Abelian group symmetry, and which we explicitly use to analyse quantum double models. Furthermore, we also provide an analysis of the robustness of the topological contribution in terms of renormalization and perturbation theory arguments, as well as a numerical estimation for small systems. Some of the results in this paper rely on the ability to disentangle single sites from the quantum state, which is always possible for the systems that we consider. Additionally we relate our results to the behaviour of the relative entropy of entanglement in topologically ordered systems, and discuss a number of numerical approaches based on tensor networks that could be

  17. Topological nanophononic states by band inversion

    Science.gov (United States)

    Esmann, Martin; Lamberti, Fabrice Roland; Senellart, Pascale; Favero, Ivan; Krebs, Olivier; Lanco, Loïc; Gomez Carbonell, Carmen; Lemaître, Aristide; Lanzillotti-Kimura, Norberto Daniel

    2018-04-01

    Nanophononics is essential for the engineering of thermal transport in nanostructured electronic devices, it greatly facilitates the manipulation of mechanical resonators in the quantum regime, and it could unveil a new route in quantum communications using phonons as carriers of information. Acoustic phonons also constitute a versatile platform for the study of fundamental wave dynamics, including Bloch oscillations, Wannier-Stark ladders, and other localization phenomena. Many of the phenomena studied in nanophononics were inspired by their counterparts in optics and electronics. In these fields, the consideration of topological invariants to control wave dynamics has already had a great impact for the generation of robust confined states. Interestingly, the use of topological phases to engineer nanophononic devices remains an unexplored and promising field. Conversely, the use of acoustic phonons could constitute a rich platform to study topological states. Here, we introduce the concept of topological invariants to nanophononics and experimentally implement a nanophononic system supporting a robust topological interface state at 350 GHz. The state is constructed through band inversion, i.e., by concatenating two semiconductor superlattices with inverted spatial mode symmetries. The existence of this state is purely determined by the Zak phases of the constituent superlattices, i.e., the one-dimensional Berry phase. We experimentally evidenced the mode through Raman spectroscopy. The reported robust topological interface states could become part of nanophononic devices requiring resonant structures such as sensors or phonon lasers.

  18. Topological Nematic States and Non-Abelian Lattice Dislocations

    Directory of Open Access Journals (Sweden)

    Maissam Barkeshli

    2012-08-01

    Full Text Available An exciting new prospect in condensed matter physics is the possibility of realizing fractional quantum Hall states in simple lattice models without a large external magnetic field. A fundamental question is whether qualitatively new states can be realized on the lattice as compared with ordinary fractional quantum Hall states. Here we propose new symmetry-enriched topological states, topological nematic states, which are a dramatic consequence of the interplay between the lattice translational symmetry and topological properties of these fractional Chern insulators. The topological nematic states are realized in a partially filled flat band with a Chern number N, which can be mapped to an N-layer quantum Hall system on a regular lattice. However, in the topological nematic states the lattice dislocations can act as wormholes connecting the different layers and effectively change the topology of the space. Consequently, lattice dislocations become defects with a nontrivial quantum dimension, even when the fractional quantum Hall state being realized is, by itself, Abelian. Our proposal leads to the possibility of realizing the physics of topologically ordered states on high-genus surfaces in the lab even though the sample has only the disk geometry.

  19. Topological Nematic States and Non-Abelian Lattice Dislocations

    Science.gov (United States)

    Barkeshli, Maissam; Qi, Xiao-Liang

    2012-07-01

    An exciting new prospect in condensed matter physics is the possibility of realizing fractional quantum Hall states in simple lattice models without a large external magnetic field. A fundamental question is whether qualitatively new states can be realized on the lattice as compared with ordinary fractional quantum Hall states. Here we propose new symmetry-enriched topological states, topological nematic states, which are a dramatic consequence of the interplay between the lattice translational symmetry and topological properties of these fractional Chern insulators. The topological nematic states are realized in a partially filled flat band with a Chern number N, which can be mapped to an N-layer quantum Hall system on a regular lattice. However, in the topological nematic states the lattice dislocations can act as wormholes connecting the different layers and effectively change the topology of the space. Consequently, lattice dislocations become defects with a nontrivial quantum dimension, even when the fractional quantum Hall state being realized is, by itself, Abelian. Our proposal leads to the possibility of realizing the physics of topologically ordered states on high-genus surfaces in the lab even though the sample has only the disk geometry.

  20. Observation of elastic topological states in soft materials.

    Science.gov (United States)

    Li, Shuaifeng; Zhao, Degang; Niu, Hao; Zhu, Xuefeng; Zang, Jianfeng

    2018-04-10

    Topological elastic metamaterials offer insight into classic motion law and open up opportunities in quantum and classic information processing. Theoretical modeling and numerical simulation of elastic topological states have been reported, whereas the experimental observation remains relatively unexplored. Here we present an experimental observation and numerical simulation of tunable topological states in soft elastic metamaterials. The on-demand reversible switch in topological phase has been achieved by changing filling ratio, tension, and/or compression of the elastic metamaterials. By combining two elastic metamaterials with distinct topological invariants, we further demonstrate the formation and dynamic tunability of topological interface states by mechanical deformation, and the manipulation of elastic wave propagation. Moreover, we provide a topological phase diagram of elastic metamaterials under deformation. Our approach to dynamically control interface states in soft materials paves the way to various phononic systems involving thermal management and soft robotics requiring better use of energy.

  1. A priori data-driven multi-clustered reservoir generation algorithm for echo state network.

    Directory of Open Access Journals (Sweden)

    Xiumin Li

    Full Text Available Echo state networks (ESNs with multi-clustered reservoir topology perform better in reservoir computing and robustness than those with random reservoir topology. However, these ESNs have a complex reservoir topology, which leads to difficulties in reservoir generation. This study focuses on the reservoir generation problem when ESN is used in environments with sufficient priori data available. Accordingly, a priori data-driven multi-cluster reservoir generation algorithm is proposed. The priori data in the proposed algorithm are used to evaluate reservoirs by calculating the precision and standard deviation of ESNs. The reservoirs are produced using the clustering method; only the reservoir with a better evaluation performance takes the place of a previous one. The final reservoir is obtained when its evaluation score reaches the preset requirement. The prediction experiment results obtained using the Mackey-Glass chaotic time series show that the proposed reservoir generation algorithm provides ESNs with extra prediction precision and increases the structure complexity of the network. Further experiments also reveal the appropriate values of the number of clusters and time window size to obtain optimal performance. The information entropy of the reservoir reaches the maximum when ESN gains the greatest precision.

  2. Exotic topological insulator states and topological phase transitions in Sb2Se3-Bi2Se3 heterostructures

    KAUST Repository

    Zhang, Qianfan

    2012-03-27

    Topological insulator is a new state of matter attracting tremendous interest due to its gapless linear dispersion and spin momentum locking topological states located near the surface. Heterostructures, which have traditionally been powerful in controlling the electronic properties of semiconductor devices, are interesting for topological insulators. Here, we studied the spatial distribution of the topological state in Sb 2Se 3-Bi 2Se 3 heterostructures by first-principle simulation and discovered that an exotic topological state exists. Surprisingly, the state migrates from the nontrivial Bi 2Se 3 into the trivial Sb 2Se 3 region and spreads across the entire Sb 2Se 3 slab, extending beyond the concept of "surface" state while preserving all of the topological surface state characteristics. This unusual topological state arises from the coupling between different materials and the modification of electronic structure near Fermi energy. Our study demonstrates that heterostructures can open up opportunities for controlling the real-space distribution of the topological state and inducing quantum phase transitions between topologically trivial and nontrivial states. © 2012 American Chemical Society.

  3. Topology-energy relationships and lowest energy configurations for pentagonal dodecahedral (H2O)20X clusters, X=empty, H2O, NH3, H3O+: The importance of O-topology

    Science.gov (United States)

    Anick, David J.

    2010-04-01

    For (H2O)20X water clusters consisting of X enclosed by the 512 dodecahedral cage, X=empty, H2O, NH3, and H3O+, databases are made consisting of 55-82 isomers optimized via B3LYP/6-311++G∗∗. Correlations are explored between ground state electronic energy (Ee) or electronic energy plus zero point energy (Ee+ZPE) and the clusters' topology, defined as the set of directed H-bonds. Linear regression is done to identify topological features that correlate with cluster energy. For each X, variables are found that account for 99% of the variance in Ee and predict it with a rms error under 0.2 kcal/mol. The method of analysis emphasizes the importance of an intermediate level of structure, the "O-topology," consisting of O-types and a list of O pairs that are bonded but omitting H-bond directions, as a device to organize the databases and reduce the number of structures one needs to consider. Relevant variables include three parameters, which count the number of H-bonds having particular donor and acceptor types; |M|2, where M is the cluster's vector dipole moment; and the projection of M onto the symmetry axis of X. Scatter diagrams for Ee or Ee+ZPE versus |M| show that clusters fall naturally into "families" defined by the values of certain discrete parameters, the "major parameters," for each X. Combining "family" analysis and O-topologies, a small group of clusters is identified for each X that are candidates to be the global minimum, and the minimum is determined. For X=H3O+, one cluster with central hydronium lies just 2.08 kcal/mol above the lowest isomer with surface hydronium. Implications of the methodology for dodecahedral (H2O)20(NH4+) and (H2O)20(NH4+)(OH-) are discussed, and new lower energy isomers are found. For MP2/TZVP, the lowest-energy (H2O)20(NH4+) isomer features a trifurcated H-bond. The results suggest a much more efficient and comprehensive way of seeking low-energy water cluster geometries that may have wide applicability.

  4. Topological Invariants and Ground-State Wave functions of Topological Insulators on a Torus

    Directory of Open Access Journals (Sweden)

    Zhong Wang

    2014-01-01

    Full Text Available We define topological invariants in terms of the ground-state wave functions on a torus. This approach leads to precisely defined formulas for the Hall conductance in four dimensions and the topological magnetoelectric θ term in three dimensions, and their generalizations in higher dimensions. They are valid in the presence of arbitrary many-body interactions and disorder. These topological invariants systematically generalize the two-dimensional Niu-Thouless-Wu formula and will be useful in numerical calculations of disordered topological insulators and strongly correlated topological insulators, especially fractional topological insulators.

  5. Chimera states: Effects of different coupling topologies

    Science.gov (United States)

    Bera, Bidesh K.; Majhi, Soumen; Ghosh, Dibakar; Perc, Matjaž

    2017-04-01

    Collective behavior among coupled dynamical units can emerge in various forms as a result of different coupling topologies as well as different types of coupling functions. Chimera states have recently received ample attention as a fascinating manifestation of collective behavior, in particular describing a symmetry breaking spatiotemporal pattern where synchronized and desynchronized states coexist in a network of coupled oscillators. In this perspective, we review the emergence of different chimera states, focusing on the effects of different coupling topologies that describe the interaction network connecting the oscillators. We cover chimera states that emerge in local, nonlocal and global coupling topologies, as well as in modular, temporal and multilayer networks. We also provide an outline of challenges and directions for future research.

  6. Topology in two dimensions. II - The Abell and ACO cluster catalogues

    Science.gov (United States)

    Plionis, Manolis; Valdarnini, Riccardo; Coles, Peter

    1992-09-01

    We apply a method for quantifying the topology of projected galaxy clustering to the Abell and ACO catalogues of rich clusters. We use numerical simulations to quantify the statistical bias involved in using high peaks to define the large-scale structure, and we use the results obtained to correct our observational determinations for this known selection effect and also for possible errors introduced by boundary effects. We find that the Abell cluster sample is consistent with clusters being identified with high peaks of a Gaussian random field, but that the ACO shows a slight meatball shift away from the Gaussian behavior over and above that expected purely from the high-peak selection. The most conservative explanation of this effect is that it is caused by some artefact of the procedure used to select the clusters in the two samples.

  7. Topology in quantum states. PEPS formalism and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Aguado, M [Max-Planck-Institut fuer Quantenoptik. Hans-Kopfermann-Str. 1. D-85748 Garching (Germany); Cirac, J I [Max-Planck-Institut fuer Quantenoptik. Hans-Kopfermann-Str. 1. D-85748 Garching (Germany); Vidal, G [School of Physical Sciences. University of Queensland, Brisbane, QLD, 4072 (Australia)

    2007-11-15

    Topology has been proposed as a tool to protect quantum information encoding and processes. Work concerning the meaning of topology in quantum states as well as its characterisation in the projected entangled pair state (PEPS) formalism and related schemes is reviewed.

  8. Two-dimensionally confined topological edge states in photonic crystals

    International Nuclear Information System (INIS)

    Barik, Sabyasachi; Miyake, Hirokazu; DeGottardi, Wade; Waks, Edo; Hafezi, Mohammad

    2016-01-01

    We present an all-dielectric photonic crystal structure that supports two-dimensionally confined helical topological edge states. The topological properties of the system are controlled by the crystal parameters. An interface between two regions of differing band topologies gives rise to topological edge states confined in a dielectric slab that propagate around sharp corners without backscattering. Three-dimensional finite-difference time-domain calculations show these edges to be confined in the out-of-plane direction by total internal reflection. Such nanoscale photonic crystal architectures could enable strong interactions between photonic edge states and quantum emitters. (paper)

  9. A Topology Control Strategy with Reliability Assurance for Satellite Cluster Networks in Earth Observation.

    Science.gov (United States)

    Chen, Qing; Zhang, Jinxiu; Hu, Ze

    2017-02-23

    This article investigates the dynamic topology control problemof satellite cluster networks (SCNs) in Earth observation (EO) missions by applying a novel metric of stability for inter-satellite links (ISLs). The properties of the periodicity and predictability of satellites' relative position are involved in the link cost metric which is to give a selection criterion for choosing the most reliable data routing paths. Also, a cooperative work model with reliability is proposed for the situation of emergency EO missions. Based on the link cost metric and the proposed reliability model, a reliability assurance topology control algorithm and its corresponding dynamic topology control (RAT) strategy are established to maximize the stability of data transmission in the SCNs. The SCNs scenario is tested through some numeric simulations of the topology stability of average topology lifetime and average packet loss rate. Simulation results show that the proposed reliable strategy applied in SCNs significantly improves the data transmission performance and prolongs the average topology lifetime.

  10. A Topology Control Strategy with Reliability Assurance for Satellite Cluster Networks in Earth Observation

    Directory of Open Access Journals (Sweden)

    Qing Chen

    2017-02-01

    Full Text Available This article investigates the dynamic topology control problemof satellite cluster networks (SCNs in Earth observation (EO missions by applying a novel metric of stability for inter-satellite links (ISLs. The properties of the periodicity and predictability of satellites’ relative position are involved in the link cost metric which is to give a selection criterion for choosing the most reliable data routing paths. Also, a cooperative work model with reliability is proposed for the situation of emergency EO missions. Based on the link cost metric and the proposed reliability model, a reliability assurance topology control algorithm and its corresponding dynamic topology control (RAT strategy are established to maximize the stability of data transmission in the SCNs. The SCNs scenario is tested through some numeric simulations of the topology stability of average topology lifetime and average packet loss rate. Simulation results show that the proposed reliable strategy applied in SCNs significantly improves the data transmission performance and prolongs the average topology lifetime.

  11. Disorder effects in topological states: Brief review of the recent developments

    International Nuclear Information System (INIS)

    Wu Binglan; Zhou Jiaojiao; Jiang Hua; Song Juntao

    2016-01-01

    Disorder inevitably exists in realistic samples, manifesting itself in various exotic properties for the topological states. In this paper, we summarize and briefly review the work completed over the last few years, including our own, regarding recent developments in several topics about disorder effects in topological states. For weak disorder, the robustness of topological states is demonstrated, especially for both quantum spin Hall states with Z 2 = 1 and size induced nontrivial topological insulators with Z 2 = 0. For moderate disorder, by increasing the randomness of both the impurity distribution and the impurity induced potential, the topological insulator states can be created from normal metallic or insulating states. These phenomena and their mechanisms are summarized. For strong disorder, the disorder causes a metal–insulator transition. Due to their topological nature, the phase diagrams are much richer in topological state systems. Finally, the trends in these areas of disorder research are discussed. (topical review)

  12. Disorder effects in topological states: Brief review of the recent developments

    Science.gov (United States)

    Wu, Binglan; Song, Juntao; Zhou, Jiaojiao; Jiang, Hua

    2016-11-01

    Disorder inevitably exists in realistic samples, manifesting itself in various exotic properties for the topological states. In this paper, we summarize and briefly review the work completed over the last few years, including our own, regarding recent developments in several topics about disorder effects in topological states. For weak disorder, the robustness of topological states is demonstrated, especially for both quantum spin Hall states with Z 2 = 1 and size induced nontrivial topological insulators with Z 2 = 0. For moderate disorder, by increasing the randomness of both the impurity distribution and the impurity induced potential, the topological insulator states can be created from normal metallic or insulating states. These phenomena and their mechanisms are summarized. For strong disorder, the disorder causes a metal-insulator transition. Due to their topological nature, the phase diagrams are much richer in topological state systems. Finally, the trends in these areas of disorder research are discussed. Project supported by the National Natural Science Foundation of China (Grant Nos. 11374219, 11474085, and 11534001) and the Natural Science Foundation of Jiangsu Province, China (Grant No BK20160007).

  13. Strain effects in topological insulators: Topological order and the emergence of switchable topological interface states in Sb2Te3/Bi2Te3 heterojunctions

    Science.gov (United States)

    Aramberri, H.; Muñoz, M. C.

    2017-05-01

    We investigate the effects of strain on the topological order of the Bi2Se3 family of topological insulators by ab initio first-principles methods. Strain can induce a topological phase transition and we present the phase diagram for the 3D topological insulators, Bi2Te3 , Sb2Te3 , Bi2Se3 , and Sb2Se3 , under combined uniaxial and biaxial strain. Their phase diagram is universal and shows metallic and insulating phases, both topologically trivial and nontrivial. In particular, uniaxial tension can drive the four compounds into a topologically trivial insulating phase. We propose a Sb2Te3/Bi2Te3 heterojunction in which a strain-induced topological interface state arises in the common gap of this normal insulator-topological insulator heterojunction. Unexpectedly, the interface state is confined in the topologically trivial subsystem and is physically protected from ambient impurities. It can be switched on or off by means of uniaxial strain and therefore Sb2Te3 /Bi2Te3 heterojunctions provide a topological system which hosts tunable robust helical interface states with promising spintronic applications.

  14. Topologically protected bound states in one-dimensional Floquet acoustic waveguide systems

    Science.gov (United States)

    Peng, Yu-Gui; Geng, Zhi-Guo; Zhu, Xue-Feng

    2018-03-01

    Topological manipulation of sound has recently been a hot spot in acoustics due to the fascinating property of defect immune transport. To the best of our knowledge, the studies on one-dimensional (1D) topological acoustic systems hitherto mainly focus on the case of the Su-Schrieffer-Heeger model. Here, we show that topologically protected bound states may also exist in 1D periodically modulated acoustic waveguide systems, viz., 1D Floquet topological insulators. The results show that tuning the coupling strength in a waveguide lattice could trigger topological phase transition, which gives rise to topologically protected interface states as we put together two waveguide lattices featured with different topological phases or winding numbers. However, for the combined lattice, input at the waveguides other than the interfacial ones will excite bulk states. We have further verified the robustness of interface bound states against the variation of coupling strengths between the two distinct waveguide lattices. This work extends the scope of topological acoustics and may promote potential applications for acoustic devices with topological functionalities.

  15. Electrically tunable robust edge states in graphene-based topological photonic crystal slabs

    Science.gov (United States)

    Song, Zidong; Liu, HongJun; Huang, Nan; Wang, ZhaoLu

    2018-03-01

    Topological photonic crystals are optical structures supporting topologically protected unidirectional edge states that exhibit robustness against defects. Here, we propose a graphene-based all-dielectric photonic crystal slab structure that supports two-dimensionally confined topological edge states. These topological edge states can be confined in the out-of-plane direction by two parallel graphene sheets. In the structure, the excitation frequency range of topological edge states can be dynamically and continuously tuned by varying bias voltage across the two parallel graphene sheets. Utilizing this kind of architecture, we construct Z-shaped channels to realize topological edge transmission with diffrerent frequencies. The proposal provides a new degree of freedom to dynamically control topological edge states and potential applications for robust integrated photonic devices and optical communication systems.

  16. A Relation Between Topological Quantum Field Theory and the Kodama State

    OpenAIRE

    Oda, Ichiro

    2003-01-01

    We study a relation between topological quantum field theory and the Kodama (Chern-Simons) state. It is shown that the Kodama (Chern-Simons) state describes a topological state with unbroken diffeomorphism invariance in Yang-Mills theory and Einstein's general relativity in four dimensions. We give a clear explanation of "why" such a topological state exists.

  17. Layer Construction of 3D Topological States and String Braiding Statistics

    Directory of Open Access Journals (Sweden)

    Chao-Ming Jian

    2014-12-01

    Full Text Available While the topological order in two dimensions has been studied extensively since the discovery of the integer and fractional quantum Hall systems, topological states in three spatial dimensions are much less understood. In this paper, we propose a general formalism for constructing a large class of three-dimensional topological states by stacking layers of 2D topological states and introducing coupling between them. Using this construction, different types of topological states can be obtained, including those with only surface topological order and no bulk topological quasiparticles, and those with topological order both in the bulk and at the surface. For both classes of states, we study its generic properties and present several explicit examples. As an interesting consequence of this construction, we obtain example systems with nontrivial braiding statistics between string excitations. In addition to studying the string-string braiding in the example system, we propose a topological field-theory description for the layer-constructed systems, which captures not only the string-particle braiding statistics but also the string-string braiding statistics when the coupling is twisted. Last, we provide a proof of a general identity for Abelian string statistics and discuss an example system with non-Abelian strings.

  18. Duo gating on a 3D topological insulator - independent tuning of both topological surface states

    Science.gov (United States)

    Li, Chuan; de Ronde, Bob; Snelder, Marieke; Stehno, Martin; Huang, Yingkai; Golden, Mark; Brinkman, Alexander; ICE Team; IOP Collaboration

    ABSTRACT: Topological insulators are associated with a trove of exciting physics, such as the ability to host robust anyons, Majorana Bound States, which can be used for quantum computation. For future Majorana devices it is desirable to have the Fermi energy tuned as close as possible to the Dirac point of the topological surface state. Based on previous work on gating BSTS, we report the experimental progress towards gate-tuning of the top and bottom topological surface states of BiSbTeSe2 crystal flakes. When the Fermi level is moved across the Dirac point conduction is shown to change from electron dominated transport to hole dominated transport independently for either surface. In the high magnetic field, one can tune the system precisely between the different landau levels of both surfaces, thus a full gating map of the possible landau levels combination is established. In addition, we provide a simple capacitance model to explain the general hysteresis behaviors in topological insulator systems.

  19. Exploring photonic topological insulator states in a circuit-QED lattice

    Science.gov (United States)

    Li, Jing-Ling; Shan, Chuan-Jia; Zhao, Feng

    2018-04-01

    We propose a simple protocol to explore the topological properties of photonic integer quantum Hall states in a one-dimensional circiut-QED lattice. By periodically modulating the on-site photonic energies in such a lattice, we demonstrate that this one-dimensional lattice model can be mapped into a two-dimensional integer quantum Hall insulator model. Based on the lattice-based cavity input-output theory, we show that both the photonic topological protected edge states and topological invariants can be clearly measured from the final steady state of the resonator lattice after taking into account cavity dissipation. Interestingly, we also find that the measurement signals associated with the above topological features are quite unambitious even in five coupled dissipative resonators. Our work opens up a new prospect of exploring topological states with a small-size dissipative quantum artificial lattice, which is quite attractive to the current quantum optics community.

  20. Fermionic topological quantum states as tensor networks

    Science.gov (United States)

    Wille, C.; Buerschaper, O.; Eisert, J.

    2017-06-01

    Tensor network states, and in particular projected entangled pair states, play an important role in the description of strongly correlated quantum lattice systems. They do not only serve as variational states in numerical simulation methods, but also provide a framework for classifying phases of quantum matter and capture notions of topological order in a stringent and rigorous language. The rapid development in this field for spin models and bosonic systems has not yet been mirrored by an analogous development for fermionic models. In this work, we introduce a tensor network formalism capable of capturing notions of topological order for quantum systems with fermionic components. At the heart of the formalism are axioms of fermionic matrix-product operator injectivity, stable under concatenation. Building upon that, we formulate a Grassmann number tensor network ansatz for the ground state of fermionic twisted quantum double models. A specific focus is put on the paradigmatic example of the fermionic toric code. This work shows that the program of describing topologically ordered systems using tensor networks carries over to fermionic models.

  1. Observation of topological edge states of acoustic metamaterials at subwavelength scale

    Science.gov (United States)

    Dai, Hongqing; Jiao, Junrui; Xia, Baizhan; Liu, Tingting; Zheng, Shengjie; Yu, Dejie

    2018-05-01

    Topological states are of key importance for acoustic wave systems owing to their unique transport properties. In this study, we develop a hexagonal array of hexagonal columns with Helmholtz resonators to obtain subwavelength Dirac cones. Rotation operations are performed to open the Dirac cones and obtain acoustic valley vortex states. In addition, we calculate the angular-dependent frequencies for the band edges at the K-point. Through a topological phase transition, the topological phase of pattern A can change into that of pattern B. The calculations for the bulk dispersion curves show that the acoustic metamaterials exhibit BA-type and AB-type topological edge states. Experimental results demonstrate that a sound wave can transmit well along the topological path. This study could reveal a simple approach to create acoustic topological edge states at the subwavelength scale.

  2. Engineering topological edge states in two dimensional magnetic photonic crystal

    Science.gov (United States)

    Yang, Bing; Wu, Tong; Zhang, Xiangdong

    2017-01-01

    Based on a perturbative approach, we propose a simple and efficient method to engineer the topological edge states in two dimensional magnetic photonic crystals. The topological edge states in the microstructures can be constructed and varied by altering the parameters of the microstructure according to the field-energy distributions of the Bloch states at the related Bloch wave vectors. The validity of the proposed method has been demonstrated by exact numerical calculations through three concrete examples. Our method makes the topological edge states "designable."

  3. (d -2 ) -Dimensional Edge States of Rotation Symmetry Protected Topological States

    Science.gov (United States)

    Song, Zhida; Fang, Zhong; Fang, Chen

    2017-12-01

    We study fourfold rotation-invariant gapped topological systems with time-reversal symmetry in two and three dimensions (d =2 , 3). We show that in both cases nontrivial topology is manifested by the presence of the (d -2 )-dimensional edge states, existing at a point in 2D or along a line in 3D. For fermion systems without interaction, the bulk topological invariants are given in terms of the Wannier centers of filled bands and can be readily calculated using a Fu-Kane-like formula when inversion symmetry is also present. The theory is extended to strongly interacting systems through the explicit construction of microscopic models having robust (d -2 )-dimensional edge states.

  4. Topological surface states on Bi$_{1-x}$Sb$_x$

    DEFF Research Database (Denmark)

    Zhu, Xie-Gang; Hofmann, Philip

    2014-01-01

    Topological insulators support metallic surface states whose existence is protected by the bulk band structure. It has been predicted early that the topology of the surface state Fermi contour should depend on several factors, such as the surface orientation and termination and this raises the qu...

  5. Topologically protected bound states in photonic parity-time-symmetric crystals.

    Science.gov (United States)

    Weimann, S; Kremer, M; Plotnik, Y; Lumer, Y; Nolte, S; Makris, K G; Segev, M; Rechtsman, M C; Szameit, A

    2017-04-01

    Parity-time (PT)-symmetric crystals are a class of non-Hermitian systems that allow, for example, the existence of modes with real propagation constants, for self-orthogonality of propagating modes, and for uni-directional invisibility at defects. Photonic PT-symmetric systems that also support topological states could be useful for shaping and routing light waves. However, it is currently debated whether topological interface states can exist at all in PT-symmetric systems. Here, we show theoretically and demonstrate experimentally the existence of such states: states that are localized at the interface between two topologically distinct PT-symmetric photonic lattices. We find analytical closed form solutions of topological PT-symmetric interface states, and observe them through fluorescence microscopy in a passive PT-symmetric dimerized photonic lattice. Our results are relevant towards approaches to localize light on the interface between non-Hermitian crystals.

  6. Pressure controlled transition into a self-induced topological superconducting surface state

    KAUST Repository

    Zhu, Zhiyong; Cheng, Yingchun; Schwingenschlö gl, Udo

    2014-01-01

    Ab-initio calculations show a pressure induced trivial-nontrivial-trivial topological phase transition in the normal state of 1T-TiSe2. The pressure range in which the nontrivial phase emerges overlaps with that of the superconducting ground state. Thus, topological superconductivity can be induced in protected surface states by the proximity effect of superconducting bulk states. This kind of self-induced topological surface superconductivity is promising for a realization of Majorana fermions due to the absence of lattice and chemical potential mismatches. For appropriate electron doping, the formation of the topological superconducting surface state in 1T-TiSe 2 becomes accessible to experiments as it can be controlled by pressure.

  7. Pressure controlled transition into a self-induced topological superconducting surface state

    KAUST Repository

    Zhu, Zhiyong

    2014-02-07

    Ab-initio calculations show a pressure induced trivial-nontrivial-trivial topological phase transition in the normal state of 1T-TiSe2. The pressure range in which the nontrivial phase emerges overlaps with that of the superconducting ground state. Thus, topological superconductivity can be induced in protected surface states by the proximity effect of superconducting bulk states. This kind of self-induced topological surface superconductivity is promising for a realization of Majorana fermions due to the absence of lattice and chemical potential mismatches. For appropriate electron doping, the formation of the topological superconducting surface state in 1T-TiSe 2 becomes accessible to experiments as it can be controlled by pressure.

  8. Topologically protected states in one-dimensional systems

    CERN Document Server

    Fefferman, C L; Weinstein, M I

    2017-01-01

    The authors study a class of periodic Schrödinger operators, which in distinguished cases can be proved to have linear band-crossings or "Dirac points". They then show that the introduction of an "edge", via adiabatic modulation of these periodic potentials by a domain wall, results in the bifurcation of spatially localized "edge states". These bound states are associated with the topologically protected zero-energy mode of an asymptotic one-dimensional Dirac operator. The authors' model captures many aspects of the phenomenon of topologically protected edge states for two-dimensional bulk structures such as the honeycomb structure of graphene. The states the authors construct can be realized as highly robust TM-electromagnetic modes for a class of photonic waveguides with a phase-defect.

  9. A quantized microwave quadrupole insulator with topologically protected corner states

    Science.gov (United States)

    Peterson, Christopher W.; Benalcazar, Wladimir A.; Hughes, Taylor L.; Bahl, Gaurav

    2018-03-01

    The theory of electric polarization in crystals defines the dipole moment of an insulator in terms of a Berry phase (geometric phase) associated with its electronic ground state. This concept not only solves the long-standing puzzle of how to calculate dipole moments in crystals, but also explains topological band structures in insulators and superconductors, including the quantum anomalous Hall insulator and the quantum spin Hall insulator, as well as quantized adiabatic pumping processes. A recent theoretical study has extended the Berry phase framework to also account for higher electric multipole moments, revealing the existence of higher-order topological phases that have not previously been observed. Here we demonstrate experimentally a member of this predicted class of materials—a quantized quadrupole topological insulator—produced using a gigahertz-frequency reconfigurable microwave circuit. We confirm the non-trivial topological phase using spectroscopic measurements and by identifying corner states that result from the bulk topology. In addition, we test the critical prediction that these corner states are protected by the topology of the bulk, and are not due to surface artefacts, by deforming the edges of the crystal lattice from the topological to the trivial regime. Our results provide conclusive evidence of a unique form of robustness against disorder and deformation, which is characteristic of higher-order topological insulators.

  10. Robustness of edge states in topological quantum dots against global electric field

    Science.gov (United States)

    Qu, Jin-Xian; Zhang, Shu-Hui; Liu, Ding-Yang; Wang, Ping; Yang, Wen

    2017-07-01

    The topological insulator has attracted increasing attention as a new state of quantum matter featured by the symmetry-protected edge states. Although the qualitative robustness of the edge states against local perturbations has been well established, it is not clear how these topological edge states respond quantitatively to a global perturbation. Here, we study the response of topological edge states in a HgTe quantum dot to an external in-plane electric field—a paradigmatic global perturbation in solid-state environments. We find that the stability of the topological edge state could be larger than that of the ground bulk state by several orders of magnitudes. This robustness may be verified by standard transport measurements in the Coulomb blockage regime. Our work may pave the way towards utilizing these topological edge states as stable memory devices for charge and/or spin information and stable emitter of single terahertz photons or entangled terahertz photon pairs for quantum communication.

  11. Parafermionic wires at the interface of chiral topological states

    Science.gov (United States)

    Santos, Luiz; Hughes, Taylor

    We discuss a scenario where local interactions form one-dimensional gapped interfaces between a pair of distinct chiral two-dimensional topological states such that each gapped region terminates at a domain wall separating the chiral gapless edge states of these phases. We show that this type of T-junction supports point-like fractionalized excitations obeying parafermion statistics, thus implying that the one-dimensional gapped interface forms an effective topological parafermionic wire possessing a non-trivial ground state degeneracy. The physical properties of the anyon condensate that gives rise to the gapped interface are investigated. Remarkably, this condensate causes the gapped interface to behave as a type of anyon ``Andreev reflector'' in the bulk, whereby anyons from one phase, upon hitting the interface, can be transformed into a combination of reflected anyons and outgoing anyons from the other phase. Thus, we conclude that while different topological orders can be connected via gapped interfaces, the interfaces are themselves topological.

  12. Thermoelectric properties of 3D topological insulator: Direct observation of topological surface and its gap opened states

    Science.gov (United States)

    Matsushita, Stephane Yu; Huynh, Khuong Kim; Yoshino, Harukazu; Tu, Ngoc Han; Tanabe, Yoichi; Tanigaki, Katsumi

    2017-10-01

    We report thermoelectric (TE) properties of topological surface Dirac states (TSDS) in three-dimensional topological insulators (3D-TIs) purely isolated from the bulk by employing single-crystal B i2 -xS bxT e3 -yS ey films epitaxially grown in the ultrathin limit. Two intrinsic nontrivial topological surface states, a metallic TSDS (m-TSDS) and a gap-opened semiconducting topological state (g-TSDS), are successfully observed by electrical transport, and important TE parameters [electrical conductivity (σ), thermal conductivity (κ), and thermopower (S )] are accurately determined. Pure m-TSDS gives S =-44 μ V K-1 , which is an order of magnitude higher than those of the conventional metals and the value is enhanced to -212 μ V K-1 for g-TSDS. It is clearly shown that the semiclassical Boltzmann transport equation (SBTE) in the framework of constant relaxation time (τ) most frequently used for conventional analysis cannot be valid in 3D-TIs and strong energy dependent relaxation time τ(E ) beyond the Born approximation is essential for making intrinsic interpretations. Although σ is protected on the m-TSDS, κ is greatly influenced by the disorder on the topological surface, giving a dissimilar effect between topologically protected electronic conduction and phonon transport.

  13. Nuclear cluster states

    International Nuclear Information System (INIS)

    Rae, W.D.M.; Merchant, A.C.

    1993-01-01

    We review clustering in light nuclei including molecular resonances in heavy ion reactions. In particular we study the systematics, paying special attention to the relationships between cluster states and superdeformed configurations. We emphasise the selection rules which govern the formation and decay of cluster states. We review some recent experimental results from Daresbury and elsewhere. In particular we report on the evidence for a 7-α chain state in 28 Si in experiments recently performed at the NSF, Daresbury. Finally we begin to address theoretically the important question of the lifetimes of cluster states as deduced from the experimental energy widths of the resonances. (Author)

  14. Topological hierarchy matters — topological matters with superlattices of defects

    International Nuclear Information System (INIS)

    He Jing; Kou Su-Peng

    2016-01-01

    Topological insulators/superconductors are new states of quantum matter with metallic edge/surface states. In this paper, we review the defects effect in these topological states and study new types of topological matters — topological hierarchy matters. We find that both topological defects (quantized vortices) and non topological defects (vacancies) can induce topological mid-gap states in the topological hierarchy matters after considering the superlattice of defects. These topological mid-gap states have nontrivial topological properties, including the nonzero Chern number and the gapless edge states. Effective tight-binding models are obtained to describe the topological mid-gap states in the topological hierarchy matters. (topical review)

  15. Nontrivial topological states on a Möbius band

    NARCIS (Netherlands)

    Beugeling, W.; Quelle, A.; Morais Smith, C.

    2014-01-01

    In the field of topological insulators, the topological properties of quantum states in samples with simple geometries, such as a cylinder or a ribbon, have been classified and understood during the past decade. Here we extend these studies to a Möbius band and argue that its lack of orientability

  16. Protection of surface states in topological nanoparticles

    Science.gov (United States)

    Siroki, Gleb; Haynes, Peter D.; Lee, Derek K. K.; Giannini, Vincenzo

    2017-07-01

    Topological insulators host protected electronic states at their surface. These states show little sensitivity to disorder. For miniaturization one wants to exploit their robustness at the smallest sizes possible. This is also beneficial for optical applications and catalysis, which favor large surface-to-volume ratios. However, it is not known whether discrete states in particles share the protection of their continuous counterparts in large crystals. Here we study the protection of the states hosted by topological insulator nanoparticles. Using both analytical and tight-binding simulations, we show that the states benefit from the same level of protection as those on a planar surface. The results hold for many shapes and sustain surface roughness which may be useful in photonics, spectroscopy, and chemistry. They complement past studies of large crystals—at the other end of possible length scales. The protection of the nanoparticles suggests that samples of all intermediate sizes also possess protected states.

  17. High-Harmonic Generation in Solids with and without Topological Edge States

    Science.gov (United States)

    Bauer, Dieter; Hansen, Kenneth K.

    2018-04-01

    High-harmonic generation in the two topological phases of a finite, one-dimensional, periodic structure is investigated using a self-consistent time-dependent density functional theory approach. For harmonic photon energies smaller than the band gap, the harmonic yield is found to differ by up to 14 orders of magnitude for the two topological phases. This giant topological effect is explained by the degree of destructive interference in the harmonic emission of all valence-band (and edge-state) electrons, which strongly depends on whether or not topological edge states are present. The combination of strong-field laser physics with topological condensed matter opens up new possibilities to electronically control strong-field-based light or particle sources or—conversely—to steer by all optical means topological electronics.

  18. Probing spin helical surface states in topological HgTe nanowires

    Science.gov (United States)

    Ziegler, J.; Kozlovsky, R.; Gorini, C.; Liu, M.-H.; Weishäupl, S.; Maier, H.; Fischer, R.; Kozlov, D. A.; Kvon, Z. D.; Mikhailov, N.; Dvoretsky, S. A.; Richter, K.; Weiss, D.

    2018-01-01

    Nanowires with helical surface states represent key prerequisites for observing and exploiting phase-coherent topological conductance phenomena, such as spin-momentum locked quantum transport or topological superconductivity. We demonstrate in a joint experimental and theoretical study that gated nanowires fabricated from high-mobility strained HgTe, known as a bulk topological insulator, indeed preserve the topological nature of the surface states, that moreover extend phase-coherently across the entire wire geometry. The phase-coherence lengths are enhanced up to 5 μ m when tuning the wires into the bulk gap, so as to single out topological transport. The nanowires exhibit distinct conductance oscillations, both as a function of the flux due to an axial magnetic field and of a gate voltage. The observed h /e -periodic Aharonov-Bohm-type modulations indicate surface-mediated quasiballistic transport. Furthermore, an in-depth analysis of the scaling of the observed gate-dependent conductance oscillations reveals the topological nature of these surface states. To this end we combined numerical tight-binding calculations of the quantum magnetoconductance with simulations of the electrostatics, accounting for the gate-induced inhomogeneous charge carrier densities around the wires. We find that helical transport prevails even for strongly inhomogeneous gating and is governed by flux-sensitive high-angular momentum surface states that extend around the entire wire circumference.

  19. Signatures of Majorana bound states in one-dimensional topological superconductors

    International Nuclear Information System (INIS)

    Pientka, Falko

    2014-01-01

    Topological states of matter have fascinated condensed matter physicists for the past three decades. Famous examples include the integer and fractional quantum Hall states exhibiting a spectacular conductance quantization as well as topological insulators in two and three dimensions featuring gapless Dirac fermions at the boundary. Very recently, novel topological phases in superconductors have been subject of intense experimental and theoretical investigation. One-dimensional topological superconductors are particularly intriguing as they host exotic Majorana end states. These are zero-energy bound states with nonabelian exchange statistics potentially useful for topologically protected quantum computing. Recent theoretical and experimental advances have put the realization of Majorana states within reach of current measurement techniques. In this thesis we investigate signatures of Majorana bound states in realistic experiments aiming to improve the theoretical understanding of ongoing experimental efforts and to design novel measurement schemes, which exhibit convincing signatures of Majoranas. In particular we account for nonideal experimental conditions which can lead to qualitatively new features. Possible signatures of Majoranas can be accessed in the Josephson current through a weak link between two topological superconductors although the signatures in the dc Josephson effect are typically obscured by inevitable quasiparticle relaxation in the superconductor. Here we propose a measurement scheme in mesoscopic superconducting rings, where Majorana signatures persist even for infinitely fast relaxation. In a separate project we outline an alternative to the standard Josephson experiment in topological superconductors based on quantum wires. We delineate how Majoranas can be detected, when the Josephson current is induced by noncollinear magnetic fields applied to the two banks of the junction instead of a superconducting phase difference. Another important

  20. High-Harmonic Generation in Solids with and without Topological Edge States

    DEFF Research Database (Denmark)

    Bauer, Dieter; Hansen, Kenneth Christian Klochmann

    2018-01-01

    High-harmonic generation in the two topological phases of a finite, one-dimensional, periodic structure is investigated using a self-consistent time-dependent density functional theory approach. For harmonic photon energies smaller than the band gap, the harmonic yield is found to differ by up...... to 14 orders of magnitude for the two topological phases. This giant topological effect is explained by the degree of destructive interference in the harmonic emission of all valence-band (and edge-state) electrons, which strongly depends on whether or not topological edge states are present...

  1. Topological quantum phase transitions and edge states in spin-orbital coupled Fermi gases.

    Science.gov (United States)

    Zhou, Tao; Gao, Yi; Wang, Z D

    2014-06-11

    We study superconducting states in the presence of spin-orbital coupling and Zeeman field. It is found that a phase transition from a Fulde-Ferrell-Larkin-Ovchinnikov state to the topological superconducting state occurs upon increasing the spin-orbital coupling. The nature of this topological phase transition and its critical property are investigated numerically. Physical properties of the topological superconducting phase are also explored. Moreover, the local density of states is calculated, through which the topological feature may be tested experimentally.

  2. Topological interpretation of multiquark states

    International Nuclear Information System (INIS)

    Nicolescu, B.

    1980-12-01

    In this talk we discuss the topological selection rules which govern the physics of multiquark states in the framework in the DTU theory. These new selection rules lead us to expect that narrow multiquark hadrons are rare, are strongly coupled only to some particular channels, and appear only in some restricted mass regions

  3. The topology of galaxy clustering.

    Science.gov (United States)

    Coles, P.; Plionis, M.

    The authors discuss an objective method for quantifying the topology of the galaxy distribution using only projected galaxy counts. The method is a useful complement to fully three-dimensional studies of topology based on the genus by virtue of the enormous projected data sets available. Applying the method to the Lick counts they find no evidence for large-scale non-gaussian behaviour, whereas the small-scale distribution is strongly non-gaussian, with a shift in the meatball direction.

  4. Topological interface states and effects for next generation of innovative devices

    International Nuclear Information System (INIS)

    Kantser, Valeriu; Carlig, Sergiu

    2013-01-01

    Topological insulators (TI) have opened a gateway to search new quantum electronic phase of the condensed matter as well as to pave new platform of modern technology. This stems mainly on their unique surface states that are protected by time-reversal symmetry, show the Dirac cones connecting the inverted conduction and valence bands and exhibit unique spin-momentum locking property. Increasing the surface state contribution in proportion to the bulk of material is critical to investigate the surface states and for future innovative device applications. The way to achieve this is to configure topological insulators into nanostructures, which at the same time in combination with others materials significantly enlarge the variety of new states and phenomena. This article reviews the recent progress made in topological insulator nano heterostructures electronic states investigation. The state of art of different new scenario of engineering topologically interface states in the TI heterostructures are revealed, in particular by using polarization fields and antiferromagnetic ordering. Some of new proposals for innovative electronic devices are discussed. (authors)

  5. Robustness of Topological Superconductivity in Solid State Hybrid Structures

    Science.gov (United States)

    Sitthison, Piyapong

    The non-Abelian statistics of Majorana fermions (MFs) makes them an ideal platform for implementing topological quantum computation. In addition to the fascinating fundamental physics underlying the emergence of MFs, this potential for applications makes the study of these quasiparticles an extremely popular subject in condensed matter physics. The commonly called `Majorana fermions' are zero-energy bound states that emerge near boundaries and defects in topological superconducting phases, which can be engineered, for example, by proximity coupling strong spin-orbit coupling semiconductor nanowires and ordinary s-wave superconductors. The stability of these bound states is determined by the stability of the underlying topological superconducting phase. Hence, understanding their stability (which is critical for quantum computation), involves studying the robustness of the engineered topological superconductors. This work addresses this important problem in the context of two types of hybrid structures that have been proposed for realizing topological superconductivity: topological insulator - superconductor (TI-SC) and semiconductor - superconductor (SM-SC) nanostructures. In both structures, electrostatic effects due to applied external potentials and interface-induced potentials are significant. This work focuses on developing a theoretical framework for understanding these effects, to facilitate the optimization of the nanostructures studied in the laboratory. The approach presented in this thesis is based on describing the low-energy physics of the hybrid structure using effective tight-binding models that explicitly incorporate the proximity effects emerging at interfaces. Generically, as a result of the proximity coupling to the superconductor, an induced gap emerges in the semiconductor (topological insulator) sub-system. The strength of the proximity-induced gap is determined by the transparency of the interface and by the amplitude of the low- energy SM

  6. Estimation of Branch Topology Errors in Power Networks by WLAN State Estimation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hong Rae [Soonchunhyang University(Korea); Song, Kyung Bin [Kei Myoung University(Korea)

    2000-06-01

    The purpose of this paper is to detect and identify topological errors in order to maintain a reliable database for the state estimator. In this paper, a two stage estimation procedure is used to identify the topology errors. At the first stage, the WLAV state estimator which has characteristics to remove bad data during the estimation procedure is run for finding out the suspected branches at which topology errors take place. The resulting residuals are normalized and the measurements with significant normalized residuals are selected. A set of suspected branches is formed based on these selected measurements; if the selected measurement if a line flow, the corresponding branch is suspected; if it is an injection, then all the branches connecting the injection bus to its immediate neighbors are suspected. A new WLAV state estimator adding the branch flow errors in the state vector is developed to identify the branch topology errors. Sample cases of single topology error and topology error with a measurement error are applied to IEEE 14 bus test system. (author). 24 refs., 1 fig., 9 tabs.

  7. Fe-Cluster Compounds of Chalcogenides: Candidates for Rare-Earth-Free Permanent Magnet and Magnetic Nodal-Line Topological Material.

    Science.gov (United States)

    Zhao, Xin; Wang, Cai-Zhuang; Kim, Minsung; Ho, Kai-Ming

    2017-12-04

    Fe-cluster-based crystal structures are predicted for chalcogenides Fe 3 X 4 (X = S, Se, Te) using an adaptive genetic algorithm. Topologically different from the well-studied layered structures of iron chalcogenides, the newly predicted structures consist of Fe clusters that are either separated by the chalcogen atoms or connected via sharing of the vertex Fe atoms. Using first-principles calculations, we demonstrate that these structures have competitive or even lower formation energies than the experimentally synthesized Fe 3 X 4 compounds and exhibit interesting magnetic and electronic properties. In particular, we show that Fe 3 Te 4 can be a good candidate as a rare-earth-free permanent magnet and Fe 3 S 4 can be a magnetic nodal-line topological material.

  8. In-surface confinement of topological insulator nanowire surface states

    International Nuclear Information System (INIS)

    Chen, Fan W.; Jauregui, Luis A.; Tan, Yaohua; Manfra, Michael; Klimeck, Gerhard; Chen, Yong P.; Kubis, Tillmann

    2015-01-01

    The bandstructures of [110] and [001] Bi 2 Te 3 nanowires are solved with the atomistic 20 band tight binding functionality of NEMO5. The theoretical results reveal: The popular assumption that all topological insulator (TI) wire surfaces are equivalent is inappropriate. The Fermi velocity of chemically distinct wire surfaces differs significantly which creates an effective in-surface confinement potential. As a result, topological insulator surface states prefer specific surfaces. Therefore, experiments have to be designed carefully not to probe surfaces unfavorable to the surface states (low density of states) and thereby be insensitive to the TI-effects

  9. In-surface confinement of topological insulator nanowire surface states

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Fan W., E-mail: fanchen@purdue.edu [Department of Physics and Astronomy, Purdue, West Lafayette, Indiana 47907 (United States); Network for Computational Nanotechnology, Purdue, West Lafayette, Indiana 47907 (United States); Jauregui, Luis A. [School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States); Tan, Yaohua [Network for Computational Nanotechnology, Purdue, West Lafayette, Indiana 47907 (United States); School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Manfra, Michael [Department of Physics and Astronomy, Purdue, West Lafayette, Indiana 47907 (United States); School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States); School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Klimeck, Gerhard [Network for Computational Nanotechnology, Purdue, West Lafayette, Indiana 47907 (United States); School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States); Chen, Yong P. [Department of Physics and Astronomy, Purdue, West Lafayette, Indiana 47907 (United States); School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States); Kubis, Tillmann [Network for Computational Nanotechnology, Purdue, West Lafayette, Indiana 47907 (United States)

    2015-09-21

    The bandstructures of [110] and [001] Bi{sub 2}Te{sub 3} nanowires are solved with the atomistic 20 band tight binding functionality of NEMO5. The theoretical results reveal: The popular assumption that all topological insulator (TI) wire surfaces are equivalent is inappropriate. The Fermi velocity of chemically distinct wire surfaces differs significantly which creates an effective in-surface confinement potential. As a result, topological insulator surface states prefer specific surfaces. Therefore, experiments have to be designed carefully not to probe surfaces unfavorable to the surface states (low density of states) and thereby be insensitive to the TI-effects.

  10. In-surface confinement of topological insulator nanowire surface states

    Science.gov (United States)

    Chen, Fan W.; Jauregui, Luis A.; Tan, Yaohua; Manfra, Michael; Klimeck, Gerhard; Chen, Yong P.; Kubis, Tillmann

    2015-09-01

    The bandstructures of [110] and [001] Bi2Te3 nanowires are solved with the atomistic 20 band tight binding functionality of NEMO5. The theoretical results reveal: The popular assumption that all topological insulator (TI) wire surfaces are equivalent is inappropriate. The Fermi velocity of chemically distinct wire surfaces differs significantly which creates an effective in-surface confinement potential. As a result, topological insulator surface states prefer specific surfaces. Therefore, experiments have to be designed carefully not to probe surfaces unfavorable to the surface states (low density of states) and thereby be insensitive to the TI-effects.

  11. On physical states in 2d (topological) gravity

    International Nuclear Information System (INIS)

    Bouwknegt, P.; McCarthy, J.; Pilch, K.

    1993-01-01

    We review the BRST computation of physical states in various 2d gravity theories. First we discuss the cohomology relevant for 2d gravity coupled to c ≤ 1 conformal matter. We then use these results to compute the cohomology of a c=26 βγ-system, i.e. restricted 2d topological gravity. We also comment on the cohomology for the complete 2d topological gravity. (author). 39 refs

  12. Clustering of resting state networks.

    Directory of Open Access Journals (Sweden)

    Megan H Lee

    Full Text Available The goal of the study was to demonstrate a hierarchical structure of resting state activity in the healthy brain using a data-driven clustering algorithm.The fuzzy-c-means clustering algorithm was applied to resting state fMRI data in cortical and subcortical gray matter from two groups acquired separately, one of 17 healthy individuals and the second of 21 healthy individuals. Different numbers of clusters and different starting conditions were used. A cluster dispersion measure determined the optimal numbers of clusters. An inner product metric provided a measure of similarity between different clusters. The two cluster result found the task-negative and task-positive systems. The cluster dispersion measure was minimized with seven and eleven clusters. Each of the clusters in the seven and eleven cluster result was associated with either the task-negative or task-positive system. Applying the algorithm to find seven clusters recovered previously described resting state networks, including the default mode network, frontoparietal control network, ventral and dorsal attention networks, somatomotor, visual, and language networks. The language and ventral attention networks had significant subcortical involvement. This parcellation was consistently found in a large majority of algorithm runs under different conditions and was robust to different methods of initialization.The clustering of resting state activity using different optimal numbers of clusters identified resting state networks comparable to previously obtained results. This work reinforces the observation that resting state networks are hierarchically organized.

  13. Exotic topological insulator states and topological phase transitions in Sb2Se3-Bi2Se3 heterostructures

    KAUST Repository

    Zhang, Qianfan; Zhang, Zhiyong; Zhu, Zhiyong; Schwingenschlö gl, Udo; Cui, Yi

    2012-01-01

    in controlling the electronic properties of semiconductor devices, are interesting for topological insulators. Here, we studied the spatial distribution of the topological state in Sb 2Se 3-Bi 2Se 3 heterostructures by first-principle simulation and discovered

  14. [Aberrant topological properties of whole-brain functional network in chronic right-sided sensorineural hearing loss: a resting-state functional MRI study].

    Science.gov (United States)

    Zhang, Lingling; Liu, Bin; Xu, Yangwen; Yang, Ming; Feng, Yuan; Huang, Yaqing; Huan, Zhichun; Hou, Zhaorui

    2015-02-03

    To investigate the topological properties of the functional brain network in unilateral sensorineural hearing loss patients. In this study, we acquired resting-state BOLD- fMRI data from 19 right-sided SNHL patients and 31 healthy controls with normal hearing and constructed their whole brain functional networks. Two-sample two-tailed t-tests were performed to investigate group differences in topological parameters between the USNHL patients and the controls. Partial correlation analysis was conducted to determine the relationships between the network metrics and USNHL-related variables. Both USNHL patients and controls exhibited small-word architecture in their brain functional networks within the range 0. 1 - 0. 2 of sparsity. Compared to the controls, USNHL patients showed significant increase in characteristic path length and normalized characteristic path length, but significant decrease in global efficiency. Clustering coefficient, local efficiency and normalized clustering coefficient demonstrated no significant difference. Furthermore, USNHL patients exhibited no significant association between the altered network metrics and the duration of USNHL or the severity of hearing loss. Our results indicated the altered topological properties of whole brain functional networks in USNHL patients, which may help us to understand pathophysiologic mechanism of USNHL patients.

  15. Localized topological states in Bragg multihelicoidal fibers with twist defects

    Science.gov (United States)

    Alexeyev, C. N.; Lapin, B. P.; Milione, G.; Yavorsky, M. A.

    2016-06-01

    We have studied the influence of a twist defect in multihelicoidal Bragg fibers on the emerging of localized defect modes. We have shown that if such a fiber is excited with a Gaussian beam this leads to the appearance of a defect-localized topological state, whose topological charge coincides with the order of rotational symmetry of the fiber's refractive index. We have shown that this effect has a pronounced crossover behavior. We have also formulated a principle of creating the systems that can nestle defect-localized topologically charged modes. According to this principle, such systems have to possess topological activity, that is, the ability to change the topological charge of the incoming field, and operate in the Bragg regime.

  16. Edge states and integer quantum Hall effect in topological insulator thin films.

    Science.gov (United States)

    Zhang, Song-Bo; Lu, Hai-Zhou; Shen, Shun-Qing

    2015-08-25

    The integer quantum Hall effect is a topological state of quantum matter in two dimensions, and has recently been observed in three-dimensional topological insulator thin films. Here we study the Landau levels and edge states of surface Dirac fermions in topological insulators under strong magnetic field. We examine the formation of the quantum plateaux of the Hall conductance and find two different patterns, in one pattern the filling number covers all integers while only odd integers in the other. We focus on the quantum plateau closest to zero energy and demonstrate the breakdown of the quantum spin Hall effect resulting from structure inversion asymmetry. The phase diagrams of the quantum Hall states are presented as functions of magnetic field, gate voltage and chemical potential. This work establishes an intuitive picture of the edge states to understand the integer quantum Hall effect for Dirac electrons in topological insulator thin films.

  17. Surface states on a topologically nontrivial semimetal: The case of Sb(110)

    DEFF Research Database (Denmark)

    Bianchi, Marco; Guan, Dandan; Strózecka, Anna

    2012-01-01

    The electronic structure of Sb(110) is studied by angle-resolved photoemission spectroscopy and first-principles calculations, revealing several electronic surface states in the projected bulk band gaps around the Fermi energy. The dispersion of the states can be interpreted in terms of a strong...... spin-orbit splitting. The bulk band structure of Sb has the characteristics of a strong topological insulator with a Z2 invariant ν0 = 1. This puts constraints on the existence of metallic surface states and the expected topology of the surface Fermi contour. However, bulk Sb is a semimetal......, not an insulator, and these constraints are therefore partly relaxed. This relation of bulk topology and expected surface-state dispersion for semimetals is discussed....

  18. Evidence of topological insulator state in the semimetal LaBi

    Science.gov (United States)

    Lou, R.; Fu, B.-B.; Xu, Q. N.; Guo, P.-J.; Kong, L.-Y.; Zeng, L.-K.; Ma, J.-Z.; Richard, P.; Fang, C.; Huang, Y.-B.; Sun, S.-S.; Wang, Q.; Wang, L.; Shi, Y.-G.; Lei, H. C.; Liu, K.; Weng, H. M.; Qian, T.; Ding, H.; Wang, S.-C.

    2017-03-01

    By employing angle-resolved photoemission spectroscopy combined with first-principles calculations, we performed a systematic investigation on the electronic structure of LaBi, which exhibits extremely large magnetoresistance (XMR), and is theoretically predicted to possess band anticrossing with nontrivial topological properties. Here, the observations of the Fermi-surface topology and band dispersions are similar to previous studies on LaSb [L.-K. Zeng, R. Lou, D.-S. Wu, Q. N. Xu, P.-J. Guo, L.-Y. Kong, Y.-G. Zhong, J.-Z. Ma, B.-B. Fu, P. Richard, P. Wang, G. T. Liu, L. Lu, Y.-B. Huang, C. Fang, S.-S. Sun, Q. Wang, L. Wang, Y.-G. Shi, H. M. Weng, H.-C. Lei, K. Liu, S.-C. Wang, T. Qian, J.-L. Luo, and H. Ding, Phys. Rev. Lett. 117, 127204 (2016), 10.1103/PhysRevLett.117.127204], a topologically trivial XMR semimetal, except the existence of a band inversion along the Γ -X direction, with one massless and one gapped Dirac-like surface state at the X and Γ points, respectively. The odd number of massless Dirac cones suggests that LaBi is analogous to the time-reversal Z2 nontrivial topological insulator. These findings open up a new series for exploring novel topological states and investigating their evolution from the perspective of topological phase transition within the family of rare-earth monopnictides.

  19. Impact of network topology on self-organized criticality

    Science.gov (United States)

    Hoffmann, Heiko

    2018-02-01

    The general mechanisms behind self-organized criticality (SOC) are still unknown. Several microscopic and mean-field theory approaches have been suggested, but they do not explain the dependence of the exponents on the underlying network topology of the SOC system. Here, we first report the phenomena that in the Bak-Tang-Wiesenfeld (BTW) model, sites inside an avalanche area largely return to their original state after the passing of an avalanche, forming, effectively, critically arranged clusters of sites. Then, we hypothesize that SOC relies on the formation process of these clusters, and present a model of such formation. For low-dimensional networks, we show theoretically and in simulation that the exponent of the cluster-size distribution is proportional to the ratio of the fractal dimension of the cluster boundary and the dimensionality of the network. For the BTW model, in our simulations, the exponent of the avalanche-area distribution matched approximately our prediction based on this ratio for two-dimensional networks, but deviated for higher dimensions. We hypothesize a transition from cluster formation to the mean-field theory process with increasing dimensionality. This work sheds light onto the mechanisms behind SOC, particularly, the impact of the network topology.

  20. Cluster Mean-Field Approach to the Steady-State Phase Diagram of Dissipative Spin Systems

    Directory of Open Access Journals (Sweden)

    Jiasen Jin

    2016-07-01

    Full Text Available We show that short-range correlations have a dramatic impact on the steady-state phase diagram of quantum driven-dissipative systems. This effect, never observed in equilibrium, follows from the fact that ordering in the steady state is of dynamical origin, and is established only at very long times, whereas in thermodynamic equilibrium it arises from the properties of the (free energy. To this end, by combining the cluster methods extensively used in equilibrium phase transitions to quantum trajectories and tensor-network techniques, we extend them to nonequilibrium phase transitions in dissipative many-body systems. We analyze in detail a model of spin-1/2 on a lattice interacting through an XYZ Hamiltonian, each of them coupled to an independent environment that induces incoherent spin flips. In the steady-state phase diagram derived from our cluster approach, the location of the phase boundaries and even its topology radically change, introducing reentrance of the paramagnetic phase as compared to the single-site mean field where correlations are neglected. Furthermore, a stability analysis of the cluster mean field indicates a susceptibility towards a possible incommensurate ordering, not present if short-range correlations are ignored.

  1. Topological surface states scattering in antimony

    KAUST Repository

    Narayan, Awadhesh

    2012-11-05

    In this work we study the topologically protected states of the Sb(111) surface by using ab initio transport theory. In the presence of a strong surface perturbation we obtain standing-wave states resulting from the superposition of spin-polarized surface states. By Fourier analysis, we identify the underlying two dimensional scattering processes and the spin texture. We find evidence of resonant transmission across surface barriers at quantum well state energies and evaluate their lifetimes. Our results are in excellent agreement with experimental findings. We also show that despite the presence of a step edge along a different high-symmetry direction, the surface states exhibit unperturbed transmission around the Fermi energy for states with near to normal incidence. © 2012 American Physical Society.

  2. Topological surface states scattering in antimony

    KAUST Repository

    Narayan, Awadhesh; Rungger, Ivan; Sanvito, Stefano

    2012-01-01

    In this work we study the topologically protected states of the Sb(111) surface by using ab initio transport theory. In the presence of a strong surface perturbation we obtain standing-wave states resulting from the superposition of spin-polarized surface states. By Fourier analysis, we identify the underlying two dimensional scattering processes and the spin texture. We find evidence of resonant transmission across surface barriers at quantum well state energies and evaluate their lifetimes. Our results are in excellent agreement with experimental findings. We also show that despite the presence of a step edge along a different high-symmetry direction, the surface states exhibit unperturbed transmission around the Fermi energy for states with near to normal incidence. © 2012 American Physical Society.

  3. Selective buckling via states of self-stress in topological metamaterials.

    Science.gov (United States)

    Paulose, Jayson; Meeussen, Anne S; Vitelli, Vincenzo

    2015-06-23

    States of self-stress--tensions and compressions of structural elements that result in zero net forces--play an important role in determining the load-bearing ability of structures ranging from bridges to metamaterials with tunable mechanical properties. We exploit a class of recently introduced states of self-stress analogous to topological quantum states to sculpt localized buckling regions in the interior of periodic cellular metamaterials. Although the topological states of self-stress arise in the linear response of an idealized mechanical frame of harmonic springs connected by freely hinged joints, they leave a distinct signature in the nonlinear buckling behavior of a cellular material built out of elastic beams with rigid joints. The salient feature of these localized buckling regions is that they are indistinguishable from their surroundings as far as material parameters or connectivity of their constituent elements are concerned. Furthermore, they are robust against a wide range of structural perturbations. We demonstrate the effectiveness of this topological design through analytical and numerical calculations as well as buckling experiments performed on two- and three-dimensional metamaterials built out of stacked kagome lattices.

  4. A clustering approach to examine the dynamics of the NASDAQ topology in times of crisis

    Directory of Open Access Journals (Sweden)

    Salim Lahmiri

    2012-10-01

    Full Text Available This paper investigates the dynamics of the NASDAQ topology before, during, and after 2008 financial crisis. First, multiresolution analysis by virtue of wavelet transform is employed to denoise each NASDAQ sector return series. Second, the correlation matrix of sectors is built and analyzed in each time period to view comovements of sectors. Third, hierarchical clustering trees are constructed in each time period to find out how the structure of the NASDAQ market evolves through time. Our results suggest that interrelationships between sectors become stronger in times of crisis and especially in post-crisis period. In addition, some markets tend to form the same cluster in all time periods; for instance the Industrial and Bank sectors and the Telecommunication and Computer sectors. However, the general topology of the NASDAQ market has been considerably changed over periods. In sum, the complex structure of the NASDAQ market is dynamic and is more integrated after 2008 financial crisis. This result indicates that there are less diversification opportunities in the post-crisis period in comparison with pre-crisis period. These empirical findings are important for the development of subsequent portfolio strategies.

  5. Coupling effect of topological states and Chern insulators in two-dimensional triangular lattices

    Science.gov (United States)

    Zhang, Jiayong; Zhao, Bao; Xue, Yang; Zhou, Tong; Yang, Zhongqin

    2018-03-01

    We investigate topological states of two-dimensional (2D) triangular lattices with multiorbitals. Tight-binding model calculations of a 2D triangular lattice based on px and py orbitals exhibit very interesting doubly degenerate energy points at different positions (Γ and K /K' ) in momentum space, with quadratic non-Dirac and linear Dirac band dispersions, respectively. Counterintuitively, the system shows a global topologically trivial rather than nontrivial state with consideration of spin-orbit coupling due to the "destructive interference effect" between the topological states at the Γ and K /K' points. The topologically nontrivial state can emerge by introducing another set of triangular lattices to the system (bitriangular lattices) due to the breakdown of the interference effect. With first-principles calculations, we predict an intrinsic Chern insulating behavior (quantum anomalous Hall effect) in a family of the 2D triangular lattice metal-organic framework of Co(C21N3H15) (TPyB-Co) from this scheme. Our results provide a different path and theoretical guidance for the search for and design of new 2D topological quantum materials.

  6. Scanning tunneling microscopy study of the possible topological surface states in BiTeCl

    International Nuclear Information System (INIS)

    Yan, Y J; Ren, M Q; Liu, X; Huang, Z C; Jiang, J; Fan, Q; Miao, J; Xie, B P; Zhang, T; Feng, D L; Xiang, F; Wang, X

    2015-01-01

    Recently, the non-centrosymmetric bismuth tellurohalides such as BiTeCl are being studied as possible candidates for topological insulators. While some photoemission studies showed that BiTeCl is an inversion asymmetric topological insulator, others showed that it is a normal semiconductor with Rashba splitting. Meanwhile, first-principle calculations have failed to confirm the existence of topological surface states in BiTeCl so far. Therefore, the topological nature of BiTeCl requires further investigation. Here we report a low-temperature scanning tunneling microscopy study on the surface states of BiTeCl single crystals. On the tellurium (Te) -terminated surfaces with relatively low defect density, evidence for topological surface states is observed in the quasi-particle interference patterns, both in the anisotropy of the scattering vectors and the fast decay of the interference near the step edges. Meanwhile, on the samples with much higher defect densities, we observed surface states that behave differently. Our results may help to resolve the current controversy on the topological nature of BiTeCl. (paper)

  7. Wavefunctions for topological quantum registers

    International Nuclear Information System (INIS)

    Ardonne, E.; Schoutens, K.

    2007-01-01

    We present explicit wavefunctions for quasi-hole excitations over a variety of non-abelian quantum Hall states: the Read-Rezayi states with k ≥ 3 clustering properties and a paired spin-singlet quantum Hall state. Quasi-holes over these states constitute a topological quantum register, which can be addressed by braiding quasi-holes. We obtain the braid properties by direct inspection of the quasi-hole wavefunctions. We establish that the braid properties for the paired spin-singlet state are those of 'Fibonacci anyons', and thus suitable for universal quantum computation. Our derivations in this paper rely on explicit computations in the parafermionic conformal field theories that underly these particular quantum Hall states

  8. Universal quantum computing using (Zd) 3 symmetry-protected topologically ordered states

    Science.gov (United States)

    Chen, Yanzhu; Prakash, Abhishodh; Wei, Tzu-Chieh

    2018-02-01

    Measurement-based quantum computation describes a scheme where entanglement of resource states is utilized to simulate arbitrary quantum gates via local measurements. Recent works suggest that symmetry-protected topologically nontrivial, short-ranged entangled states are promising candidates for such a resource. Miller and Miyake [npj Quantum Inf. 2, 16036 (2016), 10.1038/npjqi.2016.36] recently constructed a particular Z2×Z2×Z2 symmetry-protected topological state on the Union Jack lattice and established its quantum-computational universality. However, they suggested that the same construction on the triangular lattice might not lead to a universal resource. Instead of qubits, we generalize the construction to qudits and show that the resulting (d -1 ) qudit nontrivial Zd×Zd×Zd symmetry-protected topological states are universal on the triangular lattice, for d being a prime number greater than 2. The same construction also holds for other 3-colorable lattices, including the Union Jack lattice.

  9. Topology with applications topological spaces via near and far

    CERN Document Server

    Naimpally, Somashekhar A

    2013-01-01

    The principal aim of this book is to introduce topology and its many applications viewed within a framework that includes a consideration of compactness, completeness, continuity, filters, function spaces, grills, clusters and bunches, hyperspace topologies, initial and final structures, metric spaces, metrization, nets, proximal continuity, proximity spaces, separation axioms, and uniform spaces. This book provides a complete framework for the study of topology with a variety of applications in science and engineering that include camouflage filters, classification, digital image processing, forgery detection, Hausdorff raster spaces, image analysis, microscopy, paleontology, pattern recognition, population dynamics, stem cell biology, topological psychology, and visual merchandising. It is the first complete presentation on topology with applications considered in the context of proximity spaces, and the nearness and remoteness of sets of objects. A novel feature throughout this book is the use of near and...

  10. Topological Phases in Graphene Nanoribbons: Junction States, Spin Centers, and Quantum Spin Chains

    Science.gov (United States)

    Cao, Ting; Zhao, Fangzhou; Louie, Steven G.

    2017-08-01

    We show that semiconducting graphene nanoribbons (GNRs) of different width, edge, and end termination (synthesizable from molecular precursors with atomic precision) belong to different electronic topological classes. The topological phase of GNRs is protected by spatial symmetries and dictated by the terminating unit cell. We have derived explicit formulas for their topological invariants and shown that localized junction states developed between two GNRs of distinct topology may be tuned by lateral junction geometry. The topology of a GNR can be further modified by dopants, such as a periodic array of boron atoms. In a superlattice consisting of segments of doped and pristine GNRs, the junction states are stable spin centers, forming a Heisenberg antiferromagnetic spin 1 /2 chain with tunable exchange interaction. The discoveries here not only are of scientific interest for studies of quasi-one-dimensional systems, but also open a new path for design principles of future GNR-based devices through their topological characters.

  11. Topological Gyroscopic Metamaterials

    Science.gov (United States)

    Nash, Lisa Michelle

    Topological materials are generally insulating in their bulk, with protected conducting states on their boundaries that are robust against disorder and perturbation of material property. The existence of these conducting edge states is characterized by an integer topological invariant. Though the phenomenon was first discovered in electronic systems, recent years have shown that topological states exist in classical systems as well. In this thesis we are primarily concerned with the topological properties of gyroscopic materials, which are created by coupling networks of fast-spinning objects. Through a series of simulations, numerical calculations, and experiments, we show that these materials can support topological edge states. We find that edge states in these gyroscopic metamaterials bear the hallmarks of topology related to broken time reversal symmetry: they transmit excitations unidirectionally and are extremely robust against experimental disorder. We also explore requirements for topology by studying several lattice configurations and find that topology emerges naturally in gyroscopic systems.A simple prescription can be used to create many gyroscopic lattices. Though many of our gyroscopic networks are periodic, we explore amorphous point-sets and find that topology also emerges in these networks.

  12. Pairing States of Spin-3/2 Fermions: Symmetry-Enforced Topological Gap Functions

    Science.gov (United States)

    Venderbos, Jörn W. F.; Savary, Lucile; Ruhman, Jonathan; Lee, Patrick A.; Fu, Liang

    2018-01-01

    We study the topological properties of superconductors with paired j =3/2 quasiparticles. Higher spin Fermi surfaces can arise, for instance, in strongly spin-orbit coupled band-inverted semimetals. Examples include the Bi-based half-Heusler materials, which have recently been established as low-temperature and low-carrier density superconductors. Motivated by this experimental observation, we obtain a comprehensive symmetry-based classification of topological pairing states in systems with higher angular momentum Cooper pairing. Our study consists of two main parts. First, we develop the phenomenological theory of multicomponent (i.e., higher angular momentum) pairing by classifying the stationary points of the free energy within a Ginzburg-Landau framework. Based on the symmetry classification of stationary pairing states, we then derive the symmetry-imposed constraints on their gap structures. We find that, depending on the symmetry quantum numbers of the Cooper pairs, different types of topological pairing states can occur: fully gapped topological superconductors in class DIII, Dirac superconductors, and superconductors hosting Majorana fermions. Notably, we find a series of nematic fully gapped topological superconductors, as well as double- and triple-Dirac superconductors, with quadratic and cubic dispersion, respectively. Our approach, applied here to the case of j =3/2 Cooper pairing, is rooted in the symmetry properties of pairing states, and can therefore also be applied to other systems with higher angular momentum and high-spin pairing. We conclude by relating our results to experimentally accessible signatures in thermodynamic and dynamic probes.

  13. Interaction effects and quantum phase transitions in topological insulators

    International Nuclear Information System (INIS)

    Varney, Christopher N.; Sun Kai; Galitski, Victor; Rigol, Marcos

    2010-01-01

    We study strong correlation effects in topological insulators via the Lanczos algorithm, which we utilize to calculate the exact many-particle ground-state wave function and its topological properties. We analyze the simple, noninteracting Haldane model on a honeycomb lattice with known topological properties and demonstrate that these properties are already evident in small clusters. Next, we consider interacting fermions by introducing repulsive nearest-neighbor interactions. A first-order quantum phase transition was discovered at finite interaction strength between the topological band insulator and a topologically trivial Mott insulating phase by use of the fidelity metric and the charge-density-wave structure factor. We construct the phase diagram at T=0 as a function of the interaction strength and the complex phase for the next-nearest-neighbor hoppings. Finally, we consider the Haldane model with interacting hard-core bosons, where no evidence for a topological phase is observed. An important general conclusion of our work is that despite the intrinsic nonlocality of topological phases their key topological properties manifest themselves already in small systems and therefore can be studied numerically via exact diagonalization and observed experimentally, e.g., with trapped ions and cold atoms in optical lattices.

  14. Bulk and interface quantum states of electrons in multi-layer heterostructures with topological materials

    Science.gov (United States)

    Nikolic, Aleksandar; Zhang, Kexin; Barnes, C. H. W.

    2018-06-01

    In this article we describe the bulk and interface quantum states of electrons in multi-layer heterostructures in one dimension, consisting of topological insulators (TIs) and topologically trivial materials. We use and extend an effective four-band continuum Hamiltonian by introducing position dependence to the eight material parameters of the Hamiltonian. We are able to demonstrate complete conduction-valence band mixing in the interface states. We find evidence for topological features of bulk states of multi-layer TI heterostructures, as well as demonstrating both complete and incomplete conduction-valence band inversion at different bulk state energies. We show that the linear k z terms in the low-energy Hamiltonian, arising from overlap of p z orbitals between different atomic layers in the case of chalcogenides, control the amount of tunneling from TIs to trivial insulators. Finally, we show that the same linear k z terms in the low-energy Hamiltonian affect the material’s ability to form the localised interface state, and we demonstrate that due to this effect the spin and probability density localisation in a thin film of Sb2Te3 is incomplete. We show that changing the parameter that controls the magnitude of the overlap of p z orbitals affects the transport characteristics of the topologically conducting states, with incomplete topological state localisation resulting in increased backscattering.

  15. Electronic interconnects and devices with topological surface states and methods for fabricating same

    Science.gov (United States)

    Yazdani, Ali; Ong, N. Phuan; Cava, Robert J.

    2016-05-03

    An interconnect is disclosed with enhanced immunity of electrical conductivity to defects. The interconnect includes a material with charge carriers having topological surface states. Also disclosed is a method for fabricating such interconnects. Also disclosed is an integrated circuit including such interconnects. Also disclosed is a gated electronic device including a material with charge carriers having topological surface states.

  16. Electronic interconnects and devices with topological surface states and methods for fabricating same

    Energy Technology Data Exchange (ETDEWEB)

    Yazdani, Ali; Ong, N. Phuan; Cava, Robert J.

    2017-04-04

    An interconnect is disclosed with enhanced immunity of electrical conductivity to defects. The interconnect includes a material with charge carriers having topological surface states. Also disclosed is a method for fabricating such interconnects. Also disclosed is an integrated circuit including such interconnects. Also disclosed is a gated electronic device including a material with charge carriers having topological surface states.

  17. Symmetric Topological Phases and Tensor Network States

    Science.gov (United States)

    Jiang, Shenghan

    Classification and simulation of quantum phases are one of main themes in condensed matter physics. Quantum phases can be distinguished by their symmetrical and topological properties. The interplay between symmetry and topology in condensed matter physics often leads to exotic quantum phases and rich phase diagrams. Famous examples include quantum Hall phases, spin liquids and topological insulators. In this thesis, I present our works toward a more systematically understanding of symmetric topological quantum phases in bosonic systems. In the absence of global symmetries, gapped quantum phases are characterized by topological orders. Topological orders in 2+1D are well studied, while a systematically understanding of topological orders in 3+1D is still lacking. By studying a family of exact solvable models, we find at least some topological orders in 3+1D can be distinguished by braiding phases of loop excitations. In the presence of both global symmetries and topological orders, the interplay between them leads to new phases termed as symmetry enriched topological (SET) phases. We develop a framework to classify a large class of SET phases using tensor networks. For each tensor class, we can write down generic variational wavefunctions. We apply our method to study gapped spin liquids on the kagome lattice, which can be viewed as SET phases of on-site symmetries as well as lattice symmetries. In the absence of topological order, symmetry could protect different topological phases, which are often referred to as symmetry protected topological (SPT) phases. We present systematic constructions of tensor network wavefunctions for bosonic symmetry protected topological (SPT) phases respecting both onsite and spatial symmetries.

  18. Exotic Non-Abelian Topological Defects in Lattice Fractional Quantum Hall States

    Science.gov (United States)

    Liu, Zhao; Möller, Gunnar; Bergholtz, Emil J.

    2017-09-01

    We investigate extrinsic wormholelike twist defects that effectively increase the genus of space in lattice versions of multicomponent fractional quantum Hall systems. Although the original band structure is distorted by these defects, leading to localized midgap states, we find that a new lowest flat band representing a higher genus system can be engineered by tuning local single-particle potentials. Remarkably, once local many-body interactions in this new band are switched on, we identify various Abelian and non-Abelian fractional quantum Hall states, whose ground-state degeneracy increases with the number of defects, i.e, with the genus of space. This sensitivity of topological degeneracy to defects provides a "proof of concept" demonstration that genons, predicted by topological field theory as exotic non-Abelian defects tied to a varying topology of space, do exist in realistic microscopic models. Specifically, our results indicate that genons could be created in the laboratory by combining the physics of artificial gauge fields in cold atom systems with already existing holographic beam shaping methods for creating twist defects.

  19. Simplification of Water Distribution Network Simulation by Topological Clustering – Investigation of its Potential Use in Copenhagen's Water Supply Monitoring and Contamination Contingency Plans

    DEFF Research Database (Denmark)

    Kirstein, Jonas Kjeld; Albrechtsen, Hans-Jørgen; Rygaard, Martin

    2014-01-01

    Topological clustering was investigated to simplify a complex water distribution network of Copenhagen, Denmark, into recogniz- able water movement patterns. This made it possible to assess the general transport of the water and to suggest strategic sampling locations. Through a topological...... the samples’ comparability over time, and locations, where samples represent the distributed and consumed water in the Nørrebro district....

  20. Topological helical edge states in water waves over a topographical bottom

    KAUST Repository

    Wu, Shi qiao

    2017-11-27

    We present the discovery of topologically protected helical edge states in water wave systems, which are realized in water wave propagating over a topographical bottom whose height is modulated periodically in a two-dimensional triangular pattern. We develop an effective Hamiltonian to characterize the dispersion relation and use spin Chern numbers to classify the topology. Through full wave simulations we unambiguously demonstrate the robustness of the helical edge states which are immune to defects and disorders so that the backscattering loss is significantly reduced. A spin splitter is designed for water wave systems, where helical edge states with different spin orientations are spatially separated with each other, and potential applications are discussed.

  1. Topological helical edge states in water waves over a topographical bottom

    KAUST Repository

    Wu, Shi qiao; Wu, Ying; Mei, Jun

    2017-01-01

    We present the discovery of topologically protected helical edge states in water wave systems, which are realized in water wave propagating over a topographical bottom whose height is modulated periodically in a two-dimensional triangular pattern. We develop an effective Hamiltonian to characterize the dispersion relation and use spin Chern numbers to classify the topology. Through full wave simulations we unambiguously demonstrate the robustness of the helical edge states which are immune to defects and disorders so that the backscattering loss is significantly reduced. A spin splitter is designed for water wave systems, where helical edge states with different spin orientations are spatially separated with each other, and potential applications are discussed.

  2. Topological origin of edge states in two-dimensional inversion-symmetric insulators and semimetals

    NARCIS (Netherlands)

    Miert, Guido van|info:eu-repo/dai/nl/413490378; Ortix, Carmine|info:eu-repo/dai/nl/413315304; de Morais Smith, C.|info:eu-repo/dai/nl/304836346

    2017-01-01

    Symmetries play an essential role in identifying and characterizing topological states of matter. Here, we classify topologically two-dimensional (2D) insulators and semimetals with vanishing spin-orbit coupling using time-reversal ($\\mathcal{T}$) and inversion ($\\mathcal{I}$) symmetry. This allows

  3. Electronic states of zigzag graphene nanoribbons with edges reconstructed with topological defects

    Energy Technology Data Exchange (ETDEWEB)

    Pincak, R., E-mail: pincak@saske.sk [Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 043 53 Kosice (Slovakia); Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region (Russian Federation); Smotlacha, J., E-mail: smota@centrum.cz [Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region (Russian Federation); Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University, Brehova 7, 110 00 Prague (Czech Republic); Osipov, V.A., E-mail: osipov@theor.jinr.ru [Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region (Russian Federation)

    2015-10-15

    The energy spectrum and electronic density of states (DOS) of zigzag graphene nanoribbons with edges reconstructed with topological defects are investigated within the tight-binding method. In case of the Stone–Wales zz(57) edge the low-energy spectrum is markedly changed in comparison to the pristine zz edge. We found that the electronic DOS at the Fermi level is different from zero at any width of graphene nanoribbons. In contrast, for ribbons with heptagons only at one side and pentagons at another one the energy gap at the Fermi level is open and the DOS is equal to zero. The reason is the influence of uncompensated topological charges on the localized edge states, which are topological in nature. This behavior is similar to that found for the structured external electric potentials along the edges.

  4. Topological BF field theory description of topological insulators

    International Nuclear Information System (INIS)

    Cho, Gil Young; Moore, Joel E.

    2011-01-01

    Research highlights: → We show that a BF theory is the effective theory of 2D and 3D topological insulators. → The non-gauge-invariance of the bulk theory yields surface terms for a bosonized Dirac fermion. → The 'axion' term in electromagnetism is correctly obtained from gapped surfaces. → Generalizations to possible fractional phases are discussed in closing. - Abstract: Topological phases of matter are described universally by topological field theories in the same way that symmetry-breaking phases of matter are described by Landau-Ginzburg field theories. We propose that topological insulators in two and three dimensions are described by a version of abelian BF theory. For the two-dimensional topological insulator or quantum spin Hall state, this description is essentially equivalent to a pair of Chern-Simons theories, consistent with the realization of this phase as paired integer quantum Hall effect states. The BF description can be motivated from the local excitations produced when a π flux is threaded through this state. For the three-dimensional topological insulator, the BF description is less obvious but quite versatile: it contains a gapless surface Dirac fermion when time-reversal-symmetry is preserved and yields 'axion electrodynamics', i.e., an electromagnetic E . B term, when time-reversal symmetry is broken and the surfaces are gapped. Just as changing the coefficients and charges of 2D Chern-Simons theory allows one to obtain fractional quantum Hall states starting from integer states, BF theory could also describe (at a macroscopic level) fractional 3D topological insulators with fractional statistics of point-like and line-like objects.

  5. A Novel Cluster Head Selection Algorithm Based on Fuzzy Clustering and Particle Swarm Optimization.

    Science.gov (United States)

    Ni, Qingjian; Pan, Qianqian; Du, Huimin; Cao, Cen; Zhai, Yuqing

    2017-01-01

    An important objective of wireless sensor network is to prolong the network life cycle, and topology control is of great significance for extending the network life cycle. Based on previous work, for cluster head selection in hierarchical topology control, we propose a solution based on fuzzy clustering preprocessing and particle swarm optimization. More specifically, first, fuzzy clustering algorithm is used to initial clustering for sensor nodes according to geographical locations, where a sensor node belongs to a cluster with a determined probability, and the number of initial clusters is analyzed and discussed. Furthermore, the fitness function is designed considering both the energy consumption and distance factors of wireless sensor network. Finally, the cluster head nodes in hierarchical topology are determined based on the improved particle swarm optimization. Experimental results show that, compared with traditional methods, the proposed method achieved the purpose of reducing the mortality rate of nodes and extending the network life cycle.

  6. Quest for Highly-connected MOF Platforms: Rare-Earth Polynuclear Clusters Versatility Meets Net Topology Needs.

    KAUST Repository

    Alezi, Dalal

    2015-04-07

    Gaining control over the assembly of highly porous rare-earth (RE) based metal-organic frameworks (MOFs) remains challenging. Here we report the latest discoveries on our continuous quest for highly-connected nets. The topological exploration based on the non-compatibility of 12-connected RE polynuclear carboxylate-based cluster, points of extension matching the 12 vertices of the cuboctahedron (cuo), with 3-connected organic ligands led to the discovery of two fascinating and highly-connected minimal edge-transitive nets, pek and aea. The reduced symmetry of the employed triangular tricarboxylate ligand, as compared to the prototype highly symmetrical 1,3,5-benzene(tris)benzoic acid guided the concurrent occurrence of nonanuclear [RE9(μ3-OH)12(μ3-O)2(O2C–)12] and hexanuclear [RE6(OH)8(O2C–)8] carboxylate-based clusters as 12-connected and 8-connected molecular building blocks in the structure of a 3-periodic pek-MOF based on a novel (3,8,12)-c trinodal net. The use of a tricarboxylate ligand with modified angles between carboxylate moieties led to the formation of a second MOF containing solely nonanuclear clusters and exhibiting once more a novel and a highly-connected (3,12,12)-c trinodal net with aea topology. Notably, it is the first time that RE-MOFs with double six-membered ring (d6R) secondary building units are isolated, representing therefore a critical step forward toward the design of novel and highly coordinated materials using the supermolecular building layer approach while considering the d6Rs as building pillars. Lastly, the potential of these new MOFs for gas separation/storage was investigated by performing gas adsorption studies of various probe gas molecules over a wide range of pressures. Noticeably, pek-MOF-1 showed excellent volumetric CO2 and CH4 uptakes at high pressures.

  7. Quench dynamics of topological maximally entangled states.

    Science.gov (United States)

    Chung, Ming-Chiang; Jhu, Yi-Hao; Chen, Pochung; Mou, Chung-Yu

    2013-07-17

    We investigate the quench dynamics of the one-particle entanglement spectra (OPES) for systems with topologically nontrivial phases. By using dimerized chains as an example, it is demonstrated that the evolution of OPES for the quenched bipartite systems is governed by an effective Hamiltonian which is characterized by a pseudospin in a time-dependent pseudomagnetic field S(k,t). The existence and evolution of the topological maximally entangled states (tMESs) are determined by the winding number of S(k,t) in the k-space. In particular, the tMESs survive only if nontrivial Berry phases are induced by the winding of S(k,t). In the infinite-time limit the equilibrium OPES can be determined by an effective time-independent pseudomagnetic field Seff(k). Furthermore, when tMESs are unstable, they are destroyed by quasiparticles within a characteristic timescale in proportion to the system size.

  8. Cyclic and Coherent States in Flocks with Topological Distance

    Science.gov (United States)

    Bhattacherjee, Biplab; Bhattacharya, Kunal; Manna, Subhrangshu

    2014-01-01

    A simple model of the two dimensional collective motion of a group of mobile agents have been studied. Like birds, these agents travel in open free space where each of them interacts with the first n neighbors determined by the topological distance with a free boundary condition. Using the same prescription for interactions used in the Vicsek model with scalar noise it has been observed that the flock, in absence of the noise, arrives at a number of interesting stationary states. One of the two most prominent states is the `single sink state' where the entire flock travels along the same direction maintaining perfect cohesion and coherence. The other state is the `cyclic state' where every individual agent executes a uniform circular motion, and the correlation among the agents guarantees that the entire flock executes a pulsating dynamics i.e., expands and contracts periodically between a minimum and a maximum size of the flock. We have studied another limiting situation when refreshing rate of the interaction zone is the fastest. In this case the entire flock gets fragmented into smaller clusters of different sizes. On introduction of scalar noise a crossover is observed when the agents cross over from a ballistic motion to a diffusive motion. Expectedly the crossover time is dependent on the strength of the noise η and diverges as η → 0. An even more simpler version of this model has been studied by suppressing the translational degrees of freedom of the agents but retaining their angular motion. Here agents are the spins, placed at the sites of a square lattice with periodic boundary condition. Every spin interacts with its n = 2, 3 or 4 nearest neighbors. In the stationary state the entire spin pattern moves as a whole when interactions are anisotropic with n = 2 and 3; but it is completely frozen when the interaction is isotropic with n=4$. These spin configu

  9. Cyclic and Coherent States in Flocks with Topological Distance

    Directory of Open Access Journals (Sweden)

    Biplab eBhattacherjee

    2014-01-01

    Full Text Available A simple model of the two dimensional collective motion of a group of mobile agents have been studied. Like birds, these agents travel in open free space where each of them interacts with the first $n$ neighbors determined by the topological distance with a free boundary condition. Using the same prescription for interactions used in the Vicsek model with scalar noise it has been observed that the flock, in absence of the noise, arrives at a number of interesting stationary states. One of the two most prominent states is the `single sink state' where the entire flock travels along the same direction maintaining perfect cohesion and coherence. The other state is the `cyclic state' where every individual agent executes a uniform circular motion, and the correlation among the agents guarantees that the entire flock executes a pulsating dynamics i.e., expands and contracts periodically between a minimum and a maximum size of the flock. We have studied another limiting situation when refreshing rate of the interaction zone is the fastest. In this case the entire flock gets fragmented into smaller clusters of different sizes. On introduction of scalar noise a crossover is observed when the agents cross over from a ballistic motion to a diffusive motion. Expectedly the crossover time is dependent on the strength of the noise $eta$ and diverges as $eta to 0$. An even more simpler version of this model has been studied by suppressing the translational degrees of freedom of the agents but retaining their angular motion. Here agents are the spins, placed at the sites of a square lattice with periodic boundary condition. Every spin interacts with its $n$ = 2, 3 or 4 nearest neighbors. In the stationary state the entire spin pattern moves as a whole when interactions are anisotropic with $n$ = 2 and 3; but it is completely frozen when the interaction is isotropic with $n=4$. These spin configu

  10. Topological states in a two-dimensional metal alloy in Si surface: BiAg/Si(111)-4 ×4 surface

    Science.gov (United States)

    Zhang, Xiaoming; Cui, Bin; Zhao, Mingwen; Liu, Feng

    2018-02-01

    A bridging topological state with a conventional semiconductor platform offers an attractive route towards future spintronics and quantum device applications. Here, based on first-principles and tight-binding calculations, we demonstrate the existence of topological states hosted by a two-dimensional (2D) metal alloy in a Si surface, the BiAg/Si(111)-4 ×4 surface, which has already been synthesized experimentally. It exhibits a topological insulating state with an energy gap of 71 meV (˜819 K ) above the Fermi level and a topological metallic state with quasiquantized conductance below the Fermi level. The underlying mechanism leading to the formation of such nontrivial states is revealed by analysis of the "charge-transfer" and "orbital-filtering" effect of the Si substrate. A minimal effective tight-binding model is employed to reveal the formation mechanism of the topological states. Our finding opens opportunities to detect topological states and measure its quantized conductance in a large family of 2D surface metal alloys, which have been or are to be grown on semiconductor substrates.

  11. Topological phases of topological-insulator thin films

    Science.gov (United States)

    Asmar, Mahmoud M.; Sheehy, Daniel E.; Vekhter, Ilya

    2018-02-01

    We study the properties of a thin film of topological insulator material. We treat the coupling between helical states at opposite surfaces of the film in the properly-adapted tunneling approximation, and show that the tunneling matrix element oscillates as a function of both the film thickness and the momentum in the plane of the film for Bi2Se3 and Bi2Te3 . As a result, while the magnitude of the matrix element at the center of the surface Brillouin zone gives the gap in the energy spectrum, the sign of the matrix element uniquely determines the topological properties of the film, as demonstrated by explicitly computing the pseudospin textures and the Chern number. We find a sequence of transitions between topological and nontopological phases, separated by semimetallic states, as the film thickness varies. In the topological phase, the edge states of the film always exist but only carry a spin current if the edge potentials break particle-hole symmetry. The edge states decay very slowly away from the boundary in Bi2Se3 , making Bi2Te3 , where this scale is shorter, a more promising candidate for the observation of these states. Our results hold for free-standing films as well as heterostructures with large-gap insulators.

  12. Simulation and Validation of the ATLAS Level-1 Topological Trigger

    CERN Document Server

    Bakker, Pepijn Johannes; The ATLAS collaboration

    2017-01-01

    The ATLAS experiment has recently commissioned a new component of its first-level trigger: the L1 topological trigger. This system, using state-of-the-art FPGA processors, makes it possible to reject events by applying topological requirements, such as kinematic criteria involving clusters, jets, muons, and total transverse energy. The data recorded using the L1Topological trigger demonstrates that this innovative trigger strategy allows for an improved rejection rate without efficiency loss. This improvement has been shown for several relevant physics processes leading to low-$p_T$ leptons, including $H\\to{}\\tau{}\\tau{}$ and $J/\\Psi\\to{}\\mu{}\\mu{}$. In addition, an accurate simulation of the L1Topological trigger is used to validate and optimize the performance of this trigger. To reach such an accuracy, this simulation must take into account the fact that the firmware algorithms are executed on a FPGA architecture, while the simulation is executed on a floating point architecture.

  13. Fingerprints of a Bosonic Symmetry-Protected Topological State in a Quantum Point Contact

    Science.gov (United States)

    Zhang, Rui-Xing; Liu, Chao-Xing

    2017-05-01

    In this work, we study the transport through a quantum point contact for bosonic helical liquid that exists at the edge of a bilayer graphene under a strong magnetic field. We identify "smoking gun" transport signatures to distinguish a bosonic symmetry-protected topological (BSPT) state from a fermionic two-channel quantum spin Hall (QSH) state in this system. In particular, a novel charge-insulator-spin-conductor phase is found for the BSPT state, while either the charge-insulator-spin-insulator or the charge-conductor-spin-conductor phase is expected for the two-channel QSH state. Consequently, a simple transport measurement will reveal the fingerprint of bosonic topological physics in bilayer graphene systems.

  14. Matrix product states and equivariant topological field theories for bosonic symmetry-protected topological phases in (1+1) dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Shiozaki, Ken [Department of Physics, University of Illinois at Urbana Champaign,1110 West Green Street, Urbana, IL 61801 (United States); Ryu, Shinsei [James Franck Institute and Kadanoff Center for Theoretical Physics, University of Chicago,5640 South Ellis Ave, Chicago, IL 60637 (United States)

    2017-04-18

    Matrix Product States (MPSs) provide a powerful framework to study and classify gapped quantum phases — symmetry-protected topological (SPT) phases in particular — defined in one dimensional lattices. On the other hand, it is natural to expect that gapped quantum phases in the limit of zero correlation length are described by topological quantum field theories (TFTs or TQFTs). In this paper, for (1+1)-dimensional bosonic SPT phases protected by symmetry G, we bridge their descriptions in terms of MPSs, and those in terms of G-equivariant TFTs. In particular, for various topological invariants (SPT invariants) constructed previously using MPSs, we provide derivations from the point of view of (1+1) TFTs. We also discuss the connection between boundary degrees of freedom, which appear when one introduces a physical boundary in SPT phases, and “open” TFTs, which are TFTs defined on spacetimes with boundaries.

  15. A time-reversal invariant topological phase at the surface of a 3D topological insulator

    International Nuclear Information System (INIS)

    Bonderson, Parsa; Nayak, Chetan; Qi, Xiao-Liang

    2013-01-01

    A 3D fermionic topological insulator has a gapless Dirac surface state protected by time-reversal symmetry and charge conservation symmetry. The surface state can be gapped by introducing ferromagnetism to break time-reversal symmetry, introducing superconductivity to break charge conservation, or entering a topological phase. In this paper, we construct a minimal gapped topological phase that preserves both time-reversal and charge conservation symmetries and supports Ising-type non-Abelian anyons. This phase can be understood heuristically as emerging from a surface s-wave superconducting state via the condensation of eight-vortex composites. The topological phase inherits vortices supporting Majorana zero modes from the surface superconducting state. However, since it is time-reversal invariant, the surface topological phase is a distinct phase from the Ising topological phase, which can be viewed as a quantum-disordered spin-polarized p x + ip y superconductor. We discuss the anyon model of this topological phase and the manner in which time-reversal symmetry is realized in it. We also study the interfaces between the topological state and other surface gapped phases. (paper)

  16. Topological Acoustics

    Science.gov (United States)

    Yang, Zhaoju; Gao, Fei; Shi, Xihang; Lin, Xiao; Gao, Zhen; Chong, Yidong; Zhang, Baile

    2015-03-01

    The manipulation of acoustic wave propagation in fluids has numerous applications, including some in everyday life. Acoustic technologies frequently develop in tandem with optics, using shared concepts such as waveguiding and metamedia. It is thus noteworthy that an entirely novel class of electromagnetic waves, known as "topological edge states," has recently been demonstrated. These are inspired by the electronic edge states occurring in topological insulators, and possess a striking and technologically promising property: the ability to travel in a single direction along a surface without backscattering, regardless of the existence of defects or disorder. Here, we develop an analogous theory of topological fluid acoustics, and propose a scheme for realizing topological edge states in an acoustic structure containing circulating fluids. The phenomenon of disorder-free one-way sound propagation, which does not occur in ordinary acoustic devices, may have novel applications for acoustic isolators, modulators, and transducers.

  17. Extremely large nonsaturating magnetoresistance and ultrahigh mobility due to topological surface states in the metallic Bi2Te3 topological insulator

    Science.gov (United States)

    Shrestha, K.; Chou, M.; Graf, D.; Yang, H. D.; Lorenz, B.; Chu, C. W.

    2017-05-01

    Weak antilocalization (WAL) effects in Bi2Te3 single crystals have been investigated at high and low bulk charge-carrier concentrations. At low charge-carrier density the WAL curves scale with the normal component of the magnetic field, demonstrating the dominance of topological surface states in magnetoconductivity. At high charge-carrier density the WAL curves scale with neither the applied field nor its normal component, implying a mixture of bulk and surface conduction. WAL due to topological surface states shows no dependence on the nature (electrons or holes) of the bulk charge carriers. The observations of an extremely large nonsaturating magnetoresistance and ultrahigh mobility in the samples with lower carrier density further support the presence of surface states. The physical parameters characterizing the WAL effects are calculated using the Hikami-Larkin-Nagaoka formula. At high charge-carrier concentrations, there is a greater number of conduction channels and a decrease in the phase coherence length compared to low charge-carrier concentrations. The extremely large magnetoresistance and high mobility of topological insulators have great technological value and can be exploited in magnetoelectric sensors and memory devices.

  18. Fermiology and Superconductivity of Topological Surface States in PdTe2

    Science.gov (United States)

    Clark, O. J.; Neat, M. J.; Okawa, K.; Bawden, L.; Marković, I.; Mazzola, F.; Feng, J.; Sunko, V.; Riley, J. M.; Meevasana, W.; Fujii, J.; Vobornik, I.; Kim, T. K.; Hoesch, M.; Sasagawa, T.; Wahl, P.; Bahramy, M. S.; King, P. D. C.

    2018-04-01

    We study the low-energy surface electronic structure of the transition-metal dichalcogenide superconductor PdTe2 by spin- and angle-resolved photoemission, scanning tunneling microscopy, and density-functional theory-based supercell calculations. Comparing PdTe2 with its sister compound PtSe2 , we demonstrate how enhanced interlayer hopping in the Te-based material drives a band inversion within the antibonding p -orbital manifold well above the Fermi level. We show how this mediates spin-polarized topological surface states which form rich multivalley Fermi surfaces with complex spin textures. Scanning tunneling spectroscopy reveals type-II superconductivity at the surface, and moreover shows no evidence for an unconventional component of its superconducting order parameter, despite the presence of topological surface states.

  19. Dirac-Screening Stabilized Surface-State Transport in a Topological Insulator

    Directory of Open Access Journals (Sweden)

    Christoph Brüne

    2014-12-01

    Full Text Available We report magnetotransport studies on a gated strained HgTe device. This material is a three-dimensional topological insulator and exclusively shows surface-state transport. Remarkably, the Landau-level dispersion and the accuracy of the Hall quantization remain unchanged over a wide density range (3×10^{11}  cm^{−2}state dominated, where bulk transport would have been expected to coexist already. Moreover, the density dependence of the Dirac-type quantum Hall effect allows us to identify the contributions from the individual surfaces. A k·p model can describe the experiments but only when assuming a steep band bending across the regions where the topological surface states are contained. This steep potential originates from the specific screening properties of Dirac systems and causes the gate voltage to influence the position of the Dirac points rather than that of the Fermi level.

  20. Tunable Majorana corner states in a two-dimensional second-order topological superconductor induced by magnetic fields

    Science.gov (United States)

    Zhu, Xiaoyu

    2018-05-01

    A two-dimensional second-order topological superconductor exhibits a finite gap in both bulk and edges, with the nontrivial topology manifesting itself through Majorana zero modes localized at the corners, i.e., Majorana corner states. We investigate a time-reversal-invariant topological superconductor in two dimensions and demonstrate that an in-plane magnetic field could transform it into a second-order topological superconductor. A detailed analysis reveals that the magnetic field gives rise to mass terms which take distinct values among the edges, and Majorana corner states naturally emerge at the intersection of two adjacent edges with opposite masses. With the rotation of the magnetic field, Majorana corner states localized around the boundary may hop from one corner to a neighboring one and eventually make a full circle around the system when the field rotates by 2 π . In the end, we briefly discuss physical realizations of this system.

  1. Tolerance of topological surface state towards adsorbed magnetic moments: Fe on Bi{sub 2}Te{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Scholz, Markus; Marchenko, Dmitry; Sanchez-Barriga, Jaime; Varykhalov, Andrei; Rader, Oliver [Helmholtz-Zentrum fuer Materialien und Energie, Berlin (Germany); Volykhov, Andrei; Yashina, Lada [Moscow State University, Moskau, Russland (Russian Federation)

    2011-07-01

    Topological surface states on Bi{sub 2}Se{sub 3} and Bi{sub 2}Te{sub 3} are protected by time reversal symmetry. Magnetic fields break time-reversal symmetry, and they have been used in two-dimensional spin quantum-Hall systems to destroy the topological edge states. Another possibility is to introduce magnetic moments. This has been done by substitution of Mn and Fe into the bulk. For Fe a small gap of 44meV was created, however, at very large amounts (12%). In this work, we deposit Fe directly onto the surface where the topological surface state is localized. We show for coverages of 0.25 and 1 ML Fe that the Dirac point remains intact and no gap appears. Core level spectroscopy of Bi and Te states gives insight into the interaction between substrate and adatoms. In addition, extra surface states appear at the Fermi energy which show a large Rashba-type spin-orbit splitting. The orientation of the spin of both, the topological as well as the Rashba-type split surface states is analysed.

  2. Dirac cone and pseudogapped density of states in the topological half-Heusler compound YPtBi

    Science.gov (United States)

    Kronenberg, A.; Braun, J.; Minár, J.; Elmers, H.-J.; Kutnyakhov, D.; Zaporozhchenko, A. V.; Wallauer, R.; Chernov, S.; Medjanik, K.; Schönhense, G.; Kläui, M.; Chadov, S.; Ebert, H.; Jourdan, M.

    2016-10-01

    Topological insulators (TIs) are exciting materials, which exhibit unprecedented properties, such as helical spin-momentum locking, which leads to large torques for magnetic switching and highly efficient spin current detection. Here we explore the compound YPtBi, an example from the class of half-Heusler materials, for which the typical band inversion of topological insulators was predicted. We prepared this material as thin films by conventional cosputtering from elementary targets. By in situ time-of-flight momentum microscopy, a Dirac conelike surface state with a Dirac point ≃300 meV below the Fermi energy was observed, in agreement with electronic structure-photoemission calculations. Only little additional spectral weight due to other states was observed at EF, which corroborates the identification of the topologically protected surface state and is highly relevant for spintronics applications.

  3. Topologically protected edge states for out-of-plane and in-plane bulk elastic waves

    Science.gov (United States)

    Huo, Shao-Yong; Chen, Jiu-Jiu; Huang, Hong-Bo

    2018-04-01

    Topological phononic insulators (TPnIs) show promise for application in the manipulation of acoustic waves for the design of low-loss transmission and perfectly integrated communication devices. Since solid phononic crystals exist as a transverse polarization mode and a mixed longitudinal-transverse polarization mode, the realization of topological edge states for both out-of-plane and in-plane bulk elastic waves is desirable to enhance the controllability of the edge waves in solid systems. In this paper, a two-dimensional (2D) solid/solid hexagonal-latticed phononic system that simultaneously supports the topologically protected edge states for out-of-plane and in-plane bulk elastic waves is investigated. Firstly, two pairs of two-fold Dirac cones, respectively corresponding to the out-of-plane and in-plane waves, are obtained at the same frequency by tuning the crystal parameters. Then, a strategy of zone folding is invoked to form double Dirac cones. By shrinking and expanding the steel scatterer, the lattice symmetry is broken, and band inversions induced, giving rise to an intriguing topological phase transition. Finally, the topologically protected edge states for both out-of-plane and in-plane bulk elastic waves, which can be simultaneously located at the frequency range from 1.223 to 1.251 MHz, are numerically observed. Robust pseudospin-dependent elastic edge wave propagation along arbitrary paths is further demonstrated. Our results will significantly broaden its practical application in the engineering field.

  4. Blind Quantum Signature with Controlled Four-Particle Cluster States

    Science.gov (United States)

    Li, Wei; Shi, Jinjing; Shi, Ronghua; Guo, Ying

    2017-08-01

    A novel blind quantum signature scheme based on cluster states is introduced. Cluster states are a type of multi-qubit entangled states and it is more immune to decoherence than other entangled states. The controlled four-particle cluster states are created by acting controlled-Z gate on particles of four-particle cluster states. The presented scheme utilizes the above entangled states and simplifies the measurement basis to generate and verify the signature. Security analysis demonstrates that the scheme is unconditional secure. It can be employed to E-commerce systems in quantum scenario.

  5. Saddle-like topological surface states on the T T'X family of compounds (T , T' = Transition metal, X =Si , Ge)

    Science.gov (United States)

    Singh, Bahadur; Zhou, Xiaoting; Lin, Hsin; Bansil, Arun

    2018-02-01

    Topological nodal-line semimetals are exotic conductors that host symmetry-protected conducting nodal lines in their bulk electronic spectrum and nontrivial drumhead states on the surface. Based on first-principles calculations and an effective model analysis, we identify the presence of topological nodal-line semimetal states in the low crystalline symmetric T T'X family of compounds (T ,T' = transition metal, X = Si or Ge) in the absence of spin-orbit coupling (SOC). Taking ZrPtGe as an exemplar system, we show that owing to small lattice symmetry this material harbors a single nodal line on the ky=0 plane with large energy dispersion and unique drumhead surface state with a saddlelike energy dispersion. When the SOC is included, the nodal line gaps out and the system transitions to a strong topological insulator state with Z2=(1 ;000 ) . The topological surface state evolves from the drumhead surface state via the sharing of its saddlelike energy dispersion within the bulk energy gap. These features differ remarkably from those of the currently known topological surface states in topological insulators such as Bi2Se3 with Dirac-cone-like energy dispersions.

  6. Single atom anisotropic magnetoresistance on a topological insulator surface

    KAUST Repository

    Narayan, Awadhesh

    2015-03-12

    © 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft. We demonstrate single atom anisotropic magnetoresistance on the surface of a topological insulator, arising from the interplay between the helical spin-momentum-locked surface electronic structure and the hybridization of the magnetic adatom states. Our first-principles quantum transport calculations based on density functional theory for Mn on Bi2Se3 elucidate the underlying mechanism. We complement our findings with a two dimensional model valid for both single adatoms and magnetic clusters, which leads to a proposed device setup for experimental realization. Our results provide an explanation for the conflicting scattering experiments on magnetic adatoms on topological insulator surfaces, and reveal the real space spin texture around the magnetic impurity.

  7. Cluster consensus in discrete-time networks of multiagents with inter-cluster nonidentical inputs.

    Science.gov (United States)

    Han, Yujuan; Lu, Wenlian; Chen, Tianping

    2013-04-01

    In this paper, cluster consensus of multiagent systems is studied via inter-cluster nonidentical inputs. Here, we consider general graph topologies, which might be time-varying. The cluster consensus is defined by two aspects: intracluster synchronization, the state at which differences between each pair of agents in the same cluster converge to zero, and inter-cluster separation, the state at which agents in different clusters are separated. For intra-cluster synchronization, the concepts and theories of consensus, including the spanning trees, scramblingness, infinite stochastic matrix product, and Hajnal inequality, are extended. As a result, it is proved that if the graph has cluster spanning trees and all vertices self-linked, then the static linear system can realize intra-cluster synchronization. For the time-varying coupling cases, it is proved that if there exists T > 0 such that the union graph across any T-length time interval has cluster spanning trees and all graphs has all vertices self-linked, then the time-varying linear system can also realize intra-cluster synchronization. Under the assumption of common inter-cluster influence, a sort of inter-cluster nonidentical inputs are utilized to realize inter-cluster separation, such that each agent in the same cluster receives the same inputs and agents in different clusters have different inputs. In addition, the boundedness of the infinite sum of the inputs can guarantee the boundedness of the trajectory. As an application, we employ a modified non-Bayesian social learning model to illustrate the effectiveness of our results.

  8. A short course on topological insulators band structure and edge states in one and two dimensions

    CERN Document Server

    Asbóth, János K; Pályi, András

    2016-01-01

    This course-based primer provides newcomers to the field with a concise introduction to some of the core topics in the emerging field of topological insulators. The aim is to provide a basic understanding of edge states, bulk topological invariants, and of the bulk--boundary correspondence with as simple mathematical tools as possible. The present approach uses noninteracting lattice models of topological insulators, building gradually on these to arrive from the simplest one-dimensional case (the Su-Schrieffer-Heeger model for polyacetylene) to two-dimensional time-reversal invariant topological insulators (the Bernevig-Hughes-Zhang model for HgTe). In each case the discussion of simple toy models is followed by the formulation of the general arguments regarding topological insulators. The only prerequisite for the reader is a working knowledge in quantum mechanics, the relevant solid state physics background is provided as part of this self-contained text, which is complemented by end-of-chapter problems.

  9. Surface Andreev Bound States and Odd-Frequency Pairing in Topological Superconductor Junctions

    Science.gov (United States)

    Tanaka, Yukio; Tamura, Shun

    2018-04-01

    In this review, we summarize the achievement of the physics of surface Andreev bound states (SABS) up to now. The route of this activity has started from the physics of SABS of unconventional superconductors where the pair potential has a sign change on the Fermi surface. It has been established that SABS can be regarded as a topological edge state with topological invariant defined in the bulk Hamiltonian. On the other hand, SABS accompanies odd-frequency pairing like spin-triplet s-wave or spin-singlet p-wave. In a spin-triplet superconductor junction, induced odd-frequency pairing can penetrate into a diffusive normal metal (DN) attached to the superconductor. It causes so called anomalous proximity effect where the local density of states of quasiparticle in DN has a zero energy peak. When bulk pairing symmetry is spin-triplet px-wave, the anomalous proximity effect becomes prominent and the zero bias voltage conductance is always quantized independent of the resistance in DN and interface. Finally, we show that the present anomalous proximity effect is realized in an artificial topological superconducting system, where a nanowire with spin-orbit coupling and Zeeman field is put on the conventional spin-singlet s-wave superconductor.

  10. Topological superconductivity, topological confinement, and the vortex quantum Hall effect

    International Nuclear Information System (INIS)

    Diamantini, M. Cristina; Trugenberger, Carlo A.

    2011-01-01

    Topological matter is characterized by the presence of a topological BF term in its long-distance effective action. Topological defects due to the compactness of the U(1) gauge fields induce quantum phase transitions between topological insulators, topological superconductors, and topological confinement. In conventional superconductivity, because of spontaneous symmetry breaking, the photon acquires a mass due to the Anderson-Higgs mechanism. In this paper we derive the corresponding effective actions for the electromagnetic field in topological superconductors and topological confinement phases. In topological superconductors magnetic flux is confined and the photon acquires a topological mass through the BF mechanism: no symmetry breaking is involved, the ground state has topological order, and the transition is induced by quantum fluctuations. In topological confinement, instead, electric charge is linearly confined and the photon becomes a massive antisymmetric tensor via the Stueckelberg mechanism. Oblique confinement phases arise when the string condensate carries both magnetic and electric flux (dyonic strings). Such phases are characterized by a vortex quantum Hall effect potentially relevant for the dissipationless transport of information stored on vortices.

  11. Reconfigurable topological photonic crystal

    Science.gov (United States)

    Shalaev, Mikhail I.; Desnavi, Sameerah; Walasik, Wiktor; Litchinitser, Natalia M.

    2018-02-01

    Topological insulators are materials that conduct on the surface and insulate in their interior due to non-trivial topology of the band structure. The edge states on the interface between topological (non-trivial) and conventional (trivial) insulators are topologically protected from scattering due to structural defects and disorders. Recently, it was shown that photonic crystals (PCs) can serve as a platform for realizing a scatter-free propagation of light waves. In conventional PCs, imperfections, structural disorders, and surface roughness lead to significant losses. The breakthrough in overcoming these problems is likely to come from the synergy of the topological PCs and silicon-based photonics technology that enables high integration density, lossless propagation, and immunity to fabrication imperfections. For many applications, reconfigurability and capability to control the propagation of these non-trivial photonic edge states is essential. One way to facilitate such dynamic control is to use liquid crystals (LCs), which allow to modify the refractive index with external electric field. Here, we demonstrate dynamic control of topological edge states by modifying the refractive index of a LC background medium. Background index is changed depending on the orientation of a LC, while preserving the topology of the system. This results in a change of the spectral position of the photonic bandgap and the topological edge states. The proposed concept might be implemented using conventional semiconductor technology, and can be used for robust energy transport in integrated photonic devices, all-optical circuity, and optical communication systems.

  12. Edge states of a three-dimensional topological insulator

    International Nuclear Information System (INIS)

    Deb, Oindrila; Sen, Diptiman; Soori, Abhiram

    2014-01-01

    We use the bulk Hamiltonian for a three-dimensional topological insulator such as Bi 2 Se 3 to study the states which appear on its various surfaces and along the edge between two surfaces. We use both analytical methods based on the surface Hamiltonians (which are derived from the bulk Hamiltonian) and numerical methods based on a lattice discretization of the bulk Hamiltonian. We find that the application of a potential barrier along an edge can give rise to states localized at that edge. These states have an unusual energy-momentum dispersion which can be controlled by applying a potential along the edge; in particular, the velocity of these states can be tuned to zero. The scattering and conductance across the edge is studied as a function of the edge potential. We show that a magnetic field in a particular direction can also give rise to zero energy states on certain edges. We point out possible experimental ways of looking for the various edge states. (paper)

  13. Event-based cluster synchronization of coupled genetic regulatory networks

    Science.gov (United States)

    Yue, Dandan; Guan, Zhi-Hong; Li, Tao; Liao, Rui-Quan; Liu, Feng; Lai, Qiang

    2017-09-01

    In this paper, the cluster synchronization of coupled genetic regulatory networks with a directed topology is studied by using the event-based strategy and pinning control. An event-triggered condition with a threshold consisting of the neighbors' discrete states at their own event time instants and a state-independent exponential decay function is proposed. The intra-cluster states information and extra-cluster states information are involved in the threshold in different ways. By using the Lyapunov function approach and the theories of matrices and inequalities, we establish the cluster synchronization criterion. It is shown that both the avoidance of continuous transmission of information and the exclusion of the Zeno behavior are ensured under the presented triggering condition. Explicit conditions on the parameters in the threshold are obtained for synchronization. The stability criterion of a single GRN is also given under the reduced triggering condition. Numerical examples are provided to validate the theoretical results.

  14. Neural-Network Quantum States, String-Bond States, and Chiral Topological States

    Science.gov (United States)

    Glasser, Ivan; Pancotti, Nicola; August, Moritz; Rodriguez, Ivan D.; Cirac, J. Ignacio

    2018-01-01

    Neural-network quantum states have recently been introduced as an Ansatz for describing the wave function of quantum many-body systems. We show that there are strong connections between neural-network quantum states in the form of restricted Boltzmann machines and some classes of tensor-network states in arbitrary dimensions. In particular, we demonstrate that short-range restricted Boltzmann machines are entangled plaquette states, while fully connected restricted Boltzmann machines are string-bond states with a nonlocal geometry and low bond dimension. These results shed light on the underlying architecture of restricted Boltzmann machines and their efficiency at representing many-body quantum states. String-bond states also provide a generic way of enhancing the power of neural-network quantum states and a natural generalization to systems with larger local Hilbert space. We compare the advantages and drawbacks of these different classes of states and present a method to combine them together. This allows us to benefit from both the entanglement structure of tensor networks and the efficiency of neural-network quantum states into a single Ansatz capable of targeting the wave function of strongly correlated systems. While it remains a challenge to describe states with chiral topological order using traditional tensor networks, we show that, because of their nonlocal geometry, neural-network quantum states and their string-bond-state extension can describe a lattice fractional quantum Hall state exactly. In addition, we provide numerical evidence that neural-network quantum states can approximate a chiral spin liquid with better accuracy than entangled plaquette states and local string-bond states. Our results demonstrate the efficiency of neural networks to describe complex quantum wave functions and pave the way towards the use of string-bond states as a tool in more traditional machine-learning applications.

  15. Topological Edge-State Manifestation of Interacting 2D Condensed Boson-Lattice Systems in a Harmonic Trap

    Science.gov (United States)

    Galilo, Bogdan; Lee, Derek K. K.; Barnett, Ryan

    2017-11-01

    In this Letter, it is shown that interactions can facilitate the emergence of topological edge states of quantum-degenerate bosonic systems in the presence of a harmonic potential. This effect is demonstrated with the concrete model of a hexagonal lattice populated by spin-one bosons under a synthetic gauge field. In fermionic or noninteracting systems, the presence of a harmonic trap can obscure the observation of edge states. For our system with weakly interacting bosons in the Thomas-Fermi regime, we can clearly see a topological band structure with a band gap traversed by edge states. We also find that the number of edge states crossing the gap is increased in the presence of a harmonic trap, and the edge modes experience an energy shift while traversing the first Brillouin zone which is related to the topological properties of the system. We find an analytical expression for the edge-state energies and our comparison with numerical computation shows excellent agreement.

  16. Topological Edge-State Manifestation of Interacting 2D Condensed Boson-Lattice Systems in a Harmonic Trap.

    Science.gov (United States)

    Galilo, Bogdan; Lee, Derek K K; Barnett, Ryan

    2017-11-17

    In this Letter, it is shown that interactions can facilitate the emergence of topological edge states of quantum-degenerate bosonic systems in the presence of a harmonic potential. This effect is demonstrated with the concrete model of a hexagonal lattice populated by spin-one bosons under a synthetic gauge field. In fermionic or noninteracting systems, the presence of a harmonic trap can obscure the observation of edge states. For our system with weakly interacting bosons in the Thomas-Fermi regime, we can clearly see a topological band structure with a band gap traversed by edge states. We also find that the number of edge states crossing the gap is increased in the presence of a harmonic trap, and the edge modes experience an energy shift while traversing the first Brillouin zone which is related to the topological properties of the system. We find an analytical expression for the edge-state energies and our comparison with numerical computation shows excellent agreement.

  17. Proximity effects in topological insulator heterostructures

    International Nuclear Information System (INIS)

    Li Xiao-Guang; Wu Guang-Fen; Zhang Gu-Feng; Culcer Dimitrie; Zhang Zhen-Yu; Chen Hua

    2013-01-01

    Topological insulators (TIs) are bulk insulators that possess robust helical conducting states along their interfaces with conventional insulators. A tremendous research effort has recently been devoted to Tl-based heterostructures, in which conventional proximity effects give rise to a series of exotic physical phenomena. This paper reviews our recent studies on the potential existence of topological proximity effects at the interface between a topological insulator and a normal insulator or other topologically trivial systems. Using first-principles approaches, we have realized the tunability of the vertical location of the topological helical state via intriguing dual-proximity effects. To further elucidate the control parameters of this effect, we have used the graphene-based heterostructures as prototypical systems to reveal a more complete phase diagram. On the application side of the topological helical states, we have presented a catalysis example, where the topological helical state plays an essential role in facilitating surface reactions by serving as an effective electron bath. These discoveries lay the foundation for accurate manipulation of the real space properties of the topological helical state in TI-based heterostructures and pave the way for realization of the salient functionality of topological insulators in future device applications. (topical review - low-dimensional nanostructures and devices)

  18. Extraversion and Neuroticism relate to topological properties of resting-state brain networks

    Directory of Open Access Journals (Sweden)

    Qing eGao

    2013-06-01

    Full Text Available With the advent and development of modern neuroimaging techniques, there is an increasing interest in linking extraversion and neuroticism to anatomical and functional brain markers. Here we aimed to test the theoretically derived biological personality model as proposed by Eysenck using graph theoretical analyses. Specifically, the association between the topological organization of whole-brain functional networks and extraversion/neuroticism was explored. To construct functional brain networks, functional connectivity among 90 brain regions was measured by temporal correlation using resting-state functional magnetic resonance imaging (fMRI data of 71 healthy subjects. Graph theoretical analysis revealed a positive association of extraversion scores and normalized clustering coefficient values. These results suggested a more clustered configuration in brain networks of individuals high in extraversion, which could imply a higher arousal threshold and higher levels of arousal tolerance in the cortex of extraverts. On a local network level, we observed that a specific nodal measure, i.e. betweenness centrality (BC, was positively associated with neuroticism scores in the right precentral gyrus, right caudate nucleus, right olfactory cortex and bilateral amygdala. For individuals high in neuroticism, these results suggested a more frequent participation of these specific regions in information transition within the brain network and, in turn, may partly explain greater regional activation levels and lower arousal thresholds in these regions. In contrast, extraversion scores were positively correlated with BC in the right insula, while negatively correlated with BC in the bilateral middle temporal gyrus, indicating that the relationship between extraversion and regional arousal is not as simple as proposed by Eysenck.

  19. Extraversion and neuroticism relate to topological properties of resting-state brain networks.

    Science.gov (United States)

    Gao, Qing; Xu, Qiang; Duan, Xujun; Liao, Wei; Ding, Jurong; Zhang, Zhiqiang; Li, Yuan; Lu, Guangming; Chen, Huafu

    2013-01-01

    With the advent and development of modern neuroimaging techniques, there is an increasing interest in linking extraversion and neuroticism to anatomical and functional brain markers. Here, we aimed to test the theoretically derived biological personality model as proposed by Eysenck using graph theoretical analyses. Specifically, the association between the topological organization of whole-brain functional networks and extraversion/neuroticism was explored. To construct functional brain networks, functional connectivity among 90 brain regions was measured by temporal correlation using resting-state functional magnetic resonance imaging (fMRI) data of 71 healthy subjects. Graph theoretical analysis revealed a positive association of extraversion scores and normalized clustering coefficient values. These results suggested a more clustered configuration in brain networks of individuals high in extraversion, which could imply a higher arousal threshold and higher levels of arousal tolerance in the cortex of extraverts. On a local network level, we observed that a specific nodal measure, i.e., betweenness centrality (BC), was positively associated with neuroticism scores in the right precentral gyrus (PreCG), right caudate nucleus, right olfactory cortex, and bilateral amygdala. For individuals high in neuroticism, these results suggested a more frequent participation of these specific regions in information transition within the brain network and, in turn, may partly explain greater regional activation levels and lower arousal thresholds in these regions. In contrast, extraversion scores were positively correlated with BC in the right insula, while negatively correlated with BC in the bilateral middle temporal gyrus (MTG), indicating that the relationship between extraversion and regional arousal is not as simple as proposed by Eysenck.

  20. ATLAS Level-1 Topological Trigger

    CERN Document Server

    Zheng, Daniel; The ATLAS collaboration

    2018-01-01

    The ATLAS experiment has introduced and recently commissioned a completely new hardware sub-system of its first-level trigger: the topological processor (L1Topo). L1Topo consist of two AdvancedTCA blades mounting state-of-the-art FPGA processors, providing high input bandwidth (up to 4 Gb/s) and low latency data processing (200 ns). L1Topo is able to select collision events by applying kinematic and topological requirements on candidate objects (energy clusters, jets, and muons) measured by calorimeters and muon sub-detectors. Results from data recorded using the L1Topo trigger will be presented. These results demonstrate a significantly improved background event rejection, thus allowing for a rate reduction without efficiency loss. This improvement has been shown for several physics processes leading to low-pT leptons, including H->tau tau and J/Psi->mu mu. In addition to describing the L1Topo trigger system, we will discuss the use of an accurate L1Topo simulation as a powerful tool to validate and optimize...

  1. Protective capping of topological surface states of intrinsically insulating Bi2Te3

    Directory of Open Access Journals (Sweden)

    Katharina Hoefer

    2015-09-01

    Full Text Available We have identified epitaxially grown elemental Te as a capping material that is suited to protect the topological surface states of intrinsically insulating Bi2Te3. By using angle-resolved photoemission, we were able to show that the Te overlayer leaves the dispersive bands of the surface states intact and that it does not alter the chemical potential of the Bi2Te3 thin film. From in-situ four-point contact measurements, we observed that the conductivity of the capped film is still mainly determined by the metallic surface states and that the contribution of the capping layer is minor. Moreover, the Te overlayer can be annealed away in vacuum to produce a clean Bi2Te3 surface in its pristine state even after the exposure of the capped film to air. Our findings will facilitate well-defined and reliable ex-situ experiments on the properties of Bi2Te3 surface states with nontrivial topology.

  2. Topological degeneracy of non-Abelian states for dummies

    International Nuclear Information System (INIS)

    Oshikawa, Masaki; Kim, Yong Baek; Shtengel, Kirill; Nayak, Chetan; Tewari, Sumanta

    2007-01-01

    We present a physical construction of degenerate groundstates of the Moore-Read Pfaffian states, which exhibits non-Abelian statistics, on general Riemann surface with genus g. The construction is given by a generalization of the recent argument [M.O., T. Senthil, Phys. Rev. Lett. 96 (2006) 060601] which relates fractionalization and topological order. The nontrivial groundstate degeneracy obtained by Read and Green [Phys. Rev. B 61 (2000) 10267] based on differential geometry is reproduced exactly. Some restrictions on the statistics, due to the fractional charge of the quasiparticle are also discussed. Furthermore, the groundstate degeneracy of the p + ip superconductor in two dimensions, which is closely related to the Pfaffian states, is discussed with a similar construction

  3. Topological degeneracy of non-Abelian states for dummies

    Science.gov (United States)

    Oshikawa, Masaki; Kim, Yong Baek; Shtengel, Kirill; Nayak, Chetan; Tewari, Sumanta

    2007-06-01

    We present a physical construction of degenerate groundstates of the Moore-Read Pfaffian states, which exhibits non-Abelian statistics, on general Riemann surface with genus g. The construction is given by a generalization of the recent argument [M.O., T. Senthil, Phys. Rev. Lett. 96 (2006) 060601] which relates fractionalization and topological order. The nontrivial groundstate degeneracy obtained by Read and Green [Phys. Rev. B 61 (2000) 10267] based on differential geometry is reproduced exactly. Some restrictions on the statistics, due to the fractional charge of the quasiparticle are also discussed. Furthermore, the groundstate degeneracy of the p + i p superconductor in two dimensions, which is closely related to the Pfaffian states, is discussed with a similar construction.

  4. Quantification of the clustering properties of nuclear states

    International Nuclear Information System (INIS)

    Beck, R.; Dickmann, F.

    1985-05-01

    The amount of particular type of clustering in a nuclear state is defined in this paper as the norm square of the projection of the wave function onto the particular cluster model subspace. It is pointed out that, although the clusters can not be localized in space by measurement, the amount of clustering characterizes the cluster formation in close analogy with a quantum mechanical probability. The cluster model component of the wave function is proved to have a variational property. This facilitates the computation of the amount of clustering. The model dependence of the amounts of various clusterings and their relationship to the corresponding spectroscopic factors are studied via numerical examples for two models of sup(6)Li. It is concluded that, in a relative sense, the spectroscopic factor, which is more directly related to experiment, is also characteristic of the clustering contents of different states of the same nucleus, but it can not be used for comparisons between different nuclei or clusterings. (author)

  5. ClusterTAD: an unsupervised machine learning approach to detecting topologically associated domains of chromosomes from Hi-C data.

    Science.gov (United States)

    Oluwadare, Oluwatosin; Cheng, Jianlin

    2017-11-14

    With the development of chromosomal conformation capturing techniques, particularly, the Hi-C technique, the study of the spatial conformation of a genome is becoming an important topic in bioinformatics and computational biology. The Hi-C technique can generate genome-wide chromosomal interaction (contact) data, which can be used to investigate the higher-level organization of chromosomes, such as Topologically Associated Domains (TAD), i.e., locally packed chromosome regions bounded together by intra chromosomal contacts. The identification of the TADs for a genome is useful for studying gene regulation, genomic interaction, and genome function. Here, we formulate the TAD identification problem as an unsupervised machine learning (clustering) problem, and develop a new TAD identification method called ClusterTAD. We introduce a novel method to represent chromosomal contacts as features to be used by the clustering algorithm. Our results show that ClusterTAD can accurately predict the TADs on a simulated Hi-C data. Our method is also largely complementary and consistent with existing methods on the real Hi-C datasets of two mouse cells. The validation with the chromatin immunoprecipitation (ChIP) sequencing (ChIP-Seq) data shows that the domain boundaries identified by ClusterTAD have a high enrichment of CTCF binding sites, promoter-related marks, and enhancer-related histone modifications. As ClusterTAD is based on a proven clustering approach, it opens a new avenue to apply a large array of clustering methods developed in the machine learning field to the TAD identification problem. The source code, the results, and the TADs generated for the simulated and real Hi-C datasets are available here: https://github.com/BDM-Lab/ClusterTAD .

  6. Admixtures of shell and cluster states in 18F

    International Nuclear Information System (INIS)

    Sakuda, Toshimi; Nemoto, Fumiki; Nagata, Sinobu.

    1976-01-01

    The properties of the low-lying T=0 positive-parity levels in 18 F are shown to be well understood by considering admixtures of 2p shell-model states and ''4p-2h'' states with alpha-cluster structures. In order to represent the ''4p-2h'' states, α- 14 N cluster model is introduced. By this model, weak coupling features and coupling between shell and cluster states are well described. The binding energies of the ground 1 + and the lowest 3 + levels are reproduced by the couplings with the ''4p-2h'' cluster states. On the other hand, weak coupling features of ''4p-2h'' cluster states are disturbed to some extent. As a result, the energy spectrum, E2-transition rates and reduced α-widths of all T=0 positive-parity levels below 7 MeV excitation energy are systematically reproduced. (auth.)

  7. Bipartite entanglement in continuous variable cluster states

    Energy Technology Data Exchange (ETDEWEB)

    Cable, Hugo; Browne, Daniel E, E-mail: cqthvc@nus.edu.s, E-mail: d.browne@ucl.ac.u [Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543 (Singapore)

    2010-11-15

    A study of the entanglement properties of Gaussian cluster states, proposed as a universal resource for continuous variable (CV) quantum computing is presented in this paper. The central aim is to compare mathematically idealized cluster states defined using quadrature eigenstates, which have infinite squeezing and cannot exist in nature, with Gaussian approximations that are experimentally accessible. Adopting widely used definitions, we first review the key concepts, by analysing a process of teleportation along a CV quantum wire in the language of matrix product states. Next we consider the bipartite entanglement properties of the wire, providing analytic results. We proceed to grid cluster states, which are universal for the qubit case. To extend our analysis of the bipartite entanglement, we adopt the entropic-entanglement width, a specialized entanglement measure introduced recently by Van den Nest et al (2006 Phys. Rev. Lett. 97 150504), adapting their definition to the CV context. Finally, we consider the effects of photonic loss, extending our arguments to mixed states. Cumulatively our results point to key differences in the properties of idealized and Gaussian cluster states. Even modest loss rates are found to strongly limit the amount of entanglement. We discuss the implications for the potential of CV analogues for measurement-based quantum computation.

  8. Topological Material-Based Spin Devices

    Science.gov (United States)

    Zhang, Minhao; Wang, Xuefeng

    Three-dimensional topological insulators have insulating bulk and gapless helical surface states. One of the most fascinating properties of the metallic surface states is the spin-momentum helical locking. The giant current-driven torques on the magnetic layer have been discovered in TI/ferromagnet bilayers originating from the spin-momentum helical locking, enabling the efficient magnetization switching with a low current density. We demonstrated the current-direction dependent on-off state in TIs-based spin valve devices for memory and logic applications. Further, we demonstrated the Bi2Se3 system will go from a topologically nontrivial state to a topologically trivial state when Bi atoms are replaced by lighter In atoms. Here, topologically trivial metal (BixIny)2 Se3 with high mobility also facilitates the realization of its application in multifunctional spintronic devices.

  9. Peeking Network States with Clustered Patterns

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jinoh [Texas A & M Univ., Commerce, TX (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sim, Alex [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-10-20

    Network traffic monitoring has long been a core element for effec- tive network management and security. However, it is still a chal- lenging task with a high degree of complexity for comprehensive analysis when considering multiple variables and ever-increasing traffic volumes to monitor. For example, one of the widely con- sidered approaches is to scrutinize probabilistic distributions, but it poses a scalability concern and multivariate analysis is not gen- erally supported due to the exponential increase of the complexity. In this work, we propose a novel method for network traffic moni- toring based on clustering, one of the powerful deep-learning tech- niques. We show that the new approach enables us to recognize clustered results as patterns representing the network states, which can then be utilized to evaluate “similarity” of network states over time. In addition, we define a new quantitative measure for the similarity between two compared network states observed in dif- ferent time windows, as a supportive means for intuitive analysis. Finally, we demonstrate the clustering-based network monitoring with public traffic traces, and show that the proposed approach us- ing the clustering method has a great opportunity for feasible, cost- effective network monitoring.

  10. Local topology via the invariants of the velocity gradient tensor within vortex clusters and intense Reynolds stress structures in turbulent channel flow

    International Nuclear Information System (INIS)

    Buchner, Abel-John; Kitsios, Vassili; Atkinson, Callum; Soria, Julio; Lozano-Durán, Adrián

    2016-01-01

    Previous works have shown that momentum transfer in the wall–normal direction within turbulent wall–bounded flows occurs primarily within coherent structures defined by regions of intense Reynolds stress [1]. Such structures may be classified into wall–attached and wall–detached structures with the latter being typically weak, small–scale, and isotropically oriented, while the former are larger and carry most of the Reynolds stresses. The mean velocity fluctuation within each structure may also be used to separate structures by their dynamic properties. This study aims to extract information regarding the scales, kinematics and dynamics of these structures within the topological framework of the invariants of the velocity gradient tensor (VGT). The local topological characteristics of these intense Reynolds stress structures are compared to the topological characteristics of vortex clusters defined by the discriminant of the velocity gradient tensor. The alignment of vorticity with the principal strain directions within these structures is also determined, and the implications of these findings are discussed. (paper)

  11. Hierarchical functional modularity in the resting-state human brain.

    Science.gov (United States)

    Ferrarini, Luca; Veer, Ilya M; Baerends, Evelinda; van Tol, Marie-José; Renken, Remco J; van der Wee, Nic J A; Veltman, Dirk J; Aleman, André; Zitman, Frans G; Penninx, Brenda W J H; van Buchem, Mark A; Reiber, Johan H C; Rombouts, Serge A R B; Milles, Julien

    2009-07-01

    Functional magnetic resonance imaging (fMRI) studies have shown that anatomically distinct brain regions are functionally connected during the resting state. Basic topological properties in the brain functional connectivity (BFC) map have highlighted the BFC's small-world topology. Modularity, a more advanced topological property, has been hypothesized to be evolutionary advantageous, contributing to adaptive aspects of anatomical and functional brain connectivity. However, current definitions of modularity for complex networks focus on nonoverlapping clusters, and are seriously limited by disregarding inclusive relationships. Therefore, BFC's modularity has been mainly qualitatively investigated. Here, we introduce a new definition of modularity, based on a recently improved clustering measurement, which overcomes limitations of previous definitions, and apply it to the study of BFC in resting state fMRI of 53 healthy subjects. Results show hierarchical functional modularity in the brain. Copyright 2009 Wiley-Liss, Inc

  12. Energetic selection of topology in ferredoxins.

    Directory of Open Access Journals (Sweden)

    J Dongun Kim

    Full Text Available Models of early protein evolution posit the existence of short peptides that bound metals and ions and served as transporters, membranes or catalysts. The Cys-X-X-Cys-X-X-Cys heptapeptide located within bacterial ferredoxins, enclosing an Fe₄S₄ metal center, is an attractive candidate for such an early peptide. Ferredoxins are ancient proteins and the simple α+β fold is found alone or as a domain in larger proteins throughout all three kingdoms of life. Previous analyses of the heptapeptide conformation in experimentally determined ferredoxin structures revealed a pervasive right-handed topology, despite the fact that the Fe₄S₄ cluster is achiral. Conformational enumeration of a model CGGCGGC heptapeptide bound to a cubane iron-sulfur cluster indicates both left-handed and right-handed folds could exist and have comparable stabilities. However, only the natural ferredoxin topology provides a significant network of backbone-to-cluster hydrogen bonds that would stabilize the metal-peptide complex. The optimal peptide configuration (alternating α(L,α(R is that of an α-sheet, providing an additional mechanism where oligomerization could stabilize the peptide and facilitate iron-sulfur cluster binding.

  13. Topology Optimisation of Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Thike Aye Min

    2016-01-01

    Full Text Available Wireless sensor networks are widely used in a variety of fields including industrial environments. In case of a clustered network the location of cluster head affects the reliability of the network operation. Finding of the optimum location of the cluster head, therefore, is critical for the design of a network. This paper discusses the optimisation approach, based on the brute force algorithm, in the context of topology optimisation of a cluster structure centralised wireless sensor network. Two examples are given to verify the approach that demonstrate the implementation of the brute force algorithm to find an optimum location of the cluster head.

  14. Topology of Large-Scale Structure by Galaxy Type: Hydrodynamic Simulations

    Science.gov (United States)

    Gott, J. Richard, III; Cen, Renyue; Ostriker, Jeremiah P.

    1996-07-01

    The topology of large-scale structure is studied as a function of galaxy type using the genus statistic. In hydrodynamical cosmological cold dark matter simulations, galaxies form on caustic surfaces (Zeldovich pancakes) and then slowly drain onto filaments and clusters. The earliest forming galaxies in the simulations (defined as "ellipticals") are thus seen at the present epoch preferentially in clusters (tending toward a meatball topology), while the latest forming galaxies (defined as "spirals") are seen currently in a spongelike topology. The topology is measured by the genus (number of "doughnut" holes minus number of isolated regions) of the smoothed density-contour surfaces. The measured genus curve for all galaxies as a function of density obeys approximately the theoretical curve expected for random- phase initial conditions, but the early-forming elliptical galaxies show a shift toward a meatball topology relative to the late-forming spirals. Simulations using standard biasing schemes fail to show such an effect. Large observational samples separated by galaxy type could be used to test for this effect.

  15. Alpha particle cluster states in (fp)-shell nuclei

    International Nuclear Information System (INIS)

    Merchant, A.C.

    1987-07-01

    Alpha particle cluster structure is known experimentally to persist throughout the mass range 16 ≤ A ≤ 20, and has been very successfully described in this region in terms of the Buck-Dover-Vary local potential cluster model. It is argued that an analogous cluster structure should be present in nuclei at the beginning of the (fp) - shell, and the available experimental data are examined to determine likely alpha particle cluster state candidates in the mass range 40 ≤ A ≤ 44. Calculations of the cluster state spectra and mean square cluster-core separation distances (which may be readily used to evaluate E2 electromagnetic transition rates) for sup(40)Ca, sup(42)Ca, sup(42)Sc, sup(43)Sc, sup(43)Ti and sup(44)Ti using the above mentioned model are presented, and compared with experimental measurements where possible. The agreement between theory and experiment is generally good (although inferior to that obtained in the (sd)-shell) and points to the desirability of an extension and improvement of the measurements of the properties of the excited states in these nuclei. (author)

  16. Topological Phases in the Real World

    Science.gov (United States)

    Hsu, Yi-Ting

    The experimental discovery and subsequent theoretical understanding of the integer quantum Hall effect, the first known topological phase, has started a revolutionary breakthrough in understanding states of matter since its discovery four decades ago. Topological phases are predicted to have many generic signatures resulting from their underlying topological nature, such as quantized Hall transport, robust boundary states, and possible fractional excitations. The intriguing nature of these signatures and their potential applications in quantum computation has intensely fueled the efforts of the physics community to materialize topological phases. Among various topological phases initially predicted on theoretical grounds, chiral topological superconductors and time-reversal symmetric topological insulators (TI) in three dimension (3D) are two promising candidates for experimental realization and application. The family of materials, Bi2X3 (X = Se, Te), has been predicted and shown experimentally to be time-reversal symmetric 3D TIs through the observation of robust Dirac surface states with Rashba-type spin-winding. Due to their robust surface states with spin-windings, these 3D TIs are expected to be promising materials for producing large spin-transfer torques which are advantageous for spintronics application. As for topological superconductors, despite the exotic excitations that have been extensively proposed as qubits for topological quantum computing, materials hosting topological superconductivity are rare to date and the leading candidate in two dimensions (2D), Sr 2RuO4, has a low transition temperature (Tc ). The goal of my phd study is to push forward the current status of realization of topological phases by materializing higher Tc topological superconductors and investigating the stability of Dirac surface states in 3D TIs. In the first part of this thesis, I will discuss our double-pronged objective for topological superconductors: to propose how to

  17. Topologically protected gates for quantum computation with non-Abelian anyons in the Pfaffian quantum Hall state

    Science.gov (United States)

    Georgiev, Lachezar S.

    2006-12-01

    We extend the topological quantum computation scheme using the Pfaffian quantum Hall state, which has been recently proposed by Das Sarma , in a way that might potentially allow for the topologically protected construction of a universal set of quantum gates. We construct, for the first time, a topologically protected controlled-NOT gate, which is entirely based on quasihole braidings of Pfaffian qubits. All single-qubit gates, except for the π/8 gate, are also explicitly implemented by quasihole braidings. Instead of the π/8 gate we try to construct a topologically protected Toffoli gate, in terms of the controlled-phase gate and CNOT or by a braid-group-based controlled-controlled- Z precursor. We also give a topologically protected realization of the Bravyi-Kitaev two-qubit gate g3 .

  18. Combining Topological Hardware and Topological Software: Color-Code Quantum Computing with Topological Superconductor Networks

    Science.gov (United States)

    Litinski, Daniel; Kesselring, Markus S.; Eisert, Jens; von Oppen, Felix

    2017-07-01

    We present a scalable architecture for fault-tolerant topological quantum computation using networks of voltage-controlled Majorana Cooper pair boxes and topological color codes for error correction. Color codes have a set of transversal gates which coincides with the set of topologically protected gates in Majorana-based systems, namely, the Clifford gates. In this way, we establish color codes as providing a natural setting in which advantages offered by topological hardware can be combined with those arising from topological error-correcting software for full-fledged fault-tolerant quantum computing. We provide a complete description of our architecture, including the underlying physical ingredients. We start by showing that in topological superconductor networks, hexagonal cells can be employed to serve as physical qubits for universal quantum computation, and we present protocols for realizing topologically protected Clifford gates. These hexagonal-cell qubits allow for a direct implementation of open-boundary color codes with ancilla-free syndrome read-out and logical T gates via magic-state distillation. For concreteness, we describe how the necessary operations can be implemented using networks of Majorana Cooper pair boxes, and we give a feasibility estimate for error correction in this architecture. Our approach is motivated by nanowire-based networks of topological superconductors, but it could also be realized in alternative settings such as quantum-Hall-superconductor hybrids.

  19. Combining Topological Hardware and Topological Software: Color-Code Quantum Computing with Topological Superconductor Networks

    Directory of Open Access Journals (Sweden)

    Daniel Litinski

    2017-09-01

    Full Text Available We present a scalable architecture for fault-tolerant topological quantum computation using networks of voltage-controlled Majorana Cooper pair boxes and topological color codes for error correction. Color codes have a set of transversal gates which coincides with the set of topologically protected gates in Majorana-based systems, namely, the Clifford gates. In this way, we establish color codes as providing a natural setting in which advantages offered by topological hardware can be combined with those arising from topological error-correcting software for full-fledged fault-tolerant quantum computing. We provide a complete description of our architecture, including the underlying physical ingredients. We start by showing that in topological superconductor networks, hexagonal cells can be employed to serve as physical qubits for universal quantum computation, and we present protocols for realizing topologically protected Clifford gates. These hexagonal-cell qubits allow for a direct implementation of open-boundary color codes with ancilla-free syndrome read-out and logical T gates via magic-state distillation. For concreteness, we describe how the necessary operations can be implemented using networks of Majorana Cooper pair boxes, and we give a feasibility estimate for error correction in this architecture. Our approach is motivated by nanowire-based networks of topological superconductors, but it could also be realized in alternative settings such as quantum-Hall–superconductor hybrids.

  20. Disrupted topological organization in whole-brain functional networks of heroin-dependent individuals: a resting-state FMRI study.

    Directory of Open Access Journals (Sweden)

    Guihua Jiang

    Full Text Available Neuroimaging studies have shown that heroin addiction is related to abnormalities in widespread local regions and in the functional connectivity of the brain. However, little is known about whether heroin addiction changes the topological organization of whole-brain functional networks. Seventeen heroin-dependent individuals (HDIs and 15 age-, gender-matched normal controls (NCs were enrolled, and the resting-state functional magnetic resonance images (RS-fMRI were acquired from these subjects. We constructed the brain functional networks of HDIs and NCs, and compared the between-group differences in network topological properties using graph theory method. We found that the HDIs showed decreases in the normalized clustering coefficient and in small-worldness compared to the NCs. Furthermore, the HDIs exhibited significantly decreased nodal centralities primarily in regions of cognitive control network, including the bilateral middle cingulate gyrus, left middle frontal gyrus, and right precuneus, but significantly increased nodal centralities primarily in the left hippocampus. The between-group differences in nodal centralities were not corrected by multiple comparisons suggesting these should be considered as an exploratory analysis. Moreover, nodal centralities in the left hippocampus were positively correlated with the duration of heroin addiction. Overall, our results indicated that disruptions occur in the whole-brain functional networks of HDIs, findings which may be helpful in further understanding the mechanisms underlying heroin addiction.

  1. Disrupted topological organization in whole-brain functional networks of heroin-dependent individuals: a resting-state FMRI study.

    Science.gov (United States)

    Jiang, Guihua; Wen, Xue; Qiu, Yingwei; Zhang, Ruibin; Wang, Junjing; Li, Meng; Ma, Xiaofen; Tian, Junzhang; Huang, Ruiwang

    2013-01-01

    Neuroimaging studies have shown that heroin addiction is related to abnormalities in widespread local regions and in the functional connectivity of the brain. However, little is known about whether heroin addiction changes the topological organization of whole-brain functional networks. Seventeen heroin-dependent individuals (HDIs) and 15 age-, gender-matched normal controls (NCs) were enrolled, and the resting-state functional magnetic resonance images (RS-fMRI) were acquired from these subjects. We constructed the brain functional networks of HDIs and NCs, and compared the between-group differences in network topological properties using graph theory method. We found that the HDIs showed decreases in the normalized clustering coefficient and in small-worldness compared to the NCs. Furthermore, the HDIs exhibited significantly decreased nodal centralities primarily in regions of cognitive control network, including the bilateral middle cingulate gyrus, left middle frontal gyrus, and right precuneus, but significantly increased nodal centralities primarily in the left hippocampus. The between-group differences in nodal centralities were not corrected by multiple comparisons suggesting these should be considered as an exploratory analysis. Moreover, nodal centralities in the left hippocampus were positively correlated with the duration of heroin addiction. Overall, our results indicated that disruptions occur in the whole-brain functional networks of HDIs, findings which may be helpful in further understanding the mechanisms underlying heroin addiction.

  2. Performance assessment of topologically diverse power systems subjected to hurricane events

    International Nuclear Information System (INIS)

    Winkler, James; Duenas-Osorio, Leonardo; Stein, Robert; Subramanian, Devika

    2010-01-01

    Large tropical cyclones cause severe damage to major cities along the United States Gulf Coast annually. A diverse collection of engineering and statistical models are currently used to estimate the geographical distribution of power outage probabilities stemming from these hurricanes to aid in storm preparedness and recovery efforts. Graph theoretic studies of power networks have separately attempted to link abstract network topology to transmission and distribution system reliability. However, few works have employed both techniques to unravel the intimate connection between network damage arising from storms, topology, and system reliability. This investigation presents a new methodology combining hurricane damage predictions and topological assessment to characterize the impact of hurricanes upon power system reliability. Component fragility models are applied to predict failure probability for individual transmission and distribution power network elements simultaneously. The damage model is calibrated using power network component failure data for Harris County, TX, USA caused by Hurricane Ike in September of 2008, resulting in a mean outage prediction error of 15.59% and low standard deviation. Simulated hurricane events are then applied to measure the hurricane reliability of three topologically distinct transmission networks. The rate of system performance decline is shown to depend on their topological structure. Reliability is found to correlate directly with topological features, such as network meshedness, centrality, and clustering, and the compact irregular ring mesh topology is identified as particularly favorable, which can influence regional lifeline policy for retrofit and hardening activities to withstand hurricane events.

  3. Topological edge states and impurities: Manifestation in the local static and dynamical characteristics of dimerized quantum chains

    Science.gov (United States)

    Zvyagin, A. A.

    2018-04-01

    Based on the results of exact analytic calculations, we show that topological edge states and impurities in quantum dimerized chains manifest themselves in various local static and dynamical characteristics, which can be measured in experiments. In particular, topological edge states can be observed in the magnetic field behavior of the local magnetization or magnetic susceptibility of dimerized spin chains as jumps (for the magnetization) and features (for the static susceptibility) at zero field. In contrast, impurities reveal themselves in similar jumps and features, however, at nonzero values of the critical field. We also show that dynamical characteristics of dimerized quantum chains also manifest the features, related to the topological edge states and impurities. Those features, as a rule, can be seen more sharply than the manifestation of bulk extended states in, e.g., the dynamical local susceptibility. Such peculiarities can be observed in one-dimensional dimerized spin chains, e.g., in NMR experiments, or in various realizations of quantum dimerized chains in optical experiments.

  4. Quantum magnetotransport for the surface states of three-dimensional topological insulators in the presence of a Zeeman field

    KAUST Repository

    Tahir, Muhammad; Schwingenschlö gl, Udo

    2013-01-01

    We show that the surface states of magnetic topological insulators realize an activated behavior and Shubnikov de Haas oscillations. Applying an external magnetic field perpendicular to the surface of the topological insulator in the presence

  5. Fingerprints of bosonic symmetry protected topological state in a quantum point contact

    OpenAIRE

    Zhang, Rui-Xing; Liu, Chao-Xing

    2016-01-01

    In this work, we study the transport through a quantum point contact for bosonic helical liquid that exists at the edge of a bilayer graphene under a strong magnetic field. We identify "smoking gun" transport signatures to distinguish bosonic symmetry protected topological (BSPT) state from fermionic two-channel quantum spin Hall (QSH) state in this system. In particular, a novel charge insulator/spin conductor phase is found for BSPT state, while either charge insulator/spin insulator or cha...

  6. Quantum Hall effect on top and bottom surface states of topological insulator (Bi1-xSbx)2Te3 films.

    Science.gov (United States)

    Yoshimi, R; Tsukazaki, A; Kozuka, Y; Falson, J; Takahashi, K S; Checkelsky, J G; Nagaosa, N; Kawasaki, M; Tokura, Y

    2015-04-14

    The three-dimensional topological insulator is a novel state of matter characterized by two-dimensional metallic Dirac states on its surface. To verify the topological nature of the surface states, Bi-based chalcogenides such as Bi2Se3, Bi2Te3, Sb2Te3 and their combined/mixed compounds have been intensively studied. Here, we report the realization of the quantum Hall effect on the surface Dirac states in (Bi1-xSbx)2Te3 films. With electrostatic gate-tuning of the Fermi level in the bulk band gap under magnetic fields, the quantum Hall states with filling factor ±1 are resolved. Furthermore, the appearance of a quantum Hall plateau at filling factor zero reflects a pseudo-spin Hall insulator state when the Fermi level is tuned in between the energy levels of the non-degenerate top and bottom surface Dirac points. The observation of the quantum Hall effect in three-dimensional topological insulator films may pave a way toward topological insulator-based electronics.

  7. Topological side-chain classification of beta-turns: ideal motifs for peptidomimetic development.

    Science.gov (United States)

    Tran, Tran Trung; McKie, Jim; Meutermans, Wim D F; Bourne, Gregory T; Andrews, Peter R; Smythe, Mark L

    2005-08-01

    Beta-turns are important topological motifs for biological recognition of proteins and peptides. Organic molecules that sample the side chain positions of beta-turns have shown broad binding capacity to multiple different receptors, for example benzodiazepines. Beta-turns have traditionally been classified into various types based on the backbone dihedral angles (phi2, psi2, phi3 and psi3). Indeed, 57-68% of beta-turns are currently classified into 8 different backbone families (Type I, Type II, Type I', Type II', Type VIII, Type VIa1, Type VIa2 and Type VIb and Type IV which represents unclassified beta-turns). Although this classification of beta-turns has been useful, the resulting beta-turn types are not ideal for the design of beta-turn mimetics as they do not reflect topological features of the recognition elements, the side chains. To overcome this, we have extracted beta-turns from a data set of non-homologous and high-resolution protein crystal structures. The side chain positions, as defined by C(alpha)-C(beta) vectors, of these turns have been clustered using the kth nearest neighbor clustering and filtered nearest centroid sorting algorithms. Nine clusters were obtained that cluster 90% of the data, and the average intra-cluster RMSD of the four C(alpha)-C(beta) vectors is 0.36. The nine clusters therefore represent the topology of the side chain scaffold architecture of the vast majority of beta-turns. The mean structures of the nine clusters are useful for the development of beta-turn mimetics and as biological descriptors for focusing combinatorial chemistry towards biologically relevant topological space.

  8. Teleportation of Two-Particle Entangled State via Cluster State

    Institute of Scientific and Technical Information of China (English)

    LI Da-Chuang; CAO Zhuo-Liang

    2007-01-01

    In this paper,two schemes for teleporting an unknown two-particle entangled state from the sender (Alice)to the receiver (Bob) via a four-particle entangled cluster state are proposed.In these two schemes,the unknown twoparticle entangled state can be teleported perfectly.The successful probabilities and fidelities of the schemes can reach unity.

  9. Topology without cooling: instantons and monopoles near to deconfinement

    International Nuclear Information System (INIS)

    Feurstein, M.; Markum, H.; Thurner, S.

    1998-01-01

    In an attempt to describe the change of topological structure of pure SU(2) gauge theory near deconfinement a renormalization group inspired method is tested. Instead of cooling, blocking and subsequent inverse blocking is applied to Monte Carlo configurations to capture topological features at a well-defined scale. We check that this procedure largely conserves long range physics like string tension. UV fluctuations and lattice artefacts are removed which otherwise spoil topological charge density and Abelian monopole currents. We report the behaviour of topological susceptibility and monopole current densities across the deconfinement transition and relate the two faces of topology to each other. First results of a cluster analysis are described. (orig.)

  10. CASP10-BCL::Fold efficiently samples topologies of large proteins.

    Science.gov (United States)

    Heinze, Sten; Putnam, Daniel K; Fischer, Axel W; Kohlmann, Tim; Weiner, Brian E; Meiler, Jens

    2015-03-01

    During CASP10 in summer 2012, we tested BCL::Fold for prediction of free modeling (FM) and template-based modeling (TBM) targets. BCL::Fold assembles the tertiary structure of a protein from predicted secondary structure elements (SSEs) omitting more flexible loop regions early on. This approach enables the sampling of conformational space for larger proteins with more complex topologies. In preparation of CASP11, we analyzed the quality of CASP10 models throughout the prediction pipeline to understand BCL::Fold's ability to sample the native topology, identify native-like models by scoring and/or clustering approaches, and our ability to add loop regions and side chains to initial SSE-only models. The standout observation is that BCL::Fold sampled topologies with a GDT_TS score > 33% for 12 of 18 and with a topology score > 0.8 for 11 of 18 test cases de novo. Despite the sampling success of BCL::Fold, significant challenges still exist in clustering and loop generation stages of the pipeline. The clustering approach employed for model selection often failed to identify the most native-like assembly of SSEs for further refinement and submission. It was also observed that for some β-strand proteins model refinement failed as β-strands were not properly aligned to form hydrogen bonds removing otherwise accurate models from the pool. Further, BCL::Fold samples frequently non-natural topologies that require loop regions to pass through the center of the protein. © 2015 Wiley Periodicals, Inc.

  11. p-topological Cauchy completions

    Directory of Open Access Journals (Sweden)

    J. Wig

    1999-01-01

    Full Text Available The duality between “regular” and “topological” as convergence space properties extends in a natural way to the more general properties “p-regular” and “p-topological.” Since earlier papers have investigated regular, p-regular, and topological Cauchy completions, we hereby initiate a study of p-topological Cauchy completions. A p-topological Cauchy space has a p-topological completion if and only if it is “cushioned,” meaning that each equivalence class of nonconvergent Cauchy filters contains a smallest filter. For a Cauchy space allowing a p-topological completion, it is shown that a certain class of Reed completions preserve the p-topological property, including the Wyler and Kowalsky completions, which are, respectively, the finest and the coarsest p-topological completions. However, not all p-topological completions are Reed completions. Several extension theorems for p-topological completions are obtained. The most interesting of these states that any Cauchy-continuous map between Cauchy spaces allowing p-topological and p′-topological completions, respectively, can always be extended to a θ-continuous map between any p-topological completion of the first space and any p′-topological completion of the second.

  12. Stability of whole brain and regional network topology within and between resting and cognitive states.

    Science.gov (United States)

    Rzucidlo, Justyna K; Roseman, Paige L; Laurienti, Paul J; Dagenbach, Dale

    2013-01-01

    Graph-theory based analyses of resting state functional Magnetic Resonance Imaging (fMRI) data have been used to map the network organization of the brain. While numerous analyses of resting state brain organization exist, many questions remain unexplored. The present study examines the stability of findings based on this approach over repeated resting state and working memory state sessions within the same individuals. This allows assessment of stability of network topology within the same state for both rest and working memory, and between rest and working memory as well. fMRI scans were performed on five participants while at rest and while performing the 2-back working memory task five times each, with task state alternating while they were in the scanner. Voxel-based whole brain network analyses were performed on the resulting data along with analyses of functional connectivity in regions associated with resting state and working memory. Network topology was fairly stable across repeated sessions of the same task, but varied significantly between rest and working memory. In the whole brain analysis, local efficiency, Eloc, differed significantly between rest and working memory. Analyses of network statistics for the precuneus and dorsolateral prefrontal cortex revealed significant differences in degree as a function of task state for both regions and in local efficiency for the precuneus. Conversely, no significant differences were observed across repeated sessions of the same state. These findings suggest that network topology is fairly stable within individuals across time for the same state, but also fluid between states. Whole brain voxel-based network analyses may prove to be a valuable tool for exploring how functional connectivity changes in response to task demands.

  13. Classical topology and quantum states

    Indian Academy of Sciences (India)

    structures) can be reconstructed using Gel'fand–Naimark theory and its ..... pair production and annihilation [23], quantum gravity too can be expected to become ..... showed their utility for research of current interest such as topology change ...

  14. Energy-Aware Topology Evolution Model with Link and Node Deletion in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Xiaojuan Luo

    2012-01-01

    Full Text Available Based on the complex network theory, a new topological evolving model is proposed. In the evolution of the topology of sensor networks, the energy-aware mechanism is taken into account, and the phenomenon of change of the link and node in the network is discussed. Theoretical analysis and numerical simulation are conducted to explore the topology characteristics and network performance with different node energy distribution. We find that node energy distribution has the weak effect on the degree distribution P(k that evolves into the scale-free state, nodes with more energy carry more connections, and degree correlation is nontrivial disassortative. Moreover, the results show that, when nodes energy is more heterogeneous, the network is better clustered and enjoys higher performance in terms of the network efficiency and the average path length for transmitting data.

  15. Invertebrate diversity classification using self-organizing map neural network: with some special topological functions

    Directory of Open Access Journals (Sweden)

    WenJun Zhang

    2014-06-01

    Full Text Available In present study we used self-organizing map (SOM neural network to conduct the non-supervisory clustering of invertebrate orders in rice field. Four topological functions, i.e., cossintopf, sincostopf, acossintopf, and expsintopf, established on the template in toolbox of Matlab, were used in SOM neural network learning. Results showed that clusters were different when using different topological functions because different topological functions will generate different spatial structure of neurons in neural network. We may chose these functions and results based on comparison with the practical situation.

  16. A Method for Determining Pseudo-measurement State Values for Topology Observability of State Estimation in Power Systems

    Science.gov (United States)

    Urano, Shoichi; Mori, Hiroyuki

    This paper proposes a new technique for determining of state values in power systems. Recently, it is useful for carrying out state estimation with data of PMU (Phasor Measurement Unit). The authors have developed a method for determining state values with artificial neural network (ANN) considering topology observability in power systems. ANN has advantage to approximate nonlinear functions with high precision. The method evaluates pseudo-measurement state values of the data which are lost in power systems. The method is successfully applied to the IEEE 14-bus system.

  17. Reduce, reuse, recycle for robust cluster-state generation

    International Nuclear Information System (INIS)

    Horsman, Clare; Brown, Katherine L.; Kendon, Vivien M.; Munro, William J.

    2011-01-01

    Efficient generation of cluster states is crucial for engineering large-scale measurement-based quantum computers. Hybrid matter-optical systems offer a robust, scalable path to this goal. Such systems have an ancilla which acts as a bus connecting the qubits. We show that by generating the cluster in smaller sections of interlocking bricks, reusing one ancilla per brick, the cluster can be produced with maximal efficiency, requiring fewer than half the operations compared with no bus reuse. By reducing the time required to prepare sections of the cluster, bus reuse more than doubles the size of the computational workspace that can be used before decoherence effects dominate. A row of buses in parallel provides fully scalable cluster-state generation requiring only 20 controlled-phase gates per bus use.

  18. Detecting brain dynamics during resting state: a tensor based evolutionary clustering approach

    Science.gov (United States)

    Al-sharoa, Esraa; Al-khassaweneh, Mahmood; Aviyente, Selin

    2017-08-01

    Human brain is a complex network with connections across different regions. Understanding the functional connectivity (FC) of the brain is important both during resting state and task; as disruptions in connectivity patterns are indicators of different psychopathological and neurological diseases. In this work, we study the resting state functional connectivity networks (FCNs) of the brain from fMRI BOLD signals. Recent studies have shown that FCNs are dynamic even during resting state and understanding the temporal dynamics of FCNs is important for differentiating between different conditions. Therefore, it is important to develop algorithms to track the dynamic formation and dissociation of FCNs of the brain during resting state. In this paper, we propose a two step tensor based community detection algorithm to identify and track the brain network community structure across time. First, we introduce an information-theoretic function to reduce the dynamic FCN and identify the time points that are similar topologically to combine them into a tensor. These time points will be used to identify the different FC states. Second, a tensor based spectral clustering approach is developed to identify the community structure of the constructed tensors. The proposed algorithm applies Tucker decomposition to the constructed tensors and extract the orthogonal factor matrices along the connectivity mode to determine the common subspace within each FC state. The detected community structure is summarized and described as FC states. The results illustrate the dynamic structure of resting state networks (RSNs), including the default mode network, somatomotor network, subcortical network and visual network.

  19. Effects of Some Topological Ingredients on the Evolutionary Ultimatum Game

    International Nuclear Information System (INIS)

    Deng Lili; Zhang Jianxiong; Tang Wansheng; Zhang Wei

    2012-01-01

    This study aims at figuring out the crucial topological ingredients which affect the outcomes of the ultimatum game located on different networks, encompassing the regular network, the random network, the small-world network, and the scale-free network. With the aid of random interchanging algorithm, we investigate the relations between the outcomes of the ultimatum game and some topological ingredients, including the average range, the clustering coefficient and the heterogeneity, and so forth. It is found that for the regular, random and small-work networks, the average range and the clustering coefficient have evident impacts on the ultimatum game, while for the scale-free network, the original degree heterogeneity and the underlying rich-club characterizations are the mainly important topological ingredients that influence the outcomes of ultimatum game substantially.

  20. Small Worlds in the Tree Topologies of Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Qiao, Li; Lingguo, Cui; Baihai, Zhang

    2010-01-01

    In this study, the characteristics of small worlds are investigated in the context of the tree topologies of wireless sensor networks. Tree topologies, which construct spatial graphs with larger characteristic path lengths than random graphs and small clustering coefficients, are ubiquitous...... in wireless sensor networks. Suffering from the link rewiring or the link addition, the characteristic path length of the tree topology reduces rapidly and the clustering coefficient increases greatly. The variety of characteristic path length influences the time synchronization characteristics of wireless...... sensor networks greatly. With the increase of the link rewiring or the link addition probability, the time synchronization error decreases drastically. Two novel protocols named LEACH-SW and TREEPSI-SW are proposed to improve the performances of the sensor networks, in which the small world...

  1. Synthetic Topological Qubits in Conventional Bilayer Quantum Hall Systems

    Directory of Open Access Journals (Sweden)

    Maissam Barkeshli

    2014-11-01

    Full Text Available The idea of topological quantum computation is to build powerful and robust quantum computers with certain macroscopic quantum states of matter called topologically ordered states. These systems have degenerate ground states that can be used as robust “topological qubits” to store and process quantum information. In this paper, we propose a new experimental setup that can realize topological qubits in a simple bilayer fractional quantum Hall system with proper electric gate configurations. Our proposal is accessible with current experimental techniques, involves well-established topological states, and, moreover, can realize a large class of topological qubits, generalizing the Majorana zero modes studied in recent literature to more computationally powerful possibilities. We propose three tunneling and interferometry experiments to detect the existence and nonlocal topological properties of the topological qubits.

  2. Tensor Network Wavefunctions for Topological Phases

    Science.gov (United States)

    Ware, Brayden Alexander

    The combination of quantum effects and interactions in quantum many-body systems can result in exotic phases with fundamentally entangled ground state wavefunctions--topological phases. Topological phases come in two types, both of which will be studied in this thesis. In topologically ordered phases, the pattern of entanglement in the ground state wavefunction encodes the statistics of exotic emergent excitations, a universal indicator of a phase that is robust to all types of perturbations. In symmetry protected topological phases, the entanglement instead encodes a universal response of the system to symmetry defects, an indicator that is robust only to perturbations respecting the protecting symmetry. Finding and creating these phases in physical systems is a motivating challenge that tests all aspects--analytical, numerical, and experimental--of our understanding of the quantum many-body problem. Nearly three decades ago, the creation of simple ansatz wavefunctions--such as the Laughlin fractional quantum hall state, the AKLT state, and the resonating valence bond state--spurred analytical understanding of both the role of entanglement in topological physics and physical mechanisms by which it can arise. However, quantitative understanding of the relevant phase diagrams is still challenging. For this purpose, tensor networks provide a toolbox for systematically improving wavefunction ansatz while still capturing the relevant entanglement properties. In this thesis, we use the tools of entanglement and tensor networks to analyze ansatz states for several proposed new phases. In the first part, we study a featureless phase of bosons on the honeycomb lattice and argue that this phase can be topologically protected under any one of several distinct subsets of the crystalline lattice symmetries. We discuss methods of detecting such phases with entanglement and without. In the second part, we consider the problem of constructing fixed-point wavefunctions for

  3. Topological Insulators Dirac Equation in Condensed Matters

    CERN Document Server

    Shen, Shun-Qing

    2012-01-01

    Topological insulators are insulating in the bulk, but process metallic states around its boundary owing to the topological origin of the band structure. The metallic edge or surface states are immune to weak disorder or impurities, and robust against the deformation of the system geometry. This book, Topological insulators, presents a unified description of topological insulators from one to three dimensions based on the modified Dirac equation. A series of solutions of the bound states near the boundary are derived, and the existing conditions of these solutions are described. Topological invariants and their applications to a variety of systems from one-dimensional polyacetalene, to two-dimensional quantum spin Hall effect and p-wave superconductors, and three-dimensional topological insulators and superconductors or superfluids are introduced, helping readers to better understand this fascinating new field. This book is intended for researchers and graduate students working in the field of topological in...

  4. Structure and Topology Dynamics of Hyper-Frequency Networks during Rest and Auditory Oddball Performance.

    Science.gov (United States)

    Müller, Viktor; Perdikis, Dionysios; von Oertzen, Timo; Sleimen-Malkoun, Rita; Jirsa, Viktor; Lindenberger, Ulman

    2016-01-01

    Resting-state and task-related recordings are characterized by oscillatory brain activity and widely distributed networks of synchronized oscillatory circuits. Electroencephalographic recordings (EEG) were used to assess network structure and network dynamics during resting state with eyes open and closed, and auditory oddball performance through phase synchronization between EEG channels. For this assessment, we constructed a hyper-frequency network (HFN) based on within- and cross-frequency coupling (WFC and CFC, respectively) at 10 oscillation frequencies ranging between 2 and 20 Hz. We found that CFC generally differentiates between task conditions better than WFC. CFC was the highest during resting state with eyes open. Using a graph-theoretical approach (GTA), we found that HFNs possess small-world network (SWN) topology with a slight tendency to random network characteristics. Moreover, analysis of the temporal fluctuations of HFNs revealed specific network topology dynamics (NTD), i.e., temporal changes of different graph-theoretical measures such as strength, clustering coefficient, characteristic path length (CPL), local, and global efficiency determined for HFNs at different time windows. The different topology metrics showed significant differences between conditions in the mean and standard deviation of these metrics both across time and nodes. In addition, using an artificial neural network approach, we found stimulus-related dynamics that varied across the different network topology metrics. We conclude that functional connectivity dynamics (FCD), or NTD, which was found using the HFN approach during rest and stimulus processing, reflects temporal and topological changes in the functional organization and reorganization of neuronal cell assemblies.

  5. Physical-depth architectural requirements for generating universal photonic cluster states

    Science.gov (United States)

    Morley-Short, Sam; Bartolucci, Sara; Gimeno-Segovia, Mercedes; Shadbolt, Pete; Cable, Hugo; Rudolph, Terry

    2018-01-01

    Most leading proposals for linear-optical quantum computing (LOQC) use cluster states, which act as a universal resource for measurement-based (one-way) quantum computation. In ballistic approaches to LOQC, cluster states are generated passively from small entangled resource states using so-called fusion operations. Results from percolation theory have previously been used to argue that universal cluster states can be generated in the ballistic approach using schemes which exceed the critical threshold for percolation, but these results consider cluster states with unbounded size. Here we consider how successful percolation can be maintained using a physical architecture with fixed physical depth, assuming that the cluster state is continuously generated and measured, and therefore that only a finite portion of it is visible at any one point in time. We show that universal LOQC can be implemented using a constant-size device with modest physical depth, and that percolation can be exploited using simple pathfinding strategies without the need for high-complexity algorithms.

  6. Bilinear magnetoelectric resistance as a probe of three-dimensional spin texture in topological surface states

    Science.gov (United States)

    He, Pan; Zhang, Steven S.-L.; Zhu, Dapeng; Liu, Yang; Wang, Yi; Yu, Jiawei; Vignale, Giovanni; Yang, Hyunsoo

    2018-05-01

    Surface states of three-dimensional topological insulators exhibit the phenomenon of spin-momentum locking, whereby the orientation of an electron spin is determined by its momentum. Probing the spin texture of these states is of critical importance for the realization of topological insulator devices, but the main technique currently available is spin- and angle-resolved photoemission spectroscopy. Here we reveal a close link between the spin texture and a new kind of magnetoresistance, which depends on the relative orientation of the current with respect to the magnetic field as well as the crystallographic axes, and scales linearly with both the applied electric and magnetic fields. This bilinear magnetoelectric resistance can be used to map the spin texture of topological surface states by simple transport measurements. For a prototypical Bi2Se3 single layer, we can map both the in-plane and out-of-plane components of the spin texture (the latter arising from hexagonal warping). Theoretical calculations suggest that the bilinear magnetoelectric resistance originates from conversion of a non-equilibrium spin current into a charge current under application of the external magnetic field.

  7. Spin-torque generation in topological insulator based heterostructures

    KAUST Repository

    Fischer, Mark H.

    2016-03-11

    Heterostructures utilizing topological insulators exhibit a remarkable spin-torque efficiency. However, the exact origin of the strong torque, in particular whether it stems from the spin-momentum locking of the topological surface states or rather from spin-Hall physics of the topological-insulator bulk, remains unclear. Here, we explore a mechanism of spin-torque generation purely based on the topological surface states. We consider topological-insulator-based bilayers involving ferromagnetic metal (TI/FM) and magnetically doped topological insulators (TI/mdTI), respectively. By ascribing the key theoretical differences between the two setups to location and number of active surface states, we describe both setups within the same framework of spin diffusion of the nonequilibrium spin density of the topological surface states. For the TI/FM bilayer, we find large spin-torque efficiencies of roughly equal magnitude for both in-plane and out-of-plane spin torques. For the TI/mdTI bilayer, we elucidate the dominance of the spin-transfer-like torque. However, we cannot explain the orders of magnitude enhancement reported. Nevertheless, our model gives an intuitive picture of spin-torque generation in topological-insulator-based bilayers and provides theoretical constraints on spin-torque generation due to topological surface states.

  8. Antiferromagnetic and topological states in silicene: A mean field study

    Science.gov (United States)

    Liu, Feng; Liu, Cheng-Cheng; Yao, Yu-Gui

    2015-08-01

    It has been widely accepted that silicene is a topological insulator, and its gap closes first and then opens again with increasing electric field, which indicates a topological phase transition from the quantum spin Hall state to the band insulator state. However, due to the relatively large atomic spacing of silicene, which reduces the bandwidth, the electron-electron interaction in this system is considerably strong and cannot be ignored. The Hubbard interaction, intrinsic spin orbital coupling (SOC), and electric field are taken into consideration in our tight-binding model, with which the phase diagram of silicene is carefully investigated on the mean field level. We have found that when the magnitudes of the two mass terms produced by the Hubbard interaction and electric potential are close to each other, the intrinsic SOC flips the sign of the mass term at either K or K‧ for one spin and leads to the emergence of the spin-polarized quantum anomalous Hall state. Project supported by the National Key Basic Research Program of China (Grant Nos. 2014CB920903, 2013CB921903, 2011CBA00108, and 2012CB937500), the National Natural Science Foundation of China (Grant Nos. 11021262, 11172303, 11404022, 11225418, and 11174337), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20121101110046), the Excellent Young Scholars Research Fund of Beijing Institute of Technology (Grant No. 2014CX04028), and the Basic Research Funds of Beijing Institute of Technology (Grant No. 20141842001).

  9. Topology change and quantum physics

    International Nuclear Information System (INIS)

    Balachandran, A.P.; Marmo, G.; Simoni, A.

    1995-01-01

    The role of topology in elementary quantum physics is discussed in detail. It is argued that attributes of classical spatial topology emerge from properties of state vectors with suitably smooth time evolution. Equivalently, they emerge from considerations on the domain of the quantum Hamiltonian, this domain being often specified by boundary conditions in elementary quantum physics. Examples are presented where classical topology is changed by smoothly altering the boundary conditions. When the parameters labelling the latter are treated as quantum variables, quantum states need not give a well-defined classical topology, instead they can give a quantum superposition of such topologies. An existing argument of Sorkin based on the spin-statistics connection and indicating the necessity of topology change in quantum gravity is recalled. It is suggested therefrom and our results here that Einstein gravity and its minor variants are effective theories of a deeper description with additional novel degrees of freedom. Other reasons for suspecting such a microstructure are also summarized. (orig.)

  10. Stability of whole brain and regional network topology within and between resting and cognitive states.

    Directory of Open Access Journals (Sweden)

    Justyna K Rzucidlo

    Full Text Available BACKGROUND: Graph-theory based analyses of resting state functional Magnetic Resonance Imaging (fMRI data have been used to map the network organization of the brain. While numerous analyses of resting state brain organization exist, many questions remain unexplored. The present study examines the stability of findings based on this approach over repeated resting state and working memory state sessions within the same individuals. This allows assessment of stability of network topology within the same state for both rest and working memory, and between rest and working memory as well. METHODOLOGY/PRINCIPAL FINDINGS: fMRI scans were performed on five participants while at rest and while performing the 2-back working memory task five times each, with task state alternating while they were in the scanner. Voxel-based whole brain network analyses were performed on the resulting data along with analyses of functional connectivity in regions associated with resting state and working memory. Network topology was fairly stable across repeated sessions of the same task, but varied significantly between rest and working memory. In the whole brain analysis, local efficiency, Eloc, differed significantly between rest and working memory. Analyses of network statistics for the precuneus and dorsolateral prefrontal cortex revealed significant differences in degree as a function of task state for both regions and in local efficiency for the precuneus. Conversely, no significant differences were observed across repeated sessions of the same state. CONCLUSIONS/SIGNIFICANCE: These findings suggest that network topology is fairly stable within individuals across time for the same state, but also fluid between states. Whole brain voxel-based network analyses may prove to be a valuable tool for exploring how functional connectivity changes in response to task demands.

  11. Knitting distributed cluster-state ladders with spin chains

    Energy Technology Data Exchange (ETDEWEB)

    Ronke, R.; D' Amico, I. [Department of Physics, University of York, York YO10 5DD, United Kingdom. (United Kingdom); Spiller, T. P. [School of Physics and Astronomy, E C Stoner Building, University of Leeds, Leeds, LS2 9JT (United Kingdom)

    2011-09-15

    Recently there has been much study on the application of spin chains to quantum state transfer and communication. Here we discuss the utilization of spin chains (set up for perfect quantum state transfer) for the knitting of distributed cluster-state structures, between spin qubits repeatedly injected and extracted at the ends of the chain. The cluster states emerge from the natural evolution of the system across different excitation number sectors. We discuss the decohering effects of errors in the injection and extraction process as well as the effects of fabrication and random errors.

  12. Knitting distributed cluster-state ladders with spin chains

    International Nuclear Information System (INIS)

    Ronke, R.; D'Amico, I.; Spiller, T. P.

    2011-01-01

    Recently there has been much study on the application of spin chains to quantum state transfer and communication. Here we discuss the utilization of spin chains (set up for perfect quantum state transfer) for the knitting of distributed cluster-state structures, between spin qubits repeatedly injected and extracted at the ends of the chain. The cluster states emerge from the natural evolution of the system across different excitation number sectors. We discuss the decohering effects of errors in the injection and extraction process as well as the effects of fabrication and random errors.

  13. Topological color codes and two-body quantum lattice Hamiltonians

    Science.gov (United States)

    Kargarian, M.; Bombin, H.; Martin-Delgado, M. A.

    2010-02-01

    Topological color codes are among the stabilizer codes with remarkable properties from the quantum information perspective. In this paper, we construct a lattice, the so-called ruby lattice, with coordination number 4 governed by a two-body Hamiltonian. In a particular regime of coupling constants, in a strong coupling limit, degenerate perturbation theory implies that the low-energy spectrum of the model can be described by a many-body effective Hamiltonian, which encodes the color code as its ground state subspace. Ground state subspace corresponds to a vortex-free sector. The gauge symmetry Z2×Z2 of the color code could already be realized by identifying three distinct plaquette operators on the ruby lattice. All plaquette operators commute with each other and with the Hamiltonian being integrals of motion. Plaquettes are extended to closed strings or string-net structures. Non-contractible closed strings winding the space commute with Hamiltonian but not always with each other. This gives rise to exact topological degeneracy of the model. A connection to 2-colexes can be established via the coloring of the strings. We discuss it at the non-perturbative level. The particular structure of the two-body Hamiltonian provides a fruitful interpretation in terms of mapping onto bosons coupled to effective spins. We show that high-energy excitations of the model have fermionic statistics. They form three families of high-energy excitations each of one color. Furthermore, we show that they belong to a particular family of topological charges. The emergence of invisible charges is related to the string-net structure of the model. The emerging fermions are coupled to nontrivial gauge fields. We show that for particular 2-colexes, the fermions can see the background fluxes in the ground state. Also, we use the Jordan-Wigner transformation in order to test the integrability of the model via introducing Majorana fermions. The four-valent structure of the lattice prevents the

  14. Topological surface states of Bi{sub 2}Te{sub 2}Se are robust against surface chemical modification

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Conor R.; Sahasrabudhe, Girija; Kushwaha, Satya Kumar; Cava, Robert J.; Schwartz, Jeffrey [Department of Chemistry, Princeton University, Princeton, NJ (United States); Xiong, Jun [Department of Physics, Princeton University, Princeton, NJ (United States)

    2014-12-01

    The robustness of the Dirac-like electronic states on the surfaces of topological insulators (TIs) during materials process-ing is a prerequisite for their eventual device application. Here, the (001) cleavage surfaces of crystals of the topological insulator Bi{sub 2}Te{sub 2}Se (BTS) were subjected to several surface chemical modification procedures that are common for electronic materials. Through measurement of Shubnikov-de Hass (SdH) oscillations, which are the most sensitive measure of their quality, the surface states of the treated surfaces were compared to those of pristine BTS that had been exposed to ambient conditions. In each case - surface oxidation, deposition of thin layers of Ti or Zr oxides, or chemical modification of the surface oxides - the robustness of the topological surface electronic states was demonstrated by noting only very small changes in the frequency and amplitude of the SdH oscillations. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Probing topological electronic effects in catalysis: thiophene adsorption on NiMoS and CoMoS clusters

    Energy Technology Data Exchange (ETDEWEB)

    Borges Junior, Itamar; Silva, Alexander M., E-mail: itamar@ime.eb.br [Instituto Militar de Engenharia (IME), Rio de Janeiro-RJ (Brazil). Programa de Pos-Graduacao em Engenharia de Defesa

    2012-10-15

    A general two-step theoretical approach to study electronic redistributions in catalytic processes is presented. In the first step, density functional theory (DFT) is used to fully optimize two geometries: the cluster representing the catalyst and the cluster plus adsorbed molecule system. In the second step, the converged electron density is divided into multipoles centered on atomic sites according to a distributed multipole analysis which provides detailed topological information on the charge redistribution of catalyst and molecule before and after adsorption. This approach is applied to thiophene adsorption on the 10{sup -}10 metal edge of Ni(Co)MoS catalysts and compared to the same reaction on bare MoS{sub 2}. Calculated adsorption energies, geometries and multipole analysis indicate weak thiophene chemisorption on both cases. A Coulombic bond model showed that surface metal-sulfur bond strengths in Ni(Co)MoS promoted catalysts are considerably smaller than in bare MoS{sub 2}, thus confirming the origin of the enhancement of hydrodesulfurization (HDS) activity in these catalysts. (author)

  16. Network module detection: Affinity search technique with the multi-node topological overlap measure.

    Science.gov (United States)

    Li, Ai; Horvath, Steve

    2009-07-20

    Many clustering procedures only allow the user to input a pairwise dissimilarity or distance measure between objects. We propose a clustering method that can input a multi-point dissimilarity measure d(i1, i2, ..., iP) where the number of points P can be larger than 2. The work is motivated by gene network analysis where clusters correspond to modules of highly interconnected nodes. Here, we define modules as clusters of network nodes with high multi-node topological overlap. The topological overlap measure is a robust measure of interconnectedness which is based on shared network neighbors. In previous work, we have shown that the multi-node topological overlap measure yields biologically meaningful results when used as input of network neighborhood analysis. We adapt network neighborhood analysis for the use of module detection. We propose the Module Affinity Search Technique (MAST), which is a generalized version of the Cluster Affinity Search Technique (CAST). MAST can accommodate a multi-node dissimilarity measure. Clusters grow around user-defined or automatically chosen seeds (e.g. hub nodes). We propose both local and global cluster growth stopping rules. We use several simulations and a gene co-expression network application to argue that the MAST approach leads to biologically meaningful results. We compare MAST with hierarchical clustering and partitioning around medoid clustering. Our flexible module detection method is implemented in the MTOM software which can be downloaded from the following webpage: http://www.genetics.ucla.edu/labs/horvath/MTOM/

  17. Signatures of topological superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Yang

    2017-07-19

    The prediction and experimental discovery of topological insulators brought the importance of topology in condensed matter physics into the limelight. Topology hence acts as a new dimension along which more and more new states of matter start to emerge. One of these topological states of matter, namely topological superconductors, comes into the focus because of their gapless excitations. These gapless excitations, especially in one dimensional topological superconductors, are Majorana zero modes localized at the ends of the superconductor and exhibit exotic nonabelian statistics, which can be potentially applied to fault-tolerant quantum computation. Given their highly interesting physical properties and potential applications to quantum computation, both theorists and experimentalists spend great efforts to realize topological supercondoctors and to detect Majoranas. In two projects within this thesis, we investigate the properties of Majorana zero modes in realistic materials which are absent in simple theoretical models. We find that the superconducting proximity effect, an essential ingredient in all existing platforms for topological superconductors, plays a significant role in determining the localization property of the Majoranas. Strong proximity coupling between the normal system and the superconducting substrate can lead to strongly localized Majoranas, which can explain the observation in a recent experiment. Motivated by experiments in Molenkamp's group, we also look at realistic quantum spin Hall Josephson junctions, in which charge puddles acting as magnetic impurities are coupled to the helical edge states. We find that with this setup, the junction generically realizes an exotic 8π periodic Josephson effect, which is absent in a pristine Josephson junction. In another two projects, we propose more pronounced signatures of Majoranas that are accessible with current experimental techniques. The first one is a transport measurement, which uses

  18. Efficient construction of two-dimensional cluster states with probabilistic quantum gates

    International Nuclear Information System (INIS)

    Chen Qing; Cheng Jianhua; Wang Kelin; Du Jiangfeng

    2006-01-01

    We propose an efficient scheme for constructing arbitrary two-dimensional (2D) cluster states using probabilistic entangling quantum gates. In our scheme, the 2D cluster state is constructed with starlike basic units generated from 1D cluster chains. By applying parallel operations, the process of generating 2D (or higher-dimensional) cluster states is significantly accelerated, which provides an efficient way to implement realistic one-way quantum computers

  19. Topological Crystalline Superconductivity in Locally Noncentrosymmetric Multilayer Superconductors.

    Science.gov (United States)

    Yoshida, Tomohiro; Sigrist, Manfred; Yanase, Youichi

    2015-07-10

    Topological crystalline superconductivity in locally noncentrosymmetric multilayer superconductors (SCs) is proposed. We study the odd-parity pair-density wave (PDW) state induced by the spin-singlet pairing interaction through the spin-orbit coupling. It is shown that the PDW state is a topological crystalline SC protected by a mirror symmetry, although it is topologically trivial according to the classification based on the standard topological periodic table. The topological property of the mirror subsectors is intuitively explained by adiabatically changing the Bogoliubov-de Gennes Hamiltonian. A subsector of the bilayer PDW state reduces to the two-dimensional noncentrosymmetric SC, while a subsector of the trilayer PDW state is topologically equivalent to the spinless p-wave SC. Chiral Majorana edge modes in trilayers can be realized without Cooper pairs in the spin-triplet channel and chemical potential tuning.

  20. Visualizing nD Point Clouds as Topological Landscape Profiles to Guide Local Data Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Oesterling, Patrick [Univ. of Leipzig (Germany). Computer Science Dept.; Heine, Christian [Univ. of Leipzig (Germany). Computer Science Dept.; Federal Inst. of Technology (ETH), Zurich (Switzerland). Dept. of Computer Science; Weber, Gunther H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Computational Research Division; Scheuermann, Gerik [Univ. of Leipzig (Germany). Computer Science Dept.

    2012-05-04

    Analyzing high-dimensional point clouds is a classical challenge in visual analytics. Traditional techniques, such as projections or axis-based techniques, suffer from projection artifacts, occlusion, and visual complexity.We propose to split data analysis into two parts to address these shortcomings. First, a structural overview phase abstracts data by its density distribution. This phase performs topological analysis to support accurate and non-overlapping presentation of the high-dimensional cluster structure as a topological landscape profile. Utilizing a landscape metaphor, it presents clusters and their nesting as hills whose height, width, and shape reflect cluster coherence, size, and stability, respectively. A second local analysis phase utilizes this global structural knowledge to select individual clusters or point sets for further, localized data analysis. Focusing on structural entities significantly reduces visual clutter in established geometric visualizations and permits a clearer, more thorough data analysis. In conclusion, this analysis complements the global topological perspective and enables the user to study subspaces or geometric properties, such as shape.

  1. Topological Reorganization of the Default Mode Network in Severe Male Obstructive Sleep Apnea

    Directory of Open Access Journals (Sweden)

    Liting Chen

    2018-06-01

    Full Text Available Impaired spontaneous regional activity and altered topology of the brain network have been observed in obstructive sleep apnea (OSA. However, the mechanisms of disrupted functional connectivity (FC and topological reorganization of the default mode network (DMN in patients with OSA remain largely unknown. We explored whether the FC is altered within the DMN and examined topological changes occur in the DMN in patients with OSA using a graph theory analysis of resting-state functional magnetic resonance imaging data and evaluated the relationship between neuroimaging measures and clinical variables. Resting-state data were obtained from 46 male patients with untreated severe OSA and 46 male good sleepers (GSs. We specifically selected 20 DMN subregions to construct the DMN architecture. The disrupted FC and topological properties of the DMN in patients with OSA were characterized using graph theory. The OSA group showed significantly decreased FC of the anterior–posterior DMN and within the posterior DMN, and also showed increased FC within the DMN. The DMN exhibited small-world topology in both OSA and GS groups. Compared to GSs, patients with OSA showed a decreased clustering coefficient (Cp and local efficiency, and decreased nodal centralities in the left posterior cingulate cortex and dorsal medial prefrontal cortex, and increased nodal centralities in the ventral medial prefrontal cortex and the right parahippocampal cortex. Finally, the abnormal DMN FC was significantly related to Cp, path length, global efficiency, and Montreal cognitive assessment score. OSA showed disrupted FC within the DMN, which may have contributed to the observed topological reorganization. These findings may provide further evidence of cognitive deficits in patients with OSA.

  2. On the topological ground state of E-infinity spacetime and the super string connection

    International Nuclear Information System (INIS)

    El Naschie, M.S.

    2007-01-01

    There are at present a huge number of valid super string ground states, making the one corresponding to our own universe extremely hard to determine. Therefore it may come as quite a surprise that it is a rather simple undertaking to determine the exact topological ground state of E-infinity Cantorian spacetime theory. Similar to the ground state of the Higgs for E-infinity, the expectation value of the topological ground state is non-zero and negative. Its value is given exactly by -bar o -∼ n(1/φ) n =-(4+φ 3 ) where φ=(5-1)/2 and n represents an integer Menger-Uhryson dimension running from n=0 to n=-∼. Recalling that the average dimension of ε (∼) is given by ∼ =4+φ 3 , one could interpret this result as saying that our E-infinity spacetime may be viewed as an in itself closed manifold given by the remarkable equation: + =zeroThus in a manner of speaking, the universe could have spontaneously tunnelled into existence from virtual nothingness

  3. Aharonov–Bohm interference in topological insulator nanoribbons

    KAUST Repository

    Peng, Hailin

    2009-12-13

    Topological insulators represent unusual phases of quantum matter with an insulating bulk gap and gapless edges or surface states. The two-dimensional topological insulator phase was predicted in HgTe quantum wells and confirmed by transport measurements. Recently, Bi2 Se3 and related materials have been proposed as three-dimensional topological insulators with a single Dirac cone on the surface, protected by time-reversal symmetry. The topological surface states have been observed by angle-resolved photoemission spectroscopy experiments. However, few transport measurements in this context have been reported, presumably owing to the predominance of bulk carriers from crystal defects or thermal excitations. Here we show unambiguous transport evidence of topological surface states through periodic quantum interference effects in layered single-crystalline Bi2 Se3 nanoribbons, which have larger surface-to-volume ratios than bulk materials and can therefore manifest surface effects. Pronounced Aharonov-Bohm oscillations in the magnetoresistance clearly demonstrate the coherent propagation of two-dimensional electrons around the perimeter of the nanoribbon surface, as expected from the topological nature of the surface states. The dominance of the primary h/e oscillation, where h is Plancks constant and e is the electron charge, and its temperature dependence demonstrate the robustness of these states. Our results suggest that topological insulator nanoribbons afford promising materials for future spintronic devices at room temperature.

  4. Three-body cluster state in 11B

    International Nuclear Information System (INIS)

    Kawabata, T.; Akimune, H.; Fujita, H.; Fujita, Y.; Fujiwara, M.; Hara, K.; Hatanaka, K.; Itoh, M.; Kanada-En'yo, Y.; Kishi, S.; Nakanishi, K.; Sakaguchi, H.; Shimbara, Y.; Tamii, A.; Terashima, S.; Uchida, M.; Wakasa, T.; Yasuda, Y.; Yoshida, H.P.; Yosoi, M.

    2007-01-01

    The cluster structures of the excited states in 11 B are studied by analyzing the isoscalar monopole and quadrupole strengths in the 11 B(d,d ' ) reaction at E d =200 MeV. The excitation strengths are compared with the predictions by the shell-model and antisymmetrized molecular-dynamics (AMD) calculations. It is found that the large monopole strength for the 3/2 3 - state at E x =8.56 MeV is well described by the AMD calculation and is an evidence for a developed three-body 2α+t cluster structure

  5. Topology change and quantum physics

    International Nuclear Information System (INIS)

    Balachandran, A.P.; Marmo, G.; Simoni, A.

    1995-03-01

    The role of topology in elementary quantum physics is discussed in detail. It is argued that attributes of classical spatial topology emerge from properties of state vectors with suitably smooth time evolution. Equivalently, they emerge from considerations on the domain of the quantum Hamiltonian, this domain being often specified by boundary conditions in elementary quantum physics. Several examples are presented where classical topology is changed by smoothly altering the boundary conditions. When the parameters labelling the latter are treated as quantum variables, quantum states need not give a well-defined classical topology, instead they can give a quantum superposition of such topologies. An existing argument of Sorkin based on the spin-statistics connection and indicating the necessity of topology change in quantum gravity is recalled. It is suggested therefrom and our results here that Einstein gravity and its minor variants are effective theories of a deeper description with additional novel degrees of freedom. Other reasons for suspecting such a microstructure are also summarized. (author). 22 refs, 3 figs

  6. A new family of Ln₇ clusters with an ideal D(3h) metal-centered trigonal prismatic geometry, and SMM and photoluminescence behaviors.

    Science.gov (United States)

    Mazarakioti, Eleni C; Poole, Katye M; Cunha-Silva, Luis; Christou, George; Stamatatos, Theocharis C

    2014-08-14

    The first use of the flexible Schiff base ligand N-salicylidene-2-aminocyclohexanol in metal cluster chemistry has afforded a new family of Ln7 clusters with ideal D(3h) point group symmetry and metal-centered trigonal prismatic topology; solid-state and solution studies revealed SMM and photoluminescence behaviors.

  7. Unidirectional edge states in topological honeycomb-lattice membrane photonic crystals.

    Science.gov (United States)

    Anderson, P Duke; Subramania, Ganapathi

    2017-09-18

    Photonic analogs of electronic systems with topologically non-trivial behavior such as unidirectional scatter-free propagation has tremendous potential for transforming photonic systems. Like in electronics topological behavior can be observed in photonics for systems either preserving time-reversal (TR) symmetry or explicitly breaking it. TR symmetry breaking requires magneto-optic photonics crystals (PC) or generation of synthetic gauge fields. For on-chip photonics that operate at optical frequencies both are quite challenging because of poor magneto-optic response of materials or substantial nanofabrication challenges in generating synthetic gauge fields. A recent work by Ma, et al. [Phys. Rev. Lett.114, 223901 (2015)] based on preserving pseudo TR symmetry offers a promising design scheme for observing unidirectional edge states in a modified honeycomb photonic crystal (PC) lattice of circular rods that offers encouraging alternatives. Here we propose through bandstructure calculations the inverse system of modified honeycomb PC of circular holes in a dielectric membrane which is more attractive from fabrication standpoint for on-chip applications. We observe trivial and non-trivial bandgaps as well as unidirectional edge states of opposite helicity propagating in opposite directions at the interface of a trivial and non-trivial PC structures. Around 1550nm operating wavelength ~55nm of bandwidth is possible for practicable values of design parameters (lattice constant, hole radii, membrane thickness, scaling factor etc.) and robust to reasonable variations in those parameters.

  8. Hybrid cluster state proposal for a quantum game

    International Nuclear Information System (INIS)

    Paternostro, M; Tame, M S; Kim, M S

    2005-01-01

    We propose an experimental implementation of a quantum game algorithm in a hybrid scheme combining the quantum circuit approach and the cluster state model. An economical cluster configuration is suggested to embody a quantum version of the Prisoners' Dilemma. Our proposal is shown to be within the experimental state of the art and can be realized with existing technology.The effects of relevant experimental imperfections are also carefully examined

  9. Coevolution of Glauber-like Ising dynamics and topology

    Science.gov (United States)

    Mandrà, Salvatore; Fortunato, Santo; Castellano, Claudio

    2009-11-01

    We study the coevolution of a generalized Glauber dynamics for Ising spins with tunable threshold and of the graph topology where the dynamics takes place. This simple coevolution dynamics generates a rich phase diagram in the space of the two parameters of the model, the threshold and the rewiring probability. The diagram displays phase transitions of different types: spin ordering, percolation, and connectedness. At variance with traditional coevolution models, in which all spins of each connected component of the graph have equal value in the stationary state, we find that, for suitable choices of the parameters, the system may converge to a state in which spins of opposite sign coexist in the same component organized in compact clusters of like-signed spins. Mean field calculations enable one to estimate some features of the phase diagram.

  10. Topology Optimisation for Coupled Convection Problems

    DEFF Research Database (Denmark)

    Alexandersen, Joe

    This thesis deals with topology optimisation for coupled convection problems. The aim is to extend and apply topology optimisation to steady-state conjugate heat transfer problems, where the heat conduction equation governs the heat transfer in a solid and is coupled to thermal transport...... in a surrounding uid, governed by a convection-diffusion equation, where the convective velocity field is found from solving the isothermal incompressible steady-state Navier-Stokes equations. Topology optimisation is also applied to steady-state natural convection problems. The modelling is done using stabilised...... finite elements, the formulation and implementation of which was done partly during a special course as prepatory work for this thesis. The formulation is extended with a Brinkman friction term in order to facilitate the topology optimisation of fluid flow and convective cooling problems. The derived...

  11. Unconventional transformation of spin Dirac phase across a topological quantum phase transition

    Science.gov (United States)

    Xu, Su-Yang; Neupane, Madhab; Belopolski, Ilya; Liu, Chang; Alidoust, Nasser; Bian, Guang; Jia, Shuang; Landolt, Gabriel; Slomski, Batosz; Dil, J. Hugo; Shibayev, Pavel P.; Basak, Susmita; Chang, Tay-Rong; Jeng, Horng-Tay; Cava, Robert J.; Lin, Hsin; Bansil, Arun; Hasan, M. Zahid

    2015-01-01

    The topology of a topological material can be encoded in its surface states. These surface states can only be removed by a bulk topological quantum phase transition into a trivial phase. Here we use photoemission spectroscopy to image the formation of protected surface states in a topological insulator as we chemically tune the system through a topological transition. Surprisingly, we discover an exotic spin-momentum locked, gapped surface state in the trivial phase that shares many important properties with the actual topological surface state in anticipation of the change of topology. Using a spin-resolved measurement, we show that apart from a surface bandgap these states develop spin textures similar to the topological surface states well before the transition. Our results offer a general paradigm for understanding how surface states in topological phases arise from a quantum phase transition and are suggestive for the future realization of Weyl arcs, condensed matter supersymmetry and other fascinating phenomena in the vicinity of a quantum criticality. PMID:25882717

  12. Emerging Trends in Topological Insulators and Topological ...

    Indian Academy of Sciences (India)

    tems can lead to a state that supports zero energy Majorana fermions .... orbital motion is a relativistic effect most pronounced in heavy ... 1D helical edge states appear within the gap with a linear disper- ... free fermion in 1D. .... less, and electrically neutral. ... to be used as a building block for the next generation topological.

  13. Two Zn coordination polymers with meso-helical chains based on mononuclear or dinuclear cluster units

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Ling, E-mail: qinling@hfut.edu.cn [Department of Chemical Engineering and Food Processing, Xuancheng Campus, Hefei University of Technology, Xuancheng 242000, Anhui (China); Jiangsu Engineering Technology Research Center of Environmental Cleaning Materials (CEM), School of Environmental Sciences and Engineering, Nanjing University of Information Science and Technology (China); State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210093 (China); Qiao, Wen-Cheng; Zuo, Wei-Juan; Zeng, Si-Ying; Mei, Cao; Liu, Chang-Jiang [Department of Chemical Engineering and Food Processing, Xuancheng Campus, Hefei University of Technology, Xuancheng 242000, Anhui (China)

    2016-07-15

    Two zinc coordination polymers {[Zn_2(TPPBDA)(oba)_2]·DMF·1.5H_2O}{sub n} (1), {[Zn(TPPBDA)_1_/_2(tpdc)]·DMF}{sub n} (2) have been synthesized by zinc metal salt, nanosized tetradentate pyridine ligand with flexible or rigid V-shaped carboxylate co-ligands. These complexes were characterized by elemental analyses and X-ray single-crystal diffraction analyses. Compound 1 is a 2-fold interpenetrated 3D framework with [Zn{sub 2}(CO{sub 2}){sub 4}] clusters. Compound 2 can be defined as a five folded interpenetrating bbf topology with mononuclear Zn{sup 2+}. These mononuclear or dinuclear cluster units are linked by mix-ligands, resulting in various degrees of interpenetration. In addition, the photoluminescent properties for TPPBDA ligand under different state and coordination polymers have been investigated in detail. - Graphical abstract: Two zinc coordination polymers have been synthesized by zinc metal salt, nanosized tetradentate pyridine ligand with flexible or rigid V-shaped carboxylate co-ligands. Compound 1 is a 2-fold interpenetrated 3D framework with [Zn{sub 2}(CO{sub 2}){sub 4}] clusters. Compound 2 can be defined as a five folded interpenetrating bbf topology with mononuclear Zn{sup 2+}. In addition, the photoluminescent properties for TPPBDA ligand under different status and coordination polymers have been investigated in detail. Display Omitted - Highlights: • Two Zn coordination polymers based on mononuclear or dinuclear cluster units have been synthesized. • Compound 1 is a 2-fold interpenetrated 3D framework with [Zn{sub 2}(CO{sub 2}){sub 4}] clusters. • Compound 2 is a five folded interpenetrating bbf topology with mononuclear Zn{sup 2+}. • The photoluminescent properties for TPPBDA with different state and two coordination polymers have been investigated.

  14. Topology control of tactical wireless sensor networks using energy efficient zone routing

    Directory of Open Access Journals (Sweden)

    Preetha Thulasiraman

    2016-02-01

    Full Text Available The US Department of Defense (DoD routinely uses wireless sensor networks (WSNs for military tactical communications. Sensor node die-out has a significant impact on the topology of a tactical WSN. This is problematic for military applications where situational data is critical to tactical decision making. To increase the amount of time all sensor nodes remain active within the network and to control the network topology tactically, energy efficient routing mechanisms must be employed. In this paper, we aim to provide realistic insights on the practical advantages and disadvantages of using established routing techniques for tactical WSNs. We investigate the following established routing algorithms: direct routing, minimum transmission energy (MTE, Low Energy Adaptive Cluster Head routing (LEACH, and zone clustering. Based on the node die out statistics observed with these algorithms and the topological impact the node die outs have on the network, we develop a novel, energy efficient zone clustering algorithm called EZone. Via extensive simulations using MATLAB, we analyze the effectiveness of these algorithms on network performance for single and multiple gateway scenarios and show that the EZone algorithm tactically controls the topology of the network, thereby maintaining significant service area coverage when compared to the other routing algorithms.

  15. Topological insulators, topological superconductors and Weyl fermion semimetals: discoveries, perspectives and outlooks

    International Nuclear Information System (INIS)

    Hasan, M Zahid; Xu, Su-Yang; Bian, Guang

    2015-01-01

    Unlike string theory, topological physics in lower dimensional condensed matter systems is an experimental reality since the bulk-boundary correspondence can be probed experimentally in lower dimensions. In addition, recent experimental discoveries of non-quantum-Hall-like topological insulators, topological superconductors, Weyl semimetals and other topological states of matter also signal a clear departure from the quantum-Hall-effect-like transport paradigm that has dominated the field since the 1980s. It is these new forms of matter that enabled realizations of topological-Dirac, Weyl cones, helical-Cooper-pairs, Fermi-arc-quasiparticles and other emergent phenomena in fine-tuned photoemission (ARPES) experiments since ARPES experiments directly allow the study of bulk-boundary (topological) correspondence. In this proceeding we provide a brief overview of the key experiments and discuss our perspectives regarding the new research frontiers enabled by these experiments. Taken collectively, we argue in favor of the emergence of ‘topological-condensed-matter-physics’ in laboratory experiments for which a variety of theoretical concepts over the last 80 years paved the way. (review)

  16. Two-dimensional topological photonic systems

    Science.gov (United States)

    Sun, Xiao-Chen; He, Cheng; Liu, Xiao-Ping; Lu, Ming-Hui; Zhu, Shi-Ning; Chen, Yan-Feng

    2017-09-01

    The topological phase of matter, originally proposed and first demonstrated in fermionic electronic systems, has drawn considerable research attention in the past decades due to its robust transport of edge states and its potential with respect to future quantum information, communication, and computation. Recently, searching for such a unique material phase in bosonic systems has become a hot research topic worldwide. So far, many bosonic topological models and methods for realizing them have been discovered in photonic systems, acoustic systems, mechanical systems, etc. These discoveries have certainly yielded vast opportunities in designing material phases and related properties in the topological domain. In this review, we first focus on some of the representative photonic topological models and employ the underlying Dirac model to analyze the edge states and geometric phase. On the basis of these models, three common types of two-dimensional topological photonic systems are discussed: 1) photonic quantum Hall effect with broken time-reversal symmetry; 2) photonic topological insulator and the associated pseudo-time-reversal symmetry-protected mechanism; 3) time/space periodically modulated photonic Floquet topological insulator. Finally, we provide a summary and extension of this emerging field, including a brief introduction to the Weyl point in three-dimensional systems.

  17. Topological surface states interacting with bulk excitations in the Kondo insulator SmB6 revealed via planar tunneling spectroscopy.

    Science.gov (United States)

    Park, Wan Kyu; Sun, Lunan; Noddings, Alexander; Kim, Dae-Jeong; Fisk, Zachary; Greene, Laura H

    2016-06-14

    Samarium hexaboride (SmB6), a well-known Kondo insulator in which the insulating bulk arises from strong electron correlations, has recently attracted great attention owing to increasing evidence for its topological nature, thereby harboring protected surface states. However, corroborative spectroscopic evidence is still lacking, unlike in the weakly correlated counterparts, including Bi2Se3 Here, we report results from planar tunneling that unveil the detailed spectroscopic properties of SmB6 The tunneling conductance obtained on the (001) and (011) single crystal surfaces reveals linear density of states as expected for two and one Dirac cone(s), respectively. Quite remarkably, it is found that these topological states are not protected completely within the bulk hybridization gap. A phenomenological model of the tunneling process invoking interaction of the surface states with bulk excitations (spin excitons), as predicted by a recent theory, provides a consistent explanation for all of the observed features. Our spectroscopic study supports and explains the proposed picture of the incompletely protected surface states in this topological Kondo insulator SmB6.

  18. Vortices and gate-tunable bound states in a topological insulator coupled to superconducting leads

    Science.gov (United States)

    Finck, Aaron; Kurter, C.; Hor, Y. S.; van Harlingen, D. J.

    2014-03-01

    It has been predicted that zero energy Majorana bound states can be found in the core of vortices within topological superconductors. Here, we report on Andreev spectroscopy measurements of the topological insulator Bi2Se3 with a normal metal lead and one or more niobium leads. The niobium induces superconductivity in the Bi2Se3 through the proximity effect, leading to both signatures of Andreev reflection and a prominent re-entrant resistance effect. When a large magnetic field is applied perpendicular to the surface of the Bi2Se3, we observe multiple abrupt changes in the subgap conductance that are accompanied by sharp peaks in the dynamical resistance. These peaks are very sensitive to changes in magnetic field and disappear at temperatures associated with the critical temperature of the induced superconductivity. The appearance of the transitions and peaks can be tuned by a top gate. At high magnetic fields, we also find evidence of gate-tunable states, which can lead to stable zero-bias conductance peaks. We interpret our results in terms of a transition occurring within the proximity effect region of the topological insulator, likely due to the formation of vortices. We acknowledge support from Microsoft Project Q.

  19. Controllability of multi-agent systems with time-delay in state and switching topology

    Science.gov (United States)

    Ji, Zhijian; Wang, Zidong; Lin, Hai; Wang, Zhen

    2010-02-01

    In this article, the controllability issue is addressed for an interconnected system of multiple agents. The network associated with the system is of the leader-follower structure with some agents taking leader role and others being followers interconnected via the neighbour-based rule. Sufficient conditions are derived for the controllability of multi-agent systems with time-delay in state, as well as a graph-based uncontrollability topology structure is revealed. Both single and double integrator dynamics are considered. For switching topology, two algebraic necessary and sufficient conditions are derived for the controllability of multi-agent systems. Several examples are also presented to illustrate how to control the system to shape into the desired configurations.

  20. Pseudo-time-reversal symmetry and topological edge states in two-dimensional acoustic crystals

    KAUST Repository

    Mei, Jun

    2016-09-02

    We propose a simple two-dimensional acoustic crystal to realize topologically protected edge states for acoustic waves. The acoustic crystal is composed of a triangular array of core-shell cylinders embedded in a water host. By utilizing the point group symmetry of two doubly degenerate eigenstates at the Î

  1. Pseudo-time-reversal symmetry and topological edge states in two-dimensional acoustic crystals

    KAUST Repository

    Mei, Jun; Chen, Zeguo; Wu, Ying

    2016-01-01

    We propose a simple two-dimensional acoustic crystal to realize topologically protected edge states for acoustic waves. The acoustic crystal is composed of a triangular array of core-shell cylinders embedded in a water host. By utilizing the point group symmetry of two doubly degenerate eigenstates at the Î

  2. Duality and topology

    Science.gov (United States)

    Sacramento, P. D.; Vieira, V. R.

    2018-04-01

    Mappings between models may be obtained by unitary transformations with preservation of the spectra but in general a change in the states. Non-canonical transformations in general also change the statistics of the operators involved. In these cases one may expect a change of topological properties as a consequence of the mapping. Here we consider some dualities resulting from mappings, by systematically using a Majorana fermion representation of spin and fermionic problems. We focus on the change of topological invariants that results from unitary transformations taking as examples the mapping between a spin system and a topological superconductor, and between different fermionic systems.

  3. Quantization State of Baryonic Mass in Clusters of Galaxies

    Directory of Open Access Journals (Sweden)

    Potter F.

    2007-01-01

    Full Text Available The rotational velocity curves for clusters of galaxies cannot be explained by Newtonian gravitation using the baryonic mass nor does MOND succeed in reducing this discrepancy to acceptable differences. The dark matter hypothesis appears to offer a solution; however, non-baryonic dark matter has never been detected. As an alternative approach, quantum celestial mechanics (QCM predicts that galactic clusters are in quantization states determined solely by the total baryonic mass of the cluster and its total angular momentum. We find excellent agreement with QCM for ten galactic clusters, demonstrating that dark matter is not needed to explain the rotation velocities and providing further support to the hypothesis that all gravitationally bound systems have QCM quantization states.

  4. Complete theory of symmetry-based indicators of band topology.

    Science.gov (United States)

    Po, Hoi Chun; Vishwanath, Ashvin; Watanabe, Haruki

    2017-06-30

    The interplay between symmetry and topology leads to a rich variety of electronic topological phases, protecting states such as the topological insulators and Dirac semimetals. Previous results, like the Fu-Kane parity criterion for inversion-symmetric topological insulators, demonstrate that symmetry labels can sometimes unambiguously indicate underlying band topology. Here we develop a systematic approach to expose all such symmetry-based indicators of band topology in all the 230 space groups. This is achieved by first developing an efficient way to represent band structures in terms of elementary basis states, and then isolating the topological ones by removing the subset of atomic insulators, defined by the existence of localized symmetric Wannier functions. Aside from encompassing all earlier results on such indicators, including in particular the notion of filling-enforced quantum band insulators, our theory identifies symmetry settings with previously hidden forms of band topology, and can be applied to the search for topological materials.Understanding the role of topology in determining electronic structure can lead to the discovery, or appreciation, of materials with exotic properties such as protected surface states. Here, the authors present a framework for identifying topologically distinct band-structures for all 3D space groups.

  5. Cluster expansion for ground states of local Hamiltonians

    Directory of Open Access Journals (Sweden)

    Alvise Bastianello

    2016-08-01

    Full Text Available A central problem in many-body quantum physics is the determination of the ground state of a thermodynamically large physical system. We construct a cluster expansion for ground states of local Hamiltonians, which naturally incorporates physical requirements inherited by locality as conditions on its cluster amplitudes. Applying a diagrammatic technique we derive the relation of these amplitudes to thermodynamic quantities and local observables. Moreover we derive a set of functional equations that determine the cluster amplitudes for a general Hamiltonian, verify the consistency with perturbation theory and discuss non-perturbative approaches. Lastly we verify the persistence of locality features of the cluster expansion under unitary evolution with a local Hamiltonian and provide applications to out-of-equilibrium problems: a simplified proof of equilibration to the GGE and a cumulant expansion for the statistics of work, for an interacting-to-free quantum quench.

  6. Graph topologies on closed multifunctions

    Directory of Open Access Journals (Sweden)

    Giuseppe Di Maio

    2003-10-01

    Full Text Available In this paper we study function space topologies on closed multifunctions, i.e. closed relations on X x Y using various hypertopologies. The hypertopologies are in essence, graph topologies i.e topologies on functions considered as graphs which are subsets of X x Y . We also study several topologies, including one that is derived from the Attouch-Wets filter on the range. We state embedding theorems which enable us to generalize and prove some recent results in the literature with the use of known results in the hyperspace of the range space and in the function space topologies of ordinary functions.

  7. Nobel Lecture: Topological quantum matter*

    Science.gov (United States)

    Haldane, F. Duncan M.

    2017-10-01

    Nobel Lecture, presented December 8, 2016, Aula Magna, Stockholm University. I will describe the history and background of three discoveries cited in this Nobel Prize: The "TKNN" topological formula for the integer quantum Hall effect found by David Thouless and collaborators, the Chern insulator or quantum anomalous Hall effect, and its role in the later discovery of time-reversal-invariant topological insulators, and the unexpected topological spin-liquid state of the spin-1 quantum antiferromagnetic chain, which provided an initial example of topological quantum matter. I will summarize how these early beginnings have led to the exciting, and currently extremely active, field of "topological matter."

  8. Commissioning and validation of the ATLAS Level-1 topological trigger

    CERN Document Server

    AUTHOR|(SzGeCERN)788741; The ATLAS collaboration; Hong, Tae Min

    2017-01-01

    The ATLAS experiment has recently commissioned a new hardware component of its first-level trigger: the topological processor (L1Topo). This innovative system, using state-of-the-art FPGA processors, selects events by applying kinematic and topological requirements on candidate objects (energy clusters, jets, and muons) measured by calorimeters and muon sub-detectors. Since the first-level trigger is a synchronous pipelined system, such requirements are applied within a latency of 200ns. We will present the first results from data recorded using the L1Topo trigger; these demonstrate a significantly improved background event rejection, thus allowing for a rate reduction without efficiency loss. This improvement has been shown for several physics processes leading to low-$P_{T}$ leptons, including $H\\to{}\\tau{}\\tau{}$ and $J/\\Psi\\to{}\\mu{}\\mu{}$. In addition, we will discuss the use of an accurate L1Topo simulation as a powerful tool to validate and optimize the performance of this new trigger system. To reach ...

  9. Creation and manipulation of topological states in chiral nematic microspheres

    Science.gov (United States)

    Orlova, Tetiana; Aßhoff, Sarah Jane; Yamaguchi, Tadatsugu; Katsonis, Nathalie; Brasselet, Etienne

    2015-07-01

    Topology is a universal concept that is encountered in daily life and is known to determine many static and dynamical properties of matter. Taming and controlling the topology of materials therefore constitutes a contemporary interdisciplinary challenge. Building on the controllable spatial properties of soft matter appears as a relevant strategy to address the challenge, in particular, because it may lead to paradigmatic model systems that allow checking theories experimentally. Here we report experimentally on a wealth of complex free-standing metastable topological architectures at the micron scale, in frustrated chiral nematic droplets. These results support recent works predicting the formation of free-standing knotted and linked disclination structures in confined chiral nematic fluids. We also demonstrate that various kinds of external fields (thermal, electrical and optical) can be used to achieve topological remote control. All this may foster the development of new devices based on topologically structured soft media.

  10. Amplitude-dependent topological edge states in nonlinear phononic lattices

    Science.gov (United States)

    Pal, Raj Kumar; Vila, Javier; Leamy, Michael; Ruzzene, Massimo

    2018-03-01

    This work investigates the effect of nonlinearities on topologically protected edge states in one- and two-dimensional phononic lattices. We first show that localized modes arise at the interface between two spring-mass chains that are inverted copies of each other. Explicit expressions derived for the frequencies of the localized modes guide the study of the effect of cubic nonlinearities on the resonant characteristics of the interface, which are shown to be described by a Duffing-like equation. Nonlinearities produce amplitude-dependent frequency shifts, which in the case of a softening nonlinearity cause the localized mode to migrate to the bulk spectrum. The case of a hexagonal lattice implementing a phononic analog of a crystal exhibiting the quantum spin Hall effect is also investigated in the presence of weakly nonlinear cubic springs. An asymptotic analysis provides estimates of the amplitude dependence of the localized modes, while numerical simulations illustrate how the lattice response transitions from bulk-to-edge mode-dominated by varying the excitation amplitude. In contrast with the interface mode of the first example studies, this occurs both for hardening and softening springs. The results of this study provide a theoretical framework for the investigation of nonlinear effects that induce and control topologically protected wave modes through nonlinear interactions and amplitude tuning.

  11. Resource-efficient generation of linear cluster states by linear optics with postselection

    International Nuclear Information System (INIS)

    Uskov, D B; Alsing, P M; Fanto, M L; Szep, A; Smith, A M; Kaplan, L; Kim, R

    2015-01-01

    We report on theoretical research in photonic cluster-state computing. Finding optimal schemes of generating non-classical photonic states is of critical importance for this field as physically implementable photon–photon entangling operations are currently limited to measurement-assisted stochastic transformations. A critical parameter for assessing the efficiency of such transformations is the success probability of a desired measurement outcome. At present there are several experimental groups that are capable of generating multi-photon cluster states carrying more than eight qubits. Separate photonic qubits or small clusters can be fused into a single cluster state by a probabilistic optical CZ gate conditioned on simultaneous detection of all photons with 1/9 success probability for each gate. This design mechanically follows the original theoretical scheme of cluster state generation proposed more than a decade ago by Raussendorf, Browne and Briegel. The optimality of the destructive CZ gate in application to linear optical cluster state generation has not been analyzed previously. Our results reveal that this method is far from the optimal one. Employing numerical optimization we have identified that the maximal success probability of fusing n unentangled dual-rail optical qubits into a linear cluster state is equal to (1/2) n−1 ; an m-tuple of photonic Bell pair states, commonly generated via spontaneous parametric down-conversion, can be fused into a single cluster with the maximal success probability of (1/4) m−1 . (paper)

  12. A topological quantum optics interface.

    Science.gov (United States)

    Barik, Sabyasachi; Karasahin, Aziz; Flower, Christopher; Cai, Tao; Miyake, Hirokazu; DeGottardi, Wade; Hafezi, Mohammad; Waks, Edo

    2018-02-09

    The application of topology in optics has led to a new paradigm in developing photonic devices with robust properties against disorder. Although considerable progress on topological phenomena has been achieved in the classical domain, the realization of strong light-matter coupling in the quantum domain remains unexplored. We demonstrate a strong interface between single quantum emitters and topological photonic states. Our approach creates robust counterpropagating edge states at the boundary of two distinct topological photonic crystals. We demonstrate the chiral emission of a quantum emitter into these modes and establish their robustness against sharp bends. This approach may enable the development of quantum optics devices with built-in protection, with potential applications in quantum simulation and sensing. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  13. Decoherence patterns of topological qubits from Majorana modes

    International Nuclear Information System (INIS)

    Ho, Shih-Hao; Chao, Sung-Po; Chou, Chung-Hsien; Lin, Feng-Li

    2014-01-01

    We investigate the decoherence patterns of topological qubits in contact with the environment using a novel way of deriving the open system dynamics, rather than using the Feynman–Vernon approach. Each topological qubit is made up of two Majorana modes of a 1D Kitaev chain. These two Majorana modes interact with the environment in an incoherent way which yields peculiar decoherence patterns of the topological qubit. More specifically, we consider the open system dynamics of topological qubits which are weakly coupled to fermionic/bosonic Ohmic-like environments. We find atypical patterns of quantum decoherence. In contrast to the case for non-topological qubits—which always decohere completely in all Ohmic-like environments—topological qubits decohere completely in Ohmic and sub-Ohmic environments but not in super-Ohmic ones. Moreover, we find that the fermion parities of the topological qubits, though they cannot prevent the qubit states from exhibiting decoherence in sub-Ohmic environments, can prevent thermalization turning the state into a Gibbs state. We also study the cases in which each Majorana mode can couple to different Ohmic-like environments, and the time dependence of concurrence for two topological qubits. (paper)

  14. Cranked cluster wave function for molecular states

    International Nuclear Information System (INIS)

    Horiuchi, Hisashi; Yabana, Kazuhiro; Wada, Takahiro.

    1986-01-01

    Construction of the cranked cluster wave function is discussed by focussing on three problems; the self-consistency between the potential and the density distribution, the properties of the rotational angular frequency which is strongly influenced by the inter-cluster Pauli principle and by the parity projection, and the spin alignment along the rotation axis with the resulting structure-change of the molecular state. (author)

  15. Topological triplon modes and bound states in a Shastry-Sutherland magnet

    Science.gov (United States)

    McClarty, P. A.; Krüger, F.; Guidi, T.; Parker, S. F.; Refson, K.; Parker, A. W.; Prabhakaran, D.; Coldea, R.

    2017-08-01

    The twin discoveries of the quantum Hall effect, in the 1980s, and of topological band insulators, in the 2000s, were landmarks in physics that enriched our view of the electronic properties of solids. In a nutshell, these discoveries have taught us that quantum mechanical wavefunctions in crystalline solids may carry nontrivial topological invariants which have ramifications for the observable physics. One of the side effects of the recent topological insulator revolution has been that such physics is much more widespread than was appreciated ten years ago. For example, while topological insulators were originally studied in the context of electron wavefunctions, recent work has initiated a hunt for topological insulators in bosonic systems: in photonic crystals, in the vibrational modes of crystals, and in the excitations of ordered magnets. Using inelastic neutron scattering along with theoretical calculations, we demonstrate that, in a weak magnetic field, the dimerized quantum magnet SrCu2(BO3)2 is a bosonic topological insulator with topologically protected chiral edge modes of triplon excitations.

  16. Topologically distinct classes of valence-bond solid states with their parent Hamiltonians

    International Nuclear Information System (INIS)

    Tu Honghao; Zhang Guangming; Xiang Tao; Liu Zhengxin; Ng Taikai

    2009-01-01

    We present a general method to construct one-dimensional translationally invariant valence-bond solid states with a built-in Lie group G and derive their matrix product representations. The general strategies to find their parent Hamiltonians are provided so that the valence-bond solid states are their unique ground states. For quantum integer-spin-S chains, we discuss two topologically distinct classes of valence-bond solid states: one consists of two virtual SU(2) spin-J variables in each site and another is formed by using two SO(2S+1) spinors. Among them, a spin-1 fermionic valence-bond solid state, its parent Hamiltonian, and its properties are discussed in detail. Moreover, two types of valence-bond solid states with SO(5) symmetries are further generalized and their respective properties are analyzed as well.

  17. Cluster-state quantum computing enhanced by high-fidelity generalized measurements.

    Science.gov (United States)

    Biggerstaff, D N; Kaltenbaek, R; Hamel, D R; Weihs, G; Rudolph, T; Resch, K J

    2009-12-11

    We introduce and implement a technique to extend the quantum computational power of cluster states by replacing some projective measurements with generalized quantum measurements (POVMs). As an experimental demonstration we fully realize an arbitrary three-qubit cluster computation by implementing a tunable linear-optical POVM, as well as fast active feedforward, on a two-qubit photonic cluster state. Over 206 different computations, the average output fidelity is 0.9832+/-0.0002; furthermore the error contribution from our POVM device and feedforward is only of O(10(-3)), less than some recent thresholds for fault-tolerant cluster computing.

  18. Insulator function and topological domain border strength scale with architectural protein occupancy

    Science.gov (United States)

    2014-01-01

    Background Chromosome conformation capture studies suggest that eukaryotic genomes are organized into structures called topologically associating domains. The borders of these domains are highly enriched for architectural proteins with characterized roles in insulator function. However, a majority of architectural protein binding sites localize within topological domains, suggesting sites associated with domain borders represent a functionally different subclass of these regulatory elements. How topologically associating domains are established and what differentiates border-associated from non-border architectural protein binding sites remain unanswered questions. Results By mapping the genome-wide target sites for several Drosophila architectural proteins, including previously uncharacterized profiles for TFIIIC and SMC-containing condensin complexes, we uncover an extensive pattern of colocalization in which architectural proteins establish dense clusters at the borders of topological domains. Reporter-based enhancer-blocking insulator activity as well as endogenous domain border strength scale with the occupancy level of architectural protein binding sites, suggesting co-binding by architectural proteins underlies the functional potential of these loci. Analyses in mouse and human stem cells suggest that clustering of architectural proteins is a general feature of genome organization, and conserved architectural protein binding sites may underlie the tissue-invariant nature of topologically associating domains observed in mammals. Conclusions We identify a spectrum of architectural protein occupancy that scales with the topological structure of chromosomes and the regulatory potential of these elements. Whereas high occupancy architectural protein binding sites associate with robust partitioning of topologically associating domains and robust insulator function, low occupancy sites appear reserved for gene-specific regulation within topological domains. PMID

  19. Topology of sustainable management in dynamical Earth system models with desirable states

    Science.gov (United States)

    Heitzig, J.; Kittel, T.

    2015-03-01

    To keep the Earth system in a desirable region of its state space, such as the recently suggested "tolerable environment and development window", "planetary boundaries", or "safe (and just) operating space", one not only needs to understand the quantitative internal dynamics of the system and the available options for influencing it (management), but also the structure of the system's state space with regard to certain qualitative differences. Important questions are: which state space regions can be reached from which others with or without leaving the desirable region? Which regions are in a variety of senses "safe" to stay in when management options might break away, and which qualitative decision problems may occur as a consequence of this topological structure? In this article, as a complement to the existing literature on optimal control which is more focussed on quantitative optimization and is much applied in both the engineering and the integrated assessment literature, we develop a mathematical theory of the qualitative topology of the state space of a dynamical system with management options and desirable states. We suggest a certain terminology for the various resulting regions of the state space and perform a detailed formal classification of the possible states with respect to the possibility of avoiding or leaving the undesired region. Our results indicate that before performing some form of quantitative optimization, the sustainable management of the Earth system may require decisions of a more discrete type that come in the form of several dilemmata, e.g., choosing between eventual safety and uninterrupted desirability, or between uninterrupted safety and increasing flexibility. We illustrate the concepts and dilemmata with conceptual models from classical mechanics, climate science, ecology, economics, and coevolutionary Earth system modelling and discuss their potential relevance for the climate and sustainability debate.

  20. Aggregation of topological motifs in the Escherichia coli transcriptional regulatory network

    Directory of Open Access Journals (Sweden)

    Barabási Albert-László

    2004-01-01

    Full Text Available Abstract Background Transcriptional regulation of cellular functions is carried out through a complex network of interactions among transcription factors and the promoter regions of genes and operons regulated by them.To better understand the system-level function of such networks simplification of their architecture was previously achieved by identifying the motifs present in the network, which are small, overrepresented, topologically distinct regulatory interaction patterns (subgraphs. However, the interaction of such motifs with each other, and their form of integration into the full network has not been previously examined. Results By studying the transcriptional regulatory network of the bacterium, Escherichia coli, we demonstrate that the two previously identified motif types in the network (i.e., feed-forward loops and bi-fan motifs do not exist in isolation, but rather aggregate into homologous motif clusters that largely overlap with known biological functions. Moreover, these clusters further coalesce into a supercluster, thus establishing distinct topological hierarchies that show global statistical properties similar to the whole network. Targeted removal of motif links disintegrates the network into small, isolated clusters, while random disruptions of equal number of links do not cause such an effect. Conclusion Individual motifs aggregate into homologous motif clusters and a supercluster forming the backbone of the E. coli transcriptional regulatory network and play a central role in defining its global topological organization.

  1. Boundary Hamiltonian Theory for Gapped Topological Orders

    Science.gov (United States)

    Hu, Yuting; Wan, Yidun; Wu, Yong-Shi

    2017-06-01

    We report our systematic construction of the lattice Hamiltonian model of topological orders on open surfaces, with explicit boundary terms. We do this mainly for the Levin-Wen string-net model. The full Hamiltonian in our approach yields a topologically protected, gapped energy spectrum, with the corresponding wave functions robust under topology-preserving transformations of the lattice of the system. We explicitly present the wavefunctions of the ground states and boundary elementary excitations. The creation and hopping operators of boundary quasi-particles are constructed. It is found that given a bulk topological order, the gapped boundary conditions are classified by Frobenius algebras in its input data. Emergent topological properties of the ground states and boundary excitations are characterized by (bi-) modules over Frobenius algebras.

  2. Topological properties of complex networks in protein structures

    Science.gov (United States)

    Kim, Kyungsik; Jung, Jae-Won; Min, Seungsik

    2014-03-01

    We study topological properties of networks in structural classification of proteins. We model the native-state protein structure as a network made of its constituent amino-acids and their interactions. We treat four structural classes of proteins composed predominantly of α helices and β sheets and consider several proteins from each of these classes whose sizes range from amino acids of the Protein Data Bank. Particularly, we simulate and analyze the network metrics such as the mean degree, the probability distribution of degree, the clustering coefficient, the characteristic path length, the local efficiency, and the cost. This work was supported by the KMAR and DP under Grant WISE project (153-3100-3133-302-350).

  3. Converting topological insulators into topological metals within the tetradymite family

    Science.gov (United States)

    Chen, K.-W.; Aryal, N.; Dai, J.; Graf, D.; Zhang, S.; Das, S.; Le Fèvre, P.; Bertran, F.; Yukawa, R.; Horiba, K.; Kumigashira, H.; Frantzeskakis, E.; Fortuna, F.; Balicas, L.; Santander-Syro, A. F.; Manousakis, E.; Baumbach, R. E.

    2018-04-01

    We report the electronic band structures and concomitant Fermi surfaces for a family of exfoliable tetradymite compounds with the formula T2C h2P n , obtained as a modification to the well-known topological insulator binaries Bi2(Se,Te ) 3 by replacing one chalcogen (C h ) with a pnictogen (P n ) and Bi with the tetravalent transition metals T = Ti, Zr, or Hf. This imbalances the electron count and results in layered metals characterized by relatively high carrier mobilities and bulk two-dimensional Fermi surfaces whose topography is well-described by first-principles calculations. Intriguingly, slab electronic structure calculations predict Dirac-like surface states. In contrast to Bi2Se3 , where the surface Dirac bands are at the Γ point, for (Zr,Hf ) 2Te2 (P,As) there are Dirac cones of strong topological character around both the Γ ¯ and M ¯ points, which are above and below the Fermi energy, respectively. For Ti2Te2P , the surface state is predicted to exist only around the M ¯ point. In agreement with these predictions, the surface states that are located below the Fermi energy are observed by angle-resolved photoemission spectroscopy measurements, revealing that they coexist with the bulk metallic state. Thus this family of materials provides a foundation upon which to develop novel phenomena that exploit both the bulk and surface states (e.g., topological superconductivity).

  4. Ioniclike energy structure of neutral core-excited states in free Kr clusters

    International Nuclear Information System (INIS)

    Peredkov, S.; Sorensen, S.L.; Kivimaeki, A.; Schulz, J.; Maartensson, N.; Oehrwall, G.; Lundwall, M.; Rander, T.; Lindblad, A.; Bergersen, H.; Svensson, S.; Bjoerneholm, O.; Tchaplyguine, M.

    2005-01-01

    The development of electronic states in krypton clusters is investigated by high-resolution core-level electron spectroscopy. The energy ordering of bulk versus surface 3d -1 np(n>5) core-excited states in neutral clusters is demonstrated to be reversed to the 3d -1 5p level situation. The cluster 3d -1 6p,7p states are proven to be at a lower energy than the corresponding atomic levels. These findings reveal the ioniclike energy structure of the neutral cluster core-excited levels. The phenomenon is explained by a spatial spread of the excited orbitals over the cluster lattice

  5. Topological Photonics for Continuous Media

    Science.gov (United States)

    Silveirinha, Mario

    Photonic crystals have revolutionized light-based technologies during the last three decades. Notably, it was recently discovered that the light propagation in photonic crystals may depend on some topological characteristics determined by the manner how the light states are mutually entangled. The usual topological classification of photonic crystals explores the fact that these structures are periodic. The periodicity is essential to ensure that the underlying wave vector space is a closed surface with no boundary. In this talk, we prove that it is possible calculate Chern invariants for a wide class of continuous bianisotropic electromagnetic media with no intrinsic periodicity. The nontrivial topology of the relevant continuous materials is linked with the emergence of edge states. Moreover, we will demonstrate that continuous photonic media with the time-reversal symmetry can be topologically characterized by a Z2 integer. This novel classification extends for the first time the theory of electronic topological insulators to a wide range of photonic platforms, and is expected to have an impact in the design of novel photonic systems that enable a topologically protected transport of optical energy. This work is supported in part by Fundacao para a Ciencia e a Tecnologia Grant Number PTDC/EEI-TEL/4543/2014.

  6. Alteration of long-distance functional connectivity and network topology in patients with supratentorial gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ji Eun; Kim, Ho Sung; Kim, Sang Joon; Shim, Woo Hyun [University of Ulsan College of Medicine, Department of Radiology and Research Institute of Radiology, Asan Medical Center, Songpa-Gu, Seoul (Korea, Republic of); Kim, Jeong Hoon [University of Ulsan College of Medicine, Department of Neurosurgery, Asan Medical Center, Seoul (Korea, Republic of)

    2016-03-15

    The need for information regarding functional alterations in patients with brain gliomas is increasing, but little is known about the functional consequences of focal brain tumors throughout the entire brain. Using resting-state functional MR imaging (rs-fMRI), this study assessed functional connectivity in patients with supratentorial brain gliomas with possible alterations in long-distance connectivity and network topology. Data from 36 patients with supratentorial brain gliomas and 12 healthy subjects were acquired using rs-fMRI. The functional connectivity matrix (FCM) was created using 32 pairs of cortical seeds on Talairach coordinates in each individual subject. Local and distant connectivity were calculated using z-scores in the individual patient's FCM, and the averaged FCM of patients was compared with that of healthy subjects. Weighted network analysis was performed by calculating local efficiency, global efficiency, clustering coefficient, and small-world topology, and compared between patients and healthy controls. When comparing the averaged FCM of patients with that of healthy controls, the patients showed decreased long-distance, inter-hemispheric connectivity (0.32 ± 0.16 in patients vs. 0. 42 ± 0.15 in healthy controls, p = 0.04). In network analysis, patients showed increased local efficiency (p < 0.05), but global efficiency, clustering coefficient, and small-world topology were relatively preserved compared to healthy subjects. Patients with supratentorial brain gliomas showed decreased long-distance connectivity while increased local efficiency and preserved small-world topology. The results of this small case series may provide a better understanding of the alterations of functional connectivity in patients with brain gliomas across the whole brain scale. (orig.)

  7. Pseudoperiodic topology

    CERN Document Server

    Arnold, Vladimir; Zorich, Anton

    1999-01-01

    This volume offers an account of the present state of the art in pseudoperiodic topology-a young branch of mathematics, born at the boundary between the ergodic theory of dynamical systems, topology, and number theory. Related topics include the theory of algorithms, convex integer polyhedra, Morse inequalities, real algebraic geometry, statistical physics, and algebraic number theory. The book contains many new results. Most of the articles contain brief surveys on the topics, making the volume accessible to a broad audience. From the Preface by V.I. Arnold: "The authors … have done much to s

  8. Fingerprints of bosonic symmetry protected topological state in a quantum point contact

    Science.gov (United States)

    Zhang, Rui-Xing; Liu, Chao-Xing

    In this work, we study the transport through a quantum point contact for two-channel interacting helical liquids that exist at the edge of a bilayer graphene under a strong magnetic field. We identify ``smoking gun'' transport signatures to distinguish bosonic symmetry protected topological (BSPT) state from fermionic two-channel quantum spin Hall (QSH) state in this system. In particular, a novel charge insulator/spin conductor phase is found for a weak repulsive interaction in the BSPT state, while either charge insulator/spin insulator or charge conductor/spin conductor phase is expected for the two-channel QSH state. In the strong interaction limit, shot noise measurement for the BSPT state is expect to reveal charge-2e instanton tunneling, in comparison with the charge-e tunneling in the two-channel QSH phase.

  9. Female cluster headache in the United States of America: what are the gender differences? Results from the United States Cluster Headache Survey.

    Science.gov (United States)

    Rozen, Todd D; Fishman, Royce S

    2012-06-15

    To present results from the United States Cluster Headache Survey regarding gender differences in cluster headache demographics, clinical characteristics, diagnostic delay, triggers, treatment response and personal burden. Very few studies have looked at the gender differences in cluster headache presentation. The United States Cluster Headache Survey is the largest study of cluster headache sufferers ever completed in the United States and it is also the largest study of female cluster headache patients ever presented. The total survey consisted of 187 multiple choice questions which dealt with various issues related to cluster headache including: demographics, clinical characteristics, concomitant medical conditions, family history, triggers, smoking history, diagnosis, treatment response and personal burden. A group of questions were specifically targeted to female cluster headache patients. The survey was placed on a website from October to December 2008. For all survey responders the diagnosis of cluster headache needed to be made by a neurologist but there was no validation of the headache diagnosis by the authors. 1134 individuals completed the survey (816 male, 318 female). Key Points that define the differences between female and male cluster headache include: a. Age of onset: women develop cluster headache at an earlier age than men and are more likely to develop a second peak of cluster headache onset after 50 years of age. b. Family history: woman cluster headache sufferers are more likely to have a family history of both cluster headache and migraine and have an increased familial risk of Parkinson's disease. c. Comorbid conditions: female cluster headaches sufferers are significantly more likely to experience depression and have asthma than males. d. Aura issues: aura with cluster headache is equally common in both sexes, but aura duration is shorter in women. Women are much more likely to experience sensory, language and brainstem auras. e. Pain

  10. Superconductivity and ferromagnetism in topological insulators

    Science.gov (United States)

    Zhang, Duming

    Topological insulators, a new state of matter discovered recently, have attracted great interest due to their novel properties. They are insulating inside the bulk, but conducting at the surface or edges. This peculiar behavior is characterized by an insulating bulk energy gap and gapless surface or edge states, which originate from strong spin-orbit coupling and time-reversal symmetry. The spin and momentum locked surface states not only provide a model system to study fundamental physics, but can also lead to applications in spintronics and dissipationless electronics. While topological insulators are interesting by themselves, more exotic behaviors are predicted when an energy gap is induced at the surface. This dissertation explores two types of surface state gap in topological insulators, a superconducting gap induced by proximity effect and a magnetic gap induced by chemical doping. The first three chapters provide introductory theory and experimental details of my research. Chapter 1 provides a brief introduction to the theoretical background of topological insulators. Chapter 2 is dedicated to material synthesis principles and techniques. I will focus on two major synthesis methods: molecular beam epitaxy for the growth of Bi2Se3 thin films and chemical vapor deposition for the growth of Bi2Se3 nanoribbons and nanowires. Material characterization is discussed in Chapter 3. I will describe structural, morphological, magnetic, electrical, and electronic characterization techniques used to study topological insulators. Chapter 4 discusses the experiments on proximity-induced superconductivity in topological insulator (Bi2Se3) nanoribbons. This work is motivated by the search for the elusive Majorana fermions, which act as their own antiparticles. They were proposed by Ettore Majorara in 1937, but have remained undiscovered. Recently, Majorana's concept has been revived in condensed matter physics: a condensed matter analog of Majorana fermions is predicted to

  11. Spin injection and inverse Edelstein effect in the surface states of topological Kondo insulator SmB6

    Science.gov (United States)

    Song, Qi; Mi, Jian; Zhao, Dan; Su, Tang; Yuan, Wei; Xing, Wenyu; Chen, Yangyang; Wang, Tianyu; Wu, Tao; Chen, Xian Hui; Xie, X. C.; Zhang, Chi; Shi, Jing; Han, Wei

    2016-01-01

    There has been considerable interest in exploiting the spin degrees of freedom of electrons for potential information storage and computing technologies. Topological insulators (TIs), a class of quantum materials, have special gapless edge/surface states, where the spin polarization of the Dirac fermions is locked to the momentum direction. This spin–momentum locking property gives rise to very interesting spin-dependent physical phenomena such as the Edelstein and inverse Edelstein effects. However, the spin injection in pure surface states of TI is very challenging because of the coexistence of the highly conducting bulk states. Here, we experimentally demonstrate the spin injection and observe the inverse Edelstein effect in the surface states of a topological Kondo insulator, SmB6. At low temperatures when only surface carriers are present, a clear spin signal is observed. Furthermore, the magnetic field angle dependence of the spin signal is consistent with spin–momentum locking property of surface states of SmB6. PMID:27834378

  12. Quantum states with topological properties via dipolar interactions

    Energy Technology Data Exchange (ETDEWEB)

    Peter, David

    2015-06-25

    This thesis proposes conceptually new ways to realize materials with topological properties by using dipole-dipole interactions. First, we study a system of ultracold dipolar fermions, where the relaxation mechanism of dipolar spins can be used to reach the quantum Hall regime. Second, in a system of polar molecules in an optical lattice, dipole-dipole interactions induce spin-orbit coupling terms for the rotational excitations. In combination with time-reversal symmetry breaking this leads to topological bands with Chern numbers greater than one.

  13. Generation of cluster states with Josephson charge qubits

    International Nuclear Information System (INIS)

    Zheng, Xiao-Hu; Dong, Ping; Xue, Zheng-Yuan; Cao, Zhuo-Liang

    2007-01-01

    A scheme for the generation of the cluster states based on the Josephson charge qubits is proposed. The two-qubit generation case is introduced first, and then generalized to multi-qubit case. The successful probability and fidelity of current multi-qubit cluster state are both 1.0. The scheme is simple and can be easily manipulated, because any two charge qubits can be selectively and effectively coupled by a common inductance. More manipulations can be realized before decoherence sets in. All the devices in the scheme are well within the current technology

  14. Single atom anisotropic magnetoresistance on a topological insulator surface

    KAUST Repository

    Narayan, Awadhesh; Rungger, Ivan; Sanvito, Stefano

    2015-01-01

    dimensional model valid for both single adatoms and magnetic clusters, which leads to a proposed device setup for experimental realization. Our results provide an explanation for the conflicting scattering experiments on magnetic adatoms on topological

  15. Mental State Talk Structure in Children’s Narratives: A Cluster Analysis

    Directory of Open Access Journals (Sweden)

    Giuliana Pinto

    2017-01-01

    Full Text Available This study analysed children’s Theory of Mind (ToM as assessed by mental state talk in oral narratives. We hypothesized that the children’s mental state talk in narratives has an underlying structure, with specific terms organized in clusters. Ninety-eight children attending the last year of kindergarten were asked to tell a story twice, at the beginning and at the end of the school year. Mental state talk was analysed by identifying terms and expressions referring to perceptual, physiological, emotional, willingness, cognitive, moral, and sociorelational states. The cluster analysis showed that children’s mental state talk is organized in two main clusters: perceptual states and affective states. Results from the study confirm the feasibility of narratives as an outlet to inquire mental state talk and offer a more fine-grained analysis of mental state talk structure.

  16. Study of radicals, clusters and transition state species by anion photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Arnold, D.W.

    1994-08-01

    Free radicals, elemental and van der Waals clusters and transition state species for bimolecular chemical reactions are investigated using anion photoelectron spectroscopy. Several low-lying electronic states of ozone have been identified via photoelectron spectroscopy of O 3 - . A characterization of these states is important to models for atmospheric ozone reaction kinetics. The fluoroformyloxyl radical, FCO 2 , has been investigated, providing vibrational frequencies and energies for two electronic states. The technique has also been employed to make the first direct observation and characterization of the NNO 2 molecule. Several electronic states are observed for this species which is believed to play a role as a reactive intermediate in the N + NO 2 reaction. The experimental results for all three of these radicals are supplemented by ab initio investigations of their molecular properties. The clusters investigations include studies of elemental carbon clusters (C 2 - - C 11 - ), and van der Waals clusters (X - (CO 2 ) n , X = I, Br, Cl; n ≤ 13 and I - (N 2 O) n=1--11 ). Primarily linear clusters are observed for the smaller carbon clusters, while the spectra of the larger clusters contain contribution from cyclic anion photodetachment. Very interesting ion-solvent interactions are observed in the X - (CO 2 )n clusters. The transition state regions for several bimolecular chemical reactions have also been investigated by photodetachment of a negative ion precursor possessing a geometry similar to that of the transition state species. These spectra show features which are assigned to motions of the unstable neutral complex existing between reactants and products

  17. Observation of a phononic quadrupole topological insulator

    Science.gov (United States)

    Serra-Garcia, Marc; Peri, Valerio; Süsstrunk, Roman; Bilal, Osama R.; Larsen, Tom; Villanueva, Luis Guillermo; Huber, Sebastian D.

    2018-03-01

    The modern theory of charge polarization in solids is based on a generalization of Berry’s phase. The possibility of the quantization of this phase arising from parallel transport in momentum space is essential to our understanding of systems with topological band structures. Although based on the concept of charge polarization, this same theory can also be used to characterize the Bloch bands of neutral bosonic systems such as photonic or phononic crystals. The theory of this quantized polarization has recently been extended from the dipole moment to higher multipole moments. In particular, a two-dimensional quantized quadrupole insulator is predicted to have gapped yet topological one-dimensional edge modes, which stabilize zero-dimensional in-gap corner states. However, such a state of matter has not previously been observed experimentally. Here we report measurements of a phononic quadrupole topological insulator. We experimentally characterize the bulk, edge and corner physics of a mechanical metamaterial (a material with tailored mechanical properties) and find the predicted gapped edge and in-gap corner states. We corroborate our findings by comparing the mechanical properties of a topologically non-trivial system to samples in other phases that are predicted by the quadrupole theory. These topological corner states are an important stepping stone to the experimental realization of topologically protected wave guides in higher dimensions, and thereby open up a new path for the design of metamaterials.

  18. Electron and photon reconstruction and performance in ATLAS using a dynamical, topological cell clustering-based approach

    CERN Document Server

    The ATLAS collaboration

    2017-01-01

    The electron and photon reconstruction in ATLAS has moved towards the use of a dynamical, topo- logical cell-based approach for cluster building, owing to advancements in the calibration procedure which allow for such a method to be applied. The move to this new technique allows for improved measurements of electron and photon energies, particularly in situations where an electron radiates a bremsstrahlung photon, or a photon converts to an electron-poistron pair. This note details the changes to the ATLAS electron and photon reconstruction software, and assesses its performance under current LHC luminosity conditions using simulated data. Changes to the converted photon reconstruction are also detailed, which improve the reconstruction efficiency of double-track converted photons, as well as reducing the reconstruction of spurious one-track converted photons. The performance of the new reconstruction algorithm is also presented in a number of important topologies relevant to precision Standard Model physics,...

  19. Non-parametric model selection for subject-specific topological organization of resting-state functional connectivity.

    Science.gov (United States)

    Ferrarini, Luca; Veer, Ilya M; van Lew, Baldur; Oei, Nicole Y L; van Buchem, Mark A; Reiber, Johan H C; Rombouts, Serge A R B; Milles, J

    2011-06-01

    In recent years, graph theory has been successfully applied to study functional and anatomical connectivity networks in the human brain. Most of these networks have shown small-world topological characteristics: high efficiency in long distance communication between nodes, combined with highly interconnected local clusters of nodes. Moreover, functional studies performed at high resolutions have presented convincing evidence that resting-state functional connectivity networks exhibits (exponentially truncated) scale-free behavior. Such evidence, however, was mostly presented qualitatively, in terms of linear regressions of the degree distributions on log-log plots. Even when quantitative measures were given, these were usually limited to the r(2) correlation coefficient. However, the r(2) statistic is not an optimal estimator of explained variance, when dealing with (truncated) power-law models. Recent developments in statistics have introduced new non-parametric approaches, based on the Kolmogorov-Smirnov test, for the problem of model selection. In this work, we have built on this idea to statistically tackle the issue of model selection for the degree distribution of functional connectivity at rest. The analysis, performed at voxel level and in a subject-specific fashion, confirmed the superiority of a truncated power-law model, showing high consistency across subjects. Moreover, the most highly connected voxels were found to be consistently part of the default mode network. Our results provide statistically sound support to the evidence previously presented in literature for a truncated power-law model of resting-state functional connectivity. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. ATLAS Level-1 Topological Trigger : Commissioning and Validation in Run 2

    CERN Document Server

    AUTHOR|(SzGeCERN)788741; The ATLAS collaboration; Hong, Tae Min

    2017-01-01

    The ATLAS experiment has recently commissioned a new hardware component of its first-level trigger: the topological processor (L1Topo). This innovative system, using state-of-the-art FPGA processors, selects events by applying kinematic and topological requirements on candidate objects (energy clusters, jets, and muons) measured by calorimeters and muon sub-detectors. Since the first-level trigger is a synchronous pipelined system, such requirements are applied within a latency of 200ns. We will present the first results from data recorded using the L1Topo trigger; these demonstrate a significantly improved background event rejection, thus allowing for a rate reduction without efficiency loss. This improvement has been shown for several physics processes leading to low-$P_{T}$ leptons, including $H\\to{}\\tau{}\\tau{}$ and $J/\\Psi\\to{}\\mu{}\\mu{}$. In addition, we will discuss the use of an accurate L1Topo simulation as a powerful tool to validate and optimize the performance of this new trigger system. To reach ...

  1. Introduction to topological quantum matter & quantum computation

    CERN Document Server

    Stanescu, Tudor D

    2017-01-01

    What is -topological- about topological quantum states? How many types of topological quantum phases are there? What is a zero-energy Majorana mode, how can it be realized in a solid state system, and how can it be used as a platform for topological quantum computation? What is quantum computation and what makes it different from classical computation? Addressing these and other related questions, Introduction to Topological Quantum Matter & Quantum Computation provides an introduction to and a synthesis of a fascinating and rapidly expanding research field emerging at the crossroads of condensed matter physics, mathematics, and computer science. Providing the big picture, this book is ideal for graduate students and researchers entering this field as it allows for the fruitful transfer of paradigms and ideas amongst different areas, and includes many specific examples to help the reader understand abstract and sometimes challenging concepts. It explores the topological quantum world beyond the well-know...

  2. Topological phases: Wormholes in quantum matter

    NARCIS (Netherlands)

    Schoutens, K.

    2009-01-01

    Proliferation of so-called anyonic defects in a topological phase of quantum matter leads to a critical state that can be visualized as a 'quantum foam', with topology-changing fluctuations on all length scales.

  3. Two-dimensional topological photonics

    Science.gov (United States)

    Khanikaev, Alexander B.; Shvets, Gennady

    2017-12-01

    Originating from the studies of two-dimensional condensed-matter states, the concept of topological order has recently been expanded to other fields of physics and engineering, particularly optics and photonics. Topological photonic structures have already overturned some of the traditional views on wave propagation and manipulation. The application of topological concepts to guided wave propagation has enabled novel photonic devices, such as reflection-free sharply bent waveguides, robust delay lines, spin-polarized switches and non-reciprocal devices. Discrete degrees of freedom, widely used in condensed-matter physics, such as spin and valley, are now entering the realm of photonics. In this Review, we summarize the latest advances in this highly dynamic field, with special emphasis on the experimental work on two-dimensional photonic topological structures.

  4. The Effects of Topology on Throughput Capacity of Large Scale Wireless Networks

    Directory of Open Access Journals (Sweden)

    Qiuming Liu

    2017-03-01

    Full Text Available In this paper, we jointly consider the inhomogeneity and spatial dimension in large scale wireless networks. We study the effects of topology on the throughput capacity. This problem is inherently difficult since it is complex to handle the interference caused by simultaneous transmission. To solve this problem, we, according to the inhomogeneity of topology, divide the transmission into intra-cluster transmission and inter-cluster transmission. For the intra-cluster transmission, a spheroidal percolation model is constructed. The spheroidal percolation model guarantees a constant rate when a power control strategy is adopted. We also propose a cube percolation mode for the inter-cluster transmission. Different from the spheroidal percolation model, a constant transmission rate can be achieved without power control. For both transmissions, we propose a routing scheme with five phases. By comparing the achievable rate of each phase, we get the rate bottleneck, which is the throughput capacity of the network.

  5. THE DYNAMICAL STATE OF BRIGHTEST CLUSTER GALAXIES AND THE FORMATION OF CLUSTERS

    International Nuclear Information System (INIS)

    Coziol, R.; Andernach, H.; Caretta, C. A.; Alamo-MartInez, K. A.; Tago, E.

    2009-01-01

    A large sample of Abell clusters of galaxies, selected for the likely presence of a dominant galaxy, is used to study the dynamical properties of the brightest cluster members (BCMs). From visual inspection of Digitized Sky Survey images combined with redshift information we identify 1426 candidate BCMs located in 1221 different redshift components associated with 1169 different Abell clusters. This is the largest sample published so far of such galaxies. From our own morphological classification we find that ∼92% of the BCMs in our sample are early-type galaxies and 48% are of cD type. We confirm what was previously observed based on much smaller samples, namely, that a large fraction of BCMs have significant peculiar velocities. From a subsample of 452 clusters having at least 10 measured radial velocities, we estimate a median BCM peculiar velocity of 32% of their host clusters' radial velocity dispersion. This suggests that most BCMs are not at rest in the potential well of their clusters. This phenomenon is common to galaxy clusters in our sample, and not a special trait of clusters hosting cD galaxies. We show that the peculiar velocity of the BCM is independent of cluster richness and only slightly dependent on the Bautz-Morgan type. We also find a weak trend for the peculiar velocity to rise with the cluster velocity dispersion. The strongest dependence is with the morphological type of the BCM: cD galaxies tend to have lower relative peculiar velocities than elliptical galaxies. This result points to a connection between the formation of the BCMs and that of their clusters. Our data are qualitatively consistent with the merging-groups scenario, where BCMs in clusters formed first in smaller subsystems comparable to compact groups of galaxies. In this scenario, clusters would have formed recently from the mergers of many such groups and would still be in a dynamically unrelaxed state.

  6. Tunable Topological Phononic Crystals

    KAUST Repository

    Chen, Zeguo

    2016-05-27

    Topological insulators first observed in electronic systems have inspired many analogues in photonic and phononic crystals in which remarkable one-way propagation edge states are supported by topologically nontrivial band gaps. Such band gaps can be achieved by breaking the time-reversal symmetry to lift the degeneracy associated with Dirac cones at the corners of the Brillouin zone. Here, we report on our construction of a phononic crystal exhibiting a Dirac-like cone in the Brillouin zone center. We demonstrate that simultaneously breaking the time-reversal symmetry and altering the geometric size of the unit cell result in a topological transition that we verify by the Chern number calculation and edge-mode analysis. We develop a complete model based on the tight binding to uncover the physical mechanisms of the topological transition. Both the model and numerical simulations show that the topology of the band gap is tunable by varying both the velocity field and the geometric size; such tunability may dramatically enrich the design and use of acoustic topological insulators.

  7. Tunable Topological Phononic Crystals

    KAUST Repository

    Chen, Zeguo; Wu, Ying

    2016-01-01

    Topological insulators first observed in electronic systems have inspired many analogues in photonic and phononic crystals in which remarkable one-way propagation edge states are supported by topologically nontrivial band gaps. Such band gaps can be achieved by breaking the time-reversal symmetry to lift the degeneracy associated with Dirac cones at the corners of the Brillouin zone. Here, we report on our construction of a phononic crystal exhibiting a Dirac-like cone in the Brillouin zone center. We demonstrate that simultaneously breaking the time-reversal symmetry and altering the geometric size of the unit cell result in a topological transition that we verify by the Chern number calculation and edge-mode analysis. We develop a complete model based on the tight binding to uncover the physical mechanisms of the topological transition. Both the model and numerical simulations show that the topology of the band gap is tunable by varying both the velocity field and the geometric size; such tunability may dramatically enrich the design and use of acoustic topological insulators.

  8. Local density of states in two-dimensional topological superconductors under a magnetic field: Signature of an exterior Majorana bound state

    Science.gov (United States)

    Suzuki, Shu-Ichiro; Kawaguchi, Yuki; Tanaka, Yukio

    2018-04-01

    We study quasiparticle states on a surface of a topological insulator (TI) with proximity-induced superconductivity under an external magnetic field. An applied magnetic field creates two Majorana bound states: a vortex Majorana state localized inside a vortex core and an exterior Majorana state localized along a circle centered at the vortex core. We calculate the spin-resolved local density of states (LDOS) and demonstrate that the shrinking of the radius of the exterior Majorana state, predicted in R. S. Akzyanov et al., Phys. Rev. B 94, 125428 (2016), 10.1103/PhysRevB.94.125428, under a strong magnetic field can be seen in LDOS without smeared out by nonzero-energy states. The spin-resolved LDOS further reveals that the spin of the exterior Majorana state is strongly spin-polarized. Accordingly, the induced odd-frequency spin-triplet pairs are found to be spin-polarized as well. In order to detect the exterior Majorana states, however, the Fermi energy should be closed to the Dirac point to avoid contributions from continuum levels. We also study a different two-dimensional topological-superconducting system where a two-dimensional electron gas with the spin-orbit coupling is sandwiched between an s -wave superconductor and a ferromagnetic insulator. We show that the radius of an exterior Majorana state can be tuned by an applied magnetic field. However, on the contrary to the results at a TI surface, neither the exterior Majorana state nor the induced odd-frequency spin-triplet pairs are spin-polarized. We conclude that the spin polarization of the Majorana state is attributed to the spin-polarized Landau level, which is characteristic for systems with the Dirac-like dispersion.

  9. Phase coherent transport in hybrid superconductor-topological insulator devices

    Science.gov (United States)

    Finck, Aaron

    2015-03-01

    Heterostructures of superconductors and topological insulators are predicted to host unusual zero energy bound states known as Majorana fermions, which can robustly store and process quantum information. Here, I will discuss our studies of such heterostructures through phase-coherent transport, which can act as a unique probe of Majorana fermions. We have extensively explored topological insulator Josephson junctions through SQUID and single-junction diffraction patterns, whose unusual behavior give evidence for low-energy Andreev bound states. In topological insulator devices with closely spaced normal and superconducting leads, we observe prominent Fabry-Perot oscillations, signifying gate-tunable, quasi-ballistic transport that can elegantly interact with Andreev reflection. Superconducting disks deposited on the surface of a topological insulator generate Aharonov-Bohm-like oscillations, giving evidence for unusual states lying near the interface between the superconductor and topological insulator surface. Our results point the way towards sophisticated interferometers that can detect and read out the state of Majorana fermions in topological systems. This work was done in collaboration with Cihan Kurter, Yew San Hor, and Dale Van Harlingen. We acknowledge funding from Microsoft Project Q.

  10. 14N-trinucleon cluster states in 17F and 17O

    International Nuclear Information System (INIS)

    Merchant, A.C.

    1984-01-01

    A cluster model is used to calculate the energies of those states in 17 F and 17 O which have a 14 N-trinucleon cluster-core structure. The non-central terms in the cluster-core potential are deduced phenomenologically and also calculated microscopically. They are found to be intimately related to equivalent terms in the potentials for similar cluster-core decompositions of neighbouring nuclei. The results are compared with the spectrum of states excited in a recent experimental study of three-particle transfer onto 14 N. (Author) [pt

  11. Valley Topological Phases in Bilayer Sonic Crystals

    Science.gov (United States)

    Lu, Jiuyang; Qiu, Chunyin; Deng, Weiyin; Huang, Xueqin; Li, Feng; Zhang, Fan; Chen, Shuqi; Liu, Zhengyou

    2018-03-01

    Recently, the topological physics in artificial crystals for classical waves has become an emerging research area. In this Letter, we propose a unique bilayer design of sonic crystals that are constructed by two layers of coupled hexagonal array of triangular scatterers. Assisted by the additional layer degree of freedom, a rich topological phase diagram is achieved by simply rotating scatterers in both layers. Under a unified theoretical framework, two kinds of valley-projected topological acoustic insulators are distinguished analytically, i.e., the layer-mixed and layer-polarized topological valley Hall phases, respectively. The theory is evidently confirmed by our numerical and experimental observations of the nontrivial edge states that propagate along the interfaces separating different topological phases. Various applications such as sound communications in integrated devices can be anticipated by the intriguing acoustic edge states enriched by the layer information.

  12. High spin state driven magnetism and thermoelectricity in Mn doped topological insulator Bi2Se3

    Science.gov (United States)

    Maurya, V. K.; Dong, C. L.; Chen, C. L.; Asokan, K.; Patnaik, S.

    2018-06-01

    We report on the synthesis, and structural - magnetic characterizations of Mn doped Bi2Se3 towards achieving a magnetically doped topological insulator. High quality single crystals of MnxBi2-xSe3 (x = 0, 0.03, 0.05, 0.1) are grown and analysed by X-ray diffraction (XRD), Low Energy Electron Diffraction (LEED), Scanning electron microscopy (SEM), and X-ray absorption near-edge structure spectroscopy (XANES). Magnetic properties of these samples under ZFC-FC protocol and isothermal magnetization confirm ferromagnetic correlation above x = 0.03 value. XANES measurements confirm that the dopant Mn is in Mn2+ state. This is further reconfirmed to be in high spin state by fitting magnetic data with Brillouin function for J = 5/2. Both Hall and Seebeck measurements indicate a sign change of charge carriers above x = 0.03 value of Mn doping. We propose Mn doped Bi2Se3 to be a potential candidate for electromagnetic and thermoelectric device applications involving topological surface states.

  13. Tunable topological phases in photonic and phononic crystals

    KAUST Repository

    Chen, Zeguo

    2018-02-18

    Topological photonics/phononics, inspired by the discovery of topological insulators, is a prosperous field of research, in which remarkable one-way propagation edge states are robust against impurities or defect without backscattering. This dissertation discusses the implementation of multiple topological phases in specific designed photonic and phononic crystals. First, it reports a tunable quantum Hall phase in acoustic ring-waveguide system. A new three-band model focused on the topological transitions at the Γ point is studied, which gives the functionality that nontrivial topology can be tuned by changing the strengths of the couplings and/or the broken time-reversal symmetry. The resulted tunable topological edge states are also numerically verified. Second, based on our previous studied acoustic ring-waveguide system, we introduce anisotropy by tuning the couplings along different directions. We find that the bandgap topology is related to the frequency and directions. We report our proposal on a frequency filter designed from such an anisotropic topological phononic crystal. Third, motivated by the recent progress on quantum spin Hall phases, we propose a design of time-reversal symmetry broken quantum spin Hall insulators in photonics, in which a new quantum anomalous Hall phase emerges. It supports a chiral edge state with certain spin orientations, which is robust against the magnetic impurities. We also report the realization of the quantum anomalous Hall phase in phononics.

  14. Ground-state structures of Hafnium clusters

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Wei Chun; Yoon, Tiem Leong [School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Lim, Thong Leng [Faculty of Engineering and Technoloty, Multimedia University, Melaca Campus, 75450 Melaka (Malaysia)

    2015-04-24

    Hafnium (Hf) is a very large tetra-valence d-block element which is able to form relatively long covalent bond. Researchers are interested to search for substitution to silicon in the semi-conductor industry. We attempt to obtain the ground-state structures of small Hf clusters at both empirical and density-functional theory (DFT) levels. For calculations at the empirical level, charge-optimized many-body functional potential (COMB) is used. The lowest-energy structures are obtained via a novel global-minimum search algorithm known as parallel tempering Monte-Carlo Basin-Hopping and Genetic Algorithm (PTMBHGA). The virtue of using COMB potential for Hf cluster calculation lies in the fact that by including the charge optimization at the valence shells, we can encourage the formation of proper bond hybridization, and thus getting the correct bond order. The obtained structures are further optimized using DFT to ensure a close proximity to the ground-state.

  15. Five new Zn(II) and Cd(II) coordination polymers constructed by 3,5-bis-oxyacetate-benzoic acid: Syntheses, crystal structures, network topologies and luminescent properties

    International Nuclear Information System (INIS)

    Jiang Xianrong; Yuan Hongyan; Feng Yunlong

    2012-01-01

    Five Zn(II) and Cd(II) coordination polymers, [Zn 2 (BOABA)(bpp)(OH)]·0.5H 2 O (1), [Cd 3 (BOABA) 2 (bpp) 2 (H 2 O) 6 ]·2H 2 O (2), [Cd 3 (BOABA) 2 (2,2′-bipy) 3 (H 2 O) 4 ]·5.5H 2 O (3), [CdNa(BOABA)(H 2 O)] 2 ·H 2 O (4) and [Cd 2 (BOABA)(bimb)Cl(H 2 O) 2 ]·H 2 O (5) (H 3 BOABA=3,5-bis-oxyacetate-benzoic acid, bpp=1,3-bi(4-pyridyl)propane, 2,2′-bipy=2,2′-bipyridine, bimb=1,4-bis(imidazol-1′-yl)butane), have been solvothermally synthesized and characterized by single-crystal X-ray diffraction, elemental analyses, IR spectra and TG analyses. 1 is an uninodal 4-connected 2D square grid network based on binuclear zinc clusters. 2 is 2D wavelike layer structure and further linked by hydrogen bonds into the final 3D (5,6,6)-connected topology network. 3 is 3-connected 2D topology network and the 2,2′-bipy ligands decorate in two different types. 4 is a (4,8)-connected 2D topology network with heterocaryotic {Cd 2 Na 2 } clusters and BOABA 3– ligands. 5 can be rationalized as a (3,10)-connected 3D topology network with tetranuclear {Cd 4 Cl 2 } clusters and BOABA 3– ligands. Meanwhile, photoluminescence studies revealed that these five coordination polymers display strong fluorescent emission bands in the solid state at room temperature. - Graphical abstract: Five new d 10 metal(II) coordination polymers based on H 3 BOABA ligand were obtained and characterized. They display different topological structures and luminescent properties. Highlights: ► Five d 10 metal(II) polymers based on 3,5-bis-oxyacetate-benzoic acid were obtained. ► The polymers were structurally characterized by single-crystal X-ray diffraction. ► Polymers 1–5 display different topological structures. ► They show strong fluorescent emission bands in the solid state.

  16. Multiple topological phases in phononic crystals

    KAUST Repository

    Chen, Zeguo; Wu, Ying

    2017-01-01

    We report a new topological phononic crystal in a ring-waveguide acoustic system. In the previous reports on topological phononic crystals, there are two types of topological phases: quantum Hall phase and quantum spin Hall phase. A key point in achieving quantum Hall insulator is to break the time-reversal (TR) symmetry, and for quantum spin Hall insulator, the construction of pseudo-spin is necessary. We build such pseudo-spin states under particular crystalline symmetry (C-6v) and then break the degeneracy of the pseudo-spin states by introducing airflow to the ring. We study the topology evolution by changing both the geometric parameters of the unit cell and the strength of the applied airflow. We find that the system exhibits three phases: quantum spin Hall phase, conventional insulator phase and a new quantum anomalous Hall phase.

  17. Multiple topological phases in phononic crystals

    KAUST Repository

    Chen, Zeguo

    2017-11-20

    We report a new topological phononic crystal in a ring-waveguide acoustic system. In the previous reports on topological phononic crystals, there are two types of topological phases: quantum Hall phase and quantum spin Hall phase. A key point in achieving quantum Hall insulator is to break the time-reversal (TR) symmetry, and for quantum spin Hall insulator, the construction of pseudo-spin is necessary. We build such pseudo-spin states under particular crystalline symmetry (C-6v) and then break the degeneracy of the pseudo-spin states by introducing airflow to the ring. We study the topology evolution by changing both the geometric parameters of the unit cell and the strength of the applied airflow. We find that the system exhibits three phases: quantum spin Hall phase, conventional insulator phase and a new quantum anomalous Hall phase.

  18. Experimental demonstration of anomalous Floquet topological insulator for sound

    Science.gov (United States)

    Peng, Yu-Gui; Qin, Cheng-Zhi; Zhao, De-Gang; Shen, Ya-Xi; Xu, Xiang-Yuan; Bao, Ming; Jia, Han; Zhu, Xue-Feng

    2016-11-01

    Time-reversal invariant topological insulator is widely recognized as one of the fundamental discoveries in condensed matter physics, for which the most fascinating hallmark is perhaps a spin-based topological protection, the absence of scattering of conduction electrons with certain spins on matter surface. Recently, it has created a paradigm shift for topological insulators, from electronics to photonics, phononics and mechanics as well, bringing about not only involved new physics but also potential applications in robust wave transport. Despite the growing interests in topologically protected acoustic wave transport, T-invariant acoustic topological insulator has not yet been achieved. Here we report experimental demonstration of anomalous Floquet topological insulator for sound: a strongly coupled metamaterial ring lattice that supports one-way propagation of pseudo-spin-dependent edge states under T-symmetry. We also demonstrate the formation of pseudo-spin-dependent interface states due to lattice dislocations and investigate the properties of pass band and band gap states.

  19. Impurity bound states in mesoscopic topological superconducting loops

    Science.gov (United States)

    Jin, Yan-Yan; Zha, Guo-Qiao; Zhou, Shi-Ping

    2018-06-01

    We study numerically the effect induced by magnetic impurities in topological s-wave superconducting loops with spin-orbit interaction based on spin-generalized Bogoliubov-de Gennes equations. In the case of a single magnetic impurity, it is found that the midgap bound states can cross the Fermi level at an appropriate impurity strength and the circulating spin current jumps at the crossing point. The evolution of the zero-energy mode can be effectively tuned by the located site of a single magnetic impurity. For the effect of many magnetic impurities, two independent midway or edge impurities cannot lead to the overlap of zero modes. The multiple zero-energy modes can be effectively realized by embedding a single Josephson junction with impurity scattering into the system, and the spin current displays oscillatory feature with increasing the layer thickness.

  20. A Network Topology Control and Identity Authentication Protocol with Support for Movable Sensor Nodes.

    Science.gov (United States)

    Zhang, Ying; Chen, Wei; Liang, Jixing; Zheng, Bingxin; Jiang, Shengming

    2015-12-01

    It is expected that in the near future wireless sensor network (WSNs) will be more widely used in the mobile environment, in applications such as Autonomous Underwater Vehicles (AUVs) for marine monitoring and mobile robots for environmental investigation. The sensor nodes' mobility can easily cause changes to the structure of a network topology, and lead to the decline in the amount of transmitted data, excessive energy consumption, and lack of security. To solve these problems, a kind of efficient Topology Control algorithm for node Mobility (TCM) is proposed. In the topology construction stage, an efficient clustering algorithm is adopted, which supports sensor node movement. It can ensure the balance of clustering, and reduce the energy consumption. In the topology maintenance stage, the digital signature authentication based on Error Correction Code (ECC) and the communication mechanism of soft handover are adopted. After verifying the legal identity of the mobile nodes, secure communications can be established, and this can increase the amount of data transmitted. Compared to some existing schemes, the proposed scheme has significant advantages regarding network topology stability, amounts of data transferred, lifetime and safety performance of the network.

  1. Probing the Topology of Density Matrices

    Directory of Open Access Journals (Sweden)

    Charles-Edouard Bardyn

    2018-02-01

    Full Text Available The mixedness of a quantum state is usually seen as an adversary to topological quantization of observables. For example, exact quantization of the charge transported in a so-called Thouless adiabatic pump is lifted at any finite temperature in symmetry-protected topological insulators. Here, we show that certain directly observable many-body correlators preserve the integrity of topological invariants for mixed Gaussian quantum states in one dimension. Our approach relies on the expectation value of the many-body momentum-translation operator and leads to a physical observable—the “ensemble geometric phase” (EGP—which represents a bona fide geometric phase for mixed quantum states, in the thermodynamic limit. In cyclic protocols, the EGP provides a topologically quantized observable that detects encircled spectral singularities (“purity-gap” closing points of density matrices. While we identify the many-body nature of the EGP as a key ingredient, we propose a conceptually simple, interferometric setup to directly measure the latter in experiments with mesoscopic ensembles of ultracold atoms.

  2. Study of radicals, clusters and transition state species by anion photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, Don Wesley [Univ. of California, Berkeley, CA (United States)

    1994-08-01

    Free radicals, elemental and van der Waals clusters and transition state species for bimolecular chemical reactions are investigated using anion photoelectron spectroscopy. Several low-lying electronic states of ozone have been identified via photoelectron spectroscopy of O3-. A characterization of these states is important to models for atmospheric ozone reaction kinetics. The fluoroformyloxyl radical, FCO2, has been investigated, providing vibrational frequencies and energies for two electronic states. The technique has also been employed to make the first direct observation and characterization of the NNO2 molecule. Several electronic states are observed for this species which is believed to play a role as a reactive intermediate in the N + NO2 reaction. The experimental results for all three of these radicals are supplemented by ab initio investigations of their molecular properties. The clusters investigations include studies of elemental carbon clusters (C2- - C11-), and van der Waals clusters (X-(CO2)n, X = I, Br, Cl; n {le} 13 and I- (N2O)n=1--11). Primarily linear clusters are observed for the smaller carbon clusters, while the spectra of the larger clusters contain contribution from cyclic anion photodetachment. Very interesting ion-solvent interactions are observed in the X-(CO2)n clusters. The transition state regions for several bimolecular chemical reactions have also been investigated by photodetachment of a negative ion precursor possessing a geometry similar to that of the transition state species. These spectra show features which are assigned to motions of the unstable neutral complex existing between reactants and products.

  3. Engineering Topological Surface State of Cr-doped Bi2Se3 under external electric field

    Science.gov (United States)

    Zhang, Jian-Min; Lian, Ruqian; Yang, Yanmin; Xu, Guigui; Zhong, Kehua; Huang, Zhigao

    2017-03-01

    External electric field control of topological surface states (SSs) is significant for the next generation of condensed matter research and topological quantum devices. Here, we present a first-principles study of the SSs in the magnetic topological insulator (MTI) Cr-doped Bi2Se3 under external electric field. The charge transfer, electric potential, band structure and magnetism of the pure and Cr doped Bi2Se3 film have been investigated. It is found that the competition between charge transfer and spin-orbit coupling (SOC) will lead to an electrically tunable band gap in Bi2Se3 film under external electric field. As Cr atom doped, the charge transfer of Bi2Se3 film under external electric field obviously decreases. Remarkably, the band gap of Cr doped Bi2Se3 film can be greatly engineered by the external electric field due to its special band structure. Furthermore, magnetic coupling of Cr-doped Bi2Se3 could be even mediated via the control of electric field. It is demonstrated that external electric field plays an important role on the electronic and magnetic properties of Cr-doped Bi2Se3 film. Our results may promote the development of electronic and spintronic applications of magnetic topological insulator.

  4. Potential and limits to cluster-state quantum computing using probabilistic gates

    International Nuclear Information System (INIS)

    Gross, D.; Kieling, K.; Eisert, J.

    2006-01-01

    We establish bounds to the necessary resource consumption when building up cluster states for one-way computing using probabilistic gates. Emphasis is put on state preparation with linear optical gates, as the probabilistic character is unavoidable here. We identify rigorous general bounds to the necessary consumption of initially available maximally entangled pairs when building up one-dimensional cluster states with individually acting linear optical quantum gates, entangled pairs, and vacuum modes. As the known linear optics gates have a limited maximum success probability, as we show, this amounts to finding the optimal classical strategy of fusing pieces of linear cluster states. A formal notion of classical configurations and strategies is introduced for probabilistic nonfaulty gates. We study the asymptotic performance of strategies that can be simply described, and prove ultimate bounds to the performance of the globally optimal strategy. The arguments employ methods of random walks and convex optimization. This optimal strategy is also the one that requires the shortest storage time, and necessitates the fewest invocations of probabilistic gates. For two-dimensional cluster states, we find, for any elementary success probability, an essentially deterministic preparation of a cluster state with quadratic, hence optimal, asymptotic scaling in the use of entangled pairs. We also identify a percolation effect in state preparation, in that from a threshold probability on, almost all preparations will be either successful or fail. We outline the implications on linear optical architectures and fault-tolerant computations

  5. Asymmetric electroresistance of cluster glass state in manganites

    KAUST Repository

    Lourembam, James; Ding, Junfeng; Bera, Ashok; Lin, Weinan; Wu, Tao

    2014-01-01

    cluster glass magnetic state emerges at low temperatures with a spin freezing temperature of about 99 K, which is accompanied by the reentrant insulating state with high resistance below 30 K. In the EDLT, we observe bipolar and asymmetric modulation

  6. Overview and performance of the ATLAS Level-1 Topological Trigger

    CERN Document Server

    Damp, Johannes Frederic; The ATLAS collaboration

    2018-01-01

    In 2017 the LHC provided proton-proton collisions to the ATLAS experiment with high luminosity (up to 2.06x10^34), placing stringent operational and physical requirements on the ATLAS trigger system in order to reduce the 40 MHz collision rate to a manageable event storage rate of 1 kHz, while not rejecting interesting physics events. The Level-1 trigger is the first rate-reducing step in the ATLAS trigger system with an output rate of 100 kHz and decision latency of less than 2.5 μs. An important role is played by its newly commissioned component: the L1 topological trigger (L1Topo). This innovative system consists of two blades designed in AdvancedTCA form factor, mounting four individual state-of-the-art processors, and providing high input bandwidth and low latency data processing. Up to 128 topological trigger algorithms can be implemented to select interesting events by applying kinematic and angular requirements on electromagnetic clusters, jets, muons and total energy. This results in a significantly...

  7. Spin chain simulations with a meron cluster algorithm

    International Nuclear Information System (INIS)

    Boyer, T.; Bietenholz, W.; Deutsches Elektronen-Synchrotron; Wuilloud, J.; Geneve Univ.

    2007-01-01

    We apply a meron cluster algorithm to the XY spin chain, which describes a quantum rotor. This is a multi-cluster simulation supplemented by an improved estimator, which deals with objects of half-integer topological charge. This method is powerful enough to provide precise results for the model with a θ-term - it is therefore one of the rare examples, where a system with a complex action can be solved numerically. In particular we measure the correlation length, as well as the topological and magnetic susceptibility. We discuss the algorithmic efficiency in view of the critical slowing down. Due to the excellent performance that we observe, it is strongly motivated to work on new applications of meron cluster algorithms in higher dimensions. (orig.)

  8. Topological Insulators and Superconductors for Innovative Devices

    Science.gov (United States)

    2015-03-20

    Final 3. DATES COVERED (From - To) 20120321 - 20150320 4. TITLE AND SUBTITLE Topological insulators and superconductors for innovative...locking, which hold promise for various innovative devices. Similarly, topological superconductors are associated with exotic surface states, which...298 (Rev. 8/98) Prescribed by ANSI Std. Z39.18 Final Report Title: Topological Insulators and Superconductors for Innovative Devices

  9. Nonvolatile Solid-State Charged-Polymer Gating of Topological Insulators into the Topological Insulating Regime

    Science.gov (United States)

    Ireland, R. M.; Wu, Liang; Salehi, M.; Oh, S.; Armitage, N. P.; Katz, H. E.

    2018-04-01

    We demonstrate the ability to reduce the carrier concentration of thin films of the topological insulator (TI) Bi2 Se3 by utilizing a nonvolatile electrostatic gating via corona charging of electret polymers. Sufficient electric field can be imparted to a polymer-TI bilayer to result in significant electron density depletion, even without the continuous connection of a gate electrode or the chemical modification of the TI. We show that the Fermi level of Bi2 Se3 is shifted toward the Dirac point with this method. Using terahertz spectroscopy, we find that the surface chemical potential is lowered into the bulk band gap (approximately 50 meV above the Dirac point and 170 meV below the conduction-band minimum), and it is stabilized in the intrinsic regime while enhancing electron mobility. The mobility of surface state electrons is enhanced to a value as high as approximately 1600 cm2/V s at 5 K.

  10. Orbital selective spin-texture in a topological insulator

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Bahadur, E-mail: bahadursingh24@gmail.com; Prasad, R. [Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016 (India)

    2015-05-15

    Three-dimensional topological insulators support a metallic non-trivial surface state with unique spin texture, where spin and momentum are locked perpendicular to each other. In this work, we investigate the orbital selective spin-texture associated with the topological surface states in Sb2Te{sub 3}, using the first principles calculations. Sb2Te{sub 3} is a strong topological insulator with a p-p type bulk band inversion at the Γ-point and supports a single topological metallic surface state with upper (lower) Dirac-cone has left (right) handed spin-texture. Here, we show that the topological surface state has an additional locking between the spin and orbitals, leading to an orbital selective spin-texture. The out-of-plane orbitals (p{sub z} orbitals) have an isotropic orbital texture for both the Dirac cones with an associated left and right handed spin-texture for the upper and lower Dirac cones, respectively. In contrast, the in-planar orbital texture (p{sub x} and p{sub y} projections) is tangential for the upper Dirac-cone and is radial for the lower Dirac-cone surface state. The dominant in-planar orbital texture in both the Dirac cones lead to a right handed orbital-selective spin-texture.

  11. Surfaces and slabs of fractional topological insulator heterostructures

    Science.gov (United States)

    Sahoo, Sharmistha; Sirota, Alexander; Cho, Gil Young; Teo, Jeffrey C. Y.

    2017-10-01

    Fractional topological insulators (FTIs) are electronic topological phases in (3 +1 ) dimensions enriched by time reversal (TR) and charge U (1 ) conservation symmetries. We focus on the simplest series of fermionic FTIs, whose bulk quasiparticles consist of deconfined partons that carry fractional electric charges in integral units of e*=e /(2 n +1 ) and couple to a discrete Z2 n +1 gauge theory. We propose massive symmetry preserving or breaking FTI surface states. Combining the long-ranged entangled bulk with these topological surface states, we deduce the novel topological order of quasi-(2 +1 ) -dimensional FTI slabs as well as their corresponding edge conformal field theories.

  12. Resting-State Network Topology Differentiates Task Signals across the Adult Life Span.

    Science.gov (United States)

    Chan, Micaela Y; Alhazmi, Fahd H; Park, Denise C; Savalia, Neil K; Wig, Gagan S

    2017-03-08

    Brain network connectivity differs across individuals. For example, older adults exhibit less segregated resting-state subnetworks relative to younger adults (Chan et al., 2014). It has been hypothesized that individual differences in network connectivity impact the recruitment of brain areas during task execution. While recent studies have described the spatial overlap between resting-state functional correlation (RSFC) subnetworks and task-evoked activity, it is unclear whether individual variations in the connectivity pattern of a brain area (topology) relates to its activity during task execution. We report data from 238 cognitively normal participants (humans), sampled across the adult life span (20-89 years), to reveal that RSFC-based network organization systematically relates to the recruitment of brain areas across two functionally distinct tasks (visual and semantic). The functional activity of brain areas (network nodes) were characterized according to their patterns of RSFC: nodes with relatively greater connections to nodes in their own functional system ("non-connector" nodes) exhibited greater activity than nodes with relatively greater connections to nodes in other systems ("connector" nodes). This "activation selectivity" was specific to those brain systems that were central to each of the tasks. Increasing age was accompanied by less differentiated network topology and a corresponding reduction in activation selectivity (or differentiation) across relevant network nodes. The results provide evidence that connectional topology of brain areas quantified at rest relates to the functional activity of those areas during task. Based on these findings, we propose a novel network-based theory for previous reports of the "dedifferentiation" in brain activity observed in aging. SIGNIFICANCE STATEMENT Similar to other real-world networks, the organization of brain networks impacts their function. As brain network connectivity patterns differ across

  13. Topological insulators and topological superconductors

    CERN Document Server

    Bernevig, Andrei B

    2013-01-01

    This graduate-level textbook is the first pedagogical synthesis of the field of topological insulators and superconductors, one of the most exciting areas of research in condensed matter physics. Presenting the latest developments, while providing all the calculations necessary for a self-contained and complete description of the discipline, it is ideal for graduate students and researchers preparing to work in this area, and it will be an essential reference both within and outside the classroom. The book begins with simple concepts such as Berry phases, Dirac fermions, Hall conductance and its link to topology, and the Hofstadter problem of lattice electrons in a magnetic field. It moves on to explain topological phases of matter such as Chern insulators, two- and three-dimensional topological insulators, and Majorana p-wave wires. Additionally, the book covers zero modes on vortices in topological superconductors, time-reversal topological superconductors, and topological responses/field theory and topolo...

  14. Unambiguous assignment of the ground state of a nearly degenerate cluster

    International Nuclear Information System (INIS)

    Gutsev, G. L.; Khanna, S. N.; Jena, P.

    2000-01-01

    A synergistic approach that combines first-principles theory and electron photodetachment experiment is shown to be able to uniquely identify the ground state of a nearly degenerate cluster in the gas phase. Additionally, this approach can complement the Stern-Gerlach technique in determining the magnetic moment of small clusters unambiguously. The method, applied to a Fe 3 cluster, reveals its ground state to have a magnetic moment of 10μ B --in contrast with earlier predictions. (c) 2000 The American Physical Society

  15. Topological Oxide Insulator in Cubic Perovskite Structure

    Science.gov (United States)

    Jin, Hosub; Rhim, Sonny H.; Im, Jino; Freeman, Arthur J.

    2013-01-01

    The emergence of topologically protected conducting states with the chiral spin texture is the most prominent feature at the surface of topological insulators. On the application side, large band gap and high resistivity to distinguish surface from bulk degrees of freedom should be guaranteed for the full usage of the surface states. Here, we suggest that the oxide cubic perovskite YBiO3, more than just an oxide, defines itself as a new three-dimensional topological insulator exhibiting both a large bulk band gap and a high resistivity. Based on first-principles calculations varying the spin-orbit coupling strength, the non-trivial band topology of YBiO3 is investigated, where the spin-orbit coupling of the Bi 6p orbital plays a crucial role. Taking the exquisite synthesis techniques in oxide electronics into account, YBiO3 can also be used to provide various interface configurations hosting exotic topological phenomena combined with other quantum phases. PMID:23575973

  16. Fragmentation of Fast Josephson Vortices and Breakdown of Ordered States by Moving Topological Defects.

    Science.gov (United States)

    Sheikhzada, Ahmad; Gurevich, Alex

    2015-12-07

    Topological defects such as vortices, dislocations or domain walls define many important effects in superconductivity, superfluidity, magnetism, liquid crystals, and plasticity of solids. Here we address the breakdown of the topologically-protected stability of such defects driven by strong external forces. We focus on Josephson vortices that appear at planar weak links of suppressed superconductivity which have attracted much attention for electronic applications, new sources of THz radiation, and low-dissipative computing. Our numerical simulations show that a rapidly moving vortex driven by a constant current becomes unstable with respect to generation of vortex-antivortex pairs caused by Cherenkov radiation. As a result, vortices and antivortices become spatially separated and accumulate continuously on the opposite sides of an expanding dissipative domain. This effect is most pronounced in thin film edge Josephson junctions at low temperatures where a single vortex can switch the whole junction into a resistive state at currents well below the Josephson critical current. Our work gives a new insight into instability of a moving topological defect which destroys global long-range order in a way that is remarkably similar to the crack propagation in solids.

  17. Topological Insulator Nanowires and Nanoribbons

    KAUST Repository

    Kong, Desheng

    2010-01-13

    Recent theoretical calculations and photoemission spectroscopy measurements on the bulk Bi2Se3 material show that it is a three-dimensional topological insulator possessing conductive surface states with nondegenerate spins, attractive for dissipationless electronics and spintronics applications. Nanoscale topological insulator materials have a large surface-to-volume ratio that can manifest the conductive surface states and are promising candidates for devices. Here we report the synthesis and characterization of high quality single crystalline Bi2Se5 nanomaterials with a variety of morphologies. The synthesis of Bi 2Se5 nanowires and nanoribbons employs Au-catalyzed vapor-liquid-solid (VLS) mechanism. Nanowires, which exhibit rough surfaces, are formed by stacking nanoplatelets along the axial direction of the wires. Nanoribbons are grown along [1120] direction with a rectangular cross-section and have diverse morphologies, including quasi-one-dimensional, sheetlike, zigzag and sawtooth shapes. Scanning tunneling microscopy (STM) studies on nanoribbons show atomically smooth surfaces with ∼ 1 nm step edges, indicating single Se-Bi-Se-Bi-Se quintuple layers. STM measurements reveal a honeycomb atomic lattice, suggesting that the STM tip couples not only to the top Se atomic layer, but also to the Bi atomic layer underneath, which opens up the possibility to investigate the contribution of different atomic orbitais to the topological surface states. Transport measurements of a single nanoribbon device (four terminal resistance and Hall resistance) show great promise for nanoribbons as candidates to study topological surface states. © 2010 American Chemical Society.

  18. Manipulating topological-insulator properties using quantum confinement

    International Nuclear Information System (INIS)

    Kotulla, M; Zülicke, U

    2017-01-01

    Recent discoveries have spurred the theoretical prediction and experimental realization of novel materials that have topological properties arising from band inversion. Such topological insulators are insulating in the bulk but have conductive surface or edge states. Topological materials show various unusual physical properties and are surmised to enable the creation of exotic Majorana-fermion quasiparticles. How the signatures of topological behavior evolve when the system size is reduced is interesting from both a fundamental and an application-oriented point of view, as such understanding may form the basis for tailoring systems to be in specific topological phases. This work considers the specific case of quantum-well confinement defining two-dimensional layers. Based on the effective-Hamiltonian description of bulk topological insulators, and using a harmonic-oscillator potential as an example for a softer-than-hard-wall confinement, we have studied the interplay of band inversion and size quantization. Our model system provides a useful platform for systematic study of the transition between the normal and topological phases, including the development of band inversion and the formation of massless-Dirac-fermion surface states. The effects of bare size quantization, two-dimensional-subband mixing, and electron–hole asymmetry are disentangled and their respective physical consequences elucidated. (paper)

  19. Gapless topological order, gravity, and black holes

    Science.gov (United States)

    Rasmussen, Alex; Jermyn, Adam S.

    2018-04-01

    In this work we demonstrate that linearized gravity exhibits gapless topological order with an extensive ground state degeneracy. This phenomenon is closely related both to the topological order of the pyrochlore U (1 ) spin liquid and to recent work by Hawking and co-workers, who used the soft-photon and graviton theorems to demonstrate that the vacuum in linearized gravity is not unique. We first consider lattice models whose low-energy behavior is described by electromagnetism and linearized gravity, and then argue that the topological nature of these models carries over into the continuum. We demonstrate that these models can have many ground states without making assumptions about the topology of spacetime or about the high-energy nature of the theory, and show that the infinite family of symmetries described by Hawking and co-workers is simply the different topological sectors. We argue that in this context black holes appear as topological defects in the infrared theory, and that this suggests a potential approach to understanding both the firewall paradox and information encoding in gravitational theories. Finally, we use insights from the soft-boson theorems to make connections between deconfined gauge theories with continuous gauge groups and gapless topological order.

  20. Consensus of satellite cluster flight using an energy-matching optimal control method

    Science.gov (United States)

    Luo, Jianjun; Zhou, Liang; Zhang, Bo

    2017-11-01

    This paper presents an optimal control method for consensus of satellite cluster flight under a kind of energy matching condition. Firstly, the relation between energy matching and satellite periodically bounded relative motion is analyzed, and the satellite energy matching principle is applied to configure the initial conditions. Then, period-delayed errors are adopted as state variables to establish the period-delayed errors dynamics models of a single satellite and the cluster. Next a novel satellite cluster feedback control protocol with coupling gain is designed, so that the satellite cluster periodically bounded relative motion consensus problem (period-delayed errors state consensus problem) is transformed to the stability of a set of matrices with the same low dimension. Based on the consensus region theory in the research of multi-agent system consensus issues, the coupling gain can be obtained to satisfy the requirement of consensus region and decouple the satellite cluster information topology and the feedback control gain matrix, which can be determined by Linear quadratic regulator (LQR) optimal method. This method can realize the consensus of satellite cluster period-delayed errors, leading to the consistency of semi-major axes (SMA) and the energy-matching of satellite cluster. Then satellites can emerge the global coordinative cluster behavior. Finally the feasibility and effectiveness of the present energy-matching optimal consensus for satellite cluster flight is verified through numerical simulations.

  1. Recent Progress in the Study of Topological Semimetals

    Science.gov (United States)

    Bernevig, Andrei; Weng, Hongming; Fang, Zhong; Dai, Xi

    2018-04-01

    The topological semimetal is a new, theoretically predicted and experimentally discovered, topological state of matter. In one of its several realizations, the topological semimetal hosts Weyl fermions, elusive particles predicted more than 85 years ago, sought after in high-energy experiments, but only recently found in a condensed-matter setting. In the present review, we catalogue the most recent progress in this fast-developing research field. We give special attention to topological invariants and the material realization of three different types of topological semimetal. We also discuss various photo emission, transport and optical experimental observables that characterize the appearance of topological semimetal phases.

  2. Topology of polymer chains under nanoscale confinement.

    Science.gov (United States)

    Satarifard, Vahid; Heidari, Maziar; Mashaghi, Samaneh; Tans, Sander J; Ejtehadi, Mohammad Reza; Mashaghi, Alireza

    2017-08-24

    Spatial confinement limits the conformational space accessible to biomolecules but the implications for bimolecular topology are not yet known. Folded linear biopolymers can be seen as molecular circuits formed by intramolecular contacts. The pairwise arrangement of intra-chain contacts can be categorized as parallel, series or cross, and has been identified as a topological property. Using molecular dynamics simulations, we determine the contact order distributions and topological circuits of short semi-flexible linear and ring polymer chains with a persistence length of l p under a spherical confinement of radius R c . At low values of l p /R c , the entropy of the linear chain leads to the formation of independent contacts along the chain and accordingly, increases the fraction of series topology with respect to other topologies. However, at high l p /R c , the fraction of cross and parallel topologies are enhanced in the chain topological circuits with cross becoming predominant. At an intermediate confining regime, we identify a critical value of l p /R c , at which all topological states have equal probability. Confinement thus equalizes the probability of more complex cross and parallel topologies to the level of the more simple, non-cooperative series topology. Moreover, our topology analysis reveals distinct behaviours for ring- and linear polymers under weak confinement; however, we find no difference between ring- and linear polymers under strong confinement. Under weak confinement, ring polymers adopt parallel and series topologies with equal likelihood, while linear polymers show a higher tendency for series arrangement. The radial distribution analysis of the topology reveals a non-uniform effect of confinement on the topology of polymer chains, thereby imposing more pronounced effects on the core region than on the confinement surface. Additionally, our results reveal that over a wide range of confining radii, loops arranged in parallel and cross

  3. Evidence for Topological Edge States in a Large Energy Gap near the Step Edges on the Surface of ZrTe_{5}

    Directory of Open Access Journals (Sweden)

    R. Wu

    2016-05-01

    Full Text Available Two-dimensional topological insulators with a large bulk band gap are promising for experimental studies of quantum spin Hall effect and for spintronic device applications. Despite considerable theoretical efforts in predicting large-gap two-dimensional topological insulator candidates, none of them have been experimentally demonstrated to have a full gap, which is crucial for quantum spin Hall effect. Here, by combining scanning tunneling microscopy/spectroscopy and angle-resolved photoemission spectroscopy, we reveal that ZrTe_{5} crystal hosts a large full gap of ∼100  meV on the surface and a nearly constant density of states within the entire gap at the monolayer step edge. These features are well reproduced by our first-principles calculations, which point to the topologically nontrivial nature of the edge states.

  4. Topological photonic orbital-angular-momentum switch

    Science.gov (United States)

    Luo, Xi-Wang; Zhang, Chuanwei; Guo, Guang-Can; Zhou, Zheng-Wei

    2018-04-01

    The large number of available orbital-angular-momentum (OAM) states of photons provides a unique resource for many important applications in quantum information and optical communications. However, conventional OAM switching devices usually rely on precise parameter control and are limited by slow switching rate and low efficiency. Here we propose a robust, fast, and efficient photonic OAM switch device based on a topological process, where photons are adiabatically pumped to a target OAM state on demand. Such topological OAM pumping can be realized through manipulating photons in a few degenerate main cavities and involves only a limited number of optical elements. A large change of OAM at ˜10q can be realized with only q degenerate main cavities and at most 5 q pumping cycles. The topological photonic OAM switch may become a powerful device for broad applications in many different fields and motivate a topological design of conventional optical devices.

  5. Aharonov–Bohm interference in topological insulator nanoribbons

    KAUST Repository

    Peng, Hailin; Lai, Keji; Kong, Desheng; Meister, Stefan; Chen, Yulin; Qi, Xiao-Liang; Zhang, Shou-Cheng; Shen, Zhi-Xun; Cui, Yi

    2009-01-01

    Topological insulators represent unusual phases of quantum matter with an insulating bulk gap and gapless edges or surface states. The two-dimensional topological insulator phase was predicted in HgTe quantum wells and confirmed by transport

  6. Birth and upgrowth of the Hox topological domains during evolution

    NARCIS (Netherlands)

    Deschamps, Jacqueline

    The recently discovered chromatin compartments called topologically associating domains (TADs) are essential for the three-dimensional organization of regulatory interactions driving gene expression. A new study documents the emergence of a TAD flanking the amphioxus Hox cluster, prefiguring the

  7. Birth and upgrowth of the Hox topological domains during evolution

    NARCIS (Netherlands)

    Deschamps, J.

    2016-01-01

    The recently discovered chromatin compartments called topologically associating domains (TADs) are essential for the three-dimensional organization of regulatory interactions driving gene expression. A new study documents the emergence of a TAD flanking the amphioxus Hox cluster, prefiguring the

  8. Fault-tolerant measurement-based quantum computing with continuous-variable cluster states.

    Science.gov (United States)

    Menicucci, Nicolas C

    2014-03-28

    A long-standing open question about Gaussian continuous-variable cluster states is whether they enable fault-tolerant measurement-based quantum computation. The answer is yes. Initial squeezing in the cluster above a threshold value of 20.5 dB ensures that errors from finite squeezing acting on encoded qubits are below the fault-tolerance threshold of known qubit-based error-correcting codes. By concatenating with one of these codes and using ancilla-based error correction, fault-tolerant measurement-based quantum computation of theoretically indefinite length is possible with finitely squeezed cluster states.

  9. Geodesic paths and topological charges in quantum systems

    Science.gov (United States)

    Grangeiro Souza Barbosa Lima, Tiago Aecio

    This dissertation focuses on one question: how should one drive an experimentally prepared state of a generic quantum system into a different target-state, simultaneously minimizing energy dissipation and maximizing the fidelity between the target and evolved-states? We develop optimal adiabatic driving protocols for general quantum systems, and show that these are geodesic paths. Geometric ideas have always played a fundamental role in the understanding and unification of physical phenomena, and the recent discovery of topological insulators has drawn great interest to topology from the field of condensed matter physics. Here, we discuss the quantum geometric tensor, a mathematical object that encodes geometrical and topological properties of a quantum system. It is related to the fidelity susceptibility (an important quantity regarding quantum phase transitions) and to the Berry curvature, which enables topological characterization through Berry phases. A refined understanding of the interplay between geometry and topology in quantum mechanics is of direct relevance to several emergent technologies, such as quantum computers, quantum cryptography, and quantum sensors. As a demonstration of how powerful geometric and topological ideas can become when combined, we present the results of an experiment that we recently proposed. This experimental work was done at the Google Quantum Lab, where researchers were able to visualize the topological nature of a two-qubit system in sharp detail, a startling contrast with earlier methods. To achieve this feat, the optimal protocols described in this dissertation were used, allowing for a great improvement on the experimental apparatus, without the need for technical engineering advances. Expanding the existing literature on the quantum geometric tensor using notions from differential geometry and topology, we build on the subject nowadays known as quantum geometry. We discuss how slowly changing a parameter of a quantum

  10. Ligand combination strategy for the preparation of novel low-dimensional and open-framework metal cluster materials

    Science.gov (United States)

    Anokhina, Ekaterina V.

    Low-dimensional and open-framework materials containing transition metals have a wide range of applications in redox catalysis, solid-state batteries, and electronic and magnetic devices. This dissertation reports on research carried out with the goal to develop a strategy for the preparation of low-dimensional and open-framework materials using octahedral metal clusters as building blocks. Our approach takes its roots from crystal engineering principles where the desired framework topologies are achieved through building block design. The key idea of this work is to induce directional bonding preferences in the cluster units using a combination of ligands with a large difference in charge density. This investigation led to the preparation and characterization of a new family of niobium oxychloride cluster compounds with original structure types exhibiting 1ow-dimensional or open-framework character. Most of these materials have framework topologies unprecedented in compounds containing octahedral clusters. Comparative analysis of their structural features indicates that the novel cluster connectivity patterns in these systems are the result of complex interplay between the effects of anisotropic ligand arrangement in the cluster unit and optimization of ligand-counterion electrostatic interactions. The important role played by these factors sets niobium oxychloride systems apart from cluster compounds with one ligand type or statistical ligand distribution where the main structure-determining factor is the total number of ligands. These results provide a blueprint for expanding the ligand combination strategy to other transition metal cluster systems and for the future rational design of cluster-based materials.

  11. State space Newton's method for topology optimization

    DEFF Research Database (Denmark)

    Evgrafov, Anton

    2014-01-01

    /10/1-type constraints on the design field through penalties in many topology optimization approaches. We test the algorithm on the benchmark problems of dissipated power minimization for Stokes flows, and in all cases the algorithm outperforms the traditional first order reduced space/nested approaches...

  12. Search for C+ C clustering in Mg ground state

    Indian Academy of Sciences (India)

    2017-01-04

    Jan 4, 2017 ... Finite-range knockout theory predictions were much larger for (12C,212C) reaction, indicating a very small 12C−12C clustering in 24Mg. (g.s.) . Our present results contradict most of the proposed heavy cluster (12C+12C) structure models for the ground state of 24Mg. Keywords. Direct nuclear reactions ...

  13. Topological phononic insulator with robust pseudospin-dependent transport

    Science.gov (United States)

    Xia, Bai-Zhan; Liu, Ting-Ting; Huang, Guo-Liang; Dai, Hong-Qing; Jiao, Jun-Rui; Zang, Xian-Guo; Yu, De-Jie; Zheng, Sheng-Jie; Liu, Jian

    2017-09-01

    Topological phononic states, which facilitate unique acoustic transport around defects and disorders, have significantly revolutionized our scientific cognition of acoustic systems. Here, by introducing a zone folding mechanism, we realize the topological phase transition in a double Dirac cone of the rotatable triangular phononic crystal with C3 v symmetry. We then investigate the distinct topological edge states on two types of interfaces of our phononic insulators. The first one is a zigzag interface which simultaneously possesses a symmetric mode and an antisymmetric mode. Hybridization of the two modes leads to a robust pseudospin-dependent one-way propagation. The second one is a linear interface with a symmetric mode or an antisymmetric mode. The type of mode is dependent on the topological phase transition of the phononic insulators. Based on the rotatability of triangular phononic crystals, we consider several complicated contours defined by the topological zigzag interfaces. Along these contours, the acoustic waves can unimpededly transmit without backscattering. Our research develops a route for the exploration of the topological phenomena in experiments and provides an excellent framework for freely steering the acoustic backscattering-immune propagation within topological phononic structures.

  14. The topological Anderson insulator phase in the Kane-Mele model

    Science.gov (United States)

    Orth, Christoph P.; Sekera, Tibor; Bruder, Christoph; Schmidt, Thomas L.

    2016-04-01

    It has been proposed that adding disorder to a topologically trivial mercury telluride/cadmium telluride (HgTe/CdTe) quantum well can induce a transition to a topologically nontrivial state. The resulting state was termed topological Anderson insulator and was found in computer simulations of the Bernevig-Hughes-Zhang model. Here, we show that the topological Anderson insulator is a more universal phenomenon and also appears in the Kane-Mele model of topological insulators on a honeycomb lattice. We numerically investigate the interplay of the relevant parameters, and establish the parameter range in which the topological Anderson insulator exists. A staggered sublattice potential turns out to be a necessary condition for the transition to the topological Anderson insulator. For weak enough disorder, a calculation based on the lowest-order Born approximation reproduces quantitatively the numerical data. Our results thus considerably increase the number of candidate materials for the topological Anderson insulator phase.

  15. Symmetry and topology code of the cluster self-assembly of framework MT structures of alumophosphates AlPO4(H2O)2 (metavariscite and variscite) and Al2(PO4)2(H2O)3 (APC)

    Science.gov (United States)

    Ilyushin, G. D.; Blatov, V. A.

    2017-03-01

    The supramolecular chemistry of alumophosphates, which form framework 3D MT structures from polyhedral AlO4(H2O)2 clusters with octahedral O coordination (of M polyhedra) and PO4 and AlO4 with tetrahedral O coordination (of T polyhedra), is considered. A combinatorial-topological modeling of the formation of possible types of linear (six types) and ring (two types) tetrapolyhedral cluster precursors M2T2 from MT monomers is carried out. Different versions of chain formation from linked (MT)2 rings (six types) are considered. The model, which has a universal character, has been used to simulate the cluster selfassembly of the crystal structure of AlPO4(H2O)2 minerals (metavariscite, m-VAR, and variscite, VAR) and zeolite [Al2(PO4)2(H2O)2] · H2O (APC). A tetrapolyhedral linear precursor is established for m-VAR and a ring precursor (MT)2 is established for VAR and APC. The symmetry and topology code of the processes of crystal structure self-assembly from cluster precursors is completely reconstructed. The functional role of the O-H···O hydrogen bonds is considered for the first time. The cluster self-assembly model explains the specific features of the morphogenesis of single crystals: m-VAR prisms, flattened VAR octahedra, and needleshaped APC square-base prisms.

  16. Local topological modeling of glass structure and radiation-induced rearrangements in connected networks

    International Nuclear Information System (INIS)

    Hobbs, L.W.; Jesurum, C.E.; Pulim, V.

    1997-01-01

    Topology is shown to govern the arrangement of connected structural elements in network glasses such as silica and related radiation-amorphized network compounds: A topological description of such topologically-disordered arrangements is possible which utilizes a characteristic unit of structure--the local cluster--not far in scale from the unit cells in crystalline arrangements. Construction of credible glass network structures and their aberration during cascade disordering events during irradiation can be effected using local assembly rules based on modification of connectivity-based assembly rules derived for crystalline analogues. These topological approaches may provide useful complementary information to that supplied by molecular dynamics about re-ordering routes and final configurations in irradiated glasses. (authors)

  17. Local topological modeling of glass structure and radiation-induced rearrangements in connected networks

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, L.W. [Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, Cambridge, MA (United States); Jesurum, C.E. [Massachusetts Institute of Technology, Dept. of Mathematics, Cambridge, MA (United States); Pulim, V. [Massachusetts Institute of Technology, Lab. for Computer Science, Cambridge, MA (United States)

    1997-07-01

    Topology is shown to govern the arrangement of connected structural elements in network glasses such as silica and related radiation-amorphized network compounds: A topological description of such topologically-disordered arrangements is possible which utilizes a characteristic unit of structure--the local cluster--not far in scale from the unit cells in crystalline arrangements. Construction of credible glass network structures and their aberration during cascade disordering events during irradiation can be effected using local assembly rules based on modification of connectivity-based assembly rules derived for crystalline analogues. These topological approaches may provide useful complementary information to that supplied by molecular dynamics about re-ordering routes and final configurations in irradiated glasses. (authors)

  18. Quantum magnetotransport for the surface states of three-dimensional topological insulators in the presence of a Zeeman field

    KAUST Repository

    Tahir, Muhammad

    2013-05-01

    We show that the surface states of magnetic topological insulators realize an activated behavior and Shubnikov de Haas oscillations. Applying an external magnetic field perpendicular to the surface of the topological insulator in the presence of Zeeman interaction, we investigate the opening of a gap at the Dirac point, making the surface Dirac fermions massive, and the effects on the transport properties. Analytical expressions are derived for the collisional conductivity for elastic impurity scattering in the first Born approximation. We also calculate the Hall conductivity using the Kubo formalism. Evidence for a transition from gapless to gapped surface states at n = 0 and activated transport is found from the temperature and magnetic-field dependence of the collisional and Hall conductivities. © Copyright EPLA, 2013.

  19. Topological and conventional order of spinless fermions in 2D lattices

    International Nuclear Information System (INIS)

    Kourtis, Stefanos

    2014-01-01

    After an introduction to the quintessential properties characterizing quantum Hall effects and topological phases in Part I of the present text, Part II has ventured into the less explored realm of correlated topological states in lattices. Haldane-like models were doped to fractional fillings of the gapped lower band and short-range interactions were used to induce lattice reincarnations of fractional quantum Hall states, called fractional Chern insulators (FCI). In Chapter 5, it was shown that band dispersion, which is usually taken to be zero to mimic Landau levels, can affect the competition between CDW and FCI states and actually favor the latter against the former. Furthermore, a first rudimentary look at the effect of magnetic disorder on a fractionally quantized topological invariant indicated that, even though the impact of disorder is intricate, the quantization of the invariant remains intact. The results presented in Chapter 6 demonstrate that FCI states do not necessarily need to come purely from a single Chern band, since strong interactions that mix bands seem to enhance their stability. The possibility for obtaining exotic correlated topological states was exemplified by the topological pinball liquid - a composite quantum state comprising of a CDW and a FCI - in Chapter 7. The conclusions of the preceding Chapters can be now set forth as answers to the questions posed in the beginning of Part II: - Are weak or strong interactions more favorable to correlated topological states? - Are insulators or semiconductors more suitable hosts? - Are dispersive or flat bands more susceptible to topological order? - Are correlated topological phases beyond the fractional quantum Hall paradigm possible in single-species many-particle systems?

  20. Topological and conventional order of spinless fermions in 2D lattices

    Energy Technology Data Exchange (ETDEWEB)

    Kourtis, Stefanos

    2014-10-15

    After an introduction to the quintessential properties characterizing quantum Hall effects and topological phases in Part I of the present text, Part II has ventured into the less explored realm of correlated topological states in lattices. Haldane-like models were doped to fractional fillings of the gapped lower band and short-range interactions were used to induce lattice reincarnations of fractional quantum Hall states, called fractional Chern insulators (FCI). In Chapter 5, it was shown that band dispersion, which is usually taken to be zero to mimic Landau levels, can affect the competition between CDW and FCI states and actually favor the latter against the former. Furthermore, a first rudimentary look at the effect of magnetic disorder on a fractionally quantized topological invariant indicated that, even though the impact of disorder is intricate, the quantization of the invariant remains intact. The results presented in Chapter 6 demonstrate that FCI states do not necessarily need to come purely from a single Chern band, since strong interactions that mix bands seem to enhance their stability. The possibility for obtaining exotic correlated topological states was exemplified by the topological pinball liquid - a composite quantum state comprising of a CDW and a FCI - in Chapter 7. The conclusions of the preceding Chapters can be now set forth as answers to the questions posed in the beginning of Part II: - Are weak or strong interactions more favorable to correlated topological states? - Are insulators or semiconductors more suitable hosts? - Are dispersive or flat bands more susceptible to topological order? - Are correlated topological phases beyond the fractional quantum Hall paradigm possible in single-species many-particle systems?.

  1. Interplay between surface and bulk states in the Topological Kondo Insulator SmB6

    Science.gov (United States)

    Biswas, Sangram; Hatnean, Monica Ciomaga; Balakrishnan, Geetha; Bid, Aveek

    Kondo insulator SmB6 is predicted to have topologically protected conducting surface states(TSS). We have studied electrical transport through surface states(SS) at ultra-low temperatures in single crystals of SmB6 using local-nonlocal transport scheme and found a large nonlocal signal at temperatures lower than bulk Kondo gap scale. Using resistance fluctuation spectroscopy, we probed the local and nonlocal transport channels and showed that at low temperatures, transport in this system takes place only through SS. The measured noise in this temperature range arises due to Universal Conductance Fluctuations whose statistics was found to be consistent with theoretical predictions for that of 2D systems in the Symplectic symmetry class. We studied the temperature dependence of noise and found that, unlike the topological insulators of the dichalcogenide family, the noise in surface and bulk conduction channels in SmB6 are uncorrelated - at sufficiently low temperatures, the bulk has no discernible contribution to electrical transport in SmB6 making it an ideal platform for probing the physics of TSS. Nanomission, Department of Science & Technology (DST) and Indian Institute of Scienc and EPSRC, UK, Grant EP/L014963/1.

  2. The topology of large-scale structure. III. Analysis of observations

    International Nuclear Information System (INIS)

    Gott, J.R. III; Weinberg, D.H.; Miller, J.; Thuan, T.X.; Schneider, S.E.

    1989-01-01

    A recently developed algorithm for quantitatively measuring the topology of large-scale structures in the universe was applied to a number of important observational data sets. The data sets included an Abell (1958) cluster sample out to Vmax = 22,600 km/sec, the Giovanelli and Haynes (1985) sample out to Vmax = 11,800 km/sec, the CfA sample out to Vmax = 5000 km/sec, the Thuan and Schneider (1988) dwarf sample out to Vmax = 3000 km/sec, and the Tully (1987) sample out to Vmax = 3000 km/sec. It was found that, when the topology is studied on smoothing scales significantly larger than the correlation length (i.e., smoothing length, lambda, not below 1200 km/sec), the topology is spongelike and is consistent with the standard model in which the structure seen today has grown from small fluctuations caused by random noise in the early universe. When the topology is studied on the scale of lambda of about 600 km/sec, a small shift is observed in the genus curve in the direction of a meatball topology. 66 refs

  3. The topology of large-scale structure. III - Analysis of observations

    Science.gov (United States)

    Gott, J. Richard, III; Miller, John; Thuan, Trinh X.; Schneider, Stephen E.; Weinberg, David H.; Gammie, Charles; Polk, Kevin; Vogeley, Michael; Jeffrey, Scott; Bhavsar, Suketu P.; Melott, Adrian L.; Giovanelli, Riccardo; Hayes, Martha P.; Tully, R. Brent; Hamilton, Andrew J. S.

    1989-05-01

    A recently developed algorithm for quantitatively measuring the topology of large-scale structures in the universe was applied to a number of important observational data sets. The data sets included an Abell (1958) cluster sample out to Vmax = 22,600 km/sec, the Giovanelli and Haynes (1985) sample out to Vmax = 11,800 km/sec, the CfA sample out to Vmax = 5000 km/sec, the Thuan and Schneider (1988) dwarf sample out to Vmax = 3000 km/sec, and the Tully (1987) sample out to Vmax = 3000 km/sec. It was found that, when the topology is studied on smoothing scales significantly larger than the correlation length (i.e., smoothing length, lambda, not below 1200 km/sec), the topology is spongelike and is consistent with the standard model in which the structure seen today has grown from small fluctuations caused by random noise in the early universe. When the topology is studied on the scale of lambda of about 600 km/sec, a small shift is observed in the genus curve in the direction of a 'meatball' topology.

  4. A hybrid clustering approach to recognition of protein families in 114 microbial genomes

    Directory of Open Access Journals (Sweden)

    Gogarten J Peter

    2004-04-01

    Full Text Available Abstract Background Grouping proteins into sequence-based clusters is a fundamental step in many bioinformatic analyses (e.g., homology-based prediction of structure or function. Standard clustering methods such as single-linkage clustering capture a history of cluster topologies as a function of threshold, but in practice their usefulness is limited because unrelated sequences join clusters before biologically meaningful families are fully constituted, e.g. as the result of matches to so-called promiscuous domains. Use of the Markov Cluster algorithm avoids this non-specificity, but does not preserve topological or threshold information about protein families. Results We describe a hybrid approach to sequence-based clustering of proteins that combines the advantages of standard and Markov clustering. We have implemented this hybrid approach over a relational database environment, and describe its application to clustering a large subset of PDB, and to 328577 proteins from 114 fully sequenced microbial genomes. To demonstrate utility with difficult problems, we show that hybrid clustering allows us to constitute the paralogous family of ATP synthase F1 rotary motor subunits into a single, biologically interpretable hierarchical grouping that was not accessible using either single-linkage or Markov clustering alone. We describe validation of this method by hybrid clustering of PDB and mapping SCOP families and domains onto the resulting clusters. Conclusion Hybrid (Markov followed by single-linkage clustering combines the advantages of the Markov Cluster algorithm (avoidance of non-specific clusters resulting from matches to promiscuous domains and single-linkage clustering (preservation of topological information as a function of threshold. Within the individual Markov clusters, single-linkage clustering is a more-precise instrument, discerning sub-clusters of biological relevance. Our hybrid approach thus provides a computationally efficient

  5. Four-cluster chimera state in non-locally coupled phase oscillator systems with an external potential

    International Nuclear Information System (INIS)

    Zhu Yun; Zheng Zhi-Gang; Yang Jun-Zhong

    2013-01-01

    Dynamics of a one-dimensional array of non-locally coupled Kuramoto phase oscillators with an external potential is studied. A four-cluster chimera state is observed for the moderate strength of the external potential. Different from the clustered chimera states studied before, the instantaneous frequencies of the oscillators in a synchronized cluster are different in the presence of the external potential. As the strength of the external potential increases, a bifurcation from the two-cluster chimera state to the four-cluster chimera states can be found. These phenomena are well predicted analytically with the help of the Ott—Antonsen ansatz. (general)

  6. Predicting DNA Methylation State of CpG Dinucleotide Using Genome Topological Features and Deep Networks.

    Science.gov (United States)

    Wang, Yiheng; Liu, Tong; Xu, Dong; Shi, Huidong; Zhang, Chaoyang; Mo, Yin-Yuan; Wang, Zheng

    2016-01-22

    The hypo- or hyper-methylation of the human genome is one of the epigenetic features of leukemia. However, experimental approaches have only determined the methylation state of a small portion of the human genome. We developed deep learning based (stacked denoising autoencoders, or SdAs) software named "DeepMethyl" to predict the methylation state of DNA CpG dinucleotides using features inferred from three-dimensional genome topology (based on Hi-C) and DNA sequence patterns. We used the experimental data from immortalised myelogenous leukemia (K562) and healthy lymphoblastoid (GM12878) cell lines to train the learning models and assess prediction performance. We have tested various SdA architectures with different configurations of hidden layer(s) and amount of pre-training data and compared the performance of deep networks relative to support vector machines (SVMs). Using the methylation states of sequentially neighboring regions as one of the learning features, an SdA achieved a blind test accuracy of 89.7% for GM12878 and 88.6% for K562. When the methylation states of sequentially neighboring regions are unknown, the accuracies are 84.82% for GM12878 and 72.01% for K562. We also analyzed the contribution of genome topological features inferred from Hi-C. DeepMethyl can be accessed at http://dna.cs.usm.edu/deepmethyl/.

  7. Asymmetric electroresistance of cluster glass state in manganites

    KAUST Repository

    Lourembam, James

    2014-03-31

    We report the electrostatic modulation of transport in strained Pr0.65(Ca0.75Sr0.25)0.35MnO3 thin films grown on SrTiO3 by gating with ionic liquid in electric double layer transistors (EDLT). In such manganite films with strong phase separation, a cluster glass magnetic state emerges at low temperatures with a spin freezing temperature of about 99 K, which is accompanied by the reentrant insulating state with high resistance below 30 K. In the EDLT, we observe bipolar and asymmetric modulation of the channel resistance, as well as an enhanced electroresistance up to 200% at positive gate bias. Our results provide insights on the carrier-density-dependent correlated electron physics of cluster glass systems.

  8. Magnetic gating of a 2D topological insulator

    Science.gov (United States)

    Dang, Xiaoqian; Burton, J. D.; Tsymbal, Evgeny Y.

    2016-09-01

    Deterministic control of transport properties through manipulation of spin states is one of the paradigms of spintronics. Topological insulators offer a new playground for exploring interesting spin-dependent phenomena. Here, we consider a ferromagnetic ‘gate’ representing a magnetic adatom coupled to the topologically protected edge state of a two-dimensional (2D) topological insulator to modulate the electron transmission of the edge state. Due to the locked spin and wave vector of the transport electrons the transmission across the magnetic gate depends on the mutual orientation of the adatom magnetic moment and the current. If the Fermi energy matches an exchange-split bound state of the adatom, the electron transmission can be blocked due to the full back scattering of the incident wave. This antiresonance behavior is controlled by the adatom magnetic moment orientation so that the transmission of the edge state can be changed from 1 to 0. Expanding this consideration to a ferromagnetic gate representing a 1D chain of atoms shows a possibility to control the spin-dependent current of a strip of a 2D topological insulator by magnetization orientation of the ferromagnetic gate.

  9. Engineering topological phases with a three-dimensional nodal-loop semimetal

    Science.gov (United States)

    Li, Linhu; Yap, Han Hoe; Araújo, Miguel A. N.; Gong, Jiangbin

    2017-12-01

    A three-dimensional (3D) nodal-loop semimetal phase is exploited to engineer a number of intriguing phases featuring different peculiar topological surface states. In particular, by introducing various two-dimensional gap terms to a 3D tight-binding model of a nodal-loop semimetal, we obtain a rich variety of topological phases of great interest to ongoing theoretical and experimental studies, including a chiral insulator, degenerate-surface-loop insulator, and second-order topological insulator, as well as a Weyl semimetal with tunable Fermi arc profiles. The unique concept underlying our approach is to engineer topological surface states that inherit their dispersion relations from a gap term. The results provide one rather unified principle for the creation of novel topological phases and can guide the search for new topological materials. Two-terminal transport studies are also carried out to distinguish the engineered topological phases.

  10. Emergence of topological and topological crystalline phases in TlBiS2 and TlSbS2

    KAUST Repository

    Zhang, Qingyun

    2015-02-11

    Using first-principles calculations, we investigate the band structure evolution and topological phase transitions in TlBiS2 and TlSbS2 under hydrostatic pressure as well as uniaxial and biaxial strain. The phase transitions are identified by parity analysis and by calculating the surface states. Zero, one, and four Dirac cones are found for the (111) surfaces of both TlBiS2 and TlSbS2 when the pressure grows, which confirms trivial-nontrivial-trivial phase transitions. The Dirac cones at the (M) over bar points are anisotropic with large out-of-plane component. TlBiS2 shows normal, topological, and topological crystalline insulator phases under hydrostatic pressure, thus being the first compound to exhibit a phase transition from a topological to a topological crystalline insulator.

  11. Emergence of topological and topological crystalline phases in TlBiS2 and TlSbS2

    KAUST Repository

    Zhang, Qingyun; Cheng, Yingchun; Schwingenschlö gl, Udo

    2015-01-01

    Using first-principles calculations, we investigate the band structure evolution and topological phase transitions in TlBiS2 and TlSbS2 under hydrostatic pressure as well as uniaxial and biaxial strain. The phase transitions are identified by parity analysis and by calculating the surface states. Zero, one, and four Dirac cones are found for the (111) surfaces of both TlBiS2 and TlSbS2 when the pressure grows, which confirms trivial-nontrivial-trivial phase transitions. The Dirac cones at the (M) over bar points are anisotropic with large out-of-plane component. TlBiS2 shows normal, topological, and topological crystalline insulator phases under hydrostatic pressure, thus being the first compound to exhibit a phase transition from a topological to a topological crystalline insulator.

  12. Real-space mapping of topological invariants using artificial neural networks

    Science.gov (United States)

    Carvalho, D.; García-Martínez, N. A.; Lado, J. L.; Fernández-Rossier, J.

    2018-03-01

    Topological invariants allow one to characterize Hamiltonians, predicting the existence of topologically protected in-gap modes. Those invariants can be computed by tracing the evolution of the occupied wave functions under twisted boundary conditions. However, those procedures do not allow one to calculate a topological invariant by evaluating the system locally, and thus require information about the wave functions in the whole system. Here we show that artificial neural networks can be trained to identify the topological order by evaluating a local projection of the density matrix. We demonstrate this for two different models, a one-dimensional topological superconductor and a two-dimensional quantum anomalous Hall state, both with spatially modulated parameters. Our neural network correctly identifies the different topological domains in real space, predicting the location of in-gap states. By combining a neural network with a calculation of the electronic states that uses the kernel polynomial method, we show that the local evaluation of the invariant can be carried out by evaluating a local quantity, in particular for systems without translational symmetry consisting of tens of thousands of atoms. Our results show that supervised learning is an efficient methodology to characterize the local topology of a system.

  13. Surface State Dynamics of Topological Insulators Investigated by Femtosecond Time- and Angle-Resolved Photoemission Spectroscopy

    Directory of Open Access Journals (Sweden)

    Hamoon Hedayat

    2018-04-01

    Full Text Available Topological insulators (TI are known for striking quantum phenomena associated with their spin-polarized topological surface state (TSS. The latter in particular forms a Dirac cone that bridges the energy gap between valence and conduction bands, providing a unique opportunity for prospective device applications. In TI of the BixSb2−xTeySe3−y (BSTS family, stoichiometry determines the morphology and position of the Dirac cone with respect to the Fermi level. In order to engineer specific transport properties, a careful tuning of the TSS is highly desired. Therefore, we have systematically explored BSTS samples with different stoichiometries by time- and angle-resolved photoemission spectroscopy (TARPES. This technique provides snapshots of the electronic structure and discloses the carrier dynamics in surface and bulk states, providing crucial information for the design of electro-spin current devices. Our results reveal the central role of doping level on the Dirac cone structure and its femtosecond dynamics. In particular, an extraordinarily long TSS lifetime is observed when the the vertex of the Dirac cone lies at the Fermi level.

  14. The topology of large-scale structure. VI - Slices of the universe

    Science.gov (United States)

    Park, Changbom; Gott, J. R., III; Melott, Adrian L.; Karachentsev, I. D.

    1992-03-01

    Results of an investigation of the topology of large-scale structure in two observed slices of the universe are presented. Both slices pass through the Coma cluster and their depths are 100 and 230/h Mpc. The present topology study shows that the largest void in the CfA slice is divided into two smaller voids by a statistically significant line of galaxies. The topology of toy models like the white noise and bubble models is shown to be inconsistent with that of the observed slices. A large N-body simulation was made of the biased cloud dark matter model and the slices are simulated by matching them in selection functions and boundary conditions. The genus curves for these simulated slices are spongelike and have a small shift in the direction of a meatball topology like those of observed slices.

  15. The topology of large-scale structure. VI - Slices of the universe

    Science.gov (United States)

    Park, Changbom; Gott, J. R., III; Melott, Adrian L.; Karachentsev, I. D.

    1992-01-01

    Results of an investigation of the topology of large-scale structure in two observed slices of the universe are presented. Both slices pass through the Coma cluster and their depths are 100 and 230/h Mpc. The present topology study shows that the largest void in the CfA slice is divided into two smaller voids by a statistically significant line of galaxies. The topology of toy models like the white noise and bubble models is shown to be inconsistent with that of the observed slices. A large N-body simulation was made of the biased cloud dark matter model and the slices are simulated by matching them in selection functions and boundary conditions. The genus curves for these simulated slices are spongelike and have a small shift in the direction of a meatball topology like those of observed slices.

  16. Optical transitions in two-dimensional topological insulators with point defects

    Science.gov (United States)

    Sablikov, Vladimir A.; Sukhanov, Aleksei A.

    2016-12-01

    Nontrivial properties of electronic states in topological insulators are inherent not only to the surface and boundary states, but to bound states localized at structure defects as well. We clarify how the unusual properties of the defect-induced bound states are manifested in optical absorption spectra in two-dimensional topological insulators. The calculations are carried out for defects with short-range potential. We find that the defects give rise to the appearance of specific features in the absorption spectrum, which are an inherent property of topological insulators. They have the form of two or three absorption peaks that are due to intracenter transitions between electron-like and hole-like bound states.

  17. Topological transitions in the theory of spacetime

    International Nuclear Information System (INIS)

    Konstantinov, M.Y.; Melnikov, V.N.

    1986-01-01

    Results of a realisation of the topological transitions hypothesis are presented. The basic difficulties in the construction of quantum topological transition theory are connected with a necessity to introduce a new non-local interaction defined on a space of topological states. So the general method of construction and study of topological transitions classical models is formulated as a necessary step towards a corresponding quantum description. Their local properties, including an asymptotic behaviour in the neighbourhood of the transition, are studied and applications to problems of gravitation and cosmology are given. The method used is shown to lead to a scalar-tensor theory of topological transitions. Different variants of this theory and its main features are discussed. (author)

  18. Tunable topological phases in photonic and phononic crystals

    KAUST Repository

    Chen, Zeguo

    2018-01-01

    Topological photonics/phononics, inspired by the discovery of topological insulators, is a prosperous field of research, in which remarkable one-way propagation edge states are robust against impurities or defect without backscattering

  19. Five new Zn(II) and Cd(II) coordination polymers constructed by 3,5-bis-oxyacetate-benzoic acid: Syntheses, crystal structures, network topologies and luminescent properties

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Xianrong; Yuan Hongyan [Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004 (China); Feng Yunlong, E-mail: sky37@zjnu.edu.cn [Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004 (China)

    2012-07-15

    Five Zn(II) and Cd(II) coordination polymers, [Zn{sub 2}(BOABA)(bpp)(OH)]{center_dot}0.5H{sub 2}O (1), [Cd{sub 3}(BOABA){sub 2}(bpp){sub 2}(H{sub 2}O){sub 6}]{center_dot}2H{sub 2}O (2), [Cd{sub 3}(BOABA){sub 2}(2,2 Prime -bipy){sub 3}(H{sub 2}O){sub 4}]{center_dot}5.5H{sub 2}O (3), [CdNa(BOABA)(H{sub 2}O)]{sub 2}{center_dot}H{sub 2}O (4) and [Cd{sub 2}(BOABA)(bimb)Cl(H{sub 2}O){sub 2}]{center_dot}H{sub 2}O (5) (H{sub 3}BOABA=3,5-bis-oxyacetate-benzoic acid, bpp=1,3-bi(4-pyridyl)propane, 2,2 Prime -bipy=2,2 Prime -bipyridine, bimb=1,4-bis(imidazol-1 Prime -yl)butane), have been solvothermally synthesized and characterized by single-crystal X-ray diffraction, elemental analyses, IR spectra and TG analyses. 1 is an uninodal 4-connected 2D square grid network based on binuclear zinc clusters. 2 is 2D wavelike layer structure and further linked by hydrogen bonds into the final 3D (5,6,6)-connected topology network. 3 is 3-connected 2D topology network and the 2,2 Prime -bipy ligands decorate in two different types. 4 is a (4,8)-connected 2D topology network with heterocaryotic {l_brace}Cd{sub 2}Na{sub 2}{r_brace} clusters and BOABA{sup 3-} ligands. 5 can be rationalized as a (3,10)-connected 3D topology network with tetranuclear {l_brace}Cd{sub 4}Cl{sub 2}{r_brace} clusters and BOABA{sup 3-} ligands. Meanwhile, photoluminescence studies revealed that these five coordination polymers display strong fluorescent emission bands in the solid state at room temperature. - Graphical abstract: Five new d{sup 10} metal(II) coordination polymers based on H{sub 3}BOABA ligand were obtained and characterized. They display different topological structures and luminescent properties. Highlights: Black-Right-Pointing-Pointer Five d{sup 10} metal(II) polymers based on 3,5-bis-oxyacetate-benzoic acid were obtained. Black-Right-Pointing-Pointer The polymers were structurally characterized by single-crystal X-ray diffraction. Black-Right-Pointing-Pointer Polymers 1-5 display different

  20. Proximity induced ferromagnetism, superconductivity, and finite-size effects on the surface states of topological insulator nanostructures

    Science.gov (United States)

    Sengupta, Parijat; Kubis, Tillmann; Tan, Yaohua; Klimeck, Gerhard

    2015-01-01

    Bi2Te3 and Bi2Se3 are well known 3D-topological insulators (TI). Films made of these materials exhibit metal-like surface states with a Dirac dispersion and possess high mobility. The high mobility metal-like surface states can serve as building blocks for a variety of applications that involve tuning their dispersion relationship and opening a band gap. A band gap can be opened either by breaking time reversal symmetry, the proximity effect of a superconductor or ferromagnet or adjusting the dimensionality of the TI material. In this work, methods that can be employed to easily open a band gap for the TI surface states are assessed. Two approaches are described: (1) Coating the surface states with a ferromagnet which has a controllable magnetization axis. The magnetization strength of the ferromagnet is incorporated as an exchange interaction term in the Hamiltonian. (2) An s-wave superconductor, because of the proximity effect, when coupled to a 3D-TI opens a band gap on the surface. Finally, the hybridization of the surface Dirac cones can be controlled by reducing the thickness of the topological insulator film. It is shown that this alters the band gap significantly.

  1. Dimensional crossover and cold-atom realization of topological Mott insulators

    Science.gov (United States)

    Scheurer, Mathias S.; Rachel, Stephan; Orth, Peter P.

    2015-02-01

    Interacting cold-atomic gases in optical lattices offer an experimental approach to outstanding problems of many body physics. One important example is the interplay of interaction and topology which promises to generate a variety of exotic phases such as the fractionalized Chern insulator or the topological Mott insulator. Both theoretically understanding these states of matter and finding suitable systems that host them have proven to be challenging problems. Here we propose a cold-atom setup where Hubbard on-site interactions give rise to spin liquid-like phases: weak and strong topological Mott insulators. They represent the celebrated paradigm of an interacting and topological quantum state with fractionalized spinon excitations that inherit the topology of the non-interacting system. Our proposal shall help to pave the way for a controlled experimental investigation of this exotic state of matter in optical lattices. Furthermore, it allows for the investigation of a dimensional crossover from a two-dimensional quantum spin Hall insulating phase to a three-dimensional strong topological insulator by tuning the hopping between the layers.

  2. Time- and Site-Resolved Dynamics in a Topological Circuit

    Directory of Open Access Journals (Sweden)

    Jia Ningyuan

    2015-06-01

    Full Text Available From studies of exotic quantum many-body phenomena to applications in spintronics and quantum information processing, topological materials are poised to revolutionize the condensed-matter frontier and the landscape of modern materials science. Accordingly, there is a broad effort to realize topologically nontrivial electronic and photonic materials for fundamental science as well as practical applications. In this work, we demonstrate the first simultaneous site- and time-resolved measurements of a time-reversal-invariant topological band structure, which we realize in a radio-frequency photonic circuit. We control band-structure topology via local permutation of a traveling-wave capacitor-inductor network, increasing robustness by going beyond the tight-binding limit. We observe a gapped density of states consistent with a modified Hofstadter spectrum at a flux per plaquette of ϕ=π/2. In situ probes of the band gaps reveal spatially localized bulk states and delocalized edge states. Time-resolved measurements reveal dynamical separation of localized edge excitations into spin-polarized currents. The radio-frequency circuit paradigm is naturally compatible with nonlocal coupling schemes, allowing us to implement a Möbius strip topology inaccessible in conventional systems. This room-temperature experiment illuminates the origins of topology in band structure, and when combined with circuit quantum electrodynamics techniques, it provides a direct path to topologically ordered quantum matter.

  3. Higher-order topological insulators and superconductors protected by inversion symmetry

    Science.gov (United States)

    Khalaf, Eslam

    2018-05-01

    We study surface states of topological crystalline insulators and superconductors protected by inversion symmetry. These fall into the category of "higher-order" topological insulators and superconductors which possess surface states that propagate along one-dimensional curves (hinges) or are localized at some points (corners) on the surface. We provide a complete classification of inversion-protected higher-order topological insulators and superconductors in any spatial dimension for the 10 symmetry classes by means of a layer construction. We discuss possible physical realizations of such states starting with a time-reversal-invariant topological insulator (class AII) in three dimensions or a time-reversal-invariant topological superconductor (class DIII) in two or three dimensions. The former exhibits one-dimensional chiral or helical modes propagating along opposite edges, whereas the latter hosts Majorana zero modes localized to two opposite corners. Being protected by inversion, such states are not pinned to a specific pair of edges or corners, thus offering the possibility of controlling their location by applying inversion-symmetric perturbations such as magnetic field.

  4. A SOM clustering pattern sequence-based next symbol prediction method for day-ahead direct electricity load and price forecasting

    International Nuclear Information System (INIS)

    Jin, Cheng Hao; Pok, Gouchol; Lee, Yongmi; Park, Hyun-Woo; Kim, Kwang Deuk; Yun, Unil; Ryu, Keun Ho

    2015-01-01

    Highlights: • A novel pattern sequence-based direct time series forecasting method was proposed. • Due to the use of SOM’s topology preserving property, only SOM can be applied. • SCPSNSP only deals with the cluster patterns not each specific time series value. • SCPSNSP performs better than recently developed forecasting algorithms. - Abstract: In this paper, we propose a new day-ahead direct time series forecasting method for competitive electricity markets based on clustering and next symbol prediction. In the clustering step, pattern sequence and their topology relations are obtained from self organizing map time series clustering. In the next symbol prediction step, with each cluster label in the pattern sequence represented as a pair of its topologically identical coordinates, artificial neural network is used to predict the topological coordinates of next day by training the relationship between previous daily pattern sequence and its next day pattern. According to the obtained topology relations, the nearest nonzero hits pattern is assigned to next day so that the whole time series values can be directly forecasted from the assigned cluster pattern. The proposed method was evaluated on Spanish, Australian and New York electricity markets and compared with PSF and some of the most recently published forecasting methods. Experimental results show that the proposed method outperforms the best forecasting methods at least 3.64%

  5. Interface currents in topological superconductor–ferromagnet heterostructures

    International Nuclear Information System (INIS)

    Brydon, P M R; Timm, Carsten; Schnyder, Andreas P

    2013-01-01

    We propose the existence of a substantial charge current parallel to the interface between a noncentrosymmetric superconductor and a metallic ferromagnet. Our analysis focuses upon two complementary orbital-angular-momentum pairing states of the superconductor, exemplifying topologically nontrivial states which are gapped and gapless in the bulk, respectively. Utilizing a quasiclassical scattering theory, we derive an expression for the interface current in terms of Andreev reflection coefficients. Performing a systematic study of the current, we find stark qualitative differences between the gapped and gapless superconductors, which reflect the very different underlying topological properties. For the fully gapped superconductor, there is a sharp drop in the zero-temperature current as the system is tuned from a topologically nontrivial to a trivial phase. We explain this in terms of the sudden disappearance of the contribution to the current from the subgap edge states at the topological transition. The current in the gapless superconductor is characterized by a dramatic enhancement at low temperatures, and exhibits a singular dependence on the exchange-field strength in the ferromagnetic metal at zero temperature. This is caused by the energy shift of the strongly spin-polarized nondegenerate zero-energy flat bands due to their coupling to the exchange field. We argue that the interface current provides a novel test of the topology of the superconductor, and discuss prospects for the experimental verification of our predictions. (paper)

  6. Trivial topological phase of CaAgP and the topological nodal-line transition in CaAg (P1 -xA sx)

    Science.gov (United States)

    Xu, N.; Qian, Y. T.; Wu, Q. S.; Autès, G.; Matt, C. E.; Lv, B. Q.; Yao, M. Y.; Strocov, V. N.; Pomjakushina, E.; Conder, K.; Plumb, N. C.; Radovic, M.; Yazyev, O. V.; Qian, T.; Ding, H.; Mesot, J.; Shi, M.

    2018-04-01

    By performing angle-resolved photoemission spectroscopy and first-principles calculations, we address the topological phase of CaAgP and investigate the topological phase transition in CaAg (P1 -xA sx) . We reveal that in CaAgP, the bulk band gap and surface states with a large bandwidth are topologically trivial, in agreement with hybrid density functional theory calculations. The calculations also indicate that application of "negative" hydrostatic pressure can transform trivial semiconducting CaAgP into an ideal topological nodal-line semimetal phase. The topological transition can be realized by partial isovalent P/As substitution at x =0.38 .

  7. Brain Graph Topology Changes Associated with Anti-Epileptic Drug Use

    Science.gov (United States)

    Levin, Harvey S.; Chiang, Sharon

    2015-01-01

    Abstract Neuroimaging studies of functional connectivity using graph theory have furthered our understanding of the network structure in temporal lobe epilepsy (TLE). Brain network effects of anti-epileptic drugs could influence such studies, but have not been systematically studied. Resting-state functional MRI was analyzed in 25 patients with TLE using graph theory analysis. Patients were divided into two groups based on anti-epileptic medication use: those taking carbamazepine/oxcarbazepine (CBZ/OXC) (n=9) and those not taking CBZ/OXC (n=16) as a part of their medication regimen. The following graph topology metrics were analyzed: global efficiency, betweenness centrality (BC), clustering coefficient, and small-world index. Multiple linear regression was used to examine the association of CBZ/OXC with graph topology. The two groups did not differ from each other based on epilepsy characteristics. Use of CBZ/OXC was associated with a lower BC. Longer epilepsy duration was also associated with a lower BC. These findings can inform graph theory-based studies in patients with TLE. The changes observed are discussed in relation to the anti-epileptic mechanism of action and adverse effects of CBZ/OXC. PMID:25492633

  8. An extended topological Yang-Mills theory

    International Nuclear Information System (INIS)

    Deguchi, Shinichi

    1992-01-01

    Introducing infinite number of fields, we construct an extended version of the topological Yang-Mills theory. The properties of the extended topological Yang-Mills theory (ETYMT) are discussed from standpoint of the covariant canonical quantization. It is shown that the ETYMT becomes a cohomological topological field theory or a theory equivalent to a quantum Yang-Mills theory with anti-self-dual constraint according to subsidiary conditions imposed on state-vector space. On the basis of the ETYMT, we may understand a transition from an unbroken phase to a physical phase (broken phase). (author)

  9. Schemes for Greenberger-Horne-Zeilinger and cluster state preparation

    International Nuclear Information System (INIS)

    Song Jie; Xia Yan; Song Heshan

    2008-01-01

    Schemes to generate Greenberger-Horne-Zeilinger (GHZ) and cluster states of three atoms are proposed in a two-mode cavity. The advantages of the schemes are their robustness against decoherence due to spontaneous emission of the excited states and decay of the cavity modes. Moreover, the schemes can be generalized to generate N-atom entangled states

  10. Photoinduced Topological Phase Transitions in Topological Magnon Insulators.

    Science.gov (United States)

    Owerre, S A

    2018-03-13

    Topological magnon insulators are the bosonic analogs of electronic topological insulators. They are manifested in magnetic materials with topologically nontrivial magnon bands as realized experimentally in a quasi-two-dimensional (quasi-2D) kagomé ferromagnet Cu(1-3, bdc), and they also possess protected magnon edge modes. These topological magnetic materials can transport heat as well as spin currents, hence they can be useful for spintronic applications. Moreover, as magnons are charge-neutral spin-1 bosonic quasiparticles with a magnetic dipole moment, topological magnon materials can also interact with electromagnetic fields through the Aharonov-Casher effect. In this report, we study photoinduced topological phase transitions in intrinsic topological magnon insulators in the kagomé ferromagnets. Using magnonic Floquet-Bloch theory, we show that by varying the light intensity, periodically driven intrinsic topological magnetic materials can be manipulated into different topological phases with different sign of the Berry curvatures and the thermal Hall conductivity. We further show that, under certain conditions, periodically driven gapped topological magnon insulators can also be tuned to synthetic gapless topological magnon semimetals with Dirac-Weyl magnon cones. We envision that this work will pave the way for interesting new potential practical applications in topological magnetic materials.

  11. Spin-torque generation in topological insulator based heterostructures

    KAUST Repository

    Fischer, Mark H.; Vaezi, Abolhassan; Manchon, Aurelien; Kim, Eun-Ah

    2016-01-01

    Heterostructures utilizing topological insulators exhibit a remarkable spin-torque efficiency. However, the exact origin of the strong torque, in particular whether it stems from the spin-momentum locking of the topological surface states or rather

  12. Random fields, topology, and the Imry-Ma argument.

    Science.gov (United States)

    Proctor, Thomas C; Garanin, Dmitry A; Chudnovsky, Eugene M

    2014-03-07

    We consider an n-component fixed-length order parameter interacting with a weak random field in d=1, 2, 3 dimensions. Relaxation from the initially ordered state and spin-spin correlation functions are studied on lattices containing hundreds of millions of sites. At n ≤ d the presence of topological defects leads to strong metastability and glassy behavior, with the final state depending on the initial condition. At n=d+1, when topological structures are nonsingular, the system possesses a weak metastability. At n>d+1, when topological objects are absent, the final, lowest-energy state is independent of the initial condition. It is characterized by the exponential decay of correlations that agrees quantitatively with the theory based upon the Imry-Ma argument.

  13. Bistable Topological Insulator with Exciton-Polaritons

    Science.gov (United States)

    Kartashov, Yaroslav V.; Skryabin, Dmitry V.

    2017-12-01

    The functionality of many nonlinear and quantum optical devices relies on the effect of optical bistability. Using microcavity exciton-polaritons in a honeycomb arrangement of microcavity pillars, we report the resonance response and bistability of topological edge states. A balance between the pump, loss, and nonlinearity ensures a broad range of dynamical stability and controls the distribution of power between counterpropagating states on the opposite edges of the honeycomb lattice stripe. Tuning energy and polarization of the pump photons, while keeping their momentum constant, we demonstrate control of the propagation direction of the dominant edge state. Our results facilitate the development of practical applications of topological photonics.

  14. Topological analysis of long-chain branching patterns in polyolefins.

    Science.gov (United States)

    Bonchev, D; Markel, E; Dekmezian, A

    2001-01-01

    Patterns in molecular topology and complexity for long-chain branching are quantitatively described. The Wiener number, the topological complexity index, and a new index of 3-starness are used to quantify polymer structure. General formulas for these indices were derived for the cases of 3-arm star, H-shaped, and B-arm comb polymers. The factors affecting complexity in monodisperse polymer systems are ranked as follows: number of arms > arm length > arm central position approximately equal to arm clustering > total molecular weight approximately equal to backbone molecular weight. Topological indices change rapidly and then plateau as the molecular weight of branches on a polyolefin backbone increases from 0 to 5 kD. Complexity calculations relate 2-arm or 3-arm comb structures to the corresponding 3-arm stars of equivalent complexity but much higher molecular weight. In a subsequent paper, we report the application of topological analysis for developing structure/property relationships for monodisperse polymers. While the focus of the present work is on the description of monodisperse, well-defined architectures, the methods may be extended to the description of polydisperse systems.

  15. Spin-rotation symmetry breaking and triplet superconducting state in doped topological insulator CuxBi2Se3

    Science.gov (United States)

    Zheng, Guo-Qing

    Spontaneous symmetry breaking is an important concept for understanding physics ranging from the elementary particles to states of matter. For example, the superconducting state breaks global gauge symmetry, and unconventional superconductors can break additional symmetries. In particular, spin rotational symmetry is expected to be broken in spin-triplet superconductors. However, experimental evidence for such symmetry breaking has not been obtained so far in any candidate compounds. We report 77Se nuclear magnetic resonance measurements which showed that spin rotation symmetry is spontaneously broken in the hexagonal plane of the electron-doped topological insulator Cu0.3Bi2Se3 below the superconducting transition temperature Tc =3.4 K. Our results not only establish spin-triplet (odd parity) superconductivity in this compound, but also serve to lay a foundation for the research of topological superconductivity (Ref.). We will also report the doping mechanism and superconductivity in Sn1-xInxTe.

  16. Topology Analysis of the Sloan Digital Sky Survey. I. Scale and Luminosity Dependence

    Science.gov (United States)

    Park, Changbom; Choi, Yun-Young; Vogeley, Michael S.; Gott, J. Richard, III; Kim, Juhan; Hikage, Chiaki; Matsubara, Takahiko; Park, Myeong-Gu; Suto, Yasushi; Weinberg, David H.; SDSS Collaboration

    2005-11-01

    We measure the topology of volume-limited galaxy samples selected from a parent sample of 314,050 galaxies in the Sloan Digital Sky Survey (SDSS), which is now complete enough to describe the fully three-dimensional topology and its dependence on galaxy properties. We compare the observed genus statistic G(νf) to predictions for a Gaussian random field and to the genus measured for mock surveys constructed from new large-volume simulations of the ΛCDM cosmology. In this analysis we carefully examine the dependence of the observed genus statistic on the Gaussian smoothing scale RG from 3.5 to 11 h-1 Mpc and on the luminosity of galaxies over the range -22.50meatball'' (i.e., cluster dominated) topology, while faint galaxies show a positive shift toward a ``bubble'' (i.e., void dominated) topology. The transition from negative to positive shift occurs approximately at the characteristic absolute magnitude Mr*=-20.4. Even in this analysis of the largest galaxy sample to date, we detect the influence of individual large-scale structures, as the shift parameter Δν and cluster multiplicity AC reflect (at ~3 σ) the presence of the Sloan Great Wall and an X-shaped structure that runs for several hundred megaparsecs across the survey volume.

  17. Robustness of cluster synchronous patterns in small-world networks with inter-cluster co-competition balance

    International Nuclear Information System (INIS)

    Zhang, Jianbao; Ma, Zhongjun; Chen, Guanrong

    2014-01-01

    All edges in the classical Watts and Strogatz's small-world network model are unweighted and cooperative (positive). By introducing competitive (negative) inter-cluster edges and assigning edge weights to mimic more realistic networks, this paper develops a modified model which possesses co-competitive weighted couplings and cluster structures while maintaining the common small-world network properties of small average shortest path lengths and large clustering coefficients. Based on theoretical analysis, it is proved that the new model with inter-cluster co-competition balance has an important dynamical property of robust cluster synchronous pattern formation. More precisely, clusters will neither merge nor split regardless of adding or deleting nodes and edges, under the condition of inter-cluster co-competition balance. Numerical simulations demonstrate the robustness of the model against the increase of the coupling strength and several topological variations

  18. Robustness of cluster synchronous patterns in small-world networks with inter-cluster co-competition balance

    Science.gov (United States)

    Zhang, Jianbao; Ma, Zhongjun; Chen, Guanrong

    2014-06-01

    All edges in the classical Watts and Strogatz's small-world network model are unweighted and cooperative (positive). By introducing competitive (negative) inter-cluster edges and assigning edge weights to mimic more realistic networks, this paper develops a modified model which possesses co-competitive weighted couplings and cluster structures while maintaining the common small-world network properties of small average shortest path lengths and large clustering coefficients. Based on theoretical analysis, it is proved that the new model with inter-cluster co-competition balance has an important dynamical property of robust cluster synchronous pattern formation. More precisely, clusters will neither merge nor split regardless of adding or deleting nodes and edges, under the condition of inter-cluster co-competition balance. Numerical simulations demonstrate the robustness of the model against the increase of the coupling strength and several topological variations.

  19. Robustness of cluster synchronous patterns in small-world networks with inter-cluster co-competition balance

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jianbao [School of Science, Hangzhou Dianzi University, Hangzhou 310018 (China); Ma, Zhongjun, E-mail: mzj1234402@163.com [School of Mathematics and Computing Science, Guilin University of Electronic Technology, Guilin 541004 (China); Chen, Guanrong [Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong (China)

    2014-06-15

    All edges in the classical Watts and Strogatz's small-world network model are unweighted and cooperative (positive). By introducing competitive (negative) inter-cluster edges and assigning edge weights to mimic more realistic networks, this paper develops a modified model which possesses co-competitive weighted couplings and cluster structures while maintaining the common small-world network properties of small average shortest path lengths and large clustering coefficients. Based on theoretical analysis, it is proved that the new model with inter-cluster co-competition balance has an important dynamical property of robust cluster synchronous pattern formation. More precisely, clusters will neither merge nor split regardless of adding or deleting nodes and edges, under the condition of inter-cluster co-competition balance. Numerical simulations demonstrate the robustness of the model against the increase of the coupling strength and several topological variations.

  20. Clustering promotes switching dynamics in networks of noisy neurons

    Science.gov (United States)

    Franović, Igor; Klinshov, Vladimir

    2018-02-01

    Macroscopic variability is an emergent property of neural networks, typically manifested in spontaneous switching between the episodes of elevated neuronal activity and the quiescent episodes. We investigate the conditions that facilitate switching dynamics, focusing on the interplay between the different sources of noise and heterogeneity of the network topology. We consider clustered networks of rate-based neurons subjected to external and intrinsic noise and derive an effective model where the network dynamics is described by a set of coupled second-order stochastic mean-field systems representing each of the clusters. The model provides an insight into the different contributions to effective macroscopic noise and qualitatively indicates the parameter domains where switching dynamics may occur. By analyzing the mean-field model in the thermodynamic limit, we demonstrate that clustering promotes multistability, which gives rise to switching dynamics in a considerably wider parameter region compared to the case of a non-clustered network with sparse random connection topology.

  1. Topology

    CERN Document Server

    Hocking, John G

    1988-01-01

    ""As textbook and reference work, this is a valuable addition to the topological literature."" - Mathematical ReviewsDesigned as a text for a one-year first course in topology, this authoritative volume offers an excellent general treatment of the main ideas of topology. It includes a large number and variety of topics from classical topology as well as newer areas of research activity.There are four set-theoretic chapters, followed by four primarily algebraic chapters. Chapter I covers the fundamentals of topological and metrical spaces, mappings, compactness, product spaces, the Tychonoff t

  2. Topology optimisation of natural convection problems

    DEFF Research Database (Denmark)

    Alexandersen, Joe; Aage, Niels; Andreasen, Casper Schousboe

    2014-01-01

    This paper demonstrates the application of the density-based topology optimisation approach for the design of heat sinks and micropumps based on natural convection effects. The problems are modelled under the assumptions of steady-state laminar flow using the incompressible Navier-Stokes equations...... coupled to the convection-diffusion equation through the Boussinesq approximation. In order to facilitate topology optimisation, the Brinkman approach is taken to penalise velocities inside the solid domain and the effective thermal conductivity is interpolated in order to accommodate differences...... in thermal conductivity of the solid and fluid phases. The governing equations are discretised using stabilised finite elements and topology optimisation is performed for two different problems using discrete adjoint sensitivity analysis. The study shows that topology optimisation is a viable approach...

  3. Six-qubit two-photon hyperentangled cluster states: Characterization and application to quantum computation

    International Nuclear Information System (INIS)

    Vallone, Giuseppe; Donati, Gaia; Ceccarelli, Raino; Mataloni, Paolo

    2010-01-01

    Six-qubit cluster states built on the simultaneous entanglement of two photons in three independent degrees of freedom, that is, polarization and a double longitudinal momentum, have been recently demonstrated. We present here the peculiar entanglement properties of the linear cluster state |L-tildeC 6 > related to the three degrees of freedom. This state has been adopted to realize various kinds of controlled not (cnot) gates, obtaining high values of the fidelity of the expected output states for all considered cases. Our results demonstrate that these states may represent a promising approach toward scalable quantum computation in a medium-term time scale. The future perspectives of a hybrid approach to one-way quantum computing based on multiple degrees of freedom and multiphoton cluster states are also discussed in the conclusion of this article.

  4. Deployment Strategies and Clustering Protocols Efficiency

    Directory of Open Access Journals (Sweden)

    Chérif Diallo

    2017-06-01

    Full Text Available Wireless sensor networks face significant design challenges due to limited computing and storage capacities and, most importantly, dependence on limited battery power. Energy is a critical resource and is often an important issue to the deployment of sensor applications that claim to be omnipresent in the world of future. Thus optimizing the deployment of sensors becomes a major constraint in the design and implementation of a WSN in order to ensure better network operations. In wireless networking, clustering techniques add scalability, reduce the computation complexity of routing protocols, allow data aggregation and then enhance the network performance. The well-known MaxMin clustering algorithm was previously generalized, corrected and validated. Then, in a previous work we have improved MaxMin by proposing a Single- node Cluster Reduction (SNCR mechanism which eliminates single-node clusters and then improve energy efficiency. In this paper, we show that MaxMin, because of its original pathological case, does not support the grid deployment topology, which is frequently used in WSN architectures. The unreliability feature of the wireless links could have negative impacts on Link Quality Indicator (LQI based clustering protocols. So, in the second part of this paper we show how our distributed Link Quality based d- Clustering Protocol (LQI-DCP has good performance in both stable and high unreliable link environments. Finally, performance evaluation results also show that LQI-DCP fully supports the grid deployment topology and is more energy efficient than MaxMin.

  5. Experimental verification of acoustic pseudospin multipoles in a symmetry-broken snowflakelike topological insulator

    Science.gov (United States)

    Zhang, Zhiwang; Tian, Ye; Cheng, Ying; Liu, Xiaojun; Christensen, Johan

    2017-12-01

    Topologically protected wave engineering in artificially structured media resides at the frontier of ongoing metamaterials research, which is inspired by quantum mechanics. Acoustic analogs of electronic topological insulators have recently led to a wealth of new opportunities in manipulating sound propagation by means of robust edge mode excitations through analogies drawn to exotic quantum states. A variety of artificial acoustic systems hosting topological edge states have been proposed analogous to the quantum Hall effect, topological insulators, and Floquet topological insulators in electronic systems. However, those systems were characterized by a fixed geometry and a very narrow frequency response, which severely hinders the exploration and design of useful applications. Here we establish acoustic multipolar pseudospin states as an engineering degree of freedom in time-reversal invariant flow-free phononic crystals and develop reconfigurable topological insulators through rotation of their meta-atoms and reshaping of the metamolecules. Specifically, we show how rotation forms man-made snowflakelike molecules, whose topological phase mimics pseudospin-down (pseudospin-up) dipolar and quadrupolar states, which are responsible for a plethora of robust edge confined properties and topological controlled refraction disobeying Snell's law.

  6. Topological Sound and Flocking on Curved Surfaces

    Science.gov (United States)

    Shankar, Suraj; Bowick, Mark J.; Marchetti, M. Cristina

    2017-07-01

    Active systems on curved geometries are ubiquitous in the living world. In the presence of curvature, orientationally ordered polar flocks are forced to be inhomogeneous, often requiring the presence of topological defects even in the steady state because of the constraints imposed by the topology of the underlying surface. In the presence of spontaneous flow, the system additionally supports long-wavelength propagating sound modes that get gapped by the curvature of the underlying substrate. We analytically compute the steady-state profile of an active polar flock on a two-sphere and a catenoid, and show that curvature and active flow together result in symmetry-protected topological modes that get localized to special geodesics on the surface (the equator or the neck, respectively). These modes are the analogue of edge states in electronic quantum Hall systems and provide unidirectional channels for information transport in the flock, robust against disorder and backscattering.

  7. Association between resting-state brain network topological organization and creative ability: Evidence from a multiple linear regression model.

    Science.gov (United States)

    Jiao, Bingqing; Zhang, Delong; Liang, Aiying; Liang, Bishan; Wang, Zengjian; Li, Junchao; Cai, Yuxuan; Gao, Mengxia; Gao, Zhenni; Chang, Song; Huang, Ruiwang; Liu, Ming

    2017-10-01

    Previous studies have indicated a tight linkage between resting-state functional connectivity of the human brain and creative ability. This study aimed to further investigate the association between the topological organization of resting-state brain networks and creativity. Therefore, we acquired resting-state fMRI data from 22 high-creativity participants and 22 low-creativity participants (as determined by their Torrance Tests of Creative Thinking scores). We then constructed functional brain networks for each participant and assessed group differences in network topological properties before exploring the relationships between respective network topological properties and creative ability. We identified an optimized organization of intrinsic brain networks in both groups. However, compared with low-creativity participants, high-creativity participants exhibited increased global efficiency and substantially decreased path length, suggesting increased efficiency of information transmission across brain networks in creative individuals. Using a multiple linear regression model, we further demonstrated that regional functional integration properties (i.e., the betweenness centrality and global efficiency) of brain networks, particularly the default mode network (DMN) and sensorimotor network (SMN), significantly predicted the individual differences in creative ability. Furthermore, the associations between network regional properties and creative performance were creativity-level dependent, where the difference in the resource control component may be important in explaining individual difference in creative performance. These findings provide novel insights into the neural substrate of creativity and may facilitate objective identification of creative ability. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Optimization-based topology identification of complex networks

    International Nuclear Information System (INIS)

    Tang Sheng-Xue; Chen Li; He Yi-Gang

    2011-01-01

    In many cases, the topological structures of a complex network are unknown or uncertain, and it is of significance to identify the exact topological structure. An optimization-based method of identifying the topological structure of a complex network is proposed in this paper. Identification of the exact network topological structure is converted into a minimal optimization problem by using the estimated network. Then, an improved quantum-behaved particle swarm optimization algorithm is used to solve the optimization problem. Compared with the previous adaptive synchronization-based method, the proposed method is simple and effective and is particularly valid to identify the topological structure of synchronization complex networks. In some cases where the states of a complex network are only partially observable, the exact topological structure of a network can also be identified by using the proposed method. Finally, numerical simulations are provided to show the effectiveness of the proposed method. (general)

  9. Molecular detection using Rydberg, autoionizing, and cluster states. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Wessel, J.

    1989-08-17

    Continuing investigations of multiphoton ionization processes in naphthalene have established the geometry and spectroscopy of trimer and tetramer cluster states. A new, highly efficient ionization mechanism has been identified in the trimer. It is closely related to autoionization of 2-electron atoms by resonant 2-photon excitation and to exciton fusion in larger clusters.

  10. Fidelity approach in topological superconductors with disorders

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Wen-Chuan; Huang, Guang-Yao; Wang, Zhi, E-mail: physicswangzhi@gmail.com; Yao, Dao-Xin, E-mail: yaodaox@mail.sysu.edu.cn

    2015-03-20

    We apply the fidelity approach to study the topological superconductivity in spin–orbit coupling nanowire system. The wire is modeled as a one layer lattice chain with Zeeman energy and spin–orbit coupling, which is in proximity to a multi-layer superconductor. In particular, we study the effects of disorders and find that the fidelity susceptibility has multiple peaks. It is revealed that one peak indicates the topological quantum phase transition, while other peaks are signaling the pinning of the Majorana bound states by disorders. - Highlights: • We introduce fidelity approach to study the topological superconducting nanowire with disorders. • We study the quantum phase transition in the wire. • We investigate the disorder pinning of the Majorana bound states in the wire.

  11. Fidelity approach in topological superconductors with disorders

    International Nuclear Information System (INIS)

    Tian, Wen-Chuan; Huang, Guang-Yao; Wang, Zhi; Yao, Dao-Xin

    2015-01-01

    We apply the fidelity approach to study the topological superconductivity in spin–orbit coupling nanowire system. The wire is modeled as a one layer lattice chain with Zeeman energy and spin–orbit coupling, which is in proximity to a multi-layer superconductor. In particular, we study the effects of disorders and find that the fidelity susceptibility has multiple peaks. It is revealed that one peak indicates the topological quantum phase transition, while other peaks are signaling the pinning of the Majorana bound states by disorders. - Highlights: • We introduce fidelity approach to study the topological superconducting nanowire with disorders. • We study the quantum phase transition in the wire. • We investigate the disorder pinning of the Majorana bound states in the wire

  12. On the topology of flux transfer events

    Science.gov (United States)

    Hesse, Michael; Birn, Joachim; Schindler, Karl

    1990-01-01

    A topological analysis is made of a simple model magnetic field of a perturbation at the magnetopause that shares magnetic properties with flux transfer events. The aim is to clarify a number of topological aspects that arise in the case of fully three-dimensional magnetic fields. It is shown that a localized perturbation at the magnetopause can in principle open a closed magnetosphere by establishing magnetic connections across the magnetopause by the formation of a ropelike magnetic field structure. For this purpose a global topological model of a closed magnetosphere is considered as the unperturbed state. The topological substructure of the model flux rope is discussed in detail.

  13. Identifying Two-Dimensional Z 2 Antiferromagnetic Topological Insulators

    Science.gov (United States)

    Bègue, F.; Pujol, P.; Ramazashvili, R.

    2018-01-01

    We revisit the question of whether a two-dimensional topological insulator may arise in a commensurate Néel antiferromagnet, where staggered magnetization breaks the symmetry with respect to both elementary translation and time reversal, but retains their product as a symmetry. In contrast to the so-called Z 2 topological insulators, an exhaustive characterization of antiferromagnetic topological phases with the help of topological invariants has been missing. We analyze a simple model of an antiferromagnetic topological insulator and chart its phase diagram, using a recently proposed criterion for centrosymmetric systems [13]. We then adapt two methods, originally designed for paramagnetic systems, and make antiferromagnetic topological phases manifest. The proposed methods apply far beyond the particular examples treated in this work, and admit straightforward generalization. We illustrate this by two examples of non-centrosymmetric systems, where no simple criteria have been known to identify topological phases. We also present, for some cases, an explicit construction of edge states in an antiferromagnetic topological insulator.

  14. Revealing topological organization of human brain functional networks with resting-state functional near infrared spectroscopy.

    Science.gov (United States)

    Niu, Haijing; Wang, Jinhui; Zhao, Tengda; Shu, Ni; He, Yong

    2012-01-01

    The human brain is a highly complex system that can be represented as a structurally interconnected and functionally synchronized network, which assures both the segregation and integration of information processing. Recent studies have demonstrated that a variety of neuroimaging and neurophysiological techniques such as functional magnetic resonance imaging (MRI), diffusion MRI and electroencephalography/magnetoencephalography can be employed to explore the topological organization of human brain networks. However, little is known about whether functional near infrared spectroscopy (fNIRS), a relatively new optical imaging technology, can be used to map functional connectome of the human brain and reveal meaningful and reproducible topological characteristics. We utilized resting-state fNIRS (R-fNIRS) to investigate the topological organization of human brain functional networks in 15 healthy adults. Brain networks were constructed by thresholding the temporal correlation matrices of 46 channels and analyzed using graph-theory approaches. We found that the functional brain network derived from R-fNIRS data had efficient small-world properties, significant hierarchical modular structure and highly connected hubs. These results were highly reproducible both across participants and over time and were consistent with previous findings based on other functional imaging techniques. Our results confirmed the feasibility and validity of using graph-theory approaches in conjunction with optical imaging techniques to explore the topological organization of human brain networks. These results may expand a methodological framework for utilizing fNIRS to study functional network changes that occur in association with development, aging and neurological and psychiatric disorders.

  15. [Time for cluster C personality disorders: state of the art].

    Science.gov (United States)

    Hutsebaut, J; Willemsen, E M C; Van, H L

    Compared to cluster B personality disorders, the assessment and treatment of people with obsessive-compulsive, dependent, and avoidant personality disorders (cluster C) is given little attention in the field of research and clinical practice. Presenting the current state of affairs in regard to cluster C personality disorders. A systematic literature search was conducted using the main data bases. Cluster C personality disorders are present in approximately 3-9% of the general population. In about half of the cases of mood, anxiety, and eating disorders, there is co-morbid cluster C pathology. This has a major influence on the progression of symptoms, treatment effectiveness and potential relapse. There are barely any well conducted randomized studies on the treatment of cluster-C in existence. Open cohort studies, however, show strong, lasting treatment effects. Given the frequent occurrence of cluster C personality disorders, the burden of disease, associated societal costs and the prognostic implications in case of a co-morbid cluster C personality disorder, early detection and treatment of these disorders is warranted.

  16. Topology in SU(2) lattice gauge theory and parallelization of functional magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Solbrig, Stefan

    2008-07-01

    In this thesis, I discuss topological properties of quenched SU(2) lattice gauge fields. In particular, clusters of topological charge density exhibit a power-law. The exponent of that power-law can be used to validate models for lattice gauge fields. Instead of working with fixed cutoffs of the topological charge density, using the notion of a ''watermark'' is more convenient. Furthermore, I discuss how a parallel computer, originally designed for lattice gauge field simulations, can be used for functional magnetic resonance imaging. Multi parameter fits can be parallelized to achieve almost real-time evaluation of fMRI data. (orig.)

  17. Topology in SU(2) lattice gauge theory and parallelization of functional magnetic resonance imaging

    International Nuclear Information System (INIS)

    Solbrig, Stefan

    2008-01-01

    In this thesis, I discuss topological properties of quenched SU(2) lattice gauge fields. In particular, clusters of topological charge density exhibit a power-law. The exponent of that power-law can be used to validate models for lattice gauge fields. Instead of working with fixed cutoffs of the topological charge density, using the notion of a ''watermark'' is more convenient. Furthermore, I discuss how a parallel computer, originally designed for lattice gauge field simulations, can be used for functional magnetic resonance imaging. Multi parameter fits can be parallelized to achieve almost real-time evaluation of fMRI data. (orig.)

  18. Topological valley-chiral edge states of Lamb waves in elastic thin plates

    Science.gov (United States)

    Wang, Jian; Mei, Jun

    2018-05-01

    We investigate the nontrivial topology of the band structure of Lamb waves in a thin phononic crystal plate. When inversion symmetry is broken, a valley pseudospin degree of freedom is formed around K and K‧ valleys for the A0 Lamb mode, which is decoupled from the S0 and SH0 modes in the low-frequency regime. Chiral edge states are explicitly demonstrated, which are immune to defects and exhibit unidirectional transport behaviors when intervalley scattering is weak. The quantum valley Hall effect is thus simulated in a simple way in the context of Lamb waves.

  19. Effect of strong disorder on three-dimensional chiral topological insulators: Phase diagrams, maps of the bulk invariant, and existence of topological extended bulk states

    Science.gov (United States)

    Song, Juntao; Fine, Carolyn; Prodan, Emil

    2014-11-01

    The effect of strong disorder on chiral-symmetric three-dimensional lattice models is investigated via analytical and numerical methods. The phase diagrams of the models are computed using the noncommutative winding number, as functions of disorder strength and model's parameters. The localized/delocalized characteristic of the quantum states is probed with level statistics analysis. Our study reconfirms the accurate quantization of the noncommutative winding number in the presence of strong disorder, and its effectiveness as a numerical tool. Extended bulk states are detected above and below the Fermi level, which are observed to undergo the so-called "levitation and pair annihilation" process when the system is driven through a topological transition. This suggests that the bulk invariant is carried by these extended states, in stark contrast with the one-dimensional case where the extended states are completely absent and the bulk invariant is carried by the localized states.

  20. Anomalous Z2 antiferromagnetic topological phase in pressurized SmB6

    Science.gov (United States)

    Chang, Kai-Wei; Chen, Peng-Jen

    2018-05-01

    Antiferromagnetic materials, whose time-reversal symmetry is broken, can be classified into the Z2 topology if they respect some specific symmetry. Since the theoretical proposal, however, no materials have been found to host such Z2 antiferromagnetic topological (Z2-AFT ) phase to date. Here we demonstrate that the topological Kondo insulator SmB6 can be a Z2-AFT system when pressurized to undergo an antiferromagnetic phase transition. In addition to proposing the possible candidate for a Z2-AFT material, in this work we also illustrate the anomalous topological surface states of the Z2-AFT phase which have not been discussed before. Originating from the interplay between the topological properties and the antiferromagnetic surface magnetization, the topological surface states of the Z2-AFT phase behave differently as compared with those of a topological insulator. Besides, the Z2-AFT insulators are also found promising in the generation of tunable spin currents, which is an important application in spintronics.

  1. Topological Sound and Flocking on Curved Surfaces

    Directory of Open Access Journals (Sweden)

    Suraj Shankar

    2017-09-01

    Full Text Available Active systems on curved geometries are ubiquitous in the living world. In the presence of curvature, orientationally ordered polar flocks are forced to be inhomogeneous, often requiring the presence of topological defects even in the steady state because of the constraints imposed by the topology of the underlying surface. In the presence of spontaneous flow, the system additionally supports long-wavelength propagating sound modes that get gapped by the curvature of the underlying substrate. We analytically compute the steady-state profile of an active polar flock on a two-sphere and a catenoid, and show that curvature and active flow together result in symmetry-protected topological modes that get localized to special geodesics on the surface (the equator or the neck, respectively. These modes are the analogue of edge states in electronic quantum Hall systems and provide unidirectional channels for information transport in the flock, robust against disorder and backscattering.

  2. Measurement of the quantum capacitance from two-dimensional surface state of a topological insulator at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hyunwoo, E-mail: chw0089@gmail.com [Department of Electrical and Computer Engineering, University of Seoul, Seoul 02504 (Korea, Republic of); Kim, Tae Geun, E-mail: tgkim1@korea.ac.kr [School of Electrical Engineering, Korea University, Seoul 02841 (Korea, Republic of); Shin, Changhwan, E-mail: cshin@uos.ac.kr [Department of Electrical and Computer Engineering, University of Seoul, Seoul 02504 (Korea, Republic of)

    2017-06-15

    Highlights: • The quantum capacitance in topological insulator (TI) at room temperature is directly revealed. • The physical origin of quantum capacitance, the two dimensional surface state of TI, is experimentally validated. • Theoretically calculated results of ideal quantum capacitance can well predict the experimental data. - Abstract: A topological insulator (TI) is a new kind of material that exhibits unique electronic properties owing to its topological surface state (TSS). Previous studies focused on the transport properties of the TSS, since it can be used as the active channel layer in metal-oxide-semiconductor field-effect transistors (MOSFETs). However, a TI with a negative quantum capacitance (QC) effect can be used in the gate stack of MOSFETs, thereby facilitating the creation of ultra-low power electronics. Therefore, it is important to study the physics behind the QC in TIs in the absence of any external magnetic field, at room temperature. We fabricated a simple capacitor structure using a TI (TI-capacitor: Au-TI-SiO{sub 2}-Si), which shows clear evidence of QC at room temperature. In the capacitance-voltage (C-V) measurement, the total capacitance of the TI-capacitor increases in the accumulation regime, since QC is the dominant capacitive component in the series capacitor model (i.e., C{sub T}{sup −1} = C{sub Q}{sup −1} + C{sub SiO2}{sup −1}). Based on the QC model of the two-dimensional electron systems, we quantitatively calculated the QC, and observed that the simulated C-V curve theoretically supports the conclusion that the QC of the TI-capacitor is originated from electron–electron interaction in the two-dimensional surface state of the TI.

  3. Teleportation-based Toffoli gate on cluster states via the Bell state analysis

    International Nuclear Information System (INIS)

    Guo Ying; Huang Dazu; Lee, Moon Ho

    2013-01-01

    An optical Toffoli gate is demonstrated via teleportations on the six-qubit entangling cluster state generated from single-qubit photons. It is implemented on the basis of entanglement swapping of the combined quantum system with three independent Bell state measurements. The output of this gate is then restored by suitable local operations and classical communications. We evaluate the implementing performance of the Toffoli gate fidelity for the operation process in different computational bases. (paper)

  4. Commissioning and Validation of the ATLAS Level-1 Topological Trigger in Run 2

    CERN Document Server

    Zheng, Daniel; The ATLAS collaboration

    2017-01-01

    The ATLAS experiment has introduced and recently commissioned a completely new hardware sub-system of its first-level trigger: the topological processor (L1Topo). L1Topo consist of two AdvancedTCA blades mounting state-of-the-art FPGA processors, providing high input bandwidth (up to 4 Gb/s) and low latency data processing (200 ns). L1Topo is able to select collision events by applying kinematic and topological requirements on candidate objects (energy clusters, jets, and muons) measured by calorimeters and muon sub-detectors. Results from data recorded using the L1Topo trigger will be presented. These results demonstrate a significantly improved background event rejection, thus allowing for rate reduction with minimal efficiency loss. This improvement has been shown for several physics processes leading to low-$p_T$ leptons, including $H\\rightarrow\\tau \\tau$ and $J/\\psi \\rightarrow \\mu \\mu$. In addition to describing the L1Topo trigger system, we will discuss the use of an accurate L1Topo simulation as a pow...

  5. Topological higher gauge theory: From BF to BFCG theory

    International Nuclear Information System (INIS)

    Girelli, F.; Pfeiffer, H.; Popescu, E. M.

    2008-01-01

    We study generalizations of three- and four-dimensional BF theories in the context of higher gauge theory. First, we construct topological higher gauge theories as discrete state sum models and explain how they are related to the state sums of Yetter, Mackaay, and Porter. Under certain conditions, we can present their corresponding continuum counterparts in terms of classical Lagrangians. We then explain that two of these models are already familiar from the literature: the ΣΦEA model of three-dimensional gravity coupled to topological matter and also a four-dimensional model of BF theory coupled to topological matter

  6. Topology control algorithm for wireless sensor networks based on Link forwarding

    Science.gov (United States)

    Pucuo, Cairen; Qi, Ai-qin

    2018-03-01

    The research of topology control could effectively save energy and increase the service life of network based on wireless sensor. In this paper, a arithmetic called LTHC (link transmit hybrid clustering) based on link transmit is proposed. It decreases expenditure of energy by changing the way of cluster-node’s communication. The idea is to establish a link between cluster and SINK node when the cluster is formed, and link-node must be non-cluster. Through the link, cluster sends information to SINK nodes. For the sake of achieving the uniform distribution of energy on the network, prolongate the network survival time, and improve the purpose of communication, the communication will cut down much more expenditure of energy for cluster which away from SINK node. In the two aspects of improving the traffic and network survival time, we find that the LTCH is far superior to the traditional LEACH by experiments.

  7. Nonequilibrium Floquet States in Topological Kondo Insulators

    Science.gov (United States)

    2016-02-04

    approximately 200 mW of power (given ~5 ohm sample Figure 2: Longitudinal resistance measured in SmB6 crystal with simultaneous ultrasound ...Research Triangle Park, NC 27709-2211 floquet Kondo topological ultrasound REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10...observation of a positive effect. Further work is required to understand the origin of the anomalous effect of ultrasound propagation on electrical

  8. Quantum teleportation and information splitting via four-qubit cluster state and a Bell state

    Science.gov (United States)

    Ramírez, Marlon David González; Falaye, Babatunde James; Sun, Guo-Hua; Cruz-Irisson, M.; Dong, Shi-Hai

    2017-10-01

    Quantum teleportation provides a "bodiless" way of transmitting the quantum state from one object to another, at a distant location, using a classical communication channel and a previously shared entangled state. In this paper, we present a tripartite scheme for probabilistic teleportation of an arbitrary single qubit state, without losing the information of the state being teleported, via a fourqubit cluster state of the form | ϕ>1234 = α|0000>+ β|1010>+ γ|0101>- η|1111>, as the quantum channel, where the nonzero real numbers α, β, γ, and η satisfy the relation j αj2 + | β|2 + | γ|2 + | η|2 = 1. With the introduction of an auxiliary qubit with state |0>, using a suitable unitary transformation and a positive-operator valued measure (POVM), the receiver can recreate the state of the original qubit. An important advantage of the teleportation scheme demonstrated here is that, if the teleportation fails, it can be repeated without teleporting copies of the unknown quantum state, if the concerned parties share another pair of entangled qubit. We also present a protocol for quantum information splitting of an arbitrary two-particle system via the aforementioned cluster state and a Bell-state as the quantum channel. Problems related to security attacks were examined for both the cases and it was found that this protocol is secure. This protocol is highly efficient and easy to implement.

  9. Long-lived charge-separated states in ligand-stabilized silver clusters

    KAUST Repository

    Pelton, Matthew; Tang, Yun; Bakr, Osman; Stellacci, Francesco

    2012-01-01

    Recently developed synthesis methods allow for the production of atomically monodisperse clusters of silver atoms stabilized in solution by aromatic thiol ligands, which exhibit intense absorption peaks throughout the visible and near-IR spectral regions. Here we investigated the time-dependent optical properties of these clusters. We observed two kinetic processes following ultrafast laser excitation of any of the absorption peaks: a rapid decay, with a time constant of 1 ps or less, and a slow decay, with a time constant that can be longer than 300 ns. Both time constants decrease as the polarity of the solvent increases, indicating that the two processes correspond to the formation and recombination, respectively, of a charge-separated state. The long lifetime of this state and the broad optical absorption spectrum mean that the ligand-stabilized silver clusters are promising materials for solar energy harvesting. © 2012 American Chemical Society.

  10. Long-lived charge-separated states in ligand-stabilized silver clusters

    KAUST Repository

    Pelton, Matthew

    2012-07-25

    Recently developed synthesis methods allow for the production of atomically monodisperse clusters of silver atoms stabilized in solution by aromatic thiol ligands, which exhibit intense absorption peaks throughout the visible and near-IR spectral regions. Here we investigated the time-dependent optical properties of these clusters. We observed two kinetic processes following ultrafast laser excitation of any of the absorption peaks: a rapid decay, with a time constant of 1 ps or less, and a slow decay, with a time constant that can be longer than 300 ns. Both time constants decrease as the polarity of the solvent increases, indicating that the two processes correspond to the formation and recombination, respectively, of a charge-separated state. The long lifetime of this state and the broad optical absorption spectrum mean that the ligand-stabilized silver clusters are promising materials for solar energy harvesting. © 2012 American Chemical Society.

  11. Quantum and Classical Approaches in Graphene and Topological Insulators

    DEFF Research Database (Denmark)

    Posvyanskiy, Vladimir

    mechanical study, this approach can give simple and pictorial explanation of the topological edge states. In our work we find the semiclassical orbits for the samples of different geometries and also discuss the influence of the quantum effects, the Berry phase, on the semiclassical electron dynamics....... Finally, we try to find the semiclassical mechanism responsible for topological protection of the edge states....

  12. Investigating the Cosmic Web with Topological Data Analysis

    Science.gov (United States)

    Cisewski-Kehe, Jessi; Wu, Mike; Fasy, Brittany; Hellwing, Wojciech; Lovell, Mark; Rinaldo, Alessandro; Wasserman, Larry

    2018-01-01

    Data exhibiting complicated spatial structures are common in many areas of science (e.g. cosmology, biology), but can be difficult to analyze. Persistent homology is a popular approach within the area of Topological Data Analysis that offers a new way to represent, visualize, and interpret complex data by extracting topological features, which can be used to infer properties of the underlying structures. In particular, TDA may be useful for analyzing the large-scale structure (LSS) of the Universe, which is an intricate and spatially complex web of matter. In order to understand the physics of the Universe, theoretical and computational cosmologists develop large-scale simulations that allow for visualizing and analyzing the LSS under varying physical assumptions. Each point in the 3D data set represents a galaxy or a cluster of galaxies, and topological summaries ("persistent diagrams") can be obtained summarizing the different ordered holes in the data (e.g. connected components, loops, voids).The topological summaries are interesting and informative descriptors of the Universe on their own, but hypothesis tests using the topological summaries would provide a way to make more rigorous comparisons of LSS under different theoretical models. For example, the received cosmological model has cold dark matter (CDM); however, while the case is strong for CDM, there are some observational inconsistencies with this theory. Another possibility is warm dark matter (WDM). It is of interest to see if a CDM Universe and WDM Universe produce LSS that is topologically distinct.We present several possible test statistics for two-sample hypothesis tests using the topological summaries, carryout a simulation study to investigate the suitableness of the proposed test statistics using simulated data from a variation of the Voronoi foam model, and finally we apply the proposed inference framework to WDM vs. CDM cosmological simulation data.

  13. Experimental observation of chimera and cluster states in a minimal globally coupled network

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Joseph D. [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742 (United States); Department of Physics, University of Maryland, College Park, Maryland 20742 (United States); Bansal, Kanika [Department of Mathematics, University at Buffalo, SUNY Buffalo, New York 14260 (United States); US Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005 (United States); Murphy, Thomas E. [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742 (United States); Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland 20742 (United States); Roy, Rajarshi [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742 (United States); Department of Physics, University of Maryland, College Park, Maryland 20742 (United States); Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742 (United States)

    2016-09-15

    A “chimera state” is a dynamical pattern that occurs in a network of coupled identical oscillators when the symmetry of the oscillator population is broken into synchronous and asynchronous parts. We report the experimental observation of chimera and cluster states in a network of four globally coupled chaotic opto-electronic oscillators. This is the minimal network that can support chimera states, and our study provides new insight into the fundamental mechanisms underlying their formation. We use a unified approach to determine the stability of all the observed partially synchronous patterns, highlighting the close relationship between chimera and cluster states as belonging to the broader phenomenon of partial synchronization. Our approach is general in terms of network size and connectivity. We also find that chimera states often appear in regions of multistability between global, cluster, and desynchronized states.

  14. Induced topological pressure for topological dynamical systems

    International Nuclear Information System (INIS)

    Xing, Zhitao; Chen, Ercai

    2015-01-01

    In this paper, inspired by the article [J. Jaerisch et al., Stochastics Dyn. 14, 1350016, pp. 1-30 (2014)], we introduce the induced topological pressure for a topological dynamical system. In particular, we prove a variational principle for the induced topological pressure

  15. The topology of large-scale structure. III - Analysis of observations. [in universe

    Science.gov (United States)

    Gott, J. Richard, III; Weinberg, David H.; Miller, John; Thuan, Trinh X.; Schneider, Stephen E.

    1989-01-01

    A recently developed algorithm for quantitatively measuring the topology of large-scale structures in the universe was applied to a number of important observational data sets. The data sets included an Abell (1958) cluster sample out to Vmax = 22,600 km/sec, the Giovanelli and Haynes (1985) sample out to Vmax = 11,800 km/sec, the CfA sample out to Vmax = 5000 km/sec, the Thuan and Schneider (1988) dwarf sample out to Vmax = 3000 km/sec, and the Tully (1987) sample out to Vmax = 3000 km/sec. It was found that, when the topology is studied on smoothing scales significantly larger than the correlation length (i.e., smoothing length, lambda, not below 1200 km/sec), the topology is spongelike and is consistent with the standard model in which the structure seen today has grown from small fluctuations caused by random noise in the early universe. When the topology is studied on the scale of lambda of about 600 km/sec, a small shift is observed in the genus curve in the direction of a 'meatball' topology.

  16. Topological Rényi entropy after a quantum quench.

    Science.gov (United States)

    Halász, Gábor B; Hamma, Alioscia

    2013-04-26

    We present an analytical study on the resilience of topological order after a quantum quench. The system is initially prepared in the ground state of the toric-code model, and then quenched by switching on an external magnetic field. During the subsequent time evolution, the variation in topological order is detected via the topological Rényi entropy of order 2. We consider two different quenches: the first one has an exact solution, while the second one requires perturbation theory. In both cases, we find that the long-term time average of the topological Rényi entropy in the thermodynamic limit is the same as its initial value. Based on our results, we argue that topological order is resilient against a wide range of quenches.

  17. Geometric effects on surface states in topological insulator Bi2Te3 nanowire

    Science.gov (United States)

    Sengupta, Parijat; Kubis, Tillman; Povolotskyi, Michael; Klimeck, Gerhard

    2012-02-01

    Bismuth Telluride (BT) is a 3D topological insulator (TI) with surface states that have energy dispersion linear in momentum and forms a Dirac cone at low energy. In this work we investigate the surface properties of a BT nanowire and demonstrate the existence of TI states. We also show how such states vanish under certain geometric conditions. An atomistic model (sp3d5s* TB) is used to compute the energy dispersion in a BT nanowire. Penetration depth of the surface states is estimated by ratio of Fermi velocity and band-gap. BT possesses a tiny band-gap, which creates small localization of surface states and greater penetration in to the bulk. To offset this large spatial penetration, which is undesirable to avoid a direct coupling between surfaces, we expect that bigger cross-sections of BT nanowires would be needed to obtain stable TI states. Our numerical work validates this prediction. Furthermore, geometry of the nanowire is shown to influence the TI states. Using a combined analytical and numerical approach our results reveal that surface roughness impact electronic structure leading to Rashba type splits along z-direction. Cylindrical and square cross-sections are given as illustrative examples.

  18. Secure Adaptive Topology Control for Wireless Ad-Hoc Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yen-Chieh Ouyang

    2010-02-01

    Full Text Available This paper presents a secure decentralized clustering algorithm for wireless ad-hoc sensor networks. The algorithm operates without a centralized controller, operates asynchronously, and does not require that the location of the sensors be known a priori. Based on the cluster-based topology, secure hierarchical communication protocols and dynamic quarantine strategies are introduced to defend against spam attacks, since this type of attacks can exhaust the energy of sensor nodes and will shorten the lifetime of a sensor network drastically. By adjusting the threshold of infected percentage of the cluster coverage, our scheme can dynamically coordinate the proportion of the quarantine region and adaptively achieve the cluster control and the neighborhood control of attacks. Simulation results show that the proposed approach is feasible and cost effective for wireless sensor networks.

  19. Topologically protected one-way edge mode in networks of acoustic resonators with circulating air flow

    International Nuclear Information System (INIS)

    Ni, Xu; He, Cheng; Sun, Xiao-Chen; Liu, Xiao-ping; Lu, Ming-Hui; Chen, Yan-Feng; Feng, Liang

    2015-01-01

    Recent explorations of topology in physical systems have led to a new paradigm of condensed matters characterized by topologically protected states and phase transition, for example, topologically protected photonic crystals enabled by magneto-optical effects. However, in other wave systems such as acoustics, topological states cannot be simply reproduced due to the absence of similar magnetics-related sound–matter interactions in naturally available materials. Here, we propose an acoustic topological structure by creating an effective gauge magnetic field for sound using circularly flowing air in the designed acoustic ring resonators. The created gauge magnetic field breaks the time-reversal symmetry, and therefore topological properties can be designed to be nontrivial with non-zero Chern numbers and thus to enable a topological sonic crystal, in which the topologically protected acoustic edge-state transport is observed, featuring robust one-way propagation characteristics against a variety of topological defects and impurities. Our results open a new venue to non-magnetic topological structures and promise a unique approach to effective manipulation of acoustic interfacial transport at will. (paper)

  20. Interrogating the topological robustness of gene regulatory circuits by randomization.

    Directory of Open Access Journals (Sweden)

    Bin Huang

    2017-03-01

    Full Text Available One of the most important roles of cells is performing their cellular tasks properly for survival. Cells usually achieve robust functionality, for example, cell-fate decision-making and signal transduction, through multiple layers of regulation involving many genes. Despite the combinatorial complexity of gene regulation, its quantitative behavior has been typically studied on the basis of experimentally verified core gene regulatory circuitry, composed of a small set of important elements. It is still unclear how such a core circuit operates in the presence of many other regulatory molecules and in a crowded and noisy cellular environment. Here we report a new computational method, named random circuit perturbation (RACIPE, for interrogating the robust dynamical behavior of a gene regulatory circuit even without accurate measurements of circuit kinetic parameters. RACIPE generates an ensemble of random kinetic models corresponding to a fixed circuit topology, and utilizes statistical tools to identify generic properties of the circuit. By applying RACIPE to simple toggle-switch-like motifs, we observed that the stable states of all models converge to experimentally observed gene state clusters even when the parameters are strongly perturbed. RACIPE was further applied to a proposed 22-gene network of the Epithelial-to-Mesenchymal Transition (EMT, from which we identified four experimentally observed gene states, including the states that are associated with two different types of hybrid Epithelial/Mesenchymal phenotypes. Our results suggest that dynamics of a gene circuit is mainly determined by its topology, not by detailed circuit parameters. Our work provides a theoretical foundation for circuit-based systems biology modeling. We anticipate RACIPE to be a powerful tool to predict and decode circuit design principles in an unbiased manner, and to quantitatively evaluate the robustness and heterogeneity of gene expression.

  1. Topology in SU(2) lattice gauge theory and parallelization of functional magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Solbrig, Stefan

    2008-07-01

    In this thesis, I discuss topological properties of quenched SU(2) lattice gauge fields. In particular, clusters of topological charge density exhibit a power-law. The exponent of that power-law can be used to validate models for lattice gauge fields. Instead of working with fixed cutoffs of the topological charge density, using the notion of a ''watermark'' is more convenient. Furthermore, I discuss how a parallel computer, originally designed for lattice gauge field simulations, can be used for functional magnetic resonance imaging. Multi parameter fits can be parallelized to achieve almost real-time evaluation of fMRI data. (orig.)

  2. Dipole cluster states in light, medium heavy and heavy nuclei

    International Nuclear Information System (INIS)

    Gai, Moshe

    1984-01-01

    Tests of the Vibron cluster model in sup(18)O, sup(218)Ra and sup(156)Yb are reported, as well as a test in progress in sup(52)Ti. Low lying negative parity states which appear to be members of rotational bands of alternating parity states with enhanced B(E1) intraband deexcitation rates are found. The cluster band, within the model framework, is also characterized by large alpha decay widths and enhanced radiative deexcitation widths of several multipolarities B(E1), B(E2), B(E3). A discussion of the model and the underlying, newly suggested dipole degree of freedom is presented. (author)

  3. Electrically controlled band gap and topological phase transition in two-dimensional multilayer germanane

    International Nuclear Information System (INIS)

    Qi, Jingshan; Li, Xiao; Qian, Xiaofeng

    2016-01-01

    Electrically controlled band gap and topological electronic states are important for the next-generation topological quantum devices. In this letter, we study the electric field control of band gap and topological phase transitions in multilayer germanane. We find that although the monolayer and multilayer germananes are normal insulators, a vertical electric field can significantly reduce the band gap of multilayer germananes owing to the giant Stark effect. The decrease of band gap eventually leads to band inversion, transforming them into topological insulators with nontrivial Z_2 invariant. The electrically controlled topological phase transition in multilayer germananes provides a potential route to manipulate topologically protected edge states and design topological quantum devices. This strategy should be generally applicable to a broad range of materials, including other two-dimensional materials and ultrathin films with controlled growth.

  4. GraphCrunch 2: Software tool for network modeling, alignment and clustering.

    Science.gov (United States)

    Kuchaiev, Oleksii; Stevanović, Aleksandar; Hayes, Wayne; Pržulj, Nataša

    2011-01-19

    Recent advancements in experimental biotechnology have produced large amounts of protein-protein interaction (PPI) data. The topology of PPI networks is believed to have a strong link to their function. Hence, the abundance of PPI data for many organisms stimulates the development of computational techniques for the modeling, comparison, alignment, and clustering of networks. In addition, finding representative models for PPI networks will improve our understanding of the cell just as a model of gravity has helped us understand planetary motion. To decide if a model is representative, we need quantitative comparisons of model networks to real ones. However, exact network comparison is computationally intractable and therefore several heuristics have been used instead. Some of these heuristics are easily computable "network properties," such as the degree distribution, or the clustering coefficient. An important special case of network comparison is the network alignment problem. Analogous to sequence alignment, this problem asks to find the "best" mapping between regions in two networks. It is expected that network alignment might have as strong an impact on our understanding of biology as sequence alignment has had. Topology-based clustering of nodes in PPI networks is another example of an important network analysis problem that can uncover relationships between interaction patterns and phenotype. We introduce the GraphCrunch 2 software tool, which addresses these problems. It is a significant extension of GraphCrunch which implements the most popular random network models and compares them with the data networks with respect to many network properties. Also, GraphCrunch 2 implements the GRAph ALigner algorithm ("GRAAL") for purely topological network alignment. GRAAL can align any pair of networks and exposes large, dense, contiguous regions of topological and functional similarities far larger than any other existing tool. Finally, GraphCruch 2 implements an

  5. GraphCrunch 2: Software tool for network modeling, alignment and clustering

    Directory of Open Access Journals (Sweden)

    Hayes Wayne

    2011-01-01

    Full Text Available Abstract Background Recent advancements in experimental biotechnology have produced large amounts of protein-protein interaction (PPI data. The topology of PPI networks is believed to have a strong link to their function. Hence, the abundance of PPI data for many organisms stimulates the development of computational techniques for the modeling, comparison, alignment, and clustering of networks. In addition, finding representative models for PPI networks will improve our understanding of the cell just as a model of gravity has helped us understand planetary motion. To decide if a model is representative, we need quantitative comparisons of model networks to real ones. However, exact network comparison is computationally intractable and therefore several heuristics have been used instead. Some of these heuristics are easily computable "network properties," such as the degree distribution, or the clustering coefficient. An important special case of network comparison is the network alignment problem. Analogous to sequence alignment, this problem asks to find the "best" mapping between regions in two networks. It is expected that network alignment might have as strong an impact on our understanding of biology as sequence alignment has had. Topology-based clustering of nodes in PPI networks is another example of an important network analysis problem that can uncover relationships between interaction patterns and phenotype. Results We introduce the GraphCrunch 2 software tool, which addresses these problems. It is a significant extension of GraphCrunch which implements the most popular random network models and compares them with the data networks with respect to many network properties. Also, GraphCrunch 2 implements the GRAph ALigner algorithm ("GRAAL" for purely topological network alignment. GRAAL can align any pair of networks and exposes large, dense, contiguous regions of topological and functional similarities far larger than any other

  6. Globally symmetric topological phase: from anyonic symmetry to twist defect

    International Nuclear Information System (INIS)

    Teo, Jeffrey C Y

    2016-01-01

    Topological phases in two dimensions support anyonic quasiparticle excitations that obey neither bosonic nor fermionic statistics. These anyon structures often carry global symmetries that relate distinct anyons with similar fusion and statistical properties. Anyonic symmetries associate topological defects or fluxes in topological phases. As the symmetries are global and static, these extrinsic defects are semiclassical objects that behave disparately from conventional quantum anyons. Remarkably, even when the topological states supporting them are Abelian, they are generically non-Abelian and powerful enough for topological quantum computation. In this article, I review the most recent theoretical developments on symmetries and defects in topological phases. (topical review)

  7. Topological Insulator State in Thin Bismuth Films Subjected to Plane Tensile Strain

    Science.gov (United States)

    Demidov, E. V.; Grabov, V. M.; Komarov, V. A.; Kablukova, N. S.; Krushel'nitskii, A. N.

    2018-03-01

    The results of experimental examination of galvanomagnetic properties of thin bismuth films subjected to plane tensile strain resulting from the difference in thermal expansion coefficients of the substrate material and bismuth are presented. The resistivity, the magnetoresistance, and the Hall coefficient were studied at temperatures ranging from 5 to 300 K in magnetic fields as strong as 0.65 T. Carrier densities were calculated. A considerable increase in carrier density in films thinner than 30 nm was observed. This suggests that surface states are more prominent in thin bismuth films on mica substrates, while the films themselves may exhibit the properties of a topological insulator.

  8. Entanglement from topology in Chern-Simons theory

    Science.gov (United States)

    Salton, Grant; Swingle, Brian; Walter, Michael

    2017-05-01

    The way in which geometry encodes entanglement is a topic of much recent interest in quantum many-body physics and the AdS/CFT duality. This relation is particularly pronounced in the case of topological quantum field theories, where topology alone determines the quantum states of the theory. In this work, we study the set of quantum states that can be prepared by the Euclidean path integral in three-dimensional Chern-Simons theory. Specifically, we consider arbitrary three-manifolds with a fixed number of torus boundaries in both Abelian U (1 ) and non-Abelian S O (3 ) Chern-Simons theory. For the Abelian theory, we find that the states that can be prepared coincide precisely with the set of stabilizer states from quantum information theory. This constrains the multipartite entanglement present in this theory, but it also reveals that stabilizer states can be described by topology. In particular, we find an explicit expression for the entanglement entropy of a many-torus subsystem using only a single replica, as well as a concrete formula for the number of GHZ states that can be distilled from a tripartite state prepared through path integration. For the non-Abelian theory, we find a notion of "state universality," namely that any state can be prepared to an arbitrarily good approximation. The manifolds we consider can also be viewed as toy models of multiboundary wormholes in AdS/CFT.

  9. Topological insulators Dirac equation in condensed matter

    CERN Document Server

    Shen, Shun-Qing

    2017-01-01

    This new edition presents a unified description of these insulators from one to three dimensions based on the modified Dirac equation. It derives a series of solutions of the bound states near the boundary, and describes the current status of these solutions. Readers are introduced to topological invariants and their applications to a variety of systems from one-dimensional polyacetylene, to two-dimensional quantum spin Hall effect and p-wave superconductors, three-dimensional topological insulators and superconductors or superfluids, and topological Weyl semimetals, helping them to better understand this fascinating field. To reflect research advances in topological insulators, several parts of the book have been updated for the second edition, including: Spin-Triplet Superconductors, Superconductivity in Doped Topological Insulators, Detection of Majorana Fermions and so on. In particular, the book features a new chapter on Weyl semimetals, a topic that has attracted considerable attention and has already b...

  10. Topological insulators fundamentals and perspectives

    CERN Document Server

    Ortmann, Frank; Valenzuela, Sergio O

    2015-01-01

    There are only few discoveries and new technologies in physical sciences that have the potential to dramatically alter and revolutionize our electronic world. Topological insulators are one of them. The present book for the first time provides a full overview and in-depth knowledge about this hot topic in materials science and condensed matter physics. Techniques such as angle-resolved photoemission spectrometry (ARPES), advanced solid-state Nuclear Magnetic Resonance (NMR) or scanning-tunnel microscopy (STM) together with key principles of topological insulators such as spin-locked electronic

  11. Characterizing granular networks using topological metrics

    Science.gov (United States)

    Dijksman, Joshua A.; Kovalcinova, Lenka; Ren, Jie; Behringer, Robert P.; Kramar, Miroslav; Mischaikow, Konstantin; Kondic, Lou

    2018-04-01

    We carry out a direct comparison of experimental and numerical realizations of the exact same granular system as it undergoes shear jamming. We adjust the numerical methods used to optimally represent the experimental settings and outcomes up to microscopic contact force dynamics. Measures presented here range from microscopic through mesoscopic to systemwide characteristics of the system. Topological properties of the mesoscopic force networks provide a key link between microscales and macroscales. We report two main findings: (1) The number of particles in the packing that have at least two contacts is a good predictor for the mechanical state of the system, regardless of strain history and packing density. All measures explored in both experiments and numerics, including stress-tensor-derived measures and contact numbers depend in a universal manner on the fraction of nonrattler particles, fNR. (2) The force network topology also tends to show this universality, yet the shape of the master curve depends much more on the details of the numerical simulations. In particular we show that adding force noise to the numerical data set can significantly alter the topological features in the data. We conclude that both fNR and topological metrics are useful measures to consider when quantifying the state of a granular system.

  12. Non-commutative tools for topological insulators

    International Nuclear Information System (INIS)

    Prodan, Emil

    2010-01-01

    This paper reviews several analytic tools for the field of topological insulators, developed with the aid of non-commutative calculus and geometry. The set of tools includes bulk topological invariants defined directly in the thermodynamic limit and in the presence of disorder, whose robustness is shown to have nontrivial physical consequences for the bulk states. The set of tools also includes a general relation between the current of an observable and its edge index, a relation that can be used to investigate the robustness of the edge states against disorder. The paper focuses on the motivations behind creating such tools and on how to use them.

  13. Measuring the topology of large-scale structure in the universe

    Science.gov (United States)

    Gott, J. Richard, III

    1988-11-01

    An algorithm for quantitatively measuring the topology of large-scale structure has now been applied to a large number of observational data sets. The present paper summarizes and provides an overview of some of these observational results. On scales significantly larger than the correlation length, larger than about 1200 km/s, the cluster and galaxy data are fully consistent with a sponge-like random phase topology. At a smoothing length of about 600 km/s, however, the observed genus curves show a small shift in the direction of a meatball topology. Cold dark matter (CDM) models show similar shifts at these scales but not generally as large as those seen in the data. Bubble models, with voids completely surrounded on all sides by wall of galaxies, show shifts in the opposite direction. The CDM model is overall the most successful in explaining the data.

  14. Measuring the topology of large-scale structure in the universe

    International Nuclear Information System (INIS)

    Gott, J.R. III

    1988-01-01

    An algorithm for quantitatively measuring the topology of large-scale structure has now been applied to a large number of observational data sets. The present paper summarizes and provides an overview of some of these observational results. On scales significantly larger than the correlation length, larger than about 1200 km/s, the cluster and galaxy data are fully consistent with a sponge-like random phase topology. At a smoothing length of about 600 km/s, however, the observed genus curves show a small shift in the direction of a meatball topology. Cold dark matter (CDM) models show similar shifts at these scales but not generally as large as those seen in the data. Bubble models, with voids completely surrounded on all sides by wall of galaxies, show shifts in the opposite direction. The CDM model is overall the most successful in explaining the data. 45 references

  15. Deductive way of reasoning about the internet AS level topology

    International Nuclear Information System (INIS)

    Szabó, Dávid; Kőrösi, Attila; Bíró, József; Gulyás, András

    2015-01-01

    Our current understanding about the AS level topology of the Internet is based on measurements and inductive-type models which set up rules describing the behavior (node and edge dynamics) of the individual ASes and generalize the consequences of these individual actions for the complete AS ecosystem using induction. In this paper we suggest a third, deductive approach in which we have premises for the whole AS system and the consequences of these premises are determined through deductive reasoning. We show that such a deductive approach can give complementary insights into the topological properties of the AS graph. While inductive models can mostly reflect high level statistics (e.g., degree distribution, clustering, diameter), deductive reasoning can identify omnipresent subgraphs and peering likelihood. We also propose a model, called YEAS, incorporating our deductive analytical findings that produces topologies contain both traditional and novel metrics for the AS level Internet. (paper)

  16. Quantum transport in topological semimetals under magnetic fields

    Science.gov (United States)

    Lu, Hai-Zhou; Shen, Shun-Qing

    2017-06-01

    Topological semimetals are three-dimensional topological states of matter, in which the conduction and valence bands touch at a finite number of points, i.e., the Weyl nodes. Topological semimetals host paired monopoles and antimonopoles of Berry curvature at the Weyl nodes and topologically protected Fermi arcs at certain surfaces. We review our recent works on quantum transport in topological semimetals, according to the strength of the magnetic field. At weak magnetic fields, there are competitions between the positive magnetoresistivity induced by the weak anti-localization effect and negative magnetoresistivity related to the nontrivial Berry curvature. We propose a fitting formula for the magnetoconductivity of the weak anti-localization. We expect that the weak localization may be induced by inter-valley effects and interaction effect, and occur in double-Weyl semimetals. For the negative magnetoresistance induced by the nontrivial Berry curvature in topological semimetals, we show the dependence of the negative magnetoresistance on the carrier density. At strong magnetic fields, specifically, in the quantum limit, the magnetoconductivity depends on the type and range of the scattering potential of disorder. The high-field positive magnetoconductivity may not be a compelling signature of the chiral anomaly. For long-range Gaussian scattering potential and half filling, the magnetoconductivity can be linear in the quantum limit. A minimal conductivity is found at the Weyl nodes although the density of states vanishes there.

  17. Topological Order in Silicon Photonics

    Science.gov (United States)

    2017-02-07

    photonic edge states and quantum emitters [ S. Barik , H. Miyake, W. DeGottardi, E. Waks and M. Hafezi, New J. Phys., 18, 11301 (2016) ]. Entanglement... Barik , H. Miyake, W. DeGottardi, E. Waks, and M. Hafezi “Two-Dimensionally Confined Topological Edge States in Photonic Crystals”, New J. Phys., 18

  18. Basis for calculations in the topological expansion

    International Nuclear Information System (INIS)

    Levinson, M.A.

    1982-12-01

    Investigations aimed at putting the topological theory of particles on a more quantitative basis are described. First, the incorporation of spin into the topological structure is discussed and shown to successfully reproduce the observed lowest mass hadron spectrum. The absence of parity-doubled states represents a significant improvement over previous efforts in similar directions. This theory is applied to the lowest order calculation of elementary hadron coupling constant ratios. SU(6)/sub W/ symmetry is maintained and extended via the notions of topological supersymmetry and universality. Finally, efforts to discover a perturbative basis for the topological expansion are described. This has led to the formulation of off-shell Feynman-like rules which provide a calculational scheme for the strong interaction components of the topological expansion once the zero-entropy connected parts are known. These rules are shown to imply a topological asymptotic freedom. Even though the nonlinear zero-entropy problem cannot itself be treated perturbatively, plausible general assumptions about zero-entropy amplitudes allow immediate qualitative inferences concerning physical hadrons. In particular, scenarios for mass splittings beyond the supersymmetric level are described

  19. Spontaneous breaking of time-reversal symmetry in topological insulators

    Energy Technology Data Exchange (ETDEWEB)

    Karnaukhov, Igor N., E-mail: karnaui@yahoo.com

    2017-06-21

    Highlights: • Proposed a new approach for description of phase transitions in topological insulators. • Considered the mechanism of spontaneous breaking of time-reversal symmetry in topological insulators. • The Haldane model can be implemented in real compounds of the condensed matter physics. - Abstract: The system of spinless fermions on a hexagonal lattice is studied. We have considered tight-binding model with the hopping integrals between the nearest-neighbor and next-nearest-neighbor lattice sites, that depend on the direction of the link. The links are divided on three types depending on the direction, the hopping integrals are defined by different phases along the links. The energy of the system depends on the phase differences, the solutions for the phases, that correspond to the minimums of the energy, lead to a topological insulator state with the nontrivial Chern numbers. We have analyzed distinct topological states and phase transitions, the behavior of the chiral gapless edge modes, have defined the Chern numbers. The band structure of topological insulator (TI) is calculated, the ground-state phase diagram in the parameter space is obtained. We propose a novel mechanism of realization of TI, when the TI state is result of spontaneous breaking of time-reversal symmetry due to nontrivial stable solutions for the phases that determine the hopping integrals along the links and show that the Haldane model can be implemented in real compounds of the condensed matter physics.

  20. Topological structure of dictionary graphs

    International Nuclear Information System (INIS)

    Fuks, Henryk; Krzeminski, Mark

    2009-01-01

    We investigate the topological structure of the subgraphs of dictionary graphs constructed from WordNet and Moby thesaurus data. In the process of learning a foreign language, the learner knows only a subset of all words of the language, corresponding to a subgraph of a dictionary graph. When this subgraph grows with time, its topological properties change. We introduce the notion of the pseudocore and argue that the growth of the vocabulary roughly follows decreasing pseudocore numbers-that is, one first learns words with a high pseudocore number followed by smaller pseudocores. We also propose an alternative strategy for vocabulary growth, involving decreasing core numbers as opposed to pseudocore numbers. We find that as the core or pseudocore grows in size, the clustering coefficient first decreases, then reaches a minimum and starts increasing again. The minimum occurs when the vocabulary reaches a size between 10 3 and 10 4 . A simple model exhibiting similar behavior is proposed. The model is based on a generalized geometric random graph. Possible implications for language learning are discussed.

  1. General topology

    CERN Document Server

    Willard, Stephen

    2004-01-01

    Among the best available reference introductions to general topology, this volume is appropriate for advanced undergraduate and beginning graduate students. Its treatment encompasses two broad areas of topology: ""continuous topology,"" represented by sections on convergence, compactness, metrization and complete metric spaces, uniform spaces, and function spaces; and ""geometric topology,"" covered by nine sections on connectivity properties, topological characterization theorems, and homotopy theory. Many standard spaces are introduced in the related problems that accompany each section (340

  2. Comparing topological charge definitions using topology fixing actions

    International Nuclear Information System (INIS)

    Bruckmann, Falk; Gruber, Florian; Jansen, Karl; Marinkovic, Marina; Urbach, Carsten; Wagner, Marc

    2009-05-01

    We investigate both the hyperbolic action and the determinant ratio action designed to fix the topological charge on the lattice. We show to what extent topology is fixed depending on the parameters of these actions, keeping the physical situation fixed. At the same time the agreement between different definitions of topological charge - the field theoretic and the index definition - is directly correlated to the degree topology is fixed. Moreover, it turns out that the two definitions agree very well. We also study finite volume effects arising in the static potential and related quantities due to topology fixing. (orig.)

  3. Hierarchical Controlled Remote State Preparation by Using a Four-Qubit Cluster State

    Science.gov (United States)

    Ma, Peng-Cheng; Chen, Gui-Bin; Li, Xiao-Wei; Zhan, You-Bang

    2018-02-01

    We propose a scheme for hierarchical controlled remote preparation of an arbitrary single-qubit state via a four-qubit cluster state as the quantum channel. In this scheme, a sender wishes to help three agents to remotely prepare a quantum state, respectively. The three agents are divided into two grades, that is, an agent is in the upper grade and other two agents are in the lower grade. In this process of remote state preparation, the agent of the upper grade only needs the assistance of any one of the other two agents for recovering the sender's original state, while an agent of the lower grade needs the collaboration of all the other two agents. In other words, the agents of two grades have different authorities to reconstruct sender's original state.

  4. Hierarchical Controlled Remote State Preparation by Using a Four-Qubit Cluster State

    Science.gov (United States)

    Ma, Peng-Cheng; Chen, Gui-Bin; Li, Xiao-Wei; Zhan, You-Bang

    2018-06-01

    We propose a scheme for hierarchical controlled remote preparation of an arbitrary single-qubit state via a four-qubit cluster state as the quantum channel. In this scheme, a sender wishes to help three agents to remotely prepare a quantum state, respectively. The three agents are divided into two grades, that is, an agent is in the upper grade and other two agents are in the lower grade. In this process of remote state preparation, the agent of the upper grade only needs the assistance of any one of the other two agents for recovering the sender's original state, while an agent of the lower grade needs the collaboration of all the other two agents. In other words, the agents of two grades have different authorities to reconstruct sender's original state.

  5. The dynamic interplay between DNA topoisomerases and DNA topology.

    Science.gov (United States)

    Seol, Yeonee; Neuman, Keir C

    2016-11-01

    Topological properties of DNA influence its structure and biochemical interactions. Within the cell, DNA topology is constantly in flux. Transcription and other essential processes, including DNA replication and repair, not only alter the topology of the genome but also introduce additional complications associated with DNA knotting and catenation. These topological perturbations are counteracted by the action of topoisomerases, a specialized class of highly conserved and essential enzymes that actively regulate the topological state of the genome. This dynamic interplay among DNA topology, DNA processing enzymes, and DNA topoisomerases is a pervasive factor that influences DNA metabolism in vivo. Building on the extensive structural and biochemical characterization over the past four decades that has established the fundamental mechanistic basis of topoisomerase activity, scientists have begun to explore the unique roles played by DNA topology in modulating and influencing the activity of topoisomerases. In this review we survey established and emerging DNA topology-dependent protein-DNA interactions with a focus on in vitro measurements of the dynamic interplay between DNA topology and topoisomerase activity.

  6. Driving protocol for a Floquet topological phase without static counterpart

    Science.gov (United States)

    Quelle, A.; Weitenberg, C.; Sengstock, K.; Morais Smith, C.

    2017-11-01

    Periodically driven systems play a prominent role in optical lattices. In these ultracold atomic systems, driving is used to create a variety of interesting behaviours, of which an important example is provided by topological states of matter. Such Floquet topological phases have a richer classification than their equilibrium counterparts. Although there exist analogues of the equilibrium topological phases that are characterised by a Chern number, the corresponding Hall conductivity, and protected edge states, there is an additional possibility. This is a phase that has a vanishing Chern number and no Hall conductivity, but nevertheless hosts anomalous topological edge states (Rudner et al (2013 Phys. Rev. X 3 031005)). Due to experimental difficulties associated with the observation of such a phase, it has not been experimentally realised in optical lattices so far. In this paper, we show that optical lattices prove to be a good candidate for its realisation and observation, because they can be driven in a controlled manner. Specifically, we present a simple shaking protocol that serves to realise this special Floquet phase, discuss the specific properties that it has, and propose a method to experimentally detect this fascinating topological phase that has no counterpart in equilibrium systems.

  7. Topological Insulator Nanowires and Nanoribbons

    KAUST Repository

    Kong, Desheng; Randel, Jason C.; Peng, Hailin; Cha, Judy J.; Meister, Stefan; Lai, Keji; Chen, Yulin; Shen, Zhi-Xun; Manoharan, Hari C.; Cui, Yi

    2010-01-01

    Recent theoretical calculations and photoemission spectroscopy measurements on the bulk Bi2Se3 material show that it is a three-dimensional topological insulator possessing conductive surface states with nondegenerate spins, attractive

  8. Complex open-framework germanate built by 8-coordinated Ge 10 clusters

    KAUST Repository

    Yue, Huijuan; Peskov, Maxim; Sun, Junliang; Zou, Xiaodong

    2012-01-01

    cluster building units can be concluded. The framework of SU-67 is based on an elaborate topological pattern of connected Ge 10 clusters forming intersecting 10- and 11-ring channels and has a low framework density (12.4 Ge atoms per 1000 ̊ 3). We have

  9. Topological phases of interacting fermions in one-dimensional superconductor - normal metal geometry

    Energy Technology Data Exchange (ETDEWEB)

    Meidan, Dganit [Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel); Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Freie Universitaet Berlin, 14195 Berlin (Germany); Romito, Alessandro; Brouwer, Piet W. [Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel)

    2015-07-01

    One-dimensional superconductors can be in non-trivial topological phases harboring Majorana end-states, which possess non-abelian statistics. It has been recently established that in the presence of interactions the classification of topological superconducting phases can be significantly altered. Specifically, for one-dimensional superconductors possessing a time reversal symmetry (BDI class), interactions reduce the infinitely many non-interacting phases (Z topological index) to eight distinct ones (Z{sub 8} topological index). In this talk I will consider multi-mode superconducting wires in such BDI class when probed by an external contact, and discuss their low temperature and voltage bias transport properties. I will first show that the Andreev reflection component of the scattering matrix of the probing lead provides a topological index, r=-4,.., 4, which distinguish the eight topological phases. The two topologically equivalent phases with r= 4,-4 support emergent many-body end states, which are identified to be a topologically protected Kondo-like resonance. The path in phase space that connects these equivalent phases crosses a non-fermi liquid fixed point where a multiple channel Kondo effect develops.

  10. Topological phase transition in the quench dynamics of a one-dimensional Fermi gas

    OpenAIRE

    Wang, Pei; Yi, Wei; Xianlong, Gao

    2014-01-01

    We study the quench dynamics of a one-dimensional ultracold Fermi gas in an optical lattice potential with synthetic spin-orbit coupling. At equilibrium, the ground state of the system can undergo a topological phase transition and become a topological superfluid with Majorana edge states. As the interaction is quenched near the topological phase boundary, we identify an interesting dynamical phase transition of the quenched state in the long-time limit, characterized by an abrupt change of t...

  11. Ripple-modulated electronic structure of a 3D topological insulator.

    Science.gov (United States)

    Okada, Yoshinori; Zhou, Wenwen; Walkup, D; Dhital, Chetan; Wilson, Stephen D; Madhavan, V

    2012-01-01

    Three-dimensional topological insulators host linearly dispersing states with unique properties and a strong potential for applications. An important ingredient in realizing some of the more exotic states in topological insulators is the ability to manipulate local electronic properties. Direct analogy to the Dirac material graphene suggests that a possible avenue for controlling local properties is via a controlled structural deformation such as the formation of ripples. However, the influence of such ripples on topological insulators is yet to be explored. Here we use scanning tunnelling microscopy to determine the effects of one-dimensional buckling on the electronic properties of Bi(2)Te(3.) By tracking spatial variations of the interference patterns generated by the Dirac electrons we show that buckling imposes a periodic potential, which locally modulates the surface-state dispersion. This suggests that forming one- and two-dimensional ripples is a viable method for creating nanoscale potential landscapes that can be used to control the properties of Dirac electrons in topological insulators.

  12. Dynamics in small worlds of tree topologies of wireless sensor networks

    DEFF Research Database (Denmark)

    Li, Qiao; Zhang, Baihai; Fan, Zhun

    2012-01-01

    Tree topologies, which construct spatial graphs with large characteristic path lengths and small clustering coefficients, are ubiquitous in deployments of wireless sensor networks. Small worlds are investigated in tree-based networks. Due to link additions, characteristic path lengths reduce...... rapidly and clustering coefficients increase greatly. A tree abstract, Cayley tree, is considered for the study of the navigation algorithm, which runs automatically in the small worlds of tree-based networks. In the further study, epidemics in the small worlds of tree-based wireless sensor networks...

  13. The NIDS Cluster: Scalable, Stateful Network Intrusion Detection on Commodity Hardware

    Energy Technology Data Exchange (ETDEWEB)

    Tierney, Brian L; Vallentin, Matthias; Sommer, Robin; Lee, Jason; Leres, Craig; Paxson, Vern; Tierney, Brian

    2007-09-19

    In this work we present a NIDS cluster as a scalable solution for realizing high-performance, stateful network intrusion detection on commodity hardware. The design addresses three challenges: (i) distributing traffic evenly across an extensible set of analysis nodes in a fashion that minimizes the communication required for coordination, (ii) adapting the NIDS's operation to support coordinating its low-level analysis rather than just aggregating alerts; and (iii) validating that the cluster produces sound results. Prototypes of our NIDS cluster now operate at the Lawrence Berkeley National Laboratory and the University of California at Berkeley. In both environments the clusters greatly enhance the power of the network security monitoring.

  14. Spin foam diagrammatics and topological invariance

    International Nuclear Information System (INIS)

    Girelli, Florian; Oeckl, Robert; Perez, Alejandro

    2002-01-01

    We provide a simple proof of the topological invariance of the Turaev-Viro model (corresponding to simplicial 3D pure Euclidean gravity with cosmological constant) by means of a novel diagrammatic formulation of the state sum models for quantum BF theories. Moreover, we prove the invariance under more general conditions allowing the state sum to be defined on arbitrary cellular decompositions of the underlying manifold. Invariance is governed by a set of identities corresponding to local gluing and rearrangement of cells in the complex. Due to the fully algebraic nature of these identities our results extend to a vast class of quantum groups. The techniques introduced here could be relevant for investigating the scaling properties of non-topological state sums, proposed as models of quantum gravity in 4D, under refinement of the cellular decomposition

  15. Positive XPS binding energy shift of supported Cu{sub N}-clusters governed by initial state effects

    Energy Technology Data Exchange (ETDEWEB)

    Peters, S.; Peredkov, S. [Technische Universität Berlin, IOAP, Strasse des 17. Juni 135, 10623 Berlin (Germany); Al-Hada, M. [Department of Physics, College of Education and Linguistics, University of Amran (Yemen); Neeb, M., E-mail: matthias.neeb@helmholtz-berlin.de [Helmholtz-Zentrum Berlin, Wilhelm-Conrad-Röntgen-Campus Adlershof, Elektronenspeicherring BESSY II, Albert-Einstein-Straße 15, 12489 Berlin (Germany); Eberhardt, W. [Technische Universität Berlin, IOAP, Strasse des 17. Juni 135, 10623 Berlin (Germany); DESY, Center for Free Electron Laser Science (CFEL), Notkestr. 85, 22607 Hamburg (Germany)

    2014-01-01

    Highlights: • Size dependent initial and final state effects of mass-selected deposited clusters. • Initial state effect dominates positive XPS shift in supported Cu-clusters. • Size dependent Coulomb correlation shift in the Auger final state of Cu cluster. • Size-dependent Auger parameter analysis. • Positive XPS shift differs from negative surface core level shift in crystalline copper. - Abstract: An initial state effect is established as origin for the positive 2p core electron binding energy shift found for Cu{sub N}-clusters supported by a thin silica layer of a p-doped Si(1 0 0) wafer. Using the concept of the Auger parameter and taking into account the usually neglected Coulomb correlation shift in the Auger final state (M{sub 4,5}M{sub 4,5}) it is shown that the initial state shift is comparable to the measured XPS shift while the final state relaxation shift contributes only marginally to the binding energy shift. The cluster results differ from the negative surface core-level shift of crystalline copper which has been explained in terms of a final state relaxation effect.

  16. Ultrafast Optical Excitation of a Persistent Surface-State Population in the Topological Insulator Bi2Se3

    Energy Technology Data Exchange (ETDEWEB)

    Sobota, Jonathan

    2012-03-14

    Using femtosecond time- and angle-resolved photoemission spectroscopy, we investigated the nonequilibrium dynamics of the topological insulator Bi{sub 2}Se{sub 3}. We studied p-type Bi{sub 2}Se{sub 3}, in which the metallic Dirac surface state and bulk conduction bands are unoccupied. Optical excitation leads to a meta-stable population at the bulk conduction band edge, which feeds a nonequilibrium population of the surface state persisting for >10 ps. This unusually long-lived population of a metallic Dirac surface state with spin texture may present a channel in which to drive transient spin-polarized currents.

  17. HgTe based topological insulators

    International Nuclear Information System (INIS)

    Bruene, Christoph

    2014-01-01

    This PhD thesis summarizes the discovery of topological insulators and highlights the developments on their experimental observations. The work focuses on HgTe. The thesis is structured as follows: - The first chapter of this thesis will give a brief overview on discoveries in the field of topological insulators. It focuses on works relevant to experimental results presented in the following chapters. This includes a short outline of the early predictions and a summary of important results concerning 2-dimensional topological insulators while the final section discusses observations concerning 3-dimensional topological insulators. - The discovery of the quantum spin Hall effect in HgTe marked the first experimental observation of a topological insulator. Chapter 2 focuses on HgTe quantum wells and the quantum spin Hall effect. The growth of high quality HgTe quantum wells was one of the major goals for this work. In a final set of experiments the spin polarization of the edge channels was investigated. Here, we could make use of the advantage that HgTe quantum well structures exhibit a large Rashba spin orbit splitting. - HgTe as a 3-dimensional topological insulator is presented in chapter 3. - Chapters 4-6 serve as in depth overviews of selected works: Chapter 4 presents a detailed overview on the all electrical detection of the spin Hall effect in HgTe quantum wells. The detection of the spin polarization of the quantum spin Hall effect is shown in chapter 5 and chapter 6 gives a detailed overview on the quantum Hall effect originating from the topological surface state in strained bulk HgTe.

  18. State of the art of parallel scientific visualization applications on PC clusters

    International Nuclear Information System (INIS)

    Juliachs, M.

    2004-01-01

    In this state of the art on parallel scientific visualization applications on PC clusters, we deal with both surface and volume rendering approaches. We first analyze available PC cluster configurations and existing parallel rendering software components for parallel graphics rendering. CEA/DIF has been studying cluster visualization since 2001. This report is part of a study to set up a new visualization research platform. This platform consisting of an eight-node PC cluster under Linux and a tiled display was installed in collaboration with Versailles-Saint-Quentin University in August 2003. (author)

  19. Critical current anomaly at the topological quantum phase transition in a Majorana Josephson junction

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Hong [School of Physics, Sun Yat-sen University, Guangzhou 510275 (China); Liang, Qi-Feng [Department of Physics, Shaoxing University, Shaoxing 312000 (China); Yao, Dao-Xin, E-mail: yaodaox@mail.sysu.edu.cn [School of Physics, Sun Yat-sen University, Guangzhou 510275 (China); Wang, Zhi, E-mail: physicswangzhi@gmail.com [School of Physics, Sun Yat-sen University, Guangzhou 510275 (China)

    2017-06-28

    Majorana bound states in topological Josephson junctions induce a 4π period current-phase relation. Direct detection of the 4π periodicity is complicated by the quasiparticle poisoning. We reveal that Majorana bound states are also signaled by the anomalous enhancement on the critical current of the junction. We show the landscape of the critical current for a nanowire Josephson junction under a varying Zeeman field, and reveal a sharp step feature at the topological quantum phase transition point, which comes from the anomalous enhancement of the critical current at the topological regime. In multi-band wires, the anomalous enhancement disappears for an even number of bands, where the Majorana bound states fuse into Andreev bound states. This anomalous critical current enhancement directly signals the existence of the Majorana bound states, and also provides a valid signature for the topological quantum phase transition. - Highlights: • We introduce the critical current step as a signal for the topological quantum phase transition. • We study the quantum phase transition in the topological nanowire under a rotating Zeeman field. • We show that the critical current anomaly gradually disappears for systems with more sub-bands.

  20. Toward demonstrating controlled-X operation based on continuous-variable four-partite cluster states and quantum teleporters

    International Nuclear Information System (INIS)

    Wang Yu; Su Xiaolong; Shen Heng; Tan Aihong; Xie Changde; Peng Kunchi

    2010-01-01

    One-way quantum computation based on measurement and multipartite cluster entanglement offers the ability to perform a variety of unitary operations only through different choices of measurement bases. Here we present an experimental study toward demonstrating the controlled-X operation, a two-mode gate in which continuous variable (CV) four-partite cluster states of optical modes are utilized. Two quantum teleportation elements are used for achieving the gate operation of the quantum state transformation from input target and control states to output states. By means of the optical cluster state prepared off-line, the homodyne detection and electronic feeding forward, the information carried by the input control state is transformed to the output target state. The presented scheme of the controlled-X operation based on teleportation can be implemented nonlocally and deterministically. The distortion of the quantum information resulting from the imperfect cluster entanglement is estimated with the fidelity.

  1. Thermoelectric Transport by Surface States in Bi2Se3-Based Topological Insulator Thin Films

    International Nuclear Information System (INIS)

    Li Long-Long; Xu Wen

    2015-01-01

    We develop a tractable theoretical model to investigate the thermoelectric (TE) transport properties of surface states in topological insulator thin films (TITFs) of Bi 2 Se 3 at room temperature. The hybridization between top and bottom surface states in the TITF plays a significant role. With the increasing hybridization-induced surface gap, the electrical conductivity and electron thermal conductivity decrease while the Seebeck coefficient increases. This is due to the metal-semiconductor transition induced by the surface-state hybridization. Based on these TE transport coefficients, the TE figure-of-merit ZT is evaluated. It is shown that ZT can be greatly improved by the surface-state hybridization. Our theoretical results are pertinent to the exploration of the TE transport properties of surface states in TITFs and to the potential application of Bi 2 Se 3 -based TITFs as high-performance TE materials and devices. (paper)

  2. Entanglement percolation on a quantum internet with scale-free and clustering characters

    Energy Technology Data Exchange (ETDEWEB)

    Wu Liang; Zhu Shiqun [School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006 (China)

    2011-11-15

    The applicability of entanglement percolation protocol to real Internet structure is investigated. If the current Internet can be used directly in the quantum regime, the protocol can provide a way to establish long-distance entanglement when the links are pure nonmaximally entangled states. This applicability is primarily due to the combination of scale-free degree distribution and a high level of clustering, both of which are widely observed in many natural and artificial networks including the current Internet. It suggests that the topology of real Internet may play an important role in entanglement establishment.

  3. Entanglement percolation on a quantum internet with scale-free and clustering characters

    International Nuclear Information System (INIS)

    Wu Liang; Zhu Shiqun

    2011-01-01

    The applicability of entanglement percolation protocol to real Internet structure is investigated. If the current Internet can be used directly in the quantum regime, the protocol can provide a way to establish long-distance entanglement when the links are pure nonmaximally entangled states. This applicability is primarily due to the combination of scale-free degree distribution and a high level of clustering, both of which are widely observed in many natural and artificial networks including the current Internet. It suggests that the topology of real Internet may play an important role in entanglement establishment.

  4. 2α + t cluster state in 11B

    International Nuclear Information System (INIS)

    Kawabata, T; Akimune, H; Fujita, H; Fujita, Y; Fujiwara, M; Hara, K; Hatanaka, K; Itoh, M; Kanada-En'yo, Y; Kishi, S; Nakanishi, K; Sakaguchi, H; Shimbara, Y; Tamii, A; Terashima, S; Uchida, M; Wakasa, T; Yasuda, Y; Yoshida, H P; Yosoi, M

    2006-01-01

    The cluster structures of the excited states in 11 B are studied by analyzing the isoscalar monopole and quadrupole strengths in the 11 B(d, d') reaction at E d = 200 MeV. The excitation strengths are compared with the theoretical predictions by the antisymmetrized molecular-dynamics (AMD) calculations. It is found that the large monopole strength for the 3/2 - 3 state at E x = 8.56 MeV is well described by the AMD wave function with a dilute 2α + tcluster structure

  5. Interaction between the intrinsic edge state and the helical boundary state of topological insulator phase in bilayer graphene

    Energy Technology Data Exchange (ETDEWEB)

    Lü, Xiaoling [School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022 (China); Jiang, Liwei [National Laboratory of Superhard Materials, Department of Physics, Jilin University, Changchun 130012 (China); Zheng, Yisong, E-mail: zhengys@jlu.edu.cn [National Laboratory of Superhard Materials, Department of Physics, Jilin University, Changchun 130012 (China)

    2016-04-22

    Graphene has intrinsic edge states localized at zigzag edge or lattice defect. Helical boundary states can also be established in such a two-dimensional carbon material at the boundary of topological insulator (TI) phase realized by the extrinsic Rashba spin–orbital coupling (SOC) in gated bilayer graphene. We theoretically investigate the interaction between these two kinds of edge (boundary) states when they coexist in a bilayer graphene. We find that this interaction gives rise to some very interesting results. In a zigzag edged nanoribbon of bilayer graphene, it is possible that the TI helical state does not localize at the TI phase boundary. Instead it moves to the nanoribbon edge even though the SOC is absent therein. In a bulk lattice of bilayer graphene embedded with two line defects, the numbers of helical state subbands at the two line defects are not equal to each other. In such a case, the backscattering lacking is still forbidden since the Kramers pairs are valley polarized. - Highlights: • The TI helical state moves to nanoribbon edge in a gated ZENR-BG. • The gapless modes of LD-BG at the two line defects are not equal to each other. • The Kramers pairs are still valley polarized in a gated LD-BG.

  6. A LOOP-BASED APPROACH IN CLUSTERING AND ROUTING IN MOBILE AD HOC NETWORKS

    Institute of Scientific and Technical Information of China (English)

    Li Yanping; Wang Xin; Xue Xiangyang; C.K. Toh

    2006-01-01

    Although clustering is a convenient framework to enable traffic control and service support in Mobile Ad hoc NETworks (MANETs), it is seldom adopted in practice due to the additional traffic overhead it leads to for the resource limited ad hoc network. In order to address this problem, we proposed a loop-based approach to combine clustering and routing. By employing loop topologies, topology information is disseminated with a loop instead of a single node, which provides better robustness, and the nature of a loop that there are two paths between each pair of nodes within a loop suggests smart route recovery strategy. Our approach is composed of setup procedure, regular procedure and recovery procedure to achieve clustering, routing and emergent route recovering.

  7. Network-topology-adaptive quantum conference protocols

    International Nuclear Information System (INIS)

    Zhang Sheng; Wang Jian; Tang Chao-Jing; Zhang Quan

    2011-01-01

    As an important application of the quantum network communication, quantum multiparty conference has made multiparty secret communication possible. Previous quantum multiparty conference schemes based on quantum data encryption are insensitive to network topology. However, the topology of the quantum network significantly affects the communication efficiency, e.g., parallel transmission in a channel with limited bandwidth. We have proposed two distinctive protocols, which work in two basic network topologies with efficiency higher than the existing ones. We first present a protocol which works in the reticulate network using Greeberger—Horne—Zeilinger states and entanglement swapping. Another protocol, based on quantum multicasting with quantum data compression, which can improve the efficiency of the network, works in the star-like network. The security of our protocols is guaranteed by quantum key distribution and one-time-pad encryption. In general, the two protocols can be applied to any quantum network where the topology can be equivalently transformed to one of the two structures we propose in our protocols. (general)

  8. Countable Fuzzy Topological Space and Countable Fuzzy Topological Vector Space

    Directory of Open Access Journals (Sweden)

    Apu Kumar Saha

    2015-06-01

    Full Text Available This paper deals with countable fuzzy topological spaces, a generalization of the notion of fuzzy topological spaces. A collection of fuzzy sets F on a universe X forms a countable fuzzy topology if in the definition of a fuzzy topology, the condition of arbitrary supremum is relaxed to countable supremum. In this generalized fuzzy structure, the continuity of fuzzy functions and some other related properties are studied. Also the class of countable fuzzy topological vector spaces as a generalization of the class of fuzzy topological vector spaces has been introduced and investigated.

  9. Critic: a new program for the topological analysis of solid-state electron densities

    Science.gov (United States)

    Otero-de-la-Roza, A.; Blanco, M. A.; Pendás, A. Martín; Luaña, Víctor

    2009-01-01

    In this paper we introduce CRITIC, a new program for the topological analysis of the electron densities of crystalline solids. Two different versions of the code are provided, one adapted to the LAPW (Linear Augmented Plane Wave) density calculated by the WIEN2K package and the other to the ab initio Perturbed Ion ( aiPI) density calculated with the PI7 code. Using the converged ground state densities, CRITIC can locate their critical points, determine atomic basins and integrate properties within them, and generate several graphical representations which include topological atomic basins and primary bundles, contour maps of ρ and ∇ρ, vector maps of ∇ρ, chemical graphs, etc. Program summaryProgram title: CRITIC Catalogue identifier: AECB_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECB_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GPL, version 3 No. of lines in distributed program, including test data, etc.: 1 206 843 No. of bytes in distributed program, including test data, etc.: 12 648 065 Distribution format: tar.gz Programming language: FORTRAN 77 and 90 Computer: Any computer capable of compiling Fortran Operating system: Unix, GNU/Linux Classification: 7.3 Nature of problem: Topological analysis of the electron density in periodic solids. Solution method: The automatic localization of the electron density critical points is based on a recursive partitioning of the Wigner-Seitz cell into tetrahedra followed by a Newton search from significant points on each tetrahedra. Plotting of and integration on the atomic basins is currently based on a new implementation of Keith's promega algorithm. Running time: Variable, depending on the task. From seconds to a few minutes for the localization of critical points. Hours to days for the determination of the atomic basins shape and properties. Times correspond to a typical 2007 PC.

  10. Fluctuating partially native-like topologies in the acid denatured ensemble of autolysis resistant HIV-1 protease.

    Science.gov (United States)

    Rout, Manoj Kumar; Hosur, Ramakrishna V

    2009-02-01

    Folding, in-vivo, starts from a denatured state and thus the nature of the denatured state would play an important role in directing the folding of a protein. We report here NMR characterization of the acid-denatured state of a mutant of HIV-1 protease, designed to prevent autolysis (Q7K, L33I, L63I) and to prevent cysteine oxidation (C67A and C95A). Secondary chemical shifts, TALOS analysis of chemical shifts and (15)N relaxation data (R(1), R(2), NOE) coupled with AABUF and hydrophobicity calculations, suggest formation of hydrophobic clusters and possibility of some partially native-like topologies in the acid denatured state of the protease. The structural and dynamics characteristics of the acid denatured PR seem to be considerably different from those of the guanidine or urea denatured states of some variants of PR. These would have implications for the folding and auto-processing of the enzyme in-vivo.

  11. Superconducting Coset Topological Fluids in Josephson Junction Arrays

    CERN Document Server

    Diamantini, M C; Trugenberger, C A; Sodano, Pasquale; Trugenberger, Carlo A.

    2006-01-01

    We show that the superconducting ground state of planar Josephson junction arrays is a P- and T-invariant coset topological quantum fluid whose topological order is characterized by the degeneracy 2 on the torus. This new mechanism for planar superconductivity is the P- and T-invariant analogue of Laughlin's quantum Hall fluids. The T=0 insulator-superconductor quantum transition is a quantum critical point characterized by gauge fields and deconfined degrees of freedom. Experiments on toroidal Josephson junction arrays could provide the first direct evidence for topological order and superconducting quantum fluids.

  12. Topological phase transition in the quench dynamics of a one-dimensional Fermi gas with spin–orbit coupling

    International Nuclear Information System (INIS)

    Wang, Pei; Yi, Wei; Xianlong, Gao

    2015-01-01

    We study the quench dynamics of a one-dimensional ultracold Fermi gas with synthetic spin-orbit coupling. At equilibrium, the ground state of the system can undergo a topological phase transition and become a topological superfluid with Majorana edge states. As the interaction is quenched near the topological phase boundary, we identify an interesting dynamical phase transition of the quenched state in the long-time limit, characterized by an abrupt change of the pairing gap at a critical quenched interaction strength. We further demonstrate the topological nature of this dynamical phase transition from edge-state analysis of the quenched states. Our findings provide interesting clues for the understanding of topological phase transitions in dynamical processes, and can be useful for the dynamical detection of Majorana edge states in corresponding systems. (paper)

  13. Topological phase transition in the quench dynamics of a one-dimensional Fermi gas with spin-orbit coupling

    Science.gov (United States)

    Wang, Pei; Yi, Wei; Xianlong, Gao

    2015-01-01

    We study the quench dynamics of a one-dimensional ultracold Fermi gas with synthetic spin-orbit coupling. At equilibrium, the ground state of the system can undergo a topological phase transition and become a topological superfluid with Majorana edge states. As the interaction is quenched near the topological phase boundary, we identify an interesting dynamical phase transition of the quenched state in the long-time limit, characterized by an abrupt change of the pairing gap at a critical quenched interaction strength. We further demonstrate the topological nature of this dynamical phase transition from edge-state analysis of the quenched states. Our findings provide interesting clues for the understanding of topological phase transitions in dynamical processes, and can be useful for the dynamical detection of Majorana edge states in corresponding systems.

  14. Disrupted topological organization of resting-state functional brain network in subcortical vascular mild cognitive impairment.

    Science.gov (United States)

    Yi, Li-Ye; Liang, Xia; Liu, Da-Ming; Sun, Bo; Ying, Sun; Yang, Dong-Bo; Li, Qing-Bin; Jiang, Chuan-Lu; Han, Ying

    2015-10-01

    Neuroimaging studies have demonstrated both structural and functional abnormalities in widespread brain regions in patients with subcortical vascular mild cognitive impairment (svMCI). However, whether and how these changes alter functional brain network organization remains largely unknown. We recruited 21 patients with svMCI and 26 healthy control (HC) subjects who underwent resting-state functional magnetic resonance imaging scans. Graph theory-based network analyses were used to investigate alterations in the topological organization of functional brain networks. Compared with the HC individuals, the patients with svMCI showed disrupted global network topology with significantly increased path length and modularity. Modular structure was also impaired in the svMCI patients with a notable rearrangement of the executive control module, where the parietal regions were split out and grouped as a separate module. The svMCI patients also revealed deficits in the intra- and/or intermodule connectivity of several brain regions. Specifically, the within-module degree was decreased in the middle cingulate gyrus while it was increased in the left anterior insula, medial prefrontal cortex and cuneus. Additionally, increased intermodule connectivity was observed in the inferior and superior parietal gyrus, which was associated with worse cognitive performance in the svMCI patients. Together, our results indicate that svMCI patients exhibit dysregulation of the topological organization of functional brain networks, which has important implications for understanding the pathophysiological mechanism of svMCI. © 2015 John Wiley & Sons Ltd.

  15. Topological Creation of Acoustic Pseudospin Multipoles in a Flow-Free Symmetry-Broken Metamaterial Lattice

    Science.gov (United States)

    Zhang, Zhiwang; Wei, Qi; Cheng, Ying; Zhang, Ting; Wu, Dajian; Liu, Xiaojun

    2017-02-01

    The discovery of topological acoustics has revolutionized fundamental concepts of sound propagation, giving rise to strikingly unconventional acoustic edge modes immune to scattering. Because of the spinless nature of sound, the "spinlike" degree of freedom crucial to topological states in acoustic systems is commonly realized with circulating background flow or preset coupled resonator ring waveguides, which drastically increases the engineering complexity. Here we realize the acoustic pseudospin multipolar states in a simple flow-free symmetry-broken metamaterial lattice, where the clockwise (anticlockwise) sound propagation within each metamolecule emulates pseudospin down (pseudospin up). We demonstrate that tuning the strength of intermolecular coupling by simply contracting or expanding the metamolecule can induce the band inversion effect between the pseudospin dipole and quadrupole, which leads to a topological phase transition. Topologically protected edge states and reconfigurable topological one-way transmission for sound are further demonstrated. These results provide diverse routes to construct novel acoustic topological insulators with versatile applications.

  16. Quantum-dot cluster-state computing with encoded qubits

    International Nuclear Information System (INIS)

    Weinstein, Yaakov S.; Hellberg, C. Stephen; Levy, Jeremy

    2005-01-01

    A class of architectures is advanced for cluster-state quantum computation using quantum dots. These architectures include using single and multiple dots as logical qubits. Special attention is given to supercoherent qubits introduced by Bacon et al. [Phys. Rev. Lett. 87, 247902 (2001)] for which we discuss the effects of various errors and present a means of error protection

  17. Magnetic manipulation of topological states in p-wave superconductors

    DEFF Research Database (Denmark)

    Mercaldo, Maria Teresa; Cuoco, Mario; Kotetes, Panagiotis

    2018-01-01

    Substantial experimental investigation has provided evidence for spin-triplet pairing in diverse classes of materials and in a variety of artificial heterostructures. One of the fundamental challenges in this framework is how to manipulate the topological behavior of p-wave superconductors (PSC...

  18. Strain-enhanced optical absorbance of topological insulator films

    DEFF Research Database (Denmark)

    Brems, Mathias Rosdahl; Paaske, Jens; Lunde, Anders Mathias

    2018-01-01

    Topological insulator films are promising materials for optoelectronics due to a strong optical absorption and a thickness-dependent band gap of the topological surface states. They are superior candidates for photodetector applications in the THz-infrared spectrum, with a potential performance...... thickness, the surface-state band gap, and thereby the optical absorption, can be effectively tuned by the application of uniaxial strain epsilon(zz), leading to a divergent band-edge absorbance for epsilon(zz) greater than or similar to 6%. Shear strain breaks the crystal symmetry and leads...

  19. Surface conduction of topological Dirac electrons in bulk insulating Bi2Se3

    Science.gov (United States)

    Fuhrer, Michael

    2013-03-01

    The three dimensional strong topological insulator (STI) is a new phase of electronic matter which is distinct from ordinary insulators in that it supports on its surface a conducting two-dimensional surface state whose existence is guaranteed by topology. I will discuss experiments on the STI material Bi2Se3, which has a bulk bandgap of 300 meV, much greater than room temperature, and a single topological surface state with a massless Dirac dispersion. Field effect transistors consisting of thin (3-20 nm) Bi2Se3 are fabricated from mechanically exfoliated from single crystals, and electrochemical and/or chemical gating methods are used to move the Fermi energy into the bulk bandgap, revealing the ambipolar gapless nature of transport in the Bi2Se3 surface states. The minimum conductivity of the topological surface state is understood within the self-consistent theory of Dirac electrons in the presence of charged impurities. The intrinsic finite-temperature resistivity of the topological surface state due to electron-acoustic phonon scattering is measured to be ~60 times larger than that of graphene largely due to the smaller Fermi and sound velocities in Bi2Se3, which will have implications for topological electronic devices operating at room temperature. As samples are made thinner, coherent coupling of the top and bottom topological surfaces is observed through the magnitude of the weak anti-localization correction to the conductivity, and, in the thinnest Bi2Se3 samples (~ 3 nm), in thermally-activated conductivity reflecting the opening of a bandgap.

  20. Group-theoretical and topological analysis of localized rotation-vibration states

    International Nuclear Information System (INIS)

    Sadovskii, D.A.; Zhilinskii, B.I.

    1993-01-01

    A general scheme of qualitative analysis is applied to molecular rovibrational problems. The classical-quantum correspondence provides a description of different classes of localized quantum rotation-vibration states associated with localized classical motion. A description of qualitative features, such as localized motion, and of qualitative changes, such as localization phenomena, is based on the concept of the simplest Hamiltonian. It uses only the topological properties of the compact reduced phase space and the action of the symmetry group on this space. The qualitative changes of the simplest Hamiltonian are analyzed as bifurcations caused by rotational or vibrational excitation. The relation between the stationary points of the classical Hamiltonian function on the reduced phase space and the principal periodic trajectories in the coordinate space is analyzed for vibrational Hamiltonians. In particular, the relation between the nonlinear normal modes, proposed by Montaldi, Roberts, and Stewart [Philos. Trans. R. Soc. London, Ser. A 325, 237 (1988)], and normal- and local-mode models widely used in molecular physics is discussed. Along with a general consideration of localized rotational and vibrational states a more detailed analysis of the vibrational dynamics of an X 3 molecule with the D 3h symmetry, such as the H 3 + molecular ion, is given

  1. Implementing quantum information splitting using a five-partite cluster state in cavity QED

    International Nuclear Information System (INIS)

    Ye Liu; Song Qingmin; Li Aixia

    2010-01-01

    We propose an explicit scheme for splitting up quantum information into parts using five-atom cluster states in cavity quantum electrodynamics (QED). It is found that the quantum information splitting of an arbitrary two-atomic state can be realized by using the five-atom cluster state. During the process, the cavity fields are excited only virtually. The scheme is insensitive to cavity decay. Therefore, the scheme can be experimentally realized using a range of current cavity QED techniques. The schemes considered here are also secure against certain eavesdropping attacks.

  2. DIVERSE PROTOSTELLAR EVOLUTIONARY STATES IN THE YOUNG CLUSTER AFGL961

    International Nuclear Information System (INIS)

    Williams, Jonathan P.; Mann, Rita K.; Beaumont, Christopher N.; Swift, Jonathan J.; Adams, Joseph D.; Hora, Joe; Kassis, Marc; Lada, Elizabeth A.; Roman-Zuniga, Carlos G.

    2009-01-01

    We present arcsecond resolution mid-infrared and millimeter observations of the center of the young stellar cluster AFGL961 in the Rosette molecular cloud. Within 0.2 pc of each other, we find an early B star embedded in a dense core, a neighboring star of similar luminosity with no millimeter counterpart, a protostar that has cleared out a cavity in the circumcluster envelope, and two massive, dense cores with no infrared counterparts. An outflow emanates from one of these cores, indicating a deeply embedded protostar, but the other is starless, bound, and appears to be collapsing. The diversity of states implies either that protostellar evolution is faster in clusters than in isolation or that clusters form via quasi-static rather than dynamic collapse. The existence of a pre-stellar core at the cluster center shows that some star formation continues after and in close proximity to massive, ionizing stars.

  3. Quasiclassical treatment and odd-parity/triplet correspondence in topological superconductors

    International Nuclear Information System (INIS)

    Nagai, Yuki; Nakamura, Hiroki; Machida, Masahiko

    2014-01-01

    We construct a quasiclassical framework for topological superconductors with a strong spin–orbit coupling such as Cu x Bi 2 Se 3 . In a manner of the quasiclassical treatment, by decomposing the slowly varying component from a total quasiparticle wave function, the original massive Dirac Bogoliubov–de Gennes (BdG) Hamiltonian derived from a tight-binding model represented by an 8 × 8 matrix is reduced to a 4 × 4 matrix. The resultant equations are equivalent to Andreev-type equations of singlet or triplet superconductors, in which the apparent spin–orbit coupling vanishes. Using this formalism, we find that the odd-parity superconductivity in topological superconductors turns to the spin-triplet one. Moreover, in terms of quasiclassical treatment, we show that the topologically-protected zero-energy states in topological superconductors have correspond to the Andreev bound states established in a long history of studies of unconventional superconductors. This clearly indicates that low-energy nontrivial superconducting properties in the topological superconductors can be analyzed using established theoretical descriptions of the spin-triplet superconductors. (author)

  4. Unconventional quantum Hall effect in Floquet topological insulators

    KAUST Repository

    Tahir, M.

    2016-07-27

    We study an unconventional quantum Hall effect for the surface states of ultrathin Floquet topological insulators in a perpendicular magnetic field. The resulting band structure is modified by photon dressing and the topological property is governed by the low-energy dynamics of a single surface. An exchange of symmetric and antisymmetric surface states occurs by reversing the lights polarization. We find a novel quantum Hall state in which the zeroth Landau level undergoes a phase transition from a trivial insulator state, with Hall conductivity αyx = 0 at zero Fermi energy, to a Hall insulator state with αyx = e2/2h. These findings open new possibilities for experimentally realizing nontrivial quantum states and unusual quantum Hall plateaus at (±1/2,±3/2,±5/2, ...)e2/h. © 2016 IOP Publishing Ltd Printed in the UK.

  5. Unconventional quantum Hall effect in Floquet topological insulators

    KAUST Repository

    Tahir, M.; Vasilopoulos, P.; Schwingenschlö gl, Udo

    2016-01-01

    We study an unconventional quantum Hall effect for the surface states of ultrathin Floquet topological insulators in a perpendicular magnetic field. The resulting band structure is modified by photon dressing and the topological property is governed by the low-energy dynamics of a single surface. An exchange of symmetric and antisymmetric surface states occurs by reversing the lights polarization. We find a novel quantum Hall state in which the zeroth Landau level undergoes a phase transition from a trivial insulator state, with Hall conductivity αyx = 0 at zero Fermi energy, to a Hall insulator state with αyx = e2/2h. These findings open new possibilities for experimentally realizing nontrivial quantum states and unusual quantum Hall plateaus at (±1/2,±3/2,±5/2, ...)e2/h. © 2016 IOP Publishing Ltd Printed in the UK.

  6. Cluster synchronization transmission of different external signals in discrete uncertain network

    Science.gov (United States)

    Li, Chengren; Lü, Ling; Chen, Liansong; Hong, Yixuan; Zhou, Shuang; Yang, Yiming

    2018-07-01

    We research cluster synchronization transmissions of different external signals in discrete uncertain network. Based on the Lyapunov theorem, the network controller and the identification law of uncertain adjustment parameter are designed, and they are efficiently used to achieve the cluster synchronization and the identification of uncertain adjustment parameter. In our technical scheme, the network nodes in each cluster and the transmitted external signal can be different, and they allow the presence of uncertain parameters in the network. Especially, we are free to choose the clustering topologies, the cluster number and the node number in each cluster.

  7. Electronic properties of novel topological quantum materials studied by angle-resolved photoemission spectroscopy (ARPES)

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yun [Iowa State Univ., Ames, IA (United States)

    2016-12-17

    The discovery of quantum Hall e ect has motivated the use of topology instead of broken symmetry to classify the states of matter. Quantum spin Hall e ect has been proposed to have a separation of spin currents as an analogue of the charge currents separation in quantum Hall e ect, leading us to the era of topological insulators. Three-dimensional analogue of the Dirac state in graphene has brought us the three-dimensional Dirac states. Materials with three-dimensional Dirac states could potentially be the parent compounds for Weyl semimetals and topological insulators when time-reversal or space inversion symmetry is broken. In addition to the single Dirac point linking the two dispersion cones in the Dirac/Weyl semimetals, Dirac points can form a line in the momentum space, resulting in a topological node line semimetal. These fascinating novel topological quantum materials could provide us platforms for studying the relativistic physics in condensed matter systems and potentially lead to design of new electronic devices that run faster and consume less power than traditional, silicon based transistors. In this thesis, we present the electronic properties of novel topological quantum materials studied by angle-resolved photoemission spectroscopy (ARPES).

  8. Topological Methods for Visualization

    Energy Technology Data Exchange (ETDEWEB)

    Berres, Anne Sabine [Los Alamos National Lab. (LANL), Los Alamos, NM (United Stat

    2016-04-07

    This slide presentation describes basic topological concepts, including topological spaces, homeomorphisms, homotopy, betti numbers. Scalar field topology explores finding topological features and scalar field visualization, and vector field topology explores finding topological features and vector field visualization.

  9. Pb5Bi24Se41: A new member of the homologous series forming topological insulator heterostructures

    International Nuclear Information System (INIS)

    Segawa, Kouji; Taskin, A.A.; Ando, Yoichi

    2015-01-01

    We have synthesized Pb 5 Bi 24 Se 41 , which is a new member of the (PbSe) 5 (Bi 2 Se 3 ) 3m homologous series with m=4. This series of compounds consist of alternating layers of the topological insulator Bi 2 Se 3 and the ordinary insulator PbSe. Such a naturally-formed heterostructure has recently been elucidated to give rise to peculiar quasi-two-dimensional topological states throughout the bulk, and the discovery of Pb 5 Bi 24 Se 41 expands the tunability of the topological states in this interesting homologous series. The trend in the resistivity anisotropy in this homologous series suggests an important role of hybridization of the topological states in the out-of-plane transport. - Graphical abstract: X-ray diffraction profiles taken on cleaved surfaces of single-crystal samples of the (PbSe) 5 (Bi 2 Se 3 ) 3m homologous series with various m values up to 4, which realizes topological insulator heterostructures. Schematic crystal structure of the new phase, m=4, is also shown. - Highlights: • We have synthesized a new member of the homologous series related to topological insulators. • In this compound, a heterostructure of topological and ordinary insulators naturally forms. • Resistivity anisotropy suggests an important role of hybridization of the topological states. • This compound expands the tunability of the topological states via chemical means

  10. Introduction to topology

    CERN Document Server

    Gamelin, Theodore W

    1999-01-01

    A fresh approach to introductory topology, this volume explains nontrivial applications of metric space topology to analysis, clearly establishing their relationship. Also, topics from elementary algebraic topology focus on concrete results with minimal algebraic formalism. The first two chapters consider metric space and point-set topology; the second two, algebraic topological material. 1983 edition. Solutions to Selected Exercises. List of Notations. Index. 51 illustrations.

  11. Competitive cluster growth in complex networks.

    Science.gov (United States)

    Moreira, André A; Paula, Demétrius R; Costa Filho, Raimundo N; Andrade, José S

    2006-06-01

    In this work we propose an idealized model for competitive cluster growth in complex networks. Each cluster can be thought of as a fraction of a community that shares some common opinion. Our results show that the cluster size distribution depends on the particular choice for the topology of the network of contacts among the agents. As an application, we show that the cluster size distributions obtained when the growth process is performed on hierarchical networks, e.g., the Apollonian network, have a scaling form similar to what has been observed for the distribution of a number of votes in an electoral process. We suggest that this similarity may be due to the fact that social networks involved in the electoral process may also possess an underlining hierarchical structure.

  12. Observation of symmetry-protected topological band with ultracold fermions

    Science.gov (United States)

    Song, Bo; Zhang, Long; He, Chengdong; Poon, Ting Fung Jeffrey; Hajiyev, Elnur; Zhang, Shanchao; Liu, Xiong-Jun; Jo, Gyu-Boong

    2018-01-01

    Symmetry plays a fundamental role in understanding complex quantum matter, particularly in classifying topological quantum phases, which have attracted great interests in the recent decade. An outstanding example is the time-reversal invariant topological insulator, a symmetry-protected topological (SPT) phase in the symplectic class of the Altland-Zirnbauer classification. We report the observation for ultracold atoms of a noninteracting SPT band in a one-dimensional optical lattice and study quench dynamics between topologically distinct regimes. The observed SPT band can be protected by a magnetic group and a nonlocal chiral symmetry, with the band topology being measured via Bloch states at symmetric momenta. The topology also resides in far-from-equilibrium spin dynamics, which are predicted and observed in experiment to exhibit qualitatively distinct behaviors in quenching to trivial and nontrivial regimes, revealing two fundamental types of spin-relaxation dynamics related to bulk topology. This work opens the way to expanding the scope of SPT physics with ultracold atoms and studying nonequilibrium quantum dynamics in these exotic systems. PMID:29492457

  13. RRW: repeated random walks on genome-scale protein networks for local cluster discovery

    Directory of Open Access Journals (Sweden)

    Can Tolga

    2009-09-01

    Full Text Available Abstract Background We propose an efficient and biologically sensitive algorithm based on repeated random walks (RRW for discovering functional modules, e.g., complexes and pathways, within large-scale protein networks. Compared to existing cluster identification techniques, RRW implicitly makes use of network topology, edge weights, and long range interactions between proteins. Results We apply the proposed technique on a functional network of yeast genes and accurately identify statistically significant clusters of proteins. We validate the biological significance of the results using known complexes in the MIPS complex catalogue database and well-characterized biological processes. We find that 90% of the created clusters have the majority of their catalogued proteins belonging to the same MIPS complex, and about 80% have the majority of their proteins involved in the same biological process. We compare our method to various other clustering techniques, such as the Markov Clustering Algorithm (MCL, and find a significant improvement in the RRW clusters' precision and accuracy values. Conclusion RRW, which is a technique that exploits the topology of the network, is more precise and robust in finding local clusters. In addition, it has the added flexibility of being able to find multi-functional proteins by allowing overlapping clusters.

  14. Charge and Spin Transport in Spin-orbit Coupled and Topological Systems

    KAUST Repository

    Ndiaye, Papa Birame

    2017-10-31

    In the search for low power operation of microelectronic devices, spin-based solutions have attracted undeniable increasing interest due to their intrinsic magnetic nonvolatility. The ability to electrically manipulate the magnetic order using spin-orbit interaction, associated with the recent emergence of topological spintronics with its promise of highly efficient charge-to-spin conversion in solid state, offer alluring opportunities in terms of system design. Although the related technology is still at its infancy, this thesis intends to contribute to this engaging field by investigating the nature of the charge and spin transport in spin-orbit coupled and topological systems using quantum transport methods. We identified three promising building blocks for next-generation technology, three classes of systems that possibly enhance the spin and charge transport efficiency: (i)- topological insulators, (ii)- spin-orbit coupled magnonic systems, (iii)- topological magnetic textures (skyrmions and 3Q magnetic state). Chapter 2 reviews the basics and essential concepts used throughout the thesis: the spin-orbit coupling, the mathematical notion of topology and its importance in condensed matter physics, then topological magnetism and a zest of magnonics. In Chapter 3, we study the spin-orbit torques at the magnetized interfaces of 3D topological insulators. We demonstrated that their peculiar form, compared to other spin-orbit torques, have important repercussions in terms of magnetization reversal, charge pumping and anisotropic damping. In Chapter 4, we showed that the interplay between magnon current jm and magnetization m in homogeneous ferromagnets with Dzyaloshinskii-Moriya (DM) interaction, produces a field-like torque as well as a damping-like torque. These DM torques mediated by spin wave can tilt the imeaveraged magnetization direction and are similar to Rashba torques for electronic systems. Moreover, the DM torque is more efficient when magnons are

  15. Cluster state generation in one-dimensional Kitaev honeycomb model via shortcut to adiabaticity

    Science.gov (United States)

    Kyaw, Thi Ha; Kwek, Leong-Chuan

    2018-04-01

    We propose a mean to obtain computationally useful resource states also known as cluster states, for measurement-based quantum computation, via transitionless quantum driving algorithm. The idea is to cool the system to its unique ground state and tune some control parameters to arrive at computationally useful resource state, which is in one of the degenerate ground states. Even though there is set of conserved quantities already present in the model Hamiltonian, which prevents the instantaneous state to go to any other eigenstate subspaces, one cannot quench the control parameters to get the desired state. In that case, the state will not evolve. With involvement of the shortcut Hamiltonian, we obtain cluster states in fast-forward manner. We elaborate our proposal in the one-dimensional Kitaev honeycomb model, and show that the auxiliary Hamiltonian needed for the counterdiabatic driving is of M-body interaction.

  16. Topological superfluids with finite-momentum pairing and Majorana fermions.

    Science.gov (United States)

    Qu, Chunlei; Zheng, Zhen; Gong, Ming; Xu, Yong; Mao, Li; Zou, Xubo; Guo, Guangcan; Zhang, Chuanwei

    2013-01-01

    Majorana fermions (MFs), quantum particles that are their own antiparticles, are not only of fundamental importance in elementary particle physics and dark matter, but also building blocks for fault-tolerant quantum computation. Recently MFs have been intensively studied in solid state and cold atomic systems. These studies are generally based on superconducting pairing with zero total momentum. On the other hand, finite total momentum Cooper pairings, known as Fulde-Ferrell (FF) Larkin-Ovchinnikov (LO) states, were widely studied in many branches of physics. However, whether FF and LO superconductors can support MFs has not been explored. Here we show that MFs can exist in certain types of gapped FF states, yielding a new quantum matter: topological FF superfluids/superconductors. We demonstrate the existence of such topological FF superfluids and the associated MFs using spin-orbit-coupled degenerate Fermi gases and derive their parameter regions. The implementation of topological FF superconductors in semiconductor/superconductor heterostructures is also discussed.

  17. Quantum phase transitions between a class of symmetry protected topological states

    Energy Technology Data Exchange (ETDEWEB)

    Tsui, Lokman; Jiang, Hong-Chen; Lu, Yuan-Ming; Lee, Dung-Hai

    2015-07-01

    The subject of this paper is the phase transition between symmetry protected topological states (SPTs). We consider spatial dimension d and symmetry group G so that the cohomology group, Hd+1(G,U(1)), contains at least one Z2n or Z factor. We show that the phase transition between the trivial SPT and the root states that generate the Z2n or Z groups can be induced on the boundary of a (d+1)-dimensional View the MathML source-symmetric SPT by a View the MathML source symmetry breaking field. Moreover we show these boundary phase transitions can be “transplanted” to d dimensions and realized in lattice models as a function of a tuning parameter. The price one pays is for the critical value of the tuning parameter there is an extra non-local (duality-like) symmetry. In the case where the phase transition is continuous, our theory predicts the presence of unusual (sometimes fractionalized) excitations corresponding to delocalized boundary excitations of the non-trivial SPT on one side of the transition. This theory also predicts other phase transition scenarios including first order transition and transition via an intermediate symmetry breaking phase.

  18. A Clustering Routing Protocol for Mobile Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Jinke Huang

    2016-01-01

    Full Text Available The dynamic topology of a mobile ad hoc network poses a real challenge in the design of hierarchical routing protocol, which combines proactive with reactive routing protocols and takes advantages of both. And as an essential technique of hierarchical routing protocol, clustering of nodes provides an efficient method of establishing a hierarchical structure in mobile ad hoc networks. In this paper, we designed a novel clustering algorithm and a corresponding hierarchical routing protocol for large-scale mobile ad hoc networks. Each cluster is composed of a cluster head, several cluster gateway nodes, several cluster guest nodes, and other cluster members. The proposed routing protocol uses proactive protocol between nodes within individual clusters and reactive protocol between clusters. Simulation results show that the proposed clustering algorithm and hierarchical routing protocol provide superior performance with several advantages over existing clustering algorithm and routing protocol, respectively.

  19. Topological phases in the Haldane model with spin–spin on-site interactions

    Science.gov (United States)

    Rubio-García, A.; García-Ripoll, J. J.

    2018-04-01

    Ultracold atom experiments allow the study of topological insulators, such as the non-interacting Haldane model. In this work we study a generalization of the Haldane model with spin–spin on-site interactions that can be implemented on such experiments. We focus on measuring the winding number, a topological invariant, of the ground state, which we compute using a mean-field calculation that effectively captures long-range correlations and a matrix product state computation in a lattice with 64 sites. Our main result is that we show how the topological phases present in the non-interacting model survive until the interactions are comparable to the kinetic energy. We also demonstrate the accuracy of our mean-field approach in efficiently capturing long-range correlations. Based on state-of-the-art ultracold atom experiments, we propose an implementation of our model that can give information about the topological phases.

  20. Electronic transport in bismuth selenide in the topological insulator regime

    Science.gov (United States)

    Kim, Dohun

    The 3D topological insulators (TIs) have an insulating bulk but spin-momentum coupled metallic surface states stemming from band inversion due to strong spin-orbit interaction, whose existence is guaranteed by the topology of the band structure of the insulator. While the STI surface state has been studied spectroscopically by e.g. photoemission and scanned probes, transport experiments have failed to demonstrate clear signature of the STI due to high level of bulk conduction. In this thesis, I present experimental results on the transport properties of TI material Bi2Se3 in the absence of bulk conduction (TI regime), achieved by applying novel p-type doping methods. Field effect transistors consisting of thin (thickness: 5-17 nm) Bi2Se3 are fabricated by mechanical exfoliation of single crystals, and a combination of conventional dielectric (300 nm thick SiO2) and electrochemical or chemical gating methods are used to move the Fermi energy through the surface Dirac point inside bulk band gap, revealing the ambipolar gapless nature of transport in the Bi2Se3 surface states. The minimum conductivity of the topological surface state is understood within the self-consistent theory of Dirac electrons in the presence of charged impurities. The intrinsic finite-temperature resistivity of the topological surface state due to electron-acoustic phonon scattering is measured to be 60 times larger than that of graphene largely due to the smaller Fermi and sound velocities in Bi2Se 3, which will have implications for topological electronic devices operating at room temperature. Along with semi-classical Boltzmann transport, I also discuss 2D weak anti-localization (WAL) behavior of the topological surface states. By investigating gate-tuned WAL behavior in thin (5-17 nm) TI films, I show that WAL in the TI regime is extraordinarily sensitive to the hybridization induced quantum mechanical tunneling between top and bottom topological surfaces, and interplay of phase coherence

  1. Exact WKB analysis and cluster algebras

    International Nuclear Information System (INIS)

    Iwaki, Kohei; Nakanishi, Tomoki

    2014-01-01

    We develop the mutation theory in the exact WKB analysis using the framework of cluster algebras. Under a continuous deformation of the potential of the Schrödinger equation on a compact Riemann surface, the Stokes graph may change the topology. We call this phenomenon the mutation of Stokes graphs. Along the mutation of Stokes graphs, the Voros symbols, which are monodromy data of the equation, also mutate due to the Stokes phenomenon. We show that the Voros symbols mutate as variables of a cluster algebra with surface realization. As an application, we obtain the identities of Stokes automorphisms associated with periods of cluster algebras. The paper also includes an extensive introduction of the exact WKB analysis and the surface realization of cluster algebras for nonexperts. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Cluster algebras in mathematical physics’. (paper)

  2. Emerging Trends in Topological Insulators and Topological ...

    Indian Academy of Sciences (India)

    /fulltext/reso/022/08/0787-0800. Keywords. Superconductor, quantum Hall effect, topological insulator, Majorana fermions. Abstract. Topological insulators are new class of materials which arecharacterized by a bulk band gap like ordinary ...

  3. Robust network topologies for generating switch-like cellular responses.

    Directory of Open Access Journals (Sweden)

    Najaf A Shah

    2011-06-01

    Full Text Available Signaling networks that convert graded stimuli into binary, all-or-none cellular responses are critical in processes ranging from cell-cycle control to lineage commitment. To exhaustively enumerate topologies that exhibit this switch-like behavior, we simulated all possible two- and three-component networks on random parameter sets, and assessed the resulting response profiles for both steepness (ultrasensitivity and extent of memory (bistability. Simulations were used to study purely enzymatic networks, purely transcriptional networks, and hybrid enzymatic/transcriptional networks, and the topologies in each class were rank ordered by parametric robustness (i.e., the percentage of applied parameter sets exhibiting ultrasensitivity or bistability. Results reveal that the distribution of network robustness is highly skewed, with the most robust topologies clustering into a small number of motifs. Hybrid networks are the most robust in generating ultrasensitivity (up to 28% and bistability (up to 18%; strikingly, a purely transcriptional framework is the most fragile in generating either ultrasensitive (up to 3% or bistable (up to 1% responses. The disparity in robustness among the network classes is due in part to zero-order ultrasensitivity, an enzyme-specific phenomenon, which repeatedly emerges as a particularly robust mechanism for generating nonlinearity and can act as a building block for switch-like responses. We also highlight experimentally studied examples of topologies enabling switching behavior, in both native and synthetic systems, that rank highly in our simulations. This unbiased approach for identifying topologies capable of a given response may be useful in discovering new natural motifs and in designing robust synthetic gene networks.

  4. Dynamic Load Balanced Clustering using Elitism based Random Immigrant Genetic Approach for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    K. Mohaideen Pitchai

    2017-07-01

    Full Text Available Wireless Sensor Network (WSN consists of a large number of small sensors with restricted energy. Prolonged network lifespan, scalability, node mobility and load balancing are important needs for several WSN applications. Clustering the sensor nodes is an efficient technique to reach these goals. WSN have the characteristics of topology dynamics because of factors like energy conservation and node movement that leads to Dynamic Load Balanced Clustering Problem (DLBCP. In this paper, Elitism based Random Immigrant Genetic Approach (ERIGA is proposed to solve DLBCP which adapts to topology dynamics. ERIGA uses the dynamic Genetic Algorithm (GA components for solving the DLBCP. The performance of load balanced clustering process is enhanced with the help of this dynamic GA. As a result, the ERIGA achieves to elect suitable cluster heads which balances the network load and increases the lifespan of the network.

  5. Topology of plasma equilibria and the current closure condition

    International Nuclear Information System (INIS)

    Kocic, S.; Mahajan, S.M.; Hazeltine, R.D.

    2005-01-01

    A virtually complete description of the topology of stationary incompressible Euler flows and the magnetic field satisfying the magnetostatic equation is given by a theorem due to Arnol'd. We apply this theorem to describe the topology of stationary states of plasmas with significant fluid flow, obeying the Hall magnetohydrodynamics model equations. In the context of the integrability (nonchaotic topology) of the magnetic and velocity fields, we discuss the validity of conditions analogous to that of Greene and Johnson, which, in the case of magnetostatic equations, states that the line integral ∫dl/B is the same for each closed magnetic field line on a given magnetic surface. We also show how this property follows from the existence of a continuous volume-preserving symmetry of the magnetic field

  6. Percolating cluster of center vortices and confinement

    International Nuclear Information System (INIS)

    Gliozzi, Ferdinando; Panero, Marco; Provero, Paolo

    2003-01-01

    We study the role of percolating clusters of center vortices in configurations of an Ising gauge theory in 3D. It is known that low energy features of gauge theories can be described in terms of an 'effective string picture', and that confinement properties are associated with topologically non-trivial configurations. We focus our attention upon percolating clusters of center vortices, and present numerical evidence for the fact that these objects play a preminent role in confinement phenomenon, since their removal sweeps off confinement altogether. Moreover, numerical simulations show that the string fluctuations, and in particular the Mischer term, are completely encoded in the percolating cluster

  7. From topological strings to minimal models

    International Nuclear Information System (INIS)

    Foda, Omar; Wu, Jian-Feng

    2015-01-01

    We glue four refined topological vertices to obtain the building block of 5D U(2) quiver instanton partition functions. We take the 4D limit of the result to obtain the building block of 4D instanton partition functions which, using the AGT correspondence, are identified with Virasoro conformal blocks. We show that there is a choice of the parameters of the topological vertices that we start with, as well as the parameters and the intermediate states involved in the gluing procedure, such that we obtain Virasoro minimal model conformal blocks.

  8. From topological strings to minimal models

    Energy Technology Data Exchange (ETDEWEB)

    Foda, Omar [School of Mathematics and Statistics, University of Melbourne,Royal Parade, Parkville, VIC 3010 (Australia); Wu, Jian-Feng [Department of Mathematics and Statistics, Henan University,Minglun Street, Kaifeng city, Henan (China); Beijing Institute of Theoretical Physics and Mathematics,3rd Shangdi Street, Beijing (China)

    2015-07-24

    We glue four refined topological vertices to obtain the building block of 5D U(2) quiver instanton partition functions. We take the 4D limit of the result to obtain the building block of 4D instanton partition functions which, using the AGT correspondence, are identified with Virasoro conformal blocks. We show that there is a choice of the parameters of the topological vertices that we start with, as well as the parameters and the intermediate states involved in the gluing procedure, such that we obtain Virasoro minimal model conformal blocks.

  9. Protein structure: geometry, topology and classification

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, William R.; May, Alex C.W.; Brown, Nigel P.; Aszodi, Andras [Division of Mathematical Biology, National Institute for Medical Research, London (United Kingdom)

    2001-04-01

    The structural principals of proteins are reviewed and analysed from a geometric perspective with a view to revealing the underlying regularities in their construction. Computer methods for the automatic comparison and classification of these structures are then reviewed with an analysis of the statistical significance of comparing different shapes. Following an analysis of the current state of the classification of proteins, more abstract geometric and topological representations are explored, including the occurrence of knotted topologies. The review concludes with a consideration of the origin of higher-level symmetries in protein structure. (author)

  10. The new topological sectors associated with quantum electrodynamics

    International Nuclear Information System (INIS)

    Marino, E.C.

    1994-01-01

    A formulation of Quantum Electrodynamics in terms of an antisymmetric-tensor gauge field is presented. In this formulation the topological current of this field appears as a source for the electromagnetic field and the topological charge therefore acts physically as an electric charge. These nontrivial, electrically charged, sectors contain massless states orthogonal to the vacuum which are created by a gauge invariant operator can be interpreted as coherent states of photons. The new states do interact with the charged states of QCD in the usual way. It is argued that if these new sectors are in fact realized in nature then a very intense background electromagnetic field is necessary for the experimental observation of them. The order of magnitude of the intensity threshold is presented. (author). 2 refs

  11. Graph theoretical analysis reveals disrupted topological properties of whole brain functional networks in temporal lobe epilepsy.

    Science.gov (United States)

    Wang, Junjing; Qiu, Shijun; Xu, Yong; Liu, Zhenyin; Wen, Xue; Hu, Xiangshu; Zhang, Ruibin; Li, Meng; Wang, Wensheng; Huang, Ruiwang

    2014-09-01

    Temporal lobe epilepsy (TLE) is one of the most common forms of drug-resistant epilepsy. Previous studies have indicated that the TLE-related impairments existed in extensive local functional networks. However, little is known about the alterations in the topological properties of whole brain functional networks. In this study, we acquired resting-state BOLD-fMRI (rsfMRI) data from 26 TLE patients and 25 healthy controls, constructed their whole brain functional networks, compared the differences in topological parameters between the TLE patients and the controls, and analyzed the correlation between the altered topological properties and the epilepsy duration. The TLE patients showed significant increases in clustering coefficient and characteristic path length, but significant decrease in global efficiency compared to the controls. We also found altered nodal parameters in several regions in the TLE patients, such as the bilateral angular gyri, left middle temporal gyrus, right hippocampus, triangular part of left inferior frontal gyrus, left inferior parietal but supramarginal and angular gyri, and left parahippocampus gyrus. Further correlation analysis showed that the local efficiency of the TLE patients correlated positively with the epilepsy duration. Our results indicated the disrupted topological properties of whole brain functional networks in TLE patients. Our findings indicated the TLE-related impairments in the whole brain functional networks, which may help us to understand the clinical symptoms of TLE patients and offer a clue for the diagnosis and treatment of the TLE patients. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  12. Spintronics Based on Topological Insulators

    Science.gov (United States)

    Fan, Yabin; Wang, Kang L.

    2016-10-01

    Spintronics using topological insulators (TIs) as strong spin-orbit coupling (SOC) materials have emerged and shown rapid progress in the past few years. Different from traditional heavy metals, TIs exhibit very strong SOC and nontrivial topological surface states that originate in the bulk band topology order, which can provide very efficient means to manipulate adjacent magnetic materials when passing a charge current through them. In this paper, we review the recent progress in the TI-based magnetic spintronics research field. In particular, we focus on the spin-orbit torque (SOT)-induced magnetization switching in the magnetic TI structures, spin-torque ferromagnetic resonance (ST-FMR) measurements in the TI/ferromagnet structures, spin pumping and spin injection effects in the TI/magnet structures, as well as the electrical detection of the surface spin-polarized current in TIs. Finally, we discuss the challenges and opportunities in the TI-based spintronics field and its potential applications in ultralow power dissipation spintronic memory and logic devices.

  13. Network clustering coefficient approach to DNA sequence analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gerhardt, Guenther J.L. [Universidade Federal do Rio Grande do Sul-Hospital de Clinicas de Porto Alegre, Rua Ramiro Barcelos 2350/sala 2040/90035-003 Porto Alegre (Brazil); Departamento de Fisica e Quimica da Universidade de Caxias do Sul, Rua Francisco Getulio Vargas 1130, 95001-970 Caxias do Sul (Brazil); Lemke, Ney [Programa Interdisciplinar em Computacao Aplicada, Unisinos, Av. Unisinos, 950, 93022-000 Sao Leopoldo, RS (Brazil); Corso, Gilberto [Departamento de Biofisica e Farmacologia, Centro de Biociencias, Universidade Federal do Rio Grande do Norte, Campus Universitario, 59072 970 Natal, RN (Brazil)]. E-mail: corso@dfte.ufrn.br

    2006-05-15

    In this work we propose an alternative DNA sequence analysis tool based on graph theoretical concepts. The methodology investigates the path topology of an organism genome through a triplet network. In this network, triplets in DNA sequence are vertices and two vertices are connected if they occur juxtaposed on the genome. We characterize this network topology by measuring the clustering coefficient. We test our methodology against two main bias: the guanine-cytosine (GC) content and 3-bp (base pairs) periodicity of DNA sequence. We perform the test constructing random networks with variable GC content and imposed 3-bp periodicity. A test group of some organisms is constructed and we investigate the methodology in the light of the constructed random networks. We conclude that the clustering coefficient is a valuable tool since it gives information that is not trivially contained in 3-bp periodicity neither in the variable GC content.

  14. Topology

    CERN Document Server

    Manetti, Marco

    2015-01-01

    This is an introductory textbook on general and algebraic topology, aimed at anyone with a basic knowledge of calculus and linear algebra. It provides full proofs and includes many examples and exercises. The covered topics include: set theory and cardinal arithmetic; axiom of choice and Zorn's lemma; topological spaces and continuous functions; connectedness and compactness; Alexandrov compactification; quotient topologies; countability and separation axioms; prebasis and Alexander's theorem; the Tychonoff theorem and paracompactness; complete metric spaces and function spaces; Baire spaces; homotopy of maps; the fundamental group; the van Kampen theorem; covering spaces; Brouwer and Borsuk's theorems; free groups and free product of groups; and basic category theory. While it is very concrete at the beginning, abstract concepts are gradually introduced. It is suitable for anyone needing a basic, comprehensive introduction to general and algebraic topology and its applications.

  15. Beginning topology

    CERN Document Server

    Goodman, Sue E

    2009-01-01

    Beginning Topology is designed to give undergraduate students a broad notion of the scope of topology in areas of point-set, geometric, combinatorial, differential, and algebraic topology, including an introduction to knot theory. A primary goal is to expose students to some recent research and to get them actively involved in learning. Exercises and open-ended projects are placed throughout the text, making it adaptable to seminar-style classes. The book starts with a chapter introducing the basic concepts of point-set topology, with examples chosen to captivate students' imaginations while i

  16. Energy Efficient Clustering Based Network Protocol Stack for 3D Airborne Monitoring System

    Directory of Open Access Journals (Sweden)

    Abhishek Joshi

    2017-01-01

    Full Text Available Wireless Sensor Network consists of large number of nodes densely deployed in ad hoc manner. Usually, most of the application areas of WSNs require two-dimensional (2D topology. Various emerging application areas such as airborne networks and underwater wireless sensor networks are usually deployed using three-dimensional (3D network topology. In this paper, a static 3D cluster-based network topology has been proposed for airborne networks. A network protocol stack consisting of various protocols such as TDMA MAC and dynamic routing along with services such as time synchronization, Cluster Head rotation, and power level management has been proposed for this airborne network. The proposed protocol stack has been implemented on the hardware platform consisting of number of TelosB nodes. This 3D airborne network architecture can be used to measure Air Quality Index (AQI in an area. Various parameters of network such as energy consumption, Cluster Head rotation, time synchronization, and Packet Delivery Ratio (PDR have been analyzed. Detailed description of the implementation of the protocol stack along with results of implementation has been provided in this paper.

  17. 3D Quantum Hall Effect of Fermi Arc in Topological Semimetals

    Science.gov (United States)

    Wang, C. M.; Sun, Hai-Peng; Lu, Hai-Zhou; Xie, X. C.

    2017-09-01

    The quantum Hall effect is usually observed in 2D systems. We show that the Fermi arcs can give rise to a distinctive 3D quantum Hall effect in topological semimetals. Because of the topological constraint, the Fermi arc at a single surface has an open Fermi surface, which cannot host the quantum Hall effect. Via a "wormhole" tunneling assisted by the Weyl nodes, the Fermi arcs at opposite surfaces can form a complete Fermi loop and support the quantum Hall effect. The edge states of the Fermi arcs show a unique 3D distribution, giving an example of (d -2 )-dimensional boundary states. This is distinctly different from the surface-state quantum Hall effect from a single surface of topological insulator. As the Fermi energy sweeps through the Weyl nodes, the sheet Hall conductivity evolves from the 1 /B dependence to quantized plateaus at the Weyl nodes. This behavior can be realized by tuning gate voltages in a slab of topological semimetal, such as the TaAs family, Cd3 As2 , or Na3Bi . This work will be instructive not only for searching transport signatures of the Fermi arcs but also for exploring novel electron gases in other topological phases of matter.

  18. Unidirectional spin Hall magnetoresistance in topological insulator/ferromagnetic layer heterostructures

    Science.gov (United States)

    Kally, James; Lv, Yang; Zhang, Delin; Lee, Joon Sue; Samarth, Nitin; Wang, Jian-Ping; Department of Electrical; Computer Engineering, University of Minnesota, Minneapolis Collaboration; Department of Physics, Pennsylvania State University Collaboration

    The surface states of topological insulators offer a potentially very efficient way to generate spins and spin-orbit torques to magnetic moments in proximity. The switching by spin-orbit torque itself only requires two terminals so that a charge current can be applied. However, a third terminal with additional magnetic tunneling junction structure is needed to sense the magnetization state if such devices are used for memory and logic applications. The recent discovery of unidirectional spin Hall magnetoresistance in heavy metal/ferromagnetic and topological insulator/magnetically doped topological insulator systems offers an alternative way to sense magnetization while still keeping the number of terminals to minimal two. The unidirectional spin Hall magnetoresistance in topological insulator/strong ferromagnetic layer heterostructure system has yet not been reported. In this work, we report our experimental observations of such magnetoresistance. It is found to be present and comparable to the best result of the previous reported Ta/Co systems in terms of magnetoresistance per current density per total resistance.

  19. Percolation Analysis as a Tool to Describe the Topology of the Large Scale Structure of the Universe

    Science.gov (United States)

    Yess, Capp D.

    1997-09-01

    Percolation analysis is the study of the properties of clusters. In cosmology, it is the statistics of the size and number of clusters. This thesis presents a refinement of percolation analysis and its application to astronomical data. An overview of the standard model of the universe and the development of large scale structure is presented in order to place the study in historical and scientific context. Then using percolation statistics we, for the first time, demonstrate the universal character of a network pattern in the real space, mass distributions resulting from nonlinear gravitational instability of initial Gaussian fluctuations. We also find that the maximum of the number of clusters statistic in the evolved, nonlinear distributions is determined by the effective slope of the power spectrum. Next, we present percolation analyses of Wiener Reconstructions of the IRAS 1.2 Jy Redshift Survey. There are ten reconstructions of galaxy density fields in real space spanning the range β = 0.1 to 1.0, where β=Ω0.6/b,/ Ω is the present dimensionless density and b is the linear bias factor. Our method uses the growth of the largest cluster statistic to characterize the topology of a density field, where Gaussian randomized versions of the reconstructions are used as standards for analysis. For the reconstruction volume of radius, R≈100h-1 Mpc, percolation analysis reveals a slight 'meatball' topology for the real space, galaxy distribution of the IRAS survey. Finally, we employ a percolation technique developed for pointwise distributions to analyze two-dimensional projections of the three northern and three southern slices in the Las Campanas Redshift Survey and then give consideration to further study of the methodology, errors and application of percolation. We track the growth of the largest cluster as a topological indicator to a depth of 400 h-1 Mpc, and report an unambiguous signal, with high signal-to-noise ratio, indicating a network topology which in

  20. Thermodynamics of the topological Kondo model

    Directory of Open Access Journals (Sweden)

    Francesco Buccheri

    2015-07-01

    Full Text Available Using the thermodynamic Bethe ansatz, we investigate the topological Kondo model, which describes a set of one-dimensional external wires, pertinently coupled to a central region hosting a set of Majorana bound states. After a short review of the Bethe ansatz solution, we study the system at finite temperature and derive its free energy for arbitrary (even and odd number of external wires. We then analyse the ground state energy as a function of the number of external wires and of their couplings to the Majorana bound states. Then, we compute, both for small and large temperatures, the entropy of the Majorana degrees of freedom localized within the central region and connected to the external wires. Our exact computation of the impurity entropy provides evidence of the importance of fermion parity symmetry in the realization of the topological Kondo model. Finally, we also obtain the low-temperature behaviour of the specific heat of the Majorana bound states, which provides a signature of the non-Fermi-liquid nature of the strongly coupled fixed point.