WorldWideScience

Sample records for topography

  1. Topography of the Betics: crustal thickening, dynamic topography and relief inheritance

    Science.gov (United States)

    Janowski, Marianne; Loget, Nicolas; Bellahsen, Nicolas; Husson, Laurent; Le Pourhiet, Laetitia; Meyer, Bertrand

    2017-04-01

    The main mechanism that explains high orogenic topographies is the isostatic adjustment due to crustal thickening. However in the Betic Cordillera (South Spain), the present-day elevation and crustal thickness are not correlated. That is at odds with the general premise of isostasy and requires reappraising the question of the driving mechanisms leading to the current topography. The Betics are located at the western edge of the alpine Mediterranean belt. Its Cenozoic orogenic building was disrupted by a major crustal thinning event induced by a slab rollback in the internal zones (Alboran domain) during Neogene. Topography was largely levelled and flooded by the sea during Neogene extension, and then has been folded since the Late Tortonian inversion. The present-day topography shows flat summits still preserved from fluvial regression in the internal zones (central and eastern Betics). These low-relief surfaces may be inherited from the Neogene planation toward sea-level as rocks cooling histories inferred from low-temperature thermochronology seem to point it out. Post-Tortonian shortening estimated thanks to a crustal-scale N-S cross-section in the eastern Betics (at the Sierra Nevada longitude) does not exceed few kilometers which is much lower than the shortening required by isostatic equilibrium, and is thus insufficient to explain the post-Tortonian topography building. We tested the hypothesis that mantle dynamics could in fact be an important mechanism that explains the topography of the Betics. We first computed the residual topography (i.e. the non-isostatic component of the elevation) using the most recent published Moho mapping of the area. In the western Betics, our results show important negative residual topography (down to -3 km) possibly associated with the west-Alboran slab suction. In the eastern Betics however, positive residual topography is important (up to +3 km) and can be explained by the dynamic mantle support of the topography, possibly

  2. Dynamic Topography Revisited

    Science.gov (United States)

    Moresi, Louis

    2015-04-01

    Dynamic Topography Revisited Dynamic topography is usually considered to be one of the trinity of contributing causes to the Earth's non-hydrostatic topography along with the long-term elastic strength of the lithosphere and isostatic responses to density anomalies within the lithosphere. Dynamic topography, thought of this way, is what is left over when other sources of support have been eliminated. An alternate and explicit definition of dynamic topography is that deflection of the surface which is attributable to creeping viscous flow. The problem with the first definition of dynamic topography is 1) that the lithosphere is almost certainly a visco-elastic / brittle layer with no absolute boundary between flowing and static regions, and 2) the lithosphere is, a thermal / compositional boundary layer in which some buoyancy is attributable to immutable, intrinsic density variations and some is due to thermal anomalies which are coupled to the flow. In each case, it is difficult to draw a sharp line between each contribution to the overall topography. The second definition of dynamic topography does seem cleaner / more precise but it suffers from the problem that it is not measurable in practice. On the other hand, this approach has resulted in a rich literature concerning the analysis of large scale geoid and topography and the relation to buoyancy and mechanical properties of the Earth [e.g. refs 1,2,3] In convection models with viscous, elastic, brittle rheology and compositional buoyancy, however, it is possible to examine how the surface topography (and geoid) are supported and how different ways of interpreting the "observable" fields introduce different biases. This is what we will do. References (a.k.a. homework) [1] Hager, B. H., R. W. Clayton, M. A. Richards, R. P. Comer, and A. M. Dziewonski (1985), Lower mantle heterogeneity, dynamic topography and the geoid, Nature, 313(6003), 541-545, doi:10.1038/313541a0. [2] Parsons, B., and S. Daly (1983), The

  3. Flow Around Steep Topography

    Science.gov (United States)

    2015-09-30

    Flow around steep topography T. M. Shaun Johnston Scripps Institution of Oceanography University of California, San Diego 9500 Gilman Drive, M...tall, steep, submarine topography and islands. During the Flow Encountering Abrupt Topography (FLEAT) DRI, investigators will determine: • Whether...estimates from making accurate statistical/deterministic predictions at ᝺ km resolution around submarine topography and islands? How can we

  4. Topography. Ch. 10

    International Nuclear Information System (INIS)

    Chikawa, Jun-Ichi; Kuriyama, Masao

    1991-01-01

    The uniqueness of synchrotron X-ray topography does not lie in new theoretical or experimental notions about the topographic method, but in the characteristics of this new source as a critical optical element. At most synchrotron facilities, the spectrum ranging from 5 keV (2.5A) to 30 keV (0.4A0 can be made available for topography. A synchrotron-radiation source gives tunability (choice of wavelengths) and pulsed time structure with highly collimated an intense photon beams. The continuous spectrum and excellent collimation have made white-beam X-ray topography a practical reality. The high intensity of the synchrotron X-ray source, even after beam monochromatization and further collimation, permits time-dependent observation of kinetics. By selecting the mono-chromatized wavelength close to an absorption edge of an element in the sample crystal, the topographic data selectively emphasize or de-emphasize structures related to that element. For full use of such properties of synchrotron radiation, however, development of new optical systems and imaging detectors is required, and is in progress at most synchrotron facilities. This chapter covers a brief review of X-ray topography, its basic principles, and the necessary X-ray optical and imaging systems. The capability of synchrotron-radiation topography is demonstrated with some recent results. (author). 118 refs.; 22 figs

  5. Topography-modified refraction: adjustment of treated cylinder amount and axis to the topography versus standard clinical refraction in myopic topography-guided LASIK

    OpenAIRE

    Alpins, Noel

    2017-01-01

    Noel Alpins1,2 1NewVision Clinics, Melbourne, VIC, Australia; 2Department Ophthalmology, Melbourne University, Melbourne, VIC, Australia It is encouraging to see the results in the article by Kanellopoulos “Topography-modified refraction (TMR): adjustment of treated cylinder amount and axis to the topography versus standard clinical refraction in myopic topography-guided LASIK”,1 where the combination of refractive and corneal data in the treatment parameters pro...

  6. OpenTopography: Enabling Online Access to High-Resolution Lidar Topography Data and Processing Tools

    Science.gov (United States)

    Crosby, Christopher; Nandigam, Viswanath; Baru, Chaitan; Arrowsmith, J. Ramon

    2013-04-01

    High-resolution topography data acquired with lidar (light detection and ranging) technology are revolutionizing the way we study the Earth's surface and overlying vegetation. These data, collected from airborne, tripod, or mobile-mounted scanners have emerged as a fundamental tool for research on topics ranging from earthquake hazards to hillslope processes. Lidar data provide a digital representation of the earth's surface at a resolution sufficient to appropriately capture the processes that contribute to landscape evolution. The U.S. National Science Foundation-funded OpenTopography Facility (http://www.opentopography.org) is a web-based system designed to democratize access to earth science-oriented lidar topography data. OpenTopography provides free, online access to lidar data in a number of forms, including the raw point cloud and associated geospatial-processing tools for customized analysis. The point cloud data are co-located with on-demand processing tools to generate digital elevation models, and derived products and visualizations which allow users to quickly access data in a format appropriate for their scientific application. The OpenTopography system is built using a service-oriented architecture (SOA) that leverages cyberinfrastructure resources at the San Diego Supercomputer Center at the University of California San Diego to allow users, regardless of expertise level, to access these massive lidar datasets and derived products for use in research and teaching. OpenTopography hosts over 500 billion lidar returns covering 85,000 km2. These data are all in the public domain and are provided by a variety of partners under joint agreements and memoranda of understanding with OpenTopography. Partners include national facilities such as the NSF-funded National Center for Airborne Lidar Mapping (NCALM), as well as non-governmental organizations and local, state, and federal agencies. OpenTopography has become a hub for high-resolution topography

  7. Measuring topographies from conventional SEM acquisitions.

    Science.gov (United States)

    Shi, Qiwei; Roux, Stéphane; Latourte, Félix; Hild, François; Loisnard, Dominique; Brynaert, Nicolas

    2018-04-27

    The present study extends the stereoscopic imaging principle for estimating the surface topography to two orientations, namely, normal to the electron beam axis and inclined at 70° as suited for EBSD analyses. In spite of the large angle difference, it is shown that the topography can be accurately determined using regularized global Digital Image Correlation. The surface topography is compared to another estimate issued from a 3D FIB-SEM procedure where the sample surface is first covered by a Pt layer, and its initial topography is progressively revealed from successive FIB-milling. These two methods are successfully compared on a 6% strained steel specimen in an in situ mechanical test. This analysis is supplemented by a third approach estimating the change of topography from crystal rotations as measured from successive EBSD images. This last technique ignores plastic deformation, and thus only holds in an elastic regime. For the studied example, despite the large plastic flow, it is shown that crystal rotation already accounts for a significant part of the deformation-induced topography. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Topography-modified refraction (TMR): adjustment of treated cylinder amount and axis to the topography versus standard clinical refraction in myopic topography-guided LASIK.

    Science.gov (United States)

    Kanellopoulos, Anastasios John

    2016-01-01

    To evaluate the safety, efficacy, and contralateral eye comparison of topography-guided myopic LASIK with two different refraction treatment strategies. Private clinical ophthalmology practice. A total of 100 eyes (50 patients) in consecutive cases of myopic topography-guided LASIK procedures with the same refractive platform (FS200 femtosecond and EX500 excimer lasers) were randomized for treatment as follows: one eye with the standard clinical refraction (group A) and the contralateral eye with the topographic astigmatic power and axis (topography-modified treatment refraction; group B). All cases were evaluated pre- and post-operatively for the following parameters: refractive error, best corrected distance visual acuity (CDVA), uncorrected distance visual acuity (UDVA), topography (Placido-disk based) and tomography (Scheimpflug-image based), wavefront analysis, pupillometry, and contrast sensitivity. Follow-up visits were conducted for at least 12 months. Mean refractive error was -5.5 D of myopia and -1.75 D of astigmatism. In group A versus group B, respectively, the average UDVA improved from 20/200 to 20/20 versus 20/16; post-operative CDVA was 20/20 and 20/13.5; 1 line of vision gained was 27.8% and 55.6%; and 2 lines of vision gained was 5.6% and 11.1%. In group A, 27.8% of eyes had over -0.50 diopters of residual refractive astigmatism, in comparison to 11.7% in group B ( P Topography-modified refraction (TMR): topographic adjustment of the amount and axis of astigmatism treated, when different from the clinical refraction, may offer superior outcomes in topography-guided myopic LASIK. These findings may change the current clinical paradigm of the optimal subjective refraction utilized in laser vision correction.

  9. Topography Grid

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NGDC builds and distributes high-resolution, coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to...

  10. Surface Micro Topography Replication in Injection Moulding

    DEFF Research Database (Denmark)

    Arlø, Uffe Rolf; Hansen, Hans Nørgaard; Kjær, Erik Michael

    2005-01-01

    The surface micro topography of injection moulded plastic parts can be important for aesthetical and technical reasons. The quality of replication of mould surface topography onto the plastic surface depends among other factors on the process conditions. A study of this relationship has been...... carried out with rough EDM (electrical discharge machining) mould surfaces, a PS grade, and by applying established three-dimensional topography parameters. Significant quantitative relationships between process parameters and topography parameters were established. It further appeared that replication...

  11. Surface Topography Hinders Bacterial Surface Motility.

    Science.gov (United States)

    Chang, Yow-Ren; Weeks, Eric R; Ducker, William A

    2018-03-21

    We demonstrate that the surface motility of the bacterium, Pseudomonas aeruginosa, is hindered by a crystalline hemispherical topography with wavelength in the range of 2-8 μm. The motility was determined by the analysis of time-lapse microscopy images of cells in a flowing growth medium maintained at 37 °C. The net displacement of bacteria over 5 min is much lower on surfaces containing 2-8 μm hemispheres than on flat topography, but displacement on the 1 μm hemispheres is not lower. That is, there is a threshold between 1 and 2 μm for response to the topography. Cells on the 4 μm hemispheres were more likely to travel parallel to the local crystal axis than in other directions. Cells on the 8 μm topography were less likely to travel across the crowns of the hemispheres and were also more likely to make 30°-50° turns than on flat surfaces. These results show that surface topography can act as a significant barrier to surface motility and may therefore hinder surface exploration by bacteria. Because surface exploration can be a part of the process whereby bacteria form colonies and seek nutrients, these results help to elucidate the mechanism by which surface topography hinders biofilm formation.

  12. Shallow flows with bottom topography

    NARCIS (Netherlands)

    Heijst, van G.J.F.; Kamp, L.P.J.; Theunissen, R.; Rodi, W.; Uhlmann, M.

    2012-01-01

    This paper discusses laboratory experiments and numerical simulations of dipolar vortex flows in a shallow fluid layer with bottom topography. Two cases are considered: a step topography and a linearly sloping bottom. It is found that viscous effects – i.e., no-slip conditions at the non-horizontal

  13. Surface micro topography replication in injection moulding

    DEFF Research Database (Denmark)

    Arlø, Uffe Rolf

    Thermoplastic injection moulding is a widely used industrial process that involves surface generation by replication. The surface topography of injection moulded plastic parts can be important for aesthetical or technical reasons. With the emergence of microengineering and nanotechnology additional...... importance of surface topography follows. In general the replication is not perfect and the topography of the plastic part differs from the inverse topography of the mould cavity. It is desirable to be able to control the degree of replication perfection or replication quality. This requires an understanding...... of the physical mechanisms of replication. Such understanding can lead to improved process design and facilitate in-line process quality control with respect to surface properties. The purpose of the project is to identify critical factors that affect topography replication quality and to obtain an understanding...

  14. SECTION 6.2 SURFACE TOPOGRAPHY ANALYSIS

    DEFF Research Database (Denmark)

    Seah, M. P.; De Chiffre, Leonardo

    2005-01-01

    Surface physical analysis, i.e. topography characterisation, encompasses measurement, visualisation, and quantification. This is critical for both component form and for surface finish at macro-, micro- and nano-scales. The principal methods of surface topography measurement are stylus profilometry......, optical scanning techniques, and scanning probe microscopy (SPM). These methods, based on acquisition of topography data from point by point scans, give quantitative information of heights with respect to position. Based on a different approach, the so-called integral methods produce parameters...

  15. Asymmetric three-dimensional topography over mantle plumes.

    Science.gov (United States)

    Burov, Evgueni; Gerya, Taras

    2014-09-04

    The role of mantle-lithosphere interactions in shaping surface topography has long been debated. In general, it is supposed that mantle plumes and vertical mantle flows result in axisymmetric, long-wavelength topography, which strongly differs from the generally asymmetric short-wavelength topography created by intraplate tectonic forces. However, identification of mantle-induced topography is difficult, especially in the continents. It can be argued therefore that complex brittle-ductile rheology and stratification of the continental lithosphere result in short-wavelength modulation and localization of deformation induced by mantle flow. This deformation should also be affected by far-field stresses and, hence, interplay with the 'tectonic' topography (for example, in the 'active/passive' rifting scenario). Testing these ideas requires fully coupled three-dimensional numerical modelling of mantle-lithosphere interactions, which so far has not been possible owing to the conceptual and technical limitations of earlier approaches. Here we present new, ultra-high-resolution, three-dimensional numerical experiments on topography over mantle plumes, incorporating a weakly pre-stressed (ultra-slow spreading), rheologically realistic lithosphere. The results show complex surface evolution, which is very different from the smooth, radially symmetric patterns usually assumed as the canonical surface signature of mantle upwellings. In particular, the topography exhibits strongly asymmetric, small-scale, three-dimensional features, which include narrow and wide rifts, flexural flank uplifts and fault structures. This suggests a dominant role for continental rheological structure and intra-plate stresses in controlling dynamic topography, mantle-lithosphere interactions, and continental break-up processes above mantle plumes.

  16. High-speed X-ray topography

    International Nuclear Information System (INIS)

    Eckers, W.; Oppolzer, H.

    1977-01-01

    The investigation of lattice defects in semiconductor crystals by conventional X-ray diffraction topography is very time-consuming. Exposure times can be reduced by using high-intensity X-rays and X-ray image intensifiers. The described system comprises a high-power rotating-anode X-ray tube, a remote-controlled X-ray topography camera, and a television system operating with an X-ray sensing VIDICON. System performance is demonstrated with reference to exploratory examples. The exposure time for photographic plates is reduced to 1/20 and for the X-ray TV system (resolution of the order of 30 μm) to 1/100 relative to that required when using a conventional topography system. (orig.) [de

  17. Corneal topography measurements for biometric applications

    Science.gov (United States)

    Lewis, Nathan D.

    The term biometrics is used to describe the process of analyzing biological and behavioral traits that are unique to an individual in order to confirm or determine his or her identity. Many biometric modalities are currently being researched and implemented including, fingerprints, hand and facial geometry, iris recognition, vein structure recognition, gait, voice recognition, etc... This project explores the possibility of using corneal topography measurements as a trait for biometric identification. Two new corneal topographers were developed for this study. The first was designed to function as an operator-free device that will allow a user to approach the device and have his or her corneal topography measured. Human subject topography data were collected with this device and compared to measurements made with the commercially available Keratron Piccolo topographer (Optikon, Rome, Italy). A third topographer that departs from the standard Placido disk technology allows for arbitrary pattern illumination through the use of LCD monitors. This topographer was built and tested to be used in future research studies. Topography data was collected from 59 subjects and modeled using Zernike polynomials, which provide for a simple method of compressing topography data and comparing one topographical measurement with a database for biometric identification. The data were analyzed to determine the biometric error rates associated with corneal topography measurements. Reasonably accurate results, between three to eight percent simultaneous false match and false non-match rates, were achieved.

  18. Historical development of synchrotron x-ray diffraction topography

    International Nuclear Information System (INIS)

    Kawado, Seiji

    2011-01-01

    After a short history of X-ray diffraction topography, from the early stage of laboratory X-ray topography to recent synchrotron-radiation applications, is described, the development of science and technology for the synchrotron X-ray topography and its industrial applications are reviewed in more detail. In addition, the recent trend to synchrotron topography research is clarified on the basis of several data obtained from 256 papers which have been published since 2000. (author)

  19. Topography and diffractometry station in synchrotron radiation beam of the VEPP-4 storage ring. Topography of garnets

    International Nuclear Information System (INIS)

    Kub, I.; Poltsarova, M.; Panchenko, V.E.

    1987-01-01

    Advantages of synchrotron radiation (SR) spectrum of the VEhPP-4 storage ring for X-ray topography and diffractometry are shown. The description of ''Topography and diffractometry'' station in SR dump station of the VEhPP storage ring is presented, peculiarities of X-ray topography method used are discussed. X-ray topographic images of gadolinium-gallium and manganese-germanium garnets taken on the VEhPP SR are given in comparison with conventional images taken using X-ray tubes and SR of the VEhPP-3 storage ring

  20. Multiscale Study of Currents Affected by Topography

    Science.gov (United States)

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Multiscale Study of Currents Affected by Topography ...the effects of topography on the ocean general and regional circulation with a focus on the wide range of scales of interactions. The small-scale...details of the topography and the waves, eddies, drag, and turbulence it generates (at spatial scales ranging from meters to mesoscale) interact in the

  1. Functional analysis screening for multiple topographies of problem behavior.

    Science.gov (United States)

    Bell, Marlesha C; Fahmie, Tara A

    2018-04-23

    The current study evaluated a screening procedure for multiple topographies of problem behavior in the context of an ongoing functional analysis. Experimenters analyzed the function of a topography of primary concern while collecting data on topographies of secondary concern. We used visual analysis to predict the function of secondary topographies and a subsequent functional analysis to test those predictions. Results showed that a general function was accurately predicted for five of six (83%) secondary topographies. A specific function was predicted and supported for a subset of these topographies. The experimenters discuss the implication of these results for clinicians who have limited time for functional assessment. © 2018 Society for the Experimental Analysis of Behavior.

  2. Importance of dynamic topography in Himalaya-Tibetan plateau region

    Science.gov (United States)

    Ghosh, A.; Singh, S.

    2017-12-01

    Himalaya-Tibetan plateau region has the highest topography in the world. Various studies have been done to understand the mechanisms responsible for sustaining this high topography. However, the existence of dynamic topography in this region is still uncertain, though there have been some studies exploring the role of channel flow in lower crust leading to some topography. We investigated the role of radial mantle flow in this region by studying the relationship between geoid and topography. High geoid-to-topography ratios (GTR) were observed along the Himalayas suggesting deeper compensation mechanisms. However, further north, the geoid and topography relationship became a lot more complex as high as well as low GTR values were observed. The high GTR regions also coincided with area of high filtered free air gravity anomalies, indicating dynamic support. We also looked at the spectral components of gravity, geoid and topography, and calculated response functions to distinguish between different compensation mechanisms. We estimated the average elastic thickness of the whole region to be around 40 km from coherence and admittance studies. The GTR and admittance-coherence studies suggest deeper mass anomalies playing a role in supporting the topography along Himalayas and the area between Altyn Tagh and Kunlun faults.

  3. On effects of topography in rotating flows

    Science.gov (United States)

    Burmann, Fabian; Noir, Jerome; Jackson, Andrew

    2017-11-01

    Both, seismological studies and geodynamic arguments suggest that there is significant topography at the core mantle boundary (CMB). This leads to the question whether the topography of the CMB could influence the flow in the Earth's outer core. As a preliminary experiment, we investigate the effects of bottom topography in the so-called Spin-Up, where motion of a contained fluid is created by a sudden increase of rotation rate. Experiments are performed in a cylindrical container mounted on a rotating table and quantitative results are obtained with particle image velocimetry. Several horizontal length scales of topography (λ) are investigated, ranging from cases where λ is much smaller then the lateral extend of the experiment (R) to cases where λ is a fraction of R. We find that there is an optimal λ that creates maximum dissipation of kinetic energy. Depending on the length scale of the topography, kinetic energy is either dissipated in the boundary layer or in the bulk of the fluid. Two different phases of fluid motion are present: a starting flow in the from of solid rotation (phase I), which is later replaced by meso scale vortices on the length scale of bottom topography (phase II).

  4. Impact of lithospheric rheology on surface topography

    Science.gov (United States)

    Liao, K.; Becker, T. W.

    2017-12-01

    The expression of mantle flow such as due to a buoyant plume as surface topography is a classical problem, yet the role of rheological complexities could benefit from further exploration. Here, we investigate the topographic expressions of mantle flow by means of numerical and analytical approaches. In numerical modeling, both conventional, free-slip and more realistic, stress-free boundary conditions are applied. For purely viscous rheology, a high viscosity lithosphere will lead to slight overestimates of topography for certain settings, which can be understood by effectively modified boundary conditions. Under stress-free conditions, numerical and analytical results show that the magnitude of dynamic topography decreases with increasing lithosphere thickness (L) and viscosity (ηL), as L-1 and ηL-3. The wavelength of dynamic topography increases linearly with L and (ηL/ ηM) 1/3. We also explore the time-dependent interactions of a rising plume with the lithosphere. For a layered lithosphere with a decoupling weak lower crust embedded between stronger upper crust and lithospheric mantle, dynamic topography increases with a thinner and weaker lower crust. The dynamic topography saturates when the decoupling viscosity is 3-4 orders lower than the viscosity of upper crust and lithospheric mantle. We further explore the role of visco-elastic and visco-elasto-plastic rheologies.

  5. Geology, Bedrock - BEDROCK_TOPOGRAPHY_MM36_IN: Bedrock Topography Contours, Indiana (Indiana Geological Survey, 1:500,000, Line Shapefile)

    Data.gov (United States)

    NSGIC State | GIS Inventory — Bedrock topography was converted from the original published map, Indiana Geological Survey Miscellaneous Map 36. The contours define the elevation/topography of the...

  6. Corneal topography with an aberrometry-topography system.

    Science.gov (United States)

    Mülhaupt, Michael; Dietzko, Sven; Wolffsohn, James; Bandlitz, Stefan

    2018-05-07

    To investigate the agreement between the central corneal radii and corneal eccentricity measurements generated by the new Wave Analyzer 700 Medica (WAV) compared to the Keratograph 4 (KER) and to test the repeatability of the instruments. 20 subjects (10 male, mean age 29.1 years, range 21-50 years) were recruited from the students and staff of the Cologne School of Optometry. Central corneal radii for the flat (r c/fl ) and steep (r c/st ) meridian as well as corneal eccentricity for the nasal (e nas ), temporal (e temp ), inferior (e inf ) and superior (e sup ) directions were measured using WAV and KER by one examiner in a randomized order. Central radii of the flat (r c/fl ) and steep (r c/st ) meridian measured with both instruments were statically significantly correlated (r = 0.945 and r = 0.951; p  0.05). Limits of agreement (LoA) indicate a better repeatability for the KER compared to WAV. Corneal topography measurements captured with the WAV were strongly correlated with the KER. However, due to the differences in measured corneal radii and eccentricities, the devices cannot be used interchangeably. For corneal topography the KER demonstrated better repeatability. Copyright © 2018 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  7. Relationship of Aphasia and Topography of Cerebrovascular Territories

    Directory of Open Access Journals (Sweden)

    K. Ghandehari

    2004-10-01

    Full Text Available Aphasia is a common manifestation of stroke and evaluation of relationships of aphasia and brain topography could lead to better understanding of cognitive neurophysiology.Consecutive 100 stroke patients with aphasia admitted in Valie Asr hospital, Khorasan in 2003 enrulled in this prospective study. Diagnosis of stroke and aphasia was made by a neurolosist and topography of involved cerebrovascular territories confirmed by topographic maps of brain in CT scan. Global, Broca and Wernicke subtypes of aphasia constituted 52%, 40% and 6% of the cases respectively. Based on the usual nourishment of Broca and Wernicke areas by anterior and posterior cortical branches of the middle cerebral artery, 79% of Global, 47% of Broca and 50% of Wernicke aphasias had a compatible infarct topography. Other cases had no congruent infarct topography with involved linguistic area of their brain. Specific cerebrovascular topography for subtypes of aphasia in stroke patients was not found. The effects of cerebrovascular lesions on linguistic functions are not predictable by their topography in CT scan.

  8. Origin of bending in uncoated microcantilever - Surface topography?

    International Nuclear Information System (INIS)

    Lakshmoji, K.; Prabakar, K.; Tripura Sundari, S.; Jayapandian, J.; Tyagi, A. K.; Sundar, C. S.

    2014-01-01

    We provide direct experimental evidence to show that difference in surface topography on opposite sides of an uncoated microcantilever induces bending, upon exposure to water molecules. Examination on opposite sides of the microcantilever by atomic force microscopy reveals the presence of localized surface features on one side, which renders the induced stress non-uniform. Further, the root mean square inclination angle characterizing the surface topography shows a difference of 73° between the opposite sides. The absence of deflection in another uncoated microcantilever having similar surface topography confirms that in former microcantilever bending is indeed induced by differences in surface topography

  9. Electronic Cigarette Topography in the Natural Environment.

    Science.gov (United States)

    Robinson, R J; Hensel, E C; Morabito, P N; Roundtree, K A

    2015-01-01

    This paper presents the results of a clinical, observational, descriptive study to quantify the use patterns of electronic cigarette users in their natural environment. Previously published work regarding puff topography has been widely indirect in nature, and qualitative rather than quantitative, with the exception of three studies conducted in a laboratory environment for limited amounts of time. The current study quantifies the variation in puffing behaviors among users as well as the variation for a given user throughout the course of a day. Puff topography characteristics computed for each puffing session by each subject include the number of subject puffs per puffing session, the mean puff duration per session, the mean puff flow rate per session, the mean puff volume per session, and the cumulative puff volume per session. The same puff topography characteristics are computed across all puffing sessions by each single subject and across all subjects in the study cohort. Results indicate significant inter-subject variability with regard to puffing topography, suggesting that a range of representative puffing topography patterns should be used to drive machine-puffed electronic cigarette aerosol evaluation systems.

  10. Characterizing smoking topography of cannabis in heavy users

    Science.gov (United States)

    Stitzer, Maxine L.; Vandrey, Ryan

    2013-01-01

    Rationale Little is known about the smoking topography characteristics of heavy cannabis users. Such measures may be able to predict cannabis use-related outcomes and could be used to validate self-reported measures of cannabis use. Objectives The current study was conducted to measure cannabis smoking topography characteristics during periods of ad libitum use and to correlate topography assessments with measures of self-reported cannabis use, withdrawal and craving during abstinence, and cognitive task performance. Methods Participants (N=20) completed an inpatient study in which they alternated between periods of ad libitum cannabis use and abstinence. Measures of self-reported cannabis use, smoking topography, craving, withdrawal, and sleep measures were collected. Results Participants smoked with greater intensity (e.g., greater volume, longer duration) on initial cigarette puffs with a steady decline on subsequent puffs. Smoking characteristics were significantly correlated with severity of withdrawal, notably sleep quality and architecture, and craving during abstinence, suggesting dose-related effects of cannabis use on these outcomes. Smoking characteristics generally were not significantly associated with cognitive performance. Smoking topography measures were significantly correlated with self-reported measures of cannabis use, indicating validity of these assessments, but topography measures were more sensitive than self-report in predicting cannabis-related outcomes. Conclusions A dose–effect relationship between cannabis consumption and outcomes believed to be clinically important was observed. With additional research, smoking topography assessments may become a useful clinical tool. PMID:21922170

  11. Lateral topography for reducing effective dose in low-dose chest CT.

    Science.gov (United States)

    Bang, Dong-Ho; Lim, Daekeon; Hwang, Wi-Sub; Park, Seong-Hoon; Jeong, Ok-man; Kang, Kyung Wook; Kang, Hohyung

    2013-06-01

    The purposes of this study were to assess radiation exposure during low-dose chest CT by using lateral topography and to compare the lateral topographic findings with findings obtained with anteroposterior topography alone and anteroposterior and lateral topography combined. From November 2011 to February 2012, 210 male subjects were enrolled in the study. Age, weight, and height of the men were recorded. All subjects were placed into one of three subgroups based on the type of topographic image obtained: anteroposterior topography, lateral topography, and both anteroposterior and lateral topography. Imaging was performed with a 128-MDCT scanner. CT, except for topography, was the same for all subjects. A radiologist analyzed each image, recorded scan length, checked for any insufficiencies in the FOV, and calculated the effective radiation dose. One-way analysis of variance and multiple comparisons were used to compare the effective radiation exposure and scan length between groups. The mean scan length in the anteroposterior topography group was significantly greater than that of the lateral topography group and the combined anteroposterior and lateral topography group (p topography group (0.735 ± 0.033 mSv) was significantly lower than that for the anteroposterior topography group (0.763 ± 0.038 mSv) and the combined anteroposterior and lateral topography group (0.773 ± 0.038) (p < 0.001). Lateral topographic low-dose CT was associated with a lower effective radiation dose and scan length than either anteroposterior topographic low-dose chest CT or low-dose chest CT with both anteroposterior and lateral topograms.

  12. Experiments on topographies lacking tidal conversion

    Science.gov (United States)

    Maas, Leo; Paci, Alexandre; Yuan, Bing

    2015-11-01

    In a stratified sea, internal tides are supposedly generated when the tide passes over irregular topography. It has been shown that for any given frequency in the internal wave band there are an infinite number of exceptions to this rule of thumb. This ``stealth-like'' property of the topography is due to a subtle annihilation of the internal waves generated during the surface tide's passage over the irregular bottom. We here demonstrate this in a lab-experiment. However, for any such topography, subsequently changing the surface tide's frequency does lead to tidal conversion. The upshot of this is that a tidal wave passing over an irregular bottom is for a substantial part trapped to this irregularity, and only partly converted into freely propagating internal tides. Financially supported by the European Community's 7th Framework Programme HYDRALAB IV.

  13. Cognitive “Boy stories”: urban folklore and urban topographies

    Directory of Open Access Journals (Sweden)

    Bojan Žikić

    2016-02-01

    Full Text Available The culturally cognitive perception of Belgrade’s topographies is considered through its deployment, symbolic use and narrative foundation. As the explanatory material-one football-media incident, the use of certain areas of the city in a spectacleceremonial manner, knowledge and lore of certain elements of the Belgrade topographies and the organization of «the football Belgrade»-were considered. The attitude is taken that the topography of a city is a multifaceted cultural constituent, whose structure of particular meaning, as a part of cultural communication, is determined by the very fact it is an urban space. Physical aspects of spatial-ness are reduced to relationism, i.e. it has a meaning for the cultural communication only when the elements of urban topographies are brought into correlation. Other characteristics of physical spatial-ness are irrelevant for such communication. Meaning relations in which elements of urban topographies exist are formed on the very fact of them being urban, that is, the afore mentioned denotation that is ascribed to space, stems from those cultural features and artifacts that are associated in a given milieu with certain concrete elements of urban topographies.

  14. Diffusion processes in bombardment-induced surface topography

    International Nuclear Information System (INIS)

    Robinson, R.S.

    1984-01-01

    A treatment is given of the problem of surface diffusion processes occurring during surface topography development, whenever a surface is simultaneously seeded with impurities and ion bombarded. The development of controllable topography and the importance of surface diffusion parameters, which can be obtained during these studies, are also analyzed. 101 refs.; 7 figs.; 2 tabs

  15. The Dawn Topography Investigation

    Science.gov (United States)

    Raymond, C. A.; Jaumann, R.; Nathues, A.; Sierks, H.; Roatsch, T.; Preusker, E; Scholten, F.; Gaskell, R. W.; Jorda, L.; Keller, H.-U.; hide

    2011-01-01

    The objective of the Dawn topography investigation is to derive the detailed shapes of 4 Vesta and 1 Ceres in order to create orthorectified image mosaics for geologic interpretation, as well as to study the asteroids' landforms, interior structure, and the processes that have modified their surfaces over geologic time. In this paper we describe our approaches for producing shape models, plans for acquiring the needed image data for Vesta, and the results of a numerical simulation of the Vesta mapping campaign that quantify the expected accuracy of our results. Multi-angle images obtained by Dawn's framing camera will be used to create topographic models with 100 m/pixel horizontal resolution and 10 m height accuracy at Vesta, and 200 m/pixel horizontal resolution and 20 m height accuracy at Ceres. Two different techniques, stereophotogrammetry and stereophotoclinometry, are employed to model the shape; these models will be merged with the asteroidal gravity fields obtained by Dawn to produce geodetically controlled topographic models for each body. The resulting digital topography models, together with the gravity data, will reveal the tectonic, volcanic and impact history of Vesta, and enable co-registration of data sets to determine Vesta's geologic history. At Ceres, the topography will likely reveal much about processes of surface modification as well as the internal structure and evolution of this dwarf planet.

  16. Fine-scale topography in sensory systems: insights from Drosophila and vertebrates.

    Science.gov (United States)

    Kaneko, Takuya; Ye, Bing

    2015-09-01

    To encode the positions of sensory stimuli, sensory circuits form topographic maps in the central nervous system through specific point-to-point connections between pre- and postsynaptic neurons. In vertebrate visual systems, the establishment of topographic maps involves the formation of a coarse topography followed by that of fine-scale topography that distinguishes the axon terminals of neighboring neurons. It is known that intrinsic differences in the form of broad gradients of guidance molecules instruct coarse topography while neuronal activity is required for fine-scale topography. On the other hand, studies in the Drosophila visual system have shown that intrinsic differences in cell adhesion among the axon terminals of neighboring neurons instruct the fine-scale topography. Recent studies on activity-dependent topography in the Drosophila somatosensory system have revealed a role of neuronal activity in creating molecular differences among sensory neurons for establishing fine-scale topography, implicating a conserved principle. Here we review the findings in both Drosophila and vertebrates and propose an integrated model for fine-scale topography.

  17. Toroidal vortices over isolated topography in geophysical flows

    International Nuclear Information System (INIS)

    Koshel, Konstantin V; Ryzhov, Evgeny A; Zyryanov, Valery N

    2014-01-01

    This work deals with a model of a topographically trapped vortex appearing over isolated topography in a geophysical flow. The main feature of the study is that we pay special attention to the vertical structure of a topographically trapped vortex. The model considered allows one to study the vertical motion which is known not to be negligible in many cases. Given topography in the form of an isolated cylinder, and radial symmetry and stationarity of a uniform flow, in the linear approximation, we formulate a boundary value problem that determines all the components of the velocity field through a six-order differential operator, and nonincreasing boundary conditions at the center of the topography, and at infinity. The eigenvalues of the boundary value problem correspond to bifurcation points, in which the flow becomes unstable, hence non-negligible vertical velocities occur. We formulate a condition for the boundary value problem to have a discrete spectrum of these bifurcation points, and hence to be solvable. Conducting a series of test calculations, we show that the resulting vortex lies in the vicinity of topography, and can attain the distance up to half of the topography characteristic radius. (papers)

  18. Effects of Topography-driven Micro-climatology on Evaporation

    Science.gov (United States)

    Adams, D. D.; Boll, J.; Wagenbrenner, N. S.

    2017-12-01

    The effects of spatial-temporal variation of climatic conditions on evaporation in micro-climates are not well defined. Current spatially-based remote sensing and modeling for evaporation is limited for high resolutions and complex topographies. We investigated the effect of topography-driven micro-climatology on evaporation supported by field measurements and modeling. Fourteen anemometers and thermometers were installed in intersecting transects over the complex topography of the Cook Agronomy Farm, Pullman, WA. WindNinja was used to create 2-D vector maps based on recorded observations for wind. Spatial analysis of vector maps using ArcGIS was performed for analysis of wind patterns and variation. Based on field measurements, wind speed and direction show consequential variability based on hill-slope location in this complex topography. Wind speed and wind direction varied up to threefold and more than 45 degrees, respectively for a given time interval. The use of existing wind models enables prediction of wind variability over the landscape and subsequently topography-driven evaporation patterns relative to wind. The magnitude of the spatial-temporal variability of wind therefore resulted in variable evaporation rates over the landscape. These variations may contribute to uneven crop development patterns observed during the late growth stages of the agricultural crops at the study location. Use of hill-slope location indexes and appropriate methods for estimating actual evaporation support development of methodologies to better define topography-driven heterogeneity in evaporation. The cumulative effects of spatially-variable climatic factors on evaporation are important to quantify the localized water balance and inform precision farming practices.

  19. X-ray diffraction topography. Stages and tendencies of development

    International Nuclear Information System (INIS)

    Shul'pina, I.L.

    2000-01-01

    The physical foundation of X-ray diffraction topography, its methods, the achievements in image theory, the stages of evolution were described in this review. It was found that modern topography is well along in development associated with the use of third-generation synchrotron radiation and with its adaptation to advance materials and problems of materials science. Some proposals about prospects for X-ray topography progress in the future have been made [ru

  20. Expressions for tidal conversion at seafloor topography using physical space integrals

    International Nuclear Information System (INIS)

    Schorghofer, Norbert

    2010-01-01

    The barotropic tide interacts with seafloor topography to generate internal gravity waves. Equations for streamfunction and power conversion are derived in terms of integrals over the topography in spatial coordinates. The slope of the topography does not need to be small. Explicit equations are derived up to second order in slope for general topography, and conversion by a bell-shaped topography is calculated analytically to this order. A concise formalism using Hilbert transforms is developed, the minimally converting topographic shape is discussed, and a numerical scheme for the evaluation of power conversion is designed that robustly deals with the singular integrand.

  1. Smoking topography and abstinence in adult female smokers.

    Science.gov (United States)

    McClure, Erin A; Saladin, Michael E; Baker, Nathaniel L; Carpenter, Matthew J; Gray, Kevin M

    2013-12-01

    Preliminary evidence, within both adults and adolescents, suggests that the intensity with which cigarettes are smoked (i.e., smoking topography) is predictive of success during a cessation attempt. These reports have also shown topography to be superior compared to other variables, such as cigarettes per day, in the prediction of abstinence. The possibility that gender may influence this predictive relationship has not been evaluated but may be clinically useful in tailoring gender-specific interventions. Within the context of a clinical trial for smoking cessation among women, adult daily smokers completed a laboratory session that included a 1-hour ad libitum smoking period in which measures of topography were collected (N=135). Participants were then randomized to active medication (nicotine patch vs. varenicline) and abstinence was monitored for 4weeks. Among all smoking topography measures and all abstinence outcomes, a moderate association was found between longer puff duration and greater puff volume and continued smoking during the active 4-week treatment phase, but only within the nicotine patch group. Based on the weak topography-abstinence relationship among female smokers found in the current study, future studies should focus on explicit gender comparisons to examine if these associations are specific to or more robust in male smokers. © 2013 Elsevier Ltd. All rights reserved.

  2. Recent advances in engineering topography mediated antibacterial surfaces

    Science.gov (United States)

    Hasan, Jafar; Chatterjee, Kaushik

    2015-09-01

    The tendency of bacterial cells to adhere and colonize a material surface leading to biofilm formation is a fundamental challenge underlying many different applications including microbial infections associated with biomedical devices and products. Although, bacterial attachment to surfaces has been extensively studied in the past, the effect of surface topography on bacteria-material interactions has received little attention until more recently. We review the recent progress in surface topography based approaches for engineering antibacterial surfaces. Biomimicry of antibacterial surfaces in nature is a popular strategy. Whereas earlier endeavors in the field aimed at minimizing cell attachment, more recent efforts have focused on developing bactericidal surfaces. However, not all such topography mediated bactericidal surfaces are necessarily cytocompatible thus underscoring the need for continued efforts for research in this area for developing antibacterial and yet cytocompatible surfaces for use in implantable biomedical applications. This mini-review provides a brief overview of the current strategies and challenges in the emerging field of topography mediated antibacterial surfaces.

  3. Silk Film Topography Directs Collective Epithelial Cell Migration

    Science.gov (United States)

    Rosenblatt, Mark I.

    2012-01-01

    The following study provides new insight into how surface topography dictates directed collective epithelial cell sheet growth through the guidance of individual cell movement. Collective cell behavior of migrating human corneal limbal-epithelial cell sheets were studied on highly biocompatible flat and micro-patterned silk film surfaces. The silk film edge topography guided the migratory direction of individual cells making up the collective epithelial sheet, which resulted in a 75% increase in total culture elongation. This was due to a 3-fold decrease in cell sheet migration rate efficiency for movement perpendicular to the topography edge. Individual cell migration direction is preferred in the parallel approach to the edge topography where localization of cytoskeletal proteins to the topography’s edge region is reduced, which results in the directed growth of the collective epithelial sheet. Findings indicate customized biomaterial surfaces may be created to direct both the migration rate and direction of tissue epithelialization. PMID:23185573

  4. Percolation, statistical topography, and transport in random media

    International Nuclear Information System (INIS)

    Isichenko, M.B.

    1992-01-01

    A review of classical percolation theory is presented, with an emphasis on novel applications to statistical topography, turbulent diffusion, and heterogeneous media. Statistical topography involves the geometrical properties of the isosets (contour lines or surfaces) of a random potential ψ(x). For rapidly decaying correlations of ψ, the isopotentials fall into the same universality class as the perimeters of percolation clusters. The topography of long-range correlated potentials involves many length scales and is associated either with the correlated percolation problem or with Mandelbrot's fractional Brownian reliefs. In all cases, the concept of fractal dimension is particularly fruitful in characterizing the geometry of random fields. The physical applications of statistical topography include diffusion in random velocity fields, heat and particle transport in turbulent plasmas, quantum Hall effect, magnetoresistance in inhomogeneous conductors with the classical Hall effect, and many others where random isopotentials are relevant. A geometrical approach to studying transport in random media, which captures essential qualitative features of the described phenomena, is advocated

  5. Gravity Terrain Effect of the Seafloor Topography in Taiwan

    Directory of Open Access Journals (Sweden)

    Lun-Tao Tong Tai-Rong Guo

    2007-01-01

    Full Text Available Gravity terrain correction is used to compensate for the gravitational effects of the topography residual to the Bouguer plate. The seafloor topography off the eastern offshore of Taiwan is extremely rugged, and the depth of the sea bottom could be greater than 5000 m. In order to evaluate the terrain effect caused by the seafloor topography, a modern computer algorithm is used to calculate the terrain correction based on the digital elevation model (DEM.

  6. ATM Coastal Topography-Mississippi, 2001

    Science.gov (United States)

    Nayegandhi, Amar; Yates, Xan; Brock, John C.; Sallenger, A.H.; Klipp, Emily S.; Wright, C. Wayne

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of lidar-derived first-surface (FS) topography were produced collaboratively by the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of the Mississippi coastline, from Lakeshore to Petit Bois Island, acquired September 9-10, 2001. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative scanning lidar instrument originally developed by NASA, and known as the Airborne Topographic Mapper (ATM), was used during data acquisition. The ATM system is a scanning lidar system that measures high-resolution topography of the land surface and incorporates a green-wavelength laser operating at pulse rates of 2 to 10 kilohertz. Measurements from the laser-ranging device are coupled with data acquired from inertial navigation system (INS) attitude sensors and differentially corrected global positioning system (GPS) receivers to measure topography of the surface at accuracies of +/-15 centimeters. The nominal ATM platform is a Twin Otter or P-3 Orion aircraft, but the instrument may be deployed on a range of light aircraft. Elevation measurements were collected over the survey area using the ATM system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS

  7. ATM Coastal Topography-Alabama 2001

    Science.gov (United States)

    Nayegandhi, Amar; Yates, Xan; Brock, John C.; Sallenger, A.H.; Bonisteel, Jamie M.; Klipp, Emily S.; Wright, C. Wayne

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived first surface (FS) topography were produced collaboratively by the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of the Alabama coastline, acquired October 3-4, 2001. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative scanning Lidar instrument originally developed by NASA, and known as the Airborne Topographic Mapper (ATM), was used during data acquisition. The ATM system is a scanning Lidar system that measures high-resolution topography of the land surface, and incorporates a green-wavelength laser operating at pulse rates of 2 to 10 kilohertz. Measurements from the laser ranging device are coupled with data acquired from inertial navigation system (INS) attitude sensors and differentially corrected global positioning system (GPS) receivers to measure topography of the surface at accuracies of +/-15 centimeters. The nominal ATM platform is a Twin Otter or P-3 Orion aircraft, but the instrument may be deployed on a range of light aircraft. Elevation measurements were collected over the survey area using the ATM system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for pre-survey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is routinely used to create maps that

  8. Spectral analysis of the gravity and topography of Mars

    Science.gov (United States)

    Bills, Bruce G.; Frey, Herbert V.; Kiefer, Walter S.; Nerem, R. Steven; Zuber, Maria T.

    1993-01-01

    New spherical harmonic models of the gravity and topography of Mars place important constraints on the structure and dynamics of the interior. The gravity and topography models are significantly phase coherent for harmonic degrees n less than 30 (wavelengths greater than 700 km). Loss of coherence below that wavelength is presumably due to inadequacies of the models, rather than a change in behavior of the planet. The gravity/topography admittance reveals two very different spectral domains: for n greater than 4, a simple Airy compensation model, with mean depth of 100 km, faithfully represents the observed pattern; for degrees 2 and 3, the effective compensation depths are 1400 and 550 km, respectively, strongly arguing for dynamic compensation at those wavelengths. The gravity model has been derived from a reanalysis of the tracking data for Mariner 9 and the Viking Orbiters, The topography model was derived by harmonic analysis of the USGS digital elevation model of Mars. Before comparing gravity and topography for internal structure inferences, we must ensure that both are consistently referenced to a hydrostatic datum. For the gravity, this involves removal of hydrostatic components of the even degree zonal coefficients. For the topography, it involves adding the degree 4 equipotential reference surface, to get spherically referenced values, and then subtracting the full degree 50 equipotential. Variance spectra and phase coherence of orthometric heights and gravity anomalies are addressed.

  9. Multi-source least-squares reverse time migration with topography

    KAUST Repository

    Zhang, Dongliang; Schuster, Gerard T.; Zhan, Ge

    2013-01-01

    We demonstrate an accurate method for calculating LSM images from data recorded on irregular topography. Our results with both the Marmousi and Foothill models with steep topography suggest the effectiveness of this method.

  10. Multi-source least-squares reverse time migration with topography

    KAUST Repository

    Zhang, Dongliang

    2013-09-22

    We demonstrate an accurate method for calculating LSM images from data recorded on irregular topography. Our results with both the Marmousi and Foothill models with steep topography suggest the effectiveness of this method.

  11. Elucidating Dynamical Processes Relevant to Flow Encountering Abrupt Topography (FLEAT)

    Science.gov (United States)

    2015-09-30

    Encountering Abrupt Topography (FLEAT) Bo Qiu Dept of Oceanography, University of Hawaii at Manoa 1000 Pope Rd. Honolulu, HI 96822 phone: (808) 956...c) to explore relevant dynamics by using both simplified models and OGCM output with realistic topography and surface boundary conditions...scale abyssal circulation, we propose to use the Hallberg Isopycnal Model (HIM). The HIM allows sloping isopycnals to interact with bottom topography

  12. Nanotubular topography enhances the bioactivity of titanium implants.

    Science.gov (United States)

    Huang, Jingyan; Zhang, Xinchun; Yan, Wangxiang; Chen, Zhipei; Shuai, Xintao; Wang, Anxun; Wang, Yan

    2017-08-01

    Surface modification on titanium implants plays an important role in promoting mesenchymal stem cell (MSC) response to enhance osseointegration persistently. In this study, nano-scale TiO 2 nanotube topography (TNT), micro-scale sand blasted-acid etched topography (SLA), and hybrid sand blasted-acid etched/nanotube topography (SLA/TNT) were fabricated on the surfaces of titanium implants. Although the initial cell adherence at 60 min among TNT, SLA and TNT/SLA was not different, SLA and SLA/TNT presented to be rougher and suppressed the proliferation of MSC. TNT showed hydrophilic surface and balanced promotion of cellular functions. After being implanted in rabbit femur models, TNT displayed the best osteogenesis inducing ability as well as strong bonding strength to the substrate. These results indicate that nano-scale TNT provides favorable surface topography for improving the clinical performance of endosseous implants compared with micro and hybrid micro/nano surfaces, suggesting a promising and reliable surface modification strategy of titanium implants for clinical application. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Preliminary results of an examination of electronic cigarette user puff topography: the effect of a mouthpiece-based topography measurement device on plasma nicotine and subjective effects.

    Science.gov (United States)

    Spindle, Tory R; Breland, Alison B; Karaoghlanian, Nareg V; Shihadeh, Alan L; Eissenberg, Thomas

    2015-02-01

    Electronic cigarettes (ECIGs) heat a nicotine-containing solution; the resulting aerosol is inhaled by the user. Nicotine delivery may be affected by users' puffing behavior (puff topography), and little is known about the puff topography of ECIG users. Puff topography can be measured using mouthpiece-based computerized systems. However, the extent to which a mouthpiece influences nicotine delivery and subjective effects in ECIG users is unknown. Plasma nicotine concentration, heart rate, and subjective effects were measured in 13 experienced ECIG users who used their preferred ECIG and liquid (≥ 12 mg/ml nicotine) during 2 sessions (with or without a mouthpiece). In both sessions, participants completed an ECIG use session in which they were instructed to take 10 puffs with 30-second inter-puff intervals. Puff topography was recorded in the mouthpiece condition. Almost all measures of the effects of ECIG use were independent of topography measurement. Collapsed across session, mean plasma nicotine concentration increased by 16.8 ng/ml, and mean heart rate increased by 8.5 bpm (ps topography measurement equipment, ECIG-using participants took larger and longer puffs with lower flow rates. In experienced ECIG users, measuring ECIG topography did not influence ECIG-associated nicotine delivery or most measures of withdrawal suppression. Topography measurement systems will need to account for the low flow rates observed for ECIG users. © The Author 2014. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Ekman effects in a rotating flow over bottom topography

    NARCIS (Netherlands)

    Zavala Sansón, L.; Heijst, van G.J.F.

    2002-01-01

    This paper presents a general two-dimensional model for rotating barotropic flows over topography. The model incorporates in a vorticity–stream function formulation both inviscid topography effects, associated with stretching and squeezing of fluid columns enforced by their motion over variable

  15. Clinical Validation of Point-Source Corneal Topography in Keratoplasty

    NARCIS (Netherlands)

    Vrijling, A C L; Braaf, B.; Snellenburg, J.J.; de Lange, F.; Zaal, M.J.W.; van der Heijde, G.L.; Sicam, V.A.D.P.

    2011-01-01

    Purpose. To validate the clinical performance of point-source corneal topography (PCT) in postpenetrating keratoplasty (PKP) eyes and to compare it with conventional Placido-based topography. Methods. Corneal elevation maps of the anterior corneal surface were obtained from 20 post-PKP corneas using

  16. Assessing Mand Topography Preference When Developing a Functional Communication Training Intervention.

    Science.gov (United States)

    Kunnavatana, S Shanun; Wolfe, Katie; Aguilar, Alexandra N

    2018-05-01

    Functional communication training (FCT) is a common function-based behavioral intervention used to decrease problem behavior by teaching an alternative communication response. Therapists often arbitrarily select the topography of the alternative response, which may influence long-term effectiveness of the intervention. Assessing individual mand topography preference may increase treatment effectiveness and promote self-determination in the development of interventions. This study sought to reduce arbitrary selection of FCT mand topography by determining preference during response training and acquisition for two adults with autism who had no functional communication skills. Both participants demonstrated a clear preference for one mand topography during choice probes, and the preferred topography was then reinforced during FCT to reduce problem behavior and increase independent communication. The implications of the results for future research on mand selection during FCT are discussed.

  17. Refining the ischemic penumbra with topography.

    Science.gov (United States)

    Thirugnanachandran, Tharani; Ma, Henry; Singhal, Shaloo; Slater, Lee-Anne; Davis, Stephen M; Donnan, Geoffrey A; Phan, Thanh

    2018-04-01

    It has been 40 years since the ischemic penumbra was first conceptualized through work on animal models. The topography of penumbra has been portrayed as an infarcted core surrounded by penumbral tissue and an extreme rim of oligemic tissue. This picture has been used in many review articles and textbooks before the advent of modern imaging. In this paper, we review our understanding of the topography of the ischemic penumbra from the initial experimental animal models to current developments with neuroimaging which have helped to further define the temporal and spatial evolution of the penumbra and refine our knowledge. The concept of the penumbra has been successfully applied in clinical trials of endovascular therapies with a time window as long as 24 h from onset. Further, there are reports of "good" outcome even in patients with a large ischemic core. This latter observation of good outcome despite having a large core requires an understanding of the topography of the penumbra and the function of the infarcted regions. It is proposed that future research in this area takes departure from a time-dependent approach to a more individualized tissue and location-based approach.

  18. Description of two-process surface topography

    International Nuclear Information System (INIS)

    Grabon, W; Pawlus, P

    2014-01-01

    After two machining processes, a large number of surface topography measurements were made using Talyscan 150 stylus measuring equipment. The measured samples were divided into two groups. The first group contained two-process surfaces of random nature, while the second group used random-deterministic textures of random plateau parts and portions of deterministic valleys. For comparison, one-process surfaces were also analysed. Correlation and regression analysis was used to study the dependencies among surface texture parameters in 2D and 3D systems. As the result of this study, sets of parameters describing multi-process surface topography were obtained for two-process surfaces of random and of random-deterministic types. (papers)

  19. Topography measurements for determining the decay factors in surface replication

    International Nuclear Information System (INIS)

    Song, J; Zheng, A; Vorburger, T V; Rubert, P

    2008-01-01

    The electro-forming technique is used at National Institute of Standards and Technology (NIST) for the production of standard reference material (SRM) 2461 standard casings to support nationwide ballistics measurement traceability and measurement quality control in the US. In order to ensure that the SRM casings are produced with virtually the same surface topography, it is necessary to test the decay factors of the replication process. Twenty-six replica casings are replicated from the same master casing for the decay factor tests. The NIST topography measurement system is used for measurements and correlations of surface topography. The topography decays are quantified by the cross-correlation function maximum CCF max . Based on the test, it is expected that 256 SRM casings can be replicated from the same master with CCF max values higher than 95%

  20. Influence of surface topography on the sputtering yields of silver

    International Nuclear Information System (INIS)

    Pan Jisheng; Wang Zhenxia; Tao Zhenlan; Zhang Jiping

    1992-01-01

    The sputtering yields of silver have been measured as a function of the fluence of incident Ar + ions (27 keV) using the collector technique and RBS analysis. The irradiated surface was examined by scanning electron microscopy (SEM). It is shown that the sputtering yields of surfaces with topography are enhanced relative to smooth surfaces of silver, but the extent of the enhancement depends on the irradiation dose. The experimental results can be explained assuming that the surface topography and sputtering yield are a function of incident angle. It is obvious that the surface topography is an important factor to influence the sputtering yield. The term ''apparent sputtering yield'' has specifically been used when referring to the experimental sputtering yield of a surface with topography, to emphasize the difference with a smooth surface. (orig.)

  1. Topography-guided photorefractive keratectomy for irregular astigmatism after small incision lenticule extraction.

    Science.gov (United States)

    Ivarsen, Anders; Hjortdal, Jesper Ø

    2014-06-01

    To report the outcome of topography-guided photorefractive keratectomy (PRK) after complicated small incision lenticule extraction (SMILE). Retrospective case series of 5 eyes with irregular topography and ghost images after complicated SMILE. All eyes received transepithelial topography-guided PRK. Two eyes were treated with 0.02% mitomycin C. Patients were examined after a minimum of 3 months with evaluation of uncorrected (UDVA) and corrected (CDVA) distance visual acuity, Pentacam tomography (Oculus Optikgeräte, Wetzlar, Germany), and whole-eye aberrometry. In 3 eyes, subjective symptoms were diminished and UDVA, CDVA, topography, and corneal wavefront aberrations were improved. The remaining 2 eyes developed significant haze with worsened topography and wavefront aberrations. One eye experienced a two-line reduction in CDVA. Eyes with haze development had not been treated with mitomycin C. Transepithelial topography-guided PRK may reduce visual symptoms after complicated SMILE if postoperative haze can be controlled. To reduce the risk of haze development, application of mitomycin C may be considered. Copyright 2014, SLACK Incorporated.

  2. Effect of surface topography and morphology on space charge packets in polyethylene

    International Nuclear Information System (INIS)

    Zhou Yuanxiang; Wang Yunshan; Sun Qinghua; Wang Ninghua

    2009-01-01

    Polyethylene (PE) is a major kind of internal insulating material. With great progresses of space charge measurement technologies in the last three decades, lots of researches are focused on space charge in PE. The heat pressing and annealing condition of polyethylene affect its morphology obviously. During the heat pressing, the surface of PE forms different surface topographies because of different substrate materials. Surface topography has great relation to the epitaxial crystallization layer and influences the space charge characteristic of PE dramatically. This paper studied the formation process of different surface topographies and their micrographic characters in low density polyethylene (LDPE). pulsed electro-acoustic (PEA) method was used to measure the space charge distribution of samples with different surface topographies and morphologies in LDPE. The effect of surface topography and morphology to space charge packet were studied. The surface topography has great influence on space charge packet polarity and morphology has influence on both movement speed rate and polarity of space charge packet.

  3. UV laser micromachining of ceramic materials: formation of columnar topographies

    International Nuclear Information System (INIS)

    Oliveira, V.; Vilar, R.; Conde, O.

    2001-01-01

    Laser machining is increasingly appearing as an alternative for micromachining of ceramics. Using ceramic materials using excimer lasers can result in smooth surfaces or in the formation of cone-like or columnar topography. Potential applications of cone-shaped or columnar surface topography include, for example, light trapping in anti-reflection coatings and improvement of adhesion bonding between ceramic materials. In this communication results of a comparative study of surface topography change during micromachining of several ceramic materials with different ablation behaviors are reported. (orig.)

  4. The influence of surface topography on Kelvin probe force microscopy

    International Nuclear Information System (INIS)

    Sadewasser, S; Leendertz, C; Streicher, F; Lux-Steiner, M Ch

    2009-01-01

    Long-range electrostatic forces govern the imaging mechanism in electrostatic force microscopy as well as in Kelvin probe force microscopy. To improve the analysis of such images, simulations of the electrostatic field distribution have been performed in the past using a flat surface and a cone-shaped tip. However, the electrostatic field distribution between a tip and a sample depends strongly on the surface topography, which has been neglected in previous studies. It is therefore of general importance to study the influence of sample topography features on Kelvin probe force microscopy images, which we address here by performing finite element simulations. We show how the surface potential measurement is influenced by surface steps and surface grooves, considering potential variations in the form of a potential peak and a potential step. The influence of the topography on the measurement of the surface potential is found to be rather small compared to a typical experimental resolution. Surprisingly, in the case of a coinciding topography and potential step an improvement of the potential profile due to the inclusion of the topography is observed. Finally, based on the obtained results, suggestions for the realization of KPFM measurement are given.

  5. Understanding the mechanisms of solid-water reactions through analysis of surface topography.

    Science.gov (United States)

    Bandstra, Joel Z; Brantley, Susan L

    2015-12-01

    The topography of a reactive surface contains information about the reactions that form or modify the surface and, therefore, it should be possible to characterize reactivity using topography parameters such as surface area, roughness, or fractal dimension. As a test of this idea, we consider a two-dimensional (2D) lattice model for crystal dissolution and examine a suite of topography parameters to determine which may be useful for predicting rates and mechanisms of dissolution. The model is based on the assumption that the reactivity of a surface site decreases with the number of nearest neighbors. We show that the steady-state surface topography in our model system is a function of, at most, two variables: the ratio of the rate of loss of sites with two neighbors versus three neighbors (d(2)/d(3)) and the ratio of the rate of loss of sites with one neighbor versus three neighbors (d(1)/d(3)). This means that relative rates can be determined from two parameters characterizing the topography of a surface provided that the two parameters are independent of one another. It also means that absolute rates cannot be determined from measurements of surface topography alone. To identify independent sets of topography parameters, we simulated surfaces from a broad range of d(1)/d(3) and d(2)/d(3) and computed a suite of common topography parameters for each surface. Our results indicate that the fractal dimension D and the average spacing between steps, E[s], can serve to uniquely determine d(1)/d(3) and d(2)/d(3) provided that sufficiently strong correlations exist between the steps. Sufficiently strong correlations exist in our model system when D>1.5 (which corresponds to D>2.5 for real 3D reactive surfaces). When steps are uncorrelated, surface topography becomes independent of step retreat rate and D is equal to 1.5. Under these conditions, measures of surface topography are not independent and any single topography parameter contains all of the available mechanistic

  6. Payload topography camera of Chang'e-3

    International Nuclear Information System (INIS)

    Yu, Guo-Bin; Liu, En-Hai; Zhao, Ru-Jin; Zhong, Jie; Zhou, Xiang-Dong; Zhou, Wu-Lin; Wang, Jin; Chen, Yuan-Pei; Hao, Yong-Jie

    2015-01-01

    Chang'e-3 was China's first soft-landing lunar probe that achieved a successful roving exploration on the Moon. A topography camera functioning as the lander's “eye” was one of the main scientific payloads installed on the lander. It was composed of a camera probe, an electronic component that performed image compression, and a cable assembly. Its exploration mission was to obtain optical images of the lunar topography in the landing zone for investigation and research. It also observed rover movement on the lunar surface and finished taking pictures of the lander and rover. After starting up successfully, the topography camera obtained static images and video of rover movement from different directions, 360° panoramic pictures of the lunar surface around the lander from multiple angles, and numerous pictures of the Earth. All images of the rover, lunar surface, and the Earth were clear, and those of the Chinese national flag were recorded in true color. This paper describes the exploration mission, system design, working principle, quality assessment of image compression, and color correction of the topography camera. Finally, test results from the lunar surface are provided to serve as a reference for scientific data processing and application. (paper)

  7. Spray-coatable negative photoresist for high topography MEMS applications

    International Nuclear Information System (INIS)

    Arnold, Markus; Haas, Sven; Schwenzer, Falk; Schwenzer, Gunther; Reuter, Danny; Geßner, Thomas; Voigt, Anja; Gruetzner, Gabi

    2017-01-01

    In microsystem technology, the lithographical processing of substrates with a topography is very important. Interconnecting lines, which are routed over sloped topography sidewalls from the top of the protecting wafer to the contact pads of the device wafer, are one example of patterning over a topography. For structuring such circuit paths, a photolithography process, and therefore a process for homogeneous photoresist coating, is required. The most flexible and advantageous way of depositing a homogeneous photoresist film over structures with high topography steps is spray-coating. As a pattern transfer process for circuit paths in cavities, the lift-off process is widely used. A negative resist, like ma-N (MRT) or AZnLOF (AZ) is favoured for lift-off processes due to the existing negative angle of the sidewalls. Only a few sprayable negative photoresists are commercially available. In this paper, the development of a novel negative resist spray-coating based on a commercially available single-layer lift-off resist for spin-coating, especially for the patterning of structures inside the cavity and on the cavity wall, is presented. A variety of parameters influences the spray-coating process, and therefore the patterning results. Besides the spray-coating tool and the parameters, the composition of the resist solution itself also influences the coating results. For homogeneous resist coverage over the topography of the substrate, different solvent combinations for diluting the resist solution, different chuck temperatures during the coating process, and also the softbake conditions, are all investigated. The solvent formulations and the process conditions are optimized with respect to the homogeneity of the resist coverage on the top edge of the cavities. Finally, the developed spray-coating process, the resist material and the process stability are demonstrated by the following applications: (i) lift-off, (ii) electroplating, (iii) the wet and (iv) the dry

  8. Does Dry Eye Affect Repeatability of Corneal Topography Measurements?

    Directory of Open Access Journals (Sweden)

    Aysun Şanal Doğan

    2018-04-01

    Full Text Available Objectives: The purpose of this study was to assess the repeatability of corneal topography measurements in dry eye patients and healthy controls. Materials and Methods: Participants underwent consecutive corneal topography measurements (Sirius; Costruzione Strumenti Oftalmici, Florence, Italy. Two images with acquisition quality higher than 90% were accepted. The following parameters were evaluated: minimum and central corneal thickness, aqueous depth, apex curvature, anterior chamber volume, horizontal anterior chamber diameter, iridocorneal angle, cornea volume, and average simulated keratometry. Repeatability was assessed by calculating intra-class correlation coefficient. Results: Thirty-three patients with dry eye syndrome and 40 healthy controls were enrolled to the study. The groups were similar in terms of age (39 [18-65] vs. 30.5 [18-65] years, p=0.198 and gender (M/F: 4/29 vs. 8/32, p=0.366. Intra-class correlation coefficients among all topography parameters within both groups showed excellent repeatability (>0.90. Conclusion: The anterior segment measurements provided by the Sirius corneal topography system were highly repeatable for dry eye patients and are sufficiently reliable for clinical practice and research.

  9. Does Dry Eye Affect Repeatability of Corneal Topography Measurements?

    Science.gov (United States)

    Doğan, Aysun Şanal; Gürdal, Canan; Köylü, Mehmet Talay

    2018-04-01

    The purpose of this study was to assess the repeatability of corneal topography measurements in dry eye patients and healthy controls. Participants underwent consecutive corneal topography measurements (Sirius; Costruzione Strumenti Oftalmici, Florence, Italy). Two images with acquisition quality higher than 90% were accepted. The following parameters were evaluated: minimum and central corneal thickness, aqueous depth, apex curvature, anterior chamber volume, horizontal anterior chamber diameter, iridocorneal angle, cornea volume, and average simulated keratometry. Repeatability was assessed by calculating intra-class correlation coefficient. Thirty-three patients with dry eye syndrome and 40 healthy controls were enrolled to the study. The groups were similar in terms of age (39 [18-65] vs. 30.5 [18-65] years, p=0.198) and gender (M/F: 4/29 vs. 8/32, p=0.366). Intra-class correlation coefficients among all topography parameters within both groups showed excellent repeatability (>0.90). The anterior segment measurements provided by the Sirius corneal topography system were highly repeatable for dry eye patients and are sufficiently reliable for clinical practice and research.

  10. On in-vivo skin topography metrology and replication techniques

    International Nuclear Information System (INIS)

    Rosen, B-G; Blunt, L; Thomas, T R

    2005-01-01

    Human skin metrology is an area of growing interest for many disciplines both in research and for commercial purposes. Changes in the skin topography are an early stage diagnosis tool not only for diseases but also give indication of the response to medical and cosmetic treatment. This paper focuses on the evaluation of in vivo and in vitro methodologies for accurate measurements of skin and outlines the quantitative characterisation of the skin topography. The study shows the applicability of in-vivo skin topography characterisation and also the advantages and limitations compared to conventional replication techniques. Finally, aspects of stripe projection methodology and 3D characterisation are discussed as a background to the proposed methodology in this paper

  11. Global snowline and mountain topography: a contrasted view

    Science.gov (United States)

    Champagnac, Jean-Daniel; Herman, Frédéric; Valla, Pierre

    2013-04-01

    The examination of the relationship between Earth's topography and present and past climate (i.e., long-term elevation of glaciers Equilibrium Line Altitude) reveals that the elevation of mountain ranges may be limited or controlled by glaciations (e.g. Porter, 1989). This is of prime importance, because glacial condition would lead to a limit the mountain development, hence the accumulation of gravitational energy and prevent the development of further glacial conditions as well as setting the erosion in (peri)glacial environments. In this study, we examine the relationships between topography and the global Equilibrium Line Altitude of alpine glaciers around the world (~ long term snowline, i.e. the altitude where the ice mass balance is null). This analysis reinforce a global study previously published (Champagnac et al., 2012), and provide a much finer view of the climate-topography-tectonics relationships. Specifically, two main observations can be drawn: 1) The distance between the (averaged and maximum) topography, and the ELA decreases pole ward the poles, and even become reversed (mean elevation above to ELA) at high latitude. Correlatively, the elevation of very large portion of land at mid-latitude cannot be related to glaciations, simply because it was never glaciated (large distance between topography and long-term mean ELA). The maximum distance between the ELA and the topography is greater close to the equator and decreases poleward. In absence of glacial and periglacial erosion, this trend cannot have its origin in glacial and periglacial processes. Moreover, the ELA elevation shows a significant (1000~1500m) depression in the intertropical zone. This depression of the ELA is not reflected at all in the topography 2) The distribution of relief on Earth, if normalized by the mean elevation of mountain ranges (as a proxy for available space to create relief, see Champagnac et al., 2012 for details) shows a latitudinal band of greater relief between

  12. Mapping Bedrock Topography using Electromagnetic Profiling ...

    African Journals Online (AJOL)

    Mapping Bedrock Topography using Electromagnetic Profiling. ... will be constructed The area under study is within the Abakaliki Shales Geologic Formation. ... micaceous sandstone; micaceous siltstone, sandy shales and shelly limestone.

  13. Investigating Flow Features Near Abrupt Topography in the Mariana Basin

    Science.gov (United States)

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Investigating Flow Features Near Abrupt Topography in...waves generated by flow over topography and mesoscale eddies generated by flow past islands. Having identified the prime locations in the region for such

  14. Spike voltage topography in temporal lobe epilepsy.

    Science.gov (United States)

    Asadi-Pooya, Ali A; Asadollahi, Marjan; Shimamoto, Shoichi; Lorenzo, Matthew; Sperling, Michael R

    2016-07-15

    We investigated the voltage topography of interictal spikes in patients with temporal lobe epilepsy (TLE) to see whether topography was related to etiology for TLE. Adults with TLE, who had epilepsy surgery for drug-resistant seizures from 2011 until 2014 at Jefferson Comprehensive Epilepsy Center were selected. Two groups of patients were studied: patients with mesial temporal sclerosis (MTS) on MRI and those with other MRI findings. The voltage topography maps of the interictal spikes at the peak were created using BESA software. We classified the interictal spikes as polar, basal, lateral, or others. Thirty-four patients were studied, from which the characteristics of 340 spikes were investigated. The most common type of spike orientation was others (186 spikes; 54.7%), followed by lateral (146; 42.9%), polar (5; 1.5%), and basal (3; 0.9%). Characteristics of the voltage topography maps of the spikes between the two groups of patients were somewhat different. Five spikes in patients with MTS had polar orientation, but none of the spikes in patients with other MRI findings had polar orientation (odds ratio=6.98, 95% confidence interval=0.38 to 127.38; p=0.07). Scalp topographic mapping of interictal spikes has the potential to offer different information than visual inspection alone. The present results do not allow an immediate clinical application of our findings; however, detecting a polar spike in a patient with TLE may increase the possibility of mesial temporal sclerosis as the underlying etiology. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. The application of confocal technology based on polycapillary X-ray optics in surface topography

    International Nuclear Information System (INIS)

    Zhao, Guangcui; Sun, Tianxi; Liu, Zhiguo; Yuan, Hao; Li, Yude; Liu, Hehe; Zhao, Weigang; Zhang, Ruixia; Min, Qin; Peng, Song

    2013-01-01

    A confocal micro-X-ray fluorescence (MXRF) technology based on polycapillary X-ray optics was proposed for determining surface topography. This confocal topography method involves elemental sensitivity and can be used to classify the objects according to their elemental composition while obtaining their surface topography. To improve the spatial resolution of this confocal topography technology, the center of the confocal micro-volume was overlapped with the output focal spot of the polycapillary X-ray, focusing the lens in the excitation channel. The input focal spot of the X-ray lens parallel to the detection channel was used to determine the surface position of the sample. The corresponding surface adaptive algorithm was designed to obtain the surface topography. The surface topography of a ceramic chip was obtained. This confocal MXRF surface topography method could find application in the materials sciences

  16. Measurement noise of a point autofocus surface topography instrument

    DEFF Research Database (Denmark)

    Feng, Xiaobing; Quagliotti, Danilo; Maculotti, Giacomo

    Optical instruments for areal topography measurement can be especially sensitive to noise when scanning is required. Such noise has different sources, including those internally generated and external sources from the environment.......Optical instruments for areal topography measurement can be especially sensitive to noise when scanning is required. Such noise has different sources, including those internally generated and external sources from the environment....

  17. Feature-based characterisation of signature topography in laser powder bed fusion of metals

    Science.gov (United States)

    Senin, Nicola; Thompson, Adam; Leach, Richard

    2018-04-01

    The use of state-of-the-art areal topography measurement instrumentation allows for a high level of detail in the acquisition of topographic information at micrometric scales. The 3D geometric models of surface topography obtained from measured data create new opportunities for the investigation of manufacturing processes through characterisation of the surfaces of manufactured parts. Conventional methods for quantitative assessment of topography usually only involve the computation of texture parameters, summary indicators of topography-related characteristics that are computed over the investigated area. However, further useful information may be obtained through characterisation of signature topographic formations, as more direct indicators of manufacturing process behaviour and performance. In this work, laser powder bed fusion of metals is considered. An original algorithmic method is proposed to isolate relevant topographic formations and to quantify their dimensional and geometric properties, using areal topography data acquired by state-of-the-art areal topography measurement instrumentation.

  18. Measurement of Angle Kappa Using Ultrasound Biomicroscopy and Corneal Topography.

    Science.gov (United States)

    Yeo, Joon Hyung; Moon, Nam Ju; Lee, Jeong Kyu

    2017-06-01

    To introduce a new convenient and accurate method to measure the angle kappa using ultrasound biomicroscopy (UBM) and corneal topography. Data from 42 eyes (13 males and 29 females) were analyzed in this study. The angle kappa was measured using Orbscan II and calculated with UBM and corneal topography. The angle kappa of the dominant eye was compared with measurements by Orbscan II. The mean patient age was 36.4 ± 13.8 years. The average angle kappa measured by Orbscan II was 3.98° ± 1.12°, while the average angle kappa calculated with UBM and corneal topography was 3.19° ± 1.15°. The difference in angle kappa measured by the two methods was statistically significant (p topography to calculate the angle kappa. This method is convenient to use and allows for measurement of the angle kappa without an expensive device. © 2017 The Korean Ophthalmological Society

  19. Influence of surface topography on elastically backscattered electrons

    International Nuclear Information System (INIS)

    Ding, X; Da, B; Gong, J B; Ding, Z J; Mao, S F

    2014-01-01

    A Monte Carlo simulation, taking into account of the detailed surface roughness of a realistic solid sample, has been performed to study the surface topography influence on elastic peak intensity. To describe quantitatively the surface topography effect, here we introduce surface roughness parameter (SRP) according to the ratio of elastic peak intensities between a rough surface and an ideal planar surface. Simulation results for Al sample have shown that SRP varies with surface roughness particularly at large incidence/emission angles

  20. Inner core boundary topography explored with reflected and diffracted P waves

    Science.gov (United States)

    deSilva, Susini; Cormier, Vernon F.; Zheng, Yingcai

    2018-03-01

    The existence of topography of the inner core boundary (ICB) can affect the amplitude, phase, and coda of body waves incident on the inner core. By applying pseudospectral and boundary element methods to synthesize compressional waves interacting with the ICB, these effects are predicted and compared with waveform observations in pre-critical, critical, post-critical, and diffraction ranges of the PKiKP wave reflected from the ICB. These data sample overlapping regions of the inner core beneath the circum-Pacific belt and the Eurasian, North American, and Australian continents, but exclude large areas beneath the Pacific and Indian Oceans and the poles. In the pre-critical range, PKiKP waveforms require an upper bound of 2 km at 1-20 km wavelength for any ICB topography. Higher topography sharply reduces PKiKP amplitude and produces time-extended coda not observed in PKiKP waveforms. The existence of topography of this scale smooths over minima and zeros in the pre-critical ICB reflection coefficient predicted from standard earth models. In the range surrounding critical incidence (108-130 °), this upper bound of topography does not strongly affect the amplitude and waveform behavior of PKIKP + PKiKP at 1.5 Hz, which is relatively insensitive to 10-20 km wavelength topography height approaching 5 km. These data, however, have a strong overlap in the regions of the ICB sampled by pre-critical PKiKP that require a 2 km upper bound to topography height. In the diffracted range (>152°), topography as high as 5 km attenuates the peak amplitudes of PKIKP and PKPCdiff by similar amounts, leaving the PKPCdiff/PKIKP amplitude ratio unchanged from that predicted by a smooth ICB. The observed decay of PKPCdiff into the inner core shadow and the PKIKP-PKPCdiff differential travel time are consistent with a flattening of the outer core P velocity gradient near the ICB and iron enrichment at the bottom of the outer core.

  1. Ultrasound imaging measurement of submerged topography in the muddy water physical model

    International Nuclear Information System (INIS)

    Xiao, Xiongwu; Guo, Bingxuan; Li, Deren; Zhang, Peng; Zang, Yu-fu; Zou, Xianjian; Liu, Jian-chen

    2015-01-01

    The real-time, accurate measurement of submerged topography is vital for the analysis of riverbed erosion and deposition. This paper describes a novel method of measuring submerged topography in the B-scan image obtained using an ultrasound imaging device. Results show the distribution of gray values in the image has a process of mutation. This mutation process can be used to adaptively track the topographic lines between riverbed and water, based on the continuity of topography in the horizontal direction. The extracted topographic lines, of one pixel width, are processed by a wavelet filtering method. Compared with the actual topography, the measurement accuracy is within 1 mm. It is suitable for the real-time measurement and analysis of all current model topographies with the advantage of good self-adaptation. In particular, it is visible and intuitive for muddy water in the movable-bed model experiment. (paper)

  2. Nano-topography Enhances Communication in Neural Cells Networks

    KAUST Repository

    Onesto, V.

    2017-08-23

    Neural cells are the smallest building blocks of the central and peripheral nervous systems. Information in neural networks and cell-substrate interactions have been heretofore studied separately. Understanding whether surface nano-topography can direct nerve cells assembly into computational efficient networks may provide new tools and criteria for tissue engineering and regenerative medicine. In this work, we used information theory approaches and functional multi calcium imaging (fMCI) techniques to examine how information flows in neural networks cultured on surfaces with controlled topography. We found that substrate roughness Sa affects networks topology. In the low nano-meter range, S-a = 0-30 nm, information increases with Sa. Moreover, we found that energy density of a network of cells correlates to the topology of that network. This reinforces the view that information, energy and surface nano-topography are tightly inter-connected and should not be neglected when studying cell-cell interaction in neural tissue repair and regeneration.

  3. Diffusive boundary layers over varying topography

    KAUST Repository

    Dell, R. W.

    2015-03-25

    Diffusive bottom boundary layers can produce upslope flows in a stratified fluid. Accumulating observations suggest that these boundary layers may drive upwelling and mixing in mid-ocean ridge flank canyons. However, most studies of diffusive bottom boundary layers to date have concentrated on constant bottom slopes. We present a study of how diffusive boundary layers interact with various idealized topography, such as changes in bottom slope, slopes with corrugations and isolated sills. We use linear theory and numerical simulations in the regional ocean modeling system (ROMS) model to show changes in bottom slope can cause convergences and divergences within the boundary layer, in turn causing fluid exchanges that reach far into the overlying fluid and alter stratification far from the bottom. We also identify several different regimes of boundary-layer behaviour for topography with oceanographically relevant size and shape, including reversing flows and overflows, and we develop a simple theory that predicts the regime boundaries, including what topographies will generate overflows. As observations also suggest there may be overflows in deep canyons where the flow passes over isolated bumps and sills, this parameter range may be particularly significant for understanding the role of boundary layers in the deep ocean.

  4. Incorpararion of Topography Effect Into Two-Dimensional DC Resistivity Modelling by Using Finite-Element Method

    International Nuclear Information System (INIS)

    Erdogan, E.

    2007-01-01

    In earth investigation done by using the direct current resistivity technique, impact of the change in the examined surface topography on determining the resistivity distrubition in the earth has been a frequently faced question. In order to get more fruitful results and make more correct interpretetions in earth surveying carried on the areas where topographical changes occur, modelling should be done by taking the change in surface topography into account and topography effect should be included into inversion. In this study impact of topography to the direct current resistivity method has been analysed. For this purpose, 2-D forward modeling algorithm has been developed by using finite element method. In this algorithm impact of topography can be incorporate into the model. Also the pseudo sections which is produced from the program can be imaged with topography. By using this algorithm response of models under different surface topography has been analysed and compared with the straight topography of same models

  5. Venus gravity anomalies and their correlations with topography

    Science.gov (United States)

    Sjogren, W. L.; Bills, B. G.; Birkeland, P. W.; Esposito, P. B.; Konopliv, A. R.; Mottinger, N. A.; Ritke, S. J.; Phillips, R. J.

    1983-01-01

    This report provides a summary of the high-resolution gravity data obtained from the Pioneer Venus Orbiter radio tracking data. Gravity maps, covering a 70 deg latitude band through 360 deg of longitude, are displayed as line-of-sight and vertical gravity. Topography converted to gravity and Bouguer gravity maps are also shown in both systems. Topography to gravity ratios are made over several regions of the planet. There are markedly different ratios for the Aphrodite area as compared to the Beta and Atla areas.

  6. Leveraging High Resolution Topography for Education and Outreach: Updates to OpenTopography to make EarthScope and Other Lidar Datasets more Prominent in Geoscience Education

    Science.gov (United States)

    Kleber, E.; Crosby, C. J.; Arrowsmith, R.; Robinson, S.; Haddad, D. E.

    2013-12-01

    The use of Light Detection and Ranging (lidar) derived topography has become an indispensable tool in Earth science research. The collection of high-resolution lidar topography from an airborne or terrestrial platform allows landscapes and landforms to be represented at sub-meter resolution and in three dimensions. In addition to its high value for scientific research, lidar derived topography has tremendous potential as a tool for Earth science education. Recent science education initiatives and a community call for access to research-level data make the time ripe to expose lidar data and derived data products as a teaching tool. High resolution topographic data fosters several Disciplinary Core Ideas (DCIs) of the Next Generation Science Standards (NGS, 2013), presents respective Big Ideas of the new community-driven Earth Science Literacy Initiative (ESLI, 2009), teaches to a number National Science Education Standards (NSES, 1996), and Benchmarks for Science Literacy (AAAS, 1993) for science education for undergraduate physical and environmental earth science classes. The spatial context of lidar data complements concepts like visualization, place-based learning, inquiry based teaching and active learning essential to teaching in the geosciences. As official host to EarthScope lidar datasets for tectonically active areas in the western United States, the NSF-funded OpenTopography facility provides user-friendly access to a wealth of data that is easily incorporated into Earth science educational materials. OpenTopography (www.opentopography.org), in collaboration with EarthScope, has developed education and outreach activities to foster teacher, student and researcher utilization of lidar data. These educational resources use lidar data coupled with free tools such as Google Earth to provide a means for students and the interested public to visualize and explore Earth's surface in an interactive manner not possible with most other remotely sensed imagery. The

  7. Relating Cenozoic North Sea sediments to topography in southern Norway:

    DEFF Research Database (Denmark)

    Anell, Ingrid Anna Margareta; Thybo, Hans; Stratford, Wanda Rose

    2010-01-01

    the Shetland platform continued throughout the Cenozoic while supply from southern Norway increased markedly around the Eocene–Oligocene, coeval with the greenhouse–icehouse transition. Mass balance calculations of sediment and eroded rock volumes suggest that while some topography along the western margin...... that Plio-Pleistocene erosion over-deepened a pre-existing topography....

  8. Assessing Bioinspired Topographies for their Antifouling Potential Control Using Computational Fluid Dynamics (CFD

    Directory of Open Access Journals (Sweden)

    Ling Jacky

    2018-01-01

    Full Text Available Biofouling is the accumulation of unwanted material on surfaces submerged or semi submerged over an extended period. This study investigates the antifouling performance of a new bioinspired topography design. A shark riblets inspired topography was designed with Solidworks and CFD simulations were antifouling performance. The study focuses on the fluid flow velocity, the wall shear stress and the appearance of vortices are to be noted to determine the possible locations biofouling would most probably occur. The inlet mass flow rate is 0.01 kgs-1 and a no-slip boundary condition was applied to the walls of the fluid domain. Simulations indicate that Velocity around the topography averaged at 7.213 x 10-3 ms-1. However, vortices were observed between the gaps. High wall shear stress is observed at the peak of each topography. In contrast, wall shear stress is significantly low at the bed of the topography. This suggests the potential location for the accumulation of biofouling. Results show that bioinspired antifouling topography can be improved by reducing the frequency of gaps between features. Linear surfaces on the topography should also be minimized. This increases the avenues of flow for the fluid, thus potentially increasing shear stresses with surrounding fluid leading to better antifouling performance.

  9. Cokriging surface elevation and seismic refraction data for bedrock topography

    International Nuclear Information System (INIS)

    Nyquist, J.E.; Doll, W.E.; Davis, R.K.; Hopkins, R.A.

    1992-01-01

    Analysis of seismic refraction data collected at a proposed site of the Advanced Neutron Source (ANS) Facility showed a strong correlation between surface and bedrock topography. By combining seismically determined bedrock elevation data with surface elevation data using cokriging, we were able to significantly improve our map of bedrock topography without collecting additional seismic data

  10. Influence of topography on landscape radiation temperature distribution

    International Nuclear Information System (INIS)

    Florinsky, I.V.; Kulagina, T.B.; Meshalkina, J.L.

    1994-01-01

    The evaluation of the influence of topography on landscape radiation temperature distribution is carried out by statistical processing of digital models of elevation, gradient, aspect, horizontal, vertical and mean land surface curvatures and the infrared thermal scene generated by the Thermovision 880 system. Significant linear correlation coefficients between the landscape radiation temperature and elevation, slope, aspect, vertical and mean landsurface curvatures are determined, being —0-57, 0 38, 0-26, 015, 013, respectively. The equation of the topography influence on the distribution of the landscape radiation temperature is defined. (author)

  11. Crystal quality analysis and improvement using x-ray topography

    International Nuclear Information System (INIS)

    Maj, J.; Goetze, K.; Macrander, A.; Zhong, Y.; Huang, X.; Maj, L.

    2008-01-01

    The Topography X-ray Laboratory of the Advanced Photon Source (APS) at Argonne National Laboratory operates as a collaborative effort with APS users to produce high performance crystals for APS X-ray beamline experiments. For many years the topography laboratory has worked closely with an on-site optics shop to help ensure the production of crystals with the highest quality, most stress-free surface finish possible. It has been instrumental in evaluating and refining methods used to produce high quality crystals. Topographical analysis has shown to be an effective method to quantify and determine the distribution of stresses, to help identify methods that would mitigate the stresses and improve the Rocking curve, and to create CCD images of the crystal. This paper describes the topography process and offers methods for reducing crystal stresses in order to substantially improve the crystal optics.

  12. Allometric scaling of infraorbital surface topography in Homo.

    Science.gov (United States)

    Maddux, Scott D; Franciscus, Robert G

    2009-02-01

    Infraorbital morphology is often included in phylogenetic and functional analyses of Homo. The inclusion of distinct infraorbital configurations, such as the "canine fossa" in Homo sapiens or the "inflated" maxilla in Neandertals, is generally based on either descriptive or qualitative assessments of this morphology, or simple linear chord and subtense measurements. However, the complex curvilinear surface of the infraorbital region has proven difficult to quantify through these traditional methods. In this study, we assess infraorbital shape and its potential allometric scaling in fossil Homo (n=18) and recent humans (n=110) with a geometric morphometric method well-suited for quantifying complex surface topographies. Our results indicate that important aspects of infraorbital shape are correlated with overall infraorbital size across Homo. Specifically, individuals with larger infraorbital areas tend to exhibit relatively flatter infraorbital surface topographies, taller and narrower infraorbital areas, sloped inferior orbital rims, anteroinferiorly oriented maxillary body facies, posteroinferiorly oriented maxillary processes of the zygomatic, and non-everted lateral nasal margins. In contrast, individuals with smaller infraorbital regions generally exhibit relatively depressed surface topographies, shorter and wider infraorbital areas, projecting inferior orbital rims, posteroinferiorly oriented maxillary body facies, anteroinferiorly oriented maxillary processes, and everted lateral nasal margins. These contrasts form a continuum and only appear dichotomized at the ends of the infraorbital size spectrum. In light of these results, we question the utility of incorporating traditionally polarized infraorbital morphologies in phylogenetic and functional analyses without due consideration of continuous infraorbital and facial size variation in Homo. We conclude that the essentially flat infraorbital surface topography of Neandertals is not unique and can be

  13. ATM Coastal Topography-Florida 2001: Eastern Panhandle

    Science.gov (United States)

    Yates, Xan; Nayegandhi, Amar; Brock, John C.; Sallenger, A.H.; Bonisteel, Jamie M.; Klipp, Emily S.; Wright, C. Wayne

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived first surface (FS) topography were produced collaboratively by the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of the eastern Florida panhandle coastline, acquired October 2, 2001. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative scanning Lidar instrument originally developed by NASA, and known as the Airborne Topographic Mapper (ATM), was used during data acquisition. The ATM system is a scanning Lidar system that measures high-resolution topography of the land surface and incorporates a green-wavelength laser operating at pulse rates of 2 to 10 kilohertz. Measurements from the laser-ranging device are coupled with data acquired from inertial navigation system (INS) attitude sensors and differentially corrected global positioning system (GPS) receivers to measure topography of the surface at accuracies of +/-15 centimeters. The nominal ATM platform is a Twin Otter or P-3 Orion aircraft, but the instrument may be deployed on a range of light aircraft. Elevation measurements were collected over the survey area using the ATM system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for presurvey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is routinely used to create

  14. ATM Coastal Topography-Florida 2001: Western Panhandle

    Science.gov (United States)

    Yates, Xan; Nayegandhi, Amar; Brock, John C.; Sallenger, A.H.; Bonisteel, Jamie M.; Klipp, Emily S.; Wright, C. Wayne

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived first surface (FS) topography were produced collaboratively by the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of the western Florida panhandle coastline, acquired October 2-4 and 7-10, 2001. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative scanning Lidar instrument originally developed by NASA, and known as the Airborne Topographic Mapper (ATM), was used during data acquisition. The ATM system is a scanning Lidar system that measures high-resolution topography of the land surface and incorporates a green-wavelength laser operating at pulse rates of 2 to 10 kilohertz. Measurements from the laser-ranging device are coupled with data acquired from inertial navigation system (INS) attitude sensors and differentially corrected global positioning system (GPS) receivers to measure topography of the surface at accuracies of +/-15 centimeters. The nominal ATM platform is a Twin Otter or P-3 Orion aircraft, but the instrument may be deployed on a range of light aircraft. Elevation measurements were collected over the survey area using the ATM system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for presurvey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is routinely used

  15. A framework for integration of scientific applications into the OpenTopography workflow

    Science.gov (United States)

    Nandigam, V.; Crosby, C.; Baru, C.

    2012-12-01

    The NSF-funded OpenTopography facility provides online access to Earth science-oriented high-resolution LIDAR topography data, online processing tools, and derivative products. The underlying cyberinfrastructure employs a multi-tier service oriented architecture that is comprised of an infrastructure tier, a processing services tier, and an application tier. The infrastructure tier consists of storage, compute resources as well as supporting databases. The services tier consists of the set of processing routines each deployed as a Web service. The applications tier provides client interfaces to the system. (e.g. Portal). We propose a "pluggable" infrastructure design that will allow new scientific algorithms and processing routines developed and maintained by the community to be integrated into the OpenTopography system so that the wider earth science community can benefit from its availability. All core components in OpenTopography are available as Web services using a customized open-source Opal toolkit. The Opal toolkit provides mechanisms to manage and track job submissions, with the help of a back-end database. It allows monitoring of job and system status by providing charting tools. All core components in OpenTopography have been developed, maintained and wrapped as Web services using Opal by OpenTopography developers. However, as the scientific community develops new processing and analysis approaches this integration approach is not scalable efficiently. Most of the new scientific applications will have their own active development teams performing regular updates, maintenance and other improvements. It would be optimal to have the application co-located where its developers can continue to actively work on it while still making it accessible within the OpenTopography workflow for processing capabilities. We will utilize a software framework for remote integration of these scientific applications into the OpenTopography system. This will be accomplished by

  16. Role of the Nucleus as a Sensor of Cell Environment Topography.

    Science.gov (United States)

    Anselme, Karine; Wakhloo, Nayana Tusamda; Rougerie, Pablo; Pieuchot, Laurent

    2018-04-01

    The proper integration of biophysical cues from the cell vicinity is crucial for cells to maintain homeostasis, cooperate with other cells within the tissues, and properly fulfill their biological function. It is therefore crucial to fully understand how cells integrate these extracellular signals for tissue engineering and regenerative medicine. Topography has emerged as a prominent component of the cellular microenvironment that has pleiotropic effects on cell behavior. This progress report focuses on the recent advances in the understanding of the topography sensing mechanism with a special emphasis on the role of the nucleus. Here, recent techniques developed for monitoring the nuclear mechanics are reviewed and the impact of various topographies and their consequences on nuclear organization, gene regulation, and stem cell fate is summarized. The role of the cell nucleus as a sensor of cell-scale topography is further discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Applications of corneal topography and tomography: a review.

    Science.gov (United States)

    Fan, Rachel; Chan, Tommy Cy; Prakash, Gaurav; Jhanji, Vishal

    2018-03-01

    Corneal imaging is essential for diagnosing and management of a wide variety of ocular diseases. Corneal topography is used to characterize the shape of the cornea, specifically, the anterior surface of the cornea. Most corneal topographical systems are based on Placido disc that analyse rings that are reflected off the corneal surface. The posterior corneal surface cannot be characterized using Placido disc technology. Imaging of the posterior corneal surface is useful for diagnosis of corneal ectasia. Unlike corneal topographers, tomographers generate a three-dimensional recreation of the anterior segment and provide information about the corneal thickness. Scheimpflug imaging is one of the most commonly used techniques for corneal tomography. The cross-sectional images generated by a rotating Scheimpflug camera are used to locate the anterior and posterior corneal surfaces. The clinical uses of corneal topography include, diagnosis of corneal ectasia, assessment of corneal astigmatism, and refractive surgery planning. This review will discuss the applications of corneal topography and tomography in clinical practice. © 2017 Royal Australian and New Zealand College of Ophthalmologists.

  18. Role of percent tissue altered on ectasia after LASIK in eyes with suspicious topography.

    Science.gov (United States)

    Santhiago, Marcony R; Smadja, David; Wilson, Steven E; Krueger, Ronald R; Monteiro, Mario L R; Randleman, J Bradley

    2015-04-01

    To investigate the association of the percent tissue altered (PTA) with the occurrence of ectasia after LASIK in eyes with suspicious preoperative corneal topography. This retrospective comparative case-control study compared associations of reported ectasia risk factors in 129 eyes, including 57 eyes with suspicious preoperative Placido-based corneal topography that developed ectasia after LASIK (suspect ectasia group), 32 eyes with suspicious topography that remained stable for at least 3 years after LASIK (suspect control group), and 30 eyes that developed ectasia with bilateral normal topography (normal topography ectasia group). Groups were subdivided based on topographic asymmetry into high- or low-suspect groups. The PTA, preoperative central corneal thickness (CCT), residual stromal bed (RSB), and age (years) were evaluated in univariate and multivariate analyses. Average PTA values for normal topography ectasia (45), low-suspect ectasia (39), high-suspect ectasia (36), low-suspect control (32), and high-suspect control (29) were significantly different from one another in all comparisons (P topography ectasia groups, and CCT was not significantly different between any groups. Stepwise logistic regression revealed the PTA as the most significant independent variable (P topography. Less tissue alteration, or a lower PTA value, was necessary to induce ectasia in eyes with more remarkable signs of topographic abnormality, and PTA provided better discriminative capabilities than RSB for all study populations. Copyright 2015, SLACK Incorporated.

  19. Photogrammetric portrayal of Mars topography.

    Science.gov (United States)

    Wu, S.S.C.

    1979-01-01

    Special photogrammetric techniques have been developed to portray Mars topography, using Mariner and Viking imaging and nonimaging topographic information and earth-based radar data. Topography is represented by the compilation of maps at three scales: global, intermediate, and very large scale. The global map is a synthesis of topographic information obtained from Mariner 9 and earth-based radar, compiled at a scale of 1:25,000,000 with a contour interval of 1 km; it gives a broad quantitative view of the planet. At intermediate scales, Viking Orbiter photographs of various resolutions are used to compile detailed contour maps of a broad spectrum of prominent geologic features; a contour interval as small as 20 m has been obtained from very high resolution orbital photography. Imagery from the Viking lander facsimile cameras permits construction of detailed, very large scale (1:10) topographic maps of the terrain surrounding the two landers; these maps have a contour interval of 1 cm. This paper presents several new detailed topographic maps of Mars.-Author

  20. Preventing probe induced topography correlated artifacts in Kelvin Probe Force Microscopy

    NARCIS (Netherlands)

    Polak, L.; Wijngaarden, Rinke J.

    2016-01-01

    Kelvin Probe Force Microscopy (KPFM) on samples with rough surface topography can be hindered by topography correlated artifacts. We show that, with the proper experimental configuration and using homogeneously metal coated probes, we are able to obtain amplitude modulation (AM) KPFM results on a

  1. X-ray topography and multiple diffraction

    International Nuclear Information System (INIS)

    Chang, S.-L.

    1983-01-01

    A short summary on X-ray topography, which is based on the dynamical theory of X-ray diffraction, is made. The applications and properties related to the use of the multiple diffraction technique are analized and discussed. (L.C.) [pt

  2. Topography changes monitoring of small islands using camera drone

    Science.gov (United States)

    Bang, E.

    2017-12-01

    Drone aerial photogrammetry was conducted for monitoring topography changes of small islands in the east sea of Korea. Severe weather and sea wave is eroding the islands and sometimes cause landslide and falling rock. Due to rugged cliffs in all direction and bad accessibility, ground based survey methods are less efficient in monitoring topography changes of the whole area. Camera drones can provide digital images and movie in every corner of the islands, and drone aerial photogrammetry is powerful to get precise digital surface model (DSM) for a limited area. We have got a set of digital images to construct a textured 3D model of the project area every year since 2014. Flight height is in less than 100m from the top of those islands to get enough ground sampling distance (GSD). Most images were vertically captured with automatic flights, but we also flied drones around the islands with about 30°-45° camera angle for constructing 3D model better. Every digital image has geo-reference, but we set several ground control points (GCPs) on the islands and their coordinates were measured with RTK surveying methods to increase the absolute accuracy of the project. We constructed 3D textured model using photogrammetry tool, which generates 3D spatial information from digital images. From the polygonal model, we could get DSM with contour lines. Thematic maps such as hill shade relief map, aspect map and slope map were also processed. Those maps make us understand topography condition of the project area better. The purpose of this project is monitoring topography change of these small islands. Elevation difference map between DSMs of each year is constructed. There are two regions showing big negative difference value. By comparing constructed textured models and captured digital images around these regions, it is checked that a region have experienced real topography change. It is due to huge rock fall near the center of the east island. The size of fallen rock can be

  3. Electronic cigarettes: abuse liability, topography and subjective effects.

    Science.gov (United States)

    Evans, Sarah E; Hoffman, Allison C

    2014-05-01

    To review the available evidence evaluating the abuse liability, topography, subjective effects, craving and withdrawal suppression associated with e-cigarette use in order to identify information gaps and provide recommendations for future research. Literature searches were conducted between October 2012 and January 2014 using five electronic databases. Studies were included in this review if they were peer-reviewed scientific journal articles evaluating clinical laboratory studies, national surveys or content analyses. A total of 15 peer-reviewed articles regarding behavioural use and effects of e-cigarettes published between 2010 and 2014 were included in this review. Abuse liability studies are limited in their generalisability. Topography (consumption behaviour) studies found that, compared with traditional cigarettes, e-cigarette average puff duration was significantly longer, and e-cigarette use required stronger suction. Data on e-cigarette subjective effects (such as anxiety, restlessness, concentration, alertness and satisfaction) and withdrawal suppression are limited and inconsistent. In general, study data should be interpreted with caution, given limitations associated with comparisons of novel and usual products, as well as the possible effects associated with subjects' previous experience/inexperience with e-cigarettes. Currently, very limited information is available on abuse liability, topography and subjective effects of e-cigarettes. Opportunities to examine extended e-cigarette use in a variety of settings with experienced e-cigarette users would help to more fully assess topography as well as behavioural and subjective outcomes. In addition, assessment of 'real-world' use, including amount and timing of use and responses to use, would clarify behavioural profiles and potential adverse health effects.

  4. Stress distribution and topography of Tellus Regio, Venus

    Science.gov (United States)

    Williams, David R.; Greeley, Ronald

    1989-01-01

    The Tellus Regio area of Venus represents a subset of a narrow latitude band where Pioneer Venus Orbiter (PVO) altimetry data, line-of-sight (LOS) gravity data, and Venera 15/16 radar images have all been obtained with good resolution. Tellus Regio also has a wide variety of surface morphologic features, elevations ranging up to 2.5 km, and a relatively low LOS gravity anomaly. This area was therefore chosen in order to examine the theoretical stress distributions resulting from various models of compensation of the observed topography. These surface stress distributions are then compared with the surface morphology revealed in the Venera 15/16 radar images. Conclusions drawn from these comparisons will enable constraints to be put on various tectonic parameters relevant to Tellus Regio. The stress distribution is calculated as a function of the topography, the equipotential anomaly, and the assumed model parameters. The topography data is obtained from the PVO altimetry. The equipotential anomaly is estimated from the PVO LOS gravity data. The PVO LOS gravity represents the spacecraft accelerations due to mass anomalies within the planet. These accelerations are measured at various altitudes and angles to the local vertical and therefore do not lend themselves to a straightforward conversion. A minimum variance estimator of the LOS gravity data is calculated, taking into account the various spacecraft altitudes and LOS angles and using the measured PVO topography as an a priori constraint. This results in an estimated equivalent surface mass distribution, from which the equipotential anomaly is determined.

  5. Stress distribution and topography of Tellus Regio, Venus

    International Nuclear Information System (INIS)

    Williams, D.R.; Greeley, R.

    1989-01-01

    The Tellus Regio area of Venus represents a subset of a narrow latitude band where Pioneer Venus Orbiter (PVO) altimetry data, line-of-sight (LOS) gravity data, and Venera 15/16 radar images have all been obtained with good resolution. Tellus Regio also has a wide variety of surface morphologic features, elevations ranging up to 2.5 km, and a relatively low LOS gravity anomaly. This area was therefore chosen in order to examine the theoretical stress distributions resulting from various models of compensation of the observed topography. These surface stress distributions are then compared with the surface morphology revealed in the Venera 15/16 radar images. Conclusions drawn from these comparisons will enable constraints to be put on various tectonic parameters relevant to Tellus Regio. The stress distribution is calculated as a function of the topography, the equipotential anomaly, and the assumed model parameters. The topography data is obtained from the PVO altimetry. The equipotential anomaly is estimated from the PVO LOS gravity data. The PVO LOS gravity represents the spacecraft accelerations due to mass anomalies within the planet. These accelerations are measured at various altitudes and angles to the local vertical and therefore do not lend themselves to a straightforward conversion. A minimum variance estimator of the LOS gravity data is calculated, taking into account the various spacecraft altitudes and LOS angles and using the measured PVO topography as an a priori constraint. This results in an estimated equivalent surface mass distribution, from which the equipotential anomaly is determined

  6. The development of surface topography by heavy ion sputtering

    International Nuclear Information System (INIS)

    Whitton, J.L.; Carter, G.

    1981-01-01

    The results of a detailed, systematic investigation of the development of energetic argon ion bombardment induced surface features on polycrystal and single crystal copper are presented. It is shown that the crystal structure itself is the dominant factor deciding the final form of surface topography. The earlier proposed ''necessary conditions'' for development of surface topography, viz. surface impurity, asperities, growth, surface migration and redeposition are shown to be unimportant under the clean conditions of the experiments. (Auth.)

  7. Pitting Corrosion Topography Characteristics and Evolution Laws of LC4 Aluminum Alloy in Service Environment

    Directory of Open Access Journals (Sweden)

    LIU Zhiguo

    2017-08-01

    Full Text Available Aircraft aluminum alloy is easy to initiate pitting corrosion in the service environment, the pitting corrosion topography characteristics could directly affect the fatigue mechanical property of structure material. In order to obtain the pitting corrosion topography characteristics of LC4 aluminum alloy in the service environment, the accelerated corrosion test was carried out along the accelerated corrosion test environment spectrum which imitated the service environment spectrum, and the corrosion topography characteristic parameters of corrosion pit depth H,corrosion pit surface length L and corrosion pit surface width W were defined respectively. During the corrosion test process,the three parameters of typical corrosion pit were successively measured in different equivalent corrosion years for obtaining the corrosion pit damage size data, then the data were analysed through the statistics method and fractal theory. Further more in order to gain the pit topography characteristics in the same equivalent corrosion year and the topography evolution laws during different equivalent corrosion years were gained. The analysis results indicate that LC4 aluminum alloy corrosion pit topography characteristics in the service environment include the following:firstly, the pit topography characteristic parameters conform to the lognormal distributions in the same equivalent corrosion years; secondly,the pit topography characteristic parameters gradually reflect the fractal feature in accordance with the equivalent corrosion year increment, and the pits tend to be shallow, long and moderate wide topography character.

  8. Tectonics and Non-isostatic Topography of the Mariana Trench and Adjacent Plates

    Science.gov (United States)

    Hongyu, L.; Lin, J.; Zhou, Z.; Zhang, F.

    2017-12-01

    Multi-types of geophysical data including multibeam bathymetry, sediment thickness, gravity anomaly, and crustal magnetic age were analyzed to investigate tectonic processes of the Mariana Trench and the surrounding plates. We calculated non-Airy-isostatic topography by removing from the observed bathymetry the effects of sediment loading, thermal subsidence, and Airy local isostatically-compensated topography. The Mariana Trench was found to be associated with a clearly defined zone of negative non-isostatic topography, which was caused by flexural bending of the subducting Pacific plate and with the maximum depth anomaly and flexural bending near the Challenger Deep. In contrast, the Caroline Ridge and Caroline Islands Chain have much more subdued non-isostatic topography, indicating their higher topography is largely compensated by thicker crust. Along the Mariana Trough, the northern and central segments appear to be associated with relatively low magma supply as indicated by the relatively low topography and thin crust. In contrast, the southern Mariana Trough is associated with relatively high magma supply as indicated by the relatively high and smoother topography, an axial high spreading center, and relatively thick crust. The southern end of the Mariana Trough was also found to be associated with positive non-isostatic topographic anomaly, which might be caused by the complex tectonic deformation of the overriding Mariana and Philippine Sea plates and their interaction with the subducting Pacific plate. Analysis further revealed that the southern Mariana Arc, located between the Mariana Trench and Mariana Trough, is associated with positive non-isostatic topographic anomalies, which may be explained by the late stage magmatic loading on the older and thus stronger lithospheric plate of the Mariana volcanic arc.

  9. Influence of dynamic topography on landscape evolution and passive continental margin stratigraphy

    Science.gov (United States)

    Ding, Xuesong; Salles, Tristan; Flament, Nicolas; Rey, Patrice

    2017-04-01

    Quantifying the interaction between surface processes and tectonics/deep Earth processes is one important aspect of landscape evolution modelling. Both observations and results from numerical modelling indicate that dynamic topography - a surface expression of time-varying mantle convection - plays a significant role in shaping landscape through geological time. Recent research suggests that dynamic topography also has non-negligible effects on stratigraphic architecture by modifying accommodation space available for sedimentation. In addition, dynamic topography influences the sediment supply to continental margins. We use Badlands to investigate the evolution of a continental-scale landscape in response to transient dynamic uplift or subsidence, and to model the stratigraphic development on passive continental margins in response to sea-level change, thermal subsidence and dynamic topography. We consider a circularly symmetric landscape consisting of a plateau surrounded by a gently sloping continental plain and a continental margin, and a linear wave of dynamic topography. We analyze the evolution of river catchments, of longitudinal river profiles and of the χ values to evaluate the dynamic response of drainage systems to dynamic topography. We calculate the amount of cumulative erosion and deposition, and sediment flux at shoreline position, as a function of precipitation rate and erodibility coefficient. We compute the stratal stacking pattern and Wheeler diagram on vertical cross-sections at the continental margin. Our results indicate that dynamic topography 1) has a considerable influence on drainage reorganization; 2) contributes to shoreline migration and the distribution of depositional packages by modifying the accommodation space; 3) affects sediment supply to the continental margin. Transient dynamic topography contributes to the migration of drainage divides and to the migration of the mainstream in a drainage basin. The dynamic uplift

  10. Acquisition of an Underway CTD System for the Flow Encountering Abrupt Topography DRI

    Science.gov (United States)

    2015-09-30

    Acquisition of an Underway CTD System for the Flow Encountering Abrupt Topography DRI T. M. Shaun Johnston Scripps Institution of Oceanography...westward flow in the North Equatorial Current (NEC) encounters tall, steep, submarine topography and islands. During the Flow Encountering Abrupt... Topography (FLEAT) DRI, investigators will determine: • Whether appreciable energy/momentum is lost from the large-scale NEC flow to smaller scales and

  11. Light source for synchrotron radiation x-ray topography study at Beijing Synchrotron Radiation Laboratory (BSRL)

    International Nuclear Information System (INIS)

    Zhao Jiyong; Jiang Jianhua; Tian Yulian

    1992-01-01

    Characteristics of the synchrotron radiation source for X-ray topography study at Beijing Synchrotron Radiation Laboratory (BSRL) is described, local geometrical resolution of topographies is discussed, and the diffracting intensities of white beam topography is given

  12. Reformation and utilization of complicated topography for a uranium mill

    International Nuclear Information System (INIS)

    Liu Taoan; Zhou Xinghuo; Lv Junwen

    2004-01-01

    It is successful for how to reform and utilized complicated topography in the design of general plan and transport for technological reformation of a uranium mill. The unfavorable factors of complicated topography are turned into favorable ones. The general plan is designed compactly and the land is economized. The transport is designed simply and directly. the leaching liquid flows by gravity so that the power is economical

  13. Development of material measures for performance verifying surface topography measuring instruments

    International Nuclear Information System (INIS)

    Leach, Richard; Giusca, Claudiu; Rickens, Kai; Riemer, Oltmann; Rubert, Paul

    2014-01-01

    The development of two irregular-geometry material measures for performance verifying surface topography measuring instruments is described. The material measures are designed to be used to performance verify tactile and optical areal surface topography measuring instruments. The manufacture of the material measures using diamond turning followed by nickel electroforming is described in detail. Measurement results are then obtained using a traceable stylus instrument and a commercial coherence scanning interferometer, and the results are shown to agree to within the measurement uncertainties. The material measures are now commercially available as part of a suite of material measures aimed at the calibration and performance verification of areal surface topography measuring instruments

  14. Age and Prematurity of the Alps Derived from Topography

    Science.gov (United States)

    Hergarten, S.; Wagner, T.; Stüwe, K.

    2010-09-01

    The European Alps are one of the best studied mountain ranges on Earth, but yet the age of their topography is almost unknown. Even their relative stage of evolution is unclear: Are the Alps still growing, in a steady state or already decaying, and is there a significant difference between Western and Eastern Alps? Using a new geomorphic parameter we analyze the topography of the Alps and provide one of the first quantitative constraints demonstrating that the range is still in its infancy: In contrast to several other mountain ranges, the Alps have still more than half of their evolution to a geomorphic steady state to go. Combining our results with sediment budget data from the surrounding basins we infer that the formation of the present topography began only 5-6 million years ago. Our results question the apparent consensus that the topographic evolution is distributed over much of the Miocene and might give new impulses to the reconstruction of paleoclimate in Central Europe.

  15. Mandibular molar crown-topography, a biological predisposing ...

    African Journals Online (AJOL)

    Mandibular molar crown-topography, a biological predisposing factor to development of caries – a post-mortem analysis of 2500 extracted lower permanent molars at the dental centre, University of Benin teaching hospital.

  16. Airborne laser altimeter measurements of landscape topography

    International Nuclear Information System (INIS)

    Ritchie, J.C.

    1995-01-01

    Measurements of topography can provide a wealth of information on landscape properties for managing hydrologic and geologic systems and conserving natural and agricultural resources. This article discusses the application of an airborne laser altimeter to measure topography and other landscape surface properties. The airborne laser altimeter makes 4000 measurements per second with a vertical recording resolution of 5 cm. Data are collected digitally with a personal computer. A video camera, borehole sighted with the laser, records an image for locating flight lines. GPS data are used to locate flight line positions on the landscape. Laser data were used to measure vegetation canopy topography, height, cover, and distribution and to measure microtopography of the land surface and gullies with depths of 15–20 cm. Macrotopography of landscape profiles for segments up to 4 km were in agreement with available topographic maps but provided more detail. Larger gullies with and without vegetation, and stream channel cross sections and their associated floodplains have also been measured and reported in other publications. Landscape segments for any length could be measured for either micro- or macrotopography. Airborne laser altimeter measurements of landscape profiles can provide detailed information on landscape properties or specific needs that will allow better decisions on the design and location of structures (i.e., roads, pipe, and power lines) and for improving the management and conservation of natural and agricultural landscapes. (author)

  17. Topography and instability of monolayers near domain boundaries

    International Nuclear Information System (INIS)

    Diamant, H.; Witten, T. A.; Ege, C.; Gopal, A.; Lee, K. Y. C.

    2001-01-01

    We theoretically study the topography of a biphasic surfactant monolayer in the vicinity of domain boundaries. The differing elastic properties of the two phases generally lead to a nonflat topography of 'mesas,' where domains of one phase are elevated with respect to the other phase. The mesas are steep but low, having heights of up to 10 nm. As the monolayer is laterally compressed, the mesas develop overhangs and eventually become unstable at a surface tension of about K(δc 0 ) 2 (δc 0 being the difference in spontaneous curvature and K a bending modulus). In addition, the boundary is found to undergo a topography-induced rippling instability upon compression, if its line tension is smaller than about Kδc 0 . The effect of diffuse boundaries on these features and the topographic behavior near a critical point are also examined. We discuss the relevance of our findings to several experimental observations related to surfactant monolayers: (i) small topographic features recently found near domain boundaries; (ii) folding behavior observed in mixed phospholipid monolayers and model lung surfactants; (iii) roughening of domain boundaries seen under lateral compression; (iv) the absence of biphasic structures in tensionless surfactant films

  18. The Effects of Micro- and Nano-Topography on Cells

    DEFF Research Database (Denmark)

    Kolind, Kristian

    2013-01-01

    the effect of topography on cells has received much attention understanding how important this is for the rational design of bio-interfaces. Nevertheless, there is still a limited understanding of the effect of topography on cells making it impossible to tailor a biomaterial with specific cellular activity......Cells continuously make decisions on what proteins to express, and when to divide, differentiate and commit suicide, through a complex network of intracellular processes. The signals that determine the cellular processes reside within the extracellular matrix. They involve soluble signaling...

  19. Brain function measurement using optical topography

    International Nuclear Information System (INIS)

    Koizumi, Hideaki; Maki, Atsushi; Yamamoto, Tsuyoshi; Kawaguchi, Hideo

    2003-01-01

    Optical topography is a completely non-invasive method to image the high brain function with the near infrared spectroscopy, does not need the restriction of human behavior for imaging and thereby is applicable even for infants. The principle is based on irradiation of the near infrared laser beam with the optical-fiber onto the head surface and detection with the fiber of the reflection, of which spectroscopy for blood-borne hemoglobin gives the local cerebral homodynamics related with the nerve activity. The infrared laser beam of 1-10 mW is found safe on direct irradiation to the human body. The topography is applicable in the fields of clinical medicine like internal neurology (an actual image of the activated Broca's and Welnicke's areas at writing is presented), neurosurgery, psychiatry and pedriatric neurology, of developmental cognitive neuroscience, of educational science and of communication. ''MIT Technology Reviews'' mentions that this technique is one of 4 recent promising innovative techniques in the world. (N.I.)

  20. Determining relative contributions of vegetation and topography to burn severity from LANDSAT imagery.

    Science.gov (United States)

    Wu, Zhiwei; He, Hong S; Liang, Yu; Cai, Longyan; Lewis, Bernard J

    2013-10-01

    Fire is a dominant process in boreal forest landscapes and creates a spatial patch mosaic with different burn severities and age classes. Quantifying effects of vegetation and topography on burn severity provides a scientific basis on which forest fire management plans are developed to reduce catastrophic fires. However, the relative contribution of vegetation and topography to burn severity is highly debated especially under extreme weather conditions. In this study, we hypothesized that relationships of vegetation and topography to burn severity vary with fire size. We examined this hypothesis in a boreal forest landscape of northeastern China by computing the burn severity of 24 fire patches as the difference between the pre- and post-fire Normalized Difference Vegetation Index obtained from two Landsat TM images. The vegetation and topography to burn severity relationships were evaluated at three fire-size levels of small (1,000 ha, n = 3). Our results showed that vegetation and topography to burn severity relationships were fire-size-dependent. The burn severity of small fires was primary controlled by vegetation conditions (e.g., understory cover), and the burn severity of large fires was strongly influenced by topographic conditions (e.g., elevation). For moderate fires, the relationships were complex and indistinguishable. Our results also indicated that the pattern trends of relative importance for both vegetation and topography factors were not dependent on fire size. Our study can help managers to design fire management plans according to vegetation characteristics that are found important in controlling burn severity and prioritize management locations based on the relative importance of vegetation and topography.

  1. Calibration of the geometrical characteristics of areal surface topography measuring instruments

    International Nuclear Information System (INIS)

    Giusca, C L; Leach, R K; Helery, F; Gutauskas, T

    2011-01-01

    The use of areal surface topography measuring instruments has increased significantly over the past ten years as industry starts to embrace the use of surface structuring to affect the function of a component. This has led to a range of areal surface topography measuring instruments being developed and becoming available commercially. For such instruments to be used as part of quality control during production, it is essential for them to be calibrated according to international standards. The ISO 25178 suite of specification standards on areal surface topography measurement presents a series of tests that can be used to calibrate the metrological characteristics of an areal surface topography measuring instrument. Calibration artefacts and test procedures have been developed that are compliant with ISO 25178. The material measures include crossed gratings, resolution artefacts and pseudorandom surfaces. Traceability is achieved through the NPL Areal Instrument - a primary stylus-based instrument that uses laser interferometers to measure the displacement of the stylus tip. Good practice guides on areal calibration have also been drafted for stylus instruments, coherence scanning interferometers, scanning confocal microscopes and focus variation instruments.

  2. Diffusion processes in bombardment-induced surface topography

    International Nuclear Information System (INIS)

    Robinson, R.S.

    1984-01-01

    The bombardment of surfaces with moderate energy ions can lead to the development of various micron-sized surface structures. These structures include ridges, ledges, flat planes, pits and cones. The causal phenomena in the production of these features are sputtering, ion reflection, redeposition of sputtered material, and surface diffusion of both impurity and target-atom species. The authors concentrate on the formation of ion bombardment-induced surface topography wherein surface diffusion is a dominant process. The most thoroughly understood aspect of this topography development is the generation of cone-like structures during sputtering. The formation of cones during sputtering has been attributed to three effects. These are: (1) the presence of asperities, defects, or micro-inclusions in the surface layers, (2) the presence of impurities on the surfaces, and (3) particular crystal orientations. (Auth.)

  3. Role of Cigarette Sensory Cues in Modifying Puffing Topography

    Science.gov (United States)

    Rees, Vaughan W.; Kreslake, Jennifer M.; Wayne, Geoffrey Ferris; O Connor, Richard J.; Cummings, K. Michael; Connolly, Gregory N.

    2012-01-01

    Background Human puffing topography promotes tobacco dependence by ensuring nicotine delivery, but the factors that determine puffing behavior are not well explained by existing models. Chemosensory cues generated by variations in cigarette product design features may serve as conditioned cues to allow the smoker to optimize nicotine delivery by adjusting puffing topography. Internal tobacco industry research documents were reviewed to understand the influence of sensory cues on puffing topography, and to examine how the tobacco industry has designed cigarettes, including modified risk tobacco products (MRTPs), to enhance puffing behavior to optimize nicotine delivery and product acceptability. Methods Relevant internal tobacco industry documents were identified using systematic searching with key search terms and phrases, and then snowball sampling method was applied to establish further search terms. Results Modern cigarettes are designed by cigarette manufacturers to provide sensory characteristics that not only maintain appeal, but provide cues which inform puffing intensity. Alterations in the chemosensory cues provided in tobacco smoke play an important role in modifying smoking behavior independently of the central effects of nicotine. Conclusions An associative learning model is proposed to explain the influence of chemosensory cues on variation in puffing topography. These cues are delivered via tobacco smoke and are moderated by design features and additives used in cigarettes. The implications for regulation of design features of modified risk tobacco products, which may act to promote intensive puffing while lowering risk perceptions, are discussed. PMID:22365895

  4. [Influence of different surface treatments on porcelain surface topography].

    Science.gov (United States)

    Tai, Yinxia; Zhu, Xianchun; Sen, Yan; Liu, Chang; Zhang, Xian; Shi, Xueming

    2013-02-01

    To evaluate the influence of different surface treatments on porcelain surface topography. Metal ceramic prostheses in 6 groups were treated according to the different surface treatment methods, and the surface topography was observed through scanning electron microscope (SEM). Group A was the control one (untreated), group B was etched by 9.6% hydrofluoric acid(HF), group C was deglazed by grinding and then etched by 9.6% HF, group D was treated with Nd: YAG laser irradiation(0.75 W) and HF etching, group E was treated with Nd: YAG laser irradiation (1.05 W) and HF etching, and group F was treated with laser irradiation (1.45 W) and HF etching. Surface topography was different in different groups. A lot of inerratic cracks with the shapes of rhombuses and grid, and crater with a shape of circle were observed on the ceramic surface after treatment with energy parameters of 1.05 W Nd: YAG laser irradiation and 9.6% HF etching (group E). Surface topography showed a lot of concaves on the inner wall of the cracks, and the concaves with diameter of 1-5 microm could be observed on the inner wall of the holes, which had a diameter of 20 microm under SEM. The use of Nd: YAG laser irradiation with the energy parameters of 1.05 W and the HF with a concentration of 9.6% can evenly coarsen the porcelain surface, that is an effective surface treatment method.

  5. An anatomical and functional topography of human auditory cortical areas

    Directory of Open Access Journals (Sweden)

    Michelle eMoerel

    2014-07-01

    Full Text Available While advances in magnetic resonance imaging (MRI throughout the last decades have enabled the detailed anatomical and functional inspection of the human brain non-invasively, to date there is no consensus regarding the precise subdivision and topography of the areas forming the human auditory cortex. Here, we propose a topography of the human auditory areas based on insights on the anatomical and functional properties of human auditory areas as revealed by studies of cyto- and myelo-architecture and fMRI investigations at ultra-high magnetic field (7 Tesla. Importantly, we illustrate that - whereas a group-based approach to analyze functional (tonotopic maps is appropriate to highlight the main tonotopic axis - the examination of tonotopic maps at single subject level is required to detail the topography of primary and non-primary areas that may be more variable across subjects. Furthermore, we show that considering multiple maps indicative of anatomical (i.e. myelination as well as of functional properties (e.g. broadness of frequency tuning is helpful in identifying auditory cortical areas in individual human brains. We propose and discuss a topography of areas that is consistent with old and recent anatomical post mortem characterizations of the human auditory cortex and that may serve as a working model for neuroscience studies of auditory functions.

  6. Linking topography to tonotopy in the mouse auditory thalamocortical circuit

    DEFF Research Database (Denmark)

    Hackett, Troy A; Rinaldi Barkat, Tania; O'Brien, Barbara M J

    2011-01-01

    The mouse sensory neocortex is reported to lack several hallmark features of topographic organization such as ocular dominance and orientation columns in primary visual cortex or fine-scale tonotopy in primary auditory cortex (AI). Here, we re-examined the question of auditory functional topography...... the tonotopic axis in the slice produced an orderly shift of voltage-sensitive dye (VSD) signals along the AI tonotopic axis, demonstrating topography in the mouse thalamocortical circuit that is preserved in the slice. However, compared with BF maps of neuronal spiking activity, the topographic order...... of subthreshold VSD maps was reduced in layer IV and even further degraded in layer II/III. Therefore, the precision of AI topography varies according to the source and layer of the mapping signal. Our findings further bridge the gap between in vivo and in vitro approaches for the detailed cellular study...

  7. Large band gaps of water waves through two-dimensional periodic topography

    International Nuclear Information System (INIS)

    Yang Shaohua; Wu Fugen; Zhong Huilin; Zhong Lanhua

    2006-01-01

    In this Letter, the band structures and band gaps of liquid surface waves propagating over two-dimensional periodic topography was investigated by plane-waves expansion method. The periodic topography drilled by square hollows with square lattice was considered. And the effects of the filling fraction and the orientation of bottom-hollows on the band gaps are investigated in detail

  8. Different ways to handle topography in practical geoid determination

    DEFF Research Database (Denmark)

    Dahl, O.C.; Forsberg, René

    1999-01-01

    In this paper two different methods of how to handle topography in geoid determination is investigated. First method employs the Residual Terrain Model (RTM) remove-restore technique and yields the quasigeoid, whereas the second method is the classical Helmert condensation method, yielding...... the topography was represented by either a detailed (100 m) or a coarse (1000 m) digital terrain model. The inclusion of bathymetry in the terrain model was also investigated. Even if two different methods were used, they produced almost identical results at the 5 cm level in the mountains, but small systematic...

  9. Puffing topography and nicotine intake of electronic cigarette users.

    Directory of Open Access Journals (Sweden)

    Rachel Z Behar

    Full Text Available Prior electronic cigarette (EC topography data are based on two video analyses with limited parameters. Alternate methods for measuring topography are needed to understand EC use and nicotine intake.This study evaluated EC topography with a CReSS Pocket device and quantified nicotine intake.Validation tests on pressure drop, flow rate, and volume confirmed reliable performance of the CReSS Pocket device. Twenty participants used Blu Cigs and V2 Cigs for 10 minute intervals with a 10-15 minute break between brands. Brand order was reversed and repeated within 7 days Data were analyzed to determine puff duration, puff count, volume, flow rate, peak flow, and inter-puff interval. Nicotine intake was estimated from cartomizer fluid consumption and topography data.Nine patterns of EC use were identified. The average puff count and inter-puff interval were 32 puffs and 17.9 seconds. All participants, except one, took more than 20 puffs/10 minutes. The averages for puff duration (2.65 seconds/puff, volume/puff (51 ml/puff, total puff volume (1,579 ml, EC fluid consumption (79.6 mg, flow rate (20 ml/s, and peak flow rate (27 ml/s were determined for 10-minute sessions. All parameters except total puff count were significantly different for Blu versus V2 EC. Total volume for Blu versus V2 was four-times higher than for conventional cigarettes. Average nicotine intake for Blu and V2 across both sessions was 1.2 ± 0.5 mg and 1.4 ± 0.7 mg, respectively, which is similar to conventional smokers.EC puffing topography was variable among participants in the study, but often similar within an individual between brands or days. Puff duration, inter-puff interval, and puff volume varied from conventional cigarette standards. Data on total puff volume and nicotine intake are consistent with compensatory usage of EC. These data can contribute to the development of a standard protocol for laboratory testing of EC products.

  10. Puffing Topography and Nicotine Intake of Electronic Cigarette Users

    Science.gov (United States)

    Behar, Rachel Z.; Hua, My; Talbot, Prue

    2015-01-01

    Background Prior electronic cigarette (EC) topography data are based on two video analyses with limited parameters. Alternate methods for measuring topography are needed to understand EC use and nicotine intake. Objectives This study evaluated EC topography with a CReSS Pocket device and quantified nicotine intake. Methods Validation tests on pressure drop, flow rate, and volume confirmed reliable performance of the CReSS Pocket device. Twenty participants used Blu Cigs and V2 Cigs for 10 minute intervals with a 10–15 minute break between brands. Brand order was reversed and repeated within 7 days Data were analyzed to determine puff duration, puff count, volume, flow rate, peak flow, and inter-puff interval. Nicotine intake was estimated from cartomizer fluid consumption and topography data. Results Nine patterns of EC use were identified. The average puff count and inter-puff interval were 32 puffs and 17.9 seconds. All participants, except one, took more than 20 puffs/10 minutes. The averages for puff duration (2.65 seconds/puff), volume/puff (51ml/puff), total puff volume (1,579 ml), EC fluid consumption (79.6 mg), flow rate (20 ml/s), and peak flow rate (27 ml/s) were determined for 10-minute sessions. All parameters except total puff count were significantly different for Blu versus V2 EC. Total volume for Blu versus V2 was four-times higher than for conventional cigarettes. Average nicotine intake for Blu and V2 across both sessions was 1.2 ± 0.5 mg and 1.4 ± 0.7 mg, respectively, which is similar to conventional smokers. Conclusions EC puffing topography was variable among participants in the study, but often similar within an individual between brands or days. Puff duration, inter-puff interval, and puff volume varied from conventional cigarette standards. Data on total puff volume and nicotine intake are consistent with compensatory usage of EC. These data can contribute to the development of a standard protocol for laboratory testing of EC products

  11. Estimating Antarctica land topography from GRACE gravity and ICESat altimetry data

    Science.gov (United States)

    Wu, I.; Chao, B. F.; Chen, Y.

    2009-12-01

    We propose a new method combining GRACE (Gravity Recovery and Climate Experiment) gravity and ICESat (Ice, Cloud, and land Elevation Satellite) altimetry data to estimate the land topography for Antarctica. Antarctica is the fifth-largest continent in the world and about 98% of Antarctica is covered by ice, where in-situ measurements are difficult. Some experimental airborne radar and ground-based radar data have revealed very limited land topography beneath heavy ice sheet. To estimate the land topography for the full coverage of Antarctica, we combine GRACE data that indicate the mass distribution, with data of ICESat laser altimetry that provide high-resolution mapping of ice topography. Our approach is actually based on some geological constraints: assuming uniform densities of the land and ice considering the Airy-type isostasy. In the beginning we construct an initial model for the ice thickness and land topography based on the BEDMAP ice thickness and ICESat data. Thereafter we forward compute the model’s gravity field and compare with the GRACE observed data. Our initial model undergoes the adjustments to improve the fit between modeled results and the observed data. Final examination is done by comparing our results with previous but sparse observations of ice thickness to reconfirm the reliability of our results. As the gravitational inversion problem is non-unique, our estimating result is just one of all possibilities constrained by available data in optimal way.

  12. Topochip: technology for instructing cell fate and morphology via designed surface topography

    NARCIS (Netherlands)

    Hulshof, G.F.B.

    2016-01-01

    The control of biomaterial surface topography is emerging as a tool to influence cells and tissues. Due to a lack a theoretical framework of the underlying molecular mechanisms, high-throughput screening (HTS) technology is valuable to identify and study bioactive surface topographies. To identify

  13. RhoA-Mediated Functions in C3H10T1/2 Osteoprogenitors Are Substrate Topography Dependent.

    Science.gov (United States)

    Ogino, Yoichiro; Liang, Ruiwei; Mendonça, Daniela B S; Mendonça, Gustavo; Nagasawa, Masako; Koyano, Kiyoshi; Cooper, Lyndon F

    2016-03-01

    Surface topography broadly influences cellular responses. Adherent cell activities are regulated, in part, by RhoA, a member of the Rho-family of GTPases. In this study, we evaluated the influence of surface topography on RhoA activity and associated cellular functions. The murine mesenchymal stem cell line C3H10T1/2 cells (osteoprogenitor cells) were cultured on titanium substrates with smooth topography (S), microtopography (M), and nanotopography (N) to evaluate the effect of surface topography on RhoA-mediated functions (cell spreading, adhesion, migration, and osteogenic differentiation). The influence of RhoA activity in the context of surface topography was also elucidated using RhoA pharmacologic inhibitor. Following adhesion, M and N adherent cells developed multiple projections, while S adherent cells had flattened and widespread morphology. RhoA inhibitor induced remarkable longer and thinner cytoplasmic projections on all surfaces. Cell adhesion and osteogenic differentiation was topography dependent with S topography roughness dependent (S topography. Smooth surface adherent cells appear highly sensitive to RhoA function, while nano-scale topography adherent cell may utilize alternative cellular signaling pathway(s) to influence adherent cellular functions regardless of RhoA activity. © 2015 Wiley Periodicals, Inc.

  14. Tuning cell adhesion on polymeric and nanocomposite surfaces: Role of topography versus superhydrophobicity

    Energy Technology Data Exchange (ETDEWEB)

    Zangi, Sepideh [Department of Chemical Engineering, Shahrood Branch, Islamic Azad University, P.O. Box 36155-163, Shahrood (Iran, Islamic Republic of); Hejazi, Iman [Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Seyfi, Javad, E-mail: Jseyfi@gmail.com [Department of Chemical Engineering, Shahrood Branch, Islamic Azad University, P.O. Box 36155-163, Shahrood (Iran, Islamic Republic of); Hejazi, Ehsan [Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of); Khonakdar, Hossein Ali [Department of Polymer Engineering, Faculty of Engineering, South Tehran Branch, Islamic Azad University, P.O. Box 19585-466, Tehran (Iran, Islamic Republic of); Davachi, Seyed Mohammad [School of Chemical Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of)

    2016-06-01

    Development of surface modification procedures which allow tuning the cell adhesion on the surface of biomaterials and devices is of great importance. In this study, the effects of different topographies and wettabilities on cell adhesion behavior of polymeric surfaces are investigated. To this end, an improved phase separation method was proposed to impart various wettabilities (hydrophobic and superhydrophobic) on polypropylene surfaces. Surface morphologies and compositions were characterized by scanning electron microscopy and X-ray photoelectron spectroscopy, respectively. Cell culture was conducted to evaluate the adhesion of 4T1 mouse mammary tumor cells. It was found that processing conditions such as drying temperature is highly influential in cell adhesion behavior due to the formation of an utterly different surface topography. It was concluded that surface topography plays a more significant role in cell adhesion behavior rather than superhydrophobicity since the nano-scale topography highly inhibited the cell adhesion as compared to the micro-scale topography. Such cell repellent behavior could be very useful in many biomedical devices such as those in drug delivery and blood contacting applications as well as biosensors. - Highlights: • A novel method is presented for fabrication of superhydrophobic surfaces. • The presence of nanoparticles in non-solvent bath notably promoted phase separation. • Topography had a more notable impact on cell adhesion than superhydrophobicity. • Nano-scale topographical features highly impeded cell adhesion on polymer surfaces.

  15. Tuning cell adhesion on polymeric and nanocomposite surfaces: Role of topography versus superhydrophobicity

    International Nuclear Information System (INIS)

    Zangi, Sepideh; Hejazi, Iman; Seyfi, Javad; Hejazi, Ehsan; Khonakdar, Hossein Ali; Davachi, Seyed Mohammad

    2016-01-01

    Development of surface modification procedures which allow tuning the cell adhesion on the surface of biomaterials and devices is of great importance. In this study, the effects of different topographies and wettabilities on cell adhesion behavior of polymeric surfaces are investigated. To this end, an improved phase separation method was proposed to impart various wettabilities (hydrophobic and superhydrophobic) on polypropylene surfaces. Surface morphologies and compositions were characterized by scanning electron microscopy and X-ray photoelectron spectroscopy, respectively. Cell culture was conducted to evaluate the adhesion of 4T1 mouse mammary tumor cells. It was found that processing conditions such as drying temperature is highly influential in cell adhesion behavior due to the formation of an utterly different surface topography. It was concluded that surface topography plays a more significant role in cell adhesion behavior rather than superhydrophobicity since the nano-scale topography highly inhibited the cell adhesion as compared to the micro-scale topography. Such cell repellent behavior could be very useful in many biomedical devices such as those in drug delivery and blood contacting applications as well as biosensors. - Highlights: • A novel method is presented for fabrication of superhydrophobic surfaces. • The presence of nanoparticles in non-solvent bath notably promoted phase separation. • Topography had a more notable impact on cell adhesion than superhydrophobicity. • Nano-scale topographical features highly impeded cell adhesion on polymer surfaces.

  16. Surface topography of cylindrical gear wheels after smoothing in abrasive mass, honing and shot peening

    International Nuclear Information System (INIS)

    Michalski, J; Pawlus, P; Zelasko, W

    2011-01-01

    The present paper presents the analysis of surface topography of gear teeth as the result of final machining processes. Teeth of multiple cylindrical gears shaped by grinding were smoothed in abrasive mass, honed or shot peened. The measurement of gears were made using coordinate measuring machine and 3D surface topography stylus instrument. The following deviations were studied; pitch deviation, total pitches deviations, variation of teeth thickness and deviation of gear radial run-out. Changes in teeth surface topography during machining process were determined. 3D surface topography parameters, surface directionality as well as areal autocorrelation and power spectral density functions were taken into consideration. As the results of the analysis, the best surface topography with regard to gear operational properties was recommended.

  17. ATM Coastal Topography-Texas, 2001: UTM Zone 14

    Science.gov (United States)

    Klipp, Emily S.; Nayegandhi, Amar; Brock, John C.; Sallenger, A.H.; Bonisteel, Jamie M.; Yates, Xan; Wright, C. Wayne

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of lidar-derived first-surface (FS) topography were produced collaboratively by the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of a portion of the Texas coastline within UTM zone 14, acquired October 12-13, 2001. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative scanning lidar instrument originally developed by NASA, and known as the Airborne Topographic Mapper (ATM), was used during data acquisition. The ATM system is a scanning lidar system that measures high-resolution topography of the land surface and incorporates a green-wavelength laser operating at pulse rates of 2 to 10 kilohertz. Measurements from the laser-ranging device are coupled with data acquired from inertial navigation system (INS) attitude sensors and differentially corrected global positioning system (GPS) receivers to measure topography of the surface at accuracies of +/-15 centimeters. The nominal ATM platform is a Twin Otter or P-3 Orion aircraft, but the instrument may be deployed on a range of light aircraft. Elevation measurements were collected over the survey area using the ATM system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used

  18. Flow- topography Interactions in the Vicinity of a Deep Ocean Island and a Ridge

    Science.gov (United States)

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Flow- topography Interactions in the Vicinity of a Deep...flow around abrupt topography in operational Navy models. RELATED PROJECTS NRL FY17 6.2 New Start proposal (pending proposal), titled...Predictability of Flow Interacting with Abrupt Topography (FIAT)”; lead PI: Ana Rice, NRL-SSC. The objective of FIAT is to use observations to develop Navy

  19. Detection of a dynamic topography signal in last interglacial sea-level records.

    Science.gov (United States)

    Austermann, Jacqueline; Mitrovica, Jerry X; Huybers, Peter; Rovere, Alessio

    2017-07-01

    Estimating minimum ice volume during the last interglacial based on local sea-level indicators requires that these indicators are corrected for processes that alter local sea level relative to the global average. Although glacial isostatic adjustment is generally accounted for, global scale dynamic changes in topography driven by convective mantle flow are generally not considered. We use numerical models of mantle flow to quantify vertical deflections caused by dynamic topography and compare predictions at passive margins to a globally distributed set of last interglacial sea-level markers. The deflections predicted as a result of dynamic topography are significantly correlated with marker elevations (>95% probability) and are consistent with construction and preservation attributes across marker types. We conclude that a dynamic topography signal is present in the elevation of last interglacial sea-level records and that the signal must be accounted for in any effort to determine peak global mean sea level during the last interglacial to within an accuracy of several meters.

  20. Coarsely resolved topography along protein folding pathways

    Science.gov (United States)

    Fernández, Ariel; Kostov, Konstantin S.; Berry, R. Stephen

    2000-03-01

    The kinetic data from the coarse representation of polypeptide torsional dynamics described in the preceding paper [Fernandez and Berry, J. Chem. Phys. 112, 5212 (2000), preceding paper] is inverted by using detailed balance to obtain a topographic description of the potential-energy surface (PES) along the dominant folding pathway of the bovine pancreatic trypsin inhibitor (BPTI). The topography is represented as a sequence of minima and effective saddle points. The dominant folding pathway displays an overall monotonic decrease in energy with a large number of staircaselike steps, a clear signature of a good structure-seeker. The diversity and availability of alternative folding pathways is analyzed in terms of the Shannon entropy σ(t) associated with the time-dependent probability distribution over the kinetic ensemble of contact patterns. Several stages in the folding process are evident. Initially misfolded states form and dismantle revealing no definite pattern in the topography and exhibiting high Shannon entropy. Passage down a sequence of staircase steps then leads to the formation of a nativelike intermediate, for which σ(t) is much lower and fairly constant. Finally, the structure of the intermediate is refined to produce the native state of BPTI. We also examine how different levels of tolerance to mismatches of side chain contacts influence the folding kinetics, the topography of the dominant folding pathway, and the Shannon entropy. This analysis yields upper and lower bounds of the frustration tolerance required for the expeditious and robust folding of BPTI.

  1. The updated geodetic mean dynamic topography model – DTU15MDT

    DEFF Research Database (Denmark)

    Knudsen, Per; Andersen, Ole Baltazar; Maximenko, Nikolai

    An update to the global mean dynamic topography model DTU13MDT is presented. For DTU15MDT the newer gravity model EIGEN-6C4 has been combined with the DTU15MSS mean sea surface model to construct this global mean dynamic topography model. The EIGEN-6C4 is derived using the full series of GOCE data...

  2. Development of a surface topography instrument for automotive textured steel plate

    Science.gov (United States)

    Wang, Zhen; Wang, Shenghuai; Chen, Yurong; Xie, Tiebang

    2010-08-01

    The surface topography of automotive steel plate is decisive to its stamping, painting and image clarity performances. For measuring this kind of surface topography, an instrument has been developed based on the principle of vertical scanning white light microscopy interference principle. The microscopy interference system of this instrument is designed based on the structure of Linnik interference microscopy. The 1D worktable of Z direction is designed and introduced in details. The work principle of this instrument is analyzed. In measuring process, the interference microscopy is derived as a whole and the measured surface is scanned in vertical direction. The measurement accuracy and validity is verified by templates. Surface topography of textured steel plate is also measured by this instrument.

  3. A three-dimensional viscous topography mesoscale model

    Energy Technology Data Exchange (ETDEWEB)

    Eichhorn, J; Flender, M; Kandlbinder, T; Panhans, W G; Trautmann, T; Zdunkowski, W G [Mainz Univ. (Germany). Inst. fuer Physik der Atmosphaere; Cui, K; Ries, R; Siebert, J; Wedi, N

    1997-11-01

    This study describes the theoretical foundation and applications of a newly designed mesoscale model named CLIMM (climate model Mainz). In contrast to terrain following coordinates, a cartesian grid is used to keep the finite difference equations as simple as possible. The method of viscous topography is applied to the flow part of the model. Since the topography intersects the cartesian grid cells, the new concept of boundary weight factors is introduced for the solution of Poisson`s equation. A three-dimensional radiosity model was implemented to handle radiative transfer at the ground. The model is applied to study thermally induced circulations and gravity waves at an idealized mountain. Furthermore, CLIMM was used to simulate typical wind and temperature distributions for the city of Mainz and its rural surroundings. It was found that the model in all cases produced realistic results. (orig.) 38 refs.

  4. Characterization of surface topography and chemical composition of mini-implants

    OpenAIRE

    Knop, Luegya Amorim Henriques; Soares, Ana Prates; Shintcovsk, Ricardo Lima; Martins, Lidia Parsekian; Gandini Jr., Luiz Gonzaga

    2015-01-01

    Abstract Aim : To assess the surface topography and chemical composition of three brands of as-received mini-implants (SIN(r), Morelli(r), and Conexao(r)). Methods: Twelve mini-implants of each brand were analyzed by scanning electron microscopy and energy dispersive X-ray (EDX). Results: There was no significant differences among SIN(r), Morelli(r), and Conexao(r) mini-implants comparing their surface topography by visualization of SEM micrographs and analysis of scores. The EDX analysis ...

  5. EAARL topography-Potato Creek watershed, Georgia, 2010

    Science.gov (United States)

    Bonisteel-Cormier, J.M.; Nayegandhi, Amar; Fredericks, Xan; Jones, J.W.; Wright, C.W.; Brock, J.C.; Nagle, D.B.

    2011-01-01

    This DVD contains lidar-derived first-surface (FS) and bare-earth (BE) topography GIS datasets of a portion of the Potato Creek watershed in the Apalachicola-Chattahoochee-Flint River basin, Georgia. These datasets were acquired on February 27, 2010.

  6. The Relationship between Trail Running Withdrawals and Race Topography

    Directory of Open Access Journals (Sweden)

    Antonini Philippe Roberta

    2017-12-01

    Full Text Available Context: A growing amount of recent research in sport psychology has focused on trying to understand withdrawals from ultra-races. However, according to the Four E approach, the studies underestimated the embedded components of these experiences and particularly how they were linked to the specific environmental conditions in which the experiences occurred. Objective: This study aimed to characterize trail running withdrawals in relationship to race topography. Design: Qualitative design, involving self-confrontation interviews and use of a race map. Setting: Use of the race map for description of the race activity and self-confrontation interviews took place 1–3 days after the races. Participants: Ten runners who withdrew during an ultra-trail race. Data Collection and Analysis: Data on past activity traces and experiences were elicited from self-confrontation interviews. Data were coded and compared to identify common sequences and then each type of sequence was counted with regard to race topography. Results: Results showed that each sequence was related to runners’ particular possibilities for acting, feeling, and thinking, which were in turn embedded in the race topography. These sequences allowed the unfolding of the activity and increased its overall effectiveness in relation to the constraints of this specific sport. Conclusion: This study allowed us to highlight important information on how ultra-trail runners manage their races in relationship to the race environment and more specifically to its topography. The result will also help us to recommend potential adjustments to ultra-trail runners’ performance-oriented training and preparation.

  7. Grooved surface topography alters matrix-metalloproteinase production by human fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Brydone, Alistair S; Dominic Meek, R M [Department of Orthopaedics, Southern General Hospital, 1345 Govan Road, Glasgow G51 4TF (United Kingdom); Dalby, Matthew J; Berry, Catherine C; McNamara, Laura E, E-mail: alibrydone@gmail.com [Centre for Cell Engineering, Joseph Black Building, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ (United Kingdom)

    2011-06-15

    Extracellular matrix (ECM) remodelling is an essential physiological process in which matrix-metalloproteinases (MMPs) have a key role. Manipulating the manner in which cells produce MMPs and ECMs may enable the creation of a desired tissue type, i.e. effect repair, or the prevention of tissue invasion (e.g. metastasis). The aim of this project was to determine if culturing fibroblasts on grooved topography altered collagen deposition or MMP production. Human fibroblasts were seeded on planar or grooved polycaprolactone substrates (grooves were 12.5 {mu}m wide with varying depths of 240 nm, 540 nm or 2300 nm). Cell behaviour and collagen production were studied using fluorescence microscopy and the spent culture medium was assessed using gel zymography to detect MMPs. Total collagen deposition was high on the 240 nm deep grooves, but decreased as the groove depth increased, i.e. as cell contact guidance decreased. There was an increase in gelatinase on the 2300 nm deep grooved topography and there was a difference in the temporal expression of MMP-3 observed on the planar surface compared to the 540 nm and 2300 nm topographies. These results show that topography can alter collagen and MMP production. A fuller understanding of these processes may permit the design of surfaces tailored to tissue regeneration e.g. tendon repair.

  8. Grooved surface topography alters matrix-metalloproteinase production by human fibroblasts

    International Nuclear Information System (INIS)

    Brydone, Alistair S; Dominic Meek, R M; Dalby, Matthew J; Berry, Catherine C; McNamara, Laura E

    2011-01-01

    Extracellular matrix (ECM) remodelling is an essential physiological process in which matrix-metalloproteinases (MMPs) have a key role. Manipulating the manner in which cells produce MMPs and ECMs may enable the creation of a desired tissue type, i.e. effect repair, or the prevention of tissue invasion (e.g. metastasis). The aim of this project was to determine if culturing fibroblasts on grooved topography altered collagen deposition or MMP production. Human fibroblasts were seeded on planar or grooved polycaprolactone substrates (grooves were 12.5 μm wide with varying depths of 240 nm, 540 nm or 2300 nm). Cell behaviour and collagen production were studied using fluorescence microscopy and the spent culture medium was assessed using gel zymography to detect MMPs. Total collagen deposition was high on the 240 nm deep grooves, but decreased as the groove depth increased, i.e. as cell contact guidance decreased. There was an increase in gelatinase on the 2300 nm deep grooved topography and there was a difference in the temporal expression of MMP-3 observed on the planar surface compared to the 540 nm and 2300 nm topographies. These results show that topography can alter collagen and MMP production. A fuller understanding of these processes may permit the design of surfaces tailored to tissue regeneration e.g. tendon repair.

  9. Spatial Topography of Individual-Specific Cortical Networks Predicts Human Cognition, Personality, and Emotion.

    Science.gov (United States)

    Kong, Ru; Li, Jingwei; Orban, Csaba; Sabuncu, Mert R; Liu, Hesheng; Schaefer, Alexander; Sun, Nanbo; Zuo, Xi-Nian; Holmes, Avram J; Eickhoff, Simon B; Yeo, B T Thomas

    2018-06-06

    Resting-state functional magnetic resonance imaging (rs-fMRI) offers the opportunity to delineate individual-specific brain networks. A major question is whether individual-specific network topography (i.e., location and spatial arrangement) is behaviorally relevant. Here, we propose a multi-session hierarchical Bayesian model (MS-HBM) for estimating individual-specific cortical networks and investigate whether individual-specific network topography can predict human behavior. The multiple layers of the MS-HBM explicitly differentiate intra-subject (within-subject) from inter-subject (between-subject) network variability. By ignoring intra-subject variability, previous network mappings might confuse intra-subject variability for inter-subject differences. Compared with other approaches, MS-HBM parcellations generalized better to new rs-fMRI and task-fMRI data from the same subjects. More specifically, MS-HBM parcellations estimated from a single rs-fMRI session (10 min) showed comparable generalizability as parcellations estimated by 2 state-of-the-art methods using 5 sessions (50 min). We also showed that behavioral phenotypes across cognition, personality, and emotion could be predicted by individual-specific network topography with modest accuracy, comparable to previous reports predicting phenotypes based on connectivity strength. Network topography estimated by MS-HBM was more effective for behavioral prediction than network size, as well as network topography estimated by other parcellation approaches. Thus, similar to connectivity strength, individual-specific network topography might also serve as a fingerprint of human behavior.

  10. Altered Global Signal Topography in Schizophrenia.

    Science.gov (United States)

    Yang, Genevieve J; Murray, John D; Glasser, Matthew; Pearlson, Godfrey D; Krystal, John H; Schleifer, Charlie; Repovs, Grega; Anticevic, Alan

    2017-11-01

    Schizophrenia (SCZ) is a disabling neuropsychiatric disease associated with disruptions across distributed neural systems. Resting-state functional magnetic resonance imaging has identified extensive abnormalities in the blood-oxygen level-dependent signal in SCZ patients, including alterations in the average signal over the brain-i.e. the "global" signal (GS). It remains unknown, however, if these "global" alterations occur pervasively or follow a spatially preferential pattern. This study presents the first network-by-network quantification of GS topography in healthy subjects and SCZ patients. We observed a nonuniform GS contribution in healthy comparison subjects, whereby sensory areas exhibited the largest GS component. In SCZ patients, we identified preferential GS representation increases across association regions, while sensory regions showed preferential reductions. GS representation in sensory versus association cortices was strongly anti-correlated in healthy subjects. This anti-correlated relationship was markedly reduced in SCZ. Such shifts in GS topography may underlie profound alterations in neural information flow in SCZ, informing development of pharmacotherapies. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Evaluation of shot peened surfaces using characterization technique of three-dimensional surface topography

    International Nuclear Information System (INIS)

    Kurokawa, S; Ariura, Y

    2005-01-01

    Objective parameters to characterize global topography of three-dimensional surfaces have been derived. The idea of this evaluation is to separate the topography into two global form deviations and residual ones according to the degree of curved surfaces. A shot peened Almen strip is measured by profilometer and concrete parameters of inclination and circular-arc shaped global topography are extracted using the characterization technique. The arc height is calculated using the circular arc-shaped part and compared with a value measured by an Almen gauge. The relation between the coverage and roughness parameters is also investigated. The advantage of this evaluation is that it is possible to determine the arc height and the coverage at the same time from single measured topography. In addition, human error can be excluded from measurement results. This method has the wide application in the field of measurement

  12. Venus gravity and topography: 60th degree and order model

    Science.gov (United States)

    Konopliv, A. S.; Borderies, N. J.; Chodas, P. W.; Christensen, E. J.; Sjogren, W. L.; Williams, B. G.; Balmino, G.; Barriot, J. P.

    1993-01-01

    We have combined the most recent Pioneer Venus Orbiter (PVO) and Magellan (MGN) data with the earlier 1978-1982 PVO data set to obtain a new 60th degree and order spherical harmonic gravity model and a 120th degree and order spherical harmonic topography model. Free-air gravity maps are shown over regions where the most marked improvement has been obtained (Ishtar-Terra, Alpha, Bell and Artemis). Gravity versus topography relationships are presented as correlations per degree and axes orientation.

  13. Crater topography on Titan: Implications for landscape evolution

    Science.gov (United States)

    Neish, C.; Kirk, R.; Lorenz, R.; Bray, V.; Schenk, P.; Stiles, B.; Turtle, E.; Cassini Radar Team

    2012-04-01

    Unique among the icy satellites, Titan’s surface shows evidence for extensive modification by fluvial and aeolian erosion, which act to change the topography of its surface over time. Quantifying the extent of this landscape evolution is difficult, since the original, ‘non-eroded’ surface topography is generally unknown. However, fresh craters on icy satellites have a well-known shape and morphology, which has been determined from extensive studies on the airless worlds of the outer solar system (Schenk et al., 2004). By comparing the topography of craters on Titan to similarly sized, pristine analogues on airless bodies, we can obtain one of the few direct measures of the amount of erosion that has occurred on Titan. Cassini RADAR has imaged >30% of the surface of Titan, and more than 60 potential craters have been identified in this data set (Wood et al., 2010; Neish and Lorenz, 2012). Topographic information for these craters can be obtained from a technique known as ‘SARTopo’, which estimates surface heights by comparing the calibration of overlapping synthetic aperture radar (SAR) beams (Stiles et al., 2009). We present topography data for several craters on Titan, and compare the data to similarly sized craters on Ganymede, for which topography has been extracted from stereo-derived digital elevation models (Bray et al., 2012). We find that the depths of craters on Titan are generally within the range of depths observed on Ganymede, but several hundreds of meters shallower than the average (Fig. 1). A statistical comparison between the two data sets suggests that it is extremely unlikely that Titan’s craters were selected from the depth distribution of fresh craters on Ganymede, and that is it much more probable that the relative depths of Titan are uniformly distributed between ‘fresh’ and ‘completely infilled’. This is consistent with an infilling process that varies linearly with time, such as aeolian infilling. Figure 1: Depth of

  14. Airborne Instrument Simulator for the Lidar Surface Topography (LIST) Mission

    Science.gov (United States)

    Yu, Anthony W.; Krainak, Michael A.; Harding, David J.; Abshire, James B.; Sun, Xiaoli; Cavanaugh, John; Valett, Susan; Ramos-Izquierdo, Luis

    2010-01-01

    In 2007, the National Research Council (NRC) completed its first decadal survey for Earth science at the request of NASA, NOAA, and USGS. The Lidar Surface Topography (LIST) mission is one of fifteen missions recommended by NRC, whose primary objectives are to map global topography and vegetation structure at 5 m spatial resolution, and to acquire global coverage with a few years. NASA Goddard conducted an initial mission concept study for the LIST mission 2007, and developed the initial measurement requirements for the mission.

  15. Airborne Lidar Simulator for the Lidar Surface Topography (LIST) Mission

    Science.gov (United States)

    Yu, Anthony W.; Krainak, Michael A.; Abshire, James B.; Cavanaugh, John; Valett, Susan; Ramos-Izquierdo, Luis

    2010-01-01

    In 2007, the National Research Council (NRC) completed its first decadal survey for Earth science at the request of NASA, NOAA, and USGS. The Lidar Surface Topography (LIST) mission is one of fifteen missions recommended by NRC, whose primary objectives are to map global topography and vegetation structure at 5 m spatial resolution, and to acquire global surface height mapping within a few years. NASA Goddard conducted an initial mission concept study for the LIST mission in 2007, and developed the initial measurement requirements for the mission.

  16. Integrated Surface Topography Characterization of Variously Polished Niobium for Superconducting Particle Accelerators

    International Nuclear Information System (INIS)

    Tian, Hui; Reece, Charles; Kelley, Michael; Ribeill, G.

    2009-01-01

    As superconducting niobium radio-frequency (SRF) cavities approach fundamental material limits, there is increased interest in understanding the details of topographical influences on realized performance limitations. Micro-and nano-roughness are implicated in both direct geometrical field enhancements as well as complications of the composition of the 50 nm surface layer in which the super-currents flow. Interior surface chemical polishing (BCP/EP) to remove mechanical damage leaves surface topography, including pits and protrusions of varying sharpness. These may promote RF magnetic field entry, locally quenching superconductivity, so as to degrade cavity performance. A more incisive analysis of surface topography than the widely-used average roughness is needed. In this study, a power spectral density (PSD) approach based on Fourier analysis of surface topography data acquired by both stylus profilometry and atomic force microscopy (AFM) is being used to distinguish the scale-dependent smoothing effects. The topographical evolution of the Nb surface as a function of different steps of EP is reported, resulting in a novel qualitative and quantitative description of Nb surface topography.

  17. Outcomes of photorefractive keratectomy in patients with atypical topography.

    Science.gov (United States)

    Movahedan, Hossein; Namvar, Ehsan; Farvardin, Mohsen

    2017-11-01

    Photorefractive keratectomy (PRK) is at risk of serious complications such as corneal ectasia, which can reduce corrected distance visual acuity. The rate of complications of PRK is higher in patients with atypical topography. To determine the outcomes of photorefractive keratectomy in patients with atypical topography. This cross-sectional study was done in 2015 in Shiraz in Iran. We included 85 eyes in this study. The samples were selected using a simple random sampling method. All patients were under evaluation for uncorrected distance visual acuity, corrected distance visual acuity, manifest refraction, corneal topography, central corneal thickness using pentacam, slit-lamp microscopy, and detailed fondus evaluation. The postoperative examination was done 1-7 years after surgery. Data were analyzed using IBM SPSS 21.0 version. To analyze the data, descriptive statistics (frequency, percentage, mean, and standard deviation), chi-square, and independent samples t-test were used. We studied 85 eyes. Among the patients, 23 (27.1%) were male and 62 (72.9%) were female. Mean age of the participants was 28.25±5.55 years. Mean postoperative refraction was - 0.37±0.55 diopters. Keratoconus or corneal ectasia was not reported in any patient in this study. There was no statistically significant difference between SI index before and after operation (p=0.736). Mean preoperative refraction was -3.84 ± 1.46 diopters in males and -4.20±1.96 diopters in females; thus there was not statistically significant difference (p = 0.435). PRK is a safe and efficient photorefractive surgery and is associated with low complication rate in patients with atypical topography.

  18. Roles of Fog and Topography in Redwood Forest Hydrology

    Science.gov (United States)

    Francis, E. J.; Asner, G. P.

    2017-12-01

    Spatial variability of water in forests is a function of both climatic gradients that control water inputs and topo-edaphic variation that determines the flows of water belowground, as well as interactions of climate with topography. Coastal redwood forests are hydrologically unique because they are influenced by coastal low clouds, or fog, that is advected onto land by a strong coastal-to-inland temperature difference. Where fog intersects the land surface, annual water inputs from summer fog drip can be greater than that of winter rainfall. In this study, we take advantage of mapped spatial gradients in forest canopy water storage, topography, and fog cover in California to better understand the roles and interactions of fog and topography in the hydrology of redwood forests. We test a conceptual model of redwood forest hydrology with measurements of canopy water content derived from high-resolution airborne imaging spectroscopy, topographic variables derived from high-resolution LiDAR data, and fog cover maps derived from NASA MODIS data. Landscape-level results provide insight into hydrological processes within redwood forests, and cross-site analyses shed light on their generality.

  19. Week Long Topography Study of Young Adults Using Electronic Cigarettes in Their Natural Environment.

    Science.gov (United States)

    Robinson, R J; Hensel, E C; Roundtree, K A; Difrancesco, A G; Nonnemaker, J M; Lee, Y O

    2016-01-01

    Results of an observational, descriptive study quantifying topography characteristics of twenty first generation electronic nicotine delivery system users in their natural environment for a one week observation period are presented. The study quantifies inter-participant variation in puffing topography between users and the intra-participant variation for each user observed during one week of use in their natural environment. Puff topography characteristics presented for each user include mean puff duration, flow rate and volume for each participant, along with descriptive statistics of each quantity. Exposure characteristics including the number of vaping sessions, total number of puffs and cumulative volume of aerosol generated from ENDS use (e-liquid aerosol) are reported for each participant for a one week exposure period and an effective daily average exposure. Significant inter-participant and intra-participant variation in puff topography was observed. The observed range of natural use environment characteristics is used to propose a set of topography protocols for use as command inputs to drive machine-puffed electronic nicotine delivery systems in a controlled laboratory environment.

  20. Week Long Topography Study of Young Adults Using Electronic Cigarettes in Their Natural Environment.

    Directory of Open Access Journals (Sweden)

    R J Robinson

    Full Text Available Results of an observational, descriptive study quantifying topography characteristics of twenty first generation electronic nicotine delivery system users in their natural environment for a one week observation period are presented. The study quantifies inter-participant variation in puffing topography between users and the intra-participant variation for each user observed during one week of use in their natural environment. Puff topography characteristics presented for each user include mean puff duration, flow rate and volume for each participant, along with descriptive statistics of each quantity. Exposure characteristics including the number of vaping sessions, total number of puffs and cumulative volume of aerosol generated from ENDS use (e-liquid aerosol are reported for each participant for a one week exposure period and an effective daily average exposure. Significant inter-participant and intra-participant variation in puff topography was observed. The observed range of natural use environment characteristics is used to propose a set of topography protocols for use as command inputs to drive machine-puffed electronic nicotine delivery systems in a controlled laboratory environment.

  1. Hydraulic experiment on flow and topography change in harbor due to tsunami and its numerical simulation

    International Nuclear Information System (INIS)

    Fujii, Naoki; Ikeno, Masaaki; Sakakiyama, Tsutomu; Matsuyama, Masafumi; Takao, Makoto; Mukohara, Takeshi

    2009-01-01

    Numerical model of topography change is important to examine collapse of the harbor facilities by sand transport due to tsunami. Problems for evaluation of sand transport due to tsunami with topography change model are in precision of the numerical model and topography change data. Therefore, we installed the harbor in large-scaled wave tank and carried out experiment about tsunami flow and topography change to get those detailed data. For results provided by experimental test, we applied the topography change model of Ikeno et al. (2009a) and evaluated it about the reproduction characteristics. As a result, it was confirmed that reproduction of an experiment improved by using new pickup rate formula proposed by Ikeno et al. (2009a). (author)

  2. Risk assessment and driving factors for artificial topography on element heterogeneity: Case study at Jiangsu, China.

    Science.gov (United States)

    Hong, Hualong; Dai, Minyue; Lu, Haoliang; Liu, Jingchun; Zhang, Jie; Yan, Chongling

    2018-02-01

    The rapid expansion of construction related to coastal development evokes great concern about environmental risks. Recent attention has been focused mainly on factors related to the effects of waterlogging, but there is urgent need to address the potential hazard caused by artificial topography: derived changes in the elemental composition of the sediments. To reveal possible mechanisms and to assess the environmental risks of artificial topography on transition of elemental composition in the sediment at adjoining zones, a nest-random effects-combined investigation was carried out around a semi-open seawall. The results implied great changes induced by artificial topography. Not only did artificial topography alter the sediment elemental composition at sites under the effect of artificial topography, but also caused a coupling pattern transition of elements S and Cd. The biogeochemical processes associated with S were also important, as suggested by cluster analysis. The geo-accumulation index shows that artificial topography triggered the accumulation of C, N, S, Cu, Fe, Mn, Zn, Ni, Cr, Pb, As and Cd, and increased the pollution risk of C, N, S, Cu, As and Cd. Enrichment factors reveal that artificial topography is a new type of human-activity-derived Cu contamination. The heavy metal Cu was notably promoted on both the geo-accumulation index and the enrichment factor under the influence of artificial topography. Further analysis showed that the Cu content in the sediment could be fitted using equations for Al and organic carbon, which represented clay mineral sedimentation and organic matter accumulation, respectively. Copper could be a reliable indicator of environmental degradation caused by artificial topography. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Power laws for gravity and topography of Solar System bodies

    Science.gov (United States)

    Ermakov, A.; Park, R. S.; Bills, B. G.

    2017-12-01

    When a spacecraft visits a planetary body, it is useful to be able to predict its gravitational and topographic properties. This knowledge is important for determining the level of perturbations in spacecraft's motion as well as for planning the observation campaign. It has been known for the Earth that the power spectrum of gravity follows a power law, also known as the Kaula rule (Kaula, 1963; Rapp, 1989). A similar rule was derived for topography (Vening-Meinesz, 1951). The goal of this paper is to generalize the power law that can characterize the gravity and topography power spectra for bodies across a wide range of size. We have analyzed shape power spectra of the bodies that have either global shape and gravity field measured. These bodies span across five orders of magnitude in their radii and surface gravities and include terrestrial planets, icy moons and minor bodies. We have found that despite having different internal structure, composition and mechanical properties, the topography power spectrum of these bodies' shapes can be modeled with a similar power law rescaled by the surface gravity. Having empirically found a power law for topography, we can map it to a gravity power law. Special care should be taken for low-degree harmonic coefficients due to potential isostatic compensation. For minor bodies, uniform density can be assumed. The gravity coefficients are a linear function of the shape coefficients for close-to-spherical bodoes. In this case, the power law for gravity will be steeper than the power law of topography due to the factor (2n+1) in the gravity expansion (e.g. Eq. 10 in Wieczorek & Phillips, 1998). Higher powers of topography must be retained for irregularly shaped bodies, which breaks the linearity. Therefore, we propose the following procedure to derive an a priori constraint for gravity. First, a surface gravity needs to be determined assuming typical density for the relevant class of bodies. Second, the scaling coefficient of the

  4. Effects of titanium surface topography on bone integration: a systematic review.

    Science.gov (United States)

    Wennerberg, Ann; Albrektsson, Tomas

    2009-09-01

    To analyse possible effects of titanium surface topography on bone integration. Our analyses were centred on a PubMed search that identified 1184 publications of assumed relevance; of those, 1064 had to be disregarded because they did not accurately present in vivo data on bone response to surface topography. The remaining 120 papers were read and analysed, after removal of an additional 20 papers that mainly dealt with CaP-coated and Zr implants; 100 papers remained and formed the basis for this paper. The bone response to differently configurated surfaces was mainly evaluated by histomorphometry (bone-to-implant contact), removal torque and pushout/pullout tests. A huge number of the experimental investigations have demonstrated that the bone response was influenced by the implant surface topography; smooth (S(a)1-2 microm) surfaces showed stronger bone responses than rough (S(a)>2 microm) in some studies. One limitation was that it was difficult to compare many studies because of the varying quality of surface evaluations; a surface termed 'rough' in one study was not uncommonly referred to as 'smooth' in another; many investigators falsely assumed that surface preparation per se identified the roughness of the implant; and many other studies used only qualitative techniques such as SEM. Furthermore, filtering techniques differed or only height parameters (S(a), R(a)) were reported. * Surface topography influences bone response at the micrometre level. * Some indications exist that surface topography influences bone response at the nanometre level. * The majority of published papers present an inadequate surface characterization. * Measurement and evaluation techniques need to be standardized. * Not only height descriptive parameters but also spatial and hybrid ones should be used.

  5. Surface topography of hydroxyapatite promotes osteogenic differentiation of human bone marrow mesenchymal stem cells.

    Science.gov (United States)

    Yang, Wanlei; Han, Weiqi; He, Wei; Li, Jianlei; Wang, Jirong; Feng, Haotian; Qian, Yu

    2016-03-01

    Effective and safe induction of osteogenic differentiation is one of the key elements of bone tissue engineering. Surface topography of scaffold materials was recently found to promote osteogenic differentiation. Utilization of this topography may be a safer approach than traditional induction by growth factors or chemicals. The aim of this study is to investigate the enhancement of osteogenic differentiation by surface topography and its mechanism of action. Hydroxyapatite (HA) discs with average roughness (Ra) of surface topography ranging from 0.2 to 1.65 μm and mean distance between peaks (RSm) ranging from 89.7 to 18.6 μm were prepared, and human bone-marrow mesenchymal stem cells (hBMSCs) were cultured on these discs. Optimal osteogenic differentiation was observed on discs with surface topography characterized by Ra ranging from 0.77 to 1.09 μm and RSm ranging from 53.9 to 39.3 μm. On this surface configuration of HA, hBMSCs showed oriented attachment, F-actin arrangement, and a peak in the expression of Yes-associated protein (YAP) and PDZ binding motif (TAZ) (YAP/TAZ). These results indicated that the surface topography of HA promoted osteogenic differentiation of hBMSCs, possibly by increasing cell attachment and promoting the YAP/TAZ signaling pathway. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Topography of sensory symptoms in patients with drug-naïve restless legs syndrome.

    Science.gov (United States)

    Koo, Yong Seo; Lee, Gwan-Taek; Lee, Seo Young; Cho, Yong Won; Jung, Ki-Young

    2013-12-01

    We aimed to describe the sensory topography of restless legs syndrome (RLS) sensory symptoms and to identify the relationship between topography and clinical variables. Eighty adult patients with drug-naïve RLS who had symptoms for more than 1year were consecutively recruited. During face-to-face interviews using a structured paper and pencil questionnaire with all participants, we obtained clinical information and also marked the topography of RLS sensory symptoms on a specified body template, all of which were subsequently inputted into our in-house software. The RLS sensory topography patterns were classified according to localization, lateralization, and symmetry. We investigated if these sensory topography patterns differed according to various clinical variables. The lower extremities only (LE) were the most common location (72.5%), and 76.3% of participants exhibited symmetric sensory topography. Late-onset RLS showed more asymmetric sensory distribution compared with early-onset RLS (P=.024). Patients whose sensory symptoms involved the lower extremities in addition to other body parts (LE-PLUS) showed more severe RLS compared with those involving the LE (P=.037). RLS sensory symptoms typically were symmetrically located in the lower extremities. LE-PLUS or an asymmetric distribution more often occurred in patients with more severe RLS symptoms or late-onset RLS. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Simultaneous topography imaging and broadband nanomechanical mapping on atomic force microscope

    Science.gov (United States)

    Li, Tianwei; Zou, Qingze

    2017-12-01

    In this paper, an approach is proposed to achieve simultaneous imaging and broadband nanomechanical mapping of soft materials in air by using an atomic force microscope. Simultaneous imaging and nanomechanical mapping are needed, for example, to correlate the morphological and mechanical evolutions of the sample during dynamic phenomena such as the cell endocytosis process. Current techniques for nanomechanical mapping, however, are only capable of capturing static elasticity of the material, or the material viscoelasticity in a narrow frequency band around the resonant frequency(ies) of the cantilever used, not competent for broadband nanomechanical mapping, nor acquiring topography image of the sample simultaneously. These limitations are addressed in this work by enabling the augmentation of an excitation force stimuli of rich frequency spectrum for nanomechanical mapping in the imaging process. Kalman-filtering technique is exploited to decouple and split the mixed signals for imaging and mapping, respectively. Then the sample indentation generated is quantified online via a system-inversion method, and the effects of the indentation generated and the topography tracking error on the topography quantification are taken into account. Moreover, a data-driven feedforward-feedback control is utilized to track the sample topography. The proposed approach is illustrated through experimental implementation on a polydimethylsiloxane sample with a pre-fabricated pattern.

  8. Nano-topography Enhances Communication in Neural Cells Networks

    KAUST Repository

    Onesto, V.; Cancedda, L.; Coluccio, M. L.; Nanni, M.; Pesce, M.; Malara, N.; Cesarelli, M.; Di Fabrizio, Enzo M.; Amato, F.; Gentile, F.

    2017-01-01

    Neural cells are the smallest building blocks of the central and peripheral nervous systems. Information in neural networks and cell-substrate interactions have been heretofore studied separately. Understanding whether surface nano-topography can

  9. School scoliosis screening by Moiré topography - Overview for 33 years in Miyazaki Japan.

    Science.gov (United States)

    Kuroki, Hiroshi; Nagai, Takuya; Chosa, Etsuo; Tajima, Naoya

    2018-04-05

    Since 1981, we have performed school scoliosis screening (SSS) using Moiré topography in Miyazaki, Japan and attained a certain result in detecting scoliosis. However, this screening system was discontinued due to cessation of repair and production of Moiré topographic equipment. The purpose of this study was to make clear both the results and the problems of SSS by Moiré topography on the basis of our past 33 years' experiences. The subjects were 689,293 students (5th grade boys in 200,329, 5th grade girls in 191,919, 8th grade boys in 151,351, and 8th grade girls in 145,694) who were screened by Moiré topography between 1981 and 2013. The number of students received SSS, the positive rate of Moiré topography, the discovery rate of scoliosis greater than 20°, the reference rate to the second screening, and the positive predictive value of Moiré topography to detect scoliosis greater than 20° were investigated. The number of students received SSS achieved a peak in 1992. The positive rate of Moiré topography and the discovery rate of scoliosis were highest in 8th grade girls. The reference rates to the second screening were 49.8% in 5th grade students and 41.4% in 8th grade students. The positive predictive values were 2.1% in 5th grade students and 7.6% in 8th grade students. SSS by Moiré topography seemed to be effective in detecting scoliosis although both the positive predictive value and the reference rate to the second screening were low. Copyright © 2018. Published by Elsevier B.V.

  10. A consistent data set of Antarctic ice sheet topography, cavity geometry, and global bathymetry

    Directory of Open Access Journals (Sweden)

    R. Timmermann

    2010-12-01

    Full Text Available Sub-ice shelf circulation and freezing/melting rates in ocean general circulation models depend critically on an accurate and consistent representation of cavity geometry. Existing global or pan-Antarctic topography data sets have turned out to contain various inconsistencies and inaccuracies. The goal of this work is to compile independent regional surveys and maps into a global data set. We use the S-2004 global 1-min bathymetry as the backbone and add an improved version of the BEDMAP topography (ALBMAP bedrock topography for an area that roughly coincides with the Antarctic continental shelf. The position of the merging line is individually chosen in different sectors in order to capture the best of both data sets. High-resolution gridded data for ice shelf topography and cavity geometry of the Amery, Fimbul, Filchner-Ronne, Larsen C and George VI Ice Shelves, and for Pine Island Glacier are carefully merged into the ambient ice and ocean topographies. Multibeam survey data for bathymetry in the former Larsen B cavity and the southeastern Bellingshausen Sea have been obtained from the data centers of Alfred Wegener Institute (AWI, British Antarctic Survey (BAS and Lamont-Doherty Earth Observatory (LDEO, gridded, and blended into the existing bathymetry map. The resulting global 1-min Refined Topography data set (RTopo-1 contains self-consistent maps for upper and lower ice surface heights, bedrock topography, and surface type (open ocean, grounded ice, floating ice, bare land surface. The data set is available in NetCDF format from the PANGAEA database at doi:10.1594/pangaea.741917.

  11. ATM Coastal Topography-Texas, 2001: UTM Zone 15

    Science.gov (United States)

    Klipp, Emily S.; Nayegandhi, Amar; Brock, John C.; Sallenger, A.H.; Bonisteel, Jamie M.; Yates, Xan; Wright, C. Wayne

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of lidar-derived first-surface (FS) topography were produced collaboratively by the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of a portion of the Texas coastline within UTM zone 15, from Matagorda Peninsula to Galveston Island, acquired October 12-13, 2001. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative scanning lidar instrument originally developed by NASA, and known as the Airborne Topographic Mapper (ATM), was used during data acquisition. The ATM system is a scanning lidar system that measures high-resolution topography of the land surface and incorporates a green-wavelength laser operating at pulse rates of 2 to 10 kilohertz. Measurements from the laser-ranging device are coupled with data acquired from inertial navigation system (INS) attitude sensors and differentially corrected global positioning system (GPS) receivers to measure topography of the surface at accuracies of +/-15 centimeters. The nominal ATM platform is a Twin Otter or P-3 Orion aircraft, but the instrument may be deployed on a range of light aircraft. Elevation measurements were collected over the survey area using the ATM system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant

  12. Snap evaporation of droplets on smooth topographies.

    Science.gov (United States)

    Wells, Gary G; Ruiz-Gutiérrez, Élfego; Le Lirzin, Youen; Nourry, Anthony; Orme, Bethany V; Pradas, Marc; Ledesma-Aguilar, Rodrigo

    2018-04-11

    Droplet evaporation on solid surfaces is important in many applications including printing, micro-patterning and cooling. While seemingly simple, the configuration of evaporating droplets on solids is difficult to predict and control. This is because evaporation typically proceeds as a "stick-slip" sequence-a combination of pinning and de-pinning events dominated by static friction or "pinning", caused by microscopic surface roughness. Here we show how smooth, pinning-free, solid surfaces of non-planar topography promote a different process called snap evaporation. During snap evaporation a droplet follows a reproducible sequence of configurations, consisting of a quasi-static phase-change controlled by mass diffusion interrupted by out-of-equilibrium snaps. Snaps are triggered by bifurcations of the equilibrium droplet shape mediated by the underlying non-planar solid. Because the evolution of droplets during snap evaporation is controlled by a smooth topography, and not by surface roughness, our ideas can inspire programmable surfaces that manage liquids in heat- and mass-transfer applications.

  13. Open questions in surface topography measurement: a roadmap

    International Nuclear Information System (INIS)

    Leach, Richard; Evans, Christopher; He, Liangyu; Davies, Angela; Duparré, Angela; Henning, Andrew; Jones, Christopher W; O’Connor, Daniel

    2015-01-01

    Control of surface topography has always been of vital importance for manufacturing and many other engineering and scientific disciplines. However, despite over one hundred years of quantitative surface topography measurement, there are still many open questions. At the top of the list of questions is ‘Are we getting the right answer?’ This begs the obvious question ‘How would we know?’ There are many other questions relating to applications, the appropriateness of a technique for a given scenario, or the relationship between a particular analysis and the function of the surface. In this first ‘open questions’ article we have gathered together some experts in surface topography measurement and asked them to address timely, unresolved questions about the subject. We hope that their responses will go some way to answer these questions, address areas where further research is required, and look at the future of the subject. The first section ‘Spatial content characterization for precision surfaces’ addresses the need to characterise the spatial content of precision surfaces. Whilst we have been manufacturing optics for centuries, there still isn’t a consensus on how to specify the surface for manufacture. The most common three methods for spatial characterisation are reviewed and compared, and the need for further work on quantifying measurement uncertainties is highlighted. The article is focussed on optical surfaces, but the ideas are more pervasive. Different communities refer to ‘figure, mid-spatial frequencies, and finish’ and ‘form, waviness, and roughness’, but the mathematics are identical. The second section ‘Light scattering methods’ is focussed on light scattering techniques; an important topic with in-line metrology becoming essential in many manufacturing scenarios. The potential of scattering methods has long been recognized; in the ‘smooth surface limit’ functionally significant relationships can be derived from first

  14. Atmospheric stability and topography effects on wind turbine performance and wake properties in complex terrain

    DEFF Research Database (Denmark)

    Han, Xingxing; Liu, Deyou; Xu, Chang

    2018-01-01

    This paper evaluates the influence of atmospheric stability and topography on wind turbine performance and wake properties in complex terrain. To assess atmospheric stability effects on wind turbine performance, an equivalent wind speed calculated with the power output and the manufacture power...... and topography have significant influences on wind turbine performance and wake properties. Considering effects of atmospheric stability and topography will benefit the wind resource assessment in complex terrain....

  15. The Role of Membrane Curvature in Nanoscale Topography-Induced Intracellular Signaling.

    Science.gov (United States)

    Lou, Hsin-Ya; Zhao, Wenting; Zeng, Yongpeng; Cui, Bianxiao

    2018-05-15

    Over the past decade, there has been growing interest in developing biosensors and devices with nanoscale and vertical topography. Vertical nanostructures induce spontaneous cell engulfment, which enhances the cell-probe coupling efficiency and the sensitivity of biosensors. Although local membranes in contact with the nanostructures are found to be fully fluidic for lipid and membrane protein diffusions, cells appear to actively sense and respond to the surface topography presented by vertical nanostructures. For future development of biodevices, it is important to understand how cells interact with these nanostructures and how their presence modulates cellular function and activities. How cells recognize nanoscale surface topography has been an area of active research for two decades before the recent biosensor works. Extensive studies show that surface topographies in the range of tens to hundreds of nanometers can significantly affect cell functions, behaviors, and ultimately the cell fate. For example, titanium implants having rough surfaces are better for osteoblast attachment and host-implant integration than those with smooth surfaces. At the cellular level, nanoscale surface topography has been shown by a large number of studies to modulate cell attachment, activity, and differentiation. However, a mechanistic understanding of how cells interact and respond to nanoscale topographic features is still lacking. In this Account, we focus on some recent studies that support a new mechanism that local membrane curvature induced by nanoscale topography directly acts as a biochemical signal to induce intracellular signaling, which we refer to as the curvature hypothesis. The curvature hypothesis proposes that some intracellular proteins can recognize membrane curvatures of a certain range at the cell-to-material interface. These proteins then recruit and activate downstream components to modulate cell signaling and behavior. We discuss current technologies

  16. Synchrotron-radiation plane-wave topography

    International Nuclear Information System (INIS)

    Riglet, P.; Sauvage, M.; Petroff, J.F.; Epelboin, Y.

    1980-01-01

    A computer program based on the Takagi-Taupin differential equations for X-ray propagation in distorted crystals has been developed in order to simulate dislocation images in the Bragg case. The program is valid both for thin and thick crystals. Simulated images of misfit dislocations formed either in a thin epilayer or in a thick substrate are compared with experimental images obtained by synchrotron-radiation plane-wave topography. The influence of the various strain components on the image features is discussed. (author)

  17. High resolution, monochromatic x-ray topography capability at CHESS

    Energy Technology Data Exchange (ETDEWEB)

    Finkelstein, K. D., E-mail: kdf1@cornell.edu; Pauling, A.; Brown, Z. [CHESS, Cornell University, Ithaca, NY (United States); Jones, R. [Department of Physics, University of Connecticut, Storrs, CT (United States); Tarun, A.; Misra, D. S. [IIa Technologies (Singapore); Jupitz, S. [St. Mary’s College of Maryland, St. Mary’s City, MD (United States); Sagan, D. C. [CLASSE, Cornell University, Ithaca, NY (United States)

    2016-07-27

    CHESS has a monochromatic x-ray topography capability serving continually expanding user interest. The setup consists of a beam expanding monochromator, 6-circle diffactometer, and CHESS designed CMOS camera with real time sample-alignment capability. This provides rocking curve mapping with angle resolution as small as 2 µradians, spatial resolution to 3 microns, and field of view up to 7mm. Thus far the capability has been applied for: improving CVD-diamond growth, evaluating perfection of ultra-thin diamond membranes, correlating performance of diamond-based electronics with crystal defect structure, and defect analysis of single crystal silicon carbide. This paper describes our topography system, explains its capabilities, and presents experimental results from several applications.

  18. High resolution, monochromatic x-ray topography capability at CHESS

    International Nuclear Information System (INIS)

    Finkelstein, K. D.; Pauling, A.; Brown, Z.; Jones, R.; Tarun, A.; Misra, D. S.; Jupitz, S.; Sagan, D. C.

    2016-01-01

    CHESS has a monochromatic x-ray topography capability serving continually expanding user interest. The setup consists of a beam expanding monochromator, 6-circle diffactometer, and CHESS designed CMOS camera with real time sample-alignment capability. This provides rocking curve mapping with angle resolution as small as 2 µradians, spatial resolution to 3 microns, and field of view up to 7mm. Thus far the capability has been applied for: improving CVD-diamond growth, evaluating perfection of ultra-thin diamond membranes, correlating performance of diamond-based electronics with crystal defect structure, and defect analysis of single crystal silicon carbide. This paper describes our topography system, explains its capabilities, and presents experimental results from several applications.

  19. Signal filtering algorithm for depth-selective diffuse optical topography

    International Nuclear Information System (INIS)

    Fujii, M; Nakayama, K

    2009-01-01

    A compact filtered backprojection algorithm that suppresses the undesirable effects of skin circulation for near-infrared diffuse optical topography is proposed. Our approach centers around a depth-selective filtering algorithm that uses an inverse problem technique and extracts target signals from observation data contaminated by noise from a shallow region. The filtering algorithm is reduced to a compact matrix and is therefore easily incorporated into a real-time system. To demonstrate the validity of this method, we developed a demonstration prototype for depth-selective diffuse optical topography and performed both computer simulations and phantom experiments. The results show that the proposed method significantly suppresses the noise from the shallow region with a minimal degradation of the target signal.

  20. Learning topography with Tangible Landscape games

    Science.gov (United States)

    Petrasova, A.; Tabrizian, P.; Harmon, B. A.; Petras, V.; Millar, G.; Mitasova, H.; Meentemeyer, R. K.

    2017-12-01

    Understanding topography and its representations is crucial for correct interpretation and modeling of surface processes. However, novice earth science and landscape architecture students often find reading topographic maps challenging. As a result, many students struggle to comprehend more complex spatial concepts and processes such as flow accumulation or sediment transport.We developed and tested a new method for teaching hydrology, geomorphology, and grading using Tangible Landscape—a tangible interface for geospatial modeling. Tangible Landscape couples a physical and digital model of a landscape through a real-time cycle of hands-on modeling, 3D scanning, geospatial computation, and projection. With Tangible Landscape students can sculpt a projection-augmented topographic model of a landscape with their hands and use a variety of tangible objects to immediately see how they are changing geospatial analytics such as contours, profiles, water flow, or landform types. By feeling and manipulating the shape of the topography, while seeing projected geospatial analytics, students can intuitively learn about 3D topographic form, its representations, and how topography controls physical processes. Tangible Landscape is powered by GRASS GIS, an open source geospatial platform with extensive libraries for geospatial modeling and analysis. As such, Tangible Landscape can be used to design a wide range of learning experiences across a large number of geoscience disciplines.As part of a graduate level course that teaches grading, 16 students participated in a series of workshops, which were developed as serious games to encourage learning through structured play. These serious games included 1) diverting rain water to a specified location with minimal changes to landscape, 2) building different combinations of landforms, and 3) reconstructing landscapes based on projected contour information with feedback.In this poster, we will introduce Tangible Landscape, and

  1. Hippocampal neurons respond uniquely to topographies of various sizes and shapes

    International Nuclear Information System (INIS)

    Fozdar, David Y; Chen Shaochen; Lee, Jae Young; Schmidt, Christine E

    2010-01-01

    A number of studies have investigated the behavior of neurons on microfabricated topography for the purpose of developing interfaces for use in neural engineering applications. However, there have been few studies simultaneously exploring the effects of topographies having various feature sizes and shapes on axon growth and polarization in the first 24 h. Accordingly, here we investigated the effects of arrays of lines (ridge grooves) and holes of microscale (∼2 μm) and nanoscale (∼300 nm) dimensions, patterned in quartz (SiO 2 ), on the (1) adhesion, (2) axon establishment (polarization), (3) axon length, (4) axon alignment and (5) cell morphology of rat embryonic hippocampal neurons, to study the response of the neurons to feature dimension and geometry. Neurons were analyzed using optical and scanning electron microscopy. The topographies were found to have a negligible effect on cell attachment but to cause a marked increase in axon polarization, occurring more frequently on sub-microscale features than on microscale features. Neurons were observed to form longer axons on lines than on holes and smooth surfaces; axons were either aligned parallel or perpendicular to the line features. An analysis of cell morphology indicated that the surface features impacted the morphologies of the soma, axon and growth cone. The results suggest that incorporating microscale and sub-microscale topographies on biomaterial surfaces may enhance the biomaterials' ability to modulate nerve development and regeneration.

  2. Cellular Scale Anisotropic Topography Guides Schwann Cell Motility

    Science.gov (United States)

    Mitchel, Jennifer A.; Hoffman-Kim, Diane

    2011-01-01

    Directed migration of Schwann cells (SC) is critical for development and repair of the peripheral nervous system. Understanding aspects of motility specific to SC, along with SC response to engineered biomaterials, may inform strategies to enhance nerve regeneration. Rat SC were cultured on laminin-coated microgrooved poly(dimethyl siloxane) platforms that were flat or presented repeating cellular scale anisotropic topographical cues, 30 or 60 µm in width, and observed with timelapse microscopy. SC motion was directed parallel to the long axis of the topography on both the groove floor and the plateau, with accompanying differences in velocity and directional persistence in comparison to SC motion on flat substrates. In addition, feature dimension affected SC morphology, alignment, and directional persistence. Plateaus and groove floors presented distinct cues which promoted differential motility and variable interaction with the topographical features. SC on the plateau surfaces tended to have persistent interactions with the edge topography, while SC on the groove floors tended to have infrequent contact with the corners and walls. Our observations suggest the capacity of SC to be guided without continuous contact with a topographical cue. SC exhibited a range of distinct motile morphologies, characterized by their symmetry and number of extensions. Across all conditions, SC with a single extension traveled significantly faster than cells with more or no extensions. We conclude that SC motility is complex, where persistent motion requires cellular asymmetry, and that anisotropic topography with cellular scale features can direct SC motility. PMID:21949703

  3. Influence of local topography on precision irrigation management

    Science.gov (United States)

    Precision irrigation management is currently accomplished using spatial information about soil properties through soil series maps or electrical conductivity (EC measurements. Crop yield, however, is consistently influenced by local topography, both in rain-fed and irrigated environments. Utilizing ...

  4. Stresses in a submarine topography under ocean waves

    Energy Technology Data Exchange (ETDEWEB)

    Mei, C.C.; McTigue, D.F.

    1984-09-01

    The problem of submarine slope stability is of interest to both offshore engineering and geology. In an uneven topography, the weight above a horizontal plane induces two-dimensional variation in the static stress field. The action of wave pressure, which changes with depth, further introduces excess pore pressure and dynamic stresses in the sea bottom. In the present paper, we combine a simple analytical theory for the static stress by the present authors, and the recent solution by Mei and Foda for wave-induced stresses in a plane poro-elastic sea bed to account for mild bottom slope and wave shoaling, and obtain the effective stress field in a submarine topography under sea waves. Sample results are given for a ridge and a canyon. In particular, the dynamic pore pressure and the combined static and dynamic effective stresses are presented.

  5. Structural Characterization of Doped GaSb Single Crystals by X-ray Topography

    Energy Technology Data Exchange (ETDEWEB)

    Honnicke, M.G.; Mazzaro, I.; Manica, J.; Benine, E.; M da Costa, E.; Dedavid, B. A.; Cusatis, C.; Huang, X. R.

    2009-09-13

    We characterized GaSb single crystals containing different dopants (Al, Cd and Te), grown by the Czochralski method, by x-ray topography and high angular resolution x-ray diffraction. Lang topography revealed dislocations parallel and perpendicular to the crystal's surface. Double-crystal GaSb 333 x-ray topography shows dislocations and vertical stripes than can be associated with circular growth bands. We compared our high-angular resolution x-ray diffraction measurements (rocking curves) with the findings predicted by the dynamical theory of x-ray diffraction. These measurements show that our GaSb single crystals have a relative variation in the lattice parameter ({Delta}d/d) on the order of 10{sup -5}. This means that they can be used as electronic devices (detectors, for example) and as x-ray monochromators.

  6. Smoking Through a Topography Device Diminishes Some of the Acute Rewarding Effects of Smoking.

    Science.gov (United States)

    Ross, Kathryn C; Juliano, Laura M

    2016-05-01

    Smoking topography (ST) devices are an important methodological tool for quantifying puffing behavior (eg, puff volume, puff velocity) as well as identifying puffing differences across individuals and situations. Available ST devices are designed such that the smoker's mouth and hands have direct contact with the device rather than the cigarette itself. Given the importance of the sensorimotor aspects of cigarette smoking in smoking reward, it is possible that ST devices may interfere with the acute rewarding effects of smoking. Despite the methodological importance of this issue, few studies have directly compared subjective reactions to smoking through a topography device to naturalistic smoking. Smokers (N = 58; 38% female) smoked their preferred brand of cigarettes one time through a portable topography device and one time naturalistically, in counterbalanced order across two laboratory sessions. Smoking behavior (eg, number of puffs) and subjective effects (eg, urge reduction, affect, smoking satisfaction) were assessed. Negative affect reduction was greater in the natural smoking condition relative to the topography condition, but differences were not significant on measures of urge, withdrawal, or positive affect. Self-reported smoking satisfaction, enjoyment of respiratory tract sensations, psychological reward, craving reduction, and other rewarding effects of smoking were also significantly greater in the naturalistic smoking condition. The effects of using a ST device on the smoking experience should be considered when it is used in research as it may diminish some of the rewarding effects of smoking. When considering the inclusion of a smoking topography device in one's research, it is important to know if use of that device will alter the smoker's experience. This study assessed affective and subjective reactions to smoking through a topography device compared to naturalistic smoking. We found that smoking satisfaction, psychological reward, enjoyment

  7. Time-domain full-waveform inversion of Rayleigh and Love waves in presence of free-surface topography

    Science.gov (United States)

    Pan, Yudi; Gao, Lingli; Bohlen, Thomas

    2018-05-01

    Correct estimation of near-surface seismic-wave velocity when encountering lateral heterogeneity and free surface topography is one of the challenges to current shallow seismic. We propose to use time-domain full-waveform inversion (FWI) of surface waves, including both Rayleigh and Love waves, to solve this problem. We adopt a 2D time-domain finite-difference method with an improved vacuum formulation (IVF) to simulate shallow-seismic Rayleigh wave in presence of free-surface topography. We modify the IVF for SH-wave equation for the simulation of Love wave in presence of topographic free surface and prove its accuracy by benchmark tests. Checkboard model tests are performed in both cases when free-surface topography is included or neglected in FWI. Synthetic model containing a dipping planar free surface and lateral heterogeneity was then tested, in both cases of considering and neglecting free-surface topography. Both checkerboard and synthetic models show that Rayleigh- and Love-wave FWI have similar ability of reconstructing near-surface structures when free-surface topography is considered, while Love-wave FWI could reconstruct near-surface structures better than Rayleigh-wave when free-surface topography is neglected.

  8. Examining Daily Electronic Cigarette Puff Topography Among Established and Non-established Cigarette Smokers in their Natural Environment.

    Science.gov (United States)

    Lee, Youn Ok; Nonnemaker, James M; Bradfield, Brian; Hensel, Edward C; Robinson, Risa J

    2017-10-04

    Understanding exposures and potential health effects of ecigarettes is complex. Users' puffing behavior, or topography, affects function of ecigarette devices (e.g., coil temperature) and composition of their emissions. Users with different topographies are likely exposed to different amounts of any harmful or potentially harmful constituents (HPHCs). In this study, we compare ecigarette topographies of established cigarette smokers and non-established cigarette smokers. Data measuring e-cigarette topography were collected using a wireless hand-held monitoring device in users' everyday lives over 1 week. Young adult (aged 18-25) participants (N=20) used disposable e-cigarettes with the monitor as they normally would and responded to online surveys. Topography characteristics of established versus non-established cigarette smokers were compared. On average, established cigarette smokers in the sample had larger first puff volume (130.9ml vs. 56.0ml, pvs. 651.7ml, pnon-established smokers. At marginal significance, they had longer sessions (566.3s vs. 279.7s, p=.06) and used e-cigarettes more sessions per day (5.3s vs. 3.5s, p=.14). Established cigarette smokers also used ecigarettes for longer puff durations (3.3s vs. 1.8s, pvs. 54.7ml, pnon-established smokers. At marginal significance, they had longer puff interval (38.1s vs. 21.7s, p=.05). Our results demonstrate that topography characteristics differ by level of current cigarette smoking. This suggests that exposures to constituents of e-cigarettes depends on user characteristics and that specific topography parameters may be needed for different user populations when assessing ecigarette health effects. A user's topography affects his or her exposure to HPHCs. As this study demonstrates, user characteristics, such as level of smoking, can influence topography. Thus, it is crucial to understand the topography profiles of different user types to assess the potential for population harm and to identify potentially

  9. The influence of Fe doping on the surface topography of GaN epitaxial material

    International Nuclear Information System (INIS)

    Cui Lei; Yin Haibo; Jiang Lijuan; Wang Quan; Feng Chun; Xiao Hongling; Wang Cuimei; Wang Xiaoliang; Gong Jiamin; Zhang Bo; Li Baiquan; Wang Zhanguo

    2015-01-01

    Fe doping is an effective method to obtain high resistivity GaN epitaxial material. But in some cases, Fe doping could result in serious deterioration of the GaN material surface topography, which will affect the electrical properties of two dimensional electron gas (2DEG) in HEMT device. In this paper, the influence of Fe doping on the surface topography of GaN epitaxial material is studied. The results of experiments indicate that the surface topography of Fe-doped GaN epitaxial material can be effectively improved and the resistivity could be increased after increasing the growth rate of GaN materials. The GaN material with good surface topography can be manufactured when the Fe doping concentration is 9 × 10 19 cm −3 . High resistivity GaN epitaxial material which is 1 × 10 9 Ω·cm is achieved. (paper)

  10. Influence of surface topography on the surface durability of steam oxidised sintered iron

    Directory of Open Access Journals (Sweden)

    José Daniel Biasoli de Mello

    2005-06-01

    Full Text Available Durability of surfaces has been reported as the main factor affecting tribological behavior of steam oxidised sintered iron. The presence of surface pores and their negative influence on load bearing capacity, suggest that surface topography might play an important role on the durability of the oxide layer. In this paper, the influence of compaction pressure and powder grade on surface topography, and as a consequence, its effect on the tribological behavior of steam oxidised sintered iron has been analysed. Specimens prepared from atomised iron powders with different sizes were compacted using 4 different pressures, sintered, and then subjected to steam treatment. Tribological characterisation was carried out in a reciprocating sliding wear test. Although the processing parameters affected the surface topography to a considerable extent, the main influence may be attributed to powder grade. A strong influence of surface topography on the durability distance, evaluated in terms of the evolution of contact resistance with total sliding distance, has been highlighted. Surfaces which were smoother and had high load-carrying capacity were always associated with a higher durability distance.

  11. Brief communication: A nonlinear self-similar solution to barotropic flow over varying topography

    Science.gov (United States)

    Ibanez, Ruy; Kuehl, Joseph; Shrestha, Kalyan; Anderson, William

    2018-03-01

    Beginning from the shallow water equations (SWEs), a nonlinear self-similar analytic solution is derived for barotropic flow over varying topography. We study conditions relevant to the ocean slope where the flow is dominated by Earth's rotation and topography. The solution is found to extend the topographic β-plume solution of Kuehl (2014) in two ways. (1) The solution is valid for intensifying jets. (2) The influence of nonlinear advection is included. The SWEs are scaled to the case of a topographically controlled jet, and then solved by introducing a similarity variable, η = cxnxyny. The nonlinear solution, valid for topographies h = h0 - αxy3, takes the form of the Lambert W-function for pseudo velocity. The linear solution, valid for topographies h = h0 - αxy-γ, takes the form of the error function for transport. Kuehl's results considered the case -1 ≤ γ < 1 which admits expanding jets, while the new result considers the case γ < -1 which admits intensifying jets and a nonlinear case with γ = -3.

  12. The Relationship of the MOLA Topography of Mars to the Mean Atmospheric Pressure

    Science.gov (United States)

    Smith, David E.; Zuber, Maria T.

    1999-01-01

    The MOLA topography of Mars is based on a new mean radius of the planet and new equipotential surface for the areoid. The mean atmospheric pressure surface of 6.1mbars that has been used in the past as a reference level for topography does not apply to the zero level of MOLA elevations. The MOLA mean radius of the planet is 3389508 meters and the mean equatorial radius is 339600 meters. The areoid of the zero level of the MOLA altimetry is defined to be the potential surface with the same potential as the mean equatorial radius. The MOLA topography differs from the USGS digital elevation data by approximately 1.6 km, with MOLA higher. The average pressure on the MOLA reference surface for Ls =0 is approximately 5.1 mbars and has been derived from occultation data obtained from the tracking of Viking, Mariner, and MGS spacecraft and interpolated with the aid of the Ames Mars GCM. The new topography and the new occultation data are providing a more reliable relationship between elevation and surface pressure.

  13. A Scalable Infrastructure for Lidar Topography Data Distribution, Processing, and Discovery

    Science.gov (United States)

    Crosby, C. J.; Nandigam, V.; Krishnan, S.; Phan, M.; Cowart, C. A.; Arrowsmith, R.; Baru, C.

    2010-12-01

    High-resolution topography data acquired with lidar (light detection and ranging) technology have emerged as a fundamental tool in the Earth sciences, and are also being widely utilized for ecological, planning, engineering, and environmental applications. Collected from airborne, terrestrial, and space-based platforms, these data are revolutionary because they permit analysis of geologic and biologic processes at resolutions essential for their appropriate representation. Public domain lidar data collection by federal, state, and local agencies are a valuable resource to the scientific community, however the data pose significant distribution challenges because of the volume and complexity of data that must be stored, managed, and processed. Lidar data acquisition may generate terabytes of data in the form of point clouds, digital elevation models (DEMs), and derivative products. This massive volume of data is often challenging to host for resource-limited agencies. Furthermore, these data can be technically challenging for users who lack appropriate software, computing resources, and expertise. The National Science Foundation-funded OpenTopography Facility (www.opentopography.org) has developed a cyberinfrastructure-based solution to enable online access to Earth science-oriented high-resolution lidar topography data, online processing tools, and derivative products. OpenTopography provides access to terabytes of point cloud data, standard DEMs, and Google Earth image data, all co-located with computational resources for on-demand data processing. The OpenTopography portal is built upon a cyberinfrastructure platform that utilizes a Services Oriented Architecture (SOA) to provide a modular system that is highly scalable and flexible enough to support the growing needs of the Earth science lidar community. OpenTopography strives to host and provide access to datasets as soon as they become available, and also to expose greater application level functionalities to

  14. Exact Riemann solutions of the Ripa model for flat and non-flat bottom topographies

    Science.gov (United States)

    Rehman, Asad; Ali, Ishtiaq; Qamar, Shamsul

    2018-03-01

    This article is concerned with the derivation of exact Riemann solutions for Ripa model considering flat and non-flat bottom topographies. The Ripa model is a system of shallow water equations accounting for horizontal temperature gradients. In the case of non-flat bottom topography, the mass, momentum and energy conservation principles are utilized to relate the left and right states across the step-type bottom topography. The resulting system of algebraic equations is solved iteratively. Different numerical case studies of physical interest are considered. The solutions obtained from developed exact Riemann solvers are compared with the approximate solutions of central upwind scheme.

  15. Cooperative control of blood compatibility and re-endothelialization by immobilized heparin and substrate topography.

    Science.gov (United States)

    Ding, Yonghui; Yang, Meng; Yang, Zhilu; Luo, Rifang; Lu, Xiong; Huang, Nan; Huang, Pingbo; Leng, Yang

    2015-03-01

    A wide variety of environmental cues provided by the extracellular matrix, including biophysical and biochemical cues, are responsible for vascular cell behavior and function. In particular, substrate topography and surface chemistry have been shown to regulate blood and vascular compatibility individually. The combined impact of chemical and topographic cues on blood and vascular compatibility, and the interplay between these two types of cues, are subjects that are currently being explored. In the present study, a facile polydopamine-mediated approach is introduced for immobilization of heparin on topographically patterned substrates, and the combined effects of these cues on blood compatibility and re-endothelialization are systematically investigated. The results show that immobilized heparin and substrate topography cooperatively modulate anti-coagulation activity, endothelial cell (EC) attachment, proliferation, focal adhesion formation and endothelial marker expression. Meanwhile, the substrate topography is the primary determinant of cell alignment and elongation, driving in vivo-like endothelial organization. Importantly, combining immobilized heparin with substrate topography empowers substantially greater competitive ability of ECs over smooth muscle cells than each cue individually. Moreover, a model is proposed to elucidate the cooperative interplay between immobilized heparin and substrate topography in regulating cell behavior. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. Topography of the Moon from the Clementine Lidar

    Science.gov (United States)

    Smith, David E.; Zuber, Maria T.; Neumann, Gregory A.; Lemoine, Frank G.

    1997-01-01

    Range measurements from the lidar instrument carried aboard the Clementine spacecraft have been used to produce an accurate global topographic model of the Moon. This paper discusses the function of the lidar; the acquisition, processing, and filtering of observations to produce a global topographic model; and the determination of parameters that define the fundamental shape of the Moon. Our topographic model: a 72nd degree and order spherical harmonic expansion of lunar radii, is designated Goddard Lunar Topography Model 2 (GLTM 2). This topographic field has an absolute vertical accuracy of approximately 100 m and a spatial resolution of 2.5 deg. The field shows that the Moon can be described as a sphere with maximum positive and negative deviations of approx. 8 km, both occurring on the farside, in the areas of the Korolev and South Pole-Aitken (S.P.-Aitken) basins. The amplitude spectrum of the topography shows more power at longer wavelengths as compared to previous models, owing to more complete sampling of the surface, particularly the farside. A comparison of elevations derived from the Clementine lidar to control point elevations from the Apollo laser altimeters indicates that measured relative topographic heights generally agree to within approx. 200 in over the maria. While the major axis of the lunar gravity field is aligned in the Earth-Moon direction, the major axis of topography is displaced from this line by approximately 10 deg to the cast and intersects the farside 24 deg north of the equator. The magnitude of impact basin topography is greater than the lunar flattening (approx. 2 km) and equatorial ellipticity (approx. 800 m), which imposes a significant challenge to interpreting the lunar figure. The floors of mare basins are shown to lie close to an equipotential surface, while the floors of unflooded large basins, except for S.P.-Aitken, lie above this equipotential. The radii of basin floors are thus consistent with a hydrostatic mechanism

  17. Effect of root planing on surface topography: an in-vivo randomized experimental trial.

    Science.gov (United States)

    Rosales-Leal, J I; Flores, A B; Contreras, T; Bravo, M; Cabrerizo-Vílchez, M A; Mesa, F

    2015-04-01

    The root surface topography exerts a major influence on clinical attachment and bacterial recolonization after root planing. In-vitro topographic studies have yielded variable results, and clinical studies are necessary to compare root surface topography after planing with current ultrasonic devices and with traditional manual instrumentation. The aim of this study was to compare the topography of untreated single-rooted teeth planed in vivo with a curette, a piezoelectric ultrasonic (PU) scraper or a vertically oscillating ultrasonic (VOU) scraper. In a randomized experimental trial of 19 patients, 44 single-rooted teeth were randomly assigned to one of four groups for: no treatment; manual root planing with a curette; root planing with a PU scraper; or root planing with a VOU scraper. Post-treatment, the teeth were extracted and their topography was analyzed in 124 observations with white-light confocal microscopy, measuring the roughness parameters arithmetic average height, root-mean-square roughness, maximum height of peaks, maximum depth of valleys, absolute height, skewness and kurtosis. The roughness values arithmetic average height and root-mean-square roughness were similar after each treatment and lower than after no treatment ( p  0.05). Both ultrasonic devices reduce the roughness, producing a similar topography to that observed after manual instrumentation with a curette, to which they appear to represent a valid alternative. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Top-down topography of deeply etched silicon in the scanning electron microscope

    International Nuclear Information System (INIS)

    Wells, Oliver C.; Murray, Conal E.; Rullan, Jonathan L.; Gignac, Lynne M.

    2004-01-01

    It is proposed to measure the cross sections of steep-sided etched lines and similar deep surface topography on partially completed silicon integrated circuit wafers using either the backscattered electron (BSE) or the low-loss electron (LLE) image in the scanning electron microscope (SEM). These images contain regions where the collected signal is zero because there is no direct line of sight between the landing point of the electron beam on the specimen and the BSE or LLE detector. It is proposed to use the boundary of such a region in the SEM image as a geometrical line to measure the surface topography. Or alternatively, a shadow can be seen in the distribution of either BSE or LLE with an image-forming detector system. The use of this shadow position on the detector to measure deep surface topography will be demonstrated

  19. 2.5D Inversion Algorithm of Frequency-Domain Airborne Electromagnetics with Topography

    Directory of Open Access Journals (Sweden)

    Jianjun Xi

    2016-01-01

    Full Text Available We presented a 2.5D inversion algorithm with topography for frequency-domain airborne electromagnetic data. The forward modeling is based on edge finite element method and uses the irregular hexahedron to adapt the topography. The electric and magnetic fields are split into primary (background and secondary (scattered field to eliminate the source singularity. For the multisources of frequency-domain airborne electromagnetic method, we use the large-scale sparse matrix parallel shared memory direct solver PARDISO to solve the linear system of equations efficiently. The inversion algorithm is based on Gauss-Newton method, which has the efficient convergence rate. The Jacobian matrix is calculated by “adjoint forward modelling” efficiently. The synthetic inversion examples indicated that our proposed method is correct and effective. Furthermore, ignoring the topography effect can lead to incorrect results and interpretations.

  20. A simple finite-difference scheme for handling topography with the second-order wave equation

    NARCIS (Netherlands)

    Mulder, W.A.

    2017-01-01

    The presence of topography poses a challenge for seismic modeling with finite-difference codes. The representation of topography by means of an air layer or vacuum often leads to a substantial loss of numerical accuracy. A suitable modification of the finite-difference weights near the free

  1. Stresses in a submarine topography under ocean waves

    Energy Technology Data Exchange (ETDEWEB)

    Mei, C.C.; McTigue, D.F.

    1984-01-01

    The problem of submarine slope stability is of interest to both offshore engineering and geology. In an uneven topography, the weight above a horizontal plane induces two-dimensional variation in the static stress field. The action of wave pressure, which changes with depth, further introduces excess pore pressure and dynamic stresses in the sea bottom. In the present paper, we combine a simple analytical theory for the static stress by the present authors, and the recent solution by Mei and Foda for wave-induced stresses in a plane poro-elastic sea bed to account for mild bottom slope and wave shoaling, to obtain the effective stress field in a submarine topography under sea waves. Sample results are given for a ridge and a canyon. In particular the dynamic pore pressure and the combined static and dynamic effective stresses are presented. 10 references, 11 figures.

  2. Insight into collision zone dynamics from topography: numerical modelling results and observations

    OpenAIRE

    A. D. Bottrill; J. van Hunen; M. B. Allen

    2012-01-01

    Dynamic models of subduction and continental collision are used to predict dynamic topography changes on the overriding plate. The modelling results show a distinct evolution of topography on the overriding plate, during subduction, continental collision and slab break-off. A prominent topographic feature is a temporary (few Myrs) deepening in the area of the back arc-basin after initial collision. This collisional mantle dynamic basin (CMDB) is caused by slab steepening drawing material away...

  3. Topography measurements and applications in ballistics and tool mark identifications*

    Science.gov (United States)

    Vorburger, T V; Song, J; Petraco, N

    2016-01-01

    The application of surface topography measurement methods to the field of firearm and toolmark analysis is fairly new. The field has been boosted by the development of a number of competing optical methods, which has improved the speed and accuracy of surface topography acquisitions. We describe here some of these measurement methods as well as several analytical methods for assessing similarities and differences among pairs of surfaces. We also provide a few examples of research results to identify cartridge cases originating from the same firearm or tool marks produced by the same tool. Physical standards and issues of traceability are also discussed. PMID:27182440

  4. The Space-Time Topography of English Speakers

    Science.gov (United States)

    Duman, Steve

    2016-01-01

    English speakers talk and think about Time in terms of physical space. The past is behind us, and the future is in front of us. In this way, we "map" space onto Time. This dissertation addresses the specificity of this physical space, or its topography. Inspired by languages like Yupno (Nunez, et al., 2012) and Bamileke-Dschang (Hyman,…

  5. Topography of InP surface bombarded by O2+ ion beam

    International Nuclear Information System (INIS)

    Sun Zhaoqi

    1997-01-01

    The topography of InP surface bombarded by O 2 + ion beam was investigated. Rippled topographies were observed for bombarded samples, and the data show that the ripple formation starts from a sputtering depth of about 0.4 μm. The wavelength and the disorder of the ripples both increase as the sputtering depth increases. The wavelength of the ripples appears to be sputtering depth dependent rather than sputtering rate dependent. It is confirmed that the ion-beam-induced surface rippling can be effectively suppressed by sample rotation during bombardment

  6. The influence of drawing speed on surface topography of high carbon steel wires

    Directory of Open Access Journals (Sweden)

    M. Suliga

    2017-01-01

    Full Text Available In this work the influence of the drawing speed on surface topography of high carbon steel wires has been assessed. The drawing process of f 5,5 mm wire rod to the final wire of f 1,7 mm was conducted in 12 passes by means of a modern Koch multi-die drawing machine. The drawing speeds in the last passes were: 5, 10, 15, 20 and 25 m/s. For final wires f 1,7 mm the three-dimensional analysis of the wire surface topography investigation was determined. It has been proved that the wire topography in the drawing process is characterized by a random anisotropy and the amount of directing the geometrical structure of the surface depends on the drawing speed.

  7. Ocean and laboratory observations on waves over topography

    NARCIS (Netherlands)

    Lam, F.P. A.

    2007-01-01

    This thesis addresses the observation, analysis and dynamics of waves as being trapped, generated and focused by sloping topography. ---Shelf waves with diurnal tidal frequency off Greenland--- Tidal analysis has been carried out on current measurements at a “cross-shelf” transect off Greenland at

  8. Effect of Bleaching on Color Change and Surface Topography of Composite Restorations

    OpenAIRE

    Pruthi, Gunjan; Jain, Veena; Kandpal, H. C.; Mathur, Vijay Prakash; Shah, Naseem

    2010-01-01

    This study was conducted to determine the effect of 15% carbamide peroxide bleaching agent on color change and surface topography of different composite veneering materials (Filtek Z350 (3M ESPE), Esthet X (Dentsply India), and Admira (Voco, Germany). Methods. 30 samples were fabricated for evaluation of color change using CIELAB color system and Gonioreflectometer (GK 311/M, ZEISS). 45 disc-shaped specimens were made for evaluation of surface topography after bleaching (Nupro White Gold; Den...

  9. Reconciling Long-Wavelength Dynamic Topography, Geoid Anomalies and Mass Distribution on Earth

    Science.gov (United States)

    Hoggard, M.; Richards, F. D.; Ghelichkhan, S.; Austermann, J.; White, N.

    2017-12-01

    Since the first satellite observations in the late 1950s, we have known that that the Earth's non-hydrostatic geoid is dominated by spherical harmonic degree 2 (wavelengths of 16,000 km). Peak amplitudes are approximately ± 100 m, with highs centred on the Pacific Ocean and Africa, encircled by lows in the vicinity of the Pacific Ring of Fire and at the poles. Initial seismic tomography models revealed that the shear-wave velocity, and therefore presumably the density structure, of the lower mantle is also dominated by degree 2. Anti-correlation of slow, probably low density regions beneath geoid highs indicates that the mantle is affected by large-scale flow. Thus, buoyant features are rising and exert viscous normal stresses that act to deflect the surface and core-mantle boundary (CMB). Pioneering studies in the 1980s showed that a viscosity jump between the upper and lower mantle is required to reconcile these geoid and tomographically inferred density anomalies. These studies also predict 1-2 km of dynamic topography at the surface, dominated by degree 2. In contrast to this prediction, a global observational database of oceanic residual depth measurements indicates that degree 2 dynamic topography has peak amplitudes of only 500 m. Here, we attempt to reconcile observations of dynamic topography, geoid, gravity anomalies and CMB topography using instantaneous flow kernels. We exploit a density structure constructed from blended seismic tomography models, combining deep mantle imaging with higher resolution upper mantle features. Radial viscosity structure is discretised, and we invert for the best-fitting viscosity profile using a conjugate gradient search algorithm, subject to damping. Our results suggest that, due to strong sensitivity to radial viscosity structure, the Earth's geoid seems to be compatible with only ± 500 m of degree 2 dynamic topography.

  10. Development, validation and application of a device to measure e-cigarette users’ puffing topography

    Science.gov (United States)

    Cunningham, Anthony; Slayford, Sandra; Vas, Carl; Gee, Jodie; Costigan, Sandra; Prasad, Krishna

    2016-01-01

    With the rapidly rising popularity and substantial evolution of electronic cigarettes (e-cigarettes) in the past 5–6 years, how these devices are used by vapers and consumers’ exposure to aerosol emissions need to be understood. We used puffing topography to measure directly product use. We adapted a cigarette puffing topography device for use with e-cigarettes. We performed validation using air and e-cigarette aerosol under multiple regimes. Consumer puffing topography was measured for 60 vapers provided with rechargeable “cig-a-like” or larger button-activated e-cigarettes, to use ad-libitum in two sessions. Under all regimes, air puff volumes were within 1 mL of the target and aerosol volumes within 5 mL for all device types, serving to validate the device. Vapers’ mean puff durations (2.0 s and 2.2 s) were similar with both types of e-cigarette, but mean puff volumes (52.2 mL and 83.0 mL) and mean inter-puff intervals (23.2 s and 29.3 s) differed significantly. The differing data show that product characteristics influence puffing topography and, therefore, the results obtained from a given e-cigarette might not read across to other products. Understanding the factors that affect puffing topography will be important for standardising testing protocols for e-cigarette emissions. PMID:27721496

  11. Reconstruction of Laser-Induced Surface Topography from Electron Backscatter Diffraction Patterns.

    Science.gov (United States)

    Callahan, Patrick G; Echlin, McLean P; Pollock, Tresa M; De Graef, Marc

    2017-08-01

    We demonstrate that the surface topography of a sample can be reconstructed from electron backscatter diffraction (EBSD) patterns collected with a commercial EBSD system. This technique combines the location of the maximum background intensity with a correction from Monte Carlo simulations to determine the local surface normals at each point in an EBSD scan. A surface height map is then reconstructed from the local surface normals. In this study, a Ni sample was machined with a femtosecond laser, which causes the formation of a laser-induced periodic surface structure (LIPSS). The topography of the LIPSS was analyzed using atomic force microscopy (AFM) and reconstructions from EBSD patterns collected at 5 and 20 kV. The LIPSS consisted of a combination of low frequency waviness due to curtaining and high frequency ridges. The morphology of the reconstructed low frequency waviness and high frequency ridges matched the AFM data. The reconstruction technique does not require any modification to existing EBSD systems and so can be particularly useful for measuring topography and its evolution during in situ experiments.

  12. Artificial topography changes the growth strategy of Spartina alterniflora, case study with wave exposure as a comparison.

    Science.gov (United States)

    Hong, Hualong; Dai, Minyue; Lu, Haoliang; Liu, Jingchun; Zhang, Jie; Chen, Chaoqi; Xia, Kang; Yan, Chongling

    2017-11-17

    This paper reports findings about the growth of Spartina alterniflora (Loisel.) near an engineered coastal protection defences to discover the potential influences on vegetation growth from the artificial topography. Impacts of the artificial topography on the sediment element composition were detected by comparing the fixed effects caused by artificial topography and wave exposure using linear mixed models. Surficial sediments under the impacts of artificial topography contain elevated levels of biogenic elements and heavy metals, including C (and organic carbon), N, S, Al, Fe, Mn, Cu, Zn, As, Cd, Cr, Ni, and Pb. The results showed that element enrichment caused by artificial topography reduced the vegetation sexual reproduction. Contrary to the potential inhibition caused by direct wave exposure, which was due to the biomass accumulation limit, the inhibition caused by artificial topography was related to the transition of growth strategy. The contents of Cu, Mn, N, Ni, S and As in the sediments were critical in considering the relationship between the change in the sediment element composition and the alteration in the plant growth. Our study emphasizes the importance of rethinking the impacts of coastal development projects, especially regarding the heterogeneity of sediment element composition and its ecological consequences.

  13. Effects of upper mantle heterogeneities on the lithospheric stress field and dynamic topography

    Science.gov (United States)

    Osei Tutu, Anthony; Steinberger, Bernhard; Sobolev, Stephan V.; Rogozhina, Irina; Popov, Anton A.

    2018-05-01

    The orientation and tectonic regime of the observed crustal/lithospheric stress field contribute to our knowledge of different deformation processes occurring within the Earth's crust and lithosphere. In this study, we analyze the influence of the thermal and density structure of the upper mantle on the lithospheric stress field and topography. We use a 3-D lithosphere-asthenosphere numerical model with power-law rheology, coupled to a spectral mantle flow code at 300 km depth. Our results are validated against the World Stress Map 2016 (WSM2016) and the observation-based residual topography. We derive the upper mantle thermal structure from either a heat flow model combined with a seafloor age model (TM1) or a global S-wave velocity model (TM2). We show that lateral density heterogeneities in the upper 300 km have a limited influence on the modeled horizontal stress field as opposed to the resulting dynamic topography that appears more sensitive to such heterogeneities. The modeled stress field directions, using only the mantle heterogeneities below 300 km, are not perturbed much when the effects of lithosphere and crust above 300 km are added. In contrast, modeled stress magnitudes and dynamic topography are to a greater extent controlled by the upper mantle density structure. After correction for the chemical depletion of continents, the TM2 model leads to a much better fit with the observed residual topography giving a good correlation of 0.51 in continents, but this correction leads to no significant improvement of the fit between the WSM2016 and the resulting lithosphere stresses. In continental regions with abundant heat flow data, TM1 results in relatively small angular misfits. For example, in western Europe the misfit between the modeled and observation-based stress is 18.3°. Our findings emphasize that the relative contributions coming from shallow and deep mantle dynamic forces are quite different for the lithospheric stress field and dynamic

  14. Topography and refractometry of nanostructures using spatial light interference microscopy.

    Science.gov (United States)

    Wang, Zhuo; Chun, Ik Su; Li, Xiuling; Ong, Zhun-Yong; Pop, Eric; Millet, Larry; Gillette, Martha; Popescu, Gabriel

    2010-01-15

    Spatial light interference microscopy (SLIM) is a novel method developed in our laboratory that provides quantitative phase images of transparent structures with a 0.3 nm spatial and 0.03 nm temporal accuracy owing to the white light illumination and its common path interferometric geometry. We exploit these features and demonstrate SLIM's ability to perform topography at a single atomic layer in graphene. Further, using a decoupling procedure that we developed for cylindrical structures, we extract the axially averaged refractive index of semiconductor nanotubes and a neurite of a live hippocampal neuron in culture. We believe that this study will set the basis for novel high-throughput topography and refractometry of man-made and biological nanostructures.

  15. Geomorphic Transport Laws and the Statistics of Topography and Stratigraphy

    Science.gov (United States)

    Schumer, R.; Taloni, A.; Furbish, D. J.

    2016-12-01

    Geomorphic transport laws take the form of partial differential equations in which sediment motion is a deterministic function of slope. The addition of a noise term, representing unmeasurable, or subgrid scale autogenic forcing, reproduces scaling properties similar to those observed in topography, landforms, and stratigraphy. Here we describe a transport law that generalizes previous equations by permitting transport that is local or non-local in addition to different types of noise. More importantly, we use this transport law to link the character of sediment transport to the statistics of topography and stratigraphy. In particular, we link the origin of the Sadler effect to the evolution of the earth surface via a transport law.

  16. Significance of Thermal Fluvial Incision and Bedrock Transfer due to Ice Advection on Greenland Ice Sheet Topography

    Science.gov (United States)

    Crozier, J. A.; Karlstrom, L.; Yang, K.

    2017-12-01

    Ice sheet surface topography reflects a complicated combination of processes that act directly upon the surface and that are products of ice advection. Using recently-available high resolution ice velocity, imagery, ice surface elevation, and bedrock elevation data sets, we seek to determine the domain of significance of two important processes - thermal fluvial incision and transfer of bedrock topography through the ice sheet - on controlling surface topography in the ablation zone. Evaluating such controls is important for understanding how melting of the GIS surface during the melt season may be directly imprinted in topography through supraglacial drainage networks, and indirectly imprinted through its contribution to basal sliding that affects bedrock transfer. We use methods developed by (Karlstrom and Yang, 2016) to identify supraglacial stream networks on the GIS, and use high resolution surface digital elevation models as well as gridded ice velocity and melt rate models to quantify surface processes. We implement a numerically efficient Fourier domain bedrock transfer function (Gudmundsson, 2003) to predict surface topography due to ice advection over bedrock topography obtained from radar. Despite a number of simplifying assumptions, the bedrock transfer function predicts the observed ice sheet surface in most regions of the GIS with ˜90% accuracy, regardless of the presence or absence of supraglacial drainage networks. This supports the hypothesis that bedrock is the most significant driver of ice surface topography on wavelengths similar to ice thickness. Ice surface topographic asymmetry on the GIS is common, with slopes in the direction of ice flow steeper than those faced opposite to ice flow, consistent with bedrock transfer theory. At smaller wavelengths, topography consistent with fluvial erosion by surface hydrologic features is evident. We quantify the effect of ice advection versus fluvial thermal erosion on supraglacial longitudinal stream

  17. Dynamic topography and the Cenozoic carbonate compensation depth

    Science.gov (United States)

    Campbell, S. M.; Moucha, R.; Raymo, M. E.; Derry, L. A.

    2015-12-01

    The carbonate compensation depth (CCD), the ocean depth at which the calcium carbonate accumulation rate goes to zero, can provide valuable insight into climatic and weathering conditions over the Cenozoic. The paleoposition of the CCD can be inferred from sediment core data. As the carbonate accumulation rate decreases linearly with depth between the lysocline and CCD, the CCD can be calculated using a linear regression on multiple sediment cores with known carbonate accumulation rates and paleodepths. It is therefore vital to have well-constrained estimates of paleodepths. Paleodepths are typically calculated using models of thermal subsidence and sediment loading and compaction. However, viscous convection-related stresses in the mantle can warp the ocean floor by hundreds of meters over broad regions and can also vary significantly over millions of years. This contribution to paleobathymetry, termed dynamic topography, can be calculated by modeling mantle flow backwards in time. Herein, we demonstrate the effect dynamic topography has on the inference of the late Cenozoic CCD with an example from the equatorial Pacific, considering sites from IODP Expeditions 320/321. The equatorial Pacific, given its large size and high productivity, is closely tied to the global carbon cycle. Accordingly, long-term changes in the equatorial Pacific CCD can be considered to reflect global changes in weathering fluxes and the carbon cycle, in addition to more regional changes in productivity and thermohaline circulation. We find that, when the dynamic topography contribution to bathymetry is accounted for, the equatorial Pacific CCD is calculated to be appreciably shallower at 30 Ma than previous estimates would suggest, implying a greater deepening of the Pacific CCD over the late Cenozoic.

  18. Self-Powered Active Sensor with Concentric Topography of Piezoelectric Fibers.

    Science.gov (United States)

    Fuh, Yiin Kuen; Huang, Zih Ming; Wang, Bo Sheng; Li, Shan Chien

    2017-12-01

    In this study, we demonstrated a flexible and self-powered sensor based on piezoelectric fibers in the diameter range of nano- and micro-scales. Our work is distinctively different from previous electrospinning research; we fabricated this apparatus precisely via near-field electrospinning which has a spectacular performance to harvest mechanical deformation in arbitrary direction and a novel concentrically circular topography. There are many piezoelectric devices based on electrospinning polymeric fibers. However, the fibers were mostly patterned in parallel lines and they could be actuated in limited direction only. To overcome this predicament, we re-arranged the parallel alignment into concentric circle pattern which made it possible to collect the mechanical energy whenever the deformation is along same axis or not. Despite the change of topography, the output voltage and current could still reach to 5 V and 400 nA, respectively, despite the mechanical deformation was from different direction. This new arbitrarily directional piezoelectric generator with concentrically circular topography (PGCT) allowed the piezoelectric device to harvest more mechanical energy than the one-directional alignment fiber-based devices, and this PGCT could perform even better output which promised more versatile and efficient using as a wearable electronics or sensor.

  19. Bed topography and sand transport responses to a step change in discharge and water depth

    Science.gov (United States)

    Ephemeral streams with sand and gravel beds may inherit bed topography caused by previous flow events, resulting in bed topography that is not in equilibrium with flow conditions, complicating the modeling of flow and sediment transport. Major flow events, resulting from rainfall with high intensity...

  20. Relationships between anopheline mosquitoes and topography in West Timor and Java, Indonesia.

    Science.gov (United States)

    Ndoen, Ermi; Wild, Clyde; Dale, Pat; Sipe, Neil; Dale, Mike

    2010-08-26

    Malaria is a serious health issue in Indonesia. Mosquito control is one aspect of an integrated malaria management programme. To focus resources on priority areas, information is needed about the vectors and their habitats. This research aimed to identify the relationship between anopheline mosquitoes and topography in West Timor and Java. Study areas were selected in three topographic types in West Timor and Java. These were: coastal plain, hilly (rice field) and highland. Adult mosquitoes were captured landing on humans identified to species level and counted. Eleven species were recorded, four of which were significant for malaria transmission: Anopheles aconitus, Anopheles barbirostris, Anopheles subpictus and Anopheles sundaicus. Each species occupied different topographies, but only five were significantly associated: Anopheles annularis, Anopheles vagus and Anopheles subpictus (Java only) with hilly rice fields; Anopheles barbirostris, Anopheles maculatus and Anopheles subpictus (West Timor only) with coastal areas. Information on significant malaria vectors associated with specific topography is useful for planning the mosquito control aspect of malaria management.

  1. Forced solitary Rossby waves under the influence of slowly varying topography with time

    International Nuclear Information System (INIS)

    Yang Hong-Wei; Yin Bao-Shu; Yang De-Zhou; Xu Zhen-Hua

    2011-01-01

    By using a weakly nonlinear and perturbation method, the generalized inhomogeneous Korteweg—de Vries (KdV)—Burgers equation is derived, which governs the evolution of the amplitude of Rossby waves under the influence of dissipation and slowly varying topography with time. The analysis indicates that dissipation and slowly varying topography with time are important factors in causing variation in the mass and energy of solitary waves. (general)

  2. Cooperative simulation of lithography and topography for three-dimensional high-aspect-ratio etching

    Science.gov (United States)

    Ichikawa, Takashi; Yagisawa, Takashi; Furukawa, Shinichi; Taguchi, Takafumi; Nojima, Shigeki; Murakami, Sadatoshi; Tamaoki, Naoki

    2018-06-01

    A topography simulation of high-aspect-ratio etching considering transports of ions and neutrals is performed, and the mechanism of reactive ion etching (RIE) residues in three-dimensional corner patterns is revealed. Limited ion flux and CF2 diffusion from the wide space of the corner is found to have an effect on the RIE residues. Cooperative simulation of lithography and topography is used to solve the RIE residue problem.

  3. Topography significantly influencing low flows in snow-dominated watersheds

    Science.gov (United States)

    Li, Qiang; Wei, Xiaohua; Yang, Xin; Giles-Hansen, Krysta; Zhang, Mingfang; Liu, Wenfei

    2018-03-01

    Watershed topography plays an important role in determining the spatial heterogeneity of ecological, geomorphological, and hydrological processes. Few studies have quantified the role of topography in various flow variables. In this study, 28 watersheds with snow-dominated hydrological regimes were selected with daily flow records from 1989 to 1996. These watersheds are located in the Southern Interior of British Columbia, Canada, and range in size from 2.6 to 1780 km2. For each watershed, 22 topographic indices (TIs) were derived, including those commonly used in hydrology and other environmental fields. Flow variables include annual mean flow (Qmean), Q10 %, Q25 %, Q50 %, Q75 %, Q90 %, and annual minimum flow (Qmin), where Qx % is defined as the daily flow that occurred each year at a given percentage (x). Factor analysis (FA) was first adopted to exclude some redundant or repetitive TIs. Then, multiple linear regression models were employed to quantify the relative contributions of TIs to each flow variable in each year. Our results show that topography plays a more important role in low flows (flow magnitudes ≤ Q75 %) than high flows. However, the effects of TIs on different flow magnitudes are not consistent. Our analysis also determined five significant TIs: perimeter, slope length factor, surface area, openness, and terrain characterization index. These can be used to compare watersheds when low flow assessments are conducted, specifically in snow-dominated regions with the watershed size less than several thousand square kilometres.

  4. EAARL Topography - George Washington Birthplace National Monument 2008

    Science.gov (United States)

    Brock, John C.; Nayegandhi, Amar; Wright, C. Wayne; Stevens, Sara; Yates, Xan

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived bare earth (BE) and first surface (FS) topography were produced as a collaborative effort between the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL; the National Park Service (NPS), Northeast Coastal and Barrier Network, Kingston, RI; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of the George Washington Birthplace National Monument in Virginia, acquired on March 26, 2008. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative airborne Lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL) was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) Lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive Lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for submeter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a Lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL

  5. Controlled surface topography regulates collective 3D migration by epithelial-mesenchymal composite embryonic tissues.

    Science.gov (United States)

    Song, Jiho; Shawky, Joseph H; Kim, YongTae; Hazar, Melis; LeDuc, Philip R; Sitti, Metin; Davidson, Lance A

    2015-07-01

    Cells in tissues encounter a range of physical cues as they migrate. Probing single cell and collective migratory responses to physically defined three-dimensional (3D) microenvironments and the factors that modulate those responses are critical to understanding how tissue migration is regulated during development, regeneration, and cancer. One key physical factor that regulates cell migration is topography. Most studies on surface topography and cell mechanics have been carried out with single migratory cells, yet little is known about the spreading and motility response of 3D complex multi-cellular tissues to topographical cues. Here, we examine the response to complex topographical cues of microsurgically isolated tissue explants composed of epithelial and mesenchymal cell layers from naturally 3D organized embryos of the aquatic frog Xenopus laevis. We control topography using fabricated micropost arrays (MPAs) and investigate the collective 3D migration of these multi-cellular systems in these MPAs. We find that the topography regulates both collective and individual cell migration and that dense MPAs reduce but do not eliminate tissue spreading. By modulating cell size through the cell cycle inhibitor Mitomycin C or the spacing of the MPAs we uncover how 3D topographical cues disrupt collective cell migration. We find surface topography can direct both single cell motility and tissue spreading, altering tissue-scale processes that enable efficient conversion of single cell motility into collective movement. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Strategic surface topographies for enhanced lubrication in sheet forming of stainless steel

    DEFF Research Database (Denmark)

    Nilsson, Morten Sixten; Olsson, David Dam; Petrushina, Irina

    2010-01-01

    Strategic stainless steel surfaces have been developed for which the tribological properties are significantly improved for sheet-metal forming compared with the as-received surfaces. The improvements have been achieved by modification of the surface to promote Micro-Plasto Hydrodynamic Lubrication....... The technique, which has been developed, is based on an electrochemical treatment changing the topography of the stainless steel surface. Comparative testing of the new surface topographies in ironing and deep drawing of stainless steel sheet shows significant improvements and possibilities of replacing...

  7. Effects of elastic band exercises on physical ability and muscular topography of elderlyfemales.

    Science.gov (United States)

    Lee, Jung Won; Kim, Suk Bum; Kim, Seong Wook

    2018-02-01

    [Purpose] This study examined the effects of band exercise types on the physical ability and muscular topography for elderly females. [Subjects and Methods] Twenty-six females older than 65 years were divided into the dynamic band exercise (DBE; n=13) group and the Static band exercise (SBE; n=13) group. Each participant performed 12 weeks of elastic band exercises. Physical abilities were measured by leg extension power, sitting trunk flexion, closed eyes foot balance, and time to get up. Changes in muscle topography were evaluated with Moire measurement equipment for the chest, abdomen, and lumbar region. All results were compared before and after 12 weeks of exercise. [Results] Changes in physical ability were significantly increased in both groups. The scores for the muscular topography of the chest, abdomen, lumbar region, and all body parts was significantly improved in both groups for closed eyes foot balance. There were more improvements in the DBE group. [Conclusion] Two types of static and dynamic elastic band exercises effectively changed the physical fitness and muscle topography of elderly females. Therefore, to increase the effects of exercise, dynamic band exercises are considered useful. Because band exercises are simple, they can be used to maintain the health of elderly people.

  8. Designed Surface Topographies Control ICAM-1 Expression in Tonsil-Derived Human Stromal Cells

    Directory of Open Access Journals (Sweden)

    Aliaksei S. Vasilevich

    2018-06-01

    Full Text Available Fibroblastic reticular cells (FRCs, the T-cell zone stromal cell subtype in the lymph nodes, create a scaffold for adhesion and migration of immune cells, thus allowing them to communicate. Although known to be important for the initiation of immune responses, studies about FRCs and their interactions have been impeded because FRCs are limited in availability and lose their function upon culture expansion. To circumvent these limitations, stromal cell precursors can be mechanotranduced to form mature FRCs. Here, we used a library of designed surface topographies to trigger FRC differentiation from tonsil-derived stromal cells (TSCs. Undifferentiated TSCs were seeded on a TopoChip containing 2176 different topographies in culture medium without differentiation factors, then monitored cell morphology and the levels of ICAM-1, a marker of FRC differentiation. We identified 112 and 72 surfaces that upregulated and downregulated, respectively, ICAM-1 expression. By monitoring cell morphology, and expression of the FRC differentiation marker ICAM-1 via image analysis and machine learning, we discovered correlations between ICAM-1 expression, cell shape and design of surface topographies and confirmed our findings by using flow cytometry. Our findings confirmed that TSCs are mechano-responsive cells and identified particular topographies that can be used to improve FRC differentiation protocols.

  9. Characterization of Mo/Si multilayer growth on stepped topographies

    NARCIS (Netherlands)

    van den Boogaard, Toine; Louis, Eric; Zoethout, E.; Goldberg, K.A.; Bijkerk, Frederik

    2011-01-01

    Mo/Si multilayer mirrors with nanoscale bilayer thicknesses have been deposited on stepped substrate topographies, using various deposition angles. The multilayer morphology at the step-edge region was studied by cross section transmission electron microscopy. A transition from a continuous- to

  10. Welcome to Surface Topography: Metrology and Properties

    Science.gov (United States)

    Leach, Richard

    2013-11-01

    I am delighted to welcome readers to this inaugural issue of Surface Topography: Metrology and Properties (STMP). In these days of citation indexes and academic reviews, it is a tough, and maybe a brave, job to start a new journal. But the subject area has never been more active and we are seeing genuine breakthroughs in the use of surfaces to control functional performance. Most manufactured parts rely on some form of control of their surface characteristics. The surface is usually defined as that feature on a component or device, which interacts with either the environment in which it is housed (or in which the device operates), or with another surface. The surface topography and material characteristics of a part can affect how fluids interact with it, how the part looks and feels and how two bearing parts will slide together. The need to control, and hence measure, surface features is becoming increasingly important as we move into a miniaturized world. Surface features can become the dominant functional features of a part and may become large in comparison to the overall size of an object. Research into surface texture measurement and characterization has been carried out for over a century and is now more active than ever, especially as new areal surface texture specification standards begin to be introduced. The range of disciplines for which the function of a surface relates to its topography is very diverse; from metal sheet manufacturing to art restoration, from plastic electronics to forensics. Until now, there has been no obvious publishing venue to bring together all these applications with the underlying research and theory, or to unite those working in academia with engineering and industry. Hence the creation of Surface Topography: Metrology and Properties . STMP will publish the best work being done across this broad discipline in one journal, helping researchers to share common themes and highlighting and promoting the extraordinary benefits this

  11. Noise evaluation of a point autofocus surface topography measuring instrument

    Science.gov (United States)

    Maculotti, Giacomo; Feng, Xiaobing; Galetto, Maurizio; Leach, Richard

    2018-06-01

    In this work, the measurement noise of a point autofocus surface topography measuring instrument is evaluated, as the first step towards establishing a route to traceability for this type of instrument. The evaluation is based on the determination of the metrological characteristics for noise as outlined in draft ISO specification standards by using a calibrated optical flat. The static noise and repeatability of the autofocus sensor are evaluated. The influence of environmental disturbances on the measured surface topography and the built-in software to compensate for such influences are also investigated. The instrument was found to have a measurement noise of approximately 2 nm or, when expressed with the measurement bandwidth, 0.4 nm for a single-point measurement.

  12. Surface topography of parallel grinding process for nonaxisymmetric aspheric lens

    International Nuclear Information System (INIS)

    Zhang Ningning; Wang Zhenzhong; Pan Ri; Wang Chunjin; Guo Yinbiao

    2012-01-01

    Workpiece surface profile, texture and roughness can be predicted by modeling the topography of wheel surface and modeling kinematics of grinding process, which compose an important part of precision grinding process theory. Parallel grinding technology is an important method for nonaxisymmetric aspheric lens machining, but there is few report on relevant simulation. In this paper, a simulation method based on parallel grinding for precision machining of aspheric lens is proposed. The method combines modeling the random surface of wheel and modeling the single grain track based on arc wheel contact points. Then, a mathematical algorithm for surface topography is proposed and applied in conditions of different machining parameters. The consistence between the results of simulation and test proves that the algorithm is correct and efficient. (authors)

  13. Three dimensional topography correction applied to magnetotelluric data from Sikkim Himalayas

    Science.gov (United States)

    Kumar, Sushil; Patro, Prasanta K.; Chaudhary, B. S.

    2018-06-01

    Magnetotelluric (MT) method is one of the powerful tools to investigate the deep crustal image of mountainous regions such as Himalayas. Topographic variations due to irregular surface terrain distort the resistivity curves and hence may not give accurate interpretation of magnetotelluric data. The two-dimensional (2-D) topographic effects in Transverse Magnetic (TM) mode is only galvanic whereas inductive in Transverse Electric (TE) mode, thus TM mode responses is much more important than TE mode responses in 2-D. In three-dimensional (3-D), the topography effect is both galvanic and inductive in each element of impedance tensor and hence the interpretation is complicated. In the present work, we investigate the effects of three-dimensional (3-D) topography for a hill model. This paper presents the impedance tensor correction algorithm to reduce the topographic effects in MT data. The distortion caused by surface topography effectively decreases by using homogeneous background resistivity in impedance correction method. In this study, we analyze the response of ramp, distance from topographic edges, conductive and resistive dykes. The new correction method is applied to the real data from Sikkim Himalayas, which brought out the true nature of the basement in this region.

  14. Synchrotron radiation and x-ray topography. Part II. Examples of some applications

    International Nuclear Information System (INIS)

    Bilello, J.C.

    1985-01-01

    Synchrotron x-radiation topography is a powerful tool for studying defects in ''bulk'' metals and alloys. The general features of this technique, including both advantages and disadvantages, have been discussed in Part I of this review. This second report concentrates on some applications of the white beam topography method to studies of flow and fracture of materials and indicates fruitful areas for possible future application. Research investigations on cleavage surfaces of some bcc and hcp metals and alloys are reviewed and contrasted to other more usual methods of studying the morphology of the resulting microstructures

  15. Wave-equation dispersion inversion of surface waves recorded on irregular topography

    KAUST Repository

    Li, Jing; Schuster, Gerard T.; Lin, Fan-Chi; Alam, Amir

    2017-01-01

    Significant topographic variations will strongly influence the amplitudes and phases of propagating surface waves. Such effects should be taken into account, otherwise the S-velocity model inverted from the Rayleigh dispersion curves will contain significant inaccuracies. We now show that the recently developed wave-equation dispersion inversion (WD) method naturally takes into account the effects of topography to give accurate S-velocity tomograms. Application of topographic WD to demonstrates that WD can accurately invert dispersion curves from seismic data recorded over variable topography. We also apply this method to field data recorded on the crest of mountainous terrain and find with higher resolution than the standard WD tomogram.

  16. Wave-equation dispersion inversion of surface waves recorded on irregular topography

    KAUST Repository

    Li, Jing

    2017-08-17

    Significant topographic variations will strongly influence the amplitudes and phases of propagating surface waves. Such effects should be taken into account, otherwise the S-velocity model inverted from the Rayleigh dispersion curves will contain significant inaccuracies. We now show that the recently developed wave-equation dispersion inversion (WD) method naturally takes into account the effects of topography to give accurate S-velocity tomograms. Application of topographic WD to demonstrates that WD can accurately invert dispersion curves from seismic data recorded over variable topography. We also apply this method to field data recorded on the crest of mountainous terrain and find with higher resolution than the standard WD tomogram.

  17. Fabrication of cell container arrays with overlaid surface topographies.

    NARCIS (Netherlands)

    Truckenmuller, R.; Giselbrecht, S.; Escalante-Marun, M.; Groenendijk, M.; Papenburg, B.; Rivron, N.; Unadkat, H.; Saile, V.; Subramaniam, V.; Berg, A. van den; Blitterswijk, C. Van; Wessling, M.; Boer, J. den; Stamatialis, D.

    2012-01-01

    This paper presents cell culture substrates in the form of microcontainer arrays with overlaid surface topographies, and a technology for their fabrication. The new fabrication technology is based on microscale thermoforming of thin polymer films whose surfaces are topographically prepatterned on a

  18. Fabrication of cell container arrays with overlaid surface topographies

    NARCIS (Netherlands)

    Truckenmüller, Roman; Giselbrecht, Stefan; Escalante-Marun, Maryana; Groenendijk, Max; Papenburg, Bernke; Rivron, Nicolas; Unadkat, Hemant; Saile, Volker; Subramaniam, Vinod; van den Berg, Albert; van Blitterswijk, Clemens; Wessling, Matthias; Boer, Jan de; Stamatialis, Dimitrios

    This paper presents cell culture substrates in the form of microcontainer arrays with overlaid surface topographies, and a technology for their fabrication. The new fabrication technology is based on microscale thermoforming of thin polymer films whose surfaces are topographically prepatterned on a

  19. Global Correlation and Non-Correlation of Topography with Color and Reflectance on Pluto

    Science.gov (United States)

    Schenk, Paul M.; Beyer, Ross A.; Moore, Jeffrey M.; Young, Leslie; Ennico, Kimberly; Olkin, Catherine; Weaver, Harold A.; Stern, S. Alan; New Horizons Geology and Geophysics Team

    2017-10-01

    A key objective of the New Horizons mission at Pluto in July 2015 was completion of global maps of surface brightness and color patterns (covering 78% of surface) and topography (covering ~42%) of Pluto and its large moon Charon. The first calibrated and registered versions of these maps have now been completed for posting in the PDS this fall (with a peer-reviewed report on these products to be submitted). Rich in detail, investigation into the roles of local topography and insolation are ongoing (e.g., Lewis et al., 2017). Here we focus on the data sets and links between elevation and global color and brightness patterns and the global mapping revealed by them. In the “north,” yellowish deposits correlate with non-depressed portions of an eroded polar topographic dome ~600 km wide & 2-3 km high (e.g., Young et al., 2017). The broad dark band along the equator forming Cthulhu Macula to the west of Sputnik Planitia is topographically indistinguishable from the vast smooth lightly cratered plains to the north, indicating that latitude is the primary control, not topography. The curious lack of dark material along the equatorial band east of Sputnik Planitia may be partly due to topography of Eastern Tombaugh Regio, which is ~500 m above eroded plains the north and Cthulhu Macula itself. To the south of Cthulhu Macula, plains are slightly brighter, which correlates with a modest rise in topography of Macula, however, an abrupt increase in reflectance correlates with the edge of elevated plateau that rises 2-3 km above the plains. The areas with the strongest signature in the CH4-band are associated with bladed terrain, the highest standing geologic unit in absolute elevation. Similar colored amoeboid-shaped units are evident along the equator in the low-resolution mapping areas, indicating their probable occurrence elsewhere. Thus, while many of Pluto’s major color and albedo features correlate well with topography and are thus controlled by it, some

  20. Smoking topography in Korean American and white men: preliminary findings.

    Science.gov (United States)

    Chung, Sangkeun; Kim, Sun S; Kini, Nisha; Fang, Hua J; Kalman, David; Ziedonis, Douglas M

    2015-06-01

    This is the first study of Korean Americans' smoking behavior using a topography device. Korean American men smoke at higher rates than the general U.S. Korean American and White men were compared based on standard tobacco assessment and smoking topography measures. They smoked their preferred brand of cigarettes ad libitum with a portable smoking topography device for 24 h. Compared to White men (N = 26), Korean American men (N = 27) were more likely to smoke low nicotine-yield cigarettes (p Whites. Controlling for the number of cigarettes smoked, Koreans smoked with higher average puff flows (p = 0.05), greater peak puff flows (p = 0.02), and shorter interpuff intervals (p Whites. Puff counts, puff volumes, and puff durations did not differ between the two groups. This study offers preliminary insight into unique smoking patterns among Korean American men who are likely to smoke low nicotine-yield cigarettes. We found that Korean American men compensated their lower number and low nicotine-yield cigarettes by smoking with greater puff flows and shorter interpuff intervals than White men, which may suggest exposures to similar amounts of nicotine and harmful tobacco toxins by both groups. Clinicians will need to consider in identifying and treating smokers in a mutually aggressive manner, irrespective of cigarette type and number of cigarette smoked per day.

  1. The role of topography and lateral velocity heterogeneities on near-source scattering and ground-motion variability

    KAUST Repository

    Imperatori, W.

    2015-07-28

    The scattering of seismic waves travelling in the Earth is not only caused by random velocity heterogeneity but also by surface topography. Both factors are known to strongly affect ground-motion complexity even at relatively short distance from the source. In this study, we simulate ground motion with a 3-D finite-difference wave propagation solver in the 0–5 Hz frequency band using three topography models representative of the Swiss alpine region and realistic heterogeneous media characterized by the Von Karman correlation functions. Subsequently, we analyse and quantify the characteristics of the scattered wavefield in the near-source region. Our study shows that both topography and velocity heterogeneity scattering may excite large coda waves of comparable relative amplitude, especially at around 1 Hz, although large variability in space may occur. Using the single scattering model, we estimate average QC values in the range 20–30 at 1 Hz, 36–54 at 1.5 Hz and 62–109 at 3 Hz for constant background velocity models with no intrinsic attenuation. In principle, envelopes of topography-scattered seismic waves can be qualitatively predicted by theoretical back-scattering models, while forward- or hybrid-scattering models better reproduce the effects of random velocity heterogeneity on the wavefield. This is because continuous multiple scattering caused by small-scale velocity perturbations leads to more gentle coda decay and envelope broadening, while topography abruptly scatters the wavefield once it impinges the free surface. The large impedance contrast also results in more efficient mode mixing. However, the introduction of realistic low-velocity layers near the free surface increases the complexity of ground motion dramatically and indicates that the role of topography in elastic waves scattering can be relevant especially in proximity of the source. Long-period surface waves can form most of the late coda, especially when intrinsic attenuation is taken

  2. Development of ballistics identification—from image comparison to topography measurement in surface metrology

    International Nuclear Information System (INIS)

    Song, J; Chu, W; Vorburger, T V; Thompson, R; Renegar, T B; Zheng, A; Yen, J; Silver, R; Ols, M

    2012-01-01

    Fired bullets and ejected cartridge cases have unique ballistics signatures left by the firearm. By analyzing the ballistics signatures, forensic examiners can trace these bullets and cartridge cases to the firearm used in a crime scene. Current automated ballistics identification systems are primarily based on image comparisons using optical microscopy. The correlation accuracy depends on image quality which is largely affected by lighting conditions. Because ballistics signatures are geometrical micro-topographies by nature, direct measurement and correlation of the surface topography is being investigated for ballistics identification. A Two-dimensional and Three-dimensional Topography Measurement and Correlation System was developed at the National Institute of Standards and Technology for certification of Standard Reference Material 2460/2461 bullets and cartridge cases. Based on this system, a prototype system for bullet signature measurement and correlation has been developed for bullet signature identifications, and has demonstrated superior correlation results. (paper)

  3. Topography and distribution of ostia venae hepatica in the ...

    African Journals Online (AJOL)

    BACKGROUND: Openings of hepatic veins into the retrohepatic surface of the inferior vena cava. (ostia venae hepatica) play a part in controlling hepatic circulation by acting as collateral channels in obstruction. Their topography and distribution must be taken into account during catheterization and liver transplantation.

  4. The Effect of Substrate Topography on Coating Cathodic Delamination

    DEFF Research Database (Denmark)

    Erik Weinell, Claus; Sørensen, Per A.; Kiil, Søren

    2011-01-01

    This article describes the effect of steel substrate topography on coating cathodic delamination. The study showed that the surface preparation can be used to control and minimize the rate of cathodic delamination. The coating should have maximum wetting properties so that substrates with high...

  5. Analysis of corneal topography in patients with pure microphthalmia in Eastern China.

    Science.gov (United States)

    Hu, Pei-Hong; Gao, Gui-Ping; Yu, Yao; Pei, Chong-Gang; Zhou, Qiong; Huang, Xin; Zhang, Ying; Shao, Yi

    2015-12-01

    To determine the typical corneal changes in pure microphthalmia using a corneal topography system and identify characteristics that may assist in early diagnosis. Patients with pure microphthalmia and healthy control subjects underwent corneal topography analysis (Orbscan IIZ® Corneal Topography System; Bausch and Lomb, Bridgewater, NJ, USA) to determine degree of corneal astigmatism (mean A), simulation of corneal astigmatism (sim A), mean keratometry (mean K), simulated keratometry (sim K), irregularities in the 3 - and 5-mm zone, and mean thickness of nine distinct corneal regions. Patients with pure microphthalmia (n = 12) had significantly higher mean K, sim K, mean A, sim A, 3.0 mm irregularity and 5.0 mm irregularity, and exhibited significantly more false keratoconus than controls (n = 12). There was a significant between-group difference in the morphology of the anterior corneal surface and the central curvature of the cornea. Changes in corneal morphology observed in this study could be useful in borderline situations to confirm the diagnosis of pure microphthalmia. © The Author(s) 2015.

  6. Scalable topographies to support proliferation and Oct4 expression by human induced pluripotent stem cells.

    Science.gov (United States)

    Reimer, Andreas; Vasilevich, Aliaksei; Hulshof, Frits; Viswanathan, Priyalakshmi; van Blitterswijk, Clemens A; de Boer, Jan; Watt, Fiona M

    2016-01-13

    It is well established that topographical features modulate cell behaviour, including cell morphology, proliferation and differentiation. To define the effects of topography on human induced pluripotent stem cells (iPSC), we plated cells on a topographical library containing over 1000 different features in medium lacking animal products (xeno-free). Using high content imaging, we determined the effect of each topography on cell proliferation and expression of the pluripotency marker Oct4 24 h after seeding. Features that maintained Oct4 expression also supported proliferation and cell-cell adhesion at 24 h, and by 4 days colonies of Oct4-positive, Sox2-positive cells had formed. Computational analysis revealed that small feature size was the most important determinant of pluripotency, followed by high wave number and high feature density. Using this information we correctly predicted whether any given topography within our library would support the pluripotent state at 24 h. This approach not only facilitates the design of substrates for optimal human iPSC expansion, but also, potentially, identification of topographies with other desirable characteristics, such as promoting differentiation.

  7. The Earth isn't flat: The (large) influence of topography on geodetic fault slip imaging.

    Science.gov (United States)

    Thompson, T. B.; Meade, B. J.

    2017-12-01

    While earthquakes both occur near and generate steep topography, most geodetic slip inversions assume that the Earth's surface is flat. We have developed a new boundary element tool, Tectosaur, with the capability to study fault and earthquake problems including complex fault system geometries, topography, material property contrasts, and millions of elements. Using Tectosaur, we study the model error induced by neglecting topography in both idealized synthetic fault models and for the cases of the MW=7.3 Landers and MW=8.0 Wenchuan earthquakes. Near the steepest topography, we find the use of flat Earth dislocation models may induce errors of more than 100% in the inferred slip magnitude and rake. In particular, neglecting topographic effects leads to an inferred shallow slip deficit. Thus, we propose that the shallow slip deficit observed in several earthquakes may be an artefact resulting from the systematic use of elastic dislocation models assuming a flat Earth. Finally, using this study as an example, we emphasize the dangerous potential for forward model errors to be amplified by an order of magnitude in inverse problems.

  8. Contribution of x-ray topography and high-resolution diffraction to the study of defects in SiC

    International Nuclear Information System (INIS)

    Dudley, Michael; Huang Xianrong; Vetter, William M

    2003-01-01

    A short review is presented of the various synchrotron white beam x-ray topography (SWBXT) imaging techniques developed for characterization of silicon carbide (SiC) crystals and thin films. These techniques, including back-reflection topography, reticulography, transmission topography, and a set of section topography techniques, are demonstrated to be particularly powerful for imaging hollow-core screw dislocations (micropipes) and closed-core threading screw dislocations, as well as other defects, in SiC. The geometrical diffraction mechanism commonly underlying these imaging processes is emphasized for understanding the nature and origins of these defects. Also introduced is the application of SWBXT combined with high-resolution x-ray diffraction techniques to complete characterization of 3C/4H or 3C/6H SiC heterostructures, including polytype identification, 3C variant mapping, and accurate lattice mismatch measurements

  9. Method and Apparatus for Creating a Topography at a Surface

    Science.gov (United States)

    Adams, David P.; Sinclair, Michael B.; Mayer, Thomas M.; Vasile, Michael J.; Sweatt, William C.

    2008-11-11

    Methods and apparatus whereby an optical interferometer is utilized to monitor and provide feedback control to an integrated energetic particle column, to create desired topographies, including the depth, shape and/or roughness of features, at a surface of a specimen. Energetic particle columns can direct energetic species including, ions, photons and/or neutral particles to a surface to create features having in-plane dimensions on the order of 1 micron, and a height or depth on the order of 1 nanometer. Energetic processes can include subtractive processes such as sputtering, ablation, focused ion beam milling and, additive processes, such as energetic beam induced chemical vapor deposition. The integration of interferometric methods with processing by energetic species offers the ability to create desired topographies at surfaces, including planar and curved shapes.

  10. The effect of mold surface topography on plastic parat in-process shrinkage in injection molding

    DEFF Research Database (Denmark)

    Arlø, Uffe Rolf; Hansen, Hans Nørgaard; Kjær, Erik Michael

    2003-01-01

    An experimental study of the effect of mold surface roughness on in-process in-flow linear part shrinkage in injection molding has been carried out. The investigation is based on an experimental two-cavity tool, where the cavities have different surface topographies, but are otherwise identical....... The study has been carried out for typical commercial polystyrene and polypropylene grades. The relationship between mold surface topography and linear shrinkage has been investigated with an experimental two-cavity mold producing simple rectangular parts with the nominal dimensions 1 x 25 x 50 mm (see...... figure 1). The cavities have different surface topographies on one side, but are otherwise identical (see discussion of other contribution factors)....

  11. Stromal demarcation line induced by corneal cross-linking in eyes with keratoconus and nonkeratoconic asymmetric topography.

    Science.gov (United States)

    Malta, João B N; Renesto, Adimara C; Moscovici, Bernardo K; Soong, H K; Campos, Mauro

    2015-02-01

    To evaluate stromal demarcation lines following corneal cross-linking (CXL) using anterior segment optical coherence tomography in patients with keratoconus and nonkeratoconic asymmetric topography. Fifth-nine eyes of 59 patients were enrolled in a retrospective comparative case series, of which 19 eyes had keratoconus and 40 eyes had asymmetric topography. Eyes with asymmetric topography were treated in preparation for photorefractive keratectomy. One month after CXL, a stromal demarcation line was evaluated at 5 standardized corneal points using anterior segment optical coherence tomography. Mean stromal demarcation line depths were measured at 5 points on the cornea, namely, centrally, 3.0 mm temporally, 1.5 mm temporally, 3.0 mm nasally, and 1.5 mm nasally. For the keratoconus group, the values were 178 ± 47, 123 ± 15, 152 ± 47, 125 ± 23, and 160 ± 43 μm, respectively. For the asymmetric corneal topography group (without keratoconus), they were 305 ± 64, 235 ± 57, 294 ± 50, 214 ± 54, and 285 ± 58 μm, respectively. There was no correlation between central corneal pachymetry and stromal demarcation line depth in all 5 measured corneal points in both groups. CXL treatment profiles are similar in keratoconic and nonkeratoconic eyes with asymmetric topography.

  12. On-machine measurement of the grinding wheels' 3D surface topography using a laser displacement sensor

    Science.gov (United States)

    Pan, Yongcheng; Zhao, Qingliang; Guo, Bing

    2014-08-01

    A method of non-contact, on-machine measurement of three dimensional surface topography of grinding wheels' whole surface was developed in this paper, focusing on an electroplated coarse-grained diamond grinding wheel. The measuring system consists of a Keyence laser displacement sensor, a Keyence controller and a NI PCI-6132 data acquisition card. A resolution of 0.1μm in vertical direction and 8μm in horizontal direction could be achieved. After processing the data by LabVIEW and MATLAB, the 3D topography of the grinding wheel's whole surface could be reconstructed. When comparing the reconstructed 3D topography of the grinding wheel's marked area to its real topography captured by a high-depth-field optical digital microscope (HDF-ODM) and scanning electron microscope (SEM), they were very similar to each other, proving that this method is accurate and effective. By a subsequent data processing, the topography of every grain could be extracted and then the active grain number, the active grain volume and the active grain's bearing ration could be calculated. These three parameters could serve as the criterion to evaluate the grinding performance of coarse-grained diamond grinding wheels. Then the performance of the grinding wheel could be evaluated on-machine accurately and quantitatively.

  13. 175 Years of Linear Programming - Minimax and Cake Topography

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 7. 175 Years of Linear Programming - Minimax and Cake Topography. Vijay Chandru M R Rao. Series Article Volume 4 Issue 7 July 1999 pp 4-13. Fulltext. Click here to view fulltext PDF. Permanent link:

  14. Topography and refractometry of nanostructures using spatial light interference microscopy (SLIM)

    Science.gov (United States)

    Wang, Zhuo; Chun, Ik Su; Li, Xiuling; Ong, Zhun-Yong; Pop, Eric; Millet, Larry; Gillette, Martha; Popescu, Gabriel

    2010-01-01

    Spatial Light Interference Microscopy (SLIM) is a novel method developed in our laboratory that provides quantitative phase images of transparent structures with 0.3 nm spatial and 0.03 nm temporal accuracy owing to the white light illumination and its common path interferometric geometry. We exploit these features and demonstrate SLIM's ability to perform topography at a single atomic layer in graphene. Further, using a decoupling procedure that we developed for cylindrical structures, we extract the axially-averaged refractive index of semiconductor nanotubes and a neurite of a live hippocampal neuron in culture. We believe that this study will set the basis for novel high-throughput topography and refractometry of man-made and biological nanostructures. PMID:20081970

  15. The impact of dynamic topography on the bedrock elevation and volume of the Pliocene Antarctic Ice Sheet

    Science.gov (United States)

    Austermann, Jacqueline; Pollard, David; Mitrovica, Jerry X.; Moucha, Robert; Forte, Alessandro M.; DeConto, Robert M.

    2015-04-01

    Reconstructions of the Antarctic ice sheet over long timescales (i.e. Myrs) require estimates of bedrock elevation through time. Ice sheet models have accounted, with varying levels of sophistication, for changes in the bedrock elevation due to glacial isostatic adjustment (GIA), but they have neglected other processes that may perturb topography. One notable example is dynamic topography, the deflection of the solid surface of the Earth due to convective flow within the mantle. Numerically predicted changes in dynamic topography have been used to correct paleo shorelines for this departure from eustasy, but the effect of such changes on ice sheet stability is unknown. In this study we use numerical predictions of time-varying dynamic topography to reconstruct bedrock elevation below the Antarctic ice sheet during the mid Pliocene warm period (~3 Ma). Moreover, we couple this reconstruction to a three-dimensional ice sheet model to explore the impact of dynamic topography on the evolution of the Antarctic ice sheet since the Pliocene. Our modeling indicates significant uplift in the area of the Transantarctic Mountains (TAM) and the adjacent Wilkes basin. This predicted uplift, which is at the lower end of geological inferences of uplift of the TAM, implies a lower elevation of the basin in the Pliocene. Relative to simulations that do not include dynamic topography, the lower elevation leads to a smaller Antarctic Ice Sheet volume and a more significant retreat of the grounding line in the Wilkes basin, both of which are consistent with offshore sediment core data. We conclude that reconstructions of the Antarctic Ice Sheet during the mid-Pliocene warm period should be based on bedrock elevation models that include the impact of both GIA and dynamic topography.

  16. Repeatability of Ophtha Top topography and comparison with IOL-Master and LenstarLS900 in cataract patients

    Directory of Open Access Journals (Sweden)

    Sha-Sha Yu

    2017-11-01

    Full Text Available AIM: To determine the repeatability of Ophtha Top topography and assess the consistency with intraocular lens (IOL-Master and LenstarLS900 (Lenstar in measuring corneal parameters among cataract patients. METHODS: Totally 125 eyes were enrolled. Corneas were successively measured with Ophtha Top, IOL-Master and Lenstar at least three times. The flattest meridian power (Kf, the steepest meridian power (Ks, mean power (Km, J0 and J45 were recorded. Intra-class correlation coefficients (ICCs, the coefficient of variance (COV, within subject standard deviation (Sw, and test-retest repeatability (2.77Sw were adopted to determine the repeatability. The 95% limit of agreement (95%LOA and Bland-Altman plots were used to assess comparability. RESULTS: Repeatability of Ophtha Top topography for measuring corneal parameters showed the ICCs were all above 0.93, 2.77Sw was lower than 0.31, and the COV of the Kf and Ks was lower than 0.25. The keratometric readings with Ophtha Top topography were flatter than with the IOL-Master and Lenstar devices, while the Pearson correlation coefficients were over 0.97. The J0 and J45 with Ophtha Top topography were smaller compared with Lenstar and IOL-Master, while was comparable between Lenstar and IOL-Master. CONCLUSION: Ophtha Top topography shows excellent repeatability for measuring corneal parameters. However, differences between the Ophtha TOP topography and Lenstar, IOL-Master both in cornea curvature and the astigmatism should be noted clinically.

  17. Deconvoluting the effects of surface chemistry and nanoscale topography: Pseudomonas aeruginosa biofilm nucleation on Si-based substrates.

    Science.gov (United States)

    Zhang, Jing; Huang, Jinglin; Say, Carmen; Dorit, Robert L; Queeney, K T

    2018-06-01

    The nucleation of biofilms is known to be affected by both the chemistry and topography of the underlying substrate, particularly when topography includes nanoscale (topography vs. chemistry is complicated by concomitant variation in both as a result of typical surface modification techniques. Analyzing the behavior of biofilm-forming bacteria exposed to surfaces with systematic, independent variation of both topography and surface chemistry should allow differentiation of the two effects. Silicon surfaces with reproducible nanotopography were created by anisotropic etching in deoxygenated water. Surface chemistry was varied independently to create hydrophilic (OH-terminated) and hydrophobic (alkyl-terminated) surfaces. The attachment and proliferation of Psuedomonas aeruginosa to these surfaces was characterized over a period of 12 h using fluorescence and confocal microscopy. The number of attached bacteria as well as the structural characteristics of the nucleating biofilm were influenced by both surface nanotopography and surface chemistry. In general terms, the presence of both nanoscale features and hydrophobic surface chemistry enhance bacterial attachment and colonization. However, the structural details of the resulting biofilms suggest that surface chemistry and topography interact differently on each of the four surface types we studied. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Ion bombardment induced topography evolution on low index crystal surfaces of Cu and Pb

    International Nuclear Information System (INIS)

    Tanovic, L.; Tanovic, N.; Carter, G.; Nobes, M.J.

    1993-01-01

    (100), (110) and (111) oriented single crystal surfaces of Cu and Pb have been bombarded with inert gas ions, self ions, ions of the other substrate species and Bi in the energy range 50-150 keV and in the fluence range 10 15 -10 18 ions.cm 2 . The evolving surface topography was observed by scanning electron microscopy. This topography was observed to be strongly influenced by ion species and surface orientation but the habit of the topography was delineated at low fluences and the features increased in size and density with increasing fluence with some mutation to the more stable of the features. As an example Bi and Pb bombardment of (100) Cu leads to little topographic evolution, (110) Cu develops a system of parallel ridges with (100) facets and (111) Cu develops a prismatic surface, each prism possessing (100) facets. These, and the more general, results cannot be explained by surface erosion by sputtering theory alone (this predicts surface stability of the lowest sputtering yield orientation (110), nor by surface free energy density minimisation criteria (this predicts stability of (111) surfaces). It is proposed that the observed topography is most strongly related to the crystallographic form of precipitates of implanted species. (orig.)

  19. Sequential assimilation of multi-mission dynamical topography into a global finite-element ocean model

    Directory of Open Access Journals (Sweden)

    S. Skachko

    2008-12-01

    Full Text Available This study focuses on an accurate estimation of ocean circulation via assimilation of satellite measurements of ocean dynamical topography into the global finite-element ocean model (FEOM. The dynamical topography data are derived from a complex analysis of multi-mission altimetry data combined with a referenced earth geoid. The assimilation is split into two parts. First, the mean dynamic topography is adjusted. To this end an adiabatic pressure correction method is used which reduces model divergence from the real evolution. Second, a sequential assimilation technique is applied to improve the representation of thermodynamical processes by assimilating the time varying dynamic topography. A method is used according to which the temperature and salinity are updated following the vertical structure of the first baroclinic mode. It is shown that the method leads to a partially successful assimilation approach reducing the rms difference between the model and data from 16 cm to 2 cm. This improvement of the mean state is accompanied by significant improvement of temporal variability in our analysis. However, it remains suboptimal, showing a tendency in the forecast phase of returning toward a free run without data assimilation. Both the mean difference and standard deviation of the difference between the forecast and observation data are reduced as the result of assimilation.

  20. Experiments in the topography station of the Daresbury Laboratory

    International Nuclear Information System (INIS)

    Machado, W.G.

    1983-01-01

    A comparison is made of the contrast in topographies by diffraction, produced by synchrotron radiation and by copper and molybdenum characteristic radiations conventionally generated. Some experiments in the study of diamond geminated crystals and the photoluminescence of several crystalline specimens by synchrotron radiation are related. (L.C.) [pt

  1. Influence of substrate preparation on the shaping of the topography of the surface of nanoceramic oxide layers

    Science.gov (United States)

    Bara, Marek; Kubica, Marek

    2014-02-01

    The paper discusses the shaping mechanism and changes occurring in the structure and topography of the surface of nanoceramic oxide layers during their formation. The paper presents the influence of substrate preparation on the surface topography of oxide layers. The layers were produced via hard anodizing on the EN AW-5251 aluminum alloy. The layers obtained were subjected to microscope examinations, image and chemical composition analyses, and stereometric examinations. Heredity of substrate properties in the topography of the surface of nanoceramic oxide layers formed as a result of electrochemical oxidation has been shown.

  2. High Resolution Topography Analysis on Threading Edge Dislocations in 4H-SiC Epilayers

    International Nuclear Information System (INIS)

    Kamata, I.; Nagano, M.; Tsuchida, H.; Chen, Y.; Dudley, M.

    2009-01-01

    Threading edge dislocations (TEDs) in a 4H-SiC epitaxial layer are investigated using high-resolution synchrotron topography. Six types of TED image are confirmed to correspond to the Burgers vector directions by a comparison of computer simulated images and observed topography images in crystal boundaries. Using a mapping method, a wide spatial distribution of the six types of TED is examined in a quarter section of a 2-inch wafer.

  3. High temperature X-ray topography on silicon and gallium arsenide

    International Nuclear Information System (INIS)

    Krueger, H.E.

    1976-01-01

    Beginning with a review of the different theories of X-ray scattering on perfect and deformed crystals, results of the dynamic theory relevant specifically for X-ray topography are presented. The reflected intensity recorded in a X-ray topogram is discussed as a function of the angle of incidence, crystal thickness and lateral distribution. These results, together with fundamental relations of the DT which are developed in the annex, give insight into the contrasts induced by defects. Using practical examples Borrmann contrast, contrast produced by point defect agglomerates and dislocations and the Burgers vector method are explained. Thus the whole spectrum of contrast phenomena observed in the experimental part of the paper is presented. The experimental results were achieved with a high-temperature X-ray topography facility constructed for this purpose. The facility is described. (orig./HPOE) [de

  4. EAARL Topography-Vicksburg National Military Park 2007: First Surface

    Science.gov (United States)

    Nayegandhi, Amar; Brock, John C.; Wright, C. Wayne; Segura, Martha; Yates, Xan

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived first-surface (FS) topography were produced as a collaborative effort between the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL; the National Park Service (NPS), Gulf Coast Network, Lafayette, LA; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of the Vicksburg National Military Park in Mississippi, acquired on September 12, 2007. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative airborne Lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) Lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive Lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for submeter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a Lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then

  5. EAARL Coastal Topography-Pearl River Delta 2008: First Surface

    Science.gov (United States)

    Nayegandhi, Amar; Brock, John C.; Wright, C. Wayne; Miner, Michael D.; Michael, D.; Yates, Xan; Bonisteel, Jamie M.

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived first surface (FS) topography were produced as a collaborative effort between the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL; the University of New Orleans (UNO), Pontchartrain Institute for Environmental Sciences (PIES), New Orleans, LA; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of a portion of the Pearl River Delta in Louisiana and Mississippi, acquired March 9-11, 2008. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative airborne Lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) Lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive Lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for submeter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a Lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the

  6. EAARL Coastal Topography-Pearl River Delta 2008: Bare Earth

    Science.gov (United States)

    Nayegandhi, Amar; Brock, John C.; Wright, C. Wayne; Miner, Michael D.; Yates, Xan; Bonisteel, Jamie M.

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived bare earth (BE) topography were produced as a collaborative effort between the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL; the University of New Orleans (UNO), Pontchartrain Institute for Environmental Sciences (PIES), New Orleans, LA; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of a portion of the Pearl River Delta in Louisiana and Mississippi, acquired March 9-11, 2008. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative airborne Lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) Lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive Lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for submeter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a Lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the

  7. EAARL Coastal Topography--Cape Canaveral, Florida, 2009: First Surface

    Science.gov (United States)

    Bonisteel-Cormier, J.M.; Nayegandhi, Amar; Plant, Nathaniel; Wright, C.W.; Nagle, D.B.; Serafin, K.S.; Klipp, E.S.

    2011-01-01

    These remotely sensed, geographically referenced elevation measurements of lidar-derived first-surface (FS) topography datasets were produced collaboratively by the U.S. Geological Survey (USGS), St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Kennedy Space Center, FL. This project provides highly detailed and accurate datasets of a portion of the eastern Florida coastline beachface, acquired on May 28, 2009. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative airborne lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multispectral color-infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for sub-meter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine aircraft, but the instrument was deployed on a Pilatus PC-6. A single pilot, a lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed

  8. Geophysical, petrological and mineral physics constraints on Earth's surface topography

    Science.gov (United States)

    Guerri, Mattia; Cammarano, Fabio; Tackley, Paul J.

    2015-04-01

    Earth's surface topography is controlled by isostatically compensated density variations within the lithosphere, but dynamic topography - i.e. the topography due to adjustment of surface to mantle convection - is an important component, specially at a global scale. In order to separate these two components it is fundamental to estimate crustal and mantle density structure and rheological properties. Usually, crustal density is constrained from interpretation of available seismic data (mostly VP profiles) based on empirical relationships such those in Brocher [2005]. Mantle density structure is inferred from seismic tomography models. Constant coefficients are used to interpret seismic velocity anomalies in density anomalies. These simplified methods are unable to model the effects that pressure and temperature variations have on mineralogical assemblage and physical properties. Our approach is based on a multidisciplinary method that involves geophysical observables, mineral physics constraints, and petrological data. Mantle density is based on the thermal interpretation of global seismic tomography models assuming various compositional structures, as in Cammarano et al. [2011]. We further constrain the top 150 km by including heat-flow data and considering the thermal evolution of the oceanic lithosphere. Crustal density is calculated as in Guerri and Cammarano [2015] performing thermodynamic modeling of various average chemical compositions proposed for the crust. The modeling, performed with the code PerpleX [Connolly, 2005], relies on the thermodynamic dataset from Holland and Powell [1998]. Compressional waves velocity and crustal layers thickness from the model CRUST 1.0 [Laske et al., 2013] offer additional constrains. The resulting lithospheric density models are tested against gravity (GOCE) data. Various crustal and mantle density models have been tested in order to ascertain the effects that uncertainties in the estimate of those features have on the

  9. Extraction and representation of nested catchment areas from digital elevation models in lake-dominated topography

    Science.gov (United States)

    Mackay, D. Scott; Band, Lawrence E.

    1998-04-01

    This paper presents a new method for extracting flow directions, contributing (upslope) areas, and nested catchments from digital elevation models in lake-dominated areas. Existing tools for acquiring descriptive variables of the topography, such as surface flow directions and contributing areas, were developed for moderate to steep topography. These tools are typically difficult to apply in gentle topography owing to limitations in explicitly handling lakes and other flat areas. This paper addresses the problem of accurately representing general topographic features by first identifying distinguishing features, such as lakes, in gentle topography areas and then using these features to guide the search for topographic flow directions and catchment marking. Lakes are explicitly represented in the topology of a watershed for use in water routing. Nonlake flat features help guide the search for topographic flow directions in areas of low signal to noise. This combined feature-based and grid-based search for topographic features yields improved contributing areas and watershed boundaries where there are lakes and other flat areas. Lakes are easily classified from remotely sensed imagery, which makes automated representation of lakes as subsystems within a watershed system tractable with widely available data sets.

  10. Buried topography of Utopia, Mars: Persistence of a giant impact depression

    International Nuclear Information System (INIS)

    McGill, G.E.

    1989-01-01

    Knobs, partially buried craters, ring fractures, and some mesas permit a qualitative determination of the topography buried beneath younger northern plains materials. These features are widely distributed in the Utopia area but are absent in a large, roughly circular region centered at about 48 degree N, 240 degree W. This implies the existence of a circular depression about 3,300 km in diameter buried beneath Utopia Planitia that is here interpreted to represent the central part of a very large impact basin. The presence of buried curved massifs around part of this depression, and a roughly coincident mascon, lend further support. Present topography, areal geology, and paleotopography of buried surfaces all point to the persistence of this major depression for almost the entire history of Mars

  11. The influence of surface topography of UV coated and printed cardboard on the print gloss

    Directory of Open Access Journals (Sweden)

    Igor Karlović

    2010-09-01

    Full Text Available The incident light on the printed surface undergoes through several processes of scattering, absorbtion and reflectiondepending on the surface topography and structure of the material. The specular part of the surface reflection is commonlyattributed as the geometric component of the reflection, and when measured is associated with specular gloss.The diffuse part of the surface reflection contains the chromatic part of the reflection and is commonly calculatedthrough colorimetric values. Using UV coatings as surface enhacement materials which affect the optical propertiesof coated surfaces and final appearance of the printed product forms new surface topography over the existingone. We have investigated the influence of three different amounts of UV glossy and matte oveprint coating on themeasured specular gloss of printed cardboard samples. The different amount of coatings on the printed samples wereachived using three different screen stencils of 180 threads/cm, 150 threads/cm and 120 threads/cm thread count.The cardboard samples were analysed with AFM and SEM microscopes to obtain surface topography and roughnessvalues which were evaluated with the measured geometric values speficied as instrumental gloss. The surfaceswith a specific amount of UV coatings showed a new formed topography which influences the reflection of light.The changes in topography were evaluated through surface roughness parameters which showed a decline of surfaceroughness with tht additional ammount of glossy and matte coatings. The obtained and calculated correlations showthere is a high correlation between coating ammount and surface roughness change and gloss for the glossy UVcoating. The results for the matte UV coatings showed lower correlation for the gloss and surface roughness.

  12. Using Measurements of Topography to Infer Rates of Crater Degradation and Surface Evolution on the Moon and Mercury

    Science.gov (United States)

    Fassett, Caleb; Crowley, Lindy; Leight, Clarissa; Dyar, Darby; Minton, David; Hirabayashi, Toshi; Thomson, Brad; Watters, Wesley

    2017-01-01

    Motivating questions: 1. How does the topography of airless bodies evolve? 2. What is the relative rate on the Moon and Mercury? 3. Can we constrain the age of features and units from their topography?

  13. Tetrahedral mesh generation of real terrain and topography effect on ERT image in Beishan region, Gansu province

    International Nuclear Information System (INIS)

    Lu Debao; Zhou Qiyou; Xiao Anlin; Song Zhen

    2014-01-01

    The paper starts from tetrahedral meshes generation of real terrain, a detailed way of tetradralization toward complicated terrain has been proposed based on comparing of advantage and disadvantage of several methods. DEM image has been used to help to generate tetrahedral mesh of research area. And then, forward soft Gmdata is used to calculate and analyze the topography effect on ERT Image with different kinds of terrain. Meanwhile, a quantitative way to define the topography effect was presented. Based on that, the method is used to eliminate the topography effect. The results show the method is effective and useful. (authors)

  14. A model expansion criterion for treating surface topography in ray path calculations using the eikonal equation

    International Nuclear Information System (INIS)

    Ma, Ting; Zhang, Zhongjie

    2014-01-01

    Irregular surface topography has revolutionized how seismic traveltime is calculated and the data are processed. There are two main schemes for dealing with an irregular surface in the seismic first-arrival traveltime calculation: (1) expanding the model and (2) flattening the surface irregularities. In the first scheme, a notional infill medium is added above the surface to expand the physical space into a regular space, as required by the eikonal equation solver. Here, we evaluate the chosen propagation velocity in the infill medium through ray path tracking with the eikonal equation-solved traveltime field, and observe that the ray paths will be physically unrealistic for some values of this propagation velocity. The choice of a suitable propagation velocity in the infill medium is crucial for seismic processing of irregular topography. Our model expansion criterion for dealing with surface topography in the calculation of traveltime and ray paths using the eikonal equation highlights the importance of both the propagation velocity of the infill physical medium and the topography gradient. (paper)

  15. Large-scale runoff generation - parsimonious parameterisation using high-resolution topography

    Science.gov (United States)

    Gong, L.; Halldin, S.; Xu, C.-Y.

    2011-08-01

    World water resources have primarily been analysed by global-scale hydrological models in the last decades. Runoff generation in many of these models are based on process formulations developed at catchments scales. The division between slow runoff (baseflow) and fast runoff is primarily governed by slope and spatial distribution of effective water storage capacity, both acting at very small scales. Many hydrological models, e.g. VIC, account for the spatial storage variability in terms of statistical distributions; such models are generally proven to perform well. The statistical approaches, however, use the same runoff-generation parameters everywhere in a basin. The TOPMODEL concept, on the other hand, links the effective maximum storage capacity with real-world topography. Recent availability of global high-quality, high-resolution topographic data makes TOPMODEL attractive as a basis for a physically-based runoff-generation algorithm at large scales, even if its assumptions are not valid in flat terrain or for deep groundwater systems. We present a new runoff-generation algorithm for large-scale hydrology based on TOPMODEL concepts intended to overcome these problems. The TRG (topography-derived runoff generation) algorithm relaxes the TOPMODEL equilibrium assumption so baseflow generation is not tied to topography. TRG only uses the topographic index to distribute average storage to each topographic index class. The maximum storage capacity is proportional to the range of topographic index and is scaled by one parameter. The distribution of storage capacity within large-scale grid cells is obtained numerically through topographic analysis. The new topography-derived distribution function is then inserted into a runoff-generation framework similar VIC's. Different basin parts are parameterised by different storage capacities, and different shapes of the storage-distribution curves depend on their topographic characteristics. The TRG algorithm is driven by the

  16. The effect of Gonioscopy on keratometry and corneal surface topography.

    Science.gov (United States)

    George, Mathew K; Kuriakose, Thomas; DeBroff, Brian M; Emerson, John W

    2006-06-17

    Biometric procedures such as keratometry performed shortly after contact procedures like gonioscopy and applanation tonometry could affect the validity of the measurement. This study was conducted to understand the short-term effect of gonioscopy on corneal curvature measurements and surface topography based Simulated Keratometry and whether this would alter the power of an intraocular lens implant calculated using post-gonioscopy measurements. We further compared the effect of the 2-mirror (Goldmann) and the 4-mirror (Sussman) Gonioscopes. A prospective clinic-based self-controlled comparative study. 198 eyes of 99 patients, above 50 years of age, were studied. Exclusion criteria included documented dry eye, history of ocular surgery or trauma, diabetes mellitus and connective tissue disorders. Auto-Keratometry and corneal topography measurements were obtained at baseline and at three follow-up times - within the first 5 minutes, between the 10th-15th minute and between the 20th-25th minute after intervention. One eye was randomized for intervention with the 2-mirror gonioscope and the other underwent the 4-mirror after baseline measurements. t-tests were used to examine differences between interventions and between the measurement methods. The sample size was calculated using an estimate of clinically significant lens implant power changes based on the SRK-II formula. Clinically and statistically significant steepening was observed in the first 5 minutes and in the 10-15 minute interval using topography-based Sim K. These changes were not present with the Auto-Keratometer measurements. Although changes from baseline were noted between 20 and 25 minutes topographically, these were not clinically or statistically significant. There was no significant difference between the two types of gonioscopes. There was greater variability in the changes from baseline using the topography-based Sim K readings. Reversible steepening of the central corneal surface is produced by

  17. How to handle topography in practical geoid determination: three examples

    DEFF Research Database (Denmark)

    Omang, O.C.D.; Forsberg, René

    2000-01-01

    Three different methods of handling topography in geoid determination were investigated. The first two methods employ the residual terrain model (RTM) remove-restore technique, yielding the quasi-geoid, whereas the third method uses the classical Helmert condensation method, yielding the geoid. All...

  18. 3D SEM for surface topography quantification – a case study on dental surfaces

    International Nuclear Information System (INIS)

    Glon, F; Flys, O; Lööf, P-J; Rosén, B-G

    2014-01-01

    3D analysis of surface topography is becoming a more used tool for industry and research. New ISO standards are being launched to assist in quantifying engineering surfaces. The traditional optical measuring instrumentation used for 3D surface characterization has been optical interferometers and confocal based instrumentation. However, the resolution here is limited in the lateral dimension to the wavelength of visible light to about 500 nm. The great advantage using the SEM for topography measurements is the high flexibility to zoom from low magnifications and locating interesting areas to high magnification of down to nanometer large surface features within seconds. This paper presents surface characterization of dental implant micro topography. 3D topography data was created from SEM images using commercial photogrammetric software. A coherence scanning interferometer was used for reference measurements to compare with the 3D SEM measurements on relocated areas. As a result of this study, measurements emphasizes that the correlation between the accepted CSI measurements and the new technology represented by photogrammetry based on SEM images for many areal characterization parameters are around or less than 20%. The importance of selecting sampling and parameter sensitivity to varying sampling is high-lighted. Future work includes a broader study of limitations of the photogrammetry technique on certified micro-geometries and more application surfaces at different scales

  19. Simultaneous topography and recognition imaging: physical aspects and optimal imaging conditions

    International Nuclear Information System (INIS)

    Preiner, Johannes; Ebner, Andreas; Zhu Rong; Hinterdorfer, Peter; Chtcheglova, Lilia

    2009-01-01

    Simultaneous topography and recognition imaging (TREC) allows for the investigation of receptor distributions on natural biological surfaces under physiological conditions. Based on atomic force microscopy (AFM) in combination with a cantilever tip carrying a ligand molecule, it enables us to sense topography and recognition of receptor molecules simultaneously with nanometre accuracy. In this study we introduce optimized handling conditions and investigate the physical properties of the cantilever-tip-sample ensemble, which is essential for the interpretation of the experimental data gained from this technique. In contrast to conventional AFM methods, TREC is based on a more sophisticated feedback loop, which enables us to discriminate topographical contributions from recognition events in the AFM cantilever motion. The features of this feedback loop were investigated through a detailed analysis of the topography and recognition data obtained on a model protein system. Single avidin molecules immobilized on a mica substrate were imaged with an AFM tip functionalized with a biotinylated IgG. A simple procedure for adjusting the optimal amplitude for TREC imaging is described by exploiting the sharp localization of the TREC signal within a small range of oscillation amplitudes. This procedure can also be used for proving the specificity of the detected receptor-ligand interactions. For understanding and eliminating topographical crosstalk in the recognition images we developed a simple theoretical model, which nicely explains its origin and its dependence on the excitation frequency.

  20. Effects of topography on simulated net primary productivity at landscape scale.

    Science.gov (United States)

    Chen, X F; Chen, J M; An, S Q; Ju, W M

    2007-11-01

    Local topography significantly affects spatial variations of climatic variables and soil water movement in complex terrain. Therefore, the distribution and productivity of ecosystems are closely linked to topography. Using a coupled terrestrial carbon and hydrological model (BEPS-TerrainLab model), the topographic effects on the net primary productivity (NPP) are analyzed through four modelling experiments for a 5700 km(2) area in Baohe River basin, Shaanxi Province, northwest of China. The model was able to capture 81% of the variability in NPP estimated from tree rings, with a mean relative error of 3.1%. The average NPP in 2003 for the study area was 741 gCm(-2)yr(-1) from a model run including topographic effects on the distributions of climate variables and lateral flow of ground water. Topography has considerable effect on NPP, which peaks near 1350 m above the sea level. An elevation increase of 100 m above this level reduces the average annual NPP by about 25 gCm(-2). The terrain aspect gives rise to a NPP change of 5% for forests located below 1900 m as a result of its influence on incident solar radiation. For the whole study area, a simulation totally excluding topographic effects on the distributions of climatic variables and ground water movement overestimated the average NPP by 5%.

  1. Underwater Topography Detection in Coastal Areas Using Fully Polarimetric SAR Data

    Directory of Open Access Journals (Sweden)

    Xiaolin Bian

    2017-06-01

    Full Text Available Fully polarimetric synthetic aperture radar (SAR can provide detailed information on scattering mechanisms that could enable the target or structure to be identified. This paper presents a method to detect underwater topography in coastal areas using high resolution fully polarimetric SAR data, while less prior information is required. The method is based on the shoaling and refraction of long surface gravity waves as they propagate shoreward. First, the surface scattering component is obtained by polarization decomposition. Then, wave fields are retrieved from the two-dimensional (2D spectra by the Fast Fourier Transformation (FFT. Finally, shallow water depths are estimated from the dispersion relation. Applicability and effectiveness of the proposed methodology are tested by using C-band fine quad-polarization mode RADARSAT-2 SAR data over the near-shore area of the Hainan province, China. By comparing with the values from an official electronic navigational chart (ENC, the estimated water depths are in good agreement with them. The average relative error of the detected results from the scattering mechanisms based method and single polarization SAR data are 9.73% and 11.53% respectively. The validation results indicate that the scattering mechanisms based methodology is more effective than only using the single polarization SAR data for underwater topography detection, and will inspire further research on underwater topography detection with fully polarimetric SAR data.

  2. Individual IOL Surface Topography Analysis by the WaveMaster Reflex UV

    Directory of Open Access Journals (Sweden)

    Marc Kannengießer

    2013-01-01

    Full Text Available Purpose. In order to establish inspection routines for individual intraocular lenses (IOLs, their surfaces have to be measured separately. Currently available measurement devices lack this functionality. The purpose of this study is to evaluate a new topography measurement device based on wavefront analysis for measuring individual regular and freeform IOL surfaces, the “WaveMaster Reflex UV” (Trioptics, Wedel, Germany. Methods. Measurements were performed on IOLs with increasingly complex surface geometries: spherical surfaces, surfaces modelled by higher-order Zernike terms, and freeform surfaces from biometrical patient data. Two independent parameters were measured: the sample’s radius of curvature (ROC and its residual (difference of sample topography and its best-fit sphere. We used a quantitative analysis method by calculating the residuals’ root-mean-square (RMS and peak-to-Valley (P2V values. Results. The sample’s best-fit ROC differences increased with the sample’s complexity. The sample’s differences of RMS values were 80 nm for spherical surfaces, 97 nm for higher-order samples, and 21 nm for freeform surfaces. Graphical representations of both measurement and design topographies were recorded and compared. Conclusion. The measurements of spherical surfaces expectedly resulted in better values than those of freeform surfaces. Overall, the wavefront analysing method proves to be an effective method for evaluating individual IOL surfaces.

  3. The Effect of Substrate Topography on Direct Reprogramming of Fibroblasts to Induced Neurons

    Science.gov (United States)

    Kulangara, Karina; Adler, Andrew F.; Wang, Hong; Chellappan, Malathi; Hammett, Ellen; Yasuda, Ryohei; Leong, Kam W.

    2014-01-01

    Cellular reprogramming holds tremendous potential for cell therapy and regenerative medicine. Recently, fibroblasts have been directly converted into induced neurons (iNs) by overexpression of the neuronal transcription factors Ascl1, Brn2 and Myt1L. Hypothesizing that cell-topography interactions could influence the fibroblast-to-neuron reprogramming process, we investigated the effects of various topographies on iNs produced by direct reprogramming. Final iN purity and conversion efficiency were increased on micrograting substrates. Neurite branching was increased on microposts and decreased on microgratings, with a simplified dendritic arbor characterized by the reduction of MAP2+ neurites. Neurite outgrowth increased significantly on various topographies. DNA microarray analysis detected 20 differentially expressed genes in iNs reprogrammed on smooth versus microgratings, and quantitative PCR (qPCR) confirmed the upregulation of Vip and downregulation of Thy1 and Bmp5 on microgratings. Electrophysiology and calcium imaging verified the functionality of these iNs. This study demonstrates the potential of applying topographical cues to optimize cellular reprogramming. PMID:24709523

  4. Determination of the transfer function for optical surface topography measuring instruments—a review

    International Nuclear Information System (INIS)

    Foreman, Matthew R; Török, Peter; Giusca, Claudiu L; Leach, Richard K; Coupland, Jeremy M

    2013-01-01

    A significant number of areal surface topography measuring instruments, largely based on optical techniques, are commercially available. However, implementation of optical instrumentation into production is currently difficult due to the lack of understanding of the complex interaction between the light and the component surface. Studying the optical transfer function of the instrument can help address this issue. Here a review is given of techniques for the measurement of optical transfer functions. Starting from the basis of a spatially coherent, monochromatic confocal scanning imaging system, the theory of optical transfer functions in three-dimensional (3D) imaging is presented. Further generalizations are reviewed allowing the extension of the theory to the description of conventional and interferometric 3D imaging systems. Polychromatic transfer functions and surface topography measurements are also discussed. Following presentation of theoretical results, experimental methods to measure the optical transfer function of each class of system are presented, with a focus on suitable methods for the establishment of calibration standards in 3D imaging and surface topography measurements. (topical review)

  5. 3D DC Resistivity Inversion with Topography Based on Regularized Conjugate Gradient Method

    Directory of Open Access Journals (Sweden)

    Jian-ke Qiang

    2013-01-01

    Full Text Available During the past decades, we observed a strong interest in 3D DC resistivity inversion and imaging with complex topography. In this paper, we implemented 3D DC resistivity inversion based on regularized conjugate gradient method with FEM. The Fréchet derivative is assembled with the electric potential in order to speed up the inversion process based on the reciprocity theorem. In this study, we also analyzed the sensitivity of the electric potential on the earth’s surface to the conductivity in each cell underground and introduced an optimized weighting function to produce new sensitivity matrix. The synthetic model study shows that this optimized weighting function is helpful to improve the resolution of deep anomaly. By incorporating topography into inversion, the artificial anomaly which is actually caused by topography can be eliminated. As a result, this algorithm potentially can be applied to process the DC resistivity data collected in mountain area. Our synthetic model study also shows that the convergence and computation speed are very stable and fast.

  6. Investigation of SiC crystals by means of synchrotron topography

    International Nuclear Information System (INIS)

    Wierzchowski, W.; Tymicki, E.; Balcer, T.; Pawlowska, M.; Wieteska, K.; Malinowska, A.; Wierzbicka, E.; Grasza, K.; Graeff, W.

    2006-01-01

    The crystallographic quality of monopolytypic 6H SiC crystals grown by Physical Vapour Transport in graphite crucible was studied. The diameter of crystals was increased up to 65 mm. The crystals were investigated using several methods of characterisation including white and monochromatic beam synchrotron diffraction topography and scanning electron microscopy. Particularly useful results were obtained using back reflection white beam synchrotron section topography, which provided the intersection of the large thickness of the sample investigated. The topographs revealed a great part of macro and micropipes present in the samples, reproduced as white areas. The additional possibility offered the section topographs taken using a fine grid with the distance between the wires equal to 0.7 mm, which enabled evaluation of the lattice deformation. The scanning electron microscopy was also very useful in studying the micropipes and voids as well as in observation of the selective etching pattern. (author)

  7. The effect of selected parameters of the honing process on cylinder liner surface topography

    International Nuclear Information System (INIS)

    Pawlus, P; Dzierwa, A; Michalski, J; Reizer, R; Wieczorowski, M; Majchrowski, R

    2014-01-01

    Many truck cylinder liners made from gray cast iron were machined. Ceramic and diamond honing stones were used in the last stages of operation: coarse honing and plateau honing. The effect of honing parameters on the cylinder liner surface topography was studied. Selected surface topography parameters were response variables. It was found that parameters from the Sq group were sensitive to honing parameter change. When plateau honing time varied, the Smq parameter increased, while the other parameters, Spq and Svq, were stable. (papers)

  8. The impact of dynamic topography change on Antarctic Ice Sheet stability during the Mid-Pliocene Warm Period

    Science.gov (United States)

    Austermann, J.; Pollard, D.; Mitrovica, J. X.; Moucha, R.; Forte, A. M.; Deconto, R. M.; Rowley, D. B.; Raymo, M. E.

    2015-12-01

    The mid-Pliocene warm period (MPWP; ~ 3Ma), characterized by globally elevated temperatures (2-3º C) and carbon dioxide levels of ~400ppm, is commonly used as a testing ground for investigating ice sheet stability in a slightly warmer world. The central, unanswered question in this regard is the extent of East Antarctic melting during the MPWP. Here we assess the potential role of dynamic topography on this issue. Model reconstructions of the evolution of the Antarctic ice sheet during the ice age require an estimate of bedrock elevation through time. Ice sheet models account for changes in bedrock elevation due to glacial isostatic adjustment (GIA), often using simplified models of the GIA process, but they generally do not consider other processes that may perturb subglacial topography. One such notable process is dynamic topography, i.e. the deflection of the solid surface of the Earth due to convective flow and buoyancy variations within the mantle and lithosphere. Paleo-shorelines of Pliocene age reflect the influence of dynamic topography, but the impact of these bedrock elevation changes on ice sheet stability in the Antarctic region is unknown. In this study we use viscous flow simulations of mantle dynamics to predict changes in dynamic topography and reconstruct bedrock elevations below the Antarctic Ice Sheet since the MPWP. We furthermore couple this reconstruction to a three-dimensional ice sheet model in order to explore the impact of dynamic topography on the extent of the Antarctic Ice Sheet during the Pliocene. Our modeling indicates that uplift occurred in the area of the Transantarctic Mountains and the adjacent Wilkes Basin. This predicted uplift, which is consistent with geological inferences of uplift in the Transantarctic Mountains, implies a significantly (~100-200 m) lower elevation of the Wilkes Basin in the Pliocene. This lower elevation leads to ~400 km of additional retreat of the grounding line in this region relative to simulations

  9. Coupling between apical tension and basal adhesion allow epithelia to collectively sense and respond to substrate topography over long distances.

    Science.gov (United States)

    Broaders, Kyle E; Cerchiari, Alec E; Gartner, Zev J

    2015-12-01

    Epithelial sheets fold into complex topographies that contribute to their function in vivo. Cells can sense and respond to substrate topography in their immediate vicinity by modulating their interfacial mechanics, but the extent to which these mechanical properties contribute to their ability to sense substrate topography across length scales larger than a single cell has not been explored in detail. To study the relationship between the interfacial mechanics of single cells and their collective behavior as tissues, we grew cell-sheets on substrates engraved with surface features spanning macroscopic length-scales. We found that many epithelial cell-types sense and respond to substrate topography, even when it is locally nearly planar. Cells clear or detach from regions of local negative curvature, but not from regions with positive or no curvature. We investigated this phenomenon using a finite element model where substrate topography is coupled to epithelial response through a balance of tissue contractility and adhesive forces. The model correctly predicts the focal sites of cell-clearing and epithelial detachment. Furthermore, the model predicts that local tissue response to substrate curvature is a function of the surrounding topography of the substrate across long distances. Analysis of cell-cell and cell-substrate contact angles suggests a relationship between these single-cell interfacial properties, epithelial interfacial properties, and collective epithelial response to substrate topography. Finally, we show that contact angles change upon activation of oncogenes or inhibition of cell-contractility, and that these changes correlate with collective epithelial response. Our results demonstrate that in mechanically integrated epithelial sheets, cell contractility can be transmitted through multiple cells and focused by substrate topography to affect a behavioral response at distant sites.

  10. Smoking Topography in Korean American and White Men: Preliminary Findings

    Science.gov (United States)

    Chung, Sangkeun; Kim, Sun S; Kini, Nisha; Fang, Hua J; Kalman, David; Ziedonis, Douglas M.

    2013-01-01

    Introduction This is the first study of Korean Americans’ smoking behavior using a topography device. Korean American men smoke at higher rates than the general U.S. population. Methods Korean American and White men were compared based on standard tobacco assessment and smoking topography measures. They smoked their preferred brand of cigarettes ad libitum with a portable smoking topography device for 24 hours. Results Compared to White men (N = 26), Korean American men (N = 27) were more likely to smoke low nicotine-yield cigarettes (p < 0.001) and have lower Fagerstrom nicotine dependence scores (p = 0.04). Koreans smoked fewer cigarettes with the device (p = 0.01) than Whites. Controlling for the number of cigarettes smoked, Koreans smoked with higher average puff flows (p = 0.05), greater peak puff flows (p = 0.02), and shorter interpuff intervals (p < 0.001) than Whites. Puff counts, puff volumes, and puff durations did not differ between the two groups. Conclusions This study offers preliminary insight into unique smoking patterns among Korean American men who are likely to smoke low nicotine-yield cigarettes. We found that Korean American men compensated their lower number and low nicotine-yield cigarettes by smoking more frequently with greater puff flows than White men, which may suggest exposures to similar amounts of nicotine and harmful tobacco toxins by both groups. Clinicians will need to consider in identifying and treating smokers in a mutually aggressive manner, irrespective of cigarette type and number of cigarette smoked per day. PMID:24068611

  11. System for recording and displaying two-phase flow topographies

    International Nuclear Information System (INIS)

    Cary, C.N.; Block, J.A.

    1979-01-01

    A system of hardware and software has been developed and used to record and display in various forms details of the countercurrent flow topographies occurring in a scaled Pressurized Water Reactor downcomer annulus. An array of 288 conductivity sensors was mounted in a 1/15 scale PWR annulus. At each moment in time, the state of each probe indicates the presence or absence of water in this immediate vicinity. An electronic data acquisition system records the states of all probes 108 times per second on magnetic tape; software routines retrieve the data and reconstruct visual analogs of the flow topographies. The instantaneous two-phase state of the annulus at each instant can be displayed on a hard copy plotter or on a CRT screen. By synchronizing a camera drive with the CRT display, 16mm films have been made recreating the flow process at full speed and at various slow motion rates. All data obtained are stored in computer files in numerical form and can be subjected to various types of quantitative analysis to assist in advanced code development and verification

  12. The Effects of Topography on Time Domain Controlled-Source Electromagnetic Data as it Applies to Impact Crater Sites

    Science.gov (United States)

    Hickey, M. S.

    2008-05-01

    Controlled-source electromagnetic geophysical methods provide a noninvasive means of characterizing subsurface structure. In order to properly model the geologic subsurface with a controlled-source time domain electromagnetic (TDEM) system in an extreme topographic environment we must first see the effects of topography on the forward model data. I run simulations using the Texas A&M University (TAMU) finite element (FEM) code in which I include true 3D topography. From these models we see the limits of how much topography we can include before our forward model can no longer give us accurate data output. The simulations are based on a model of a geologic half space with no cultural noise and focus on topography changes associated with impact crater sites, such as crater rims and central uplift. Several topographical variations of the model are run but the main constant is that there is only a small conductivity change on the range of 10-1 s/m between the host medium and the geologic body within. Asking the following questions will guide us through determining the limits of our code: What is the maximum step we can have before we see fringe effects in our data? At what location relative to the body does the topography cause the most effect? After we know the limits of the code we can develop new methods to increase the limits that will allow us to better image the subsurface using TDEM in extreme topography.

  13. Assessing the Impact of Laurentide Ice-sheet Topography on Glacial Climate

    Science.gov (United States)

    Ullman, D. J.; LeGrande, A. N.; Carlson, A. E.; Anslow, F. S.; Licciardi, J. M.

    2014-01-01

    Simulations of past climates require altered boundary conditions to account for known shifts in the Earth system. For the Last Glacial Maximum (LGM) and subsequent deglaciation, the existence of large Northern Hemisphere ice sheets caused profound changes in surface topography and albedo. While ice-sheet extent is fairly well known, numerous conflicting reconstructions of ice-sheet topography suggest that precision in this boundary condition is lacking. Here we use a high-resolution and oxygen-isotopeenabled fully coupled global circulation model (GCM) (GISS ModelE2-R), along with two different reconstructions of the Laurentide Ice Sheet (LIS) that provide maximum and minimum estimates of LIS elevation, to assess the range of climate variability in response to uncertainty in this boundary condition.We present this comparison at two equilibrium time slices: the LGM, when differences in ice-sheet topography are maximized, and 14 ka, when differences in maximum ice-sheet height are smaller but still exist. Overall, we find significant differences in the climate response to LIS topography, with the larger LIS resulting in enhanced Atlantic Meridional Overturning Circulation and warmer surface air temperatures, particularly over northeastern Asia and the North Pacific. These up- and downstream effects are associated with differences in the development of planetary waves in the upper atmosphere, with the larger LIS resulting in a weaker trough over northeastern Asia that leads to the warmer temperatures and decreased albedo from snow and sea-ice cover. Differences between the 14 ka simulations are similar in spatial extent but smaller in magnitude, suggesting that climate is responding primarily to the larger difference in maximum LIS elevation in the LGM simulations. These results suggest that such uncertainty in ice-sheet boundary conditions alone may significantly impact the results of paleoclimate simulations and their ability to successfully simulate past climates

  14. Noise-driven cooperative dynamics between vegetation and topography in riparian zones

    Science.gov (United States)

    Vesipa, Riccardo; Camporeale, Carlo; Ridolfi, Luca

    2016-04-01

    Riparian ecosystems exhibit complex biotic and abiotic dynamics, where the triad vegetation-sediments-stream determines the eco-geomorphological features of the river landscape. Random fluctuations of the water stage are a key trait of this triad, and a number of behaviors of the fluvial environment can be understood only taking into consideration the role of noise. In fact, in a given plot, vegetation biomass can grow (if the stage is below the plot elevation) or decay (if the stage is above the plot elevation). As a result, biomass exhibits significant temporal variations. In this framework, the capability of vegetation to alter the transect topography (namely, the plot elevation) is crucial. Vegetation can increase the plot elevation by a number of mechanisms (trapping of water- and wind-transported sediment particles, production of organic soil, stabilization of the soil surface). The increment of plot elevation induces the reduction of the plot-specific magnitude, frequency and duration of floods. These more favorable plot-specific hydrological conditions, in turn, induce an increment of biomass. Moreover, the higher the vegetation biomass, the higher the plot elevation increment induced by these mechanisms. In order to elucidate how the stochastically varying water stage and the vegetation-induced topographic alteration shape the bio-morphological characteristics of riparian transects, a stochastic model that takes into account the main links between vegetation, sediments and the stream was adopted. In particular, the capability of vegetation to alter the plot topography was emphasized. In modeling such interactions, the minimalistic approach was pursued. The complex vegetation-sediments-stream interactions were modeled by a set of state-depended stochastic eco-hydraulic equations. The probability density function of vegetation biomass was then analytically evaluated in any transect plot. This pdf strongly depends on the vegetation-topography feedback. We

  15. Corneal thickness and elevation measurements using swept-source optical coherence tomography and slit scanning topography in normal and keratoconic eyes.

    Science.gov (United States)

    Jhanji, Vishal; Yang, Bingzhi; Yu, Marco; Ye, Cong; Leung, Christopher K S

    2013-11-01

    To compare corneal thickness and corneal elevation using swept source optical coherence tomography and slit scanning topography. Prospective study. 41 normal and 46 keratoconus subjects. All eyes were imaged using swept source optical coherence tomography and slit scanning tomography during the same visit. Mean corneal thickness and best-fit sphere measurements were compared between the instruments. Agreement of measurements between swept source optical coherence tomography and scanning slit topography was analyzed. Intra-rater reproducibility coefficient and intraclass correlation coefficient were evaluated. In normal eyes, central corneal thickness measured by swept source optical coherence tomography was thinner compared with slit scanning topography (p topography. In keratoconus eyes, central corneal thickness was thinner on swept source optical coherence tomography than slit scanning topography (p = 0.081) and ultrasound pachymetry (p = 0.001). There were significant differences between thinnest corneal thickness, and, anterior and posterior best-fit sphere measurements between both instruments (p topography. With better reproducibility coefficients and intraclass correlation coefficients, swept source optical coherence tomography may provide a reliable alternative for measurement of corneal parameters. © 2013 The Authors. Clinical and Experimental Ophthalmology © 2013 Royal Australian and New Zealand College of Ophthalmologists.

  16. Vaping Topography and Reasons of Use among Adults in Klang Valley, Malaysia

    Science.gov (United States)

    Zainol Abidin, Najihah; Abidin, Emilia Zainal; Zulkifli, Aziemah; Syed Ismail, Sharifah Norkhadijah; Karuppiah, Karmegam; Amer Nordin, Amer Siddiq; Musbah, Zuraidah; Zulkipli, Nur Fadhilah; Praveena, Sarva Mangala; Rasdi, Irniza; Abd Rahman, Anita

    2018-02-26

    Background: Consistency and accuracy of results in assessing health risks due to vaping or e-cigarette use are difficult to achieve without established consumption data. The present report covers baseline data on vaping topography and reasons for use among local users in Klang Valley, Malaysia. Methods: An 80-item survey regarding socio-demographic characteristics, smoking topography and reasons for e-cigarette use was employed to assess e-cigarette users recruited from several public universities and private organisations. The survey questionnaire was self-administered. Data were analysed using statistical software. Results: Eighty-six current e-cigarette users participated with more than half (51.2%) of them aged ≥ 25 years old. Significant proportions of the sample were single (51.2%), had a tertiary education level (63.5%) and a household income of less than USD1000 per month (65.2%). Median duration of e-cigarette use was less than a year; users drew approximately 50 puffs per day and refilled twice a day. The majority (74%) used e-liquids containing nicotine with a concentration of 6 μg/mL. Daily users spent USD18-23 per month. Reasons for using the e-cigarette included enjoyment of the products (85.9%), perception of lower toxicity than tobacco (87%), and the fact that it was a cheaper smoking alternative (61%). Conclusion: The data on e-cigarette smoking topography obtained in this study are novel. The reasons of usage were mainly users’ enjoyment of e-cigarettes, preparation for quitting smoking, perception of low toxicity and a healthier smoking substitute and cheapness in the long run. The results establish basic knowledge for the local vaping topography and reference material for future e-cigarette-related research. Creative Commons Attribution License

  17. Influence of substrate topography on cathodic delamination of anticorrosive coatings

    DEFF Research Database (Denmark)

    Sørensen, Per Aggerholm; Kiil, Søren; Dam-Johansen, Kim

    2009-01-01

    and thereby the substrate topography, whereas the coating thickness had little influence. The presence of a significant potential gradient between the anode and the cathode and the dependency of the delamination rate on the tortuosity of the steel surface suggests that cathodic delamination is controlled...

  18. Optical properties and surface topography of CdCl2 activated CdTe thin films

    Science.gov (United States)

    Patel, S. L.; Purohit, A.; Chander, S.; Dhaka, M. S.

    2018-05-01

    The effect of post-CdCl2 heat treatment on optical properties and surface topography of evaporated CdTe thin films is investigated. The pristine and thermally annealed films were subjected to UV-Vis spectrophotometer and atomic force microscopy (AFM) to investigate the optical properties and surface topography, respectively. The absorbance is found to be maximum (˜90%) at 320°C temperature and transmittance found to be minimum and almost constant in ultraviolet and visible regions. The direct band gap is increased from 1.42 eV to 2.12 eV with post-CdCl2 annealing temperature. The surface topography revealed that the uniformity is improved with annealing temperature and average surface roughness is found in the range of 83.3-144.3 nm as well as grains have cylindrical hill-like shapes. The investigated results indicate that the post-CdCl2 treated films annealed at 320°C may be well-suitable for thin film solar cells as an absorber layer.

  19. Review: Holger Stoecker: Afrikawissenschaften in Berlin von 1919 bis 1945. Zur Geschichte und Topographie eines wissenschaftlichen Netzwerkes (2008 Buchbesprechung: Holger Stoecker: Afrikawissenschaften in Berlin von 1919 bis 1945. Zur Geschichte und Topographie eines wissenschaftlichen Netzwerkes

    Directory of Open Access Journals (Sweden)

    Katrin Bromber

    2009-05-01

    Full Text Available Review of the monograph: Holger Stoecker: Afrikawissenschaften in Berlin von 1919 bis 1945. Zur Geschichte und Topographie eines wissenschaftlichen Netzwerkes, Stuttgart: Franz Steiner Verlag 2008, ISBN 978-3-515-09161-9, 359 pages. Besprechung der Monographie: Holger Stoecker: Afrikawissenschaften in Berlin von 1919 bis 1945. Zur Geschichte und Topographie eines wissenschaftlichen Netzwerkes, Stuttgart: Franz Steiner Verlag 2008, ISBN 978-3-515-09161-9, 359 Seiten.

  20. Topography-Guided PRK and Crosslinking in Eyes with Keratoconus and Post-LASIK Ectasia.

    Science.gov (United States)

    Müller, T M; Lange, A P

    2017-04-01

    Topography-guided photorefractive keratectomy (TG-PRK) combined with corneal collagen crosslinking (CXL) has been shown to potentially improve vision and stabilize progression in patients with keratoconus (KC). We attempted to reproduce the previously published results using a different laser platform (AMARIS 500E) in patients with KC and post-LASIK ectasia (PLE). All of the 9 included eyes showed improved topography (Kmax, Kmean, RMS HOA, vertical coma, cylinder; p PRK and CXL may be a promising option to regularize and stabilize corneas with KC and PLE and improve visual acuity. Georg Thieme Verlag KG Stuttgart · New York.

  1. Topography- and management-mediated resource gradients maintain rare and common plant diversity around paddy terraces.

    Science.gov (United States)

    Uematsu, Yuta; Ushimaru, Atushi

    2013-09-01

    Examining the causes of interspecific differences in susceptibility to bidirectional land-use changes (land abandonment and use-intensification) is important for understanding the mechanisms of global biodiversity loss in agricultural landscapes. We tested the hypothesis that rare (endangered) plant species prefer wet and oligotrophic areas within topography- and management-mediated resource (soil water content, nutrient, and aboveground biomass) gradients, making them more susceptible to both abandonment and use-intensification of agricultural lands. We demonstrated that topography and management practices generated resource gradients in seminatural grasslands around traditional paddy terraces. Terraced topography and management practices produced a soil moisture gradient within levees and a nutrient gradient within paddy terraces. Both total and rare species diversity increased with soil water content. Total species diversity increased in more eutrophied areas with low aboveground biomass, whereas rare species diversity was high under oligotrophic conditions. Rare and common species were differentially distributed along the human-induced nutrient gradient, with rare species preferring wet, nutrient-poor environments in the agricultural landscapes studied. We suggest that conservation efforts should concentrate on wet, nutrient-poor areas within such landscapes, which can be located easily using land-use and topography maps. This strategy would reduce the costs of finding and conserving rare grassland species in a given agricultural landscape.

  2. Influence of Workpiece Surface Topography on the Mechanisms of Liquid Lubrication in Strip Drawing

    DEFF Research Database (Denmark)

    Shimizu, I; Andreasen, Jan Lasson; Bech, Jakob Ilsted

    2001-01-01

    The workpiece surface topography is an important factor controlling the mechanisms of lubrication in metal forming processes. In the present work, the microscopic lubrication mechanisms induced by lubricant trapped in pockets of the surface in strip drawing are studied. The experiments are perfor......The workpiece surface topography is an important factor controlling the mechanisms of lubrication in metal forming processes. In the present work, the microscopic lubrication mechanisms induced by lubricant trapped in pockets of the surface in strip drawing are studied. The experiments...

  3. Synergetic topography and chemistry cues guiding osteogenic differentiation in bone marrow stromal cells through ERK1/2 and p38 MAPK signaling pathway.

    Science.gov (United States)

    Zhang, Xinran; Li, Haotian; Lin, Chucheng; Ning, Congqin; Lin, Kaili

    2018-01-30

    Both the topographic surface and chemical composition modification can enhance rapid osteogenic differentiation and bone formation. Till now, the synergetic effects of topography and chemistry cues guiding biological responses have been rarely reported. Herein, the ordered micro-patterned topography and classically essential trace element of strontium (Sr) ion doping were selected to imitate topography and chemistry cues, respectively. The ordered micro-patterned topography on Sr ion-doped bioceramics was successfully duplicated using the nylon sieve as the template. Biological response results revealed that the micro-patterned topography design or Sr doping could promote cell attachment, ALP activity, and osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs). Most importantly, the samples both with micro-patterned topography and Sr doping showed the highest promotion effects, and could synergistically activate the ERK1/2 and p38 MAPK signaling pathways. The results suggested that the grafts with both specific topography and chemistry cues have synergetic effects on osteogenic activity of BMSCs and provide an effective approach to design functional bone grafts and cell culture substrates.

  4. Topography and Roughness Signatures of Erosion of Crusted Soils on Mars

    Science.gov (United States)

    Cooper, C. D.; Mustard, J. F.

    1999-03-01

    MOLA slope and roughness data shed light on the erosion of regional duricrust and suggest it follows preexisting topography. This implies that cementation of the duricrust was likely due to atmosphere-surface interactions or in situ alteration.

  5. In vitro study on bone formation and surface topography from the standpoint of biomechanics.

    Science.gov (United States)

    Kawahara, H; Soeda, Y; Niwa, K; Takahashi, M; Kawahara, D; Araki, N

    2004-12-01

    Effect of surface topography upon cell-adhesion, -orientation and -differentiation was investigated by in vitro study on cellular responses to titanium substratum with different surface roughness. Cell-shape, -function and -differentiation depending upon the surface topography were clarified by use of bone formative group cells (BFGCs) derived from bone marrow of beagle's femur. BFGCs consisted of hematopoietic stem cells (HSC) and osteogenetic stem cells (OSC). Cell differentiation of BFGCs was expressed and promoted by structural changes of cytoskeleton, and cell-organella, which was caused by mechanical stress with cytoplasmic stretching of cell adhesions to the substratum. Phagocytic monocytes of HSC differentiated to osteomediator cells (OMC) by cytoplasmic stretching with cell adhesion to the substratum. The OMC mediated and promoted cell differentiation from OSC to osteoblast through osteoblastic phenotype cell (OBC) by cell-aggregation of nodules with "pile up" phenomenon of OBC onto OMC. The osteogenesis might be performed by coupling work of both cells, OMC originated from monocyte of HSC and OBC originated from OSC, which were explained by SEM, TEM and fluorescent probe investigation on BFGCs on the test plate of cp titanium plates with different topographies. This osteogenetic process was proved by investigating cell proliferation, DNA contents, cell-adhesion, alkaline phosphatase activity and osteocalcine productivity for cells on the titanium plates with different topographies. The study showed increased osteogenic effects for cells cultured on Ti with increased surface roughness. Possible mechanisms were discussed from a biomechanical perspective.

  6. OW Smith and Sandwell v8.2 - 1/30 Degree Bathymetry & Topography

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Global bathymetry and topography information at 1/30 degree resolution. Data collected by means of in-situ and satellite measurements.

  7. Effects of Polishing Bur Application Force and Reuse on Sintered Zirconia Surface Topography.

    Science.gov (United States)

    Fischer, N G; Tsujimoto, A; Baruth, A G

    2018-03-16

    Limited information is available on how to polish and finish zirconia surfaces following computer-aided design/computer-aided manufacturing (CAD/CAM), specifically, how differing application forces and reuse of zirconia polishing systems affect zirconia topography. To determine the effect of differing, clinically relevant, polishing application forces and multiple usages of polishing burs on the surface topography of CAD/CAM zirconia. One hundred twenty 220-grit carbide finished zirconia disks were sintered according to manufacturer's directions and divided into two groups for the study of two coarse polishing bur types. Each group was divided into subgroups for polishing (15,000 rpm) at 15 seconds for 1.0 N, 4.5 N, or 11 N of force using a purpose-built fixture. Subgroups were further divided to study the effects of polishing for the first, fifth, 15th, and 30th bur use, simulating clinical procedures. Unpolished surfaces served as a control group. Surfaces were imaged with noncontact optical profilometry (OP) and atomic force microscopy (AFM) to measure average roughness values (Ra). Polishing burs were optically examined for wear. Scanning electron microscopy (SEM) was performed on burs and zirconia surfaces. One-way ANOVA with post hoc Tukey HSD (honest significant difference) tests (α=0.05) were used for statistical analyses. AFM and OP Ra values of all polished surfaces were significantly lower than those of the unpolished control. Different polishing forces and bur reuse showed no significant differences in AFM Ra. However, significant differences in OP Ra were found due to differing application forces and bur reuse between the first and subsequent uses. SEM and optical micrographs revealed notable bur wear, increasing with increasing reuse. SEM and AFM micrographs clearly showed polished, periodic zirconia surfaces. Nanoscale topography, as analyzed with kurtosis and average groove depth, was found dependent on the specific polishing bur type. These in

  8. The in vivo blood compatibility of bio-inspired small diameter vascular graft: effect of submicron longitudinally aligned topography

    Science.gov (United States)

    2013-01-01

    Background Cardiovascular disease is the leading cause of deaths worldwide and the arterial reconstructive surgery remains the treatment of choice. Although large diameter vascular grafts have been widely used in clinical practices, there is an urgent need to develop a small diameter vascular graft with enhanced blood compatibility. Herein, we fabricated a small diameter vascular graft with submicron longitudinally aligned topography, which mimicked the tunica intima of the native arterial vessels and were tested in Sprague–Dawley (SD) rats. Methods Vascular grafts with aligned and smooth topography were prepared by electrospinning and were connected to the abdominal aorta of the SD rats to evaluate their blood compatibility. Graft patency and platelet adhesion were evaluated by color Doppler ultrasound and immunofluorescence respectively. Results We observed a significant higher patency rate (p = 0.021) and less thrombus formation in vascular graft with aligned topography than vascular graft with smooth topography. However, no significant difference between the adhesion rates on both vascular grafts (smooth/aligned: 0.35‰/0.12‰, p > 0.05) was observed. Moreover, both vascular grafts had few adherent activated platelets on the luminal surface. Conclusion Bionic vascular graft showed enhanced blood compatibility due to the effect of surface topography. Therefore, it has considerable potential for using in clinical application. PMID:24083888

  9. Using continuous porous silicon gradients to study the influence of surface topography on the behaviour of neuroblastoma cells

    International Nuclear Information System (INIS)

    Khung, Y.L.; Barritt, G.; Voelcker, N.H.

    2008-01-01

    The effects of surface topography on cell behaviour are the subject of intense research in cell biology. These effects have so far only been studied using substrate surfaces of discretely different topography. In this paper, we present a new approach to characterise cell growth on porous silicon gradients displaying pore sizes from several thousands to a few nanometers. This widely applicable format has the potential to significantly reduce sample numbers and hence analysis time and cost. Our gradient format was applied here to the culture of neuroblastoma cells in order to determine the effects of topography on cell growth parameters. Cell viability, morphology, length and area were characterised by fluorescence and scanning electron microscopy. We observed a dramatic influence of changes in surface topography on the density and morphology of adherent neuroblastoma cells. For example, pore size regimes where cell attachment is strongly discouraged were identified providing cues for the design of low-fouling surfaces. On pore size regimes more conducive to cell attachment, lateral cell-cell interactions crosslinked the cell layer to the substratum surface, while direct substrate-cell interactions were scarce. Finally, our study revealed that cells were sensitive to nanoscale surface topography with feature sizes of < 20 nm

  10. Nucleation of microcrystalline silicon: on the effect of the substrate surface nature and nano-imprint topography

    International Nuclear Information System (INIS)

    Palmans, J; Faraz, T; Verheijen, M A; Kessels, W M M; Creatore, M

    2016-01-01

    The nucleation of microcrystalline silicon thin-films has been investigated for various substrate natures and topographies. An earlier nucleation onset on aluminium-doped zinc oxide compared to glass substrates has been revealed, associated with a microstructure enhancement and reduced surface energy. Both aspects resulted in a larger crystallite density, following classical nucleation theory. Additionally, the nucleation onset was (plasma deposition) condition-dependent. Therefore, surface chemistry and its interplay with the plasma have been proposed as key factors affecting nucleation and growth. As such, preliminary proof of the substrate nature’s role in microcrystalline silicon growth has been provided. Subsequently, the impact of nano-imprint lithography prepared surfaces on the initial microcrystalline silicon growth has been explored. Strong topographies, with a 5-fold surface area enhancement, led to a reduction in crystalline volume fraction of ∼20%. However, no correlation between topography and microstructure has been found. Instead, the suppressed crystallization has been partially ascribed to a reduced growth flux, limited surface diffusion and increased incubation layer thickness, originating from the surface area enhancement when transiting from flat to nanostructured surfaces. Furthermore, fundamental plasma parameters have been reviewed in relation with surface topography. Strong topographies are not expected to affect the ion-to-growth flux ratio. However, the reduced ion flux (due to increasing surface area) further limited the already weak ion energy transfer to surface processes. Additionally, the atomic hydrogen flux, i.e. the driving force for microcrystalline growth, has been found to decrease by a factor of 10 when transiting from flat to nanostructured topography. This resulted in an almost 6-fold reduction of the hydrogen-to-growth flux ratio, a much stronger effect than the ion-to-growth flux ratio. Since previous studies regarding

  11. The geostrophic velocity field in shallow water over topography

    Science.gov (United States)

    Charnock, Henry; Killworth, Peter D.

    1998-01-01

    A recent note (Hopkins, T.S., 1996. A note on the geostrophic velocity field referenced to a point. Continental Shelf Research 16, 1621-1630) suggests a method for evaluating absolute pressure gradients in stratified water over topography. We demonstrate that this method requires no along-slope bottom velocity, in contradiction to what is usually observed, and that mass is not conserved.

  12. Discussion on the basement topography and its relation with the uranium mineralization in Xiangshan basin

    International Nuclear Information System (INIS)

    Long Qihua; Liu Qingcheng

    2002-01-01

    The depth of the basement and the relation between the basement relief shape and uranium mineralization are discussed by forward and inverse computation for large-scale gravity data in Xiangshan basin. The difference of basement topography result in the inhomogeneous distribution of uranium mineralization. The margin of the basement upheaval section and the variation place of basement topography are the favorable place for uranium mineralization. It's helpful to prospect deep and blind uranium deposit in Xiangshan basin

  13. Aeolian sand transport over complex intertidal bar-trough beach topography

    Science.gov (United States)

    Anthony, Edward J.; Ruz, Marie-Hélène; Vanhée, Stéphane

    2009-04-01

    Aeolian sand transport on macrotidal beaches with complex intertidal bar-trough topography (ridge-and-runnel beaches) was assessed from experiments in northern France that involved measurements of wind speed, saltation, surface moisture contents, and rates of sand trapping across surveyed portions of the upper beach profile. Beaches exhibiting intertidal bars and troughs are much more complex, topographically, than simple reflective or dissipative beaches. Furthermore, the intertidal bar-trough morphology commonly exhibits strong cross-shore variations in the moisture contents of the beach surface and in patterns of bedform development. The results of four 30-minute experiments, conducted along topographically surveyed portions of the upper beach-dune toe profile, show that troughs act as extremely efficient sand interceptors, because of their permanently saturated state, which also inhibits sand mobilisation. Troughs, thus, limit or segment the dry fetch during conditions of intermittent saltation. Flow lines, inferred from the wind profiles, suggest that complex interactions at the boundary layer are generated by the bar-trough topography. Troughs systematically appear to be characterised by air expansion, while bar faces generate ramp wind acceleration for onshore winds, and sometimes immediate downwind deceleration for offshore winds. These effects may also contribute to cross-shore variations in the rates of sand trapping. Finally, a simple conceptual model of effective fetch development, integrating the effects of the spring-neap tidal range and of gross bar-trough morphological variability over time, is proposed for bar-trough beaches. The model highlights the key theme of fetch segmentation induced by cross-shore differentiation in the moisture contents of the beach surface hinged on the complex topography of multiple bars and troughs.

  14. Reproducibility of UAV-based earth topography reconstructions based on Structure-from-Motion algorithms

    Science.gov (United States)

    Clapuyt, Francois; Vanacker, Veerle; Van Oost, Kristof

    2016-05-01

    Combination of UAV-based aerial pictures and Structure-from-Motion (SfM) algorithm provides an efficient, low-cost and rapid framework for remote sensing and monitoring of dynamic natural environments. This methodology is particularly suitable for repeated topographic surveys in remote or poorly accessible areas. However, temporal analysis of landform topography requires high accuracy of measurements and reproducibility of the methodology as differencing of digital surface models leads to error propagation. In order to assess the repeatability of the SfM technique, we surveyed a study area characterized by gentle topography with an UAV platform equipped with a standard reflex camera, and varied the focal length of the camera and location of georeferencing targets between flights. Comparison of different SfM-derived topography datasets shows that precision of measurements is in the order of centimetres for identical replications which highlights the excellent performance of the SfM workflow, all parameters being equal. The precision is one order of magnitude higher for 3D topographic reconstructions involving independent sets of ground control points, which results from the fact that the accuracy of the localisation of ground control points strongly propagates into final results.

  15. Micro-Topographies Promote Late Chondrogenic Differentiation Markers in the ATDC5 Cell Line.

    Science.gov (United States)

    Le, Bach Q; Vasilevich, Aliaksei; Vermeulen, Steven; Hulshof, Frits; Stamatialis, Dimitrios F; van Blitterswijk, Clemens A; de Boer, Jan

    2017-05-01

    Chemical and mechanical cues are well-established influencers of in vitro chondrogenic differentiation of ATDC5 cells. Here, we investigate the role of topographical cues in this differentiation process, a study not been explored before. Previously, using a library of surface micro-topographies we found some distinct patterns that induced alkaline phosphatase (ALP) production in human mesenchymal stromal cells. ALP is also a marker for hypertrophy, the end stage of chondrogenic differentiation preceding bone formation. Thus, we hypothesized that these patterns could influence end-stage chondrogenic differentiation of ATDC5 cells. In this study, we randomly selected seven topographies among the ALP influencing hits. Cells grown on these surfaces displayed varying nuclear shape and actin filament structure. When stimulated with insulin-transferrin-selenium (ITS) medium, nodule formation occurred and in some cases showed alignment to the topographical patterns. Gene expression analysis of cells growing on topographical surfaces in the presence of ITS medium revealed a downregulation of early markers and upregulation of late markers of chondrogenic differentiation compared to cells grown on a flat surface. In conclusion, we demonstrated that surface topography in addition to other cues can promote hypertrophic differentiation suitable for bone tissue engineering.

  16. High-throughput screening of microscale pitted substrate topographies for enhanced nonviral transfection efficiency in primary human fibroblasts

    DEFF Research Database (Denmark)

    Adler, Andrew F; Speidel, Alessondra T; Christoforou, Nicolas

    2011-01-01

    of microscale topographies, we have demonstrated an improvement in nonviral transfection efficiency for cells cultured on dense micropit patterns compared to smooth substrates, as verified with flow cytometry. A 25% increase in GFP(+) cells was observed independent of proliferation rate, accompanied by SEM....... Emerging literature has highlighted the influence of cell-topography interactions on modulation of many cell phenotypes, including protein expression and cytoskeletal behaviors implicated in endocytosis. Using high-throughput screening of primary human dermal fibroblasts cultured on a combinatorial library...... and confocal microscopy characterization to help explain the phenomenon qualitatively. This finding encourages researchers to investigate substrate topography as a new design consideration for the optimization of nonviral transfection systems....

  17. A three-dimensional Dirichlet-to-Neumann operator for water waves over topography

    Science.gov (United States)

    Andrade, D.; Nachbin, A.

    2018-06-01

    Surface water waves are considered propagating over highly variable non-smooth topographies. For this three dimensional problem a Dirichlet-to-Neumann (DtN) operator is constructed reducing the numerical modeling and evolution to the two dimensional free surface. The corresponding Fourier-type operator is defined through a matrix decomposition. The topographic component of the decomposition requires special care and a Galerkin method is provided accordingly. One dimensional numerical simulations, along the free surface, validate the DtN formulation in the presence of a large amplitude, rapidly varying topography. An alternative, conformal mapping based, method is used for benchmarking. A two dimensional simulation in the presence of a Luneburg lens (a particular submerged mound) illustrates the accurate performance of the three dimensional DtN operator.

  18. Sounds and silence: An optical topography study of language recognition at birth

    Science.gov (United States)

    Peña, Marcela; Maki, Atsushi; Kovaic, Damir; Dehaene-Lambertz, Ghislaine; Koizumi, Hideaki; Bouquet, Furio; Mehler, Jacques

    2003-09-01

    Does the neonate's brain have left hemisphere (LH) dominance for speech? Twelve full-term neonates participated in an optical topography study designed to assess whether the neonate brain responds specifically to linguistic stimuli. Participants were tested with normal infant-directed speech, with the same utterances played in reverse and without auditory stimulation. We used a 24-channel optical topography device to assess changes in the concentration of total hemoglobin in response to auditory stimulation in 12 areas of the right hemisphere and 12 areas of the LH. We found that LH temporal areas showed significantly more activation when infants were exposed to normal speech than to backward speech or silence. We conclude that neonates are born with an LH superiority to process specific properties of speech.

  19. EAARL Coastal Topography-Assateague Island National Seashore, 2008: Bare Earth

    Science.gov (United States)

    Bonisteel, Jamie M.; Nayegandhi, Amar; Brock, John C.; Wright, C. Wayne; Stevens, Sara; Yates, Xan; Klipp, Emily S.

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of lidar-derived bare-earth (BE) topography were produced as a collaborative effort between the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL; the National Park Service (NPS), Northeast Coastal and Barrier Network, Kingston, RI; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of the Assateague Island National Seashore in Maryland and Virginia, acquired March 24-25, 2008. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative airborne lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL) was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for sub-meter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the

  20. EAARL Coastal Topography-Assateague Island National Seashore, 2008: First Surface

    Science.gov (United States)

    Bonisteel, Jamie M.; Nayegandhi, Amar; Brock, John C.; Wright, C. Wayne; Stevens, Sara; Yates, Xan; Klipp, Emily S.

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of lidar-derived first-surface (FS) topography were produced as a collaborative effort between the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL; the National Park Service (NPS), Northeast Coastal and Barrier Network, Kingston, RI; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of the Assateague Island National Seashore in Maryland and Virginia, acquired March 24-25, 2008. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative airborne lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for sub-meter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the

  1. EAARL Coastal Topography - Northern Gulf of Mexico, 2007: Bare Earth

    Science.gov (United States)

    Smith, Kathryn E.L.; Nayegandhi, Amar; Wright, C. Wayne; Bonisteel, Jamie M.; Brock, John C.

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived bare earth (BE) topography were produced as a collaborative effort between the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL; the National Park Service (NPS), Gulf Coast Network, Lafayette, LA; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. The purpose of this project is to provide highly detailed and accurate datasets of select barrier islands and peninsular regions of Louisiana, Mississippi, Alabama, and Florida, acquired on June 27-30, 2007. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative airborne Lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) Lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive Lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit which provide for submeter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a Lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using

  2. The effect of Gonioscopy on keratometry and corneal surface topography

    Directory of Open Access Journals (Sweden)

    DeBroff Brian M

    2006-06-01

    Full Text Available Abstract Background Biometric procedures such as keratometry performed shortly after contact procedures like gonioscopy and applanation tonometry could affect the validity of the measurement. This study was conducted to understand the short-term effect of gonioscopy on corneal curvature measurements and surface topography based Simulated Keratometry and whether this would alter the power of an intraocular lens implant calculated using post-gonioscopy measurements. We further compared the effect of the 2-mirror (Goldmann and the 4-mirror (Sussman Gonioscopes. Methods A prospective clinic-based self-controlled comparative study. 198 eyes of 99 patients, above 50 years of age, were studied. Exclusion criteria included documented dry eye, history of ocular surgery or trauma, diabetes mellitus and connective tissue disorders. Auto-Keratometry and corneal topography measurements were obtained at baseline and at three follow-up times – within the first 5 minutes, between the 10th-15th minute and between the 20th-25th minute after intervention. One eye was randomized for intervention with the 2-mirror gonioscope and the other underwent the 4-mirror after baseline measurements. t-tests were used to examine differences between interventions and between the measurement methods. The sample size was calculated using an estimate of clinically significant lens implant power changes based on the SRK-II formula. Results Clinically and statistically significant steepening was observed in the first 5 minutes and in the 10–15 minute interval using topography-based Sim K. These changes were not present with the Auto-Keratometer measurements. Although changes from baseline were noted between 20 and 25 minutes topographically, these were not clinically or statistically significant. There was no significant difference between the two types of gonioscopes. There was greater variability in the changes from baseline using the topography-based Sim K readings

  3. Non-topography-guided PRK combined with CXL for the correction of refractive errors in patients with early stage keratoconus.

    Science.gov (United States)

    Fadlallah, Ali; Dirani, Ali; Chelala, Elias; Antonios, Rafic; Cherfan, George; Jarade, Elias

    2014-10-01

    To evaluate the safety and clinical outcome of combined non-topography-guided photorefractive keratectomy (PRK) and corneal collagen cross-linking (CXL) for the treatment of mild refractive errors in patients with early stage keratoconus. A retrospective, nonrandomized study of patients with early stage keratoconus (stage 1 or 2) who underwent simultaneous non-topography-guided PRK and CXL. All patients had at least 2 years of follow-up. Data were collected preoperatively and postoperatively at the 6-month, 1-year, and 2-year follow-up visit after combined non-topography-guided PRK and CXL. Seventy-nine patients (140 eyes) were included in the study. Combined non-topography-guided PRK and CXL induced a significant improvement in both visual acuity and refraction. Uncorrected distance visual acuity significantly improved from 0.39 ± 0.22 logMAR before combined non-topography-guided PRK and CXL to 0.12 ± 0.14 logMAR at the last follow-up visit (P PRK and CXL (P PRK and CXL is an effective and safe option for correcting mild refractive error and improving visual acuity in patients with early stable keratoconus. Copyright 2014, SLACK Incorporated.

  4. Water balance and topography predict fire and forest structure patterns

    Science.gov (United States)

    Van R. Kane; James A. Lutz; C. Alina Cansler; Nicholas A. Povak; Derek J. Churchill; Douglas F. Smith; Jonathan T. Kane; Malcolm P. North

    2015-01-01

    Mountainous topography creates fine-scale environmental mosaics that vary in precipitation, temperature, insolation, and slope position. This mosaic in turn influences fuel accumulation and moisture and forest structure. We studied these the effects of varying environmental conditions across a 27,104 ha landscape within Yosemite National Park, California, USA, on the...

  5. Calibration-free quantitative surface topography reconstruction in scanning electron microscopy

    NARCIS (Netherlands)

    Faber, E.T.; Martinez-Martinez, D.; Mansilla, C.; Ocelik, V.; De Hosson, J. Th. M.

    This work presents a new approach to obtain reliable surface topography reconstructions from 2D Scanning Electron Microscopy (SEM) images. In this method a set of images taken at different tilt angles are compared by means of digital image correlation (DlC). It is argued that the strength of the

  6. Modelling Earth's surface topography: decomposition of the static and dynamic components

    DEFF Research Database (Denmark)

    Guerri, Mattia; Cammarano, Fabio; Tackley, Paul J.

    2016-01-01

    . We account for pressure, temperature and compositional effects as inferred by mineral physics to relate seismic velocity with density. Mantle density models are coupled to crustal density distributions obtained with a similar methodology. We compute isostatic topography and associated residual...

  7. Basement Surface Faulting and Topography for Savannah River Site and Vicinity

    International Nuclear Information System (INIS)

    Cumbest, R.J.

    1998-01-01

    This report integrates the data from more than 60 basement borings and over 100 miles of seismic reflection profiling acquired on the Savannah River Site to map the topography of the basement (unweathered rock) surface and faulting recorded on this surface

  8. X-ray topography of uranium alloys; Topographie aux rayons X d'alliages d'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Le Naour, L [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1968-07-01

    A description of the structure of uranium alloys has been made using the data obtained by X-ray diffraction techniques derived from the Berg-Barrette method. In the first.stage the use of a monochromatic beam of X-rays having a very low divergence makes it possible to obtain very reproducible and exact numerical data concerning the grain and sub-grain sizes, and also the distribution of the sizes. It is thereby possible to detect any disorientation greater than 30 seconds of arc.The results obtained have been completed using a variable incidence device which- gives simultaneously an overall picture of a grain and an idea of the importance of internal disorientations; a more rigorous measurement of this latter parameter is then deduced from the Debye-Scherrer diagrams obtained using a fine-focus equipment. Observations are carried out on various one-phase or two phase uranium alloys which are compared successively to technical and to high-purity uranium. It is shown that the use of X-ray topographies, although limited in certain respects, allows a quantitative characterization of the structure. (author) [French] Une description des structures d'alliages d'uranium a ete faite a partir des donnees fournies par des techniques de diffraction de rayons X derivees de la methode de BERG--BARRETT. Dans une premiere etape, l'utilisation d'un faisceau de rayons X monochromatique et de tres faible divergence permet d'obtenir des donnees numeriques precises et tres reproductibles, relatives aux dimensions des grains, des sous-grains et a la distribution de ces grandeurs. Toute desorientation superieure a 30 secondes d'arc peut ainsi etre decelee. Les resultats obtenus ont ete completes en utilisant un montage a incidence variable, qui fournit simultanement l'image globale d'un grain et l'ordre de grandeur des desorientations internes; une mesure plus rigoureuse de ce dernier parametre se deduit ensuite de diagrammes DEBYE SHERRER realises avec un montage a foyer fin. Des

  9. The role of surface topography in predicting scattering at grazing incidence from optical surfaces

    International Nuclear Information System (INIS)

    Rehn, V.; Jones, V.O.; Elson, J.M.; Bennett, J.M.

    1980-01-01

    Monochromator design and the design of optical experiments at XUV and X-ray wavelengths are frequently limited by scattering from optical components, yet theoretical treatments are few and untested experimentally. This is partly due to the failure of scattering models used in the visible and near UV when the wavelength becomes comparable to, or smaller than, the topographic features on the surface, and partly it is due to the difficulty in measuring the topography on the required size scale. We briefly review the theoretical problems and prospects for accurately predicting both the magnitude and angular distribution of scattering at grazing incidence from optical surfaces. Experimental methods for determining and representing the surface topography are also reviewed, together with their limitations and ranges of applicability. Finally, the first results of our experiments, conducted recently at the Stanford Synchrotron Radiation Laboratory on the angular distribution of scattering by surfaces of known topography are presented and discussed, along with their potential implications for the theory of scattering, and for XUV and X-ray optical components. (orig.)

  10. Terrain Classification on Venus from Maximum-Likelihood Inversion of Parameterized Models of Topography, Gravity, and their Relation

    Science.gov (United States)

    Eggers, G. L.; Lewis, K. W.; Simons, F. J.; Olhede, S.

    2013-12-01

    Venus does not possess a plate-tectonic system like that observed on Earth, and many surface features--such as tesserae and coronae--lack terrestrial equivalents. To understand Venus' tectonics is to understand its lithosphere, requiring a study of topography and gravity, and how they relate. Past studies of topography dealt with mapping and classification of visually observed features, and studies of gravity dealt with inverting the relation between topography and gravity anomalies to recover surface density and elastic thickness in either the space (correlation) or the spectral (admittance, coherence) domain. In the former case, geological features could be delineated but not classified quantitatively. In the latter case, rectangular or circular data windows were used, lacking geological definition. While the estimates of lithospheric strength on this basis were quantitative, they lacked robust error estimates. Here, we remapped the surface into 77 regions visually and qualitatively defined from a combination of Magellan topography, gravity, and radar images. We parameterize the spectral covariance of the observed topography, treating it as a Gaussian process assumed to be stationary over the mapped regions, using a three-parameter isotropic Matern model, and perform maximum-likelihood based inversions for the parameters. We discuss the parameter distribution across the Venusian surface and across terrain types such as coronoae, dorsae, tesserae, and their relation with mean elevation and latitudinal position. We find that the three-parameter model, while mathematically established and applicable to Venus topography, is overparameterized, and thus reduce the results to a two-parameter description of the peak spectral variance and the range-to-half-peak variance (in function of the wavenumber). With the reduction the clustering of geological region types in two-parameter space becomes promising. Finally, we perform inversions for the JOINT spectral variance of

  11. Land cover and topography affect the land transformation caused by wind facilities.

    Directory of Open Access Journals (Sweden)

    Jay E Diffendorfer

    Full Text Available Land transformation (ha of surface disturbance/MW associated with wind facilities shows wide variation in its reported values. In addition, no studies have attempted to explain the variation across facilities. We digitized land transformation at 39 wind facilities using high resolution aerial imagery. We then modeled the effects of turbine size, configuration, land cover, and topography on the levels of land transformation at three spatial scales. The scales included strings (turbines with intervening roads only, sites (strings with roads connecting them, buried cables and other infrastructure, and entire facilities (sites and the roads or transmission lines connecting them to existing infrastructure. An information theoretic modeling approach indicated land cover and topography were well-supported variables affecting land transformation, but not turbine size or configuration. Tilled landscapes, despite larger distances between turbines, had lower average land transformation, while facilities in forested landscapes generally had the highest land transformation. At site and string scales, flat topographies had the lowest land transformation, while facilities on mesas had the largest. The results indicate the landscape in which the facilities are placed affects the levels of land transformation associated with wind energy. This creates opportunities for optimizing wind energy production while minimizing land cover change. In addition, the results indicate forecasting the impacts of wind energy on land transformation should include the geographic variables affecting land transformation reported here.

  12. Traveltime computation and imaging from rugged topography in 3D TTI media

    Science.gov (United States)

    Liu, Shaoyong; Wang, Huazhong; Yang, Qinyong; Fang, Wubao

    2014-02-01

    Foothill areas with rugged topography are of great potential for oil and gas seismic exploration, but subsurface imaging in these areas is very challenging. Seismic acquisition with larger offset and wider azimuth is necessary for seismic imaging in complex areas. However, the scale anisotropy in this case must be taken into account. To generalize the pre-stack depth migration (PSDM) to 3D transversely isotropic media with vertical symmetry axes (VTI) and tilted symmetry axes (TTI) from rugged topography, a new dynamic programming approach for the first-arrival traveltime computation method is proposed. The first-arrival time on every uniform mesh point is calculated based on Fermat's principle with simple calculus techniques and a systematic mapping scheme. In order to calculate the minimum traveltime, a set of nonlinear equations is solved on each mesh point, where the group velocity is determined by the group angle. Based on the new first-arrival time calculation method, the corresponding PSDM and migration velocity analysis workflow for 3D anisotropic media from rugged surface is developed. Numerical tests demonstrate that the proposed traveltime calculation method is effective in both VTI and TTI media. The migration results for 3D field data show that it is necessary to choose a smooth datum to remove the high wavenumber move-out components for PSDM with rugged topography and take anisotropy into account to achieve better images.

  13. Large-scale runoff generation – parsimonious parameterisation using high-resolution topography

    Directory of Open Access Journals (Sweden)

    L. Gong

    2011-08-01

    Full Text Available World water resources have primarily been analysed by global-scale hydrological models in the last decades. Runoff generation in many of these models are based on process formulations developed at catchments scales. The division between slow runoff (baseflow and fast runoff is primarily governed by slope and spatial distribution of effective water storage capacity, both acting at very small scales. Many hydrological models, e.g. VIC, account for the spatial storage variability in terms of statistical distributions; such models are generally proven to perform well. The statistical approaches, however, use the same runoff-generation parameters everywhere in a basin. The TOPMODEL concept, on the other hand, links the effective maximum storage capacity with real-world topography. Recent availability of global high-quality, high-resolution topographic data makes TOPMODEL attractive as a basis for a physically-based runoff-generation algorithm at large scales, even if its assumptions are not valid in flat terrain or for deep groundwater systems. We present a new runoff-generation algorithm for large-scale hydrology based on TOPMODEL concepts intended to overcome these problems. The TRG (topography-derived runoff generation algorithm relaxes the TOPMODEL equilibrium assumption so baseflow generation is not tied to topography. TRG only uses the topographic index to distribute average storage to each topographic index class. The maximum storage capacity is proportional to the range of topographic index and is scaled by one parameter. The distribution of storage capacity within large-scale grid cells is obtained numerically through topographic analysis. The new topography-derived distribution function is then inserted into a runoff-generation framework similar VIC's. Different basin parts are parameterised by different storage capacities, and different shapes of the storage-distribution curves depend on their topographic characteristics. The TRG algorithm

  14. Topography-guided treatment of irregular astigmatism with the wavelight excimer laser.

    Science.gov (United States)

    Jankov, Mirko R; Panagopoulou, Sophia I; Tsiklis, Nikolaos S; Hajitanasis, Georgos C; Aslanides, loannis M; Pallikaris, loannis G

    2006-04-01

    To evaluate the feasibility, safety, and predictability of correcting high irregular astigmatism in symptomatic eyes with the use of topography-guided photoablation. In a prospective, non-comparative case series, 16 consecutive symptomatic eyes of 11 patients with small hyperopic and myopic excimer laser optical zones, decentered and irregular ablation after corneal graft, and corneal scars were operated. Uncorrected visual acuity (UCVA), best spectacle-corrected visual acuity (BSCVA), manifest and cycloplegic refraction, and corneal topography, with asphericity and regularity, were analyzed. LASIK (n = 10) and photorefractive keratectomy (n = 6) were performed using the ALLEGRETTO WAVE excimer laser and T-CAT software (Topography-guided Customized Ablation Treatment; WaveLight Laser Technologie AG, Erlangen, Germany). In the LASIK group, UCVA improved from 0.81 +/- 0.68 IogMAR (20/130) (range: 0.2 to 2.0) to 0.29 +/- 0.21 logMAR (20/39) (range: 0.1 to 0.7) at 6 months. In the PRK group, mean UCVA improved from 0.89 +/- 0.87 IogMAR (20/157) (range: 0.1 to 2.0) to 0.42 +/- 0.35 logMAR (20/53) (range: 0.1 to 1.0) at 6 months. Best spectacle-corrected visual acuity did not change significantly in either group. One PRK patient lost one line of BSCVA. Refractive cylinder for the LASIK group improved from -2.53 +/- 1.71 diopters (D) (range: -0.75 to -5.75 D) to -1.28 +/- 0.99 D (range: 0 to -2.50 D) at 6 months. Refractive cylinder in the PRK group improved from -2.21 +/- 2.11 D (range: -0.25 to -5.50 D) to -1.10 +/- 0.42 D (range: -0.50 to -1.50 D). Index of surface irregularity showed a decrease from 60 +/- 12 (range: 46 to 89) to 50 +/- 9 (range: 32 to 63) at 6 months in the LASIK group whereas no significant change was noted in the PRK group. Subjective symptoms, such as glare, halos, ghost images, starbursts, and monocular diplopia, were not present postoperatively. Topography-guided LASIK and PRK resulted in a significant reduction of refractive cylinder and

  15. DNSC08 mean sea surface and mean dynamic topography models

    DEFF Research Database (Denmark)

    Andersen, Ole Baltazar; Knudsen, Per

    2009-01-01

    -2004. It is the first global MSS without a polar gap including all of the Arctic Ocean by including laser altimetry from the ICESat mission. The mean dynamic topography (MDT) is the quantity that bridges the geoid and the mean sea surface constraining large-scale ocean circulation. Here we present a new high...

  16. Navigating neurites utilize cellular topography of Schwann cell somas and processes for optimal guidance

    Science.gov (United States)

    Lopez-Fagundo, Cristina; Mitchel, Jennifer A.; Ramchal, Talisha D.; Dingle, Yu-Ting L.; Hoffman-Kim, Diane

    2013-01-01

    The path created by aligned Schwann cells (SCs) after nerve injury underlies peripheral nerve regeneration. We developed geometric bioinspired substrates to extract key information needed for axon guidance by deconstructing the topographical cues presented by SCs. We have previously reported materials that directly replicate SC topography with micro- and nanoscale resolution, but a detailed explanation of the means of directed axon extension on SC topography has not yet been described. Here, using neurite tracing and time-lapse microscopy, we analyzed the SC features that influence axon guidance. Novel poly(dimethylsiloxane) materials, fabricated via photolithography, incorporated bioinspired topographical components with the shapes and sizes of aligned SCs, namely somas and processes, where the length of the processes were varied but the soma geometry and dimensions were kept constant. Rat dorsal root ganglia neurites aligned to all materials presenting bioinspired topography after a 5 days in culture and to bioinspired materials presenting soma and process features after only 17 hours in culture. Key findings of this study were: Neurite response to underlying bioinspired topographical features was time dependent, where at 5 days, neurites aligned most strongly to materials presenting combinations of soma and process features, with higher than average density of either process or soma features; but at 17 hours they aligned more strongly to materials presenting average densities of soma and process features and to materials presenting process features only. These studies elucidate the influence of SC topography on axon guidance in a time-dependent setting and have implications for the optimization of nerve regeneration strategies. PMID:23557939

  17. Spatially explicit simulation of peatland hydrology and carbon dioxide exchange: Influence of mesoscale topography

    Science.gov (United States)

    Sonnentag, O.; Chen, J. M.; Roulet, N. T.; Ju, W.; Govind, A.

    2008-06-01

    Carbon dynamics in peatlands are controlled, in large part, by their wetness as defined by water table depth and volumetric liquid soil moisture content. A common type of peatland is raised bogs that typically have a multiple-layer canopy of vascular plants over a Sphagnum moss ground cover. Their convex form restricts water supply to precipitation and water is shed toward the margins, usually by lateral subsurface flow. The hydraulic gradient for lateral subsurface flow is governed by the peat surface topography at the mesoscale (˜200 m to 5 km). To investigate the influence of mesoscale topography on wetness, evapotranspiration (ET), and gross primary productivity (GPP) in a bog during the snow-free period, we compare the outputs of a further developed version of the daily Boreal Ecosystem Productivity Simulator (BEPS) with observations made at the Mer Bleue peatland, located near Ottawa, Canada. Explicitly considering mesoscale topography, simulated total ET and GPP correlate well with measured ET (r = 0.91) and derived gross ecosystem productivity (GEP; r = 0.92). Both measured ET and derived GEP are simulated similarly well when mesoscale topography is neglected, but daily simulated values are systematically underestimated by about 10% and 12% on average, respectively, due to greater wetness resulting from the lack of lateral subsurface flow. Owing to the differences in moss surface conductances of water vapor and carbon dioxide with increasing moss water content, the differences in the spatial patterns of simulated total ET and GPP are controlled by the mesotopographic position of the moss ground cover.

  18. Comparison of phase unwrapping algorithms for topography reconstruction based on digital speckle pattern interferometry

    Science.gov (United States)

    Li, Yuanbo; Cui, Xiaoqian; Wang, Hongbei; Zhao, Mengge; Ding, Hongbin

    2017-10-01

    Digital speckle pattern interferometry (DSPI) can diagnose the topography evolution in real-time, continuous and non-destructive, and has been considered as a most promising technique for Plasma-Facing Components (PFCs) topography diagnostic under the complicated environment of tokamak. It is important for the study of digital speckle pattern interferometry to enhance speckle patterns and obtain the real topography of the ablated crater. In this paper, two kinds of numerical model based on flood-fill algorithm has been developed to obtain the real profile by unwrapping from the wrapped phase in speckle interference pattern, which can be calculated through four intensity images by means of 4-step phase-shifting technique. During the process of phase unwrapping by means of flood-fill algorithm, since the existence of noise pollution, and other inevitable factors will lead to poor quality of the reconstruction results, this will have an impact on the authenticity of the restored topography. The calculation of the quality parameters was introduced to obtain the quality-map from the wrapped phase map, this work presents two different methods to calculate the quality parameters. Then quality parameters are used to guide the path of flood-fill algorithm, and the pixels with good quality parameters are given priority calculation, so that the quality of speckle interference pattern reconstruction results are improved. According to the comparison between the flood-fill algorithm which is suitable for speckle pattern interferometry and the quality-guided flood-fill algorithm (with two different calculation approaches), the errors which caused by noise pollution and the discontinuous of the strips were successfully reduced.

  19. Global patterns in Earth's dynamic topography since the Jurassic: the role of subducted slabs

    Directory of Open Access Journals (Sweden)

    M. Rubey

    2017-09-01

    Full Text Available We evaluate the spatial and temporal evolution of Earth's long-wavelength surface dynamic topography since the Jurassic using a series of high-resolution global mantle convection models. These models are Earth-like in terms of convective vigour, thermal structure, surface heat-flux and the geographic distribution of heterogeneity. The models generate a degree-2-dominated spectrum of dynamic topography with negative amplitudes above subducted slabs (i.e. circum-Pacific regions and southern Eurasia and positive amplitudes elsewhere (i.e. Africa, north-western Eurasia and the central Pacific. Model predictions are compared with published observations and subsidence patterns from well data, both globally and for the Australian and southern African regions. We find that our models reproduce the long-wavelength component of these observations, although observed smaller-scale variations are not reproduced. We subsequently define geodynamic rules for how different surface tectonic settings are affected by mantle processes: (i locations in the vicinity of a subduction zone show large negative dynamic topography amplitudes; (ii regions far away from convergent margins feature long-term positive dynamic topography; and (iii rapid variations in dynamic support occur along the margins of overriding plates (e.g. the western US and at points located on a plate that rapidly approaches a subduction zone (e.g. India and the Arabia Peninsula. Our models provide a predictive quantitative framework linking mantle convection with plate tectonics and sedimentary basin evolution, thus improving our understanding of how subduction and mantle convection affect the spatio-temporal evolution of basin architecture.

  20. Extracellular matrix elasticity and topography: material-based cues that affect cell function via conserved mechanisms

    Science.gov (United States)

    Janson, Isaac A.; Putnam, Andrew J.

    2014-01-01

    Chemical, mechanical, and topographic extracellular matrix (ECM) cues have been extensively studied for their influence on cell behavior. These ECM cues alter cell adhesion, cell shape, and cell migration, and activate signal transduction pathways to influence gene expression, proliferation, and differentiation. ECM elasticity and topography, in particular, have emerged as material properties of intense focus based on strong evidence these physical cue can partially dictate stem cell differentiation. Cells generate forces to pull on their adhesive contacts, and these tractional forces appear to be a common element of cells’ responses to both elasticity and topography. This review focuses on recently published work that links ECM topography and mechanics and their influence on differentiation and other cell behaviors, We also highlight signaling pathways typically implicated in mechanotransduction that are (or may be) shared by cells subjected to topographic cues. Finally, we conclude with a brief discussion of the potential implications of these commonalities for cell based therapies and biomaterial design. PMID:24910444

  1. Three-dimensional CaP/gelatin lattice scaffolds with integrated osteoinductive surface topographies for bone tissue engineering

    International Nuclear Information System (INIS)

    Nadeem, Danish; Su, Bo; Smith, Carol-Anne; Dalby, Matthew J; Dominic Meek, R M; Lin, Sien; Li, Gang

    2015-01-01

    Surface topography is known to influence stem cells and has been widely used as physical stimuli to modulate cellular behaviour including adhesion, proliferation and differentiation on 2D surfaces. Integration of well-defined surface topography into three-dimensional (3D) scaffolds for tissue engineering would be useful to direct the cell fate for intended applications. Technical challenges are remaining as how to fabricate such 3D scaffolds with controlled surface topography from a range of biodegradable and biocompatible materials. In this paper, a novel fabrication process using computer numerically controlled machining and lamination is reported to make 3D calcium phosphate/gelatin composite scaffolds with integrated surface micropatterns that are introduced by embossing prior to machining. Geometric analysis shows that this method is versatile and can be used to make a wide range of lattices with porosities that meet the basic requirements for bone tissue engineering. Both in vitro and in vivo studies show that micropatterned composite scaffolds with surfaces comprising 40 μm pits and 50 μm grooves were optimal for improved osteogenesis. The results have demonstrated the potential of a novel fabrication process for producing cell-instructive scaffolds with designed surface topographies to induce specific tissue regeneration. (paper)

  2. A novel approach to characterizing the surface topography of niobium superconducting radio frequency (SRF) accelerator cavities

    Science.gov (United States)

    Tian, Hui; Ribeill, Guilhem; Xu, Chen; Reece, Charles E.; Kelley, Michael J.

    2011-03-01

    As superconducting niobium radio-frequency (SRF) cavities approach fundamental material limits, there is increased interest in understanding the details of topographical influences on realized performance limitations. Micro- and nano-roughness are implicated in both direct geometrical field enhancements as well as complications of the composition of the 50 nm surface layer in which the super-currents typically flow. Interior surface chemical treatments such as buffered chemical polishing (BCP) and electropolishing (EP) used to remove mechanical damage leave surface topography, including pits and protrusions of varying sharpness. These may promote RF magnetic field entry, locally quenching superconductivity, so as to degrade cavity performance. A more incisive analysis of surface topography than the widely used average roughness is needed. In this study, a power spectral density (PSD) approach based on Fourier analysis of surface topography data acquired by both stylus profilometry and atomic force microscopy (AFM) is introduced to distinguish the scale-dependent smoothing effects, resulting in a novel qualitative and quantitative description of Nb surface topography. The topographical evolution of the Nb surface as a function of different steps of well-controlled EP is discussed. This study will greatly help to identify optimum EP parameter sets for controlled and reproducible surface levelling of Nb for cavity production.

  3. A novel approach to characterizing the surface topography of niobium superconducting radio frequency (SRF) accelerator cavities

    International Nuclear Information System (INIS)

    Tian Hui; Ribeill, Guilhem; Xu Chen; Reece, Charles E.; Kelley, Michael J.

    2011-01-01

    As superconducting niobium radio-frequency (SRF) cavities approach fundamental material limits, there is increased interest in understanding the details of topographical influences on realized performance limitations. Micro- and nano-roughness are implicated in both direct geometrical field enhancements as well as complications of the composition of the 50 nm surface layer in which the super-currents typically flow. Interior surface chemical treatments such as buffered chemical polishing (BCP) and electropolishing (EP) used to remove mechanical damage leave surface topography, including pits and protrusions of varying sharpness. These may promote RF magnetic field entry, locally quenching superconductivity, so as to degrade cavity performance. A more incisive analysis of surface topography than the widely used average roughness is needed. In this study, a power spectral density (PSD) approach based on Fourier analysis of surface topography data acquired by both stylus profilometry and atomic force microscopy (AFM) is introduced to distinguish the scale-dependent smoothing effects, resulting in a novel qualitative and quantitative description of Nb surface topography. The topographical evolution of the Nb surface as a function of different steps of well-controlled EP is discussed. This study will greatly help to identify optimum EP parameter sets for controlled and reproducible surface levelling of Nb for cavity production.

  4. Multiscale influence of woody riparian vegetation on fluvial topography quantified with ground-based and airborne lidar

    Science.gov (United States)

    Bywater-Reyes, Sharon; Wilcox, Andrew C.; Diehl, Rebecca M.

    2017-06-01

    Coupling between riparian vegetation and river processes can result in the coevolution of plant communities and channel morphology. Quantifying biotic-abiotic interactions remains difficult because of the challenges in making and analyzing appropriately scaled observations. We measure the influence of woody vegetation on channel topography at the patch and reach scales in a sand bed, dryland river system (Santa Maria River, Arizona) with native Populus and invasive Tamarix. At the patch scale, we use ground-based lidar to relate plant morphology to "tail bars" formed in the lee of vegetation. We find vegetation roughness density (λf) to most influence tail-bar shape and size, suggesting coherent flow structures associated with roughness density are responsible for sediment deposition at this scale. Using airborne lidar, we test whether relationships between topography and vegetation morphology observed at the patch scale are persistent at the reach scale. We find that elevation of the channel (relative to the local mean) covaries with a metric of vegetation density, indicating analogous influences of vegetation density on topography across spatial scales. While these results are expected, our approach provides insight regarding interactions between woody riparian vegetation and channel topography at multiple scales, and a means to quantify such interactions for use in other field settings.

  5. Pre-LGM Northern Hemisphere ice sheet topography

    Directory of Open Access Journals (Sweden)

    J. Kleman

    2013-10-01

    Full Text Available We here reconstruct the paleotopography of Northern Hemisphere ice sheets during the glacial maxima of marine isotope stages (MIS 5b and 4.We employ a combined approach, blending geologically based reconstruction and numerical modeling, to arrive at probable ice sheet extents and topographies for each of these two time slices. For a physically based 3-D calculation based on geologically derived 2-D constraints, we use the University of Maine Ice Sheet Model (UMISM to calculate ice sheet thickness and topography. The approach and ice sheet modeling strategy is designed to provide robust data sets of sufficient resolution for atmospheric circulation experiments for these previously elusive time periods. Two tunable parameters, a temperature scaling function applied to a spliced Vostok–GRIP record, and spatial adjustment of the climatic pole position, were employed iteratively to achieve a good fit to geological constraints where such were available. The model credibly reproduces the first-order pattern of size and location of geologically indicated ice sheets during marine isotope stages (MIS 5b (86.2 kyr model age and 4 (64 kyr model age. From the interglacial state of two north–south obstacles to atmospheric circulation (Rocky Mountains and Greenland, by MIS 5b the emergence of combined Quebec–central Arctic and Scandinavian–Barents-Kara ice sheets had increased the number of such highland obstacles to four. The number of major ice sheets remained constant through MIS 4, but the merging of the Cordilleran and the proto-Laurentide Ice Sheet produced a single continent-wide North American ice sheet at the LGM.

  6. Mars topography: bulk statistics and spectral scaling

    International Nuclear Information System (INIS)

    Nikora, V.; Goring, D.

    2004-01-01

    In this paper we present a systematic study of the Mars topography focusing on the statistical distributions and maps of the 5 deg.x 5 deg.cell-averaged mean elevations, standard deviations, skewness and kurtosis coefficients, and power spectra. Altogether, the obtained data suggest that at a 5 deg.x 5 deg.cell scale a large portion of the Martian surface may be reasonably considered as a Gaussian random field with a three-range spectrum consisting: (1) a high-energy low-wave-number range (∼0.003 -1 ) where the spectrum may deviate from a power law and attain a maximum; (2) scaling range 1 (∼0.03 -1 ) where the spectrum may be well approximated as S(k)∝k -β 1 ; and (3) scaling range 2 (∼(0.2-0.3) -1 ) where the spectrum may be also approximated as a power function but with a different exponent, i.e., S(k)∝k -β 2 . The most probable values for the exponents are β 1 =(2.2-2.4) and β 2 =3.8. The data show that the separation of these two scaling ranges most frequently occurs at L c ∼3.3 km. At a scale larger than the 5 deg.x 5 deg.cell scale the topography is highly intermittent with patchy spatial distributions of the key statistical moments. This patchiness is superimposed with systematic north-to-south trends in statistical properties, reflecting the crustal dichotomy of the planet and large-scale differences in the surface-forming processes

  7. ATM Coastal Topography-Louisiana, 2001: UTM Zone 15 (Part 1 of 2)

    Science.gov (United States)

    Yates, Xan; Nayegandhi, Amar; Brock, John C.; Sallenger, A.H.; Klipp, Emily S.; Wright, C. Wayne

    2010-01-01

    These remotely sensed, geographically referenced elevation measurements of lidar-derived first-surface (FS) topography were produced collaboratively by the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of a portion of the Louisiana coastline beach face within UTM Zone 15, from Isles Dernieres to Grand Isle, acquired September 7 and 10, 2001. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative scanning lidar instrument originally developed by NASA, and known as the Airborne Topographic Mapper (ATM), was used during data acquisition. The ATM system is a scanning lidar system that measures high-resolution topography of the land surface and incorporates a green-wavelength laser operating at pulse rates of 2 to 10 kilohertz. Measurements from the laser-ranging device are coupled with data acquired from inertial navigation system (INS) attitude sensors and differentially corrected global positioning system (GPS) receivers to measure topography of the surface at accuracies of +/-15 centimeters. The nominal ATM platform is a Twin Otter or P-3 Orion aircraft, but the instrument may be deployed on a range of light aircraft. Elevation measurements were collected over the survey area using the ATM system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last

  8. ATM Coastal Topography - Louisiana, 2001: UTM Zone 16 (Part 2 of 2)

    Science.gov (United States)

    Yates, Xan; Nayegandhi, Amar; Brock, John C.; Sallenger, Asbury H.; Klipp, Emily S.; Wright, C. Wayne

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of lidar-derived first-surface (FS) topography were produced collaboratively by the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of a portion of the Louisiana coastline beach face within UTM Zone 16, from Grand Isle to the Chandeleur Islands, acquired September 7 and 9, 2001. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative scanning lidar instrument originally developed by NASA, and known as the Airborne Topographic Mapper (ATM), was used during data acquisition. The ATM system is a scanning lidar system that measures high-resolution topography of the land surface and incorporates a green-wavelength laser operating at pulse rates of 2 to 10 kilohertz. Measurements from the laser-ranging device are coupled with data acquired from inertial navigation system (INS) attitude sensors and differentially corrected global positioning system (GPS) receivers to measure topography of the surface at accuracies of +/-15 centimeters. The nominal ATM platform is a Twin Otter or P-3 Orion aircraft, but the instrument may be deployed on a range of light aircraft. Elevation measurements were collected over the survey area using the ATM system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and

  9. Low-Amplitude Topographic Features and Textures on the Moon: Initial Results from Detrended Lunar Orbiter Laser Altimeter (LOLA) Topography

    Science.gov (United States)

    Kreslavsky, Mikhail A.; Head, James W.; Neumann, Gregory A.; Zuber, Maria T.; Smith, David E.

    2016-01-01

    Global lunar topographic data derived from ranging measurements by the Lunar Orbiter Laser Altimeter (LOLA) onboard LRO mission to the Moon have extremely high vertical precision. We use detrended topography as a means for utilization of this precision in geomorphological analysis. The detrended topography was calculated as a difference between actual topography and a trend surface defined as a median topography in a circular sliding window. We found that despite complicated distortions caused by the non-linear nature of the detrending procedure, visual inspection of these data facilitates identification of low-amplitude gently-sloping geomorphic features. We present specific examples of patterns of lava flows forming the lunar maria and revealing compound flow fields, a new class of lava flow complex on the Moon. We also highlight the identification of linear tectonic features that otherwise are obscured in the images and topographic data processed in a more traditional manner.

  10. AFM topographies of densely packed nanoparticles: a quick way to determine the lateral size distribution by autocorrelation function analysis

    International Nuclear Information System (INIS)

    Fekete, L.; Kůsová, K.; Petrák, V.; Kratochvílová, I.

    2012-01-01

    The distribution of sizes is one of the basic characteristics of nanoparticles. Here, we propose a novel way to determine the lateral distribution of sizes from AFM topographies. Our algorithm is based on the autocorrelation function and can be applied both on topographies containing spatially separated and densely packed nanoparticles as well as on topographies of polycrystalline films. As no manual treatment is required, this algorithm can be easily automatable for batch processing. The algorithm works in principle with any kind of spatially mapped information (AFM current maps, optical microscope images, etc.), and as such has no size limitations. However, in the case of AFM topographies, the tip/sample convolution effects will be the factor limiting the smallest size to which the algorithm is applicable. Here, we demonstrate the usefulness of this algorithm on objects with sizes ranging between 20 nm and 1.5 μm.

  11. Dynamic wetting and spreading and the role of topography

    International Nuclear Information System (INIS)

    McHale, Glen; Newton, Michael I; Shirtcliffe, Neil J

    2009-01-01

    The spreading of a droplet of a liquid on a smooth solid surface is often described by the Hoffman-de Gennes law, which relates the edge speed, v e , to the dynamic and equilibrium contact angles θ and θ e through v e ∝θ(θ 2 -θ e 2 ). When the liquid wets the surface completely and the equilibrium contact angle vanishes, the edge speed is proportional to the cube of the dynamic contact angle. When the droplets are non-volatile this law gives rise to simple power laws with time for the contact angle and other parameters in both the capillary and gravity dominated regimes. On a textured surface, the equilibrium state of a droplet is strongly modified due to the amplification of the surface chemistry induced tendencies by the topography. The most common example is the conversion of hydrophobicity into superhydrophobicity. However, when the surface chemistry favors partial wetting, topography can result in a droplet spreading completely. A further, frequently overlooked consequence of topography is that the rate at which an out-of-equilibrium droplet spreads should also be modified. In this report, we review ideas related to the idea of topography induced wetting and consider how this may relate to dynamic wetting and the rate of droplet spreading. We consider the effect of the Wenzel and Cassie-Baxter equations on the driving forces and discuss how these may modify power laws for spreading. We relate the ideas to both the hydrodynamic viscous dissipation model and the molecular-kinetic theory of spreading. This suggests roughness and solid surface fraction modified Hoffman-de Gennes laws relating the edge speed to the dynamic and equilibrium contact angle. We also consider the spreading of small droplets and stripes of non-volatile liquids in the capillary regime and large droplets in the gravity regime. In the case of small non-volatile droplets spreading completely, a roughness modified Tanner's law giving the dependence of dynamic contact angle on time is

  12. Topography and biological noise determine acoustic detectability on coral reefs

    KAUST Repository

    Cagua, Edgar F.

    2013-08-19

    Acoustic telemetry is an increasingly common tool for studying the movement patterns, behavior and site fidelity of marine organisms, but to accurately interpret acoustic data, the variability, periodicity and range of detectability between acoustic tags and receivers must be understood. The relative and interactive effects of topography with biological and environmental noise have not been quantified on coral reefs. We conduct two long-term range tests (1- and 4-month duration) on two different reef types in the central Red Sea to determine the relative effect of distance, depth, topography, time of day, wind, lunar phase, sea surface temperature and thermocline on detection probability. Detectability, as expected, declines with increasing distance between tags and receivers, and we find average detection ranges of 530 and 120 m, using V16 and V13 tags, respectively, but the topography of the reef can significantly modify this relationship, reducing the range by ~70 %, even when tags and receivers are in line-of-sight. Analyses that assume a relationship between distance and detections must therefore be used with care. Nighttime detection range was consistently reduced in both locations, and detections varied by lunar phase in the 4-month test, suggesting a strong influence of biological noise (reducing detection probability up to 30 %), notably more influential than other environmental noises, including wind-driven noise, which is normally considered important in open-water environments. Analysis of detections should be corrected in consideration of the diel patterns we find, and range tests or sentinel tags should be used for more than 1 month to quantify potential changes due to lunar phase. Some studies assume that the most usual factor limiting detection range is weather-related noise; this cannot be extrapolated to coral reefs. © 2013 Springer-Verlag Berlin Heidelberg.

  13. Lithography-Free Fabrication of Reconfigurable Substrate Topography For Contact Guidance

    Science.gov (United States)

    Pholpabu, Pitirat; Kustra, Stephen; Wu, Haosheng; Balasubramanian, Aditya; Bettinger, Christopher J.

    2014-01-01

    Mammalian cells detect and respond to topographical cues presented in natural and synthetic biomaterials both in vivo and in vitro. Micro- and nano-structures influence the adhesion, morphology, proliferation, migration, and differentiation of many phenotypes. Although the mechanisms that underpin cell-topography interactions remain elusive, synthetic substrates with well-defined micro- and nano-structures are important tools to elucidate the origin of these responses. Substrates with reconfigurable topography are desirable because programmable cues can be harmonized with dynamic cellular responses. Here we present a lithography-free fabrication technique that can reversibly present topographical cues using an actuation mechanism that minimizes the confounding effects of applied stimuli. This method utilizes strain-induced buckling instabilities in bi-layer substrate materials with rigid uniform silicon oxide membranes that are thermally deposited on elastomeric substrates. The resulting surfaces are capable of reversible of substrates between three distinct states: flat substrates (A = 1.53 ± 0.55 nm, Rms = 0.317 ± 0.048 nm); parallel wavy grating arrays (A|| = 483.6 ± 7.8 nm and λ|| = 4.78 ± 0.16 μm); perpendicular wavy grating arrays (A⊥ = 429.3 ± 5.8 nm; λ⊥ = 4.95 ± 0.36 μm). The cytoskeleton dynamics of 3T3 fibroblasts in response to these surfaces was measured using optical microscopy. Fibroblasts cultured on dynamic substrates that are switched from flat to topographic features (FLAT-WAVY) exhibit a robust and rapid change in gross morphology as measured by a reduction in circularity from 0.30 ± 0.13 to 0.15 ± 0.08 after 5 min. Conversely, dynamic substrate sequences of FLAT-WAVY-FLAT do not significantly alter the gross steady-state morphology. Taken together, substrates that present topographic structures reversibly can elucidate dynamic aspects of cell-topography interactions. PMID:25468368

  14. Surface topography and ultrastructural changes of mucinous carcinoma breast cells.

    Science.gov (United States)

    Voloudakis, G E; Baltatzis, G E; Agnantis, N J; Arnogianaki, N; Misitzis, J; Voloudakis-Baltatzis, I

    2007-01-01

    Mucinous carcinoma of the breast (MCB) is histologically classified into 2 groups: (1) pure MCB and (2) mixed MCB. Pure MCB carries a better diagnosis than mixed MCB. This research relates to the cell surface topography and ultrastructure of the cells in the above cases and aims to find the differences between them, by means of two methods: scanning electron microscopy (SEM) and transmission electron microscopy (TEM). For the SEM examination, it was necessary to initially culture the MCB tissues and then proceed with the usual SEM method. In contrast, for the TEM technique, MCB tissues were initially fixed followed by the classic TEM method. The authors found the topography of pure MCB cases to be without nodes. The cell membrane was smooth, with numerous pores and small ruffles that covered the entire cell. The ultrastructural appearance of the same cases was with a normal cell membrane containing abundant collagen fibers. They also had many small vesicles containing mucin as well as secretory droplets. In contrast the mixed MCB had a number of lymph nodes and their cell surface topography showed stronger changes such as microvilli, numerous blebs, ruffles and many long projections. Their ultrastructure showed very long microvilli with large cytoplasmic inclusions and extracellular mucin collections, electron-dense material vacuoles, and many important cytoplasmic organelles. An important fact is that mixed MCB also contains areas of infiltrating ductal carcinoma. These cells of the cytoplasmic organelles are clearly responsible for the synthesis, storage, and secretion of the characteristic mucin of this tumor type. Evidently, this abnormal mucin production and the abundance of secretory granules along with the long projections observed in the topographical structure might be responsible for transferring tumor cells to neighboring organs, thus being responsible for metastatic disease.

  15. Topography-specific isotropic tunneling in nanoparticle monolayer with sub-nm scale crevices.

    Science.gov (United States)

    Wang, Guisheng; Jiao, Weihong; Yi, Lizhi; Zhang, Yuejiao; Wu, Ke; Zhang, Chao; Lv, Xianglong; Qian, Lihua; Li, Jianfeng; Yuan, Songliu; Chen, Liang

    2016-10-07

    Material used in flexible devices may experience anisotropic strain with identical magnitude, outputting coherent signals that tend to have a serious impact on device reliability. In this work, the surface topography of the nanoparticles (NPs) is proposed to be a parameter to control the performance of strain gauge based on tunneling behavior. In contrast to anisotropic tunneling in a monolayer of spherical NPs, electron tunneling in a monolayer of urchin-like NPs actually exhibits a nearly isotropic response to strain with different loading orientations. Isotropic tunneling of the urchin-like NPs is caused by the interlocked pikes of these urchin-like NPs in a random manner during external mechanical stimulus. Topography-dependent isotropic tunneling in two dimensions reported here opens a new opportunity to create highly reliable electronics with superior performance.

  16. [Effect of irregular bedrock topography on the soil profile pattern of water content in a Karst hillslope.

    Science.gov (United States)

    Jia, Jin Tian; Fu, Zhi Yong; Chen, Hong Song; Wang, Ke Lin; Zhou, Wei Jun

    2016-06-01

    Based on three manually excavated trenches (projection length of 21 m, width of 1 m) along a typical Karst hillslope, the changing trends for soil-bedrock structure, average water content of soil profile and soil-bedrock interface water content along each individual trench were studied. The effect of irregular bedrock topography on soil moisture distribution was discussed. The results showed that the surface topography was inconsistent with the bedrock topography in the Karst hill-slopes. The bedrock topography was highly irregular with a maximum variation coefficient of 82%. The distribution pattern of soil profile of moisture was significantly affected by the underlying undulant bedrock. The soil water content was related to slope position when the fluctuation was gentle, and displayed a linear increase from upslope to downslope. When the bedrock fluctuation increased, the downslope linear increasing trend for soil water content became unapparent, and the spatial continuity of soil moisture was weakened. The soil moisture was converged in rock dents and cracks. The average water content of soil profile was significantly positively correlated with the soil-bedrock interface water content, while the latter responded more sensitively to the bedrock fluctuation.

  17. Synergistic responses of superficial chemistry and micro topography of titanium created by wire-type electric discharge machining.

    Science.gov (United States)

    Kataoka, Yu; Tamaki, Yukimichi; Miyazaki, Takashi

    2011-01-01

    Wire-type electric discharge machining has been applied to the manufacture of endosseous titanium implants as this computer associated technique allows extremely accurate complex sample shaping with an optimal micro textured surface during the processing. Since the titanium oxide layer is sensitively altered by each processing, the authors hypothesized that this technique also up-regulates biological responses through the synergistic effects of the superficial chemistry and micro topography. To evaluate the respective in vitro cellular responses on the superficial chemistry and micro topography of titanium surface processed by wire-type electric discharge, we used titanium-coated epoxy resin replica of the surface. An oxide layer on the titanium surface processed by wire-type electric discharge activated the initial responses of osteoblastic cells through an integrin-mediated mechanism. Since the mRNA expression of ALP on those replicas was up-regulated compared to smooth titanium samples, the micro topography of a titanium surface processed by wire-type electric discharge promotes the osteogenic potential of cells. The synergistic response of the superficial chemistry and micro topography of titanium processed by wire-type electric discharge was demonstrated in this study.

  18. Measuring surface topography with scanning electron microscopy. I. EZEImage: a program to obtain 3D surface data.

    Science.gov (United States)

    Ponz, Ezequiel; Ladaga, Juan Luis; Bonetto, Rita Dominga

    2006-04-01

    Scanning electron microscopy (SEM) is widely used in the science of materials and different parameters were developed to characterize the surface roughness. In a previous work, we studied the surface topography with fractal dimension at low scale and two parameters at high scale by using the variogram, that is, variance vs. step log-log graph, of a SEM image. Those studies were carried out with the FERImage program, previously developed by us. To verify the previously accepted hypothesis by working with only an image, it is indispensable to have reliable three-dimensional (3D) surface data. In this work, a new program (EZEImage) to characterize 3D surface topography in SEM has been developed. It uses fast cross correlation and dynamic programming to obtain reliable dense height maps in a few seconds which can be displayed as an image where each gray level represents a height value. This image can be used for the FERImage program or any other software to obtain surface topography characteristics. EZEImage also generates anaglyph images as well as characterizes 3D surface topography by means of a parameter set to describe amplitude properties and three functional indices for characterizing bearing and fluid properties.

  19. Surface topography of 1€ coin measured by stereo-PIXE

    International Nuclear Information System (INIS)

    Gholami-Hatam, E.; Lamehi-Rachti, M.; Vavpetič, P.; Grlj, N.; Pelicon, P.

    2013-01-01

    We demonstrate the stereo-PIXE method by measurement of surface topography of the relief details on 1€ coin. Two X-ray elemental maps were simultaneously recorded by two X-ray detectors positioned at the left and the right side of the proton microbeam. The asymmetry of the yields in the pixels of the two X-ray maps occurs due to different photon attenuation on the exit travel path of the characteristic X-rays from the point of emission through the sample into the X-ray detectors. In order to calibrate the inclination angle with respect to the X-ray asymmetry, a flat inclined surface model was at first applied for the sample in which the matrix composition and the depth elemental concentration profile is known. After that, the yield asymmetry in each image pixel was transferred into corresponding local inclination angle using calculated dependence of the asymmetry on the surface inclination. Finally, the quantitative topography profile was revealed by integrating the local inclination angle over the lateral displacement of the probing beam

  20. CASTp 3.0: computed atlas of surface topography of proteins.

    Science.gov (United States)

    Tian, Wei; Chen, Chang; Lei, Xue; Zhao, Jieling; Liang, Jie

    2018-06-01

    Geometric and topological properties of protein structures, including surface pockets, interior cavities and cross channels, are of fundamental importance for proteins to carry out their functions. Computed Atlas of Surface Topography of proteins (CASTp) is a web server that provides online services for locating, delineating and measuring these geometric and topological properties of protein structures. It has been widely used since its inception in 2003. In this article, we present the latest version of the web server, CASTp 3.0. CASTp 3.0 continues to provide reliable and comprehensive identifications and quantifications of protein topography. In addition, it now provides: (i) imprints of the negative volumes of pockets, cavities and channels, (ii) topographic features of biological assemblies in the Protein Data Bank, (iii) improved visualization of protein structures and pockets, and (iv) more intuitive structural and annotated information, including information of secondary structure, functional sites, variant sites and other annotations of protein residues. The CASTp 3.0 web server is freely accessible at http://sts.bioe.uic.edu/castp/.

  1. Relationship between topography, land use and soil moisture in loess hillslopes

    NARCIS (Netherlands)

    Sheikh, V.; Loon, van E.E.; Stroosnijder, L.

    2013-01-01

    The relationship between topography, land use, and topsoil moisture storage is investigated for a small catchment with undulating deep loess hilslopes in the south of the Netherlands. For a period of 10 months, soil moisture profiles have been measured weekly at 15 locations throughout the

  2. Photoluminescence topography of fluorescent SiC and its corresponding source crystals

    DEFF Research Database (Denmark)

    Wilhelm, M.; Kaiser, M.; Jokubavicus, V.

    2013-01-01

    The preparation and application of co-doped polycrystalline SiC as source in sublimation growth of fluorescent layers is a complex topic. Photoluminescence topographies of luminescent 6H-SiC layers and their corresponding source crystals have been studied in order to investigate the dependence...

  3. Effects of realistic topography on the ground motion of the Colombian Andes - A case study at the Aburrá Valley, Antioquia

    Science.gov (United States)

    Restrepo, Doriam; Bielak, Jacobo; Serrano, Ricardo; Gómez, Juan; Jaramillo, Juan

    2016-03-01

    This paper presents a set of deterministic 3-D ground motion simulations for the greater metropolitan area of Medellín in the Aburrá Valley, an earthquake-prone region of the Colombian Andes that exhibits moderate-to-strong topographic irregularities. We created the velocity model of the Aburrá Valley region (version 1) using the geological structures as a basis for determining the shear wave velocity. The irregular surficial topography is considered by means of a fictitious domain strategy. The simulations cover a 50 × 50 × 25 km3 volume, and four Mw = 5 rupture scenarios along a segment of the Romeral fault, a significant source of seismic activity in Colombia. In order to examine the sensitivity of ground motion to the irregular topography and the 3-D effects of the valley, each earthquake scenario was simulated with three different models: (i) realistic 3-D velocity structure plus realistic topography, (ii) realistic 3-D velocity structure without topography, and (iii) homogeneous half-space with realistic topography. Our results show how surface topography affects the ground response. In particular, our findings highlight the importance of the combined interaction between source-effects, source-directivity, focusing, soft-soil conditions, and 3-D topography. We provide quantitative evidence of this interaction and show that topographic amplification factors can be as high as 500 per cent at some locations. In other areas within the valley, the topographic effects result in relative reductions, but these lie in the 0-150 per cent range.

  4. Topography of calcium phosphate ceramics regulates primary cilia length and TGF receptor recruitment associated with osteogenesis.

    Science.gov (United States)

    Zhang, Jingwei; Dalbay, Melis T; Luo, Xiaoman; Vrij, Erik; Barbieri, Davide; Moroni, Lorenzo; de Bruijn, Joost D; van Blitterswijk, Clemens A; Chapple, J Paul; Knight, Martin M; Yuan, Huipin

    2017-07-15

    The surface topography of synthetic biomaterials is known to play a role in material-driven osteogenesis. Recent studies show that TGFβ signalling also initiates osteogenic differentiation. TGFβ signalling requires the recruitment of TGFβ receptors (TGFβR) to the primary cilia. In this study, we hypothesize that the surface topography of calcium phosphate ceramics regulates stem cell morphology, primary cilia structure and TGFβR recruitment to the cilium associated with osteogenic differentiation. We developed a 2D system using two types of tricalcium phosphate (TCP) ceramic discs with identical chemistry. One sample had a surface topography at micron-scale (TCP-B, with a bigger surface structure dimension) whilst the other had a surface topography at submicron scale (TCP-S, with a smaller surface structure dimension). In the absence of osteogenic differentiation factors, human bone marrow stromal cells (hBMSCs) were more spread on TCP-S than on TCP-B with alterations in actin organization and increased primary cilia prevalence and length. The cilia elongation on TCP-S was similar to that observed on glass in the presence of osteogenic media and was followed by recruitment of transforming growth factor-β RII (p-TGFβ RII) to the cilia axoneme. This was associated with enhanced osteogenic differentiation of hBMSCs on TCP-S, as shown by alkaline phosphatase activity and gene expression for key osteogenic markers in the absence of additional osteogenic growth factors. Similarly, in vivo after a 12-week intramuscular implantation in dogs, TCP-S induced bone formation while TCP-B did not. It is most likely that the surface topography of calcium phosphate ceramics regulates primary cilia length and ciliary recruitment of p-TGFβ RII associated with osteogenesis and bone formation. This bioengineering control of osteogenesis via primary cilia modulation may represent a new type of biomaterial-based ciliotherapy for orthopedic, dental and maxillofacial surgery

  5. The effect of highly variable topography on the spatial distribution of Aniba perutilis (Lauraceae in the Colombian Andes

    Directory of Open Access Journals (Sweden)

    José C. Fagua

    2013-03-01

    Full Text Available Topography is a factor that can significantly affect the diversity and the distribution of trees species in tropical forests. Aniba perutilis, a timber species listed as vulnerable to extinction, is widely distributed in Andean forest fragments, especially in those with highly variable topography. Based on field surveys and logistic regression analyses, we studied the population structure and the effect of highly variable topography on the spatial distribution of this tree in three protected forest fragments in the central Andes of Colombia. Individuals of A. perutilis were mainly found on mountain ridges and hills with gentle slopes; no individuals were found in valleys. Using a species distribution model with presence/absence data, we showed that the available habitat for A. perutilis is significantly smaller than the extension of the fragments and much smaller than the extension of the currently protected areas. Our results have important implications for the conservation of A. perutilis and likely for other threatened Andean tree species, which can also have locally restricted distributions due to highly variable local topography.

  6. Evaluating the effectiveness of low cost UAV generated topography for geomorphic change detection

    Science.gov (United States)

    Cook, K. L.

    2014-12-01

    With the recent explosion in the use and availability of unmanned aerial vehicle platforms and development of easy to use structure from motion software, UAV based photogrammetry is increasingly being adopted to produce high resolution topography for the study of surface processes. UAV systems can vary substantially in price and complexity, but the tradeoffs between these and the quality of the resulting data are not well constrained. We look at one end of this spectrum and evaluate the effectiveness of a simple low cost UAV setup for obtaining high resolution topography in a challenging field setting. Our study site is the Daan River gorge in western Taiwan, a rapidly eroding bedrock gorge that we have monitored with terrestrial Lidar since 2009. The site presents challenges for the generation and analysis of high resolution topography, including vertical gorge walls, vegetation, wide variation in surface roughness, and a complicated 3D morphology. In order to evaluate the accuracy of the UAV-derived topography, we compare it with terrestrial Lidar data collected during the same survey period. Our UAV setup combines a DJI Phantom 2 quadcopter with a 16 megapixel Canon Powershot camera for a total platform cost of less than $850. The quadcopter is flown manually, and the camera is programmed to take a photograph every 5 seconds, yielding 200-250 pictures per flight. We measured ground control points and targets for both the Lidar scans and the aerial surveys using a Leica RTK GPS with 1-2 cm accuracy. UAV derived point clouds were obtained using Agisoft Photoscan software. We conducted both Lidar and UAV surveys before and after a summer typhoon season, allowing us to evaluate the reliability of the UAV survey to detect geomorphic changes in the range of one to several meters. We find that this simple UAV setup can yield point clouds with an average accuracy on the order of 10 cm compared to the Lidar point clouds. Well-distributed and accurately located ground

  7. Role of Shape and Numbers of Ridges and Valleys in the Insulating Effects of Topography on the Rayleigh Wave Characteristics

    Science.gov (United States)

    Narayan, J. P.; Kumar, Neeraj; Chauhan, Ranu

    2018-03-01

    This research work is inspired by the recently accepted concept that high frequency Rayleigh waves are generated in the epicentral zone of shallow earthquakes. Such high frequency Rayleigh waves with large amplitude may develop much of spatial variability in ground motion which in turn may cause unexpected damage to long-span structures like bridges, underground pipelines, dams, etc., in the hilly regions. Further, it has been reported that topography acts as an insulator for the Rayleigh waves (Ma et al. BSSA 97:2066-2079, 2007). The above mentioned scientific developments stimulated to quantify the role of shape and number of ridges and valleys falling in the path of Rayleigh wave in the insulating effect of topography on the Rayleigh waves. The simulated results reveals very large amplification of the horizontal component of Rayleigh wave near the top of a triangular ridge which may cause intensive landslides under favorable condition. The computed snapshots of the wave-field of Rayleigh wave reveals that the interaction of Rayleigh wave with the topography causes reflection, splitting, and diffraction of Rayleigh wave in the form of body waves which in turn provides the insulating capacity to the topography. Insulating effects of single valley is more than that of single ridge. Further this effect was more in case of elliptical ridge/valley than triangular ridge/valley. The insulating effect of topography was proportional to the frequency of Rayleigh wave and the number of ridges and valleys in the string. The obtained level of insulation effects of topography on the Rayleigh wave (energy of Rayleigh wave reduced to less than 4% after crossing a topography of span 4.5 km) calls for the consideration of role of hills and valleys in seismic hazard prediction, particularly in case of shallow earthquakes.

  8. Changes in corneal topography and biomechanical properties after collagen cross linking for keratoconus: 1-year results.

    Science.gov (United States)

    Sedaghat, Mohammadreza; Bagheri, Mansooreh; Ghavami, Shahri; Bamdad, Shahram

    2015-01-01

    To evaluate changes in corneal topography and biomechanical properties after collagen cross-linking (CXL) for progressive keratoconus. Collagen cross-linking was performed on 97 eyes. We assessed uncorrected visual acuity (UCVA) and best corrected visual acuity (BCVA). Corneal topography indices were evaluated using placido disc topography, scanning slit anterior topography (Orbscan II), and rotating Scheimpflug topography (Pentacam). Specular microscopy and corneal biomechanics were evaluated. A 1-year-follow-up results revealed that UCVA improved from 0.31 to 0.45 and BCVA changed from 0.78 to 0.84 (P < 0.001). The mean of average keratometry value decreased from 49.62 to 47.95 D (P < 0.001). Astigmatism decreased from 4.84 to 4.24 D (P < 0.001). Apex corneal thickness decreased from 458.11 to 444.46 μm. Corneal volume decreased from 56.66 to 55.97 mm(3) (P < 0.001). Posterior best fit sphere increased from 55.50 to 46.03 mm (P = 0.025). Posterior elevation increased from 99.2 to 112.22 μm (P < 0.001). Average progressive index increased from 2.26 to 2.56 (P < 0.001). A nonsignificant decrease was observed in mean endothelial count from 2996 to 2928 cell/mm(2) (P = 0.190). Endothelial coefficient of variation (CV) increased nonsignificantly from 18.26 to 20.29 (P = 0.112). Corneal hysteresis changed from 8.18 to 8.36 (P = 0.552) and corneal resistance factor increased from 6.98 to 7.21 (P = 0.202), so these changes were not significant. Visual acuity and K values improved after CXL. In spite of the nonsignificant increase in endothelial cell count and increase in the CV, CLX seems to be a safe treatment for keratoconus. Further studies with larger sample sizes and longer follow-up periods are recommended.

  9. The effect of skin surface topography and skin colouration cues on perception of male facial age, health and attractiveness.

    Science.gov (United States)

    Fink, B; Matts, P J; Brauckmann, C; Gundlach, S

    2018-04-01

    Previous studies investigating the effects of skin surface topography and colouration cues on the perception of female faces reported a differential weighting for the perception of skin topography and colour evenness, where topography was a stronger visual cue for the perception of age, whereas skin colour evenness was a stronger visual cue for the perception of health. We extend these findings in a study of the effect of skin surface topography and colour evenness cues on the perceptions of facial age, health and attractiveness in males. Facial images of six men (aged 40 to 70 years), selected for co-expression of lines/wrinkles and discolouration, were manipulated digitally to create eight stimuli, namely, separate removal of these two features (a) on the forehead, (b) in the periorbital area, (c) on the cheeks and (d) across the entire face. Omnibus (within-face) pairwise combinations, including the original (unmodified) face, were presented to a total of 240 male and female judges, who selected the face they considered younger, healthier and more attractive. Significant effects were detected for facial image choice, in response to skin feature manipulation. The combined removal of skin surface topography resulted in younger age perception compared with that seen with the removal of skin colouration cues, whereas the opposite pattern was found for health preference. No difference was detected for the perception of attractiveness. These perceptual effects were seen particularly on the forehead and cheeks. Removing skin topography cues (but not discolouration) in the periorbital area resulted in higher preferences for all three attributes. Skin surface topography and colouration cues affect the perception of age, health and attractiveness in men's faces. The combined removal of these features on the forehead, cheeks and in the periorbital area results in the most positive assessments. © 2018 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  10. Fractal-like thickness and topography of the salt layer in a pillows province of the southern North Sea

    Science.gov (United States)

    Hernandez Maya, K.; Mitchell, N. C.; Huuse, M.

    2017-12-01

    Salt topography and thickness variations are important for testing theories of how halokinetic deformation proceeds. The ability to predict thickness variations of salt at small scale is also important for reservoir evaluations, as breach of the salt layer can lead to loss of petroleum fluids and can be difficult to evaluate from seismic reflection data. Relevant to these issues, we here report analysis of data on salt layer topography and thickness from the southern North Sea, where the salt is organized into pillows. These data were derived by the Geological Survey of the Netherlands (TNO) from industry 3D seismic reflection data combined with a dense network of well information. Highs and lows in the topography of the upper salt interface occur spaced over a variety of lengthscales. Power spectral analysis of the interface topography reveals a simple inverse power law relationship between power spectral density and spatial wave number. The relationship suggests that the interface is a self-affine fractal with a fractal dimension of 2.85. A similar analysis of the salt layer thickness also suggests a fractal-like power law. Whereas the layer thickness power law is unsurprising as the underlying basement topography dominates the thickness and it also has a fractal-like power spectrum, the salt topography is not so easily explained as not all the basement faults are overlaid by salt pillows, instead some areas of the dataset salt thinning overlies faults. We consider instead whether a spatially varied loading of the salt layer may have caused this fractal-like geometry. Varied density and thickness of overburdening layers seem unlikely causes, as thicknesses of layers and their reflectivities do not vary sympathetically with the topography of the interface. The composition of the salt layer varies with the relative proportions of halite and denser anhydrite and other minerals. Although limited in scope and representing the mobilized salt layer, the information from

  11. Refraction traveltime tomography with irregular topography using the unwrapped phase inversion

    KAUST Repository

    Choi, Yun Seok

    2013-01-01

    Traveltime tomography has long served as a stable and efficient tool for velocity estimation, especially for the near surface. It, however, suffers from some of limitations associated with ray tracing and high-frequency traveltime in velocity inversion zones and ray shadow regions. We develop a tomographic approach based on traveltime solutions obtained by tracking the phase (instantaneous traveltime) of the wavefield solution of the Helmholtz wave equation. Since the instantaneous-traveltime does not suffer from phase wrapping, the inversion algorithm using the instantaneous-traveltime has the potential to generate robust inversion results. With a high damping factor, the instantaneous-traveltime inversion provides refraction tomography similar results, but from a single frequency. Despite the Helmholtz-based solver implementation, the tomographic inversion handles irrgular topography. The numerical examples show that our inversion algorithm generates a convergent smooth velocity model, which looks very much like a tomographic result. Next, we plan to apply the instantaneous-traveltime inversion algorithm to real seismic data acquired from the near surface with irregular topography.

  12. The Synchrotron Topography Project (STP) at the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Bilello, J.C.; Hmelo, A.B.; Liu, J.M.; Herley, P.J.; Chen, H.; Birnbaum, H.K.; Illinois Univ., Urbana; Green, R.E. Jr.

    1983-01-01

    The collaborators have participated in the Synchrotron Topography Project (STP) which has designed and developed instrumentation for an X-ray topography station at the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory (BNL). The two principle instruments constructed consist of a White Beam Camera (WBC) and a Multiple Crystal Camera (MCC) with high planar collimation and wide area image coverage. It is possible to perform in situ studies in a versatile environmental chamber equipped with a miniature mechanical testing stage for both the WBC and MCC systems. Real-time video imaging plus a rapid feed cassette holder for high resolution photographic plates is available for recording topographs. Provisions are made for other types of photon detection as well as spectroscopy. The facilities for the entire station have been designed for remote operation using a LSI-11/23 plus suitable interfacing. These instruments will be described briefly and the current status of the program will be reviewed. (orig.)

  13. Investigation of Character and Spatial Distribution of Threading Edge Dislocations in 4H-SiC Epilayers by High-Resolution Topography

    International Nuclear Information System (INIS)

    Kamata, I.; Nagano, M.; Tsuchida, H.; Chen, Y.; Dudley, M.

    2009-01-01

    Topography image variation of threading edge dislocations (TEDs) in 4H-SiC epilayers has been investigated by grazing incidence high-resolution synchrotron topography. Six different images of TEDs resulting from an angle between the diffraction vector and the TED Burgers vector were confirmed by correlation between experimental topography images and simulation results. The TED-type distribution, dependent on the direction of the TED Burger vector, was examined on epitaxial wafers, while the spatial distribution of TEDs on a whole 2 in wafer along (1 1 2 0) and (1 1 0 0) was investigated.

  14. Tuning 3D topography on biomimetic surface for efficient self-cleaning and microfluidic manipulation

    International Nuclear Information System (INIS)

    Guan, Wei-Sheng; Huang, Han-Xiong; Chen, An-Fu

    2015-01-01

    Currently, micro-/nanotopography on polymeric replica is generally limited to 2D when a mechanical demolding approach is applied. In this work, one-step replication of bio-inspired 3D topography is achieved using microinjection compression molding with novel dual-layer molds. Using a proposed flexible template, the replica topography and wettability are highly tunable during molding. Moreover, dual-scale topography on the mold is developed by coating the micropatterned insert with submicron silica particles. Contact angle and roll-off angle measurements indicate the lotus leaf, rose petal and rice leaf effects on biomimetic surfaces. Among the three kinds of surfaces, the petal-inspired surface possesses the superior performance in self-cleaning submicron contaminants and mechanical robustness, which is highly correlated to the low roughness-induced adhesive superhydrophobicity and the absence of fragile submicron-/nanostructure, respectively. Furthermore, a multi-layer mold structure is proposed for fabricating the open microfluidic devices. The embedment of the hydrophilic and hydrophobic silica particles in the microstructured open channel and the hydrophobic silica particles in the background area during replication renders the wettability contrast sharp, realizing the self-driven flow of microfluid confined within the open microchannel. (paper)

  15. Tuning 3D topography on biomimetic surface for efficient self-cleaning and microfluidic manipulation

    Science.gov (United States)

    Guan, Wei-Sheng; Huang, Han-Xiong; Chen, An-Fu

    2015-03-01

    Currently, micro-/nanotopography on polymeric replica is generally limited to 2D when a mechanical demolding approach is applied. In this work, one-step replication of bio-inspired 3D topography is achieved using microinjection compression molding with novel dual-layer molds. Using a proposed flexible template, the replica topography and wettability are highly tunable during molding. Moreover, dual-scale topography on the mold is developed by coating the micropatterned insert with submicron silica particles. Contact angle and roll-off angle measurements indicate the lotus leaf, rose petal and rice leaf effects on biomimetic surfaces. Among the three kinds of surfaces, the petal-inspired surface possesses the superior performance in self-cleaning submicron contaminants and mechanical robustness, which is highly correlated to the low roughness-induced adhesive superhydrophobicity and the absence of fragile submicron-/nanostructure, respectively. Furthermore, a multi-layer mold structure is proposed for fabricating the open microfluidic devices. The embedment of the hydrophilic and hydrophobic silica particles in the microstructured open channel and the hydrophobic silica particles in the background area during replication renders the wettability contrast sharp, realizing the self-driven flow of microfluid confined within the open microchannel.

  16. Effect of Hydrofluoric Acid Etching Time on Titanium Topography, Chemistry, Wettability, and Cell Adhesion.

    Directory of Open Access Journals (Sweden)

    R Zahran

    Full Text Available Titanium implant surface etching has proven an effective method to enhance cell attachment. Despite the frequent use of hydrofluoric (HF acid, many questions remain unresolved, including the optimal etching time and its effect on surface and biological properties. The objective of this study was to investigate the effect of HF acid etching time on Ti topography, surface chemistry, wettability, and cell adhesion. These data are useful to design improved acid treatment and obtain an improved cell response. The surface topography, chemistry, dynamic wetting, and cell adhesiveness of polished Ti surfaces were evaluated after treatment with HF acid solution for 0, 2; 3, 5, 7, or 10 min, revealing a time-dependent effect of HF acid on their topography, chemistry, and wetting. Roughness and wetting increased with longer etching time except at 10 min, when roughness increased but wetness decreased. Skewness became negative after etching and kurtosis tended to 3 with longer etching time. Highest cell adhesion was achieved after 5-7 min of etching time. Wetting and cell adhesion were reduced on the highly rough surfaces obtained after 10-min etching time.

  17. Facile synthesis of biphasic calcium phosphate microspheres with engineered surface topography for controlled delivery of drugs and proteins.

    Science.gov (United States)

    Zarkesh, Ibrahim; Ghanian, Mohammad Hossein; Azami, Mahmoud; Bagheri, Fatemeh; Baharvand, Hossein; Mohammadi, Javad; Eslaminejad, Mohamadreza Baghaban

    2017-09-01

    Biphasic calcium phosphate (BCP) microspheres are of great interest due to their high stability and osteoinductive properties at specific compositions. However, the need for optimal performance at a unique composition limits their flexibility for tuning drug release by modulation of bulk properties and presents the question of engineering surface topography as an alternative. It is necessary to have a facile method to control surface topography at a defined bulk composition. Here, we have produced BCP microspheres with different surface topographies that have the capability to be used as tunable drug release systems. We synthesized calcium deficient hydroxyapatite (CDHA) microparticles by precipitating calcium and phosphate ions onto ethylenediaminetetraacetic acid (EDTA) templates. The morphology and surface topography of CDHA microparticles were controlled using process parameters, which governed nucleation and growth. These parameters included template concentration, heat rate, and stirring speed. Under low heat rate and static conditions, we could obtain spherical microparticles with long and short nanosheets on their surfaces at low and high EDTA concentrations, respectively. These nanostructured microspheres were subsequently crystallized by thermal treatment to produce EDTA-free BCP microspheres with intact morphology. These biocompatible BCP microspheres were highly effective in loading and prolonged release of both small molecule [dexamethasone (Dex)] and protein [bovine serum albumin (BSA)] models. This strategy has enabled us to control the surface topography of BCP microspheres at defined compositions and holds tremendous promise for drug delivery and tissue engineering applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Relevance of detail in basal topography for basal slipperiness inversions: a case study on Pine Island Glacier, Antarctica

    Science.gov (United States)

    Kyrke-Smith, Teresa M.; Gudmundsson, G. Hilmar; Farrell, Patrick E.

    2018-04-01

    Given high-resolution satellite-derived surface elevation and velocity data, ice-sheet models generally estimate mechanical basal boundary conditions using surface-to-bed inversion methods. In this work, we address the sensitivity of results from inversion methods to the accuracy of the bed elevation data on Pine Island Glacier. We show that misfit between observations and model output is reduced when high-resolution bed topography is used in the inverse model. By looking at results with a range of detail included in the bed elevation, we consider the separation of basal drag due to the bed topography (form drag) and that due to inherent bed properties (skin drag). The mean value of basal shear stress is reduced when more detailed topography is included in the model. This suggests that without a fully resolved bed a significant amount of the basal shear stress recovered from inversion methods may be due to the unresolved bed topography. However, the spatial structure of the retrieved fields is robust as the bed accuracy is varied; the fields are instead sensitive to the degree of regularisation applied to the inversion. While the implications for the future temporal evolution of PIG are not quantified here directly, our work raises the possibility that skin drag may be overestimated in the current generation of numerical ice-sheet models of this area. These shortcomings could be overcome by inverting simultaneously for both bed topography and basal slipperiness.

  19. Accurate acoustic and elastic beam migration without slant stack for complex topography

    International Nuclear Information System (INIS)

    Huang, Jianping; Yuan, Maolin; Li, Zhenchun; Liao, Wenyuan; Yue, Yubo

    2015-01-01

    Recent trends in seismic exploration have led to the collection of more surveys, often with multi-component recording, in onshore settings where both topography and subsurface targets are complex, leading to challenges for processing methods. Gaussian beam migration (GBM) is an alternative to single-arrival Kirchhoff migration, although there are some issues resulting in unsatisfactory GBM images. For example, static correction will give rise to the distortion of wavefields when near-surface elevation and velocity vary rapidly. Moreover, Green’s function compensated for phase changes from the beam center to receivers is inaccurate when receivers are not placed within some neighborhood of the beam center, that is, GBM is slightly inflexible for irregular acquisition system and complex topography. As a result, the differences of both the near-surface velocity and the surface slope from the beam center to the receivers and the poor spatial sampling of the land data lead to inaccuracy and aliasing of the slant stack, respectively. In order to improve the flexibility and accuracy of GBM, we propose accurate acoustic, PP and polarity-corrected PS beam migration without slant stack for complex topography. The applications of this method to one-component synthetic data from a 2D Canadian Foothills model and a Zhongyuan oilfield fault model, one-component field data and an unseparated multi-component synthetic data demonstrate that the method is effective for structural and relatively amplitude-preserved imaging, but significantly more time-consuming. (paper)

  20. Traveltime computation and imaging from rugged topography in 3D TTI media

    International Nuclear Information System (INIS)

    Liu, Shaoyong; Wang, Huazhong; Yang, Qinyong; Fang, Wubao

    2014-01-01

    Foothill areas with rugged topography are of great potential for oil and gas seismic exploration, but subsurface imaging in these areas is very challenging. Seismic acquisition with larger offset and wider azimuth is necessary for seismic imaging in complex areas. However, the scale anisotropy in this case must be taken into account. To generalize the pre-stack depth migration (PSDM) to 3D transversely isotropic media with vertical symmetry axes (VTI) and tilted symmetry axes (TTI) from rugged topography, a new dynamic programming approach for the first-arrival traveltime computation method is proposed. The first-arrival time on every uniform mesh point is calculated based on Fermat's principle with simple calculus techniques and a systematic mapping scheme. In order to calculate the minimum traveltime, a set of nonlinear equations is solved on each mesh point, where the group velocity is determined by the group angle. Based on the new first-arrival time calculation method, the corresponding PSDM and migration velocity analysis workflow for 3D anisotropic media from rugged surface is developed. Numerical tests demonstrate that the proposed traveltime calculation method is effective in both VTI and TTI media. The migration results for 3D field data show that it is necessary to choose a smooth datum to remove the high wavenumber move-out components for PSDM with rugged topography and take anisotropy into account to achieve better images. (paper)

  1. Insight into collision zone dynamics from topography: numerical modelling results and observations

    Directory of Open Access Journals (Sweden)

    A. D. Bottrill

    2012-11-01

    Full Text Available Dynamic models of subduction and continental collision are used to predict dynamic topography changes on the overriding plate. The modelling results show a distinct evolution of topography on the overriding plate, during subduction, continental collision and slab break-off. A prominent topographic feature is a temporary (few Myrs basin on the overriding plate after initial collision. This "collisional mantle dynamic basin" (CMDB is caused by slab steepening drawing, material away from the base of the overriding plate. Also, during this initial collision phase, surface uplift is predicted on the overriding plate between the suture zone and the CMDB, due to the subduction of buoyant continental material and its isostatic compensation. After slab detachment, redistribution of stresses and underplating of the overriding plate cause the uplift to spread further into the overriding plate. This topographic evolution fits the stratigraphy found on the overriding plate of the Arabia-Eurasia collision zone in Iran and south east Turkey. The sedimentary record from the overriding plate contains Upper Oligocene-Lower Miocene marine carbonates deposited between terrestrial clastic sedimentary rocks, in units such as the Qom Formation and its lateral equivalents. This stratigraphy shows that during the Late Oligocene–Early Miocene the surface of the overriding plate sank below sea level before rising back above sea level, without major compressional deformation recorded in the same area. Our modelled topography changes fit well with this observed uplift and subsidence.

  2. External factors affecting data acquisition during corneal topography examination.

    Science.gov (United States)

    González-Méijome, José Manuel; Queirós, Antonio; Jorge, Jorge; Fernandes, Paulo; Cerviño, Alejandro; de Almeida, José Borges

    2007-03-01

    To analyze the factors affecting data acquisition during corneal topography examination with the Medmont E-300 videokeratoscope and to provide strategies to minimize their effects. Sixty eyes from thirty young adults were examined. A second observer registered incidences with the potential to affect data acquisition. Those factors were correlated with the difficulty of measurements as judged subjectively by the practitioner who performed the examination. Measurements of axial curvature were analyzed to evaluate the variability expressed as intrasession and intersession coefficient of variation and the standard error of the mean (SEM). The level of difficulty rated by the practitioner was in general low, with 70% of the eyes being easy or very easy to measure. For the remaining 30% of the eyes, corneal topography measurements were considered to be difficult (27%) or very difficult (3%). Of the external parameters investigated, only fixation instability (PSEM improved when three readings from each session were considered. The level of subjective difficulty found during videokeratoscopy examination is correlated strongly with fixation instability and the need for head reorientation in the chin rest, whereas tear-related events seem to be less relevant in the practitioner perception of test ease or difficulty. Those factors have relevance in measurement variability.

  3. Topography of Striate-Extrastriate Connections in Neonatally Enucleated Rats

    Directory of Open Access Journals (Sweden)

    Robyn J. Laing

    2013-01-01

    Full Text Available It is known that retinal input is necessary for the normal development of striate cortex and its corticocortical connections, but there is little information on the role that retinal input plays in the development of retinotopically organized connections between V1 and surrounding visual areas. In nearly all lateral extrastriate areas, the anatomical and physiological representation of the nasotemporal axis of the visual field mirrors the representation of this axis in V1. To determine whether the mediolateral topography of striate-extrastriate projections is preserved in neonatally enucleated rats, we analyzed the patterns of projections resulting from tracer injections placed at different sites along the mediolateral axis of V1. We found that the correlation between the distance from injection sites to the lateral border of V1 and the distance of the labeling patterns in area 18a was strong in controls and much weaker in enucleates. Data from pairs of injections in the same animal revealed that the separation of area 18a projection fields for a given separation of injection sites was more variable in enucleated than in control rats. Our analysis of single and double tracer injections suggests that neonatal bilateral enucleation weakens, but not completely abolishes, the mediolateral topography in area 18a.

  4. Consistent comparison of angle Kappa adjustment between Oculyzer and Topolyzer Vario topography guided LASIK for myopia by EX500 excimer laser.

    Science.gov (United States)

    Sun, Ming-Shen; Zhang, Li; Guo, Ning; Song, Yan-Zheng; Zhang, Feng-Ju

    2018-01-01

    To evaluate and compare the uniformity of angle Kappa adjustment between Oculyzer and Topolyzer Vario topography guided ablation of laser in situ keratomileusis (LASIK) by EX500 excimer laser for myopia. Totally 145 cases (290 consecutive eyes )with myopia received LASIK with a target of emmetropia. The ablation for 86 cases (172 eyes) was guided manually based on Oculyzer topography (study group), while the ablation for 59 cases (118 eyes) was guided automatically by Topolyzer Vario topography (control group). Measurement of adjustment values included data respectively in horizontal and vertical direction of cornea. Horizontally, synclastic adjustment between manually actual values (dx manu ) and Oculyzer topography guided data (dx ocu ) accounts 35.5% in study group, with mean dx manu /dx ocu of 0.78±0.48; while in control group, synclastic adjustment between automatically actual values (dx auto ) and Oculyzer topography data (dx ocu ) accounts 54.2%, with mean dx auto /dx ocu of 0.79±0.66. Vertically, synclastic adjustment between dy manu and dy ocu accounts 55.2% in study group, with mean dy manu /dy ocu of 0.61±0.42; while in control group, synclastic adjustment between dy auto and dy ocu accounts 66.1%, with mean dy auto /dy ocu of 0.66±0.65. There was no statistically significant difference in ratio of actual values/Oculyzer topography guided data in horizontal and vertical direction between two groups ( P =0.951, 0.621). There is high consistency in angle Kappa adjustment guided manually by Oculyzer and guided automatically by Topolyzer Vario topography during corneal refractive surgery by WaveLight EX500 excimer laser.

  5. Characterization of defects and microstructures by neutrons and synchrotron radiations topography

    International Nuclear Information System (INIS)

    Baruchel, J.

    1993-01-01

    Neutrons and synchrotron radiation topography are complementary for defects study, for domains or phases coexistence in magnetic or high absorbing crystals, or crystals not supporting intense X irradiation. Applications to CuGe, NiAl, CuAl, FeSi binary alloys are shortly presented. (A.B.). 8 refs, 1 fig

  6. On the surface topography of ultrashort laser pulse treated steel surfaces

    NARCIS (Netherlands)

    Obona, J. Vincenc; Ocelik, V.; Skolski, J. Z. P.; Mitko, V. S.; Romer, G. R. B. E.; in't Veld, A. J. Huis; De Hosson, J. Th M.; Römer, G.R.B.E.; Huis in’t Veld, A.J.

    2011-01-01

    This paper concentrates on observations of the surface topography by scanning electron microscopy (SEM) on alloyed and stainless steels samples treated by ultrashort laser pulses with duration of 210 fs and 6.7 ps. Globular-like and jet-like objects were found depending on the various levels of the

  7. On the surface topography of ultrashort laser pulse treated steel surface

    NARCIS (Netherlands)

    Vincenc Obona, J.; Ocelik, V.; Skolski, J.Z.P.; Mitko, V.S.; Mitko, S.; Römer, Gerardus Richardus, Bernardus, Engelina; Huis in 't Veld, Bert; de Hosson, J.Th.M.

    2011-01-01

    This paper concentrates on observations of the surface topography by scanning electron microscopy (SEM) on alloyed and stainless steels samples treated by ultrashort laser pulses with duration of 210 fs and 6.7 ps. Globular-like and jet-like objects were found depending on the various levels of the

  8. Geology of Saipan, Mariana Islands; Part 4, Submarine topography and shoal-water ecology

    Science.gov (United States)

    Cloud, Preston E.

    1959-01-01

    The topography of the sea floor within 10 miles of Saipan broadly resembles that of the land. Eastward, toward the Mariana trench, slopes are about 6°, without prominent benches or scarps. This is inferred to indicate easterly continuation of generally pyroclastic bedrock. The westward slope averages 2° to 3° and consists mainly of nearly flat benches and westfacing scarps. This is taken to imply westward continuation of a limestone bench-and-fault-scarp topography. Projection of known faults to sea and through Tinian, on the basis of topographic trends, suggests a pattern of west-dipping normal faults that parallel the strike of the Mariana ridge and affect the shape and position of islands at the crest of the ridge.

  9. Rapid mapping of ultrafine fault zone topography with structure from motion

    Science.gov (United States)

    Johnson, Kendra; Nissen, Edwin; Saripalli, Srikanth; Arrowsmith, J. Ramón; McGarey, Patrick; Scharer, Katherine M.; Williams, Patrick; Blisniuk, Kimberly

    2014-01-01

    Structure from Motion (SfM) generates high-resolution topography and coregistered texture (color) from an unstructured set of overlapping photographs taken from varying viewpoints, overcoming many of the cost, time, and logistical limitations of Light Detection and Ranging (LiDAR) and other topographic surveying methods. This paper provides the first investigation of SfM as a tool for mapping fault zone topography in areas of sparse or low-lying vegetation. First, we present a simple, affordable SfM workflow, based on an unmanned helium balloon or motorized glider, an inexpensive camera, and semiautomated software. Second, we illustrate the system at two sites on southern California faults covered by existing airborne or terrestrial LiDAR, enabling a comparative assessment of SfM topography resolution and precision. At the first site, an ∼0.1 km2 alluvial fan on the San Andreas fault, a colored point cloud of density mostly >700 points/m2 and a 3 cm digital elevation model (DEM) and orthophoto were produced from 233 photos collected ∼50 m above ground level. When a few global positioning system ground control points are incorporated, closest point vertical distances to the much sparser (∼4 points/m2) airborne LiDAR point cloud are mostly 530 points/m2 and a 2 cm DEM and orthophoto were produced from 450 photos taken from ∼60 m above ground level. Closest point vertical distances to existing terrestrial LiDAR data of comparable density are mostly geomorphic offsets related to past earthquakes as well as rapid response mapping or long-term monitoring of faulted landscapes.

  10. New Mars free-air and Bouguer gravity: Correlation with topography, geology and large impact basins

    Science.gov (United States)

    Frey, Herbert; Bills, Bruce G.; Kiefer, Walter S.; Nerem, R. Steven; Roark, James H.; Zuber, Maria T.

    1993-01-01

    Free-air and Bouguer gravity anomalies from a 50x50 field (MGM635), derived at the Goddard Space Flight Center, with global topography, geology, and the distribution of large impact basins was compared. The free-air gravity anomalies were derived from re-analysis of Viking Orbiter and Mariner 9 tracking data and have a spatial resolution of 250-300 km. Bouguer anomalies were calculated using a 50x50 expansion of the current Mars topography and the GSFC degree 50 geoid as the equipotential reference surface. Rotational flattening was removed using a moment of inertia of 0.365 and the corrections from Table B2 of Sleep and Phillips. Crustal density and mean density were assumed to be 2.9 and 3.93 gm/cm(sup 3). The spherical harmonic topography used has zero mean elevation, and differs from the USGS maps by about 2 km. Comparisons with global geology use a simplified map with about 1/3 the number of units on the current maps. For correlation with impact basins, the recent compilation by Schultz and Frey was used.

  11. Phase-space topography characterization of nonlinear ultrasound waveforms.

    Science.gov (United States)

    Dehghan-Niri, Ehsan; Al-Beer, Helem

    2018-03-01

    Fundamental understanding of ultrasound interaction with material discontinuities having closed interfaces has many engineering applications such as nondestructive evaluation of defects like kissing bonds and cracks in critical structural and mechanical components. In this paper, to analyze the acoustic field nonlinearities due to defects with closed interfaces, the use of a common technique in nonlinear physics, based on a phase-space topography construction of ultrasound waveform, is proposed. The central idea is to complement the "time" and "frequency" domain analyses with the "phase-space" domain analysis of nonlinear ultrasound waveforms. A nonlinear time series method known as pseudo phase-space topography construction is used to construct equivalent phase-space portrait of measured ultrasound waveforms. Several nonlinear models are considered to numerically simulate nonlinear ultrasound waveforms. The phase-space response of the simulated waveforms is shown to provide different topographic information, while the frequency domain shows similar spectral behavior. Thus, model classification can be substantially enhanced in the phase-space domain. Experimental results on high strength aluminum samples show that the phase-space transformation provides a unique detection and classification capabilities. The Poincaré map of the phase-space domain is also used to better understand the nonlinear behavior of ultrasound waveforms. It is shown that the analysis of ultrasound nonlinearities is more convenient and informative in the phase-space domain than in the frequency domain. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Topography and surface energy dependent calcium phosphate formation on Sol-Gel derived TiO2 coatings.

    Science.gov (United States)

    Järn, Mikael; Areva, Sami; Pore, Viljami; Peltonen, Jouko; Linden, Mika

    2006-09-12

    Heterogeneous nucleation and growth of calcium phosphate (CaP) on sol-gel derived TiO(2) coatings was investigated in terms of surface topography and surface energy. The topography of the coatings was derived from AFM measurements, while the surface energy was determined with contact angle measurements. The degree of precipitation was examined with scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The precipitation of CaP was found to be dependent on both topography and surface energy. A high roughness value when combining the RMS roughness parameter S(q) with the number of local maxima per unit area parameter S(ds) enhances CaP formation. The hydrophilicity of the coating was also found to be of importance for CaP formation. We suggest that the water contact angle, which is a direct measure of the hydrophilicity of the surface, may be used to evaluate the surface energy dependent precipitation kinetics rather than using the often applied Lewis base parameter.

  13. Simulation of foulant bioparticle topography based on Gaussian process and its implications for interface behavior research

    Science.gov (United States)

    Zhao, Leihong; Qu, Xiaolu; Lin, Hongjun; Yu, Genying; Liao, Bao-Qiang

    2018-03-01

    Simulation of randomly rough bioparticle surface is crucial to better understand and control interface behaviors and membrane fouling. Pursuing literature indicated a lack of effective method for simulating random rough bioparticle surface. In this study, a new method which combines Gaussian distribution, Fourier transform, spectrum method and coordinate transformation was proposed to simulate surface topography of foulant bioparticles in a membrane bioreactor (MBR). The natural surface of a foulant bioparticle was found to be irregular and randomly rough. The topography simulated by the new method was quite similar to that of real foulant bioparticles. Moreover, the simulated topography of foulant bioparticles was critically affected by parameters correlation length (l) and root mean square (σ). The new method proposed in this study shows notable superiority over the conventional methods for simulation of randomly rough foulant bioparticles. The ease, facility and fitness of the new method point towards potential applications in interface behaviors and membrane fouling research.

  14. Comparative investigation of optical techniques for topography measurement of rough plastic surfaces

    DEFF Research Database (Denmark)

    Bariani, Paolo; Hansen, Hans Nørgaard; Arlø, Uffe Rolf

    2003-01-01

    An experimental assessment of three-dimensional surface topography characterisation methods for use with rough plastic parts has been carried out. Also, calibration methods and measuring procedures including optimal measuring conditions have been developed and applied. The study is based on rough...

  15. Quantitative surface topography assessment of directly compressed and roller compacted tablet cores using photometric stereo image analysis

    DEFF Research Database (Denmark)

    Allesø, Morten; Carstensen, Jens Michael; Holm, Per

    2016-01-01

    Surface topography, in the context of surface smoothness/roughness, was investigated by the use of an image analysis technique, MultiRay™, related to photometric stereo, on different tablet batches manufactured either by direct compression or roller compaction. In the present study, oblique...... illumination of the tablet (darkfield) was considered and the area of cracks and pores in the surface was used as a measure of tablet surface topography; the higher a value, the rougher the surface. The investigations demonstrated a high precision of the proposed technique, which was able to rapidly (within...... milliseconds) and quantitatively measure the obtained surface topography of the produced tablets. Compaction history, in the form of applied roll force and tablet punch pressure, was also reflected in the measured smoothness of the tablet surfaces. Generally it was found that a higher degree of plastic...

  16. BedMachine v3: Complete Bed Topography and Ocean Bathymetry Mapping of Greenland From Multibeam Echo Sounding Combined With Mass Conservation

    DEFF Research Database (Denmark)

    Morlighem, M.; Williams, C. N.; Rignot, E.

    2017-01-01

    Greenland's bed topography is a primary control on ice flow, grounding line migration, calving dynamics, and subglacial drainage. Moreover, fjord bathymetry regulates the penetration of warm Atlantic water (AW) that rapidly melts and undercuts Greenland's marine‐terminating glaciers. Here we...... present a new compilation of Greenland bed topography that assimilates seafloor bathymetry and ice thickness data through a mass conservation approach. A new 150 m horizontal resolution bed topography/bathymetric map of Greenland is constructed with seamless transitions at the ice/ocean interface...

  17. Minimal erosion of Arctic alpine topography during late Quaternary glaciation

    Science.gov (United States)

    Gjermundsen, Endre F.; Briner, Jason P.; Akçar, Naki; Foros, Jørn; Kubik, Peter W.; Salvigsen, Otto; Hormes, Anne

    2015-10-01

    The alpine topography observed in many mountainous regions is thought to have formed during repeated glaciations of the Quaternary period. Before this time, landscapes had much less relief. However, the spatial patterns and rates of Quaternary exhumation at high latitudes--where cold-based glaciers may protect rather than erode landscapes--are not fully quantified. Here we determine the exposure and burial histories of rock samples from eight summits of steep alpine peaks in northwestern Svalbard (79.5° N) using analyses of 10Be and 26Al concentrations. We find that the summits have been preserved for at least the past one million years. The antiquity of Svalbard’s alpine landscape is supported by the preservation of sediments older than one million years along a fjord valley, which suggests that both mountain summits and low-elevation landscapes experienced very low erosion rates over the past million years. Our findings support the establishment of northwestern Svalbard’s alpine topography during the early Quaternary. We suggest that, as the Quaternary ice age progressed, glacial erosion in the Arctic became inefficient and confined to ice streams, and high-relief alpine landscapes were preserved by minimally erosive glacier armour.

  18. Mapping the Topography of Europa: The Galileo-Clipper Story

    Science.gov (United States)

    Schenk, Paul M.

    2014-11-01

    The renewed effort to return to Europa for global mapping and landing site selection raises the question: What do we know about Europa topography and how do we know it? The question relates to geologic questions of feature formation, to the issue of ice shell thickness, mechanical strength, and internal activity, and to landing hazards. Our topographic data base for Europa is sparse indeed (no global map is possible), but we are not without hope. Two prime methods have been employed in our mapping program are stereo image and shape-from-shading (PC) slope analyses. On Europa, we are fortunate that many PC-DEM areas are also controlled by stereo-DEMs, mitigating the long-wavelength uncertainties in the PC data. Due to the Galileo antenna malfunction, mapping is limited to no more than 20% of the surface, far less than for any of the inner planets. Thirty-seven individual mapping sites have been identified, scattered across the globe, and all have now been mapped. Excellent stereo mapping is possible at all Sun angles, if resolution is below ~350 m. PC mapping is possible at Sun angles greater than ~60 degrees, if emission angles are less than ~40 degrees. The only extended contiguous areas of topographic mapping larger than 150 km across are the two narrow REGMAP mapping mosaics extending pole-to-pole along longitudes 85 and 240 W. These are PC-only and subject to long-wavelength uncertainties and errors, especially in the north/south where oblique imaging produces layover. Key findings include the mean slopes of individual terrain types (Schenk, 2009), topography across chaos (Schenk and Pappalardo, 2004), topography of craters and inferences for ice shell thickness (Schenk, 2002; Schenk and Turtle, 2009), among others. A key discovery, despite the limited data, is that Europan terrains rarely have topographic amplitude greater than 250 meters, but that regionally Europa has imprinted on it topographic amplitudes of +/- 1 km, in the form of raised plateaus and

  19. Relationship between cotton yield and soil electrical conductivity, topography, and landsat imagery

    Science.gov (United States)

    Understanding spatial and temporal variability in crop yield is a prerequisite to implementing site-specific management of crop inputs. Apparent soil electrical conductivity (ECa), soil brightness, and topography are easily obtained data that can explain yield variability. The objectives of this stu...

  20. Effect of tissue scaffold topography on protein structure monitored by fluorescence spectroscopy

    NARCIS (Netherlands)

    Portugal, C.A.M.; Truckenmüller, R.K.; Stamatialis, Dimitrios; Crespo, J.G.

    2014-01-01

    The impact of surface topography on the structure of proteins upon adhesion was assessed through non-invasive fluorescence monitoring. This study aimed at obtaining a better understanding about the role of protein structural status on cell–scaffold interactions. The changes induced upon adsorption

  1. Application of X-ray topography to USSR and Russian space materials science.

    Science.gov (United States)

    Shul'pina, I L; Prokhorov, I A; Serebryakov, Yu A; Bezbakh, I Zh

    2016-05-01

    The authors' experience of the application of X-ray diffraction imaging in carrying out space technological experiments on semiconductor crystal growth for the former USSR and for Russia is reported, from the Apollo-Soyuz programme (1975) up to the present day. X-ray topography was applied to examine defects in crystals in order to obtain information on the crystallization conditions and also on their changes under the influence of factors of orbital flight in space vehicles. The data obtained have promoted a deeper understanding of the conditions and mechanisms of crystallization under both microgravity and terrestrial conditions, and have enabled the elaboration of terrestrial methods of highly perfect crystal growth. The use of X-ray topography in space materials science has enriched its methods in the field of digital image processing of growth striations and expanded its possibilities in investigating the inhomogeneity of crystals.

  2. Texture-based segmentation with Gabor filters, wavelet and pyramid decompositions for extracting individual surface features from areal surface topography maps

    International Nuclear Information System (INIS)

    Senin, Nicola; Leach, Richard K; Pini, Stefano; Blunt, Liam A

    2015-01-01

    Areal topography segmentation plays a fundamental role in those surface metrology applications concerned with the characterisation of individual topography features. Typical scenarios include the dimensional inspection and verification of micro-structured surface features, and the identification and characterisation of localised defects and other random singularities. While morphological segmentation into hills or dales is the only partitioning operation currently endorsed by the ISO specification standards on surface texture metrology, many other approaches are possible, in particular adapted from the literature on digital image segmentation. In this work an original segmentation approach is introduced and discussed, where topography partitioning is driven by information collected through the application of texture characterisation transforms popular in digital image processing. Gabor filters, wavelets and pyramid decompositions are investigated and applied to a selected set of test cases. The behaviour, performance and limitations of the proposed approach are discussed from the viewpoint of the identification and extraction of individual surface topography features. (paper)

  3. Incidence and Outcomes of Optical Zone Enlargement and Recentration After Previous Myopic LASIK by Topography-Guided Custom Ablation.

    Science.gov (United States)

    Reinstein, Dan Z; Archer, Timothy J; Carp, Glenn I; Stuart, Alastair J; Rowe, Elizabeth L; Nesbit, Andrew; Moore, Tara

    2018-02-01

    To report the incidence, visual and refractive outcomes, optical zone enlargement, and recentration using topography-guided CRS-Master TOSCA II software with the MEL 80 excimer laser (Carl Zeiss Meditec AG, Jena, Germany) after primary myopic laser refractive surgery. Retrospective analysis of 73 eyes (40 patients) with complaints of night vision disturbances due to either a decentration or small optical zone following a primary myopic laser refractive surgery procedure using the MEL 80 laser. Multiple ATLAS topography scans were imported into the CRS-Master software for topography-guided ablation planning. The topography-guided re-treatment procedure was performed as either a LASIK flap lift, a new LASIK flap, a side cut only, or photorefractive keratectomy. Axial curvature maps were analyzed using a fixed grid and set of concentric circles superimposed to measure the topographic optical zone diameter and centration. Follow-up was 12 months. The incidence of use in the population of myopic treatments during the study period was 0.79% (73 of 9,249). The optical zone diameter was increased by 11% from a mean of 5.65 to 6.32 mm, with a maximum change of 2 mm in one case. Topographic decentration was reduced by 64% from a mean of 0.58 to 0.21 mm. There was a 44% reduction in spherical aberration, 53% reduction in coma, and 39% reduction in total higher order aberrations. A subjective improvement in night vision symptoms was reported by 93%. Regarding efficacy, 82% of eyes reached 20/20 and 100% reached 20/32 (preoperative CDVA was 20/20 or better in 90%). Regarding safety, no eyes lost two lines of CDVA and 27% gained one line. Regarding predictability, 71% of re-treatments were within ±0.50 diopters. Topography-guided ablation was effective in enlarging the optical zone, recentering the optical zone, and reducing higher order aberrations. Topography-guided custom ablation appears to be an effective method for re-treatment procedures of symptomatic patients after

  4. The surface topography of Inconel, stainless steel and copper after argon ion bombardment

    International Nuclear Information System (INIS)

    Vogelbruch, K.; Vietzke, E.

    1983-01-01

    Energetic particle bombardment of metals is known to change the surface topography. To simulate the behaviour of the first wall of a fusion device under real plasma conditions, we have investigated the surface topography of rotating targets after 30 keV argon ion bombardment at 70deg incident angle by electron scanning micrographs. Under these conditions Inconel 600, 601, 625, stainless steel, and copper showed no cones, pyramids or cliffs, but only etching figures and at higher ion doses relatively flat hills. Thus, it can be concluded, that the influence of energetic particles on the first wall of a fusion reactor is smaller than expected from the results of such sputtering experiments, which have dealt with the formation of surface structures under ion bombardment at constant incident direction. (author)

  5. Surface topography and roughness of high-speed milled AlMn1Cu

    Science.gov (United States)

    Wang, Zhenhua; Yuan, Juntang; Yin, Zengbin; Hu, Xiaoqiu

    2016-10-01

    The aluminum alloy AlMn1Cu has been broadly applied for functional parts production because of its good properties. But few researches about the machining mechanism and the surface roughness were reported. The high-speed milling experiments are carried out in order to improve the machining quality and reveal the machining mechanism. The typical topography features of machined surface are observed by scan electron microscope(SEM). The results show that the milled surface topography is mainly characterized by the plastic shearing deformation surface and material piling zone. The material flows plastically along the end cutting edge of the flat-end milling tool and meanwhile is extruded by the end cutting edge, resulting in that materials partly adhere to the machined surface and form the material piling zone. As the depth of cut and the feed per tooth increase, the plastic flow of materials is strengthened and the machined surface becomes rougher. However, as the cutting speed increases, the plastic flow of materials is weakened and the milled surface becomes smoother. The cutting parameters (e.g. cutting speed, feed per tooth and depth of cut) influencing the surface roughness are analyzed. It can be concluded that the roughness of the machined surface formed by the end cutting edge is less than that by the cylindrical cutting edge when a cylindrical flat-end mill tool is used for milling. The proposed research provides the typical topography features of machined surface of the anti-rust aluminum alloy AlMn1Cu in high speed milling.

  6. Fluctuations of spontaneous EEG topographies predict disease state in relapsing-remitting multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Markus Gschwind

    2016-01-01

    In RRMS patients, microstate analysis captured altered fluctuations of EEG topographies in the sub-second range. This measure of high temporal resolution provided potentially powerful markers of disease activity and neuropsychiatric co-morbidities in RRMS.

  7. Earth's structure and evolution inferred from topography, gravity, and seismicity.

    Science.gov (United States)

    Watkinson, A. J.; Menard, J.; Patton, R. L.

    2016-12-01

    Earth's wavelength-dependent response to loading, reflected in observed topography, gravity, and seismicity, can be interpreted in terms of a stack of layers under the assumption of transverse isotropy. The theory of plate tectonics holds that the outermost layers of this stack are mobile, produced at oceanic ridges, and consumed at subduction zones. Their toroidal motions are generally consistent with those of several rigid bodies, except in the world's active mountain belts where strains are partitioned and preserved in tectonite fabrics. Even portions of the oceanic lithosphere exhibit non-rigid behavior. Earth's gravity-topography cross-spectrum exhibits notable variations in signal amplitude and character at spherical harmonic degrees l=13, 116, 416, and 1389. Corresponding Cartesian wavelengths are approximately equal to the respective thicknesses of Earth's mantle, continental mantle lithosphere, oceanic thermal lithosphere, and continental crust, all known from seismology. Regional variations in seismic moment release with depth, derived from the global Centroid Moment Tensor catalog, are also evident in the crust and mantle lithosphere. Combined, these observations provide powerful constraints for the structure and evolution of the crust, mantle lithosphere, and mantle as a whole. All that is required is a dynamically consistent mechanism relating wavelength to layer thickness and shear-strain localization. A statistically-invariant 'diharmonic' relation exhibiting these properties appears as the leading order approximation to toroidal motions on a self-gravitating body of differential grade-2 material. We use this relation, specifically its predictions of weakness and rigidity, and of folding and shear banding response as a function of wavelength-to-thickness ratio, to interpret Earth's gravity, topography, and seismicity in four-dimensions. We find the mantle lithosphere to be about 255-km thick beneath the Himalaya and the Andes, and the long

  8. High frequency seismic signal generated by landslides on complex topographies: from point source to spatially distributed sources

    Science.gov (United States)

    Mangeney, A.; Kuehnert, J.; Capdeville, Y.; Durand, V.; Stutzmann, E.; Kone, E. H.; Sethi, S.

    2017-12-01

    During their flow along the topography, landslides generate seismic waves in a wide frequency range. These so called landquakes can be recorded at very large distances (a few hundreds of km for large landslides). The recorded signals depend on the landslide seismic source and the seismic wave propagation. If the wave propagation is well understood, the seismic signals can be inverted for the seismic source and thus can be used to get information on the landslide properties and dynamics. Analysis and modeling of long period seismic signals (10-150s) have helped in this way to discriminate between different landslide scenarios and to constrain rheological parameters (e.g. Favreau et al., 2010). This was possible as topography poorly affects wave propagation at these long periods and the landslide seismic source can be approximated as a point source. In the near-field and at higher frequencies (> 1 Hz) the spatial extent of the source has to be taken into account and the influence of the topography on the recorded seismic signal should be quantified in order to extract information on the landslide properties and dynamics. The characteristic signature of distributed sources and varying topographies is studied as a function of frequency and recording distance.The time dependent spatial distribution of the forces applied to the ground by the landslide are obtained using granular flow numerical modeling on 3D topography. The generated seismic waves are simulated using the spectral element method. The simulated seismic signal is compared to observed seismic data from rockfalls at the Dolomieu Crater of Piton de la Fournaise (La Réunion).Favreau, P., Mangeney, A., Lucas, A., Crosta, G., and Bouchut, F. (2010). Numerical modeling of landquakes. Geophysical Research Letters, 37(15):1-5.

  9. Upper-mantle velocity structure and its relation to topography across the Caledonides in Greenland and Norway

    DEFF Research Database (Denmark)

    Hejrani, Babak; Balling, N.; Jacobsen, B. H.

    2015-01-01

    This study investigates the upper-mantle P- and S-wave velocity structure as well as structure in the VP/VS ratio across the high topography areas of north Atlantic Caledonides, integrating data from a new East Greenland Caledonide Central Fjord Array (EGCFA) with results of recent studies...... strong upper-mantle velocity boundary under the East Greenland Caledonides. However, the contrast in the VP/VS ratio is not as clear at this location. A correlation study of topography versus upper-mantle velocity revealed positive correlation in southern Norway but negative or absent correlation...

  10. Dysconnection topography in schizophrenia revealed with state-space analysis of EEG.

    Science.gov (United States)

    Jalili, Mahdi; Lavoie, Suzie; Deppen, Patricia; Meuli, Reto; Do, Kim Q; Cuénod, Michel; Hasler, Martin; De Feo, Oscar; Knyazeva, Maria G

    2007-10-24

    The dysconnection hypothesis has been proposed to account for pathophysiological mechanisms underlying schizophrenia. Widespread structural changes suggesting abnormal connectivity in schizophrenia have been imaged. A functional counterpart of the structural maps would be the EEG synchronization maps. However, due to the limits of currently used bivariate methods, functional correlates of dysconnection are limited to the isolated measurements of synchronization between preselected pairs of EEG signals. To reveal a whole-head synchronization topography in schizophrenia, we applied a new method of multivariate synchronization analysis called S-estimator to the resting dense-array (128 channels) EEG obtained from 14 patients and 14 controls. This method determines synchronization from the embedding dimension in a state-space domain based on the theoretical consequence of the cooperative behavior of simultaneous time series-the shrinking of the state-space embedding dimension. The S-estimator imaging revealed a specific synchronization landscape in schizophrenia patients. Its main features included bilaterally increased synchronization over temporal brain regions and decreased synchronization over the postcentral/parietal region neighboring the midline. The synchronization topography was stable over the course of several months and correlated with the severity of schizophrenia symptoms. In particular, direct correlations linked positive, negative, and general psychopathological symptoms to the hyper-synchronized temporal clusters over both hemispheres. Along with these correlations, general psychopathological symptoms inversely correlated within the hypo-synchronized postcentral midline region. While being similar to the structural maps of cortical changes in schizophrenia, the S-maps go beyond the topography limits, demonstrating a novel aspect of the abnormalities of functional cooperation: namely, regionally reduced or enhanced connectivity. The new method of

  11. Dysconnection topography in schizophrenia revealed with state-space analysis of EEG.

    Directory of Open Access Journals (Sweden)

    Mahdi Jalili

    2007-10-01

    Full Text Available The dysconnection hypothesis has been proposed to account for pathophysiological mechanisms underlying schizophrenia. Widespread structural changes suggesting abnormal connectivity in schizophrenia have been imaged. A functional counterpart of the structural maps would be the EEG synchronization maps. However, due to the limits of currently used bivariate methods, functional correlates of dysconnection are limited to the isolated measurements of synchronization between preselected pairs of EEG signals.To reveal a whole-head synchronization topography in schizophrenia, we applied a new method of multivariate synchronization analysis called S-estimator to the resting dense-array (128 channels EEG obtained from 14 patients and 14 controls. This method determines synchronization from the embedding dimension in a state-space domain based on the theoretical consequence of the cooperative behavior of simultaneous time series-the shrinking of the state-space embedding dimension. The S-estimator imaging revealed a specific synchronization landscape in schizophrenia patients. Its main features included bilaterally increased synchronization over temporal brain regions and decreased synchronization over the postcentral/parietal region neighboring the midline. The synchronization topography was stable over the course of several months and correlated with the severity of schizophrenia symptoms. In particular, direct correlations linked positive, negative, and general psychopathological symptoms to the hyper-synchronized temporal clusters over both hemispheres. Along with these correlations, general psychopathological symptoms inversely correlated within the hypo-synchronized postcentral midline region. While being similar to the structural maps of cortical changes in schizophrenia, the S-maps go beyond the topography limits, demonstrating a novel aspect of the abnormalities of functional cooperation: namely, regionally reduced or enhanced connectivity.The new

  12. Two brittle ductile transitions in subduction wedges, as revealed by topography

    Science.gov (United States)

    Thissen, C.; Brandon, M. T.

    2013-12-01

    Subduction wedges contain two brittle ductile transitions. One transition occurs within the wedge interior, and a second transition occurs along the decollement. The decollement typically has faster strain rates, which suggests that the brittle ductile transition along the decollement will be more rearward (deeper) than the transition within the interior. However, the presence of distinct rheologies or other factors such as pore fluid pressure along the decollement may reverse the order of the brittle-ductile transitions. We adopt a solution by Williams et al., (1994) to invert for these brittle ductile transitions using the wedge surface topography. At present, this model does not include an s point or sediment loading atop the wedge. The Hellenic wedge, however, as exposed in Crete presents an ideal setting to test these ideas. We find that the broad high of the Mediterranean ridge represents the coulomb frictional part of the Hellenic wedge. The rollover in topography north of the ridge results from curvature of the down going plate, creating a negative alpha depression in the vicinity of the Strabo, Pliny, and Ionian 'troughs' south of Crete. A steep topographic rise out of these troughs and subsequent flattening reflects the brittle ductile transition at depth in both the decollement and the wedge interior. Crete exposes the high-pressure viscous core of the wedge, and pressure solution textures provide additional evidence for viscous deformation in the rearward part of the wedge. The location of the decollement brittle ductile transition has been previously poorly constrained, and Crete has never experienced a subduction zone earthquake in recorded history. Williams, C. A., et al., (1994). Effect of the brittle ductile transition on the topography of compressive mountain belts on Earth and Venus. Journal of Geophysical Research Solid Earth

  13. Rapid-Response or Repeat-Mode Topography from Aerial Structure from Motion

    Science.gov (United States)

    Nissen, E.; Johnson, K. L.; Fitzgerald, F. S.; Morgan, M.; White, J.

    2014-12-01

    This decade has seen a surge of interest in Structure-from-Motion (SfM) as a means of generating high-resolution topography and coregistered texture maps from stereo digital photographs. Using an unstructured set of overlapping photographs captured from multiple viewpoints and minimal GPS ground control, SfM solves simultaneously for scene topography and camera positions, orientations and lens parameters. The use of cheap unmanned aerial vehicles or tethered helium balloons as camera platforms expedites data collection and overcomes many of the cost, time and logistical limitations of LiDAR surveying, making it a potentially valuable tool for rapid response mapping and repeat monitoring applications. We begin this presentation by assessing what data resolutions and precisions are achievable using a simple aerial camera platform and commercial SfM software (we use the popular Agisoft Photoscan package). SfM point clouds generated at two small (~0.1 km2), sparsely-vegetated field sites in California compare favorably with overlapping airborne and terrestrial LiDAR surveys, with closest point distances of a few centimeters between the independent datasets. Next, we go on to explore the method in more challenging conditions, in response to a major landslide in Mesa County, Colorado, on 25th May 2014. Photographs collected from a small UAV were used to generate a high-resolution model of the 4.5 x 1 km landslide several days before an airborne LiDAR survey could be organized and flown. An initial estimate of the mass balance of the landslide could quickly be made by differencing this model against pre-event topography generated using stereo photographs collected in 2009 as part of the National Agricultural Imagery Program (NAIP). This case study therefore demonstrates the rich potential offered by this technique, as well as some of the challenges, particularly with respect to the treatment of vegetation.

  14. Change Detection Of Seafloor Topography By Modeling Multitemporal Multibeam Echosounder Measurements

    Science.gov (United States)

    Zirek, E.; Sunar, F.

    2014-09-01

    The term "topography" implies the study of numerous landforms that exist on or below the Earth and a detailed knowledge of topography is required to understand the most Earth processes. In the oceans, sea floor topography refers the geographic features of the sea floor including the configuration of a surface and the position of its natural and man-made features; and detailed nautical charts are fundamental for many sciences such as physical oceanography, biology and marine geology. The hydrographic offices, which use the Multi Beam Echo sounder (MBE) system for the establishment of nautical charts, have their own set of accuracy standards for hydrographic surveys, which generally comply with the standards defined by the International Hydrographic Organization. MBE systems include multiple measurement systems such as sonar head, positioning system, motion sensor that work in a synchronized manner. Before the measurements, the "Patch Test" is required to eliminate the systematic errors due to instrumental synchronization and installation. In this test, signal delay test (latency), Y-axis rotation (roll), X-axis rotation (pitch), Z-axis rotation (yaw) errors are calculated. Besides, the effects of the sound velocity measurement through water column and the sea level changes need to be taken into consideration especially in the multi-temporal data analysis and 3D modeling. In this paper, the seafloor of the Anamur -TRNC Drinking Water Pipeline route in the "Northern Cyprus Water Project" is selected as a study area. This project, a unique in the world, is an international water diversion project designed to supply water for drinking and irrigation from southern Turkey to Northern Cyprus via pipeline under Mediterranean Sea. Multi temporal multi beam echo sounder measurements are used in the change analysis and surface modeling and the efficiency of this system is outlined together with its limitations.

  15. Nano and Microscale Topographies for the Prevention of Bacterial Surface Fouling

    Directory of Open Access Journals (Sweden)

    Mary V. Graham

    2014-01-01

    Full Text Available Bacterial surface fouling is problematic for a wide range of applications and industries, including, but not limited to medical devices (implants, replacement joints, stents, pacemakers, municipal infrastructure (pipes, wastewater treatment, food production (food processing surfaces, processing equipment, and transportation (ship hulls, aircraft fuel tanks. One method to combat bacterial biofouling is to modify the topographical structure of the surface in question, thereby limiting the ability of individual cells to attach to the surface, colonize, and form biofilms. Multiple research groups have demonstrated that micro and nanoscale topographies significantly reduce bacterial biofouling, for both individual cells and bacterial biofilms. Antifouling strategies that utilize engineered topographical surface features with well-defined dimensions and shapes have demonstrated a greater degree of controllable inhibition over initial cell attachment, in comparison to undefined, texturized, or porous surfaces. This review article will explore the various approaches and techniques used by researches, including work from our own group, and the underlying physical properties of these highly structured, engineered micro/nanoscale topographies that significantly impact bacterial surface attachment.

  16. Synchrotron topography project. Progress report, January 20, 1982-October 20, 1982

    International Nuclear Information System (INIS)

    Bilello, J.C.; Chen, H.; Hmelo, A.B.; Liu, J.M.; Birnbaum, H.K.; Herley, P.J.; Green, R.E. Jr.

    1982-01-01

    The collaborators have participated in the Synchrotron Topography Project (STP) which has designed and developed instrumentation for an x-ray topography station at the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory (BNL). The two principle instruments constructed consist of a White Beam Camera (WBC) and a Multiple Crystal Camera (MCC) with high planar collimation and wide area image coverage. It is possible to perform in-situ studies in a versatile environmental chamber equipped with a miniature mechanical testing stage for both the WBC and MCC systems. Real-time video imaging plus a rapid feed cassette holder for high resolution photographic plates are available for recording topographs. Provisions are made for other types of photon detection as well as spectroscopy. The facilities for the entire station have been designed for remote operation using a LSI-11/23 plus suitable interfacing. These instruments will be described briefly and the current status of the program will be reviewed. The Appendix of this report presents titles, authors and abstracts of other technical work associated with this project during the current period

  17. Development of a prototype mesoscale computer model incorporating treatment of topography

    International Nuclear Information System (INIS)

    Apsimon, H.; Kitson, K.; Fawcett, M.; Goddard, A.J.H.

    1984-01-01

    Models are available for simulating dispersal of accidental releases, using mass-consistent wind-fields and accounting for site-specific topography. These techniques were examined critically to see if they might be improved, and to assess their limitations. An improved model, windfield adjusted for topography (WAFT), was developed (with advantages over MATHEW used in the Atmospheric Release Advisory Capability - ARAC system). To simulate dispersion in the windfields produced by WAFT and calculate time integrated air concentrations and dry and wet deposition the TOMCATS model was developed. It treats the release as an assembly of pseudo-particles using Monte Carlo techniques to simulate turbulent displacements. It allows for larger eddy effects in the horizontal turbulence spectrum. Wet deposition is calculated using inhomogeneous rainfields evolving in time and space. The models were assessed, applying them to hypothetical releases in complex terrain, using typical data applicable in accident conditions, and undertaking sensitivity studies. One finds considerable uncertainty in results produced by these models. Although useful for post-facto analysis, such limitations cast doubt on their advantages, relative to simpler techniques, during an actual emergency

  18. Substrate topography: A valuable in vitro tool, but a clinical red herring for in vivo tenogenesis.

    Science.gov (United States)

    English, Andrew; Azeem, Ayesha; Spanoudes, Kyriakos; Jones, Eleanor; Tripathi, Bhawana; Basu, Nandita; McNamara, Karrina; Tofail, Syed A M; Rooney, Niall; Riley, Graham; O'Riordan, Alan; Cross, Graham; Hutmacher, Dietmar; Biggs, Manus; Pandit, Abhay; Zeugolis, Dimitrios I

    2015-11-01

    Controlling the cell-substrate interactions at the bio-interface is becoming an inherent element in the design of implantable devices. Modulation of cellular adhesion in vitro, through topographical cues, is a well-documented process that offers control over subsequent cellular functions. However, it is still unclear whether surface topography can be translated into a clinically functional response in vivo at the tissue/device interface. Herein, we demonstrated that anisotropic substrates with a groove depth of ∼317nm and ∼1988nm promoted human tenocyte alignment parallel to the underlying topography in vitro. However, the rigid poly(lactic-co-glycolic acid) substrates used in this study upregulated the expression of chondrogenic and osteogenic genes, indicating possible tenocyte trans-differentiation. Of significant importance is that none of the topographies assessed (∼37nm, ∼317nm and ∼1988nm groove depth) induced extracellular matrix orientation parallel to the substrate orientation in a rat patellar tendon model. These data indicate that two-dimensional imprinting technologies are useful tools for in vitro cell phenotype maintenance, rather than for organised neotissue formation in vivo, should multifactorial approaches that consider both surface topography and substrate rigidity be established. Herein, we ventured to assess the influence of parallel groves, ranging from nano- to micro-level, on tenocytes response in vitro and on host response using a tendon and a subcutaneous model. In vitro analysis indicates that anisotropically ordered micro-scale grooves, as opposed to nano-scale grooves, maintain physiological cell morphology. The rather rigid PLGA substrates appeared to induce trans-differentiation towards chondrogenic and/or steogenic lineage, as evidence by TILDA gene analysis. In vivo data in both tendon and subcutaneous models indicate that none of the substrates induced bidirectional host cell and tissue growth. Collective, these

  19. Eocene to mid-Pliocene landscape evolution in Scandinavia inferred from offshore sediment volumes and pre-glacial topography using inverse modelling

    Science.gov (United States)

    Pedersen, Vivi K.; Braun, Jean; Huismans, Ritske S.

    2018-02-01

    The origin of high topography in Scandinavia is highly debated, both in terms of its age and the underlying mechanism for its formation. Traditionally, the current high topography is assumed to have formed by several Cenozoic (mainly Neogene) phases of surface uplift and dissection of an old peneplain surface. These same surface uplift events are suggested to explain the increased deposition observed in adjacent offshore basins on the Norwegian shelf and in the North Sea. However, more recently it has been suggested that erosion and isostatic rock uplift of existing topography may also explain the recent evolution of topography in Scandinavia. For this latter view, the increased sedimentation towards the present is assumed to be a consequence of a climate related increase in erosion. In this study we explore whether inverse modelling of landscape evolution can give new insight into Eocene to mid-Pliocene (54-4 Ma) landscape evolution in the Scandinavian region. We do this by combining a highly efficient forward-in-time landscape evolution model (FastScape) with an optimization scheme suitable for non-linear inverse problems (the neighbourhood algorithm - NA). To limit our approach to the fluvial regime, we exclude the most recent mid-Pliocene-Quaternary time period where glacial erosion processes are expected to dominate landscape evolution. The "goodness" of our landscape evolution models is evaluated using i) sediment fluxes based on decompacted offshore sediment volumes and ii) maximum pre-glacial topography from a mid-Pliocene landscape, reconstructed using geophysical relief and offshore sediment volumes from the mid-Pliocene-Quaternary. We find several tested scenarios consistent with the offshore sediment record and the maximum elevation for our reconstructed pre-glacial (mid-Pliocene) landscape reconstruction, including: I) substantial initial topography ( 2 km) at 54 Ma and no induced tectonic rock uplift, II) the combination of some initial topography ( 1

  20. X-ray diffraction topography observations of the core in Bi12SiO20 crystals doped with Mn

    International Nuclear Information System (INIS)

    Milenov, T.I.; Botev, P.A.; Rafailov, P.M.; Gospodinov, M.M.

    2004-01-01

    The core region in a bismuth silicate--Bi 12 SiO 20 (BSO) crystal doped with Mn was examined by X-ray double-crystal diffraction topography. Specific features were observed in the topographies as lines and contrast differences that point to defects occupying the central part of the crystal. We discuss the nature of these defects and propose an explanation in terms of stacking faults arranged in different structures

  1. Crystallinity study of a faceted Brazilian quartz by X-rays topography

    International Nuclear Information System (INIS)

    Suzuki, C.K.; Farias, C.R.L.

    1986-01-01

    A characterization study of crystalline perfection along the Z-direction (from the base to the top) of a single crystal of natural quartz was conducted. A gradual and very significanty change of crystalline perfection with the transparency was revealed by X-ray topography and goniometric observation in samples cut along perpendicular to the Z-direction. (L.J.) [pt

  2. Strategies for Selecting Routes through Real-World Environments: Relative Topography, Initial Route Straightness, and Cardinal Direction.

    Directory of Open Access Journals (Sweden)

    Tad T Brunyé

    Full Text Available Previous research has demonstrated that route planners use several reliable strategies for selecting between alternate routes. Strategies include selecting straight rather than winding routes leaving an origin, selecting generally south- rather than north-going routes, and selecting routes that avoid traversal of complex topography. The contribution of this paper is characterizing the relative influence and potential interactions of these strategies. We also examine whether individual differences would predict any strategy reliance. Results showed evidence for independent and additive influences of all three strategies, with a strong influence of topography and initial segment straightness, and relatively weak influence of cardinal direction. Additively, routes were also disproportionately selected when they traversed relatively flat regions, had relatively straight initial segments, and went generally south rather than north. Two individual differences, extraversion and sense of direction, predicted the extent of some effects. Under real-world conditions navigators indeed consider a route's initial straightness, cardinal direction, and topography, but these cues differ in relative influence and vary in their application across individuals.

  3. Integrated analysis of climate, soil, topography and vegetative growth in Iberian viticultural regions.

    Science.gov (United States)

    Fraga, Helder; Malheiro, Aureliano C; Moutinho-Pereira, José; Cardoso, Rita M; Soares, Pedro M M; Cancela, Javier J; Pinto, Joaquim G; Santos, João A

    2014-01-01

    The Iberian viticultural regions are convened according to the Denomination of Origin (DO) and present different climates, soils, topography and management practices. All these elements influence the vegetative growth of different varieties throughout the peninsula, and are tied to grape quality and wine type. In the current study, an integrated analysis of climate, soil, topography and vegetative growth was performed for the Iberian DO regions, using state-of-the-art datasets. For climatic assessment, a categorized index, accounting for phenological/thermal development, water availability and grape ripening conditions was computed. Soil textural classes were established to distinguish soil types. Elevation and aspect (orientation) were also taken into account, as the leading topographic elements. A spectral vegetation index was used to assess grapevine vegetative growth and an integrated analysis of all variables was performed. The results showed that the integrated climate-soil-topography influence on vine performance is evident. Most Iberian vineyards are grown in temperate dry climates with loamy soils, presenting low vegetative growth. Vineyards in temperate humid conditions tend to show higher vegetative growth. Conversely, in cooler/warmer climates, lower vigour vineyards prevail and other factors, such as soil type and precipitation acquire more important roles in driving vigour. Vines in prevailing loamy soils are grown over a wide climatic diversity, suggesting that precipitation is the primary factor influencing vigour. The present assessment of terroir characteristics allows direct comparison among wine regions and may have great value to viticulturists, particularly under a changing climate.

  4. Titania-polymeric powder coatings with nano-topography support enhanced human mesenchymal cell responses.

    Science.gov (United States)

    Mozumder, Mohammad Sayem; Zhu, Jesse; Perinpanayagam, Hiran

    2012-10-01

    Titanium implant osseointegration is dependent on the cellular response to surface modifications and coatings. Titania-enriched nanocomposite polymeric resin coatings were prepared through the application of advanced ultrafine powder coating technology. Their surfaces were readily modified to create nano-rough (topographies that supported human embryonic palatal mesenchymal cell responses. Energy dispersive x-ray spectroscopy confirmed continuous and homogenous coatings with a similar composition and even distribution of titanium. Scanning electron microscopy (SEM) showed complex micro-topographies, and atomic force microscopy revealed intricate nanofeatures and surface roughness. Cell counts, mitochondrial enzyme activity reduction of yellow 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) to dark purple, SEM, and inverted fluorescence microscopy showed a marked increase in cell attachment, spreading, proliferation, and metabolic activity on the nanostructured surfaces. Reverse Transcription- Polymerase Chain Reaction (RT-PCR) analysis showed that type I collagen and Runx2 expression were induced, and Alizarin red staining showed that mineral deposits were abundant in the cell cultures grown on nanosurfaces. This enhancement in human mesenchymal cell attachment, growth, and osteogenesis were attributed to the nanosized surface topographies, roughness, and moderate wetting characteristics of the coatings. Their dimensional similarity to naturally occurring matrix proteins and crystals, coupled with their increased surface area for protein adsorption, may have facilitated the response. Therefore, this application of ultrafine powder coating technology affords highly biocompatible surfaces that can be readily modified to accentuate the cellular response. Copyright © 2012 Wiley Periodicals, Inc.

  5. Nanoscale surface topographies for structural colors

    DEFF Research Database (Denmark)

    Clausen, Jeppe Sandvik

    The thesis describes and demonstrates the possibilities for utilization of structural colors in mass fabricated plastic products as replacement for or in combination with pigments and inks. The motivation is the possible advantages related to re-cycling and re-use of plastic by limiting the number......-polymer interface is suppressed. This improves the ability to see through a clear plastic in the presence of specular reflection. The tapered nanostructures are also utilized to enhance the chroma of pigmented polymers. Larger tapered structures fabricated in a similar manor are shown to work as color filters....... Through an experimental study is the color of the transmitted light linked directly to the random topography of the surface by use of diffraction theory. The color effects from periodic structures and how these might be employed to create bright colors are investigated. This is done both for opaque...

  6. Effects of design parameters and puff topography on heating coil temperature and mainstream aerosols in electronic cigarettes

    Science.gov (United States)

    Zhao, Tongke; Shu, Shi; Guo, Qiuju; Zhu, Yifang

    2016-06-01

    Emissions from electronic cigarettes (ECs) may contribute to both indoor and outdoor air pollution and the number of users is increasing rapidly. ECs operate based on the evaporation of e-liquid by a high-temperature heating coil. Both puff topography and design parameters can affect this evaporation process. In this study, both mainstream aerosols and heating coil temperature were measured concurrently to study the effects of design parameters and puff topography. The heating coil temperatures and mainstream aerosols varied over a wide range across different brands and within same brand. The peak heating coil temperature and the count median diameter (CMD) of EC aerosols increased with a longer puff duration and a lower puff flow rate. The particle number concentration was positively associated with the puff duration and puff flow rate. These results provide a better understanding of how EC emissions are affected by design parameters and puff topography and emphasize the urgent need to better regulate EC products.

  7. On the impact of topography and building mask on time varying gravity due to local hydrology

    Science.gov (United States)

    Deville, S.; Jacob, T.; Chéry, J.; Champollion, C.

    2013-01-01

    We use 3 yr of surface absolute gravity measurements at three sites on the Larzac plateau (France) to quantify the changes induced by topography and the building on gravity time-series, with respect to an idealized infinite slab approximation. Indeed, local topography and buildings housing ground-based gravity measurement have an effect on the distribution of water storage changes, therefore affecting the associated gravity signal. We first calculate the effects of surrounding topography and building dimensions on the gravity attraction for a uniform layer of water. We show that a gravimetric interpretation of water storage change using an infinite slab, the so-called Bouguer approximation, is generally not suitable. We propose to split the time varying gravity signal in two parts (1) a surface component including topographic and building effects (2) a deep component associated to underground water transfer. A reservoir modelling scheme is herein presented to remove the local site effects and to invert for the effective hydrological properties of the unsaturated zone. We show that effective time constants associated to water transfer vary greatly from site to site. We propose that our modelling scheme can be used to correct for the local site effects on gravity at any site presenting a departure from a flat topography. Depending on sites, the corrected signal can exceed measured values by 5-15 μGal, corresponding to 120-380 mm of water using the Bouguer slab formula. Our approach only requires the knowledge of daily precipitation corrected for evapotranspiration. Therefore, it can be a useful tool to correct any kind of gravimetric time-series data.

  8. The DTU12MDT global mean dynamic topography and ocean circulation model

    DEFF Research Database (Denmark)

    Knudsen, Per; Andersen, Ole B.

    2013-01-01

    combined with the DTU10MSS mean sea surface model to construct a global mean dynamic topography model named DTU10MDT. The results of analyses clearly demonstrated the value of the GOCE mission. Both the resolution and the estimation of the surface currents have been improved significantly compared...

  9. A mathematical model of the flow and bed topography in curved channels

    NARCIS (Netherlands)

    Olesen, K.W.

    1985-01-01

    A two-dimensional horizontal mathematical model of the flow and bed topography in alluvial channel bends is presented. The applicability of the model is restricted to channels of which the width-depth ratio is large, the Froude number is small, bed load is dominant and grain sorting effects are

  10. Optimization of multiplane ?PIV for wall shear stress and wall topography characterization

    NARCIS (Netherlands)

    Rossi, M.; Lindken, R.; Westerweel, J.

    2009-01-01

    Multiplane ?PIV can be utilized to determine the wall shear stress and wall topology from the measured flow over a structured surface. A theoretical model was developed to predict the measurement error for the surface topography and shear stress, based on a theoretical analysis of the precision in

  11. Molecular dynamics investigation of nanoscale substrate topography and its interaction with liquids

    Science.gov (United States)

    Cordeiro Rodrigues, Jhonatam

    Nanotechnology has been presenting successful applications in several areas. However, experimentation with nanoscale materials is costly and limited in analysis capability. This research investigates the use of molecular dynamics (MD) simulations to model and study nanomaterials and manufacturing processes. MD simulations are employed to reduce cost, optimize design, increase productivity and allow for the investigation of material interactions not yet observable through experimentation. This work investigates the interaction of water with substrates at the nanoscale. The effect of temperature, droplet impingement velocities and size, as well as substrate material, are investigated at the nanoscale. Several substrate topography designs were modeled to reveal their influence on the wettability of the substrate. Nanoscale gold and silicon substrates are more hydrophilic at higher temperatures than at room temperature. The reduction in droplet diameter increases its wettability. High impingement velocity of droplets does not influence final wettability of substrates but induces higher diffusion rates of droplets in a heated environment. Droplets deposited over a gradient of surface exposure presents spontaneous movement. The Leidenfrost effect was investigated at the nanoscale. Droplets of 4 and 10nm in diameter presented behaviors pertinent to the Leidenfrost effect at 373K, significantly lower than at micro scale and of potential impact to the field. Topographical features were manipulated using superhydrophobic coating resulting in micro whiskers. Nanoimprint lithography (NIL) was used to manufacture substrate topographies at the nanoscale. Water droplets were deposited on the substrates and their wettability was measured using droplet contact angles. Lower surface area exposure resulted in higher contact angles. The experimental relationships between surface topography and substrate wettability were used to validate the insights gained from MD simulations for

  12. Soil texture derived from topography in North-eastern Amazonia

    OpenAIRE

    Laurent, François; Poccard-Chapuis, René; Plassin, Sophie; Pimentel Martinez, Gustavo

    2017-01-01

    We present a 1:100,000 scale soil texture map of Paragominas county (Pará, Brazil), covering 19,330 km2. The method allows rapid production of a soil texture map of a large area where the strength of a duricrust controls the relief. It is based on an easily accessible explanatory variable, topography, which is represented using a Digital Elevation Model. The method makes it possible to map the spatial distribution of the texture of the topsoil layer. Modelling was complemented by field observ...

  13. Metabolic topography of Parkinsonism

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Seung [Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of)

    2007-04-15

    Parkinson's disease is one of the most frequent neurodegenerative diseases, which mainly affects the elderly. Parkinson's disease is often difficult to differentiate from atypical parkinson disorder such as progressive supranuclear palsy, multiple system atrophy, dementia with Lewy body, and corticobasal ganglionic degeneration, based on the clinical findings because of the similarity of phenotypes and lack of diagnostic markers. The accurate diagnosis of Parkinson's disease and atypical Parkinson disorders is not only important for deciding on treatment regimens and providing prognosis, but also it is critical for studies designed to investigate etiology and pathogenesis of parkinsonism and to develop new therapeutic strategies. Although degeneration of the nigrostriatal dopamine system results in marked loss of striatal dopamine content in most of the diseases causing parkinsonism, pathologic studies revealed different topographies of the neuronal cell loss in Parkinsonism. Since the regional cerebral glucose metabolism is a marker of integrated local synaptic activity and as such is sensitive to both direct neuronal/synaptic damage and secondary functional disruption at synapses distant from the primary site of pathology, and assessment of the regional cerebral glucose metabolism with F-18 FDG PET is useful in the differential diagnosis of parkinsonism and evaluating the pathophysiology of Parkinsonism.

  14. Metabolic topography of Parkinsonism

    International Nuclear Information System (INIS)

    Kim, Jae Seung

    2007-01-01

    Parkinson's disease is one of the most frequent neurodegenerative diseases, which mainly affects the elderly. Parkinson's disease is often difficult to differentiate from atypical parkinson disorder such as progressive supranuclear palsy, multiple system atrophy, dementia with Lewy body, and corticobasal ganglionic degeneration, based on the clinical findings because of the similarity of phenotypes and lack of diagnostic markers. The accurate diagnosis of Parkinson's disease and atypical Parkinson disorders is not only important for deciding on treatment regimens and providing prognosis, but also it is critical for studies designed to investigate etiology and pathogenesis of parkinsonism and to develop new therapeutic strategies. Although degeneration of the nigrostriatal dopamine system results in marked loss of striatal dopamine content in most of the diseases causing parkinsonism, pathologic studies revealed different topographies of the neuronal cell loss in Parkinsonism. Since the regional cerebral glucose metabolism is a marker of integrated local synaptic activity and as such is sensitive to both direct neuronal/synaptic damage and secondary functional disruption at synapses distant from the primary site of pathology, and assessment of the regional cerebral glucose metabolism with F-18 FDG PET is useful in the differential diagnosis of parkinsonism and evaluating the pathophysiology of Parkinsonism

  15. Enhanced Mean Dynamic Topography And Ocean Circulation Estimation Using Goce Preliminary Mode

    DEFF Research Database (Denmark)

    Knudsen, Per; Bingham, Rory; Andersen, Ole Baltazar

    2011-01-01

    have been combined with the recent DNSC08MSS mean sea surface model to construct a global GOCE satellite-only mean dynamic topography model. At a first glance, the GOCE MDT display the well known features related to the major ocean current systems. A closer look, however, reveals that the improved...

  16. Ice Motion and Topography Near Margin Areas of Kamb Ice Stream, Antarctica, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set includes ice motion and topography measurements that were taken by measuring movement and altitude of poles set in the West Antarctic Ice Shelf. The...

  17. A community dataspace for distribution and processing of "long tail" high resolution topography data

    Science.gov (United States)

    Crosby, C. J.; Nandigam, V.; Arrowsmith, R.

    2016-12-01

    Topography is a fundamental observable for Earth and environmental science and engineering. High resolution topography (HRT) is revolutionary for Earth science. Cyberinfrastructure that enables users to discover, manage, share, and process these data increases the impact of investments in data collection and catalyzes scientific discovery.National Science Foundation funded OpenTopography (OT, www.opentopography.org) employs cyberinfrastructure that includes large-scale data management, high-performance computing, and service-oriented architectures, providing researchers with efficient online access to large, HRT (mostly lidar) datasets, metadata, and processing tools. HRT data are collected from satellite, airborne, and terrestrial platforms at increasingly finer resolutions, greater accuracy, and shorter repeat times. There has been a steady increase in OT data holdings due to partnerships and collaborations with various organizations with the academic NSF domain and beyond.With the decreasing costs of HRT data collection, via methods such as Structure from Motion, the number of researchers collecting these data is increasing. Researchers collecting these "long- tail" topography data (of modest size but great value) face an impediment, especially with costs associated in making them widely discoverable, shared, annotated, cited, managed and archived. Also because there are no existing central repositories or services to support storage and curation of these datasets, much of it is isolated and difficult to locate and preserve. To overcome these barriers and provide efficient centralized access to these high impact datasets, OT is developing a "Community DataSpace", a service built on a low cost storage cloud, (e.g. AWS S3) to make it easy for researchers to upload, curate, annotate and distribute their datasets. The system's ingestion workflow will extract metadata from data uploaded; validate it; assign a digital object identifier (DOI); and create a searchable

  18. Lunar Topography: Results from the Lunar Orbiter Laser Altimeter

    Science.gov (United States)

    Neumann, Gregory; Smith, David E.; Zuber, Maria T.; Mazarico, Erwan

    2012-01-01

    The Lunar Orbiter Laser Altimeter (LOLA) onboard the Lunar Reconnaissance Orbiter (LRO) has been operating nearly continuously since July 2009, accumulating over 6 billion measurements from more than 2 billion in-orbit laser shots. LRO's near-polar orbit results in very high data density in the immediate vicinity of the lunar poles, with full coverage at the equator from more than 12000 orbital tracks averaging less than 1 km in spacing at the equator. LRO has obtained a global geodetic model of the lunar topography with 50-meter horizontal and 1-m radial accuracy in a lunar center-of-mass coordinate system, with profiles of topography at 20-m horizontal resolution, and 0.1-m vertical precision. LOLA also provides measurements of reflectivity and surface roughness down to its 5-m laser spot size. With these data LOLA has measured the shape of all lunar craters 20 km and larger. In the proposed extended mission commencing late in 2012, LOLA will concentrate observations in the Southern Hemisphere, improving the density of the polar coverage to nearly 10-m pixel resolution and accuracy to better than 20 m total position error. Uses for these data include mission planning and targeting, illumination studies, geodetic control of images, as well as lunar geology and geophysics. Further improvements in geodetic accuracy are anticipated from the use of re ned gravity fields after the successful completion of the Gravity Recovery and Interior Laboratory (GRAIL) mission in 2012.

  19. Control of surface topography in biomimetic calcium phosphate coatings.

    Science.gov (United States)

    Costa, Daniel O; Allo, Bedilu A; Klassen, Robert; Hutter, Jeffrey L; Dixon, S Jeffrey; Rizkalla, Amin S

    2012-02-28

    The behavior of cells responsible for bone formation, osseointegration, and bone bonding in vivo are governed by both the surface chemistry and topography of scaffold matrices. Bone-like apatite coatings represent a promising method to improve the osteoconductivity and bonding of synthetic scaffold materials to mineralized tissues for regenerative procedures in orthopedics and dentistry. Polycaprolactone (PCL) films were coated with calcium phosphates (CaP) by incubation in simulated body fluid (SBF). We investigated the effect of SBF ion concentration and soaking time on the surface properties of the resulting apatite coatings. CaP coatings were examined by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectrometry (FTIR), and energy dispersive X-ray spectrometry (EDX). Young's modulus (E(s)) was determined by nanoindentation, and surface roughness was assessed by atomic force microscopy (AFM) and mechanical stylus profilometry. CaP such as carbonate-substituted apatite were deposited onto PCL films. SEM and AFM images of the apatite coatings revealed an increase in topographical complexity and surface roughness with increasing ion concentration of SBF solutions. Young's moduli (E(s)) of various CaP coatings were not significantly different, regardless of the CaP phase or surface roughness. Thus, SBF with high ion concentrations may be used to coat synthetic polymers with CaP layers of different surface topography and roughness to improve the osteoconductivity and bone-bonding ability of the scaffold. © 2012 American Chemical Society

  20. Using corneal topography design personalized cataract surgery programs

    Directory of Open Access Journals (Sweden)

    Jin-Ou Huang

    2014-08-01

    Full Text Available AIM:To investigate how to design personalized cataract surgery programs to achieve surgical correction of preoperative corneal astigmatism with surgical astigmatism under the guidance of corneal topography, improve postoperative visual quality and reduce the cost of treatment. METHODS: Totally 202 cases(226 eyescataract patients were divided into randomized treatment group and individualized treatment group. According to the method and location of the incision, randomized treatment group were divided into 8 groups. Surgical astigmatism after different incision were calculated with the use of preoperative and postoperative corneal astigmatism through vector analysis method. Individualized treatment groups were designed personably for surgical method with reference of every surgically induced astigmatism, the surgical method chooses the type of surgical incision based on close link between preoperative corneal astigmatism and surgically induced astigmatism, and the incision was located in the steep meridian. The postoperative corneal astigmatism of individualized treatment group was observed. RESULTS: Postoperative corneal astigmatism of individualized treatment group were lower than that of 3.0mm clear corneal tunnel incision in the randomized treatment group, there were statistically significance difference, while with 3.0mm sclera tunnel incision group there were no statistically significance difference. After 55.8% of patients with the use of individualized surgical plan could undergo the operation of extracapsular cataract extraction with relatively low cost and rigid intraocular lens implantation, the per capita cost of treatment could be reduced. CONCLUSION: Personalized cataract surgery programs are designed to achieve surgical correction of preoperative corneal astigmatism under the use of corneal topography, improve postoperative visual quality and reduce the cost of treatment.

  1. Medical Geography and Topography Works: the first environmental studies in a specific city

    Directory of Open Access Journals (Sweden)

    Angela Lúcia de Araújo Ferreira

    2012-02-01

    Full Text Available The natural environment and the geographical circumstances set the basis for the development of an hygiene-oriented thinking and led physicians to investigate and diagnose the regional and urban space between the eighteenth and twentieth centuries. These ideas were systematically compiled in works known as Medical Geography and Topography Works which, when known throughout the world, ended up becoming precise descriptions of the cities' territory, providing a spatial account of diseases and identifying their nature, evolution and treatment. Besides recovering the origin of these treaties and stressing their importance as amongst the first "geographical" investigations of urban space, this work aims to include Brazil, and specifically the city of Natal (in northeast Brazil within the context of these analyses, with special emphasis on the work entitled Topography of Natal and its Medical Geography authored by doctor Januário Cicco in 1920.

  2. Early human bone response to laser metal sintering surface topography: a histologic report.

    Science.gov (United States)

    Mangano, Carlo; Piattelli, Adriano; d'Avila, Susana; Iezzi, Giovanna; Mangano, Francesco; Onuma, Tatiana; Shibli, Jamil Awad

    2010-01-01

    This histologic report evaluated the early human bone response to a direct laser metal sintering implant surface retrieved after a short period of healing. A selective laser sintering procedure using a Ti-6Al-4V alloy powder with a particle size of 25-45 microm prepared this surface topography. One experimental microimplant was inserted into the anterior mandible of a patient during conventional implant surgery of the jaw. The microimplant and surrounding tissues were removed after 2 months of unloaded healing and were prepared for histomorphometric analysis. Histologically, the peri-implant bone appeared in close contact with the implant surface, whereas marrow spaces could be detected in other areas along with prominently stained cement lines. The mean of bone-to-implant contact was 69.51%. The results of this histologic report suggest that the laser metal sintering surface could be a promising alternative to conventional implant surface topographies.

  3. Iodine and freeze-drying enhanced high-resolution MicroCT imaging for reconstructing 3D intraneural topography of human peripheral nerve fascicles.

    Science.gov (United States)

    Yan, Liwei; Guo, Yongze; Qi, Jian; Zhu, Qingtang; Gu, Liqiang; Zheng, Canbin; Lin, Tao; Lu, Yutong; Zeng, Zitao; Yu, Sha; Zhu, Shuang; Zhou, Xiang; Zhang, Xi; Du, Yunfei; Yao, Zhi; Lu, Yao; Liu, Xiaolin

    2017-08-01

    The precise annotation and accurate identification of the topography of fascicles to the end organs are prerequisites for studying human peripheral nerves. In this study, we present a feasible imaging method that acquires 3D high-resolution (HR) topography of peripheral nerve fascicles using an iodine and freeze-drying (IFD) micro-computed tomography (microCT) method to greatly increase the contrast of fascicle images. The enhanced microCT imaging method can facilitate the reconstruction of high-contrast HR fascicle images, fascicle segmentation and extraction, feature analysis, and the tracing of fascicle topography to end organs, which define fascicle functions. The complex intraneural aggregation and distribution of fascicles is typically assessed using histological techniques or MR imaging to acquire coarse axial three-dimensional (3D) maps. However, the disadvantages of histological techniques (static, axial manual registration, and data instability) and MR imaging (low-resolution) limit these applications in reconstructing the topography of nerve fascicles. Thus, enhanced microCT is a new technique for acquiring 3D intraneural topography of the human peripheral nerve fascicles both to improve our understanding of neurobiological principles and to guide accurate repair in the clinic. Additionally, 3D microstructure data can be used as a biofabrication model, which in turn can be used to fabricate scaffolds to repair long nerve gaps. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. The Influence of a Mouthpiece-Based Topography Measurement Device on Electronic Cigarette User's Plasma Nicotine Concentration, Heart Rate, and Subjective Effects Under Directed and Ad Libitum Use Conditions.

    Science.gov (United States)

    Spindle, Tory R; Hiler, Marzena M; Breland, Alison B; Karaoghlanian, Nareg V; Shihadeh, Alan L; Eissenberg, Thomas

    2017-04-01

    Electronic cigarettes e-cigarettes aerosolize a liquid solution often containing nicotine. e-cigarette nicotine delivery may be influenced by user puffing behaviors ("puff topography"). E-cigarette puff topography can be recorded using mouthpiece-based computerized systems. The present study sought to examine the extent to which these systems influence e-cigarette nicotine delivery and other e-cigarette associated acute effects under ad libitum use conditions. Plasma nicotine concentration, heart rate, and subjective effects were assessed in 29 experienced e-cigarette users using their preferred e-cigarette battery and liquid (≥12mg/mL nicotine) in two sessions differing only by the presence of a mouthpiece-based device. In both sessions, participants completed a directed e-cigarette use bout (10 puffs, 30-s interpuff interval) and a 90-min ad libitum bout. Puff topography was recorded in the session with the topography mouthpiece. Plasma nicotine, heart rate, and subjective effects, aside from "Did the e-cigarette Taste Good?" were independent of topography measurement (higher mean taste ratings were observed in the no topography condition). Mean (SEM) plasma nicotine concentration following the ad libitum bout was 34.3ng/mL (4.9) in the no topography condition and 35.7ng/mL (4.3) in the topography condition. Longer puff durations, longer interpuff intervals, and larger puff volumes were observed in the ad libitum relative to the directed bout. E-cigarette use significantly increased plasma nicotine concentration and heart rate while suppressing abstinence symptoms. These effects did not differ when a topography mouthpiece was present. Future studies using ad libitum e-cigarette use bouts would facilitate understanding of e-cigarette toxicant yield. No prior study has examined whether mouthpiece-based topography recording devices influence e-cigarette associated nicotine delivery, heart rate, or subjective effects under ad libitum conditions or assessed ad

  5. Investigation of diamond wheel topography in Elliptical Ultrasonic Assisted Grinding (EUAG) of monocrystal sapphire using fractal analysis method.

    Science.gov (United States)

    Wang, Qiuyan; Zhao, Wenxiang; Liang, Zhiqiang; Wang, Xibin; Zhou, Tianfeng; Wu, Yongbo; Jiao, Li

    2018-03-01

    The wear behaviors of grinding wheel have significant influence on the work-surface topography. However, a comprehensive and quantitative method is lacking for evaluating the wear conditions of grinding wheel. In this paper, a fractal analysis method is used to investigate the wear behavior of resin-bonded diamond wheel in Elliptical Ultrasonic Assisted Grinding (EUAG) of monocrystal sapphire, and a series of experiments on EUAG and conventional grinding (CG) are performed. The results show that the fractal dimension of grinding wheel topography is highly correlated to the wear behavior, i.e., grain fracture, grain pullout, and wheel loading. An increase in cutting edge density on the wheel surface results in an increase of the fractal dimension, but an increase in the grain pullout and wheel loading results in a decrease in the fractal dimension. The wheel topography in EUAG has a higher fractal dimension than that in CG before 60 passes due to better self-sharpening behavior, and then has a smaller fractal dimension because of more serious wheel loadings after 60 passes. By angle-dependent distribution analysis of profile fractal dimensions, the wheel surface topography is transformed from isotropic to anisotropic. These indicated that the fractal analysis method could be further used in monitoring of a grinding wheel performance in EUAG. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Enhanced possibilities of section topography at a third-generation synchrotron radiation facility

    International Nuclear Information System (INIS)

    Medrano, C.; Rejmankova, P.; Ohler, M.; Matsouli, I.

    1997-01-01

    The authors show the new possibilities of section topography techniques at a third-generation synchrotron radiation facility, taking advantage of the high performances of this machine. Examples of the 1) so-called multiple sections, 2) visibility of weakly misoriented regions, 3) study of thick samples, 4) monochromatic and 5) realtime sections are presented

  7. Ocean Dynamic Topography from GPS - Galathea-3 First results

    DEFF Research Database (Denmark)

    Andersen, Ole Baltazar; Olesen, Arne Vestergaard; Forsberg, René

    2010-01-01

    From August 14, 2006–April 24, 2007 the Danish expedition called Galathea-3 circumnavigated the globe. The Danish Technical University, DTU space, participated in the expedition with two experiments on-board. From Perth in Australia to Copenhagen Denmark measurements of the exact position and mov...... to permanent currents in the ocean. Comparison with the DNSC08 mean dynamic topography derived from satellite altimetry across the Gulf Stream yields agreement on the 20 cm level, which is a very satisfactory preliminary result calling for further refinement of the technique....

  8. Reproducibility of UAV-based earth surface topography based on structure-from-motion algorithms.

    Science.gov (United States)

    Clapuyt, François; Vanacker, Veerle; Van Oost, Kristof

    2014-05-01

    A representation of the earth surface at very high spatial resolution is crucial to accurately map small geomorphic landforms with high precision. Very high resolution digital surface models (DSM) can then be used to quantify changes in earth surface topography over time, based on differencing of DSMs taken at various moments in time. However, it is compulsory to have both high accuracy for each topographic representation and consistency between measurements over time, as DSM differencing automatically leads to error propagation. This study investigates the reproducibility of reconstructions of earth surface topography based on structure-from-motion (SFM) algorithms. To this end, we equipped an eight-propeller drone with a standard reflex camera. This equipment can easily be deployed in the field, as it is a lightweight, low-cost system in comparison with classic aerial photo surveys and terrestrial or airborne LiDAR scanning. Four sets of aerial photographs were created for one test field. The sets of airphotos differ in focal length, and viewing angles, i.e. nadir view and ground-level view. In addition, the importance of the accuracy of ground control points for the construction of a georeferenced point cloud was assessed using two different GPS devices with horizontal accuracy at resp. the sub-meter and sub-decimeter level. Airphoto datasets were processed with SFM algorithm and the resulting point clouds were georeferenced. Then, the surface representations were compared with each other to assess the reproducibility of the earth surface topography. Finally, consistency between independent datasets is discussed.

  9. Integrated analysis of climate, soil, topography and vegetative growth in Iberian viticultural regions.

    Directory of Open Access Journals (Sweden)

    Helder Fraga

    Full Text Available The Iberian viticultural regions are convened according to the Denomination of Origin (DO and present different climates, soils, topography and management practices. All these elements influence the vegetative growth of different varieties throughout the peninsula, and are tied to grape quality and wine type. In the current study, an integrated analysis of climate, soil, topography and vegetative growth was performed for the Iberian DO regions, using state-of-the-art datasets. For climatic assessment, a categorized index, accounting for phenological/thermal development, water availability and grape ripening conditions was computed. Soil textural classes were established to distinguish soil types. Elevation and aspect (orientation were also taken into account, as the leading topographic elements. A spectral vegetation index was used to assess grapevine vegetative growth and an integrated analysis of all variables was performed. The results showed that the integrated climate-soil-topography influence on vine performance is evident. Most Iberian vineyards are grown in temperate dry climates with loamy soils, presenting low vegetative growth. Vineyards in temperate humid conditions tend to show higher vegetative growth. Conversely, in cooler/warmer climates, lower vigour vineyards prevail and other factors, such as soil type and precipitation acquire more important roles in driving vigour. Vines in prevailing loamy soils are grown over a wide climatic diversity, suggesting that precipitation is the primary factor influencing vigour. The present assessment of terroir characteristics allows direct comparison among wine regions and may have great value to viticulturists, particularly under a changing climate.

  10. The topography of the environment alters the optimal search strategy for active particles

    Science.gov (United States)

    Volpe, Giorgio; Volpe, Giovanni

    2017-10-01

    In environments with scarce resources, adopting the right search strategy can make the difference between succeeding and failing, even between life and death. At different scales, this applies to molecular encounters in the cell cytoplasm, to animals looking for food or mates in natural landscapes, to rescuers during search and rescue operations in disaster zones, and to genetic computer algorithms exploring parameter spaces. When looking for sparse targets in a homogeneous environment, a combination of ballistic and diffusive steps is considered optimal; in particular, more ballistic Lévy flights with exponent α≤1 are generally believed to optimize the search process. However, most search spaces present complex topographies. What is the best search strategy in these more realistic scenarios? Here, we show that the topography of the environment significantly alters the optimal search strategy toward less ballistic and more Brownian strategies. We consider an active particle performing a blind cruise search for nonregenerating sparse targets in a 2D space with steps drawn from a Lévy distribution with the exponent varying from α=1 to α=2 (Brownian). We show that, when boundaries, barriers, and obstacles are present, the optimal search strategy depends on the topography of the environment, with α assuming intermediate values in the whole range under consideration. We interpret these findings using simple scaling arguments and discuss their robustness to varying searcher's size. Our results are relevant for search problems at different length scales from animal and human foraging to microswimmers' taxis to biochemical rates of reaction.

  11. Determining Coastal Mean Dynamic Topography by Geodetic Methods

    Science.gov (United States)

    Huang, Jianliang

    2017-11-01

    In geodesy, coastal mean dynamic topography (MDT) was traditionally determined by spirit leveling technique. Advances in navigation satellite positioning (e.g., GPS) and geoid determination enable space-based leveling with an accuracy of about 3 cm at tide gauges. Recent CryoSat-2, a satellite altimetry mission with synthetic aperture radar (SAR) and SAR interferometric measurements, extends the space-based leveling to the coastal ocean with the same accuracy. However, barriers remain in applying the two space-based geodetic methods for MDT determination over the coastal ocean because current geoid modeling focuses primarily on land as a substitute to spirit leveling to realize the vertical datum.

  12. Investigating the Importance of 3D Structure & Topography in Seismic Deformation Modeling: Case Study of the April 2015 Nepal Earthquake

    Science.gov (United States)

    Langer, L.; Gharti, H. N.; Tromp, J.

    2017-12-01

    In recent years, observations of deformation at plate boundaries have been greatly improved by the development of techniques in space geodesy. However, models of seismic deformation remain limited and are unable to account for realistic 3D structure in topography and material properties. We demonstrate the importance of 3D structure using a spectral-element method that incorporates fault geometry, topography, and heterogeneous material properties in a (non)linear viscoelastic domain. Our method is benchmarked against Okada's analytical technique and the PyLith software package. The April 2015 Nepal earthquake is used as a case study to examine whether 3D structure can affect the predictions of seismic deformation models. We find that the inclusion of topography has a significant effect on our results.

  13. TopoGreenland: Lithospheric structure and topography in Central-Eastern Greenland

    Science.gov (United States)

    Thybo, H.; Shulgin, A.; Kraft, H. A.; Vinnik, L. P.

    2017-12-01

    We present models of the seismic structure of the crust and upper mantle in the interior of Greenland based on new seismological data from the TopoGreenland experiment. Until this experiment, all seismic data in Greenland was acquired close to the coast, where the crustal structure is affected by oceanic break-up. The TopoGreenland data acquisition programme in central-eastern Greenland included the first controlled source seismic experiment in interior Greenland and deployment of 24 broadband (BB) onshore stations for 3 years, partly on the ice cap. The 320 km long seismic refraction/wide-angle reflection profile was acquired on the ice cap by a team of six people during two-months in summer of 2011. We present a 2D velocity model of the crust based on tomographic inversion and forward ray tracing modelling of the controlled source data. It shows a decrease of crustal thickness from 47 km below the centre of Greenland in the western to 40 km in its eastern part of the profile. High lower crustal velocities (Vp 6.8 - 7.3 km/s) below central Greenland may result from past collision tectonics or be related to the passage of the Iceland mantle plume. Crustal receiver functions in the surrounding area demonstrate constant structure along the coast and pronounced, relatively sharp variation in crustal thickness around the mountains at the edge of the ice cap. Surprisingly the thickest crust is observed below the lowest topography under the ice cap, whereas the crust is thin below the high mountains at its edge, and thins further below elevated topography out to the coast. Receiver Function interpretation of the mantle and transition zone structure shows a complicated mosaic variation that cannot be correlated to the variation in topography. The origin of the pronounced mountain ranges around the North Atlantic Ocean with average elevation above 1500 m and peak elevations of more than 3.5 km near Scoresby Sund in Eastern Greenland, is unknown. Our new results demonstrate

  14. Managing the explosion of high resolution topography in the geosciences

    Science.gov (United States)

    Crosby, Christopher; Nandigam, Viswanath; Arrowsmith, Ramon; Phan, Minh; Gross, Benjamin

    2017-04-01

    Centimeter to decimeter-scale 2.5 to 3D sampling of the Earth surface topography coupled with the potential for photorealistic coloring of point clouds and texture mapping of meshes enables a wide range of science applications. Not only is the configuration and state of the surface as imaged valuable, but repeat surveys enable quantification of topographic change (erosion, deposition, and displacement) caused by various geologic processes. We are in an era of ubiquitous point clouds that come from both active sources such as laser scanners and radar as well as passive scene reconstruction via structure from motion (SfM) photogrammetry. With the decreasing costs of high-resolution topography (HRT) data collection, via methods such as SfM and UAS-based laser scanning, the number of researchers collecting these data is increasing. These "long-tail" topographic data are of modest size but great value, and challenges exist to making them widely discoverable, shared, annotated, cited, managed and archived. Presently, there are no central repositories or services to support storage and curation of these datasets. The U.S. National Science Foundation funded OpenTopography (OT) Facility employs cyberinfrastructure including large-scale data management, high-performance computing, and service-oriented architectures, to provide efficient online access to large HRT (mostly lidar) datasets, metadata, and processing tools. With over 225 datasets and 15,000 registered users, OT is well positioned to provide curation for community collected high-resolution topographic data. OT has developed a "Community DataSpace", a service built on a low cost storage cloud (e.g. AWS S3) to make it easy for researchers to upload, curate, annotate and distribute their datasets. The system's ingestion workflow will extract metadata from data uploaded; validate it; assign a digital object identifier (DOI); and create a searchable catalog entry, before publishing via the OT portal. The OT Community

  15. Applicability of numerical model for seabed topography changes by tsunami flow. Analysis of formulae for sediment transport and simulations in a rectangular harbor

    International Nuclear Information System (INIS)

    Matsuyama, Masafumi

    2009-01-01

    Characteristics of formulae for bed-load transport and pick-up rate in suspended transport are investigated in order to clarify the impact on seabed topography changes by tsunami flow. The impact by bed-load transport was depended on Froude number and water surface slope. Bed-load transport causes deposition under Fr 6/7 at face front of tsunami wave. Pick-up rate has more predominant influences for seabed topography changes than that of one brought by bed-load transport. 2-D Numerical simulations with formulae by Ikeno et.al were carried out to simulate topography changes around harbor by tsunami flow in the flume. The result indicated that the numerical model is more applicable than a numerical model with previous formulae for estimation of deposit and erosion by topography changes. It is for this reason that the formula of pick-up rate is adaptable for wide-range diameter of sand, from 0.08mm to 0.2mm. Upper limit of suspended sediment concentration is needed to set due to avoid overlarge concentration in the numerical model. Comparison between numerical results in a real scale with 1% and 5% upper limits clearly shows topography changes have a deep relevance with the upper limit value. The upper limit value is one of dominant factors for evaluating seabed topography changes by the 2-D Numerical simulations with the formulae by Ikeno et.al in a real scale. (author)

  16. An investigation of heat transfer between a microcantilever and a substrate for improved thermal topography imaging

    International Nuclear Information System (INIS)

    Somnath, Suhas; King, William P

    2014-01-01

    This paper reports the numerical and experimental investigation of heat transfer from a heated microcantilever to a substrate and uses the resulting insights to improve thermal topography imaging. The cantilever sensitivity, defined as change in thermal signal due to changes in the topography height, is relatively constant for feature heights in the range 100–350 nm. Since the cantilever-substrate heat transfer is governed by thermal conduction through the air, the cantilever sensitivity is nearly constant across substrates of varying thermal conductivity. Surface features with lateral size larger than 2.5 μm can induce artifacts in the cantilever signal resulting in measurement errors as large as 28%. These artifacts arise from thermal conduction from the cantilever in the lateral direction, parallel to the surface. We show how these artifacts can be removed by accounting for this lateral conduction and removing it from the thermal signal. This technique reduces the measurement error by as much as 26%, can be applied to arbitrary substrate topographies, and can be scaled to arrays of heated cantilevers. These results could lead to improvements in nanometer-scale thermal measurements including scanning thermal microscopy and tip-based nanofabrication. (paper)

  17. Micro-Topographies Promote Late Chondrogenic Differentiation Markers in the ATDC5 Cell Line

    NARCIS (Netherlands)

    Le, Bach Q.; Vasilevich, Aliaksei; Vermeulen, Steven; Hulshof, Frits; Stamatialis, Dimitrios F.; Van Blitterswijk, Clemens A.; De Boer, Jan

    2017-01-01

    Chemical and mechanical cues are well-established influencers of in vitro chondrogenic differentiation of ATDC5 cells. Here, we investigate the role of topographical cues in this differentiation process, a study not been explored before. Previously, using a library of surface micro-topographies we

  18. Pseudo forward ray-tracing: A new method for surface validation in cornea topography

    NARCIS (Netherlands)

    Sicam, V.; Snellenburg, J.J.; van der Heijde, R.G.; van Stokkum, I.H.M.

    2007-01-01

    PURPOSE. A pseudo forward ray-tracing (PFRT) algorithm is developed to evaluate surface reconstruction in corneal topography. The method can be applied to topographers where one-to-one correspondence between mire and image points can be established. METHODS. The PFRT algorithm was applied on a

  19. Biomechanical properties of jaw periosteum-derived mineralized culture on different titanium topography.

    Science.gov (United States)

    Att, Wael; Kubo, Katsutoshi; Yamada, Masahiro; Maeda, Hatsuhiko; Ogawa, Takahiro

    2009-01-01

    This study evaluated the biomechanical properties of periosteum-derived mineralized culture on different surface topographies of titanium. Titanium surfaces modified by machining or by acid etching were analyzed using scanning electron microscopy (SEM). Rat mandibular periosteum-derived cells were cultured on either of the titanium surfaces. Cell proliferation was evaluated by cell counts, and gene expression was analyzed using a reverse-transcriptase polymerase chain reaction. Alkaline phosphatase (ALP) stain assay was employed to evaluate osteoblastic activity. Matrix mineralization was examined via von Kossa stain assay, total calcium deposition, and SEM. The hardness and elastic modulus of mineralized cultures were measured using a nano-indenter. The machined surface demonstrated a flat topographic configuration, while the acid-etched surface revealed a uniform micron-scale roughness. Both cell density and ALP activity were significantly higher on the machined surface than on the acid-etched surface. The expression of bone-related genes was up-regulated or enhanced on the acid-etched surface compared to the machined surface. Von Kossa stain showed significantly greater positive areas for the machined surface compared to the acid-etched surface, while total calcium deposition was statistically similar. Mineralized culture on the acid-etched surface was characterized by denser calcium deposition, more mature collagen deposition on the superficial layer, and larger and denser globular matrices inside the matrix than the culture on the machined surface. The mineralized matrix on the acid-etched surface was two times harder than on the machined surface, whereas the elastic modulus was comparable between the two surfaces. The design of this study can be used as a model to evaluate the effect of implant surface topography on the biomechanical properties of periosteum-derived mineralized culture. The results suggest that mandibular periosteal cells respond to different

  20. Disentangling the Role of Climate, Topography and Vegetation in Species Richness Gradients.

    Directory of Open Access Journals (Sweden)

    Mario R Moura

    Full Text Available Environmental gradients (EG related to climate, topography and vegetation are among the most important drivers of broad scale patterns of species richness. However, these different EG do not necessarily drive species richness in similar ways, potentially presenting synergistic associations when driving species richness. Understanding the synergism among EG allows us to address key questions arising from the effects of global climate and land use changes on biodiversity. Herein, we use variation partitioning (also know as commonality analysis to disentangle unique and shared contributions of different EG in explaining species richness of Neotropical vertebrates. We use three broad sets of predictors to represent the environmental variability in (i climate (annual mean temperature, temperature annual range, annual precipitation and precipitation range, (ii topography (mean elevation, range and coefficient of variation of elevation, and (iii vegetation (land cover diversity, standard deviation and range of forest canopy height. The shared contribution between two types of EG is used to quantify synergistic processes operating among EG, offering new perspectives on the causal relationships driving species richness. To account for spatially structured processes, we use Spatial EigenVector Mapping models. We perform analyses across groups with distinct dispersal abilities (amphibians, non-volant mammals, bats and birds and discuss the influence of vagility on the partitioning results. Our findings indicate that broad scale patterns of vertebrate richness are mainly affected by the synergism between climate and vegetation, followed by the unique contribution of climate. Climatic factors were relatively more important in explaining species richness of good dispersers. Most of the variation in vegetation that explains vertebrate richness is climatically structured, supporting the productivity hypothesis. Further, the weak synergism between topography and

  1. Weather, fuels, and topography impede wildland fire spread in western US landscapes

    Science.gov (United States)

    Lisa Holsinger; Sean A. Parks; Carol Miller

    2016-01-01

    As wildland fire activity continues to surge across the western US, it is increasingly important that we understand and quantify the environmental drivers of fire and how they vary across ecosystems. At daily to annual timescales, weather, fuels, and topography are known to influence characteristics such as area burned and fire severity. An understudied facet...

  2. The influence of topography on Titan’s atmospheric circulation and hydrologic cycle

    Science.gov (United States)

    Lora, Juan M.; Faulk, Sean; Mitchell, Jonathan

    2017-10-01

    Titan’s atmospheric circulation is a dominant driver of the global methane hydrologic cycle—producing weather and a seasonal climate cycle—while interactions between the surface and the troposphere strongly constrain regional climates, and contribute to the differentiation between Titan’s low latitude deserts and high latitude lake districts. Yet the influence of surface topography on the atmospheric circulation has only been studied in a few instances, and no published work has investigated the coupling between topographical forcing and Titan’s hydrologic cycle. In this work, we examine the impacts of global topography in the Titan Atmospheric Model (TAM), which includes a robust representation of the methane cycle. We focus in particular on the influence of large-scale topographical features on the atmospheric flow, atmospheric moisture transport, and cloud formation. High latitude transient weather systems have previously been identified as important contributors to global atmospheric methane transport, and here we examine whether topographically-forced stationary or quasi-permanent systems are also important, as they are in Earth’s hydrologic cycle.

  3. Flight dynamics facility operational orbit determination support for the ocean topography experiment

    Science.gov (United States)

    Bolvin, D. T.; Schanzle, A. F.; Samii, M. V.; Doll, C. E.

    1991-01-01

    The Ocean Topography Experiment (TOPEX/POSEIDON) mission is designed to determine the topography of the Earth's sea surface across a 3 yr period, beginning with launch in June 1992. The Goddard Space Flight Center Dynamics Facility has the capability to operationally receive and process Tracking and Data Relay Satellite System (TDRSS) tracking data. Because these data will be used to support orbit determination (OD) aspects of the TOPEX mission, the Dynamics Facility was designated to perform TOPEX operational OD. The scientific data require stringent OD accuracy in navigating the TOPEX spacecraft. The OD accuracy requirements fall into two categories: (1) on orbit free flight; and (2) maneuver. The maneuver OD accuracy requirements are of two types; premaneuver planning and postmaneuver evaluation. Analysis using the Orbit Determination Error Analysis System (ODEAS) covariance software has shown that, during the first postlaunch mission phase of the TOPEX mission, some postmaneuver evaluation OD accuracy requirements cannot be met. ODEAS results also show that the most difficult requirements to meet are those that determine the change in the components of velocity for postmaneuver evaluation.

  4. How the structural architecture of the Eurasian continental margin affects the structure, seismicity, and topography of the south central Taiwan fold-and-thrust belt

    Science.gov (United States)

    Brown, Dennis; Alvarez-Marron, Joaquina; Biete, Cristina; Kuo-Chen, Hao; Camanni, Giovanni; Ho, Chun-Wei

    2017-07-01

    Studies of mountain belts worldwide show that along-strike changes are common in their foreland fold-and-thrust belts. These are typically caused by processes related to fault reactivation and/or fault focusing along changes in sedimentary sequences. The study of active orogens, like Taiwan, can also provide insights into how these processes influence transient features such as seismicity and topography. In this paper, we trace regional-scale features from the Eurasian continental margin in the Taiwan Strait into the south central Taiwan fold-and-thrust belt. We then present newly mapped surface geology, P wave velocity maps and sections, seismicity, and topography data to test the hypothesis of whether or not these regional-scale features of the margin are contributing to along-strike changes in structural style, and the distribution of seismicity and topography in this part of the Taiwan fold-and-thrust belt. These data show that the most important along-strike change takes place at the eastward prolongation of the upper part of the margin necking zone, where there is a causal link between fault reactivation, involvement of basement in the thrusting, concentration of seismicity, and the formation of high topography. On the area correlated with the necking zone, the strike-slip reactivation of east northeast striking extensional faults is causing sigmoidal offset of structures and topography along two main zones. Here basement is not involved in the thrusting; there is weak focusing of seismicity and localized development of topography. We also show that there are important differences in structure, seismicity, and topography between the margin shelf and its necking zone.

  5. River bathymetry estimation based on the floodplains topography.

    Science.gov (United States)

    Bureš, Luděk; Máca, Petr; Roub, Radek; Pech, Pavel; Hejduk, Tomáš; Novák, Pavel

    2017-04-01

    Topographic model including River bathymetry (bed topography) is required for hydrodynamic simulation, water quality modelling, flood inundation mapping, sediment transport, ecological and geomorphologic assessments. The most common way to create the river bathymetry is to use of the spatial interpolation of discrete points or cross sections data. The quality of the generated bathymetry is dependent on the quality of the measurements, on the used technology and on the size of input dataset. Extensive measurements are often time consuming and expensive. Other option for creating of the river bathymetry is to use the methods of mathematical modelling. In the presented contribution we created the river bathymetry model. Model is based on the analytical curves. The curves are bent into shape of the cross sections. For the best description of the river bathymetry we need to know the values of the model parameters. For finding these parameters we use of the global optimization methods. The global optimization schemes is based on heuristics inspired by the natural processes. We use new type of DE (differential evolution) for finding the solutions of inverse problems, related to the parameters of mathematical model of river bed surfaces. The presented analysis discuss the dependence of model parameters on the selected characteristics. Selected characteristics are: (1) Topographic characteristics (slope and curvature in the left and right floodplains) determined on the base of DTM 5G (digital terrain model). (2) Optimization scheme. (3) Type of used analytical curves. The novel approach is applied on the three parts of Vltava river in Czech Republic. Each part of the river is described on the base of the point field. The point fields was measured with ADCP probe River surveyor M9. This work was supported by the Technology Agency of the Czech Republic, programme Alpha (project TA04020042 - New technologies bathymetry of rivers and reservoirs to determine their storage

  6. Relationship between Topography and Some Soil Properties

    Directory of Open Access Journals (Sweden)

    M. J. Pajand

    2016-09-01

    Full Text Available Introduction: Topography is an important and effective property affecting the soil quality. Some researchers demonstrated that degree and aspect of land slope may influence the particle size distribution and gravel. Slope degree affects the surface and subsurface run-off, drainage, soil temperature, stability of soil aggregates and soil erosion. This research was carried out to determine the spatial variation of soil properties in different slope degrees of northern and southern slopes in Khorasan Razavei province, Iran. Material and Methods: This study was performed in Sanganeh research station (longitude 60o 15ʹ60ʺ and latitude 36o 41ʹ 36ʺ, of north-eastern, Khorasan Razavi province of Iran. In order to study the effects of topography on some soil physical and chemical properties, a topo-sequence with the same slope length, parent materials and cover crops was selected. 30 soil samples (0-30 cm depth were collected from different slopes of less than 5, 5-15, 15-30, 30-50 and more than 50 percent of both southern and northern aspects. In this study, the soil particle size distribution (texture was measured by hydrometer method, organic carbon and calcium carbonate were determined by wet oxidation and titration with HCl 6 M, respectively and soil structural stability index, aggregates mean weight diameter and particles fractal dimension were calculated by related equations. Finally, the studied soil properties of 5 slopes (less than 5, 5-15, 15-30, 30-50, and more than 50% and 2 aspects (north and south with 3 replicates were compared by nested experimental design and Tuky test in JMP statistical software. Results and Discussion: The maximum and minimum clay contents as well as fractal dimension and organic carbon contents were found in less than 5% and more than 50% of south slopes, respectively. Clay content and fractal dimension in north aspect were also significantly (P

  7. The effects of surface topography control using liquid crystal elastomers on bodies in flow

    Science.gov (United States)

    Settle, Michael; Guin, Tyler; Beblo, Richard; White, Timothy; Reich, Gregory

    2018-03-01

    Surface topography control has use across many applications including delayed separation of flow via selective boundary-layer tripping. Recently, advances with liquid crystal elastomers (LCE) have been leveraged for controlled, repeatable, out-of-plane deformations that could enable these topographical changes. An aligned LCE deforms when heated, associated with a loss in order. Circumferential patterns fabricated through the thickness of the LCE film yield a predictable conical out-of-plane deformation that can control surface topography. This study focuses on the experimental investigation of LCE behavior for flow control. Initially, the deformations of LCE samples 1/2" in diameter and 50 µm thick were characterized using Digital Image Correlation under uniform positive and negative gauge pressures at various temperatures. Surface topography showed strong dependence on boundary conditions, sample dimensions, and pattern location relative to the applied boundary conditions, informing adjustment of the LCE of the chemistry to produce higher modulus and glassy materials. As an initial demonstration of the ability to control flow, Then, to demonstrate the potential for flow control, 3D printed cylinders with varying arrangements of representative topographical features were characterized in a wind tunnel with Particle Image Velocimetry. Results showed that features with a maximum deflection height of 1.5 mm in a two-row arrangement can form an asymmetric wake about a 73 mm diameter cylinder that reduces drag while generating lift. These results inform subsequent investigation of active LCE elements on a cylinder that are currently under examination.

  8. Chicago classification criteria of esophageal motility disorders defined in high resolution esophageal pressure topography

    NARCIS (Netherlands)

    Bredenoord, A. J.; Fox, M.; Kahrilas, P. J.; Pandolfino, J. E.; Schwizer, W.; Smout, A. J. P. M.; Conklin, Jeffrey L.; Cook, Ian J.; Gyawali, C. Prakash; Hebbard, Geoffrey; Holloway, Richard H.; Ke, Meiyun; Keller, Jutta; Mittal, Ravinder K.; Peters, Jeff; Richter, Joel; Roman, Sabine; Rommel, Nathalie; Sifrim, Daniel; Tutuian, Radu; Valdovinos, Miguel; Vela, Marcelo F.; Zerbib, Frank

    2012-01-01

    Background The Chicago Classification of esophageal motility was developed to facilitate the interpretation of clinical high resolution esophageal pressure topography (EPT) studies, concurrent with the widespread adoption of this technology into clinical practice. The Chicago Classification has been

  9. Synchrotron topography of grow defects in GdCa4O(BO3)3

    International Nuclear Information System (INIS)

    Wierzbicka, E.; Lefeld-Sosnowska, M.; Wierzchowski, W.; Wieteska, K.; Graeff, W.

    2005-01-01

    Gadolinium calcium oxyborane (GdCOB) is a perspective material, especially in the optoelectronics. GdCOB exhibits excellent nonlinear optical parameters and can be easily doped with Nd 3+ , Yb 3+ or Er 3+ ions. To be applied in the optoelectronics it is necessary to obtain crystals with small number of defects, which cause unwanted tensions changing optical properties of the material. The aim of the work was analysis of the defects distribution in the GdCOB and finding its dependence on the crystal growing conditions. Crystals were grown in the Institute of Electronic Materials Technology (ITME) using Czochralski method. Analyses of the crystal quality are the first studies performed using the synchrotron beam reflection topography in the white beam, monochromatic and projecting transmission topography and the Lang reflections. It has been shown, that the main observed defects are the dislocations, which occur in all crystals of different density depending on the grown parameters [pl

  10. Robust source and mask optimization compensating for mask topography effects in computational lithography.

    Science.gov (United States)

    Li, Jia; Lam, Edmund Y

    2014-04-21

    Mask topography effects need to be taken into consideration for a more accurate solution of source mask optimization (SMO) in advanced optical lithography. However, rigorous 3D mask models generally involve intensive computation and conventional SMO fails to manipulate the mask-induced undesired phase errors that degrade the usable depth of focus (uDOF) and process yield. In this work, an optimization approach incorporating pupil wavefront aberrations into SMO procedure is developed as an alternative to maximize the uDOF. We first design the pupil wavefront function by adding primary and secondary spherical aberrations through the coefficients of the Zernike polynomials, and then apply the conjugate gradient method to achieve an optimal source-mask pair under the condition of aberrated pupil. We also use a statistical model to determine the Zernike coefficients for the phase control and adjustment. Rigorous simulations of thick masks show that this approach provides compensation for mask topography effects by improving the pattern fidelity and increasing uDOF.

  11. Advanced in-production hotspot prediction and monitoring with micro-topography

    Science.gov (United States)

    Fanton, P.; Hasan, T.; Lakcher, A.; Le-Gratiet, B.; Prentice, C.; Simiz, J.-G.; La Greca, R.; Depre, L.; Hunsche, S.

    2017-03-01

    At 28nm technology node and below, hot spot prediction and process window control across production wafers have become increasingly critical to prevent hotspots from becoming yield-limiting defects. We previously established proof of concept for a systematic approach to identify the most critical pattern locations, i.e. hotspots, in a reticle layout by computational lithography and combining process window characteristics of these patterns with across-wafer process variation data to predict where hotspots may become yield impacting defects [1,2]. The current paper establishes the impact of micro-topography on a 28nm metal layer, and its correlation with hotspot best focus variations across a production chip layout. Detailed topography measurements are obtained from an offline tool, and pattern-dependent best focus (BF) shifts are determined from litho simulations that include mask-3D effects. We also establish hotspot metrology and defect verification by SEM image contour extraction and contour analysis. This enables detection of catastrophic defects as well as quantitative characterization of pattern variability, i.e. local and global CD uniformity, across a wafer to establish hotspot defect and variability maps. Finally, we combine defect prediction and verification capabilities for process monitoring by on-product, guided hotspot metrology, i.e. with sampling locations being determined from the defect prediction model and achieved prediction accuracy (capture rate) around 75%

  12. The interior structure of Ceres as revealed by surface topography

    Science.gov (United States)

    Fu, Roger R.; Ermakov, Anton; Marchi, Simone; Castillo-Rogez, Julie C.; Raymond, Carol A.; Hager, Bradford; Zuber, Maria; King, Scott D.; Bland, Michael T.; De Sanctis, Maria Cristina; Preusker, Frank; Park, Ryan S.; Russell, Christopher T.

    2017-01-01

    Ceres, the largest body in the asteroid belt (940 km diameter), provides a unique opportunity to study the interior structure of a volatile-rich dwarf planet. Variations in a planetary body's subsurface rheology and density affect the rate of topographic relaxation. Preferential attenuation of long wavelength topography (≥150 km) on Ceres suggests that the viscosity of its crust decreases with increasing depth. We present finite element (FE) geodynamical simulations of Ceres to identify the internal structures and compositions that best reproduce its topography as observed by the NASA Dawn mission. We infer that Ceres has a mechanically strong crust with maximum effective viscosity ∼1025 Pa s. Combined with density constraints, this rheology suggests a crustal composition of carbonates or phyllosilicates, water ice, and at least 30 volume percent (vol.%) low-density, high-strength phases most consistent with salt and/or clathrate hydrates. The inference of these crustal materials supports the past existence of a global ocean, consistent with the observed surface composition. Meanwhile, we infer that the uppermost ≥60 km of the silicate-rich mantle is mechanically weak with viscosity <1021 Pa s, suggesting the presence of liquid pore fluids in this region and a low temperature history that avoided igneous differentiation due to late accretion or efficient heat loss through hydrothermal processes.

  13. Mining for osteogenic surface topographies: In silico design to in vivo osseo-integration.

    Science.gov (United States)

    Hulshof, Frits F B; Papenburg, Bernke; Vasilevich, Aliaksei; Hulsman, Marc; Zhao, Yiping; Levers, Marloes; Fekete, Natalie; de Boer, Meint; Yuan, Huipin; Singh, Shantanu; Beijer, Nick; Bray, Mark-Anthony; Logan, David J; Reinders, Marcel; Carpenter, Anne E; van Blitterswijk, Clemens; Stamatialis, Dimitrios; de Boer, Jan

    2017-08-01

    Stem cells respond to the physicochemical parameters of the substrate on which they grow. Quantitative material activity relationships - the relationships between substrate parameters and the phenotypes they induce - have so far poorly predicted the success of bioactive implant surfaces. In this report, we screened a library of randomly selected designed surface topographies for those inducing osteogenic differentiation of bone marrow-derived mesenchymal stem cells. Cell shape features, surface design parameters, and osteogenic marker expression were strongly correlated in vitro. Furthermore, the surfaces with the highest osteogenic potential in vitro also demonstrated their osteogenic effect in vivo: these indeed strongly enhanced bone bonding in a rabbit femur model. Our work shows that by giving stem cells specific physicochemical parameters through designed surface topographies, differentiation of these cells can be dictated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Evolutionary computation applied to the reconstruction of 3-D surface topography in the SEM.

    Science.gov (United States)

    Kodama, Tetsuji; Li, Xiaoyuan; Nakahira, Kenji; Ito, Dai

    2005-10-01

    A genetic algorithm has been applied to the line profile reconstruction from the signals of the standard secondary electron (SE) and/or backscattered electron detectors in a scanning electron microscope. This method solves the topographical surface reconstruction problem as one of combinatorial optimization. To extend this optimization approach for three-dimensional (3-D) surface topography, this paper considers the use of a string coding where a 3-D surface topography is represented by a set of coordinates of vertices. We introduce the Delaunay triangulation, which attains the minimum roughness for any set of height data to capture the fundamental features of the surface being probed by an electron beam. With this coding, the strings are processed with a class of hybrid optimization algorithms that combine genetic algorithms and simulated annealing algorithms. Experimental results on SE images are presented.

  15. Surface topography effects on energy-resolved polar angular distributions of electrons induced in heavy ion-Al collisions: experiments and models

    International Nuclear Information System (INIS)

    Mischler, J.; Banouni, M.; Banazeth, C.; Negre, M.; Benazeth, N.

    1986-01-01

    The influence of the surface topography on the polar angular distributions of secondary electrons emitted in Ar + (and Xe - )-Al collisions was studied. After each set of experiments, the surface target was viewed by scanning electron microscope. Under normal incidence, continuum background and Al L 23 VV Auger electron polar angular distributions were not modified by the topography and closely followed a cosine law. For Al L 23 MM Auger electrons, experimental angular distributions as a function of the emission polar angle theta, either were near a constant law or followed a decreasing law depending on the irradiation conditions. The N(theta) curves calculated from the models showed that the isotropic angular distributions obtained for electrons generated outside the crystal from a flat surface could be strongly modified by the surface topography. (author)

  16. Middle and Late Pleistocene glaciations in the southwestern Pamir and their effects on topography [Topography of the SW Pamir shaped by middle-late Pleistocene glaciation

    International Nuclear Information System (INIS)

    Stübner, Konstanze; Grin, Elena; Hidy, Alan J.; Schaller, Mirjam; Gold, Ryan D.

    2017-01-01

    Glacial chronologies provide insight into the evolution of paleo-landscapes, paleoclimate, topography, and the erosion processes that shape mountain ranges. In the Pamir of Central Asia, glacial morphologies and deposits indicate extensive past glaciations, whose timing and extent remain poorly constrained. Geomorphic data and 15 new "1"0Be exposure ages from moraine boulders and roches moutonnées in the southwestern Pamir document multiple Pleistocene glacial stages. The oldest exposure ages, View the MathML source113 ± 10ka, underestimate the age of the earliest preserved glacial advance and imply that the modern relief of the southwestern Pamir (peaks at ~5000–6000 m a.s.l.; valleys at ~2000–3000 m a.s.l.) already existed in the late Middle Pleistocene. Younger exposure ages (~40–80 ka, ~30 ka) complement the existing Central Asian glacial chronology and reflect successively less extensive Late Pleistocene glaciations. The topography of the Pamir and the glacial chronologies suggest that, in the Middle Pleistocene, an ice cap or ice field occupied the eastern Pamir high-altitude plateau, whereas westward flowing valley glaciers incised the southwestern Pamir. Since the Late Pleistocene deglaciation, the rivers of the southwestern Pamir adjusted to the glacially shaped landscape. As a result, localized rapid fluvial incision and drainage network reorganization reflect the transient nature of the deglaciated landscape.

  17. USGS HYDRoacoustic dataset in support of the Surface Water Oceanographic Topography satellite mission (HYDRoSWOT)

    Data.gov (United States)

    Department of the Interior — HYDRoSWOT – HYDRoacoustic dataset in support of Surface Water Oceanographic Topography – is a data set that aggregates channel and flow data collected from the USGS...

  18. EAARL Coastal Topography-Mississippi and Alabama Barrier Islands, Post-Hurricane Gustav, 2008

    Science.gov (United States)

    Bonisteel-Cormier, J.M.; Nayegandhi, Amar; Wright, C.W.; Sallenger, A.H.; Brock, J.C.; Nagle, D.B.; Klipp, E.S.; Vivekanandan, Saisudha; Fredericks, Xan; Segura, Martha

    2010-01-01

    These remotely sensed, geographically referenced elevation measurements of lidar-derived bare-earth (BE) and first-surface (FS) topography datasets were produced collaboratively by the U.S. Geological Survey (USGS), St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL; the National Park Service (NPS), Gulf Coast Network, Lafayette, LA; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of a portion of the Mississippi and Alabama barrier islands, acquired post-Hurricane Gustav (September 2008 hurricane) on September 8, 2008. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative airborne lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multispectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for sub-meter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the

  19. The East Greenland Caledonides from the viewpoint of Receiver Functions, gravity and topography data

    DEFF Research Database (Denmark)

    Schiffer, Christian; Balling, N.; Jacobsen, B. H.

    The topography and crustal structure of the Caledonides were shaped by various events, including the Caledonian orogeny, lithospheric extensional collapse, continental breakup and erosional processes. Before the closure of the Iapetus Ocean (480 Ma), convergence of Laurentia, Baltica and Avalonia...

  20. Geophysical investigations of the East Greenland Caledonides using receiver functions, gravity and topography data

    DEFF Research Database (Denmark)

    Schiffer, Christian; Balling, N.; Jacobsen, B. H.

    The present-day topography and crustal structure of the East Greenland Caledonides are a product of various events, including the Caledonian orogeny, lithospheric extensional collapse, continental breakup and erosional processes. The topographic elevation appears high in this region, still after ...

  1. Australian plate motion and topography linked to fossil New Guinea slab below Lake Eyre

    NARCIS (Netherlands)

    Schellart, W. P.; Spakman, W.

    2015-01-01

    Unravelling causes for absolute plate velocity change and continental dynamic topography change is challenging because of the interdependence of large-scale geodynamic driving processes. Here, we unravel a clear spatio-temporal relation between latest Cretaceous-Early Cenozoic subduction at the

  2. Laser surface treatment and the resultant hierarchical topography of Ti grade 2 for biomedical application

    Energy Technology Data Exchange (ETDEWEB)

    Kuczyńska, Donata, E-mail: donatakuczynska@gmail.com [Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw (Poland); Kwaśniak, Piotr [Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw (Poland); Marczak, Jan [Military University of Technology, Institute of Optoelectronics, Warsaw (Poland); Bonarski, Jan [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Cracow (Poland); Smolik, Jerzy [Institute for Sustainable Technology–National Research Institute, Radom (Poland); Garbacz, Halina [Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw (Poland)

    2016-12-30

    Highlights: • Presented surface modification results in multimodal topography. • Laser treatment creates roughness in a range from nano- to micrometers. • Multimodal topography promote protein adsorption. • Hybrid surface treatment results in a texture favorable for osteogenic passes. - Abstract: Modern prosthesis often have a complex structure, where parts of an implant have different functional properties. This gradient of functional properties means that local surface modifications are required. Method presented in this study was develop to functionalize prefabricated elements with original roughness obtained by conventional treatments used to homogenize and clean surface of titanium implants. Demonstrated methodology results in multimodal, periodic grooved topography with roughness in a range from nano- to micrometers. The modified surfaces were characterized in terms of shape, roughness, wettability, surface energy and chemical composition. For this purpose, the following methods were used: scanning electron microscopy, optical profilometry, atomic force microscopy, contact angle measurements and X-ray photoelectron spectroscopy. Protein adsorption studies were conducted to determine the potential biomedical application of proposed method. In order to estimate the intensity and way of the protein adsorption process on different titanium surfaces, XPS studies and AFM measurements were performed. The systematic comparison of surface states and their osseointegration tendency will be useful to evaluate suitability of presented method as an single step treatment for local surface functionalization of currently produced implantable devices.

  3. The relative importance of topography and RGD ligand density for endothelial cell adhesion.

    Directory of Open Access Journals (Sweden)

    Guillaume Le Saux

    Full Text Available The morphology and function of endothelial cells depends on the physical and chemical characteristics of the extracellular environment. Here, we designed silicon surfaces on which topographical features and surface densities of the integrin binding peptide arginine-glycine-aspartic acid (RGD could be independently controlled. We used these surfaces to investigate the relative importance of the surface chemistry of ligand presentation versus surface topography in endothelial cell adhesion. We compared cell adhesion, spreading and migration on surfaces with nano- to micro-scaled pyramids and average densities of 6×10(2-6×10(11 RGD/mm(2. We found that fewer cells adhered onto rough than flat surfaces and that the optimal average RGD density for cell adhesion was 6×10(5 RGD/mm(2 on flat surfaces and substrata with nano-scaled roughness. Only on surfaces with micro-scaled pyramids did the topography hinder cell migration and a lower average RGD density was optimal for adhesion. In contrast, cell spreading was greatest on surfaces with 6×10(8 RGD/mm(2 irrespectively of presence of feature and their size. In summary, our data suggest that the size of pyramids predominately control the number of endothelial cells that adhere to the substratum but the average RGD density governs the degree of cell spreading and length of focal adhesion within adherent cells. The data points towards a two-step model of cell adhesion: the initial contact of cells with a substratum may be guided by the topography while the engagement of cell surface receptors is predominately controlled by the surface chemistry.

  4. Topography, stresses, and stability at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Swolfs, H.S.; Savage, W.Z.

    1985-01-01

    Plane-strain solutions are used to analyze the influence of topography on the state of stress at Yucca Mountain, Nye County, Nevada. The results are in good agreement with the measured stress components obtained in drill holes by the hydraulic-fracturing technique, particularly those measured directly beneath the crest of the ridge, and indicate that these stresses are gravitationally induced. A separate analysis takes advantage of the fact that a well-developed set of vertical faults and fractures, subparallel to the ridge trend, imparts a vertical transverse isotropy to the rock and that, as a consequence of gravitational loading, unequal horizontal stresses are induced in directions perpendicular and parallel to the anisotropy

  5. Increasing the Impact of High-Resolution Lidar Topography Through Online Data Access and Processing

    Science.gov (United States)

    Crosby, C. J.; Nandigam, V.; Baru, C.; Arrowsmith, R.

    2013-12-01

    Topography data acquired with lidar (light detection and ranging) technology are revolutionizing the way we study the Earth's surface and overlying vegetation. These data, collected from satellite, airborne, tripod, or mobile-mounted scanners have emerged as a fundamental tool for research on topics including earthquake hazards, hillslope processes, and cyrosphere change. The U.S. National Science Foundation-funded OpenTopography (OT) Facility (http://www.opentopography.org) is a web-based system designed to democratize access to earth science-oriented lidar topography data. OT provides free, online access to lidar data in a number of forms, including the point cloud and associated geospatial-processing tools for customized analysis. The point cloud data are co-located with on-demand processing tools to generate digital elevation models, and derived products and visualizations which allow users to quickly access data in a format appropriate for their scientific application. The OT system is built using a service-oriented architecture (SOA) that leverages cyberinfrastructure resources at the San Diego Supercomputer Center at the University of California San Diego to allow users, regardless of expertise, to access these massive lidar datasets and derived raster data products for use in research and teaching. OT hosts over 600 billion lidar returns covering more than 120,000 km2. These data are provided by a variety of partners under joint agreements and memoranda of understanding with OT. Partners include national facilities such as the NSF-funded National Center for Airborne Lidar Mapping (NCALM), as well as non-governmental organizations and local, state, and federal agencies. OT has become a hub for high-resolution topography resources. Datasets hosted by other organizations, as well as lidar-specific software, can be registered into the OT catalog, providing users a 'one-stop shop' for such information. OT is also a partner on the NASA Lidar Access System (NLAS

  6. Stereophotogrammetric study of surface topography in ion irradiated silver

    International Nuclear Information System (INIS)

    Sokolov, V.N.; Fayazov, I.M.

    1993-01-01

    The irradiated surface topography of polycrystalline silver was studied using the stereophotogrammetric method. The surface of silver was irradiated with 30 keV argon ions at variation for the ion incidence angle in interval of 0-80 deg relative to a surface normal. The influence of the inclination angle of the sample in the SEM on the cone shape of a SEM-picture of the irradiated surface is discussed. The parameters of cones on the irradiated surface of silver were measured by the SEM-stereomethod. The measurements of the sample section perpendicular to the incidence plane are also carried out

  7. Growth and surface topography of WSe_2 single crystal

    International Nuclear Information System (INIS)

    Dixit, Vijay; Vyas, Chirag; Pataniya, Pratik; Jani, Mihir; Pathak, Vishal; Patel, Abhishek; Pathak, V. M.; Patel, K. D.; Solanki, G. K.

    2016-01-01

    Tungsten Di-Selenide belongs to the family of TMDCs showing their potential applications in the fields of Optoelectronics and PEC solar cells. Here in the present investigation single crystals of WSe_2 were grown by Direct Vapour Transport Technique in a dual zone furnace having temperature difference of 50 K between the two zones. These single crystals were characterized by EDAX which confirms the stiochiometry of the grown crystals. Surface topography of the crystal was studied by optical micrograph showing the left handed spirals on the surface of WSe_2 crystals. Single crystalline nature of the crystals was confirmed by SAED.

  8. Electronic structure and topography of annealed SrTiO3(1 1 1) surfaces studied with MIES and STM

    International Nuclear Information System (INIS)

    Goemann, Anissa; Goemann, Karsten; Frerichs, Martin; Kempter, Volker; Borchardt, Guenter; Maus-Friedrichs, Wolfgang

    2005-01-01

    Perovskites of ABO 3 type like strontium titanate (SrTiO 3 ) are of great practical concern as materials for oxygen sensors operating at high temperatures. It is well known that the surface layer shows different properties compared to the bulk. Numerous studies exist for the SrTiO 3 (1 0 0) and (1 1 0) surfaces which have investigated the changes in the electronic structure and topography as a function of the preparation conditions. They have indicated a rather complex behaviour of the surface and the near surface region of SrTiO 3 at elevated temperatures. Up to now, the behaviour of the SrTiO 3 (1 1 1) surfaces under thermal treatment is not sufficiently known. This contribution is intended to work out the relation between alteration of the surface topography with respect to the preparation conditions and the simultaneous changes of the electronic structure. We applied scanning tunneling microscopy (STM) to investigate the surface topography and, additionally, metastable impact electron spectroscopy (MIES) to study the surface electronic structure of reconstructed SrTiO 3 (1 1 1) surfaces. The crystals were heated up to 1000 deg. C under reducing and oxidizing conditions. Both preparation conditions cause strong changes of the surface topography and electronic structure. A microfaceting of the topmost layers is found

  9. Topography of generalized periodic epileptiform discharges in postanoxic nonconvulsive status epilepticus.

    Science.gov (United States)

    Sakellariou, Dimitris Fotis; Kostopoulos, George Kostantinos; Richardson, Mark Philip; Koutroumanidis, Michalis

    2017-12-01

    We studied slow (≤2.5 Hz) nonevolving generalized periodic epileptiform discharges (GPEDs) in the electroencephalogram (EEG) of comatose patients after cardiac arrest (CA) in search of evidence that could assist early diagnosis of possible hypoxic nonconvulsive status epilepticus (NCSE) and its differentiation from terminal brain anoxia (BA), which can present with a similar EEG pattern. We investigated the topography of the GPEDs in the first post-CA EEGs of 13 patients, using voltage-mapping, and compared findings between two patients with NCSE and GPEDs > 2.5 Hz (group 1), and 11 with GPEDs ≤ 2 Hz, of whom six had possible NCSE (group 2) and five had terminal BA (group 3). Voltage mapping showed frontal maximum for the negative phase of the GPEDs in all patients of groups 1 and 2, but not in any of the patients of group 3, who invariably showed maximization of the negative phase posteriorly. Morphology, amplitude, and duration of the GPEDs varied across the groups, without distinctive features for possible NCSE. These findings provide evidence that, in hypoxic coma after CA with slow GPEDs, anterior topography of the maximum GPED negativity on voltage mapping may be a distinctive biomarker for possible NCSE contributing to the coma.

  10. Estimating Crustal Properties Directly from Satellite Tracking Data by Using a Topography-based Constraint

    Science.gov (United States)

    Goossens, S. J.; Sabaka, T. J.; Genova, A.; Mazarico, E. M.; Nicholas, J. B.; Neumann, G. A.; Lemoine, F. G.

    2017-12-01

    The crust of a terrestrial planet is formed by differentiation processes in its early history, followed by magmatic evolution of the planetary surface. It is further modified through impact processes. Knowledge of the crustal structure can thus place constraints on the planet's formation and evolution. In particular, the average bulk density of the crust is a fundamental parameter in geophysical studies, such as the determination of crustal thickness, studies of the mechanisms of topography support, and the planet's thermo-chemical evolution. Yet even with in-situ samples available, the crustal density is difficult to determine unambiguously, as exemplified by the results for the Gravity and Recovery Interior Laboratory (GRAIL) mission, which found an average crustal density for the Moon that was lower than generally assumed. The GRAIL results were possible owing to the combination of its high-resolution gravity and high-resolution topography obtained by the Lunar Orbiter Laser Altimeter (LOLA) onboard the Lunar Reconnaissance Orbiter (LRO), and high correlations between the two datasets. The crustal density can be determined by its contribution to the gravity field of a planet, but at long wavelengths flexure effects can dominate. On the other hand, short-wavelength gravity anomalies are difficult to measure, and either not determined well enough (other than at the Moon), or their power is suppressed by the standard `Kaula' regularization constraint applied during inversion of the gravity field from satellite tracking data. We introduce a new constraint that has infinite variance in one direction, called xa . For constraint damping factors that go to infinity, it can be shown that the solution x becomes equal to a scale factor times xa. This scale factor is completely determined by the data, and we call our constraint rank-minus-1 (RM1). If we choose xa to be topography-induced gravity, then we can estimate the average bulk crustal density directly from the data

  11. The key role of topography in altering North Atlantic atmospheric circulation during the last glacial period

    Directory of Open Access Journals (Sweden)

    F. S. R. Pausata

    2011-10-01

    Full Text Available The Last Glacial Maximum (LGM; 21 000 yr before present was a period of low atmospheric greenhouse gas concentrations, when vast ice sheets covered large parts of North America and Europe. Paleoclimate reconstructions and modeling studies suggest that the atmospheric circulation was substantially altered compared to today, both in terms of its mean state and its variability. Here we present a suite of coupled model simulations designed to investigate both the separate and combined influences of the main LGM boundary condition changes (greenhouse gases, ice sheet topography and ice sheet albedo on the mean state and variability of the atmospheric circulation as represented by sea level pressure (SLP and 200-hPa zonal wind in the North Atlantic sector. We find that ice sheet topography accounts for most of the simulated changes during the LGM. Greenhouse gases and ice sheet albedo affect the SLP gradient in the North Atlantic, but the overall placement of high and low pressure centers is controlled by topography. Additional analysis shows that North Atlantic sea surface temperatures and sea ice edge position do not substantially influence the pattern of the climatological-mean SLP field, SLP variability or the position of the North Atlantic jet in the LGM.

  12. Ecomorphology of eye shape and retinal topography in waterfowl (Aves: Anseriformes: Anatidae) with different foraging modes.

    Science.gov (United States)

    Lisney, Thomas J; Stecyk, Karyn; Kolominsky, Jeffrey; Schmidt, Brian K; Corfield, Jeremy R; Iwaniuk, Andrew N; Wylie, Douglas R

    2013-05-01

    Despite the large body of literature on ecomorphological adaptations to foraging in waterfowl, little attention has been paid to their sensory systems, especially vision. Here, we compare eye shape and retinal topography across 12 species representing 4 different foraging modes. Eye shape was significantly different among foraging modes, with diving and pursuit-diving species having relatively smaller corneal diameters compared to non-diving species. This may be associated with differences in ambient light intensity while foraging or an ability to tightly constrict the pupil in divers in order to facilitate underwater vision. Retinal topography was similar across all species, consisting of an oblique visual streak, a central area of peak cell density, and no discernible fovea. Because the bill faces downwards when the head is held in the normal posture in waterfowl, the visual streak will be held horizontally, allowing the horizon to be sampled with higher visual acuity. Estimates of spatial resolving power were similar among species with only the Canada goose having a higher spatial resolution. Overall, we found no evidence of ecomorphological adaptations to different foraging modes in the retinal ganglion cell layer in waterfowl. Rather, retinal topography in these birds seems to reflect the 'openness' of their habitats.

  13. EAARL Coastal Topography and Imagery-Naval Live Oaks Area, Gulf Islands National Seashore, Florida, 2007

    Science.gov (United States)

    Nagle, David B.; Nayegandhi, Amar; Yates, Xan; Brock, John C.; Wright, C. Wayne; Bonisteel, Jamie M.; Klipp, Emily S.; Segura, Martha

    2010-01-01

    These remotely sensed, geographically referenced color-infrared (CIR) imagery and elevation measurements of lidar-derived bare-earth (BE) topography, first-surface (FS) topography, and canopy-height (CH) datasets were produced collaboratively by the U.S. Geological Survey (USGS), St. Petersburg Science Center, St. Petersburg, FL; the National Park Service (NPS), Gulf Coast Network, Lafayette, LA; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of the Naval Live Oaks Area in Florida's Gulf Islands National Seashore, acquired June 30, 2007. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative airborne lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multispectral CIR camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for sub-meter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area

  14. A simple finite-difference scheme for handling topography with the first-order wave equation

    NARCIS (Netherlands)

    Mulder, W.A.; Huiskes, M.J.

    2017-01-01

    One approach to incorporate topography in seismic finite-difference codes is a local modification of the difference operators near the free surface. An earlier paper described an approach for modelling irregular boundaries in a constant-density acoustic finite-difference code, based on the

  15. A global high-resolution data set of ice sheet topography, cavity geometry and ocean bathymetry

    DEFF Research Database (Denmark)

    Schaffer, Janin; Timmermann, Ralph; Arndt, Jan Erik

    2016-01-01

    of the Southern Ocean (IBCSO) version 1. While RTopo-1 primarily aimed at a good and consistent representation of the Antarctic ice sheet, ice shelves, and sub-ice cavities, RTopo-2now also contains ice topographies of the Greenland ice sheet and outlet glaciers. In particular, we aimed at agood representation....... For the continental shelf off Northeast Greenland and the floating ice tongue of Nioghalvfjerdsfjorden Glacier at about79 N, we incorporated a high-resolution digital bathymetry model considering original multibeam survey datafor the region. Radar data for surface topographies of the floating ice tongues...... for the geometry of Getz, Abbot, andFimbul ice shelf cavities. The data set is available in full and in regional subsets in NetCDF format from thePANGAEA database at doi:10.1594/PANGAEA.856844....

  16. Effect of different coating layer on the topography and optical properties of ZnO nanostructured

    Science.gov (United States)

    Mohamed, R.; Mamat, M. H.; Malek, M. F.; Ismail, A. S.; Yusoff, M. M.; Asiah, M. N.; Khusaimi, Z.; Rusop, M.

    2018-05-01

    Magnesium (Mg) and aluminum (Al) co-doped zinc oxide (MAZO) thin films were synthesized on glass substrate by sol-gel spin coating method. MAZO thin films were prepared at different coating layers range from 1 to 9. Atomic Force Microscopy (AFM) was used to investigate the topography of the thin films. According to the AFM results, Root Means Square (RMS) of MAZO thin films was increased from 0.747 to 6.545 nm, with increase of number coating layer from 1 to 9, respectively. The results shown the variation on structural and topography properties of MAZO seed film when it's deposited at different coating layers on glass substrate. The optical properties was analyzed using UV-Vis spectroscopy. The obtained results show that the transmittance spectra was increased as thin films coating layer increases.

  17. Implications for anomalous mantle pressure and dynamic topography from lithospheric stress patterns in the North Atlantic Realm

    Science.gov (United States)

    Schiffer, Christian; Nielsen, Søren Bom

    2016-08-01

    With convergent plate boundaries at some distance, the sources of the lithospheric stress field of the North Atlantic Realm are mainly mantle tractions at the base of the lithosphere, lithospheric density structure and topography. Given this, we estimate horizontal deviatoric stresses using a well-established thin sheet model in a global finite element representation. We adjust the lithospheric thickness and the sub-lithospheric pressure iteratively, comparing modelled in plane stress with the observations of the World Stress Map. We find that an anomalous mantle pressure associated with the Iceland and Azores melt anomalies, as well as topography are able to explain the general pattern of the principle horizontal stress directions. The Iceland melt anomaly overprints the classic ridge push perpendicular to the Mid Atlantic ridge and affects the conjugate passive margins in East Greenland more than in western Scandinavia. The dynamic support of topography shows a distinct maximum of c. 1000 m in Iceland and amounts <150 m along the coast of south-western Norway and 250-350 m along the coast of East Greenland. Considering that large areas of the North Atlantic Realm have been estimated to be sub-aerial during the time of break-up, two components of dynamic topography seem to have affected the area: a short-lived, which affected a wider area along the rift system and quickly dissipated after break-up, and a more durable in the close vicinity of Iceland. This is consistent with the appearance of a buoyancy anomaly at the base of the North Atlantic lithosphere at or slightly before continental breakup, relatively fast dissipation of the fringes of this, and continued melt generation below Iceland.

  18. Quantitative surface topography assessment of directly compressed and roller compacted tablet cores using photometric stereo image analysis.

    Science.gov (United States)

    Allesø, Morten; Holm, Per; Carstensen, Jens Michael; Holm, René

    2016-05-25

    Surface topography, in the context of surface smoothness/roughness, was investigated by the use of an image analysis technique, MultiRay™, related to photometric stereo, on different tablet batches manufactured either by direct compression or roller compaction. In the present study, oblique illumination of the tablet (darkfield) was considered and the area of cracks and pores in the surface was used as a measure of tablet surface topography; the higher a value, the rougher the surface. The investigations demonstrated a high precision of the proposed technique, which was able to rapidly (within milliseconds) and quantitatively measure the obtained surface topography of the produced tablets. Compaction history, in the form of applied roll force and tablet punch pressure, was also reflected in the measured smoothness of the tablet surfaces. Generally it was found that a higher degree of plastic deformation of the microcrystalline cellulose resulted in a smoother tablet surface. This altogether demonstrated that the technique provides the pharmaceutical developer with a reliable, quantitative response parameter for visual appearance of solid dosage forms, which may be used for process and ultimately product optimization. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. 3D topography measurements on correlation cells—a new approach to forensic ballistics identifications

    International Nuclear Information System (INIS)

    Song, John; Chu, Wei; Tong, Mingsi; Soons, Johannes

    2014-01-01

    Based on three-dimensional (3D) topography measurements on correlation cells, the National Institute of Standards and Technology (NIST) has developed the ‘NIST Ballistics Identification System (NBIS)’ aimed at accurate ballistics identifications and fast ballistics evidence searches. The 3D topographies are divided into arrays of correlation cells to identify ‘valid correlation areas’ and eliminate ‘invalid correlation areas’ from the matching and identification procedure. A ‘congruent matching cells’ (CMC)’ method using three types of identification parameters of the paired correlation cells (cross correlation function maximum CCF max , spatial registration position in x–y and registration angle θ) is used for high accuracy ballistics identifications. ‘Synchronous processing’ is proposed for correlating multiple cell pairs at the same time to increase the correlation speed. The proposed NBIS can be used for correlations of both geometrical topographies and optical intensity images. All the correlation parameters and algorithms are in the public domain and subject to open tests. An error rate reporting procedure has been developed that can greatly add to the scientific support for the firearm and toolmark identification specialty, and give confidence to the trier of fact in court proceedings. The NBIS is engineered to employ transparent identification parameters and criteria, statistical models and correlation algorithms. In this way, interoperability between different ballistics identification systems can be more easily achieved. This interoperability will make the NBIS suitable for ballistics identifications and evidence searches with large national databases, such as the National Integrated Ballistic Information Network in the United States. (paper)

  20. Small-scale topography modulates elevational α-, β- and γ-diversity of Andean leaf beetles.

    Science.gov (United States)

    Thormann, Birthe; Ahrens, Dirk; Espinosa, Carlos Iván; Armijos, Diego Marín; Wagner, Thomas; Wägele, Johann W; Peters, Marcell K

    2018-03-09

    Elevational diversity gradients are typically studied without considering the complex small-scale topography of large mountains, which generates habitats of strongly different environmental conditions within the same elevational zones. Here we analyzed the importance of small-scale topography for elevational diversity patterns of hyperdiverse tropical leaf beetles (Coleoptera: Chrysomelidae). We compared patterns of elevational diversity and species composition of beetles in two types of forests (on mountain ridges and in valleys) and analyzed whether differences in the rate of species turnover among forest habitats lead to shifts in patterns of elevational diversity when scaling up from the local study site to the elevational belt level. We sampled beetle assemblages at 36 sites in the Podocarpus National Park, Ecuador, which were equally distributed over two forest habitats and three elevational levels. DNA barcoding and Poisson tree processes modelling were used to delimitate putative species. On average, local leaf beetle diversity showed a clear hump-shaped pattern. However, only diversity in forests on mountain ridges peaked at mid-elevation, while beetle diversity in valleys was similarly high at low- and mid-elevation and only declined at highest elevations. A higher turnover of species assemblages at lower than at mid-elevations caused a shift from a hump-shaped diversity pattern found at the local level to a low-elevation plateau pattern (with similar species numbers at low and mid-elevation) at the elevational belt level. Our study reveals an important role of small-scale topography and spatial scale for the inference on gradients of elevational species diversity.